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ABSTRACT [1] 

An abdominal aortic aneurysm (AAA) is a pathological dilation of the abdominal 

aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate 

marker of rupture risk in clinical practice is the maximal transverse diameter of the 

aneurysm. More recent studies suggest that wall stress derived from models of patient-

specific aneurysm geometries extracted, for instance, from computed tomography images 

is a better predictor of rupture risk and an important factor in AAA size progression. 

However, quantification of wall stress is currently computationally intensive and time-

consuming, mainly because AAA walls are modeled with nonlinear mechanical 

properties. This has limited the potential of computational models in clinical practice. To 

facilitate computation of wall stresses, we propose to use a linear approach that ensures 

equilibrium of wall stresses in the aneurysm. This proposed linear model is easy to 

implement and eliminates the burden of nonlinear computations. To assess the potential 

of our proposed approach for predicting patient wall stresses, results from both idealized 

and patient-specific model simulations were compared to those obtained using 

conventional approaches and to those of a hypothetical, reference abdominal aortic 

aneurysm model in which wall mechanical properties and the initial unloaded and 

unstressed configuration were assumed to be known. Our linear approach closely 

approximated the reference wall stresses for varying model geometries and wall material 

properties. Our findings suggest that the linear approach could be used as an effective, 

efficient, and easy-to-use clinical tool to estimate patient-specific wall stresses and 

ultimately identify AAAs with high rupture risk. 
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CHAPTER 1: INTRODUCTION 
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An abdominal aortic aneurysm is a local, abnormal dilation of the abdominal 

aorta whose maximum transverse diameter (MTD) exceeds 30 mm [2][3][4][5]. Although 

the pathogenesis and progression of an AAA are not clearly understood, the processes are 

believed to be influenced by a complex interplay between biological and hemodynamic 

factors that culminates in a rupture, leading to hemorrhagic shock and death [6][7]. About 

80% of the patients with acute ruptured aneurysms who reach a hospital perish, and about 

50% of patients who receive emergent surgical repair survive [4][5]. Since survival is low 

for ruptured AAAs, the most promising practices for improving clinical outcomes are 

early diagnosis and careful surveillance and management. But early diagnosis is often 

difficult because the majority of AAAs are asymptomatic until rupture [4][8][9]. AAAs 

are often detected incidentally during computed tomography (CT) imaging [5][10]. For 

patients that have been diagnosed with an AAA, the aneurysm is managed by measuring 

the size of the MTD on ultrasound, CT scan, or magnetic resonance imaging (MRI). 

AAA rupture risk is known to increase with aneurysm size [11]. The current guidelines 

recommend surgical repair when the MTD of the AAA reaches 55 mm, or is observed to 

grow at a rate of greater than 10 mm/year [2].  

Use of the MTD for determining AAA rupture risk is concerning because 0-23% 

of aneurysms smaller than 55 mm have been reported to rupture, whereas 60% of larger 

AAAs have not ruptured [7][11][12][13][14][15]. Thus, in employing the MTD, 

clinicians overestimate the stability of smaller aneurysms and expose patients with larger 

aneurysms to unnecessary surgery. A more sensitive and specific marker for assessing 

AAA rupture risk is therefore needed. A lack of appropriate rupture risk predictors is the 

main AAA management problem, and experts from multiple disciplines are working with 
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physicians to address the issue. The most promising contributions are arising from the 

field of biomechanics, which has identified wall stress as a better predictor of risk. 

Wall stress has been targeted as a predictor for rupture, because, from a 

mechanical standpoint, AAA rupture occurs when the local stresses on the wall exceed its 

strength. Thus, assessment of stress distributions throughout the aneurysmal wall could 

offer important insight about areas more prone to rupture. Compared to the peak 

transverse diameter, computed wall stress has been reported to better determine which 

patients were in need of emergent repair [13][16][17][18][19][20].  

Wall stress is nevertheless not employed in the clinic because it cannot be directly 

measured but must be computed using finite element analysis (FEA). Further, current 

approaches for computing wall stress are time-intensive and difficult. One difficulty in 

computation is the conventional modeling of AAA tissue as a nonlinear hyperelastic 

material, i.e., a material in which tissue strain is not proportional to stress (see Fig. 1). 

Strain is a measure of the deformation that a body experiences due to an applied load, 

compared to the body’s original shape. In contrast to nonlinear materials, for a linear 

material, the stress-strain relationships are proportional, and wall stress computations are 

therefore simpler and quickly achieved. Although linear computations are more efficient, 

further research is needed to determine if linear elasticity with small deformations can be 

used to approximate AAA wall stress. The principal goal of this thesis project is to 

determine if the modeling of AAA tissues as linear elastic materials with small 

deformations is an effective, efficient approach for computing patient wall stresses. 

Improving the efficiency of wall stress computations will help stress-based methods 
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become promising clinical tools that will better identify patients requiring emergent 

repair.  

The remainder of this chapter will provide further background on what is 

currently done in the clinic to detect and manage AAAs and on how current strategies are 

not effective for determining a given patient’s rupture risk. Furthermore, the rationale for 

considering wall stress as a predictor for AAA rupture, which includes an explanation of 

the role of stress and biological factors in the formation of an AAA, will be provided. The 

chapter closes with a brief introduction of a few approaches currently used for computing 

wall stresses and their limitations. 

Chapter 2 will discuss the methods employed in this work for computing subject-

specific AAA wall stresses. These methods include the acquisition of subject-specific CT 

scans and relevant medical information, i.e., blood pressure; the extraction of AAA 

geometries from CT scans in the form of a mesh; and the preparation of AAA meshes and 

FEA models of aneurysms for the computation of wall stresses.  

The heart of the thesis research is found in Chapter 3. To address the thesis 

objective, we need to determine how well patient wall stresses are predicted by modeling 

AAAs with linear elastic properties. To perform the analysis, the stresses computed using 

the linear model need to be compared to a reference wall stress distribution as well as to 

stresses computed using conventional approaches (see Fig. 2) [1]. An ideal reference 

stress distribution would have been the actual stresses in a patient AAA, but these values 

cannot be determined because the following are clinically unknown: 1) the patient-

specific material properties of the aneurysm; and 2) the initial unloaded AAA 

configuration. Thus, we generated a hypothetical reference model of an AAA, where we 
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assumed that we knew the initial unloaded configuration and the tissue properties. We 

simulated the reference AAA with nonlinear hyperelastic properties described by the 

Raghavan-Vorp (RV) material model, which is widely used in the field 

[16][18][21][22][23][24][25][26][27]. The material properties were determined by 

performing uniaxial tensile testing experiments on AAA tissue samples excised from 

cadavers or patients undergoing elective repair [28]. Because the reference model 

material properties and initial configuration were assumed to be known, the computed 

wall stresses hypothetically served as accurate representations of the stresses in the 

deformed reference AAA. This deformed, loaded configuration of the reference model 

represented the CT geometry of the AAA (see Fig. 2). The CT geometry was then 

assumed to be unloaded and unstressed and served as the initial configuration of the 

conventional and linear models. Assuming an unloaded, unstressed CT geometry is what 

is typically done in the field before computing wall stresses [23][29][30]. In the 

conventional model, the AAA was assumed with RV population average material 

property values and large deformations. The linear model was simulated as a linear 

material with small deformations. The small displacements of the linear model allowed 

for the preservation of the CT geometry after blood pressure was applied to the model 

lumen surface—this was not observed when the conventional approach was used. The 

wall stresses computed for the linear model were then compared to those of the reference 

model to assess the potential of the linear model to predict the reference stresses. Wall 

stress comparisons were also achieved between the conventional and reference models. 

Reference, conventional, and linear models were developed for idealized representations 
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of an AAA under different pressures, dimensions, and material properties, as well as for 

patient-specific AAAs. 

Chapter 4 summarizes the general conclusions of the thesis project and presents 

ideas for future work, which includes a study that evaluates the effectiveness of the linear 

model for differentiating ruptured AAAs from non-ruptured cases. Chapter 4 also 

discusses potential applications of the linear model. Examples include using the linear 

model to 1) elucidate the role that wall stress plays in AAA expansion, which is poorly 

understood; and 2) predict rupture risk in thoracic aortic aneurysms (TAAs), 

intracranial/cerebral aneurysms (ICAs), and in thoracic aortic dissections, which are 

separations of the aortic wall layers caused by blood entering a tear in the thoracic aorta.  

Overall, this research attempts to facilitate the consideration of stress-based 

methods for use in the clinic to assess subject-specific aneurysmal rupture risk and to 

identify patients in need of emergent repair. If successful, more patient lives will be 

saved, and fewer patients will undergo unnecessary surgery.   

 

1.1 AAA Epidemiology, Detection, and Management  

 

1.1.1 AAA Epidemiology 

AAA risk increases with advancing age, and AAAs are more common in white 

people compared to other races [4][5][31][32][33][34]. Racial differences in AAA 

prevalence are notable among men, where whites are 2-3 times more likely to suffer from 

AAA-specific mortality compared to African American men [33]. Low odds ratios of 

AAA risk were also reported for other races compared to whites, but the findings were 
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not significant [34]. The racial differences in AAA occurrence and mortality among 

women are minimal [33][35]. AAAs are most prevalent in white men between the ages of 

65 and 83 [5][36]. The prevalence of AAAs in age-equivalent white females is 3.9-6 

times less common than in their male counterparts [5][31][32][37]. Even though women 

constitute a smaller fraction of AAA patients, the risk of rupture and death is much higher 

than in men, and rupture occurs at smaller aneurysmal sizes [11][32][38][39][40]. A 

study that assessed the relative importance of AAA size in determining rupture risk in 

3,138 men and 907 women reported that the AAA diameter was significantly lower in 

women (i.e., mean ± SD, 61 ± 14 mm in men vs. 58 ± 13 mm in women, p < 0.001), even 

in the ruptured AAA subgroup (78 ± 19 mm in men vs. 71 ± 21 mm in women, p < 

0.001) [41][42]. Annually, the incidence of new AAA diagnoses is 3.5 per 1,000 person 

years [43], and the incidence of rupture is 10.6 per 100,000 person years, with about 

7,000-30,000 American deaths [4][32][44]. 

 

1.1.2 AAA Detection 

AAA rupture deaths could be prevented if the aneurysms were diagnosed early, 

but the majority of AAAs are silent and asymptomatic [45] and are often detected 

incidentally on CT scans or ultrasound. If ruptured, the AAAs carry a 90% mortality risk 

[7][14].  

Given the high lethality of ruptured AAAs, studies have been conducted to 

determine if screening for AAAs confers a benefit in reducing AAA mortality risk. One 

population-based randomized controlled trial evaluated the benefits of ultrasound 

screening for AAAs in reducing mortality in a cohort of men aged 65-83 years [36]. 
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Ultrasound was selected because of its safety, low cost, and high sensitivity and 

specificity [46][47]. Screening reduced the overall death rates for men of ages 65 to 75, 

especially for those with a history of smoking, but not older.  A similar population-based 

ultrasound screening study was conducted, involving a cohort of women [31]. The study 

reported that ultrasound screening did not result in a reduction in AAA mortality risk in 

women [48][49]. Following the collective findings, the United States Preventive Services 

Task Force (USPSTF) recommends ultrasound screening once in men between the ages 

65-75 with any history of smoking [31][50] but does not recommend screening women 

[31].  

 

1.1.3 AAA Management 

Once an AAA is detected, proper management is indispensable to reduce the risk 

of rupture and includes pharmacological therapy, life-style modification, observation, 

surgery, or a combination of these [31][51]. Prior to surgery, the most important element 

of AAA management is observation. Through observation, clinicians can measure the 

AAA’s maximum transverse diameter (MTD), which is the current clinically accepted 

marker used for predicting rupture risk and determining intervention [11][17][52][53]. 

According to Brewster et al., AAAs that are small (e.g., MTD of 30-39 mm), typically 

have lower rupture risk than intermediate AAAs (MTD of 40-54 mm) and large AAAs 

(MTDs ≥ 55 mm) (about 0% vs. about 0.5-5% vs. 3-50%, respectively) [5][11][54]. The 

choice of imaging modality used for monitoring an AAA is dependent on the MTD. 

Because of a lower risk of rupture, small AAAs are generally managed with ultrasound 

surveillance every 2-3 years [5][31]. The frequency of monitoring increases to every 3-12 
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months when the aneurysm’s MTD grows to 40-55 mm [5][31]. Larger AAAs can be 

monitored with imaging at a surveillance frequency of 1-6 months, but surgical repair is 

recommended for AAAs exceeding 55 mm, provided that the patient qualifies for surgery 

and the surgical risks do not outweigh the benefits [5][55]. For AAAs growing at a rate of 

5 mm every 0.5 years regardless of size, a CT scan is recommended to detect possible 

hemorrhage, since these aneurysms have a high risk for rupturing [5][31]. For 

symptomatic AAAs, repair is indicated [31][49][56][57][58][59][60]. A summary of the 

recommendations for AAA management through observation is found in Table 1. 

If the AAA ruptures, emergent repair is needed [5][49][57][61][62]. Surgical 

options for AAA patients either consist of endovascular or open surgical repair 

[5][57][63][64][65]. Although surgical repair of larger aneurysms is indicated due to the 

increase in rupture risk with size, the question of whether early repair confers a benefit in 

AAAs smaller than 55 mm remains to be addressed. This is because smaller AAAs have 

been observed to rupture [7][13], even though their rupture risks are reported as low [11]. 

To determine the benefits of an early surgical repair compared to ultrasound surveillance 

in smaller AAAs, the Aneurysm Detection and Management (ADAM) study and the 

United Kingdom Small Aneurysm Trial performed randomized clinical controlled trials, 

where older men with AAAs of 40-55 mm were randomly assigned to ultrasound 

surveillance or early surgical repair [66][67]. Subjects were monitored for a period of 

3.5-8 years with death as the primary endpoint [67]. According to the studies, surgical 

repair of intermediate-sized aneurysms did not seem to confer a long term survival 

benefit compared to surveillance [66][67]. But a subsequent study of the UK trial, where 

the follow-up period was extended to 9 years, revealed a survival advantage in men who 
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received early surgical repair [11]. More studies are needed to determine the benefits of 

early surgical repair, especially since uncertainty exists as to what AAA size is the best 

threshold for conducting surgical repair, while ensuring that the surgical risks do not 

outweigh the benefits of treatment. Because aneurysms smaller than 55 mm have been 

reported to rupture and AAAs with larger diameters have been observed to not rupture 

[7][13][68], the use of the maximum transverse diameter as a reliable predictor for 

rupture is questionable and a better marker is needed.  

 

1.2 Rationale for Consideration of Wall Stress as a Predictor of Risk and the Dual 

Role of Mechanical and Biological Factors in AAA Development and Progression 

 

1.2.1 Role of Wall Stress in the Pathogenesis, Progression and Remodeling of an AAA 

Wall stress has been targeted as a predictor of risk because AAA rupture is a 

mechanical problem, where the forces that are exerted on the wall exceed the wall 

strength. Additionally, wall stress has been regarded as one of the crucial factors involved 

in the pathogenesis, growth and remodeling of an AAA [69][70][71][72].  

The formation and progression of an AAA are not fully understood but are 

believed to be the result of a complex interplay between wall stresses and biological 

processes, e.g., inflammation [6], that affect aneurysmal wall maintenance [73]. The 

pathogenesis of an AAA is partly thought to arise from the repeated loading imposed on 

the aorta, which results in the wearing of elastin fibers and sheets in the medial layer of 

the aorta as one ages [6]. For an aneurysmal tissue, the content of elastin has been found 

to be significantly lower than in non-aneurysmal tissue [74]. Another histological change 
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observed in aneurysmal tissue is that the levels of collagen have been found to be both 

higher and lower compared to normal tissue, with increased collagen breakdown 

especially noted in ruptured AAAs [71][74][75][76]. An increase in collagen production 

and loss of elasticity stiffens the AAA wall, resulting in an increase in the blood’s pulse 

wave velocity, a widened pulse pressure and an increase in hemodynamic stress [4][77]. 

