Design and Evaluation of an Algorithmic Parser for
Free-Text Prescription Data in an
Ambulatory Electronic Health Record

by

Bimal R.J‘Desai, M.D.

A CAPSTONE PROJECT

Presented to the Department of Medical Informatics &
Clinical Epidemiology
and the Oregon Health & Science University
School of Medicine

in partial fulfillment of

the requirements for the degree of

Master of Biomedical Informatics

May 2008

School of Medicine

Oregon Health & Science University

Certificate of Approval

This is to certify that the Master's Capstone Project of

Bimal R. Desai, M.D.

“Design and Evaluation of an Algorithmic Parser for
Free-Text Prescription Data in an

Ambulatory Electronic Health Record”

Has been approved

[74

Capstone Advisor -Dean F. Sittig, Ph.D.

II.

III.

TABLE OF CONTENTS

Table of CONLENLS.......oveueeeireereectieeeteeie e i
ACKNOWICAZEMENLS......uueieeicerreieceeie et ee e, ii
RMAER ..o e s i i bemomits s e et e e o 1ii
Introduction
A. Background and Significancecocoeveveeouecieoeeeeeeserennn 1
B, Proibel {IOOtIVER «. sos.i simaisss t omsosaiosiosinios msume s amsimm s i & 3
C. Electronic Representation of Prescription Data.............cooeveuen...... 4
D. Parsing Strategies and Regular EXpressions.............ooveeveevn..... 10
Materials and Methods
A. Data Retrievalccccoomirimminininieieiececeee e 16
B. Algorithm Development............c.coooivivicieeeerereereeeeeseeseenonn 17
C. Validation Plan.........c.ocoviminieioiiiciceee e 27
Results
A. Measurement of Inter-Rater Reliability.........ccooevevveveveveveennnnn.. 31
B. Parser Evaluationcoooevueoieiiiiieiiecceeeeeeseee e 32
TOATBBBIND, o s st 1o) ot s BB S S e Sl e 37
OISO 1m0 L. e A 4 e st st U s S 43
Appendices
A. NHS Dose Syntax Modelc.ooooiiiiieeoeeeeoreeeeeeseeseen. 44
B. Dosage Instructions Representations in HL7 V3 Pharmacy
Information Modeloecueueiiiireieiieiieeeeeeee e 45
C. OpenEHR Medication Archetypeoocoeveiveceeeeeeeeesereerennn. 46
D. Capstone Prescription Data Model............ccooooveeveceeveeoeeeennnnn, 47
E. Word Frequency Analysiscccovoviiieeeeoreeeeeeeeeesseseereerenenn, 49
RETENCIUBEE ..« s o iy s s R PR Er dorie has 50

Acknowledgements

My time at Oregon Health & Science University would not have been possible
without the support of The Children's Hospital of Philadelphia and the career
mentorship provided by my Division Chief, Louis Bell. Since 2004, Lou has
acted as a tireless advocate on my behalf, giving me the career flexibility I needed
to complete my coursework, and helping me to chart my path in the field of

clinical informatics.

Many of the skills I needed to complete this project I learned from the dedicated
faculty in the Department of Medical Informatics & Clinical Epidemiology at
Oregon Health & Science University. I hope to model my own professional

career in Clinical Informatics after the example they have set.

I owe my sincerest gratitude to Dean Sitti g, my Capstone advisor. [first met
Dean as a student in his class three years ago and was immediately impressed by
his deep understanding of both the technical and human domains of Clinical
Informatics. This project would not have been possible without his steady

guidance, enthusiastic collaboration, and unbiased feedback.

Finally, I would like to thank my wife, Naomi, whose assistance in analyzing the
data was invaluable. More importantly, I thank her for her love, patience, and
unfaltering support of my decision to pursue a degree in informatics. I dedicate

this Capstone project to her.

il

Abstract

Background

Prescription data in computerized provider order entry systems contain a wealth
of information about medication utilization, appropriateness of therapy, and
provider prescribing habits. Unfortunately, the signatura or “sig” portion of the
prescription which specifies the dose, route, frequency, duration, and other
instructions is often stored as a single free-text field, making detailed analysis of
large numbers of prescriptions impractical. For informaticists and clinical
researchers, an accurate, automated method of analyzing free-text prescriptions
would be immensely valuable.

Objective

The objective of this project was to develop and validate a software algorithm that
can identify standard components of any free-text ambulatory sig, such as the
dose, route, frequency, interval, and duration.

Design & Measurement

I wrote and validated a prescription parsing algorithm named RxParse. The
parser was first tested and debugged against a subset of ambulatory prescriptions
obtained from the EpicCare ambulatory health record at The Children’s Hospital
of Philadelphia. RxParse was then validated against a separate set of 1000
prescriptions. The performance of the algorithm was compared to that of two
human reviewers. For each of eight sig components, [calculated the sensitivity,
specificity, positive-predictive value, and negative predictive value of the parser.
Finally, RxParse was run against datasets ranging from 10,000 to 350,000 sigs in
order to measure the throughput of the parsing algorithm as measured by total
elapsed time and scripts parsed per second.

Results

RxParse had an overall recall of 87% and precision of over 99%. Performance for
individual dose components was more variable. Elements such as the command,
dose, alternate dose, and dose interval had high precision and recall (97% or
greater), while other elements such as the route had lower recall and lower
negative predictive value due to limitations in the algorithm logic. Because of its
regular expression-based pattern-matching algorithm, the parser showed
exceptional precision across all components. The parser is capable of sustained
throughput of nearly 2,000 prescriptions per second across a broad range of
dataset sizes.

Conclusion

RxParse shows promise and supports the use of regular expressions for parsing of
semi-structured and densely abbreviated medical text. The parser’s speed makes
it an ideal tool for data mining of vast prescription databases. Future work will
include improvements to the parser’s route detection algorithm and cross-
validation using an adult prescription dataset.

iii

1. Introduction

LA. Background and Significance

Computerized provider order entry (CPOE) systems allow for, among other
features, the digital entry and storage of prescription data. With time, these data
stores can become an expansive and valuable source of information about the
prescribing habits of a healthcare organization. For example, at The Children's
Hospital of Philadelphia (CHOP), there are currently over two million
prescriptions stored in the EpicCare ambulatory electronic health record (Epic
Systems Corporation, Verona, WI). Not surprisingly, a number of health services
researchers at CHOP have ongoing or proposed projects that rely on data
contained in the ambulatory electronic health record and, more specifically,
CPOE data. These projects include analysis of off-label drug use in pediatrics,
appropriateness of therapeutic escalation for chronic conditions such as asthma,

and evaluation of guideline-based dosing of medications with variable doses.

There is, however, a significant drawback to EpicCare’s representation and
storage of these electronic prescriptions. Currently, the signatura or “sig” portion
of the prescription that represents the dosing and administration directions is
stored as a single free-text field in a large database table. A typical sig might state
“take 2 tabs PO BID x 5 days” where “tabs” is an abbreviation for “tablets”, “PQ”
the Latin abbreviation for “by mouth”, and “BID” the Latin abbreviation for “two

times per day”. Of note, a single sig can contain many discrete elements of

information about the prescription, such as the dose, the route, the unit of

measure, and the interval/frequency (Table 1).

Table 1: A single signafura can contain many discrete elements.

Sig Dose Route Frequency Duration

take 2 tabs po bid x 5 days 2 tablets po = oral 2 times per day 5 days

Any research question that pertains to a sig component requires that the
researcher first parse and extract the sig components for further analysis. At
CHOP, there is currently no automated way to parse sigs into their various
components, instead requiring manual review to overcome the limitations of
free-text data entry. This limitation functionally restricts the kinds of questions
researchers can ask related to CPOE-derived data. For example, a researcher
interested in the appropriate use of high-dose amoxicillin (an oral antibiotic) in
the treatment of acute otitis media (middle ear infection) would have to
manually review each amoxicillin prescription for the target population, since
the dosing information is contained in the free-text sig. For any standardized
evaluation of electronic prescription data — whether for quality improvement
efforts, for clinical research, or for administrative purposes — having a tool that
allows users to quickly and accurately parse prescription data in an automated

Jfashion would be immensely valuable.

I.B. Project Objectives

Recognizing the potential value to clinical researchers and informaticists, I
decided to design and evaluate a free-text prescription parser implemented in Perl,
an open source scripting language (The Perl Foundation, Grand Ledge, MI).

From the outset, the project had a set of key objectives:

1. Given a text sig, parse the dose and frequency/interval discretely to
allow subsequent calculations. For example, given a sig and the
patient’s weight, the researcher should be able to calculate the weight-
based dose of a medication. Similarly, given a sig and both the start and
stop dates, the researcher should be able to calculate the patient’s
cumulative dose. At a minimum, the parsed data structure should
include elements that support these derived calculations.

2. Where available, the parser would make use of existing data
standards and vocabularies. By extension, where a CHOP-specific or
EpicCare-specific vocabulary was in use, that vocabulary would be
preferred.

