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ABSTRACT 

 

Biomarker discovery is a challenging process. It is rare that a single marker can 

accurately classify an outcome. Often, classification is improved by finding a combination 

of markers that can better distinguish between patients with and without a condition of 

interest. The present study describes a novel method which can potentially function as a 

diagnostic algorithm to isolate a parsimonious combination of markers that has good 

classification properties. The method takes advantage of the well-studied properties of 

receiver operating characteristic (ROC) curves and logistic regression models to select 

combination of variables that maximize the partial area under ROC (pAUROC), a clinically 

relevant metric.  

 Our new procedure proceeds as follows.  The partial area under the ROC curve is 

determined for all potential markers. The model with the maximum pAUROC over the 

selected false positive fraction (FPF) range is the first variable to step into the model. Next, 

an adaptation of the jagged-ordered nonparametric algorithm is used to select from the 

remaining markers based on improvement in the pAUROC. A potential marker is retained 

in the classification model only if the resultant integrated discrimination index, (IDI) is 

above a preset threshold. Thus, by using a combination of different classification metrics, 

the new method hones in on a combination model with good sensitivity and specificity 

from a moderate-size pool of potential markers. 
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Contrary to traditional variable selection methods (example, stepwise selection), 

which are often based on measures of association, the current method is specifically 

focused on classification metrics. Hence, it eliminates the need for fitting models for every 

possible combination of candidate markers, and vastly improves the speed of the variable 

selection process.  This is demonstrated by the performance of the method in isolating a 

combination model for classifying intra-amniotic inflammation in women with preterm 

labor with intact membranes.  The method accurately selected cervicovaginal proteins 

with optimum classification performance, but contained relatively few proteins, which is 

desirable from a clinical perspective.  Results obtained were comparable to similar 

parsimonious models, built by using traditional protracted methods of data mining 

followed by regression, thus supporting the efficiency of current method. 
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INTRODUCTION 

 

Early diagnosis and management is key to improve mortality and morbidity in 

several disorders. For many diseases, it is critical to the survival of the patient, and in 

other cases, early diagnosis can enable clinicians to better manage the disease, enhancing 

the expected quality of life. Increasingly, studies have focused on early and accurate 

diagnosis of disease. Current technological advances have enabled accurate and rapid 

measurement of proteins that could potentially serve as biomarkers (1).However single 

markers that can accurately classify disease are rare, hence there is often a need to 

identify combinations of proteins that could be used as a diagnostic tool to identify 

disease. Current statistical methods are lacking in their ability to select and combine 

multiple markers to classify disease in a clinically relevant fashion. Data mining methods 

allow one to narrow down a large number potential classifiers (2); however building and 

refining classification models is still a time intensive process involving multiple iterations 

of combining and testing potential models. Methods to study association between an 

outcome and independent variables are commonly used to build classification models, 

but again, they are severely limited in being able to focus on clinically relevant metrics, 

like sensitivity and specificity. In the current investigation, we present a novel method to 

select variables for entry into a logistic regression model that is based on classification 
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metrics. The new method is outlined and compared to commonly-used variable selection 

methods.  The method is demonstrated on two datasets from clinical studies aimed at 

detecting intra-amniotic inflammation from cervicovaginal proteins in women in preterm 

labor (3,4) 

 

 

Classification metrics: Sensitivity, Specificity and the Receiver operating 

curve. 

 

Misclassification of disease can lead to undue stress and financial expenses or 

worse still, false negative results may worsen prognosis by delaying diagnosis. It is 

important to specify the sensitivity and specificity of tests to understand the risk and type 

of misclassification that is more likely to occur with that particular test. It also enables a 

better understanding of the true classification ability of the test and enables comparison 

of different tests. 

Sensitivity is defined as the proportion of patients, correctly diagnosed as having 

a condition (or disease/disorder/event) from a pool of patients, all of whom have the 

condition. It is also called the true positive fraction or TPF. (5) 

Specificity is defined as the proportion of patients, correctly diagnosed as not 

having the condition (or disease/disorder/event) from a pool of patients, all of whom do 

not have the condition. By definition then, specificity= 1-false positive fraction (FPF). 
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Consider a binary test (Y) with outcome =1 if test is positive and outcome =0 if test 

is negative. Let the presence of disease be denoted as D=1 and the absence of disease as 

D=0 .There are four possible scenarios as shown in Table 1 
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Table 1: Outcomes of Binary test. 

 D=0 (non-disease) D=1 (disease) 

Y=0 (test is negative) True negatives False negatives 

Y=1 (test is positive) False positives True positives 

 

 

Accordingly, 

Sensitivity or TPF is defined as 𝑃[𝑌 = 1|𝐷 = 1] 

 

 And  

 

1-Specificity or FPF= 𝑃[𝑌 = 1|𝐷 = 0] 
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Thus sensitivity and specificity are probability of accurate classification in the 

presence or absence of disease, respectively. Together, TPF and FPF define the 

performance of the test. A perfect test would have a TPF=1 that is every patient with 

disease is correctly diagnosed as such, and an FPF =0 that is no disease free patient has a 

positive test result. However, in practice, a perfect test rarely exists, and usually there is 

some tradeoff in specificity for better sensitivity and vice versa. Depending on the nature 

of the disease being tested for, it may be more important for it to be highly sensitive or 

highly specific. For example, if a condition can be fatal if not diagnosed early, it may be 

more important to have a high sensitivity so that no positive disease is wrongly classified 

as non-disease. On the other hand, if early diagnosis is not critical to prognosis, it may be 

more important to have high specificity in order to avoid unnecessary additional tests. 

Although both sensitivity and specificity of a test are important characteristics of test 

performance, the clinical utility of a test also depends on the prevalence of the disease in 

the intended use population. Additionally, the cost of the test and the availability of other 

tests also play a role in setting clinically relevant sensitivity and specificity cut points. 

Being able to evaluate and maximize the performance of a test within restricted 

sensitivity and specificity is thus critical in developing a clinically relevant test 

 

In a clinical setting few tests are purely binary, but a few do exist, for example, 

presence or absence of certain bacteria, or relevant gene mutation. A large number of 

tests measure proteins or other biological markers, on a continuous scale, for example, 
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protein marker CA125 (U/mL) and hemoglobin (g/dl) levels In such cases it is important 

to optimize the thresholds over which a test is considered as positive or negative. A 

continuous marker may have different sensitivity and specificity depending on the 

threshold set. Hence, optimization under conditions of use are critical to accurate 

diagnosis. Consider the following scenarios, where we assume that higher levels of 

marker are indicative of disease; if the threshold is set high we may miss patients who are 

in the early stages of disease or just constitutively produce less of the marker. In other 

words, the test will have high specificity but low sensitivity. On the other hand, if we set 

the threshold too low, while we may catch everyone with potential disease, we may also 

wrongly diagnose subjects with slightly elevated levels as having disease, i.e. the test will 

be highly sensitive but not very specific. (Figure1)  
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Figure 1: Sensitivity and Specificity of a marker at different thresholds 

As the threshold, above which values of a continuous marker are considered indicative of 

disease, are increased, the specificity increases and sensitivity decreases. 
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The sensitivity and specificity then, is highly dependent on the thresholds we set. 

Hence in case of a continuous tests an additional tool is necessary which illustrates this 

shifting specificity and sensitivity with threshold. A receiver operating characteristic curve 

demonstrates the performance of a continuous test by plotting the sensitivity over 1-

specificity at each measured value, i.e. each measured value is individually considered as 

a threshold and FPF and TPF is calculated accordingly.   

Consider a value c set as the threshold  

If 𝑌 ≥ 𝑐 the test =positive  

If 𝑌 < 𝑐 then the test=negative 

 

Accordingly,  

𝑇𝑃𝐹(𝑐) = 𝑃[𝑌 ≥ 𝑐|𝐷 = 1] 

And               𝐹𝑃𝐹(𝑐) = 𝑃[𝑌 ≥ 𝑐|𝐷 = 0] 

 

The plot of TPF over FPF for all possible threshold values gives the ROC curve (Figure 2).  

𝑅𝑂𝐶(. ) = {(𝐹𝑃𝐹(𝑐), 𝑇𝑃𝐹(𝑐)), 𝑐 ∈ (−∞, ∞)} 
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Figure 2: The receiver operating characteristic curve is a plot of sensitivity over 1- 
specificity at every possible test value 

The Receiver Operating characteristic curve is a plot of sensitivity (TPF) over 1-specificity 
(FPF) at every value a test can take. 
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As one can imagine, at low values the sensitivity would be very close to 1 and 

specificity would be close to 0. As the threshold is set at higher measured values the 

sensitivity decreases and specificity increases. The ROC curve is thus a monotone 

increasing function and can be written as  

 

𝑅𝑂𝐶(. ) = {(𝑡, 𝑅𝑂𝐶(𝑡)), 𝑡 ∈ (0,1)} 

Where the ROC function maps t to𝑇𝑃𝐹(𝑐), and c is the threshold corresponding 

to 𝐹𝑃𝐹(𝑐) = 𝑡  

In order to measure the overall performance of a test over the entire range of values the 

area under the receiver operating curve (AUROC) is used. If a test has high sensitivity even 

at high specificity, the ROC will curve further to the left and up, increasing the AUROC, 

while a test with low sensitivity at high specificity will be curved closer towards the 

diagonal and have a lower AUROC. Thus the AUROC is a good measure of test 

performance.  It can also be interpreted as the probability that given a randomly selected 

pair of diseased and non-diseased person, the person with disease will have a higher test 

value than the one without disease. It is mathematically defined as  

𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0

 

 

As both sensitivity and specificity are probabilities and have a range of 0 to 1, the 

maximum possible area under the ROC curve is equal to 1. A test that is 100% sensitive 

and 100% specific would have an area of 1 while a useless test would have an area close 
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to 0.5, i.e. a 50% chance of being right just by chance alone.   Figure 3 illustrates two ROC 

curves estimated from fictitious data – one with good and one with poor classification 

performance.  
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Figure 3: Estimation and comparison of ROC curves.  

A good classifier has an ROC curve that curves further up and left compared to an ROC 
curve of a poor classifier. Above are estimates of ROC curves of a good and poor classifier.  
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While a perfect test may not be feasible, a test that maximizes the area under 

ROC, (AUROC) is a test which has high sensitivity even at high specificity and would be 

considered a good test. Based on Neyman-Pearson Lemma, the optimal criteria for a test 

Y for classifying a subject as having disease is given by the likelihood ratio > c. The 

Likelihood ratio is a ratio of two probabilities, the probability of a positive test given 

disease over the probability of a positive test in the absence of disease.  A test based on 

likelihood ratio gives the maximal possible AUROC for any given test and consequently 

any monotonic transformation of the likelihood ratio also gives the most optimal AUROC. 

This critical property enables the use of logistic regression in building ROC curves, as will 

be discussed later. 

 

Another metric that is widely used to illustrate the performance of a test is the 

partial AUROC. In designing new test, rather than overall performance, the performance 

of a test in the high specificity region may be more clinically relevant. A threshold which 

gives a low specificity is rarely of any clinical utility. The partial AUROC is the AUROC over 

a restricted FPF range (or restricted TPF range).  

𝑝𝐴𝑈𝑅𝑂𝐶(𝑡0) = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
𝑡0

0

 

 

The value of pAUROC (𝑡0) ranges from 
𝑡0

2

2
 for a completely uninformative test to 𝑡0 for a 

perfect test. 
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The advantages of using the ROC for characterizing a test are manifold. It enables 

one to set appropriate cut-off or thresholds above which a continuous test would be 

considered positive. It is also an invaluable tool in comparing the performance of tests. 

The higher the AUROC of a test the higher the sensitivity of a test for any given specificity.  

 

 

Logistic regression and ROC 

Binomial Logistic regression is a commonly used statistical procedure to determine the 

probability of one of two outcomes given a set of independent variables. It is an invaluable 

tool in the clinical field in determining the odds of a person having a disease/ condition 

given a set of exposures or clinical lab values. The logistic function is defined as   

     log(
π(𝑥)

1−π(𝑥)
) =𝑔(𝑥) = 𝛽0 + ∑ 𝛽𝑖

𝑘
𝑖=1 𝑥𝑖 

Where π(𝑥)  is the probability of case/disease/condition, given (𝑥)  

(𝑥) is the vector of exposures or the independent variables that determines the 

outcome and, k is the number of such variables.β is the MLE parameter estimates (

β0 is the intercept)      

As can be seen the above form is equivalent to the log odds, as it is the ratio of the 

probability the outcome is a case or has disease/condition over the probability the 

outcome is not a case (or is a control)(6) 
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Unlike linear regression, binomial logistic regression does not provide a predicted value 

for the outcome, that is, it does not assign case or control status, but instead it estimates 

the probability that the outcome is a case. Hence, the scale of the fitted values has a range 

of 0 to 1. The closer to unity or higher the predicted probability the more likely the 

outcome is a case, i.e. has disease. This predicted probability can also be defined by an 

alternative form of the logistic function. 

π(𝑥)=
𝑒𝑔(𝑥)

1+𝑒𝑔(𝑥) 

Where 𝑔(𝑥) = 𝛽
0

+ ∑ 𝛽
𝑖

𝑘

𝑖=1
𝑥

𝑖
 is a function of the independent variables 

The above probability form makes logistic regression ideal for use in classification. The 

predicted probabilities have a monotonic relation with the actual test values and can be 

used to build the ROC curves, just as you would using the actual marker values.  

Additionally, the predicted probability of a specific outcome (cases) can be calculated for 

a linear (or nonlinear) combinations of markers using logistic regression, and this can then 

be used to build an ROC curve, which then gives the classification potential of this 

combination of markers. The contour plots in Figure 4 illustrate the use of logistic 

regression to study the classification potential of two linear combinations of markers. 

The contour plot is built by plotting the values of Marker 2 against Marker 1. Lines across 

the plots, either vertical or diagonal represents the predicted probability of cases, at the 

corresponding marker values. 
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1. In Model one, Marker 2 is not associated with the outcome and hence does not make any 

significant contribution. The predicted probability is almost exclusively determined by 

marker 1 values (the lines are vertical because the estimated regression coefficient for 

marker 2 equals 0).  

2. In Model two, Marker 2 is associated and negatively correlated with outcome. Hence the 

predicted probability is determined by the values of both the markers, as can be seen by 

the diagonal logistic contour lines. 
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Figure 4: Contour Plot of 2-marker logistic regression models for classification 

Two different models showing the contribution of two markers to the predicted probability 
of cases. Marker 2 in the left hand side model makes no significant contribution, as is 
reflected in the perpendicular predicted probability contours, while the marker 2 in the 
right hand side model makes a significant contribution to predicted probability and this is 
reflected in the diagonal contour lines.  
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The above plots show how the logistic procedure can be used for classification. The cases 

in the above plots are shown in red, while controls are denoted by blue dots. It can be 

seen that in both combination models, at a predicted probability of greater than 0.8, all 

the subjects are cases, except for 1. Amongst subjects with predicted probability less than 

0.2, there are only 5 cases in combination 1, and 2 cases in combination 2, while all the 

rest are controls. Thus, this demonstrates that predicted probabilities from logistic 

regression models can be used to classify cases vs. controls, and accuracy of doing so will 

depend on the threshold used. Based on threshold of predicted probability=0.2, the 

sensitivity and specificity of the two models in discriminating cases from controls is 

compared in Table 2. 
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Table 2: Comparison of Sensitivity and Specificity of two logistic regression models at 

identical thresholds. 

