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Abstract

Computational Proxies:

An Object-based Infrastructure
for

Computational Science

Judith Bayard Cushing, Ph.D.

Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: David Maier

Scientific computing's rich legacy of data and programs contains its own major disadvan-

tage: lack of interoperability at the user level. Even within a single subfield, scientists are

faced with a plethora of potentially useful programs that run on a number of different com-

puters. When these programs do not "interoperate", such simple but desirable tasks as

using the output of one program as the input of another become major obstacles to "doing

science". Accessing data and running programs in heterogeneous computing environments

further compounds problems of interoperability because of considerable differences in data

representation, file transfer and program control protocols among computer platforms. In

addition, during a single investigation, a typical scientist might name and keep track of

hundreds of files on several different computers.

This dissertation addresses problems of data management and of program and data

interoperability among computational science applications. We postulate that a database

of experiment data would alleviate problems of interoperability and file management,

but that connecting a databa.se to existing applications is neither straightforward nor

xv



adequate for computational applications. We propose a middleware solution built within

a database tradition, and describe the functionality needed for computational experiment

management. We believe that a data-centered solution to interoperabilty problems - one

that makes current versions of data available to cooperating user applications and system

services - shows particular promise. Our solution consists of a domain-specific information

model and an object-oriented persistent structure that supports computation as well as

data management. This abstract data structure, dubbed "computational proxy", models

within an object database scientific programs and processes.

Proxies maintain persistent local records of on-going computational experiments, and

provide a consistent view of different applications executing on multiple processors. They

provide for launching and monitoring experiments; generating data input to the experi-

ment from the database; and capturing experimental results. The computational proxy

mechanism also provides ways to declaratively define the database interface to computa-

tional applications. The infrastructure we propose can be used in a migration path from

stand-alone legacy applications to distributed database services and adapted for newer

object-based applications. A prototype of the computational proxy infrastructure has

been implemented in C++ and ObjectStore on a Sun Sparcstation for applications in ab

initio computational chemistry.

xvi



Chapter 1

Introduction

Physical scientists have been intensive users of modern digital computers since the late

1940's and early 1950's, and the world of scientific computation carries forward a rich

legacy of data and programs [69]. Indeed, the many and varied scientific applications

constitute a major economic investment, and new scientific applications often stretch the

state of the art in computing technology. While the pull of scientific applications greatly

affects computing technology, computers also transform the ways in which many scientists

work [96]and scientists have come to depend heavily upon them. Indeed, computing plays

a central role in the daily activity of scientists today, and many use a range of computers

and platforms - from personal workstations, through mid-sized computers attached to a

local network, to massively parallel machines available over a wide-area network.

Unfortunately, this legacy of the many scientific applications developed over the past

forty years entails a major disadvantage: lack of interoperability at the user level. Even

within a single sub-discipline, scientists confront a plethora of potentially useful but often

incompatible programs. While different programs may be scientifically applicable to a

single investigation, outputs from two different programs are rarely comparable and out-

put from one program cannot easily be used as input to another - especially if those

programs run on different platforms. Levels of incompatibility range from differences in

physical formats (at the lowest level), to divergence in the logical structure and grouping

of information, to disagreement at the conceptual level (sometimes dangerously implicit)

about the actual meaning of terms. In addition to dealing with data and program inter-

operability, a scientist may need to name and keep track of hundreds of files on several

computers during one investigation. Because most scientists use more than one computer,

1
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problems of program incompatibility and file management are compounded by the lack of

interoperability of computer platforms and operating systems.

Problems of data management and of program and data interoperability can signifi-

cantly decrease the amount of time spent on science per se. Some scientists are so discour-

aged by complex computing environments that they do not use computers at all, or only

for word processing [128]. Other scientists have become highly trained users or expert

programmers and deal effectively with this range of problems, though at some consid-

erable cost. Computational scientists, who investigate scientific problems by performing

computer simulations of physical systems, often use five or six programs and two or three

computers during a typical day. Their programs are computationally intensive and one

invocation may run for several hours, or even days or weeks. Improvements in computing

power and software over the past ten years have greatly enhanced the computational scien-

tist's "laboratory" but have exacerbated data management and interoperability problems.

As further increases in computing power make computational science methods useful to a

wider range of scientists, however, we expect an increase in both casual and expert use of

computational applications. These new users will be less willing or able to cope with the

current complexity of the computing environment. In addition to help with data man-

agement and interoperability, they will undoubtedly need better software to set up, run,

and interpret computational experiments. Such help, we believe, will also be welcomed

by expert users, who would prefer to focus on scientific, rather than data management,

problems.

This dissertation addresses problems of data management and interoperability for com-

putational science applications. Of course, computing problems other than data manage-

ment face the computational scientist, such as scheduling multiple related experiments

and scheduling and migrating experiments across a network. We chose to address prob-

lems of data and file management first because we believe that solving the scientists' data

management problems will provide both the infrastructure and experience for approaching

other problems.

Initial efforts for this research focused on building a database repository of past ex-

periments for the domain of computational chemistry. Aimed at helping non-experts run
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computational experiments, the database repository work addressed data management

issues alone. Our collaborators from Pacific Northwest Laboratories had observed that

users have considerable difficulty setting up and interpreting computational experiments

and believed that a database of past experiments could help.

We considered the database and programming language alternatives available to us,

and chose object-oriented technology as our implementation vehicle. We then built an

object-oriented database - called the "Computational Chemistry Database" or CCDB -

to maintain experiment data (inputs, parameters, and outputs) from different applications

in comparable formats. Initial results indicated that the CCDB alleviated some problems

facing computational scientists. However, we became convinced that lack of program

interoperability precluded the effective maintenance of our repository. Loading experiment

data remained a problem because there was no direct connection between the application

programs and the database. We also realized that computational scientists needed help

not only setting up but also running their experiments, given the wide range of computers

on which their applications are installed. In short, we found that providing data services in

the absence of ways to load experiment data and to manage long-lived computations was an

inadequate solution to the data management problems facing computational scientists. We

then proposed and prototyped an infrastructure for managing computational experiments.

1.1 Building an Experiment Management Infrastructure

The major barrier to building an infrastructure for computational experiment manage-

ment is the lack of interoperability among programs. Analogous problems of interoper-

ability and shared file management in the realm of business data processing are being

solved through common data models and distributed databases. Unfortunately, current

record-oriented database technology does not support scientific applications well. While

object-oriented systems will likely provide the flexibility for modeling complex scientific

data structures that the relational model lacks [60, 91, 164], neither relational nor object-

oriented database systems provide the support for managing long-lived processes! needed

1By process we mean a program in execution, as per the standard operating system definition[176]. For
our purposes, a process is always an activated computational application program, i.e., a computational
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for doing computational science. This dissertation describes the additional functionality

needed for computational experiment management and proposes an object-oriented in-

frastructure to meet those needs. An effective solution to managing experiment processes

should provide a consistent and persistent view of both experiment data and ongoing

experiments. Hence, our infrastructure combines database services and computation ser-

vices, and integrates loading experiment data with experiment management.

Data services (a repository of past experiments) are provided through a domain-specific

information model implemented in an object-oriented database system. Computation

services (on-line connections between application programs and the database) are provided

by "computational proxies". Computational proxies model executions of applications as

database objects and directly store application inputs and outputs in the domain database.

We call our infrastructure "data-centered" because the object database, containing both

domain data and the proxy representation of ongoing experiments, is the mediator of

experimental activity between the user interface and computational applications. (See

Figure 1.1.) The proxy uses network services to make input data available to applications

and experimental results available to users. We faced two major issues in developing this

infrastructure:

1. Defining and implementing a conceptual model general enough to cover the inputs

and outputs of computational applications within a particular domain, yet intuitive

and acceptable to end users.

2. Defining and implementing a data structure powerful enough to model remote invo-

cations of the computational applications in the database.

These two issues are discussed below in Sections 1.1.1 and 1.1.2. We contend that the do-

main model and the computational proxy together provide an infrastructure for managing

computational experiments effectively.

experiment in execution phase.
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User
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Proxy
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(Data Services)
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Figure 1.1: A data-centered infrastructure for experiment manage-
ment.

1.1.1 Developing a Domain-Level Conceptual Model

Developing a conceptual model general enough to cover the major inputs and outputs of

the application programs of interest is critical for three reasons. First, scientists using

a number of applications must themselves have a unified conceptual view of the domain

before they can effectively navigate among applications. Secondly, implicit conceptual

views of individual researchers may be in conflict either with each other or with those

of an application. Without agreement at the conceptual level, mapping inputs from one

program to another is difficult at best, error prone or impossible at worst. Thirdly, a

common model into which application inputs and outputs can be translated is necessary

before experimental results can be rendered comparable.

While a common conceptual view is often implicitly held across researchers and appli-

cations, it is rarely written down - except as data structures internal to the application

programs. The implicit common model must become explicit before any mapping of out-

put from one application to the input of another can be automated. The domain-level
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conceptual model explicitly documents the common view that makes such mapping pos-

sible.

Developing a common conceptual model is difficult because users must agree on and

write down such basic definitions as experiment and subject of experiment. What seem

trivial tasks attainable by simply referring to a freshman text are soon hotly debated.

Is an experiment one single run? Is it a series of runs that produces an array of values,

say, a potential energy surface? Is the subject of a computational chemistry experiment

a molecule, or a particular geometrical structure, or a chemical mixture undergoing a

reaction?

Once the conceptual model has been developed it must be rendered into a logical

database design. This requires casting the conceptual model first into an information

model and then into an existing (logical) data model. This existing data model must also

be implemented as an operational and reliable database management system product.

Here also lay challenges resulting from the inherent complexity of the data: How should

ternary relationships or attributed binary relationships be represented if the chosen data

model does not support them? What intermediate abstract data structures would simplify

the design and facilitate understanding? Such data types might be general to several

computational domains, or specific to one, and might involve further modeling at the

conceptual or information level.

1.1.2 Developing a Model for Computational Services

Our model for computational services consisted of an abstract data type, dubbed "com-

putational proxy". The computational proxy is the locus of experiment control in our

experiment management infrastructure. A computational proxy stands-in, within the

database, for an active process (usually remote) that is running a scientific application

(usually computationally intensive and long-lived). The proxy provides the user with con-

sistent and persistent views of different applications executing on distributed processors.

The proxy can be used for specifying computational experiments, generating input to

experiments from the database, launching and monitoring experiments, and loading ex-

perimental results into the database. In effect, proxies and related objects model scientific



7

programs and processes.

Our primary goal is to provide computational services while hiding syntactic differences

between applications and environments from the end user. Proxies also reduce the number

of explicit user actions - converting and transferring files, logging on to remote computers,

and so forth - required to run a single experiment. To make the proxy's use feasible, we

have attempted to provide tools that allow users to create proxies for new applications

without writing special-purpose programs. Thus, the computational proxy mechanism

provides ways to register an application and define its database interface.

A proxy maintains a persistent record of an on-going computational experiment and

makes this information available to users locally. Because proxies model not only the

application program, but also the life of a particular invocation of that program (Le.,

the process), they constitute a convenient means for querying or recording the status of

computations. Thus they are especially useful for computationally intense applications

that run for extended periods of time.

Computational proxies offer functionality not now provided in database systems, ful-

filling key requirements for database use by computational scientists. Challenges faced in

developing the proxy mechanism include:

. Defining an information model to represent input and output formats for the chosen

computational applications. These representations should be easy for scientists to

understand.

. Building generators and interpreters so that input files to applications can be auto-

matically generated and output files parsed - without programming specific appli-

cation interfaces.

. Defining an interface between the proxy and the network services.

. Extending the information model to represent information about active (ongoing)

application processes. (The domain-level model does not address processes per se,

only application programs and their inputs and outputs.)
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1.2 Research Design

To render the research goals into realizable objectives, we decided to address one partic-

ular computational science in depth. To that end, we selected ab initio computational

chemistry as a model domain science and established a collaboration with the Molecular

Science Research Center at Battelle's Pacific Northwest Laboratory in Richland, Washing-

ton. We worked with Dr. David Feller, a computational chemist who not only uses a wide

range of applications in his own research but also develops computational applications and

tools for users of those applications. Drawing extensively upon the domain knowledge and

vision of Dr. Feller [44, 51, 53, 54], we built a domain model and established requirements

for an experiment-management database for computational chemistry. We corroborated

our understanding of the computational chemists' needs by interviewing other developers

of software for computational chemistry [98, 123, 147, 161], by using standard domain

references [145] and by listening in on electronic conversations among members of the

computational chemistry community [103].

Focusing the research problem and issues on a single domain adjusted the research

issues identified above in Section 1.1.2 to realistic objectives as follows:

. Define a conceptual model covering the data objects of importance to computa-

tional chemists when they are using the three most commonly employed computa-

tional applications. Where it was not possible to model all objects in use, we chose

representative samples.

. Define a computational proxy data structure that adequately modeled the kinds of

experiments usually performed. We chose as representative five experiment types

ranging over the three applications of interest.

. Define associated computational proxy structures and mechanisms to generate input

files and parse output files for the chosen subsets of applications and experiment

types.

· Define a facility to register new applications declaratively rather than by writing

programs specific to each application.
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. Define an application program interface between the proxy and the distributed op-

erating system services, Le., the network services.

Frequent feedback from our collaborators and other scientific database researchers

helped us validate the conceptual model [39, 40, 43, 118]. After translating the conceptual

model to an information model and designing the computational proxy data structures,

we implemented a prototype system by extending an existing object-oriented database

management system to meet our requirements. The implementation was tested with a

representative subset of experiment data. Finally, in order to determine if the infrastruc-

ture met user needs, we analyzed three experiment management scenarios from the user's

point of view - experiment management as now done, experiment management with a

repository of past experiments to use as reference in setting up new experiments, and

experiment management with both the repository and proxies.

We thus validated the proxy mechanism by testing the clarity and completeness of the

logical design and demonstrating its feasibility through a prototype implementation. We

developed three distinct user scenarios corresponding to (1) current experiment manage-

ment, (2) experiment management with a database available, and (3) experiment manage-

ment with a database plus proxy; we subsequently verified that the experiment manage-

ment system we designed met user needs and solved user problems identified in the first

two scenarios. We illustrated the utility of the proxy by (1) comparing the programming

required to connect computational applications to a database both with and without the

proxy, and (2) determining the degree to which the proxy is amenable to automated con-

struction or whether customized code must be written for each application interface. We

also sought evidence that the data model and computational proxy concept are generaliz-

able beyond the domain of ab initio computational chemistry and implement able in any

(object-oriented) database system.
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1.3 Major Contributions of the Research

The major contribution of this research is the idea of computational proxies as a con-

struct for managing and modeling computational processes in the database - for effec-

tively solving problems of program interoperability and for improving the accessibility of

computational applications. We demonstrate the feasibility of the proxy through a pro-

totype implementation. This research also contributes a conceptual data model for ab

initio computational chemistry and mechanisms for constructing connections to applica-

tions declaratively rather than programmatically. While it is probably not possible to

automate the construction of proxies for every parameter of every application in a given

domain, we have automatically generated interfaces for a useful subset of experiment types

from our domain. This work automating the construction of proxies contributes indirectly

to research in database integration, and in data loading and automatic report generation

for object-oriented databases.

In addition to the explicit research results we offer, the prototype database itself con-

stitutes a contribution. The proxy mechanism will enable building a database of past

computational experiments. Such a database could serve as an empirical basis upon which

a "smart" user interface could suggest parameters for new experiments. It could also be

used for estimating resource needs when scheduling application processes.

More generally, this thesis offers evidence of the value of a unifying conceptual model as

a first step towards solving problems of program interoperability in the computational sci-

ences. An effective long-term solution to the interoperability problem can be achieved by

rewriting legacy applications to work against a common database. However, it is unlikely

that program authors will simply agree to convert their respective applications in concert,

if at all. It is certainly infeasible for them to do so without experimentation to determine

which information models and which database and integration technology to use in the

long term. The combination of conceptual and information models and the computational

proxy model that we develop here provides a middle ground between continuing with in-

dividual, isolated applications and completely rewriting application programs to interface

with a common database. Thus our experiment management infrastructure provides a
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viable migration path from the present complications of stand-alone heterogeneous appli-

cations to the achievement of shared distributed database environments for the various

computational sciences.

1.3.1 Additional Potential of Proxies

While we have been primarily interested in using the proxy mechanism as the interface

between the database and a single invocation of a computational application, we believe

that the proxy idea holds additional potential.

Proxies could be used to group several experiments into a chain of experiments, where

the invocation of some experiments is dependent upon the successful completion of some

previous experiments. In effect, the proxy could link several runs of the same or different

applications into one, more complex, computational experiment. Proxies could also be

used to schedule a set of experiments, where an input parameter to members of that

set varies over some range. Assume, for example, that a scientist wishes to compute a

potential energy surface, where the Cartesian coordinates of some of the atoms in the input

molecule vary by .5 angstrom increments over a certain range. Such an investigation might

require the scheduling, monitoring and file management of hundreds of almost identical

experiments, a tedious task even with our computational proxy framework. To use proxies

to specify such a set of experiments by varying the input parameters according to some

formula would involve a logical and straightforward extension of our mechanism.

A more complex extension to proxies would involve interfacing interactive applications

such as such as molecular editors, scientific visualization programs or analysis packages to

the experiment database. For example, several recent scientific visualization packages such

as Chem3D [24]and CAChe Scientific [23]help scientists build molecular structures to use

as input to computational applications and provide a means for viewing results. However,

interfacing such visualization packages to applications is still done on an ad hoc basis.

The so-called "data flow" solutions [184] to connecting visualization, computational, and

analysis packages do help interoperability but are largely process-oriented as opposed to

data-oriented. As such, they do not explicitly require that the data to be shared conform

to common semantics; rather, the user writes a procedure that passes the data along a
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pipeline (of sorts) in the expected syntactic form. Data-flow solutions provide short run

interoperability between two programs, but scaling up to provide interoperability among

numerous programs carries the attendant technical hassles of writing many pair-wise data

conversion programs and the risks of error due to differences in the implicit understanding

of underlying conceptual entities. The proxy idea could perhaps be extended to provide a

common data-oriented interface between a wider variety of applications than we address

here.

1.4 Organization of the Thesis

After describing previous research related to scientific data management in Chapter 2, we

go on in Chapter 3 to illuminate the need for a computational experiment management

infrastructure by describing the current computing environment available to computa-

tional scientists. We also establish ab initio computational chemistry as a viable domain

in which to search for a general solution to current problems, and define functional re-

quirements for experiment management within this particular domain. The domain-level

conceptual model prerequisite to our solution is presented, and the database design and

requirements for implementing it are elucidated. Chapter 4 first describes the computa-

tional proxy concept, functions, data structures and architecture. We then articulate the

proxy's role with respect to the network services and the user interface. We pay particular

attention to the need for describing the input and output of computational applications

to the proxy in a non-procedural manner, to avoid requiring special-purpose programming

for each application. Chapter 5 addresses the prototype implementation of the database

and proxy, and our evaluation of the infrastructure is presented in Chapter 6. Chapter 7

concludes the thesis. There, we identify our research contribution and state the research

conclusions. We also summarize the lessons we learned that might be applicable to other

efforts to integrate applications and outline follow-on work suggested by our research.



Chapter 2

Background and Related Work

While modeling remote, distributed programs and computations within an object database

constitutes the major contribution of our work, we view its interdisciplinary aspects as im-

portant secondary contributions. Building an infrastructure for computational experiment

management has necessarily been an interdisciplinary effort, involving domain scientists

as well as computer scientists. Because our infrastructure relates not only to scientific

computing, but to several sub-disciplines of computer science as well, we have drawn

on previous work in application integration, software systems and databases, as well as

current research in scientific computing.

This chapter recounts the research context in which we worked. Within the realm

of scientific computing, we describe current applications in computational chemistry and

tools used by computational chemists. We also discuss how our research relates to other

work in computation management, scientific data management, and experiment manage-

ment. With respect to current work in application integration, we describe (1) efforts

to integrate applications by integrating the user interfaces of those applications and (2)

efforts in distributed system support such as domain-specific software architectures and

middleware. Finally, we place our work in the context of other research in database

systems.

We hope this thesis will encourage researchers in the related fields to address the

interdisciplinary issues we raise. We also hope data collected in the course of use of an

experiment infrastructure such as ours will yield empirical information about experiments

that could aid researchers in intelligent user interfaces, network services, and parallel

computing.

13
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2.1 Scientific Computing

Research in scientific computing has traditionally fallen into two categories: algorithm

development and the quest for high-performance [96]. Early work concentrated on the

problems of finding numerical solutions to continuous equations and of making the result-

ing computationally intense applications run faster.

As computers themselves became more powerful and as the performance of scientific

programs improved, other research efforts began to address the accessibility of scientific

computing [66, 109]. The organization of research on important scientific problems into

big national projects, such as the Human Genome Project [141] and the Earth Observing

System [48], also has pushed scientific applications towards better support of collaborative

research. As a result, new areas of research in scientific computing have emerged, such

as data management, visualization, and data standards for information exchange. In

addition, researchers and practitioners are extending the use of computing not only beyond

traditional research and engineering in the physical sciences but also to other fields such as

biology, botany, and ecology that have traditionally shunned computational modeling. Our

own research in computational science aims to increase both the usability and accessibility

of computational tools previously available only to scientists with specialized training and

local access to high-performance computing.

Our work draws on areas of scientific computing, in particular computational science

applicationsl and scientific data management. Scientific visualization systems and file

interchange standards are relevant inasmuch as they are used as tools by computational

scientists. We focus the following discussion on current uses of such computing in the

molecular sciences, since they are particularly relevant to our work in the domain of

computational chemistry.

lWe define computational applications as those that model physical phenomena and typically run on
super computers for extended periods.
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2.1.1 Computational Chemistry Applications

Commonly used programs that perform ab initio chemistry computations include Gaus-

sian (which includes a data browser) [62],the General Atomic and Molecular Electronic

Structure System (GAMESS) [64],HONDO [50], and MELDF [55].2 Continued develop-

ment efforts are improving the performance and accuracy of these applications, and many

are being converted to parallel implementations. Our work builds upon this research,

which has produced the applications that our infrastructure models. McLean, Replogle

and other researchers at IBM Almaden Research Center are pursuing a particularly novel

approach to computational chemistry in an effort to alleviate some of the problems our

research addresses. They are working on ways to break up the typical ab initio functions

as single components so that experiments can be more easily organized into user-specified

sequences than currently is the case. To that end, they are defining a file interface and

scripting language so that applications contributed to common libraries can easily be used

in series [123]. McLean and Replogle's work is file-based, not database-oriented (as is

ours). In addition, their proposed system requires the rewriting of applications into func-

tional units that fit their file structures, whereas ours is designed to interface with existing

computational applications.

2.1.2 Tools For Computational Scientists

The commercial and public domain programs commonly used by computational scientists

define the data modeling entities with which research such as ours must cope when in-

tegrating these programs. Thus, those programs are one empirical basis for determining

an information model for program integration. The most popular of these programs are

candidates for interfacing to the scientist's data repository, whether directly (by being

modified), indirectly (by some kind of encapsulation or interface mechanism), or (eventu-

ally perhaps) via standard data-interchange structures. In addition to the computational

2 "HONDO" is not an acronym; HONDO the program was named for John "Hondo" Havlicek, a bas-
ketball player for the Boston Celtics in the 1960's. MELDF was originally named for the first initials of
the scientists who wrote it: McMurchie, !;!lbert, Langhoff, ~avidson, and feller; the term has also been
known to stand for "Many ELectron Description" [52].
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programs themselves, related areas include visualization and computational tools, and

physical interchange standards.

