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ABSTRACT 

In recent years, there has been a significant academic drive to determine the cause of the 

missing heritability problem which is commonly associated with the genetics of complex traits 

such as complex diseases. In this paper, I present an in-depth literature review by introducing the 

nature of this problem and discussing the current state of genetic association studies which 

commonly involves multi-locus models as predictors (as opposed to the conventional single-

locus association studies) that became prominent with the advent of genome-wide sequencing 

technology. Such genotype-phenotype models that involve sets of genes as predictors is wrought 

with analytical challenges, such as the curse of dimensionality, heterogeneity, and small main 

effect sizes. Machine learning as a general method to aid in the search for the missing heritability 

shows promise as exemplified by numerous studies by other authors, presented in this paper, 

demonstrating the utility of machine learning methods for addressing the specific challenges that 

exist in modern genetic association studies. Within the context of genetic association studies, I 

introduce machine learning as a general concept, present a basic overview for several different 

machine learning methods, and go on to present an expansive discussion on neural networks and 

multifactor dimensionality reduction. 
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INTRODUCTION 

With the advent of genome-wide sequencing technology, genome-wide association 

studies (GWAS) have become a reality and a popular method of discovering genetic variants 

associated with phenotypes of interest such as complex diseases. Although such studies have 

identified over 1,200 genetic loci significantly correlated with over 165 common human diseases 

and traits [1][2][3], these identified loci of interest explain only a minor proportion of the 

heritability of such phenotypes. Such has been dubbed the “missing heritability” problem 

wherein the genetic variants that we are capable of identifying as significant correlates of 

common human traits fail to explain most of the heritability that we can calculate from 

correlations of relatives using family data. It has been recently hypothesized that this missing 

heritability is a result of failure to take into account epistatic interactions among causative 

genetic loci. Some authors have argued, for example, that we may have already identified the 

majority of the genetic loci necessary to account for this missing heritability, but our failure to 

accurately model genetic interaction among these genetic variants has resulted in the missing 

heritability phenomenon[4]. Zuk et. al proposed a model of epistatic interaction for Crohn’s 

disease which takes into account 71 known risk-associated loci [4]. With the usual assumption 

that the loci contribute to Crohn’s disease purely through additive effects, only 21.5% of the 

estimated heritability is accounted for. However, when the authors’ proposed model that takes 

into account epistatic interaction is used, they find that 80% of the missing heritability for 

Crohn’s disease can be explained by the 71 known risk-associated genetic loci.  Others have 

suggested that the sets of loci known to be associated with common traits are incomplete and that 

the phenomenon of missing heritability likely arises from our failure to detect more of those 

genetic loci that are truly causative factors [5]. Such authors argue that the missing heritability 
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problem is not simply a result of failure to accurately model genetic interaction among known 

causative genetic variants, but instead a failure to have identified a significant number of 

genuinely causative variants as being statistically significant which then leads to incomplete 

genotype-phenotype models for traits under investigation [5].  

The missing heritability problem has been a significant issue in the study of complex 

traits such as complex diseases [6]. Complex diseases are the result of many different factors – 

factors which are often both unknown and, rather than being independent contributors, 

statistically dependent on one another. Many common diseases have been studied and found to 

be definitively complex in nature, such as various kidney diseases, asthma, Alzheimer’s, 

Parkinson’s, osteoporosis, multiple sclerosis, diabetes, cancer, autism, alcoholism, drug 

addiction, and many others [7]. Such diseases are the collective result of genetic variants at many 

different loci (such as in cases of epistatic interaction among genes, where genes at different loci 

are not independent from one another in their effect but instead interact together in a non-

additive manner to produce a given phenotype) and environmental factors [6]. As such, they do 

not display standard Mendelian patterns of inheritance. An individual having inherited known 

genetic risk factors for a disease does not necessarily mean that that they will actually develop 

that disease, as the effects of the known genetic risk factors may in fact be dependent on other 

genetic variants as well as environmental factors. Because there are so many variables 

responsible for complex diseases, many of them undergoing statistical interaction with one 

another, detection of the underlying genetic causes for such diseases has historically been a 

difficult endeavor that is still very much an evolving process. 



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

8 

 

In this review, I focus on the application of machine learning methods to the discovery of 

epistasis and polygenic effects in complex diseases. The definition of epistasis can itself be a 

controversial issue. In Fisher’s working definition which tends to be the most commonly 

accepted definition today [8], genetic epistasis is a non-additive interaction between alleles at 

different loci that serves as a causative factor in determining phenotype [9]. For our purposes 

here, the term “epistasis” will be analogous to Fisher’s definition in which alleles at different 

genetic loci interact in a non-additive manner such that they enhance, dampen, or modify entirely 

each other’s effects with regard to their contribution to phenotype. I also focus on non-epistatic 

polygenic effects (e.g. additive effects) which is relevant to the purpose of this paper given that 

genetic loci can contribute additively to a phenotype but with such a minute effect on an 

individual level that we are often incapable of detecting such loci as causative genetic factors 

[10][11]. Additionally, epistatic interactions themselves still can actually directly lead to these 

same kinds of additive effects that are so minute that we are often incapable of detecting them 

[5].  

Machine learning, explicitly defined later in this paper, is a process that takes advantage 

of available data to develop and refine a working statistical model. In the area of complex 

diseases, we take advantage of machine learning and genetic data in the attempt to discover and 

quantify the underlying genetic risk factors and disease contributors. In the early stages of using 

machine learning methods to study the genetics of diseases, such methods were employed for the 

purpose of analyzing the independent effect of a single genetic loci with regard to a given disease 

of interest. These methods are insufficient to adequately analyze the genetic contributors 

involved in complex diseases, as the statistical effect of genetic loci that are genuinely causative 

may appear to be negligible using such analytical methods which are incapable of detecting 
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interactions among loci [12] [13]. Multi-locus methods have been developed to analyze the effect 

that sets of loci have on complex disease development. Such methods are capable of quantifying 

the behavior of loci within the more biologically-accurate context of a set of genes wherein the 

loci interact with one another to produce the phenotype. In complex disease development, many 

loci may act collectively with and dependent upon other loci to exert the causative phenotypic 

effect of interest even when the effect of an individual contributing loci may appear to be 

statistically insignificant when viewed as an independent effector [11][14].  

In this paper, I will present an in-depth literature review of the topics introduced here. I 

focus on two specific multi-locus machine learning methods, neural networks and multifactor 

dimensionality reduction, and use the information regarding the theory and application of such 

methods to construct an overarching theme of the utility of machine learning methods in general 

for genetic association studies, particularly with regard to complex traits and GWAS. I will begin 

by presenting an overview of several different machine learning methods and then go on to 

thoroughly discuss neural networks and multifactor dimensionality reduction specifically. 

 

 

 

  



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

10 

 

METHODS 

This literature review was performed in order to identify challenges in genetic association 

studies and demonstrate the ability of machine learning techniques to address these problems and 

act as valuable tools for performing genetic association studies. A comprehensive literature 

review of the latest research papers and articles surrounding genetic association and machine 

learning applications in this field was performed. This literature review utilized articles with the 

following attributes:  

 

● Journal articles that were published in peer reviewed journals. 

● Articles that referred to genetic association studies and machine learning 

techniques that are explicitly used in genetic association studies. 

● Compiled and presented on Pubmed 

● Priority was given to articles published most recently 

 

During the in-depth literature review that was performed for this paper, many journal articles 

were read in their entirety and categorized. In addition to the papers on the subject of genetic 

association studies, numerous articles were read that corresponded to various machine learning 

techniques. The following bullet points identify primary attributes utilized for selecting 

significant articles to be used in the literature review: 

 

● Category of article: 
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○ Primary source article describing a technique/concept and used to introduce and 

provide the background for a subject.  

○ Analysis of a machine learning technique and comparison of various machine 

learning techniques in genetic association studies. 

■ These papers were especially important in identifying variations to 

commonly used machine learning techniques in the field of genetic 

association studies.  

○ Genetic association studies that utilized machine learning techniques to achieve 

some outcome of interest, such as the identification of epistatic interactions or 

causative genes for phenotypes of interest 

■ These studies were utilized to provide the reader with the context of the 

current use of machine learning techniques that were discussed in this 

paper in the field of genetic association studies.  

■ These articles were also useful in identifying current uses of machine 

learning techniques in genetic association studies and providing examples 

of recent discoveries that were found using machine learning techniques.  

● Abbreviated list of terminology and words of interest used in searching for articles (the 

full list of all search terms and queries used can be found in the Appendices): 

○ Articles that contained the terms“genetic association”, “genome wide 

association”, “GWAS”, were discovered and read to gain a background 

understanding of this area. 

○ Articles that contained the term “missing heritability” were discovered and read in 

order to gain an understanding of this problem 
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○ Articles that used the term “machine learning” in conjunction with each of the 

aforementioned terms such as “genetic association” were also found to identify 

the appropriate machine learning techniques and gain a general understanding of 

the field 

○ Articles were also queried using the specific name of a machine learning 

technique (e.g. Neural Networking or MDR) and  the aforementioned terms such 

as “genetic association” in order to gain an understanding of how such machine 

learning techniques have been and are currently being utilized in the field of 

genetic association studies 

○ Articles that used the terms “epistasis”, or “interaction” in conjunction with 

“gene”, “genome”, or “genetic”, were discovered and read in order to gain an 

understanding of epistasis and gene-gene interactions 

 

A total of 116 articles were found to be relevant for inclusion in this literature review. Abstracts 

were read in order to determine whether or not the paper would be possibly relevant for 

inclusion, and those deemed possibly relevant were read in their entirety and filtered to the final 

number of 116 papers selected for inclusion in this literature review. The journal articles that 

were discovered and found to be significant were used in this paper to provide the proper 

background and framework for presenting machine learning techniques that are utilized in 

genetic association studies. In addition, these papers served to address the attributes of specific 

machine learning techniques including their strengths, weaknesses, and potential alterations or 

variations. Finally, the articles used in this literature review also provided context for the current 

use of identified machine learning techniques in modern genetic association studies and were 
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used to provide the reader with specific examples of these machine learning techniques being 

utilized in genetic association studies.  
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RESULTS AND DISCUSSION 

Machine Learning: A Necessary Approach 

In the ongoing effort to determine the reason behind the missing heritability problem, 

taking into account epistatic interactions in both disease models and association studies is a 

promising direction to take. However, statistical models that take into account gene-gene 

interactions are wrought with a plethora of challenges that must be recognized and accounted for 

(Table 1). In addition, several other significant challenges exist in genetic association analyses 

that are independent of gene-gene interactions such as genetic heterogeneity [15][16] (Table 1). 

Genetic heterogeneity arises when a single phenotype is independently associated with different 

loci or different sets of loci (the term also describes the phenomenon in which a single phenotype 

is independently associated with different alleles at the same locus). If heterogeneity is not 

accounted for by the analytical method, statistical power to detect the associated genetic variants 

is limited [5]. Consider, for example, some hypothetical disease X and several hypothetical 

genetic variants g1, g2, ….., gn that all independently lead to the X phenotype. If a case-control 

study involves a case group that consists of individuals with many of the different genetic causes 

for the disease, and the individuals with any particular variant do not possess any of the other 

variants, the presence of these genetic subgroups together in the same case group will confound 

any analysis that attempts to find a single genetic variant significantly statistically associated 

with the entirety of the case group. Methods that account for heterogeneity often involve cluster 

analysis, wherein the analysis of genetic markers is used to build groups of individuals with 

similar genetic profiles so that case-control comparisons can be made for each of the different 

genetic profiles as case groups [17]. 
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As touched upon earlier in this paper, complex diseases also involve both additive and 

nonadditive interactive effects among associated genes. These effects can be associated with an 

increase in the probability of making a type II statistical error, wherein truly associated genetic 

markers are falsely determined to not be associated with the phenotype of interest. For example, 

the main effect of individual genetic markers may be so small as to be statistically insignificant 

even when each of those markers actually contributes to the phenotype of interest. The 

significance of such genes may only be observable when they are viewed as a set of independent 

variables in a multidimensional predictive model which demonstrates the additive effect 

[10][11][18]. Epistatic interactions among genetic loci can themselves, in fact, directly lead to 

such additive effects that are so minute that typical analytical methods fail to detect the effect at 

all [5]. As well, when a loci’s primary contribution to the phenotype of interest occurs as 

epistatic interaction(s) with other genes, the main effect of that gene may be statistically 

insignificant (or even nonexistent) and therefore remain unidentified as a loci of interest for the 

phenotype being examined [12]. Thus, multidimensional methods that account and search for the 

existence of both additive effects and interaction among genetic markers are very useful tools in 

the study of complex disease genetics. 

The ‘curse of dimensionality’ and the multiple testing problem –two very commonly 

encountered problems in association studies—must also be accounted for by the analytical 

methods. The curse of dimensionality arises in genetic studies that model gene-gene interactions 

as a consequence of the fact that, as the number of genes being studied increases, the number of 

potential interactions occurring between those genes increases in an exponential manner [13]. 