 
# of Controls 
(<0.2) 

Specificity 
# of Cases 
(≥0.2) 

Sensitivity 

Actual 82  26  

Model 1 67 0.817 21 0.808 

Model 2 64 0.780 24 0.923 

 

Similarly, sensitivity and specificity can be determined at every such threshold and plotted 

to build ROC curves.  
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Figure 5: ROC curve and predicted probability of logistic regression 

The predicted probability of marker combinations can be used as cut offs for classification 
of outcome. The sensitivity and specificity at each value of predicted probability is plotted 
to give the ROC curve 
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 When a logistic model has a good fit, it is the ideal tool for classification as the likelihood 

ratio-based decision rule is the uniformly most powerful test, which means that a test 

based on likelihood ratio achieves the highest statistical power among all test with the 

same type-1 error rate.(8). 

When Y is a potential marker, (or combination of markers,X) for the presence (D=1) or 

absence of disease (D=0) , then the likelihood ratio is given by 

𝐿𝑅(𝑌) =
𝑃(𝑌|𝐷 = 1)

𝑃(𝑌|𝐷 = 0)
 

 

Based on an application of the Neyman Pearson Lemma, the optimal classification rule is 

to predict Y=1 (or a positive test result) for a sample, if LR(Y)>c, where c is a 

predetermined cut-point for a set sensitivity and specificity. If two subjects are tested for 

the marker, the person with disease is more likely to have a higher test value than a 

person with no disease. The logit function is a monotone increasing function of the 

likelihood ratio and hence it shares this property of optimality.(7,8) 

 

log (
𝑃(𝐷=1|𝑌)

1−𝑝(𝐷=1|𝑌)
) →LR(Y)=  (

𝑃(𝑌|𝐷=1)

𝑝(𝑌|𝐷=0)
) 

It should be noted, that since the Logistic regression is a parametric procedure, the model 

should meet all the assumptions and be checked for goodness of fit, before any 

conclusions can be drawn. The Akaike information criterion, (AIC) is a tool to compare the 

fit of different models, which may or may not be nested. While the AIC value itself has no 

intrinsic meaning, the lower the AIC value the better the fit when comparing different 
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models. When choosing a logistic model for classification purposes, a lower AIC value may 

be used to choose amongst the multiple optimum models. Other metrics based on 

likelihood are also good indicators of model performance. The Score statistic is one such 

metric based on likelihood, it is the slope of the log-likelihood with respect to P. In other 

words, it indicates how sensitively the likelihood function L(P;Y) depends on its 

parameter, P. (For logistic regression) 

It can also be defined as  

Score(P,Y)=
𝛿

𝛿𝑃 
log 𝐿(𝑃; 𝑌) =

1

𝐿(𝑃;𝑌)

𝛿𝐿(𝑃;𝑌)

𝛿𝑃
 

 

The score statistic is one of the many methods for variable selection for association 

models using logistic regression. The score statistic tests for improvement in fit when a 

variable is added to the null model, i.e. model with no explanatory or independent 

variables. It is also called the global score statistic and has a Chi-square distribution with 

j degrees of freedom, where j is the number of explanatory variables in the model. The 

best subset selection procedure uses the score statistic in evaluating association models. 

The process involves building multiple models with varying number of variables and 

determining the score statistic of each model. The subset of models at each parameter 

level that have the higher score statistic are the better association models. This method 

of model selection may be used as a surrogate for building classification models as it is 

based on the likelihood ratio. The best subset selection thus provides one with multiple 

models and each model should be individually checked for classification potential. This 
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can be tedious when there are a large number of potential markers giving many potential 

models. Hence this method is optimal only for variable selection from smaller sets of 

potential markers. When a moderate to large number of candidates need to be tested for 

inclusion, it may be better to use data mining methods to first narrow down the number 

of potentials, before using the best subset selection method. 

 

Data Mining for Classification: Decision Trees, Random Forests 

Data mining is a useful technique for selecting relevant data, in the presence of noise. In 

the context of classification, decision trees or recursive partitioning are widely used data 

mining methods for variable selection.  They are especially useful when the number of 

potential markers are equal to or even larger than the number of available samples. In 

the current study, random forests, a recursive partitioning method is used for narrowing 

down the list of potential markers for further analysis using logistic regression based 

method.  

Decision trees or recursive partitioning builds models in the form of a tree structure or 

flowchart by breaking down data into smaller and smaller subsets based on the number 

of variables (Figure 6). When used for classification, each possible outcome is called a 

class and each variable forms a node. The variables could be binary, categorical, ordinal 

or continuous.  The tree is built top down from a single node, which corresponds to the 

best predictor node and is called the root node. The data is consecutively subsetted over 

each variable or node until no further split can be achieved, i.e. the terminal node is 

homogenous. A ‘greedy’ algorithm that makes a series of locally optimum decisions is 
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most commonly applied to choose which variable will be used at each node for 

partitioning the data. While decision trees are very effective in classification, it is biased 

towards variables with more categories as they are more likely to give homogenous splits. 

It also over-fits the data, as each node makes a decision based on given data set (2). This 

over-fitting gives overly optimistic measures of performance such as sensitivity, specificity 

and AUROC, which is not reproducible in different datasets. To avoid this issue of over-

fitting, Breiman introduced the Random forest method(9).  
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Figure 6: Example of a Decision Tree 

Decision trees, also called recursive partitioning are tools to predict an outcome or pick 
out good classifiers. 
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Random forest is a recursive partitioning method that is widely used for both 

regression and classification. It overcomes the issue of over fitting data by utilizing two 

tools, randomization and multiplicity. It introduces randomness at two different steps 

that ensures that diverse trees are built at each run. The first step of randomization occurs 

when it chooses a fraction of the data usually about 2/3rd of the data as training set, this 

is called bagging and is usually done by bootstrapping with replacement, but can also be 

done by subsampling a predetermined fraction. The remaining 1/3rd of data, also called 

OOB or ‘out of bag’ is used as a test set to validate the model at each step. The next 

randomization occurs in the set of variables available at each node to split over. This 

ensures that variables which would not have been considered early on, also get a chance 

to be included in model building and introduces additional variation in the trees built.  The 

number of random variables to choose from at each node (mtry), can be user-defined, 

and is typically set to the square root of the total number of variables(11). Each candidate 

from the randomly chosen set is checked for its association with the outcome, the 

predictor/classifier which yields the smallest P-value is selected and the next split is 

chosen within this variable. This process of randomizing variables at each node is 

continued until a tree is built, to either a preset depth or until it reaches a homogeneous 

end with no pruning. A large number of such random and diverse trees are thus built. 

While each tree on its own may not be stable, the aggregate of predictions/classifications 

has been shown to have very good accuracy and low variance. Each tree over fits, 

however in different ways, and aggregating a large number of trees smooth out the 

decision boundaries created by each individual tree. (11) 
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Random forest also generates a parameter called the variable importance factor (VIF), 

based on the OOB error rate before and after permuting the values of the variable. If a 

variable is a good classifier or is significantly associated with outcome, permuting this 

variable will break this association. When this now permuted variable along with the 

remaining non permuted variables are used to predict the outcome in the OOB or test set 

the prediction accuracy will be decreased, thus giving a large OOB error rate.  Stronger 

the association of the variable with outcome larger will be the OOB error rate after 

permutation, while the prediction accuracy would not change much if the variable was 

not associated with outcome at all. The difference in prediction accuracy before and after 

permutation averaged over all trees gives a measure of the how critical the variable is for 

accurate classification or prediction. Based on this error rate, variables are assigned a 

variable importance factor (VIF). Higher the VIF the more important the variable.  

𝑉𝐼𝑗
(𝐸𝑅) =  

1

𝑛𝑡𝑟𝑒𝑒
∑ (𝐸𝑅𝑡𝑗̃ − 𝐸𝑅𝑡𝑗)

𝑛𝑡𝑟𝑒𝑒

𝑡=1

 

 

Where ntree denotes the number of trees 

𝐸𝑅𝑡𝑗  denotes the mean error rate over all OOB observations in tree t before permuting 

predictor j 

𝐸𝑅𝑡𝑗̃  denotes the mean error rate over all OOB observations in tree t after randomly 

permuting predictor j. 
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While random forest works well in most settings, it tends to assign higher VIF’s to 

correlated variables, irrespective of the actual association of the variable to outcome(12). 

That is to say, it is not capable of distinguishing spurious associations due to confounding 

factors that may be independently associated with a variable but not with the outcome 

of interest. For example, consider two correlated variables, age, and shoe size. If we test 

their association with reading skills, shoes size would have a high VIF, even though the 

true predictor is age and on its own shoe size would be irrelevant to reading skills. In a 

biomedical setting, variables often show high correlation with each other and it is 

important to account for this conditional effect when classifying an outcome. To 

overcome the issue of correlated variables Strobl, introduced the conditional variable 

importance factor (12,13). This takes into account not just the marginal influence of a 

variable but also its influence conditional on another variable. Here the assumption is that 

a variable, X is not truly independent from the some or all of the rest of the variables, Z 

and hence it is easy to see that by permuting only variable X the correlation structure 

between X and the other remaining variables is destroyed giving spurious results. To 

account for this correlation, Strobl suggest a conditional permutation scheme, where Xj 

is permuted only within groups of observations with Z=z, i.e. the null hypothesis is that 

X is associated with Y conditional on Z 

𝑃(𝑌, 𝑋𝑗|𝑍) = 𝑃(𝑌|𝑍). 𝑃(𝑋𝑗|𝑍) 

And accordingly the permutation scheme is now shown in Figure 7. 
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Figure 7: Permutation scheme of unconditional and conditional Random Forest procedures 

Permutation scheme for the original marginal (left) does not take correlation of the 
permuted variable with other variables into consideration. The newly suggested 
conditional (right) permutation permutes a variable within groups of observation that it is 
conditional on.* 

*Picture courtesy: Conditional variable importance for random forests. Strobl, C., 
Boulesteix, AL., Kneibi, T., Augustin, T., Zeileis, A., BMC Bioinformatics 2008 
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X may be associated with all or some of the remaining variables. To determine the 

variables, Z to be conditioned on, the empirical correlation of variables with X is 

determined by conditional inference tests. If this correlation coefficient or P-value 

exceeds a certain preset threshold then X is conditioned on that variable. It must be noted 

that the conditioning variables may not necessarily appear all together with the variable 

of interest, X.  However since a large number of trees are built, different combinations of 

the conditioning variables along with X may be seen in different trees. The conditioning 

grid for each tree is determined by the partition of that particular tree only. The 

permutation importance for each individual tree is then averaged over all trees. While 

there is still some selection bias, when choosing correlated variables over variables that 

are very poorly associated with outcomes, it is greatly attenuated by using the conditional 

approach. This bias and resultant prediction accuracy is also dependent on the value of 

mtry, or number of variables available at each node to partition on and can be optimized 

by changing mtry. 

 

Both conditional and unconditional Random forest methods make use of OOB error rate 

before and after permutation to determine VIF. This is ideal for association prediction and 

classification when there are equal or similar number of samples in each outcome class. 

However when the dataset is unbalanced the RF classifier is more likely to allocate new 

observations to the majority class at the same time, permutation may not change the 

class affiliation of the majority hence blunting the overall error rate.  
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The error rate regards all misclassifications equally important, and does not weight the 

misclassification/ class by frequency. Even if the entire minority class is misclassified if the 

minority is only 20% the maximum error rate would be 40%.  

To make the Random Forest method more relevant to unbalanced datasets, Janitza 

introduced the use of AUC instead of error rates(14).  The AUC weights each class equally 

and hence is not affected by imbalance in the number of samples per class. The AUC for 

a tree corresponds to the proportion of concordant events, i.e.  A larger class probability 

for Y=1 is assigned to an observation that truly belongs to class Y=1 compared to an 

observation that belongs to class Y=0.  

 

 

𝑉𝐼𝑗
(𝐴𝑈𝐶) =  

1

𝑛𝑡𝑟𝑒𝑒
∑ (𝐴𝑈𝐶𝑡𝑗 − 𝐴𝑈𝐶𝑡𝑗̃)

𝑛𝑡𝑟𝑒𝑒

𝑡=1

 

 

Where ntree denotes the number of trees 

𝐴𝑈𝐶𝑡𝑗  denotes the area under the curve computed from the OOB observations in tree t 

before permuting predictor j 

𝐸𝑅𝑡𝑗̃  denotes the area under the curve computed from the OOB observations in tree t 

after randomly permuting predictor j. 

By using the AUC, permutations that change class affiliations of either the majority or 

minority class give a high error rate and thus it is more robust to unbalanced datasets. For 
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the current study the party package in R is used, which allows for conditional partitioning 

and use of change in AUC instead of error rate for assigning VIF (15). 

 

 

The ROC-Logistic Variable selection method: 

Background:  

The ROC curve developed by Hanley (16) is a powerful tool in determining the 

classification ability of single biomarkers. By plotting the sensitivity and specificity of the 

marker at different cut points, it is possible to visually assess the classification potential 

of the marker. However, often single markers are not very accurate classifiers but 

patterns in movement of multiple markers may better classify outcome. In such cases 

multiple marker models can be built using logistic regression. The predicted probabilities 

of these combination models can then be used to build ROC curves to classify 

outcome(17). However when a large number of potential markers are present, it can be 

challenging to determine an optimum model for accurate classification. It is also not 

geared towards variable selection for classification purposes.  Data mining methods on 

the other hand, can be used to narrow down potential candidates, but additional analysis 

is still required to build an optimum model. Additionally, both data mining methods and 

logistic regression models test for classification performance or fit over the whole range 

of test values. In a clinical setting, often the performance of a test in the high sensitivity 

or high specificity region are more critical to its utility rather than overall performance. 

Neither of the above methods are capable of honing in on a classification optimal model 
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without extensive trial and error. The proposed new method attempts to address this 

issue by choosing variables based on classification metric alone, i.e maximizing the partial 

AUROC.  

It takes advantage of the optimality of risk scores and uses a combination of empirical, 

and parametric methods for optimum variable selection for modelling classification. 

In order to understand how the ROC-Logistic method works, it is important to understand 

a few existing methods in use to determine and evaluate a classification model. 

 

The Baker method (Jagged Algorithm): 

Baker(18) suggested a non-parametric method for combining multiple markers. The 

method takes advantage of the optimality of likelihood ratio to extend the idea of ROC 

cut points to multivariate positivity region. 

 

In order to accomplish this Baker suggested the following procedure:- 

Consider a two marker model with continuous markers, X1 and X2. Each marker is divided 

into n quantiles and are cross tabulated to give n*n cells. The TPF for each cell is then 

given by TPFij= Pr(X1 = i, X2 = j|Y = 1) and similarly FPFij = Pr (X1 = i, X2 = j|Y = 0). 

Next the ratio of TPFij/FPFij for each cell is determined. Within the limitations of a 

predetermined pattern, the cells are ranked in descending order of the TPFij/FPFij ratio. 

The corresponding TPF and FPF of each cell is then sequentially added and a curve of 

cumulative TPF over cumulative FPF is plotted. This gives the ROC curve for the 

combination of the two markers.  
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Baker details three different pattern for choosing cells, Unordered, Jagged ordered and 

Rectangular ordered. Each method has its advantages and disadvantages (17). For the 

current study, we focused on the jagged ordered algorithm for choosing sequence of cells. 