Visualization Tools

Numerous molecular editors and visualization tools are available both commercially and in

the public domain. Many chemists use graphical molecular display and editing packages

such as CAChe Scientific [23] and Chem3D [24] to prepare molecular structure input

to computational programs. Specialized toolkits such as Daylight Tools [45] and AVS

Chemistry subsystems [184] that allow visual rendering of molecular structures are also

available to program developers.

Some efforts to provide persistent stores for visual data are similar to ours in that

they rely upon a common conceptual model. Shapiro and Tanimoto's database facility

for graphics objects (developed specifically for computer vision researchers) [165], Jirak's

Aurora Dataserver [92], and Chu and Cardenas' query system for radiological data [31]

all rely upon a common conceptual model in their effort to integrate data from several

sources and support scientific work with data that is visualized. These efforts differ from

ours in that the objects supported are primarily spatial and relatively static (ours are

ongoing computational processes) and their focus is on viewing or querying rather than

computation.

Computational Tools

The work of Peskin and Walther at Rutgers [187] offers an excellent example of recent

efforts to integrate computational services with a scientific visualization facility. The Sci-

entific Computing Environment for Numerical Experimentation (SCENE) system provides

a way to visualize the output of remote high performance physical dynamics calculations

so that the scientist can adjust experimental parameters. The SCENE information model

is built on a single (vector-like) data structure that can be used to represent physical-

dynamics objects. Peskin and Walther have focused on aiding the set-up and analysis of

computational experiments, but are currently extending SCENE to allow users to store

experimental inputs and results across sessions, and to share data with other users. Both
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our work and theirs involve computation management. Aside from the obvious difference

in application domain, the SCENE effort differs from our work in that its major thrust

has been experiment setup and analysis for a particular domain rather than developing a

model for application and data integration that could be employed independently of the

particular domain as a general solution for computational scientists.

Physical Interchange Standardization

Scientists recognize that exchanging data is critical to their work, and have been active

in efforts to develop physical interchange standards. Unfortunately, most development in

commercial scientific systems today seems directed towards reading other applications' file

formats, but not towards writing them. The netCDF project (primarily for atmospheric

data) and the Hierarchical Data Format (HDF) [63], the Crystallographic Interchange

Formats (CIF) [21], and the Flexible Image Transport System (FITS) [134] are example

standards to address the problems of physical interchange.

Recently, some physical interchange formats have evolved into database systems of

sorts - with capabilities to search, display, catalog, and modify files. While convenient

in the short term, evolving physical interchange formats into database systems will prove

problematic in the long term unless the standards are based upon agreement at the con-

ceptuallevel. Most work in physical interchange standards (though critical for low-level

data exchange) differs from ours in that our focus is at the conceptual, not the physical,

level, and in that our system provides computational support. Some recent efforts in com-

puterized chemical data standards do address the conceptual level, for example the 1993

ASTM Symposium on Computerized Chemical Data Standards [114].

2.1.3 Scientific Data Management

Past work by computer scientists concerning scientific databases has included general

characterizations of scientific databases [135, 136, 166],. studies of scientific knowledge

and data structures [11, 12, 47, 97], and specifications of future data-intensive scientific

application systems, such as the Earth Observing System [29, 48]. Other database research

areas, such as geographical information systems [191], temporal data structures [74, 162],
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and statistical databases [68, 100, 149, 150] exhibit important similarities to scientific

databases.

The Invitational NSF Workshop on Scientific Database Management brought about

forty computer scientists and domain scientists together in March of 1990 to address

data management problems facing scientific researchers. Their report corroborates other

research on scientific databases: most scientists still manage their information with pro-

grams that read and write flat files. Almost every scientific domain has an investment in

programs (usually in FORTRAN) that use flat files and have evolved over many years.

While database management systems could ultimately improve the reliability, availability,

and programmability of scientific applications Uust as in other application areas), some

scientists now attempting to use databases find that current technology does not match

their needs. Even if current technology were adequate, changing from flat file access to

database access would involve retraining programmers as well as extensive conversion of

existing programs and files to database representations [60, 61].

To our knowledge, until quite recently no efforts have been made to interface database

management systems to computational applications.

Data Management for the Individual Scientist

Scientific data management systems are typically aimed either towards supporting the

individual scientist or towards making databases publicly available. Important database

projects oriented toward the individual scientist's work in the laboratory include three

protein structure databases (Compo-OWL [16], BIPED [180], and P /FDM [71]), each

representing similar structures, but using different methods. These systems differ from

ours in that they involve biological, not chemical, structures and that they do not involve

computational applications.

The Molecular Interactive Display and Simulation (MIDAS) system [56, 57, 58, 87]

integrates display, storage and manipulation of large macromolecular models. MIDAS

database structures take advantage of the considerable redundancy in these molecules

to save disk storage space and to provide for efficient real time access. The main fo-

cus of MIDAS is the graphical display of large molecules (proteins and nucleic acids),
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and the special-purpose MIDAS storage manager was developed specifically to make such

displays fast enough for real time use. In contrast to MIDAS, our Computational Chem-

istry Database (CCDB) project uses a commercial database system and targets the com-

putational (not graphical) manipulation of significantly smaller molecules. For viewing

molecular structures stored in the CCDB, we propose an interface to existing specialized

graphical display systems, such as CACHE, Chem3D, or MIDAS.

Experiment management systems are closer to our own interests, but have traditionally

focused on providing laboratory automation facilities or data collection for laboratory

apparatus [158]. Commercial systems such as Labview [160] that directly support the

chemist's work in the traditional laboratory (at the bench) are now available. Our work,

on the other hand, is aimed at supporting the use of computational tools by theoretical

and bench chemists, and other molecular scientists.

More recent related work aimed specifically to support experiment management in-

cludes Ioannidis, Weiner and Naughton's work modeling complex inputs to a scientific

simulation program. Their MOOSE system [77] has dealt with modeling the complex

inputs to a scientific simulation program. Our research differs from theirs in that they are

building a database management system specialized for experiment management; we are

building our tools using a commercial database system. More importantly, our domain

model covers a class of applications, while they build a new database schema specifically

for each particular application.

Sparr and his associates are developing an experiment management system that can

be applied to multiple domains [172]. The system is designed to support general scientific

inquiry, and is a long term effort to explore how scientists reason about information. In

particular, Sparr aims to develop tools that allow ad hoc queries across different experi-

ments and subdisciplines. A major objective of his work is to discover "new" knowledge

by making inferences and connections across experiments and subdisciplines. Our infras-

tructure, on the other hand, is specifically designed to support the individual scientist in

running computational experiments. Hachem's work with temporal data for global change

research supports individual researchers as does ours, but focuses on query optimization

techniques for data gathered by satellite [148].We concentrate on support for the scientist
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performing experiments rather than querying data gathered elsewhere.

Research on personal databases and laboratory notebooks addresses the information

about their experiments that scientists need to record [15, 113, 190], and is tangentially

relevant to ours. To be of use to the scientist in this way, the CCDB would have to record

experiment annotation. More importantly, laboratory notebook research has raised issues

of personal privacy and data validation. Ultimately, solutions to these problems will need

to be implemented in the CCDB as part of our long term goal of making components

of individual scientists' private experiment data available in laboratory-wide or public

databases.

Data Management of Public Scientific Repositories

While our research deals directly with experiment data management for the single user, the

considerable existing work to support public scientific repositories is indirectly relevant.

First, we expect that computational scientists will want to import data sets from public

repositories to use as experiment input or as corroboration of computational results. Thus,

the data formats supported by public repositories are of concern to us; our data types

should be general enough so that we can read from or write to files using those public

formats that are in wide use. Secondly, as computational methods become more widely

used, scientific communities may wish to make computational results generally available.

At that time we will find valuable the current curators' experiences verifying, validating

and distributing scientific data3. Thirdly, as computational scientists begin to make their

data publicly available, bibliographic references to that data will be required, and should be

accessible along with it. Thus, we will want to consider how to connect experimental data

effectively with bibliographic data. Because we may also consider connecting experimental

data with property data, the public repositories of chemical, biological and materials

science data are relevant to our work with computational chemistry.

Currently available public repositories of chemical data are either bibliographically-

oriented (for example, Chemical Abstract Service) or substance-oriented. A few combine

3"Curators" are those responsible for gathering data for public repositories and determining whether a
specific data item should be added to the repository.
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bibliographic and substance information. Substance-oriented databases may contain prop-

erty data only (for example, Beilstein [83] or Gmelin [130]), reaction characteristics (the

Reaction Access System, REACCS [195]), or aid with structure analysis and elucidation

(the Cambridge Crystallographic Database [4, 115] and the Mass Spectral Search Sys-

tem (MSSS) in the NIHjEPA Chemical Information System [82]). Some research has

also attempted to integrate bibliographic services into substance-oriented databases [95].

Innovative data structures and methods for molecule representation and for molecular

substructure searching developed by public data repositories are valuable models for de-

veloping data browsers of laboratory and experiment chemical databases such as ours

[35, 36, 37, 65, 195]. In particular, Beilstein's connectivity tables and Lawson numbers

[108] provide simple and effective means for building indices based on general representa-

tions of molecular formulae.

Biological scientists have been among the first to use public databases, perhaps because

genome sequence data is (at least superficially) easily represented as ASCII character

strings [18, 22, 59]. While the past four years have seen "only" a 7-fold increase in the

number of nucleotides in the centralized DNA databases (from 3 million to 21 million), and

the data is accumulating at "only" 7 million nucleotides per year, automated sequencing

methods promise to increase this rate by an order of magnitude [188]. Of particular

interest is the Human Genome Project [110]; work spurred by the genome project in

protein sequencing has seen the development of innovative data structures for memory

storage (for use with sequence and structure algorithms) [59,85, 107, 140]. While many of

these systems provide bibliographic references, Futrelle's work in biological text processing

endeavors to make textual material itself directly accessible to and manipulable by the

biologist [7].

Another discipline where public repositories have facilitated scientific inquiry is mate-

rials science [84]. Here, numeric or property databases abound, though their proliferation

has raised issues in database interoperability analogous to the issues in program interop-

erability that we address. Hansen, Maier and Stanley's work addresses issues of database

heterogeneity in materials science and parallels our own work in program heterogeneity

[79, 80].
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2.2 Application Integration Efforts

Of course, problems of data and program interoperability are not unique to scientific com-

puting; they plague users across many domains. As computing becomes an integral part

of many business environments, serious efforts to provide application integration architec-

tures are emerging. Current research and development in application integration focuses

on both (1) efforts to integrate applications by integrating their user interfaces and (2)

software system support such as domain-specific software architectures and middleware.

2.2.1 Integration via the User Interface

The visualization of scientific information is an active research area not only for computer

scientists and domain scientists interested in facilitating the work of individual researchers,

but also for those working to increase the accessibility of scientific information [91, 155].

Some of these systems are relevant to our own work in that they attempt user-friendly

interfaces to programs that hitherto have been accessible only to specialists. Soloway's

work in providing a common gateway to scientific applications is an attempt to integrate

scientific applications by integrating the graphical interfaces to those programs into one

interface [170]. He intends to develop a "digital workbench" to support key activities of

computational scientists working in nuclear engineering. The workbench focuses on ap-

plication integration at the user interface level, providing a uniform interface to a number

of commercial tools by "wrapping" the applications. His work differs from ours in that

his initial emphasis is consistency at the user interface (ours is on the underlying data).

In his system, applications continue to use individualized file structures for storing and

viewing data across sessions and experiments; our work has focused on data integration

as a first step towards application integration.

The Application Visualization System (AVS) [184] and IBM's EXPLOR [89] are of

interest because they provide a facility for linking together programs to perform a series

of data transformations or computations. These so-called "data flow" solutions to the

program interoperability problem integrate applications at the program interface level by
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providing a means of visually connecting applications with each other and with data re-

formatting tools. They do not address the underlying conceptual information or integrate

data from applications into a single source. Our work has focused on first providing a com-

mon conceptual model of the underlying data and programs, and then working towards

generating application interfaces from a database repository.

2.2.2 Software Systems

The software systems research relevant to our own falls into two categories - domain-

specific architecture and middleware. Both aim to provide productivity tools for building

new applications and for systems integration of new applications. Our efforts are intended

to support legacy applications in addition to new development, and focus on solutions

specifically for computational science.

Domain Specific Architectures

Current research in domain-specific software architectures (DSSAs) aims to create build-

ing blocks for system construction that can be configured by application engineers us-

ing domain-specific languages for stating system specifications. DSSAs attempt to make

software development more efficient and effective by raising the level of abstraction of

programming new systems from that of algorithms to that of domain-specific problems

[178]. One emphasis among DSSA researchers is to determine appropriate mechanisms for

connecting large granularity modules.

The problems addressed by DSSA efforts are similar to those we address in that both

are domain-specific. However, our work is aimed primarily at supporting the data manage-

ment needs of computational scientists and increasing the interoperability of existing pro-

grams, rather than increasing the productivity of development programmers. Two DSSA

efforts, Coglianese, Batori and others' in Avionics [34] and Baum, Balzer and others' in

Command and Control [10],exhibit an additional similarity to ours in that critical aspects

of the domain are represented in a logical model; the logical model yields an architecture

that describes a family of solutions. Our project defines a domain model for application

programs, inputs, parameters and results; from that model we defined an architecture
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for experiment management. In addition, Baum's project includes application generators

that allow software developers to work in a higher-level, domain-specific language - not

unlike our effort to provide a declarative mechanism for generating interfaces to existing

computational programs. While DSSA efforts incidentally often enhance the usability and

interoperability of heterogeneous systems, that is not their primary objective.

In sum, the primary difference between the DSSAs and our work is that the DSSAs

aim to support developers of new programs. Our CCDB supports users of existing (legacy)

applications.

Middleware

The term middleware has been used by Bernstein to refer to a system architecture compo-

nent that fits between the user interface and the application or other system services [14].

Middleware integrates application or system services into a consistent view. Middleware

can be geared either to the application level (as a domain-specific information model or

application program interface) or to the system level. The client programs for application

middleware are user interfaces; the intended client programs for system-level middleware

are application middleware programs. Of course, if there is no application-specific mid-

dleware, clients of system-level middleware can be user-interface programs.

While domain-specific software architectures address primarily the software engineer-

ing of applications, research in middleware addresses system integration primarily through

the reusability and development of applications running on networked heterogeneous com-

puters [14, 67, 72, 86, 131, 154].

Some middleware systems provide low-level support for coordinating remote processes

via UNIX system calls (Remote Procedure Call or RPC) [154] or UNIX message passing

[67]. Our experiment management infrastructure is similar to system-level middleware in

that it provides an application program interface that hides heterogeneity; we differ from

those efforts in that our infrastructure operates at a higher conceptual level - that of the

computational science domain area - rather than at the algorithm or program level for

any application area. In short, our effort is domain-area-specific and could be used in con-

junction with middleware systems, to specialize those system services for computational
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science.

Such middleware as the Parallel Virtual Machine (PVM) [67] and Distributed Com-

puting Environment (DCE) [154] are important first steps towards providing the general-

purpose network services that domain-specific infrastructures such as ours might use.

However, general-purpose services such as PVM and DCE require efforts such as our infras-

tructure to provide domain-specific information models for sharing data across programs.

The information model facilitates greatly the definition of a domain-specific application

program interface so that a single user interface can address numerous programs. Lower-

level services such as PVM provide system-level integration services such as network file

service and message passing to domain-specific integration efforts. Our infrastructure pro-

vides an additional level of support for long-lived computational science processes between

the application domain level and the network services.

The current industry-wide effort to solve problems of platform heterogeneity by defin-

ing protocols for message passing is a key area of software systems work. Object Manage-

ment Group's Common Object Request Broker (CORBA), for example, defines the stan-

dard protocols for building "Object Request Brokers" (ORBs) to pass messages among

applications running in a distributed environment. Vendors are currently implementing

ORBs to run on their respective architectures [93, 126, 189]. These future software prod-

ucts will provide message passing among objects residing on different systems and are

important to our work in that they will provide the distributed system foundation upon

which to implement our proxy infrastructure. They will not replace the proxy infrastuc-

ture, which provides not only a domain-specific model of data common to the applications

of interest, but also a model of computational applications and processes. The ORB spec-

ification does not explicitly address long-lived application processes. In addition, using

the ORB, for example, will require the rewriting of all applications as "objects". It is

impossible to predict when, if ever, computational science applications will be rewritten

to iterface with a common protocol. In the meantime, our encapsulation of these legacy

applications provides a migration strategy.
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2.3 Database Research

Because our infrastructure for experiment management is data-centered, and has as critical

components a domain-specific database and a persistent representation of computational

applications and. processes, we draw upon current database research for our work. In

this section, after briefly addressing efforts at providing migration paths for data and

applications from flat files to relational systems, we place our work in the context of other

object-oriented database research.

2.3.1 Data Conversion Research

Our task of database support for a class of scientific applications still using flat files was

not unlike that facing researchers and developers considering migration paths to relational

systems in the late 1970's. We drew heavily upon Shu, Housel, and others' research in

this regard: their Data EXtraction, Processing, and REStructuring System (EXPRESS)

was an experimental prototype that could access data in a wide variety of formats and

restructure it for new uses. Driven by two high-level nonprocedural languages, DEFINE

for data description and CONVERT for data restructuring, EXPRESS used program

generation and cooperating process techniques to achieve efficient operation. The system's

modular structure permitted extensions or adaptation to another environment.

EXPRESS is similar to our work in that we also define high-level nonprocedural lan-

guages for the textual data written by application programs. Both EXPRESS and our

infrastructure attempt to provide a practical migration path towards database use for

legacy applications. The major differences between their work and ours is that theirs was

designed to support batch conversion of data from files to relational databases, and ours

is designed to provide a way to continue using existing legacy applications by providing

an on-line interface to an object-oriented database.

2.3.2 Object-Oriented Databases

Object-oriented database management systems (OODBMS) have grown out of two goals:

providing persistence to programming languages [112, 120], and meeting applications needs
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in computer-aided design, document processing, and multimedia applications that were

not well served by record-oriented database systems [3, 75, 119]. Our connections to

object-oriented database research are at three points: First, we are among a number of

scientific application developers using object-oriented databases to test the modeling power

of OODBMS. Second, we are among those identifying migration paths towards OODBMS

for existing applications. Third, we are among those extending an object-oriented database

system to provide new capabilities, in our case, support for computation services and a

data model for programs and processes.

Surveys of data structures used in scientific applications [11, 12] indicate that scientific

applications exhibit characteristics similar to the application areas listed in the previous

paragraph as "unserved" by traditional relational database technology. Object-oriented

databases seem appropriate vehicles for representing the complex data structures of scien-

tific computing. The 1990 NSF workshop on scientific databases [60, 61] showed object-

oriented approaches used for protein-structure data, medical research, macromolecules,

global change data and scientific visualization. MOOSE [77] uses object-oriented struc-

tures to model the complex inputs to a scientific simulation program. Other notable re-

search using object-oriented databases in domains related to ours includes Marr's Genome

Topographer for integrating and browsing genomic databases [122],Goodman's laboratory

data management system for genome sequencing [70], Shapiro and Tanimoto's computer

graphic database [165],and Hansen, Maier and Stanley's system integrating heterogeneous

materials science databases [79, 80]. Bourne and Pu's Protein Data Bank Tool (PDBTool)

[146]uses object-oriented languages and tools to manipulate complex molecular structures,

and is primarily designed to provide support for the new macro-molecular file interchange

standard [21].

We know of a few efforts to provide support for converting legacy applications and

data to OODBMS, in particular automated tools for loading data into object-oriented

database systems. Weiner and Naughton's work introduces algorithms for loading large

quantities of legacy data into an OODBj it differs from ours in that their focus is on

data not programs and that the quantities of data with which Weiner deals are orders

of magnitude larger than what is needed for our computational applications. Paton and
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Gray [138] and Orenstein [137] have also written bulk loaders for OODBMS. The work of

Weiner, Paton, and Orenstein is similar to ours in that we, too, must provide a description

of the data to be loaded, a tool to parse data according to that description, and a tool to

load data according to the OODBMS schema. These efforts differ from ours in that their

focus is on data generated in bulk and existing in files, rather than data generated in the

context of an ongoing experiment.

We are not aware of any previous efforts to extend an OODBMS to support compu-

tational objects, but we hope that other researchers will follow our lead.
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Providing Data Services: The CCDB

Ab initio computational chemistry applications compute chemical properties from first

principles alone, using the Schrodinger equation. No empirical data are input to ab initio

computational applications, although empirical data are often used to validate results.

Both casual and expert users of ab initio applications frequently have difficulty selecting

and formatting program inputs. The proper selection of input parameters determines

whether a particular invocation of an application runs efficiently or terminates at all.

More critically, an incorrect input parameter can engender plausible but incorrect results.

Our collaborators wanted to build a graphical front end to help users select experimen-

tal parameters, and believed that a database of successful past experiments would provide

useful examples of input parameters for user reference. In addition, since a successful

investigation may involve hundreds of runs and many more files, a database that stored

experimental inputs and outputs would help users manage their data files. This chapter

presents the functional requirements and design for a computational chemistry database

(the CCDB) that meets these needs.

Eliciting requirements for database applications and the subsequent database design

typically involve the following steps:

1. Develop a conceptual model, i.e., requirements. In the analysis phase, the systems

analyst familiarizes herself with the application domain and develops a clear writ-

ten statement of the application problem to be addressed. To these ends, she may

interview key users of the proposed system, read documentation on existing appli-

cations, and consult standard references. The analyst prepares written statements

29
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of the goals and objectives of the proposed system, and narratives describing the

real world objects about which information will be stored. The narrative describing

the domain objects of interest is sometimes called a conceptual model. Capturing

behavioral aspects of the domain objects was particularly important to us, since we

wanted to automate them where possible. The systems analyst often writes down

user scenarios for the current modus operandi and for how a database user might

interact with the proposed system. The problem statement, conceptual model and

user scenario(s) provide the mechanism through which the developer and end user

decide on what the proposed system should do.

These preliminary narratives are written in the language of the application domain,

not in a formal mathematical or computer language. Describing the conceptual

model in the domain language is important so that the client can easily verify the

analyst's understanding of the system requirements [171]. A complicating factor in

writing these narratives arises when more than one domain language is relevant, as

would be the case if a database is to be used by both ab initio and bench chemists,

or by both chemists and materials scientists. Thus, for example, narratives might

describe a given molecule in two different ways (say, in terms of atoms and bonds

versus the symmetrical distribution of a space group). One can apply the same

conceptual operation to either representation, though the algorithmic details of each

might differ. In such cases it is preferable, though not always practical, to choose a

single language to describe concepts.

In conceptual modeling, one captures current usage, rather than proposing new

scientific paradigms. At times, however, the analyst is faced with terms that have

multiple senses and must manufacture new terms to eliminate ambiguities. For

example, is an "atomic element" just an atomic number, or does it mean a particular

isotope, or some distribution of isotopes? Such a distinction matters in defining what

the "atomic weight" operation should yield when applied to an atomic element.