3. The design of the parser should allow incorporation of the tool into
other research applications at CHOP.

4. The parser should be validated against an actual set of prescription

data to assure researchers of its reliability and performance.

(O8]

L.C. Electronic Representation of Prescription Data

The choice of data model to represent parsed prescription data is non-trivial, as it
impacts the generalizability of the parser to other datasets and CPOE systems.
For that reason, I first conducted a review of existing efforts to represent

prescription data electronically,

One of the hallmarks of electronic health records is their support of data retrieval
and categorization through structured data entry. In turn, this highlights the
importance of medical data standards for codification of clinical data.r2 Efforts to
define standards for representation of prescription data have varied in focus and
applicability. I reviewed the following data models for this project: NCPDP

SCRIPT,3 NHS Dose Syntax,+ and OpenEHR Medication Archetype. 5

NCPDP SCRIPT: This widely used representation of prescription data was
developed by The National Council for Prescription Drug Programs (NCPDP), a
not-for-profit organization accredited by the American National Standards
Institute (ANSI).6 NCPDP’s SCRIPT standard is now in its 10™ version and is
implemented in the RxHub National Patient Health Information Network.
SCRIPT is a messaging format intended for communication between prescribers
and pharmacies as an effort to promote e-prescribing initiatives. T was not able to
evaluate the most recent version of SCRIPT, which is available only to NCPDP
members or by purchase from ANSI. However, limited documentation regarding

sig representation in Version 8 is available in the published minutes from a 2005

meeting of the National Committee on Vital and Health Statistics Subcommittee

on Standards and Security.? The minutes include a description of some of the

prescription elements represented in the data standard. These discrete elements

include two main fields for quantity and dosage directions. Of note, the dosage

directions include a reserved field for an undefined sig code and two free-text

fields for sig instructions, as shown in Table 2.

Table 2: SCRIPT Version 8, documentation of field codes

Field Number

Field Name

Remarks

020-1009

Quantity Composite

This composite is for the count of
tablets or number of grams

020-1009-01-6063

Quantity Qualifier

Unit of Measure X-12 DE 355.

Values: See External Code List

020-1009-02-6060

Quantity

If Quantity is not submitted, the entire
020-1009 composite is not submitted.
Change to an..35 [sic] in version 4.0.

See sections

“Representation” and

“Truncation” for syntax and decimal
point usage.

020-1009-03-1331

Code List Qualifier

X-12 DE 673.

Values: See External Code List

030-1014

Directions

030-1014-01-7879

Dosage Identification

SIG Code. For future use.
Has not been codified yet.

030-1014-02

Dosage

SIG instructions. Dosage free text.

030-1014-03

Dosage

SIG instructions. Dosage free text.

In the absence of complete documentation for Version 10, it is difficult to assess

the extent to which the SCRIPT standard formalizes the sig in electronic

prescriptions. However, the Version 8 documentation suggests that SCRIPT does

not attempt to represent sig components discretely.

NHS Dose Syntax: Another recent effort is the Dose Syntax project sponsored by
the UK National Health Service (NHS) and completed as contracted work by Blue
Wave Informatics, LLC. The NHS Dose Syntax project resulted in a final report
that was submitted for review in 2005 to the Pharmacy special interest group of
Health Level 7 (HL7), an international medical standards organization.® The final
report is available for download from the Blue Wave Informatics website and is
highly recommended reading for those interested in understanding the complexity

of representing prescription data in a standard format.9

The primary discrete elements of the NHS Dose Model (Appendix A) are:

* Administration Action
* Dose Quantity
o Quantity Upper Bound
* Timing
o Frequency
o Start-Stop
® Route, Site and Method of Administration
e Rate Quantity
* Additional Instructions/Information

¢ Device Use and Preparation Instructions

The Dose Syntax uses SNOMED-CT as the standard vocabulary for Route and
Site of administration. The authors note that while the Method of Administration

also requires a standard vocabulary, no corresponding domain exists in

SNOMED-CT.

Where applicable the Dose Syntax has explicit mapping of elements to the HL7
Pharmacy Information Model (Appendix B), a subset of the Reference
Information Model (RIM). However, the authors explain that the complexity of
how timing information is represented in the HL.7 v3 RIM impeded their work

and, as of the submission of the final report, was therefore incomplete.

In an email correspondence (March 13, 2008), Emma Melhuish, a Pharmaceutical

Informatics Specialist with the NHS explains:

The Dose Syntax work was carried out by contractors for our
organisation and although we received a final report there were
still a number of outstanding issues that had not been addressed by
the work. Because of the outstanding issues and the complexity of
the model there were never any implementations and the work has

not been adopted by HL?7.

A web-based testing application developed by Blue Wave Informatics has been
taken offline.’® Nevertheless, the NHS Dose Syntax model represents a
superlative attempt to unravel the complexity of prescription signatura data and

the model served as an excellent reference source for this project.

OpenEHR: The third prescription data model I evaluated is from the OpenEHR
project, a not-for-profit initiative jointly sponsored by representatives from the
UK and Australia.” The foundation of OpenEHR is its library of archetypes. An

archetype is a formal expression of a domain content model, based on the

Archetype Definition Language specification. OpenEHR currently maintains

hundreds of archetypes for composite conecepts like “problem list” and “social

history”, events like “procedure” and “transfusion”, observations like “pulse”

and “pupils”, and actions like “laboratory” and “medication action”."! The

OpenEHR Medication archetype (Appendix C) contains discrete elements for:

Name of medication

Administration Instructions

Strength per dose unit

Dose unit

Dose form

Dose duration

Route

Is long term (Boolean value to signify whether the medication is chronic
or limited in duration)

Indication

Generic Name

Safety Limits (minimum/maximum weight-based dose, frequency, or
interval)

Administration information

Dispensing information

Capstone Prescription Data Model: All three models share common elements,

specifically a representation of the medication dose. However, all three vary in

their modeling of the prescription signatura. The NCDCP SCRIPT format

contains no discrete sig data elements, making it less useful for this project. Both

the NHS Dose Syntax and the OpenEHR Medication archetype attempt to define

discrete elements of the sig, but differ in their choice of modeled attributes. Of

these, the NHS Dose Syntax has broader support for representation of dose

ranges, variable timing, and additional instructions.

For this project, I created a hybrid, simplified prescription model that derives
many of its elements from the NHS Dose Syntax model, such as the explicit
description of dose ranges (Appendix D). The data model for this project

included discrete elements for:

Command (analogous to the NHS Dose Syntax “Action”)
* Dose
o Dose Low
o Dose High
o Dose Unit of Measure
* Alternate Dose
o Alternate Dose Low
o Alternate Dose Unit of Measure
* Route
* Frequency
o Frequency Low
o Frequency High
o Frequency Unit of Time
* Interval
o Interval Low
o Interval Iigh
o Interval Unit of Time
® Duration
o Duration Low

o Duration High

o Duration Unit of Time

® Medication is PRN (“pro re nata™ or “as needed”)

Of note, this model also allows numeric ranges for every numeric value in a
script: the dose, frequency, interval, and duration. Consequently, the model could
be used to represent a wide variety of sigs from extremely simple (“take as
needed”) to extremely complex (“Take 2 to 4 puffs via nebulizer every 4 to 6
hours for 3-4 days as needed for wheezing™). For development of this prototype
parser and for first-round evaluation, I chose not to model some of the NHS Dose
Syntax elements, such as compound medication clauses (e.g. “take 2 tabs by
mouth every 12 hours for 2 days, then 1 tab by mouth every day”), or
preconditions/triggers for medications (e.g. “apply with every diaper change” or
“take when BP > 120/90”. Other intentional omissions from the model include
numeric ranges on alternate doses, as these were never encountered in the test set
and were felt to represent marginal cases. Also, this model does not try to capture
the discrete conditions for “PRN” or “as needed” medications. Finally, the model

does not try to represent diluents for medications (such as “25mg in 50cc of

normal saline™).

I.D. Parsing Strategies and Regular Expressions

Methods for automated evaluation of medical free-text data generally fall into two
categories 1) keyword or regular expression-based parsers and 2)
syntactic/semantic natural language processing strategies. Regular expressions,

first developed in the 1950s as a way to classify formal languages, are patterns

10

that describe a specific set of strings. The patterns can specify optional, alternate,
mandatory, or negated content using a straightforward syntax. For example, the
Perl regular expression “/H(ajae|d)ndel/” would match any of the words “Handel”,
“Haendel”, or “Héndel”, but not “Haaendel”. 2 In this example, the parentheses
instruct the Perl regular expression parser to treat the contents as a single group,
and the vertical pipe (“|”) is an alternation symbol, instructing the parser that any

of the three variants are allowed.