Machine learning methods exist that can account for this through feature selection processes that 

filter the predictor combinations under investigation to include only those that are determined to 
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be likely to be significant for the purpose of the study. The curse of dimensionality also results in 

circumstances where the involved sample size is not adequately large enough to accurately 

accommodate the statistical model under investigation that involves multiple genes under study 

[19]. In fact, in some circumstances, there may not exist any samples in the dataset for which 

specific predictive multi-dimensional models of interest can be evaluated. For example, suppose 

we are studying some particular phenotype and we’re interested in determining if a significant 

interaction exists between smoking and some genetic marker x. If the sample size is inadequate, 

there may exist no individuals in the dataset for which both binary variables are positive –that is, 

the sample did not include any individuals who are both a smoker and a carrier of genetic marker 

x—and thus the interaction of interest cannot be studied with the given dataset and machine 

learning methods cannot account for this. The multiple testing problem refers to the increase in 

the probability of making a type I statistical error (the probability of rejecting the null hypothesis 

when it is, in fact, true) as multiple different independent variables or sets of independent 

variables are tested in the same data. As more independent variables are included in the model, 

the likelihood of an association being detected as significant, when it is merely a result of 

random chance (e.g. the independent variable is not actually a causative factor for the outcome), 

increases. Although methods exist to account for this problem, employing them results in a 

decrease in the overall statistical power of the analysis [20]. A summary of these major 

challenges encountered in modern genetic association studies is provided in Table 1. 

Fortunately, many different machine learning methods exist that provide significant aid in 

addressing these challenges encountered in modern genetic association studies. In the 1983 first-

volume edition of Machine Learning, Herbert A. Simon wrote “Learning denotes changes in the 

system that are adaptive in the sense that they enable the system to do the same task (or tasks 



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

17 

 

drawn from a population of similar tasks) more effectively the next time”. Borrowing from 

Simon’s definition, machine learning can be defined here as the branch of artificial intelligence 

(AI) which concerns the study and development of AI systems which are adaptive in response to 

the input of data. Machine learning methods are essential to the study of genetic data, both as a 

result of the size of the data (e.g. number of genomic loci for which variations are possible, 

number of variants at each locus, etc.) as well as the complexity of the genotype-phenotype 

relationship (e.g. epistasis, polygenic effects in general, and heterogeneity). Even discounting the 

latter consideration of complexity, the sheer size of the data involved in genomic study 

necessitates computer-driven processes to observe and compare across all the individual data 

points at all the different genetic loci under consideration, particularly with regard to genome-

wide association studies (GWAS) which compare case and control groups or analyze quantitative 

trait status across millions of known single nucleotide polymorphisms (SNPs) [21].  

 

 

Table 1: 
Challenges in Finding 
the Missing Heritability 

Description 

Heterogeneity 

Arises when the trait of interest in the dataset has different causative factors 
that each independently lead to the trait. For example, a disease may be 
caused by multiple genotypes that each independently lead to the same 
disease status (genetic heterogeneity. 
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Small Main Effect 

Arises when the main effect of a genuinely causative gene is so small as to 
be statistically insignificant. Additionally, the joint effect of a set of genes may 
be significant even though the main effect of each gene is statistically 
insignificant and therefore undetectable when modeled as an independent 
predictor. As discussed, epistatic interactions can also directly lead to main 
effect sizes that are so small as to be statistically insignificant and 
undetectable [5][12]. This issue is related to the issue of inadequate sample 
size given that small sample sizes result in diminished statistical power to 
detect smaller effect sizes. 

Curse of 
Dimensionality: 
Combinatorial 

Complexity 

As the number of predictors in the model increases, the number of potential 
interactions increases exponentially. This makes studying gene-gene 
interactions difficult due to the extraordinary combinatorial complexity 
involved in doing so when the model uses a large number of genes and/or 
gene variants as predictors. 

Curse of 
Dimensionality: 

Inadequate Sample Size 

The sample size can be inadequate to test for certain interactions of interest, 
such as in those circumstances where there exists few to no cases in the 
sample for which certain predictive models can be evaluated. This issue is 
related to the issue of small main effects given that small main effects are 
less likely to be detected the smaller the sample size is. 

Multiple Testing 
Problem 

This follows directly from computational complexity. As the number of 
predictors in the model increases, the chance of making a type I statistical 
error increases solely as a result of evaluating multiple predictors 
sequentially. 

Table 1 - Summary of Major Challenges in Modern Genetic Association Studies 

 

 

The branch of artificial intelligence that is machine learning encompasses many different 

methods and techniques. There exists several different classifications of machine learning 

methods, such as supervised or unsupervised learning. In supervised machine learning methods, 

algorithms are used to analyze data objects to determine which pre-defined class the object 

belongs to. An example of supervised learning would be the analysis of images of individual 

handwritten numbers with the purpose of the algorithm being to correctly assign each data point 

to the actual number it was meant to represent. In unsupervised machine learning methods (AKA 

“cluster analysis”), data points are analyzed for the purpose of establishing clusters of data points 
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that are similar in their characteristics where pre-defined classes for the data points do not yet 

exist. An example of unsupervised learning would be the analysis of genetic data in order to 

group individual data points together into clusters based on some measure of genetic similarity 

where no specific classes of genetic similarity for the data have yet been defined. As touched 

upon earlier, this grouping method is commonly used to account for heterogeneity when 

performing genetic studies [17]. Machine learning methods can also be classified based on 

whether or not they depend on parametric statistical modeling [22]. There are strengths and 

weaknesses generally associated exclusively with either class. In general, parametric methods 

can be more informative from a quantitative standpoint while carrying greater statistical power 

(ability to detect differences where differences exist) if assumptions about the data are correct, 

whereas non-parametric methods are capable of handling a much larger number of predictor 

variables accurately than parametric methods while also being less dependent on assumptions 

about the data [23]. The choice of which class of methods to use to analyze the genetic data 

associated with complex diseases will depend largely on the question(s) posed by the 

investigator, as both of the classes of methods are uniquely capable when compared to the other. 

 

In this review, I will expand in-depth on two prominent machine learning methods used 

today in genetic association studies: neural networks and multifactor dimensionality reduction. 

However, in addition to neural networks, multifactor dimensionality reduction, and the many 

variants associated with both of these machine learning methods, many other major machine 

learning methods also exist such as support vector machines, random forests, and k-nearest 

neighbors. Each of the machine learning methods selected for inclusion here in this paper have 
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been employed in recent years specifically to address challenges in modern genetic association 

analysis. Table 2 contains an overview of each of these selected machine learning methods, each 

of which has been used extensively in genetic association studies while having variants that have 

been developed to add functionality and predictive power for the specific challenges faced in 

genetic association studies.  

 

 

Table 2: 

Selected 
Machine 

Learning 
Methods Brief Description 

Neural Networks 

Neural networks are one of the most common methods used in genetic association 
studies [24]-[31]. The algorithm was built in emulation of a biological nervous system, 
wherein an interconnected network of neurons or “nodes” exists and a threshold value 
must be reached by a node before it fires its signal to an adjacent node. These 
typically consist of an input layer wherein data is fed into the neural network, a hidden 
layer that acts as a “black box” wherein the connected nodes perform computation, 
and an output layer wherein an output of interest such as classification is delivered. 
These are capable of approximating any function and are thus universal 
approximators. Many variants such as genetic programming neural networks [25] and 
grammatical evolution neural networks [26] have been developed that add 
functionality that is particularly useful for genetic association studies. 

Multifactor 
Dimensionality 

Reduction 

MDR divides the data into numerous partitions to perform k-fold cross validation. The 
data is partitioned into both a training data set and a testing data set. Next, every 
possible multifactor class has a case/control ratio calculated and each multifactor 
class is screened based on a pre-set case/control ratio. For example, with three loci 
each with two different variants, there would be a total of 8 possible genotype 
combinations each defining a separate multifactor class. This facilitates the detection 
of non-additive interactions between predictors, such as in cases of epistatic 
interaction among genes. The multifactor classes are separated into two groups, a 
low risk group and a high risk group, based on their case/control ratio. This process is 
then repeated for each possible cross-validation interval with the error being 
assessed each time using the data partition reserved for testing. The model with the 
highest prediction accuracy among all those produced by cross-validation is then 
selected for use. Given that MDR is an exhaustive search, the method has been 
criticized for a failure to scale well to very high-dimensional data such as GWAS with 
a large number of predictors. As such, variants such as generalized MDR and 3 way 
split MDR have been utilized to reduce the computational power needed to perform 



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

21 

 

an MDR analysis [32]-[35]. MDR also possesses other variations developed to 
address other challenges in genetic association studies such as heterogeneity or 
unbalanced datasets[36]-[42].  

Support Vector 
Machines 

The support vector machine method is a non-probabilistic binary linear classifier that 
creates a linear separator to divide data points into two separate clusters. In addition 
to linear separators, kernel functions can be used in SVM to create non-linear 
separators so that classes that are not linearly separable can be accurately 
distinguished. Training data is used to train the SVM model through the assignment of 
examples to one of two possible categories. This training phase iterates until an 
optimum margin is created using the calculated separator between the classification 
of the two categories. The SVM method has been extensively used recently in genetic 
association studies [43]-[48], and variations of SVM have been created, such as the 
multiclass SVM, to allow for the analysis of data with more than two possible 
outcomes[43][46][49]-[52]. 

Random Forest 

Random forest is based on creating a “forest” of binary decision trees where in the 
tree base learner is typically grown using the CART (Classification and Regression 
Tree) methodology. It utilizes multiple decision trees created from random subsets of 
predictor variables. These trees are created from a training set that usually consists of 
a bootstrap sampling equal to ⅔ of the data being analyzed. The unused data is 
called “out of bag” data and is used with the training data to estimate the error of each 
tree. The multiple trees that were created are screened and the best decision at each 
node is selected based on aggregate voting across all trees in the forest. This method 
is known to be less prone to overfitting than other machine learning methods. 
However, the generation of multiple trees and the computations involved are 
extensive and generally have a higher computational time than other methods. To 
account for this, variations such as random jungle have been developed to utilize 
modern computing processes that decrease the computational time needed to 
perform an analysis while retaining the same predictive power as traditional random 
forest methods [53]-[57]. The random forest technique is a relatively new method in 
the field of machine learning, and several authors have conducted analyses showing 
that random forests can outperform many other methods with regard to predictive 
power [53]-[56].  

K Nearest 
Neighbors 

A method that utilizes training data to assign a class membership to clusters of data 
points. The value “K” is user defined and the algorithm uses this value to determine 
the individual classes based on the training data. For a given query point (an input 
data point), the algorithm assigns the query point to the majority class among its K 
nearest neighbors as calculated by some distance metric (e.g. Euclidean distance). 
This method iterates until a class membership model is created that is below an 
acceptable maximum threshold in training data. K nearest-neighbor is another 
machine learning technique that has seen use in genetic association studies in recent 
years [58]-[62]. Like the other machine learning methods listed here in this table, 
variations of K nearest-neighbor such as Relief-F and ReliefSeq have been 
developed specifically to address the challenges faced in modern genetic association 
studies [58][63]. 

Table 2 - A Fundamental Overview of Selected Machine Learning Algorithms 
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Neural Networks 

Artificial neural networks (which will hereafter be referred to simply as “neural 

networks”) were developed in emulation of the biological neural networks that compose a living 

nervous system. In the simplest description, this involves a biological network composed of 

individual neurons which, upon receiving a stimulating input that achieves or exceeds some 

threshold value, transmits a signal to adjacent neurons via axonal connections. Neural networks 

can be thought of as composed of three separate layers: (1) an “input layer”, wherein data as 

initially fed into the network, (2) a “hidden layer”, wherein input data is processed, and (3) an 

“output layer”, wherein the processed data is compiled, analyzed, and the output of interest (e.g. 

“True” or “False”) is computed. Neural networks are a non-parametric statistical technique that 

makes no underlying assumptions about the data [64]. Given that neural networks do not depend 

on the construction of a model built on assumptions, they are particularly effective choices for 

the analysis of high-dimensional datasets such as in genome-wide association studies [64]. 

Neural networks can also be used to approximate any function and are thus considered to be 

universal approximators. Additionally, neural networks have been shown to perform very well 

with respect to computation time even when dealing with massive high-dimensional datasets 

[65]. 

 

Basic Theory and Methodology 

The single-layer perceptron model, a very simple and basic feedforward neural network 

algorithm, is a linear separator used for the purpose of binary classification. The single-layer 

perceptron model is limited in that it can only accurately identify classes that are linearly 
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separable from one another. It consists of a simple two-layer model with a simple output 

function, though many different input nodes are typical and acceptable. Figure 1 shows a typical 

perceptron neural network. The leftmost layer is the input layer and it consists of nodes labeled 

from i1 to in, with each input node taking as input a different data point from an input dataset. 

Each of these input data points are multiplied by the respective weight values w1 through wn and 

the resulting product is fed forward into the next node, labeled with a “∑” symbol. This node 

sums up the products fed into it from all the input nodes according to equation 1. 

x = ∑ (i1*w1) + (i2*w2) + … + (in*wn)    (1) 

The resulting sum is then fed forward into the threshold output node. The output node 

typically consists of a threshold sigmoid function similar to that shown in Equation 2 for the 

purpose of delivering a binary output variable that can be either a 1 or a 0. As data in the network 

flows only in one direction, from the previous layer to the following layer with no loops 

occurring, this is an example of a feedforward neural network. 