Also, we would like to express our models so they can be specialized and adapted

for particular applications and sub-domains [114].
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2. Develop an information model. During this phase the designer begins to impose

a formal structure on the conceptual model prepared in the analysis phase. The

resulting information model, sometimes cast into an informal structure such as an

entity-relationship (ER) model [28, 169] or an object model [19, 27, 157, 193], orga-

nizes information about the entities, attributes, relationships and behaviors that are

likely to be implemented in the database. Both the information modeling language

and the model itself are independent of any particular database management system.

Developing an adequate information model is a crucial, and non-trivial, first step to-

wards building a database. The information model is often used to determine what

database technology is needed to implement the system, or whether a particular

technology is adequate. If a feature used in the information model is not supported

in the data description language of the database management system chosen, then

one must encode those features to the database management system. In our case,

we determined from the information model that the ObjectStore database system

[104] would adequately support our needs, with very little additional encoding.

3. Develop a logical model. The information model is the basis for the logical database

design [182], which is typically a database schema. Since we decided to build our

database in ObjectStore, our logical model consists of an ObjectS tore schema that

depicts database classes, the relationships between those classes, and the signatures

of database methods within the classes. Note that the logical model is still declar-

ative in nature, and simply specifies more formally what the database system is to

accomplish. The logical model is the view that programmers have of the database,

and it is independent of the data's physical storage characteristics.

4. Develop a physical design. To render the logical model into a physical design, the

designer specifies how the database will perform its functions. Some aspects of this

task are automated; for example, an ObjectStore design tool translates the logi-

cal database design (schema) into C++ classes, generating additional classes and

appropriate object pointers as required to implement binary relationships. Other



32

aspects of this task, such as designating indices for accessing particular classes di-

rectly, are represented by the designer in the database programming language. Still

other aspects of the database design, such as program-level design for methods, may

be represen.ted as pseudocode.

At each step in the design process, the design is validated by reviews with typical end

users and with the client. Note that we distinguish between user and client. By user, we

mean a person who will actually be using the system. By client, we mean the person or

organization who commissions the system. The user and the client may of course be the

same person, or the client may be one of many users.

Our major domain problems were that applications were unusable without extensive

specialized training, that even experienced computational chemists were spending too

much effort running programs and formatting data, and that experimental results of dif-

ferent programs were not directly comparable. We needed to solve problems of data and

program incompatibility, and we felt that efforts to reconcile differences at the lowest

(physical) level would be ineffective without agreement at the information model and con-

ceptual levels. There is no point in discussing physical compatibility of data if there is

fundamental disagreement on the meaning or interpretation of that data. The applications

sometimes use different names for the same information, or the same names for different

information; thus, it was not always easy to identify semantically identical data elements

across applications, nor to determine whether one data structure was "better than" an-

other, nor to find appropriate mappings from one to another. Because of the critical

importance of achieving general agreement among users and programs at the conceptual

level, we emphasized the conceptual modeling phase. Thus, we attempted to reconcile

incompatibilities of molecular information top-down through the conceptual, information,

logical and physical levels.

This chapter describes the design of our database. We first define the conceptual

structures of ab initio computational chemistry and outline the functional requirements

of a database for computational chemists. After casting conceptual structures into an

information model, we identify challenges inherent in reifying computational chemistry

information structures as a logical model and a physical database. While details of the
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physical design are too numerous to include in toto, we sketch salient aspects of the phys-

ical design and conclude the chapter with lessons learned in building the database. The

physical design is treated in greater detail in Chapter 5 where we describe our prototype

implementation of the database.

Section 3.1 provides background on the domain of interest along with an initial prob-

lem statement. We describe the field of ab initio computational chemistry and explore how

ab initio computational chemists use computational applications. We then enumerate the

shortcomings of the current computational environment with respect to program interop-

erability, file management and network services. For novice or casual users, the complexity

of input parameters and interpretation of results are also problematical. To illustrate the

current typical use of computational chemistry programs we present a user scenario, and

suggest how a database of past experiments might solve the problems identified, especially

for nonspecialists.

Section 3.2 contains the conceptual model for the database. Section 3.3 describes our

refinement that conceptual model to an information model using a notation similar to

Chen's entity-relationship modeling [28]. We also identify modeling challenges inherent

in the domain. Section 3.4 describes the logical and physical design of the database. We

discuss our choice of an object-oriented data model and then show how the information

model was translated into a logical design, i.e., an object schema plus the persistent roots

of the database. An outline of the physical design of the database follows, and we end

the chapter with a brief description of our implementation of a prototype database - an

experience that led us to conclude that database services alone will not solve the crucial

problems of program interoperability.

Our understanding of the domain (i.e., our conceptual model and requirements analy-

sis) is largely based upon interviews and close collaboration with computational chemist

Dr. David Feller. The property data and folklore of the academic subdiscipline were also

important sources of data for us. The term property data is often used by scientists to refer

to data values that are generally accepted within a discipline or subdiscipline. Property

data are so well understood that, when cited, they are often not referenced, or, if cited, the

reference is a standard textbook. Property data often measure or describe a property of
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some real-world object; for example, an atom has properties of mass, number of protons, a

set of valid electron configurations, etc. Properties are generally thought of as immutable,

and a property datum as an established and accepted fact [78, 158].

In addition to collaboration with Dr. Feller and study of the domain's property data

and folklore, we also drew upon our own experience reading the user's manuals of com-

putational chemistry packages and running those programs [50, 55, 62, 64]. Informal

conversations with other chemists [8, 20, 142, 147, 152, 175, 179], standard texts and

papers [102, 111, 127, 174, 168], and non-research oriented accounts of quantum theory

[73, 125, 159] supplemented our primary sources. The computational chemistry bulletin

board and network, run by Dr. Jan K. Labanowski of the Ohio Supercomputer Center

[103], corroborated our understanding of the computational challenges facing chemists.

Computational chemists at PNL have reviewed drafts of the conceptual and information

models, and our work with the chemists from PNL, CAChe Scientific, and IBM Almaden

suggests that our computational chemistry model is an appropriate subset of a more

general model of chemistry experiments [114]. Any errors or misunderstanding in this

rendition of computational chemistry for computer scientists are of course those of the

author.

3.1 Ab Initio Computational Chemistry

The computational sciences bring applied mathematicians and computer scientists to-

gether with scientists from application domains to use computers in modeling physical

phenomena. Typical computational science domains include environmental science, biol-

ogy, chemistry and physics. The term computational science is often narrowly construed

to denote computational algorithms and high performance computing. We believe, how-

ever, that the computational scienceshave in commonnot only the need for increasing the

speed and precision of computation, but also the need for promoting sharing of scientific

data and better supporting the individual scientist's research activities. Such support in-

cludes help in managing an increasingly high volume of data, providing visualization and

analysis facilities, and easily-used computer program libraries. Our work has focused on
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support for scientists' research, exploring how object databases can promote better access

to computational science applications and more facile sharing of experiment results from

these programs. We address the requirements of one domain of computational science in

depth, with an aim to generalize eventually to other computational sciences.

Ab initio computational chemistry uses computerized molecular-orbital methods to cal-

culate chemical properties. Semi-empirical computational chemistry uses (at least some)

laboratory observations as input to programs, while ab initio computational chemistry, or

chemistry from first principles, uses none. We chose ab initio computational chemistry

because we believe its data management problems are representative of computational sci-

ence in general, and because data files are manageable in size and complexity. An equally

important factor was the availability of willing and able collaborators.

Ab initio molecular-orbital methods apply quantum-mechanical techniques to molecu-

lar structure and energetics, solving the Schrodinger equation to various levels of approx-

imation. From the resulting wave function and associated electron density map, certain

observable molecular properties such as vibrational frequencies or electrostatic moments

(dipoles, quadrupoles, etc.) can be computed. As early as 1929, scientists realized that

quantum chemistry calculations could, in theory, predict molecular structure and chemical

properties from first principles, but most believed that calculations precise enough for sci-

entific investigations would be impossible. By the 1950's, approximate methods exhibiting

adequate precision had been developed, but these were impractical for molecules of any

complexity. Because of this limitation, ab initio methods have traditionally been of inter-

est primarily to theoretical chemists, who use them to determine molecular properties and

structure for relatively small molecules. Only semi-empirical methods, which are generally

less accurate, can be used for molecules larger than 50-100 atoms. Recent improvements

in algorithms and rapid increases in computing power, however, should soon make ab

initio methods applicable to larger molecules, including those of interest to molecular bi-

ologists. Thus ab initio computational chemistry, once the arcane purview of a relatively

small group of theorists, is emerging as a useful tool for bench chemists 1, pharmaceutical

IThe term "bench chemist" refers to an experimental chemist (Le., non-theoretician) involved in syn-
thetic work or analysis, such as spectroscopy.
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researchers and molecular biologists, as well as theoretical chemists. Just the possibility

of dealing with larger molecules, however, hardly makes ab initio methods usable to the

non-specialist, who will be loathe to invest the time now required for learning how to use

these applications [25, 111, 145, 159].

Ab initio computational chemistry2 applications run on a variety of platforms, such as

IBM RS6000s, Sun SparcStations, and Cray supercomputers. For an ab initio computa-

tional experiment to take several days or weeks even on a supercomputer is not unusual,

and we characterize executions of this application class as computationally long-lived. Ex-

periments typically create scratch files of one or more gigabytes and results files that are

one to two megabytes in size. Current computational chemistry applications are stand-

alone packages, typically written in FORTRAN, that each perform a variety of functions.

One or more input files define the subject molecule and starting conditions, and specify

computational functions and control. Input files are highly structured, and each applica-

tion has its own command formats. Experimental results are written to output files, again

in formats relatively idiosyncratic to the particular application.

Principal inputs to an ab initio application include the atomic components of a molecule,

an initial guess at their molecular structure (most often expressed as the location in three-

space of the atomic components), and a basis set of functions on which the first iteration

of the computation is based. These inputs provide a starting point for an iterative so-

lution to the Schr6dinger equation. Many other input parameters can also be specified,

depending on the particular application; these usually include the level of approximation

to which to take the calculation (level of theory), some maximum number of iterations,

and the choice of a particular algorithm. The major outputs of an application include

an optimized molecular structure, a total energy value corresponding to that structure,

and the corresponding wave function (with its associated molecular orbitals and electron

density function or molecular orbitals). By optimizing a structure, we mean adjusting

the initial molecular structure with respect to the wave function. From the wave function

2From this point on in the thesis, for the sake of brevity, we shall use the term computational chemistry
interchangeably with ab initio computational chemistry, though the former term covers a much broader
spectrum of applications.
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Figure 3.1: Inputs and outputs for computational chemistry codes.

itself are calculated the outputs of interest to non-theorists: chemical properties such as

electrostatic moments or hydrophobicity. Thus, for example, given a starting geometry for

water, a chemist might calculate its dipole moment. Figure 3.1 gives an overview of these

inputs and outputs for computational chemistry applications. We call a single invocation

of a quantum chemistry application a computational experiment.

During the course of a scientific investigation into a given molecular substance, a

chemist usually performs many computational experiments before that substance's struc-

ture is adequately determined. A chemist may also study several conformations of the

same molecular substance during the course of a single investigation. (Two conformations

of the same molecular substance would consist of different molecular structures but would

involve the same atoms.) For example, in studying transition states from hydrogen and

oxygen to water, four computational experiments would be needed to optimize structures

for the three different conformations of hydrogen and oxygen atoms. In Figure 3.2 we

have plotted the total energy values for: (1) two initial experiments that model the stable

states of hydrogen and oxygen molecules, (2) an intermediate experiment that models

the unstable state of these elements at the energy level required for the transition, and
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Figure 3.2: Transition of hydrogen and oxygen to water.

(3) a fourth experiment that models the final and stable state of the water molecule.

These computational experiments predict molecular properties of the hydrogen and oxy-

gen atoms at the points where the energy values, computed and stored as results of the

computational experiment, are minimal (at the three stable states), and maximal (at the

unstable state). Note that energy curves are typically not so smooth as those depicted

in Figure 3.2, and that an improper or careless determination of molecular structure or

some other parameter can cause the computation to converge, deceptively, only to a local

minimum or local maximum.

The following sections define the most important inputs and outputs in greater detail.

Molecular Structure

Molecular structure is both an input and an output of computational applications. As an

input it is the chemist's initial guess as to the molecule's structure; as an output it is the

application's optimization of that initial structure. Computational chemistry applications

represent molecular structure in three different ways:

1. Three-dimensional Cartesian coordinates, also called spatial structure. Here, Carte-

sian coordinates, atomic mass and charge are specified for each atom in the molecule.

Cartesian coordinates are the preferred way for communicating molecular structure.
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2. Partial structure with symmetries. Molecular structures, as they occur in nature,

often exhibit symmetry about the X-, y-, or z-axis. Especially for large molecules,

considerable space and computation can be saved by using symmetry conventions to

specify the locations of symmetry-unique atoms of the structure. The locations of the

symmetric atoms are then calculated using conventional symmetry rules. Specifying

just the symmetry-unique atoms can be viewed as a short-hand representation of

the molecular geometry. By utilizing the available symmetry, an application can

effectively reduce the amount of computer time by a factor of two or more.

3. Internal coordinates, sometimes called "z-matrix format". Here, the molecular ge-

ometry is specified using bond lengths and angles instead of Cartesian coordinates.

There is no unique set of internal coordinates corresponding to a given set of Carte-

sians, but by conforming to anyone of a number of conventions that fix the positions

of the first few atoms in the molecule with respect to a fixed Cartesian axis system,

one can define the remainder of the molecule in terms of a variety of internal coor-

dinates [52]. (Because of the difficulties inherent in using internal coordinates, the

GAMESS manual refers to these as infernal coordinates. If present trends continue,

internal coordinates will be rarely used as input to future applications [52].)

Cartesian coordinates in 3-space are acceptable as input to most applications, but some

programs require different representations. Sometimes the same program may even require

different representations depending on the property to be calculated. Figure 3.3 indicates

the extent to which automatic translation among the three representations is possible.

Converting between Cartesians and partial structures and from internals to Cartesians

or partial structures is straightforward, but arriving at appropriate internal coordinates

from Cartesians or partial structures usually requires some human judgement as well as

calculation.

Below is a sample textual representation of the molecular structure of water, as found

in an output file for the GAMESS program:
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Basis Sets

Selecting a basis set for a computational experiment is one of the most exacting tasks for

users of ab initio applications. A basis set is a set of real functions over three-dimensional

space, and is used for describing the electron density about the molecule. The term basis

function refers to one of the functions in a basis set.

Basis sets are in effect artifacts used as starting points for the iterative computation

that approximates solutions to the Schr6dinger equation:

H'II = E'II,

where H represents the Hamiltonian operator, 'II is the wave function of the system (atom

or molecule), and E is the energy of the system. Basis functions are used as the basis of

linear combination of atomic orbitals to generate molecular orbitals (the wave function for

the molecule). A basis set (a set of basis functions) can be thought of as a starting point

for the calculation leading to a wave function, but it is not itself a wave function.

Figure 3.3: Molecular structure representations.

ATOMIC COORDINATES(BOHR)

CHARGE X Y Z

8.0 0.0000000000 0.0000000000 -0.1239074000

1.0 0.0000000000 -1.4304294000 0.9832501000

1.0 0.0000000000 1.4304294000 0.9832501000
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Although the solution of the Schrodinger equation does not explicitly require their use,

the overwhelming majority of quantum chemistry techniques are formulated assuming that

a suitable basis set is available for the particular computation [52]. The heart of the ab

initio calculation will be to determine the co-efficients of linear combination (the c(i, j)'s

below) for the wave function for a particular molecule: \II= N *\II(1)*\II(2)*\II(3)*... *\II(n),

where N is a normalization constant, and

\II(l) = c(l, 1) * cf?(1)+ c(2, 1) * cf?(2)+ c(3, 1) * cf?(3)+ ... + c(n, 1) * cf?(n),

\II(2)= c(l, 2) * cf?(1)+ c(2, 2) * cf?(2)+ c(3, 2) * cf?(3)+ ... + c(n, 2) * cf?(n),...,

\II(n) = c(l, n) * cf?(1)+ c(2, 7) * cf?(2)+ c(3, 7) * cf?(3)+ ... + c(n, n) * cf?(n).

The cf?(x)'sare the basis functions for the molecule in question, and are given as the basis

set input to the ab initio application;

cf?(x) = N(x) *coef ficient * exp[exponentr2]+ coef ficient *exp[exponentr2]+ ,

and N(x) is a normalization constant. Once \II, the wave function of the system (atom

or molecule), is calculated, then E, the energy of the system, can be calculated using the

Hamiltonian operator H.

A large number of basis sets are in popular use, and these can be categorized according

to the families of molecules for which they render effective and efficient solutions. Deter-

mining which basis set to use as input to an experiment is a complicated process, even

for theoretical chemists. For a new investigation, it is possible that no known basis set is

appropriate and the chemist will need to develop his or her own.

A number of standard basis sets are usually furnished with an application, and a user

can specify by name which one to use in an experiment. Different applications might

have basis sets by the same name, but the fact that two basis sets go by the same name

is not a guarantee that they are identical. Thus, some research sites prefer their own

basis sets, and all applications (to our knowledge) allow the option of including explicit

basis sets. Battelle Pacific Northwest Laboratory maintains an electronic basis set library,

along with programs that generate basis sets for particular computational experiments

(Le., particular molecules and applications).
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The basis functions comprising the STO-3 basis set for water, can be constructed

from the STO-3G basis functions for oxygen and hydrogen, using the initial molecular

structure. Water has 4 shells (1, 2, 3 and 4). The basis functions corresponding to shells

1, 3 and 4 can each be thought of as a single contracted basis function having three s-type

Gaussians. The basis function for shell 1 is ~(1) = N(I) *4.251943* exp[130.709320r2]+

4.112294 * exp[23.80886r21 + 1.281623 * exp[6.443608r2]. The second shell is of type L,

which is jargon for a group of (s,p) functions with shared exponents. The p functions in

the L shell expand into three basis functions, each combining with one of the Cartesian

coordinates x, y, and z:

~(pl) = N(x) *x * coefficient * exp[exponentr2]+ ,

~(P2) = N(x) *y * coefficient * exp[exponentr2]+ ,

~(P3) = N(x) * z * coefficient * exp[exponentr2] + ,

where the normalization coefficient N(x) is the same as that used for the s function in the

L shell. Thus, for water, there are seven basis functions.

Once a basis set has been constructed for a given molecule, it must also be formatted

for a particular ab initio application before it can be used. Below is a sample textual rep-

resentation of the STO-3G basis set for water, as found in an output file for the GAMESS

application; note that the basis set for hydrogen is given only once; this is because of the

In this example,there are three explicit shells (1, 2, and 4). Shell 3 is the shell for the

symmetry of the hydrogen atoms in water.

SHELL TYPE PRIM EXPONENT CONTRACTION COEFFICIENTS

OXYGEN

1 S 1 130.709320 4.251943 ( 0.154329)

1 S 2 23.808861 4. 112294 ( 0.535328)

1 S 3 6.443608 1. 281623 ( 0.444635)

2 L 4 5.033151 -0.239413 ( -0.099967) 1.675450 ( 0.155916)

2 L 5 1.169596 0.320234 ( 0.399513) 1.053568 ( 0.607684)

2 L 6 0.380389 0.241686 ( 0.700115) 0.166903 ( 0.391957)

HYDROGEN

4 S 7 3.425251 0.276934 ( 0.154329)

4 S 8 0.623914 0.267839 ( 0.535328)

4 S 9 0.168855 0.083474 ( 0.444635)
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first hydrogen atom and is implicit because of the symmetry of the two hydrogen atoms in

water. Note that for the shell of type L, there are two columns of contraction coefficients;

the left corresponds to the s functions and the right to p functions. (The numbers in

parentheses can be ignored for this purpose.)

A short general introduction to basis sets can be found in the Appendix of M. Rao's

thesis [151], and a more extensive treatment in a paper by E. Davidson and D. Feller [44].

Level of Theory

The chemist uses a level-of-theory parameter to specify the degree of accuracy with which

an application is to "describe" the motion of the electrons around a molecule. Higher lev-

els of theory usually result in better agreement with a laboratory measurement, but can

cost much more in terms of computer time. Computational chemistry experiments gener-

ally become increasingly accurate with "better" basis sets and "higher" levels of theory.

Paradoxically, the benefits of a "better" basis set can be nullified unless an appropriate

level of theory is selected; with an inappropriate level of theory for a particular basis set

one may experience a diminishing degree of accuracy. Choices for level of theory and

basis set are thus not independent: an experiment run with a lower level of theory and

more primitive basis set can give more accurate results than one run with a higher level of

theory and better basis sets if respective discrepancies in the former case cancel each other

out. Levels of theory can be paired with basis sets that "work" for a family of molecules,

and the pairings can be arranged in an order according to accuracy.

Molecular Orbitals

Molecular orbitals constitute one of the major outputs of many computational applica-

tions, and constitute the major result of the solution to the Schrodinger equation. From

molecular orbitals applications calculate observable properties. Molecular orbitals are typ-

ically represented as a matrix of floating point numbers, organized by atom and shell. The

number of orbitals (and hence the size of the matrix) can be calculated from the size of

the basis set and the atomic constituents of the molecule.
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3.1.1 User Scenario for Ab Initio Applications

The laboratory of the ab initio computational chemist is a computer (more recently, a

network of heterogeneous computers) where he or she performs numerical experiments

using programs based on quantum-theoretical models. Results consist of chemical prop-

erties (structure, dynamics and molecular properties) for a molecule under investigation.

Since each application program offers slightly different capabilities, experienced users may

employ more than one for a given investigation. We use investigation to refer to the

collection of computational experiments that a chemist conducts during a scientific in-

quiry on a particular molecule. The chemist constructs an investigation in an iterative

manner, rerunning experiments while adjusting and tuning parameters for the molecule

under investigation [52]. A particular experiment fails if it does not converge in the time

allotted or if calculated properties do not agree with empirically-measured properties.

An investigation is considered successful and complete when the chemist achieves one or

more experiments that adequately model the molecule in question. Our research addresses

the applications used to compute chemical properties using ab initio methods, but other

programs such as molecular editors are important components of the ab initio chemists'

laboratory.

The semantic complexity of computational chemistry applications lies primarily in

selecting input parameters appropriate for the subject molecule and desired properties,

and in correctly interpreting experimental results. A single run may require hundreds

of numbers as input; getting even a few of these "wrong" can result in many lost CPU

hours or, worse, a plausible but incorrect result. Because applications depend on the same

physical theory, they are semantically similar. Input and output conventions, however,

vary considerably. This syntactic complexity lies primarily in the relatively diverse and

arcane formats of input files and output files, a result of their independent development

over a number of years. Unfortunately, even though one application might be preferable

to another for calculating a particular property, casual users and even many theoretical

chemists use only one application package, rather than deal with learning the idiosyncrasies

of several.
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We believe that a chemist should be able to use the output of one program "transpar-

ently" as the input to another. "Transparently" here means using (perhaps reformatting)

the output of one program as the input to another without conscious action on the part

of the user. The current modus operandi is unfortunately far from this ideal. At best, the

chemist must explicitly run programs that translate data from one file format to another.

Sometimes, a chemist may even have to write a special-purpose data conversion program.

In the worst case, no algorithm exists to reliably translate one data format to another,

and each program-rendered translation must be adjudicated by an experienced user.

As we have seen, the semantic and syntactic complexity of ab initio applications is high.

