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The quality of sleep is an important attribute of an individual’s health state and its 

assessment is therefore a useful diagnostic feature. Changes in the sleep-related behaviors 

as well as in the patterns of motor activities during sleep can be a disease marker, or can 

reflect various abnormal physiological and neurological conditions. Presently, there are 

no convenient, unobtrusive ways to assess and quantify the quality of sleep at point of 

care outside of a clinic. 

This dissertation describes an approach and a system for unobtrusive assessment 

of activity patterns and movement in bed that uses load cells installed at the corners of a 

bed. The system focuses on identifying when a movement occurs and on determining the 

type of movement performed based on the forces sensed by the load cells. The feasibility 

and accuracy of the movement detection and classification is evaluated using data 

 xv



 

collected in the laboratory and in a study with residents of an assisted-living facility (Elite 

Care, Milwaukie, OR). 

The movement detection approach estimates the energy in each load cell signal 

over short segments to capture the variations caused by movement. The average equal 

error rate of the detector is 3.22% (± 0.54). The performance of the detector is invariant 

with respect to the individual’s characteristics, e.g., weight, as well as those of the bed.  

The dissertation describes several approaches to signal representation and 

discrimination techniques for clinically relevant classification of the type of movements 

with the goal of weight-invariant performance. The results of correct classification for an 

approach based on Gaussian Mixture Models using a time-domain representation and a 

wavelet-based time-frequency representation, as evaluated by laboratory experiments, are 

84.6% and 82.2%, respectively. The simplicity of the resulting algorithms, the relative 

insensitivity to the weight and height of the monitored individual and the minimal 

training requirements make the resulting approaches practical and easily deployable in 

residential and clinical settings. 
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Chapter 1  

1 Introduction 

Quality of sleep is an important factor for a person's physical and emotional well being. 

The quality of our life is tied to the quality of sleep. People with sleep deficits may 

experience impaired daytime performance, irritability, and lack of concentration. 

Moreover, disruptions in sleep patterns adversely affect our resistance to diseases because 

they produce a reduction of the natural immune responses [1]. Therefore, how we sleep at 

night affects how we perform during the day and, unfortunately, people are not always 

aware of the consequences of sleep disruptions [2].  

The clinical assessment of sleep and of the impact of sleep disruptions on health 

can be made at different levels. The framework presented in Figure 1.1 shows the range 

of functions and factors that are important in the assessment, and their time frames. The 

assessment of sleep can be based in a short-term assessment of the physiological 

functions during sleep to determine how well we sleep at a given night. Also, it can be 

based on a long-term assessment of daily rest-activity patterns to determine typical 

patterns of behavior. As illustrated in the framework presented in Figure 1.1, the short-

term assessment may include, but is not limited to the following measures: 

 Sleep-wakefulness cycle: assess the distribution of the sleep stages (rapid eye 

movement (REM) and non-rapid eye movement (NREM)). Sleep staging can 

be used to diagnose sleep disorders and to establish their severity [3].The 

assessment includes the time spent in each of the sleep stages as well as the 

time awake. 

1 
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 Body movements: body movements are generally used as an indicator of sleep 

quality and depth [4]. Existing metrics for assessment of nocturnal motor 

activity include the frequency and distribution of movements.  

 Respiration: breathing patterns change during sleep [5]. The analysis of 

breathing patterns may reveal changes in the depth and frequency of 

respiratory events that may disrupt sleep. The objective of respiratory 

monitoring is to detect breathing abnormalities and to evaluate physiologic 

alterations produced by abnormal breathing events [3].  

 

Figure 1.1: Framework for assessment of sleep: at each time scale, examples of clinically relevant 
measures are shown. The pink boxes correspond to the measures that we are primarily concerned 

with in this work. 

The long-term assessment may include, but is not limited to the following 

measures: 

 Daily patterns: a good sleep hygiene has as much importance as a balanced 

diet and the amount of exercise [5] for our health. The assessment of the 

regularity of, for example, bedtimes, get up times, and daytime naps is 

important because it helps promote effective sleep [5]. Lack of regularity in 

the sleep-wake schedule and the common practice of cheating hours from 

sleep can lead to chronic fatigue.  

 Bedtime routines: routines such as the use of medications or caffeine in the 

period prior to bedtime represent one important aspect of a person’s sleep to 

be assessed because they can interfere on sleep. The assessment of the 

effects of medications on sleep quality is thus helpful on clinical evaluation 

of sleep-related complaints.  
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Although all the measures cited above are clinically relevant, in this thesis we are 

primarily concerned with the assessment of daily patterns and the assessment of 

movement in bed. While the assessment of the NREM-REM cycle and of respiratory 

patterns has been done with well established technology in sleep clinics, the assessment 

of daily patterns and movement in bed can be greatly benefited by unobtrusive 

monitoring. The drawbacks of the traditional methods for assessment of daily patterns 

and movement in bed are described next. 

1.1 Daily Patterns and Sleep-Related Parameters 

A patient’s sleep/wake schedule is an important step underlying clinical evaluation of 

sleep-related complaints [3]. Aspects related to timing of a person’s sleep routine provide 

important clues regarding diagnosis and treatments [6]. Solutions for sleep complaints 

may sometimes rely solely on changes in habits and life style, based on what is learned 

from daily patterns. For example, assessing time in bed for treatment of insomnia is very 

important because restricting bedtimes is one important part of the treatment [7]. In 

clinical practice, the key measurements (also referred as sleep parameters) usually 

include some or all of the following: 

 Bedtime: the time person retires to bed to sleep; 

 Sleep time: the time person falls asleep; 

 Wakeup time: the time person wakes in the morning; 

 Get up time: the time person leaves the bed to start the day; 

 Sleep latency: the amount of time it takes to fall asleep after going to bed; it is 

computed by subtracting bedtime from sleep time; 

 Hours awake after sleep onset: amount of time person is awake after initially 

falling sleep; 

 Number of awakenings; 

 Sleep efficiency: it is computed by dividing the total sleep time by the total 

time in bed; total time in bed is computed by subtracting getup time from 

bedtime; 

 Number of daytime naps; 
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 Total sleep time in a 24-hr period, including daytime naps. 

1.1.1 Traditional Assessment of Daily Patterns 

Sleep diaries represent a simple and inexpensive method for assessment of sleep 

parameters. The patient may be asked to record, on a daily basis, actual sleep times and 

daytime activities, as well as the occurrence of symptoms such as sleepwalking and 

nocturnal arousals [6]. This subjective account of daily patterns is valuable when 

symptoms are not easily accessible to laboratory testing, and has great value for assessing 

treatment effects and other factors that affect the consistency of a person’s sleep. 

However, there is evidence to suggest that people have difficulties assessing their own 

sleep especially when suffering from insomnia [8] and depression [9]. A comparison 

between sleep diaries and polysomnography (PSG), which is considered the gold 

standard for sleep studies, in a study with depressed patients [9] showed a discrepancy in 

the estimation of sleep time equal or greater than 30 minutes in 78% and equal or greater 

than one hour in 52% of the patients. Sleep diaries have also limited usefulness for 

patients with frequent fluctuations in daytime vigilance, as seen in elderly persons [10]. 

In this case, a sleep diary may be kept by the staff in a long-term care facility or by the 

patient or a family member in the home setting, by documenting the sleep habits of the 

patient for several days to several weeks. According to Tractenberg et al. [11], caregivers 

may not report a sleep problem unless their own sleep is disturbed, and this is the major 

weakness of studies of sleep disturbance prevalence in Alzheimer’s disease patients that 

use sleep diaries. In addition, it is very difficult to get patients or family caregivers to 

maintain good diaries for long periods of time. 

Actigraphy has been used to study sleep/wake patterns for many years [12-14]. 

Actigraphs (or actimeters) are wristwatch-like devices that measure acceleration, and 

provide information on the activity level of the user. Actigraphs are usually placed on the 

non-dominant wrist, although they can also be placed at the site of movement to examine 

specific movements. Physical motion is translated to a numeric representation, sampled at 

a certain rate and aggregated at a constant interval usually referred as an epoch (e.g. 15 

seconds), which varies according to the manufacturer [15]. The epoch-by-epoch samples 

are stored in the internal memory of the device for a prolonged period (1 or 2 weeks), and 
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later downloaded to a computer. The ability of actigraphy to detect sleep/wake events is 

based on the fact the wrist is moved more when the person is awake than when asleep. 

They provide the opportunity to conduct longitudinal sleep studies through the 

application of sleep/wake scoring algorithms on actigraph data recorded for a certain 

period of time. Data loss occurs when the person does not wear it. Therefore, the 

actigraph has to be worn all the times and patients have to keep records of the times when 

it is taken off. 

In this work, we focus on determining typical patterns of the rest-activity cycle at 

nighttime and not the estimation of sleep and wake times. Therefore, the parameters of 

interest are called “sleep-related parameters”, and refer to the following parameters: 

 Bedtime: the time of retiring, when a person goes to bed with intent of 

sleeping; 

 Get up time: the time when the person leaves bed with intent of starting the 

day; 

 Total time in bed at nighttime (TIB): total time of bed rest derived from 

bedtime and get up time, and by subtracting the time spent out-of-bed between 

bedtime and get up time; 

 Duration of longest “in-bed” period at nighttime; 

 Number of times person gets up during the night; 

 Total time “out-of-bed” at nighttime (TOB); 

  Number of times person goes to bed during daytime; 

 Total time in bed at daytime. 

1.2 Movement in Bed 

During sleep, major changes in motor activity depend on the sleep state [4, 7, 16]. Low 

motor activity levels and prolonged episodes of uninterrupted immobility associated with 

increasing sleep depth, whereas high activity levels are related to intermittent 

wakefulness during sleep, and arousals are often associated with movement [17]. 

Therefore, increased mobility in bed can be a sign of disrupted sleep because it is 

associated with arousals that may reduce sleep quality.  
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Movement in bed may itself be an indicator of health problems, i.e., the alteration 

of the pattern or amount of motor activity can be a disease marker [4, 7]. It can reflect 

illnesses ranging from flu to depression, pain, or the side effects of certain treatments [7, 

18]. According to Lemke and Hyyppa’s work [18, 19], depressed patients show increased 

motor activity at night associated with sleep disturbances. Sleep apneai patients also have 

shown an increased in motor activity at night resulting from disrupted sleep [20]. 

According to Bennett’s work [21], whole body movement is a marker of sleep 

fragmentation in patients with obstructive sleep apnea. Also, many neurological disorders 

are presented with abnormal movements during day and nighttime that may adversely 

affect sleep [7]. For example, normal body movements in Parkinson’s disease patients 

may be repressed by motor daytime symptoms that persist during sleep such as a 

decreased ability to start and continue movements, and impaired ability to adjust body 

position. These symptoms worsen sleep quality, and can cause discomfort and pain [22]. 

There are also motor disturbances that are triggered by sleep such as restless legs 

syndrome (RLS) and periodic limb movements during sleep (PLMS). Patients with 

restless leg syndrome report feelings of discomfort in the legs, and they feel compelled to 

move (for example, tossing and turning in bed) to relief the discomfort [23]. Such 

symptoms disrupt sleep and cause daytime tiredness and sleepiness. Most of the time, 

these motor disturbances are ignored by the sleeping patient for a long time. Patients 

generally do not seek for medical advice, and therefore experience a reduced quality of 

life. According to the 2005 Sleep in America Poll conducted by the National Sleep 

Foundation [24], a survey of 1,506 adults living in the United States showed that 38% of 

the respondents reported that, within the past year, they had twitches or moved frequently 

in bed at night at least a few nights per week, with 29% reporting that they experienced 

restlessness every night or almost every night. Respondents were asked if they had ever 

experienced unpleasant feelings in the legs, a common report of those with restless legs 

syndrome, and 76% reported that they experience the symptoms at least three nights a 

week. PLMS are found in at least 80% of patients with RLS, and may provoke frequent 

arousals or even awakenings. PLMS are involuntary, repetitive movements, most 

typically seen in the lower limbs but sometimes seen in the arms. 
                                                 
i Sleep apnea is a disorder characterized by brief periods of recurrent cessation of breathing caused by airway obstruction with morbid 
or fatal consequences [5]. 
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1.2.1 Traditional Assessment of Motor Disturbances in Sleep  

The assessment of nocturnal motor disturbances in sleep is traditionally performed 

through one of the following methods: 1) by obtaining information about the nature of the 

movements from the patient, 2) overnight polysomnograph recording, and 3) actigraphy. 

The assessment of nocturnal motor disturbances in sleep is based on understanding of the 

nature of the movements, and the diagnostic is mostly based on the information provided 

by the patient. The existing metrics used for assessment of nocturnal motor disturbances 

include the type of movement [25], frequency, and duration [26-28]. The assessment also 

includes attention to time of onset and pattern of behavior of the movement to understand 

the nature of the movements. If only the number of movements or the movement time is 

taken into consideration, the description of the motor pattern during sleep is reduced to 

the evaluation of the arousal mechanism in patients [28].  

Additional assessment may include overnight polysomnograph recording. Video-

polysomnography (VPSG) is the gold standard to evaluate and study abnormal motor 

events occurring during sleep [7]. The VPSG combines the traditional PSG recording 

with simultaneous audiovisual monitoring and recording of the patient in the sleep 

laboratory. PSG consists of continuous recordings of several physiological measures 

including brain waves (electroencephalography), electrical activity of muscles, eye 

movement (electro-oculogram), breathing rate, blood pressure, blood oxygen saturation, 

and heart rhythm. Additional leads are applied to other parts of the body (for example, 

arms and legs) if there is a specific motor complaint [7]. It involves at least a full night’s 

stay in a sleep laboratory attended by properly trained technicians [29]. Because it is a 

labor-intensive and costly technology, VPSG may not be indicated in all cases [29]. Sleep 

disorders that require PSG include sleep apnea, excessive daytime sleepiness, narcolepsy, 

and periodic limb movements during sleep (as described in Section 2.2.4). 

Long-term assessment and behavior therapy require an inexpensive technique for 

which wrist actigraphy is a reasonably economical method that is commonly used [30]. 

Although it has the advantage that it can be used for extended periods of time, the exact 

nature and the number of movements that occur in an epoch are not recorded [7]. Activity 

monitors attached to a person’s leg, ankle or feet [31-34] have been used for the 

assessment of nocturnal lower-limb activity. They have been used to monitor and define 
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treatment response for RLS and PLMS during successive nights. Because PLMS shows a 

high night-to-night variability [35, 36], the device has to be worn for many nights. The 

patient has to keep records of bedtimes and getup times, as well as times out of bed 

during the night, because the devices cannot differentiate between times in bed from out 

of bed. 

1.2.2 Clinical Need 

According to the 2006 report of the Committee on Sleep Medicine and Research [37], as 

many as 70 million people in the United States suffer from sleep disorders. The most 

common complaints of disrupted sleep include insomnia, excessive daytime sleepiness, 

and abnormal movements [3]. Insomnia affects approximately 10% of the US population, 

and conditions such as RLS and PLMS affect approximately 5% of the population [37]. 

Insomnia and excessive daytime sleepiness caused by pathologic events such as 

apnea are easily diagnosed with PSG. Insomnia and excessive daytime sleepiness can 

also be caused by inadequate sleep hygiene. However, when sleep hygiene is disrupted, 

PSG is not indicated [5], and the diagnoses relies on the use sleep diaries and actigraphs. 

Therefore, the assessment of daily patterns can be greatly benefited by the use of 

unobtrusive systems that do not present the subjectiveness and obtrusiveness problems of 

sleep diaries and actigraphs.  

It has been suggested by Aaronson and others [4, 16] that a sufficiently detailed 

record of nightly movement, preferentially obtained from non-invasive monitoring 

devices, could provide valuable information in the evaluation of motor disturbances that 

affect sleep quality. Since VPSG is not indicated in all cases, and actigraphs are 

obtrusive, the diagnosis and treatment of health and sleep problems related to the changes 

in body movements in bed may be greatly benefited by the use of unobtrusive systems 

that assess movement in bed over many nights.  

This thesis focus on the assessment of daily patterns and the assessment of 

movement in bed using load cells installed at the corners of a bed. Load cells are strain 

gauge transducers that convert applied force into a resistance change, and they are 

commonly used in electronic scales and widely deployed in industrial systems. It 

addresses the question of what information can be inferred about movement in bed from 
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the weights sensed by the load cells. The technical problem of estimating aspects of the 

movements from load cell data is described next.  

1.3 Problem Definition and Research Contributions 

As stated in Section 1.2.1, the clinically relevant information for the evaluation of motor 

disturbances involves the movements of the person in the bed: when the movements 

occur, how much a person moves and which parts of the body move. The instantaneous 

distribution of the mass of the body determines the weights at the corners of the bed 

sensed by the load cells when someone is lying on bed. Assuming that the mechanical 

properties of the bed can be characterized by a linear system, and that the human body 

can be modeled by a finite number of components representing different parts of the 

body, the load cell responses could be described as  

( ) [ ]( )th*xtw =
r

,        (1.1) 

where x(t) represent the bed coordinates of the center of mass of each component 

(assuming that the mass of each component is taking into account in x(t), for simplicity), 

and h(t) represents the system impulse response. Therefore, the body movements 

“convolved” with the bed-human system response generates time-varying weight signals. 

The technical problem is whether it would be possible to estimate aspects of the 

movements from load cell data, for example, by inverting the bed-human system 

response. 

There are two major problems with any attempts to invert the system response:  

(1) Inadequate signal dimensionality: although the human body parts are not 

independent, the distribution of the human body mass greatly exceeds that of 

the four-dimensional load cell signals. The mapping from the body mass 

distribution to the load cell signals, therefore, results in a substantial loss of 

dimensionality. This problem can be illustrated by examining a simple 6-

component (head, arms, legs and torso) model of human body shown in 

Figure 1.2. To model the effect of movement in bed, we could use a 6-

component model that greatly simplifies the distribution of body mass. The 

problem with this model is that a large number of parameters (6 x 2) related 
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to the estimation of the center of mass of each component needs to be 

estimated, and only the weights at the corners of the bed are known.  

(2) Nonlinearity: the second critical issue is the highly nonlinear nature of the 

bed-human system. In preliminary experiments undertaken to characterize 

the dynamic properties of the bed-human system, we demonstrated the highly 

nonlinear nature of the system. In particular, since the mass of an individual 

is comparable to that of the bed, as the individual moves from one position to 

another, the system properties change significantly. It is therefore not 

possible to invert the system response. 

 

Figure 1.2: A 6-component model of the human body posture on bed: the distribution of the body 
mass is simplified by determining the center of mass of the head, arms, legs and torso. 

The main problem addressed by this dissertation is the degree of inference that 

can be made to overcome the information is lost due to the inadequate signal 

dimensionality combined with the high degree of nonlinearity. Although the exact 

inference from the static or instantaneous information is impossible, additional 

constraints, imposed by the kinematics and kinetics of the human body movements may 

lower the effective dimensionality of the assessment problem. For example, it is an 

empirical question whether the time course of getting on the bed provides sufficient 

constraints to enable inference. To resolve this question, we turned to a pattern 

recognition approach treating the system as a black box and the signals as stochastic 

processes whose parameters depend on the movements. 

In this thesis, mobility in bed is characterized by the periods of postural 

immobility, movement times, and the types of movement performed. The problem of 

assessing movement in bed with load cells is framed as a problem of detection that 

consists of estimating the time intervals when a movement occurs, and a problem of 

classification that consists of determining the type of movement performed in a given 

time interval. The term ‘movement in bed’ is used instead of ‘sleep movement’ to refer to 
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body movements occurring during sleep and awake periods [28]. This work focuses on 

the detection of major posture shifts and smaller movements (which involve the head, 

torso and limbs). 

The major contributions of this thesis are summarized by the following points: 

 Development of a System for Unobtrusive Assessment of Movement in 

Bed: 

We developed a system for assessment of movement with load cells that 

extends previous work to classify, and not only detect, movements in bed. 

Unlike many existing mattress pad-based approaches, the well-proven load 

cell technology, based on strain gauge sensors, provides s and reliable data, 

and it is a practical solution for long-term monitoring. Also, in particular: 

 Approximation of Detection Threshold: we showed that the 

movement detection threshold for a new subject can be approximated 

by linear regression of the thresholds of a known set of subjects.  

 Derivation of a Principled Approach for Classifying Body Movements in 

bed: 

We developed a 3-class movement classification approach that discriminates 

posture shifts, medium amplitude movements and leg movements. Also, in 

particular: 

 Invariant Feature Representation: we found a feature representation 

that would be relatively invariant across subjects, and in particular to 

their weight and height. 

 Additive Functional Representation: despite the essential 

nonlinearity of the bed-human system, we showed that, for the 

purposes of movement classification, the system can be viewed in 

terms of additive representation, as a locally linear system with respect 

to small movements. 

 Feasibility of the System: we showed that the system does not require 

extensive training, which is particularly valuable for the viability of 

the system in sleep studies with different populations. 
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 Development of a Methodology for Determining Typical Patterns of 

Sleep Behavior, such as Bedtime and Get Up Time Behaviors: 

We created a metric called in-bed profile for characterization of a person’s 

typical patterns of sleep behavior. This metric could be used with other types 

of sensors that provide similar information (for example, motion sensors). 

Also, it could be used in other applications besides sleep hygiene, where the 

knowledge about a person’s habits could be helpful, for example, for 

localization. 

1.4 Organization of the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 reviews the characteristics 

of motor activity in bed, and presents the related work on unobtrusive assessment of 

sleep-related parameters and on bed sensing technology.  

Chapter 3 introduces the system for unobtrusive assessment of mobility in bed 

with load cells. The inference problem of deriving movement information from load cell 

signals is described in details. A description of the load cells and system setup used in 

this work is presented. Also, an introduction to the approach for estimation of sleep-

related parameters is presented. 

Chapter 4 describes the experimental setup for collection of load cell and 

actigraphy data used in this work. Data were collected from three experiments: two 

performed in a laboratory with different bed sizes and one in an assisted-living facility. 

Chapter 5 describes a methodology for determining typical patterns of sleep 

behavior. Bedtime and get up times are estimated by using the person’s in-bed profile and 

information about the use of the bedroom‘s light (times when the light is turned on/off). 

The estimated parameters are compared with the estimates from sleep diaries completed 

by caregivers for a period of 2 weeks.  

Chapter 6 describes the framework for movement detection. Movement detection 

is formulated as a problem in statistical hypothesis testing. The movement detection 

approach is evaluated on load cell data collected from 15 healthy subjects. Evaluation 

data were collected in the laboratory, under controlled conditions with subjects awake, 

and a video technique is used as the ground truth. We demonstrate that the bed size has 
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no effect on the performance of the proposed detector. In addition, in-home assessments 

conducted with residents of an assisted-living facility are included to demonstrate its 

feasibility in a realistic setting. We also show that actigraphy under-reports movement in 

comparison with our method. 

Chapter 7 presents a framework for movement classification. The approach for 

subject-dependent classification of movement in bed uses Gaussian mixture models, and 

two feature representations are tested: a time-domain representation that is based on 

simple descriptors of the trajectory of the body center of mass during movement, and a 

time-frequency domain representation based on wavelets and multiresolution analysis. 

We show the performance results on the laboratory data. 

Chapter 8 summarizes the results of this work, and discusses future directions. 

 



 
 
 
 
 
 

Chapter 2  

2 Background 

In the previous chapter, we discussed the importance of rest-activity patterns and 

movements in bed to the assessment of sleep disturbances. In this chapter, we present the 

related work on unobtrusive assessment of sleep parameters in Section 2.1. We also 

review the characteristics of motor activity during sleep in Section 2.2, and present the 

related work on bed sensing technology in Section 2.3.  

2.1 Related Work on Unobtrusive Assessment of Sleep Parameters 

Given the drawbacks of sleep diaries, researches have looked for alternative ways to 

obtain information about rest-activity patterns at nighttime from unobtrusive sensors 

installed in the bedroom. Chan et al. [38, 39] propose a system that uses motion sensors 

installed in areas such as the bedroom and bathroom to monitor activity during the night. 

The system consists of 10 infrared motion sensors installed on the ceiling that include one 

above the bed and in areas adjacent to the bed. A number of different activities such as 

going to bed, restlessness in bed, getting out of bed, and getting out of the room are 

monitored. The activities are detected by the pattern of the sensors activations, and by 

setting thresholds. They found good agreement with the nurse staff annotations in an 8-

month study that monitored 4 subjects. Although motion sensors represent a cheaper 

technology than load cells, the proposed system has to be reconfigured every time the 

environment changes. With the use of load cells installed under a person’s existing bed, 

no changes have to be made when the environment changes. In addition, the proposed 

14 
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system cannot discriminate the patient being in bed and standing near the bed, and it 

recognizes the later as restlessness in bed. It is straightforward to detect if the person is in 

and out of bed with load cells due to the drop in the total weight when someone gets up. 

Rachwalski et al. [40] use a pressure pad, placed between the mattress and the bed 

frame and below a person’s hips, to measure activity in bed and study the sleep patterns 

of Alzheimer’s sufferers. Rest-activity is used as a surrogate for sleep/wake patterns in a 

similar way that is done with actigraphy, and sleep patterns are characterized by the sleep 

latency and the number of awakenings at night. Activity in bed is measured by changes in 

the pressure measurements. The pressure measurements are sampled at 1 Hz, and 

aggregated into 30-second epochs by averaging the data every 30 seconds. Sleep latency 

is determined by the first period when 5 consecutive minutes of inactivity is recorded. 

Awakenings (or periods of restlessness) are defined by 3 consecutive minutes of body 

movements. Caregivers reported the level of nighttime restlessness and daytime 

behaviors in a questionnaire. Results showed that the sensor data were corroborated by 

the subjects or caregivers’ reports in a one-month study that monitored 3 subjects, with 

one subject in advanced Alzheimer’s disease stage. As mentioned earlier in this section, 

sleep diaries have limited usefulness due to their subjectivity and may not correspond 

well with objective sleep estimates [41]. Also, even for normal subjects, there is 

obviously some difficulty in recollecting exact sleep times or the number and length of 

awakenings during the night [42]. Therefore, the evaluation of the proposed system is not 

adequate because sleep diaries should not be used as ground truth for sleep. 

The solution we are proposing for estimation of sleep-related parameters with 

load cells cannot determine sleep and wake times, and movement in bed is not used to 

derive information about sleep and wake times. However, the information derived from 

the load cells is still valuable as an objective and continuous measure of daily patterns, 

and it is particularly valuable in sleep studies in populations who would not be able to 

remember specific hours to complete sleep diaries or who would depend on subjective 

reports from caregivers or family members, as we demonstrate in Chapter 5.  
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2.2 Motor Activity during Sleep  

The normal motor activity throughout a night is diverse: it varies from complex, 

determined activity to simple movements that are primitive in character [43]. Human 

sleep is characterized by episodes of immobility interrupted by episodes with different 

activity levels. Because the organization of the motor activity during sleep is related to 

the sleep macrostructure (cyclic patterns involving two sleep states), a brief overview of 

the normal sleep cycle is presented next. 