F(x) ={1, 𝑖𝑓 
1

1+𝑒−𝑥 ≥ 0.5, 0, 𝑖𝑓 
1

1+𝑒−𝑥 < 0.5      (2) 
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Figure 1 - Visual Representation of a Single-Layer Perceptron Neural Network 

 

 

Training such a neural network to be an effective classifier involves systematically modifying 

the weight values. The neural network employs a backpropagation algorithm to train itself that 

results in the network weights being adjusted until some threshold level of accuracy is achieved. 

The backpropagation algorithm requires a differentiable error function as in Equation 3 that is 

used to update the network weights and train the model after each data case is fed through the 

network.  

E = 
1

2
(output – target value)2     (3) 

Adjusting the network weights in response to error is the key to training the neural network to 

output accurate classification. The values for these weights are updated after each run using the 
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backpropagation algorithm. This algorithm adjusts the weights in the network in the direction 

necessary to lessen the error on the previous run. This continues in a stepwise fashion until some 

threshold level of accuracy is achieved, at which point the neural network is trained and ready 

for classification. 

 

 

 

 

Figure 2 - Visual Representation of a Multilayer Perceptron Neural Network 

 

 

This basic perceptron model for neural networks can be extended to include three or more 

layers which allows the model to be capable of accurately classifying data regardless of whether 
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or not the individual classes are linearly separable. Such models consist of (1) an input layer; (2) 

a hidden layer that can contain an arbitrary number of layers within itself, each with an arbitrary 

number of nodes; and (3) an output layer that can consist of as many nodes as is necessary for 

the problem. Figure 2 shows an example of such a model with three input nodes (though this can 

be as many as desired), an arbitrary number of hidden layers and nodes within each layer, and an 

arbitrary number of output nodes. It is standard for every node in any particular layer to be 

connected to every node in the subsequent layer, and Figure 2 represents this concept using a 

series of horizontal dashed lines. Multi-layer perceptron models are much more powerful than 

single-layer perceptron models and are, in fact, capable of approximating any kind of functional 

relationship regardless of the complexity of the function [66]. The hidden layer in such networks 

is often considered a kind of “black box” wherein the explicit details of the connections and 

weights are not necessarily known by the user as the network can become very complex. 

Nonetheless, the functionality is what is important, and the neural network is designed to train 

and optimize itself in response to input data on its own without direct human oversight of the 

hidden layers being either necessary or desirable. 

Neural networks have proven to be an extremely effective and useful tool for the analysis 

of genetic data, such as in identifying genetic markers associated with a particular disease 

phenotype. When using a neural network for such a task, genetic data typically serves as the 

input with the output of interest being different phenotypes. The encoding of that input and 

output data, however, can vary depending on the type of analysis being conducted. For example, 

the input data can be used to indicate whether or not certain genetic markers, such as SNPs, are 

present, with a “0” value indicating that the marker is not present while a “1” value indicates that 

the marker is present. The output can then be either a “1” to indicate that a phenotype of interest, 
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such as disease status, is predicted to be present in the subject, or a “0” to indicate that the 

phenotype is not predicted to be present in the subject. 

 

Modern Variants of Neural Networks 

Many of the more modern variants to neural networks focus on architecture optimization 

and feature selection. The first neural network algorithms involved a neural network architecture 

that was largely a product of design based on estimation [24]. As discussed, neural networks are 

very much a kind of digital black box in which data can be input in order to, fascinatingly, 

achieve output data that accurately classifies the input cases. That hidden layer that acts as black 

box, however, must be specifically defined in terms of the number of hidden layers and number 

of neurons in each hidden layer. It is the weights between nodes in the hidden layer that are 

trained and automatically altered by the algorithm; the number of hidden layers and number of 

neurons within the hidden layers, however, are predefined and held static using the standard 

backpropagation algorithm. Newer neural network algorithms have been developed, however, 

that train and modify not just the weights in the hidden layer, but also the entirety of the neural 

network architecture itself including the number of input nodes (predictors), the number of 

hidden layers, and the number of nodes within each hidden layer. 

Ritchie et al. used a genetic programming algorithm to build the architecture of a neural 

network and demonstrated that the neural network achieved through genetic programming had a 

lower prediction error and higher power as compared to the standard backpropagation neural 

network constructed without architecture optimization through genetic programming [67]. The 

application of genetic programming to the construction of neural networks was done to improve 
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upon the standard process of constructing a neural network wherein the general architecture is 

largely a product of arbitrary decision. Referred to as GPNNs for “genetic programming neural 

networks”, these neural networks are constructed through a standard genetic algorithm process 

that involves (1) random generation of neural network architectures, including random selection 

of predictors and number of nodes in the network, (2) training each of the individual neural 

networks through backpropagation, (3) evaluating and ranking the performance of each 

individual neural network, (4) selecting the highest-performing network architectures and 

randomly combining their features (representing genetic crossover) and adding in random 

modifications (representing genetic mutation) to create a new set of network architectures, and 

(5) repeating the entire process on the new generation of network architectures until some 

endpoint is achieved (e.g. preset number of generations or a threshold level of accuracy) at which 

point the single best-performing neural network from the latest generation is chosen for use. 

The methods used to optimize neural network architecture can vary widely, with many 

recent developments in neural network algorithms that focus on optimizing architecture through 

feature selection showing promise as effective tools for detecting epistatic interactions in genetic 

data that would otherwise be missed [24][25]. Feature selection is particularly important in 

GWAS that aim to detect gene-gene interactions given that, as the number of predictors under 

consideration increases, the number of potential interactions between them increases 

exponentially. This combinatorial explosion can make certain analyses computationally 

infeasible, and feature selection algorithms are often used to address the challenge that results 

from this by filtering the set of predictors to include only those that are determined to be 

statistically likely to be of importance. Some examples of these feature selection algorithms 

would be the already-mentioned genetic programming neural networks (GPNN) [67], 
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grammatical evolution neural networks (GENN) [26], and Bayesian neural networks [68]. 

Selected variants of neural network algorithms with accompanying descriptions are given in 

Table 3. Yet, in spite of the many evolutions of neural network algorithms that have occurred 

since they became a popular tool, the standard multilayer perceptron model, a basic feedforward 

neural network that uses backpropagation to achieve its trained state, remains popular and in 

wide use due to its proven effectiveness as a classification and pattern recognition tool to aid in 

biomarker identification and classification [27]-[31].  

 

 

Table 3: 
Neural Network Variants Description 

Backpropagation Neural 
Network [64] 

A standard neural network model that involves using a 
backpropagation algorithm for the purpose of training the network 
weights. The backpropagation algorithm uses a partial derivative to 
determine how the overall error of the network changes with respect 
to an individual weight. The value of each weight is shifted by a pre-
determined quantity in the direction necessary to lessen the error 
associated with the output of the network and this procedure is 
repeated for each data point used in the training dataset. This 
method does not inherently involve any feature selection or 
architecture optimization. 

Genetic Programming Neural 
Networks (GPNN) [67] 

Utilizes a genetic programming algorithm to optimize the architecture 
of the neural network. This algorithm works by randomly generating 
neural network features (such as the predictors to use as input) to 
serve as the parent generation, training each network, evaluating the 
performance of each network, creating an offspring generation of 
neural networks by randomly combining the features of the highest-
performing parents, and repeating the process until some pre-defined 
threshold is achieved. 

Grammatical Evolution 
Neural Networks (GENN) [26] 

This method is a "cousin" to GPNN in that it utilizes a genetic 
algorithm to optimize the architecture of the neural network. It differs 
in that it uses a context-free grammar (CFG) to define the individual 
networks used in the algorithm. Grammatical evolution uses a 
population of linear genomes that are translated by the grammar into 
a phenotype which, in the case of GENN, is a neural network. Using 
a grammar to map a neural network results in a separation between 
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genotype and phenotype, and the result is a greater genetic diversity 
in the population of neural networks as compared to GPNN. 

Bayesian Neural Networks 
(BNN) [68] 

Similar to a standard backpropagation neural network, but these 
differ in that the architecture is a product of a Bayesian prior 
distribution rather than being a product of somewhat arbitrary user 
design. Training is done by sampling from a Bayesian joint posterior 
of the network structure and weights. Instead of considering a single 
answer to question of interest, Bayesian methods allow for the 
consideration of a distribution of possible outcomes. Additionally, 
given that every parameter of a BNN is given a prior distribution, 
variable importance can be quantified and used for the purpose of 
feature selection resulting in a feature-trimmed model that is less 
computationally expensive than it would otherwise be. 

Fuzzy Neural Network [69] 

Neural networks constructed with the use of fuzzy logic to map the 
input space to the output space. Fuzzy logic operates on the basis of 
approximations and degrees of truthfulness (or belonging in the case 
of classification) as opposed to definite values and boolean logic. A 
useful feature of fuzzy neural networks is that the input space can be 
mapped to the output space by a series of IF-THEN rules (as 
opposed to mathematical summation of signals as is typical in non-
fuzzy neural networks). This can lead to an enhanced classification 
accuracy when analyzing imprecise or uncertain data such as 
heterogeneous traits in genetic association studies. 

Table 3 - Selected Neural Network Variants with Accompanying Descriptions 

 

 

Neural Networks and Gene-Gene Interactions 

Neural networks have been used extensively in the literature to detect gene-gene 

interactions. By their very nature, they are well-suited for this task given that they can accurately 

model arbitrarily complex relationships among the input nodes even when they interact in an 

intricate manner (such as when more than two SNPs are involved in an interaction that affects 

trait status). Although this methodology is well-suited for the detection of interactions among 

predictors as well as for accurate outcome prediction when the predictors interact significantly, it 

is not possible to determine the specific type of interaction that the predictors undergo (e.g. 
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additive, multiplicative, or epistatic) from the output of a neural network. Nonetheless, the utility 

of neural networks for detecting the presence of gene-gene interactions has been demonstrated 

extensively in the literature, even if the method is not inherently capable of determining which 

kinds of interaction are at play in a particular genotype-phenotype relationship. 

Gunther et al. investigated the ability of standard feedforward multilayer perceptron 

neural networks with backpropagation to model epistatic interactions in six separate two-locus 

disease models [70]. The authors compared the performance of neural networks to several 

different logistic regression models using simulated data (Table 4). The six different epistatic 

models used are described in detail by the penetrance matrices and accompanying description 

given in Figure 3. To generate the data, a population of one million individuals with two biallelic 

loci, A and B, was generated for each epistatic model for both a high-risk and low-risk scenario 

(presented in Table 5) for a total of twelve populations. The genetic information was drawn 

randomly for both loci with a minor allele frequency of 0.3. It was assumed that both loci are in 

linkage equilibrium and that Hardy-Weinberg equilibrium holds. The case-control status was 

drawn according to the probability given by the epistatic penetrance matrices using the numbers 

in Figure 3. For each of the twelve populations, parameters were selected to achieve a disease 

prevalence equal to 0.01. In standard fashion, the genotype at each loci served as the input data 

for the neural network while the output node represented the penetrance (or probability of 

disease status) for each genotype used as input. The methods were each evaluated on their ability 

to estimate the theoretical penetrance matrix for each disease model. 
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Figure 3 - Penetrance Matrices for Disease Models [70] 

In this figure, i and j represent the genotypes at the two loci GA and GB, respectively; c denotes the 

baseline risk and r denotes the risk increase or decrease. By choosing the parameters r, r1, r2 and the ratios 

a1/ao, a2/a0, b1/b0, and b2/b0, respectively, different risk scenarios can be generated. The first model 

(ADD) is a standard additivity model for the two loci. The second model (HET) assumes that there is both 

an additive and multiplicative interaction between the two loci. The third model (MULT) assumes that the 

interaction between the two loci is entirely multiplicative. The fourth model (EPI RR) assumes that both 
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genes have a recessive effect on the disease where both loci must each carry the mutated allele in order 

for an increased or decreased risk to be observed. In the fifth model (EPI DD) both loci are assumed to be 

dominant, and the occurrence of an increased or decreased risk occurs only if both loci carry at least one 

mutated allele. The sixth model (EPI RD) is a mixed epistatic model in which one gene has a dominant 

effect on the disease while the other gene has a recessive effect. [This figure is reused in accordance with 

the permissions set forth by the original publisher of this content, BioMed Central] 

 

 

For both the ADD and HET model in [70], and for both the low-risk and high-risk 

scenarios in which each model was studied, the neural network outperformed logistic regression 

as measured by the difference between the predicted and actual penetrance for the simulated 

data. For the MULT model, and for both the low-risk and high-risk scenarios, logistic regression 

outperformed the neural network algorithm by a significant margin. For the EPI RR and EPI RD 

models, and for both the low-risk and high-risk scenarios, neural networks substantially 

outperformed logistic regression. For the EPI DD model, logistic regression slightly 

outperformed the neural network algorithm in the high risk scenario, while the neural network 

algorithm slightly outperformed logistic regression in the low risk scenario. The quantitative 

results are summarized in Table 6, and the authors chose to omit the numerical data for the HET 

model while explaining that it was “virtually identical” to the data for the ADD model. The 

authors posit that the reason why logistic regression outperformed the neural network algorithm 

for the MULT model is due to the MULT model corresponding exactly with the model that 

logistic regression inherently uses for analysis. The authors concluded that neural networks are a 

“promising” tool for genetic analysis and are capable of successfully modeling several different 
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kinds of gene-gene interactions, but that further research is necessary to take full advantage of 

their utility.  