The data volume, however, is not particularly large: a single successful experiment results

in long-term storage of only about two megabytes of data. Each successful run, however,

may be preceded by hundreds of "unsuccessful" runs, each generating two megabytes of

short-term storage. In addition, a single run can generate several gigabytes of intermediate

data, written temporarily to disk, and used by the application to solve the problem or by

the chemist to restart an interrupted run. Battelle's Molecular Science Research Center

now generates about 1.2 gigabytes of data per year that are candidates for permanent

archiving. This laboratory-wide reference material should be accessible by casual and off-

site users. In addition, data from other laboratories will be imported to this repository.

In order to better understand how computational chemists use ab initio applications

and to determine specific problems with their use, we have constructed a user scenario.

The following scenario involves a typical investigation of a single state of a single molecule.3

1. Define the subject molecule. Either by hand or using a molecular structure

editor, the chemist defines an initial structure for the molecule. He or she may also

perform heuristic structure optimizations, though during the course of the investiga-

tion this initial geometry will likely be changed. When the investigation is complete

and an optimized structure computed, the chemist will probably not want to save

this initial structure.

3For purposes of clarity, we chose a simple investigation for this scenario. Chemists frequently perform
more complicated investigations involving interacting molecules or different states of the same molecule.
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2. Consult previous runs on similar molecules. The chemist may consult compu-

tational and laboratory experiments on molecules of similar structure and properties

to determine likely experimental parameters. Because experimental results are rarely

filed in a form that can be easily queried, such consultations are typically limited to

one's own recent runs or those of a close colleague.

3. Annotate records of previous runs. While consulting previous runs, the chemist

often annotates his or her copy of previous experimental results with information

from the literature [49, 166]. Such annotations, often consisting of references to

property data, are in effect pointers to laboratory experiments and can be thought

of as evidence confirming the computational experiment.

4. Choose input parameters for the current run and prepare an input file.

Drawing on his or her experience with the application, or the help of expert users,

the chemist considers the particular molecular properties of interest and chooses an

appropriate application and associated input parameters. Selecting input parameters

is a highly specialized and critical activity. The chemist then prepares an input file

for the application.

5. Perform the experiment. Many activities comprise performing a computational

chemistry experiment:

(a) Based on initial input parameters and the choice of application, the chemist

selects a target machine on which to run the experiment.

(b) To determine if the experiment is feasible, the chemist usually estimates re-

source requirements, e.g., how long a single experiment will run and how much

CPU time is required. The chemist may then further optimize the molecular

structure or modify parameters before scheduling the experiment.

(c) If the experiment is to be run remotely, the chemist must first transfer the

input file to the remote machine.

(d) The chemist then invokes the application, Le., "runs the experiment". If the

experiment is run remotely, this step also requires logging on to that machine,
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which may be of a different type than his or her own workstation.

(e) If the experiment takes longer than an hour or so, the chemist usually monitors

its execution, which involves inspecting a file into which the application places

preliminary results on an iteration-by-iteration basis. The file is produced on

the machine on which the experiment is executing.

(f) Once a remote experiment has completed, the chemist transfers results back to

the local machine. Alternatively, the chemist might move the files for remote

or local experiments to a different area on the same machine.

6. Analyze results, adjust parameters and rerun the experiment, until it

runs successfully. The chemist will likely invoke the application many times during

the course of a single investigation before being satisfied with the results, repeating

items 5 and 6. It may also be scientifically advisable to run the computational

experiment using several applications to validate results. However, such comparative

runs are rarely made in practice because of file format differences among applications.

7. Make public and archive the results of the experiment. Once the chemist has

successfully completed an investigation, he or she publishes the results, either locally

to colleagues working on the same or related projects, or formally in a scientific report

or journal. Often, the chemist makes input and output files publically accessible to

colleagues, so that results can be consulted or corroborated. The chemist must

also clean up the "laboratory" after the investigation; here that includes deleting,

archiving, or compressing unsuccessful runs.

Difficulties abound in the scenario above, even for highly trained theoretical chemists:

1. Even if a chemist uses only one application on one computer, work on even relatively

small molecules is hampered by the number of files he or she can effectively name,

store, search, and manage. Running experiments on molecules significantly larger

than 50 to 100 atoms (which is expected in the next five years) will exacerbate these

data management problems:
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(a) A much larger set of sample experiments will be relevant to the process of

choosing input parameters because larger molecules typically have more sub-

structures.

(b) Larger molecules will likely require more application runs, and hence necessitate

managing more input and output files.

(c) Larger molecules have more complex structures and will likely require larger

basis sets, and hence larger input and output files.

2. Consulting previous runs on similar molecules is an ad hoc process. Because there is

no electronic index to experiments already run, finding successful previous successful

experiments relevant to a new study is difficult. Furthermore, because experimental

results from different programs are not in consistent format, a chemist often lim-

its consultations to applications using similar formats. Finally, the chemist usually

works from copies (on paper or in data files) of the previous runs, rather than con-

sulting the original (and presumed more correct) electronic record of the experiment.

3. Little or no information associating application inputs (molecular structure and

parameters) with results is captured from the experimental process in a way directly

applicable to later experiments with other molecules.

4. Since at least some of the computational chemistry programs are little more than

research prototypes, it may be difficult for a bench chemist to properly prepare input,

due to the combination of mathematical sophistication and research orientation of

such applications.

5. While much of the semantics of one application is transferable to another, the syn-

taxes are not transferable. If a chemist wants to compare outputs from several

different applications, he or she must perform tedious data conversions. Figure 3.4

shows the format conversions needed in order to compare a property calculated by

computational chemistry application A with properties calculated by applications B

and C. Assuming that the chemist understands how to invoke the same calculation

across the three applications and specify the same level of theory, at a minimum
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Figure 3.4: Syntactical complexity of computational chemistry ap-
plications.

he or she must convert the molecular structure and basis set formats for program

inputs, and convert the properties produced by applications Band C to the format

of the property value produced by application A.

6. Syntactic differences among applications also make it difficult for chemists to use the

inputs from experiments using one application as models for successfully designing

experiments using another application.

7. Because computational experiments require highly variable amounts of system re-

sources, the applications run on a range of platforms. A chemist who wishes to

choose an appropriate target machine for an experiment must be familiar with the

network and operating system idiosyncrasies of that machine, as well as knowing

how to access the machine remotely. We call this distributed, heterogeneous char-

acteristic of the computing environment architectural complexity.

The above problems fall into categories common to other computational sciences

[43, 60, 61, 158]. They include the management by hand of many large files spread over
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several physical computers; the semantic, syntactic and architectural complexity of the ap-

plications themselves; and the lack of data interoperability among the applications. Pro-

viding a database to hold input and output files of computational experiments ameliorates

some data management problems, though it does not address problems of architectural

complexity or interoperability.

A public database of past runs could be used by chemists to consult previous exper-

iments on similar molecules. Of course, if a chemist wanted to use previous successful

experiments on, say, all alkanes to determine which application and basis set to use for

determining a particular property for a specific alkane, output files would have to be in-

dexed by molecular substructure. To allow searching for molecules similar to the one under

study, the database could hold templates of atomic substructures, each of which defines

a "family of chemicals" and could be used as an index into molecular structures. Once

defined, a new molecule or template could be placed within a chemist's personal database

and reused.

To set up a new experiment, one would want to know the specific machine on which

the previous samples were run, with which version of which application, when it was run,

and by whom. Even with the information above, determining which method was used

to perform the calculation usually requires an understanding of the application. Such

metadata, while necessary for correctly interpretating results or applying previous work

to a new investigation, is not necessarily explicitly contained in either the input or output

files.

While such a properly indexed database repository of input and output files as described

above would be useful, a database of experiment data that renders the data contained in

input and output files into a common format would be even more helpful. Such a database

could support the needs for public data as well as provide working data to individuals, and

the same entities (molecules, basis sets, experiments) can participate in multiple collections

to support varied searches and personalized subsets of data.

Such a database could also hold experimental inputs and results in canonical form,

or contain functions to display in comparable formats data that are stored in different

formats, thus alleviating some syntactic incompatibility of applications. Outputs from
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one application could be more easily compared to outputs of another application, or used

as inputs to new experiments. Equally important, the data in a database could also

be used by applications that assist in selecting previous experiments relevant to a new

experiment, and to develop initial inputs and parameters to new experiments based on

them.

A database that can display inputs and outputs of ongoing experiments and past runs

in comparable form simplifies the user scenario given above as follows:

1. Define the subject molecule. Instead of defining a molecular structure from

scratch, the chemist can consult the database to find a similar molecule to use or

modify as an initial structure. During an investigation, the initial geometry will

likely change radically, and the database can keep track of versions of molecular

structure, without requiring the chemist to think up and remember a series of ap-

propriate file names. The advantages of using a database separate from the file-based

databases supplied with most molecular editors are that scientists can more easily

share structures if they prefer to use different editors, the database can integrate

experimental results with molecular structure, and optimized molecular structures

can be more easily annotated with metadata that indicate how they were derived.

2. Consult previous runs on similar molecules. The chemist may now query

the database for previous successful computational and laboratory experiments on

molecules with similar structure and their calculated properties. Consulting a database

for similar runs is a considerably easier task than gathering electronic files or print-

outs. Because the chemist may not be familiar with all of the computational pro-

grams or apparatus on which the selected experiments were run, associated infor-

mation (metadata) can be available to help interpret input parameters and results.

Data may be physically stored in the database, archived at the site, or resident at

another location, but the chemist can be presented with a consistent view of data

irrespective of physical location or the format or machine on which the data were

generated or stored.

3. Annotate records of previous runs. A chemist'sannotationson an experiment
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may include additional information, such as "property data" [49,166]. With a shared

database of experiments, annotations can be made publicly available upon release

from the author. Without a shared database, such annotations are made on copies

of the experiment and are usually lost to other chemists who might later also use

those experiments as models (even if the copies are electronic copies).

4. Choose input parameters for the current run. Using the experiments retrieved

above as examples, the chemist can better determine input parameters for the new

experiment.

5. Run the experiment. In addition to containing experimental data, i.e., appli-

cation inputs and outputs, a database of past experiments should contain meta-

data about the experiment, such as the application invoked, the machine on which

the experiment was run, and information about the resource use. Experiments on

molecules of similar structure and input parameters are likely to require similar

resources. Thus, sampling previous experiments could help the chemist select an

appropriate target machine on which to run the experiment and estimate how long

the computational experiment will run and (if relevant) how much it will cost.

6. Analyze results, adjust parameters and rerun the experiment. Since the

database must provide capabilities to represent results from different programs and

to view experimental results of past (confirmed) experiments, it could also be used

to view results of completed but not yet confirmed experiments. Because results are

captured in comparable form, results of ongoing experiments can be directly com-

pared to each other and to results of previous successful experiments, thus helping

users analyze results.

7. Publish and archive the results of the experiment. The database can more

easily effectuate consistent change in status between private and public data than

can the current ad hoc file system.

Such a database would be greatly enhanced by an expert system to help build input

files to computational experiments. An intelligent front end would use heuristics and data
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from previous experiments to guide the chemist in his or her input parameter selection.

Such a system is under development at Battelle Pacific Northwest Laboratories by D.

Feller [51]. The database and expert system complement each other; the interface is an

expert system, with the experiment database forming a portion of its knowledge base.

Rather than accessing the database directly, we envision the chemist presenting experi-

mental requirements at a relatively high level to the expert system, which itself would

use a combination of heuristics and empirical data (from the database) to help set up an

experiment.

The scenario above assumes that a person enters experiments into the database. Simply

having a database available does not guarantee that users will put past runs into it.

In fact, because of format conversions, entering past runs may be a non-trivial task.

The remaining sections of this chapter describe our experience designing, building and

populating a database of computational experiments.

3.2 A Conceptual Model for Ab Initio Computational Chem-

istry

In Section 3.1 we observed that some of the difficulty of using computational chemistry

applications can be alleviated with a repository of past experiments. In this section we give

a conceptual model for that database, identifying and describing the entities of interest.

A conceptual model, though not always explicitly articulated, is the first step towards

constructing a database and provides the basis for further design. We couch our conceptual

model in the language of the domain of interest, avoiding database and computer science

terms where possible, so that users and database specialists can contribute equally to the

effort. Recall that the conceptual is the first of three increasingly formal models in our

design process: it is followed by information and logical models. The physical model,

which is the fourth and final will concretize the logical model in a particular database

management system.

In the conceptual modeling phase, the aim is to capture domain concepts, including

entities, relationships between entities, and functions performed by and on the entities. In
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classic application software engineering, the conceptual modeling phase of database design

proceeds concurrently with the requirements analysis phase of system design [17, 171, 192].

In our conceptual modeling, we tried to capture and formalize current usage, rather than

propose new terms. Unfortunately, as noted earlier, we were faced with situations where

a given term has multiple senses, and we sometimes had to manufacture additional terms

to distinguish those senses. An "atomic element" may be just an atomic number, or a

particular isotope, or a distribution of isotopes. Such distinctions matter in defining what

the "atomic weight" operation should yield when applied to an atomic element and must

be clarified and made explicit.

An additional goal we set was that the model should fit with more general chemistry

models so that it can later be specialized for future applications and sub domains, or

generalized to include other domains of chemistry such as semi-empirical computational

chemistry and laboratory chemistry.

In spite of the difficulties in developing and expressing a conceptual model, we believe

that an acceptable and generally understood model is a critical first step towards resolv-

ing data incompatibilities. Efforts to reconcile differences at the physical-format level will

be ineffective without agreement at the conceptual level. There is no point in discussing

physical compatibility of data where there is fundamental disagreement on the meaning

or interpretation of that data. Of secondary interest is the role of a conceptual model

in helping resolve semantic ambiguities when using data and programs across larger (in-

terdisciplinary) boundaries. For example, our computational chemistry conceptual model

could be of help to molecular biologists using computational chemistry programs or as a

documentation tool to software engineers developing software for computational chemists.

Below, we describe objects of interest for the computational chemistry database. Those

objects of interest that we chose to include as database objects are italicized on first use

in each subsection. Important relationships between objects are expressed in boldface,

and attributes and behavior of objects are underlined.
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3.2.1 Chemist and Experiment

The model includes simple identifying information about each chemist whose experiments

or basis sets are included in the database, so that scientists can contact each other.

Experiments have as subject a particular molecule, and are arranged in a type hi-

erarchy. An experiment, perhaps the collaborative effort of more than one chemist, is

either a laboratory experiment or a computational chemistry experiment. The following

information about each experiment is included in the database: a user-defined textual

experiment name, (a run title or other textual annotation), date-begun, date-completed,

site where the experiment was conducted, a list of citations for the data used as a source of

the experiment, and a list of publications where results of the experiment were reported. A

chemist usually organizes his or her experiments by subject and investigation, and within

subject and investigation, by the date begun.

Computational Experiment

A chemist performs a computational (chemistry) experiment on a given molecule using an

application program, specifying parameters such as molecular structure, basis set and level

of theory. In the course of computationally determining a molecule's structure, a chemist

performs several experiments on that molecule. Only a few (perhaps one or even none)

of these experiments will ultimately be archived as successful. Until deemed successful,

each computational experiment should be identifiable as part of a single investigation and

marked as private and available only to the performing chemist(s).

Among the numbers that appear in the output are some that correspond to physically

observable properties of a molecule, and some that are simply artifacts of the equations

that were solved. The most important output value is the total energy of the molecule.

An important artifact of solving the equation is the set of molecular orbitals (sometimes

called the electron density), an array of numbers whose length varies approximately with

the square of the number of atoms in the molecule.

Molecular properties are generated directly from the detailed molecular structure and

molecular orbitals derived in an experiment. Thus, a computational experiment predicts
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molecular properties. An experiment is successful when these computed properties "agree

with" properties measured in laboratory experiments, e.g., by x-ray crystallographic

methods. This agreement is a matter of human judgment, not a determination that can

be made automatically by the computer. Where such agreement is noted, we say that a

computational chemistry experiment is confirmed by a laboratory experiment.

One measure of the accuracy of the computational experiment is the amount of numerical

error. The experiment should include some measure of the cumulative error introduced by

each state of the calculation, from which a rudimentary stability analysis can be performed

upon request.

Laboratory Experiment

A laboratory experiment is conducted in a traditional chemistry laboratory by a bench

chemist, using laboratory apparatus such as a mass spectrometer or a cloud chamber, and

producing a value or values for a specific observable property.

3.2.2 Aggregations of Experiment: Investigations, Suites and Personal
Sets

An investigation is an aggregation of experiments that groups a series of computational

experiments together for convenience of analysis.

During the course of a single scientific investigation a chemist may study several confor-

mations of the same molecular substance; a conformation is a particular molecular struc-

ture. A suite of experiments is an aggregation of computational experiments that groups

conformations of the same molecular substance into an ordered collection. Another name

for a conformation is chemical state.

3.2.3 Molecule

A molecule is the subject of one or more laboratory and computational experiments,

and can be identified by name, chemical formula or through its corresponding experiment.

Some intrinsic properties of a molecule, such as name and chemical formula, are inde-

pendent of any particular experiment. Some properties, such as molecular structure, are
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highly dependent on a particular experiment; other properties are functions of the atoms

or isotopes comprising the molecule, and can be deduced by looking at the molecular struc-

ture. For our purposes in ab initio computational chemistry, a molecule is determined by

its molecular structure; we consider two molecules with the same name and molecular for-

mula, but different molecular structure, to be different molecules. Because such molecules

are thought to be "the same" both in common parlance and for some scientific purposes,

we say that they are the same molecular substance.

Some of these intrinsic molecular properties, such as molecule name and chemical

formula, are not needed for the actual computation, but are important for the chemist's

use in retrieving data on molecules.

Molecular Structure

For computational experiments, the most important property of a molecule (indeed, its

defining characteristic) is its molecular structure. Molecular structure specifies the molecule

to the application program, and consists of a list of the component atoms, along with the

location of those atoms in 3-space. Thus molecular structure is a list of atoms. An atom

has molecular weight, molecular charge, and Cartesian coordinates ~, l, and ~.

A symmetry indicator denotes whether the molecular structure is fully represented,

or partially represented with symmetries. If the latter, then only the symmetry-unique

atoms of the structure are specified, and symmetry functions calculate the locations of the

symmetric atoms using conventional symmetry rules.

There are no alternative formats in our conceptual model for internal coordinates

(sometimes called "z-matrix format") or for representing molecular structure as bonds

between atoms. The latter would be useful for graphically displaying molecules.

Conversion operators Cartesians_to_partials and partials_to_Cartesians convert a molec-

ular structure given in Cartesian coordinates to partial symmetry representation and vice

versa.

A chemist performing a suite of experiments for different conformations of a molecule

will create several instances of that molecule, each with a different molecular structure.

Thus, as shown in Figure 3.2, each experiment in a suite of experiments looking at different
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states of a molecule will have as subject a different molecule (and hence molecular

structure) even though in common parlance a chemist would say that all those experiments

deal with the same molecular substance. The subjects of experiments relating to certain

chemical states may not in fact be a molecule in the traditional sense, but simply a

collection of atoms grouped together in one structure for the purposes of a particular

experiment. The example experiment of Figure 3.2 involving the unstable state of water

is a case in point: the subject molecule is in effect merely a collection of hydrogen and

oxygen atoms.

Molecular Template

To browse the database for candidate input parameters to an experiment on a particular

molecule, a chemist will want to examine previous successful experiments on molecules

with a similar structure. We use the term "molecular family" to denote molecules with

similar structure. Molecular families are not disjoint; any given molecule can match a num-

ber of templates and thus belong to a number of families. Molecular templates represent

ways in which chemists mentally group molecules with similar structure into molecular

families.

A molecular template is a different kind of entity than any yet described in our con-

ceptual model. We coined the term molecular template to refer to the way that chemists

specify instances of structure or formula that could be used to search the database for

molecules with similar structure or formula. A molecular template specifies a flexible

search on molecular substructure; it is itself a structure like a molecule (technically more

like a molecular substructure) that can be matched against molecular structures in the

database. For example, if a user wishes to find a basis set to use with ethane, he or she

can define a template for alkanes such as "CnH2n+2" that would match similar molecules

such as methane containing this substructure.

3.2.4 Computational Chemistry Application

An application is an ab initio computational chemistry program or collection of programs.

Each computational experiment uses an application; we also say that a computational
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experiment is run using an application. We sometimes refer to an application as an ap-

plication program or "code". A computational chemist's application program is analogous

to the bench chemist's laboratory instrument; each is an experimental apparatus.

Computational chemists want to know precisely the nature of the apparatus on which

they run an experiment; knowing the application name, application author(s), and authors'

address is necessary but not sufficient. The version of the application and computer used

to run an experiment may be necessary to track down resource utilization details or ex-

periments run with an application that contained an implementation error. The chemist

may even want to know which version of which programming language and which com-

puter was used to compile the application. Most theoretical chemists want to know the

particular algorithms used in the application, and often even further details about the

numerical implementations of those algorithms.

Figure 3.5 depicts information that is relevant in some contexts about a particular

computation, and shows how three taxonomies relate: applications and application ver-

sions, computer platforms and particular computers, and programming languages and

versions of programming languages. An installed version of an application is a compiled

version of that application installed on a particular computer. A particular computer

is an instance of a generic computer platform. The installed version of the application

has been compiled for that computer platform using a version of the target (program-

ming) language. A version of that programming language has itself been installed on a

particular computer that is necessarily an instance of the same platform of the particular

computer on which the application has been installed.

For example, a given computational experiment might utilize the GAMESS package,

release 2.0, compiled under version 3.21 of the Sun 3 FORTRAN 77 compiler. Important

meta-information needed at various levels of the taxonomy includes basic formatting and

functional capability of the application at the application level, changes in format at the

release level, and performance characteristics at the compiler version and platform levels.
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Figure 3.5: Application taxonomy.

3.2.5 Basis Set

A basis set is a set of real functions over three-dimensional space. A computational exper-

iment uses a basis set as a starting point for its iterative computation. A user can specify

by name which basis set to use in an experiment. Some research sites have their own basis

set libraries, and individual basis sets can be retrieved by name. A basis set is usually

authored by a chemist and is indexed for retrieval by author. Basis sets can be cate-

gorized according to the families of molecules for which they have generated successful

computational experiments.

A basis set includes a list of coefficients and exponents for every contraction for each

atom that the basis set supports. An operation to generate a basis set instance for a partic-

ular experiment entails producing a list of the contractions for each atom for the molecule

in question, in the format specific to the application chosen.

3.2.6 Basis Set Library

A basis set library is collection of basis sets. Such a library may be site-specific and hold

the basis sets that are to be used at that site, as in the case of the basis set library available

to PNL chemists. A library of basis sets may also be made available within an application,
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as is the case with the Gaussian application [62]. The basis set contains not only basis sets

themselves but also information about each basis set that helps determine its applicability

to a particular experiment, e.g., for a given molecule, application, experiment type, and

level of theory.

3.2.7 Level of Theory

Level of theory corresponds to the degree of accuracy with which the motion of the electrons

around a molecule is described in a particular experiment. A level of theory is characterized

by its name. Since application packages use different names to designate the same level

of theory, a level of theory name conversion operation is required for each application

package.

Levels of theory can be paired with basis sets where these parameters have been used

together in successful experiments. A pairing can be retrieved by the molecular family

associated with the subject of those experiments.

Molecular Orbital

A molecular orbital, also called an electron density function or a wave function, is com-

puted by a computational experiment.