The increased stress contributes to further elastin degeneration and aortic dilation [77].  

An AAA’s rupture risk increases when the rate of collagen breakdown exceeds 

that of production [73][78]. An increase in collagen breakdown is thought to result from a 

pathological increase in cyclic wall stress [72], which increases the circumferential strain 

on vascular smooth muscle cells. A pathological cyclic strain has been shown to increase 

levels of periostin, a matricellular protein that promotes the activation of matrix 

metalloproteinases (MMPs), and monocyte chemoattractant protein-1 (MCP-1) in excised 

human AAA tissues as well as in mice with induced AAAs [72]. The MMPs breakdown 

collagen and elastin [71][75][77][79][80], and the increase in elastin degradation 

products contributes further to the weakening of the AAA wall by attracting mononuclear 

phagocytes [81]. These and other inflammatory cells, such as B cells, Th-2 CD3+ 

lymphocytes and mast cells have been shown to infiltrate AAA walls [55][82]. Increased 

inflammatory cell infiltration is especially noted in aneurysmal tissue juxtaposed to an 

intraluminal thrombus (ILT), which traps many inflammatory cells [55][83]. Collectively, 

these cells promote further activation of MMPs [82] and release reactive oxygen species, 

resulting in further tissue damage, vascular smooth muscle apoptosis, AAA wall 

weakening [82] and increased rupture risk.  
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Although the thrombus contributes to the weakening of the wall by hosting a pro-

inflammatory environment, the ILT also attenuates the magnitude of wall stresses that are 

exerted on the wall by the blood [27][84]. Thus, the thrombus appears to have a dual 

function as an inflammatory reservoir and a protective mechanical cushion [55][85], but 

there is no consensus as to which role predominates. For this research project, we will 

focus on the mechanical function of the thrombus. 

Walls juxtaposed to the ILT have been observed to be thin [55] suggesting local 

wall weakening, but the AAA wall also has sites that are thick, measuring up to 4.27 mm, 

a value 2-3 times as thick as a normal aortic wall [86][87]. The sites of increased 

thickness could be attributed to sites of calcification or hypertrophy [86][88], for 

example. Hypertrophic walls would be the normal biological response to increased blood 

pressure [69][88][89], as the thickening of the wall is thought to help bring the increased 

wall stresses due to hypertension back down to homeostatic values. Another example of 

tissue remodeling and maintenance of homeostasis is the circumferential growth of the 

aortic wall to reduce elevated wall shear. This process has been mathematically modeled 

by the tissue growth and remodeling theories proposed by Humphrey [69], which will be 

discussed in Chapter 4. A simplification of these laws is used in an ongoing study that 

applies the proposed linear model to improve our understanding of wall stress and AAA 

expansion relationships (see Chapter 4). 

 

1.2.2 Wall Stress as a Better Predictor of AAA Rupture Risk than the Maximum 

Transverse Diameter 
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In addition to playing an important role in the pathogenesis, progression and 

remodeling of an AAA, wall stress has been identified as a better predictor of AAA 

rupture risk compared to the MTD, strengthening the rationale for its consideration as a 

promising clinical marker to manage AAAs. To evaluate the potential of wall stress as a 

predictor of AAA rupture risk, several studies employed finite element analysis (FEA) to 

compute wall stresses, since they cannot be directly measured 

[13][16][20][27][86][90][91]. In FEA, a set of partial differential equations that 

establishes equilibrium of forces is numerically solved over the AAA continuum. This is 

achieved by first dividing the geometry into discrete smaller domains called elements and 

then simplifying the partial differential equations into algebraic equations involving a 

finite number of parameters within each element. 

A study conducted by Fillinger et al. compared FEA wall stress distributions for 

ruptured, symptomatic, and elective repaired AAAs. They observed that the peak wall 

stresses in maximum diameter matched AAAs were significantly higher in ruptured and 

symptomatic AAAs than in electively repaired cases [16]. In a separate study, Fillinger 

then compared the effectiveness of the maximum transverse diameter for assessing AAA 

rupture risk to that of initial peak wall stress in a cohort of 103 patients with 

asymptomatic AAAs [13]. Within a mean follow-up period of 14 months, 61 patients 

underwent elective repair and 42 patients received no intervention. Of the patients 

undergoing elective repair, 22 cases involved ruptured or symptomatic AAAs. A receiver 

operating characteristic curve (ROC) was generated for both initial peak wall stress and 

the maximum transverse diameter, which evaluated each parameter’s sensitivity (the 

proportion of aneurysms that have actually ruptured with those correctly identified as 
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ruptured) while varying specific threshold values for each parameter. The specificity, i.e., 

the proportion of actual negatives (or non-ruptured events) with those correctly identified 

as non-ruptured AAAs, was also determined. Wall stress was able to significantly 

differentiate patients in need of emergent repair better than the diameter, especially at the 

threshold values where both the sensitivity and specificity were optimized, i.e., 0.44 

N/mm
2
 for wall stress and 55 mm for diameter. Using the optimal thresholds, Fillinger 

also performed a Kaplan-Meier analysis evaluating the risk of rupture over time, while 

analyzing the interaction between wall stress and diameter [13]. Regardless of size, an 

AAA with low stress had a low risk of rupture, whereas an aneurysm with high wall 

stress had a higher risk of rupture, suggesting that wall stress is better marker of AAA 

rupture than the MTD. 

Other studies performed by Venkatasubramaniam, Truijers, and Maier also 

compared the peak wall stress between symptomatic/ruptured AAAs versus 

asymptomatic aneurysms [18][19][20]. Consistent with the findings of Fillinger et al., the 

studies found that for AAAs of similar size, the peak wall stress was significantly higher 

in ruptured AAAs. Additionally, Venkatasubramaniam reported that the site of peak wall 

stress correlated with the location of rupture [20]. A study performed by Doyle et al. also 

observed an agreement between the location of peak wall stress and rupture [92]. The 

collective findings of these studies further corroborate that wall stress is a promising 

marker for predicting aneurysmal rupture. 

 

1.3 Current Stress-Based Method Limitations and Consideration of the Linear 

Model as a Promising Solution 
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Even though wall stress is a better predictor of rupture risk, stress is not yet 

employed in the clinic because the FEA wall stress computations are quite involved and 

time-intensive [71][93]. One reason is because the AAA is conventionally modeled as a 

nonlinear hyperelastic material. FEA solutions involving nonlinear materials are more 

difficult to converge. Stress-based methods are also not employed in the clinic because 

conventional methods result in an overestimation of wall stress magnitudes. Conventional 

approaches assume that the CT AAA geometry is initially unloaded and unstressed when, 

in fact, the wall is being stressed and distended by the blood. When patient-specific 

pressure is applied to lumen of the FEA AAA model, the displacements of the AAA 

become large and the AAA geometry becomes distorted. This distortion leads to an 

overestimation of the stresses. Uncertainties in patient wall stresses can also result 

because population average material property values are used in computational models 

instead of the patient-specific values, since these are unknown. 

To encourage consideration of stress-based methods for use in the clinic, we must 

find ways to simplify and improve wall stress computations. In this dissertation, the 

linear model is introduced as an easier, efficient method for computing wall stresses 

without compromising the CT-derived AAA geometry and without the need to know the 

patient material properties of the AAA at any stage in its formation and progression.  

Further information about the research involved in improving the efficiency of 

AAA wall stress computations using the linear model is found in Chapter 3. The 

following chapter will describe the methodology employed to prepare an FEA model of a 

patient’s AAA to compute wall stress.  
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CHAPTER 2: PREPARING A FINITE ELEMENT ANALYSIS MODEL OF A 

SUBJECT-SPECIFIC ABDOMINAL AORTIC ANEURYSM 
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The goal of this thesis project is to improve the efficiency of the computations of 

abdominal aortic aneurysm wall stresses. In order to compute wall stresses for a subject-

specific AAA, an FEA model of the aneurysm must be generated, as it will serve as the 

principal input for the FEA software. The FEA model will contain information about the 

AAA’s geometry and material properties, i.e., measures of tissue stiffness, as well as the 

boundary conditions that describe the AAA’s environment, e.g., the pressures that are 

applied to the AAA and fixations imposed. The FEA software then uses the input data of 

the FEA model to numerically solve for wall displacements and wall stresses.  

The preparation of the subject-specific FEA model of an AAA requires several 

steps (see Fig. 3), which include i) acquiring computed tomography scans of the subject’s 

AAA as well as subject-specific information, e.g., blood pressure; ii) extracting the AAA 

and intraluminal thrombus geometries from CT scans using image segmentation 

algorithms that output geometrical data in the form of surface meshes; iii) organizing 

mesh nodes to facilitate further processing of the AAA model; and iv) generating an FEA 

input file that combines the geometry and mechanical property information to prepare the 

model for FEA computations. A further discussion of these steps is the main focus of this 

chapter.  

 

2.1 AAA Subject Cohort & Collection of CT AAA Images 

 

 The first step involved in the preparation of subject-specific FEA models of an 

AAA was the collection of subject medical information and CT scans, which were de-

identified to protect patient information. The contrast-enhanced spiral CT scans were 



18 
 

obtained as part of a standard of practice to assess AAA rupture risk and were not 

conducted solely for purposes of this research. Rather, CT images were acquired from an 

established database of 627 AAA subjects from the Oregon Health & Science University 

(OHSU) Department of Vascular Surgery. For the primary thesis objective related to 

improving the efficiency of AAA wall stress computations, the CT scan of Subject A0 

was already available to our laboratory (see Chapter 3, Section 2.2D), but we did not 

have access to the patient’s medical information. For an ongoing project concerned with 

the elucidation of the role that wall stresses play in the expansion of an AAA (see 

Chapter 4, Section 1), we had access to 87 AAA subjects and their medical records. For 

this project, a patient needed to have at least three CT scans taken at three different time 

points, which was the minimum number of time points necessary to evaluate changes in 

AAA growth rates and wall stress distributions. For a patient, AAA growth is typically 

assessed by measuring the difference in diameter between two CT scans that were taken 

at different time points and dividing the difference in diameter by the time interval [94]. 

Six months was the minimum amount of time that was needed to elapse to determine if 

an AAA was non-growing [94]. Thus, the primary inclusion criteria were that subjects 

should have three consecutive CT scans with no surgeries in between, and that the 

interval of time elapsed between scans should be at least six months. The main exclusion 

criteria included surgical intervention at any point in the series of three consecutive CT 

scans; availability of two CT scans or less; and/or scans taken at intervals less than six 

months. From the cohort of 87 subjects, 41 had two CT scans available and 46 had at 

least three scans. Of the subjects with three CT scans available, 27 subjects exhibited 

evidence of surgical intervention, and two subjects had CT scans that were taken at 
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intervals of less than six months. Of the remaining 17 subjects, eight were also excluded 

for the following reasons: i) two had CT scans that showed non-aneurysmal infrarenal 

aortas with no growth; ii) two had infrarenal aortas that were transitioning into becoming 

small AAAs but these aortas exhibited no growth; iii) two had CT scans that displayed an 

iliac artery aneurysm rather than an AAA; and iv) two had CT scans whose AAAs were 

difficult to distinguish from surrounding tissue. Thus, nine subjects were eligible for the 

study, but only one (Subject A4) was chosen to elucidate the role that wall stress plays in 

AAA expansion within the time allotted. 

The selected patient was an older male with CT scans taken at three time points, 

at intervals of at least six months. In addition to obtaining CT scan images, the subject’s 

blood pressures and smoking history were acquired from the OHSU electronic health 

record EPIC. The blood pressure and smoking history were collected because of their 

crucial role in AAA development, progression, and rupture [55][94][95][96]. The blood 

pressure data were also collected in order to be used as part of the subject-specific 

intraluminal pressure boundary condition input needed for the computation of subject 

AAA wall stresses. We considered blood pressure measurements that were recorded 

closest to the time when the CT scans were taken (see Table 2). When blood pressure 

information was unavailable, as was the case for Subject A0, a systolic pressure of 0.016 

N/mm
2
 (120 mmHg) was used. Only information about Subject A4 is summarized in 

Table 2, since medical information for Subject A0 is not available. 

Because this retrospective study constituted a minimal risk chart review, subject 

consent was waived by the OHSU Institutional Review Board (IRB). The study was 

approved by the OHSU IRB (IRB00007554) [1].  
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2.2 Extraction of AAA Geometries from CT Scan Images 

 

The second step involved in the preparation of subject-specific FEA models was 

the extraction of AAA surfaces from CT scan images using two semi-automated, custom-

made segmentation algorithms. One program was developed in-house, and the second 

was created by collaborators at Oregon State University at Corvallis and Washington 

University in St. Louis, Missouri. The segmentation programs operated independently of 

each other and were used as alternative ways to extract AAA geometries beginning at the 

renal-aortic bifurcation and ending at the iliac-aortic bifurcation (see Fig. 4). These 

algorithms acquired two surfaces for each AAA from the CT scans: 1) the lumen surface, 

which is the interface between the blood and the AAA wall and/or intraluminal thrombus 

(ILT); and 2) the outer wall of the AAA. The segmentation algorithms could not be used 

to acquire both the inner and outer AAA wall surfaces because the AAA wall thickness 

was difficult to delineate due to the inherent limitations of the CT scan resolution. Thus, 

if one wall surface was segmented, the other was obtained by offsetting the distribution 

of nodes of the segmented wall surface by a certain distance. This method and both 

segmentation processes are described below.  

Our custom-made segmentation procedure (SP1) allows the user to manually trace 

the first contour around the contrast-enhanced AAA lumen on the CT scan image of 

interest. Subsequent contours are then automatically obtained along the AAA midline 

(see Fig. 4), and around the contrasted lumen. The program then allows for the 

examination and manual correction of erroneous contours. After the raw contours are 
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inspected, smoothing algorithms are implemented in order to reduce surface-extraction 

noise. Finally, contours are “stacked” in order to generate the 3-D lumen geometry in the 

form of a surface mesh, where the nodes of the mesh are organized into cross-sectional 

rings. The lumen surface mesh for Subject A0 was obtained using SP1. Because the AAA 

of Subject A0 did not have a thrombus, the lumen mesh also represented the inner wall 

surface of the AAA. To obtain the outer wall surface mesh for Subject A0, a custom-

made MATLAB (vR2010b, Math Works, Inc., Natick, MA) program was written to take 

the lumen surface mesh nodes as input and uniformly displace each node radially 

outward a distance of 1.5 mm. This distance is the median wall thickness measured from 

a population of AAA tissue specimens excised from cadavers or patients undergoing 

elective repair [86]. The geometry of Subject A0 was used to address the primary thesis 

objective, which is to determine if the linear model can be used to compute patient wall 

stresses in an efficient manner (see Chapter 3). 

 For the ongoing AAA expansion study (see Chapter 4, Section 1), our 

collaborators’ segmentation program (SP2) was used to extract AAA surfaces from CT 

scans (see Fig. 3) taken at three time points. SP2 allows the user to trace transverse and 

longitudinal cross-sectional contours around the AAA lumen or outer wall and allows the 

user to edit and smooth the contours before the next tracing. Moreover, the user has the 

opportunity to choose the 3-D orientation of the cross-sections where the contours will be 

outlined, allowing for a more controlled tracing—this is in contrast to SP1, where the 

tracing of contours is strictly confined to planes that are transverse to the midline of the 

AAA’s body. Further, the mesh can be generated and smoothed in SP2 as the contours 

are being outlined. The ability to trace, edit, and smooth contours and orient the cross-
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sectional plane for tracing (while creating the surface mesh) provides the user with 

greater control for producing AAA surface meshes. Because SP2 offers better control for 

segmentation than SP1and has an easy-to-use graphic user interface, the outer wall and 

lumen surfaces of the AAA at three time points were acquired for Subject A4 using only 

this segmentation approach. The mesh for Subject A0, however, was not segmented using 

SP2 because this algorithm was not available earlier in the study when the subject mesh 

was extracted and used for the computation of wall stresses.  