Nonetheless, this study is significant for several reasons. The first is that it demonstrated 

the ability of even the standard multilayer perceptron neural network algorithm with 

backpropagation, one of the most basic neural network forms, to model gene-gene interactions. 

The second is that it demonstrated the ability of neural networks to detect multiple kinds of gene-

gene interactions, such as additive, multiplicative, epistatic, and mixed. The third is that it 

demonstrated the ability of neural networks to predict the probability that a given genotype is a 

disease case (the penetrance for each genotype being examined) when disease status is dependent 

on epistatic effects. The fourth is that it showed that even the most basic neural network form 

offers comparable if not superior performance as compared to logistic regression for detecting 

gene-gene interactions, and this is a notable feature given that neural networks are known to 

scale well to high-dimensional datasets whereas logistic regression methods do not [70]. In spite 

of the significance of this study, is not without limitations. The authors did not explore the 

feature selection capabilities of advanced neural network algorithms such as GPNN or GENN, 

and this feature is critically important in the analysis of GWAS data and one of the unique 

benefits associated with the application of neural networks to GWAS. Additionally, the neural 

networks that the authors used had between two and five neurons, and it is possible that the 

neural networks would have performed even better had the authors used a more complex 

architecture (e.g. more hidden layers and neurons).  
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Table 4 - Number of parameters and basic model information for each neural network and logistic 

regression model used for comparison [70] 

[This figure is reused in accordance with the permissions set forth by the original publisher of this 

content, BioMed Central] 
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Table 5 - Risk Scenarios Investigated for Each of the Disease Models in Figure 3 [70] 

[This figure is reused in accordance with the permissions set forth by the original publisher of this 

content, BioMed Central] 
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Table 6 

Mean Absolute Difference 

Low Risk High Risk 

Neural Network Logistic Regression Neural Network Logistic Regression 

Additive Model (ADD) 0.2313 0.253 0.2059 0.2544 

Multiplicative Model 
(MULT) 0.2428 0.1637 0.2178 0.1833 

Epistatic Recessive 
(EPI RR) 0.2071 0.3503 0.141 0.2755 

Epistatic Dominant 
(EPI DD) 0.3095 0.3071 0.2524 0.2648 

Epistatic Mixed (EPI 
RD) 0.2239 0.2799 0.1563 0.2329 

Table 6 - Summary of Results from [70] 

The values for mean absolute difference quantify the difference between the actual penetrance for the 

simulated dataset and the predicted penetrance achieved using the respective models. The values for 

logistic regression here are taken in each instance from the single best performing model the authors 

employed. 

 

 

More recently, Beam et al. proposed the use of a Bayesian neural network as a useful 

alternative to several other machine learning methods when it comes to performing genome-wide 

association studies (GWAS) that account for epistasis [68]. The authors proposed the use of a 

Bayesian neural network as an answer to some of the challenges in computational complexity 

associated with GWAS that take into account epistasis. Bayesian neural networks are similar to 
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the standard feedforward backpropagation neural networks described earlier in this paper, but 

they differ in that (1) the architecture of the hidden layer is a product of a Bayesian prior 

distribution, and (2) the neural network is trained by sampling from a Bayesian joint posterior of 

the network structure and weights. As modern GWAS typically consider several million single-

nucleotide polymorphisms, the number of potential interactions to consider from such a study is 

on the order of trillions. Given that, in Bayesian neural networks, every parameter of the neural 

network is given a prior distribution, model features such as variable importance can be 

quantified and used to build the architecture of the network in a deliberate and statistically-

motivated manner. This is a very useful aspect of Bayesian neural networks within the context of 

GWAS given that the set of predictors under consideration can be filtered to include only those 

with a posterior distribution centered around larger values, effectively reducing the 

dimensionality of the analysis and therefore reducing the computational complexity involved. 
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Table 7 - Risk Models Evaluated [68] 

The symbols η and θ in the tables represent the baseline risk and effect size, respectively. The authors 

simulated genotypes for the disease SNPs for a range of minor allele frequencies (MAFs) and simulated 

the disease status for 1,000 cases and 1,000 controls using the risks given in this table. They embedded 

the causal SNPs in a background of 998 non-causal SNPs, for a total of 1,000 SNPs to be considered. For 

each combination of effect size, θ ∈  {0.5, 1.0, 1.5, 2.0}, MAF ∈   {0.1, 0.2 , 0.3, 0.4, 0.5}, and model type 

(Additive, Threshold and Epistasis) they generated 100 datasets. This yielded a total of 6,000 datasets for 

evaluation. [This figure is reused in accordance with the Creative Commons Attribution (CC BY) license 

granted by BMC Bioinformatics that is applicable to this content] 

 

 

 



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

40 

 

The authors in [68] compared the statistical power of Bayesian neural networks to several 

other methods in two separate phases. The authors defined statistical power as the fraction of 

datasets for which each method was able to correctly identify both disease-causing SNPs. In the 

first phase, the authors used each method to analyze 6,000 simulated case and control datasets 

that each involved 1000 SNPs. The risk models evaluated in the first phase are provided in Table 

7.  The authors compared Bayesian neural networks to the chi-squared method and BEAM 

across four different effect sizes (0.5, 1.0, 1.5, and 2.0) five different minor allele frequencies 

(0.1, 0.2, 0.3, 0.4, and 0.5). For the additive and threshold model, the superiority of Bayesian 

neural networks to detect causative SNPs with small effect sizes and small minor allele 

frequencies was significantly greater than either of the other methods tested. For instance, in the 

additive model with an effect size of 0.5 across all MAFs tested, Bayesian neural networks had 

an average statistical power of ~0.85, whereas the second best performing method, the chi-

squared test, had an average statistical power of ~0.35. Additionally, in the threshold model for 

the effect sizes of 0.5 and 1.0 across all MAFs tested, Bayesian neural networks had an average 

statistical power of ~0.39 (high of 0.90, low of 0.0), whereas the second best performing method, 

again the chi-squared test, had an average statistical power of ~0.22 (high of 0.76, low of 0.0). 

However, for the epistatic model, the results are somewhat mixed. At the effect size of 0.5, 

BEAM had an average statistical power of ~0.43 across all minor allele frequencies tested, 

whereas Bayesian neural networks (the second best performing method here) had an average 

statistical power of ~0.34. At the effect size of 1.0, Bayesian neural networks had an average 

statistical power of ~0.72 across all minor allele frequencies tested, whereas BEAM (the second 

best performing method here) had an average statistical power of ~0.66. These results 

demonstrate that Bayesian neural networks offer similar and in some cases superior performance 
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when compared to the chi-squared method and BEAM when it comes to genetic analysis that 

involves epistatic disease models. This is particularly interesting given that Bayesian neural 

networks can be used in GWAS to reduce the computational complexity involved in the analysis 

while still performing very well as compared to other methods that might be substantially more 

computationally complex. 

In the second phase [68], the authors analyzed Bayesian neural networks against several 

other methods, including multifactor dimensionality reduction (MDR), using a simulated dataset 

in which the causative loci influence trait status purely through epistatic interaction. The 

comparison took place over a purely epistatic model with 5% heritability, and another purely 

epistatic model with 10% heritability. In this model, there are no main effects and, thus, the 

authors argue that causative SNPS should be more difficult to detect than in any of the models 

used in the first phase. For the model with 5% heritability, Bayesian neural networks 

outperformed all other methods for the MAF of 0.05 with regard to statistical power (1.00 for 

Bayesian neural networks compared to ~0.85 for the second highest performer that was MDR), 

but MDR outperformed all other methods for all other MAFs (average statistical power of ~0.95 

for MDR compared to 0.61 for the second highest performer that was Bayesian neural networks). 

For the model with 10% heritability, MDR outperformed Bayesian neural networks by a non-

trivial margin (average statistical power of ~0.8 for Bayesian neural networks compared to 1.0 

for MDR). Although multifactor dimensionality reduction (described in the following section of 

this paper) demonstrated superior performance over Bayesian neural networks as measured by 

power to detect causative SNPs in these genetic models that involve significant epistasis with no 

main effects, the authors that argue that Bayesian neural networks are still a very useful method 

for genetic association studies, especially genome-wide association studies, given that 
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multifactor dimensionality reduction does not scale well to high-dimensional datasets. Overall, 

this study is notable in that it proposed a new variant of neural networks based on Bayesian 

probability that demonstrates statistical power comparable to top-performing methods such as 

MDR while also being much less computationally demanding. Additionally, the Bayesian variant 

of neural networks proposed in this study offers the direct ability to quantify variable importance 

which in and of itself is a primary goal of association studies [68]. Finally, given that the analysis 

used 1000 SNPs as independent variables, this study also illustrates the utility of machine 

learning methods for detecting gene-gene interactions in high-dimensional genetic data. 

The same authors in [68] also carried out another investigation into the utility of Bayesian 

neural networks for detecting causal genetic loci in the presence of significant epistatic 

interaction [71]. What makes this particular study unique and provoking, the authors argue, is 

that they used simulated datasets to model a variety of outcomes whereas most other studies have 

investigated the significance of epistasis solely in case-control studies or single-value 

quantitative trait loci. Patient drug response, either to different drugs or different doses of the 

same drug, can vary widely with many different types of responses occurring across different 

individuals with regard to the same drug at the same dose. As such, the multiresponse nature of 

data produced by studies that have examined patient drug response has a greater dimensional 

complexity than case-control studies. Epistasis, the authors argue, may have an important 

causative role to play in the reason for this wide variety of observable responses to different 

drugs and/or different doses of the same drug. The researchers compared the performance of a 

Bayesian neural network to the standard multivariate analysis of variance technique using 

simulated data for three different two-loci genetic models: (1) a simple additive model of genetic 

causation involving no epistasis, (2) an additive model that includes a single interaction term to 
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represent epistasis among the two causative loci, and (3) a model in which the involved genetic 

loci affect drug response purely through interaction with each other.  

For the additive model [71], both methods tested were insignificantly different and had 

very similar power to detect the causative SNPs. For the additive model with interactions, 

Bayesian neural networks outperformed MANOVA throughout most parameter combinations of 

effect size and MAF, and this difference is particularly notable for the larger values of MAF 

tested. For the purely interactive model, the methods were again insignificantly different with 

regard to statistical power, but both methods performed well and even achieved a statistical 

power of 100% for MAFs of 0.3, 0.4, and 0.5. The authors argue, however, that Bayesian neural 

networks may be the preferable method for many applications due to making less assumptions 

about the data and the statistical model as well as being much more capable of dealing with new 

constraints or different data types. To accommodate a new data type, for example, one only 

needs to incorporate the likelihood function into the output layer of the network. Nothing else 

about the basic model needs to be modified in order to analyze a new type of data.  It is also 

worth noting that the third genetic model above, in which genetic loci affect the phenotype solely 

through epistatic interaction without any individual main effects, is of particular academic 

interest given that previous authors have called attention to the incapability of current algorithms 

in use to detect such epistatic effects altogether [72], although strong evidence to suggest that 

such a genetic model is realistic has yet to be produced [72]. This study further demonstrates the 

utility of neural networks for detecting gene-gene interactions among high-dimensional data 

(1,000 SNPs used here), and it also demonstrates the ability of neural networks to effectively 

accomplish investigations of genetic association that involve both epistatic interaction as well as 

multiple outcomes (as opposed to simply a binary case-control response variable). 
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Tong et al. used a standard multilayer perceptron neural work with the backpropagation 

algorithm to analyze epistatic interactions among 96 genes [28]. The genes examined by the 

authors in [28] were chosen due to their ability as a set to serve as marker genes whose 

expression data can be used to distinguish between four different types of blue cell tumors that 

can otherwise be indistinguishable when present in children. This study is unique and noteworthy 

in that the authors used genetic expression data to predict the expression of other genes. To 

perform the analysis, the authors represented all but one gene (the “output gene”) as input nodes 

in the neural network, with the output gene represented as an output node. For each individual 

gene in the dataset of 96 genes, the authors constructed, trained, and analyzed a separate neural 

network in which that particular gene was represented by the output node. The individual steps 

of the process the authors used can be viewed in detail in Figure 13, with the specific type of 

expression data that was used to train, test, and validate the neural network being microarray 

expression data. The central hypothesis of the study was that the expression level of a gene 

represented by the output node in a neural network could be predicted based on the expression of 

the set of genes used as the input nodes, if the set of genes represented by the input and output 

nodes were able to explain a particular categorical outcome such as disease status or type of blue 

cell tumor. If the neural networks could be trained to accurately predict the expression level of 

the output gene then there is a statistically significant correlation between the set of input genes 

and the output gene. Given that the set of genes can be used as a biomarker to explain a 

categorical outcome, this statistically significant correlation is suggestive of an epistatic 

interaction given that the categorical outcome is significantly correlated with a predictable 

statistical relationship between the output and input genes.  
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As such, the genes examined by the authors in [28] were specifically chosen due to their 

ability as a set to serve as marker genes whose expression data can be used to predict the 

categorical outcome that, in this case, is the type of blue cell tumor. The strength of the weights 

in each trained and validated neural network represents the strength of the statistical correlation 

and therefore the strength of the epistatic interaction between genes. A simplified interaction 

map for the associations analyzed by the authors is presented in Figure 12. The interaction maps 

identified by the authors serve as an interesting area for further study to determine the 

phenotypical effect that such genes in each epistatic cluster may have. Investigating the 

phenotypical significance of each epistatic cluster may provide further insight into the nature of 

each blue cell tumor which may ultimately lead to more effective treatments. Furthermore, in 

vivo or in vitro investigation of the functions and involved pathways of the genes in each 

epistatic cluster could help to validate the utility of the method the authors used to identify such 

epistatic interactions. Finally, follow-up work to determine whether or not such correlations in 

gene expression are truly a result of epistatic interaction affecting trait status, such as 

investigations involving gene silencing or gene knockout techniques, would also certainly be of 

relevant scientific interest. 
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Figure 4 - A simplified interactome network map for the 96 selected genes by ANN network 

inference algorithm [28] 

This interactome network map displays the strongest single association for each of the 96 genes analyzed. 