Regular expressions and simple pattern matching techniques are ideal for shallow
parsing and lexical analysis (for example, generating word frequency counts or
creating a lexicon from a corpus of text). Regular expressions are widely
implemented in many programming languages such as Perl, Java, Python, and

PHP; and generally have exceptionally fast performance.’3

Regular expressions and pattern matching techniques have been used for a variety
of tasks in medical text-mining, such as identification of diabetic, overweight, or
hypertensive patients for cohort studies and extraction of blood-pressure
information from medical notes.}45 In the area of prescription data, previous
work at the Brigham and Women’s Hospital (Boston, MA) has shown that pattern
matching algorithms can be used to help users enter orders in a CPOE system.16
The Brigham Integrated Computing System (BICS) incorporated a real-time
lexical analyzer that attempted to match the words the user was typing against a

dictionary of standard terms. Whether or not the match was successful, the user

11

had the opportunity to correct and augment the results of the computer algorithm,
so very high accuracy was not required of the system and therefore its raw

performance against a test set of prescription data is unknown. Nevertheless, the
system could recognize many common forms and variants of a prescription, such

as “Ampicillin 500 mg iv q6h” or “Please give 500 mg of IV ampicillin q 6h”.

Kraus et al describe a pattern matching approach to finding diabetes-specific drug
names and doses in unstructured medical notes.’? With their algorithm, they were
able to achieve a high precision of 97% and an overall recall of 69% to 79%. For
individual components of the sig, such as the prescribed frequency and route of
delivery, the recall was only in the range of 40-60%. The authors propose that
further work needs to be done to improve their pattern-based parser. Overall, the
performance of regular expression techniques in medical text-parsing is variable

and largely influenced by the task complexity.

The more advanced natural language processing (NLP) strategies include
syntactic analysis (how words combine to form sentences) and semantic analysis
(what words mean). They are computationally more intensive and are more
difficult and time-consuming to develop, however they are the better option for
analyzing lexically ambiguous text, such as narrative data in medical notes."
Meystre and Haug demonstrated the strengths of each strategy in a head-to-head
comparison of three NLP parsers, one keyword parser (i.e., regular expression or

pattern matching), and a human reviewer.!® The authors’ goal was to extract

12

medical problems from the narrative text of the Longitudinal Medical Record in

use at the University of Utah. In their evaluation, the three NLP parsers achieved

a respectable recall of 69 to 89% at the expense of precision, which ranged from

39 to 75%. In contrast, the keyword parser had a precision of 81%, second only

to the human reviewers, but it had the lowest recall of 57% (Table 3). Not

surprisingly, the regular expression technique was 20 to 40 times faster than the

NLP strategies:

Table 3: Comparison of NLP, keyword, and human review strategies
task in a corpus of unstructured narrative medical notes.

for a text extraction

Measure NLP 1 NLP 2 NLP 3 Reviewers Keyword
Recall 0.775 0.892 0.693 0.788 0.575
Precision 0.398 0.753 0.402 0912 0.807
Time (secs) 72.3 54.7 39 1322 1.9

Adapted from Meystre and Haug, 2005. 95% confidence intervals are not shown.

Finally, it is worth noting that commercial NLP prescription parsers do exist, such
as FreePharma (Language & Computing, Inc. Bethesda, MD). FreePharma has
been successfully used at the Marshfield Clinic to identify research subjects with
diabetes mellitus by identifying mentions of any of three different classes of
glucose-lowering medications.’9 This system was excluded from consideration

for this project because of the cost of the commercial parser.

Prescription data is unique in that it represents a densely abbreviated, semi-
structured form of medical text. This is similar to the “notational text” described
by Barrows and Friedman in short-form medical notes, such as surgical progress

notes.?® The authors give an example of notational text that requires extensive

13

lexical knowledge to decipher: “S/B Cx (+) GPC c/w PC, no GNR”, which
translates to “sputum and blood cultures were positive for gram-positive cocci
consistent with pneumococcus. No gram-negative rods”. In comparison, one
could easily encounter an ambulatory pediatric sig with just as many
abbreviations: “2ml via GJ QAC & QHS PRN agitation™, which translates to “2
milliliters given via the gastro-jejunal tube before each meal and at bedtime as
needed for agitation”. While Barrows & Friedman demonstrated that the
MedLEE NLP parser was comparable to pattern matching techniques for
notational text, they do not comment on the relative speed of the two techniques
and do not suggest that NLP is the preferred strategy for notational text. Instead,

they express surprise that MedLEE performed as well as it did.

The existing literature suggests that regular expression-based algorithms can be
used to parse semi-structured data with accuracy sufficient for use by clinical
rescarchers. Because prescription data are more like “notational text” than not, [

felt that regular expressions were a justifiable approach to sig parsing. However,

efforts to date have not specifically been tested against pediatric prescription data,

and most studies have focused on identifying a handful of key tokens (such as
medication names or numeric doses in narrative text). Therefore, current
strategies are not generalizable for large sets of pediatric prescription data or
complex sig models with more than a few tokens. Based on my review of the
literature, I chose a pattern matching / regular expression technique over

semantic/syntactic NLP techniques for the following reasons:

14

1)

2)

3)

4)

In theory, pattern matching should perform better-than or as-well-as NLP
for notational text.

Regular expressions are easier to program than NLP algorithms.

I was familiar with regular expressions from prior programming work,
whereas learning NLP techniques specifically for this project would have
been prohibitively time consuming.

Regular expression algorithms are significantly faster than NLP, which is
a relevant consideration for researchers who want to use the tool to mine
massive datasets, or if the parser were to be implemented in a real-time

system.

15

II. Materials and Methods

II.A. Data Retrieval

The data retrieval and analysis for this study was conducted with a “Not Human
Subjects” exemption from the CHOP Institutional Review Board (Application
#5828), granted on February 15, 2008. The CHOP pediatric network includes
nearly 40 ambulatory clinics across the Delaware Valley; a number of specialty
care centers and surgical centers; and a tertiary care, 380-bed urban teaching

hospital located in Philadelphia.

All of the ambulatory primary care sites use EpicCare as their CPOE system and
health record. The EpicCare application conducts all transactions via a Caché
database instance known as “Chronicles”. Each night, there is a data extraction
process that pushes new data from Chronicles into a relational database instance
named “Clarity”, implemented as an Oracle database. Using Oracle SQL
Developer version 1.2.1 (Oracle Corporation, Redwood Shores, CA), I obtained
roughly 11,500 free-text prescriptions with associated data fields to indicate the
therapeutic class of the medications, the name and formulation of the medication,
and the start/stop date of the medication, where available. The SQL query was
written to ensure that I retrieved a random sample of the over 2-million

prescriptions in our system (Figure 1).

16

Figure 1: Orace SQL statement used to extract prescriptions from Clarity schema

select c.title, a.order med_id, a.medication id, a.description,
a.sig, a.dosage, a.quantity, a.refills, a.start date,
a.end date, b.GPI
from (select * from order med sample(0.5)) a,
clarity medication b, zc_thera_class c
where a.MEDICATION_ID = b.MEDICATION ID
and b.thera class_c = c.thera_class ¢
and b.gpi is not nuil
and a.sig is not null
order by order med id;

The extracted data set was saved as a comma-separated text file in Microsoft
Excel 2004 for Mac, version 11.3.5 (Microsoft Corporation, Redmond, WA). At
a later date, I exported increasingly larger sets of data (from 20,000 to 360,000
scripts) for throughput testing of the RxParse module. Ten thousand sigs from the
original set were used to create a word frequency map. A subset of 1,000 was

used for the final parser evaluation.

IL.B. Algorithm Development

The RxParse prescription parsing module was developed on a MacBook Pro
laptop computer with a 2.4 GHz Intel Core 2 Duo processor and 4 GB of RAM,
running Mac OS X, version 10.4.11 (Apple Inc., Cupertino, CA). RxParse is
written in Perl version 5.10.0, using the ActivePerl distribution (ActiveState
Software, Inc., Vancouver, BC). This version was chosen over carlier releases of
Perl because of enhanced support for specific regular expression functions such as
named capture buffers. Named capture buffers allow the parser to assign an

explicit name to a matched pattern. In this way, the parser can identify a complex

17

pattern, such as a numeral followed by a unit of measure, and assign the numeral
to one variable while assigning the unit of measure to another. This feature is
used extensively in the parsing algorithm. As a result of this design choice,
RxParse will not work under earlier versions of Perl and will elicit a syntax error
at runtime. I used the Eclipse integrated development environment version 3.3.0

(Eclipse Foundation Inc., Ottowa, Ontario, Canada) and the EPIC Perl IDE plugin

version 0.6.2.2 (available at http://e-p-i-c.sourceforge.net/) for syntax checking

and debugging.