2.2.1 The Sleep Cycle 

There are 2 primary states of sleep: rapid eye movement (REM) and non-rapid eye 

movement (NREM). In normal sleep in adults, there is an orderly progression from 

wakefulness to sleep onset, and then to NREM and REM sleep [7]. Approximately 20% 

of sleep is spent in REM sleep and 80% in NREM sleep. The entire sleep cycle usually 

lasts about 70-120 minutes, and it is repeated four to six times before awakening [44]. 

NREM sleep is divided into 4 stages. Sleep progresses from stage I (the lightest 

level, during which the sleeper can be easily awakened) to stage IV (deepest level). There 

is a progressive decrease of motor activity including muscle tone [7]. In stage IV, blood 

pressure is at its lowest, and heart and breathing rates are at their slowest. During NREM 

sleep, many of the restorative functions of sleep occur. Hormones are released which help 

the body rebuild itself from damage done during the day.  

REM sleep is characterized by a decrease or absence of motor activity. It is the 

period where dreams occur, and the normal loss of muscle activity prevents the sleeper 

from acting out his/her dreams. The eyes move rapidly, and muscles may jerk 

involuntarily. REM sleep is characterized by changes in heart rate, blood pressure, 

respiration, and perspiration [7].  

2.2.2 Normal Body Movements during Sleep 

The normal motor phenomena during sleep includes hypnic jerks at sleep onset, postural 

shifts, body and limb movements, and sleep myoclonus (small bursts of movements) [7]. 

Hypnic jerks are very common movements occurring at the transition to sleep, and 

consist of abrupt flexion movements that are often felt as an illusion of falling. It is a 
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benign movement that has little effect on sleep, and it probably occurs in most people. 

Arousals, brief periods of interrupted lighter sleep that may lead to full awakening, may 

both follow and lead movements such as body shifts [7].  

In NREM sleep, motor activity is reduced in comparison to the waking state. 

Postural shifts, which may signal stage changes (into or out from wake or REM), occur. 

The frequency of all movements decreases with depth of sleep, with progressive decrease 

in the number of movements from stage I to stage IV [7]. In REM sleep, muscle tone is 

reduced, but small bursts of movements known as sleep myoclonus may occur. Sleep 

myoclonus consists of phasic muscle bursts that are typically seen in REM sleep but can 

also occur during NREM sleep. They are small flickering movements that may not cause 

apparent movement [7]. 

2.2.3 Distribution of Body Movements 

According to the work of Kleitman and others [45], good sleepers (people with a sleep 

latency of less than 15 minutes and that sleep for at least 7 hours) have 3 to 5 minutes of 

body mobility during the night, for a total of 20 to 60 movements per night. In those 

studies with good sleepers, they took about 5 to 10 seconds to move from one position to 

another. The ratio of major (major posture shifts) to minor movements (small changes in 

body position) varied from person to person, but was usually less than one, i.e., more than 

half of the movements were found to be minor. However, according to Alihanka [28], 

there is a marked discrepancy between the total number of body movements and other 

measurements found in these sleep studies due to the fact that different techniques, which 

includes video, human observation, and time-lapsed photography, were used to measure 

movements at different sampling rates. 

There are also contradictory theories about the distribution of body movements in 

normal sleep. According to Johnson’s work [4], the distribution of movements though the 

night is a personal characteristic of the sleeper. Even when exposed to environmental 

noises during sleep, the rate of body movements remains generally unchanged. In the 

presence of noise, the movements are temporally redistributed to the proximity of the 

noise, without any increase in their total number. However, according to the work of 

Kleitman and others [45], in general, there is greater mobility during the second half of 
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the night as compared to the first half, with the ratios varying from 2:1 to 3:2. It thus 

suggests a gradual increase in movements through the night instead of a distribution that 

is typical of each sleeper. 

Body movements impressively change with age [26]. A decrease in the number of 

body movements is observed from infancy to adulthood also continues at later ages. 

However, actigraphy studies have reported contradictory results indicating no change or 

even increase in the activity level with aging [46]. In the elderly, knowledge on the 

pattern of body movements is still largely incomplete. According to the work of Gori et al 

[26], a study with healthy elderly subjects showed that when body movements occur in 

elderly individuals, they are likely to be followed in the next 60 seconds by a sleep stage 

change or by a spontaneous awakening. This suggested that body movements may act as 

co-factor in a process leading to sleep state shifts. A method of unobtrusively evaluating 

the dynamics of body movements across different populations would be an extremely 

valuable tool for increasing our general understanding of sleep behaviors.  

An overview of some of the most common motor disturbances that can occur at 

sleep onset or during sleep is presented next. We also discuss how the diagnosis and 

treatment of these illnesses would be benefited by the use of a continuous and 

unobtrusive system for assessment of body movement in bed.  

2.2.4 Common Motor Disturbances 

According to Phillips’s work [22], the most common movement disorders are Parkinson’s 

disease (PD), restless legs syndrome (RLS), and periodic limb movements during sleep 

(PLMS). PD is not a primary sleep disorder, but it has a major impact on sleep quality 

[22] because nocturnal motor problems are common in PD patients [7]. Normal body 

movements in bed may be repressed by motor daytime symptoms that persist during 

sleep such as akinesia (inability to initiate voluntary movements [47]) and bradykinesia 

(slow execution of movement [47]). These symptoms worsen sleep quality, and can cause 

discomfort and pain [22]. The conventional methods for clinical assessment of nocturnal 

disability in PD are based on PSG, patients and caregivers diaries, and a scale called 

Parkinson’s Disease Sleep Scale (PDSS) [48]. The PDSS is a 15-item measure that 

assesses aspects of nocturnal disability such as nocturnal restless legs and akinesia, and is 
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based on patients and caregivers experiences in the past week to respond the questions. 

The assessment of the symptoms has been done with sensors attached to the body [47] 

during daytime periods. Therefore, patients and clinicians could be benefited by an in-

home objective and unobtrusive nocturnal assessment of movement in bed that can 

examine aspects such as slowness of motion and long periods of immobility. 

Restless legs syndrome (RLS) symptoms occurs while the person is awake (at 

sleep onset), and may also occur on awakenings in the middle of the night [7]. RLS is 

activated by relaxation, and it is diagnosed by the presence of voluntary leg movements 

due to evening discomfort that forces the person to move to get relief [29]. It can also be 

manifested as tossing and turning in bed or stretching the legs, and it can profoundly 

disrupt a person’s sleep. RLS can start at any age, and the severity of the disease appears 

to increase with age such that older patients experience symptoms more frequently and 

for longer periods of time [49]. In the absence of treatment, patients with RLS experience 

a reduced quality of life. RLS is diagnosed by obtaining a history [22], i.e., the clinician 

asks the patient about detailed information on sleeping habits and sleep history. 

Therefore, because people with RLS often do not complain or seek medical attention 

[22], and because the diagnostic is based primarily on the patient’s subjective account of 

the alterations in the amount and type of body movements, the use of a continuous and 

unobtrusive system for assessment of movement in bed at home can be very valuable to 

validate the patient’s complaints. A study that employed an activity sensor on both ankles 

showed that the nocturnal lower limb activity per minute discriminates RLS patients from 

healthy patients [32].  

Periodic limb movements during sleep (PLMS) are involuntary, repetitive 

movements, most typically seen in the lower limbs but sometimes seen in the arms. 

Typical PLMS consist of dorsiflexions of the ankles (bending the ankle upward to bring 

the toes closer to the knee), and sometimes accompanied by flexions of the ankles, knees, 

and thighs, and may be unilateral or bilateral [23]. They occur about every 20-40 

seconds, primarily in NREM stages I and II, and last approximately 0.5-5 seconds [7]. At 

least 4 consecutive leg movements must fulfill these criteria to be scored as PLMS [34]. 

Because PLMS may lead to awakenings, it is considered as a contributing factor for 

daytime fatigue and chronic insomnia [49]. Approximately 35% of the elderly population 
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experience PLMS. PLMS and RLS are also common findings among PD patients [35]. 

Unlike RLS, which is diagnosed by taking a patient’s history, PLMS is diagnosed in a 

sleep laboratory by the recording of bilateral surface electromyogram (EMG) of the 

anterior tibialis muscles [7]. Although actigraphy has been used for diagnostic of PLMS 

[33], it requires patient’s compliance because the person has to wear it every night. Also, 

the patient has to keep a diary of the bedtimes and get up times to determine time in bed. 

The use of an unobtrusive system, which enables classification of movements in bed that 

include leg movements, could be very valuable for evaluation of the efficacy of 

medications to treat PLMS.  

Many bed sensing devices have been proposed for unobtrusive assessment of 

body movement in bed [28, 40, 50-53]. A description of the most representative work on 

assessment of body movement with bed sensors is described next. 

2.3   Related Work on Bed Sensing Technology 

Most of the current work on assessment of body movement is only focused on the 

detection of movements, and a number of those require special modifications to the bed. 

For example, Lu and Tamura [50, 51] propose a bed temperature measurement system for 

detection of body movement. An array of 15 thermistors is placed between a waterproof 

sheet and the mattress, perpendicularly to the body position. A body movement is 

detected when the sum of the square of the temperature differences for all sensors is 

greater than a certain threshold. Data are collected every five seconds, and the system is 

able to detect torso and leg movements using an array at the waist and another at the 

lower limbs. Their system only estimates the frequency of movements and time in bed.  

Van der Loos et al. [52] propose a system called SleepSmart™, composed of a 

multi-sensor mattress pad that is placed on the top of a mattress, to estimate body center 

of mass and index of restlessness. The mattress pad is composed by one array of 54 force 

sensitive resistors and one array of 54 resistive temperature devices. The arrays are 

denser under the torso than under the legs. Data are sampled at 100 Hz, and the body 

center of mass is estimated from moment calculations of the force and temperature 

signals. An index of restlessness is calculated by integrating the absolute changes in body 

center of mass at 25-second intervals. It records posture and temperature maps, and 
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reports the body center of mass every five seconds. The proposed system does not 

classify the type of movement. In addition, the pad must be aligned with bed, and should 

not move to avoid errors in the measurements.  

Harada et al. [54] use a 76.8" x 30.4" x 0.68" (192 x 76 x 1.7 cm) array of 210 

pressure sensors to estimate body position in bed. Three sleep positions are considered - 

supine (lying on the back), and right and left lateral positions, and the estimation of body 

position is based on detection of the position of the following body parts: 1) back side of 

the head, center of the blade bone, sacrum, right and left heels for the supine position, and 

2) side of the head, shoulder, base of the thigh, knee and ankle for right and left positions. 

The position of each part of the body is estimated by cross-correlation between the 

pressure distribution image from the sensor and pressure distribution templates. The 

templates are created from models based on different positions of the neck, thigh, knee, 

calf and ankle joints. They created 180 templates for each position based on variations of 

the rotation angles. Posture is displayed through a computer image at 10 Hz using a 3-D 

model. This system requires that the joints model must be adjusted for each person before 

use. Also, the pressure mat must to be aligned with the bed and should not move.  

Rachwalski et al. [40] use a pressure pad placed between the mattress and the bed 

frame, below a person’s hips, to measure activity in bed. The pad is constructed of plastic 

fiber embedded in foam, and the sensing element is comprised of a ‘transmit’ and a 

‘receive’ fiber. A red light shines light through a ‘transmit’ fiber, and when an external 

force compresses the foam, there is an increase in the intensity of the backscattered light, 

which is monitored by a ‘receive’ fiber [55]. The pressure measurements are sampled at 1 

Hz, and aggregated into 30-second epochs by averaging the data every 30 seconds. A 

body movement is detected when the average of the rectified highpass filtered pressure 

measurements is greater than a certain threshold. The system only reports the frequency 

of movements and time in bed, and it does not classify the type of movement. Even 

though the pad allows for more measurement points than the load cells, it is not clear that 

leg movements could be easily classified because the pad only covers an area under the 

hips. In addition, informal experiments with this sensor in our laboratory suggest that 

there is an inertia associated with the change in the intensity of the light when a sensing 

element is pressed for a long period.  
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Several authors [27, 28, 53, 56, 57] have employed the static charge sensitive bed 

(SCSB) for monitoring of motor activity. The SCSB is composed of two metal plates 

with a wooden plate in the middle that must be placed under a special foam plastic 

mattress (2"- 4"), which operates like a capacitor. When a person moves, static charges 

are formed in the clothing and in the mattress, and these charges induce potential 

differences between the plates. The potential differences between the capacitor plates 

produce the raw signal (sampled at 250 Hz), which is filtered into different frequency 

bands to detect body and respiratory movements. Alihanka [27] used the SCSB sensor 

and automatically classified the detected movements by the SCSB into 4 classes based on 

their duration: movements lasting less then 5 seconds, movements lasting between 5 and 

10 seconds, movements lasting between 10 and 15 seconds, and movements lasting more 

than 15 seconds. He analyzed the distribution of the different types of movements and its 

relationship with the duration, and later concluded that duration is not sufficient to 

completely describe classes of movements. Rauhala et al. [53] used this system to detect 

periodic leg movements, and showed that it has high sensitivity to detect any periodic 

movement in the body. However, no automated method that can recognize patterns has 

been developed to recognize PLMS and discriminate these movements from other 

movements also detected by the sensor. Also, problems with the calibration of the sensor 

and with the electromagnetic fields in the room of the recordings have been reported [7].  

Wilde-Frenz and Schulz [25] use a combination of PSG and an actogram placed 

under the mattress, in the lumbar area, to detect and classify movements. The actogram 

consists of a mechanoelectrial transducer with direct input to the PSG. The following 

classes of movements are discriminated based on actogram and artifact information from 

the head leads (EEG, EOG and EMG):  

 Type I movement (isolated movement of the head, trunk or the limbs): a 30-

second epoch containing either motor artifacts in the head leads or a signal in 

the actogram. 

 Type II (an integrated activity of more distant parts of the body such as head 

and the trunk or the limbs): a 30-second epoch containing motor artifacts in 

the head leads and a signal in the actogram. 
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 Type III (major posture shifts): a 30-second epoch containing a signal in the 

actogram and motor artifacts in the head leads for more than 15 seconds. 

Although this method provides a good discrimination between different classes of 

movements, it becomes an impractical solution because it employs PSG in combination 

with the bed sensor. 

While many pad-based solutions have been proposed, in general, these sensor 

signals are very sensitive to the position of the pad on the bed, the material of the pad, the 

material that the mattress is made of, and the construction of the bed. These are all factors 

that are less important when using load cells. Thus, the use of four load cells under the 

bed is a practical solution for bed sensing. It provides s and reliable data, and it can be 

installed on a person’s exiting bed. It allows both detection of body movement and 

classification of the type of movement. The system for unobtrusive assessment of 

mobility in bed with load cells is introduced in the next chapter. 

 



 
 
 
 
 
 

Chapter 3  

3 Assessing Mobility in Bed Using Load Cells 

The purpose of this chapter is to introduce a system for unobtrusive assessment of 

mobility in bed with load cells. The system is focused on detection of body movement 

and classification of the type of movement. In Section 3.1, the system is introduced, and 

the load cells and the system setup used in this work are described. A description of the 

inference problem of deriving movement from load cell signals, and an introduction to 

the approach used in this thesis are presented in Section 3.2. An introduction to the 

approach for estimation of sleep-related parameters is presented in Section 3.3.  

3.1 Unobtrusive Assessment of Mobility in Bed 

The system for unobtrusive assessment of mobility in bed focuses on identifying the time 

intervals when a movement in bed occurs and on determining the type of movement 

performed in a given time interval. The term ‘mobility in bed’ has been defined as the 

ability to move to/from lying position, turning from side to side, and positioning body 

while in bed, and it is listed as an activity of daily living (i.e., it is included on a list of 

basic activities that support survival, and are designed to measure functional ability) by 

the Canadian Institute for Health Information [58]. In this work, mobility in bed is 

characterized by the periods of postural immobility, movement times, and the types of 

movement performed. The system consists of 2 parts, as depicted in Figure 3.1: detection 

of body movement and classification of the type of movement. The problem of detection 

of movement in bed consists of estimating the time intervals when a movement in bed 

24 
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occurs. The problem of classification of movement in bed consists of determining the type 

of movement performed in a given time interval.  

 

Figure 3.1: Diagram of the system. 

The system is designed to detect postural shifts, smaller position changes and limb 

movements based on changes in the magnitude of the load cell signals. It provides a 

detailed description of the motor pattern during sleep in terms of the time of onset, 

duration, frequency, and the type of movement. By determining the movement times, one 

can also assess the amount of postural immobility per night. The number of postural 

immobility episodes (longer than 15 minutes) has been shown to be positively related to 

subjective estimates of the goodness of sleep [59]. The system utilizes four load cells 

placed under a bed, one at each corner. The load cells and the setup used in this work are 

described next. 

3.1.1 Load Cells 

Load cells are strain gauge transducers that convert applied force into a resistance 

change. They are widely deployed in industrial systems and also commonly used in 

electronic scales. They can be manufactured to measure loads on nearly any scale, 

ranging from measuring ingredients for pharmaceutical productions in milligrams, to the 

weight of a freight train with several hundred tons [60]. They are of relatively low cost, 

and represent a simple and durable technology.  

Given that the changes in resistance are small, the transducer is typically 

configured as a Wheatstone bridge made up of four resistive elements Ri, i = 1, 2, 3, 4 

arranged in a diamond orientation, as shown in Figure 3.2. An input DC voltage Vin, or 
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excitation voltage is applied to terminals A and C. The output voltage Vg is measured 

across the terminals B and D [61], and it is given by 
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Figure 3.2: The configuration of a Wheatstone bridge. 

When the bridge is balanced (no load), the output voltage Vg is zero and, from 

Equation 3.1, 
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 If, for example, we replace R1 in Figure 3.2 with a strain gauge, any changes in the strain 

gauge resistance will unbalance the bridge and will causes a voltage to appear across the 

middle of the bridge. 

Although forces are not directly measured, but inferred from the resultant strain, 

the output is linearly proportional to force, with the relationship determined by 

calibration. In the calibration procedure, we employ linear regression based on known 

test weights to transform the raw output into weight values. The calibration process is 

described in details in Appendix A. 

3.1.2 Load Cell System Setup 

For compatibility, we used a similar setup as that used at Elite Care because a study was 

also conducted at that assisted-living facility. The load cells used in this work are single 

point load cells, model AG100 C3SH5eF (Scaime™, France). Figure 3.3a) shows the 

setup used for the experiments. Four load cells are placed under a bed, one at each corner. 

The load cells/corners are numbered 1 through 4 as shown in Figure 3.3b).  
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4 3 

1 2 

  

Figure 3.3: (a) A load cell (middle) is placed in each corner of the bed. (b) Load cells are numbered 1 
through 4. 

After calibration, the weight measurements from the 4 load cells are composed of 

the bed weight values and the bed-and-person weight values. When the person is not 

lying on the bed, only the bed weight is measured. For simplicity, the resultant weight 

measurements are reported in kilograms or pounds instead of force/weight units. The 

individual readings from the load cells are given by wi(t), for i = 1, 2, 3, 4, where wi(t) 

denotes equally spaced samples sampled at each discrete time t. They can be summed to 

generate one output signal w(t) at each time t, which is the total weight in pounds: 

( ) ( )twtw
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i∑
=

=
4

1

.        (3.2)  

The load cells specifications [60] are show in Table 3.1. The nominal load or 

capacity is the maximum load a load cell is designed to measure within its specifications. 

They are driven with 5 V, and return 1.9 mV per Volt of excitation, resulting in an output 

ranging from 0 to 9.5 mV. For example, if a 25-kg load is placed on a load cell with 

capacity of 100 kg with a 5 V excitation voltage, it will have an output of 2.375 mV. The 

combined error in Table 3.1 refers to errors due to non-linearity and hysteresis measured 

by the manufacturer [62]. Hysteresis error refers to differences between an upscale 

sequence calibration and a downscale sequence calibration of a sensor [61]. The 

minimum division or resolution is the smallest change in load which produces a detec 

change in the signal. 

An acquisition board from Elektrika Inc., model 335-2001 Rev. C, is connected to 

the load cells. The output signal from the load cells is amplified by 200, resulting in an 

output voltage between 0 and 1.9 V. The amplified output is then sampled by a 13-bit 

(b)(a) 
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analog to digital converter and transmitted to a PC trough a USB cable. The board has an 

anti-aliasing filter set on 50 Hz for a 200 Hz data collection rate. However, data can be 

collected at higher rates.  

Table 3.1: Load cells specifications. 

Material aluminum 

Nominal load (capacity) 100 kg 

Nominal Sensitivity 1.9 mV/V 

Combined error 0.017 kg 

Minimum division (resolution) 0.020 kg 

Compensated temperature range  -10°C to 40 °C 

 

A metal plate under each load cell is used to serve as a base for each load cell on 

the floor, and a 2.4" (6-cm) pin is placed on one of the top holes to allow the bed to 

stabilize on one point on each load cell. The metal plate has a size of 7.2 x 4 x 0.4" (18 x 

10 x 1 cm). A hole with a 0.8" (2-cm) diameter and 3.2" (8-cm) length was made under 

each bed post to place the pins, allowing the bed to stabilize on one point on each load 

cell. Figure 3.4 shows the metal plate under the load cell, and the pin on the right side of 

the load cell. 

 

Figure 3.4: Metal plate under the load cell, and pin on the right side of the load cell. 

3.2 Inference of Body Movements in Bed 

The weights sensed by the load cells at the corners of the bed wi(t) at each discrete time t 

represent the instantaneous distribution of the mass of the body when someone is lying on 

bed. These time-varying weight signals are generated by the body movements 
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“convolved” with the bed-human system response. Therefore, we need to determine if the 

system response due to the bed can be inverted to infer about the movement. 

 Consider the problem of modeling the human body pose in bed, and estimating 

the output of each load cell from the sleeper’s position. For simplicity, let’s assume that 

the human body can be modeled by N components representing different parts of the 

body (a 6-component model was illustrated in Figure 1.2), where each component k has a 

certain mass mk, and with its center of mass located at (xk, yk) bed coordinates. The 

distribution of the mass of the body determines the weights at the corners of the bed 

sensed by the load cells. In an ideal situation where the bed could be represented by a 

weightless plate and had no dynamics, the output from load cell i, for i = 1, 2, 3, 4, at 

each discrete time t, would be represented by  

        (3.3) ( ) ( ) ( ),tntmbtw i

N

k
ikkii +θ+= ∑

=1

where  

 wi(t) corresponds to the weight measured by load cell i, at time t,  

 bi corresponds to the proportion of the bed weight measured by load cell i (for 

simplicity , it is assumed to be constant),  

  is a time-dependent representation of the position of the center of mass of 

each component of the body k based on its proximity from load cell i, i.e., θik is a 

function of time and of the locations of each load cell i (xi, yi) (which are known) 

and each component k (xk, yk), and it can be represented as a matrix with elements 

, and  

( )tikθ

( ) )t,y,x,y,x(ft kkiiik =θ

 ni(t) corresponds to the noise term from load cell i at time t, due to vibration on 

the floor and A/D conversion. 

Equation 3.3 defines the forward model for estimating the load cell outputs from the 

position of each body component. According to Equation 3.3, the response of the bed-

human system during a movement depends on the mass and on the location of each body 

component, represented by each component k, on the bed. 
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The inference problem is further complicated by the physics of the bed and the 

dynamics of the bed-human system. Using a lumpedii model of a human body as in 

Equation 3.3, the input into the system is a 2N-dimensional vector. To the extent that the 

sleeper is moving, this input then generates time-varying weight signals as the output 

from the load cells. Assuming that the mechanical properties of the bed can be 

characterized by a linear system, the load cell responses are described according to 

Equation 1.1. 

In order to infer the sleeper’s movements, we therefore need to solve the inverse 

dynamic problem of deriving (xk, yk) from the load cell outputs. There are two major 

problems with the inversion of the system response: inadequate observed signal 

dimensionality and nonlinearity to be considered in turn. The mapping from the body 

mass distribution to the load cell signals results in a substantial loss of dimensionality. 

The desired positions of the center of mass of the N components representing different 

parts of the body require the estimation of N x 2 parameters, and only 4 load cell 

measurements are known. Also, if even a simple 6-component model is used (as 

illustrated in Figure 1.2) to reduce the number of parameters to be estimated, this simple 

model underestimates the amount of information required to adequately model the 

movements. 

The second problem concerns the linearity of the system. At the outset, the system 

consisting of a mass, springs, and friction would appear to be linear. If the mass of the 

human was insignificant relative to the mass of the bed, the system could be well be 

approximated by a linear system, and the inverse problem could be addressed by blind 

deconvolution or similar techniques. Since the mass of a human is comparable to the 

mass of the bed, a change in the location of the body changes the dynamics of the system, 

thereby introducing nonlinear behavior. 

In order to illustrate the nonlinear behavior of the system, we analyze a grossly 

oversimplified model of the system shown in Figure 3.5. First, we reduce the 3-

dimensional physical system to a 2-dimensional problem. We replace the mattress, 

bedspring and the bed frame by a mass m0 attached at the end of a weightless rod of 

length L. To further simplify the problem, we assume that the rod is attached to a fixed 
                                                 
ii The term ‘lumped’ refers to lumped-parameter analysis, as opposed to distributed-parameter analysis. Lumped parameter systems are 
systems with a finite number of degrees of freedom [60]. 
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pivot point. The mass m0 represents the inertia of the bed. In a similar manner the spring 

and friction are represented by the corresponding lumped parameters. The mass m1 

represents the proportion of the human body mass projected to one corner of the bed. Let 

x(t) represent the position of m1 on the rod at time t, and s(t) represent the vertical 

displacement of m0 at time t as m1 moves from its initial position. Assuming that the 

system starts at rest, and that x(t) = x0 for t = 0 (i.e., the person is in bed, but lying still at 

x0), the differential equation representing the system is given by 
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where c represents the damping constant, k represents the spring constant and g 

represents the acceleration due to gravity. Assuming that x(t) = x0 + d(t) for t > 0, where 

the function d(t) represents the horizontal displacement of m1 at time t, and using a test of 

homogeneity, it is possible to show that the system represented by Equation 3.4 is 

nonlinear. 

 
Figure 3.5: A simplified version of the bed-human system. 

If m1 is very small in comparison to m0, the system behaves closely to being 

linear. Since the mass of the human m1 is comparable to that of the mass of the bed m0, as 

the individual moves from one position to another, the system properties change 

significantly. It is therefore not possible to invert the system response. 