The full interactome network map displays the strength of (96*(96-1)) = 9,120 interactions and is thus 

very difficult to obtain any useful information from. The red nodes are the genes with high expression 

values in either of the sarcoma cancers (RMS vs EWS). The gray node is the gene with high expression 

values in more than one cancer groups in which one of these groups is sarcoma cancer. Yellow nodes are 

the genes with low expression values in both sarcoma cancers. [This figure is reused in accordance with 

the Creative Commons Attribution (CC BY) license granted by PLOS One that is applicable to this 

content] 
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Figure 5 - Overview of the interaction algorithm [28] 

[This figure is reused in accordance with the Creative Commons Attribution (CC BY) license granted by 

PLOS One that is applicable to this content] 

 

Neural Networks and Other Challenges in Genetic Association 

Studies 

Neural networks have been used to address many of the challenges that exist in modern 

genetic association studies such as those cardinal problems that were summarized in Table 1. 

Heterogeneity has been directly addressed by methods that involve neural network algorithms in 

several different manners. Cluster analysis, a commonly used unsupervised machine learning 

algorithm briefly described earlier in this paper, is a commonly employed method of addressing 

the analytical problems associated with heterogeneity [17][73]. In genetic association studies, the 

goal of cluster analysis is to create groups of individuals with similar genetic profiles. This is 

done with the intent of creating case-control groups of individuals wherein the genetic cause of 

the cases are significantly associated with the same underlying genotype within each respective 

group. Before using neural networks to perform genetic analyses on a dataset, cluster analysis is 

often a first step used to create separate groups from the dataset [73]. Afterwards, each group is 

then analyzed separately with a neural network algorithm used to perform some predictive 

function with the data such as identification of genetic variants significantly associated with the 

outcome of interest. This method has been used extensively in the study of various biological 

interests, from studying genetic association of heterogeneous complex diseases [74]-[77] to 

successfully diagnosing complex diseases such as Alzheimer’s from heterogeneous data such as 
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readings of regional cerebral blood flow [78]. Neural networks have even been used for the 

purpose of analyzing the clusters created by cluster analysis, such as for the purpose of 

identifying those biomarkers that are most important for determining which cluster an individual 

data point belongs to [79]. 

 Furthermore, variants of neural network algorithms have also been applied to achieve 

high statistical power even when dealing with markedly heterogeneous data. D’Alessandro et al. 

used genetic programming to build the architecture of a probabilistic neural network and 

managed to achieve 100% statistical power to predict the onset of a seizure within 10 minutes 

from highly heterogeneous electroencephalogram readings [80]. Although [80] is not specifically 

an example of a genetic association investigation, it nonetheless is relevant for inclusion here 

given that it serves to demonstrate the ability of neural networks to account for heterogeneity 

which is, as discussed, a significant problem in genetic association studies. Liang and Kelemen 

used a hierarchical Bayesian neural network to achieve an accuracy of 88% to correctly classify 

yeast cell cycles based on highly heterogeneous gene expression data [81]. Ando et al. used  a 

fuzzy neural network system based on majoritarian decision using multiple noninferior models to 

achieve a statistical power of 91% for predicting patient outcome after chemotherapy based on 

transcriptional profiling data in spite of the massive heterogeneity associated with the genetics of 

cancer and drug response [82]. These same authors in [82] later used a fuzzy neural network with 

microarray data as input to predict the prognosis of patients with diffuse large B-cell lymphoma 

and achieved an accuracy of 93%, again in spite of the genetic heterogeneity associated with 

diffuse large B-cell lymphomas [83]. 
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Neural networks have also been used directly to deal with the problem of genuinely 

causative genes having main effects that are so small as to be statistically insignificant. As 

discussed, this can happen when a gene’s contribution to a phenotype of interest occurs primarily 

as epistatic interaction with other genes [12], or when the effect of that gene altogether is very 

small on an individual level (although it may nonetheless actually contribute to the phenotype in 

an additive manner along with many other genes that also have very small main effects on an 

individual level [10][11][18]). Many different authors have reported that the use of neural 

network algorithms allowed them to detect epistatic and/or additive interactions among genes 

that contribute to a phenotype even when the individual main effects of the interacting genes on 

that phenotype were statistically insignificant [26][71][84][85][86]. Neural networks have thus 

proven themselves to be a robust machine learning method that offers greater statistical power to 

deal with heterogeneity, small effect sizes, and small sample sizes than can be achieved using 

non-machine learning methods such as logistic regression, particularly when analyzing a large 

number of predictors with significant interaction [24]-[31][73]-[86]. 

Neural networks have also been used to address the issues in computational complexity 

that arise when studying gene-gene interactions (the “curse of dimensionality”), primarily 

through feature selection processes as is done in genetic programming neural networks [67], 

grammatical evolution neural networks [87], and probabilistic neural networks such as Bayesian 

neural networks [68]. Such variants reduce the computational complexity involved by filtering 

the predictors to include only those that are most critical (as determined by some threshold 

value) for classification purposes [88][89]. Analyses performed on such methods have 

demonstrated that equivalent classification accuracy can be achieved through these techniques in 

spite of the reduction in computational complexity that arises from the resulting feature-trimmed 
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models [39][67][87][88][89]. Such feature-selection methods are desirable when the aim is to 

achieve an efficient classification or prediction algorithm when dealing with a large dataset 

and/or starting with a large number of predictors. This situation is common when studying gene-

gene interactions which results in the aforementioned combinatorial explosion of dimensionality. 

Feature selection can actually improve classification ability by mitigating overfitting problems as 

well as by allowing a realistic and computationally feasible investigation of interactions among 

predictors [39][67][88]-[92]. 

 

Multifactor Dimensionality Reduction 

Multifactor Dimensionality Reduction (MDR) is a technique that was developed to 

identify significant genes that are affected by non-additive interactions with other genes [93][94]. 

This is especially important for identifying significant loci for diseases that have missing 

heritability and/or expression that is significantly influenced by gene-gene interactions [93][94].  

MDR, being a non-parametric method like neural networks, has the benefit of not estimating 

specific parameters and not possessing potentially false assumptions about the interaction 

between genes [93][94]. The MDR method separates genetic data into a binary outcome variable 

(high risk or low risk) of all possible multi factor combinations in order to reduce the dimension 

of predictors from n-dimensions  to one-dimension [93][94]. However, the main advantage of 

MDR analysis is the ability of the newly created multilocus model to identify non-additive 

interactions between genes [93][94][95].  

Although multifactor dimensionality reduction as an analytical technique is not a recent 

development, it is still fairly common and is still being used extensively to study epistasis 



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

52 

 

[32][36][93][94][95]. MDR is frequently used in genetic association studies due to its high 

predictive power in detecting genotype combinations that are significantly associated with a 

disease of interest [32][36][93][94][95]. However, MDR has the following weaknesses: inability 

to quantify the effect of genotype combinations on the disease of interest, problems arising from 

unbalanced data and genetic heterogeneity, and lower predictive power when examining a high 

number of genotype combinations at numerous loci [36][37][93][94][95]. To help mitigate and 

account for these weaknesses, various alterations to the MDR method have been developed and 

proposed. For example, in order to quantify the effect of specific gene-gene interactions on a 

disease, techniques involving the use of odds ratios and weighted risks have been developed 

[95][37]. Mahachie et al analyzed a technique called model-based MDR that was developed to 

account for issues with unbalanced data and genetic heterogeneity in MDR analysis, but 

concluded that accounting for genetic heterogeneity still remains a significant challenge for 

MDR and genetic association studies in general [36]. Finally, MDR analysis can be 

computationally expensive and require a large amount of time due to the multiple iterations that 

must be performed when the model is being trained and during cross validation. Therefore, 

techniques such as the three way split method described by Winham et al have been developed 

that reduce the time required to perform a MDR analysis while not significantly reducing the 

predictive power of the developed model [33]. A complete summarization of the most recent 

and highly utilized alterations of MDR is provided in the section titled “Modern Variations to 

Multifactor Dimensionality Reduction”.  
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Basic Theory and Methodology 

Multifactor dimensionality reduction is a particularly effective method for detecting 

gene-gene interactions based on the inherent methodology involved [93]. Multifactor 

Dimensionality Reduction first reduces the dimensionality of multifactor classes from n 

dimensionality to one dimensionality so that each combination of genotype values are compared 

[93]. For example, 4 loci that each have 2 possible variants each would give a total of 16 

different genotype combinations [93][94]. Cross validation is then performed in order to estimate 

the prediction error of the multilocus model composed of the optimal genotype combination. 

Cross validation consists of dividing the data into n number of partitions, with 1 partition acting 

as the testing data and n-1 partitions acting as the training data, and repeating this process for 

every possible partitioning of the data [93][94]. Each of the genotype combinations are analyzed 

for case/control ratios using the training partition of the dataset and the genotype combinations 

are then separated into a high-risk group if their case/control ratio is higher than a pre-set value, 

usually 1, or low-risk group of the case/control ratio is below the value [32][93][94][95]. This is 

performed in each partition cycle and the prediction error of the multilocus model is calculated 

for each partition cycle using the testing partition of the dataset. The multilocus model, which 

consists of genotype combinations and their prediction of disease state, is selected based on 

which multilocus model from all of the partition cycles has the lowest prediction error [93][94]. 

There are many variations of MDR analysis, which will be discussed below. Figure 14 shows a 

typical Multifactor Dimensionality Reduction analysis.  
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Figure 6 - Multifactor Dimensionality Reduction Workflow [95] 

[Permission to reuse this figure was obtained from Copyright Clearance Center’s RightsLink service. 

Oxford University Press has granted me permission to reuse this figure via License # 3623410665013] 
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Modern Variations to Multifactor Dimensionality Reduction  

One major drawback to using Multifactor Dimensionality Reduction in genetic 

association studies that seek to identify gene-gene interactions between more than 2 loci is the 

high false positive and false negative error rates that can exist due to the method’s simple 

comparison of case and control ratios in those instances where the case and control ratio for a 

genotype is close to the ratio for the entire dataset [93][94][95]. In addition, Multifactor 

Dimensionality Reduction provides an assessment of high risk or low risk to specific genotypes, 

but does not provide specific quantitative data for diseases risk [93][94][95]. To address these 

concerns, Chung et al developed a modified form of MDR called Odds Ratio Based Multifactor 

Dimensionality Reduction (OR MDR) [95]. In OR MDR, odds ratios are calculated for each of 

the genotype combinations [95]. When the odds ratios are analyzed, it is possible to identify 

genotypes that have a positive association with the disease (odds ratio >1) and genotypes that 

have a negative association with the disease (odds ratio <1) [95]. In addition, confidence 

intervals for the odds ratios can also be calculated by analyzing the distribution of the odds ratios 

for the genotypes. To get this confidence interval, a bootstrapping technique is used that 

resamples a random genotype combination’s case and control and repeating this process 100,000 

times [95]. This distribution is used to obtain the confidence interval for the odds ratio, which in 

turn will allow for a comparison of the significance of various genotype combinations that were 

found in the analysis [95]. This is an advantage when compared to regular MDR methods as the 

use of odds ratios allows for quantitative comparison of the ratios for various genotype 
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combinations on disease risk [93][94][95]. A diagram of the workflow for the odds ratio MDR 

analysis can be found in Figure 15.  

 

 

 

Figure 7 - Odds Ratio MDR Workflow [95] 

[Permission to reuse this figure was obtained from Copyright Clearance Center’s RightsLink service. 

Oxford University Press has granted me permission to reuse this figure via License # 3623410665013] 

 

 

In addition to the OR MDR method, other methods have been developed to quantitatively 

measure the effect of gene-gene interactions on disease risk [95][37]. A method described by 

Luo et al called weighted risk-score multifactor dimensionality reduction (WRSMDR) has the 

advantage of negating the effects of imbalanced datasets on the method’s accuracy and providing 
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a quantitative assessment of the effect of gene-gene interaction on the disease of interest [37]. 