Unlike the case of Subject A0, the AAA of Subject A4 has an ILT. Thus, the 

lumen surface is not representative of the inner wall. To obtain the inner wall surface, the 

segmented outer wall and lumen meshes were first parameterized before proceeding, 

since the meshes obtained from SP2 were unstructured. Further details about how the 

mesh “organization” was achieved are described in Section 2.3 below. Briefly, a custom-

made algorithm was written to arrange the unstructured mesh into 80 “stacked” rings of 

nodes. Each ring was set to have 80 nodes, resulting in a total of 6,400 nodes for each 

mesh. The program also ensured that the nodes between surfaces, such as those of the 

lumen and outer wall at different time points, were corresponding. Once the outer and 

lumen meshes were parameterized, the outer surface was used as input for another 

custom-made MATLAB program that uniformly displaced each outer node 1.5 mm 

radially inward. The resulting distribution of displaced points defined the inner surface of 

the AAA wall. The MATLAB program additionally computed the distance di between an 

outer wall surface node and its corresponding counterpart lumen surface node (nL) to 

check whether di was less than or equal to 1.5 mm. A distance of less than 1.5 mm 

suggested that nL was closer to the outer wall node than was the corresponding inner wall 
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node. This implies that the lumen surface locally protruded into the inner wall surface, 

which results in geometrical distortion if uncorrected.  

To avoid geometrical distortion in areas where di ≤ 1.5 mm, the lumen and inner 

wall nodes were adjusted. More specifically, nL was displaced 0.5 mm radially inward 

and away from the AAA wall, whereas, the inner wall node was displaced 0.1 mm 

radially outward toward its corresponding outer wall node. The adjustment of points also 

helped to circumvent the challenge of modeling an AAA with a patchy thrombus. The 

movement of lumen nodes allowed for the creation of a thin layer of thrombus where di ≤ 

1.5 mm, ensuring that the thrombus covered the inner wall surface continuously, which 

greatly facilitated the creation of the FEA model. A thin layer of an ILT was used so that 

wall stresses in the area do not become greatly attenuated, as greater attenuation in stress 

magnitude was expected if the ILT thickness was large [85]. After adjusting specific 

nodes and running the programming pipeline, we generated three surfaces for each AAA, 

i.e., the outer and inner wall and lumen surfaces that specified the geometry of the wall 

and ILT (see Fig. 5).  

 

2.3 Parameterization of Mesh Nodes 

 

Since SP2 yields unstructured surface meshes with scattered nodes, a custom-

made program was written to not only to “organize” the surface nodes into “stacked” 

rings [97], but also to arrange the nodes for the purpose of establishing nodal 

correspondence between surfaces at different time points. Determining the point-by-point 

correspondence between surfaces becomes indispensable for assessing differences in 
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geometrical structure and local expansion rates. To obtain the correspondence between 

AAA surfaces, the program first aligns the surfaces using the Iterative Closest Point 

(ICP) method [98][99]. Implementation of ICP results in the minimization of the 

differences in position between the surfaces. This is necessary because of the way CT 

scans were setup and taken. After surface alignment is achieved, the ends of the surfaces 

being compared are cut using parallel cutting planes, resulting in surfaces with ends cut at 

the same angle. Subsequently, the program determines a consistent parameterization that 

minimizes the change in relative geodesic distance between any two points on the 

surface. Thus, the parameterization serves as an initial correspondence. A refinement of 

the initial correspondence is then performed using a strain relaxation technique. This 

technique first computes the strain in deforming one surface at one time point to the 

surface at a later time and subsequently modifies the initial correspondence so that 

changes in strain are minimized throughout the surface. The final correspondence is 

represented as parameterized meshes with corresponding nodes for all AAA surfaces 

being compared.  

 

2.4 Preparation of the FEA Input File for Computation of Wall Stress in FEA 

Software 

 

 After parameterizing the surface meshes, the geometrical data were used to 

generate the finite element meshes. These meshes are used by the FEA software ADINA 

(v 8.8.3-9.0.1, ADINA R & D, Inc., Watertown, MA) to compute wall stresses. To create 

the finite element meshes, 2 custom-made MATLAB scripts were written. One program 
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yielded an FEA input file modeling an AAA without a thrombus, whereas the second 

program prepared an FEA input file modeling an aneurysm that contained an ILT. Both 

input files use the surface meshes to define the geometrical lines, surfaces, and volumes 

that compose the FEA tissue bodies. Once the volumes and surfaces are defined, the FEA 

mesh grid is created by dividing the tissues into 27/4 3-D hexahedral elements. The 27/4 

elements are hybrid elements composed of 27 displacement degrees of freedom and 4 

pressure degrees of freedom, and these elements satisfy the inf-sup condition [1][100]. 

The use of hybrid elements is beneficial when modeling materials that are incompressible 

(i.e., materials whose volumes do not change with an applied load) or nearly-

incompressible, as the mixed elements ensure numerical stability during computations 

(see Chapter 3, Section 2.2) [1]. In this project, the AAA wall and ILT tissues were 

modeled as almost incompressible materials. For the linear model, the near 

incompressibility of the tissues was modeled by setting the Poisson’s ratio ν to a value of 

0.4999 (see Chapter 3, Section 2.1A), and the FEA elements were modeled as linear 

elastic solid structures with arbitrary, yet high, Young’s moduli E, which are measures of 

stiffness. Large E magnitudes were chosen to ensure that the geometrical integrity of the 

AAA was preserved upon the application of pressures. Unless otherwise indicated, the 

Young’s moduli of the wall and thrombus were set to Ewall = 8.4x10
9
 N/mm

2
 and EILT = 

1.25x10
9
 N/mm

2
, respectively (see Chapter 3, Sections 2.1A and 2.2C). The subject-

specific average blood pressure was applied to the lumen surface of Subject A4’s AAA, 

whereas the normal systolic blood pressure was used for Subject A0. No pressure was 

applied on the outer surface in both patient models. The ends of the AAA wall and AAA-

ILT models were fixed in the longitudinal direction in order to simulate the tethering of 
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the aneurysm to the rest of the aorta. Two points at one end of the AAA wall were also 

fixed to avoid rigid body motion. Once the boundary conditions, linear material 

properties, and geometries were defined, the FEA models were used to compute wall 

stresses. 

Fig. 3 summarizes the approach employed in this project for computing subject-

specific AAA wall stresses in FEA. Methods similar to the ones presented in this chapter 

were implemented for computing FEA wall stresses in idealized 2-D axisymmetric 

models of an AAA. These approaches are explained in further detail in Chapter 3 and are 

important for investigating how wall stress computational efficiency can be improved. 
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3.1 Introduction 

 

The AAA maximum transverse diameter (MTD) is an accepted clinical marker 

for assessing the risk of rupture, and surgical repair is indicated for an AAA with an 

MTD ≥ 55 mm or an AAA growing at 10mm/year. In employing the MTD, clinicians 

overestimate the stability of smaller aneurysms, and larger, stable AAAs can be subject to 

unnecessary surgery. A better marker of rupture is thus needed.  

Wall stress has been found to be a better, more promising predictor of rupture risk 

than MTD [13][16][18][19][20][92]. This is not only because tissues tear apart when wall 

stress exceeds a threshold stress for rupture, which depends on the tissue strength, but 

also because peak wall stresses are found to be significantly higher in ruptured AAAs 

than in non-ruptured, size-matched AAAs [20]. Further, the site of peak wall stress 

correlates with the location of rupture [20][92]. Additionally, wall stress is thought to 

play an important role in AAA tissue growth and remodeling (G&R). Recent theories of 

G&R [101][102] postulate that vascular tissues grow and remodel so that homeostatic 

wall stresses are conserved. According to these theories, an increase in wall stress will 

result in tissue growth and remodeling that lowers wall stress to homeostatic levels; 

likewise, an increase in wall shear stress will result in an increase in vascular diameter 

that will lower shear stresses to homeostatic values. These G&R mechanisms are 

postulated to act during AAA expansion, explaining the possible relationship between 

wall stress and AAA progression. Thus, wall stress has been the subject of extensive 

AAA biomechanical research [22] and is typically obtained using finite element analysis 

(FEA) [27][86][90][91]. 
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  To compute wall stress, average or systolic intraluminal pressures are 

conventionally applied to image-derived, patient-specific geometries that are assumed to 

be unloaded and unstressed [103][104]. In these models, the AAA walls are assumed to 

be nonlinear hyperelastic with mechanical properties measured from cadaver tissues or 

tissues from patients undergoing elective repair [22][28][105][106]. Incorrectly assuming 

that imaged geometries are unloaded, however, implies that application of intraluminal 

pressures to the walls will result in overly distorted AAA geometries, typically with 

overestimated wall stress distributions [23][29][106][107]. To resolve this problem, 

algorithms have been developed for approximating the tissue unloaded configuration 

from available loaded CT scan or magnetic resonance imaging (MRI) geometries 

[23][29][104][108]. Applying intraluminal pressures to these computed unloaded 

geometries results in wall deformations that closely approximate the original loaded 

AAA geometry and more accurately predict wall stress. However, these promising 

methods are difficult to implement and are computationally intensive [104]. This is 

because computation of the undeformed unloaded configuration involves the solution of 

an inverse nonlinear problem. In fact, given the nonlinear properties of AAA walls, even 

calculation of wall stresses from a known unloaded, unstressed configuration is involved 

and requires extensive computations. Even when using methods to recover the unloaded 

geometry, limitations of current models include: residual stresses, which are 

characteristic of vascular tissues, are neglected; spatial changes in aneurysmal tissue 

properties along and across the wall are neglected; and “true” boundary conditions, 

including the effects of internal and external structures (thrombus and external organs), 

are unknown and frequently neglected or approximated. For AAA wall stresses to 
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become a useful clinical indicator and be applicable in a clinical environment, a more 

efficient and robust methodology is needed for estimating wall stresses from patient-

specific geometries.  

In this study, we propose modeling AAAs using FEA linear models as a means of 

obtaining equilibrium stresses in a more robust and computationally efficient way. 

Because linear models assume infinitesimally small displacements and strains, the 

approach preserves the integrity of the imaged geometry, and the application of 

intraluminal pressures achieves equilibrium of forces and wall stresses directly in the 

patient-specific geometry. We assess the effectiveness of our approach using idealized 

models and patient-specific models of AAAs. We also explore the effect of employing 

different nonlinear wall material properties and residual stresses on wall stress 

computations in idealized models and compare results with those obtained from linear 

models. 

 

3.2 Methods 

 

3.2.1 Problem Formulation and Equations Employed 

To determine the relative accuracy of the linear approach to compute AAA wall 

stresses, we employed three models: a reference model, a conventional model, and our 

proposed linear model (see Fig. 2). The reference model (Fig. 2A) was used as a 

reference for wall stresses (see below for a more detailed description of the model). In the 

reference model, initial conditions and tissue properties are assumed to be known. The 

conventional model (Fig. 2B) represents the most commonly used approach to computing 
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wall stress, in which the patient deformed configuration is used as an unloaded, 

unstressed initial configuration and walls are assumed to have nonlinear, hyperelastic 

material properties. The linear model (Fig. 2C) also uses the patient deformed 

configuration as an unloaded, unstressed initial configuration, but solution of the model 

does not change the wall geometry, and equilibrium stresses are obtained in the patient 

geometry. Wall stresses obtained using the linear and conventional models were 

compared to stresses obtained using the reference model. Comparisons were performed 

first using idealized models, such as straight tubular models representing the arterial wall 

and idealized curved axisymmetric models of the AAA. Comparisons were then extended 

to a subject-specific AAA geometry. For the tubular models, we further explored the 

effects of using different reported nonlinear tissue mechanical properties and the effects 

of residual stresses on wall stress. We then compared wall stresses obtained with 

nonlinear models to those obtained using the linear model approach. 

 

3.2.1A Model Formulation  

For all models considered, we solved the equations of equilibrium 

 0 σ      in    (1) 

with boundary conditions 

      on Γ ,           0     on Γl op    σ σn n n  (2) 

where σ is the Cauchy stress tensor; p is the intraluminal blood pressure and was chosen 

here as the systolic pressure (0.016 N/mm
2
 = 120 mmHg) unless otherwise stated; n̂  is a 

unit vector normal to the wall surface;  is the body domain in the deformed 

configuration; and Γl and Γo refer to the lumen and outer surfaces of the deformed 
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configurations of the AAA models, respectively. Note that the choice of using systolic 

pressure is arbitrary and does not affect the results presented, since the hypothetical 

reference models are also assumed to be subjected to systolic pressure.  

The reference and conventional models assumed nonlinear, hyperelastic wall 

material properties. Specifically, AAA walls were assumed to be almost incompressible, 

homogeneous, and isotropic with an energy density function W of the form [28][106]   

      
32

3 3 3W       B B BI I I , (3)   

where α, β and γ are coefficients that denote the properties of the tissue; IB is the first 

invariant of the Left Cauchy-Green tensor B (IB = trB) with B = FF
T
; and F is the 

deformation gradient tensor. The constitutive relations corresponding to the nonlinear 

material represented in Eq. 3 are described by 

   2
W

H


 
 B

σ I B
I

,   (4) 

where H is the hydrostatic pressure and I is the identity tensor.  

The values of coefficients in Eq. 3 were determined from human tissue samples 

subjected to tensile tests. Material properties of AAA tissues have been measured in 

different studies with varying degrees of accuracy [28][106][109]. One of the pioneering 

studies, by Raghavan and Vorp [28], assumed that W (Eq. 3) had two terms (γ = 0) and 

fitted stress-strain results from uniaxial tissue tensile tests to find the coefficients α and β 

for each tissue sample. While the study found that the coefficients vary from sample to 

sample, it provided a population average, which is frequently used in the AAA literature 

to represent the material properties of AAA tissues. More recently, Polzer et al. [106] 

measured AAA patient tissue samples using biaxial tensile tests and fitted the resulting 

stress-strain curves to an energy-density function similar to that of Eq. 3 but consisting of 
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5 terms, i.e., W = α(IB - 3) + β(IB - 3)
2
 + γ(IB - 3)

3
 + ζ(IB - 3)

4
 + η(IB - 3)

5
, where ζ and η 

are also coefficients that denote the properties of the tissue. The study found that even 

though W was assumed to be isotropic, it approximated the mechanical behavior of the 

tissue well. The study also found striking variations in mechanical properties among 

sampled tissues. Here, for comparison, we used mechanical properties obtained in the 

Raghavan-Vorp and Polzer studies (see Table 3, ζ = η = 0 for the two patient-specific 

tissue material properties selected from Polzer et al.). We extensively employed the 

population average mechanical properties found by Raghavan and Vorp (RV in Table 3) 

[28], as these properties are widely used. To assess the effects of patient-specific tissue 

mechanical properties, which are not known in clinical practice, we varied the values of α 

and β (γ = 0) and also used coefficients obtained by Polzer et al. from two different 

patient-tissue samples (P1 and P2; see Table 3) in the reference models.  

In the linear model, the wall was assumed to be an almost incompressible, linear 

elastic material, characterized by an arbitrary, albeit high, Young’s modulus E, which 

ensures infinitesimal deformations without compromising wall stress values. Linear 

constitutive relations were given by 

  σ Cε , (5) 

where C is the stiffness tensor, which, for an isotropic material, depends on E and the 

Poisson’s ratio ν, and ε is the infinitesimal strain tensor. Unless otherwise stated, we used 

E = 8.4x10
9
 N/mm

2
 and ν = 0.4999 in computations using the linear model.  

Differences among the reference, conventional, and linear models were in the 

choice of material properties and initial configurations (see Fig. 2). In all models, the 

initial configuration was assumed to be unloaded and unstressed. For the reference 
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model, the initial configuration was chosen arbitrarily and represented the unstressed and 

unloaded configuration of the tissue that was assumed to be known in our models (but 

which is unknown in clinical practice). For the conventional and linear models, however, 

the initial configuration was taken as the deformed configuration of the reference model. 