The jagged algorithm ranks the cells based on LR and also the assumption that movement 

in either one of the marker is indicative of disease, i.e both markers need not move 

similarly.  In the context of two marker combination, where higher values are indicative 

of disease, starting from the cell for which both markers have high values, it ranks cells 

such that one or the other marker is maximized. Cells can be chosen sequentially in either 

direction, horizontal or vertical or both, maximizing either one or both markers. However 

a cell can be ranked only if cells with higher values have already been accounted for, i.e. 

only if cells to the right (higher values of Marker B) and cells below (Higher values of 

Marker A) are already taken. A cell (i,j) can be ranked only if both cells (i+1,j) and (j+1,i) 

have already been ranked. 

Within the above constraints, cells with higher TPF/FPF ratio are preferentially ranked 

over lower ratios until all the cells have been covered. The TPF and FPF of the cells are 

then sequentially added based on their ranking to give the ROC curve. 

 

Consider the combination of two markers A and B split into 5 quantiles each and cross 

tabulated. The Jagged algorithm is used to rank the TPF/FPF ratio table of these two 

markers. 
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TPF/FPF 

Marker A/Marker B 1 2 3 4 5 

1  0.141  0 0 

2  0    

3  0.318  0 0 

4  0.891  0 3.714 

5  8.023  4.457 5.349 

 

The algorithm starts at cell (5,5) under the assumption that higher values are indicative 

of disease. It then moves to the left to cell (5,4) as the TPF/FPF ratio is larger than that 

of cell(4,5). Next it ranks cell (4,5) as amongst the adjacent cells it has the higher value. 

From here it next ranks cell (5,3) and then (5,2), as (5,2) has a high ratio. 

The rankings of cells based on jagged ordering are given below. 

 

Marker A/Marker B 1 2 3 4 5 

1 25 23 21 19 17 

2 24 22 20 18 13 

3 16 12 11 10 9 

4 15 8 7 6 3 

5 14 5 4 2 1 

 

It should be noted that cells with FPF=0 and TPF>0 give an undefined ratio. These cells 

are given preference as this means an increase in sensitivity with no loss in specificity. 
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Cells where TPF=0, instead of the ratio the FPF value is used. Based on jagged ordered 

ranking the FPF and TPF of the cells are sequentially added and ROC curve plotted as 

shown in Figure 8. 

Below are the cross tabulation of the TPF and FPF of the two marker combination. 

TPF: 

Marker A/Marker B 1 2 3 4 5 

1 0 0.0571 0 0 0 

2 0 0 0 0 0 

3 0 0.0571 0 0 0 

4 0 0.114 0 0 0.143 

5 0 0.257 0 0.029 0.343 

 

FPF: 

Marker A/Marker B 1 2 3 4 5 

1 0 0.404 0 0.006 0.006 

2 0 0.058 0 0 0 

3 0 0.179 0 0.032 0.026 

4 0 0.128 0 0.019 0.038 

5 0 0.032 0 0.006 0.064 

 

Cumulative FPF and TPF based on Jagged Algorithm  

FPF TPF Cumulative FPF Cumulative TPF 



 

37 
 

0.064103 0.342857 0.064103 0.342857 

0.00641 0.028571 0.070513 0.371429 

0.038462 0.142857 0.108974 0.514286 

0 0 0.108974 0.514286 

0.032051 0.257143 0.141026 0.771429 

0.019231 0 0.160256 0.771429 

0 0 0.160256 0.771429 

0.128205 0.114286 0.288462 0.885714 

0.025641 0 0.314103 0.885714 

0.032051 0 0.346154 0.885714 

0 0 0.346154 0.885714 

0.179487 0.057143 0.525641 0.942857 

0 0 0.525641 0.942857 

0 0 0.525641 0.942857 

0 0 0.525641 0.942857 

0 0 0.525641 0.942857 

0.00641 0 0.532051 0.942857 

0 0 0.532051 0.942857 

0.00641 0 0.538462 0.942857 

0 0 0.538462 0.942857 

0 0 0.538462 0.942857 

0.057692 0 0.596154 0.942857 

0.403846 0.057143 1 1 
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0 0 1 1 

0 0 1 1 
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Figure 8: ROC curve based on Baker Jagged ordered Algorithm 

The ROC curve is built by plotting cumulative TPF over cumulative FPF. The order of TPF 

and FPF is determined by ranking the TPF/FPF ratio obtained by cross-tabulating quintiles 

of two markers. This ranking is based on the Jagged ordered algorithm suggested by 

Baker. AUROC=0.846  
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For more than two markers Baker recommended higher dimensional tables. i.e. three 

dimensional cross-tabulation for 3 markers and so on.  The number of groups for 

tabulation was also suggested by number of markers to be combined. However combining 

markers in this multi-dimensional manner is not feasible for large number of potential 

markers(8), hence the current method recommends a modified method using predicted 

probability for multiple markers. 

 

IDI: 

Integrated Discrimination Improvement (IDI) index is a tool to evaluate the benefit of adding a 

single or multiple variables to an existing classification model(19). It is complementary to the AUC 

in principal and is defined as  

𝐼𝐷𝐼 = (𝐼𝑆𝑛𝑒𝑤 − 𝐼𝑆𝑜𝑙𝑑) − (𝐼𝑃𝑛𝑒𝑤 − 𝐼𝑃𝑜𝑙𝑑) 

 

 Where IS is the integral of sensitivity and IP is the integral of specificity. 

 The subscript old is used for the original model (nested) and the subscript new is used for the 

model with additional variables.  

Alternatively, the IDI can be easily determined by the below equation. 

𝐼𝐷𝐼̂ = (𝑝̂𝑛𝑒𝑤,𝑐𝑎𝑠𝑒𝑠 − 𝑝̂𝑜𝑙𝑑,𝑐𝑎𝑠𝑒𝑠) − (𝑝̂𝑛𝑒𝑤,𝑐𝑡𝑟𝑙𝑠 − 𝑝̂𝑜𝑙𝑑,𝑐𝑡𝑟𝑙𝑠) 

Where 𝑝̂ is the predicted probability 
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The IDI is intuitive to understand. If adding a variable improves the classification ability of the 

model then the predicted probability of the cases as determined by the new model should be 

higher than that determined by the original model. The better the movement in cases the greater 

will be the difference of predicted probability in the first part of above equation.  Alternatively 

the new model may improve classification by lowering the predicted probability of controls as 

compared to the original model. The better the new model in this regard the more negative the 

second term in the equation. Thus improving the overall IDI.  

In the current method IDI is used as an exclusion criteria. If adding a new variable does not 

improve IDI, the variable is not included in the model. It should be noted that IDI is dependent on 

initial model as well as case-control ratio and hence the IDI threshold to be used for each dataset 

should be optimized.(20) 

The Z value for IDI is given by  

𝑧𝐼𝐷𝐼 =
𝐼𝐷𝐼̂

√(𝑆𝐸̂𝑐𝑎𝑠𝑒𝑠)2 + (𝑆𝐸̂𝑐𝑡𝑟𝑙𝑠)2
 

However it has been shown that for IDI approaching zero the distribution may not be normal and 

the z-score may not be ideal (21). In the current method we use an IDI cut off, and do not evaluate 

if it is significantly different from zero. 

 

 

The ROC-Logistic variable selection process: 

 

The ROC-Logistic method is an amalgamation of classification methods that hones in on a 

model that maximizes partial AUROC. While clinical development of any diagnostic test is 
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focused on enhancing sensitivity and specificity over specific ranges, none of the existing 

variable selection method chooses based on partial AUROC. The suggested variable 

selection method combines different existing methods to optimize the variable selection 

process, as detailed in Figure 9 

The first step is to determine the partial AUROC of each marker at a predefined clinically 

relevant FPF range. The potential marker that has the highest pAUROC, (corrected for 

negative correlation by multiplying by -1) is the first variable into the model (denoted as 

Marker A). If two potential markers have identical pAUROC’s then the model which has 

better classification potential over the entire range of values is selected. This is 

accomplished by using the Mann-Whitney U test statistic. The Mann-Whitney U is a 

nonparametric rank-based test used to evaluate the separation of two distributions, in 

the current instance, the separation of cases from controls. The Mann-Whitney U statistic 

is equivalent to the empirical ROC curve, thus it represents the performance of a variable 

as a classifier. However in the current method, the pAUROC tie-breaking selection was 

done based on P value rather than actual statistic so as to not miss good classifiers that 

are negatively correlated to outcome and hence would have an AUROC lower than 0.5 

and subsequently higher Mann-Whitney U statistic . 

 

Next the Baker method, with jagged ordered multivariate optimization algorithm is 

utilized to build the partial ROC of all binary models with the initially chosen variable, 

Marker A. For the current method, the number of groups to divide each variable into was 

set to 5. We found a smaller number of groups gave a very irregular stepped curve, as the 
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ROC was plotted with fewer points. Also the resultant AUROC was not comparable to that 

arrived at by using predicted probabilities from logistic regression. Larger number of 

groups made the cross-tabulation sparse, introducing subjectivity in ranking cells and 

minor inconsistencies. It is possible that larger groups would work better for a larger 

sample sizes, or in a dataset with less skewed variables. The slope of line from origin to 

TPF corresponding to a specific FPF is determined for every binary model. This FPF is user-

defined, based on the clinical relevant AUROC region to maximize. The variables are then 

reordered based on decreasing slope. This, ensures that variables which have a higher 

sensitivity at relevant specificity when combined with the first variable get tested for 

inclusion first.  

 

The variable are then sequentially combined with the initial variable one by one to check 

for improvement in partial AUROC. If the pAUROC is improved, the IDI is computed. If the 

IDI is above a preset threshold then the variable (say, Marker B) is added to the model. 

The IDI threshold is also user-defined, and may need optimization for different sized 

datasets. The predicted probability of this new combination model is determined using 

logistic regression.   

𝑝̂𝐴+𝐵 =
𝑒𝛽0+𝛽𝐴+𝛽𝐵

1 + 𝑒𝛽0+𝛽𝐴+𝛽𝐵
 

The next variable in the decreasing slope order will now be combined with this predicted 

probability using Bakers jagged ordered algorithm and the resultant new model will be 

checked for improvement in partial AUROC over the previous combination model. Instead 
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of using the actual values of the markers in the model, the predicted probability are 

quintiled and cross tabulated with next variable to be checked. Thus solving the multi-

dimension issue of using the Baker method for multiple variable modelling. If the next 

variable in sequence does not improve partial AUROC, then it is ignored and the process 

checks the variable after that for inclusion. In such a manner, the process is continued 

until all variables are checked for improvement in partial AUROC and IDI. This 

classification targeted approach is quick and effective in choosing variable combination 

that are parsimonious and have good classification properties.    
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Figure 9: The ROC- Logistic variable selection procedure 



 

46 
 

 

CASE STUDY: 

Preterm birth, defined as births at less than 37 completed weeks of gestation, is the 

leading cause for neonatal mortality and morbidity both globally and in the US (22). 

Women may be at risk for preterm birth due to a number of factors, including pregnancy 

complications such as preeclampsia and fetal birth defects.(23).  However in two thirds of 

preterm births there is a spontaneous onset of preterm labor. Numerous factors have 

been shown to be associated with spontaneous preterm labor, including vascular 

disorders, cervical disease, stress, intra-amniotic inflammation or infection (24). Of the 

above, intra-amniotic inflammation is a known risk factor for spontaneous preterm 

labor(25). Intra-amniotic inflammation, represented by high concentration of 

inflammatory proteins in the amniotic fluid, could be due to a microbial invasion of the 

amniotic cavity (MIAC) or, in certain cases, inflammation in the absence of infectious 

agents. The latter has been termed as sterile intra-amniotic inflammation. In the 

examples presented in the current investigation, no differentiation was made between 

MIAC and sterile intra-amniotic inflammation, as in either case the adverse neonatal 

outcomes were comparable (3,26). For the current study, women with amniotic 

interleukin-6 (IL-6) levels greater than or equal to 11.3ng/ml were considered positive for 

intra-amniotic inflammation (3). 

When a woman presents with spontaneous preterm labor, the course of 

treatment can be critical to the subsequent mortality and/or morbidity of the neonate. 
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The decision is a complicated one for obstetricians, because often the etiology of 

presented preterm labor is unknown. If there is an infection or inflammation, treatment 

with antibiotics or anti-inflammatory steroids is recommended,(27) however 

indiscriminate use of antibiotics may be harmful to the neonate(28). This makes accurate 

diagnosis critical to course of therapy. Unfortunately, quick and safe procedures to check 

the status of the mother are limited. Analyzing the amniotic fluid by amniocentesis for IL-

6 is the most widely used method to check for inflammation; however, amniotic fluid 

must be sampled and tested, which is an invasive procedure. In the absence of a reliable, 

safe and non-invasive diagnostic procedure, studies to determine the best course of 

action are limited, and there is no consensus on the right treatment course to follow for 

women in spontaneous preterm labor(29). A rapid, safe and accurate diagnostic tool to 

aid in the detection of intra-amniotic inflammation is thus critical to improved 

understanding of preterm labor etiology, and consequently the course of action that best 

alleviates the mortality and morbidity associated with preterm labor. In recent years, 

short cervix, gestational age and maternal serum white blood cell count, have all been 

considered as non-invasive diagnostic tools for intra-amniotic inflammation (30,31,32). 

Another option being considered are examination of protein levels the cervicovaginal 

fluid (CVF). The CVF is obtained by swabbing the posterior vaginal fornix for 60secs, a non-

invasive procedure and, thus presents a relatively safer, quicker and easier procedure to 

determine the inflammation status of the amniotic sac.  The CVF consists of numerous 

proteins, many of which could be indicative of intra-amniotic inflammation. A recent 

study has shown the possible benefit of using CVF IL-6 or interleukin-8 (IL-8) 
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concentrations as potential markers for intra-amniotic inflammation in a limited 

dataset(33). A different study examined CVF fetal fibronectin as a marker for upper 

genitourinary tract infection and a predictor, along with intra-amniotic inflammation, as 

predictors of imminent birth(34). A combination of multiple CVF protein measures may 

serve as a multi-marker panel to detect intra-amniotic inflammation, improving upon the 

sensitivity and specificity of individual CVF proteins, and result in a clinically-applicable 

diagnostic tool for detecting intra-amniotic inflammation. Analyzing combination of 

markers could be key to developing a diagnostic test based on CVF.  
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METHODS: 

Sample collection: 

To develop and validate the presented methodology, we use data from a multicenter 

prospective study conducted in multiple phases. For the current study, data was 

restricted to a subset of the first two phases of the study. A large number of candidate 

CVF proteins were screened in Phase 1 of the original study to determine potential intra-

amniotic inflammation markers. Phase 2 was restricted to proteins that passed initial 

screening criteria, and were further refined and their classification ability estimated. In 

this examination, we first explore the proposed new methodology in Phase 2 due to the 

smaller dimension (number of candidate proteins), and then examine Phase 1 where 81 

CVF protein measures were studied.   Therefore, we note that nine CVF proteins (i.e. 

candidate markers) were advanced from Phase 1 into Phase 2 based on AUROC, 

robustness, biologic plausibility, and simplicity of performing the assays. This restricted 

data set of 9 CVF proteins is further referred to as set 1. Following this, the Phase 1 data 

which had a larger number of potential markers was used to study the method 

performance in the presence of noise, further referred to as set 2.   

The data was collected at 16 tertiary-care perinatal centers across the United 

States. Women above 18yrs of age, with singleton pregnancies and in spontaneous 

preterm labor with intact fetal membrane, were eligible for the study.  Preterm labor is 
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defined as regular uterine contractions with either a cervical dilation of ≥ 2cm or a cervical 

length, as measured by transvaginal sonography, of ≤ 30mm or a positive cervicovaginal 

fetal fibronectin test. Cases with ruptured fetal membrane, major fetal anomaly, fetal 

aneuploidy or a medical indication for preterm birth were excluded from the study.  