The WRSMDR method calculates the Bayesian posterior probability of different SNP 

combinations and uses this as a quantitative measure to analyze the various genotype 

combination’s effect on the disease of interest [37]. Luo et al performed an analysis using MDR 

and WRSMDR on a simulated dataset and found that there was no difference in predictive power 

between MDR and WRSMDR for two-locus gene interactions [37]. However, the positive 

identification rates for three- and four-locus gene interactions was significantly higher using the 

WRSMDR method than with the MDR method [37]. The ability to utilize unbalance datasets, 

higher identification rates for gene interactions involving three or more locus, and the ability to 

quantitatively assess genotype combinations with respect to a disease of interest are significant 

advantages to the WRSMDR method [37]. The main drawback to utilizing WRSMDR to MDR 

is the slightly higher amount of time required to perform an WRSMDR analysis due to the 

additional calculations performed to calculate weighted risk scores [37]. However, the 

WRSMDR method is significantly more effective than a regular MDR analysis for multilocus 

models utilizing three or more loci [37]. The time and computational power required for an 

WRSMDR analysis can be reduced by filtering the dataset to remove non-significant variants 

prior to analysis [37]. A comparison of the power of MDR and WRSMDR in two, three, and four 

locus models for balanced and unbalanced data can be found in Tables 8 and 9.  
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Table 8 - Power Comparison of MDR and WRSMDR in Balanced Datasets [37] 

Specific detection rate refers to the proportion of simulated datasets where the true model was detected as 

the best model. The detection rate is the proportion of simulated datasets where the overall model 

included the true model as part of its multi-locus model. The error rate is the proportion of simulated 

datasets where the true models were not included in the best overall model [37]. [This figure is reused in 

accordance with the open access license granted by MDPI that is applicable to this content] 

 

 

Table 9 - Power Comparison of MDR and WRSMDR in Unbalanced Datasets [37] 

Specific detection rate refers to the proportion of simulated datasets where the true model was detected as 

the best model. The detection rate is the proportion of simulated datasets where the overall model 

included the true model as part of its multi-locus model. The error rate is the proportion of simulated 
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datasets where the true models were not included in the best overall model [37]. [This figure is reused in 

accordance with the open access license granted by MDPI that is applicable to this content] 

 

 

Another concern when using Multifactor Dimensionality Reduction is that the inclusion 

of non-statistically significant genotype combinations in the analysis can decrease the success 

rate of the analysis [32]. Gui et al have suggested a modified extension of MDR called Robust 

Multifactor Dimensionality Reduction (RMDR) [32]. In this approach, a Fisher’s Exact Test is 

carried out in order to determine if genotype combinations should be included in the analysis 

[32]. The rationale behind this extension is that the inclusion of genotype combinations with a 

case to control ratio similar or identical to the data’s overall case to control ratio will 

unnecessarily decrease the success rate of the analysis and an objective statistical analysis should 

be performed in order to screen out genotype combinations [32]. Gui et al performed an analysis 

on two simulated studies and found that analysis with the RMDR method had a significantly 

higher success rate than a simple MDR analysis [32]. The main drawback for RMDR is that 

calculation of the Fisher’s Exact Tests results in the method being substantially more 

computationally expensive as compared to regular MDR [32]. However, the authors found that 

this time could be significantly reduced with the use of a stored “lookup table” for common 

calculations and that the use of these lookup tables significantly lowered the time it took to run a 

RMDR analysis [32]. The use of RMDR was a significant development as it allowed for an 

increase in the predictive power of the developed model with a tradeoff of a higher calculation 

time. A comparison of the difference in success rate between MDR  and RMDR can be found in 

Table 10. The authors calculated the success rate as the proportion of trials for which MDR or 
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RMDR correctly identified the two functional SNPs out of each set of 500 balanced and 

imbalanced datasets. 

 

 

 

Table 10 - Comparison of Success Rates Between MDR and RMDR Using Two-Locus Model 

Simulation Studies [32] 

The left hand column represents heritability and the individual cells are the success rates. The columns 

RMDR-0.05 and RMDR-0.1 represent analysis performed with significance levels of 0.05 and 0.1 

respectively. For the main column labels, T represents the case/control ratio and n represents the sample 

size [32]. [Permission to reuse this figure was obtained from Copyright Clearance Center’s RightsLink 

service. John Wiley and Sons, the publisher, has granted me permission to reuse this figure via License # 

3623420011246] 

 

 

One drawback of multifactor dimensionality reduction is the amount of time required to 

perform the analysis, particularly the cross validation [33]. In an effort to lower the calculation 

time required for an MDR analysis, Winham et al performed a study on simulated data using the 

three way split method in place of cross validation [33]. The three way split method splits up the 
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data into 3 different sections (Figure 16). The first section is a training section to develop the 

model, the second section is a testing section to refine the model and the third section is a 

validation section to quantify the predictive power of the model [33]. In addition, to decrease the 

time of the analysis and the number of false positives, a logistic regression pruning was 

performed using a pre selected p-value (usually 0.05) in order to remove insignificant variables 

from the model [33]. From this analysis the authors found that a MDR analysis performed using 

the three way split instead of cross validation had comparable predictive power when pruning 

techniques were used [33]. However, the authors found that the predictive power of the analysis 

using the three way split without pruning suffered as compared to a normal MDR analysis with 

cross validation [33]. This paper was significant as it provided a new method for decreasing the 

computational time to perform a MDR analysis while not significantly lowering the predictive 

power of the model [33]. This paper also identified the significance of using a pruning process 

and the impact it can have on the predictive power of a model and it’s false positive 

identification rate. A summary of selected variants of the MDR method, including all those 

discussed here in this section, is presented in Table 11. 
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Figure 8 - Visual Representation of the 3 Way Split MDR Method [33] 

A) Three-way split of the full sample data. B) - Explanation of how the three-way split is incorporated 

into the MDR method. First the sample data is randomly split into 3 intervals with representative numbers 

of cases and controls in each interval. MDR is performed on each of the three splits with all possible 

models considered in the training set, the top x models considered in the testing set, and the final model 

considered in the validation set for each k [33]. [This figure is reused in accordance with the Creative 

Commons Attribution (CC BY) license granted by BMC Bioinformatics that is applicable to this content] 
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Table 11 Attributes 

Odds Ratio MDR (OR 
MDR) [95] 

Provides a quantitative assessment of the association of genotype combinations with a 
disease of interest through the comparison of odds ratios with confidence intervals. This 
allows for the classification of genotype combinations as either having a positive or 
negative association with the disease.   

Weighted Risk-Score 
MDR (WRSMDR) [37] 

Compensates for the effect of imbalanced datasets on the model’s accuracy and 
provides another form of quantitative assessment of the gene-gene interactions 
identified for with respect to the disease of interest. In addition, this method has a 
higher positive identification rates for analysis of gene interactions between 3 or more 
loci than regular MDR analysis. However, this method has the disadvantage of a larger 
computational time than regular MDR analysis.  

Robust MDR (RMDR) 
[32] 

Allows for the screening of datasets through a Fisher’s exact test to remove non-
statistically significant genotype combinations in order to increase the success rate of 
the analysis. 

Three Way Split MDR 
(3WSMDR) [33] 

Significantly lowers the amount of time necessary to perform an MDR analysis. However, 
it has the drawback of reducing the predictive power of the developed model. 
Therefore, it is commonly used with a pruning technique in order to achieve a higher 
predictive power.  

Generalized MDR 
(GMDR) [96] 

Utilizes pruning techniques to significantly increase the predictive power of the analysis. 
Pruning techniques can be included with other MDR methods such as the three way split 
method.  

Model-Based MDR 
(MB-MDR) [38] 

Compensates for issues resulting from unbalanced data and genetic heterogeneity in 
MDR analysis. In addition, this method has also been found to have a slightly higher 
predictive power than regular MDR. 

Table 11 - Selected Multifactor Dimensionality Reduction Variants with Accompanying 

Descriptions 
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Multifactor Dimensionality Reduction and Gene-Gene 

Interactions 

There have been many recent studies that have used Multifactor Dimensionality 

Reduction in genetic association studies. One recent genetic association analysis performed by 

Liu et al used MDR to identify genotype combinations that significantly influence the 

development of obesity in Chinese children [96]. Their analysis utilized a generalized multifactor 

dimensionality reduction (GMDR) analysis with the addition of logistic regression pruning in 

order to increase the predictive power of the analysis [96]. This study selected gene candidates 

that were in the lipid metabolism pathway as there was prior literature that suggested the 

potential influence of this pathway and in particular specific genes in the pathway [96]. The 

study utilized 15 different variants from 5 different loci. This study was the first to perform an in 

depth analysis using MDR on these genes in order to identify what possible gene-gene 

interactions existed that affected the development of obesity. Their study found that the 

interaction of genetic variants in the INSIG-SCAP-SREBP pathway were associated with obesity 

[96]. Table 12 provides an overview of the 9 high-risk genotype combinations that were found in 

the study. This was significant as prior literature had identified some of these genes individually 

as being associated with obesity, such as INSIG1 [96]. However, unlike previous studies, the use 

of MDR in the analysis of gene-gene interactions found an entire set of genetic variants that were 

interacting and associated with the onset of obesity [96].  
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Table 12 - Frequency differences of 9 high-risk genotype combinations of INSIG-SCAP-SREBP 

pathway between obese and nonobese children [96] 

This table provides and overview of the 9 high-risk genotype combinations that were identified in this 

study. [This figure is reused in accordance with the open access permissions granted by BioMed Research 

International that is applicable to this content] 

 

 

Another recent example of the use of Multifactor Dimensional Analysis in epistasis is the 

study by Kebir et al [97]. This study sought to identify key genes that are associated with 

schizophrenia [97]. The genes that were analyzed in this pathway were all Histone deacetylases 

(HDAC) as previous literature had identified the possible association of some genes in this 

pathway with schizophrenia  [97]. In particular, this study analyzed 601 different variants across 

10 loci. The analysis performed in this study was a generalized multifactor dimensionality 
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reduction without any pruning or filtering [97]. This analysis found that the loci HDAC9, 

HDAC10 and HDAC11, had significant interaction [97]. This study further demonstrates the 

significance of MDR analysis on the study of gene-gene interaction as it was able to identify a 

gene interaction relationship that was previously undiscovered and new genes that potentially 

interact to influence the development of schizophrenia [97]. 

In a recent study by Kumar et al additional applications of MDR for detecting epistasis 

were identified [98]. This study used MDR to analyze the interaction of various genetic 

combinations at seven loci with respect to essential hypertension, systolic and diastolic blood 

pressure, mean arterial blood pressure and body mass index [98]. Expression of the genes FTO 

and GNB3 were found in previous studies to be associated with essential hypertension in 

previous studies, however, this study sought to analyze the interaction of FTO and GNB3 

variants with other loci and produced disease models for analysis with 2-7 loci involved [98]. 

The study found that a three locus model comprised of the polymorphisms FTO rs8050136C/A, 

GNB3 rs1129649T/C, and rs5443C/T was the best disease prediction model. The results of their 

analysis is presented in Table 13. This is significant as this study further demonstrates the use of 

MDR for identifying gene-gene interactions and specific genotype combinations that are 

associated with the disease of interest [98]. This study shows the potential use of MDR to 

identify specific genotype combinations that potentially cause or have an effect on certain 

diseases. In addition, this study showed how MDR analysis can be used in a follow-up genetic 

association study that analyzes genotype combinations in significant genes that were identified in 

previous studies to both confirm their significance for the disease of interest and identify 

additional associations between previously identified genes. 
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Table 13 -  Interaction between genotypes of FTO and GNB3 using MDR [98] 

This table shows the best multilocus models for 2- to 7-locus models (left hand column). The 3 locus 

model was found to be the best model. TB represents the test balance accuracy, TA training accuracy, and 

CVC cross validation consistency. P-values were calculated by permuting the case and controls 100 times 

[98]. [This figure is reused in accordance with the Creative Commons Attribution (CC BY) license 

granted by PLOS One that is applicable to this content] 

 

 

Lai et al performed a study that further illustrates in detail the potential for performing a 

multifactor dimensionality reduction analysis to identify genetic associations between genes of 

interest identified in previous studies that were associated with a disease [99]. This study focused 

on 492 variants for three loci that were associated with bipolar disorder [99].  MDR was used to 

perform an epistatic interaction analysis on the genetic variants of these genes [99]. The MDR 

analysis found that there were gene-gene interactions with specific variants of the RORA and 

RORB genes that were associated with bipolar disorder [99]. In addition, the authors also found 

that there was a four way interaction with NR1D1, RORA, and RORB [99]. A table summarizing 
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the MDR results can be found in Table 14. This is significant because it confirmed previous 

studies suggesting the significance of these genes and provided evidence that variants of these 

genes were interacting to affect the development of bipolar disorder [99]. In addition to 

identifying these new gene interactions and the significance of certain gene variants, the study 

also found that the genotype combinations identified involved genes that were members of the 

circadian pathway, which was previously associated with bipolar disorder [99]. In particular, this 

study demonstrates the use of MDR to analyze genes that were previously associated with a 

disease of interest in an effort to identify gene-gene interactions that occur between these genes. 

In addition, the identification of critical genotype combinations can also identify specific 

metabolic pathways that are associated with the disease of interest, as this study demonstrated, 

and help researchers identify specific genes or pathways that should be targeted in future 

research.  