This choice of initial configuration intended to simulate the use of the loaded geometry 

obtained from CT scans or other imaging techniques as an unstressed, unloaded 

configuration, both in the conventional and linear approaches. The reference model, 

conversely, simulates the loading of tissues from the unknown unstressed configuration, 

and thus represents a more accurate model of wall stress.  

Once the stress distributions were computed for all models, the wall stresses 

obtained from the conventional and linear models were compared to the stresses from the 

reference model in order to determine the degree to which conventional and linear 

approaches approximated reference stresses. The analysis was performed on both 

idealized and patient-specific models of AAAs, which are described further below. For 

idealized thick-wall tubular AAA models, analytical expressions exist for linear models 

and were derived in what follows for the hyperelastic tissue models.  

 

3.2.1B Analytical Expressions for an Axisymmetric Thick-Wall Tube under Internal 

Pressure 

Consider an axisymmetric thick-wall tube as a simple representation of a blood 

vessel (see Fig. 6). Initially, the vessel is assumed to be undeformed, unloaded and 

unstressed with an inner radius A and outer radius B. In addition, the vessel is assumed to 

be constrained at both ends in the longitudinal direction, and a uniform internal pressure 
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p is applied on the luminal surface. Application of the internal pressure results in a 

deformed geometry with inner and outer radii a and b, respectively.   

Employing cylindrical coordinates, the equilibrium equation (Eq. 1) for this case 

reduces to 

 0,rrrr

r r

  
 


 (6) 

where r is the radius of the deformed configuration and σrr and σθθ are the Cauchy radial 

and circumferential stresses, respectively [102].   

The boundary conditions for the problem (Eq. 2) become 

     ,rr r a p    (7) 

   0.rr r b    (8) 

 

3.2.1B.i  Analytical Solutions for Nonlinear Hyperelastic Tissue Model 

 We assume the wall properties to be incompressible and nonlinear hyperelastic 

with a parabolic strain energy density function W as proposed by Raghavan et al. [28], 

see Eq. 3 (with γ = 0) and constitutive equations given by Eq. 4.  

If λθθ, λrr, and λzz represent the stretch ratios in the circumferential, radial, and 

longitudinal directions, respectively, then for a tube under internal pressure,  

   ,      ,   1rr zz

r r

R R
  


  


. (9) 

where r and R are the radii of the deformed and initial (unstressed) configurations, 

respectively (see Fig. 6).  

Thus, for the thick-wall tube model considered here, F and B are 
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   

TF B FF  (10) 

 and   
0 0

0 0 2 2 3

0 0

θθ

rr

zz

H



  



 
 

     
 
 

Bσ B I I , (11) 

where σzz is the Cauchy longitudinal stress. 

Replacing into Eq. 6 results in 

     2 2 2 21
2 2 2 .rr

rr rr
r r

 


     

      
 

 (12)  

Further, for an incompressible material [102],  

 1rr zz    , (13) 

and, therefore, using Eqs. 9 and 13 and solving for r, 

 1
r r

R R





, (14) 

 
2 2 2 ,r R b B    (15) 

 
2 2 2

1
  ,      .θθ rr

r

B b r 

 


 
 

 (16) 

Using Eqs. 8, 12 and 16 and solving for σrr then yields  

 

       

 
 

2
2 2

2 2 2 2 2

2
2 22 2 2 2

2 4 42 2 2

1 1
2 ln 2 2 ln

1 1
 4 ,

2 42

rr

B b
r B b

B b r r b r

B bb B b B

B r bB b r

     



     
           

      

             
 

 (17)  

and using Eq. 7, 
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     

 

2
2 2

2 2 2 2 2

2 2 2 2 2 2 2

2 4 42 2 2

1 1
2 ln 2 2 ln

( ) 1 1
 4 .

2 42

B b
p B b

B b a a b a

b B b B B b

B a bB b a

    



     
            

      

     
     

     

 (18) 

In order to solve Eq. 18 for a and b, an additional equation is needed. Since the 

cross-sectional areas of the undeformed and deformed configurations are equal due to 

incompressibility, 

    2 2 2 2 2 2 2 2,     or       .  b a B A a b B A        (19) 

By substituting the equation for a in Eq. 19 into Eq. 18 and numerically solving for b 

(given α, β, A and B), the values for b and a that satisfy the boundary conditions (Eqs. 7 

and 8) can be obtained.  

Once a and b are computed, Eqs. 6 and 17 are used to obtain an expression for the 

circumferential stress, 
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 

 
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 


     

 

    
      

    

   
         

    

 
 

 

 (20) 

To solve for σzz, we first find an equation for H using Eq. 11, 

  2 2 2 2 2 4 2 .rr rr rr rrH           (21) 

Substituting Eq. 21 into the expression for σzz from Eq. 11 then yields, 
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    2 2 2 2 2 22 4 2 2 4 2 .zz rr rr rr rr rr                    (22) 

Thus, the analytical solutions for wall stresses in a tubular model when tissue properties 

are assumed to be nonlinear hyperelastic (Eq. 3 with γ = 0) are given by Eqs. 17, 20 and 

22, once the deformed internal and external tube radii a and b are calculated using Eqs. 

18 and 19. 

 

3.2.1B.ii. Analytical Solutions for the Linear Tissue Model 

 Analytical solutions for the case of a thick-wall tube under internal pressure with 

linear wall properties under small deformations can be found elsewhere (e.g. [110]). For 

completeness we included the equations together with some of the steps required in the 

derivation of equations. The constitutive relations for a linear elastic material, assuming 

infinitesimally small displacements in polar coordinates, are [110] 

   
 

  
 

 

1 ,   1 ,
1 1 2 1 1 2

     ,

rr rr rr

zz rr

E E
  



       
   

   

              

 

 (23) 

where E is the Young’s modulus and ν is the Poisson ratio, and εrr and εθθ are the radial 

and circumferential strains, respectively, with εzz = 0. 

 For a linear axisymmetric tube with internal pressure, the strain-displacement 

relations in polar coordinates are      

 ,      ,r r
rr

u u

r r
 


 


 (24) 

where ur is the radial displacement.       

Substituting Eqs. 23 and 24 into Eq. 6 results in the following differential 

equation: 
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 

  

2
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1 1
0.
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r r r
E u u u

r r r r



 

   
   

    
 (25) 

The solution of Eq. 25 is 

 
1 2

1
,r ru c c

r
   (26) 

where c1 and c2 are constants. Using the boundary conditions (Eqs. 7 and 8), wall stresses 

are obtained:  

  
 

 
   

2 2 2 2 2

2 2 2 22 2 2 2 2 2

1 1 1 1 2
,      ,      .rr zz
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b r b ra b a b a b
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
  

     
       

     
 (27) 

Note that, due to the assumption of small displacements, while displacements are 

computed, the geometry is assumed to remain unchanged (so that a = A, b = B, and r = R 

independent of p). Thus, stresses depend on p but not E. 

 

3.2.1C Effective Stress 

 The effective or von Mises stress is a measure of local maximum stresses that 

takes into account the contribution of normal stresses in addition to shear stresses and is 

extensively used to report stresses in the AAA literature [23][25][27]. However, it is 

worth mentioning that other measures of stress or perhaps stretch might be more relevant 

in determining AAA risks of expansion and of rupture [22]. Because of their wide use, 

however, we chose to report effective stresses, and for idealized AAA geometries, 

circumferential and radial stresses were also considered. Note further that we are not 

employing effective stresses as a rupture criterion, but only as a convenient way of 

reporting wall stresses. In cylindrical coordinates the effective stress is calculated as 

follows: 
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       
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6 r rzrr rr zz zzz

eff

         


      
 , (28) 

where σrθ, σrz, and σθz are shear stresses. 

 

3.2.2 Models of AAA 

The specific geometrical models of AAA considered and strategies employed to 

solve for the model wall stresses are described below.  

 

3.2.2A Axisymmetric Thick-Wall Tubular Model of AAA 

The arterial wall was first modeled as an axisymmetric, thick-wall, straight 

circular tube with applied internal pressure and no longitudinal strain. To determine how 

geometry affects stress distributions, wall stresses were computed from the analytical 

solutions using different initial configurations (i.e. initial tube dimensions, see Fig. 6). 

These initial configuration geometries were employed in the reference model, and the 

resulting deformed configuration of the reference model was used as the initial unloaded 

configuration in the conventional and linear models (see Fig. 2). Additionally, an array of 

material property values was tested to assess the effect of tissue mechanical properties on 

stress distributions. To simulate the clinical situation in which wall tissue properties are 

not known, we allowed the values of α and β to vary in the reference model (γ = 0), while 

using RV population average values in the conventional model and a constant elasticity 

(E = 8.4x10
9
 N/mm

2
) in the linear model. Wall stresses from the linear and conventional 

models were then compared to corresponding reference stresses.  
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We also studied the effect of using different AAA tissue properties (RV, P1, and 

P2, see Table 3) on wall stresses. Since analytical expressions were not available for all 

material properties, we employed FEA implemented in ADINA to solve for wall stresses 

in an idealized 2-D axisymmetric tubular model. To discretize the 2-D geometry, we used 

optimal 9/3 axisymmetric elements, which are quadrilateral mixed displacement/pressure 

based elements (with 9 displacement degrees of freedom and 3 pressure degrees of 

freedom) that satisfy the inf-sup condition, ensuring numerical stability when solving 

problems involving incompressible or almost incompressible media such as the AAA 

wall tissue [100]. In our models, we used six elements spanning the thickness of the wall. 

Simulations were performed such that the deformed configuration of the hyperelastic 

models, used here as reference models, was the same regardless of the specific nonlinear 

material property employed. This deformed configuration, further, was used as the initial 

unloaded geometry for the linear model. Wall stresses obtained from the reference 

models were then compared to stresses from the linear model.  

For the nonlinear FEA models presented here and throughout the study, the 

convergence criterion for equilibrium iterations was specified by energy. The 

convergence ratio for out-of-balance energy was set to a tolerance value of 0.001. The 

nonlinear iteration scheme used was the full Newton method, and the maximum number 

of iterations implemented for every time step was set to 15. Convergence was achieved 

for non-linear and linear models using 15 to 60 time steps and 1 time step, respectively. 

We further explored the effect of residual stresses on wall stress distributions. 

Residual stresses are the stresses that remain on a vascular wall after loads imposed on 

the tissue have been removed. They manifest in blood vessels as a shrinkage in the axial 
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length when vessel segments are cut longitudinally (axial stresses) and as an opening of 

the unloaded circular cross-section, characterized by an opening angle [111], when vessel 

segments are cut radially (circumferential stresses). To model circumferential residual 

stresses in tubular models of AAA, we started from a 2-D open sector in the initial 

configuration (see Fig. 7A). The dimensions of the sector were determined so that the 

closed unloaded configuration was the same, independent of opening angle. The open 

sector was modeled as a plane strain 2-D problem in ADINA, and symmetry was 

considered by modeling half of the sector (see Fig. 7B). The open sector was then closed 

by imposing a displacement in the direction of closure on one end of the sector. Note that 

this way of modeling residual stresses cannot be implemented in patient-specific models 

of the AAA. Once the 2-D segment was closed, an internal pressure (p = 0.016 N/mm
2
) 

was imposed to obtain the distribution of wall stresses. The obtained deformed 

configuration served as the initial, unloaded, unstressed geometry of the linear model, 

and wall stresses obtained with the linear model and nonlinear models with varying 

residual stresses were then compared. Different hyperelastic material properties (RV, P1 

and P2; see Table 3) were employed to determine the effect of tissue mechanical 

properties on residual and loaded wall stresses. The geometry was discretized using 

mixed 9/3 elements, and convergence of results was achieved using 180 elements, with 3 

elements spanning the wall thickness. 

 

3.2.2B Idealized AAA Models with Non-Uniform Wall Thickness 

We implemented idealized geometrical models of AAAs with non-uniform wall 

thickness to explore the effect of varying thickness on wall stress computations. To this 
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end, we started using a thick-wall tubular model of the AAA with no residual stresses, in 

which wall thickness varied longitudinally. We also simulated a model in which the wall 

thickness varied circumferentially, assuming plane strain conditions. Analytical solutions 

were not available for these cases; therefore, the analysis was performed using FEA in 

ADINA. Mixed 9/3 elements were used to discretize the geometries. RV material 

properties were used here for the reference and conventional models. Reference, 

conventional, and linear models were simulated with the described non-uniform wall 

thickness. Wall stresses were then compared to establish the accuracy of the linear model 

in accounting for changes in wall thickness. 

 

3.2.2C Idealized Curved Axisymmetric Model of AAA 

To assess the effect of wall curvature on the stresses, the arterial wall was 

modeled as a curved axisymmetric structure. The outer wall radius B of the 2-D 

axisymmetric initial configuration was specified by the following equation: 

  7.5cos( ) 17.5,             65,65 ,
65

Z
B Z


     (29) 

where Z is the height, and B and Z are in mm. The height was chosen to be 130 mm 

[112]. The maximum diameter was 50 mm, and the wall thickness was 1.5 mm, the 

reported median thickness [28][86]. The model was constrained at both ends in the 

longitudinal direction but was allowed to move and deform freely in the radial direction. 

The analysis was performed using FEA in ADINA, with the AAA wall discretized using 

9/3 mixed elements. 
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For these models, we further incorporated an intraluminal thrombus (ILT) in our 

FEA simulations and compared results with and without the thrombus. When the ILT was 

modeled, the lumen radius, L, was specified by, 

  1.25cos( ) 8.75,             65,65 ,
65

Z
L Z


     (30) 

and the ends of the thrombus were fixed in the longitudinal direction only. The thrombus 

was also discretized using mixed 9/3 elements.  

Like the AAA wall, the thrombus was treated as a nonlinear, homogeneous, 

isotropic, incompressible material but with the following energy-density function: 

    
2

1 23 3 ,W D D   B BII II  (31) 

where D1 and D2 are coefficients [84], and IIB is the second invariant of the Left Cauchy-

Green deformation tensor B (IIB = 0.5[(trB)
2
-tr(B)

2
]). The ranges of measured values for 

D1 and D2 (95
th

 percentile confidence intervals) obtained from patients undergoing 

elective repair were as follows: D1 = 0.0199-0.036 N/mm
2
 and D2 = 0.0216-0.0356 

N/mm
2
 [84]. In general, the thrombus is more compliant than the tissue wall. The 

stiffness ratio between the wall and the ILT, which we refer to as the material property 

ratio (MPR), was computed from the nonlinear models using the ratio of the wall 

coefficient α (Eq. 3) and the intraluminal thrombus coefficient D1 (Eq. 31), i.e., (α/D1). 

Because the MPR determines differences in stresses between the wall and ILT, the linear 

models that included a thrombus were implemented assuming an MPR between the 

elastic moduli E of the wall and ILT. MPR was first set at 6.7, which is the ratio of the 

population average values of the wall and ILT, i.e., α = 0.174 N/mm
2
/D1 = 0.026 N/mm

2
. 

In order to determine how implementation of different MPRs affected the distribution of 
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stresses, we varied MPR in our computations and compared computed wall stresses. The 

AAA wall material properties were modeled using the energy-density function W 

proposed by Raghavan and Vorp  [28], Eq. 3 with γ = 0. Varying MPRs were obtained by 

changing the coefficient of the thrombus D1 and the coefficient α for the wall. Values of 

MPR considered were 4, 6.7, and 10.25. An MPR of 4 was achieved by modeling a weak 

wall stiffness (α = 0.144 N/mm
2
, β = 1.152 N/mm

2
) and relatively stiff thrombus (D1 = 

0.036 N/mm
2
, D2 = 0.0356 N/mm

2
). Conversely, an MPR of 10.25 was achieved by 

modeling a relatively stiff wall (α = 0.204 N/mm
2
, β = 2.61 N/mm

2
) and weak thrombus 

(D1 = 0.0199 N/mm
2
, D2 = 0.0216 N/mm

2
) [28][84]. For the linear model, the wall 

elasticity modulus was set at a value of E = 8.4x10
9
 N/mm

2
, and different MPR values 

were generated by varying the elasticity modulus of the thrombus. For the models 

excluding and including the ILT, convergence was achieved with a total of 390 and 1,690 

elements, respectively, with 3 and 10 elements spanning the thickness of the wall and 

thrombus, respectively.  