The molecular orbital must be reported with the molecular structure and the basis set.

The molecular orbital can be represented as an n by n matrix, where n is the number of

basis functions in the corresponding basis set.

3.2.8 Observable Property

Final energy and observable property values are the two major results of interest for com-

putational chemistry applications. Final energy is a scalar value, and may be a minimum

energy, or a saddle point.

An observable property for a given molecule is a function of an experiment, not the

molecule itself, and is said to be produced by an experiment. Measured by and

predicted by are synonyms for produced by that are often used in the contexts of

laboratory and computational experiment, respectively.
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Strictly speaking, the observable properties produced by computational experiments

are calculated from the wave function, but chemists associate an observable property with

the experiment, not the molecular orbital.

A computational chemistry experiment is confirmed by a laboratory experiment

(or vice versa) when an observable property calculated by a computational experiment

matches an observable property measured by a laboratory experiment. Whether or not

two observable properties match is a matter of judgement - matches cannot be auto-

mated as a function by the database.

As of this writing, we have modeled each observable property as a separate database

entity. A general representation for property would be preferable so that new properties

could be added to the database without changing the schema.

3.3 The Computational Chemistry Information Model

The previous section described objects of interest to our database design effort at the

conceptual level, in the language of the application domain. In this section, we describe

our efforts to extend the conceptual model to an information model - the first step

towards formalizing a database design.

Information modeling has been an active area of database research and development,

particularly since Chen's classic work in 1976, which introduced the entity-relationship

model [28, 124, 169, 181, 182]. Given current needs to extend databases to handle new

kinds of applications, other researchers are working to provide more direct transitions

between information modeling and database design, and to incorporate an "object orien-

tation" into information modeling constructs [19, 157, 177, 193].

An ideal modeling methodology would provide an effective means of describing can-

didate entities, their attributes and behavior. Unfortunately, the semantic modeling

methodologies that attempt to integrate entity-relationship modeling with dynamic and

functional (also known as behavioral) modeling are, in our estimation, immature. Even

though capturing behavioral aspects of the conceptual model was particularly important

to us, we found no effective means of representing behavior along with data structure at
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the information-modeling level. Thus, the information model presented in this section

contains only a model of data structure; only during the next database design step, the

casting of the information model into a database schema, do we explicitly describe the

behavior of the objects.

In Section 3.3.1, we present our information model and describe our information mod-

eling conventions. Section 3.3.2 discusses information modeling issues that surfaced during

this phase.

3.3.1 An Entity-Relationship Model for the Database

We present here the entities and relationships identified during the conceptual modeling

phase. The entity-relationship model in Figure 3.6 depicts the overall structure of our

information model for computational chemistry experiments. An entity is represented

as a box with rounded corners. Aggregations of entities are depicted as multiple entity

boxes, and labeled with the keyword "grouped into". Relationships between entities are

represented as labeled lines between boxes representing entities; cardinality of greater

than 1 is indicated by a black dot. Is-a relationships (superclass-subclass relationships)

are denoted by thick lines. Sometimes a relationship between a superclass and a related

class is renamed when one speaks of the relationship between the subclasses and the related

class; such synonyms are indicated as dotted lines.

In our diagrams, each entity box represents a type of object and does not require that

there be an extent or collection of all instances associated with the type. Where there is

an expectation of iterating over instances of an entity type, we have indicated a named

entry point with a dashed arrow. In mapping from the information model to a database

schema, each entry point may be rendered as one or more named collections. For example,

each user of the database may have his or her individual collection of experiments, namely

a personal set of experiment.

With the exception of the complex objects representing applications (described above),

and Molecular Orbital and Basis Set (described below), each of the entities we identified

can be mapped directly onto a logical database model, or schema. The instance diagram

in Figure 3.7 reflects the major attributes for each entity.
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Our entity-relationship model above is simplified in that basis set and molecular orbital

entities have been presented as single entities. In fact, each is a complex object (Le.,

composed of other objects) and each can be modeled using a series of list structures, as

shown in Figures 3.8 and 3.9. In these figures, list structures are shown as a series of ovals

connected by arrows; the first element in the list is "expanded" to show the type of the

list. Thus, for example, AtomBSList is an attribute of the Basis Set Instance entity; each

element in AtomBSList is of type AnAtomBS. (Alternatively, one might represent these

structures using a matrix type. Thus, the symmetry values for molecular orbital could

be column headers, and molecular orbital coefficients could be matrix data "under" the

columns.)

Modeling the relationships between laboratory and computational chemistry experi-

ment also requires a more complicated and interesting structure. Recall that a laboratory

experiment confirms a computational chemistry experiment when an observable property

predicted by the computational experiment matches the observable property measured

by that laboratory experiment. Directionality of the matches relationship is critical, since

it indicates (in this example) the directionality of the derived relationship confirms, Le.,

that the computational chemistry experiment confirms the laboratory experiment (and

not vice versa). The measures and predicts relationships are synonyms for the pro-

duces relationship. Which term use (measures or predicts) depends on whether the

experiment in question is a laboratory or computational experiment. Figure 3.10 shows

explicitly which relationships are explicit and which derived: explicit relationships are
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shown in diamond-shaped boxes; derived relationships are shown as dotted lines.

3.3.2 Information Modeling Issues

During the course of the conceptual and information modeling stages, we encountered

modeling problems of two kinds: complexities in the problem domain that would require

more extensive domain modeling than we were prepared to offer and inadequacies in

modeling methodologies.

Domain Complexities

The major domain-level modeling issue concerned the many semantically overloaded terms

we encountered. These terms can usually be disambiguated within context by a domain

specialist, but their meaning is not always clear when taken out of context or even within

context to a casual user. "Molecule" and "experiment" are prime examples of this over-

loading. Sometimes "molecule" means any collection of specific atoms. For example, "Re-

trieve all experiments on the water molecule" means retrieve all experiments for which the

molecule entity has two hydrogen atoms and one oxygen atom. "Molecule" can also mean

a particular spatial arrangement of atoms associated with the input of an experiment.
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Sometimes a "molecule" includes molecular orbitals and sometimes not.

"Experiment" sometimes means one run of an application, sometimes a set of runs

modeling the states of one molecule, sometimes a number of runs modeling transition

from one or more molecules to one or more different molecules. "Experiment" is also used

as an aggregation of any of these, in the sense that the chemist groups a number of runs

together when doing an experiment focused on solving a molecular structure. We used the

terms "experiment", "suite of experiments", and "investigation" to denote those different

senses of the term "experiment," but there is still considerable subtlety remaining in how

chemists themselves use the word.

While the decisions we made to disambiguate these terms were adequate for our pur-

poses, their usage would need to be further resolved for an an industrial-strength database.

Modeling Methodology Inadequacies

Inadequacies in modeling methodologies for representing the information model were

twofold:

1. The difficulty of representing groupings within a domain. A single instance of

molecule, basis set, or computational experiment can be grouped into one or more
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collections. For example, a molecule can belong to none, one, or several different

families of molecules depending on how many molecular templates it matches.

While groupings that involve aggregations of entities such as suite of experiment

were easily modeled, we could not represent levels of membership within a collec-

tion. Thus, for example, we could not easily show that some molecules in family of

molecule were "more" a member of that family than others.

2. The low degree to which entity-relationship modeling can be integrated with be-

havioral aspects. We chose to avoid including behavioral aspects in the information

model itself and worked from the conceptual model to code behavior at the logical

(schema) level.

Some database researchers, particularly those working in scientific databases, have

identified representing the degree to which a particular object belongs to a collection

[9, 30, 31, 88, 94] as a research issue. Their results are still preliminary.

The lack of integration between entity and behavioral modeling is also a research issue

in semantic data modeling [46, 81]. In fact, we had good success using an object-oriented

approach to integrating behavior with class definitions and in implementing the required

groupings for our domain, even though we found it difficult to represent these integrations

at the information-modeling level. The capacity to deal explicitly with behavioral aspects

is a particular strength of the object-oriented data models in comparison with current

semantic data models, which we feel do not adequately integrate behavioral aspects with

the entity-relationship based modeling.

The object-oriented framework also gave us several mechanisms for coping with detail

and complexity in our conceptual model, albeit at the logical and physical design levels.

First, we could group the attributes of an entity that were of interest into a single object.

Second, we could model behavioral interfaces directly, thus capturing object interactions

rather than providing indirect specification through separate data flow models or procedure

code. Third, we could express the commonalities of similar entity types because object

models support an abstraction or generalization hierarchy of classes.
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Object models also support several extensibility mechanisms, useful in customizing

or refining a domain model to a particular application. Those mechanisms include the

creation of new subtypes in the generalization hierarchy, the use of existing object types

in the definition of new types, and the ability to specify new operations for a type. Because

such extension mechanisms are additive, applications that depend on the original model

need not be modified if they do not use the extensions. For example, to incorporate a

molecular editor into our framework, we might create subtypes of molecular structure and

atom that include information about the graphical display of atoms and bonds between

atoms (such as color, size, rendering style). Tools developed for the original definition

of molecular structure and atom would continue to work on the new subtypes, as those

subtypes would simply extend the existing set of behaviors.

3.4 Logical and Physical Design

This section describes the logical and physical design of the computational chemistry

database. Because the choice of a data model determines the form of the logical design,

we briefly review our database requirements in Section 3.4.1 and summarize our reasons

for choosing an object-oriented system rather than a relational one for implementing the

database. Then, in Section 3.4.2, we show the logical design of the database and give its

persistent roots. An outline of the physical design of the database follows in Section 3.4.3.

Section 3.4.4 relates our experience implementing a prototype database and how this led

us to appreciate the inherent difficulty of loading our database and the importance of

providing a closer interface between the applications and the database than we had first

envisioned. We conclude the section and the chapter in Section 3.4.5 with our realization

that database services alone would not solve the crucial problems of program interoper-

ability that face computational chemists. Building a database for this domain requires an

experiment management infrastructure that provides both data and computation services.
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3.4.1 Choice of Target Database Management System

Classic software engineering principles recommend that a logical design be fully indepen-

dent of the physical implementation [17].

In the case of database management systems, however, choosing between implementing

the system as relational or object-oriented can affect the manner in which the logical design

is described. The logical design of a database application is not altogether independent of

its physical implementation because the logical design is usually couched in data modeling

terms, and given as a database schema. The logical design of a database that will be

implemented in a relational database management system consists of a logical description

of the database couched in the language of the relational model, i.e., normalized relational

tables with indications of primary and foreign keys. Because the relational model is

programming-language independent, the logical database design is largely independent of

the particular relational database management system and target programming language

in which the system is implemented. On the other hand, the logical design of an object-

oriented database consists of the classes and method signatures for the database; because

there is no object-oriented data model per se [116], the classes and methods are usually

couched in the target programming language or database manipulation language. Thus,

before describing the logical model for the Computational Chemistry Database, we recount

why we chose to implement the system in an object-oriented database.

An object-oriented database (OODBMS) combines object-oriented language and mod-

eling features (encapsulation, object-identity, subtype and implementation hierarchies,

direct representation of complex structures) with data management capabilities. An ob-

vious advantage is that we can map conceptual-level classes, operations and hierarchies

directly into counterparts in the database's data definition language (DDL). While some

encoding is required (e.g., for taxonomies), class hierarchies and binary relationships (even

many-to-many binary relationships) usually require no encoding.

On the implementation side, an OODBMS usually provides a data manipulation lan-

guage (DML) that allows one to implement many operations without recourse to an ex-

ternal application language. This behavioral capability is also useful for building routines
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into the system that convert to and from particular formats. Many OODBMSs can run

in a distributed fashion on a network of computers of possibly different kinds. OODBMSs

thus provide some location transparency and help mask the heterogeneity of computers

and operating systems. Finally, some OODBMSs provide gateways to the operating sys-

tem file system and relational databases, and hence can serve as an integration mechanism

for multiple data sources [104, 120, 132, 163].

While an OODBMS certainly makes for a simple mapping from information model

to logical model, it is not an absolute requirement. CAChe [23], for example, currently

supports an object-oriented information model using a relational-like tabular represen-

tation. Our survey of scientific database research showed six alternatives for physical

implementation: special-purpose data management facilities [16], extensible tool kits [26],

logic databases [139], relational [32, 33] and extended relational systems [76, 90, 156], and

OODBMSs [196].

For our purposes, developing a special-purpose data management facility involved too

much overhead and would not meet the need to scale up easily to support additional

applications or experiment types. We felt that extended relational systems and extensible

tool kits are still in the research phases, and logic databases do not in general offer the

database capabilities we required. Thus, relational and object-oriented systems were our

two viable alternatives.

Relational database systems offer some distinct advantages over object-oriented database

systems: they are well-understood, well-grounded in theory, well-documented, and robust.

Unfortunately current record-oriented database technology does not support scientific ap-

plications well. Relational systems are inadequate for representing spatial information

(such as we require for molecules, basis sets and molecular orbitals), for maintaining

meta-information as relations, and for adequately representing the inherent structural

complexity of most scientific data [47, 60, 61, 120].

Working from our conceptual model and analysis of the computational chemistry

database needs, we made the following observations:

1. The schema abounds with highly interrelated data that would require many tables
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(and thus joins)4 in order to bring one experiment into memory. Since an experiment

is the unit of work per interactive session, we believed that the number of joins

required to set up an experiment would have an adverse effect on performance.

While the relational model is flexible enough to implement such structures, albeit

indirectly, we felt that representing logical structure as directly as possible in our

physical implementation was important for efficiency in both implementation and

execution.

2. Normalizing the conceptual data model into relational tables would require breaking

down complex, but scientifically meaningful, structures such as molecule and exper-

iment. We believed that the current relational model lacks the representational

power for an intuitive rendering of the structures required. Computational chemists

are highly skilled programmers, and many write their own programs. Giving expert

users such as the authors of computational chemistry applications an intuitive un-

derstanding of the physical model is important because they will want to program

their own extensions to the system.

3. The application area abounds with the need for writing conversion and display meth-

ods, from properties of one type or unit to another, from program parameters from

one application format to another, and so forth. Object-oriented systems allow for

storing methods with data descriptions, a feature we thought particularly helpful in

keeping track of the many small conversion programs.

4. This database application requires collecting a number of entities into sets and lists:

collecting experiments into personal collections, suites and investigations, and col-

lecting molecules into families. Object-oriented database management systems pro-

vide good built-in collection facilities.

5. Finally, our intuition was that object-oriented database systems would serve this

and other scientific applications well, and we wanted to gain experience with this

new technology.

4Even if molecule and molecular orbital entities were not normalized, we estimated about 20 joins per

experiment. If the model were fully normalized, several hundred joins might be required.
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From the observations above, we concluded that object-oriented database manage-

ment systems would be more appropriate for this application than relational systems. We

identified a subset of attributes and methods for each major database entity and con-

ducted a feasibility study to determine which object-oriented database systems would be

adequate to the purpose [42]. This study led to our choice of ObjectS tore, a commer-

cial object-oriented database management system designed for distributed client-server

database applications written in C++.

3.4.2 The Logical Design - an Object-Oriented Database Schema

In this section, we briefly describe the logical model for the database, Le., the computa-

tional chemistry database schema.

As noted above, translating an information model into the logical model using the

relational data model consists (generally) of casting entities into relational tables, and

assigning prmiary keys. To assure that a relationship between entity A and entity B can

be effected by relational joins, one assures that (for example) the primary key of entity A is

among the attributes of entity B. Once candidate relations and keys have been identified,

one assures that the database is normalized by applying well understood tests.

Translating an information model into a logical model for an object-oriented database

is initially simpler, since each entity in an entity-relationship diagram is an object-oriented

class. The data model in which one represents the schema is the programming language

class structure in which the database is to be implemented. The ObjectStore data model

consists of C++ classes plus ObjectStore extensions to C++ that allow the specification

of binary relationships and collection classes.

Each entity in our information model became a C++ class; each relationship an Ob-

jectStore relationship. Casting behavior into the logical model was more complicated

because (as we pointed out in Section 3.3.2) we did not include behavior in our informa-

tion model. To include behavior in our logical model, we had to go back to the less formal

conceptual model and determine which behaviors we would model as C++ methods.

The final stage of our logical modeling was to determine the persistent names for

database objects. Persistent names in the logical model correspond to the named entry
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points we defined in the information model. For example, the persistent name Chemist::extent

refers to a set of name and object-identifier pairs for all instances of chemist. To find a

chemist named "Feller", one traverses this set of all chemists, examining the name of each

chemist and then using the associated object-identifier to navigate to the chemist of inter-

est. An alternate (though less desirable) way of providing this same functionality would

be to provide a root variable for each chemist; thus, for example, we would directly access

the chemist instance for Feller via a root variable Feller.

The logical model depicted in Figure 3.11 presents our choices for the persistent names

in the database. Access to experiments is usually effected through two persistent root

variables, one set of all chemists and one set of all molecules. Basis sets and applications

are similarly independently accessible. In our database, it happens that each root variable

corresponds to a set of instances of a class. Thus, in the figure, each root variable is

underlined and an arrow is drawn to the class whose object-identifiers its corresponding

set contains. As before, the superclass-subclass relationship is represented as a thick

line. One-way relationships, where one can navigate from an object in Class A to its

corresponding object in Class B (but not vice versa), are named at the Class A side of

the relationship line. Where we need to navigate in both directions the relationship is

named at both ends of the line. We made the simplifying assumption that a laboratory

experiment can confirm a computational experiment, but not vice versa, and that this

relationship is explicitly a relationship between experiments (not properties produced by

experiments) .

Since a full implementation of the conceptual model was not required for our research

prototype, we made a number of simplifications. The Molecule entity provides its structure

only as Cartesian coordinates. We did not use the superclass Apparatus for Laboratory

Instrument and Application entities, nor were the Suite of Experiment, Investigation, and

Family of Molecule aggregations implemented as classes. Furthermore, we made no dis-

tinction between private and public experiments.

We mapped the computational chemistry information model described above into an

ObjectStore schema by using the ObjectStore Schema Designer, and found a very good

correlation between our requirements and the modeling power of the ObjectStore Data
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Definition Language. Binary relationships, subtypes, and complex structures for molecule,

basis set and molecular orbital mapped directly to ObjectStore. ObjectStore supports

binary relationships of cardinality greater than one by generating an additional C++ class

to represent the relationship. This intermediate class is transparent to the programmer.

Taxonomies for application, however, did not map directly; one reason for this is that a

ternary relationship among application version, compiler version, and computer platform

was required. For the sake of convenience in our prototype, we simplified the taxonomy

by representing the application version and compiler as attributes. To implement the

taxonomy fully, we would have had to generate by hand an intermediate class for each

ternary relationship. (This limitation is discussed further in Section 5.3.2, page 170.)

Our simplification of the application taxonomy seems justified because there are rela-

tively few versions of applications and compilers, and because the number of levels in the

taxonomy is fixed, rather than arbitrary.

3.4.3 Computational Chemistry Database - Physical Design

The physical design of a database describes how the data are actually stored in the

database, and describes complex low-level data structures in detail [101]. Many mod-

ern database management systems map the logical design (Le., the schema) directly into

physical data structures, and the physical design tasks for the developer consist primarily

of index selection and directives or pragmas (Le., hints) to the system that will improve

performance. In addition, database designers may specify and implement additional pro-

grams to enforce integrity constraints that are not adequately supported by the database

management system. As we had expected, given our decision to implement the database

in an object-oriented database management system, the physical design of the database

was straightforward. ObjectStore automatically enforced integrity constraints for inverse

relationships, and we chose not to specify physical optimizations such as clustering chemist

and experiment classes or providing information about how to physically store particular

collections (e.g., as arrays or lists).

The physical design for our system included the following:

1. Implementingroot variablesas ObjectStoredatabase roots. Root variablesfor
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Chemists, Molecules, BasisSets, and Applications are the extents of their respec-

tive classes, and are each implemented as a collection containing all members of the

class. Insert and remove statements for the class extents were explicitly added to

constructor and destructor functions of the element classes.

2. Declaring attributes indexable, as appropriate. Where an ObjectStore query spec-

ifies a particular path, each element in the path must be declared indexable in the

schema; ObjectStore maintains an access method for each data member mentioned

in a path. Thus, for example, we declared chemist name indexable because we wished

to retrieve chemists by name, in alphabetic order. Other indexable attributes in-

cluded application name and basis set name.

3. Designing rank functions to control ordering of instances in a class. ObjectStore

provides a facility for defining an iteration order where a navigation path ends in

the instances of a user-declared class: one need only supply a function called rank,

whose possible values for any pair of instances of the class are enumerable. For

example, since we wished to retrieve experiments for any given chemist in reverse

chronological order, we wrote a ranking function so that the order of experiments

could be determined, given experiment date and experiment time.

4. Designing class methods. For each class, we wrote constructor and destructor meth-

ods, as well as terse (one-line) and verbose (full object) displays. In addition, because

the definition of identity differs from class to class, and because having unique in-

stances of these classes mattered, we wrote class identity methods for classes where

we had defined an extent (collection of all instances).

3.4.4 Loading the Database

To determine the feasibility of building a database of past experiments, we built a proto-

type database of computational chemistry experiments, along with a rudimentary browser

for examining the data. In the course of this experience, loading the prototype database

with input and output files from previous experiments impelled us to make the database

a more integral part of the user's interaction with the application.
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The prototype implementation consisted of three major activities: building the schema

and creating the database, loading the data from 20 experiments into the database, and

implementing queries on the database. Of these tasks, loading experimental data was by

far the most time-consuming, even though we were working from experiment data that

had already been extracted from the application's output file.

We illustrate here the complexity of this task by showing the steps required for loading

a simplified "experiment" consisting of experimental data (date, energy) and a performing

chemist. To load this experiment we must load instances of two classes: experiment and

chemist. Assume in this case that the chemist who performed the experiment is already

in the database and that we do not wish to include duplicate instances of chemist in the

database. Note that ObjectStore distinguishes between temporary and persistent instances

of classes; a persistent instance is one that is stored in the database. Unlike relational

systems, which are value-based, ObjectStore does not preclude instances with identical

attribute values even of persistent classes. Identity in ObjectStore is not value-based; two

references to Objectstore class instances refer to the same instance if those two references,

i.e., object identifiers, are equal. Whether or not two instances of an Object-Store class

are value-equal is a application-level question.

To load the experiment instance in our example, we first read the experiment data

and created the persistent instance of experiment, leaving reference to chemist null. We

then read the chemist data, and created a temporary instance of chemist; we examined all

instances of chemist already in the database to see if the chemist referred to in the new

experiment was already in the database. If we found that chemist in the database, we

placed the object identifier for the new experiment in that chemists' "performs" collection,

then went back to the experiment instance and stored the object identifier for the chemist

instance in the experiment's "is performed by" collection. The intermediate collections for

the performs and is performed by relationships implement one-to-many and many-to-

one experiments. If we did not have a duplicate chemist, then we made the temporary

instance of chemist persistent, and (as above) placed its object identifier into the exper-

iment instance. What made the loading process so complicated was that we needed the

object identifier for the chemist instance to complete the experiment instance (and vice
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versa). Furthermore, to determine if we needed to create a new persistent instance of

chemist, we had to carry with the new experiment data enough information about the

chemist to check value identity with existing instances of chemist, and to create a new

instance if needed.

For every instance of experiment to be loaded, there were eight classes for which "exis-

tence" tests like the above were required. These tests made our database loader a complex

program. In addition, the loader required that all the necessary disambiguating attributes

be included with the data.