 

 

 

Table 14 -  Summaries of multifactor dimension reduction gene-gene interaction results [99] 

This table shows the multilocus MDR models. The columns on the right represent the training balance 

accuracy, testing balance accuracy, and cross validation consistency. The four way gene-gene interaction 

model was identified as the optimal model [99]. [This figure is reused in accordance with the Creative 

Commons Attribution (CC BY) license granted by PLOS One that is applicable to this content] 
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MDR and Other Challenges in Genetic Association Studies 

 As was demonstrated to be true for neural networks, multifactor dimensionality reduction 

has also been used extensively specifically to deal with the challenges in genetic association 

studies that were summarized in Table 1. Genetic heterogeneity is a major challenge in MDR 

studies and several authors have published studies demonstrating a very low statistical power 

associated with the MDR method when it’s used to analyze datasets that involve genetic 

heterogeneity [32]-[36]. However, Edwards et al. have challenged the definition of “statistical 

power” and suggest that a more relaxed definition is more informative with regard to the utility 

of MDR when dealing with heterogeneous data [100]. Edwards et al. used simulation data and 

modeled genetic heterogeneity using two separate two-locus epistatic disease models wherein 

each model independently led to trait status. Using the strictest definition of statistical power in 

which both two-locus models must be identified as causative, MDR did not achieve greater than 

10% statistical power in any simulation scenario tested [100]. However, if the definition of 

statistical power included the correct discovery of either epistatic model or any causative locus 

from either model, power increased dramatically to 100% in most scenarios tested with the 

lowest value being 94% which occurred when 10,000 loci were considered as predictors in the 

model [100]. Interestingly, a different group of authors, Polonikov et al., actually used MDR 

directly to identify gender-based genetic heterogeneity by identifying genotype combinations 

that are significantly associated with asthma and then afterwards stratifying the results based on 

gender [101]. As such, the usefulness of even classical MDR when it comes to dealing with 
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genetic heterogeneity is noteworthy even if the method fails to achieve high statistical power 

under the strictest definition of the term. 

Additionally, variations to the MDR method do exist that have been successfully 

employed to increase the statistical power associated with MDR when dealing with 

heterogeneous data. Cattaert et al performed a study comparing the performance of classical 

MDR with Model-Based MDR (MB-MDR), a recently developed variant, when dealing with a 

generated dataset that involves significant heterogeneity [38]. This study used simulation data for 

a four-locus interaction in the presence of significant heterogeneity and found that MDR had a 

power of only 8% to identify all four of the loci involved in the epistatic interaction, whereas 

MB-MDR had a power of 80% [38].  The same authors in [38] published an additional study 

comparing the statistical power of MB-MDR to MDR by using each method to analyze another 

generated heterogeneous dataset [102]. Comparing over six different two-locus disease models, 

the authors report that MB-MDR had a two- to ten-fold increase in statistical power over MDR 

for all but two of the disease models wherein MDR actually outperformed MB-MDR (0% for 

MB-MDR compared to 2% for MDR in one model, and 5% for MB-MDR compared to 9% 

MDR in the other model) [102]. Mei et al. proposed a variant method of MDR called MDR-

Phenomics that integrates phenotypic covariates in order to account for genetic heterogeneity 

[103]. The authors achieved a two- to three-fold increase in statistical power (up to 99.6%) as 

compared to other MDR variants to detect all simulated causative disease models as significant 

when the analysis was performed on a generated heterogeneous dataset [103]. As can be seen, 

the machine learning method that is MDR is very dynamic in that it can be modified extensively 

and combined with other algorithms in order to add functionality and increase the statistical 

power that it can achieve when dealing with highly heterogeneous data. 
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 Modifications to the basic MDR algorithm also exist to mitigate the issues in 

computational complexity that arise when analyzing high-dimensional data. One variation of 

MDR that has the capability to reduce the computational complexity of the calculations while 

also actually increasing the predictive power of the developed model is Robust MDR (RMDR) 

[32]. As discussed earlier in this paper, RMDR performs a Fisher’s exact test to determine if a 

genotype combination should be included in the final model. The study presented earlier in this 

paper by Gui et al performed a comparison of RMDR and MDR. This study found that RMDR 

had a statistically significant higher success rate than MDR (see Table 10) and a faster 

computational time when pre-calculated “lookup” tables were used during the Fisher’s test [32]. 

However, the computational time required for RMDR was higher than MDR when a large (3+) 

number of loci were analyzed. Therefore, to decrease the computational complexity of the 

analysis when 3+ loci were included as predictors in the model, the use of pre-calculated “lookup 

tables” for the Fisher’s test were utilized. This was found to significantly decrease the calculation 

time required for an RMDR analysis to that of a regular MDR analysis [32]. 

However, other methods do exist to reduce the computational complexity involved in an 

MDR analysis that do not impose such a low limit on the number of predictors that can be used 

in order for the benefit to be realized. One method involves using filtration methods such as 

TuRF, SURF, or ReliefF to pre-filter noisy SNPs that are determined to be unlikely to interact or 

significantly increase the predictive power of the model [104]. This method can involve global 

statistical inference tests to allow for the comparison of p-values for each of the potential 

predictors in the model so that any predictor with a p-value greater than some user-defined 

threshold is filtered out from inclusion in the model. Such pre-filtering significantly decreases 

the computational complexity involved in the MDR analysis by reducing the number of 
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predictors under consideration. The computational complexity of a MDR analysis can also be 

significantly reduced using the 3-way split method in conjunction with pruning [32]. The 3-Way 

Split technique involves splitting the data into three groups as normal: training, testing, and 

validation. However, a pruning technique using a regression based statistical model is performed 

in place of cross validation. This results in a significantly reduced computational complexity for 

the analysis and therefore greatly lowers the computational time and resources necessary [33]. 

Finally, generalized MDR (GMDR) is another machine learning technique that can be utilized to 

account for computational complexity [96][105][106]. The GMDR method also utilizes pruning 

techniques in place of cross-validation in order to decrease the computational complexity of the 

analysis. In addition to computational complexity issues, another issue previously mentioned for 

machine learning techniques and their application in genetic association studies is inadequate 

sample size. This can be partially compensated for using the model-based MDR strategy that was 

previously discussed [36][37][38]. This method increases the statistical power of MDR when 

dealing with unbalanced data which can be a common issue in analyses that involve small 

sample sizes [107]. These useful modifications show that MDR is adaptable to accommodate for 

issues with computational complexity as well as unbalanced datasets that are often associated 

with small sample sizes. 

MDR is also well known to have the ability to detect interactions among even those 

genes that demonstrate a total absence of statistically significant main effects. This is a 

consequence of the very nature of the MDR algorithm which performs an exhaustive search over 

every possible genotype combination among the included predictors with no consideration for 

the significance of any one particular gene’s main effect or any particular type of interaction. 

Numerous examples exist in the literature that use simulation data to demonstrate the ability of 
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MDR to detect interactions among genes even in the total absence of main effects, and even the 

ability to detect causative genes that may interact additively but with a statistically insignificant 

main effect on an individual level [108]-[115]. By its very nature, MDR is a particularly 

effective method for detecting interactions among genes with statistically insignificant main 

effects on an individual, but it also does not naturally allow for the distinguishment between 

epistatic and additive interactions among genes and instead only allows for the explicit 

identification of generalized interaction among predictors [116][117]. 

As demonstrated throughout this section on MDR, there are many challenges that arise 

when performing genetic association studies that MDR has the ability to directly address. MDR 

inherently addresses certain issues by its very nature such as that of undetectable main effects 

among predictors, and there also exists many modifications to the traditional MDR method that 

compensate for many of the additional challenges that are faced in genetic association studies. 

The versatility of the MDR method and machine learning techniques in general are further proof 

of their usefulness in genetic association studies as they can be easily adapted to the many 

challenges that investigators face. 
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CONCLUSION 

Two major machine learning methods, neural networks and multifactor dimensionality, 

were thoroughly explored (summaries of selected studies provided in Tables 15 and 16) and a 

fundamental overview was provided for several other machine learning methods. Such 

discussion took place within the context of and in a manner relevant to an overarching theme that 

is the utility of machine learning in the modern state of genetic association studies. The missing 

heritability problem has garnered significant academic interest in recent years and attempts to 

find the missing heritability for complex diseases have been a dominant force in genetic 

association studies. Gene-gene interactions have been proposed as a major contributor to this 

missing heritability, although it is difficulty to take such interactions into account when 

analyzing genotype-phenotype models with standard methods. As discussed, such difficulty 

results from the involved curse of dimensionality that arises when studying interactions among 

many predictors. Another obstacle to identifying the missing heritability is inadequate statistical 

power to detect causative genes that have small main effects on an individual level even though 

they may have a large effect when considered collectively due to interactions among them. Other 

difficulties, such as genetic heterogeneity, further complicate genetic association studies and may 

also be a significant contributor to the missing heritability problem at large. 

As explicitly described in this paper, machine learning methods such as neural networks, 

multifactor dimensionality reduction, cluster analysis, random forests, and many others can be 

utilized to address some of the primary challenges that exist in genetic association studies. Along 

with the large number of major machine learning methods available to address these challenges, 

many variants exist for each of these major methods that add functionality to the basic algorithm. 
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As such, a large plethora of machine learning techniques exist to address a wide variety of 

challenges and circumstances, and the utility of machine learning in genetic association studies is 

significant. As computational power continues to expand with evolving technology, some of the 

issues that arise with computational complexity in GWAS will certainly be mitigated. However, 

access to greater computational power will likely result in the development of more complicated 

statistical models (e.g. a greater number of predictors under consideration) given that such 

models can then be feasibly analyzed where before we lacked the computational ability to. The 

increase in the complexity of the statistical models under investigation will continue to 

necessitate machine learning methods that address the challenge of computational complexity if 

advances in computational power lag behind that which is necessary to thoroughly analyze the 

increasingly complex statistical models being investigated. Such an effect is exemplified by the 

relatively recent transition from single-locus association studies to multi-locus association 

studies that followed the advent of genome-wide sequencing technologies and increasing 

computational power.   

Additionally, our ability to account for confounding issues such as heterogeneity and 

small effect sizes will not inherently become enhanced solely as a result of access to greater 

computational power. Such issues require continued advances in computer science and algorithm 

engineering in order for us to improve our ability to address these challenges in our 

investigations and statistical models. Advances in computing technology will also directly 

enhance our ability to use machine learning algorithms by providing the algorithms in use with 

more computational resources (as exemplified by the aforementioned random jungle variant of 

the random forest method) and mitigating some of the issues in scalability seen in machine 

learning algorithms such as multifactor dimensionality reduction. Machine learning has proven 
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itself to be a valuable tool for genetic analysis, particularly with regard to GWAS, and the utility 

that machine learning algorithms provide to the field of genetic association studies continues to 

increase with ongoing advancements in machine learning algorithms rapidly being made. 

 

Summary of Selected Neural Network Studies 

Study 
Reference 
Number 

Summary 

70 

Gunther et. al utilized a standard feedforward multilayer perceptron neural network to 
predict disease penetrance for several different gene-gene interaction disease models. 
One of the reasons this study was notable is that it demonstrated the ability of even the 
most basic neural network algorithm to accurately account for multiple kinds of gene-gene 
interactions, such as additive, multiplicative, epistatic, and mixed. 

68 

Beam et. al proposed a neural network variant called a "Bayesian neural network" that 
takes advantage of Bayesian probability theory to build its architecture and perform 
feature selection via the statistical quantification of variable importance. They report 
statistical power in the face of genetic interaction that is comparable if not superior to 
other top-performing methods such as MDR which is notable given that Bayesian neural 
networks scale very well to high-dimensional datasets. 

71 

Beam et. al performed a gene interaction analysis using Bayesian Neural Networks. This 
study further demonstrated the utility of Bayesian neural networks for detecting and 
accounting for gene-gene interactions in high-dimensional data (this study used 1000 
SNPs as predictors). This study also demonstrated the utility of Bayesian neural networks 
for investigations of gene-gene interactions in a model that involves multiple possible 
outcomes. 

28 

Tong et. al performed a gene interaction analysis utilizing a standard multilayer 
perception neural network with a backpropagation algorithm. The central hypothesis of 
the study was that the expression level of a gene represented by the output node in a 
neural network could be predicted based on the expression of the set of genes used as 
the input nodes, if the set of genes used as the input nodes were able to explain a 
particular categorical outcome such as disease status or type of blue cell tumor. This 
study is significant in that it utilized neural networks to investigate gene-gene interactions 
by using the expression data of a set of genes as input to predict the expression of a 
gene represented by the output node. 

81 

Liang and Keleman proposed and utilized a Hierarchical Bayesian Neural Network model 
to assess the temporal patterns of gene expression in yeast cell cycles. Their analysis 
was significant as it was able to classify yeast cell cycles with an accuracy of 88% in spite 
of the massive heterogeneity associated with the dataset. 

82 

Ando et. al utilized a fuzzy neural network system that was based on majoritarian decision 
using multiple noninferior models. The authors used this approach to compensate for the 
challenges arising from data heterogeneity. Using gene transcription data, the authors 
were able to obtain a statistical power of 91% for predicting patient outcome after 
treatment with chemotherapy for cancer.  
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83 

Ando et. al performed an additional study utilizing fuzzy neural networks on data with a 
high degree of heterogeneity. This analysis found that the fuzzy neural network was very 
useful for addressing challenges arising from data heterogeneity as they were able to 
predict with an accuracy of 93% the prognosis of patients with diffuse large B-cell 
lymphoma. 