Consented and enrolled eligible women underwent amniocentesis as part of their routine 

care, with an extra aliquot collected for the study. Amniotic fluid IL6 levels were measured 

and an IL6 concentration of 11.3ng/ml or higher was considered positive for intra-

amniotic inflammation and served as cases. Additionally CVF was collected to measure 

proteins that could potentially serve as a marker for intra-amniotic inflammation. Further 

management of preterm labor and other clinical decisions were independent of the study 

and was left to the caregiver’s discretion. 

Statistical Analysis: 

All CVF protein measures had a highly skewed non-normal distributions in all women 

(regardless of inflammation status), hence the values were converted to the natural) log 

form for all further analysis. Additionally, a number of CVF proteins in set 1 were also 

below the lower limit of detection.   

The distribution of cases (women with amniotic fluid IL-6 levels ≥11.3 ng/ml) and controls 

(<11.3 ng/ml) were compared using the Mann- Whitney U test, a nonparametric rank-

based test to determine differences in the distribution of two groups. The overall AUROC 

and the pAUROC over the FPF region 0 to 0.25 for each CVF protein measure was 

determined using the comproc procedure in Stata (35) and roccontrast option in proc 
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logistic in SAS/STAT® software (36) . Additionally both procedures were also used to 

compare model performances for AUROC and pAUROC. The comproc procedure in Stata 

calculates a confidence interval for the difference between ROC summary indices. The 

observed difference is divided by its standard error and is compared to the standard 

normal distribution. Confidence intervals and standard errors are derived from the 

bootstrap distribution of the estimators.  

The roccontrast statement was specified under Proc logistic to compare different ROC 

models using the SAS/STAT software. The reference was specified in each case and used 

with the nofit option. This produces a contrast matrix of differences between each ROC 

curve and the specified reference curve following a logistic regression. The Proc logistic 

process was also used to determine AIC of each model to compare the goodness of fit of 

all models to each other as AIC allows comparison of non-nested models too. 

For the first study, using set 1 data, the ROC-logistic method result was compared to the 

models built with best subset variable selection technique which is based on the score 

statistic, a measure of the slope of the likelihood function. Models with high score statistic 

based on best subsets were fit by logistic regression and the AUROC and pAUROC 

estimated. This dataset also had a high concentration of early onset preterm labor 

(defined here as ≤ 34weeks). Analysis of the model performance in this early onset subset 

was also done. Additionally, gestational age was added as a covariate to the model to 

check for improvement in classification performance.  
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Finally, as there is no definitive method to classification modeling and the best subset 

selection does not always select the best model in terms of classification, the model was 

compared to all possible combination models to evaluate classification performance. 

For the next step of method study, the ROC-Logistic method was used to determine 

optimum classification model in a noisier dataset with more potential candidates. To 

compare the performance of the model, a combination of traditional methods of data 

mining and best subset selection was used. As this dataset had 81 measures, it was not 

feasible to use Best subset selection directly and hence a data mining procedure, random 

forest was used as an initial step to select good classifiers. This was followed by best 

subset selection on this selected group of potential classifiers. The final models were 

compared to the ROC method model for overall AUROC and partial AUROC. The exact 

parameters used and a brief description of methods follow: 

ROC–Logistic method applied to set 1 and set 2 of intra-amniotic inflammation data set:  

The partial AUROC was determined for all individual protein markers over the FPF range 

of 0 to 0.25. Variables were ordered in decreasing order of partial AUROC followed by 

increasing p-value for the Mann Whitney U-statistic. The variable with the largest partial 

AUROC was set as the first marker into the classification model. Each of the remaining 

variables were individually combined with the first (best classifying) variable using the 

jagged ordered multivariate optimization algorithm developed by Baker (18). The slope 

of line drawn from the origin to the FPF=0.25 point of the resultant ROC was determined. 

The variables were reordered in descending order of this slope. As the Baker method does 

not involve fitting the entire curve for the determining the TPF at a set FPF, this is a very 
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efficient and time saving step that ensures that variables that combine better with initial 

variable get the opportunity to be added sooner rather than later. Each marker was then 

combined, individually, in order of slope, with the initially selected variable to check for 

improvement in the partial AUROC via Baker method. The variable was retained in the 

model if the resultant partial AUROC of combination was higher than the first variable 

alone and, the IDI of this new combination model was above a preset IDI threshold of 

0.05. If both criteria were not met the variable was not included in the model and the 

next variable in the sequence was checked. Variables that, on combination improved 

pAUROC and crossed the IDI threshold were combined using the logistic regression to give 

the predicted probability. The next marker to be checked will now be combined with this 

predicted probability using Baker method. By using the logistic regression instead of Baker 

for combining selected variables the multidimensionality issue of Baker is avoided. In this 

way each variable was sequentially checked for inclusion into the model built by 

improvement in partial AUROC. This forward selection ensures that there is no markers 

get added into the model if the pAUROC is not improved, this ensures that the final model 

is parsimonious, while also have good classification properties in the relevant FPF range. 

The code for the entire process was written in R and is attached. 

Best Subset Selection: 

As there are no gold standard methods to select variables based on classification ability, 

we used best subset selection as a surrogate method for choosing classification models.  

Best subset selection is a variable selection procedure that selects models with highest 

likelihood score (chi-square) statistic from all possible models with 1 or more variables 
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(parameters) included. That is, the procedure selects “best” 2-marker, 3-marker, 4-

marker, etc. models.   The number of models per parameter level was restricted to 5 for 

this investigation. As both set 1 and set 2 had less than 200 samples with 18% to 24% 

cases, analysis was restricted to models with a maximum of 4 parameters (4 proteins) to 

avoid over-fitting and to ensure reliability in classification. The Proc logistic procedure in 

SAS v 9.3 was used to build the best subset models using the score statistic selection 

criteria. The AUROC, pAUROC and AIC values were than determined for the selected 

models to allow comparison with the model selected by the ROC-logistic regression based 

variable selection method. 

Random Forest:  

The ‘party’ package in R was used to determine optimum classifiers of intra-amniotic 

inflammation based on 81 CVF proteins measured in Phase 1 (set 2). The advantage of 

using this package was twofold. First, it allows us to account for correlation between 

measured CVF proteins, which is critical in any biological data set. Second, it allows for 

determining the prediction accuracy based on change in ‘Out of Bag’ (OOB) AUROC 

instead of using the traditional, OOB Error rate. OOB error rate has suboptimal accuracy 

in determining the variable importance factor (VIF) when used in unbalanced data sets 

(14). The set 2 dataset has a case to control ratio of 0.317 and hence determining VIF 

based on AUROC was suitable. 

Intra-amniotic Inflammation status was coded as factor and controls for cforest was set 

as unbiased. The following default parameters were used: The teststat used to determine 

which variable to split on was set to quadratic and testtype, which specifies the 
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computation of distribution of test statistic was set to univariate. Both the above settings 

ensure unbiased split. The number of observations to draw per sampling was set to 0.632 

of the data, without replacement.(10, 12, 37) 

The number of trees, ntree was set to 2000 and mtry was set to 9, i.e √81 . The 

parameters mincriterion, minsplit and minbucket were set to zero to grow conditional 

inference trees to maximal depth with no pruning. varimpAUC was determined under 

conditional=TRUE, with a threshold set to 0.2, i.e Only, if  the 1 - p-value of the association 

between the variable of interest and a covariate is less than 0.2, will they be considered 

as independent of each other. The number of permutations was set to 1. OOB was set to 

true, so that the VIF would be calculated based on OOB data. The process was repeated 

7 times with different seed to ensure diverse trees were built. The variables that had the 

highest VIF were consistent through the 7 runs. 
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RESULTS: 

Set 1 results 
 

Cervicovaginal fluid collected from 191 patients, was analyzed and 9 different proteins 

concentrations known to play an active role in intra-amniotic inflammation were 

measured (Table 3a). Additionally the gestational age at onset of preterm labor was 

included in the dataset. This cohort of patients with measures on limited number of CVF 

proteins, set 1, was an ideal starting point to test the efficiency of the ROC-Logistic 

method. Of the 191 patients, 35 had elevated IL-6 (≥11.3 ng/mL) in the amniotic fluid, 

indicative of severe intra-amniotic inflammation. The remaining 156 patients served as 

controls. A high proportion of controls and cases had measures below the lower limits of 

detection (LOD) for each of the CVF proteins, and most of the distributions were heavily 

skewed to the right. Hence, all measures of proteins were converted into log scale to 

correct some of the skewness. The distribution of cases and controls differed significantly 

from each other in 8 of the 9 CVF proteins as determined by the Mann Whitney U test 

(Table 3b). The mean gestational age at onset of preterm labor was also significantly 

different between the two groups with cases having a lower mean of 27.86 weeks, as 

compared to controls at 31.33 weeks. The area under ROC curve (AUROC) for each of the 

CVF proteins was computed. Additionally the AUROC of gestational age was calculated as 

0.7332. The partial AUROC was calculated over the FPF range of 0 to 0.25. CVF IL6 had the 
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highest AUROC at 0.8612 (0.7902-0.9322) while within FPF 0.25, the α-fetoprotein, AFP 

had the larger partial AUROC at 0.1540. Note: When using STATA the partial AUROC of 

AFP was slightly lower at 0.147 (0.108-0.186), this could be because of how the different 

software, STATA against R, handle ties in their estimation of AUROC. 
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Table: 3a Geometric means and lower detection limits of 9 CVF proteins and arithmetic 

mean of gestational age at onset of preterm labor. 

 

*Arithmetic mean (std dev) 

  

   
Inflammation Absent 
(n=156) 

Inflammation Present 
(n=35) 

Variables 
Protein 
abbrv. 

LOD 
Geometric 
mean(std 
dev) 

 % freq 
at LOD 

Geometric 
mean(std dev) 

% freq at 
LOD 

Gestational Age (wk)   31.33 (3.67)*  27.86 (3.96)*  

α-1-Acid 
Glycoprotein 

A1AG 312.50 719.81 (2.63) 41.67% 1596.29 (3) 11.43% 

 α-fetoprotein AFP 15625 16466 (1.31) 94.23% 43537 (3.09) 37.14% 

β2 microglobulin B2MG 6250 18465 (2.89) 38.46% 54462  (3.14) 14.29% 

Chemokine Ligand 1 GROα 312.50 670.1 (2.35) 26.28% 548.93 (1.8) 17.14% 

Insulin-like growth 
factor-binding 
protein 1 

IGFBP1 
313.00 429.07 (1.88) 

66.03% 
873.52 (3.15) 

42.86% 

Interleukin 6  IL6 62.60 149.26 (2.63) 41.67% 713.77 (2.67) 5.71% 

lipopolysaccharide 
binding protein 

LBP 39.00 160.01 (4.09) 28.85% 349.57 (5.34) 11.43% 

Chemokine Ligand 2 MCP1 31.25 38.9 (1.73) 80.13% 68.65 (2.5) 48.57% 

Chemokine Ligand 4 MIP-1β 312.50 354.27 (1.38) 76.92% 540.53 (2.17) 51.43% 
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Table: 3b Difference in distribution of Cases and Controls for each of the CVF proteins 

Variables 

Mann Whitney U (p 

value) AUROC *(95% CI) 

pAUROC(0.25)* (95% 

CI) 

A1AG 1554 (<0.0001) 0.715 (0.625-0.806) 0.075 (0.038-0.111) 

AFP 1129.5 (<0.0001) 0.793 (0.709-0.878) 0.147 (0.108-0.186) 

B2MG 1375 (<0.0001) 0.748 (0.652-0.844) 0.106 (0.069-0.146) 

GROα 2874 (0.6253) 0.526 (0.431-0.622) 0.012 (-0.003-0.027) 

IGFBP1 1805 (0.0005) 0.669 (0.566-0.773) 0.100 (0.062-0.138) 

IL6 758 (<0.0001) 0.861 (0.790-0.932) 0.151(0.114-0.188) 

LBP 1990 (0.0124) 0.636 (0.530-0.741) 0.065 (0.032-0.099) 

MCP1 1768.5(<0.0001) 0.676 (0.581-0.771) 0.096 (0.060-0.132) 

MIP-1β 1819 (<0.0001) 0.667 (0.572-0.762) 0.092 (0.058-0.127) 

* From STATA –using comproc. 

  



 

60 
 

 

While IL6 had good classification performance with an AUROC of 0.861 (0.790-0.932), a 

combination of CVF proteins may perform better. Two different methods were compared 

for their ability to determine an optimum combination of the proteins that would 

accurately classify intra-amniotic inflammation. 

The ROC-Logistic method outlined previously was used to build a classifying model 

by maximizing the partial AUROC in the FPF 0 to 0.25 region. For a test to be clinically 

applicable it has to fit certain sensitivity and specificity criterion, which often lie within 

this region of the ROC curve and hence maximizing this partial area may enhance the 

clinical utility of the test. Using a combination of the Baker algorithm and logistic 

regression, the method chose the combination of AFP and IL6 that maximizes partial 

AUROC, while also meeting the IDI cut off set at 0.05. 

The AUROC of the final model, including IL6 and AFP, was 0.8804 via logistic regression, 

and 0.8866 when using the Baker jagged-algorithm. The pAUROC over the FPF range 0-

0.25 was equal to 0.1711 and 0.1784 using the logistic and Baker approach respectively. 

The model characteristics are presented in Table 5.  

Early onset preterm labor, defined in this study as labor on or before 34 weeks, had a 

higher incidence of inflammation in the current cohort as is the case in general(25). It is 

probable that the etiology of early and late onset preterm labor are different and 

consequently may present different markers. We checked the above model in the early 

onset subset to determine if the combination of AFP+IL6 performs equally well in this 



 

61 
 

subset. In the current data set we have 150 patients who had early onset preterm labor, 

31 of whom had inflammation, detailed in Table 4.The model performed equally well with 

an AUROC of 0.8786 and 0.8806 using Logistic and Baker method respectively. The 

pAUROC were comparable as well.  
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Table 4: Distribution of cases and controls in early and late onset preterm labor 

 Early Onset preterm 
labor 

Late onset preterm 
labor 

Total 

No inflammation 119 37 156 

Inflammation 31 4 35 

Total 150 41 191 
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Table 5: ROC-Logistic based method model 1 

 AFP+IL6 

Model 
Entire data set 
(n=191) 

Early onset PTL 
(n=150) 

AUROC_logistic 0.880 0.879 

AUROC_Baker 0.887 0.881 

pAUROC_logistic 0.171 0.170 

pAUROC_Baker 0.178 0.175 

 

The Baker method is a simple procedure of cross-tabulation of markers and ranking the 
TPF/FPF ratio of each cell. The cumulative TPF and FPF based on the ranking is used to 
build the ROC curve and determine the pAUROC and AUROC. The logistic method involves 
fitting the marker combinations to determine the predicted probability of outcome based 
on marker combination. These predicted probabilities are then used to build the ROC curve 
and determine pAUROC and AUROC.  
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Gestational age is associated with inflammation, hence, we checked if including 

gestational age into the AFP+IL6 model improves the classification accuracy. When added, 

the overall AUROC improved from 0.8804 to 0.9086. The partial AUROC was improved 

from 0.1711 to 0.186 (Table 6a). The IDI on addition of gestational age improved by 0.056. 