The first phase of design consisted of describing the anticipated behavior of
RxParse using a set of use cases. One particular use case (Table 4) highlights a
number of key specifications for the parser. First, the parser should be able to
recognize numbers described as text as well as numerals (both “one” and A
Second, the parser should recognize text fractions (“one-half”). Third, RxParse
should automatically recognize and expand Latin abbreviations, regardless of case
or punctuation (“P.0.” = “po” = “by mouth™). Fourth, any unrecognized fields
should be reported as “null”. Fifth, all commands, units of measure, routes, and
units of time, should be mapped to their canonical forms (“tabs” = “tablet”,
“days” = “day”). These canonical forms should, in turn, correspond to a standard
lexicon derived either locally at CHOP or, where available, from existing standard

terminologies.

Table 4: Use case showing the expected output of the parser given a free-text sig

Take one and one-half tab
INPUT (250mg) P.O. every 4-6 hours for
2 days
CMD take
DoseLow 1.5
DoseHigh null
DoseUOM TABLET
AltDoseLow 250
AltDoseUOM mg
Route oral
FreqLow null
OUTPUT FreqHigh null
FreqUOT null
IntLow 4
IntHigh 6
IntUOT hour
DurLow 2
DurHigh null
DurUOT day
IsPRN FALSE

Word Frequency Analysis: To derive a local vocabulary for the canonical forms
of various sig components, I first completed a word-frequency analysis on a
subset of 10,000 prescriptions using a small Perl script. The full set of 10,000
scripts contained nearly 69,791 individual tokens, or an average of about 7 tokens
per script. Within this set, there were 1,308 distinct tokens with an average
frequency of 53 occurrences in the dataset. The top 15 tokens represent 50% of
all tokens, and the top 50 tokens represent 80% of all tokens. The 150 most-
frequently occurring tokens in the dataset are shown in Appendix E. Figure 2
shows a plot of the cumulative and total frequencies of all 1,308 tokens. While
the vast majority of words in the dataset are represented by just the first 150

tokens, the plot shows a very long tail, implying that many hundreds of words,

spelling variations, and abbreviations occur rarely, even in this large dataset of

10,000 scripts.

Figure 2: Word Frequency Analysis

6000 R S—— 100%
{ g0%
5000 | e - | 8o%
| + 70%
4000 | - ’
oy | Tokens by Descending Frequency | 60%
<] | |
% 3000 i} L o Cumulative Frequency of Tokens | g
g {
& [
£ | 40%
2000 | — —- - .
1000 |} - 20%
\ + 10%
| "'--\ |
o - - —— 0%
i 101 201 301 401 501 601 701 801 901 100 1101 1201 130t

Tokens

Command: Using the word frequency list and manually refining it with
subsequent test sets, I constructed a local vocabulary to describe the “Command”
component of the sig model (Table 5). The list includes common words as well
as variants (dispense, dispence) and misspellings (aply, aplly, apply, appply). By
combining these terms with the regular expression “vertical pipe” alternation
operator, the parser looks for any of the terms in the sig. Each term in the
vocabulary, including the misspelled terms, are mapped to a canonical form by

the parser.

FITCATER o

Table 5: Standard Vocabulary for "Command"

Standard Vocabulary describing "Command' Element
add dispence phone wash
administer dispense place wipe
aply disolve pull
aplly dissolve put
applu dress repeat
apply drink replace
appply fill resume
avoid finish rinse
begin flush rub
brush give shampoo
change include spray
check increase sprinkle
chew inject swallow
coat insert swish
contact instill take
continue keep tape
cover leave taper
crush massage treat
dilute mix use
discard pack wait

Dose: Following the NHS model, a dose was described as a number or range
followed by a unit of measure. The parser was designed to accommodate many
types of numbers, including text numbers, numerals, fractions, and even
punctuated numbers such as 1,000,000 for 1 million. The standard vocabulary
for units of measure and their canonical forms were derived from the
“ZC_MED_UNIT” table in the EpicCare Clarity schema. Some local additions
were added to accommodate common units of measure in use at CHOP, such as a
“gummy” (a type of chewable candy multivitamin, as in “take 1 gummy by mouth
daily”) and “neb” (short for “nebulized respiratory treatment™). Also, the parser
was designed to accept common misspellings seen in the word frequency analysis,
such as “teapoon” for “teaspoon”. As in the “Command” component,

misspellings and alternate forms are later mapped to their canonical forms (Table

&l

6). Also as with the “Command” component, the dose units of measure
(DoseUOM) were combined with the regular expression alternation operator such
that the parser would match a number or range followed by any of the units of
measure in the list. The regular expression for alternate or parenthetical dosage

forms was implemented in the same way.

Table 6: Dose Unit of Measure Examples

Sample of DoseUOM Vocabulary and Canonical Form
Term Canonical Form
'act’ ACTUATION

‘amp' AMPULE
‘ampule’ AMPULE
‘applicator' APPLICATOR
'bar’ BAR
'bottle’ BOTTLE
'c' CAPSULE
‘can’ CAN
‘cap’ CAPFUL or CAPSULE
‘capsule’ CAPSULE
‘cc’ CUBIC CENTIMETER
'chew' CHEWABLE TAB
'chew tab' CHEWABLE TAB
'chew tablet' CHEWABLE TAB
'chewable' CHEWABLE TAB
‘chewable tab' CHEWABLE TAB
‘chewable tablet' CHEWABLE TAB

Route: The U.S. Federal Drug Administration Center for Drug Evaluation and
Research maintains a data standard manual with a list of accepted medicinal
routes, their definitions, canonical short forms, FDA code, and NCI Concept 1Ds.
Because the list is comprehensive (there are 111 standard routes ranging from
AURICULAR (OTIC) to VAGINAL), this list and its mappings were adapted for
use by RxParse. The list had to be heavily modified to accommodate the

abundant abbreviated forms and variations of common routes. An example of

22

these modifications for the route “NASAL” is shown in Figure 3. The code
sample also demonstrates how mappings of variants to canonical forms and
standard terminologies were implemented in Perl using the “hash of hashes”

construct (a.k.a. multidimensional array).

Figure 3: Perl code showing the mapping of terms to FDA route "NASAL"

foreach my $element ('nasal’' , 'intranasal' , 'nostril’ , 'nare
‘naris’')

{

SRoute{$element}{'name’'} = 'NASAL';
$Route{$element}{'def'} =
'Administration to the nose; administered by way of the nose.';

$Route{$element}{ 'fda'} = 'NASAL';
SRoute{$element}{‘code’'} = '14';
SRoute{$element}{'nci'} = 'C38284"';

Frequency, Interval, and Duration: All three of the time-based components of
the data model required a standard terminology for units of time. However,
because I could find no such list, I constructed one from the word frequency
analysis and augmented it through serial testing. Similar to the route elements,
units of time and their common misspellings and variants were mapped to a
canonical form using multidimensional arrays. In addition, because one of the
objectives was to give researchers the ability to perform subsequent calculations
on the parsed values, each text unit of time was mapped to a “daily equivalent”
and an “hourly equivalent” where possible. For example, the term “week” can be
used in a frequency (“3 times per week™), in an interval (“every 2 weeks™), orin a
duration (“for 1 week”). Mapping the term to numeric equivalents allows users to

use the parsed values in calculations, as shown in Table 7.

Table 7: Examples of derived calculations from unit of time mappings

Term Uy f,l;l;;valent Equit’-l:l:;lty(HE) Usage Example Calculation
week 7 days 168 hours Duration Total duration
=“3 weeks” =3 xDE)
=21 days
hour 1/24 days 1 hour Interval Number of daily doses
=%once every 4 | =1/(4*DE)
hours” =6 doses

Figure 4 shows how the common variants, abbreviations, and misspellings for the
unit of time “WEEK” were implemented in Per] and mapped to the numeric daily

equivalent, hourly equivalent, and canonical form.

Figure 4: Implementation of Unit of Time mappings in Perl

foreach my $unit ('week' , 'weekly' , 'wk' , 'weks' , 'wkly’' , 'aweek ')
{
SUOT{$unit}{'de'}
$UOT{$unit}{ 'he'}
$UOT{$unit}{'cf'}

7;
168;
'WEEK' ;

W

The three time-based components had slightly different regular expressions to
describe them. For example, a frequency was any string that matched a fairly
complex pattern including:

1) optional preceding phrase “up to”

2) mandatory number or range of numbers

3) mandatory word (“x” OR “time” OR “times”)

4) optional word (“a” OR “per” OR “each™)

5) mandatory unit of time

6) optional suffix “ly”

24

As a result, the parser can recognize a large variety of phrases as valid
5 N1

frequencies. Examples include “up to 3 x per day”, “1-2 times each morning”, “1

time a month”, or simply “twice weekly”.

The implementation of this regular expression in Perl is shown in Figure 5.
Because they are difficult to read without an understanding of Perl regular

expression syntax, the mandatory and optional phrases are highlighted for clarity.

Figure 5: Perl regular expression for prescription frequency

$5ig{frequency) 3

=0

[TiaipaT) T

FREEQL} , REQL} , 5 _{FREQu

The code in Figure 5 also shows how regular expressions can be combined into
increasingly complex expressions. The regular expression for “frequency”
includes a reference to a previously-defined regular expression for a generic
number (“$Sig{_number}” in line 4 of the code sample). The regular expressions
for “interval” and “duration” are constructed similarly and vary only in their

mandatory and optional text patterns.