The inverse static problem of estimating (xk, yk) is underdetermined because the 4 

load cell measurements can determine up to 4 unknowns. Additional constraints imposed 

by the kinematics and kinetics of the human body movements may lower the effective 

dimensionality of the problem. Due to these problems, we turned to a pattern recognition 
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approach treating the system as a black box and the signals as stochastic processes whose 

parameters depend on the movements. 

3.2.1 Characteristics of the Load Cell Outputs 

There are 2 characteristics of the load cell outputs, which are intrinsic to the system 

setup, to the weight of the person moving in bed, and to the part of the body being 

moved, that have been incorporated in the detection approach. These characteristics are: 

 Transients corresponding to the dynamic forces generated by the movement. 

 The repositioning of the center of mass of the body due to movement can 

result in changes in the weight measured at each corner after a new position 

is reached. 

The plot in Figure 3.6 illustrates such characteristics from an example of the load cell 

data collected during a sequence of 3 movements: a leg movement (around 10 seconds), a 

posture shift (between 30 and 40 seconds), and an arm movement (around 52 seconds).  

 

Figure 3.6: Load cell outputs wi(t), for i = 1, 2, 3, 4, in pounds, during a sequence of 3 movements: a 
leg movement (around 10 secs), a posture shift (between 30 and 40 secs), and an arm movement 

(around 52 secs).  

The plot shows the individual outputs wi(t), for i = 1, 2, 3, 4, in pounds. While 

changes in the signal caused by large movements (posture shifts) are easier to visualize, 
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small movements cause smaller oscillations on the data, since the amplitude of the 

transients depends on the body part being moved, and on the weight of a person. The 

intensity of the movement is also reflected by the difference between the total weight 

measured at each corner before and after a movement. The difference is due to the 

repositioning of the center of mass of the body due to movement. 

3.3 Estimation of Sleep-Related Parameters 

Since the total weight on the bed drops when someone gets up from the bed, this 

information can be used to estimate the sleep-related parameters listed in Section 1.1. 

Figure 3.7 shows an example of the load cell data collected for two consecutive 24-hour 

periods (4:00 PM – 4:00 PM): day 1 (Figure 3.7a) and day 2 (Figure 3.7b). The vertical 

axis shows the total weight on the bed, in pounds. This person gets up at night, as 

evidenced by the drop in weight for short intervals during the nighttime hours. The 

variation seen in the data when there is a person lying on the bed is due to movement.  

 

Figure 3.7: Output of load cells for two 24-hour periods. 

The time periods when there is a person lying or sitting on the bed are referred as 

in-bed events; otherwise, they are referred as out-of-bed events. A visual inspection of 

Figure 3.7 shows some of the issues associated with estimating the in-bed and out-of-bed 

(a)

(b)
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events. There are several possible times at which the person may be considered to be in 

bed (e.g., around 9:00 PM or 9:30 PM in Figure 3.7 (a), and around 10:00 PM or 11:00 

PM in Figure 3.7 (b), and therefore it is difficult to decide about the bedtime. Also, there 

are several possible times at which the person may be considered to be out of bed (e.g., 

around 5:00 AM, 6:00 AM or 7:00 AM in Figure 3.7 (a), and around 7:30 AM or 8:00 

AM in Figure 3.7 (b), and therefore it is difficult to decide about the get up time.  

In order to interpret such data, we develop an algorithm for computation of sleep-

related parameters. Since inter-individual variability in rest-activity patterns is high, 

separating nighttime and daytime data on a per-person basis simplifies the computation of 

the sleep-related parameters. A person’s in-bed profile that gives a good approximation 

of the person’s habits in terms of being in bed or not during any time of the day is used to 

estimate the nighttime and daytime periods in an individual basis. Because the time of 

lights off is often used as an indicator of the time a person decides to sleep [63], we also 

incorporate the information about the use of the bedroom‘s light into the decision about 

bedtime and get up time. The algorithm is described in Chapter 5. 

3.4 Summary 

This chapter introduced a system for unobtrusive assessment of mobility in bed with load 

cells. Mobility in bed is characterized by the periods of postural immobility, movement 

times, and the types of movement performed. The goal of the system is to identify the 

time intervals when a movement in bed occurs and to determine the type of movement 

performed in a given time interval. The presented system provides a description of the 

motor pattern during sleep in terms of the time of onset, duration, frequency, and the type 

of movement. Earlier work in this area is mostly focused on the detection of movement, 

and simpler classifications systems have been proposed. The advantages of this approach 

are that the measurements can be done using a person’s existing bed, and that it does not 

require a special mattress or sheet. In addition, it utilizes existing technology with 

relatively low cost.  

The system uses four load cells under the bed, one at each corner. Load cells are 

strain gauge transducers that convert applied force into a resistance change. Forces are 
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not directly measured, but inferred from the resultant strain. The output is linearly 

proportional to force, and the relationship is determined by calibration.  

The weights sensed by the load cells at the corners of the bed represent the 

instantaneous distribution of the mass of the body. To infer about movement, we need to 

determine if the system response due to the bed can be inverted. The mapping from the 

body mass distribution to the load cell signals results in a substantial loss of 

dimensionality. In addition, the system is nonlinear, and the inverse problem cannot be 

addressed by blind deconvolution or similar techniques. Therefore, we used a pattern 

recognition approach treating the system as a black box and the signals as stochastic 

processes whose parameters depend on the movements. 

Since the total weight on the bed drops when someone gets up, this information 

can be used to estimate sleep-related parameters related to a person’s sleep habits. The 

algorithm is described in Chapter 5. It incorporates information about a person’s in-bed 

profile with information about the use of the bedroom‘s light into the decision about 

bedtime and get up time. The experimental setup for collection of load cell, light and 

actigraphy data used in this work is described in Chapter 4. 

 



 
 
 
 
 
 

Chapter 4  

4 Data Collection 

This chapter describes the experimental setup for collection of load cell, light and 

actigraphy data used in this work. Data were collected from three experiments: two 

performed in a laboratory and one in an assisted-living facility. The chapter is organized 

as follows. Sections 4.1 and 4.2 describe the experimental setup for laboratory data 

collection with a twin bed size and a full bed size, respectively. Different beds were used 

to provide data for testing of the approaches for detection (Chapter 6) and classification 

(Chapter 7) of movements. In Section 4.3, we describe the experimental setup for data 

collection at an assisted-living facility. These data are used for estimation of the sleep-

related parameters and a comparison with sleep diaries, and also for demonstrating the 

feasibility of the approach in a realistic setting, as presented in Chapter 5.  

4.1 Experiment 1: Twin Size Bed 

The goal of this experiment is to provide data for evaluating the proposed system for 

detection and classification of movements in bed. Data were collected in the laboratory, 

using a twin size bed (size 39”x 75”) with a box spring mattress (as shown in Figure 3.3). 

This dataset is going to be referred as LAB1_TWINSIZE. The details about the subjects 

involved in the study, the protocol, and the sensors used are described next. 

36 
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4.1.1 Subjects 

Nine adults (4 men and 5 women), age ranging from 24 to 45 years (mean age 32.1 ± 6.5 

years old) participated in the study. The inclusion criteria for the study are: 21 years old 

or older, and with no mobility problems. Each subject signed a consent form, and 

received a compensation of $20.00 for his/her participation.  Table 4.1 shows the 

description of the subjects. The experimental session lasted approximately 2 hours. 

 Table 4.1: Description of Subjects 

Subject 
Number Age Sex Weigh 

(lbs) Height 

1 31 M 275 6' 1" 
2 33 F 115 5' 1" 
3 27 F 85 5' 
4 27 F 108 5' 
5 24 M 178 6' 
6 39 M 175 5' 11" 
7 45 F 150 5' 9" 
8 30 F 125 5' 4" 
9 33 M 160 5' 11" 

4.1.2 Data Collection Protocols 

Because the subjects were awake during the experiment, data were collected using two 

different protocols, free movement and fixed movement, to allow both diversity and 

uniformity of movements. The main difference between these two protocols is that the 

latter requires the subject to perform a pre-determined set of movements in bed.  

In the free movement protocol, each subject was asked to lie in bed and freely 

move 10 times. Subjects were instructed to move accordingly to the types of movements 

typically seen during sleep. The movement should start only after hearing a beep sound. 

After the beep sound, subjects had approximately 15 seconds to perform a movement and 

then to rest in a still position. This part of the experiment lasted about 6 minutes.  

In the fixed movement protocol, each subject performed 5 trials composed of 20 

pre-defined movements each, done in different order in each trial. Before each trial, the 

subjects were instructed to follow the instructions played through a speaker and to move 
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only after hearing a beep sound. During the trial, every 15 seconds, a recording instructed 

the subject to perform a movement at the beep sound. After the beep sound, subjects had 

approximately 15 seconds to perform a movement and then to rest in a still position. Each 

trial lasted about 8.5 minutes.  

To reduce errors during the experiment, subjects were instructed about how the 

final positions should look like by means of sketches or by having the researcher showing 

the final positions in the bed. The subjects were also encouraged to move as they 

typically would move in bed (i.e., make the movements in a natural and comfor way), but 

follow closely the sequence played in the recording. 

Each of the 5 trials performed is composed by a different combination of the 

movements set in  Table 4.2. The chosen set of pre-defined movements is composed by 6 

large movements of torso and limbs (posture shifts) and 14 small movements (6 isolated 

movements of the head or arms, and 8 leg movements), as shown in  Table 4.2. 

According to the second column of  Table 4.2, each large movement is followed by one 

or more small movements, and the complete description of each group of movement is 

shown in the third column.  

 Table 4.2: Set of small and large body movements chosen for the study. 

Group 
Number Posture Shift and Small Movement Group of Movements 

1 Back (supine) to right (lateral 
position), leg movements 

Move from back to right, with arms and 
legs bent.  
Straighten legs. 
Bend left leg. 
Straighten left leg. 
Bend legs. 

2 Back (supine) to left (lateral position), 
leg movements 

Move from back to left, with arms and 
legs bent. 
Straighten legs. 
Bend right leg. 
Straighten right leg. 
Bend legs. 
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Group 
Number Posture Shift and Small Movement Group of Movements 

3 Left (lateral position) to right (lateral 
position), arm movements 

Move from left to right, with arms bent 
and straight legs.  
Straighten left arm. 
Bend left arm. 

4 Right (lateral position) to left (lateral 
position), arm movements 

Move from right to left, with arms bent 
and straight legs.  
Straighten right arm. 
Bend right arm. 

5 Right (lateral position) to back 
(supine), head movement 

Move from right to back, with straight 
arms and legs. 
Turn head to the right. 

6 Left (lateral position) to back (supine), 
head movement 

Move from left to back, with straight arms 
and legs.  
Turn head to the left.  

 
Not all permutations of the above set were allowed because most of them cannot 

be physically performed. Since every trial started from the back (supine) position, and 

that no repetitions were allowed, there were only 6 permutations that can be executed. To 

generate 5 trials for each subject based on 6 permutations, we randomly permuted the 

order in which the subject would do the trials and remove the sixth trial, which protects 

against possible bias. The determination of the trials performed by each subject was done 

ahead of time for all subjects, and it removed any ordering effect. 

The selected set of movements performed in the data collection is supported by 

different movement descriptions found in the literature [4, 16, 25]. As shown in  Table 

4.3, all the movement descriptions found in the literature include major postural shifts 

because these gross body movements occur quite consistently throughout the night [4]. 

They also include isolated movements of the head, arms, and legs.  

Our set of movements is also supported by Carlson’s work [64]. In her work, 

Carlson introduced a series of movements in bed designed to simulate those typically 

observed during sleep. Some of such movements consist of turning to the right or left and 

then supine (back), bending and straightening the legs, and bending and straightening the 

arms. 
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 Table 4.3: Movement Descriptions 

Study Movement Description 

Aaronson [16] 

Major posture shift – trunk rotation of at least 45° or a displacement 
of at least 3 limbs 

Postural immobility – absolute motionlessness or small movements 
limited to 1 or 2 limbs 

Muzet [4] 

Type I – movements without displacement that affect extremities of 
the body 

Type II – movements that affect only one part of the body, and 
modifies its position 

Type III – large postural body changes 

Wilde-Frenz 
[25] 

Type I – isolated movement of either the head, trunk or the limbs 

Type II – an integrated activity of more distant parts of the body 
such as head and the trunk or the limbs 

Type III – major posture shifts  

4.1.3 Sensors 

Two types of sensors were used to collect data from each trial: load cells and actigraph. 

Data from load cells under the bed were collected at 200 Hz (as described in Section 

3.1.2). Load cell data were downsampled to 10 Hz because the energy of the load cell 

signal for the set of movements performed is most concentrated below 5 Hz, as shown in 

Figure 4.1. Also, because this work only included assessment of voluntary movements, 

which rarely exceeds 3-4 Hz [12], this choice is appropriate but does not impede that 

higher sampling rates can be used when analyzing involuntary movements.  

Actigraphy data were collected simultaneously with load cell data, and an analysis 

of the data is presented in Section 6.3.6. Because it is a common practice to place the 

actigraph on the non-dominant wrist in adults [65], subjects wore a wrist-actigraph on the 

non-dominant wrist. The actigraphy monitor used in this study is Actiwatch64 (Mini-

Mitter Company, Inc., Bend, Oregon [66]). With each movement of the wrist, an 

accelerometer inside the actigraph generates a variable voltage that is sampled at a 

frequency of 32 Hz. The signal is integrated over a user-selected epoch, and a value 

expressed as “activity counts” is recorded on local memory. The epoch used in the study 

is 15 seconds. For an epoch of 15 seconds, the recording time is 11.3 days, i.e., the 
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actigraph fills its memory with samples after that period. A start time for data collection 

must be set, based on PC clock. Therefore, for time synchronization of the load cells and 

actigraph data, the same computer was used for load cell data collection and actigraph 

setup.  
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Figure 4.1: Average magnitude spectrum of the total weight |W(f)|. Horizontal axis shows the 
frequency from 0 to 100 Hz, and vertical axis is the magnitude of the average Fourier transform. 

4.1.4 Assessment of Actual Movements 

We used a video technique as the ground truth for this experiment. A Creative web cam 

NX Ultra camera was mounted on the ceiling, 2 meters above the bed, to record images 

of the whole bed. Uncompressed 480 x 640 RGB images were recorded at a rate of 10 

frames per second, simultaneously with the load cells and actigraph data, for offline 

analysis.  

To allow a quantitative measure of body movement using video, subjects wore 

cloth bands of different colors on the head, arms, legs, and torso. The actual movement 

intervals were estimated by tracking the trajectories of the cloth bands. Figure 4.2 shows 

an example of the camera’s view, and the cloth bands used for the experiment.  
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Figure 4.2: Setup used during experiment: view of the camera. Subject worn cloth bands on the head, 

torso, arms, and legs.  

The location of every cloth band, consequently the respective part of the body, is 

estimated using template matching [67]. The normalized cross-correlation is computed to 

find the closest match between a given template and an image. The region of the image 

with highest correlation is defined as the closest match. First, templates from each cloth 

band were extracted from the first frames of the video, when the subject is lying on 

his/her back with straight legs and arms. Then, the template matching is performed for 

each type of cloth band. The location of each cloth band is determined by the location in 

the image with highest cross-correlation. Details about the analysis of video data are 

presented in Appendix B.  

4.2 Experiment 2: Full Size Bed 

The goal of this experiment is to provide data from a different bed setting for evaluation 

of the proposed system for detection and classification of movements in bed. Data were 

collected in a laboratory, using a full size bed (size 54”x 75”) with a box spring mattress. 

This dataset is going to be referred as LAB2_FULLSIZE. The experimental setup and 

procedure were identical to the previous experiment. 

4.2.1 Subjects and Data Collection Protocol 

Data was collected from five subjects from the LAB1_TWINSIZE dataset and six new 

subjects. The goal for collecting data from previous subjects on a new bed is to test the 

generalizability of the approaches proposed in this work. The previous subjects (1, 2, 3, 
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4, and 8, as shown in  Table 4.1) repeated the 5 fixed-movement trials on the full-size 

bed.  

The new subjects are six adults (3 men and 3 women) with age ranging from 22 to 

35 years (mean age 27.8 ± 4.7 years old), as shown in Table 4.4. They performed one 

trial of the free-movement protocol plus ten trials of the fixed-movement protocol. 

Therefore, this group of subjects has more data than the group of subjects described in 

Section 4.1.1. The reason for increasing the number of trials in this experiment was that 

we wanted to have a group with a larger dataset to determine the minimum training set 

size necessary for movement classification, as explained in Section 7.4.4. 

Table 4.4: Description of Subjects. 

Subject 
Number Age Sex Weigh 

(lbs) Height 

10 22 F 150 5’5’’ 
11 25 F 175 5’4’’ 
12 30 F 125 5’6’ 
13 35 M 140 6’ 
14 30 M 140 5’10’’ 
15 25 M 150 5’10’’ 

 

4.3 Elite Care Study 

In this section, we present the experimental setup for actigraph, light and load cell data 

collection in an assisted-living facility. The goal of this experiment is to provide data for 

estimation of the sleep-related parameters, and for demonstrating the feasibility of the 

movement detection approach in a realistic setting. 

4.3.1 Subjects 

The subjects were residents of Elite Care, an assisted-living facility located in Milwaukie, 

Oregoniii. Each subject and/or guardian his/her signed a consent form, and received a 

compensation of $20.00 for his/her participation. The inclusion criteria for the study are: 

 60 years old or older. 

 Living alone.  
                                                 
iii http://www.elite-care.com 
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 With no mobility problems such as paralysis of the legs. 

 Not acutely ill and independent ambulatory. 

 With no physical condition that affects the use of an actigraph on one wrist. 

  Despite the efforts for recruiting subjects, only 2 subjects completed the study. A 

total of 5 candidate subjects met the inclusion criteria but did not contribute data because 

of the following reasons: withdraw from the study, moving, and cognitive impairment 

that interfere in the compliance with the use of the actigraph. 

  Each subject was assessed at the beginning of the study. The assessment included 

a brief physical examination and medical history review to verify that the subject is not 

acutely ill and independent ambulatory, and that he/she has not a physical condition that 

affects the use of an actigraph on one wrist. It also included the following tests: the Mini-

Mental State Examination (MMSE) [68], the Cornell Depression Scale [69], and the 

Sleep Disorders Inventory [70]. These tests may help in making distinctions of diagnosis 

in case one needs to study on reasons for changes on level of activity that may be seen in 

the data. The Mini-Mental State Exam, ranging from 0 (worst) to 30, describes general 

cognitive functioning. The Cornell Depression Scale, a depression measure that has been 

validated in both demented and non-demented subjects, includes 19 items covering mood 

or affect signs, behavioral disturbances, physical symptoms of depression, sleep and 

diurnal symptoms, and depressed thinking. Higher scores indicate greater levels of 

depression. The Sleep Disorder Inventory is a 2-week history of seven sleep disturbance 

symptoms, occurring at least once weekly, as reported by the caregiver. Table 4.5 shows 

the description of the subjects, and their scores. 

Table 4.5: Subjects Description and Scores 

Subject 
Number Age Sex 

Weight
(lbs) Height

MMSE 
Score 

Cornell Depression 
Scale 

1 92 M 202 5’ 8’’ 17 4 

2 88 F 220 5’ 2’’ 21 6 

 

Each subject lives in a one-bedroom apartment. There are two caregivers during 

the day shift that take care of up to 12 residents, and one caregiver at the night shift. 
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Because the subjects are very independent and usually do no need help at night, the 

caregiver does not make regular nighttime checks at night for these residents.  

4.3.2 Sensors and Protocol 

Three types of sensors were used to collect data for this experiment: load cells, actigraph, 

and light switch. Data were collected over a period of three weeks. Load cell data were 

collected for the whole 3 weeks, but actigraph and light switch data were collected only 

for the last 2 weeks. The choice of 2 weeks was based solely on compliance of the use of 

the actigraph. The first week of load cell data was used for estimating the in-bed profiles, 

according to Section 5.1.1. 

At Elite Care, the setup in place for load cell data collection is the following: load 

cells are connected to a Programmable Logic Controller (PLC), which is connected to a 

computer through a serial port. Data are collected at 10 Hz from 4 load cells placed under 

the beds. The subjects worn a wrist-actigraph (the same one as described in Section 

4.1.3), and the epoch used in the experiment was 15 seconds. Subjects were instructed to 

wear the actigraph at all times, including when taking a shower. Caregivers were asked to 

monitor compliance of actigraph use, by writing the times the actigraph was taken off.  

The use of the bedroom light, by means of the times when it is turned on and off, 

is recorded by the facility through the switch located in the entrance of the bedroom. 

Such information was also available, even thought one of the subjects only used the lights 

in the bedroom a few times. 

Caregivers were asked to complete a daily sleep diary during the study, including 

observations of bedtime, lights out, lights on and morning arising, in addition to 

comments regarding nighttime awakening and sleep quality. They received detailed 

instructions about the completion of the sleep diary from a nurse, prior to the beginning 

of the study. The sleep diary created for the study is shown in Appendix C. Because the 

caregivers work in shifts, the caregiver responsible for the evening shift completed the 

questions related to bedtime (questions 1 to 4) , and one of the caregivers responsible for 

the day shift completed the questions related to wake up time (questions 5 to 8). They 

were instructed to include in the ‘Comments’ section any comments that subjects made 

about their sleep, and any unusual situation that may have occurred during the night. 

 



 
 
 
 
 
 

Chapter 5  

5 Sleep-Related Parameters Estimation 

 
This chapter describes the algorithm (Section 5.1) for estimation of sleep-related 

parameters. Section 5.2 shows the results on data collected from 2 subjects in an assisted-

living facility (as described in Section 4.3). The estimated parameters are compared with 

the estimates from sleep diaries completed by caregivers for a period of 2 weeks.  

5.1 A Methodology for Estimation of Sleep Behaviors 

As previously discussed in Section 3.3, there are issues associated with estimating 

bedtimes and get up times from the load cell outputs. For example, as it was illustrated in 

Figure 3.7, there are several possible times in Figure 3.7 (a) at which the person may be 

considered to be in and out of bed, and therefore it is difficult to decide about bedtimes 

and get up times. One way to resolve the situation is to first determine, based on a 

person’s habits, the periods corresponding to nighttime and daytime.  

The algorithm for estimating the sleep-related parameters is composed of two 

parts. In the first part, the algorithm computes the in-bed profile of a person, and extract 

nighttime and daytime periods. In the second part, it estimates the parameters by 

analyzing the information at nighttime and daytime separately. To recapitulate, from 

Section 1.1, the parameters are: 

1. Bedtime: the time of retiring, when a person goes to bed with intent of sleeping; 

2. Get up time: the time when the person leaves bed with intent of starting the day; 
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3. Total time in bed at nighttime (TIB): total time of bed rest derived from bedtime 

and get up time, and by subtracting the time spent out-of-bed between bedtime 

and get up time; 

4. Duration of longest “in-bed” period at nighttime; 

5. Number of times person gets up during the night; 

6. Total time “out-of-bed” at nighttime (TOB); 

7. Number of times person goes to bed during daytime; 

8. Total time in bed at daytime. 

Section 5.1.1 describes the algorithm for estimation of nighttime and daytime periods. 

The estimation of bedtime and get up time parameters is described in details in Section 

5.1.2. The estimation of the remaining parameters is straightforward after estimating 

bedtime and get up time. 

5.1.1 Daytime and Nighttime Periods Estimation 

Separating nighttime and daytime data simplifies the computation of the sleep-related 

parameters. Thus, the in-bed profile is used to estimate the nighttime and daytime periods 

in an individual basis. The in-bed profile is defined as a function that represents the 

proportion of times the person is in bed at each instant m of the day. We hypothesize that, 

over a representative period of time, N (in days), the profile ( )mPd for a given day d gives 

us a good approximation of the person’s habits in terms of being in bed or not at each 

instant m of the day. Since the goal of this work is to estimate parameters related to the 

nighttime period, we define day as the period between 4:00:00 PM of the current day and 

3:59:59 PM of the next day (a total of 24 hours). This way we guarantee that each day 

includes the nighttime period. Given the within-subject variability in the sleep/wake cycle 

due to factors such as amount of prior sleep [71], a period of one week is frequently used 

as a representative period for studies on sleep patterns and on changes in circadian 

rhythms [3, 71]. Therefore, for each day d, the in-bed profile Pd(m) is estimated as the 

average of the in-bed events at each instant m over the previous 7 days (i.e., N = 7). 

Therefore, each element of Pd is a value inside the interval [0, 1] that represents the 

proportion of times the person is in bed at each instant m, and is given by 
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where vi, a binary vector, represents the state (out-of-bed and in-bed) of a person at each 

instant m. The vi vector is estimated by a thresholding operation on the load cell data for a 

day i, where a zero value indicates that a person is out of bed, and one indicates that a 

person is in bed at each instant m. Since load cell data (Equation 3.2) are basically 

composed of the bed weight values and the bed-and-person weight values, the threshold 

is computed as the midpoint between the averages of the bed weight and bed-and-person 

weight distributions over the day i.  

The in-bed profile is used to estimate the nighttime and daytime periods in an 

individual basis as follows. To estimate these periods, let’s assume that 4:00 AM 

represents nighttime for all individuals, and calculate as follows:  

1. Find the time interval when profile Pd is above a certain threshold and 

that contains the 4:00 AM event: the time corresponding to the beginning of 

the interval is assumed to be the beginning of the nighttime period. The end of 

the nighttime period corresponds to the time when the interval ends.  

2. The daytime period is defined as the period, between 24-hour periods 

(4:00:00 PM - 3:59:59 PM of the next day), that does not include the 

nighttime period: for example, when a person’s nighttime period corresponds 

to 9:02 PM until 7:34:59 AM, then the daytime period corresponds to 4:00:00 

PM until 9:01:59 PM and from 7:35 AM until 3:59:59 PM.  

5.1.2 Bedtime and Get Up Time Estimation 

The decisions about the sleep-related parameters are always difficult in the absence of a 

ground truth. Logical, but arbitrary rules are necessary to make the method a consistent 

approach, avoiding the biases of subjective guesses. Because the time of lights off is 

often used as an indicator of the time a person decides to sleep [63], bedtime and get up 

times are estimated by using the person’s profile and information about the use of the 

bedroom‘s light (times when the light is turned on/off). In the data used for development 

of the algorithm, the light switches are located in the entrance of the bedrooms (not 

accessible when the person is in bed).  
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The algorithm for estimating the bedtime and get up times can be divided into 4 

steps:  

1. Find the set of in-bed events for a given night: this step is the same as the 

one used to estimate the in-bed events for the profile. The number of in-bed 

events varies per night (depending on how many times the person gets up at 

night), and a rule is used to eliminate very short in-bed events. Since short in-

bed events may not be reliable for estimating the rest period because they may 

not correspond to events where the person had the intent of falling sleep, all 

in-bed events that last less than 20 minutes are discarded. Our motivation for 

the “20-minute rule” comes from Cole’s work [72], where the sleep onset, in 

actigraph records, is defined as the beginning of the first interval containing 

20 minutes scored as sleep with no more than one minute of wakefulness 

intervening.  