The new model, however, was not statistically significantly different when compared to 

the initial model containing only the CVF proteins IL6 and AFP alone (Table 6b). Adding 

gestational age as covariate selectively increased the predicted probability of majority of 

early onset cases as well as controls. Thus separating early and later-onset preterm labor 

rather than the presence of intra-amniotic inflammation (Figure 10).  
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Table 6a: ROC-Logistic based method model 2  

 AFP+IL6+gestational Age 

Model 
Entire data set 
(n=191) 

Early onset PTL 
(n=150) 

AUROC_logistic 0.909 0.898 

AUROC_Baker 0.920 0.898 

pAUROC_logistic 0.186 0.186 

pAUROC_Baker 0.185 0.189 
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Table 6b: Comparison of model with and without gestational age as an independent 

variable 

 Entire data set (n=191) Early onset PTL (n=150) 

Model AUROC pvalue AUROC pvalue 

IL6+AFP 0.880 (0.810-0.951) 0.079 0.899 (0.832-0.965) 0.798 

IL6+AFP+GA 0.909 (0.853-0.964)  0.897 (0.830-0.947)  
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 In the current data set, gestational age was significantly associated with inflammation 

only in early onset preterm labor subset (beta=-0.256; pvalue <0.0001). However we did 

not see significant improvement in classification on adding gestational age to this subset 

either.  

We noted that CVF AFP and gestational age are highly correlated (-0.3763 

;pvalue<0.0001) in the current data set (including early onset subset (-0.3671; 

pvalue<0.0001)) the utility of gestational age in classifying inflammation becomes 

redundant  
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Figure 10: Comparison of predicted probability of intra-amniotic inflammation 

 The predicted probability of CVF IL6 and AFP combination models with and without 
gestational age are plotted to show how adding gestational age to the model increases 
the predicted probability of both early onset cases and controls.   
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To validate the results from ROC-logistic method we compared the model built to models 

built by best subset selection. This method is traditionally used for small number of 

variables as in the current case. Best subset selection generates multiple models at 

increasing number of parameters that maximizes the chi square score statistic. For the 

current analysis, the number of models at each parameter level was restricted to 5 (all 

models in Supplementary Table 1 – Appendices) so that we examined a total of 41 models 

for 9 CVF proteins.  Of all the combination models built by best subset selection, two 

models comparable to the IL6+AFP in terms of AUROC were AFP+GROα+IL6 and AFP+ 

B2MG+GROα+ IL6, both models were however, not statistically significantly different.  

Table 7 shows the top model chosen by best subset selection method based on the Chi-

square score statistic 
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Table 7: Best subset selection models for set 1 

No. 
of 

Vars 
Models 

Chi-
Square 
Score 

AUROC 
(95% CI) 

Pvalue AIC 
pAUROC 
(95% CI) 

 
Pvalue 

1 MIP1b 23.42 
0.667 

(0.572-0.762) 
<.0001 167.36 

0.092 
(0.0567-0.128) 

<0.0001 

1 IGFBP1 22.87 
0.669 

(0.566-0.773) 
<.0001 167.04 

0.100 
(0.064-0.136) 

0.00015 

1 B2MG 25.31 
0.748 

(0.652-0.844) 
<.0001 159.65 

0.106 
(0.068-0.144) 

<0.0001 

1 AFP 63.27 
0.793 

(0.709-0.878) 
0.0141 133.70 

0.147 
(0.108-0.186) 

0.078 

1 IL6 53.94 
0.861 

(0.790-0.932) 
0.0515 131.40 

0.151 
(0.113-0.189) 

0.041 

2 AFP+MIP1b 65.20 
0.793 

(0.698-0.887) 
0.0178 134.30 

0.153 
(0.114-0.192) 

0.16 

2 AFP+B2MG 65.36 
0.803 

(0.705-0.901) 
0.0079 133.76 

0.154 
(0.116-0.193) 

0.15 

2 AFP+ IGFBP1 66.99 
0.810 

(0.717-0.904) 
0.0509 133.28 

0.160 
(0.123-0.196) 

0.29 

2 AFP+ MCP 66.35 
0.830 

(0.747-0.914) 
0.0872 133.13 

0.162 
(0.125-0.199) 

0.42 

2 AFP+ IL6 77.75 
0.880 

(0.810-0.951) 
Ref 118.59 

0.171 
(0.137-0.206) 

Ref 

3 
AFP+IL6+ 

MCP 
77.81 

0.878 
(0.807-0.949) 

0.5646 120.02 
0.168 

(0.133-0.203) 
0.47 

3 AFP+IL6+LBP 80.41 
0.889 

(0.829-0.950) 
0.4586 117.15 

0.172 
(0.138-0.206) 

0.87 

3 
A1AG+ AFP+ 

IL6 
80.42 

0.890 
(0.828-0.951) 

0.3697 115.67 
0.170 

(0.134-0.206) 
0.86 

3 
AFP+ 

B2MG+ IL6 
79.03 

0.893 
(0.833-0.953) 

0.2216 118.02 
0.172 

(0.139-0.206) 
0.83 

3 
AFP+ GROα+ 

IL6 
82.05 

0.907 
(0.855-0.960) 

0.0490 112.91 
0.178 

(0.146-0.211) 
0.39 

4 
AFP+ GROα+ 
IL6+ MIP1b 

82.14 
0.905 

(0.852-0.959) 
0.0713 114.63 

0.178 
(0.145-0.211) 

0.45 

4 
AFP+ GROα+ 

IL6+ MCP 
82.10 

0.906 
(0.853-0.959) 

0.0620 114.59 
0.177 

(0.144-0.210) 
0.47 

4 
AFP+ 

B2MG+ 
GROα+ IL6 

82.29 
0.912 

(0.863-0.961) 
0.0491 114.15 

0.178 
(0.144-0.212) 

0.40 
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4 
AFP+ GROα+ 

IL6+ LBP 
83.63 

0.914 
(0.868-0.961) 

0.0472 112.93 
0.178 

(0.144-0.212) 
0.41 

4 
A1AG+AFP+ 
GROα+IL6 

84.15 
0.915 

(0.867-0.963) 
0.0493 111.07 

0.150 
(0.146-0.213) 

0.39 

 

  



 

72 
 

Both methods gave comparable results, however the chi square score statistic used by 

the Best subset selection method does not always track with classification improvement, 

hence it is possible to miss good classifier models. In the absence of a gold standard 

method and because we had a limited number of CVF proteins in set 1, the current model 

of AFP+IL6 was compared with every possible combination of the 10 potential markers to 

check if there were better models than that chosen by presented method or best subset 

method. A total of 511 models were built based on every possible combination of the 9 

CVF proteins and were analyzed for classification performance. We compared the AUROC 

of all the models individually with IL6+AFP model. Only 7 out of 511 models were 

significantly better at alpha=0.05, however when restricted to a maximum 4 variables/ 

model, i.e. 255 models, no additional combination models were significantly better than 

IL6+AFP. Thus the ROC-logistic model was efficient in terms of both pAUROC and 

parsimony as shown in Figure 11. Of all possible models, the only model which was 

comparable to the one chosen by ROC-logistic method in terms of AUROC and partial 

AUROC, while also being parsimonious was the model AFP+IL6+GROα. However as 

mentioned before it was not statistically significantly different in partial AUROC. The 

AFP+IL6 model chosen by ROC-logistic method also had a good fit based on AIC. (Figure 

12). 
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Figure 11: AUROC and pAUROC of models of all possible combinations of nine CVF proteins  

The point in red corresponds to model AFP+IL6, chosen by ROC-Logistic variable selection 
method. The partial AUROC of the model is comparable to that of higher models, while it 
itself has only two variables. 
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Figure 12: pAUROC and AIC of all models of all possible combinations of nine CVF proteins  

The model chosen by the ROC-Logistic method is optimal in AUROC, pAUROC and AIC. 
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Table 8: Selected models with high AUROC and partial AUROC is compared to model 

chosen by the ROC-Logistic method.  

No. of 
vars 

Models 
AUROC 
(95% CI) 

pvalue AIC 
pAUROC 
(95% CI) 

Pval 

2 AFP+IL6 
0.880 

(0.810-0.951) 
.Ref 118.59 

0.171 
(0.135-0.206 

.Ref 

2 GROα+ IL6 
0.886 

(0.828-0.944) 
0.7233 125.18 

0.162 
(0.125-0.198) 

0.46 

3 
AFP+ 

IL6+GROα 
0.907 

(0.855-0.960) 
0.049 112.91 

0.178 
(0.146-0.211) 

0.39 

4 

IL6+ 
MIP1b 
GROα+ 

LBP 

0.894 
(0.841-0.947) 

0.4347 126.32 
0.166 

(0.131-0.201) 
0.43 

4 

IL6+ 
MIP1b 
GROα+ 
IGFBP1 

0.892 
(0.835-0.950) 

0.4397 128.16 
0.167 

(0.124-0.199) 
0.65 
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Set 2 results    
 

Next we checked the performance of the presented method when choosing a 

combination of proteins from a larger pool of potential classifiers. Seventy four unique 

CVF proteins were assessed in set 2 for their ability to classify inflammation. Of these 6 

proteins were measured using two different methods to give a total of 81 measures. 

Gestational age in weeks at onset of preterm labor was also collected. Set 2 had fewer 

number of women at 108, including fewer women (7 women) with late onset preterm 

labor. The majority of women (94%) were of gestational age less than 34 weeks. Table 9a 

details the characteristics of 21 of the measures that were found to be important for 

classification, and mean gestational age of patients with and without inflammation. Three 

CVF proteins had measures at lower limit of detection greater than 10%. Myoglobin had 

58.5% of controls and 19.23% of cases at lower limits of detection. The CVF protein 

Sortilinn had 13% of controls and 23% of cases and Human Neutrophile Peptides 1-3 had 

14.63% of controls and 7.69% of cases at lower limits of detection. Table 9b shows the 

difference in distribution of the cases from the controls. 
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Table 9a: Geometric means of 21 CVF proteins and arithmetic mean of gestational age. 

  

Intra-amniotic 
Inflammation Absent 

(n=82) 

Intra-amniotic 
Inflammation present 

(n=26) 

Variables 
Protein 
abbrv. 

Geometric mean 
(std dev) 

Geometric mean 
(std dev) 

Gestational Age GA 29.97 (3.57)* 26.05 (3.1)* 

α-fetoprotein AFP 7.4 (2.61) 50.08 (3.78) 

Interleukin-1 beta IL-1β 322.76 (4.89) 1287.03 (5.32) 

interleukin 6 IL6 (poc) 463.76 (2.15) 2441.79 (4.08) 

interleukin 6 IL6 (rbm) 109.79 (5.83) 1160.73 (6.64) 

interleukin 8 IL8 8379.4 (3.34) 30579.03 (3.3) 

Chemokine Ligand 4 MIP-1β 372.69 (3.61) 1381.61 (4.39) 

Plasminogen Activator 
Inhibitor 1 

PAI1 
3414.75 (7.08) 35820.88 (4.59) 

β2 microglobulin B2MG 28.03 (3.84) 86.43 (4.57) 

Carcinoembryonic 
Antigen 

CEAG 
321.83 (3.15) 118.97 (2.81) 

Insulin-like growth 
factor-binding protein 

1 
IGFBP1 

268.39 (6.02) 1465.53 (5.74) 

Hepatocyte Growth 
Factor 

HGF 
2.7 (2.44) 5.93 (2.72) 

Chemokine Ligand 2 MCP1 231.2 (3.07) 665.15 (3.36) 

Human Neutrophile 
Peptides 1-3 

HNP-1-3 
1279638.15 (3.59) 3223728.61 (3.51) 

Myoglobin Myog 27.96 (4.04) 101.07 (4.25) 

Prolactin Prolactin 1297.64 (2.67) 3498.35 (4.1) 

Pregnancy-Associated 
Plasma Protein 

PAPP 
41.28 (3.47) 17.79 (2.2) 

Interleukin-1 alpha IL1α 321.64 (2.96) 696.65 (2.52) 



 

78 
 

Sortilinn Sortilinn 1.11 (3.21) 0.69 (2.81) 

Cancer Antigen 125 CA125 1838.46 (3.56) 1233.43 (4.3) 

Chemokine Ligand 1 
GROα 

(rbmbr) 4.2 (2.9) 2.49 (3) 

Pregnancy-Associated 
Plasma Protein A 

PAPPA 
76.34 (5.62) 96.51 (5.24) 

*Arithmetic mean (std dev)  
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Table 9b: Difference in the distribution of cases and controls, as determined by Mann 

Whitney U, AUROC and partial AUROC, of selected 21 CVF proteins 

 
PROTEIN 
ABBRV. 

Mann 
Whitney U 
(p-value) 

AUROC (95% CI) 
pAUROC (0.25) 

(95% CI) 

Gestational Age GA  0.677 (0.562-0.792) 0.071 (0.027-0.116) 

α-fetoprotein AFP 
267.5 

(<0.0001) 0.875 (0.793-0.956) 0.162 (0.116-0.207) 

Interleukin-1 beta 
IL-1β 

510.5 
(<0.0001) 0.760 (0.645-0.875) 0.104 (0.56-0.152) 

Interleukin 6 IL6 (poc) 
340 

(<0.0001) 0.841 (0.745-0.936) 0.158 (0.115-0.202) 

Interleukin 6 IL6 
328 

(<0.0001) 0.846 (0.744-0.948) 0.153 (0.108-0.199) 

Interleukin 8 IL8 
380 

(<0.0001) 0.822 (0.713-0.931) 0.151 (0.107-0.195) 

Chemokine 
Ligand 4 

MIP-1β 
490 

(<0.0001) 0.769 (0.649-0.889) 0.126 (0.082-0.170) 

Plasminogen 
Activator 

Inhibitor 1 
PAI1 375 

(<0.0001) 0.824 (0.729-0.919) 0.125 (0.078-0.173) 

β2 microglobulin B2MG 
525.5 

(0.0001) 0.753 (0.630-0.877) 0.120 (0.072-0.168) 

Carcinoembryonic 
Antigen 

CEAG 
1596.5 

(0.0001) 0.748 (0.641-0.854) 0.097 (0.049-0.144) 

Insulin-like 
growth factor-

binding protein 1 
IGFBP1 536 

(0.0001) 0.749 (0.641-0.856) 0.094 (0.048-0.140) 

Hepatocyte 
Growth Factor 

HGF 
543 

(0.0002) 0.745 (0.628-0.862) 0.100 (0.051-0.148) 

Chemokine 
Ligand 2 

MCP1 
551 

(0.0002) 0.741 (0.630-0.853) 0.092 (0.045-0.139) 

Human 
Neutrophile 
Peptides 1-3 

HNP-1-3 576 
(0.0004) 0.724 (0.594-0.855) 0.106 (0.059-0.152) 

Myoglobin 
Myog 

603 
(0.0004) 0.660 (0.519-0.80) 0.064 (0.019-0.109) 

Prolactin 
Prolactin 

581.5 
(0.0005) 0.727 (0.605-0.848) 0.103 (0.057-0.149) 

Pregnancy-
Associated 

Plasma Protein 
PAPP 1512 

(0.0014) 0.708 (0.591-0.825) 0.080 (0.032-0.127) 

Interleukin-1 
alpha 

IL1α 
626.5 

(0.0016) 0.706 (0.597-0.815) 0.076 (0.032-0.120) 
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Sortilinn 
Sortilinn 

1311 
(0.0783) 0.596 (0.482-0.710) 0.050 (0.136-0.087) 

Cancer Antigen 
125 

CA125 
1206.5 

(0.3144) 0.566 (0.433-0.698) 0.044 (0.07-0.081) 

Chemokine 
Ligand 1 

GROα 1338.5 
(0.0506) 0.627 (0.502-0.752) 0.063 (0.026-0.101) 

Pregnancy-
Associated 

Plasma Protein A 
PAPPA 975.5 

(0.5177) 0.537 (0.411-0.663) 0.036 (0.005-0.067) 
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 The ROC method was applied on set 2 data. The best combination of proteins maximizing 

partial AUROC in FPF region 0 to 0.25, was found to be AFTP+GROα+IL6+PAPPA. Table 10 

details the proteins and the resultant AUROC by baker and logistic method as well as the 

partial AUROC and IDI as each protein is individually added into the model. 
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Table 10: The model built by the ROC-Logistic method 

CVF Protein AFP GROα IL6 PAPPA 

Order of addition 
into model 1 2 3 4 

Baker_pAUROC 0.161585 0.16909 0.19606 0.206614 

Baker_AUROC NA 0.91909 0.94606 0.954503 

Logistic_AUROC 0.874531 0.911351 0.94606 0.954034 

IDI NA 0.069351 0.133552 0.081022 

 Partial AUROC of the model=0.2165 using logistic regression. 