 

3.2.2D Subject-Specific Model of AAA 

 To assess the effect of AAA geometry on wall stress distributions and the degree 

to which the conventional and linear models correctly capture these distributions, a 

patient-specific model was implemented. The initial configuration of the patient-specific 

AAA had no ILT and was extracted from contrast-enhanced spiral CT scan images of a 

de-identified patient (Subject A0, see Chapter 2). Information about of the extraction 

procedure of the AAA geometry and preparation of the patient-specific AAA FEA model 

is found in Chapter 2.  
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The acquired patient AAA outer wall geometry was used as the unloaded 

configuration of the reference model. The deformed configuration obtained from the 

reference model, assuming RV material properties, was subsequently employed as the 

unloaded configuration for the conventional and linear models. Convergence of results 

was achieved using 4,800 elements. 

 

3.2.2E Wall Stress Comparisons 

Wall stresses obtained from the conventional and linear models were compared to 

stresses obtained from reference models. Point-by-point differences in stresses were 

computed as follows: 

 

*

*

i i

i

 




, (32) 

where σi is the stress of interest (conventional or linear model; circumferential, radial or 

effective stress) and σ*i is the corresponding stress in the reference model. Eq. 32 was 

also used to calculate differences in maximum effective stresses with respect to those in 

the reference model. For models solved using FEA, stress differences with respect to the 

reference model were plotted for the whole model and over the wall thickness. These 

analyses allowed for an objective comparison of wall stress.      

 To facilitate comparisons of solutions over a range of tissue mechanical properties 

(characterized by Eq. 3 with α and β; γ = 0), differences in stress were integrated over the 

normalized thickness and normalized to the reference stress integral,  
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where dr’ is the normalized thickness differential. For convenience, this calculation was 

employed only for the axisymmetric tubular models using analytical solutions of stresses.  

 

3. 3 Results 

 

3.3.1 Convergence of Linear Model to Equilibrium Stresses 

 To ensure that the linear model with applied internal pressures achieved the same 

equilibrium stresses independent of the Young’s modulus E employed, a convergence 

study was first performed. Analytically, for the axisymmetric tubular model, wall stresses 

depended on the radius and wall thickness of the initial, undeformed configuration and 

the applied internal pressure. Furthermore, wall stresses depended on wall material 

properties in the case of hyperelastic tissues (see Eqs. 17, 20 and 22) but were 

independent of wall mechanical properties when tissues were assumed to be linear and 

elastic with infinitesimally small deformations and strains (see Eqs. 27). As expected, 

when the linear axisymmetric models were implemented using FEA (assuming small 

displacements and strains), wall stresses did not vary significantly (<0.1%) as E was 

increased from 1 to 10
10

 N/mm
2
. Similarly, wall stresses did not vary significantly with 

varying values of E (<0.2%) in linear idealized and patient-specific models of an AAA. 

Estimation of equilibrium stresses using the linear model was therefore effectively 

independent of the E employed. We chose an arbitrary high Young’s modulus (E = 

8.4x10
9
 N/mm

2
) to use in our linear models. In applying this choice of elasticity modulus, 
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the wall displacements computed for the idealized and patient-specific AAA models were 

negligible (< 1.3x10
-9

 mm).  

 

3.3.2 Axisymmetric Tubular Model of an AAA with Parabolic Energy-Density Function 

Wall stress versus normalized wall thickness plots were initially generated for the 

axisymmetric tubular model to determine how the wall stresses of the linear and 

conventional models compared to those of the reference model (see Fig. 8). Here, 

conventional and reference models used the RV material properties (see Table 3). 

Compared to the radial (σrr) and axial stresses (σzz), the circumferential stresses (σθθ) had 

larger magnitude values, contributing the greatest weight to the calculation of effective 

stress (see Eq. 28). Values of σθθ computed using the linear model were closer to those 

obtained from the reference model than values obtained using the conventional model. A 

similar finding was observed for the effective stress. On the other hand, σrr was almost 

the same throughout the wall thickness for all models, representing the effect of the 

pressure boundary conditions on radial stresses.  

For a thick-wall tubular model under equilibrium, the following condition is 

satisfied,  

 
1

0
'   ,h dr pa   (34) 

where h and a are the wall thickness and lumen radius of the deformed configuration, 

respectively; dr’ is the normalized thickness differential; and p the applied internal 

pressure (see Fig. 6). The integral of σθθ over the thickness (left hand side of Eq. 34), was 

about 0.24 N/mm for both the linear and reference models. This was expected since the 

deformed wall configuration was practically identical for both models, and the boundary 
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conditions were the same. The integral, however, was larger for the conventional model 

(0.26 N/mm), reflecting the additional radial expansion of the wall under the 

conventional approach.  

To assess how closely the linear and conventional approaches approximated 

reference stresses under different conditions, computations were performed for a range of 

α and β values (γ = 0) and different initial geometries (see Fig. 9). To effectively compare 

and visualize stress differences (with respect to reference stresses) as a function of the 

parameters α and β in the reference model, we used Eq. 33 so that each case (linear, 

conventional) was represented by one value, which we chose to report as a percent stress 

difference. We found that, irrespective of the tissue properties used in the reference 

model, stresses obtained using the linear model were closer to the stresses in the 

reference model than were the stresses obtained using the conventional model (see Fig. 

9). Differences with respect to reference stresses decreased for both the linear and 

conventional models as α increased. Increasing β, however, had only a small effect on 

stress differences. Increasing the model external radius B while keeping a constant wall 

thickness h0 resulted in increased stress differences between the conventional and 

reference models and decreased differences between linear and reference models 

(compare Figs. 9A, 9C and 9E; and 9B, 9D and 9F). Both B and h0 correspond to the 

initial configuration of the reference model. Increasing h0 while keeping B constant 

resulted in decreased stress differences between the conventional and reference models 

but an increased difference between the linear and reference models (compare Figs. 9A 

and 9B; 9C and 9D; 9E and 9F). In general, however, the linear model approximated 

reference stresses better than the conventional model.  
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To determine how well the maximum effective stress is approximated by the 

linear and conventional approaches, we examined our previous results (Fig. 9) but 

reported differences in maximum effective stress (see Fig. 10). Maximum stresses were 

generally overestimated in the conventional model and underestimated in the linear 

model (see Fig. 8) when tissue properties for the reference model were within 

physiological range. We found that in most cases, the linear model approximated the 

maximum stress better than the conventional model within the physiological range of α 

and β, and the difference gap between linear and conventional models increased with 

increasing diameter and decreased with increasing thickness. 

Increasing the applied internal pressure in the models from 0.016 N/mm
2
 to 0.027 

N/mm
2
 (120 mmHg to 200 mmHg) increased the magnitude of the differences in wall 

stresses for the conventional model but not for the linear model (see Figs. 11 and 12). 

After increasing internal pressure, the linear model provided the better approximation of 

maximum effective stresses within the physiological range of tissue mechanical 

properties.  

 

3.3.3 Idealized AAA Models with Non-Uniform Wall Thickness 

To explore whether the linear model could be used to effectively study the effect 

of varying wall thickness, wall stresses were computed on idealized models of non-

uniform wall thickness (see Fig. 13). RV material properties were used for the reference 

and conventional models. While the wall stresses obtained from the reference, 

conventional and linear models were similar, the stresses obtained using the linear model 
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were closer approximations of the reference stresses. The linear approach could therefore 

be used for estimating wall stresses and studying the effects of wall thickness. 

 

3.3.4 Idealized Curved and Subject-Specific AAA Models 

 To determine how the wall stresses of the linear and conventional models 

compared to the wall stresses from the reference model when curvature was considered, 

we used an idealized axisymmetric model of an AAA in which the walls were curved and 

an internal pressure was applied to the inner wall (see Fig. 14A). RV tissue mechanical 

properties were used for the reference and conventional models. Effective wall stresses 

computed using the reference, conventional or linear models were similar, with larger 

stresses found in the wall region with greater curvature. Plots of wall stresses across the 

wall thickness and differences in effective stresses with respect to the reference 

configuration computed using Eq. 32 further revealed that the linear model approximated 

the reference stresses better than the conventional model.   

We then incorporated an intraluminal thrombus (ILT) to the idealized AAA 

model to assess its effect on wall stress and determine the degree to which the linear and 

conventional approaches approximate the reference stresses in the presence of the ILT 

(see Fig. 14B). To this end, we used average values of material properties for both the 

wall (RV properties) and thrombus in the reference and conventional models, and we 

used the average MPR for the linear model. We found that effective stresses that were 

computed using the reference model were better approximated by the linear model than 

by the conventional model. We then varied the model MPRs (in the reference, 

conventional and linear models). Values of MPR considered were 4, 6.7 (average), and 
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10.25. The stresses of the linear model were found to be closer to those of the reference 

stresses for all MPRs considered (see Fig. 15). We also observed that as the MPR of the 

reference configuration is varied, wall stresses considerably change.  

To assess the effect of complex curvature and asymmetrical geometry on wall 

stresses, we considered a patient-specific (Subject A0) geometrical AAA model with 

applied internal pressure (see Fig. 14C). We made the assumption that the patient AAA 

geometry obtained from CT scan images corresponded to the unloaded configuration; 

therefore, we used this geometry as the initial configuration in the reference model. 

Conventional and linear models used the deformed configuration obtained from the 

reference model (after applying an internal pressure) as their initial configuration. While 

stress distributions looked similar for the linear, conventional and reference models, local 

effective stress plots across the wall thickness (from selected regions) showed that, in 

general, linear stresses better approximated the reference stresses. Computed differences 

in stress with respect to the reference stress values (using Eq. 32) at the inner and outer 

surfaces, where differences in stress were expected to be larger, further revealed that 

stresses from the linear model, compared to those of the conventional model, were closer 

to the reference stresses (see Figs. 14C and 16).  

 

3.3.5 Axisymmetric Tubular Model of an AAA with Varying Tissue Properties and 

Residual Stresses 

To determine how the choice of tissue mechanical properties affects wall stresses, 

we simulated the axisymmetric tubular model using different nonlinear tissue properties 

(RV, P1 and P2; see Table 3). For these models, the initial, unloaded configuration 
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varied slightly, such that the deformed configuration was the same for all nonlinear 

models, while the linear model employed this deformed configuration as its initial 

geometry. Two cases were considered in which the external diameters and thicknesses of 

the deformed configuration were: 1) 35.5 mm and 1.25 mm, respectively; and ii) 73.9 

mm and 1.21 mm, respectively. The applied internal pressure (0.016 N/mm
2
) was the 

same for the two cases. We found that the wall stresses computed using the nonlinear 

models (RV, P1 and P2) varied significantly and were different from those computed 

using the linear model (see Fig. 17). As expected, however, the integral of the 

circumferential stresses over the deformed wall thickness, left hand side of Eq. 34, was 

the same for all models (since the deformed configuration was the same), indicating that 

equilibrium of stresses was obtained.  

Next, we considered the effect of residual stresses (see Fig. 7) on computed wall 

stresses. We considered cases with different material properties and different initial 

opening angles. We varied the angle θ in the initial unstressed configuration, ensuring 

that the closed configuration (unloaded configuration with residual stresses) was the same 

for all cases. In the closed configuration, the outer radius b0 was 30 mm, while the wall 

thickness was 1.5 mm. An internal pressure (p = 0.016 N/mm
2
) was then applied to the 

closed configuration, and the loaded, deformed configuration was obtained. For 

comparison, the linear approach was applied to the deformed configuration of the case 

with no residual stresses (θ = 0°). We found that, as expected, increasing the opening 

angle increased the magnitude of residual stresses (see Fig. 18, left panels). Residual 

stresses were negative in the inner portion of the wall and positive in the outer portion of 

it, with magnitudes that depended on both the opening angle and wall material properties. 
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Loading the closed geometries with an internal pressure resulted in wall stresses that 

were progressively smaller in magnitude with increasing opening angle (see Fig. 18, right 

panels). As a consequence, the gradient of stresses across the wall decreased with 

increasing θ until a flat wall stress profile across the wall thickness was obtained. 

Increasing the opening angle beyond this point resulted in a change in the sign of the wall 

stress gradient (inner wall had lower stress than the outer wall). The opening angle at 

which a flat wall stress profile across the wall thickness was achieved strongly depended 

on the wall material properties considered. Computations performed using the linear 

model showed a relatively flat stress profile across the wall thickness (see Fig. 18, right 

panels) that was representative of nonlinear models that accounted for residual stresses. 

These results serve as a way of elucidating possible effects of residual stresses on AAA 

tissue stresses, even though the residual stresses cannot currently be computed on patient-

specific models.  
 

 

3.4 Discussion 

 

Wall stress computations of vascular tissues and, in particular, of AAA tissues are 

difficult to achieve. This is because tissue mechanical properties are nonlinear and 

anisotropic and could vary spatially; cardiovascular loads generate large tissue 

deformations; and patient-specific geometries can be intricate while proper boundary 

conditions can be difficult to estimate. When stresses are computed using numerical 

techniques, such as FEA, nonlinearities introduce convergence problems, in which the 

solution does not converge to equilibrium (i.e., equilibrium of forces is not achieved). 
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These difficulties force researchers to seek solutions by loading the tissues in small 

increments. These steps, however, introduce computational and model-preparation 

challenges that make achievement of solutions extremely difficult for non-experts and 

tedious for experts. Moreover, wall stresses are typically computed assuming that the 

loaded geometries obtained from CT scans, MRI scans, or ultrasound images are 

unstressed and unloaded [103][104]. Application of internal pressures to these geometries 

results in large, artificial deformations and stress overestimation [23][29], which are 

shown in this study. While methodologies to find the initial unloaded and unstressed 

configuration have been proposed [23], they are difficult to implement [104]. Moreover, 

current methodologies do not account for residual stresses, unknown spatial changes in 

material properties, or the effects of external organs on AAA tissues. Thus, computations 

of wall stress are extremely time-consuming and might not yet be accurate given that 

patient-specific tissue mechanical properties, residual stresses and outside boundary 

conditions are not known. 

To facilitate the computation of wall stresses, we propose using linear models of 

AAAs. Our linear models assume not only linear wall material properties, but also 

infinitesimally small displacements and strains. Thus, the linear models can compute 

equilibrium wall stresses while preserving the loaded patient-specific geometry. The 

simplicity of the approach allows computations to be achieved quickly, without nonlinear 

iterations or small incremental load steps and without the need to know the tissue 

mechanical properties. We found that the proposed linear approach not only offers the 

benefits of computational efficiency and simplicity, but also approximates reference 

stresses better than conventional models in various AAA geometries. Additionally, 
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computations using the linear model provided a desirable and physiologically relevant 

flat wall stress profile over the wall thickness. 

 

3.4.1 Limitations 

Our linear, conventional, and reference models involved several simplifying 

assumptions. These assumptions included the following: i) tissue mechanical properties 

used were isotropic and uniform; and ii) residual stresses were generally neglected, 

although we included an analysis of residual stresses for idealized tubular models. These 

simplifications, nevertheless, are typically used in models of AAA [22][103][113], and 

therefore our study is relevant in elucidating uncertainties introduced by these 

assumptions.  