2. Select the candidate events for nighttime rest period from the set of in-

bed events: because the person’s profile provides an approximate estimation 

of the average in-bed period, the person’s profile is used to select the 

candidate events. The candidates are the events that intersect the person’s 

profile.  

3. Refine the set of candidate events by incorporating daily changes in the 

rest period: even though the person’s profile represents the most common 

time period of rest, the person may change the time she/he goes to bed or to 

gets up in a particular day. Therefore, such changes must be incorporated in 

the selection of candidate events for the rest period. Two factors are used to 

add in-bed events that occur around of the set of candidate events: time 

proximity (i.e., the closer the event is to the set of candidates, the more likely 

the event belongs to the set of candidates) and the light sensor (i.e., the time 

when the light is switched off can indicate intent of going to bed, or the time 

when the light is switched on can indicate intent of getting ready for the day). 

The set of candidate events changes as long as the rules are satisfied:  

a. Insert the in-bed event that occurs before the current candidate set into 

the beginning of the set if either one of the following rules is satisfied: 

 



 50

i. If the time elapsed between the event in question and the 

earliest in-bed event of the candidate set is equal or less than 5 

minutes. For example, in Figure 5.1 (a), the in-bed event before 

the set of candidate events is inserted in the beginning of the 

set because the time elapsed is less than 5 minutes. However, 

in Figure 5.1 (b), the same does not happen for the in-bed event 

preceding the candidate events because the time elapsed is 

greater than 5 minutes.  

ii. If there is a light event before the event in question and the 

time elapsed between the event in question and the earliest in-

bed event of the candidate set is equal or less than 10 minutes. 

b. Insert the in-bed event that occurs after the candidate set into the end 

of the set if either one of the following rules is satisfied: 

i. If the time elapsed between the event in question and the latest 

in-bed of the candidate set is equal or less than 5 minutes. For 

example, in Figure 5.1 (a), the in-bed event after the set of 

candidate events is not inserted into the set because the time 

elapsed is greater than 5 minutes. 

ii. If there is a light event after the event in question and the time 

elapsed between the event in question and the latest in-bed of 

the candidate set is equal or less than 10 minutes. For example, 

in Figure 5.1 (b), the in-bed event after the set of candidate 

events is inserted into the end of set of candidates because 

there is a switching on lamp event after the in-bed event in 

question, despite the fact that the time elapsed is greater than 5 

minutes. 

The 5-minute threshold was determined empirically from the data based on 

the average elapsed time between in-bed events without a light event. The use 

of light gives information about the person's intention to go to bed to try to fall 

asleep or the intention of getting up to start the day. Therefore, the threshold 

can be higher than the threshold used in the absence of this additional piece of 
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information. In the presence of light information, we chose to use a threshold 

that is twice the threshold used when there is no light event. 

4 minutes 8 minutes 

Candidate Events 
(a) 

Time 

 

Figure 5.1: Example of how rules are applied to refine the set of candidate events for the rest period. 
The large rectangle on the middle of the time axis represents the set of candidate events. The blocks 
before and after the candidate events represent the in-bed events being analyzed by the algorithm. A 

switching on lamp event is represented by a lamp in (b). 

 
4. Estimate the bedtime and get up time from the set of candidate events. 

The bedtime is assumed to be the beginning of the earliest in-bed candidate 

event. The get up time is assumed to be the ending time of the latest in-bed 

event candidate.  

All the remaining sleep-related parameters can be directly obtained at this point.  

5.2 Results 

In this section, we show the results of the sleep-related parameters estimation on load cell 

and light data collected from 2 subjects in the study described in Section 4.3. The 

subjects are two residents of an assisted-living facility, and sleep diaries (see Appendix 

C) were completed by the caregivers. We show the results of each step of the algorithm 

and compare the estimates of some of the sleep-related parameters derived from the 

algorithm with the caregiver’s reports. 

Candidate Events 

6 minutes 8 minutes 

(b)

Time 
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The in-bed profiles of the two subjects, obtained by using Equation 5.1 and 

estimated over the first week of the study, are shown in Figure 5.2. The horizontal line 

shows the value of the threshold. In this work, the threshold is defined as 0.5. That is, 

according to Equation 5.1, for N = 7 a threshold of 0.5 indicates that the person was in 

bed, at each instant m, for at least 3.5 of the previous 7 days, and thus the time period is 

considered nighttime. The profiles illustrate very well how the rest-activity patterns differ 

among people. For subject #1, the profile starts at 10:24 PM, and ends at 7:18 AM. It also 

shows that the subject frequently went to bed at daytime during the first week of the 

study. For subject #2, the profile starts at 9:02 PM, and ends at 6:45 AM. It shows that 

this subject never went to bed at daytime during this period. 

 

Figure 5.2: In-bed profiles Pd(m) of the subjects estimated over the first week of the study. The 
horizontal line shows the value of the threshold. From the profile, it is visually clear that subject # 1 

has more variability in his/her patterns than subject #2.  

Using the algorithm described in Section 5.1.2, sleep-related parameters are 

estimated for the last 2 weeks of the study. Figure 5.3 shows plots of the sleep-related 

parameters, numbers 3 to 8, for subject #1. In this example, the average time in bed at 

nighttime is 6.89 (± 2.19) hours, and the average time spend in bed at daytime is 1.86 

(± 1) hours. For the period of the study, this person spent several hours in bed during 

daytime, and got up from bed during nighttime at least once on 11 (out of 14) days. 

According to the sleep diaries reports completed by the caregivers, these two weeks were 

typical, with no noticeable changes or complaints.  
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Figure 5.3: Plot of sleep-related parameters for subject # 1, for 14 consecutive days. 

Unfortunately, it is difficult to have caregivers completing sleep diaries for long 

periods, and a lot of information is missing in the diaries. Table 5.1 shows a summary of 

the sleep diary completion for each subject.  

Table 5.1: Summary of completion of sleep diaries. 

Subject   
#1 #2 

Bedtime (Question # 1) Completed 4 8 
Get up Time (Question # 6) Completed 5 10 

Completed 2 1 Times Out of Bed at Nighttime 
(Question # 4) Don’t Know 1 7 

 
According to Table 5.1, from a total of 14 answers (corresponding to 14 nights) 

for each question, only 28.6% of the answers were provided for bedtime (question #1), 

for subject #1, and 57.1% for subject #2. A similar trend was shown for the getup time 
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(question #6). For the number of times out of bed at nighttime (question #4 in the diary), 

the caregivers had also the option to answer ‘Don’t Know’, and the answers for this 

question were very poor.  

A boxplot of the differences, in minutes, between sleep diary and the algorithm 

estimates of bedtime and getup times for the two subjects in the study is shown in Figure 

5.4. The discrepancy between the objective measures from the sensors and the subjective 

measures from diaries is larger for subject #1. However, because of the low compliance 

in the completion of the diaries for subject #1 (only 28.6% of the questions were 

answered), and because we only have 2 subjects, we can only speculate that the 

discrepancy is due to the fact that subject  #1 has less consistent sleep habits. The lack of 

a sleep routine is consistent with bedtime algorithm estimates varying from 10:02 PM to 

1:59 AM and get up times varying from 4:01 AM to 9:22 AM, which makes more 

difficult to caregivers to reliably estimate bedtimes and get up times without constantly 

supervising the person. Subject #2 has a more consistent bedtime routine, which makes 

easier to caregivers to reliably estimate bedtimes and get up times.  
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-150

-100

-50

0

50

100

150

Ti
m

e 
D

iff
er

en
ce

 (m
in

ut
es

)

Subject #1                                                     Subject #2  

Figure 5.4: Boxplot of the time differences, in minutes, between sleep diary and algorithm estimates 
of bedtime and getup times for subjects #1 and #2. 
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We did not compare the algorithm and sleep diaries estimates of the number of 

times out of bed at nighttime (question #4 in sleep diary) because there were only a few 

answers (only 10%). From the algorithm estimates, subject #1 got up from the bed at 

nighttime, on average, 1.4 times (±1.2), and subject #2 got up 3.4 times (±1.7) on 

average. This suggests that many out-of-bed events were unnoticed by the staff. 

The discrepancies between the objective measures from the sensors and the 

subjective measures from diaries are expected because there is always some difficulty in 

recollecting exact bedtimes or the number and length of periods out of bed during the 

night [42]. In addition, there may be errors in the algorithm estimates because of the 

thresholds (5, 10 and 20-minute rules in Section 5.1.2) used.  

The results thus indicate that the use of this methodology for determining sleep-

related parameters estimates is valuable, especially in facilities where people live almost 

independently and a lot of information may be missing in the sleep diaries. It is also 

valuable in sleep studies that include populations who would not be able to remember 

specific hours of sleep to complete sleep diaries, and in other situations where the use of 

sleep diaries or actigraphs is not feasible.  

5.3 Summary 

This chapter presented an algorithm for estimation of sleep-related parameters. Such 

algorithm is composed of two parts. In the first part, we compute the in-bed profile of 

each person. The profile represents the proportion of times the person is in bed at each 

instant of the day over a given period. Over a given period, we hypothesize that the 

profile gives us a good approximation of the person’s habits in terms of being in bed or 

not during any time of the day. A period of one week is frequently used as a 

representative period for studies on sleep patterns and on changes in circadian rhythms 

[3, 71]. For any given day, the in-bed profile is estimated as the average of the in-bed 

events over the previous 7 days. Using a thresholding operation, the algorithm extracts 

the nighttime and daytime periods from the profile. Separating nighttime and daytime 

data on a per-person basis simplifies the computation of the sleep-related parameters. In 

the second part, the algorithm relies on simple rules to approximate the bedtime and get 

up times, by using the person’s profile and information about the use of the bedroom‘s 
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light (times when the light is turned on/off). The estimation of the remaining parameters 

is straightforward after the bedtime and get up time are approximated. 

We compared the estimates of bedtime and get up time from load cell and light 

data with the sleep diaries reports in a 2-week study with 2 subjects. The subjects are 

residents of an assisted-living facility, and sleep diaries were completed by the 

caregivers. The discrepancies between the objective measures from the sensors and the 

subjective measures from diaries are expected because there is always some difficulty in 

recollecting exact bedtimes or the number and length of periods out of bed during the 

night [42]. In addition, there may be errors in the algorithm estimates because of the 

imposed thresholds. The threshold values were based on the data of 2 people only, and 

based on a rule used in actigraphy for determining sleep onsets. 

The importance of this type of continuous assessment is reinforced by the fact that 

a large amount of information can be missed in the sleep diaries. It is more difficult to the 

staff to know the sleep routines of residents that very independent and do not need 

constant attention. However, the fact that these residents cannot be under constant 

supervision may result in problems being unnoticed by the caregivers. It can also be 

valuable in sleep studies in populations who would not be able to remember specific 

hours of sleep to complete sleep diaries.  

In addition, bedtime and getup times can be assessed for long periods of time to 

examine changes in sleep habits due to seasonal variations in the duration of daylight. 

Also, studies about changes in circadian patterns of rest and activity in the elderly 

population, which have been done with the use of actigraphs [41], could be benefited 

from this approach because the subject does not have to wear any device. 

 



 
 
 
 
 
 

Chapter 6  

6 Detection of Body Movements in Bed 

This chapter describes the framework for movement detection from load cell data. 

Section 6.1 formulates the movement detection framework as a problem in statistical 

hypothesis testing, and the approach is described in Section 6.2. Section 6.3 presents 

results related to parameter optimization and detection performance evaluated on 

laboratory data. We also show results of the detection approach on the load cell data 

collected at the Elite Care study. In addition, a comparison of load cell and actigraphy 

with respect to the detected movements is also presented in Section 6.3. 

6.1 Statistical Framework 

The problem of detection of movement in bed consists of estimating the time intervals 

when a movement in bed occurs. Although the task consists of segmenting the load cell 

data into time intervals corresponding to periods of movement and no movement, it can 

be seen as a detection task in the sense that it determines whether someone is moving or 

not at a given time t. Given a measurement f from the load cells under the bed sampled at 

time t, which is referred to as a feature value, the goal is to decide if a movement has 

occurred or not at time t. The problem can be formulated as a statistical hypothesis testing 

problem with two mutually-exclusive hypothesis: 

  H0: a movement has not occurred at time t, 

  H1: a movement has occurred at time t. 
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  This task can be performed with the likelihood ratio (LR) test [73]. The LR test is 

a comparison between the likelihood ratio (or difference in the log domain) of two 

hypotheses and a threshold, and it is given by 
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where ( )jH|fp  is called the likelihood function for the “jth” hypothesis, for j = 0,1, 

evaluated for an observed feature value f at time t, and λ is the decision threshold. 

 and  are the likelihoods that the feature f is generated under the two 

competing hypothesis, and H1 is accepted if the ratio is larger than a threshold λ. In 

general, this ratio can range between zero and infinity [74]. 
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)
  If the probability density functions of the features under the two hypothesis 

 and  were known, several techniques for designing an optimal test 

are available in the literature [73]. In general, these probability density functions are not 

known, and have to be estimated from a limited number of data samples.  

( )0H|fp ( 1H|fp

The movement detection approach based on the LR test can be divided into three 

modules: feature extraction, likelihood ratio estimation, and decision, as illustrated in 

Figure 6.1. In the first module (feature extraction), the problem amounts to finding a new 

representation for the load cell data, f. In order to apply the LR test in the second module 

(likelihood ratio estimation), we first need to estimate the likelihood functions. This 

estimation depends on the distribution used to model the respective feature space. In the 

last module (decision), a decision is made based on the value of the LR and the value of 

the decision threshold. The decision output is a binary value depending on the decision 

that H1 or H0 is true.  

 

Figure 6.1: Movement detection framework based on likelihood ratio test. 
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6.1.1 Performance Measure 

There are two types of errors that may occur in a detection system: 

 Miss Detection: a movement is not detected when it did occur. This type of error 

is also often referred to as type I error. 

 False Alarm: a movement is falsely detected when it did not occur. This type of 

error is also often referred to as type II error. 

Therefore, the performance of a detector is usually characterized in terms of 2 error 

measures: the miss detection rate (MDR) and the false alarm rate (FAR). The MDR 

corresponds to the probability of missing a movement given that a movement has 

occurred , and the FAR corresponds to the probability that a movement is 

falsely detected when it did not occur

( 1H|missp )
( )0H|alarmfalsep . Also, the costs associated with 

the errors CMiss and CFA have to be considered when making a decision rule (i.e., 

selecting the decision threshold). 

In this dissertation, detection performance is evaluated using the equal error rate 

(EER). The EER essentially combines misses and false alarm rates into a single number 

by finding the decision threshold at which both rates are equal. Therefore, the EER is the 

point where the false alarms and miss detection rates are equal, and both errors have the 

same cost. The EER results are reported at the correspondent EER decision threshold 

estimated on the testing data. The performance measure focuses on the EER because of 

the lack of knowledge about the typical values of the prior probabilities of a movement 

P(H1) and non-movement P(H0). In addition, the costs associated with missing and 

falsely detecting movements depend on the application. The costs may be different for 

clinical and research settings (screening purposes in a research context versus assessment 

in a clinical context). For example, an inadequate sensitivity in the detection of 

movement could lead to non-ill or non-affected people entering into a clinical research 

study that uses the detector for recruitment of subjects. In other words, the type of 

application dictates whether a low FAR or low MDR is more critical.  

The decisions of the detector are discrete, and FAR and MDR are defined by the 

counts of correct and incorrect sample decisions. Let GT(t) represent the binary decision 

outputs for the ground truth at each discrete time t, i.e., 
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The detection performance can also be described in terms of a graph representing 

the probabilities involved in the task. Detection tasks involve a tradeoff between miss and 

false alarm errors, and the capabilities of the system are best represented by a receiver 

operating characteristic (ROC) curve. The ROC curve is estimated by continuously 

changing the value of the decision threshold, i.e., a given threshold defines an operating 

point on the ROC curve. The ROC curve uses the FAR and the correct detection or hit 

rate (HR), which corresponds to 1 – MDR, as the x- and y-axes, respectively [73].  

6.2 An Approach for Detection of Movement in Bed 

In this section, we present an approach for detection of movement in bed from load cell 

signals. The general idea is to assess the energy in each load cell signal in short segments, 

and then form a weighted combination with scaling coefficients that are inversely 

proportional to the distance of each load cell to the center of mass of the body.  

 The load cell data stream contains periods when the person is in bed (in this case, 

the total weight w(t) is a sum of the weights of the bed and of the person), and periods 

when the person is out of bed (in this case, the total weight w(t) is only the weight of the 

bed). In order to apply the approach for detection, it is necessary to preprocess the data to 

select only the periods when the person is in bed. A thresholding operation on w(t) is 

used to determine such periods. The threshold is computed as the midpoint between the 

averages of the distributions of the weights when the person is in bed and out of the bed 

over nighttime. After this preprocessing step, the movement detection framework can be 

applied according to the steps described next. 
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6.2.1 Feature Extraction 

The feature extraction processing consists of three parts, as depicted in Figure 6.2. The 

first part estimates the short-term mean-square differences. A movement of any part of 

the body in bed is reflected into wi(t) (Equation 3.3). The load cell signal wi(t) varies the 

most during movement, and the estimation of the short-term mean-square differences per 

load cell signal offers one way of capturing those variations. The short-term analysis of 

the mean-square difference for each wi(t) is given by 

( ) ( )( ) ,tw)kt(w
L

ts
L

L
k

iii ∑
−

⎟
⎠
⎞

⎜
⎝
⎛ −

−=
−−

−
= 2

1

2
1

22

1
1

     (6.1) 

where L is an odd number and represents the length of the analysis window, and  
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ii ktw
L

tw   

represents the mean calculated over the analysis window. The mean is not computed once 

for the whole signal wi(t) because shifts of the body center of mass may occur because of 

movements, causing the mean to change many times (as described in Section 3.2.1).  

 

Figure 6.2: Sequence of steps to extract features from the load cell signal. 

An example of load cell data wi(t) and the correspondent , for i = 1 is shown 

in Figure 6.3. The data corresponds to a sequence of movements composed of small 

( )tsi
2
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(solid circles) and large (dashed circles) movements. The small movements include 

movements of arms, legs and head; large movements correspond to posture shifts.  

 

 

Figure 6.3: Load cell data w1(t), in lbs, and the correspondent ( )ts 2
1  collected during a sequence 

composed of small (solid circles) and large (dashed circles) movements. 

The second part of the algorithm consists of estimating the scaling coefficients for 

a weighted combination of the mean-square differences ( )tsi
2 . The goal is to assign 

degrees of relevance to each load cell signal based on its distance from the estimated 

center of mass of the body. The positions of the load cells are fixed and known a priori, 

and the position of the center of mass of the body is estimated using the proportion of the 

bed weight measured by each corner. The scaling coefficients ( )tci  are given by  

   

 

where di(t) is the distance, at time t, between load cell i and the center of mass of the 

body. The coefficients are inversely proportional to the distances between the load cells 

and the center of mass of the body. In addition, ( )tci  satisfies the following conditions: 

 and  
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The third part estimates the feature value f(t). The feature space is represented by 

a one-dimensional vector given by a weighted sum of the mean-square differences, and it 

is denoted by 

( ) ( ) ( )tstctf i
i

i
2

4

1
∑
=

=  .        (6.2) 

Estimation of the Body Center of Mass 
For a collection of particles, the center of mass can be found using the law of moments or 

law of levers [75] as follows. Consider two particles of mass m1 and m2 that fall on the x-

axis, which represents a lever, and where x1 and x2 are the distances between the position 

of the masses and a pivot point located at the origin of the x-axis. The balance point of 

this system, also called the center of mass, is defined as 

M
xmxmxCM

2211 +
= , 

i.e., it is given by the ratio of the total moment to the total mass M = m1 + m2.  

We can generalize this definition for a system of n particles in a random 

arrangement. In this case, the coordinates of the center of mass are given by 

.
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      (6.3)  

Based on Equation 6.3, the estimation of the body center of mass when someone 

is lying on bed is derived as follows. Let the coordinates of the bed corners be arranged in 

a two-dimensional Cartesian system as illustrated in Figure 6.4. 

 

Figure 6.4: Representation of the bed coordinates in a Cartesian system. 
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Given the weights measured at each corner of the bed, the length and width of the 

bed (xmax and ymax, respectively), and according to the two-dimensional Cartesian system 

illustrated in Figure 6.4, Equation 6.3 can be rewritten as 

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]
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where xCM (t) and yCM (t) are the coordinates of the body center of mass when someone is 

lying in bed, at a given time t. The constant terms ( )02 tw , ( )03 tw , and  correspond 

to the proportion of the bed weight measured by corners 2, 3 and 4, at time t0, just before 

the person goes to bed. Since the total weight of the bed may not be equally distributed in 

the four corners in most cases, which can affect the location of the center of mass of the 

system, the weight of the bed is removed from the measurements. The values of xCM (t) 

and yCM (t) are reported in centimeters.  

( )04 tw

To make an analogy to the mechanics of a lever in static equilibrium [75], in 

Equation 6.4.1, it is assumed that there is a pivot point at the side of the bed that 

corresponds to the coordinates (0, 0) and (0, ymax), which is the y-direction. We want to 

calculate the weights that are required at (xmax, 0) and (xmax, ymax) to counterbalance the 

total weight put on the bed. Since the weights and the distances are all known, we can 

estimate xCM. In Equation 6.4.2, the same is done for the x-direction, assuming a pivot 

point at the side of the bed that corresponds to the coordinates (0, 0) and (xmax, 0). 
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6.2.2 Likelihood Ratio Estimation 

A kernel density estimation (KDE) procedure is used to estimate the likelihood functions 

for the hypotheses p(f|Hj), for j = 0,1. The KDE, also know as Parzen-window approach, 

is a nonparametric technique which allows for less rigid assumptions about the 

distribution of the observed data since no parametric structure is assumed for the density 

function p(f|Hj) [76]. 

In general, in the KDE procedure, we are given a sample of n real observations 

 whose underlying density is to be estimated. It is assumed that the 

observations are independent and identically distributed (i.i.d.). The probability density 

function is approximated by the kernel estimator with kernel K defined by  

( nX,...,X,XX 21= )
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where denotes the density estimator of the random variable X, and hn is the window 

width (also known as smoothing parameter) [76]. The kernel estimator can be considered 

as a sum of ‘bumps’ placed at the observations. The kernel function K determines the 

shape of the bumps, and the window width hn determines their width and thereby it 

controls the smoothness of the estimated density. The larger values of hn yield lower 

variance of the estimates at the cost of filtering out the fine structure. In particular, as hn 

approaches zero, the estimate becomes a sum of Dirac delta function spikes at the 

observations, while as hn becomes large, the details are smoothed. 

( )xpn

For the problem at hand, let ( )nH f,...,f,fF 210
=  be a training dataset consisting 

of n features estimated from Equation 6.2, corresponding to periods without a movement 

in bed. Also, let ( ) ( )00
H|fpfp H,n =  be the likelihood function for the hypothesis H0. 

Then, from Equation 6.5, 
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and the kernel used is a Gaussian probability density function, namely: 
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The selection of the window width hn is determined by a compromise between 

representing the details suggested by Silverman [76], , where n is the 

number of observed data points, and σ is an estimate of the standard deviation computed 

from all observations. The same procedure is repeated to estimate the likelihood function 

for the hypothesis H1 based on features estimated from training data corresponding to 

periods with movement in bed. 

σ= − 51061 /
n n.h

6.2.3 Decision and Post-Processing  

In a decision process that minimizes errors, the LR of each sample is compared to a 

threshold, producing a sequence of decisions that reflect the time periods when the 

subject is either moving or not. Since the threshold estimation depends on information 

(i.e., priors and costs of false alarm and miss detections) that is application-dependent, 

the decision threshold is estimated a posteriori by searching a value that produces the 

EER when applied to the likelihood ratio estimated from the testing data. In practice, the 

threshold is obtained by varying its value across all available values of LR and 

determining which value better satisfies the EER condition. 

Following each decision, detected adjacent movements that are close to each other 

are concatenated into one single movement because a movement can be composed of a 

sequence of smaller movements apart from each other. Assuming that a person does not 

stop moving within a second interval, consecutive movements that are apart by less than 

this amount are concatenated into one single movement. Also, short movements are 

discarded to eliminate spurious movements due to noise to further improve performance. 

Detected movements shorter than one second are discarded, and the one-second 

minimum was determined empirically from the ground truth video movement analysis, 

since no movement shorter than one second was found. 

6.3 Results 

In this section, we present the detection performance evaluated on the laboratory data 

described in Sections 4.1 and 4.2, and discuss the effect of weight and bed size on the 

performance of the detector. We also report clinical metrics derived from the detection 

approach on the load cell data collected at the Elite Care study described in Section 4.3. 
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A comparison of load cell and actigraphy with respect to the detected movements is also 

presented. Before the results, we present the selection of window length, parameter L. 

6.3.1 Data Preparation 

The detection system is evaluated individually for each of the 15 subjects described in 

Sections 4.1.1 and 4.2.1. As explained in Section 4.2.1, there are two groups of subjects, 

and the second group (subjects 10 to 15) has more data than the first group (subjects 1 to 

9). Each subject’s model is estimated from the first 3 fixed-movement trials for subjects 1 

to 9 (approximately 21 minutes) and from 6 fixed-movement trials for subjects 10 to 15 

(approximately 42 minutes). The remaining fixed-movement trials (2 for subjects 1 to 9, 

and 4 for subjects 10 to 15) and the free protocol trial are used for evaluation (testing 

data), corresponding to approximately 17 minutes of data from subjects 1 to 9 and 34 

minutes from subjects 10 to 15. On average, 30% of the time is spent moving in a trial. 

Testing data contain approximately 50 movements per subject for subjects 1 to 9, and 

approximately 90 movements per subject for subjects 10 to 15. There are individual 

differences in the number of movements due to extra movements performed when the 

subject was supposed to be still. 

6.3.2 Parameter Optimization: Length of Analysis Window  

The estimation of the mean square-differences for each load cell given by Equation 6.1 

involves the choice of the parameter L, which corresponds to the length of the analysis 

window. The goal is to determine a value for L that would provide optimal estimates, 

maximally independent of the person or bed type. For this purpose, we assumed equal 

utility of errors and used the EER as the evaluation measure. The values tested for L vary 

from 5 to 31 samples, corresponding to 0.5 to 3.1 seconds.  