  



 

83 
 

 

The above model was arrived at by using an IDI cut off of 0.05, we wanted to check if a 

parsimonious model could be equally efficient. By increasing the IDI cut off, fewer 

variables will meet criteria.  The analysis was redone with a higher IDI cut off of 0.1. 

Interestingly, no additional markers were included in the model except the initial AFP. On 

further examination, we saw that, if GROα is not retained in the model, then none of the 

other variables reach the IDI cut off. Only when GROα is in the model does the IDI increase 

above 0.05 irrespective of improvement in partial AUROC. This may be because there is 

more perturbation on addition of GROα, increasing the IDI on its addition and also when 

other variables are added after it (Figure 13).  
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Figure 13: Change in predicted probability of cases and controls on addition of new marker  

The graphs shows the change in predicted probability on adding GROα to AFP, on adding 
IL6 to AFP and adding IL6 to AFP after addition of GROα. Addition of GROα to AFP causes 
greater change in the predicted probability of both cases and controls compared too 
addition of IL6 to AFP. This is reflected in the IDI.  

  



 

85 
 

The IDI of AFP+GROα is higher than AFP+IL6 in the first, second and third quartile, while 

it is slightly lower than AFP+IL6 in the fourth quartile. Hence even though the partial 

AUROC of AFP+IL6 is higher than AFP+GROα, the IDI is lower as AFP+GROα does better 

overall. Also when IL6 is added to AFP+GROα the IDI improves mainly due to positive 

movement in the third quartile (Figure 14). 

The above example illustrates how using IDI may not be straightforward when only 

interested in partial AUROC. An alternative is to quartile predicted probabilities and use 

IDI specific for the quartile that needs to be maximized. In the current case IDI 

improvement in the third and fourth quartile would be equivalent to improvement in 

partial AUROC. Indeed the IDI for the two quartiles is 0.006 for AFP+GROα and 0.085 for 

AFP+IL6 reflecting the better partial AUROC of AFP+IL6. However using a smaller bin of 

IDI may make it more susceptible to outliers for example in case of AFP+GROα the IDI 

improvement in the first and second quartile is due to a single point (1 case). Additional 

studies are required to fine tune the use of IDI as variable retention criteria in the ROC-

logistic procedure. Smoothing the ROC curve or binning the IDI may be a solution. For the 

current study, the overall IDI is used. 
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Figure 14: IDI for each quartile of the ROC curve for three different marker combinations. 

The IDI for different sections of the AUROC curve is generated to compare movement of 
predicted probability corresponding to different parts of the ROC curve. 

* AFP+GROα and AFP+GROα+IL6 not shown as ROC curve. 
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Using the model AFP+IL6+GROα+PAPPA, the model was checked for improvement in 

classification ability on adding gestational age as a covariate. No improvement was seen. 

This is expected as the model had an AUROC of 0.954, with very less room for 

improvement, (Table 11) 
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Table 11: Comparison of models with and without Gestational age as covariate 

 
Model 

AUROC 
(95% CI) 

 
pvalue 

 
AIC 

pAUROC 
(95% CI) 

 
pvalue 

IL6+AFP+GROα
+PAPPA 

0.954 
(0.908-1.000) 

1 
55.484 0.216 

(0.188-0.245) 
 

IL6+AFP+GROα
+PAPPA+GA 

(0.954 
(0.909-1.000) 

0.56 
57.073 0.217 

(0.188-0.246) 
0.52 
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Next, the presented method was compared with traditional methods of model building. 

As the number of variables in set 2 was 81 it was not feasible to check every single model, 

nor is it practical to use best subset selection with such a large number of variables. Hence 

data mining methods were used to narrow down good classifiers and then the best subset 

selection method was utilized to identify optimum combinations of these selected 

classifiers. 

Random forest is ideal for the set 2 data set as it has only 108 patient samples and 81 

variables. Many of the CVF proteins are highly correlated with each other. The dataset 

also had values for the same protein that were measured using different methods (for 

example IL6 was measured using two different methods coded as POC and RBM) and 

hence would be expected to have high correlation. To account for this a random forest 

application which takes correlation into account was used. The R package ‘party’ is one 

such package that mines variables and builds classification trees taking the correlation of 

variables with each other into account. Figure 15 shows the average variable importance 

factor of 7 runs for the top 20 classifiers derived using the party package. Variable 

importance factor was based on change in AUROC before and after permutation as the 

current dataset was unbalanced at 26 cases and 82 controls.  

  



 

90 
 

 

Figure 15: Variable Importance Factor of top 20 CVF proteins 

The VIF was generated using OOB AUC instead of error rate in conditional Random forest 
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Best subset selection was carried out with these 20 variables to determine combinations 

of variables that would optimize classification of inflammation. The majority of models 

with greater than 14 variables did not converge, presented in Figure 16 are models with 

a maximum of 5 variables. Note many of the models are at AUROC 0.98 at 5 parameter 

level and hence models restricted to 5 parameters. Models with greater number of 

variables may be over fitting the data, especially as we have only 108 samples, and hence 

may not be reproducible. 
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Figure 16: AUROC of models with up to 5 parameters 

The AUROC of models with more than 4 parameters were very close to 1 (the maximum)  
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The traditional methods of Data mining and best subset selection did not arrive at the 

model built using the ROC-Logistic method. This is because the best subset selection was 

restricted to variables chosen by random forest and Pappa-1 was not one of the top 20 

variables as ranked by VIF. Pappa1 had a very low VIF of 0.00007. Table 12 compares the 

AUROC and pAUROC of all the models built using best subset to the model chosen by 

ROC-logistic method. None of the models were significantly better than the model chosen 

by ROC-logistic method. 
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Table 12: Comparing Best subset regression models to that chosen by ROC-logistic 

method. 

No. 
of 

Var 

Variables 
in Model 

Score 
Chi-

Square 
AUROC 
(95% CI) pvalue AIC 

pAUROC 
(0.25) 

(95% CI) 

 
 

pvalue 

4 IL6+AFP+
GROα+PA

PPA . 
0.954 

(0.908-1) 
1 55.48 

0.216 
(0.187-0.246) 

Ref 

1 AFP 
40.90 

0.875 
(0.793-0.956) 0.012 83.20 

0.162 
(0.116-0.207) 

0.01 

1 IL6 (POC) 
38.81 

0.841 
(0.745-0.936) 0.0056 87.02 

0.158 
(0.115-0.202) 

0.0035 

1 IL6 
26.29 

0.846 
(0.744-0.948) 0.0056 92.04 

0.153 
(0.108-0.199) 

0.0032 

1 PAI1 
24.68 

0.824 
(0.729-0.919) 0.0032 94.85 

0.125 
(0.078-0.173) 

0.0002
4 

1 IL8 
19.15 

0.822 
(0.713-0.931) 0.0061 98.71 

0.151 
(0.107-0.195) 

0.0071 

2 IL6+GROα 
49.20 

0.933 
(0.881-0.985) 0.1212 65.46 

0.195 
(0.157-0.233) 

0.033 

2 IL6+CA12
5 

48.81 
0.91 

(0.846-0.975) 0.098 68.79 
0.182 

(0.141-0.223) 
0.097 

2 IL6(POC)+
GROα 

48.49 
0.889 

(0.805-0.973) 0.1284 73.95 
0.184 

(0.143-0.224) 
0.077 

2 AFP+IL6 
47.59 

0.89 
(0.809-0.971) 0.0317 77.51 

0.173 
(0.128-0.218) 

0.028 

2 AFP+GRO
α 

47.07 
0.911 

(0.858-0.964) 0.1232 74.72 
0.165 

(0.118-0.211) 
0.011 

3 IL6+GROα
+CA125 

59.04 
0.955 

(0.916-0.993) 0.9796 54.38 
0.207 

(0.174-0.239) 
0.4 

3 IL6(POC)+I
L8+GROα 

57.10 
0.941 

(0.895-0.988) 0.6262 62.45 
0.198 

(0.163-0.234) 
0.23 

3 AFP+IL6(P
OC)+GRO

α 
56.12 0.942 

(0.9-0.985) 0.6209 64.36 
0.196 

(0.160-0.231) 

0.14 

3 AFP+IL6(P
OC)+CA12

5 
55.78 0.944 

(0.901-0.987) 0.6957 63.94 
0.199 

(0.163-0.235) 

0.34 

3 AFP+IL6+C
A125 

55.69 
0.945 

(0.903-0.986) 0.6358 63.13 
0.199 

(0.163-0.235) 
0.32 

4 IL6+GROα
+CA125+IL

1a 
65.79 0.981 

(0.961-1) 0.2069 39.74 
0.231 

(0.211-0.250) 

0.26 
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4 IL6+IL8+G
ROα+CA1

25 
65.29 0.978 

(0.958-0.999) 0.224 45.62 
0.228 

(0.209-0.248) 

0.31 

4 IL6+GROα
+HGF+CA

125 
63.93 0.974 

(0.949-0.999) 0.3126 44.27 
0.224 

(0.197-0.250) 

0.55 

4 IL6+GROα
+IL1b+CA

125 
63.58 0.978 

(0.958-0.999) 0.2102 44.69 
0.228 

(0.207-0.250) 

0.3 

4 IL6+GROα
+IL1a+Sor

tilinn 
62.82 0.971 

(0.943-0.999) 0.2547 47.58 
0.221 

(0.194-0.248) 

0.59 
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The ROC-Logistic was also performed on the random forest chosen subset of variables to 

compare with best subset selection models. The model chosen was AFP+GROα+IL6. This 

model was not amongst the top 5 based on score statistic but was amongst the top 10. It 

had comparable performance in terms of AUROC and pAUROC to the other models 

selected based on score statistic. Figure 17 shows the top 10 models at 4 parameter 

levels. Additionally PAPPA was added to the random forest selected variables, to check if 

it would be picked up in best subset modelling. AFP+GROα+IL6+PAPPA was amongst the 

top 10 but not amongst the top 5 models selected based on score statistic. 
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Figure 17: AUROC and pAUROC of 10 models at upto 4 parameter level chosen by the best 
subset selection or ROC-logistic method. 

The “x” marks the model AFP+IL6+GROα and the red diamond marks the model, 
AFP+GROα+IL6+PAPPA chosen by the ROC-Logistic regression variable selection method 
on the random forest selected 20 variables and the entire set of 81 measures. The models 
are comparable to similar parsimony models chosen by best subset selection method from 
the 20 variables preselected by randomforest. 
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DISCUSSION: 

The presented ROC-Logistic method is variable selection strategy that makes use of three 

different procedures, the Baker algorithm, logistic regression and IDI. Each of these 

methods were developed either to classify, to study the association or to evaluate 

classification improvement. In the current methodology, by combining certain desirable 

properties of each of the methods, the ROC-logistic method can be used for variable 

selection and classification model building. However there are some finer points of the 

methods used that should be kept in mind when evaluating models built using the 

presented method. 

Baker suggests three different algorithms for model building, unordered, jagged and 

rectangular. The unordered, as the name suggest, does not follow any pattern, which 

means intermediate or lower protein levels may be considered before higher protein 

levels. The rectangular ranks TPF/FPF in an ordered fashion such that it alternates ranking 

between the two markers. This means that both markers should increase or decrease for 

the combination to be a good classifier. This works when potential markers have high 

sensitivity but individually have low specificity. The Jagged order, on the other hand, 

allows for heterogeneous movement, the classification is improved if either marker shows 

movement with disease condition (17). The presented method uses the jagged ordering, 

as the etiology of intra-amniotic inflammation may be heterogeneous, that is, it’s possible 

that a marker maybe more responsive to disease than another. Jagged ordering allows 

for this unequal contribution of markers to classification. As the number of markers to be 
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added to the model increases the Baker method becomes multidimensional and 

impractical. The current method avoids this issue by using logistic regression to combine 

markers. Since both Baker and Logistic regression us the underlying principle of optimality 

of likelihood ratio, it is possible to seamlessly combine both methods. Instead of 

increasing the dimensionality of multi marker combinations, the markers were added 

sequentially. The markers already in the model are combined using logistic regression and 

the new marker is added to the predicted probability of this combination using Baker 

algorithm.  Thus the jagged algorithm always works with a two dimensional model, which 

is much less complicated. The current method resolves the multidimensionality issue, 

however, it also makes the order of addition of variables critical. Depending on which 

marker is already in the model a new marker may or may not improve the model despite 

being a good classifier. To overcome this issue, the initial step of the method reorders 

variables based on slope from origin to ROC(desired FPF). It is possible, however that 

good classifiers that come later in the ordering may not be added.  

Similarly depending on the partial AUROC to be maximized, the final model may be 

different as the first model to step in determines the rest of the model. Hence it is 

important to fully understand the biological and clinical relevance of the FPF range over 

which the AUROC is to be maximized. 

Partial AUROC is a clinically relevant metric in designing classification models, however 

the IDI used as an exclusion criteria is not restricted to the partial FPF range. IDI, is a 

relatively new metric for evaluating improvement in classification. It looks at overall 

improvement in predicted probability of cases and controls on addition of a new marker. 
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The advantage of the IDI is that it looks at not only the direction but also the magnitude 

of change. Greater movement get higher values and slight movement in predicted 

probabilities have lower values. This means that predicted probabilities that have more 

room to move are likely to contribute more to IDI, as extreme points may not move much 

(if not misclassified) . This also makes IDI susceptible to outliers. If a single sample has a 

large movement in predicted probability, on adding a new marker to the model, it may 

overshadow any other small movement and significantly increase or decrease the overall 

IDI.  

 It has been shown that the test statistic for IDI does not have a standard normal 

distribution under the null assumption that IDI=0 and hence the test based on ZIDI is not 

valid for determining significant change (21) hence in the current method the choice was 

made to use a cut off of actual IDI values as against significant change in IDI. The cut off 

for IDI should be optimized for each sample set as it is susceptible to case-control ratio, 

basal AUROC, change in AUROC and outliers. The IDI does not have a one to one 

correlation with AUROC or partial AUROC hence optimizing the IDI to maximize partial 

AUROC, while also building a parsimonious model may require some trial and error. Cross-

validation studies may be required to optimize model especially if the model is not 

parsimonious. In the current case study, the ROC-Logistic method chose four proteins 

including PAPPA. This may be too many for this limited data set. On comparing the ROC 

curves for the model with PAPPA and without (Figure 18), it is observed that the 

difference between the two models may not be significant and the curves may be very 
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similar on smoothing. Hence in the interest of parsimony the model combination of 

AFP+GROα+IL6 may be better. 