A second and more critical problem with a post facto database loader is that the

loading of experimental data into the database is not an integral part of the running of

the experiment, but a separate task for the user. Having the loading as a separate task

adds to the chemist's overhead in running experiments, can be inadvertently forgotten,

and inevitably would prove error-prone. In addition, having the database separate from

the applications did little to simplify the chemists' computing environment.

3.4.5 Summary: Data Services Alone are Inadequate

Experience loading our prototype database led us to conclude that capturing experimental

parameters and results must be an integral part of setting up and running experiments.

The best way to accomplish this objective, we felt, is to have input parameters origi-

nate in the database and be conveyed to the program, rather than originate externally

and be transferred into the database after the experiment has run. Recognizing object

equivalences after the fact seemed quite hard to automate, while creating inputs from the

database allowed simpler equivalence checks. Thus, for example, references to the chemist

performing the experiment could be directly inferred from the system, since a chemist logs

in to the system and establishes his or her identity. Similarly, when loading experimental

results we would know exactly which basis set was used because we would have generated

the input to that experiment (which included the basis set).

Chapter 4 treats in detail the problem of connecting computational applications to

our database, and explores the idea of modeling both applications and invocations of

applications as objects - as computational proxy objects. Because the proxy class is part
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of the database, we think of it as extending the database to provide computation services.



Chapter 4

Providing Computation Services:
Proxies

In Chapter 3, we showed how a database of past experiments could help computational

chemists make appropriate choices for input parameters to new experiments. We then

described the database design and recounted our experience building a database proto-

type. Problems encountered in loading data into the prototype prompted us to make the

capture of experimental parameters and results an integral part of setting up and running

computational experiments - generating program inputs from the database and captur-

ing results automatically upon experiment completion. That decided, we were then faced

with the problem of how to provide the requisite interface between computational applica-

tions and the database. The database-to-application interface must help the user generate

program inputs and capture program outputs, assure experimental reproducibility by link-

ing program inputs to outputs, and provide experimental comparability by representing

data from different applications in compatible formats. The resulting system should also

simplify the chemists' complex computing environment.

We considered and eliminated two traditional alternatives for interfacing applications

with the database. Modifying the applications to read from and write to the database

is impractical, and naively encapsulating the applications as database objects does not

provide adequate flexibility for controlling the running applications. We postulated that

structuring additional information and behavior about computational applications and

their invocations as objects would provide the needed power and flexibility. So we decided

to model programs and computations as complex objects using a structure of our own

82
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design dubbed "computational proxy". The idea of modeling programs and computations

as objects arose directly from the following considerations:

. The need to draw inputs directly from the database rather than insert them after

the fact into the database,

. The realization that a database object representing the input to an application could

also represent the invocation and control of that application, and

. The need to capture outputs from different applications in comparable formats to

assure experiment reproducibility and comparability.

This thesis offers an improvement over naive encapsulation as a method for interfacing

existing applications to databases, and this chapter constitutes the heart of that work -

the definition of the computational proxy. Design issues and alternatives are described in

Section 4.1, and Section 4.2 defines the computational proxy mechanism and lays out its

functional requirements. Section 4.3 provides design detail, including extensions to the

conceptual model made to accommodate the proxy mechanism. Section 4.4 describes the

infrastructure architecture. There we distinguish "database" (Le., proxy) responsibilities

from system and user responsibilities by specifying system-level services required to sup-

port the proxy mechanism and outlining the functions to be provided by a graphical user

interface to the computational chemistry applications.

4.1 Design Issues and Alternatives

This section describes design issues for the interface between computational applications

and our database. We first recount our initial design decision not to modify the applica-

tions to read inputs from and write outputs to the database. Section 4.1.1 argues that

neither this alternative nor a naive encapsulation of the application programs is appropri-

ate, and proposes an extension of encapsulation that provides ways to describe and access

applications and invocations of applications. Once our major design strategy was set, we

needed to determine how to describe applications to the database; challenges identified in

describingapplicationsdeclarativelyare laidout in Section4.1.2.
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4.1.1 Strategy for Connecting the Applications to the Database

The need to avoid post facto database loading and to make loading experimental data an

integral part of running experiments led us to consider the design alternatives described

here. An obvious way to meet our objectives was to interface existing computational

chemistry programs directly to the database by modifying the programs to access the

database for inputs and to write outputs directly into the database. We did not consider

this approach viable because the computational chemistry programs in question are com-

plex, very large (100,000 to 300,000 lines of codel), and revised at least yearly. Creating

and maintaining a direct database interface to these programs would involve, first, finding

and replacing all read accesses to inputs and all write statements for outputs in 5 or 6 very

large programs, and then repeating this exercise whenever new versions of the applications

were released. Such a programming and maintenance task is not feasible.

A second obvious alternative was naive encapsulation. In this case, each application to

be interfaced to the database is "wrapped" with a wrapper object that receives and pro-

cesses requests to run the application. The application would be invoked when a message

with the input data as an argument was sent to its wrapper object. A more integrated

approach than naive encapsulation was to leave the application program untouched, and

encapsulate it as a database object or as a message of a database class. Under this ap-

proach, an application would run when its corresponding message was sent to the object

representing its input. Either encapsulation approach assumes some way of calling out to

the application or linking it in to the database's executable file, as well as constructing

conversion routines between data objects and files. While "wrapping" a legacy application

may work in some cases, we believe it is too limited an approach in general.

Encapsulating computational chemistry applications, capturing an external application

program as a single object or message as above, assumes a very simple input-output

model, one where all the inputs are passed in as a unit, the program executes and then

outputs are sent out as a unit. Such a simple model is inconvenient and inappropriate

for computational chemistry applications for the following reasons. First, we need to

1MELDF is considered a "small" package at over 100,000 lines. Gaussian 92 is over 300,000 lines.
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separate supplying inputs from scheduling the execution of the program. Second, because

the computations are long, the chemist would not want to wait while it executes. We

wanted the program to run asynchronously from the database session, freeing the chemist

to do other things with the database while the application executes. Thirdly, instead of

treating the program execution as an atomic action, we wanted to monitor its progress

in order to stop it, checkpoint it or observe intermediate results. Finally, a single object

or message gives little help for organizing and gathering inputs or for structuring the

translation process.

We eschewed the two design alternatives above. (1) Directly interfacing the applica-

tions to the database would provide an easy way to provide input parameters from the

database and to capture results into the database, but such modifications would be im-

practical to maintain in the face of continuing releases of these application programs. (2)

Encapsulating the applications as database objects did not provide any ability to monitor

and control ongoing experiments. We thus explored the idea of modeling both applications

and invocations of applications as objects, calling the structure that modeled computa-

tions as objects a "computational proxy" and hypothesizing that the proxy structure

and mechanism would provide an interface of computational applications to the database

without having to immediately modify the programs themselves. We furthermore believed

that the proxy structure could provide the chemist with help setting up and monitoring

experiments.

4.1.2 Challenges in Describing Applications Declaratively

Having made our fundamental design decision about connecting applications to the database,

we were left with the question of how to structure and engineer the computational proxy.

A design goal for the computational proxy was that adding an application or installing an

updated version require neither changes to the database schema nor extensive application-

specific programming. Because changing the database schema requires database design

skill as well as technical knowledge of a specific database management system, we wanted

to represent application inputs and outputs declaratively, within the database. Represent-

ing this information declaratively, and providing database methods for its interpretation,
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minimizes application-specific programming. Application-specific programming is mini-

mized because operational differences in running different applications (where automated

at all) are often handled by special-purpose programs (which are expensive to write);

we reasoned that if the proxy could read declarative information about applications and

generate the desired application-specific action, less application-specific code would be

needed.

This section describes the challenges in describing the interface to computational appli-

cations declaratively. Writing a special-purpose program to interface one version of one ap-

plication to the database is relatively straightforward. Indeed, we wrote a special-purpose

program to do so in an initial feasibility study (described in Section 5.2.1). However,

writing and maintaining one special-purpose interface per application quickly becomes a

daunting programming effort when faced with yearly releases of several applications. In

addition, writing any new program in the context of an object-oriented database system

often means creating new classes. Creating new classes violates our design goal of min-

imizing database schema changes, and a proliferation of classes would prevent us from

preserving a common and stable conceptual model that facilitates the user's understand-

ing of the database. Because of these issues, we were committed to finding ways for

application registrars to describe applications in a declarative, rather than procedural or

programmatic, manner.

While writing descriptions of the applications that one wishes to interface to the

database is easier for the non-computer-scientist than writing code and adding classes to

the database, providing the mechanisms to interpret those descriptions is far from trivial.

Interpreting those descriptions and carrying out the actions so defined requires writing,

in essence, an interface to the database general enough to cover the major applications

within a specific domain. Writing such an interface is considerably more complex than

writing one or even several database interfaces for specific applications. The research issue

involved here is whether it is possible to design and implement database objects that can

interpret user-defined descriptions of applications and use them, in conjunction with other

information in the database, to drive program input, invocation and data capture. Our

work has involved designing structures to describe applications and implementing tools
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that interpret those structures.

For our application descriptor mechanisms to work requires, first, that a single con-

ceptual data model cover the semantic domain so that users can maintain application

interface information without making schema changes. Second, this model must be im-

plemented into a particular database system. Third, inputs and outputs of application

packages must be conformable to the conceptual model. By conformable we mean that the

conceptual model subsumes the types implicit in application inputs and outputs. Being

conformable further implies that database programs can translate database objects to and

from application inputs and outputs.

We summarize our research problem and approach as follows: Creating classes and

methods is difficult, expensive and error-prone; creating instances of existing classes is

much easier. But, can we set up a system so that applications can be attached to the

database simply by creating new object instances? One way to accomplish this task is to

produce new database objects that describes application input and output files along with

their relation to corresponding database objects, and to provide a general interpretation

mechanism for these descriptive objects. We can then design a language that a chemist

can use to create instances of the descriptive objects. Given a way of defining applica-

tion inputs and outputs, we can write additional mechanisms for controlling application

invocation.

Our approach raises the following challenges:

1. Providing an interpreter for application descriptors that is application-independent.

To do this, we must make explicit the division between the part of the proxy that

is application-independent and the part that is application-specific (and hence will

require customization on a per-application basis).

2. Designing a language so that a chemist can build a model of application inputs

and outputs. To meet this challenge, both the conceptual model that describes the

semantic content of application inputs and outputs and the language that describes

the syntax of those inputs and outputs must be sufficiently general to cover a range of

applications in the domain. If the database conceptual model is adequately general,
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then application inputs and outputs are simply syntactic variants of existing entities

in that model.

3. Clearly dividing responsibility for controlling application invocation between the

proxy and the network services. The proxy can gather domain-specific information

that might affect network-level (policy) decisions, but the network services should

provide the mechanism for accessing processors. Thus, for example, the proxy gath-

ers the program inputs, and the network services physically send inputs to the chosen

processor along with a message (built by the proxy) to start the application.

In spite of the high degree of semantic and syntactic complexity in the application

programs, we believe we can meet the first two challenges because the application programs

are based upon common scientific principles, principles that evolve at a relatively slow

rate. Thus, our conceptual domain model (described in Chapter 3) describes scientific

principles rather than several particular applications. We have approached the challenge

of describing syntactic variants of the domain model by designing an input file generation

language (in effect a scientific database report writer) and an output file (text) parsing

language. These languages cover the major experiment run types in common use, and are

described in Section 4.3.

Our efforts to meet the third challenge, described in Section 4.4, have taken into

account current distributed operating systems research that takes as precept a client-

server (distributed) computing environment clearly separating policy and mechanism [13].

4.2 Computational Proxy: Definition and Functional Spec-
ification

Recalling the user scenario for ab initio applications from Section 3.1, we note that the

database of past runs helped a chemist to choose input parameters, but not to actually

perform the experiment or to place experiment results into the database. The proxy mech-

anism addresses these needs. With it, the user can start up and control computational

processes, as well as capture important information about a given computational experi-

ment. When the user schedules a run, a proxy uses a description of the given application
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Figure 4.1: A data-centered framework for computational science.

to automatically transform experimental attributes held in the database into appropriate

inputs formatted for that application. Once the run has terminated, the proxy again uses

the application descriptor, this time to parse the outputs and place experimental results

into the database in a common form.

We call our infrastructure "data-centered" because the proxy itself is a database ob-

ject, because the proxy relies on the database for information about applications, because

the proxy takes experiment input from and places results into the database, and because

the proxy uses the database to maintain a persistent representation of an ongoing exper-

iment. Figure 4.1 illustrates the role we envision for computational proxies: the point of

contact between the user interface and computational applications on the one hand, and

between network services and computational applications on the other. The central box

in Figure 4.1 encompasses the proxy plus database. The User Interface, shown in the left

box, includes three components: the Computational Chemistry Interface Advisor (a user

interface to computational applications under development by Dr. David Feller and oth-

ers at Pacific Northwest Laboratories), one or more molecular editors, and an experiment

database browser. The Network Services component provides distributed system services

such as transferring files and starting up and stopping processes.
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The key component of our experiment management infrastructure is the computational

proxy object. An instance of proxy "stands-in", within the database, for every compu-

tational experiment in preparation, currently in process, or recently completed. Methods

associated with the proxy class provide an interface to the computational programs that

run those experiments. Implemented as persistent, object-oriented classes with data and

methods, the proxy mechanism encapsulates syntactic differences among semantically re-

lated applications.

Figure 4.2, a simplified view of the proxy and an experiment process, illustrates a func-

tional view of the proxy. The proxy generates an experiment input file. Control of the

computational chemistry experiment process consists of launching the process, controlling

it and registering the fact that the process has terminated ("mooring" the experiment).

Corresponding to each active experiment is a proxy object; the proxy object maintains a

persistent record of the experiment that can be viewed by the chemist. Once the experi-

ment has completed, the proxy transforms results into a format common to all applications,

and loads them into the database. The generate, launch, control, moor and parse functions

may be invoked from a remote machine, using appropriate network services.

Figure 4.3 shows this conceptual encapsulation of computational chemistry applica-

tions. Here, we see two separate experiments on the water molecule, one using the



91

Level of Theory

Molecule

olecular Orbital

~o

Computational

Chemistry
Experiment

Computational
Chemistry

Experiment

Figure 4.3: Hiding syntactic complexity of computational codes.

GAMESS application and the other the Gaussian application. Inputs to the experiment

are presented in the boxes directly above the experiments themselves, namely molecule,

basis set, basis set instance and level of theory; each comes from the database and is trans-

lated by a computational proxy (using an input template) into specific formats required

by the respective application. The proxy uses output templates to translate application

outputs into a common format before placing them in the database. In this case, experi-

ment results of interest consist of two molecular orbital objects, one associated with each

experiment.

An instance of a proxy object is created as soon as a chemist begins building an ex-

periment, and holds experiment information that is of an ephemeral nature, i.e., relevant

only to the running of that experiment at a particular point in time, on a particular ma-

chine. The instantiation of a computational proxy extends from the point when a chemist



92

begins to conduct an experiment to that point in time when the chemist declares that

the experiment has successfully completed and output data have been retrieved. A proxy

representing an unsuccessful experiment is retained until that experiment is updated and

resubmitted, or until the chemist archives or abandons the investigation containing that

experiment. Thus, the computational proxy object associated with a given experiment

will ultimately be removed from the database or archived. While an experiment is active,

the proxy holds information idiosyncratic to the process actually running that experiment,

such as the process ID, current resource utilization, and names of working files. The ex-

periment object that represents a successful experiment, as opposed to the proxy object

that represents that experiment's computation, endures within the database as the locus

of scientific information about that experiment.

4.2.1 Computational Proxy: Conceptual Model

This section describes how our conceptual model for the computational chemistry database

was extended to include the computational proxy. After an initial narrative illustrating

how the proxy entity relates to other entities, we go on to list the attributes comprising

the proxy entity. As in Chapter 3, entities (Le., database objects) are italicized, rela-

tionships between entities are expressed in boldface, and attributes are underlined. The

entity-relationship diagram in Figure 4.4 represents the information model for the proxy

and illustrates the narrative description of the conceptual design below. The entities com-

putational application and computational experiment have already been described in the

CCDB conceptual model. (See Figure 3.6.)

A computational proxy represents a computational experiment and controls the com-

putational process that corresponds to that experiment. A computational experiment is

conducted as a computational process by the proxy. A computational process runs on

a particular computer, which is connected to the same network service to which the proxy

itself is connected. Any particular computer is an instance of some generic computer

platform, e.g., the processor "coho" is an instance of a "Sun4" computer platform.

Any running computational experiment uses a computational application. In order for

an experiment to run on a particular computer, the application it uses must be available
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Figure 4.4: Information model for computational proxy.

for the corresponding computer platform and installed on a particular computer of that

platform type.

Templates describe the input and output file formats for a computational appli-

cation. The experiment type describes the computational activity for an experiment.

Experiment type is a classification of computational activity that cuts across applications;

thus, for example, two applications might support the "optimize" computational activity.

Because parameter requirements differ according to the experiment type, experiment

type within application serves as a grouping factor for template objects. Templates are

discussed in Sections 4.3.3 and 4.3.4.

The proxy contains information about the application process that relates to the actual

running of the experiment. Defining the experiment entity separately from the proxy

entity allowed us to cleanly separate information of scientific value from information about

the running per se of the experiment. Information of scientific value is stored with the

experiment (or associated objects such as molecule), while information of operational value

is stored with the proxy. Information of scientific value is maintained in the database as

long as it has scientific value. Data of an operational nature, Le., the proxy, is deleted as
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soon as it is no longer needed - when the computational experiment has completed. The

primary clients of the experiment object are persons, (i.e., the scientists); clients of the

proxy object are other database objects.

The proxy object holds the following information, although some attributes may be

null for any particular proxy object:

1. Date and time the computational process was last monitored.

2. Cumulative resource usage, in terms of the particular computer on which it is be-

ing run: CPU time, disk space utilized, temporary disk space utilized, elapsed time.

Resource usage in general terms, e.g., megaflops2, is stored with the experiment since

general measures of resource utilization are relatively independent of the particular

computer on which the experiment was run.

3. Process identifier of the corresponding computational process.

4. Current status of the computational process, i.e., not-scheduled, scheduled, running,

moored, aborted (by the system) or stopped (by the user).

5. Input file name(s).

6. Output file name(s).

The experiment object holds information sufficient to reproduce the experiment, and

the proxy object contains information sufficient to locate and control the experiment's

computational process.

In Section 3.2.4, we specified what information about computational applications and

particular computers must be available in the database to identify the experimental appa-

ratus on which computational experiments were performed. Adding computation services

to the database means that additional information about computational applications and

particular computers (which we call "compute hosts") must be made available to invoke

and monitor computational processes. The following network-level information must be

accessible to the computational proxy:

2Millionsof floating point operations per second.
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1. For each particular computer (compute host): full network address, subdirectories,

and maximum resources available where each application's files must be placed.

2. For each computer platform: performance level, e.g., parallel, super, mid-range, mi-

cro.

3. For each application: invocation signature. By invocation signature, we mean the

explicit calling sequence required to invoke the program.

The above information is available to users, the user interface, and the proxy when making

decisions regarding the scheduling of experimental processes.

4.2.2 Database Support for the Proxy: Registering Applications

In Section 4.2.1 we described the information structure of the proxy itself. To support

computational applications with the computational proxy, we need the ability to register

this information about computational applications with the database.

Information about applications required for our needs falls into two categories: infor-

mation for the scientists' direct use (already described in Section 3.2.4) and information

needed by the proxy. Information in the latter category consists of descriptions of ap-

plication parameters, inputs and outputs. One goal of the proxy design is to allow a

computational chemist who is an expert user of an application to register that application

with the database. We believe that scientists should be able to add or modify applica-

tion interfaces for the system without having to understand the technical details of the

database design, or having to consult programmers or database administrators when mi-

nor changes to an application occur. There is no substitute for having a domain scientist

knowledgeable in an application define that application to the system, but the application

registrar should not have to be a computer scientist or systems programmer to define his

or her application to the database.

We use the term application registrar to distinguish the application-expert-user who
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registers applications from the application-user.3 The application registrar needs to un-

derstand the computational chemistry database schema, but not the particular database

management system in which the database has been implemented. To write templates,

the registrar needs to understand in detail the experiment types supported by the ap-

plication and the application formats for input and output, but only in general how the

proxy generates input and parses output files. The registrar will also need to know which

compute hosts can run the application, and details about those hosts sufficient to start

up an application on each.

4.2.3 Computational Proxy: Behavior

In this section, we describe the behavior of the computational proxy entity. Because we are

describing an entity of our own creation, rather than capturing an existing process, the

format we use for describing the conceptual model varies from that used for conceptual

models elsewhere in the thesis. Here, to clarify the proxy's behavior, we include a scenario

for the proxy interface to computational applications. Below, each behavioral component

of the proxy is underlined.

Computational proxies generate application input files using information stored in an

experiment object and templates that describe input formats. The proxy launches or

starts a computational process, and controls that process as long as the process is active.

When the process has terminated, the proxy moors the application process by marking

the experiment object complete. The proxy then parses application output files using

templates that describe these output files and loads results into the experiment object.

The functions above may be performed across heterogeneous compute hosts.

Proxies interface computational applications to the object-oriented database system

roughly as follows. When a chemist indicates that he or she intends to conduct a computa-

tional experiment, an instance of a computational proxy is generated within the database

to represent that experiment. A scientist creates or selects an initial molecular structure,

3We did not implement a user interface for application registration. In our prototype, application-
specific templates and information about where applications run are loaded into the database from ASCII
files.
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views previous experiments on similar molecules, and uses those previous experiments as

exemplars to build or select appropriate inputs and parameters for a new experiment. The

proxy mechanism uses this image of the experiment in conjunction with descriptions of

the application syntax known collectively as an input template to generate input to the

computational process. The proxy then ships the input to the compute host and invokes

the application, starting up a computational process according to specifications in the

experiment object. The chemist need not log on to the compute host. Thus, the proxy

hides both syntactic details of the application and architectural details of the network.

The proxy periodically monitors the computational process, and maintains a record that

the chemist can access, independently of network details or current availability of a remote

machine on the network.

When the experiment has finished, the proxy automatically transfers the output file

to the database. Using descriptions of the application's output known as output templates

the proxy reads the output file and converts results into a common format independent

of the application and loads the results into the database experiment object. The proxy

provides for the automatic capture not only of outputs of the computational process but

also of associated metadata of the experiment such as date, time, and performing chemist.

The proxy mechanism stores and possibly transforms these data so that they can later be

displayed in a common format regardless of what application generated them. Once the

chemist has analyzed results, the experiment can be repeated by replicating the experiment

object, changing values as needed, and generating a new proxy.

The above functional specification of the proxy led to the logical design of its functional

components: input and output templates, application registration, data input and data

capture, and mission control. The following section of the thesis describes our design of

these components.

4.3 Functional Components of the Computational Proxy

To provide communication between the database and the computational process, the proxy

supplies the following services: data input to computational applications, data capture
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from their output, and control of the application processes themselves. To perform these

functions, the proxy accesses information about each computational application from its

templates; Section 4.3.1 contains a conceptual model for input and output templates, and

shows how templates relate to other database entities. Section 4.3.2 covers registration of

new applications, Le., how information about applications are entered into the database

and templates are specified. Sections 4.3.3 and 4.3.4 show how the proxy mechanism uses

templates to build input files and parse output files.