The average EER (in percent) across all subjects, and corresponding standard 

deviations, for the tested values of L are shown in Figure 6.5. The ROC curves and the 

values of the EER for each subject are shown in Appendix D. The best performance is 

achieved for L = 11 (EER = 3.22% ± 0.54) and L = 15 (EER = 3.45% ± 0.55). Using a 

test for the differences between two means [77], the performances for 11 and 15 are not 
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significantly different (significance level at 0.05), but the difference between them and 

the remainder of the window lengths is statistically significant. We chose to use L = 11. 

 
Figure 6.5: Average EER, in percent, and correspondent standard deviation across all subjects, for 

the window lengths L= 5, 11, 15, 21, 25, and 31, which are showed in seconds. 

The length of the analysis window L affects the estimation of the onset and offset 

times of a movement. Unlike in other detection problems (e.g., detection of muscle 

contraction in studies of motor control [78]), the exact determination of the onset and 

offset times is not the goal here. However, we need to be aware of this source of error, 

and take it into account when using the estimated intervals to, for example, classify a 

movement. The onset error is defined as 000 t̂t −=ε , where t0 is the true onset time of a 

movement and 0t̂ is the estimated onset time. The offset error is defined as 111 t̂t −=ε , 

where t1 is the true offset time of a movement and 1t̂  is the estimated offset time. 

Therefore, negative onset/offset errors represent delayed onset/offset detections, and 

positive onset/offset errors represent anticipated onset/offset detections. Figure 6.6 shows 

the average onset and offset errors across all subjects, and corresponding standard 

deviations, in milliseconds, for several values of L. For L = 11, the onset time is, on 

average, anticipated by 135 milliseconds (± 230 milliseconds), and the offset time is, on 

average, delayed by 169 milliseconds (± 520 milliseconds). For those applications where 
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the onset and offset estimates are critical, it would be possible to use these results to 

minimize the average errors. 

In general, change detection approaches that use a window to estimate features 

have a time resolution problem as the window length increases, i.e., the onset of events 

are anticipated and the offset of events are delayed. For this problem, onsets are 

anticipated as the window length increases as illustrated in Figure 6.6 (top). However, as 

shown in Figure 6.6 (bottom), the offsets are delayed for L smaller or equal to 15, 

anticipated for windows between 21 and 35 samples long, and then delayed again for L 

larger than 35 samples. 

 

Figure 6.6: Average onset (top) and offset (bottom) errors, in milliseconds, and correspondent 
standard deviations across all subjects, for the window length L varying from 5 to 51, which is 

showed in seconds. 

The behavior of the offset error is caused by a typical characteristic of the 

dynamic of many movements, i.e., the beginning of the movement concentrates most of 

the intensity (causing more variation in the load cell signal) of the movement and the 

latter part of the moment has the least intensity due to body adjustments to reach a resting 

position. Such behavior is illustrated in the top graph of Figure 6.7 for a leg movement 

(the vertical bars represent the movement boundaries estimated using the video data).  
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Figure 6.7: Individual load cell outputs wi(t), for i = 1, 2, 3, 4, during a leg movement (top). Vertical 
lines indicate the true onset and offset times of the movement. Remaining plots show the 

correspondent feature value f(t), for L = 11, 21, 31, 41, and 51. The vertical lines indicate the 
estimated onsets and offset s times of the movement for each value of L.  

Most of the intensity of the movement occurs earlier (2 to 5 seconds), and the load cell 

data from the remainder of the movement shows only a small variation. The small 

variation of the load cells signals is very similar to the variation caused by noise (seen 

outside the movement boundaries), which increases the confusion between time periods 

with movement and without movement. In the second plot from the top of Figure 6.7, 
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which shows the estimated boundaries for the features estimated using a window length 

equal to 11, note that the decision threshold estimation becomes very difficulty due to 

small difference between the feature f(t) before and after the true offset boundary.  

As the analysis window increases, the regions with largest variation are 

incorporated in the feature estimation of the latter part of the movement, causing an 

increase in the amplitude of the features f(t). The amplitude increase of the feature f(t) 

during movement period improves the discrimination due to the shortening of the 

overlapping tails (which are responsible for the false alarm and missed detection rates) of 

the distributions of the feature f(t) for the time periods with and without movements. 

Such improvement in the discrimination causes an anticipation of the offset boundary of 

the third (L = 21) and fourth (L = 31) plots from the top of Figure 6.7. However, the 

increase in variance is also incorporated into the features from the regions around the 

movements causing the distributions to overlap and, consequently, to delay the 

movements offset. The fifth (L = 41) and the sixth (L = 51) plots from the top of Figure 

6.7 illustrate the delaying of the offset. Note that the amplitude of the feature f(t) for such 

plots from second 6 to 7 is greater than the ones for the same period on the second and 

third plots.  

6.3.3 Performance Results  

The performance for each subject for L = 11 is shown in Figure 6.8. The average EER 

across all subjects is 3.22% (± 0.54). This performance is certainly within the reliability 

of most clinical tests. For a total of 890 movements in the testing data, only 11 

movements are missed and 14 are falsely detected. The missed movements include 7 

head movements, 2 arm movements, and 2 medium amplitude movements that include 

arm and leg movements to adjust position. For an average miss detection rate of 3.22%, 

2.69% accounts for miss detections at the onsets and offsets, and only 0.53% accounts for 

missed movements. For the false alarm rate, 2.77% accounts for false alarms at the onsets 

and offsets, and only 0.45% accounts for falsely detected movements. This shows that 

most of the errors come from errors at the estimation of the onsets and offsets. Depending 

on the application, these errors may be insignificant if the objective is the number of 

movements. 
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Figure 6.8: Individual EERs in percent, for L = 11. The average EER is 3.22 (±0.54). 

An interesting result is that the person’s weight has no effect on the performance 

of the proposed detector. Despite the fact that moving an object with a greater mass 

should provide a stronger force signal, our signal processing yields weight-invariant 

detection. In particular, the data suggest that there is no correlation between the subject’s 

weight and the EER. A linear relationship between the EERs and the subjects weight 

(shown in s  Table 4.1 and 4.4) is weak (r = 0.047). This shows that the approach does 

not impose any constraints on its use with very light people. 

Another useful invariance is that the bed type (i.e., the size of the bed) has no 

effect on the performance of the proposed detector. We compare the performance results 

on the subjects that were tested in the LAB1_TWINSIZE and LAB2_FULLSIZE 

experiments. The detection system for each bed type is evaluated individually for each of 

the 5 retested subjects using the 5 fixed-movement trial data from each bed. Each 

subject’s model is estimated from the first 3 fixed-movement trials (lasting approximately 

21 minutes), and the remaining fixed-movement trials are used for evaluation (lasting 

approximately 14 minutes). Table 6.1 lists the individual EERs in percent for the 2 bed 

sizes tested. The binomial test for differences in proportion [79] shows that there is not a 
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difference in the performances of the 2 bed systems for all subjects, at a significance level 

of 0.05. The binomial test, also referred as Z-test for the equality of two proportions, 

verifies the assumption that the proportions p1 and p2 of two populations are equal, based 

on n1 and n2 samples of each population, and for n1, n2 ≥ 30. This result provides some 

evidence of the generalizability of the proposed detector for different bed sizes.  

Table 6.1: Individual EERs, in percent, for the subjects tested in 2 beds. 

EER (%) Subject 
Number Twin Size Bed Full Size Bed 

1 3.47 3.42 
2 3.24 3.58 
3 3.18 2.70 
4 3.20 2.76 
8 3.90 3.46 

6.3.4 Approximation of the Decision Threshold 

In the estimation of the decision threshold when using the LR test, training data are 

usually required to estimate the likelihood functions. However, a new subject may be 

presented to the system with no training data being available. To mitigate this problem, 

we developed a technique that approximates the threshold for the new subject by linear 

regression of the thresholds of a known set of subjects.  

Let λEER correspond to the EER threshold. By definition, there is a decision point 

f* such that  

( )
( ) EER*

*

H|fp
H|fp

λ=
0

1 . 

Because the features f (as defined in Equation 6.2) are proportional to the person’s 

weight, the decision point f* varies linearly with the weight, with a correlation coefficient 

r = 0.906 (p < 0.0001), as illustrated by Figure 6.9. The detector decision can be 

estimated by applying a thresholding operation on the features f calculated from a test 

dataset, using the predicted value of f* (from the fitted regression equation) as threshold.  

This method for approximating the decision threshold was tested using a leave- 

one-out approach [80] on the 15 subjects. The value of f* is predicted for each subject 

based on the least square linear regression fit of the remaining subjects. Since the EER 
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Figure 6.9: Plot of the decision point f* versus weight, in pounds (for L = 11 and for all 15 subjects) 
with the fitted least square regression line.  

was used to measure the performance and to estimate the decision threshold in the 

previous results, a detection cost is used to compare the results of both approaches (EER-

based estimation and least-squares based estimation). The detection cost function CDET 

[74] is given by  

( ) ( )01DETC HPFARCHPMDRC FAMiss += .     (6.6) 

The parameter values in Equation 6.6 (as defined in Section 6.1.1) are CMiss = CFA = 1 

and P(H1) = P(H0) = 0.5, and correspond to the values used to define the EER. 

Although this method only provides an approximation for the threshold, we have 

not found a statistically significant difference in the performance of the detector between 

the EER thresholds (thresholds derived from the EER measure) and the approximated 

thresholds. Figure 6.10 shows the boxplots of the detection costs for all 15 subjects 

corresponding to (a) the cost associated with decision threshold based on the EERs, and 

(b) the cost associated with the approximated threshold value. Despite the larger 

variability in the detection cost CDET in Figure 6.10 (b), there are no statistically 

significant differences in the median values of CDET for the dataset of 15 subjects tested. 

The median values of CDET are 0.0325 and 0.03628 for the estimated and approximated 
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cases, respectively. Even though, in this work, this result applies to the EER criterion, it 

is still possible to use regression when other criteria are chosen.  

 

Figure 6.10: Boxplots of the detection costs for all 15 subjects corresponding to (a) the cost associated 
threshold estimated from the EERs, and (b) the cost associated with the approximated threshold 

values. 

6.3.5 Application to Elite Care Data  

In this section we apply the detection approach to the load cell data collected at the Elite 

Care study, and estimate clinically relevant measures based on the detected movements. 

The clinical measures are: the number of postural immobility periods (number of 

immobility periods longer than 15 minutes, as defined by [59]), the number of 

movements and the frequency of movements (number of movements per minute). As 

suggested by Kronholm [81], the frequency of movements for each third of the night 

(based on total time in bed) can be used to assess differences in the temporal distribution 

of movements throughout the night and across nights. Motor episodes occurring 

repeatedly during the first third of the night strongly suggest a link to NREM stages III 

and IV, whereas episodes appearing in the last third suggest association with REM sleep 

[5]. 

As described in Section 4.3.2, load cell and actigraph data were simultaneously 

collected from 2 residents of an assisted-living facility for a period of 14 days. Since the 
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data were collected continuously, we first determined the bedtime and getup times for 

each day using the algorithm described in Section 5.1. Using the least square regression 

approach described in Section 6.3.4, we computed the decision threshold of the detector 

for each subject based on knowledge of his/her weight. An example of load cell data 

collected from subject #2 is shown in Figure 6.11(a), where the dashed vertical lines 

indicate the intervals where a movement was detected. The time period shown in Figure 

6.11 corresponds to the beginning of an in-bed event, and the first movement detected 

(between 1:16:57 AM and 1:18:27 AM) corresponds to a movement related to getting 

into the bed that lasted approximately 1.5 minutes. A total of 16 movements were 

detected during that period, and the remaining movements lasted, on average, 1.6 (± 0.6) 

seconds. As illustrated in Figure 6.11 (b), the actigraph data collected during the same 

period measured large activity counts at the beginning of the period corresponding to the 

large movement related to getting into the bed, and some of the movements detected by 

the load cells were missed by the actigraph (for example, between 1:19:21 AM and 

1:21:45 AM).  

 

Figure 6.11: (a) An example of load cell data collected from subject #2 is shown, where the dashed 
vertical lines indicate the intervals where a movement was detected. The emphasized rectangle shows 
a zoomed view of a movement detected by the load cell data. (b)Actigraph data collected during the 

same period.  

(a) 

(b) 
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Given the detection results and the total time spent in bed, the number of postural 

immobility periods (number of immobility periods longer than 15 minutes) and the 

frequency of movements (number of movements per minute) for each third of the night 

were calculated for Subject #1 (as shown on the left column of Figure 6.12) and Subject 

#2 (as shown on the right column of Figure 6.12). As illustrated in Figure 6.12, over these 

2 weeks, Subject #1 experienced higher frequency of movements and less periods of 

nocturnal immobility than Subject #2, especially during the first 7 days. The higher level 

of activity in Subject #1 is confirmed by the caregiver’s report in the Sleep Disorder 

Inventory (described in Section 4.3.2). According to the inventory, this subject gets up at 

night frequently, and sometimes gets involved in activities at night, thinking that is 

daytime.  

In the last seven days, a decreased in activity occurred for Subject #1, as 

illustrated by longer periods in bed with an increased number of postural immobility 

periods and less activity in the first 2 thirds of the night. Subject #1 suffers from 

dementia, which may justify the high variability in the level of activity during the night. 

Subject #2 showed a decreased in nocturnal activity in the last third of the night during 

the last 7 days. Unfortunately, these objective measures could not be compared with the 

subjective reports of sleep quality, given by Question #7 in the sleep diary completed by 

caregivers, because of the low compliance in the completion of the daily diaries. 

6.3.6 Analysis of Actigraphy Data 

Using actigraph data that were collected simultaneously with load cell data, we show that 

the actigraph under-reports movements as compared to load cells. Before we can perform 

any comparison, the load cell detection results (sampled at 10 Hz) and the ground truth 

information (sampled at 10 frames per second, as described in Section 4.1.4) are 

converted into 15-second epochs as the actigraph reports every 15 seconds. 

The actigraph used in the study (as described in Section 4.3.2) has the following 

data acquisition and recording methods: 

 Data acquisition: data are sampled at 32 Hz and, for every sample, its value is 

compared to a baseline value by computing the difference. The difference is 

kept as one activity value. 
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Figure 6.12: Total time in bed, frequency of movements (number of movements per minute) for each 

third of the night, and the number of postural immobility periods (number of immobility periods 
longer than 15 minutes) for subject #1 (left column) and subject #2 (right column), for a period of 14 

days. 

 Recording method: the resulting one-second value is the peak value obtained 

from the 32 resulting activity values from previous step. The peak value over 

a one-second interval is used to make the actigraph sensitive to small 
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movements and to rapidly changing movements often experience in sleep. The 

one-second activity values are finally accumulated depending on the epoch 

chosen. For example, for an epoch length of 15 seconds, 15 one-second 

activity values are summed to generate the final recorded value called activity 

count. 

The final activity count is a 15-bit unsigned integer. As defined by the manufacturer, the 

activity count is zero if no movement has been detected in an epoch. An activity count 

larger than one corresponds to movement, and its magnitude monotonically increases 

with the amount of wrist activity.  

Given that actigraphs measure the amount of movement based on movement of 

the site of placement of the sensor (e.g., wrist and ankle), the actigraph under-reports 

movements as compared to load cells because it cannot detect motion of the other limbs 

unless an actigraph is placed on every limb. To compare the actigraph result with the 

ground truth, every epoch from the actigraph with an activity count larger than zero is 

said to have a movement when an actual movement has occurred within the time interval 

of the respective epoch. The actigraph hit rates, i.e., the probability that a given 

movement is detected by the actigraph given that the movement has occurred according 

to the ground truth, are shown in Table 6.2 for 3 types of movement. These probabilities 

show that, whereas most of the posture shifts are detected by the actigraph, head and arm 

movements (when moving the arm that does not have an actigraph) are missed. 

Approximately 44% of the leg movements are detected, with corresponding median 

activity counts equal to 3, i.e., the actigraph detected very small movements of the wrist 

that cannot be seen from the video during leg movements. The load cells hit rates are 

calculated over 15-epochs by comparing the movements detected by load cells with the 

actual movements in a similar manner: every epoch is said to have a movement when an 

actual movement that has been detected by the algorithm has occurred within the time 

interval of the respective epoch. The load cells hit rates are shown in Table 6.2. Because 

these probabilities are calculated over 15-epochs, onset and offset errors of the algorithm 

are not considered here, which makes the error smaller (as stated in Section 6.3.3, most of 

the algorithm errors come from errors at the estimation of the onsets and offsets, and only 

medium amplitude movements were missed). Therefore, the load cells yield more 
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accurate detection of movements in bed than actigraphs, and in particular the load cells 

can detect a wider range of movements in bed rather than the movement of a specific 

limb.  

Table 6.2: Actigraph and Load Cells Hit Rates for Three Types of Movements. 

 Posture Shifts Medium Amplitude 
Movementsiv Leg Movements 

Actigraph 1 0.732 0.438 
Load Cells 1 0.974 1 

6.4 Summary 

This chapter presented an approach for detection of movement in bed from load cell 

signals. Since the load cell signal varies the most during movement, the approach uses a 

weighted combination of the short-term mean-square differences of each load cell signal 

for capturing the variations caused by movement. 

The approach, based on likelihood ratio test, can be divided into three modules: 

feature extraction, likelihood ratio estimation, and decision. In the first module, for each 

time t, the short-term mean-square difference is estimated using a sliding window on each 

load cell signal wi(t). Then, the output from each load cell is combined using a weighted 

combination with scaling coefficients that are inversely proportional to the distance of 

each load cell to the center of mass of the body at time t. In the second module, the kernel 

density estimation method is used to estimate the likelihoods functions of the two 

hypotheses: a movement has not occurred at time t, and a movement has occurred at time 

t. In the last module, a decision is made based on the value of the likelihood ratio test and 

the value of the decision threshold. The detection performance was evaluated using the 

EER on the testing data because no information about the prior probabilities and costs is 

available. Of course, if any information about the prior probabilities and/or costs 

associated with falsely detecting or missing a movement is available, these can be easily 

incorporated in the determination of the decision criterion using, for example, the 

detection cost function in Equation 6.6.  

                                                 
iv Smaller movements to adjust, not change, position and that do not include isolated leg movements, such as isolated head or arm 
movements.  
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The estimation of the mean square-differences for each load cell involves the 

choice of the parameter L, which corresponds to the length of the analysis window. We 

showed that the best performance is achieved when L = 11 (EER = 3.22% ± 0.54) and 

L = 15 (EER = 3.45% ± 0.55). The performances for 11 and 15 are not significantly 

different, and the window length used in this work is L = 11.  

We analyzed the performance of the proposed approach for 15 subjects, and 

showed that the approach reliably detects movements. Most of the errors come from 

errors at the estimation of the onsets and offsets, and not from missed or falsely detected 

movements. 

One of the major contributions of the proposed approach is that the person’s 

weight has no effect on the performance of the proposed detector. In particular, the data 

suggested that a linear relationship between the EERs and the subjects weight is weak 

(r = 0.047). It thus shows that the approach does not impose any constraints on its use 

with very light people. We also provide some evidence of the generalizability of the 

proposed detector for different bed sizes. We compared the performance results on 

subjects that were tested in 2 different beds. The binomial test for differences in 

proportion shows that there is not a difference in the performances of the 2 bed systems 

for all subjects, at a significance level of 0.05. 

We also showed that, in the absence of training data to estimate the likelihood 

functions, least square regression can be used for obtaining an approximation of the 

decision threshold. The threshold value was approximated for each subject based on the 

least square linear regression fit of the remaining subjects. We have not found a 

statistically significant in the performance of the detector for the EER thresholds 

(thresholds derived from the EER measure) and the approximated thresholds.  

We also applied the detection approach on the load cell data collected at the Elite 

Care study. The number of postural immobility periods, the number and duration of 

movements and the frequency of movements were estimated from data from the 2 

subjects, over a period of 2 weeks. The examples illustrate the common intra-individual 

and inter-individual differences in nocturnal mobility that are frequently observed in 

multiple-night recordings [56]. 
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The final section reported a comparison between the load cell detector and the 

actigraph. Given that actigraphs measure the amount of movement based on movement of 

the body location of placement of the sensor (e.g., wrist and ankle), the actigraph under-

reports movements as compared to load cells because it cannot detect motion of the other 

limbs unless an actigraph is placed on every limb. Therefore, for the detection of a wider 

range of movements in the bed rather than the movement of a specific limb, the load cells 

provide more accurate results than actigraphs.  

 



 
 
 
 
 
 

Chapter 7  

7 Classification of Body Movements in Bed 

This chapter describes an approach for movement classification from load cell data. 

Following a description of the problem framework (Section 7.1) and a brief introduction 

to pattern recognition (Section 7.2), we describe (Section 7.3) and evaluate (Section 7.4) 

the approach for subject-dependent classification of movements in bed using a time-

domain representation of the body center of mass. In Section 7.5, we present an 

alternative feature representation based on wavelets, and compare the performances of 

both types of representation. In the final section, we present the performance of the 

integrated system combining movement detection and classification. 

7.1 Movement Classification Framework 

The problem of classification of movements in bed consists of determining the type of 

movement performed in a given time interval. As discussed earlier (Section 4.1.2), 

different movement descriptions have been adopted to analyze the distribution of 

movements during sleep. Accordingly, in this work, movements in bed are divided into 3 

classes: 

 Class 1 — Major posture shifts: changes in body position that involve a torso 

rotation larger than 45 degrees. An example of this class is shown in Figure 

7.1. These large movements may represent movements related to getting into 

or out of bed, or large movements associated with wakefulness. 

83 
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Figure 7.1: A class-1 movement example: turning from right to the left. 

 Class 2 — Small and medium amplitude movements: changes in body position 

involving the head, arms, torso rotations smaller than 45 degrees, any 

combination of upper and lower limbs, and any combination of limbs and 

torso rotations smaller than 45 degrees. An example of this class is shown in 

Figure 7.2. These medium amplitude movements may represent restlessness 

or position changes associated with NREM stage I, as discussed in Section 

2.2.2. 

 
Figure 7.2: A class-2 movement example: small change in position involving movement of the head, 

legs and arms. 

 Class 3 — Leg movements: isolated movement of lower limbs (thighs, legs 

and feet). An example of this class is shown in Figure 7.3. These leg 

movements can be associated with periodic limb movements in sleep (PLMS) 

or restless leg syndrome, as presented in Section 2.2.4.  

As we discussed in Section 3.2, a statistical approach is used for classification. A 

brief review of statistical pattern recognition systems is described next. 
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Figure 7.3: A class-3 movement example: bending one leg. 

7.2 Statistical Pattern Recognition Systems 

The classification of patterns under uncertainty requires the design of a statistical pattern 

recognition system [82]. We start by defining the terminology and the notation used to 

describe a statistical pattern recognition system. A pattern can be a fingerprint image, a 

speech signal, or load cell signals in this case. Each pattern is characterized by a vector of 

D feature values x = (x1, x2,…, xD), also called feature vector. The features are the 

variables used to represent the pattern for the purpose of classification [83]. In a 

multicategory classification problem there are N classes, denoted c1, c2, …, cN , and we 

define a categorical variable z associated with each pattern that denotes the class 

membership. That is, if z = k, then the pattern belongs to ck, k ∈ {1, 2,…, N}. Given a 

pattern, the classification task consists of identifying the class to which the pattern 

belongs. A decision rule partitions the measurement space into N regions, Ωk , k = 1, 2, 

…, N. If a feature vector is in Ωk, then it is assumed to belong to ck. The boundaries 

between the regions Ωk are the decision boundaries or decision surfaces.  

In a typical approach, e.g., as suggested by Jain [82] and shown in Figure 7.4, a 

statistical pattern recognition system has 2 modules: training and classification. The 

training module can be divided into 3 steps: pre-processing, feature extraction/selection, 

and learning. Assuming that we have a set of training patterns (a set of patterns used to 

design the classifier), the pre-processing step includes operations that contribute to 

defining a compact representation of the pattern (for example, removing noise and 

normalization). The feature extraction selection step finds the appropriate features for 

representing the training patterns by transforming them to an appropriate form for 

subsequent classification, and it reduces the dimension of the feature vector to remove 

redundant or irrelevant information. The last step of the training module, referred as 
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learning, consists of building a classifier. The objective is to establish decision 

boundaries in the feature space that separate patterns belonging to different classes. The 

features are assumed to have a probability density function conditioned on the class. 

Therefore, a feature vector x belonging to class ck is viewed as an observation drawn 

randomly from the class-conditional probability function ( )kc|xp  [82]. Different 

strategies can be used to build a classifier, depending on the information available about 

the class-conditional densities of the features. These strategies include the optimal Bayes 

decision rule (when the class-conditional densities are completely specified), parametric 

methods (when the form of the class-conditional densities is known), and nonparametric 

methods (when the form of the class-conditional densities is not known) [82]. 

 

Figure 7.4: A statistical pattern recognition system adapted from [82]. 

The classification module is also divided into 3 steps: pre-processing, feature 

measurement, and classification. After pre-processing and extracting the feature 

corresponding to a test pattern (unseen in the training module), in the same way it was 

done in the training module, the trained classifier assigns a test pattern to one of the N 

classes based on the measured feature.  

7.3 An Approach for Subject-Dependent Movement Classification  

The high variability among human physical characteristics provided a motivation for 

subject-dependent classification of movements in bed. However, because subject-

independent models are especially important in situations where training is difficult or 

impossible to conduct, we also present the results of a subject-independent model in 

Section 7.4.4. 
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To capture the subject-dependent feature distribution, we use Gaussian Mixture 

Models (GMMs) to represent each class of movement. More specifically, the distribution 

of feature vectors extracted from a subject’s movement data, for each class of movement, 

is modeled by a Gaussian mixture density. Following the processing flow as shown in 

Figure 7.5, the first step consists of pre-processing the load cell data. Although this 

approach is subject-dependent, the attempt is to use features that would be as much as 

possible independent of the subjects’ height and weight. We therefore represent the raw 

load cell signal by the trajectory of the body center of mass, in terms of the coordinates 

xCM(t) and yCM(t) as in Equations 6.4.1 and 6.4.2. 

 

Figure 7.5: Movement classification framework. 

In the feature extraction step, the following features are extracted from the 

trajectory of the center of mass: the distance between initial and end points of the 

trajectory, the length of the trajectory, and the variance of the trajectory in the y-direction. 