 

Figure 18: Comparison of ROC curve of models with and without PAPPA 

The two models chosen by the ROC-logistic method, using all 81 CVF protein measures and 
using randomforest preselected 20 CVF measures, have very similar ROC curves.  
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One of the advantages of the proposed method is its adaptability. The method allows one 

to isolate models by setting clinically relevant FPF specific to the study. It also allows to 

retain a known biologically relevant marker and choose the rest of markers conditional 

on this marker. This makes the method clinically appealing as it allows combining existing 

knowledge about markers, while finding new ones. In order to further evaluate the 

performance of the method, validation studies would need to be conducted. This involves 

testing the performance of the chosen model on a subset of data that was not used for 

building the model Due to the limited sample size it was not feasible to conduct validation 

studies in the current dataset. Set 1 and set 2 datasets had values of same proteins 

measured using different methods and hence they could not be used for validation of 

method and models were built separately for both datasets. It is, however, worth noting 

that AFP and IL6 were chosen in both sets. 
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CONCLUSION:- 

For a dataset of moderate size and number of classifiers, the ROC-Logistic method is a 

quick and efficient method in choosing combination of variables for accurate 

classification. The method allows one to hone in on combination of classifiers that 

maximize partial AUROC, the metric of interest, when developing a clinically relevant test. 

To our knowledge, no current method exist which specifically target improvement in 

partial AUROC. The method also chooses the most parsimonious model, which is likely to 

give more reproducible classification results. It allows one to bypass multiple steps of data 

mining and then checking for efficient models amongst the chosen classifiers. In 

conclusion, the ROC-Logistic method efficiently isolates optimum combination of 

classifiers based on clinically relevant metrics. 
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Supp. Table 1: Best Subset Models for set1: 

Models Variable
s 

Chi-
Square 

Variables 
Included in 

Model 

AUROC(95% CI) P value 
when 

compared 
with 

AFP+IL6 
model 

AIC 

1 1 63.27 AFP 0.793 (0.709-0.878) 0.0141 133.70 

2 1 53.94 IL6 0.861 (0.79-0.932) 0.0515 131.40 

3 1 25.31 β2MG 0.748 (0.652-0.844) <.0001 159.65 

4 1 23.42 MIP-1β 0.667 (0.572-0.762) <.0001 167.36 

5 1 22.87 IGFBP 0.669 (0.566-0.773) <.0001 167.04 

6 2 77.75 AFP IL6; 0.88 (0.81-0.951) Ref 118.59 

7 2 66.99 AFP IGFBP 0.81 (0.717-0.904) 0.0509 133.28 

8 2 66.35 AFP 
MCP_log 

0.83 (0.747-0.914) 0.0872 133.13 

9 2 65.36 AFP β2MG 0.803 (0.705-0.901) 0.0079 133.76 

10 2 65.20 AFP MIP-
1β 

0.793 (-0.698-0.887) 0.0178 134.30 

11 3 82.05 AFP GROα 
IL6 

0.907 (0.855-0.96) 0.049 112.91 

12 3 80.42 α1AG AFP 
IL6 

0.89 (0.828-0.951) 0.3697 115.67 

13 3 80.41 AFP IL6 
LBP 

0.889 (0.829-0.95) 0.4586 117.15 

14 3 79.03 AFP β2MG 
IL6 

0.893 (0.833-0.953) 0.2216 118.02 

15 3 77.81 AFP IL6 
MCP_log 

0.878 (0.807-0.949) 0.5646 120.02 

16 4 84.15 α1AG AFP 
GROα IL6 

0.915 (0.867-0.963) 0.0493 11.07 

17 4 83.63 AFP GROα 
IL6 LBP 

0.914 (0.868-0.961) 0.0472 112.93 

18 4 82.29 AFP β2MG 
GROα IL6 

0.912 (0.863-0.961) 0.0491 114.15 

19 4 82.14 AFP GROα 
IL6 MIP-1β 

0.905 (0.852-0.959) 0.0713 114.63 



 

111 
  

20 4 82.10 AFP GROα 
IL6 

MCP_log 

0.906 (-0.853-0.959) 0.062 114.59 

21 5 84.29 α1AG AFP 
GROα IL6 
MIP-1β 

0.916 (-0.869-0.963) 0.0447 113.04 

22 5 84.24 α1AG AFP 
GROα IL6 

LBP 

0.914 (0.865-0.962) 0.0535 113.06 

23 5 84.18 α1AG AFP 
β2MG 

GROα IL6 

0.916 (0.87-0.963) 0.0508 113.05 

24 5 84.17 α1AG AFP 
GROα IL6 
MCP_log 

0.914 (0.865-0.962) 0.0568 112.92 

25 5 84.17 α1AG AFP 
GROα 

IGFBP IL6 

0.915 (0.868-0.963) 0.0514 112.91 

26 6 84.41 α1AG AFP 
GROα IL6 
LBP MIP-

1β 

0.914 (0.866-0.962) 0.0553 115.02 

27 6 84.38 α1AG AFP 
GROα IL6 
MCP_log 
MIP-1β 

0.915 (0.866-0.963) 0.0489 114.91 

28 6 84.30 α1AG AFP 
β2MG 

GROα IL6 
MIP-1β 

0.917 (0.87-0.963) 0.0489 115.02 

29 6 84.30 α1AG AFP 
GROα 

IGFBP IL6 
MIP-1β 

0.916 (0.868-0.963) 0.0485 114.87 

30 6 84.27 α1AG AFP 
GROα 

IGFBP IL6 
LBP 

0.914 (-0.865-0.963) 0.0563 114.86 

31 7 84.46 α1AG AFP 
GROα IL6 

LBP 
MCP_log 
MIP-1β 

0.913 (0.863-0.962) 0.0581 116.84 

32 7 84.43 α1AG AFP 
GROα 

IGFBP IL6 

0.915 (-0.867-0.962) 0.0533 116.85 
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MCP_log 
MIP-1β 

33 7 84.42 α1AG AFP 
GROα 

IGFBP IL6 
LBP MIP-

1β 

0.913 (0.864-0.962) 0.0616 116.81 

34 7 84.41 α1AG AFP 
β2MG 

GROα IL6 
LBP MIP-

1β 

0.916 (0.869-0.963) 0.0495 117.00 

35 7 84.39 α1AG AFP 
β2MG 

GROα IL6 
MCP_log 
MIP-1β 

0.915 (0.868-0.962) 0.0575 116.87 

36 8 84.51 α1AG AFP 
GROα 

IGFBP IL6 
LBP 

MCP_log 
MIP-1β 

0.912 (0.863-0.962) 0.0657 118.76 

37 8 84.46 α1AG AFP 
β2MG 

GROα IL6 
LBP 

MCP_log 
MIP-1β 

0.913 (0.865-0.962) 0.0621 118.81 

38 8 84.43 α1AG AFP 
β2MG 
GROα 

IGFBP IL6 
MCP_log 
MIP-1β 

0.915 (0.868-0.962) 0.0566 118.82 

39 8 84.42 α1AG AFP 
β2MG 
GROα 

IGFBP IL6 
LBP MIP-

1β 

0.914 (0.866-0.962) 0.06 118.80 

40 8 84.30 α1AG AFP 
β2MG 
GROα 

IGFBP IL6 
LBP 

MCP_log 

0.913 (-0.865-0.962) 0.0626 118.76 
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41 9 84.51 α1AG AFP 
β2MG 
GROα 

IGFBP IL6 
LBP 

MCP_log 
MIP-1β 

0.914 (0.866-0.962) 0.0604 120.75 
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CODES:  

#################  

STEP 1 FIRST BRING IN DATA 

#DETERMINE WHICH COLUMN IS THE OUTCOME/RESPONSE/STATUS COLUMN, YOU SHOULD HAVE THE STATUS 

COLUMN BEFORE ALL THE TEST VARIABLE. 

#SUBJECT ID AND OTHER NON-TEST VARIABLES MUST GO BEFORE THE STATUS COLUMN CAN BE THE 

FIRST COLUMN. 

#IN THE CURRENT DATA RESPONSE OR OUTCOME IS COLUMN 2 AND THE REST OF THE TEST VARIABLES 

START FROM COLUMN 3 ONWARDS 

#DETERMINE THE TOTALNUMBER OF COLUMNS, YOU WILL USE THIS FOR VARS IN MannU AND MannU_val; 

VAR IS THE FIRST COLUMN OF TEST VARIABLES=3 

STEP 2 DETERMINE AND ORDER COLUMNS BASED ON PAUC AT SPECIFIED CUT POINT FOLLOWED BY MANN 

WHITNEY U PVALUE (NOT ACTUAL STATISTIC, AS SOME COULD Be NEGATIVELY CORRELATED) 

STEP 3 REORDER BASED ON STEEPEST SLOPE AT CUT POINT 

STEP 4: SET IDI CUT OFF AND GET YOUR RESULTS. THE FIRST CUT OFF(0.2 IN EG BELOW) IS FPF 

FOR PARTIAL AUC AND THE SECOND(0.05) IS FOR IDI, START WITH LOWER IDI AND CAN INCREASE IF 

NEEDED  

##ACTUAL CODES## 

#to calculate ROC #score is column of variable you want to check and status is status 

column.  

ROC = function(score,status) 

{ 

 n = length(score) 

 d = sum(status==1) 

 status = status[order(score)] 

 score = sort(score) 

 FPR = TPR = rep(0,n-sum(duplicated(score))+1) 

 AUC = 0 

 k = 2 

 x = y = 0 

 for(i in 1:n) 

 { 

  x = x + 1 - status[n-i+1] 

  y = y + status[n-i+1] 

  if(!duplicated(score)[n-i+1]) 

  { 

   FPR[k] = x/(n-d) 

   TPR[k] = y/d 

   AUC = AUC + (TPR[k]+TPR[k-1])*(FPR[k]-FPR[k-1])/2 

   k = k + 1 

  } 

 } 

 return(list(FPR=FPR,TPR=TPR,AUC=AUC)) 

} 

 

# to calculate pAUC at certain FPF cutoff,c (c can be 0.1, 0.2,0.25.....and so on) 
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pAUC = function(score,status,c) #score is column of variable you want to check and status 

is status column. #so for AFP:-ROC(iaf[,6],iaf[,2])  

{ 

 n = length(score) 

 d = sum(status==1) 

if(cor(score,status)<0){ 

    score=-score 

    } 

 status = status[order(score)] 

 score = sort(score) 

 FPR = TPR = rep(0,n-sum(duplicated(score))+1) 

 pAUC = 0 

 k = 2 

 x = y = 0  

 for(i in 1:n) 

 { 

  x = x + 1 - status[n-i+1] 

  y = y + status[n-i+1] 

  if(!duplicated(score)[n-i+1]) 

  { 

   FPR[k] = x/(n-d) 

   TPR[k] = y/d 

   pAUC = pAUC + (TPR[k]+TPR[k-1])*(FPR[k]-FPR[k-1])/2 

   if(FPR[k]>c){break} 

   k = k + 1 

  } 

 } 

  closestTPR=TPR[k] 

  closestFPR=FPR[k] 

  TPF =(((TPR[k]-TPR[k-1])/(FPR[k]-FPR[k-1]))*(c-FPR[k]))+TPR[k] 

  pAUCc=pAUC-(TPF*(FPR[k]-c))-(0.5*(TPR[k]-TPF)*(FPR[k]-c)) 

 

 return(list(closestFPR=closestFPR,closestTPR=closestTPR,pAUC=pAUC,TPF=TPF,pAUCc=pA

UCc)) 

} 

#pAUC(p1[,9],p1[,2],0.35) 

#pAUC(p1ga[,3],p1ga[,2],0.25) 

 

### to generate a table of pAUC, AUC and mann whitney (NOTE: pAUCc IS AT SPECIFIED 

CUTPOINT, THE OTHER pAUC IS JUST A BUILT IN CHECK) 

MannU_val=function(data,var,vars,status,c){ 

as.factor(data[,status]) 

subdata<-data[,var:vars] 

mann<- data.frame(statistic= numeric(0), p.value = numeric(0), 

AUC=numeric(0),pAUC=numeric(0),pAUCc=numeric(0)) 

var_name<-NULL 

for(i in var:vars){ 
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A<-wilcox.test(data[,var]~data[,status]) 

AUC<-ROC(data[,var],data[,status]) 

pAUC<-pAUC(data[,var],data[,status],c) 

mann[nrow(mann)+1,] <- c(A$statistic,A$p.value,AUC$AUC,pAUC=pAUC$pAUC,pAUC$pAUCc) 

var_name<-c(var_name,colnames(data[var])) 

var=var+1 

} 

mann<-cbind(var_name,mann) 

mann<-mann[order(mann[,3],mann[,2]),] 

return(mann=mann) 

} 

 

#MannU_val(p1,3,83,2,c) 

### to order based on partial pAUC followed by pvalue. i.e picking the best 

 

MannU=function(data,var,vars,status,c){ 

as.factor(data[,status]) 

subdata<-data[,var:vars] 

mann<- data.frame(statistic= numeric(0), p.value = numeric(0), 

AUC=numeric(0),pAUCc=numeric(0)) 

var_name<-NULL  

for(i in var:vars){ 

A<-wilcox.test(data[,var]~data[,status]) 

AUC<-ROC(data[,var],data[,status]) 

AUROC<-pAUC(data[,var],data[,status],c) 

mann[nrow(mann)+1,] <- c(A$statistic,A$p.value,AUC$AUC,AUROC$pAUCc) 

var_name<-c(var_name,colnames(data[var])) 

var=var+1 

} 

mann<-cbind(var_name,mann) 

neworder<-subdata[,order(-mann[,5],mann[,3])] 

Mordered<-cbind(data[,1:2],neworder) 

return(Mordered=Mordered) 

} 

 

## to rearrange data based on baker generated slopes, i,e picking the next best options 

bak_slope = function(data,var1,p,s,c) 

{  

subdata<-data[,(var1+1):(var1+p)] 

status=data[,s] 

n = length(status) 

d = sum(status==1) 

bakmat<-data.frame(0) 

for(t in 1:p){ 

 var2=var1+t 

 rank1 = rank(data[,var1]) 

 rank2 = rank(data[,var2]) 

 quad1 = floor(2*rank1/(n+1))+1  
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 quad2 = floor(2*rank2/(n+1))+1 

 FPR_table = 

table(factor(quad1[status==0],levels=2:1),factor(quad2[status==0],levels=2:1))/(n-d) 

 TPR_table = 

table(factor(quad1[status==1],levels=2:1),factor(quad2[status==1],levels=2:1))/d 

 ratio_table = TPR_table/FPR_table 

 max_quad = which.max(ratio_table)# gives the position of max value 

 if(max_quad > 1){ 

 rank1=rank((2*(max_quad%%2)-1)*data[,var1]) 

 rank2=rank((1-2*((max_quad-1)%/%2))*data[,var2]) 

 } 

 score1 = floor(5*rank1/(n+1))+1 

 score2 = floor(5*rank2/(n+1))+1 

 FPR_table = 

table(factor(score1[status==0],levels=1:5),factor(score2[status==0],levels=1:5))/(n-d) 

 TPR_table = 

table(factor(score1[status==1],levels=1:5),factor(score2[status==1],levels=1:5))/d 

 ratio_table = TPR_table/FPR_table 

 ratio_table[is.nan(ratio_table)] = 0 

 ratio_table[ratio_table==0] = -FPR_table[ratio_table==0] 

 k<-ratio_table 

 k[25]=NA 

 FPR=FPR_table[25] 

 TPR=TPR_table[25] 

 cTPR=c(0,TPR) 

 cFPR=c(0,FPR) 

 pAUC=0 

 for (j in 2:n){ 

   M<-which((is.na(k[,]))==TRUE) 