25

IsPRN: To determine if a prescription is to be given on an “as needed” or “prn”

basis, I used a simple regular expression pattern that looked for:

1) mandatory phrase (“only” OR “if needed” OR “as needed” OR “prn”)

2) optienal word “for”

Complete Sig: By combining the regular expressions for each of the above

components, the parser defines a sig as one of two standard sequences that vary

only in the position of the route.

Sig Form One:

)
2)
3)
4)
5)
6)

optional action

optional dose

optional route (before interval/frequency)
optional (interval OR frequency)
optional duration

optional isSPRN

Sig Form Two:

1)
2)
3)
4)
5)
6)

optional action

optional dose

optional (interval OR frequency)
optional route (affer interval/frequency)
optional duration

optional isPRN

In other words, the parser would recognize either “give 1 tab by mouth every 4

hours™ or “give 1 tab every 4 hours by mouth” as valid, complete sigs. By

26

S

making each element optional, the parser specifies the order of the elements, but
not their presence. Therefore, the parser would also successfully parse the sig
“give every 4 hours as needed” despite the fact that it is missing a dose, route, and

duration.

II.C. Validation Plan

For this project, two human judges (the author and his wife) validated the
performance of the RxParse algorithm. Validation took place in two phases.
First, the judges independently parsed a set of 200 prescriptions from which inter-
rater reliability could be calculated. Inter-rater reliability was calculated using
Cohen’s kappa coefficient, which corrects for the fact that Jjudges may agree or
disagree by random chance.?' The kappa statistic thresholds proposed by Landis
and Koch were used to set an acceptable level of inter-rater reliability as any
kappa value greater than 0.60.> Landis and Koch’s threshold values are shown in

Table 8.

Table 8: Kappa threshold values adapted from Landis & Koch

Kappa Agreement
<0 Less than chance agreement
0.01-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-0.99 Almost perfect agreement

Second, the judges scored the performance of the parser’s output for 1,009
randomly selected scripts in the CHOP dataset. Each Judge validated roughly 500
scripts in a variety of medication classes. The hope was that by scoring such a

large number of scripts, we could assess not only the parser’s overall

27

performance, but also its performance within specific classes of medications. The
parser’s performance was evaluated for sensitivity, specificity, positive predictive

value, and negative predictive value with 95% confidence intervals.

If the human judge is the “gold standard”, the parser is akin to a diagnostic test.
Each component of the sig represents a state whose presence or absence one is
trying to predict using the test. The goal is to evaluate the test’s ability to discern

the state (presence or absence of a sig component).

The agreement or disagreement between algorithm and human can be described

using a standard 2x2 table (Table 9):

Table 9: Standard 2x2 contingency table comparing a test and gold standard

Human Positive Human Negative Total
Algorithm Positive TP FP TP+FP
Algorithm Negative FN ™ FN+TN
Total TP+FN FP+TN TP+FN+FP+TIN

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.

Imagine the scenario in which 10 prescriptions are being evaluated for the
presence of a valid sig route. The human reviewer finds that 8 of the 10 have a
valid route, of which the algorithm detects 7 and misses 1. The human finds that
2 of the 10 do not have a valid route, and the algorithm determines that the same 2

have a missing route. We can fill in the 2x2 table with these data (Table 10):

28

Table 10: Example contingency table

Component: ROUTE Human Positive Human Negative Total
Algorithm Positive 4 0 7
Algorithm Negative I 2 3

Total 8 2 10

From these values, we can calculate that the sensitivity of the algorithm is 7/8, the
specificity is 2/2 and the overall accuracy is 9/10. Furthermore, the positive

predictive value is 7/7, and the negative predictive value is 2/3.

This set of calculations was repeated for each of the 17 sig components. Of note,
however, simply because a component parses correctly does not mean the parent
concept was successfully parsed. For example, a complete “dose” could include
up to four distinct sub-components (DoseLow, DoseUOM, AltDose, and
AltDoseUOM). In the context of real-world use, a parser that — for example —
only identifies the unit of measure but fails to identify a valid dose is not ideal.
Nevertheless, for the purposes of a first-round validation, it was necessary to
validate each component separately, as the process would direct future
enhancements to the parser. All calculations were performed using an online

clinical statistics application available through Vassar College.?*

A third level of validation was performed out of curiosity. Early testing showed
that the parser was remarkably fast, handling 10,000 prescriptions in a matter of
seconds. To test the throughput of the parser and to quantify the effect of
increasingly larger datasets on the parser performance, I used a high-resolution

timer module written in Perl by Jarkko Hietaniemi named Time::HiRes, which is

29

available via the Comprehensive Perl Archive Network.2* The parser’s

throughput was tested across a range of datasets from 10,000 to over 350,000

prescriptions.

30

III. Results

IIT.A. Measurement of Inter-Rater Reliability

Two human judges (the author, a general pediatrician; and his wife, a pediatric
oncologist) were assigned the task of validating the performance of the RxParse
Perl module. Both have practiced ambulatory pediatrics in a primary care setting
during their residency training and interact with sig data on a near-daily basis. To
ensure that the judges were scoring the performance of the parser consistently, a
study of inter-rater reliability was conducted using a sample set of 200 raw scripts

from the CHOP EpicCare dataset.

Each judge was given an Excel spreadsheet that contained the 200 scripts along
with definitions of each of the 17 components of the prescription data model. For
each of the 200 scripts, the judges were asked to identify any occurrences of the
17 elements in the script. Judges were asked to leave a field blank if the element
was missing from the script. Once complete, the two sets of human-parsed sigs
were compared and scored for concordance. Cohen’s kappa coefficient was
calculated for each of the 17 components, with an acceptable threshold set at a

kappa value of 0.6 or greater.

Despite the densely abbreviated and notational style of prescription sigs, the
ability of two independent judges to parse them was remarkably consistent (Table

11). Kappa coefficients for all 17 data elements were exceptional, ranging from

31

0.71 (“substantial agreement™) to 1.00 (“perfect agreement™). Based on the high
correlation between the two judges, we felt comfortable proceeding with the
parser validation, allowing each judge to score approximately 500 sigs without

cross-validation by the other judge.

Table 11: Inter-rater reliability scores as measured by Cohen's kappa

Blement | Both+ | Both- | JUELLT | UGS 1. | agreement | agreement | PR
Command 44 143 3 8 0.94 0.62 0.83
DoseLow 152 46 0 2 0.99 0.64 0.97
DoseHigh 8 192 0 0 1.00 0.92 1.00
DoseUOM 147 47 0 6 0.97 0.63 0.92
AltDose 14 188 0 0 1.00 0.87 1.00
AltDoseUOM 14 188 0 0 1.00 0.87 1.00
Route 179 12 9 0 0.96 0.85 0.71
FreqLow 104 89 2 0 0.99 0.50 0.98
Freghigh 3 197 0 0 1.00 0.97 1.00
FreqUOT 105 90 2 0 0.99 0.50 0.98
IntLow 60 137 1 2 0.99 0.57 0.97
IntHigh 10 188 2 0 0.99 0.90 0.90
IntUOT 60 136 2 2 0.98 0.57 0.95
DurLow 35 141 4 0 0.98 0.59 0.95
DurHigh 70 127 2 | 0.99 0.54 0.97
DurlUOT 4 195 0 1 1.00 0.96 0.89
IsPRN 71 127 1 1 0.99 0.54 0.98

IIL.B. Parser Evaluation

Accuracy: Table 12 shows the summarized performance of the parsing algorithm
as judged by the two human judges. The prevalence of individual components
ranged from about 1% (Frequency High) to over 80% (Route) within the 1009
scripts that were reviewed. The sensitivity of each component ranged from 0.33

(Frequency High) to 1 (Dose High). Perhaps because of the explicit pattern-

32

gk

P1o8 ur pAYSIYSIYy ¢80 ULl SS9 SAN[eA 4

b pgmﬁmwa 0l aaam%ma 0) :@Ma%ca (88 mw.ww 0} Ammmﬁ% 0) 80L 5 62911 608F IVLOL
($6'0-26'0) ¥6°0 (1-86°00 1 (1-66°0) | 804201080 | (820-2201ST0 is 0 LSL 10T NHJST
(16'0-48°0) 68°0 (1-86°0) 1 (1-66°0) 1 (4209900220 | (£€0-82°0) 00 L8 0 704 0ze Loningq

(1-86°0) 660 (1-09°0) 1 {1-566°01 | LL0ET0} Lo | (€00-100120°0 6 0 766 8 ysigIng
(150-L8°0) 6870 (1-86°0) 1 (1-66'0) 1 (LLo9900 L e | (€€0-8T0)0€0 L8 0 704 02T MoTang
(86°0-56'0) L6°0 (1-86°01 1 (1-66°0) 1 (+6'0-L8°0/ 160 | T1€0-9201 620 ¥4 1 0ZL £9¢ LOnN3ug