The y-direction corresponds to motion from one side of bed to the other. These features 

are descriptors of the trajectory of the center of mass during movement, and provide a 

simple characterization of the spatial and (indirectly) temporal aspects of the movements 

in bed. In the statistical modeling step, the goal is to estimate the parameters of each 

GMM that represents a certain movement class. In the testing module, after the testing 

data are pre-processed and features are extracted as was done in the training module, the 

system estimates a likelihood score for each class for every test pattern, based on the 

model parameters estimated during the training module. A class label is assigned based 

on the maximum likelihood (ML) rule [84]. Details of each step are described next.  
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7.3.1 Pre-Processing 

The pre-processing step consists of estimating the trajectory of the center of mass during 

movement from load cell data from each movement. In studies of posture or movement, 

the trajectory of the body center of mass has often been a parameter of interest [85]. Lee 

[86] uses the (x, y) coordinates of the center of mass as part of the gait silhouette image 

representation in a problem of gait classification. In this application, for a movement 

defined over a time interval [t0, t1], the trajectory of the body center of mass is given by 

the coordinates of the body center of mass xCM(t) and yCM(t), over the interval [t0, t1], as in 

Equations 6.4.1 and 6.4.2. The trajectory is represented by a finite number of segments 

that connect all the points (in this case, bed coordinates) representing all the positions 

taken by the center of mass during a movement. 

7.3.2 Feature Extraction 

The feature set consists of 3 features that are extracted from the trajectory of the body 

center of mass: the distance between initial and end points of the trajectory, the length of 

the trajectory, and the variance of the trajectory in the y-direction perpendicular to the 

sleeper’s body axis. The choice of features was motivated by consideration of the nature 

of the movements to be discriminated, including our understanding of the kinematics 

involved and our observation of free movements during the trials. 

The distance between the initial and end points of the trajectory is the length of 

the path connecting the last position of the body center of mass just before a movement 

has started and the final position of the body center of mass after a movement ends. This 

feature provides spatial information about a movement in terms of the displacement of 

the body center of mass as a result of the movement.  

The length of the trajectory is the total length of all the segments that constitute 

the trajectory. This feature indirectly incorporates temporal information about the 

movement through the number and length of the segments that constitute a given 

trajectory. Intuitively, it is reasonable to assume that the length of the trajectory is 

considerably larger for class-1 movements, and smaller for class-3 movements. The 

trajectory is very short for arm and head movements in class 2 because there is not a 

considerable displacement of mass during these movements. The length of the trajectory 
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is not necessarily proportional to the duration of a movement because it depends on the 

parts of the body that were involved in the movement (different body parts affect the 

center of mass differently). For example, a movement can only involve arms and head 

movements and last as long as other movements, but the observed changes in the position 

of the body center of mass during movement are likely to be small. 

The sample variance of the trajectory in the y-direction, which corresponds to 

motion from one side of bed to the other (Figure 6.4), also provides spatial information 

about a movement. The sample variance of the trajectory in the y-direction  is 

calculated as follows: 
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where N corresponds to the number of observations over the interval of the movement 

and CMy corresponds to the sample mean. This feature is particularly useful in 

discriminating movements involving upper and lower body in class 2 from lower body 

movements in class 3. A displacement of the torso in the y-direction occurs more 

frequently when adjusting position for class 2 (medium amplitude) than when performing 

a leg movement. This is consistent with observation of the movements made by the 

subjects during the free protocol trial (when they were asked to move freely, as described 

in Section 4.1.2). Therefore, the fact that the variation in the y-direction is smaller when 

someone only moves the legs facilitates the discrimination.  

7.3.3 Statistical Modeling 

As noted above, the bases for the movement classification system are the GMMs used to 

model the underlying time-domain representations that characterize a person’s motion 

patterns. The goal of the statistical modeling step is to estimate the parameters of each 

GMM that represents a certain movement class ck, using training data from movement k.  

Finite mixtures are a flexible and powerful probability modeling tool [83]. A 

linear combination of Gaussian basis functions is capable of forming smooth 

approximations of arbitrarily shaped densities. GMMs have been used successfully for 
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similar problems such as the task of discriminating six classes of limb motions from 

myoelectric signals [87]. 

A Gaussian mixture model describes the probability distribution of a given data 

set as a linear combination of several Gaussian densities [74]. In this model, each d-

dimensional random vector x is assumed to be drawn independently from a mixture 

density given by the equation  
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where iϖ  defines the mixing weight of the ith Gaussian component (for all i = 1, 2, …, M) 

given by the relative importance of each component in the density function, ( )ii ,p Σµx  

represents the ith d-dimensional Gaussian component with mean  and covariance  

given by 
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and { MMM ΣΣµµΘ ,,,,,,,, 111 KKK ϖϖ=  represent the mixture density parameters.  

The mixture density parameters are estimated using a maximum-likelihood 

approach. The expectation maximization (EM) [74] is the algorithm used for finding the 

maximum-likelihood parameter estimates, and it is described in Appendix E. The mean 

of each component in Equation 7.1 is initialized to a centroid derived from the Linde, 

Buzo and Gray (LBG) algorithm [88]. The LBG algorithm is also described in Appendix 

E. 

Using this notation, each class ck is represented by a GMM, and it is referred to by 

its model . The degrees of freedom or the number 

of parameters that must be estimated to approximate the model for a class using a d-

dimensional feature vector using M mixtures are: M mixing weights, Md means, and 

Md (d + 1)/2 covariance elements (since there are d diagonal elements and d (d - 1)/2 off-

diagonal elements). In order to reduce the number of parameters to M (2d + 1), we use 

GMMs with diagonal covariance matrices. Although the use of a diagonal covariance 

matrix has the underlying assumption that the features are uncorrelated, this simplified 

representation is sufficient for the purpose of the classification task, since we have 

{ MMMk ,,,,,,,, ΣΣµµΘ 111 KKK ϖϖ= }

 



 91

observed that the performances of the diagonal matrix GMMs are not significantly 

different that the performances of the full matrix GMMs.  

7.3.4 Likelihood Estimation and Decision 

This step consists of estimating the likelihood of a class, and assign a class label based on 

the maximum likelihood (ML) decision rule [84] as follows: 

( )k
c

k c|xpmaxargĉ
k

=  

The difference between choosing the ML rule and the maximum a posteriori (MAP) rule 

lies in the knowledge about the priors p(ck), k = 1, 2, 3. For the ML rule, the decision is 

entirely based on the likelihoods ( )kc|xp . For the MAP rule, the decision rule is  

( ) ( )kk
c

k cpc|xpmaxargĉ
k

= ,  

where both likelihoods and priors are important in making a decision. Because we have 

no knowledge about the priors, and because the priors may vary from person to person, it 

is reasonable to assume to use the ML rule in the context of this work. 

7.4 Results 

In this section, we present the classification performance evaluated on the laboratory data 

described in Sections 4.1 and 4.2. We also analyze the effect of training set size on the 

classification performance, and then we evaluate a subject-independent model. Prior to 

presenting the performance results, we discuss our approach to the optimal choice of the 

number of mixtures in the GMMs. 

7.4.1 Data Preparation 

The classification approach is evaluated individually for each of the 15 subjects. For each 

subject, movement data from the trials are randomly split into 2 sets: training (3/5 of the 

dataset) and testing (2/5 of the dataset). The classifier is designed using the training set, 

and the performance is evaluated on the test set. Table 7.1 shows the number of 

movements per class for each subject, and the total number of movements per class in the 

training and testing data. The training data contain 1711 movements and the testing data 

contain 1107 movements. The average duration of class-1 (large) movements is 7.98 (± 
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2.29) seconds, 4.06 (± 1.8) seconds for class-2 (medium) movements, and 4.94 (± 1.23) 

seconds for class-3 (legs) movements.  

Table 7.1: Evaluation Data 

Training Data Testing Data Subject 
Number Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

1 40 56 35 26 37 22 
2 39 66 35 25 44 23 
3 42 65 21 28 43 14 
4 38 60 30 24 40 19 
5 17 30 16 11 20 8 
6 21 25 23 14 16 14 
7 23 26 20 15 17 13 
8 39 50 39 26 33 26 
9 20 39 18 13 26 4 
10 39 49 39 26 32 25 
11 38 68 26 25 44 16 
12 39 63 25 26 41 16 
13 41 45 42 26 30 28 
14 38 72 17 25 48 10 
15 40 53 44 26 34 28 

Totals 514 767 430 336 505 266 
 

The individual differences in the number of movements per class occurred 

because: 

1) Some subjects performed more trials than others.  

2) Even though each trial consisted of 6 class-1 movements, 8 class-2 movements 

and 6 class-3 movements, every time someone moved another body part besides 

the legs during isolated leg movements, the movement had to be classified as class 

2 instead of class 3. Even though such modification introduced an uneven 

distribution of movements between classes across subjects, it provided data from 

movements that are very common in natural settings that were not introduced in 

the experiment in the first place. 

3) Extra movements not included in the protocol, which were performed when the 

subject was supposed to be still, were also included. 

4) The number of movements per class in the free-protocol trial varies per person. 
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Also, subjects 1, 2, 3, 4, and 8 have data from 2 different bed sizes. Since we have not 

found a significant difference in the classification performances across beds, the results 

shown are calculated based on combination of these datasets. 

7.4.2 Performance Measure 

The performance measure used in this work is the classification rate across all subjects, 

which is the proportion of test samples from all subjects that are correctly classified. The 

classification rate across all subjects is used because we want to measure the overall 

performance of the classifier independently of the subject. The classifier performance is 

reported based on knowledge of the true movement intervals, i.e., load cell data from 

each movement are extracted using the true intervals, and not the detected intervals from 

the detection step. However, the effect of the detector’s boundary errors on the 

classifier’s performance is investigated. 

Unless indicated otherwise, all the future comparisons between different classifier 

conditions are done with the McNemar’s test [83]. This test is used to determine whether 

the difference between 2 classifiers is significant or not, and it is computed as following. 

Suppose that we have 2 classifiers, A and B. Let 

n00 = number of samples misclassified by both A and B, 

n01 = number of samples misclassified by A but not by B, 

n10 = number of samples misclassified by B but not by A, and 

n11 = number of samples misclassified by neither A nor B. 

The idea is that there is little information in the number of samples on which both 

systems under consideration get the correct result, or for which both get an incorrect 

result. These may be excessively easy or excessively difficult samples. So, the test is 

based entirely on the values of n01 and n10. The null hypothesis that the classifiers have 

the same error can be rejected with probability of incorrect rejection of 0.05 if 961.z > , 

where
0110

1001 1

nn

nn
z

+

−−
= . The quantity z2 is χ2 distributed with one degree of freedom. 

Unless specified, the level of significance is set to α = 0.05. 
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7.4.3 Number of Mixtures Components 

The number of mixture components in the GMMs is estimated using 3-fold cross-

validation of the training set [83]. Training data from each subject are randomly split into 

3 disjoint sets, each containing roughly the same number of data samples. Each set is 

used in turn as an independent test set while the remaining 2 sets are used for training. 

The classification rate is estimated over all sets. Figure 7.6 shows the effect of increasing 

the number of components in the Gaussian mixture model. Increasing the number of 

components beyond 3 increases the error, and models with as few as 2 components give 

reasonable performance. The difference in performance for 1 and 2 components is 

statistically significant with a significance level at 0.01. The difference in performance 

for 2 and 3 components is not statistically significant, and the difference in performance 

for 2 and 4 components is statistically significant with a significance level at 0.01. We 

chose to use 2 mixtures. 

 

Figure 7.6: Classification rate as a function of the number of mixture components. 

7.4.4 Performance Results 

The overall classification rate on the test data is 84.6%, and the corresponding confusion 

matrix is presented in Table 7.2. The most frequent errors are between classes 2 and 3. A 

closer examination of the errors show that, in many cases, the classifier mistakenly 
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classified movements consisting of leg movements and very small adjustments of head or 

torso (class 2) as leg movements (class 3). In such cases, the small movements in the 

upper body do not substantially affect the overall trajectory of the center of mass. We 

speculate that this type of mistake may also be common when the same task is done by a 

human scorer because, depending on the conditions for visualization of the movements, 

small movements in the upper body may be missed. The classifier also mistakenly 

classified arm movements (class 2) as leg movements (when one leg was moved) a few 

times, and these mistakes were more common among short and light subjects (subjects 2, 

3 and 4).  

Table 7.2: Confusion matrix for the 3-class movement classification problem: large, medium and leg 
movements. 

Estimated   

Class 1:Large Class 2: Medium Class 3:Legs 

Class 1: Large 325 9 2 
Class 2: Medium 13 391 101 True 
Class 3: Legs  2 44 220 

 

When the variance of the trajectory in the x-direction is included in the feature 

vector, the overall classification rate is 85.8%. Although we had previously expected that 

such feature would help discriminating leg movements (because the center of mass 

moves up/down when someone bends/straightens a leg), the difference in performance 

between the 3-dimensional feature vector and the 4-dimensional feature vector is not 

statistically significant.  

The individual performances are shown in Figure 7.7. The χ2 test for differences 

among proportions [79] shows that there is a difference between the performances across 

subjects, at a significance level of 0.05 and with 14 degrees of freedom. The degree of 

difficulty of a classification problem depends on the variability of the features in a class. 

We speculate that there are differences in the classification performance across subjects 

because the intrasubject movement variability may be larger in some subjects, which 

results in a larger intraclass variance. The intrasubject movement variability is due to the 

fact that voluntary movement is continuously influenced by human neuromusculoskeletal 

system constraints (biomechanical and anatomical) [89]. 
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Figure 7.7: Individual classification performances.  

The detection errors in the onset and offset of the movements have no effect on 

the performance of the movement classifier. The performance of the classification using 

the estimated boundaries is 83.4%. Such performance is not statistically different from 

the performance using the ground truth boundaries. This result shows the robustness of 

the features with respect to small differences in the detected boundaries.  

Effect of Training Set Size 

The use of subject-dependent models requires learning parameters for each subject with 

data of each subject. The disadvantage is that it takes time to collect subject-dependent 

data. To select the most appropriate parameterization, it is important to know the 

minimum amount of data necessary to train the model for each person.  

We examined how the classification rate on the testing data changes as we 

progressively increased the amount of training samples per class. Because the number of 

samples per class is different for each subject, we only included in this analysis subjects 

that had at least 30 movements per class. The seven subjects included were 1, 2, 4, 8, 10, 

13, and 15. The overall classification rate, which was calculated on the test data 

previously selected to each subject, was computed as a function of the number of training 
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samples, with the number of samples increasing from 5 to 30 in increments of 5. Figure 

7.8 shows the classification rate as a function of the number of training samples per class 

for the chosen test set. The term ‘All’ in the plot corresponds to the value of the 

classification rate when all the available training samples were used.  

Using all samples available in the training set, the overall classification rate is 

83.2%. The classification rate is 81.5% when using only 10 samples per class, and the 

difference between these performances is not statistically significant. The difference in 

performance for 5 and 10 samples is statistically significant with a significance level at 

0.01. Therefore, to achieve comparable results for the data examined in this work, at least 

10 samples per class are necessary to train the model for each person.  
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Figure 7.8: Effect of the training set size: classification rate as a function of the number of training 

samples per class. 

Subject-Independent Models 

Subject-independent models are always preferable and especially important in 

applications where training is difficult or impossible to conduct. The disadvantage of the 

subject-independent models is a loss in performance due to the additional inter-subject 
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variability. In order to investigate the decline in performance, we use the same pattern 

recognition approach and representation as in the subject-dependent model, but train the 

model with data from a number of subjects. 

The subject-independent model is built using a leave-one-out approach, i.e., using 

training data from 14 subjects to build the model, and use the data from the 15th subject 

left out from the group to test the model. The same procedure is repeated for all subjects, 

and the results of each tested subject are combined to obtain the overall performance. We 

tested with different number of mixture components, and models with as few as 4 

components give reasonable performance. The difference in performance for 2 and 4 

components is statistically significant with a significance level at 0.01. The difference in 

performance for 4 and 6 components is not statistically significant. We chose to use 4 

mixtures. 

The classification rate on test data for a model with 4 mixtures is 80.3%. The 

difference in performance between the subject-independent and the subject-dependent 

(performance of 84.6% with 2 mixtures) models is statistically significant, with a 

significance level at 0.01. Although the subject-dependent model yields better results, the 

relative improvement of 5.35% over the subject-independent model is fairly small. We 

note that the subjects’ weight varied by a factor of 3:1 (maximum weight is 275 lbs, and 

minimum is 85 lbs). This suggests that the selected feature representation is relatively 

invariant across subjects.  

Large fluctuations in the individual classification rate are expected due to possible 

mismatches in the training data between existing subjects and the new ones [90]. The 

individual performances for both methods are shown in Figure 7.9. While for some 

subjects (subjects 1, 5, 6, 7, 10, 13, and 15) the performance does not degrade 

considerably with the subject-independent model, there are differences for others. For 

example, for subject 11, for example, the classification rate drops from 95.3% to 69.4% 

when using the subject-independent model.  
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Figure 7.9: Individual performances for subject-dependent and subject-independent models. 

7.5 Using a Time-Frequency Representation 

Although the feature representation described in Section 7.3.2 was selected considering 

the physical model of human body, it is possible that a representation based on temporal 

decomposition of the signals would be more complete and therefore yield better results. 

Our cursory analysis of the nonlinearity of the underlying system suggested that 

movements of the small body parts would be nearly linear. This notion provided 

motivation for investigating an additive time-frequency representation with features 

extracted using wavelet-based multiresolution analysis (MRA). Through a zooming 

procedure across scales, the multiresolution analysis may provide a better 

characterization of the transients that represent different types of movements [91]. 

Many successful applications of the wavelet transform in pattern classification 

problems have been reported [92-94]. Englehart [92] uses a wavelet packet based feature 

set, subject to dimensionality reduction using principal components analysis (PCA), for 

discrimination of four classes of upper limb motions from two-channel myoelectric 

signals. Kundu et al. [93] use wavelet coefficients selected using a thresholding operation 

to discriminate between 6 classes of underwater acoustic signals using a Hidden Markov 

Model (HMM) as classifier. Yen et al. [94] use the energy values of selected wavelet 
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packet nodes to classify 8 classes of vibration signals that constitute the signatures of 

faulty components in industrial machinery equipments.  

Details about the feature extraction and feature subset selection steps are 

described in details next.  

7.5.1 Feature Extraction 

The classification of each movement is concentrated around a given time interval [t0, t1] 

that defines the start and end of the movement. In the feature extraction step, the discrete 

wavelet transformation is applied only over the interval containing most of the intensity 

of the movement. The intensity of a movement refers here to the effort made to make a 

certain movement. 

Due to the fact that 1) each detected movement signal has a specific duration, 2) 

the wavelet coefficients are used as features, and 3) the number of wavelet coefficients 

varies with the length of a signal, the wavelet transformation cannot be applied directly 

on the interval [t0, t1]. For each movement, the algorithm first finds a segment S of length 

T, in seconds, which corresponds to the interval where the intensity of the movement is 

the largest. The wavelet transformation is then applied to the signals xCM(t) and yCM(t) 

only over the interval defined by S. With this operation, only the segment containing the 

most concentration of the intensity of the movement is kept for feature extraction.  

Let wi(t) be the function that represents the load cells signal for a given movement 

defined over a time interval [t0, t1], for i = 1, 2, 3, 4. The segmentation consists of the 

following steps: 

1. Compute the square differences for each load cell signal, at time t, as follows: 

( )( ) ,1)()( 2−−= twtwtSD iii   10 ttt ≤≤ , 

where wi(t −1) is the load cell signal measured at previous sampling time. The 

intensity of a movement is captured through the computation of the square 

differences for each load cell signal because the magnitude of the changes in the 

signals are related to the force applied at each time t. That is, the force is 

proportional to the amount of weight that is being moved and, therefore, directly 

related to the intensity.  
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2. Compute the sum of the square differences across all load cell signals, at time 

t, as follows: 

)()(
4

1
tSDtSSD

i
i∑

=

= ,  10 ttt ≤≤ . 

3. Estimate a segment of length T that is centered at time instant tC, where tC 

corresponds to the t-coordinate of the centroid of the region below SSD(t) on 

the interval [t0, t1]. The x-coordinate of the centroid of a region bounded by 

two curves f(x) and g(x), on the interval [a,b] [75], is given by  
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In this case, the t-coordinate of the centroid of the region below SSD(t) 

corresponds to  
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The segment S is thus defined over the interval ⎥⎦
⎤

⎢⎣
⎡ +−

22
Tt,Tt CC

. However, the segment S 

can be long enough that includes data from the previous or next movement. In order to 

avoid including data from movements besides the movement being analyzed, the segment 

S is defined as  

⎥
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     (7.2) 

where t1,Previous is the offset of the previous movement and t0,Next is the onset of the next 

movement. Since the segment defined in Equation 7.2 can be smaller than T seconds due 

to the overlap of the segment and the previous/next movement, the length of the segment 

S is corrected by performing a symmetric boundary value replication. Figure 7.10 shows 

an example of the computation of the segment S for a class-1 movement. The load cell 

signals wi(t), for i = 1, 2, 3, 4, are shown in the top plot, and the correspondent square 

differences SDi(t) are shown in the middle plot. The sum of the square differences across 
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all load cell signals SSD(t) is shown in the bottom plot, where the vertical dotted lines 

represent ⎥⎦
⎤

⎢⎣
⎡ +−

22
Tt,Tt CC with length T = 3 seconds, and the solid vertical line shows the 

position of the center of the segment, tC. 
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Figure 7.10: Load cell signals wi(t) in pounds (top) and square differences SDi(t) (middle), for i = 1, 2, 
3, 4, during a class-1 movement. Correspondent SSD(t) is shown in the bottom plot. Vertical dotted 

lines in the bottom plot show the boundaries of the segment S with length T = 3 seconds, and the solid 
vertical line shows the center of the segment located at tC.  

The signals xCM(t) and yCM(t) from the segment S are then decomposed using the 

Discrete Wavelet Transform (DWT) with J0 levels of decomposition. A review of the 

DWT is given in Appendix F. From each decomposed signal, the following set of features 

is extracted:  

 The energy of the details coefficients at the first decomposition level E1: this 

feature has been chosen to capture the energy distribution of the high 

frequency components of the movements. The energy of the detail coefficients 

at the first level is estimated by 

∑
=

=
2

2

1

2
11

J

n
n,DE ,        (7.3) 
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 where 2J/2 is the number of elements in the vector D1 for a signal with length 2J. 

In this case, 2J corresponds to the segment length T. 

 The wavelet detail coefficients vectors for the remaining levels Dj, for j = 2, 3, 

…, J0: the coefficients corresponding to the slower varying components of the 

movements.  

Given that the trajectory of the center of mass signal is sampled at 10 Hz, the detail 

coefficients in the first level, D1, represent the signal in the approximately 2.5-5 Hz 

range, D2 in the range 1.25-2.5 Hz, D3 in the 0.625-1.25 Hz range, and so on. In the last 

step, features from each signal are concatenated into a single feature vector to form a 

high-dimensional vector. The dimension of the feature vector thus depends on the 

segment length T and on the choice of the number of decomposition levels J0.  

7.5.2 Feature Subset Selection 

In feature selection step, the sequential forward selection method [82] is used to reduce 

the dimensionality of the original feature set. Concerning both the computational 

efficiency and performance of a recognition system, one is usually interested in a feature 

space of low dimensionality. The relatively high dimensionality is due to 1) the fact that 

features are extracted from two signals and concatenated into one feature vector, and 2) 

the fact that time-frequency representations have high dimension. Therefore, the goal of 

the feature selection step is to reduce the number of features by selecting the best subset 

of the original feature set, according to some criterion. 

In general, the problem of feature selection can be described as selecting the best 

subset x of d features from the set y of D > d available features. Feature selection consists 

of 2 components: 

1. Feature Selection Criterion J(⋅): a criterion must be established by which it 

is possible to judge whether one subset of features is better than another. The 

feature set can be selected in 2 ways as follows: 

 Design a classifier on the reduced feature set, and choose the feature sets 

for which the classifier performs well on a separate test/validation set. The 

criterion is the error rate, and the feature set is chosen to match the 

classifier. A different feature set may result with a different choice of 
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classifier [83]. This method is also known as the wrapper method because 

it conducts a search for a good subset using the classifier itself as part of 

the selection criterion [95]. 

 Estimate the overlap between the distributions from which the data are 

drawn and favor those feature sets for which this overlap is minimal (that 

is, maximize separabiliy). This is independent of the classifier, but has the 

disadvantage that the assumptions made in determining the overlap are 

often crude and may result in a poor estimate of the discriminability [83]. 

2. Search Method: a systematic method must be used for searching through 

candidate subsets of features. There are 2 basic methods for feature subset 

selection: 

 Optimal methods: these generally require exhaustive search methods (that 

evaluate all possible subsets), which are feasible for only very small 

problems [83]. The branch and bound algorithm avoids an exhaustive 

search by using intermediate results for obtaining bounds on the final 

criterion value [82]. 

 Suboptimal methods: the optimality of the above methods is traded for 

computational efficiency [83]. Although they are not capable of examining 

every feature combination, they assess a set of potentially useful feature 

combinations [83]. Some of the algorithms include the best individual N 

features, the sequential forward selection, the sequential backward 

selection, and “plus l – take away r” selection [83]. 

Our approach uses the classification rate calculated on the training data as the 

selection criterion. The training data are split into n approximately equally sized 

partitions and, for a given subset of features, the statistical model is estimated using n -1 

partitions, and the remaining partition is used as test set. The classification results from 

each of the n runs (n is equal to 3 in this case) are summed to produce the estimated 

classification rate. 

The Sequential Forward Selection (SFS) is the algorithm used as the search 

method [83]. The SFS method (or the method of set addition) is a bottom-up search 

procedure that adds new features to a feature set one at a time until the final feature set is 
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reached. Suppose we have a set of d1 features, x = (x1, x2, …, ). Let the feature 

selection criterion function for the set x be represented by J(x). For each of the features 

 not yet selected (i.e., in y - x, where y is the original feature set), the criterion function 

Jk = J(x + ) is evaluated. The feature that yields the maximum value of Jk is chosen as 

the one that is added to the set x. Thus, at each stage, a variable is chosen that, when 

added to the current set, maximizes the selection criterion. The feature set is initialized to 

the null set [83]. The algorithm may be terminated when the maximum allowable number 

of features is reached. The reasons for choosing the SFS algorithm instead of the 

Sequential Backward Selection (SBS), which starts with a full set of features, are: 1) 

there are not sufficient data to accurately estimate the large number of parameters 

resulting from a high-dimensional feature vector, and 2) it is computationally more 

demanding to start with the full set of features and delete one at a time. Although, in 

theory, going backward from the full set of features may capture interacting features 

more easily [95]. 