AAA walls are best characterized as nonlinear anisotropic tissues 

[15][22][105][109][114][115]. Like our study, many studies of AAA, however, have 

been performed assuming isotropic and uniform nonlinear mechanical properties for wall 

tissues [22][27][106][113][116][117]. This is because anisotropic material properties, 

including the anisotropy directions, are unknown for a specific patient; are more difficult 

to implement than the hyperelastic isotropic material properties typically assumed; and 

are more prone to model convergence issues. Likewise, heterogeneities in AAA tissue 

properties are also not known and cannot currently be measured on patients. Similar to 

the conventional modeling approach with isotropic material properties, use of anisotropic 

and even heterogeneous material properties generates artificial model distortions. Large 

uncertainties are nevertheless introduced by the lack of precise knowledge of the patient-

specific tissue material properties. In a recent study [106], biaxial tensile test results from 
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anisotropic AAA tissues obtained from patients were fitted to an isotropic energy-density 

function with relative good correlation among tensile test data and function values. Like 

our study, this previous study showed that the specific choice of tissue mechanical 

properties employed has a large effect on wall stress, including wall stress gradients 

across the wall thickness. The study concluded that tissue material properties are 

important, and that residual stresses, which decrease stress gradients across the wall, 

might be needed to more accurately estimate wall stresses. Further, other studies  

[106][118][119][120] also acknowledged that, physiologically, wall stress is likely to be 

nearly uniformly distributed in blood vessel walls, with residual stresses helping to 

achieve a more uniform stress distribution. Because equilibrium of forces is satisfied for 

the linear models in the intact patient geometrical configuration, and stress gradients 

across the wall thickness obtained using linear models of AAA are minimal, the linear 

approach holds promise as an effective, computationally efficient method for estimating 

wall stresses in patient-specific AAAs. 

Even though circumferential residual stresses and longitudinal loads are present in 

blood vessels [118], we generally assumed the unloaded configurations to be unstressed, 

as done conventionally [103][113]. We also assumed that external organs do not affect 

AAA wall stress. We explored, however, the effect of residual stresses on loaded tissue 

wall stresses. In an idealized straight tube model, residual stresses result in a more 

uniform circumferential stress distribution than the case with no residual stresses (see 

Fig. 18). A more uniform stress distribution is postulated to optimize smooth muscle 

performance [120] and thus it is assumed to be a more physiological scenario. This is 

because a uniform stress distribution also implies uniform strains (elongation) of smooth 
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muscle cells across the wall thickness. Smooth muscle contraction efficiency is optimized 

when individual cells share the same strains and contract together at the same time. 

Residual stresses (and residual strains) therefore help to bring smooth muscle cells across 

the wall to a similar strain under loading conditions, which results in a more uniform 

mechanical environment that improves contractility [119]. AAA walls, however, have 

expanded and weakened through extensive remodeling and might hold only little residual 

stresses and/or longitudinal stresses. This is supported by the clinical observation that 

AAA tissue collapses when the aneurysm is unloaded and pathology studies that 

demonstrate a paucity of smooth muscle cells in the wall of AAAs compared to normal 

aorta. Nevertheless, accurate estimations of patient-specific wall stresses might be elusive 

in light of large differences in wall stresses obtained using different tissue material 

properties from actual AAA tissue samples. Thus, even in the absence of residual 

stresses, the linear approach may remain effective in approximating wall stresses in AAA 

tissues, regardless of the limitations in our approach. 

Another limitation of the linear model is its inability to capture AAA 

deformations throughout the cardiac cycle, which may be useful to assess wall stiffness 

and, perhaps, tissue mechanical changes and tissue degradation. Typically, the change in 

diameter of a normal aorta near the renal-aortic bifurcation throughout the cardiac cycle 

is about 2 mm [121]. Although AAA tissue has been reported to have less distensibility 

than a normal aorta due to a loss of tissue elasticity, an increase in collagen deposition, 

and a possible mechanical cushioning effect from the thrombus [74][122], AAA 

deformations may be significant. The linear model, however, may be used together with 

gated imaging modalities, e.g., electrocardiography gated CT scans or MRI scans, which 
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allow image reconstruction at specific phases of the cardiac cycle. Wall stresses specific 

to AAA geometries at different desired phases, e.g. end-systole and end-diastole, could 

then be obtained, and wall stresses can subsequently be related to the extent of 

deformation measured between AAA geometries. This information may be helpful in the 

assessment of aneurysmal tissue degradation and thus in assessments of rupture and 

expansion risks.  

 

3.4.2 Advantages of the Linear Model 

The proposed linear model applied to AAA tissues generally yielded good 

approximations of wall stresses with relatively small stress gradients across the wall 

thickness. The wall stresses obtained with the linear model were frequently closer to 

reference stresses than the stresses obtained using a conventional approach. Further, the 

linear model captured the physiologically relevant situation of small stress gradients 

across the wall thickness that is a consequence of residual stresses. Because the linear 

model achieved equilibrium of stresses on the patient-specific geometry directly, 

boundary conditions (the intraluminal pressure applied to the inner AAA wall) were 

exactly satisfied on the deformed patient-specific geometry. This results in a reduction of 

artifacts due to geometrical distortions of the AAA geometry beyond those of patient 

tissue deformations that frequently occur when conventional approaches are used. Even 

when approaches that first compute the unloaded configuration are employed, in which 

equilibrium and boundary conditions are also satisfied directly on the patient-specific 

geometry, the linear approach yields wall stresses with a relatively flat stress profile 



60 
 

across the wall. Further, these advantages are achieved in a computationally efficient 

way, with a relatively easy and straight-forward implementation.  

Incorporation of thickness variability in models of AAA has been shown to result 

in significant differences in wall stress compared to models with a uniform thickness 

[87]. This is an important consideration because tissue thickness is typically not uniform 

in patients [87]. The use of uniform thickness models, however, comes from limitations 

in imaging technologies, from which determination of wall thickness variations is 

difficult. With the improvement of imaging technologies, however, it is easy to envision 

that wall-thickness variations would soon be incorporated into wall segmentation 

algorithms from images [87][123]. The linear model could therefore be used for reliably 

studying the effects of wall thickness. 

Advantages of the linear approach make it a promising tool for further AAA wall 

stress investigations and implementation in clinical practice. The linear model does not 

require the computation of an initial configuration; does not artificially distort the 

imaged, loaded geometry; and can approximate wall stresses when wall tissue properties 

are unknown. Further, the linear models achieve relatively small wall stress gradients 

across the wall thickness, which might be physiologically relevant. The linear model has 

the additional advantage over the conventional model (and even over models that 

compute the unloaded configuration) of being much faster and easier to implement, with 

wall stress solutions being obtained directly without the need of nonlinear iterations or 

time-consuming load steps. The linear approach, thus, is a robust and computationally 

efficient tool in computing wall stresses for patient-specific AAA studies. 
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3.4.3 Effect of Thrombus in the Calculation of Wall Stresses 

Consideration of an intraluminal thrombus (ILT) in the AAA models could be 

important since it decreases the magnitude of the wall stresses [85][124]. The linear 

model approximated reference wall stresses very well (< 5% difference) when the wall-

ILT MPR were the same for the reference and linear models (see Fig. 15). This indicates 

that when the patient-specific wall-ILT property ratios are known, the linear approach is 

highly effective at estimating wall stresses. In a more clinical relevant scenario, 

determining the patient-specific wall-ILT MPR is not currently feasible. To circumvent 

this problem, we employed a mean MPR, obtained from mean patient tissue and ILT 

mechanical property measurements. Other groups that used conventional approaches or 

approaches that compute the unloaded configuration also had to rely on average tissue 

and ILT material properties (not only MPR). To assess uncertainties in using average 

properties, we employed a mean MPR value of 6.7 for the linear and conventional 

models, while allowing the MPR of the reference model to vary. We observed that wall 

stress differences between the linear and reference models vary significantly (from 3.7% 

to 66%, the latest for the most extreme case of MPR = 4 in the reference model). This is, 

however, an intrinsic difficulty that all models face (conventional approaches yielded 

differences in wall stresses with respect to reference stresses that ranged from 6.3% to 

111.2%), since patient-specific material properties are unknown. Thus, care will need to 

be exercised in the computation of wall stresses from models with thrombi to make sure 

that wall estimations and associated risk calculations are conservative. 

 

3.4.4 Effect of Boundary Conditions in the Calculation of Wall Stresses 
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Typically, continuum mechanics equations (Eqs. 1 and 2) establish equilibrium of 

forces in the deformed configuration. This implies that boundary conditions are applied 

to the final, deformed configuration. As presented before, this choice also implies that, in 

a cylindrical model, equilibrium in the reference and linear models will yield the same 

value for the integral of σθθ over the wall thickness (see Eq. 34), ensuring that linear 

estimates of wall stresses are similar to reference wall stresses. The conventional 

nonlinear models, however, yield a different equilibrium integral because application of 

internal pressure produces a deformation beyond that of the imaged equilibrium 

configuration. Application of internal pressure boundary conditions with respect to the 

undeformed configuration, rather than the deformed configuration, in the conventional 

approach could yield stresses that are closer to those obtained using the reference model. 

In fact, when applying internal pressures to the undeformed configuration, the magnitude 

of Cauchy stresses σθθ and σrr were closer to reference stresses, than those obtained when 

the internal pressure was applied to the deformed configuration (see Figs. 19 and 20). 

Conventional and linear models then yielded similar estimations of wall stress. The linear 

model, however, not only provides and alternative way of computing AAA wall stresses, 

but also has the advantages of easy implementation, solution efficiency, and 

independence of tissue mechanical properties.  

 

3.4.5 Potential Clinical Applications 

While wall stress could provide better estimation of AAA rupture risk and 

expansion than the maximal aneurysm diameter [13][20][113], current difficulties in the 

computation of patient-specific wall stresses, rupture risk, and AAA size progression still 
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remain. These difficulties include uncertainties in the tissue material properties and tissue 

strength; computation of the unloaded configuration (including residual stresses); 

unknown boundary conditions (including the effect of external organs and the ILT); and 

the nonlinearity of the models, which increase the complexity of the computations 

involved. While patient-specific AAA loaded geometries can be imaged and segmented 

for use in FEA computation of wall stresses, these models do not account for the patient-

specific tissue mechanical properties, which are unknown and challenging to obtain 

without tissue dissection. To circumvent these problems, researchers have been using 

average values of AAA tissue material properties and average tissue strengths obtained 

from cadaver studies or tissues obtained from patients undergoing elective repair. Thus, 

while stresses are calculated on patient-specific geometries and perhaps patient-specific 

blood pressures, the remaining assumptions in the model are not patient-specific. The use 

of hyperelastic tissue material properties in the AAA models, in addition, makes the FEA 

solution difficult to achieve and time-consuming. Therefore, while several promising 

studies relating AAA wall stresses, AAA size progression, and rupture risk have been 

conducted in the research arena, these models have not been widely translated into 

clinical practice.  

Improving the accuracy and efficiency of wall stress computations is a key step 

for assessing an AAA patient’s risk of rupture and for improving our understanding of 

how wall stresses relate to AAA progression. We have shown that the use of different 

tissue material properties and tissue opening angles can lead to drastic changes in 

computed wall stresses and wall stress gradients across the wall thickness (Figs. 17 and 

18). Furthermore, wall stresses depend on the mechanical properties of the intraluminal 
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thrombus and interaction with external organs, which are also typically unknown. The 

collective uncertainties introduced by unknown patient-specific tissue material properties, 

degree of residual stresses, and degree of tissue degradation and strength indicate that 

computation of truly patient-specific AAA wall stresses might be elusive. The proposed 

linear model provides a relatively simple methodology to estimate wall stresses, which is 

not only computationally efficient, but that also ensures satisfaction of wall stress 

equilibrium directly in the patient-specific AAA geometry. Further, the linear model does 

not require knowledge of tissue mechanical properties, and yields a physiologically 

relevant wall stress profile across the wall thickness.   

Implementation of the linear model will tremendously facilitate automation of the 

computational process to obtain patient-specific AAA wall stresses. This can translate 

into the computation of patient-specific wall stresses in a much shorter time. Improving 

the accuracy and speed for wall stress computations are indispensable for identifying 

patients who are at higher risk for AAA rupture or expansion to the renal arteries or iliac 

bifurcation and require emergent repair. Previous studies have shown that wall stress 

better discriminates rupture and expansion risks than maximal AAA diameter. Studies are 

undergoing to determine the extent to which wall stresses determined from the linear 

model can indeed be used in predicting patient-specific outcomes. The proposed linear 

model has shown so far to be a promising clinical tool for possibly predicting AAA 

rupture and expansion risk. With the computation of wall stress enormously simplified by 

using the linear approach, studies of rupture and expansion risk can be more easily 

performed and extended and prediction of patient outcomes more readily obtained.  
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CHAPTER 4: SUMMARY, CONCLUSIONS, AND 

ONGOING/FUTURE WORK 
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The study presented in this dissertation set out to explore a more efficient method 

for computing patient-specific AAA wall stresses, which have been shown to be better 

predictors of rupture risk than the currently used maximum transverse diameter 

[13][16][17][18][19][20]. The need for this research is indisputable because stress-based 

methods are currently far from being usable as clinical tools for the assessment of AAA 

rupture risk. This is because stress-based methods are time-intensive and difficult. The 

difficulty of these methods is partly attributed to the modeling of AAA tissues as 

nonlinear materials. Adding to the difficulty in computation is the lack of knowledge of 

patient-specific AAA tissue properties, which cannot be determined without tissue 

excision. Thus, the material properties that are often employed are population average 

values rather than patient-specific. Current methods also rely on the assumption that the 

CT AAA geometry is initially unloaded and unstressed. When pressure is applied to the 

lumen of the nonlinear AAA model, artificial distortions and overestimated wall stresses 

result. Efforts to minimize these geometrical distortions require the computation of an 

initial unloaded, unstressed configuration of an AAA, which involves the use of complex 

inverse mathematical algorithms.  

One way to circumvent many of the presented problems is to model the AAA as a 

linear elastic material with small displacements and strains. Computations involving the 

use of linear elastic materials can be achieved much more quickly and easily than 

nonlinear models. Knowing the benefits that are conferred by the linear model, the study 

sought to answer the following vital question: can patient-specific wall stresses be 

computed more efficiently by characterizing AAA tissues as linear elastic materials? The 
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answer to this question depended on whether the linear model could predict patient wall 

stresses with good approximation.  

In Chapter 3, the linear model was shown to closely approximate reference 

stresses compared to the conventional model for patient-specific AAA models, as well as 

idealized models of an AAA. Moreover, the stresses computed using the linear model 

closely approximated the stress distributions of diverse nonlinear material property 

models that accounted for the presence of residual stresses. These stress distributions 

were relatively uniform across the wall thickness and represented a relevant physiological 

state where the mechanical strain of smooth muscle cells across the wall was equalized to 

optimize contractility. More importantly, the linear model closely approximated the 

reference stresses without knowledge of patient-specific AAA tissue properties, which 

are typically unknown in clinic. These findings suggest that the linear model confers the 

benefit of computing patient-specific wall stresses in an efficient manner. This 

achievement is the first step needed to consider stress-based methods for use in the clinic 

to determine patient-specific AAA rupture risks.  

The linear model may be a promising clinical tool for assessing AAA rupture risk, 

but its applicability is not restricted to this use. The easy-to-use characteristic of the linear 

model makes it an exceptional tool for research. In fact, the linear model is currently used 

in an ongoing research project to elucidate the role that wall stress plays in AAA 

progression. The project attempts to determine if the tissue growth and remodeling laws 

(see Section 4.1.1) are reasonable descriptors of AAA growth in response to the imposed 

stresses. If the tissue growth laws are applicable, they may be useful for predicting the 

extent of AAA expansion and rupture risk. 
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The remainder of this chapter will briefly introduce current work that employs the 

linear model and a simplified use of the tissue growth laws to study wall stress and AAA 

expansion relationships. Additionally, we introduce an idea for a study that aims to 

evaluate the linear model’s ability to differentiate wall stress distributions in not only 

ruptured and non-ruptured AAAs, but also other cardiovascular diseases, such as TAAs, 

aortic dissections, and intracranial aneurysms. This particular study is needed for further 

assessing the linear model’s utility as a clinical tool for predicting rupture risk in AAAs 

and other vascular diseases.  