(1-86'0) 66°0 (1-£6°0) 1 11-66'01 1 {L60-T8°01 60 | 160°0-90°0V OO 9 0 9¢6 L9 YSrHug
(L6°0-56°0) 960 (1-86°0) 660 | (1-660/660 | (£60-980)060 | 12€0-92°0) 620 8T I LIL £92 Mo
[o3'0-0801 £8°0 (1-66'0) | (1-66'01 1 (€8°0-8201780 | 1950-05°0) €50 L6 0 Ly Ovt Lonbaiy

(1-66'0) 66°0 (1-1€0 1 (1-66'0) T 169°0-60°0) £€0 | (Z0'0-000) 10°0 9 0 0001 £ yarprbaay
(s3°0-6£701 280 (1-66°0) 1 (1-66'0) 1 (v8'0-8L°0V18°0 | 19500501 £5°0 001 0 Ly LEY MOTbaLg
(85°0-8+'0) £5°0 (1-86°0) 66°0 (1-L6'0) 66'0 118°0-9£0)6L0 | (€8°0-8L°01 180 €L1 I ¥61 149 Pnoy

(1-660) 660 (1-96°01 1 L1-66'0) T (66°0-€6'0186'0 | (€1°0-60°0F 10 G 0 868 601 IO Ndsoany

[1-66'01 6670 (1-96°01 1 (1-66'01 1 166'0-26'0) L6'0 | (€1°0-60°01 110 £ 0 163 601 MOS0V
[L60°16°0) 60 (1-6600 660 | (1-96'0) 660 | (660-L60)660 | (180-920)8L0 11 Z L1Z 6LL NOnsoq

(1-6601 1 (1-8°0) 1 {1-66'0) 1 (1-¢8°01 1 ($0'0-20°0) €0°0 0 0 086 6T ysIasoq
196°0-68°01 €60 (1-860) 660 | (1-960)660 | (660-L601860 | (18°092°0) 820 9 [4 [¥4 LLL morasoq

(1-86'01 660 (1-86°01 1 (1-66'01 1 (660760 260 | (820-TC 01 STO 3 0 8¢/ €&z any

o, o, 0, 0, 0,
e | B | o | ey | o o | wowwa | onar | | eevotnns

yuauoedwod s 4oes aoj soueuriopiad Jesieg 7] AqeL

matching inherent to regular expressions, specificity was universally high,
consistently in the range of 0.99 to 1. Like specificity, the positive predictive
value (PPV) is related to the number of false positives. Because false positives
were so rare in the validation set, the PPV for cach component was also very high,
in the range of 0.99 to 1. In other words, given that the parser found an element,
the user could be assured that the parsed component was accurate. In contrast, the
negative predictive value (NPV) is linked to the overall number of false negatives.
Not surprisingly, parsed components with high rates of false negatives (Route,
Frequency Low, Frequency Unit of Time, and Duration Low had somewhat lower
negative predictive values. In other words, for those components, the absence of
a parsed value in the result set could not rule out the presence of the component in
the original sig. When the performance statistics across all 17 components were
aggregated, RxParse had a sensitivity (recall) of 0.87 and a positive predictive

value (precision) of over 0.99.

Throughput: The completed RxParse algorithm contains over 1800 lines of
code. The compiled master regular expression for a valid prescription, with every
possible alternation, substitution, and variation, is over 400 lines long. Because of
the length and complexity of the regular expression, I was interested in testing the
speed and throughput of the parser. I obtained data extracts from EpicCare
ranging in size from 11,075 scripts to 357,097 scripts. For each dataset, I used the

Time::HiRes Perl module to obtain precise measurements of the total runtime of

34

the algorithm, excluding the time to load the dataset into memory since this would

be highly variable in a production implementation.

Each dataset was timed for 10 complete runs. Both the time to completion in
seconds as well as the scripts parsed per second were recorded for each run. For
each dataset, 1 obtained the mean, standard deviation, and 95% confidence
intervals. The results of the timed trials for each dataset are shown in Table 13
and Table 14. Of note, the increase in elapsed time is very nearly linear, implying
no decrement in performance with progressively larger datasets within the ranges
tested. On closer examination of the scripts parsed per second, there is a slight
but noticeable decrease in the number of scripts parsed per second with larger

datasets.

Table 13: Average elapsed time for parsing 6 datasets, 10 trials each

Total Scripts Elapsed Standard

Parsedp Timep(secs) Deviation 3% Clesees)
11075 5.36 0.27 5.19-5.353
22444 11.10 033 10.89-11.3
44820 2245 0.35 2223 -22.67
89275 45.49 0.44 4522 -45.76
178549 91.69 0.62 91.31-92.07
357097 187.86 047 187.57 - 188.15

Table 14: Average scripts parsed per second for 6 datasets, 10 trials each

Total Scripts ~ Scripts parsed per Standard 95% Cl (scripts/sec)

Parsed second Deviation

11675 2069.75 94.36 2011.26 -2128.23
22444 2023.81 61.02 1985.99 - 2061.63
44820 1996.88 31.55 1977.33 -2016.44
89275 1962.64 18.71 1951.04 -1974.23
178549 1947.39 12.93 1939.37 - 1955.41
357097 1900.87 478 1897.90 - 1903 .83

35

For the largest datasct (over 350,000 prescriptions), the number of scripts parsed

per second was approximately 1,900 per second, about 100 scripts per second less

than for the smallest dataset of only 11,000 scripts. These trends are shown

graphically in Figure 6. Despite the slight decrement in parsed scripts per second

with large datasets, it is still feasible that RxParse could parse every electronic

prescription in the CHOP Ambulatory network — over 2 million sigs — in a mere

20 minutes.

Figure 6:

Parser performance as scripts per second and elapsed time

188

2,500 -
2,400 -
2,300 |-

2,200

P L =@ Total Time (seconds)

’ e~ Scripts parsed per second

2,100

2,000 4

— 2

1,900 -+

1,800 |-

Scripts parsed per second

1,700 +—

1,600 5

- 0

1,500
0]

50,000 100,000 150,000 200,000 250,000 300,000 350,000
Number of Prescriptions in Dataset

36

400,000

Elapsed Time (seconds)

1V. Discussion

Overall, the parser performed significantly better than expected. One measure of
the parser’s performance is its overall accuracy defined as the percent of scripts
for which there were no parsing errors, either false positives or false negatives, in
any of the 17 components. By this definition, the parser had an overall accuracy
of 69.2% (698 of 1009 scripts). On average, the parser returned the correct

answer for 16.3 of the 17 components (96%).

Based on tallies of all true and false positive and negative results for all 17
components, the parser had an overall sensitivity of 0.87 (95% CI: 0.86-0.88),
specificity of 0.999 (95% CI: 0.999-1.000), positive predictive value of 0.998
(95% CI: 0.997-0.999), and negative predictive value of 0.943 (95% CI: 0.938-
0.947). These results as well as the performance for each individual component

are summarized in Table 12.

For this first version of a general-purpose prescription parser based on regular
expressions, I hoped to attain sensitivity (recall) and positive predictive values
(precision) that were similar to the results of Kraus et al,'” who were able to
achieve an overall sensitivity of 69-79% with a parser designed to identify a
subset of medications for diabetes mellitus. However, there are significant
differences between RxParse and the Kraus parser that make a direct comparison

difficult. First, the Kraus parser was designed to identify medication data in

37

narrative notes, while RxParse is designed for individual free-text sigs. Second,
the Kraus parser identifies four elements (drug name, dose, route, and frequency)
while RxParse uses a more complex model that includes 17 elements. The
Command, Dose, Alternate Dose, and Interval elements all had very high recall
and precision, all greater than 97%. The Route, Frequency, and Duration
components tended to have lower sensitivity, higher false negative rates, and
lower negative predictive values. Evaluation of the false negatives for these three

components was revealing:

Route: For many medication scripts, the route of administration is explicitly
stated (“take 2 tabs by mouth every 4 hours™). However, it is not uncommon to
imply the route for common medications (e.g.: “take 2 tabs every 4 hours™).
Because the parser does not attempt to guess the route, all implied routes are
missed. Similarly, many prescriptions for respiratory medications have an
implied route, usually discernable from the unit of measure (e.g.: “take 2 puffs
every 4 hours” or “1 neb every 4 hours™). Another major class of missed routes
was for topical medications, where dosing instructions can take myriad forms.
One script with a false-negative route read “apply to clean foot every other day”.
While a human reviewer can discern that applying something to the foot is

consistent with a topical medication, the regular expression cannot.