1dx

kξ

kξ

7.5.3 Parameters Optimization 

The selection of the feature subset depends on the choice of the segment length T, the 

wavelet mother ψ, and the number of decomposition levels J0. Since the feature selection 

is performed in conjunction with the classifier, the choice of the final subset also depends 

on the number of mixture components M and the feature subset dimension. The 

dimension of the feature subset is defined last, based on the performances resulting from 

the optimized parameter values of T, ψ, J0 and M. The parameters optimization performs 

a restricted search of the parameter space according to the parameter values defined by 

data analysis and by restrictions of the classifier as follows:  

 Segment Length: the length of the segment where most of the intensity of a 

movement is concentrated, T, needs to be long enough to include sufficient 

information to discriminate among different classes. The search for the 

segment length spans from 2 to 10 seconds (the upper limit is approximately 

the mean duration plus one standard deviation of the class-1 movements − the 

longest class).  
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 Wavelet Mother: there are no uniformly optimal ways of determining which 

wavelet is more sui for a given classification problem. Therefore, we selected 

the most commonly used wavelets, namely Haar, Daubechies, Symmlets, and 

Coiflets (the mother wavelet properties are described in Appendix F), with the 

following filter lengths: Haar (filter length is 2), Daubechies of order n = 2 to 

n = 5 (filter length is 2n), Symmlets of order 2 to 5 (filter length is 2n), and 

Coiflets of order 2 (filter length is 6n).  

 Level J0 of Partial DWT: although the decomposition can be carried out to 

its maximum depth NlogJ 2= , where N represents the length of the 

decomposed signal, most applications require only a subset of the coefficients. 

In order to avoid the decomposition of levels that contain only one coefficient, 

the values for J0 vary from 2 to the largest integer corresponding to .  Tlog2

 Number of Mixture Components: the selected values for M vary from 2 to 5 

mixtures. Given the limited number of training samples per class, we 

restricted the maximum number of mixtures to 5 in order to have sufficient 

data for the model estimation. 

The optimization is based on the overall classification rate on the training data, as 

described in Section 7.5.2, and consists of 4 steps. In the first step, the performances of 

all combinations of parameters are computed. In the second step, for each feature subset 

dimension, the combinations corresponding to the best performances, which are 

statistically significant from the remaining performances, are selected. In the third step, 

only the combinations that are common in all feature set dimensions are kept. In the last 

step, the combination of parameters with the least complexity is chosen. The optimal 

values were found to be: segment length T is equal to 8 seconds, the wavelet mother ψ is 

db6, the number of decomposition levels J0 is 5, and the number of mixture components 

M is 2. There are no statistical differences in performance for T = 8, 9, J0 = 5, 6, and for 

M = 2, 3.  

The remaining parameter to be selected is the dimension of the feature subset. A 

rank plot of the classification rate versus the feature subset dimension, for the optimal 

parameter values and for the first 10 features, is shown in Figure 7.11. The performance 

on the training data for a 3-dimensional feature subset is 90.3%, and it is 92.9% for a 6-
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dimensional feature subset. The addition of features beyond 6 dimensions does not 

improve the performance, as shown in Figure 7.11. The difference in performance for a 

feature subset with 3 and 6 dimensions is statistically significant with a significance level 

of 0.01. Therefore, for the wavelet-based features, the best result on the training data is 

obtaining using a feature subset with 6 dimensions. 
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Figure 7.11: Rank plot of the classification rate versus the feature subset dimension, for the 
optimized parameter values. 

7.5.4 Results 

Using the optimal parameter values, the overall classification rate on the test data for a 3-

dimensional feature vector is 82.2%. The correspondent confusion matrix is presented in 

Table 7.3. The overall classification rate on the test data for a 6-dimensional feature 

vector is 83.5%, and the difference in performance between the system with a 6-

dimensional and a 3-dimensional wavelet-based feature vector is not statistically 

significant. Because there was no difference in performance on the test data, and because 

the number of degrees of freedom for a GMM depends on the dimension of the feature 

set and on the number of mixtures, we compare the performance of the 2 representations 

(time domain and time-frequency domain) on the test data based on the same number of 
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degrees of freedom for a fair comparison. Thus, unless otherwise indicated, the results are 

presented based on a 3-dimensional feature vector. 

Table 7.3: Confusion matrix for the wavelet-based representation for the 3-class classification 
problem: large, medium and leg movements. 

Estimated   

Class 1: Large Class 2: Medium Class 3: Legs 

Class 1: Large  321 8 7 
Class 2: Medium 28 386 91 True 
Class 3: Legs 10 53 203 

 

These results suggest that despite the nonlinearity of the bed-human system 

discussed in Section 3.2, for the purposes of movement classification, the bed-human 

system can be viewed in terms of an additive representation. As noted above, this is 

consistent with the fact that for movements of small body parts, the system approximates 

a linear system response. Therefore, an additive representation is sufficient to represent 

fast and slow portions of a movement.  

An analysis of the selected features for each subject shows that the energy of the 

details coefficients at the first decomposition level of yCM(t) appears at the top 3 best 

features for 60% of the subjects. Such feature represents the high-frequency components 

of the movement along the y-direction (side to side of the bed). Note that this feature 

conveys similar information to the feature used in the time-domain − the sample variance 

of the trajectory in the y-direction. Thus, how the movement is performed along the y-

axis is important for discriminating the type of movement.  

Another similarity observed across subjects is that, besides the energy of the 

details coefficients at the first level, the coefficients that correspond to the extremities or 

the middle of the decomposed segment are selected for classification. Given that a long 

segment (8 seconds) was chosen and class 2 and 3 are on average 4 seconds long, this 

implies that those coefficients are being selected because they can discriminate class 1 

from class 2-3 movements just by using the information at the extremities of the 

segments. However, the long segment does not contain sufficient information in the 

extremities to better discriminate between class-2 and class-3 movements. Therefore, we 
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can speculate that the coefficients from the middle of the segment are selected to 

minimize the confusion between class 2 and class 3. 

The detection errors in the onset and offset of the movements have no effect on 

the performance of the classifier. The performance of the classification using the 

estimated boundaries is 81.5%. Such performance is not statistically different from the 

performance using the ground truth boundaries. It shows that the wavelet-based features 

are robust to small differences in the detected boundaries. The errors in the onset and 

offset of the movements have less or no affect on the performance because the feature 

extraction is centered on the time interval containing most of the intensity of the 

movement.  

Comparison between Feature Representations 

Despite their simplicity, the time-domain features contain enough information to perform 

as well as the wavelet-based features on the classification task. The difference in 

performance between the two representations is not statistically significant. A 

comparison of the confusion matrices of the 2 representations (Table 7.2 and Table 7.3) 

shows that the degree of feature overlap that causes the confusion between classes 2 and 

3 has not been solved with this new representation. Figure 7.12 shows the individual 

performances for the two feature presentations used.  

In addition, both representations are robust to differences in bed type. No 

differences in the classifier’s performance were observed when data from different bed 

types were combined or tested separately for the subjects with data from 2 different bed 

types. 

7.5.5 Alternative Representations Investigated 

This section presents the classification results obtained from alternative signal 

representations. We experimented with the following representations: raw load cell 

signals, subband energy features, wavelet packet-based features, fusion of feature types, 

principal component analysis (PCA) and linear discriminant analysis (LDA) for 

dimensionality reduction. 
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Figure 7.12: Individual classification performances for the time-domain and time-frequency domain 

feature representations. 

One advantage of applying the wavelet transformation on the signals xCM(t) and 

yCM(t) instead of applying directly on the raw load cell signals wi(t) is that the original 

feature set is smaller when using the trajectory of the center of mass because the number 

of signals to be decomposed is reduced by half. The originally selected feature set based 

on the trajectory of the center of mass reduces the number of signals to be decomposed. 

However, because additional information may be present in the raw load cell signals that 

is lost when estimating the trajectory of the center of mass, it is important to consider the 

performance of the raw load cell signals. The performance of the movement classification 

approach based on the wavelet decomposition of wi(t) is 80.7%, and the difference 

between the performances is not statistically significant. The results thus show that there 

is not additional information in the raw load cell signals. 

Because the energy of the detail coefficients at the first decomposition level was 

one of the top 3 best features for a majority of subjects, we also examined the 

performance of the system using the subband energy at all 5 decomposition levels. The 

performance of the movement classification approach with a subband energy feature 

representation is better than the performance with the proposed wavelet-based features. 

The subband energies for each of the 5 decomposition levels are computed with Equation 

7.3. The same method for feature subset selection was applied on the subband energies to 

select the top 3 features from the 10 (5 levels x 2 decomposed signals) original features. 
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The classification performance is 85.4% for the subband energy feature representation. 

The difference in performance between the subband energy and the proposed wavelet-

based representations is statistically significant with a significance level of 0.01, and the 

relative improvement in performance is 3.89%. This representation discards the temporal 

information when replacing the wavelet detail coefficients vectors by the correspondent 

subband energies. One reason for such difference in performance can be that, due the lack 

of shift invariance of the DWT, differences in the temporal alignment of the patterns in a 

class introduce an additional source of intra-class variance into the coefficients. Another 

reason can be that, while the temporal information is discarded, more information about 

the class is conveyed by the subband energies because it takes into account all the 

coefficients.  

Given that the frequency resolution in the WT is poor in the high-frequency 

region, we investigated the use of the wavelet packet transform (WPT) to determine if 

additional discriminatory information is obtained when the high-frequency portion of the 

signals is further decomposed. The filtering process used for extraction of the wavelet-

based features is applied recursively only to the most recently lowpass filtered component 

of the signal. To allow for the decomposition of the low-frequency and the high-

frequency components of the signal, it is necessary to use wavelet packets [96]. The 

iterative process of decomposing the low-frequency and the high-frequency components 

generates a binary wavelet packet tree structure, where the nodes of the tree represent 

subspaces with different frequency localization characteristics. In classification problems, 

the best wavelet packet basis is estimated from the wavelet packet tree using the local 

discriminant basis algorithm proposed by Saito [97]. The algorithm is a modified version 

of the best-basis selection algorithm used in signal compression [98]. It selects an 

orthonormal basis from the wavelet packet tree that maximizes a discriminant measure 

calculated on the time-frequency energy maps of the classes. Common choices for the 

discriminant measure are the symmetric relative entropy and the Euclidean distance. The 

classification performance for the WPT, using the symmetric relative entropy as the 

discriminant measure and applying the feature selection method on the coefficients 

corresponding to the best basis, is 80%. Similar results are obtained using the Euclidean 
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distance. This result shows that increasing the frequency resolution in the high-frequency 

portion of the signals does not improve discrimination. 

Because of the differences between the feature representations (time-domain 

versus time-frequency domain), it is important to consider the performance when the 

representation are fused. We tested a representation that is composed by the time-domain 

features and the subband energy features to verify if the combination of these two 

representations provide complementary information for discrimination. The performance 

of the movement classification approach based on the fusion of the features is 85.6%. The 

differences in the performances based on each type of feature alone and the combined set 

are not statistically significant. The result shows that, despite the differences between the 

feature representations, both types of features do not provide complementary information 

when they are fused.  

One common approach for selecting features is to find a transformation that 

reduces the dimensionality of the original feature vector. We investigated the use of PCA 

and LDA as alternative methods for feature selection. PCA seeks directions in feature 

space that best represent the data in a sum-squared error sense [74]. It produces an 

orthogonal coordinate system in which the axes are ordered in terms of the amount of 

variance in the data for which the corresponding principal components account. If the few 

principal components account for most of the variation, then these may be used to 

describe the data, thus leading to a reduced-dimension representation [83]. Since PCA 

does not take into account the class labels of the feature vectors, there is no guarantee that 

the directions of maximum variance are good for discrimination. Using the first 2 and 3 

principal components, the classification performance with PCA is 76.2% and 79.5%, 

respectively. LDA seeks a transformation that maximizes the between-class separability 

and minimizes the within-class variability through the Fisher’s criterion [83]. That is, it is 

aimed at finding a projection where samples from the same class are projected very close 

to each other and, at the same time, the projected class means are as far apart as possible. 

For a classification problem with N classes, a transformation is produced to a space of 

dimension at most N – 1. The classification performance with LDA is 68.2% for a two-

dimensional feature vector (in this case, N = 3). The performance of the wrapper method 

for feature selection (82% for a two-dimensional feature vector) is superior to the 
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performances of the PCA and LDA methods for this classification problem. However, the 

relative improvement of the wrapper method (82.2%) over PCA (79.5%) for a three-

dimensional feature vector is only 3.4%, and it comes at a higher computational cost, and 

it is dependent on the classifier. Also, PCA outperforms LDA. Generally speaking, LDA 

is optimal when the distributions of the features for each class are unimodal and separated 

by the scatter of means [80]. Our classification results thus far suggest that the 

distributions are multimodal and there is overlap between classes 2 and 3, what could 

explain why LDA is not effective.  

7.6 Performance of the Integrated Detection and Classification System 

In this section, the performance of the system is presented by integrating the results of the 

detection and classification components described in Sections 6.2 and 7.3, respectively. 

We show the performance of the system in detecting and correctly classifying 

movements, as well as correctly detecting periods with no movement. 

The system is evaluated in the following manner. For each subject, movement 

data from a fixed and pre-defined number of fixed-protocol trials randomly selected are 

used for training, and the remaining fixed-movement trials and the free-protocol trial are 

used for testing. The performance of the system is evaluated on the test set, based on the 

correctly detected and classified movement time periods, and based on the correctly 

detected non-movement time periods. Therefore, errors due to 1) falsely detected and 

missed movements, 2) false alarms and miss detections at the onsets and offsets, and 3) 

misclassifications are taken into account as the system output is continuously compared 

with the ground truth along the total time period corresponding to the testing time. Table 

7.4 shows the confusion matrix for the continuous evaluation of the system for all 

subjects that is adapted from Ward [99]. The second column in Table 7.4 shows the total 

time, in seconds, corresponding to movement periods (classified according to the 3 

classes suggested in this work) and non-movement periods in the ground truth. The 

shaded values show the time periods correctly recognized by the system as being a 

movement period corresponding to a certain class of movement or non-movement period. 

The remaining values in the third to sixth columns represent the time periods wrongly 

recognized according to the type of errors listed above. Errors due to false alarms in the 
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movement boundaries and falsely detected movements, as well as errors due to misses in 

the movement boundaries and missed movements are not specified by class, and only the 

total time periods corresponding to these errors are reported (1336.9 and 692.8 seconds, 

respectively). The last column shows the percentage of time correctly recognized for each 

type of action.  

Table 7.4: Confusion matrix of the integrated movement detection and classification system. 

Estimated (secs) 
 

Total 
Time 
(secs) Class 1 Class 2 Class 3 Not 

Moving 

% Time 
Correct 

Class 1 2923.7 2659 40.5 27 90.9 
Class 2 2314.9 155.2 1296.8 500.3 56.0 
Class 3 1298.3 5.7 145.8 1013.8 

692.8 
78.1 True 

Not 
Moving 29098.1 1336.9 27761.2 95.4 

 

Based on the percentage of time that each type of action was correctly recognized 

by the system, the system correctly identified class-2 movements only 56% of the time, 

and showed percentages close to 80% or higher for all the other types of action. Because 

of the errors in the classification for class-2 movements, and because all the missed 

movements correspond to class-2 movements, the overall performance (detection and 

classification) for this class deteriorates in comparison to the classification performance.  

The accuracy of the system is defined as 

TimeTotal
TNcTPaccuracy +

= , 

where cTP stands for correct true positive, and corresponds to the correctly detected and 

classified movement time periods. TN stands for true negative, and corresponds to the 

correctly detected non-movement time periods. Total time is the total testing time. Based 

on this definition, the accuracy of the system is 91.9%, for a total testing time of 35,635 

seconds (approximately 9.9 hours of data). The accuracy of the system is significantly 

better than the performance on just the classification because the data contain long non-

movement time periods that are correctly detected by the system.  
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7.7 Summary 

In this chapter, we presented an approach for subject-dependent and subject-independent 

classification of movements in bed from load cell signals. Given a time interval where a 

movement has been detected, the goal is to classify the movement into one of the 

following classes: posture shifts, medium amplitude movements, and isolated leg 

movements. We presented two feature representations: a time-domain representation that 

is based on simple descriptors of the trajectory of the body center of mass, and a time-

frequency domain representation of the trajectory signals using wavelet-based MRA. The 

approach was evaluated on data from 15 subjects.  

The time-domain features used in this work are: the distance between initial and 

end points of the trajectory of the body center of mass during movement, the length of the 

trajectory, and the variance of the trajectory in the y-direction (side to side of bed). The 

distribution of the feature vectors for each class of movements is modeled by a Gaussian 

mixture density. We showed that increasing the number of mixture components beyond 3 

increases the error, and models with as few as 2 components give reasonable 

performance. The overall classification rate on the test data for 2 mixtures is 84.6%. The 

most frequent classification errors are between classes 2 and 3. The classifier mistakenly 

classified movements consisting of leg movements and very small adjustments of head or 

torso (class 2) as leg movements (class 3). One reason for such mistakes can be that the 

small movements in the upper body do not substantially affect the overall trajectory of 

the center of mass.  

We showed that this approach is applicable in real settings because it does not 

require a large amount of training data. Given the present dataset, a minimum of 10 

samples per class is necessary to achieve comparable classification results. We also 

showed that the time-domain representation is relatively invariant across subjects. In 

particular, it is relatively invariant to their weight and height, because similar results were 

found when comparing subject-dependent models against a subject-independent model in 

a dataset where the subjects’ weight varied by a factor of 3:1.  

The fact that a movement can be decomposable into a series of movements of 

different intensity provided motivation for investigating a time-frequency representation 

using wavelet-based multiresolution analysis (MRA). In the feature extraction step, the 
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discrete wavelet transformation is applied only over the interval containing most of the 

intensity of the movement. Following feature extraction, feature selection is performed 

using the sequential forward selection method to reduce the relatively high 

dimensionality of the original feature set.  

The classification performance of the wavelet-based features is 82.2%, and the 

time-domain features perform as well as the wavelet-based features on the classification 

task. Also, the classification performance of the subband energy features is better than the 

performance of the proposed wavelet-based features, with a performance of 85.4%. One 

reason for such difference in performance can be that differences in the temporal 

alignment of the patterns in a class introduce an additional source of intra-class variance 

into the coefficients. This is due to the lack of shift invariance of the DWT. Another 

reason can be that, while the temporal information is discarded, more information about 

the class is conveyed by the subband energies because it takes into account all the 

coefficients.  

We also showed that there is no benefit in combining these feature 

representations. Despite the differences between them (time-domain versus time-

frequency domain), both types of features do not provide complementary information 

when they are fused. 

The performance of the integrated detection and classification system was 

presented. The performance of the system is evaluated on the test set, based on the 

correctly detected and classified movement time periods, and based on the correctly 

detected non-movement time periods. The system correctly identified class-2 movements 

only 56% of the time, and showed percentages close to 80% or higher for all the other 

classes and for the non-movement periods. The overall accuracy of the system is 91.9%, 

for a total testing time of approximately 9.9 hours of data. Because the data contain long 

non-movement time periods that are correctly detected by the system, the accuracy of the 

system is significantly better than the performance on just the classification.  

 

 



 
 
 
 
 
 

Chapter 8  

8 Conclusions 

This thesis presented a system for assessment and classification of movement in bed with 

load cells. The main goal was to examine the extent to which the load cell signals can be 

used to infer clinically meaningful aspects of movement and sleep behaviors. Mobility in 

bed was characterized by the periods of postural immobility, movement times, and the 

types of movement performed. We focused on the assessment of major posture shifts and 

smaller movements. This thesis also presented a methodology for determining typical 

rest-activity patterns from sleep-related parameters estimated from the load cells. 

In Chapter 3, we discussed the issues involved in the inference of movement 

information from load cell signals by inverting the bed-human system response. The 

inadequate signal dimensionality of the load cell signals and the nonlinearity of the bed-

human system are the two major problems encountered in the inversion of the system 

response. Such problems motivated the use of pattern recognition as the approach for 

inference of movement information. 

Chapter 4 detailed the protocol for load cell data collection. Data were collected 

when the subjects were awake using two different protocols, free movement and fixed 

movement (pre-determined set of movements), to allow both diversity and uniformity of 

movements. The protocol for data collection in a realistic setting was also described, 

which included the collection of load cell, actigraph, and light data, and the completion of 

sleep diaries.  

 

117 



 118

The methodology for determining typical rest-activity patterns was described in 

Chapter 5. The algorithm for estimation of sleep-related parameters incorporated 

arbitrary rules, as well as information about a person’s in-bed profile and about the use of 

the bedroom’s light to estimate bedtimes and get up times. The methodology was 

developed using load cell and light data collected for a period of 2 weeks from 2 residents 

of an assisted-living facility (Elite Care study).  

We compared the algorithm estimates of bedtime and get up time with the sleep 

diaries reports completed by caregivers. The discrepancies found between the objective 

measures from the sensors and the subjective measures from diaries are due to the fact 

that there is always some difficulty in recollecting exact bedtimes or the number and 

length of periods out of bed during the night. Thus, our method is particularly valuable 

for providing information that is not available all the times (it complements the work of 

the caregivers) and that may be missing in the sleep diaries.  

One limitation of our method is that it assumes that the bed is only used for 

sleeping. This is not true when a person is in bed reading or watching television. Thus, 

the total time in bed is overestimated when such situations occur. In the future, this 

limitation may be mitigated using additional information, e.g., status of various devices, 

in conjunction with Bayesian estimation techniques.  

Also, another limitation of the algorithm is the use of thresholds to determine 

bedtimes and get up times. The threshold values were based on the data from two people 

only, and based on a rule used in actigraphy for determining sleep onsets. There may be 

errors in the algorithm estimates because of these imposed thresholds. However, the use 

of different threshold values would still result in differences between the algorithm 

estimates and the sleep diary estimates. 

The notion of an in-bed profile for characterization of a person’s typical patterns 

of sleep behavior can be extended to other applications. It can be used in other 

applications such as localization of a person in a house, where the knowledge about a 

person’s habits throughout the day is important. For example, by placing motion sensors 

in each room of a house, a profile of the occupancy of each room can be estimated.  

In Chapter 6, we presented an approach for detection of movement in bed. The 

general idea of the approach is to assess the energy in each load cell signal in short 
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segments, and then form a weighted combination with scaling coefficients that are 

inversely proportional to the distance of each load cell to the center of mass of the body. 

The approach reliably detects movements: the average equal error rate (EER) across 15 

subjects was 3.22% (± 0.54). Most of the errors were due to misses and false alarms at 

the onsets and offsets of the movements, and not for falsely detecting or missing a 

complete movement. We showed some evidence of the generalizability of the proposed 

detector for different bed sizes. We compared the performance results on subjects tested 

in two different beds, and showed that the bed type has no effect on the performance of 

the detector. 

The person’s weight has no effect on the performance of the proposed detector. In 

particular, the data suggested that there is no correlation between the subject’s weight and 

the EER. A linear relationship between the EERs and the subjects weight is weak 

(r = 0.047). This shows that the approach does not impose any constraints on its use with 

very light people. 

We also showed that, in the absence of training data to estimate the likelihood 

functions in the likelihood ratio test, least square regression can be used for 

approximating the decision threshold. When a new subject is presented to the system and 

training data are not available, it is possible to find an approximation for the threshold for 

the new subject by linear regression of the thresholds of a known set of subjects. 

Although this method only provides an approximation for the threshold, we have not 

found a statistically significant difference in the performance of the detector between the 

EER thresholds (thresholds derived from the EER measure) and the approximated 

thresholds.  

We demonstrated how the detection approach derived in a laboratory setting can 

be applied in a real setting to estimate clinically relevant measures. The load cell setup 

was installed in the beds of 2 residents of an assisted-living facility, and data were 

collected for a period of 2 weeks. The clinical measures estimated from the detected 

movements are: the number of postural immobility periods per night, the number of 

movements per night, and the frequency of movements for each third of the night.  

The study at the assisted-living facility helped us to better understand some of the 

issues involved in the application of the integrated (detection and classification) system in 
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a home. The issues are: installation, calibration, and collection of training data. Regarding 

installation of the load cells under the bed, the load cells were easily installed in a queen 

and a king beds. The subjects did not complaint about the sensors during the study. 

However, during recruitment, one of the prospective participants declined to participate 

in the study because the load cells add approximately 1.5” to the bed height. This 

modification can cause a problem for elderly people with difficulties in getting in and out 

of bed, depending on the height of the bed. The load cell sensor model used in the study 

is large, and a smaller model can be used to solve this issue. The calibration of the load 

cells can be done in the same way as described in Appendix A, by applying a range of 

known test weights. 

Although no labeled data were collected at the assisted-living facility, the protocol 

for laboratory data collection used in this thesis could be adapted to a home setting. The 

experimental protocol can be identical as the one used, except for the number of trials 

performed and the use of video as ground truth. As showed in Chapter 7, the system does 

not require extensive training. To achieve comparable results for the data examined in 

this work, at least 10 samples per class are necessary to train the model for each person. 

Thus, the number of trials could be reduced to a minimum of two. Recordings can be 

used to instruct the subject to perform pre-defined movements at a beep sound. Instead of 

video, an observer in the room can record movement times and also the times and types 

of extra movements performed (not included in the recordings). Approximate movement 

times estimated from the detection algorithm can be compared to the observer’s 

annotations to identify misses, eliminate false alarms and assign labels to the data. 

Given that actigraphs measure the amount of movement based on movement of 

the body location of placement of the sensor, we showed that the actigraph under-reports 

movements as compared to load cells. Therefore, for the detection of a wider range of 

movements in the bed rather than the movement of a specific limb, the load cells provide 

more accurate results than actigraphs.  

In Chapter 7, we described a framework for classification of movement in bed. 

Movements in bed were classified according to the following classes: major posture 

shifts, medium amplitude movements, and leg movements. Two feature representations 

for movement classification were introduced: a time-domain representation of the 
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trajectory of the body center of mass, and a time-frequency domain representation of the 

trajectory based on wavelets. The time-domain features explored spatial and (indirectly) 

temporal aspects of the movements. The distribution of the feature vectors extracted from 

a person’s movement data was modeled by Gaussian Mixture Models. 

Despite their simplicity, the time-domain features contain enough information to 

perform well on the classification task: the overall classification rate on the test data was 

84.6%. We showed that this feature representation is relatively invariant across subjects. 

In particular, this representation is relatively invariant to their weight and height because 

the improvement of the subject-dependent models over the subject-independent model is 

relatively small.  

The features extracted using wavelet-based multiresolution analysis explored the 

fact that a movement can be decomposable into a series of smaller movements with 

different intensity. Thus, through a zooming procedure across scales, the multiresolution 

analysis can provide a characterization of the transients that represent different types of 

movements.  

Since the number of wavelet coefficients varies with the length of a signal and 

each detected movement signal has a specific duration, the discrete wavelet 

transformation is applied only over a fixed-length interval containing most of the 

intensity of the movement. Because the segment can be long enough that includes data 

from the previous or next movement, a symmetric boundary value replication is 

performed to correct the length of the segment. This becomes a problem when two or 

more movements happen very close to each other because there may be not enough 

samples to perform the boundary value replication. 