 

4.1 Elucidating Wall Stress-AAA Expansion Relationships 

 

4.1.1 Tissue Growth & Remodeling Theory Laws 

 Although wall stress is involved in the progression of an AAA [69] (see Chapter 

1, Section 2), this relationship remains poorly understood, and efforts to elucidate the 

relationship have been discouraging. This is because AAA growth has been reported to 

be discontinuous with periods of growth and non-growth, making the task of predicting 

future aneurysmal expansion quite difficult [94]. One study, however, showed a positive 

correlation between AAA expansion and the peak wall stress at the shoulder of the AAA, 

i.e., the point where the surface changes from positive to negative curvature and vice 

versa [113]. Another study reported that lower wall stresses were associated with lower 

AAA growth rate [125]. These findings attest to the possibility that a relationship 

between wall stress and AAA growth can be found and further elucidated to assess how 

wall stress distributions can be applied to predict AAA growth.  
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 In our ongoing study, we set out to determine if the relationship between wall 

stress and aneurysmal expansion can be described by the tissue growth and remodeling 

laws [102], which are based on the concepts of homeostasis and equilibrium [69][102]. 

The forces in a mature aorta wall are in equilibrium with the hemodynamic forces, and 

homeostasis is maintained. If the forces applied to the aortic wall become chronically 

disrupted, homeostatic wall stresses are no longer conserved. In order to restore 

homeostasis, the aorta will remodel or grow. For example, in the case of an abnormal 

increase in blood flow, the aorta will grow in diameter in order to reduce wall shear 

[126][127]. The tissue growth and remodeling process in response to stress is expressed 

mathematically as follows for a small cross-sectional segment of aortic tissue [102]: 

  0gr rb      , (35) 

where Eq. 35 is representative of the rate of tissue growth in the radial direction gr ; br 

is a radial proportionality constant; σθθ is the Cauchy circumferential stress component 

and σθθ0 is the circumferential growth equilibrium stress; 

    0 0g b b            , (36) 

where Eq. 36 describes the rate of circumferential growth g ; bθ and bτ are 

circumferential and shear proportionality constants, respectively; and τ and τ0 are the 

average shear stress on the endothelium due to blood flow [102] and shear growth 

equilibrium stress, respectively; and  
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 0gz  , (37) 

where gz  is the longitudinal growth rate. Although AAA growth in the longitudinal 

direction in response to wall stress could be notable, in this ongoing study, the rate of 

growth is assumed to be zero [102]. This is done to facilitate our initial analysis of how 

wall stresses affect growth in the circumferential direction.  

 

4.1.2 Simplified Use of a Tissue Growth and Remodeling Law 

 In order to determine if the tissue growth laws are reasonable descriptors of AAA 

progression, we are first exploring the relationship between circumferential wall stress 

and circumferential growth. To facilitate investigation of this relationship, we simplified 

the growth and remodeling law described in Eq. 36 by omitting the shear and the 

circumferential equilibrium stress terms. In excluding these terms, we intended to limit 

the number of variables involved and assess if aneurysmal growth could be reasonably 

predicted by only knowing the circumferential stress distributions. Once this relationship 

is understood, the shear stress and equilibrium stress terms can be sequentially introduced 

in future studies to better understand how each term further affects AAA growth. The 

simplified form of Eq. 36 is 

 g b    . (38) 

Eqs. 36 and 38 describe circumferential growth in an infinitesimal sector of AAA tissue. 

To account for growth around the AAA cross-section, a contour integral must be 

computed 
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  g ds b s ds    , (39) 

where the circumferential growth term is        

 
g

s

s


 



, (40)  

and s and s’ are the length parameters of corresponding contours at the time of interest 

and at a future time, respectively, and ds is the infinitesimal distance. Eq. 39 simplifies to 

  

  
*

Δ

P P
b s ds

t
 


 , (41) 

where P* is the perimeter of an AAA cross-section contour (in mm) at the time of 

interest, and P is the perimeter of the corresponding cross-section contour at a future 

time, respectively; and Δt represents the elapsed time (in years) between the two time 

points. 

 An assessment of localized (cross-sectional) growth provides crucial information 

about how the AAA expands in response to the local wall stress distribution. If this form 

of evaluation is applied to an AAA that is divided into multiple cross-sections, then an 

overall assessment of growth can be achieved, improving our understanding of wall stress 

and AAA expansion relationships. Current methods offer limited knowledge about this 

important relationship because a partial evaluation of aneurysmal growth is typically 

reported, which only involves the measurement of changes in the diameter length at a few 

specific locations over time [94][113][125][128]. 

 

 4.1.3 Potential Significance 
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If a good correlation is found between the local wall stress distributions and AAA 

growth as described in Eq. 41, then the coefficient bθ can be calculated and used as a 

patient-specific parameter to predict growth for the AAA at a future time point. This 

predictive power can be invaluable in determining which areas of the AAA are more 

prone to growth and are at greatest risk for rupture. 

 

4.1.4 Computing Cross-Sectional Growth and Wall Stresses 

 To preliminarily assess the wall stress-AAA growth relationship described by Eq. 

41, the AAA from Subject A4 introduced in Chapter 2 was used. Three CT scans of 

Subject A4’s infrarenal AAA were acquired at three different times, which were the 

minimum number of time points necessary to evaluate changes in AAA growth rates and 

wall stress distributions. The AAA geometries were each segmented from acquired CT 

scans using a collaborator’s segmentation program (SP2) and were subsequently 

organized into cross-sectional rings using the approach explained in Chapter 2, Section 3. 

To facilitate the evaluation of growth throughout the AAA, a MATLAB program was 

written to calculate the rate of growth for every cross-section using the left hand 

expression in Eq. 41—the program was also written compute the wall stress contour 

integrals for each cross-section. As part of a preliminary analysis, growth was assessed 

between the AAAs at the first two time points. 

 Once the growth rates were calculated, the AAA wall stresses were computed at 

the first time point using the linear model and the approaches established in Chapter 2. 

The AAA was modeled with an ILT using 27/4 hexahedral elements for both the wall and 

ILT. Convergence of wall stress results was achieved using 9,600 wall elements and 
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19,200 ILT elements, respectively, with 3 and 5 elements spanning the thicknesses of the 

wall and thrombus, respectively. In order to determine if the amount of attenuation in the 

magnitude of wall stress due to the thrombus matches with expectation, the effective wall 

stresses of the AAA-ILT model were compared to those of the same AAA modeled in the 

absence of an ILT. In this study, assessing differences in effective stress was more 

convenient than for differences in circumferential stress. The thrombus-free AAA was 

simulated with 9,600 27/4 hexahedral elements, with 3 elements spanning the thickness. 

Relative differences in effective stress were computed using Eq. 32. 

 

4.1.5 Preliminary Results  

  When the effective stress distributions of the patient AAA modeled without a 

thrombus were compared to those of the same AAA with an ILT, we observed that 

inclusion of a thrombus greatly attenuated the wall stress magnitudes. In fact, in regions 

where the average circumferential ILT thickness was 1-1.8 mm, the effective stresses 

were attenuated by 0.4-59%. We were surprised to see a large attenuation in wall stress 

magnitude in areas where the thrombus was relatively thin because these results 

conflicted with those of a previous study. In our initial study, we compared wall stresses 

between axisymmetric idealized curved models of an AAA that excluded and included an 

ILT with a uniform thickness of 1 mm. We found that wall stresses in the AAA-ILT 

model were attenuated by 10.5-14.7% (see Fig. 21). Thus, we were not expecting to 

observe large reductions in wall stress magnitudes in areas juxtaposed to a thin thrombus 

for the patient-specific model. Future efforts will be devoted to understanding why large 

wall stress attenuations were observed and whether these attenuations are accurate.  



74 
 

 

Despite the presented difficulty, we have developed methods that include 

implementation of a simplified tissue growth and remodeling law to assess growth 

throughout the AAA rather than at specific locations. Moreover, the proposed methods 

exploit the benefits of the linear model to compute wall stresses efficiently. Our approach 

is promising because it facilitates the study of wall stress and AAA expansion 

relationships, which may allow us to identify 1) ways to predict aneurysmal growth from 

a distribution of wall stresses and 2) AAAs that are at greatest risk for rupture. 

 

4.2 To Rupture or Not to Rupture? That is the Linear Model’s Question 

 Our understanding of wall stress-AAA expansion relationships and AAA rupture 

risk assessment would also greatly improve if the linear model can be evaluated in its 

potential to differentiate AAAs that are likely to rupture from those that are more stable. 

In Chapter 3, the linear model was shown to predict the reference wall stresses with good 

approximation, irrespective of the material properties, geometries, and pressures used, 

suggesting that the linear model has great potential for yielding good estimates of the 

wall stress distributions in a patient-specific AAA. Thus, we propose that the linear 

model can effectively distinguish wall stress distributions between AAAs that have 

ruptured from those that have not. More specifically, we believe that wall stresses 

computed using the linear model for ruptured AAAs will more likely be higher than for 

non-ruptured AAAs. This is because wall stresses have been shown to be typically higher 

in ruptured aneurysms [13][18][19][20]. It is worth mentioning that an evaluation of 

AAA rupture should also account for wall strength distributions [17][18][129]; however, 
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because the non-invasive determination of patient-specific wall strength is infeasible (due 

to the need for tissue excision), performing a study that analyzes how wall stress alone is 

able to predict AAAs that rupture is an appropriate, important first step.  

The analysis can be also be extended to differentiating ruptured and non-ruptured 

cases in thoracic aortic aneurysms (TAAs), intracranial/cerebral aneurysms (ICAs), and 

aortic dissection (AoD) of TAAs, i.e., separations of the aortic wall layers caused by 

blood entering a tear in the thoracic aorta. Wall stress is thought to play an important role 

in the formation, progression and rupture of AoDs, TAAs, and ICAs 

[130][131][132][133][134][135][136][137][138][139][140][141][142][143][144]. For 

instance, wall stress distributions have been shown to coincide with the site of AoD 

formation [133]; peak wall stress was shown to be strongly correlated with TAA 

expansion rate [135]; and models relating peak wall stress and strength have great 

promise for predicting rupture risk in diagnosed ICAs [145]. Further research is needed to 

assess the relationship between wall stresses and rupture risk for each disease as well as 

between wall stress and the risk of formation of AoDs in TAAs, because size has not 

been a good predictor of both types of risk [133][137][146][147]. To assess these 

relationships, a future study can be conducted where the linear model is 1) used to 

compute the wall stress distributions for patients suffering from TAAs, AoDs, and ICAs; 

and 2) then evaluated in its effectiveness to differentiate wall stress distributions between 

ruptured versus non-ruptured cases for each disease, as well as stresses in TAAs with and 

without AoDs. These analyses will be important for also assessing the linear model’s 

broader clinical utility.  



76 
 

 The design of the future study will be similar to that of a retrospective cohort 

study, where patients have developed the outcome of interest but the investigations “jump 

back” in time, identify an exposure of interest, and follow patients prospectively until 

they manifest the outcome. This is done to study the relationship between exposure and 

the outcome. In the case of AAAs, TAAs and ICAs, the outcomes of interest are not only 

symptomatic/ruptured aneurysms but also expansion requiring repair. Another outcome 

of interest for AAAs is extension to the juxtarenal aorta. For AoDs, the clinically relevant 

endpoint is rupture. In all cases, the “exposures” will include wall stress patterns (e.g., 

peak wall stress and mean wall stress) that were computed using the linear model. For 

each disease, an ROC curve can be generated using the wall stress patterns as predictors 

for each clinically relevant endpoint. For example, in the case of size-matched AAAs 

where peak stress will be evaluated as a predictor of rupture risk, an ROC curve will be 

generated to assess the effectiveness of peak wall stress in discriminating ruptured and 

non-ruptured cases as threshold values of stress are varied. A Youden’s J statistic will be 

applied to select the threshold value of peak wall stress that optimizes the sensitivity and 

specificity. Using the optimal discriminant value, the number of patients correctly 

predicted as ruptured and non-ruptured will be recorded, and statistical significance 

between the two groups will be evaluated using a paired t test. The analysis outlined in 

this example can be repeated for other diseases and for each clinically relevant endpoint. 

One difficulty that may be encountered in these studies is having a low number of 

patients because the clinically relevant endpoint is unusual or rare, e.g., juxtarenal 

expansion of the AAA and AoD/TAA rupture [148][149]. To increase statistical power in 

these cases, the juxtarenal expansion of the AAA can be pooled with growing AAAs 
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requiring repair, and patients suffering from ruptured aortic dissections can be pooled 

with patients that have ruptured TAAs. Collectively, the analyses that will be conducted 

for future project can help verify the ability of the linear model to discern AAAs, TAAs, 

ICAs and AoDs that are likely to grow and/or rupture, strengthening the model’s utility 

as a clinical tool. 

 

Because of its simplicity, the linear model offers an efficient way to compute 

patient-specific wall stresses. This robust model is granting stress-based methods an 

opportunity to be considered as clinical tools rather than solely in research. The 

introduction of the linear model is the start of a promising research direction that may 

culminate in the eventual replacement of the maximum transverse diameter as the marker 

of choice for evaluating rupture risk and/or growth in AAAs, TAAs, ICAs and AoDs. If 

this proves to be the case, more patient lives will be saved, and fewer patients will 

undergo unnecessary surgery.  
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TABLES 

 

AAA Classification 

Size of 

maximum 

transverse 

diameter 

(MTD) (mm) 

Monitoring 

Frequency 

(years) 

Recommended 

Management 

Strategy 

Reference 

Small 30≤MTD<40 2-3 
ultrasound 

surveillance 
 [5] 

Intermediate 40≤MTD<55 0.25-1 

surveillance 

with 

ultrasound, 

CT, or MRI 

 [5][31] 

Large MTD≥55 0.083-0.5 

surgery, 

surveillance 

with CT 

 [5][31] 

Symptomatic/AAAs 

growing at 5 mm 

per 0.5 years 

Any - surgery, CT  [5][31] 

 

Table 1. AAA management strategies based on observation and measurement of the 

maximum transverse diameter. 
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Variable 
Subject A4 (83 year old male) 

t1 t2 t3 

Timing (years) 0 1.57 3.05 

Systolic pressure 

    mmHg, (N/mm
2
) 

130 

(0.0173) 

140 

(0.0187) 

122 

(0.0163) 

Diastolic pressure 

    mmHg, (N/mm
2
) 

90 

(0.0120) 

80 

(0.0107) 

76 

(0.0101) 

Average pressure 

    mmHg, (N/mm
2
) 

103.33 

(0.0138) 

100 

(0.0133) 

91.33 

(0.0122) 

Maximum diameter 

    mm 
56.5 61.4 65.8 

Notes 

former smoker; 

hypertension; 

blood pressure 

information was 

acquired at t1+0.16 

yrs. 

blood pressure 

information was 

acquired at t2+0.58 

yrs. 

stent repair seen on 

CT scan three 

months after t3; 

blood pressure 

information was 

acquired at t3+0.16 

yrs. 

 

Table 2. CT scan timing, blood pressure and medical information for Subject A4. 

The de-identified, contrast-enhanced spiral CT images used in this study were acquired 

by the OHSU Department of Vascular Surgery as a standard of care rather than solely for 

research. The times when the second and third CT scans were obtained were evaluated 

with respect to that of the first CT scan. Blood pressure information was collected and 

needed to compute wall stresses. Because the blood pressure data were not necessarily 

available at the same time when the CT scans were acquired, we selected pressures that 

were recorded at a time closest to when CT scanning occurred.  