Mission control, addressed in Section 4.3.5, provides for starting or stopping a compu-

tational experiment, examining intermediate outputs, and querying the use of resources

during execution.

4.3.1 Input and Output Templates

This section defines template entities in conceptual modeling terms. A template describes

a syntactic variant of one or more domain database entities. Input and output templates

describe application inputs and outputs, and direct the proxy's mapping of objects from

the domain-specific database to application-specific inputs and from application-specific

outputs to the database. A template object defines the translation from a particular

database object to a textual representation of that object and vice versa. Thus, for

example, an output template for the molecule entity for the GAMESS application shows

how to transform a textual representation of molecule in the GAMESS output format to

a molecule object in the database.

Figure 4.5 shows the relationship between other database entities and the input tem-

plate. An input template for a particular experiment type for a particular application is

generated from a sequence of statements written in the Computational Chemistry Input

Language. For each application and experiment type supported by that application, there

is one input template, as defined by the ternary relationship (describes inputs) between

experiment type, application and template.

Output templates are organized somewhat differently. A list of output templates called

the master template comprises the definition of the output file for a particular experiment

type and application. There is one master template for each particular experiment type
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Figure 4.5: Conceptual model for template.

for each application. Any given application will need an output template for each database

object to be parsed. The occurrence of an output template for an experiment object in

the master template for a given application and experiment type indicates that we wish

to load data for that experiment object after running an experiment of that type using

that application.

Assume, for example, that the GAMESS application supports two experiment types,

ENERGY and OPTIMIZE, and that for ENERGY experiments we will load an energy

value, and for OPTIMIZE an energy value and an (optimized) molecular structure. As-

sume further that output files for the ENERGY and OPTIMIZE experiment types repre-

sent energy in the same format, so that only one output template is needed to describe

how to load the energy object. Two master templates, i.e., two lists of templates, are re-

quired: one list (for ENERGY experiment type) consists of just an energy-value template.

The other list (for OPTIMIZE) consists of two templates, the energy-value template and a

molecular structure template. There is only one energy-value template for this application,

but it appears in two master template lists.
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Of course, if application-specific formats for output files differ for a given object de-

pending on the experiment type, there must be an output template for each format.

4.3.2 Application Registration

Before a computational application can be invoked through the database proxy mechanism,

it must be registered with the database. In this section, we specify the information about

applications that the proxy needs and describe the process by which this information is

entered in the database. Recall that the person who registers an application is called

the application registrar or simply registrar. The registrar is a computational chemist

who understands the semantic and syntactic profiles of the application being described.

The registrar need not be a programmer or have extensive knowledge of database systems

software, but he or she must understand the computational experiment schema and be able

to map textual elements in the application's input and output files to the corresponding

elements in the experiment schema.

To register an application the registrar provides a description about the application

and its computing environment sufficient to run an experiment and capture its output. In-

formation about the application (name, allowable experiment types, target processor type,

relative location of files, etc.) is loaded into the computational application database ob-

ject. Information specific to the application's input and output files is placed in input and

output templates. Where a template cannot describe data conversions, special-purpose

functions to convert database types to or from textual formats for input or output files

must be added to the database schema as methods for the appropriate database object. If

the textual format cannot be described using existing database types, the registrar must

also add a new type to the database. We call such a type a foreign type because it cannot

be described in terms of the types native to the application schema or the database man-

agement system. Even though the registrar is not a programmer, he or she should be able

to recognize whether a new application being registered will require conversion functions

or new database types. If so, the database administrator (a programmer) must modify

the database schema and perhaps write input functions for the new types.
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Figure 4.6: Application registration functions.

Figure 4.6 depicts application registration functions performed by the registrar. Spe-

cific information required for each of these activities is shown at the leading edge of

arrows pointing to the box representing each function. Components of the database that

are changed as a result of each function are shown at the head of the arrows emanating

from the box.

Information about the Application

Information about the application is stored in the Computational Application object, which

consists of the following descriptive information about an application.

1. Name, author and publisher of the application.
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2. Date and time when the application became available.

3. Any remaining details about the application, for example, the maximum "1-value"4

for a specific basis function that an application supports, the maximum number of

Gaussians in a contraction for each I-value, and whether the code supports pure

spherical components of the Cartesian Gaussians (e.g., 5 component D's).

In addition to the information above, relationships between the Computational Appli-

cation instance and other database objects must be instantiated:

1. Programming language and language-version of the application.

2. Experiment types, Le., computational functions (computational algorithms) per-

formed by that application, such as RHF (restricted Hartree-Fock), UHF (unre-

stricted Hartree-Fock), SDCI (singles and doubles configuration-interaction).

The registrar must be aware of nuances in the conceptual model, such as distinctions

between computational application and version of computational application. As discussed

in Section 3.2.4, a single instance of a computational application (from this point on called

"application") can be versioned. Database information about applications resides either

in the application object or in the version-oj-application object. (Recall Figure 3.5.) When

an application is first registered, two objects are created; the application object contains

information that we believe is common across versions of a computational application

(name, publisher, etc.) and the version-of-application object contains information specific

to a particular version such as experiment type and maximum I-value. Application objects

and version-of-application objects are related to each other in two ways: (1) an application

may have several versions, but (2) each application has only one current version. The

publisher's version number of an application is part of the version-of-application object.

A particular experiment is run using a version-of-application, though the user need not

be aware of the distinction between an application and version-of-application. Thus, for

example, a particular installation may register version 3.0 of Gaussian as its first version

4The term l-value refers to the value of the angular momentum quantum number as represented by the
spherical harmonics s, P, d, f, etc.
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of Gaussian. The next release of Gaussian, say version 4.0, will be the second version of

Gaussian registered. The database differentiates. experiments run using version 3.0 from

those using version 4.0. Input and output templates are associated with a version-of-

application, since file formats may change with releases of the application. Of course,

application versions may share input and output templates. (For simplicity's sake, we

have in this thesis largely ignored the distinction between running different versions of an

application. )

Another example of information that differs among versions of application is program-

ming language version. Version 3.0 of Gaussian may have been written in Fortran 77

v3.0, and version 4.0 in Fortran 88 v1.0. The particular compiler for the application is a

function of which platform and machine the application is installed on, and is discussed

in the section on the computational proxy architecture (Section 4.4).

Information about Input and Output Files

Computational chemistry applications produce two kinds of files of interest to the proxy,

intermediate and output files. Intermediate files are rarely directly examined by the human

user and typically contain very large matrices written during the nth iteration of the

simulation. These files are read by the application as input to the (n + l)st iteration.

Intermediate files were historically used to store matrices too large to fit in their entirety

into memory.

The output file contains experiment results. Though normally consulted only when

the experiment has completed, the output file is often used to store information about the

experiment as it is running. This file can be consulted while the experiment is running to

determine if the experiment is converging, and, if so, how close it is to convergence.

In some cases intermediate or output files can be used to restart a computation that

has been stopped or aborted. The computational proxy can read intermediate or output

files while an experiment is in progress and respond to user queries about how close the

calculation is to convergence. Since a badly specified experiment might not terminate, or

might run for months, even very rough estimations are useful.

Information about the syntax of the applications' input and output files is stored in
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input templates and output templates, respectively. As explained in Sections 4.3.3, 4.3.4

and 4.3.5, the proxy uses the templates to perform input file generation, output capture

and domain-level experiment monitoring. Below is a description of input and output

templates and the process by which they can be added to the database.

1. Input Template. An input template specifies the layout of an application's input

file for a particular experiment type. An input template contains information suf-

ficient to generate the input file for that application given an experiment object

in the database. As part of application registration, an input template instance,

couched in the "Computational Chemistry Input Language" (CCIL), is loaded into

the database. The input template is stored in the database as CCIL text (actually

a sequence of CCIL statements). This sequence of CCIL statements is input to the

proxy's input file generator.

2. Output Template. Analogously, output templates specify the syntax (format) of

an application's output file. An output template maps a textual data object to

a database object, and defines any required syntactic translation. A given output

template is specific to an application, an experiment type, and an object in the

experiment database. The ordering of templates into a master template list defines

the order in which the computational proxy would most efficiently parse the output

file. There is one master template list per application and experiment type.

More detailed information about these templates follows.

4.3.3 Data Input: Generating Input Files from the Database

We distinguish information about the subject of experiment and experimental parameters.

The subject of the experiment is the molecule itself. Information about the subject of the

experiment is added to the database prior to the request to schedule an experiment, via

some domain-specific editing facility (e.g., a graphical molecule editor) or by copying from

a previous experiment.s We have made the simplifying assumption that scientific data

5Since computational chemistry experiments often update (optimize) molecular structure and since

molecular structure is the defining characteristic the CCDBmolecule object, "copying" a molecule instance
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Figure 4.7: Application input functions needed by the computational
proxy.

describing the subject of the experiment are present at the time the user asks to launch

an experiment. Experimental parameters (described below) define the experiment to the

application.

The proxy's data input component has three functions: requesting experimental

parameters from the user, generating the application input file, and moving the input file

to the processor (called the compute host) on which the application is to run. Figure 4.7

depicts these functions; inputs to (and outputs from) each function are shown in italics

above (and to the right of) the box enclosing the function name. Inputs from or updates

to the database are prefixed by db:. The three data input functions are further explained

below:

1. Request Experimental Parameters. Before the input file is generated and the

to set up a new experiment adds a new molecule instance to the database, rather than creating a shared
referenceto an existingmolecule.
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experiment launched, missing input parameters (if any) must be supplied.6 Some pa-

rameters, such as experiment type, can be requested in terms general to the domain

and later translated into application-specific formats, but other parameters may be

application-specific or relevant only to a given site. Examples of experimental pa-

rameters generally applicable across several applications include: the self-consistent

wave function (SCFTYP) and the Moller-Plesset perturbation level desired; the type

of output required (if not obvious from the data item requested) such as minimum

energy only, minimum energy plus field gradients, or geometry optimization; and

the units in which the application should cast certain outputs. An example of a

parameter specific to one application (Gaussian) is the parameter that specifies that

a special checkpoint file be saved. This output file is usually deleted after an ex-

periment, but it could be used to restart the application efficiently. An example of

site-specific information is the machine on which to run the experiment.

2. Generate Input File. When a user request triggers the launching of a computa-

tional experiment, the proxy generates an input file for the experiment, formatting

data appropriately for the application using an input template. Which parameters

are required is a function of experiment type. If an experiment type requires a

specific experimental parameter, then one or more CCIL statements in the input

template generate the textual form of that parameter. We make the simplifying as-

sumption that input to a computational application consists of a single ASCII data

file. Although some applications require more than one file as input for certain ex-

periment types, implementing a multi-file or object-level interface is not conceptually

more difficult than generating and shipping a single ASCII file.

3. Move Input File to Compute Host. The computational application is rarely

run on the same machine as the database itself. Thus, the proxy must take care of

sending the input file to the processor on which the application is to be run.

6In a full implementation, a user interface will inspect the experiment for completeness and conduct
a "conversation" with the user to complete the experiment. The proxy will then check whether the
experiment is fully specified before submitting it for execution.
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$CONTRL TIMLIM=999.0 MEMORY=2000000 $END
$CONTRL SCFTYP=RHF UNITS=BOHR $END
$CONTRL RUNTYP=OPTMIZE $END
$CONTRL MPLEVL=O $END
$DATA OPTIMIZE CONY RHF H2/STO-3G/MPO
C1
Hydrogen 1.000000 2.325134 1.729993 0.000000

S 3
1 3.425251 0.154329
2 0.623914 0.535328
3 0.168855 0.444635
Hydrogen 1.000000 -2.325134 1.729993 0.000000

S 3
1 3.425251 0.154329
2 0.623914 0.535328
3 0.168855 0.444635
$END
$GUESS GUESS=MINGUESS $END

Figure 4.8: Sample input file for a GAMESS experiment on hydrogen.

For example, to perform an experiment to optimize the geometry for the hydrogen

molecule using the computational application GAMESS, a chemist first tells the system

that he or she wishes to run such an experiment. In response, the proxy creates a new ex-

periment object of experiment type "optimize" that uses the GAMESS application. Once

the chemist has specified additional input parameters and is ready to run the experiment,

the proxy generates an input file that specifies those input parameters.

The input file given in Figure 4.8 controls an invocation of the GAMESS application for

a conventional RHF experiment run on hydrogen, i.e., SCFTYP = RHF and RUNTYP

= OPTIMIZE. The level of theory specified is 0, and the symmetry of the molecule is

assumed to be of type C1 (none). Following the x-y-z coordinates of each atom is the

basis set. To generate this input file, the proxy mechanism uses an instance of input

template for the "optimize" experiment type for the GAMESS application. The input

template object is defined to the database using CCIL. (A praecis of CCIL follows.)

Once the input file is generated, the proxy launches the experiment. While an ex-

periment is running, the proxy monitors the experiment at regular intervals and at user

request. Once the experiment process has terminated, the proxy moors the experiment

and captures its results.
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The Computational Chemistry Input Language

The Computational Chemistry Input Language (CCIL) is a layout language designed to

define ASCII text (input) file formats for ab initio computational chemistry applications.

The proxy mechanism that generates application input files expands CCIL references to

database objects to produce text values for experiment data stored in the database. The

CCIL is in effect a special purpose "report writing language", providing for specially

formatted reports of experiments from the database.

A sequence of CCIL statments for a particular experiment type and application is

called an input template. In the context of a particular experiment, the proxy uses an

input template object to generate an input file for that experiment. The sequence of

CCIL statements that constitutes an input template object could be written directly by

the registrar, but we think of the CCIL as an intermediate language to be generated by

the registrar user interface. In either case, a description in CCIL of an application's input

file format must exist for each experiment type supported by that application before the

proxy can generate input files for experiments with that experiment type and application.

The CCIL Interpreter is the proxy method that reads the input template object in

the context of a given experiment and produces an input file. The interpreter is always

invoked in the context of a particular experiment and expands database references within

the input template so that experiment data from the database is included.

The language specification for the CCIL follows below. The reader will find it helpful

to refer to the example input file and CCIL code in Figures 4.8 and 4.9, respectively.

. An input template is a sequence of statements written in the CCIL.

. CCIL statements are separated by semi-colons.

. A CCIL statement can consist of an "ITERATE OVER" command. The body of an

ITERATE OVER command is a sequence of CCIL statements. One can ITERATE

OVER a list of CCIL statements or a database collection. Iterating over a list

of CCIL statements generates a sequence of CCIL statements. Iterating over a

database collection causes the interpreter to retrieve a collection of database objects
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one by one and transform each object in that collection to a textual representation.

Examples of these two alternatives follow in the discussion below.

The full syntax of the ITERATE OVER command is:

USING <loop-control-variable> ITERATE OVER <some-collection>{

<a-sequence-of-CCIL-statements>}.

· A CeIL "USE...FOR" statement defines a variable that, when later used in a se-

quence of CeIL statements, is replaced by a literal given in the USE statement. The

syntax of the USE statement is:

USE <variable-name> FOR <literal>.

· A CeIL "DEF" statement defines a format, a list of statements, or a sequence of text

characters. Formats and lists of statements must be named, and must be defined

before reference.

- A CeIL format defines a set of simple transformations, each from a value (in

the database) to a textual representation for that application. Each transfor-

mation is given as a value pair separated by "->". The database value is given

first, followed by " -> ", followed by the textual equivalent. Sequences of value

pairs are enclosed in brackets "{. . .}", and each value pair is given on a sepa-

rate line. The database value mayor may not be a character string. The textual

representation will most often be given as a character string, but it might al-

ternatively be given as a type for which a string conversion method is known

to the CeIL interpreter. Textual representations must be enclosed in quotes;

database values must be enclosed in quotes if the type of the corresponding

database object is a character or string type.

DEF format <name-of-format> {

database-value -> "textual-representation"

database-value -> "textual-representation"

. . .}
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For example, assume that a level of theory value in the database is given as (the

character string) "MP!" and that an application requires its corresponding level

of theory to be given as (the character string) "!". Statement 3 in Figure 4.9

shows such a CeIL format transformation for this situation.

When a format name is later referenced in a CeIL statement the "name of

format" is preceded by "%".

- A CeIL list of Statement defines a list of CeIL statements. A defined list of

CeIL statements can be used in an ITERATE OVER command to generate a

sequence of CeIL statements.

DEF list of Statement <name-of-list-of-Statements> {

ceIL statement;

ceIL statement;

.. .}

In Statement 4 of the CeIL example in Figure 4.9, the list of Statement eon-

trolStatements is defined. In Statement 5, the ITERATE OVER feature is used

to generate a sequence of CeIL statements each beginning with "$eONTRL"

and each ending with "$END", as in the first four lines of the example input file

in Figure 4.8. The loop control variable for this ITERATE OVER statement

is eontrolStatementj it marks the place in the body of the ITERATE OVER

where an element from the collection is placed.

- A CeIL statement not preceded by "DEF" defines a sequence of ASCII char-

acters to be written to a file. The text is generated in the order in which the

CeIL statements appear. The interpreter generates a linefeed character after

generating text for each statement.

Text to be generated by the interpreter is given as CeIL terms. A charac-

ter string generated by a CeIL term is called a "textual term". CCIL terms

expressed in a single statement are separated by one or more spaceSj the inter-

preter generates a space to separate two textual terms on the same line in the

output file. A CeIL term can be:
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* An escape sequence. Escape sequences are defined as per the language

C [99]; those of interest are newline (\n) and tab (\t). No spaces are

generated after an escape sequence.

* A string literal. A string literal is a sequence of characters (as defined for

C) surrounded by quotes, as in "$CONTRL".

* A database object. Database objects are referenced using path expressions.

A CCIL path expression consists of a class name followed by one or more

data element names. Relationship names are preceded by "->", and at-

tributes of classes by".". The head of the path expression is the current

experiment object in context. The proxy input file generator is called in

the context of a particular computational experiment; thus "self' is the

current computational experiment in context, an instance of the CCDB

class "CompExperiment". All CCIL path expressions are resolved from

the binding of "self'. The name of a database path expression is enclosed

in single quotes in the CCIL.

Database objects, unless otherwise specified, are displayed by the inter-

preter using the standard display function for that object.

For example, 'CompProxy. timlim' is a CCIL reference to an ObjectStore

database object; "timlim" is an attribute of the CompProxy object. Where

'CompProxy . timlim' appears in a CCIL statement, the value of the cur-

rent instance of that object will be displayed.

A database object can be converted to an alternate format using one of

two format conversions: a format conversion defined in the CCIL pro-

gram by a format statement or a format conversion defined in the database

schema as a method for that database object. Format conversion names

and database method names are preceded by "%". Where a format con-

version and database method have the same name, the format conversion

name takes precedence.

For example, in Figure 4.9 two format conversions are specified. In State-

ment 4, the database object 'CompExp->isTakenTo.name' is transformed
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according to the "LeveIOITheoryFormat" format conversion defined in the

CCIL program itself. In Line b of Statement 9, the database object

'atom.name' is formatted according to the database method for the atom

class "asAtomicNumber".

* CCIL-provided operations, CARDINALITY and COUNT. The CCIL term

"CARDINALITY of <database object>" will output the cardinality of the

database object in character format.

The CCIL term COUNT refers to the implicit counter maintained by the

interpreter as it ITERATEs OVER a collection. If the keyword COUNT

occurs in a CCIL statement in the context of an ITERATE OVER com-

mand, the interpreter prints the value of the counter at that point in the

iteration.

For example, Lines ge and 9f in Figure 4.9 ITERATE OVER the database

collection "BasisSetForAtom". Since there are three contractions in the

basis set instance for this atom, invoking COUNT as the first element

in each iteration will cause the three sequences of output to begin with

"1", "2", and "3". Statement 9 also contains the term "Atom. COUNT".

Atom.COUNTis used to index into the list BasisSetForAtom. Because there

are two hydrogen atoms for each hydrogen molecule, there are two basis

set lists for each basis set for hydrogen, each corresponding to an atom in

the molecule.

The CCIL also provides for specifying default inputs and for constraining maximum

values for a database object. Thus, for example, 'CompProxy. timlim' /0/ /999.0 defines

application-specific values for default and maximum for CompProxy. timlim. The value

that appears after the first "/" is the default value to be written if the value of the database

object is null. The value appearing after the second "/" would be the minimum value to

be reported. After the third "/" is the maximum value to be reported. If the value of the

database object exceeds the maximum value, the maximum value given in the template is

printed. (We found no need for minimum values for computational chemistry applications,



113

but include them for completeness.)

Names of CCIL formats and lists are formed as per C++ variable names [173], but the

following keywords and symbols are disallowed in CCIL names: "DEF", "format", "list

of Statement", "USE", "FOR", "USING", "ITERATE OVER", "->", "%", singlequote,

doublequote, and semicolon.

Using The CCIL

To add a new application to the database, one must of course describe the application's

input file(s) in the CCIL language, for each experiment type the application supports. This

involves writing a sequence of CCIL statements and loading them into the database as the

input template for that experiment type and application. To use the CCIL to describe the

input files for geometry optimization experiments for GAMESS, for example, one writes

the CeIL statements in Figure 4.9, and loads these into the database as an instance of the

input template class for experiment type "optimize" for application "GAMESS". Given

this input template in the context of a particular experiment to optimize the structure of

hydrogen using the GAMESS application, the proxy would generate the input file given

in Figure 4.8.

There are three ways in which writing CCIL code alone might not be sufficient for

generating input files for an application:

1. The new application's input file may require a format conversion that cannot be

expressed in the CCIL. In this case, a new database method to perform the needed

format conversion for that experiment object must be added to the database schema.

2. The application schema may not be adequate to represent the data required for

input to the new application. Here, the schema must be modified to include the

new data type and methods provided (as needed) to transform existing data types

to and from the new data type.

3. The CeIL may not be adequate to define the input file. Here, the CCIL grammar

must be extended and the CCIL translator modified to cover that extension.
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1. USE CompExp

2. USE Proxy

FOR self;

FOR self->isRepresentedBy;

3. DEF format

"MP1" -->

"MP2" -->

"MP3" -->

);

LevelOfTheoryFormat

"1";
"2";
"3"

4. DEF list of Statement ControlStatements (

"TrMLIM=" 'CompProxy.ttmlim'/100//999.0;

"MEMORY=" 'CompProxy.memory'/100000//20000000;

"SCFTYP-RBF CHITS-BOHR";

"RUNTYP."'CompExp.expT,ype'/"ENERGY"//"OPTIMIZE";
"MPLEVEL-"'CompExp->isTakenTo.name'%LevelOfTheoryFormat
);

5. USING Control Statement ITERATE OVER Control Statements (

$CONTRL" Control Statement "$END"

);

6. " $DATA" 'CompExp.name';

7. 'CompExp->hasAsSubject.symmetry';

8. USE BasisSetForAtom FOR CompExp->utilizes->atomBSList;

9a. USING Atom ITERATE OVER 'CompExp->baBASSubject->haBAtoms' (

9b. \n 'Atom. name , 'Atom.name'%aBAtomicWeight 'Atom.x' 'Atom.y' 'Atom.z'

9c. \n" " 'BasisSetForAtom(Atom.COUNT).label'
9d. CARDINALITY of 'BasisSetForAtom(Atom.COUNT)->contractions';
ge. USING Contract ITERATE OVER 'BasisSetForAtom(Atom.COUNT)->contractions'(
9f. Contract.COUNT 'Contract->primitives.coefficient''Contract->primitives.exponent'

»;

10. " $END";

11. " $GUESS GUESS-MINGUESS $END";

Figure 4.9: Input template for optimize experiment type, GAMESS
application.
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If, as we believe, both the application database schema and the CeIL are adequate

to express textual data for the major experiment types for the ab initio computational

chemistry applications in current use, the computational proxy will be able to generate

input files for new applications without any of the special-purpose programming above.