   A=c(M-1) 

   B=c(M-5) 

   b<-Reduce(intersect, list(A,B)) 

   excl<-which((is.na(k[b]))==TRUE) 

   b<-if (length(excl)>0){b=b[-excl] 

       }else{ 

       b=b 

       } 

   LR<-c(k[5,]) 

   LRM<-which((is.na(LR))==TRUE) 

   LRP=(5*(min(LRM)-1)) 

   LC<-c(k[,5]) 

   LCM<-which((is.na(LC))==TRUE) 

   LCP=(20+(min(LCM)-1)) 

   lrow<-c(mean(k[5,],na.rm=TRUE),mean(k[,LRP%/%5],na.rm=TRUE),k[LRP]) 

   lcolumn<-

c(mean(k[,5],na.rm=TRUE),mean(k[LCP%%5,],na.rm=TRUE),k[LCP]) 

   maxes=NULL 

     for(i in 1:4){ 
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      inter<-c(mean(k[,5-

b[i]%%5],na.rm=TRUE),mean(k[b[i]%%5,],na.rm=TRUE),k[b[i]]) 

      maxes<-cbind(maxes,max(inter,na.rm=TRUE)) 

      i=i+1 

       } 

   maxes<-cbind(maxes,max(lrow,na.rm=TRUE),max(lcolumn,na.rm=TRUE)) 

   if (which.max(maxes)<5){FPR<-

rbind(FPR,FPR_table[b[which.max(maxes)]]) 

       }else{ 

       if(which.max(maxes)==5){FPR<-

rbind(FPR,FPR_table[LRP]) 

       }else{FPR<-rbind(FPR,FPR_table[LCP]) 

       }} 

   if (which.max(maxes)<5){TPR<-

rbind(TPR,TPR_table[b[which.max(maxes)]]) 

       }else{ 

       if(which.max(maxes)==5){TPR<-

rbind(TPR,TPR_table[LRP]) 

       }else{TPR<-rbind(TPR,TPR_table[LCP]) 

       }} 

   if (which.max(maxes)<5){k[b[which.max(maxes)]]=NA 

       }else{ 

       if(which.max(maxes)==5){k[LRP]=NA 

       }else{k[LCP]=NA 

       }} 

  cFPR<-c(cFPR,cFPR[j]+FPR[j]) 

  cTPR<-c(cTPR,TPR[j]+cTPR[j]) 

  if(cFPR[j+1]>c){break} 

  j=j+1}  

  ltpr=tail(cTPR, n=1) 

  lfpr=tail(cFPR, n=1) 

  lg<-length(cFPR) 

  TPF =(((cTPR[lg]-cTPR[lg-1])/(cFPR[lg]-cFPR[lg-1]))*(c-cFPR[lg]))+cTPR[lg] 

pAUC=pAUC+((FPR[j]*cTPR[j])+(TPR[j]*FPR[j]*0.5))#j is a number so cTPRj is one row above 

TPRj 

vec<-c(lfpr,ltpr,TPF) 

bakmat=cbind(bakmat,vec) 

names(bakmat)[ncol(bakmat)] <- paste(colnames(data)[var2]) 

t=t+1 

} 

bak<-bakmat[,2:(p+1)] 

shbak<-subdata[,order(-bak[3,],-bak[1,])] 

byslope<-cbind(data[,1:3],shbak) 

return(list(byslope=byslope,bak=bak)) 

} 
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#baker for full curve 

 

mybaker=function(score1,score2,status){ 

n=length(status) 

d=sum(status==1) 

rank1=rank(score1) 

rank2=rank(score2) 

quad1=floor(2*rank1/(n+1))+1 

quad2=floor(2*rank2/(n+1))+1 

FPR_table=table(factor(quad1[status==0],levels=2:1),factor(quad2[status==0],levels=2:1))/

(n-d) 

TPR_table=table(factor(quad1[status==1],levels=2:1),factor(quad2[status==1],levels=2:1))/

d 

ratio_table=TPR_table/FPR_table 

max_quad=which.max(ratio_table)#givesthepositionofmaxvalue 

if(max_quad>1) 

return(mybaker((2*(max_quad%%2)-1)*score1,(1-2*((max_quad-1)%/%2))*score2,status)) 

score1=floor(5*rank1/(n+1))+1 

score2=floor(5*rank2/(n+1))+1 

FPR_table=table(factor(score1[status==0],levels=1:5),factor(score2[status==0],levels=1:5)

)/(n-d) 

TPR_table=table(factor(score1[status==1],levels=1:5),factor(score2[status==1],levels=1:5)

)/d 

ratio_table=TPR_table/FPR_table 

ratio_table[is.nan(ratio_table)]=0 

ratio_table[ratio_table==0]=-FPR_table[ratio_table==0] 

k<-ratio_table 

k[25]=NA 

FPR=FPR_table[25] 

TPR=TPR_table[25] 

cTPR=c(0,TPR) 

cFPR=c(0,FPR) 

myAUC=FPR*TPR*0.5 

{for(j in 2:25) 

{ 

M<-which((is.na(k[,]))==TRUE) 

A=c(M-1) 

B=c(M-5) 

b<-Reduce(intersect,list(A,B)) 

excl<-which((is.na(k[b]))==TRUE) 

b<-if(length(excl)>0){b=b[-excl] 

}else{ 

b=b 

} 

LR<-c(k[5,]) 

LRM<-which((is.na(LR))==TRUE) 

LRP=(5*(min(LRM)-1)) 

LC<-c(k[,5]) 
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LCM<-which((is.na(LC))==TRUE) 

LCP=(20+(min(LCM)-1)) 

lrow<-c(mean(k[5,],na.rm=TRUE),mean(k[,LRP%/%5],na.rm=TRUE),k[LRP]) 

lcolumn<-c(mean(k[,5],na.rm=TRUE),mean(k[LCP%%5,],na.rm=TRUE),k[LCP]) 

maxes=NULL 

for(i in 1:4){ 

inter<-c(mean(k[,5-b[i]%%5],na.rm=TRUE),mean(k[b[i]%%5,],na.rm=TRUE),k[b[i]]) 

maxes<-cbind(maxes,max(inter,na.rm=TRUE)) 

i=i+1 

} 

maxes<-cbind(maxes,max(lrow,na.rm=TRUE),max(lcolumn,na.rm=TRUE)) 

if(which.max(maxes)<5){FPR<-rbind(FPR,FPR_table[b[which.max(maxes)]]) 

}else{ 

if(which.max(maxes)==5){FPR<-rbind(FPR,FPR_table[LRP]) 

}else{FPR<-rbind(FPR,FPR_table[LCP]) 

}} 

if(which.max(maxes)<5){TPR<-rbind(TPR,TPR_table[b[which.max(maxes)]]) 

}else{ 

if(which.max(maxes)==5){TPR<-rbind(TPR,TPR_table[LRP]) 

}else{TPR<-rbind(TPR,TPR_table[LCP]) 

}} 

if(which.max(maxes)<5){k[b[which.max(maxes)]]=NA 

}else{ 

if(which.max(maxes)==5){k[LRP]=NA 

}else{k[LCP]=NA 

}} 

cFPR<-c(cFPR,cFPR[j]+FPR[j]) 

cTPR<-c(cTPR,TPR[j]+cTPR[j]) 

myAUC=myAUC+((FPR[j]*cTPR[j])+(TPR[j]*FPR[j]*0.5))#j is a number so cTPRj is one row 

above TPRj 

j=j+1} 

} 

FPR<-rbind(0,FPR) 

TPR<-rbind(0,TPR) 

result<-cbind(FPR,TPR,cFPR,cTPR) 

return(list(result=result,myAUC=myAUC)) 

} 

#mybaker(data[,4],data[,5],data[,2] 

 

 

# to calulate partial AUC using baker 

pAUC_bak<-function(score1,score2,status,c){ 

n = length(status) 

d = sum(status==1) 

dataset<-data.frame(score1,score2) 

bakmat<-data.frame(colnames(dataset)[1]) 

 rank1=rank(score1) 

 rank2=rank(score2) 
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 quad1=floor(2*rank1/(n+1))+1 

 quad2=floor(2*rank2/(n+1))+1 

 FPR_table = 

table(factor(quad1[status==0],levels=2:1),factor(quad2[status==0],levels=2:1))/(n-d) 

 TPR_table = 

table(factor(quad1[status==1],levels=2:1),factor(quad2[status==1],levels=2:1))/d 

 ratio_table = TPR_table/FPR_table 

 max_quad = which.max(ratio_table)# gives the position of max value 

 if(max_quad > 1){ 

 rank1=rank((2*(max_quad%%2)-1)*score1) 

 rank2=rank((1-2*((max_quad-1)%/%2))*score2) 

 } 

 score1 = floor(5*rank1/(n+1))+1 

 score2 = floor(5*rank2/(n+1))+1 

 FPR_table = 

table(factor(score1[status==0],levels=1:5),factor(score2[status==0],levels=1:5))/(n-d) 

 TPR_table = 

table(factor(score1[status==1],levels=1:5),factor(score2[status==1],levels=1:5))/d 

 ratio_table = TPR_table/FPR_table 

 ratio_table[is.nan(ratio_table)] = 0 

 ratio_table[ratio_table==0] = -FPR_table[ratio_table==0] 

 k<-ratio_table 

 k[25]=NA 

 FPR=FPR_table[25] 

 TPR=TPR_table[25] 

 cTPR=c(0,TPR) 

 cFPR=c(0,FPR) 

 pAUC=FPR*TPR*0.5 

 for (j in 2:n){ 

   M<-which((is.na(k[,]))==TRUE) 

   A=c(M-1) 

   B=c(M-5) 

   b<-Reduce(intersect, list(A,B)) 

   excl<-which((is.na(k[b]))==TRUE) 

   b<-if (length(excl)>0){b=b[-excl] 

       }else{ 

       b=b 

       } 

   LR<-c(k[5,]) 

   LRM<-which((is.na(LR))==TRUE) 

   LRP=(5*(min(LRM)-1)) 

   LC<-c(k[,5]) 

   LCM<-which((is.na(LC))==TRUE) 

   LCP=(20+(min(LCM)-1)) 

   lrow<-c(mean(k[5,],na.rm=TRUE),mean(k[,LRP%/%5],na.rm=TRUE),k[LRP]) 

   lcolumn<-

c(mean(k[,5],na.rm=TRUE),mean(k[LCP%%5,],na.rm=TRUE),k[LCP]) 

   maxes=NULL 
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     for(i in 1:4){ 

      inter<-c(mean(k[,5-

b[i]%%5],na.rm=TRUE),mean(k[b[i]%%5,],na.rm=TRUE),k[b[i]]) 

      maxes<-cbind(maxes,max(inter,na.rm=TRUE)) 

      i=i+1 

       } 

   maxes<-cbind(maxes,max(lrow,na.rm=TRUE),max(lcolumn,na.rm=TRUE)) 

   if (which.max(maxes)<5){FPR<-

rbind(FPR,FPR_table[b[which.max(maxes)]]) 

       }else{ 

       if(which.max(maxes)==5){FPR<-

rbind(FPR,FPR_table[LRP]) 

       }else{FPR<-rbind(FPR,FPR_table[LCP]) 

       }} 

   if (which.max(maxes)<5){TPR<-

rbind(TPR,TPR_table[b[which.max(maxes)]]) 

       }else{ 

       if(which.max(maxes)==5){TPR<-

rbind(TPR,TPR_table[LRP]) 

       }else{TPR<-rbind(TPR,TPR_table[LCP]) 

       }} 

   if (which.max(maxes)<5){k[b[which.max(maxes)]]=NA 

       }else{ 

       if(which.max(maxes)==5){k[LRP]=NA 

       }else{k[LCP]=NA 

       }} 

  cFPR<-c(cFPR,cFPR[j]+FPR[j]) 

  cTPR<-c(cTPR,TPR[j]+cTPR[j]) 

  pAUC=pAUC+((FPR[j]*cTPR[j])+(TPR[j]*FPR[j]*0.5))#j is a number so cTPRj is 

one row above TPRj 

  if(cFPR[j+1]>c){break} 

  j=j+1}  

  ltpr=tail(cTPR, n=1) 

  lfpr=tail(cFPR, n=1) 

  lg<-length(cFPR) 

  TPF =(((cTPR[lg]-cTPR[lg-1])/(cFPR[lg]-cFPR[lg-1]))*(c-cFPR[lg]))+cTPR[lg] 

pAUCc=pAUC-(0.5*(lfpr-c)*(ltpr+TPF)) 

score1_2<-c(lfpr,ltpr,TPF,pAUC) 

bakmat=cbind(bakmat,score1_2) 

return(list(bakmat=bakmat,pAUCc=pAUCc)) 

} 

##pAUC_bak(ch$byslope[,4],ch$byslope[,8],ch$byslope[,2]) 

 

# to calculate IDI 

IDI = function(old,new,status) 

{ 

 n = length(status) 

 d = sum(status==1) 
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df <- data.frame(status,old,new,diff = new - old) 

p_control = sum(df$diff[df$status==0])/(n-d) 

p_case = sum(df$diff[df$status==1])/d 

IDI_score = (p_case-p_control)  

return(score=IDI_score) 

} 

 

### FINAL STEP TO GET OUTPUT I.E BEST VARIABLE COMBO (c=FPF at which partial AUC should 

be cut off) 

pAUC_IDI<-function(data,var1,varlast,s,c,IDI_cutoff){ 

iniROC<-ROC(data[,var1],data[,s]) 

ini<-pAUC(data[,var1],data[,s],c) 

parauc=ini$pAUCc 

logit<-glm(data[,s]~data[,var1],family=binomial(link="logit")) 

res<-matrix(c(var1,ini$pAUCc,NA,iniROC$AUC,NA),5,1) 

variable<-c(colnames(data[var1])) 

test<-data.frame(data[,var1]) 

for (i in 1:varlast){ 

var2=var1+i 

pAUC_add<-pAUC_bak(logit$fitted,data[,var2],data[,s],c) 

if(pAUC_add$pAUCc>parauc){ 

    newtest<-cbind(test,data[,var2]) 

    names(newtest)[ncol(newtest)] <- 

paste(colnames(data)[var2]) 

    baker<-mybaker(logit$fitted,data[,var2],data[,s])                  

    newlogit = 

glm(data[,s]~.,family=binomial(link=logit),data=newtest) 

    roc<-ROC(newlogit$fitted,data[,s])                                                      

    idi<-IDI(logit$fitted,newlogit$fitted,data[,s])                                      

    if (idi>IDI_cutoff){ 

      keep<-

c(var2,pAUC_add$pAUCc,baker$myAUC,roc$AUC,idi) 

      res<-cbind(res,keep) 

      variable<-

append(variable,colnames(data[var2])) 

      logit$fitted=newlogit$fitted 

      test=newtest 

      parauc=pAUC_add$pAUCc 

       }else{ 

       logit$fitted=logit$fitted 

       } 

     }else{ 

      logit$fitted=logit$fitted 

      } 

i=i+1 

} 

allp<-glm(data[,s]~.,family=binomial(link=logit),data=data[,res[1,]]) 

roc<-ROC(allp$fitted,data[,s]) 
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pauc<-pAUC(allp$fitted,data[,s],c) 

res=rbind(variable,res) 

res=cbind(c("var","var_pos","Baker_pAUCc","Baker_AUC","Logistic_AUC","IDI"),res) 

return(list(res=res,roc=roc$AUC,partial_AUC=pauc$pAUCc)) 

} 

#pAUC_IDI(ch$byslope,3,80,2,0.25,0.1) 

 

 