  



100 
 

Material Model  α (N/mm
2
)  β (N/mm

2
) γ (N/mm

2
)  Reference  

Raghavan-Vorp (RV)  0.174 1.881  0   [28]  

Polzer et al. sample (P1)  0.0145  0  2.259   [106] 

Polzer et al. sample (P2)  0.022  1.461  1.0   [106] 

 

Table 3. Coefficients of AAA tissue material properties (see Eq. 3). For the RV 

model, only the population average values are shown, whereas patient-specific material 

properties are displayed for P1 and P2. The material properties were obtained from the 

literature and determined from tensile testing experiments performed on tissues excised 

from cadavers and patients undergoing elective repair.  
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FIGURES 

 

 

Figure 1. Schematic showing the stress-strain relationship of a nonlinear material 

subject to loading. The idea used for the creation of this figure comes from Raghavan et 

al. [150]. 
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Figure 2. Schematic showing the AAA models employed. In all models, an internal 

pressure is applied to an initially unloaded, undeformed configuration. Differences 

between models are in the choice of the wall material properties and initial configuration 

employed. (A) Reference model: the walls are characterized by hyperelastic nonlinear 

material properties; the initial configuration, which is assumed to be known, represents 

the clinically unknown unloaded and unstressed wall configuration, and the deformed 

(loaded) configuration represents the deformed geometry that is imaged from the patient. 

(B) Conventional model: the walls are assumed to have hyperelastic nonlinear properties; 

the initial configuration is chosen as the deformed configuration obtained from the 

reference model (but this configuration is assumed to be unloaded and unstressed). After 

application of an internal pressure in the conventional model, the initial configuration 

further deforms into a loaded configuration. (C) Linear model: the walls are assumed to 

have linear elastic properties, with infinitesimally small deformations and strains; the 

initial configuration is chosen as the deformed configuration obtained from the reference 
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model (as in the conventional model). Because of the assumptions made in the linear 

model, the initial configuration barely deforms, preserving the geometrical characteristics 

of imaged patient geometries. Obtained from [1]. 
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Figure 3. Summary of the methods employed to generate a finite element model of a 

subject-specific AAA. The finite element analysis (FEA) model of an AAA is needed for 
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the computation of wall stress. (A) The preparation of the FEA model involves the 

collection of CT images and the extraction of the AAA wall and lumen surfaces from the 

CT scan images. Note that for simplicity, only the outer wall surface of the AAA at one 

time point is displayed in the figure. Two segmentation programs (SPs) were employed to 

achieve the surface extractions in two different ways. SP1 is a relatively more automated 

program than SP2 and provides less control in choosing the orientation of the planes for 

contour tracing. SP1 extracts the contours and reduces extraction noise before “stacking” 

the contours to generate the AAA surface geometry in the form of a mesh. SP2 allows for 

a more controlled tracing of the contours and outputs an unstructured mesh. (B) For 

convenience and to use the meshes for analysis, the nodes were “organized” into cross-

sectional rings. SP1 achieves this step as part of its algorithm. SP2, on the other hand, 

does not. Thus, a point correspondence algorithm is applied to the SP2-derived meshes 

(outer wall and lumen surfaces) to parameterize the surface meshes. (C) After the meshes 

are parameterized, they are ready to be used as input for an in-house program that 

produces an FEA input file for ADINA, the FEA software. The input file uses the 

structured surface meshes to generate the FEA AAA body, which is then defined with 

specific tissue properties (measures of stiffness). The boundary conditions, i.e., fixations 

and intraluminal pressures, are also specified in the input file. Once this information is 

provided, the FEA model is then used to compute wall stresses. 
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Figure 4. Schematic of an abdominal aortic aneurysm. CT scans are traced beginning 

from the aortic-renal bifurcation point and end in the aortic-iliac bifurcation point. The 

AAA midline is shown as a dashed line between the bifurcation points. The blue lines in 

the figure represent the contours or “rings” of the different AAA cross-sections that 

compose the aneurysm’s mesh.  
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Figure 5. Lumen and wall surface meshes of Subject A4. The lumen and inner and 

outer wall surfaces were extracted from the CT scan images for Subject A4 using SP2 at 

three times, but only the surfaces for one time point are shown. All three surfaces are 

needed to generate the finite element mesh for the computation of wall stresses. On the 

left, a patient-left view of the three surfaces is presented. On the right, the three surfaces 

are aligned, anteriorly rotated by 90 degrees, and shown from the aortic-iliac 

bifurcation’s perspective, looking toward the rostrum. The area between the outer and 

inner wall surfaces represents the AAA wall, whereas the area between the lumen and 

inner wall surfaces represents the thrombus.   
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Figure 6. Thick-wall cylindrical model with applied internal pressure used for the 

derivation of analytical solutions. The undeformed configuration is assumed to be 

unstressed and unloaded; the deformed configuration is obtained after applying an 

internal pressure p. A, B and R represent the internal wall radius, external wall radius and 

radial coordinate, respectively, in the undeformed configuration; a, b, and r, represent the 

internal wall radius, external wall radius and radial coordinate, respectively, in the 

deformed configuration. Obtained from [1]. 
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Figure 7. Modeling of residual stresses in a tubular vessel. (A) Schematics of the 

physical tissue configurations: an initial unloaded, unstressed and undeformed circular 

section (with radii A and B) is closed, which generates residual stresses in the unloaded 

configuration. This closed configuration (with radii a0 and b0) is loaded to generate the 

final deformed and loaded configuration (radii a and b) that represents arterial tissues 

under load. The open sector schematics also show the definition of the opening angle ϕ in 

relation to the angle θ. (B) Schematics of the FEA model implemented to compute 

residual stresses and their effects on the loaded configuration. We first modeled an 

unstressed, unloaded and undeformed open sector. We then imposed a horizontal 

displacement on the open end of the sector to close the segment and generate residual 

stresses. The closed sector was then loaded with an internal pressure to compute the 

loaded configuration and resulting wall stresses. Obtained from [1]. 
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Figure 8. Stress comparisons among the reference, conventional, and linear models 

of an axisymmetric thick-wall tubular geometry. (A) Circumferential wall stress; (B) 

effective wall stress; and (C) radial wall stress distributions are plotted across the 

normalized wall thickness. For the reference model, the inner and outer radii in the 

deformed configuration were 14.8 mm and 16.1 mm, respectively; for the conventional 

model, the inner and outer radii in the deformed configuration were 16.27 mm and 17.53 

mm, respectively; applied internal pressure, p = 0.016 N/mm
2
 (120 mmHg); RV material 

properties were used for both the reference and conventional models. Obtained from [1]. 
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Figure 9. Relative differences in effective wall stress distributions for the case of a 

tubular arterial model (using an internal pressure of 120 mmHg). The figure shows 

differences of effective wall stress distributions obtained from the conventional and linear 

models, with respect to the stress distributions from the reference model, computed using 

Eq. 33. To simulate the clinical situation where the material properties of the AAA are 

unknown, the material constants α and β (γ = 0) were varied in the reference model (αref 

and βref reported values), whereas population average α and β (α = 0.174 N/mm
2
, β = 

1.881 N/mm
2
; RV material properties) were used in the conventional model, and constant 
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elasticity (E = 8.4x10
9
 N/mm

2
) was used in the linear model. Further, the initial geometry 

was varied to represent different aneurysm sizes and wall thicknesses. In all cases, 

applied internal pressure was 0.016 N/mm
2
 (120 mmHg). Reported geometrical model 

external radius B and wall thickness h0 correspond to the initial configuration of the 

reference model. The dashed lines indicate the physiological range of the material 

property values for αref . Obtained from [1]. 
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Figure 10. Relative differences in maximum effective wall stress distributions for a 

tubular arterial model (using an internal pressure of 120 mmHg). Models simulated 

are the same as for Fig. 9, but differences in maximal wall stresses with respect to 

reference stresses, computed using Eq. 32, are reported instead. The reported material 

coefficients αref and βref correspond to those of the reference model. RV material 

properties (α = 0.174 N/mm
2
, β =1.881 N/mm

2
) were used in the conventional model, and 

a constant elasticity (E = 8.4x10
9
 N/mm

2
) was used in the linear model. Applied internal 

pressure was 0.016 N/mm
2
 (120 mmHg). The initial geometry was varied to represent 
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different aneurysm sizes and wall thicknesses. The dashed lines indicate the physiological 

range of the material property values for αref. Obtained from [1]. 
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Figure 11. Relative differences in effective wall stress distributions for the case of a 

tubular arterial model (using an internal pressure of 200 mmHg). Similar to Fig. 9, 

differences of effective wall stress distributions obtained from the conventional and linear 

models, with respect to the stress distributions from the reference model are shown, but 

the applied internal pressure was increased to 0.027 N/mm
2
 (200 mmHg). Material 

constants αref and βref reported corresponded to those of the reference model. RV material 

properties (α = 0.174 N/mm
2
, β =1.881 N/mm

2
) were used in the conventional model, and 

constant elasticity (E = 8.4x10
9
 N/mm

2
) was used in the linear model. The figure shows 
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results obtained when the initial geometry was varied in the reference model. The dashed 

lines indicate the physiological range of the material property values for αref. Obtained 

from [1]. 

  



117 
 

 

Figure 12. Relative differences in maximum effective wall stress distributions for a 

tubular arterial model (using an internal pressure of 200 mmHg). Models simulated 

are the same as for Fig. 11, with an applied internal pressure p = 0.027 N/mm
2
 (200 

mmHg), but the differences in maximal wall stresses (with respect to reference wall 

stresses) are reported instead. Material constants αref and βref reported correspond to those 

of the reference model. RV material properties (α = 0.174 N/mm
2
, β =1.881 N/mm

2
) were 

used in the conventional model, and constant elasticity (E = 8.4x10
9
 N/mm

2
) was used in 

the linear model. The figure shows results obtained when the initial geometry was varied 
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in the reference model. The dashed lines indicate the physiological range of the material 

property values for αref. Obtained from [1]. 
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Figure 13. Effect of variable wall thickness on wall stress distributions. (A) 

Axisymmetric model with longitudinally-varying wall thickness. (B) Plane strain model 

with circumferentially-varying wall thickness. In all cases, an internal pressure of 0.016 

N/mm
2
 (120 mmHg) was applied. For both geometries considered, effective wall stresses 

(in units of N/mm
2
) are shown as computed using reference, conventional and linear 

models (left). Differences in the effective wall stress with respect to reference wall 

stresses for the linear and conventional approaches are also shown (right). Obtained from 

[1]. 
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Figure 14. Effective wall stress distributions in different geometrical models of 

AAA.  (A) Idealized bended-tubular axisymmetric model. (B) Idealized axisymmetric 

model of AAA with inclusion of thrombus. (C) Patient-specific model (anterior view of 

outer surface). In all cases, an internal pressure of 0.016 N/mm
2
 (120 mmHg) was 

applied. For the geometries considered, effective wall stresses (in units of N/mm
2
) are 

shown as computed using reference, conventional and linear models (left). Plots of the 

effective wall stress with respect to the normalized thickness in the regions indicated by 
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the black arrows are shown (middle). Differences in the effective wall stress with respect 

to reference wall stresses for the linear and conventional approaches are also shown 

(right). Obtained from [1].   
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Figure 15. Effective stress distributions versus normalized wall thickness for the 

idealized AAA model with thrombus. Simulations were performed assuming a 

wall/thrombus material property ratio (MPR) of 4, 6.7 and 10.25, in the reference, 

conventional and linear models. In all cases, an internal pressure of 0.016 N/mm
2
 (120 

mmHg) was applied. Ref: reference model, Conv: conventional model. Obtained from 

[1]. 
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Figure 16. Relative differences in effective stress on the lumen surface of a patient-

specific AAA model. Anterior view. Differences in effective wall stress for the linear 

and conventional models are with respect to the stresses in the reference model. RV 

material properties were employed in reference and conventional models. A systolic 

pressure of 0.016 N/mm
2
 (120 mmHg) was applied to the lumen of the deformed 

configurations of the linear and conventional models. Obtained from [1]. 
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Figure 17. Comparison of circumferential stress distributions obtained using 

different tissue material properties in a tubular model. Material properties employed 

were those listed in Table 3 (RV, P1, and P2), and results using the linear model (Lin) are 

also shown for comparison. For each panel shown, regardless of the material property 

employed in the model, the deformed configuration (described by the outer radius b and 

wall thickness h) was the same, while the initial, unstressed configuration was adjusted. 

(A) Circumferential stress distributions obtained for the case of a small aneurysm. (B) 

Circumferential stress distributions for a larger aneurysm model. Obtained from [1]. 
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Figure 18. Effect of varying opening angle on circumferential residual stresses and 

loaded stress distributions. The model employed to compute residual stresses is 

schematically shown in Fig. 7. The angle  was varied as indicated (with  = 0
 

corresponding to the case of no residual stresses), and results obtained from employing 

different tissue material properties, listed in Table 3, are presented: (A) P1; (B) P2; (C) 

RV material properties. Results show residual stresses (left panels) in the unloaded 

(closed) configuration; and wall stresses after applying an internal pressure, p = 0.016 

N/mm
2
 (right panels). Circumferential wall stresses obtained using the linear model are 

included for comparison. For the cases considered, the unloaded, closed configuration, 
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which exhibits residual stresses, was the same, and characterized by b0 = 30 mm and a 

wall thickness of 1.5 mm. As the opening angle increased, the magnitude of residual 

stresses and gradient of stresses across the wall increased (right column). The magnitude 

of wall stresses in the loaded configuration, in contrast, decreased, and the gradient of 

wall stresses across the wall thickness decreased. Irrespective of the material properties 

employed, as θ increased, the magnitude of the stresses obtained using the nonlinear 

material properties (P1, P2, RV) approached the stress values obtained using the linear 

model. Dotted lines show the case at which a relatively uniform stress distribution across 

the wall was obtained. Obtained from [1]. 
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Figure 19. Stresses in a tubular model when pressure is imposed on the conventional 

model’s undeformed configuration. For comparative purposes, wall stresses in the 

thick-wall tube are shown as obtained in the reference, conventional and linear models. 

Imposed internal pressure was 0.016 N/mm
2
 (120 mmHg) and was applied to the initial, 

undeformed configuration in the conventional model. (A) Circumferential stress; (B) 

effective stress; and (C) radial stress distributions are plotted across the normalized wall 

thickness. For the reference model, the inner and outer radii of the deformed 

configuration were 14.8 mm and 16.1 mm, respectively; for the conventional model, the 

inner and outer radii of the deformed configuration were 16.18 mm and 17.45 mm, 

respectively; RV material properties were used for both the reference and conventional 

models; E = 8.4x10
9
 N/mm

2
 for the linear model. Conventional models more closely 
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approximated reference wall stresses than in the case in which pressure was applied to the 

deformed configuration of the conventional model. Obtained from [1]. 
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Figure 20. Patient-specific stress comparisons when internal pressure is imposed on 

the conventional model’s undeformed configuration. Anterior view. Imposed 

intraluminal pressure was 0.016 N/mm
2
 (120 mmHg). Effective wall stresses (in units of 

N/mm
2
) are shown as computed using reference, conventional and linear models (left). 

Differences in the effective wall stress with respect to reference wall stresses for the 

linear and conventional approaches are also shown (right). Obtained from [1]. 
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Figure 21. Inclusion of a thin thrombus attenuates wall stresses in an idealized, 

curved model of an AAA. The imposed intraluminal pressure was 0.016 N/mm
2
 (120 

mmHg), and the models were fixed in the longitudinal direction to simulate tethering of 

the AAA to the rest of the aorta. The thrombus was uniformly distributed with a thickness 

of 1 mm, and the wall was modeled with a uniform thickness of 1.5 mm. The outer radii 

of the wall at the middle and top of the AAA were 25.68 mm and 10.5 mm, respectively. 

The linear model was employed to compute wall stresses for both AAA models, Ewall = 

8.4x10
9
 N/mm

2
; EILT = 1.25x10

9
 N/mm

2
. Effective wall stresses (in units of N/mm

2
) are 

shown as computed in the axisymmetric curved models of an AAA in the absence and 

presence of a thrombus (left). Differences in the effective wall stress in the AAA-ILT 

model with respect to those of the ILT-free AAA are shown on the right. Including a thin, 

uniform thrombus in the FEA model attenuated the wall stresses slightly. 

 