A better strategy for implied routes is perhaps to obtain clues from the medication

name or therapeutic class itself. Medications like “triamcinolone ointment” (a

38

topical steroid) are by definition topical medications. Given a large enough drug-
name lexicon, future versions of RxParse could look for an implied route based on
a lookup table of medication names or classes. Another strategy would be to pair
certain dose units of measure with certain routes. For example, “nebs” and
“puffs” could be linked to a respiratory route, or “squirts” could be limited to the
nasal route. Of the 173 scripts with false negative routes (17% of all
prescriptions), the vast majority were due to topical (88 of 173 =35 1%) and

inhaled medications (56 of 173 = 32%), indicating this is an area of future work.

Frequency: The lincar nature of the parser and, specifically, the large regular
expression used to parse valid sigs has the drawback of inflexibility. The parser
expects sets of words in specific orders, and does not allow for “extra” words.
Unfortunately, topical medication sigs are highly variable. An example would be
“apply a thin coat to affected area four times daily”. Though this script has a
valid command (“apply) and frequency (“four times per day™), the parser does not
recognize the 6 words between the command and the frequency, and therefore
cannot identify the frequency. Of the approximately 100 false-negative
frequencies and 97 false-negative frequency units of time, 62-63% were again due
to the less structured nature of topical medication prescriptions (63 of 100

frequencies and 60 of 97 units of time, respectively).

A straightforward modification to the parser might help overcome this: rather than

mandating the sequence of dose components (and risking that the parser fails

39

early in the string due to unrecognized words), the parser could be redesigned to
allow a component pattern to be matched anywhere in a string. This might also
enable the algorithm to parse compound prescriptions, like “take 2 tabs every day
for 2 days, then 1 tab every other day for 1 week, then stop”. By allowing
multiple matches of a component anywhere in the string, the parser could

reconstruct each distinct sig within a compound sig.

Duration: Two classes of medications contributed to the poorer performance of
the duration parsing algorithm. First, many nebulized respiratory treatments
ordered in the ambulatory setting are intended to be given for acute wheezing in
the office. These medications, unlike respiratory medications commonly given
via metered dose inhaler at home, are usually in the form of albuterol mixed with
a normal saline diluent. For example, the script may read “0.5ml neb in 3ml
saline x 1 dose, now”. Because the parser’s dose algorithm does not recognize
diluents, all subsequent components after the dose will fail. The parser recognizes
“0.5” as the dose, “ml” as the unit of measure, and “neb” as the route, but then
stops when it reaches the saline diluent. This limitation could similarly be
overcome by modifying the algorithm such that it matches any component
anywhere in the string, regardless of order or position. The second class of
medication that contributed to the high false negative rate for the duration
component was topical preparations for reasons again related to the parsers

inflexibility in the face of less-structured prescriptions.

40

Effect of Therapeutic Class: RxParse performed well on anti-infective and
analgesic medications. Although a sub-analysis of the parser’s performance by
therapeutic class was not conducted, the task would prove useful and is planned
for future versions of the parser. Antibiotic scripts, though sometimes complex,
tend to be highly structured in their syntax: “take 250mg (5ml) by mouth every 4
hours for 7 to 10 days”. As a result, it is not unreasonable to assume that the

parser would excel at the task of parsing this class of medications.

Study Limitations and Next Steps: Because testing and validation was
performed on a pediatric dataset, it is likely that RxParse will perform differently
on an adult prescription dataset. Also, because the word frequency analysis
helped to define the local lexica for some of the components, the parser may be
over-fit to CHOP data. Evaluating these limitations would require cross-
validation against non-CHOP ambulatory prescription data. In a subsequent
project, we hope to expand on the work begun in this Capstone by validating
RxParse using a set of prescriptions from the Kaiser Permanente Northwest
ambulatory network. This would allow us to test the parser on a set of adult
prescription data. Like CHOP, Kaiser also uses the EpicCare ambulatory CPOE

system.

Finally, this early work demonstrates that RxParse performs better at parsing

certain medication classes (e.g. antibiotics) than others (e.g. topical medications).

41

A formal sub-analysis would allow clinical researchers to decide whether RxParse

is the correct tool to use based on their research question.

Overall, I was very pleased with the development and validation of RxParse. The
tool, even in these early stages, shows promise in terms of its ability to rapidly
extract meaningful data from a corpus of ambulatory prescriptions. With
additional development, the tool can be improved to overcome some of the
existing problems in the algorithm, specifically with respiratory and topical

medications.

42

V. Conclusion

RxParse shows considerable promise as a general purpose text-mining tool for
free-text sig data. The parser correctly identifies all 17 dose components nearly
70% of the time. Its overall recall of 87% and precision of over 99% are
comparable to or better than published statistics for other prescription parsers. In
addition, because RxParse uses lexical pattern matching with regular expressions,
it can be used to quickly parse massive datasets such as those in an enterprise data
warchouse. As investigators face the challenge of deriving knowledge from the
data stored in modern CPOE systems, validated tools like RxParse may prove to

be enormously useful.

The original project objectives were to 1) design and evaluate a free-text
prescription parser that would allow researchers to calculate derived values such
as total daily dose of a medication, 2) adhere to existing terminologies and data
standards where appropriate, 3) use technologies that would allow reuse in other
settings, and 4) validation of the tool against a representative clinical dataset prior
to general use. This Capstone work has achieved these objectives and
demonstrates that RxParse could be a valuable tool for researchers and

informaticists alike.

43

Appendix A - NHS Dose Syntax Model

The NHS Dose Syntax model allows for a variety of discrete elements, including
the action, quantity, timing, route, site, and method of drug delivery.

cd ClassModel)

Action

+ seauencel) nt g.1
+ walge() CD
+ uncodedVaiue{) char

97

Quantity

+ segaencel) ot
¢ value(r IVL<RTO<PQ>>
+ notel] cvar

Doseinstructions)

+coniaing 113

4

DoseinstructionCiause|

+ saquence() nt

IG.A‘I

3

£

QuantiryUpparBound

valuel) WLRTO<PQ»»
aotel; char

Timing

R

sequencal] ot
doseDuarateml iVL<PQs
tregimontDurgtion() WL<PQO>
dervat) IV <P
Aamedintendal]) OO0

Device/Prepsaration
Instructions

C.1{+ seguenced) nt
« vaweli CD
v uniudedvaiueil char

Instruction

+ BRg

NG

+ vdus(i CO

eacel)

dedValye!) double

Method

+
+

o1

valael) CD
uncodedvalae() char

RouteSHeMethod

+ seguence(; m“"

o1

Site

G..1 @
rd
TimingStart TimingUpperBound

+ namedEvest{] DD
+ fixedDate)
¢ durgtioni) . IWL<PO>

+ guraton) VL<PQO»
+otervall IVL<PG>

+ wauel] COD
+ wcodedVa uel] cher

0.1

Route

¥
+

valuet: CD
unoudedvalue() char

44

Appendix B - Dosage Instructions Representation in

HL7 V3 Pharmacy Information Model

The HL.7 v3 Pharmacy Information Model contains a subset of the elements
modeled by the NHS Dose Syntax.

CHET: (ASSISNED)
R AssigredDovice

{univernsi]
(INEY TNV

(o . - - —-——

CMET. ASSIGNED] !
R Medication

musmmm e sama

45

Appendix C - OpenEHR Medication Archetype

|Name of medication |

| Administration instructions |

- {Strength per dose unit |

e { Quantity by volume |
e i By absolute quantity - | s
i o | Quantity by mass

<By dose units [Number o fraction |

i Iﬁon;—t'e?r; |
[Generic name
;’_Maximum dose unit frequency |
| Description |—— Medication description ~—1 Data || | Safety limits oo i i i L 5
SR e s et R e © - Minimum dose interval |
[Meximum dose mtorval|

| Date (time) of first administration |

! ﬁﬁﬁﬁ{zs'trauoﬁ'}ﬁﬁmﬁaﬂc—% Site of administration [

{ 1 Sequence number|

| i Dale (time) of last administration X

! | Quantity to be dispensed]

{Number of authorised repeat dispensing |
- | Dispensed product |

| {Brand substitution atlowed |
| Dispensing informatior} ¢
%

- Authority approval number |

| Patient counselled on CMi |

. {Deferred supply |

[Reason for deferred supply |

46

Appendix D - Capstone Prescription Data Model

The command describes the imperative or directive that indicates how the
medication should be given. This is modeled after the NHS Dose Syntax

SLE element ealled “Action”
Example: "take 2 tablets every 4 hoors' = Command = “TAKE"
If a single numeric dose is specified, this is the numeric value.
Example: "swallow 2 tablets" - DoseLow =2

Dose Low

If a dose range is specified, this is the lower end of the dose range. Example:
"swallow 2-4 tablets' - DoseLow =2

If a single numeric dose is specified, this value is null.
Dose High If a dose range is specified, this is the upper end of the dose range. Example:
"swallow 2-4 tablets" - DoseHigh = 4

Dose The unit of measure if explicitly stated.
Unit of Measure Example: "swallow 2 tablets' - DoseUOM = tablets

Some scripts have parenthetical alternate doses, which should be represented in
Alternate Dose this field.
Example: "take 5 ml (1 tsp) by mouth' AltDose =1

Some scripts have parenthetical alternate units of measure, which should be
represented here.
Example: "take 5 ml (1 tsp) by mouth" AltDoseUom = teaspoon

Alternate Dose
Unit of Measure

The route is the delivery mechanism for a medication. Examples include "oral”,
Route "intravenous”, "topical”, "rectal", and "inhaled"
Example: " Apply topically to rash’. Route = "TOPICAL"

Frequency-based sigs describe the number of doses per given unit of time. If
the dose is described with a frequency, the number of doses is represented here.
If the dose has a frequency range, the lower bound is represented here,
Example: "1 tab 2-4 times per day". FreqLow =2

Frequency Low

If the dose is described with a frequency range. the higher end of the range is
Frequency High represented here, otherwise null.
Example: "1 tab 2-4 times per day". FreqHigh =4

If the dose is described with a frequency, the specified unit of time over which
the dose is repeated is represented here.
Example: ''1 tab 2-4 times per day". FreqUOT =day

Frequency
Unit of Time

Interval-based sigs describe the elapsed time between doses. If the dose is
described with an interval, the numeric interval is represented here. If a dose has
an interval range, lower end of the range is specified here.