85 

Ritchie et. al utilized a genetic programming neural network to detect genetic interactions 
in simulated data wherein the predictors had minimal to nonexistent main effects. GPNN 
demonstrated significantly superior performance (achieving a statistical power up to 
100%) to detect causative genes, particularly in the epistatic models, compared to 
stepwise logistic regression, explicit logistic regression, and CART. This study 
demonstrates the utility of neural networks for detecting gene-gene interactions when the 
main effects themselves are statistically insignificant. 

Table 15 – Summary of Selected Neural Network Studies Included in this Review 

 

Summary of Selected MDR Studies 

Study 
Reference 
Number 

Summary 

96 

Liu et. al used a MDR variant called Generalized MDR with the addition of logistic 
regression pruning to identify signficant genotype combinations that are associated with 
obesity. This study demonstrates the effectiveness of generalized MDR for identifying 
gene-gene interactions in genetic association studies, and is particularly interesting given 
that the authors used MDR to confirm the importance of the lipid metabolism pathway in 
the development of obesity. 

97 

Kebir et. al used MDR analyzed 601 variants across 10 loci to identify key genotype 
combinations that are associated with schizophrenia. This study was notable as it 
identified previously unknown gene interactions that were associated with schizophrenia. 

98 

Kumar et. al utilized MDR to analyze genotype combinations at seven loci with respect to 
hypertension, systolic and diastolic blood pressure, mean arterial blood pressure and 
body mass index. This study was significant as it studied genotype combinations for 
genes that were previously identified as being associated with the disease of interest and 
identified previously unknown interactions between these genes.  

99 

Lai et. al performed an epistatic interaction analysis on 492 genetic variants for three loci 
using MDR. The three loci studied in this analysis were previously associated with bipolar 
disorder. This study outlined the potential use of MDR and genetic association analysis to 
identify genotype combinations that are significant as a followup to previous studies that 
identify genes associated with a disease.  

100 

Edwards et. al performed an MDR analysis using simulated data using two separate two-
locus epistatic disease models that both independently led to trait status to model genetic 
heterogeneity. Their analysis of the simulated data demonstrated that MDR can 
accurately compensate for data heterogeneity. 

101 

Polonikov et. al utilized MDR to identify significant genotype combinations that are 
associated with asthma. This study performed a post hoc stratification of the results 
based on gender in an effort to account for heterogeneity  
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38 

Cattaert et. al utilized a MDR variant called Model-Based MDR on simulated data. In 
particular, they found that MB-MDR significantly outperforms MDR when dealing with 
significant heterogeneity in the data, with MB-MDR having a power of 80% for a four-
locus model compared to only 8% for classical MDR in simulated data with significant 
heterogeneity. 

32 

Gui et. al utilized a MDR variant called Three Way Split MDR on simulated data in 
conjunction with classical MDR in order to compare the variation to classical MDR. 
They found that Three Way Split MDR significantly reduced the computational complexity 
of the analysis due to its use of a regression based statistical model pruning technique in 
place of cross validation.  

109 

Gui et al. proposed a variant of MDR called Survival MDR that modifies MDR's 
constructive induction algorithm to use the log-rank test. The authors used simulation 
data involving a disease model in which two SNPs interact epistatically with no main 
effects to produce the disease and reported a statistical power of up to 70% to detect the 
causative genes when the causative genes were embedded in a set of 10 predictor genes 
under consideration. This study demonstrates the ability of MDR to detect gene-gene 
interactions even in the total absence of main effects. 

Table 16 - Summary of Selected MDR Studies Included in this Review 
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APPENDICES 

Appendix A: Literature Queries Used to Learn Background 

Information on Complex Diseases 

 

Query 
Database or Search 

Engine 

Filter(s) 

applied 

(complex[Title]) AND (disease[Title] OR diseases[Title] OR 

trait[Title] OR traits[Title]) PubMed Review 

"complex disease" OR "complex trait" +review Google N/A 
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Appendix B: Literature Queries Used to Learn Background 

Information on Epistasis 

 

Query 
Database or Search 

Engine 

Filter(s) 

applied 

epistasis[Title/Abstract] OR epistatic[Title/Abstract] PubMed Review 

epistasis Google N/A 
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Appendix C: Literature Queries Used to Learn Background 

Information on Machine Learning as Applied to Genetic 

Association Studies 

 

 

Query 
Database or 

Search Engine 
Filter(s) applied 

(machine learning[Title/Abstract]) AND (gene[Title/Abstract] 

OR genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed Review 

(machine learning[Title/Abstract]) AND (gene[Title/Abstract] 

OR genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed 

published in the 

last 5 years 
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Appendix D: Literature Queries to Learn Background 

Information on the Missing Heritability Problem 

 

 

Query 
Database or 

Search Engine 
Filter(s) applied 

(missing heritability[Title/Abstract]) Pubmed 

published in the 

last 5 years 

(missing heritability[Title/Abstract]) AND gwas Pubmed 

published in the 

last 5 years 

(missing heritability[Title/Abstract]) AND epistasis Pubmed 

published in the 

last 5 years 

(missing heritability[Title/Abstract]) AND (main effect OR main 

effects) Pubmed 

published in the 

last 5 years 

"missing heritability" Google N/A 
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Appendix E: Literature Queries Used to Learn Background 

Information on Neural Networks 

 

 

Query 
Database or 

Search Engine 

Filter(s) 

applied 

"neural network" theory Google N/A 

(neural network[Title]) Pubmed N/A 

(neural network[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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Appendix F: Literature Queries Used to Learn Background 

Information on Multifactor Dimensionality Reduction 

 

Query 
Database or 

Search Engine 

Filter(s) 

applied 

"multifactor dimensionality reduction" theory Google N/A 

(multifactor dimensionality reduction[Title]) Pubmed N/A 

(multifactor dimensionality reduction[Title/Abstract]) Pubmed N/A 

(multifactor dimensionality reduction[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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Appendix G: Literature Queries Used to Learn Background 

Information on Random Forests 

 

Query 
Database or 

Search Engine 

Filter(s) 

applied 

"random forest" theory Google N/A 

(random[Title] AND (forest[Title] OR forests[Title])) Pubmed N/A 

(random[Title/Abstract] AND (forest[Title/Abstract]OR 

forests[Title/Abstract])) Pubmed N/A 

(random[Title/Abstract] AND (forest[Title/Abstract] OR 

forests[Title/Abstract])) Pubmed 

published in 

the last 5 

years 
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Appendix H: Literature Queries Used to Learn  

Background Information on Support Vector Machines 

 

Query 
Database or 

Search Engine 

Filter(s) 

applied 

"support vector machine" theory Google N/A 

(support vector[Title] AND (machine[Title] OR machines[Title])) Pubmed N/A 

(support vector[Title/Abstract] AND (machine[Title/Abstract] OR 

machines[Title/Abstract])) Pubmed N/A 

(support vector[Title/Abstract] AND (machine[Title/Abstract] OR 

machines[Title/Abstract])) Pubmed 

published in 

the last 5 

years 

 

  



Epistasis, Polygenic Effects, and the Missing Heritability Problem: A Review of Machine 

Learning as Applied to Genetic Association Studies 

87 

 

Appendix I: Literature Queries Used to Learn Background 

Information on K-Nearest Neighbors 

 

 

Query 
Database or 

Search Engine 

Filter(s) 

applied 

"k nearest neighbor" theory Google N/A 

(nearest[Title] AND (neighbor[Title] OR neighbors[Title]))  Pubmed N/A 

(nearest[Title/Abstract] AND (neighbor[Title/Abstract] OR 

neighbors[Title/Abstract]))  Pubmed N/A 

(nearest[Title/Abstract] AND (neighbor[Title/Abstract] OR 

neighbors[Title/Abstract]))  Pubmed 

published in 

the last 5 

years 
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Appendix J: Literature Queries Used to Learn Information on 

Neural Networks and Genetic Association Studies 

 

 

Query 

Database or 

Search 

Engine 

Filter(s) 

applied 

(neural network[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract]) AND heterogeneity Pubmed N/A 

(neural network[Title/Abstract]) AND (effect size OR main effect OR 

main effects) Pubmed N/A 

(neural network[Title/Abstract] AND Bayesian[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract] AND genetic 

programming[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract] AND grammatical 

evolution[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract] AND Bayesian[Title/Abstract]) Pubmed N/A 
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(neural network[Title/Abstract] AND fuzzy[Title/Abstract]) Pubmed N/A 

(neural network[Title/Abstract] AND (variant[Title/Abstract] OR 

variation[Title/Abstract] OR alternative[Title/Abstract] OR 

modification[Title/Abstract])) Pubmed 

published in 

the last 5 

years 

(neural network[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(neural network[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(neural network[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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Appendix K: Literature Queries Used to Learn Information on 

Multifactor Dimensionality Reduction and Genetic Association 

Studies 

 

 

 

Query 

Database or 

Search 

Engine 

Filter(s) 

applied 

(multifactor dimensionality reduction[Title/Abstract]) AND 

(gene[Title/Abstract] OR genetic[Title/Abstract] OR 

genome[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed N/A 

(multifactor dimensionality reduction[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed N/A 

(multifactor dimensionality reduction[Title/Abstract]) AND 

(gene[Title/Abstract] OR genetic[Title/Abstract] OR 

genome[Title/Abstract]) Pubmed N/A 

(multifactor dimensionality reduction[Title/Abstract]) AND 

heterogeneity Pubmed N/A 

(multifactor dimensionality reduction[Title/Abstract]) AND (effect size 

OR main effect OR main effects) Pubmed N/A 
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(multifactor dimensionality reduction[Title/Abstract] AND 

(variant[Title/Abstract] OR variation[Title/Abstract] OR 

alternative[Title/Abstract] OR modification[Title/Abstract])) Pubmed 

published in 

the last 5 

years 

(multifactor dimensionality reduction[Title/Abstract]) AND 

(gene[Title/Abstract] OR genetic[Title/Abstract] OR 

genome[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(multifactor dimensionality reduction[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(multifactor dimensionality reduction[Title/Abstract]) AND 

(gene[Title/Abstract] OR genetic[Title/Abstract] OR 

genome[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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Appendix L: Literature Queries Used to Learn Information on 

Random Forests and Genetic Association Studies 

 

 

Query 

Database or 

Search 

Engine 

Filter(s) 

applied 

(random forest[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed N/A 

(random forest[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed N/A 

(random forest[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed N/A 

(random forest[Title/Abstract]) AND heterogeneity Pubmed N/A 

(random forest[Title/Abstract]) AND (effect size OR main effect OR 

main effects) Pubmed N/A 

(random forest[Title/Abstract] AND (variant[Title/Abstract] OR 

variation[Title/Abstract] OR alternative[Title/Abstract] OR 

modification[Title/Abstract])) Pubmed 

published in 

the last 5 

years 

(random forest[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) AND Pubmed 

published in 

the last 5 

years 
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(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) 

(random forest[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(random forest[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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Appendix M: Literature Queries Used to Learn Information 

on Support Vector Machines and Genetic Association Studies 

 

Query 

Database or 

Search 

Engine 

Filter(s) 

applied 

(support vector machine[Title/Abstract]) AND (gene[Title/Abstract] 

OR genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed N/A 

(support vector machine[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed N/A 

(support vector machine[Title/Abstract]) AND (gene[Title/Abstract] 

OR genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed N/A 

(support vector machine[Title/Abstract]) AND heterogeneity Pubmed N/A 

(support vector machine[Title/Abstract]) AND (effect size OR main 

effect OR main effects) Pubmed N/A 

(support vector machine[Title/Abstract] AND (variant[Title/Abstract] 

OR variation[Title/Abstract] OR alternative[Title/Abstract] OR 

modification[Title/Abstract])) Pubmed 

published in 

the last 5 

years 
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(support vector machine[Title/Abstract]) AND (gene[Title/Abstract] 

OR genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(support vector machine[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(support vector machine[Title/Abstract]) AND (gene[Title/Abstract] 

OR genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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Appendix N: Literature Queries Used to Learn Information on 

K-Nearest Neighbors and Genetic Association Studies 

 

Query 

Database or 

Search 

Engine 

Filter(s) 

applied 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed N/A 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed N/A 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed N/A 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND heterogeneity Pubmed N/A 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (effect size OR main effect OR main 

effects) Pubmed N/A 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract] AND (variant[Title/Abstract] OR Pubmed 

published in 

the last 5 

years 
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variation[Title/Abstract] OR alternative[Title/Abstract] OR 

modification[Title/Abstract])) 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) AND 

(epistasis[Title/Abstract] OR interaction[Title/Abstract] OR 

epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (epistasis[Title/Abstract] OR 

interaction[Title/Abstract] OR epistatic[Title/Abstract]) Pubmed 

published in 

the last 5 

years 

(nearest neighbor[Title/Abstract] OR nearest 

neighbors[Title/Abstract]) AND (gene[Title/Abstract] OR 

genetic[Title/Abstract] OR genome[Title/Abstract]) Pubmed 

published in 

the last 5 

years 
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