Time-frequency representations have relatively high dimension, which required 

the use of a feature subset selection technique to reduce the dimensionality of the original 

feature vector. The technique used in this thesis was the sequential forward selection 

algorithm. The classification rate calculated on the training data was used as the selection 

criterion. The classification performance for the wavelet-based features was 82.2%. The 

relative success of the additive representation suggests that classification of movements 

of the smaller body parts may be related to small-signal linearity.  
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Although the feature subset selection method used to reduce the dimensionality of 

the wavelet-based original feature vector was superior to alternative methods such as 

PCA and LDA, one of the drawbacks is that it requires a classifier to select the features. 

That is, the features are only optimal with respect to the chosen classifier. The feature 

selection process has to be repeated every time the classifier changes. 

The difference in performance between the 2 feature representations is not 

statistically significant. In addition, both representations are robust to the onset and offset 

errors in the detected boundaries, and to the type of bed.  

The performance of the movement classification approach with a subband energy 

feature representation is better than the performance with the proposed wavelet-based 

features. The classification performance was 85.4% for the subband energy feature 

representation. The difference in performance between the subband energy and the 

proposed wavelet-based representations is statistically significant with a significance 

level of 0.01, and the relative improvement in performance was 3.89%. One reason for 

such difference in performance can be that, due the lack of shift invariance of the DWT, 

differences in the temporal alignment of the patterns in a class introduce an additional 

source of intra-class variance into the coefficients. Another reason can be that, while the 

temporal information is discarded, more information about the class is conveyed by the 

subband energies because it takes into account all the coefficients.  

Despite the differences between the feature representations (time-domain versus 

time-frequency domain), they did not provide complementary information when they 

were fused. The performance of the movement classification approach based on the 

fusion of the time-domain features and the subband energy features was 85.6%. The 

differences in the performances based on each type of feature alone and the combined set 

are not statistically significant. 

Finally, our conclusions are based on experimental results obtained using data 

from a small set of healthy subjects under controlled laboratory conditions. To examine if 

these results hold with data collected in realistic settings would require testing with data 

collected from a wider range of subjects in a sleep laboratory, for example, where video 

data are available for ground truth. 
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8.1 Future Work 

This work lays out a number of directions in which the assessment of movement in bed 

can be pursued further. 

A natural extension of this work should include the long-term monitoring of 

bedtime and getup times. Changes in sleep habits due to seasonal variations in the 

duration of daylight or due to changes in circadian patterns of rest and activity could be 

examined by extending the method to not only estimate but also monitor changes in 

bedtime and getup times.  

Despite the simplicity and the good classification performance of the time-domain 

features, there is still difficulty in discriminating between class 2 and class-3 movements. 

New feature representations must be investigated to improve the classification 

performance.  

Since the evaluation of the system was based on voluntary movements that were 

performed during wake periods, another extension of this work is to study how the 

system can be improved to detect abnormal movements during sleep periods. One of the 

aspects that could most benefit from further study is to differentiate restless legs 

syndrome (RLS) and periodic limb movements during sleep (PLMS) patients from 

controls. The system could be evaluated against bi-lateral anterior tibialis 

electromyography from overnight recordings of controls and patients. Since RLS patients 

constantly move their legs to relieve the tingling sensations caused by this disorder, we 

speculate that our system could be used as an aid for diagnosis or treatment of RLS 

because it can differentiate leg movements from other movements. Our system can be 

employed in such cases to monitor the frequency of leg movements. For PLMS, the 

criteria used in activity sensors to differentiate normal leg movements from pathological 

movements are: leg movements (single events) with duration varying from 0.5 to 5 

seconds, with an inter-movement interval of 4 to 90 seconds, in a sequence of at least 4 

consecutive movements. It will be interesting to investigate the use of such criteria in our 

approach to detect PLMS.  

Since mobility in bed is impaired for Parkinson’s disease patients, and turning in 

bed becomes difficult, the system could be used to assess slowness of motion and long 

periods of immobility to improve sleep quality.  
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Another important extension of this work would be to study the use of load cells 

under the bed to measure other physiological functions listed in the framework for 

assessment of sleep presented in Chapter 1, such as breathing. The regularity of breathing 

peaks at certain periods during the night. Breathing patterns show the highest level of 

regularity during NREM sleep stages III and IV [64]. One way to test the feasibility of 

the system to detect respiratory movements and monitor breathing patterns is by 

comparing the data from load cell and PSG (coupled with a nasal thermistor [5]) during 

NREM sleep stages III and IV.  
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Appendix A  

A Load Cells Calibration 

 
The relationship between the force applied on a load cell and the load cell output value is 

established during calibration. Although data can be reported using the observed digitized 

outputs, calibration is convenient because each load cell has a different gain, i.e., 

resistance values can differ between load cells slightly. The variation is due to the 

following [60]:  

1. The difference between each load cell's temperature (metal flexes differently at 

different temperatures). 

2. How straight the strain gauges were applied to the surface of the cell during 

manufacturing. While great care is given to making sure the gauges are applied 

absolutely straight, they are very small, and this work has to be done by hand. 

Therefore, we can compare the output of different load cells by converting the raw 

individual outputs to weight values.  

We perform calibration by applying a range of known test weights, and obtaining 

a calibration curve by observation of the outputs. The observed output for each load cell 

i, for i = 1, 2, 3, 4, is a digitized value oi and, after calibration, we have an estimation of 

oi = f(w), where w is the weight of the known test weight applied on the load cell. Even 

though we are dealing with force, what is usually expressed in lbf (pound-force), we 

report the values in kg. This choice is solely based on the fact that people are more 

familiar with such unit, which facilitates comprehension. 

134 



 135

For each tested weight w and for each load cell i, data is collected at 200 Hz, for 

ten seconds. Then, the mean value of the digitized output is calculated and used as the 

correspondent ordinate oi of the calibration curve. We apply the sequence of test weights 

once with increasing load (upscale direction), and once with decreasing load (downscale 

direction). The test weights used are 25-lb disc plates, and we use 8 plates. An aluminum 

platform is placed on the load cell to provide a more s support when many test weights 

are used during calibration. This platform measures 10.2" x 10.2" and weights 1.4 kg (3 

lbs). Figure A.1 shows the setup used for calibration, with the platform supporting two 

25-lb plates. The weight of the platform is added to the known weight placed on the load 

cells. After verification of the weight of each plate used in the calibration, the input range 

extends from 0 to 88.3 kg (194.7 lbs). Figure A.2 shows the plots of the average digitized 

output versus the weight for load cells 1-4 for upscale and downscale runs. From the 

plots, we can see that there is no hysteresis in the system. 

 

 

Figure A.1: Setup for calibration: a platform is used to provide a more s support for the test weights.  

The form of the calibration curve oi = f(w) is determined by a curve fitting 

technique. The outputs oi are assumed to be linearly proportional to the force, and the 

relationship is determined by the least squares method [77]. From oi = f(w), it is 

straightforward to find w = f(oi). Therefore, for each load cell i, we have 

 
 

where  is the digitized value from load cell i,  is the slope of the least-square 
approximation for load cell i,  is the intercept, 

io ic

id iε  is the error due to electrical noise 
and vibration on the floor, and  is the weight, in kg, of the load sensed by load cell i. 
The values for  and , for load cells i = 1, 2, 3, 4 are given in Table A.1. 
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Figure A.2: Mean digitized output versus weight, in kilograms, for load cells 1-4 during upscale and 

downscale runs. 

Table A.1: Calibration parameters (ci and di) for each load cell. 

Load Cell # ci di 
1 0.0197 -1.3770 
2 0.0197 -1.5716 
3 0.0195 -2.0294 
4 0.0198 -2.4493 

 



 

 

Appendix B  

B Analysis of Video Data 

In this appendix, we describe in details the analysis of the video data for the purpose of 

obtaining the ground truth for the experiments described in Sections 4.1 and 4.2. 

 

Cloth Bands Tracking 

From the video, we want to determine the correct movement intervals, i.e., to determine 

where each movement starts and ends by tracking the trajectories of the cloth bands worn 

by the subjects. 

The location of every cloth band, consequently the respective part of the body, is 

estimated using template matching [67]. Such technique uses the normalized cross-

correlation to find the closest match between a given template and an image. The region 

of the image with highest correlation is defined as the closest match. First, templates from 

each cloth band were extracted from the first frames of the video, when the subject is 

lying on his/her back with straight legs and arms. Second, each frame is divided into 

regions of interest prior to template matching. For example, to search for a match for the 

cloth band located in the head, the algorithm just searches in a region of the image around 

the bed top. Third, the template matching is performed for each cloth band. The location 

of each cloth band is determined by the location in the image with highest cross-

correlation according to the following steps: 
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 Compute the correlation coefficient [67] between a gray-level image f(x,y) of 

size M x N that represents the region of interest of each for each cloth band, and a 

template m(x,y) of size J x K that represents cloth band template at point (r,s) : 
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where r = 0, 1, 2,…, M -1, s = 0, 1, 2,…, N-1, m is the average value of the pixels in m(x, 

y), )y,x(f  is the average value of f(x, y) in the region coincident with the current 

location of the template m, and the summations are taken over the coordinates to both f 

and m. 

 Select the location candidates from the first 10 highest correlation 

coefficients. 

 Compute the Euclidean distance between all location candidates, and select 

only the locations of the candidates whose distance fall below a given threshold. 

 The location of each cloth band is given by the median value of the selected 

candidates’ locations. 

 Errors during tracking of the cloth bands occur, and they are mainly due to 

occlusion of the cloth bands and the fast movements that are aliased in the video 

acquisition. To reduce the occlusion errors, we used a method to automatically correct 

trajectories that were wrong based on distance constraints. If a cloth band is occluded, the 

closest match will probably be on the location of another cloth band of similar color, or 

some location in the image far from the last time the cloth band was correctly located. If 

the distance between the last detected location and the next is larger than a certain 

threshold, we assume the last seen location as the correct one.  

 We tested different cloth band color combinations to minimize the confusion of 

the color in the cloth bands on the limbs, because these are typically closer to each other. 

Also, a different color combination may need to be used if the person is wearing clothes 

with colors that match one of the cloth band colors. 
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Camera Calibration 

Calibration of the camera is necessary to convert the (x, y) coordinates of the image 

converted into real world coordinates, i.e., coordinates of the scene. Under the planar 

scene assumption, camera calibration is accomplished by recognition of four landmarks 

located at known coordinates of the scene. The four pink circles on the bed posts, as seen 

in Figure 4.2, are used as the landmarks for camera calibration. The coordinates of these 

landmarks are used to generate an affine transformation between the 3-dimensional scene 

and the image of the bed. The general transformation takes the form  
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where (xi, yi) are the image coordinates and (xs, ys) are the correspondent coordinates in 

the scene (world coordinates), which are measured in centimeters. Therefore, the 

approximate location of each cloth band can be expressed in terms of the coordinates of 

the scene. 

During calibration, we compute the values of αi (i = 1, 2,…,6) by solving two 

systems of equations, one for α1, α2, α3, and another for α4, α5, and α6. Since certain 

movements include all 3 dimensions to be performed (e.g., moving an arm by rising it 

from left to right), the transformation between the 3-dimensional scene and the image of 

the bed in 2-dimensional results in some errors caused by the projection of the 3-

dimensional space into 2-dimensional space. However, since that occurs only during 

certain movements, we believe that the approximation is good enough for this 

application.  

Labeling the Data  

The approximate location of each cloth band is estimated from the procedure described 

above. Since the goal is to determine the correct movement intervals, i.e., to determine 

where each movement starts and ends, we need to obtain this information from the cloth 

band trajectories. As we explained next, this is done in a semi-automatic way. 

Let’s assume that x(t) and y(t) are two functions of time representing the x and y 

coordinates of each cloth band trajectory along a certain trial. Figure B.1 (a) shows an 

example of the trajectory of the head during a sequence composed by an arm movement, 
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a posture shift, and a leg movement. Horizontal axis is the frame number, and the vertical 

axis is the value of x and y coordinates in centimeters. Figure B.1 (b) shows the reference 

directions chosen for x and y, so that for the head trajectory in this example, x and y do 

not change much during an arm movement (approximately 1 cm or 0.4"each), and y 

changes more (approximately 10 cm or 4") that x (approximately 1 cm or 0.4") during a 

leg movement.  

 
Figure B.1: (a) x and y coordinates, in centimeters, of the trajectory of the head during a 

sequence composed by an arm movement, a posture shift, and a leg movement. Time, in the 
horizontal axis, is represented by the frame number. (b) x varies along the bed width, and y 

varies along the bed length. 

From the trajectories x(t) and y(t) of the six points (i.e., head, arms, legs and 

torso), we need to determine the movement intervals for each body part and, from those 

intervals, estimate the interval that corresponds to the entire movement. The algorithm for 

estimation of the intervals of each body part and , for i = 1, 2,…, 

6, consists of the following steps: 

ixendbegin tt ],[
iyendbegin tt ],[

x 

y 

(a) (b) 

1. Use time stamps from beep sounds to provide a coarse segmentation: during 

each trial, every subject hears a beep sound that indicates the time to start a 

movement. The algorithm uses the time stamps of these beeps to create a 

coarse segmentation of each movement. The segmentation is performed by 

selecting a window centered at the time of the beep, and analyzing the 5 

seconds preceding it, and the 15 seconds following it. The choice for 5 
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seconds at the beginning is motivated by the fact that, in many occasions, 

subjects started moving before hearing the beep. We chose 15 seconds 

because, approximately every 15 seconds, a recording is played to instruct the 

subject to perform a movement. 

2. Perform edge detection: the changes in the trajectories x(t) and y(t) can be 

seen as sharp transitions in the signal. The algorithm employs a filter that 

approximates the second derivative, using the estimate 

[100], followed by hard thresholding to 

obtain a first approximation of the intervals of each body part 

and . 

)t(u)t(u)t(u)t(u" 121 −+−+=

ixendbegin tt ],[
iyendbegin tt ],[

3. Post-processing: after estimating the intervals of each body part 

and , for i = 1, 2,…, 6, the interval for the movement 

is given by taking the longest interval in and , for i 

= 1, 2,…, 6, i.e., the beginning of a movement Bbegin and the end of a 

movement Bend are given by 

ixendbegin tt ],[
iyendbegin tt ],[

ixendbegin tt ],[
iyendbegin tt ],[

.
],,max[
],,min[

iiendend

iibeginbegin

yxtB
yxtB

∀∀=
∀∀=

 

4. Visual confirmation: it is rare that results of automatic methods like this one 

can be used without human validation [101]. Therefore, the final step requires 

a visual review of the automatically generated boundaries, during which the 

reviewer can change them. The most common errors are due to small 

movements at the very beginning (or end) of movements that are difficult to 

track by the proposed method, and sometimes can only be detected by visual 

inspection. Therefore, we visually inspect the video only at the frames closer 

to the values of Bbegin and Bend. However, because of possible interscorer 

differences, different results are obtained by different scorers. 

 After validating the boundaries, it is also necessary to visually inspect the video 

to assign labels for each movement, according to the classes defined in Section 7.1. Even 

though we should know the labels beforehand (because the sequence of movements to be 

performed is pre-defined), there are cases when we must confirm them. For example, in 
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the case of isolated leg movements, we must verify if the subject has not moved any other 

part of the body such as the arms. We also examine the video and the results of the 

automatic detection of the cloth band movements to determine if a subject has performed 

a movement not included in the protocol during the periods when he/she should stay still. 

If a movement occurs during these intervals, it is also included and labeled accordingly to 

its type. Movements that do not belong to the classification system defined in Section 7.1, 

such as coughing and deep breathing are labeled as a separate class. 

The capability of this video technique to track the location of the cloth bands 

could be further extended to be used as a method for assessment of movement. 

Movement could be assessed by designing a mapping from the cloth bands locations to 

the load cells outputs, and incorporating constraints imposed by the structure of the 

human body and the kinematics of the human body movements to simplify the problem. 

Since the problem of tracking human movement with video has been extensively 

addressed in the literature, we do not address such problem in this work.  

 

 

 



 

Appendix C  

C Sleep Diary 

According to the study described in Section 4.3, caregivers were asked to complete a 

sleep diary for each subject, for a period of two weeks each. Figure C.1 shows the sleep 

diary used in the study, which was approved by the Review Board of the university. The 

daily sleep diary includes observations of bedtime, lights out, lights on and morning 

arising, in addition to comments regarding nighttime awakening and sleep quality. The 

caregivers received detailed instructions about the completion of the sleep diary from a 

nurse, prior to the beginning of the study. Question #7 includes a scale of sleep quality 

from 1 to 5 that refers to: 

1. Poor night: resident was pacing all or most of night, and had less than 2 hours 

of sleep or rest. 

2. Restless night: resident slept 2 to 4 hrs, and was getting up frequently. 

3. Fair night: slightly restless; resident slept less than 6 hours, but did get some 

restful sleep. 

4. Good night: resident slept 6 to 8 hours with few awakenings. 

5. Outstanding night: resident slept more than 8 hrs with few or no awakenings. 

UR: Unable to rate: resident spent night off campus; household crisis. 
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Figure C.1: Sleep diary for the study at Elite Care. 
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Appendix D  

D ROC Curves 

In this appendix, we show the ROC (receiver operating characteristic) curves for the 

detection approach described in Section 6.2. The ROC curves indicate the relationship 

between hit rate and false alarm rate for each subject. The ROC curve is estimated by 

continuously changing the value of the decision threshold, i.e., a given threshold defines 

an operating point on the ROC curve. The EER is the point where the false alarms and 

miss detection rates are equal, and both errors have the same cost. The EER is reported 

for each tested value of the analysis window length L, and the circles show the locations 

of the EER. 

The ROC curves for subjects 1 to 9, who participated in the LAB1_TWINSIZE 

experiment described in Section 4.1, are shown in Figure D.1. Figure D.2 shows the ROC 

curves for subjects 10 to 15, who participated in the LAB2_FULLSIZE experiment 

described in Section 4.2. 
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Figure D.1: ROC curves for subjects 1 to 9. The EER is reported for each tested value of L. The red 
circle corresponds to the EER point. 

 
Figure D.2: ROC curves for subjects 10 to 15. The EER is reported for each tested value of L. The 

red circle corresponds to the EER point. 

 



 

Appendix E  

E Gaussian Mixture Model Parameters Estimation 

The algorithms used to initialize and estimate the parameters 

{ MMM ΣΣµµΘ ,,,,,,,, 111 KKK }ϖϖ=  of the Gaussian Mixture Models (GMMs) in 

Section 7.3.3, respectively the Linde, Buzo and Gray (LBG) and the expectation 

maximization (EM) [74] algorithms, are described in this appendix. 

 

The Linde, Buzo and Gray Algorithm 

The means of the Gaussians densities are initialized using centroids estimated by the 

Linde, Buzo and Gray (LBG) algorithm [88]. The centroids are obtained by successive 

splitting starting from a single global centroid. The algorithm can be summarized in the 

following steps: 

1. Given a set of N training vectors, let the mean vector, which is denoted by z, be 

the centroid of the initial cluster generated by all training vectors. 

2. Split the initial cluster into 2 new clusters: create 2 centroids z + є and z − є, 

where є is a fixed perturbation vector. For each training vector, compute its 

Euclidean distance from each centroid z + є and z − є, and assign each vector to 

the closest cluster. 

3. Repeat step 2 by splitting and clustering the current clusters until reaching the 

desired number of clusters, which in this case correspond to the number of 

mixture components M. Because the original LBG algorithm only allows the 

number of clusters to be a power of 2, we used a modified version to allow for 

any number of clusters. 
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The estimated centroids for each mixture component i are denoted by µi
LBG. 

   

The Expectation Maximization Algorithm 

The expectation maximization (EM) is an iterative algorithm for finding the maximum-

likelihood parameter estimates for the case of incomplete data, where in the mixture of 

Gaussians the probability of assigning a sample  to the ith Gaussian component is 

unknown [74]. It is assumed that the samples in 

nx

( )Nx,,x,xX K21=  are independent and 

identically distributed (i.i.d.). In a generative model of the data in the training process, 

each sample  ∈ X is generated by only one of the Gaussian components. The goal is to 

obtain the parameter values 

nx

Θ̂  which maximize the likelihood of X given the data, as 

follows 

( ) ( )∏
=

==
N

n
npargmaxpargmaxˆ

1ΘΘ
ΘxΘXΘ . 

The maximum-likelihood estimate Θ̂  is the value of  that maximizesΘ ( )ΘXp . 

  To implement the EM algorithm it is necessary to have initial estimates for the 

mixing weights, means, and covariances of the Gaussians densities. In this work, the 

parameters of each mixture component i are initialized to 

( )

( )

( ) LBG
ii

LBG
ii

i M

∑=

µ=

=ϖ

0

0

0

Σ

µ

1

, 

where the initial estimate for the covariance matrix for each mixture component i is 

calculated based on the training vectors assigned to each cluster i by the LBG algorithm. 

Given an initial estimate of the mixture density parameters, the EM algorithm 

iterates the following two steps: 

E-step: estimate the probability that  is assigned to the ith mixture component 

given the current parameter estimate 

nx

( )pΘ and the data X using  
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where ( ) ( ) ( ) ( ){ }pppp ΣµΘ ,,ϖ=  represent the mixture density parameters 

after the pth iteration.  

M-step: re-estimate the mixing weights, means, and covariances of the Gaussians 

densities using the data set weighted by ( )( )XΘx ,i,p p
n  to maximize the 

likelihood of the data, according to the following equations: 
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Appendix F  

F The Discrete Wavelet Transform 

The wavelet theory involves representing general functions in terms of simpler fixed 

building blocks at different scales and positions [102]. The continuous wavelet transform 

(CWT) is defined as follows: 

( )dtt)t(x),a( ,a∫ τψ=τΨ         (F.1) 

As seen in Equation F.1, the CWT decomposes a signal in the time domain into a two-

dimensional function in the time-scale plane (a,τ). The wavelet coefficient Ψ(a,τ) 

measures the time-frequency content in a signal, indexed by the scale parameter a and the 

translation parameter τ that indicates the translation in time. The definition of the CWT 

shows that the wavelet analysis is a measure of similarity between the basis function 

ψa,τ(t) and the signal itself. Here the similarity is in the sense of similar frequency 

content. The wavelet basis function,ψa,τ(t), is also known as the mother wavelet. 

The wavelet basis function is a family of short-duration high-frequency and long-

duration low-frequency functions defined as 

⎟
⎠
⎞

⎜
⎝
⎛ τ−

ψ=ψ τ a
t

a
)t(,a

1 , a > 0, τ ∈ ℜ. 

The term mother implies that the functions with different region of support that are used 

in the transformation process are derived from one main function. In other words, the 
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mother wavelet is a prototype for generating other window functions. As an example, the 

Haar wavelet is shown in Figure F.1 (a), and the Daubechies mother wavelet of order 2 

(‘db2’) is shown in Figure F.1 (b). 

 

Figure F.1: (a) Haar wavelet. (b) Daubechies wavelet of order 2. 

Depending on the parameter a, the wavelet function dilates or contracts in time 

causing the corresponding contraction or dilation in the frequency domain. When a is 

large (a > 1), the basis function becomes a stretched version of the mother wavelet 

(a = 1) and demonstrates a low-frequency characteristic. When a is small (a <1), this 

basis function is a contracted version of the mother wavelet function and demonstrates a 

high-frequency characteristic [96]. Some of the characteristics of the mother wavelet are 

summarized in the following properties [96]: 

 Support: wavelets can be divided based on their duration or support into 

infinite and finite support wavelets. In practice, finite support wavelets are 

more popular due to their use in multiresolution filter banks. 

 Vanishing moments: the higher the number of vanishing moments of a wavelet 

function, the better it models the smooth part of a signal. 

 Regularity: smooth basis functions are desired in applications where 

derivatives are involved. Smoothness also corresponds to better frequency 

localization of the filters. 

The most commonly used wavelet mother functions that are subject to empirical 

evaluation in this work (as described in Section 7.5.3) are: 
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 Daubechies: compactly supported wavelets that are extremely asymmetric 

(introducing large phase distortion) and have the highest number of vanishing 

moments for a given support width. The Daubechies wavelet of order n 

(denoted by dbn) has a filter length of 2n, a support width of 2n – 1, and n 

vanishing moments. The Haar wavelet is the Daubechies wavelet of order one. 

 Symmlets: compactly supported wavelets with minimal asymmetry and the 

highest number of vanishing moments for a given support width. The near 

symmetry introduces minimal phase distortion into the transform. A Symmlet 

of order n (denoted by symn) has a filter of length 2n, a support width of 2n –

 1 and n vanishing moments. 

 Coiflets: compactly supported wavelets designed to yield the highest number 

of vanishing moments for both mother wavelet and the scaling function for a 

given width. A Coiflet of order n (denoted by coifn) has a filter length of 6n, a 

support width of 6n – 1, and 2n vanishing moments for the mother wavelet 

and the scaling function. 

The discrete wavelet transform (DWT) can be thought of as a judicious 

subsampling of the continuous wavelet transform in which we deal with just dyadic 

scales 2j, j = 1, 2, 3,…[96]. In the discrete case, filters of different cutoff frequencies are 

used to analyze the signal at different scales. The DWT employs two sets of functions, 

called scaling functions and wavelet functions, which are associated with low pass and 

highpass filters, respectively. As illustrated in Figure F.2, the original signal x[n] is first 

passed through a highpass filter g[n] and a lowpass filter h[n]. After the filtering, half of 

the samples can be eliminated according to the Nyquist’s rule, since the signal now has a 

highest frequency of π /2 radians instead of π. The signal can therefore be downsampled 

by 2, and this constitutes one level of decomposition [103].  

The multiresolution analysis (MRA) is then achieved by repeatedly decomposing 

the signal into approximation and added detail using a series of successive lowpass and 

highpass filters. This subband filtering process is applied recursively to the most recently 

lowpass filtered portion of the signal. Thus the coarse or approximation space of the 

DWT corresponds to a lowpass filtered version of the signal, while the detail space of the 

DWT corresponds to the highpass filtered version of the signal. The outputs of the 
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lowpass filters are referred as approximation coefficients, and the outputs of the highpass 

filters are referred as detail coefficients. As illustrated in Figure F.2, Dj denotes the vector 

of wavelet detail coefficients and Aj denotes the approximation coefficients of a signal at 

a given level j. Each vector Dj contains 2J/2j coefficients. At each level, the filtering and 

subsampling result in half the number of samples (and hence half the time resolution) and 

half the frequency band (and hence double the frequency resolution). Figure F.2 

demonstrates the wavelet decomposition procedure for a partial DWT of level J0 = 3. If a 

signal has 2J samples, the maximum decomposition level is J. If we stop after J0 < J 

repetitions, we obtain a level J0 partial DWT of x[n]. Partial DWTs are commonly used in 

practice when a scale beyond J0 is no longer of interest [96]. 

 

Figure F.2: Flow diagram illustrating the wavelet decomposition procedure for a partial DWT of 
level J0 = 3. 
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