Example: "1 tab every 4-6 hours". IntLow =4

Interval Low

If the dose is described with an interval range, the upper end of the numeric
Interval High interval range is represented here, otherwise null,
Example: "1 tab every 4-6 hours'. IntHigh =6

The unit of measure for the elapsed time between doses in interval-hased sigs. If
Interval this is an interval-based sig and the unii of ume is explicitly stated, the unit of

Unit of Time lime is represented here,

Example: "1 tab every 4-6 hours". IntUOT = HOURS

47

Duration Low

If the sig is specified to be given for a certain duration, the numeric duration or
lower end of a duration range is represented here.
Example: "by mouth for 3-6 weeks". DurationLow =3

Duration High

If the sig specifies a duration range, the upper value of the range is represented
here, otherwise null.
Example: "by mouth for 3-6 weeks". DurationHigh =6

Duration Urit of
Time

If the sig specifies a duration, the unit of time for which the duration applies,
otherwise null.
Example: "by mouth for 2 days". DurationUOT="days"

Medication is PRN

Some medications are to be given conditionally or at the patient's discretion.
Common descriptions of condition-based meds include "PRN" ("pro re nata" in
Latin, or "as needed"). If the medication clearly states it is to be given only for
certain conditions, this value is “True”.

Example: “take as needed for fever”, IsPRN = True.

48

Appendix E - Word Frequency Analysis

Top 150 tokens found in a subset of 10,000 ambulatory scripts from CHOP:

Freguency Token Freguency ‘Token Frequency Token
5188 daily 251 area 71 puff
3897 by 245 pain 70 hrs
3883 mouth 227 week 68 qid
3548 for 202 morning 67 jEtts
3205 days 199 am 66 night
2608 mg 199 bedtime 66 cap
2207 tsp 195 fever 65 flare
2045 twice 188 nostril 64 repeat
1838 as 187 _ear 60 mouthpiece
1482 every 187 tabs 59 nss
1468 times 184 per 58 please
1326 1o 184 take 57 if
1318 hours 181 areas 54 chewable
1112 tab 181 asthma 54 trainer
1045 needed 177 dispense 52 face
1034 ml 173 5 48 diaper
1027 day 172 teaspoon 47 qd
1001 X 170 capsule 45 into
942 and 161 weeks 45 small
875 in 155 tid 45 ten
840 via 147 tablets 44 patch
81l puffs 145 vial 44 wheezing
802 directed 142 pro 43 meals
775 on 134 dx 42 cc
755 apply 126 be 41 pm
690 two 124 inhaler 40 skin
680 tablet 119 eive 40 prior
639 affected 117 spray 40 flares
577 or 117 four 39 both
568 no 116 used 38 6ml
540 4 114 of 36 scalp
535 spacer 114 medications 36 not
517 one 110 mask 35 w
507 dose 106 weekly 35 eczema
499 with 105 drop 34 pack
474 now 103 q 34 minutes
447 once 99 teaspoons 33 2x
431 cough 96 before 32 hour
425 three 93 evening 32 diagnosis
387 nebulizer 93 after 31 plan
372 then 91 until 31 half
362 use 89 medium 30 amount
339 wheeze 82 rash 30 today
315 bid 81 eyes 30 4ml
314 neb 80 congestion 30 im
306 drops 80 Sml 29 Syringe
295 at 79 up 29 water
294 the 79 capsules 29 continue
291 cach 77 sprays 29 itching
259 cve 74 saline 28 capful

49

References

t Barnett GO, Jenders RA, Chueh HC. The computer-based clinical record -
where do we stand? Ann Intern Med. 1993;119(10):1036-41.

2 United States. General Accounting Office. Automated Medical Records:
Leadership Needed to Expedite Standards Development: report to the
Chairman/Committee on Governmental Affairs, U.S. Senate. Washington, D.C.:

USGAO/IMTEC-93-17; April 1993.

3 RxHUB National Patient Health Information Network. Rx Hub — Home.
Available at: http://www.rxhub.net/index.php. Accessed: May 4, 2008.

4 NHS Dictionary of Medicine + Devices. DOSE Syntax. Available at:
http://www.dmd.nhs.uk/dossyntax.html. Accessed: May 4, 2008.

5 The openEHR Foundation. Home Page. Available at:

http://www.openehr.org/home.html. Accessed on: May 4, 2008.

6 NCPDP. National Council for Prescription Drug Programs. Available at:

http://www.ncpdp.org/. Accessed: May 4, 2008.

’ National Committee on Vital and Health Statistics. Agenda of the December 7-8,
2005 NCVHS Subcommittee on Standards and Security Hearings. Available at:
http://www.ncvhs.hhs.gov/051207ag.htm. Accessed: May 4, 2008.

8 Health Level Seven. Home Page. Available at: http://www.hl7.0rg/. Accessed:

May 14, 2008.

9 Blue Wave Informatics, LLC. Dose Syntax Specification. Available at:

http: / /www.bluewaveinformatics.co.uk/BW/3 2/DocumentList.htm. Accessed:

May 4, 2008.

50

10 Blue Wave Informatics, LLC. Application Links. Available at:

http://www.bluewaveinformatics.co.uk/BW

Accessed: May 4, 2008.

" Leslie H. International developments in openEHR archetypes and templates.

HIM J. 2008;37(1):38-9.

2 Wikipedia, The Free Encyclopedia. Regular expression. Available at:

http://en.wikipedia.org/wiki/Regular expression. Aceessed on: May 4, 2008.

" Friedl JEF. Mastering Regular Expressions. 2nd ed. Sebastopol, CA: O’Reilly

and Associates; 2002.

“"Turchin A, Pendergrass ML, Kohane IS. DITTO - a tool for identification of
patient cohorts from the text of physician notes in the electronic medical record.

AMIA Annu Symp Proc. 2005;:744-8.

" Turchin A, Kolatkar NS, Grant RW, Makhni EC, Pendergrass ML, Einbinder JS.
Using regular expressions to abstract blood pressure and treatment
intensification information from the text of physician notes. J Am Med Inform

Assoc. 2006 Nov-Dec;13(6):691-5. Epub 2006 Aug 23.

' Teich JM, Hurley JF, Beckley RF, Aranow M. Design of an easy-to-use
physician order entry system with support for nursing and ancillary departments.

Proc Annu Symp Comput Appl Med Care. 1992;:99-103.

" Kraus S, Blake C, West SL. Information Extraction from Medical Notes. In
Kuhn KA, Warren JR, Leong TY, editors. Proceedings of the 12th World
Congress on Health Informatics— Building Sustainable Health Systems

(MedInfo). Brisbane, Australia; 2007. p1662-4.

18 Meystre SM, Haug PJ. Comparing natural language processing tools to extract

medical problems from narrative text. AMIA Annu Symp Proc. 2005;525-529.

51

19 Wilke RA, Berg RL, Peissig P, Kitchner T, Sijercic B, McCarty CA, McCarty DJ.
Use of an electronic medical record for the identification of research subjects with

diabetes mellitus. Clin Med Res. 2007;5(1):1-7.

* Barrows Jr RC, Busuioc M, Friedman C. Limited parsing of notational text visit

notes: ad-hoc vs. NLP approaches. AMIA Annu Symp Proc. 2000;51-5.

21 Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa
statistic. Fam Med. 2005;37(5):360-3.

22 Landis JR, Koch GG. The measurement of observer agreement for categorical

data. Biometrics. 1977;33:159-74.

23 VassarStats. Clinical Calculator. Available at:

http://faculty.vassar.edu/lowry/clini.html. Accessed on: May 5, 2008.

24 CPAN. Time::HiRes. Available at: http://search.cpan.org/dist/Time-

HiRes/HiRes.pm. Accessed on: May 5, 2008.

=P