4.3.4 Data Capture: Loading Experimental Results into the Database

Data about experiments to be stored in the database fall into three major categories:

inputs to experiments, metadata about experiments7, and scientific results of experiments.

Experimental inputs are stored in the database as a consequence of the proxy's central

role in building and launching the experiment; the same is true of metadata. Metadata

include such information as which chemist performed the experiment, the date and time

it was conducted, the application used, the version of that application, the computer type

and specific processor on which the experiment was run, and the resources consumed in

running the experiment. Metadata are essential for replicability and proper interpretation

of experimental results.

Storing metadata is a natural byproduct of using the proxy mechanism for experiment

management. Since the database launches the experiment, information such as resources

used can be gathered quite easily. Metadata of a scientific nature, such as the specific

algorithm used by the application to perform the calculation, can also be automatically

gathered during the process of managing the experiment or inferred later from other

information in the database.

Loading experimental results is more complicated than gathering metadata because

the applications do not interface directly with the database. Output typically resides in

one or more text files, and capturing the output of computational chemistry applications

involves parsing these files and placing the output into the database. (For simplicity, we

have assumed that all data to be captured reside in a single file: capturing data from more

than one file is not conceptually different.)

7We here use the term metadata as it is used in scientific database community: identifying and clar-
ifying information about scientific data. The traditional database sense of metadata refers to structural
information about the data, Le., the database schema.
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The data capture problem is more difficult than the input file generation problem for

two reasons: reading (parsing) text is in general more difficult than generating it, and

the particular parsing problem facing us is not simple. That problem is difficult because

the text files in question were usually designed for printing on paper or displaying on

a screen, and formatted so that human readers would find them easy to understand.

In other words, output text was designed for human rather than machine consumption.

Furthermore, we could not easily discern the grammars that generated the output files for

the applications we studied - whatever implicit grammars may have been used, they are

(in our estimation) neither context free nor syntactically unambiguous. Our parsing and

capture task is further complicated by a major design goal: to provide a declarative (not

procedural) specification of the application interface.

We also found an asymmetry between the amount of documentation available for

application input and output. Application manuals are more explicit in their description

of input syntax; their authors assume (apparently) that a human computational chemist

can easily read and interpret the output relying on an understanding of the context. Thus,

we knew less about output text than about input text. Finally, the dependence of the

output structure on input parameters is not described explicitly for most applications.

We capture output from computational experiments in a two-step process, as Fig-

ure 4.10 depicts. An output file is first moved to the database host; once there it is parsed

and data placed into the database.

Our analysis of user needs uncovered two general cases of data capture:

1. Application process terminates successfully. In this case, once the proxy is

notified of successful termination of a computation process, it parses experimental

results and places them into the database. Once captured, the data resides in the

database and can be viewed by the user. Data capture should be distinguished from

experiment validation. Data capture, an automatic proxy function, precedes data

validation, an explicit user action. The user, not the proxy, validates experiments;

once the user decides whether an experiment was "successful", the proxy marks the

data appropriately.
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event: experimentprocess terminates
output file(s)

Proxy
Output
Capture

Functions

Move
Output File

to
Database Host

'b: file availability noted
19ger parsing

event: parsing triggered
output file(s)

db: output template(s)

Parse
Output

from
Compo Exp. 'b: experiment updated with

output from application

Figure 4.10: Application output capture functions needed by the
computational proxy.

2. Process terminates, but the computation is incomplete. Data capture after

abnormal termination of an experiment is less straightforward. A computation may

fail to complete due to a lack of disk space or to the process needing more CPU time

than was allocated. In this case, the user may wish to view the output file directly.

The user also may wish to parse the output file, place intermediate results into the

database, change input parameters, and restart the computation where the aborted

process stopped.

Both cases require application-driven parsing of a text file. Loading a single database

object from a text file involves:

1. Finding the physical location of the desired datum within the text file. In all cases

that we examined, the begin point of the data to be captured can be found by

searching on a keyword and then skipping application-specific whitespace or control

characters. Because the parsing task may not be context free, however, the end

point of the data in the text file might not be easily discernible by the parser. Thus

the proxy's parsing mechanism should use a bounded parsing technique, for example

by bounding the text to be parsed with both beginning and ending keywords.

2. Identifying the type of the textual data and its physical format. We use the term
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textual type to refer to the format of the ASCII data to be parsed. Textual types

may be either primitive data types, such as integer and string, or user-defined types.

Our parsing mechanism uses C data types [99] to represent primitive textual types.

User-defined textual types can be defined in the database, and are represented by

the database schema names; database-supplied input methods are used to read user-

defined textual types from the textual file.

3. Identifying the database object into which the parsed data is to be placed, the target

database object. A path name, as it appears in the application database schema,

taken in the context of a particular computational experiment, is used to signify the

target database object.

4. Identifying the type of the target database object, the target type. The proxy's

parsing mechanism determines the target type by reading the database schema; in

our case, this is the ObjectS tore schema for the Computational Chemistry Database.

5. Determining whether the parsed data must be converted before placing it into the

database, and if so, what conversion function(s) to apply. When the type of the

textual data and the target type do not match, we have a type clash. Properly

handling a type clash requires invoking a conversion function, and can involve units

or type conversion.8 We defined some intermediate collection types, such as Ma-

trix, for parsing formatted text into complex objects such as MolecularOrbitals. The

proxy's parsing mechanism uses both standard C++ compiler-supplied type con-

versions (e.g., float to int) and user-defined computational-chemistry-specific type

conversions, such as atomicNumberToAtomicName.

6. Performing a type conversion, if necessary, by invoking the appropriate function and

passing it the object to be converted.

7. Placing the data into the database.

8For simplicity's sake we have ignored unit conversions. Mechanisms used for handling type conversions
can be applied to unit conversions.
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Of course, loading the output for most applications requires parsing more than one

database object from a text file. The scenario above is followed for each object to be

loaded, and there is one output template describing each object to be loaded. For loading

more than one object from a file, the proxy parser-loader uses the master template (list

of output templates).

When adding a new application to the database, one first verifies that textual types

in that application's output file(s) can be represented in the data types aheady present

in the application schema. If so, then no schema modification is required. Syntactic

differences in layout, such as a matrix represented in row-column order as opposed to

column-row order, do not constitute a type difference. An example of a type difference

is a molecular structure represented as a internal coordinates as opposed to Cartesian

coordinates; accommodating such a type difference in our system would require a schema

modification, namely adding a new type to the schema, with an input function for it and

a conversion function from the new type to the target type.

The PCL: Proxy Methods for Loading Output

The proxy methods for loading output data have been dubbed the Parser-Converter-

Loader (PCL). The PCL is modeled after EXPRESS (Data EXtraction, Processing, and

REStructuring System), an experimental prototype data translation system designed to

extract a wide variety of data from files and restructure it for inclusion in a database.

EXPRESS was driven by two very high-level nonprocedural languages: DEFINE for data

description and CONVERT for data restructuring. LOAD, a third component, loaded the

converted data into the new database[167]. EXPRESS inspired us to organize the proxy's

data capture tasks into three phases: define, convert and load. (Below, the term textual

object refers to the string in the text file that we want to load into the database.)

1. During the define phase, the parser processes the text file, picks out a textual object

of interest, and performs syntactic reformatting if needed. Textual objects in com-

putational chemistry output files are identifiable by keyword searches, e.g., the last

occurrence of the keyword "ENERGY" precedes the desired energy value.
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2. In the convert phase, statements assigning a textual object to another textual object

or to a target database object are read and processed. Type clashes are resolved by

invoking the appropriate type conversion functions.

3. The load phase actually loads a converted textual object into the database.

An example of output from the Gaussian application illustrates the extent of the

parsing problem with which we are confronted, and how the three phases of the parser

work to solve this problem. Gaussian represents molecular orbitals as matrices. When

there are too many columns in a matrix to fit on one 8~-inch-wide page, a matrix will be

"folded". Thus, for example, a 256x256 matrix might be folded into twenty-one 12x256

(column by row) submatrices and one 4x12 (column by row) submatrix, each of which fits

onto one 8~-inch-wide page. Column and row headers are repeated for ease of reading

each submatrix. In other words, labels and data are intertwined, and labels are repeated

for human convenience. The human reader easily "unfolds" the twenty-two submatrices

into one 256x256 matrix, but for our parser to unfold the submatrices it must distinguish

the intertwined labels from data, and ignore redundant labels.

Figure 4.11 shows how a textual matrix is physically transformed by the parser during

the convert phase so that it can be parsed and loaded. We use intermediate text types

FoldedMatrix, Matrix, and DeNormalizedMatrix to render the textual molecular orbital

into a form suitable for parsing. These intermediate collection types are effectively textual

layouts, and are defined as follows:

. A FoldedMatrix is a matrix whose columns are not contiguous across horizontal

space. Thus, a 25x25 folded matrix might have three parts: columns 1 through 10

for all 25 rows, columns 11 through 20 for all 25 rows, and columns 21 through 25

for all 25 rows. Each part of the FoldedMatrix is preceded by any number of column

headers (colhead), and each row of data is preceded by a row header (row head),

consisting of an arbitrary number of items each of arbitrary length. The row headers

for corresponding rows in each of the parts of any particular FoldedMatrix will be

identical.
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. A Matrix is a row-by-column array of data preceded by any number of column

headers (colhead). Each row of data is .preceded by a row header (rowhead),

consisting of an arbitrary number of items each of arbitrary length. Transforming

a folded matrix into Matrix form reconstructs the folded matrix from its parts, but

the Matrix type is still difficult for a machine to parse because some row header

information may be elided. Row header information is typically elided when the row

header information for a particular row is the same as the row header information

for the previous row.

The format of the Matrix row headers is designed for reading by humans, and is not

readily parsable: tokens that may themselves contain spaces are delimited by spaces.

Thus, for example, the row headers in Figure 4.11 identify the first two rows to be

the electron densities associated with the first hydrogen atom of the molecule. "IS"

and "2S (I)" designate the names of the two associated electron shells, and are each

one token. The space between "2S" and "(I)" in the second of these tokens would

cause most lexical analyzers to read them as two tokens.

. An Unfolded DeNormalized Matrix is one whose row headers have been reformatted

so that there is an equal number of tokens per row header, so that no token has

whitespace, and so that tokens are delimited by whitespace. Column headers have

been similarly "regularized" , Le., the number of tokens in each column header is the

same as the number of columns in the body of the matrix. Thus, in Figure 4.11 we

see that the string "EIGENVALUES", which appears in the third column header of

the Matrix, has been deleted, and single tokens such as "2S(I)" have no blanks.

To summarize, the computational proxy parser reformats matrix data from forms that

are printable on standard size paper and easy-to-read by humans (e.g., a FoldedMatrix)

to forms that are easy-to-parse (e.g., an Unfolded DeNormalized Matrix). Unfolding a

matrix is easier and more efficient if information such as the number of rows or columns

can be deduced prior to parsing. In the cases we examined, querying the database for the

cardinality of certain collections or writing methods to calculate the size of results gave

us this information.



a Folded Matrix

I 2
(AG) (BIU)

EIGENVALUES -- -11.17072-11.17068
I I H IS 0.69762 0.69791
2 2S (I) 0.06537 0.07075
32 HIS 0.69762 -0.69791
4 2S (I) 0.06537 -0.07075
53 0 IS (I) 0.11847 -0.17857
6 IS (0) 0.11078 -0.15647

EIGENVALUES --

II H IS
2 2S (I)
32 H IS
4 2S (I)
53 0 IS (I)
6 IS (0)

3
(AG)

-0.58548
0.00852

-0.02120
0.00852

-0.02120
0.05174
0.99778

a DeNormalized Matrix

eoh
I I H IS
2 I H 2S(I)
32 H IS
4 2 H 2S(I)
5 3 0 IS(I)
6301S(0)

eom

I 2 3 eor

(AG) (BIU) (AG) eor
-11.17072 -11.17068 -0.58548 eor

0.69762
0.06537
0.69762
0.06537
0.11847
0.11078

0.69791
0.07075
-0.69791
-0.07075
-0.17857
-0.15647

0.00852 eor

-0.02 I20 eor

0.00852 eor
-0.02120 eor

0.05174 eor

0.99778 eor

Figure 4.11: Reformatting GAMESS molecular orbital text for easier
parsing.
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I 2 3 eor
(AG) (BIU) (AG) eor

EIGENVALUES -11.17072 -11.17068 -0.58548 eor
eob

I I H IS 0.69762 0.69791 0.00852 eor
2 2S (I) 0.06537 0.07075 -0.02120 eor
32 H IS 0.69762 -0.69791 0.00852 eor
4 2S (I) 0.06537 -0.07075 -0.02120 eor
53 0 IS (I) 0.11847 -0.17857 0.05174 eor
6 IS (0) 0.11078 -0.15647 0.99778 eor

eom
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Output Templates and Parsing Directives

Because the output parsing problem is inherently more complicated than the input gener-

ation problem, it is not surprising that the parsing specification (Le., the output template

structure) is more complicated than the input file specification.

Each application-specific output template holds a sequence of parsing directives suf-

ficient to parse a textual object, perform syntactic conversions if necessary and load it

into a target database object. There is a one-to-one correspondence between each textual

object to be parsed and each database object to be loaded, and one output template per

database object. Thus, an output template instance describes the layout of a textual

object as it appears in the output file for a given experiment type and application, and

maps the textual object to a class in the database. Parsing directives are written in a

data description language that we have dubbed the "Computational Chemistry Output

Language" (CCOL) and describe below.

For each application, output templates are organized into lists by experiment type.

Each list is called a Master (Output) Template. The order of templates in each master

template indicates an appropriate parsing order. If templates are interpreted (or compiled)

in the order of their occurrence in this list, one pass over the output file should be sufficient

to parse the entire output file and load all database objects in the mater template. To

parse an output file for an experiment of a given experiment type and application, the

proxy traverses the master template to find the template for each database object to be

loaded. The inquisitive reader at this point might ask what happens if more than one

object of the same type occurs in one output file. There are two typical cases: (1) We may

wish to read all of the objects into some collection. For example, there is usually more

than one atom object to be loaded. Using the structure inherent in the molecule object

(that it contains a collection of atom objects), the parser iterates over the template that

describes atoms, and accordingly parses, converts and loads atom objects into a database

collection of atoms.9 (2) We may wish to read only one of two or more occurrences of an

9How the parser knows about the structure of database objects is an implementation issue. A smart
parser would be able to read the database schema for a database object to be loaded, realize that it
consisted of a collection of (other) objects and iterate over that collection, using parsing directives for the
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object from a text file. For example, there are usually many molecule objects in a given

output file for a geometry optimization, one printed at each major iteration point of the

algorithm. The parsing directive for the molecule object indicates which occurrence (first

or last) is desired. Except in cases where we loaded objects into a database collection,

none of the output files we examined contained more than one database object of any type

to be loaded.

Output templates may be shared. If an application always represents a database

target object as the same textual type regardless of experiment type, only one template

(one sequence of parsing directives) is needed. Where two experiment types for the same

application engender two different syntactic forms for the same database target object,

two templates are needed.

Each template has a sequence of one or more parsing directives. Each parsing directive

invokes one parsing action, and directives are interpreted in order of their appearance in

the template. Output parsing directives direct the parser to position the cursor in the

output file, read the data according to the textual data structure, determine whether the

data's type is different from that of the database object (and if so, perform the necessary

conversion), and finally load the data into the database.

Figure 4.12 shows the three major inputs to the proxy Parser-Converter-Loader:

1. The output template, written in CCOL, which contains the parsing directives them-

selves. (A praecis of the CCOL follows below.)

2. The CCDB schema, which is available to determine the database target type. The

database target type is compared to the type of the textual object given in the pars-

ing directive. The CCDB schema also contains type definitions for type conversion

functions and foreign types (Le., types appearing in the output file that cannot be

adequately described with the types nateive to the CCDB and parsing directives).

3. The application output file itself, which contains the text to be parsed.

higher level object or, if there were none, a template for the lower level object as a guide. The parser-
converter-loader that we implemented was imbedded into the database schema as input operators. These
input operators iterated over a collection by calling the input operator for the lower-level object. Each
input operator read the corresponding template.
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'arsingDirective

K: final energy
occ: last
token: pre
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DB: energy
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Figure 4.12: The computational proxy's output template.

The output of the PCL is the updated database. Once the PCL has updated the database,

the proxy notifies the user that the experiment has terminated.

The PCL is always invoked in the context of a particular experiment and expands

database references in the output template so that data from the output file for an exper-

iment can be loaded into database objects corresponding to that experiment.

The Computational Chemistry Output Language

The Computational Chemistry Output Language (CCOL) is a layout language designed to

define ASCII text (output) file formats for ab initio computational chemistry applications.

A sequence of CCOL statements describes a textual object in the output file, and associates
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it with a database object so that the proxy can load the textual data into the database.

As with the CCIL, the sequences of CCOL statements constituting an output tem-

plate object could be written directly by the registrar, but we think of the CCOL as an

intermediate language to be generated by the registrar user interface. An output template

maps a textual object to a database object, implicitly indicating if a type clash occurs

and, if so, what conversion function(s) to invoke. For complex objects, such as molecular

orbitals, additional layout information for the textual object must be specified in parsing

directives.

The language specification for the CCOL follows below. The reader may find it helpful

to refer to the example output file templates in Figures 4.13 and 4.14 while reading the

CCOL specification.

. A parsing directive is a CCOL statement.

. An output template is a database object constructed from a sequence of parsing

directives. Parsing directives may be separated by the new line control character,

or by a semi-colon. Each template is applicable to a target database object for a

particular application and experiment type.

. A CCOL parsing directive consists of a designator and value pair, or a command.

. A designator is a CCOL reserved word that indicates which application and exper-

iment type a template is associated with, or is a parameter to the parsing process.

The designator indicates which parameter to the parsing process (Le., which parsing

action) the corresponding value should be associated with. Parsing actions are asso-

ciated with either the source (the textual object to be parsed) or the destination (the

database object to be loaded). A designator value is separated from the designator

by a colon (":"). CCOL designators with corresponding acceptable values are given

below:

- Designators indicating in which master template the template should be placed:

* Application: < application>. This CCOL designator specifies the applica-

tion to which the template applies. <Application> must be an application
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already loaded into the database as an instance of application.

* ExperimentType:<experiment type>. This CCOL designator specifies the

experiment type to which the template applies. <Experiment type> must

be known to the database as a valid experiment type for the application

that this template describes.

- Designators describingthe source:

* whitespace:< whitespace>. The whitespace designator specifies the white

space for a given application and experiment type. When searching for

keywords and parsing textual objects, the PCL skips application-specific

white space such as blanks, "IS", or line-feeds. Special character definitions,

such as those for taband space,are definedas for the C language [99].Other

white space is given enclosed in quotes. One white space value is given per

designator-value pair. Whitespace may be defined for an application, or an

application and experiment type, or an application, experiment type and

database object.

* Keyword (or K):"<keyword>". The PCL is keyword-driven, and searches

the output file until the keyword given in the string <keyword> is found.

Once its cursor is positioned properly, the PCL will begin parsing the

output text. A keyword containing blanks or other white space must be

enclosed in quotes, and a null keyword ('''') indicates that the next token

(ignoring white space) is to be parsed.

* occ:firstllast. The occurrence designater indicates whether the PCL is to

search for the first or last occurrence of the keyword, in situations where

a keyword might occur more than once in the text to be parsed. In the

absence of an occurrence indicator, the last occurrence is taken.

* token:prelpost. The token designator specifies whether the keyword pre-

cedes (pre) or follows (post) the textual object to be parsed.

* type: < type>. The type designator specifies the type of the variable into

which the textual object can be read. Predefined types are as per the C
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programming language[99] and the application database schema (in our

case the Computational Chemistry Database schema). Additional syntac-

tic types may be defined in CCOL by using the DEF command.

- Designator describing the destination:

* DB:<database object>. The DB designator specifies the database object

into which the textual object in the output file is to be loaded. As in the

CCIL, database objects are referenced by database path names, relative to

the computational experiment class.

. A CCOL command may define a textual object, assign a textual object to a database

object, or indicate how to reformat a textual object. These are defined below:

- Defining a textual object (DEF command). A DEF defines a textual object in

terms of a predefined type.

DEF [<target-type>] <name> [(rowVariable, columnVariable)] [{

matrix body definition}]

DEF gives a matrix a name, and defines its layout (format). The FoldedMatrix,

DeNormalizedMatrix and Matrix CCOL types are appropriate target-types in

a DEF command and are defined below.

- Assigning a textual object to a database object. The mapping from the textual

object to database object is given by assignment statements, with the database

object (or attribute) appearing to the left of the assignment operator (=).

Where a series of conversions is required, as in the molecular orbital example

below, a series of assignment statements is given. The object to which the

assignment occurs need not be predeclared, but if it has not been declared its

type must be given in the assignment statement.

[Using <object>]

[<target-type>] <target> = <source>

To make assignments to components of a complex object, the "Using" designa-

tor may be employed to specify the complex object from which the components
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are taken. (This feature is used for parsing a molecular orbital in the example

below. )

- Reformatting a textual object. The "StrikeBlanksFrom" command will exam-

ine the target textual object and remove all blanks from it.

StrikeBlanksFrom <target>

. Three types are predefined in the CCOL for reformatting matrix data: FoldedMatrix,

DeNormalizedMatrix and Matrix. Conceptual descriptions of these textual types

are given above; here we show how to define an object as one of these types in the

CCOL. All three types have the same components and structure: column headers,

row headers and data.

- A FoldedMatrix is a matrix whose columns are not contiguous across horizontal

space, and whose row headers and column headers are repeated for each group of

matrix columns. A FoldedMatrix is defined in CCOL to have three components:

column header (Colhead), row header (Rowhead) and data (Data); each is

defined by giving types and names for each element in the header. The variables

nrow and neol designate the number of rows and columns in the folded matrix;

values for nrow and neol can be inferred by the PCL from other database values,

or from the textual object itself (e.g., two successive line-feeds indicates the last

row of a matrix).

An optional mask (enclosed in single quotes) can define the number of char-

acters expected in a matrix component, and are used when white space might

appear in a matrix component. Mask parameters are shown in square brackets

below. A mask is a string (enclosed in single quotes) consisting of Xs or 9s, sim-

ilar to the PL/1 or COBOL PICTURE clause. A mask indicates the number of

characters in a matrix component, and whether those characters are alphabetic

('X') or numeric ('9'). For example, the mask '99' denotes a string of exactly

two numeric characters, and 'XXX' exactly three alphanumeric characters.
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FoldedMatrix <name> (nrow, neol) {

{Colhead [<mask>] <type> <name> (i..neol),

.}

{Rowhead

{[<mask>] <type> <name>,

.}}

Data <type> <name> (i..neol)};

A Foldedmatrix is unfolded by assigning it to a Matrix or DeNormalizedMatrix.

- A Matrix is a row by column array of data preceded by any number of column

headers (colhead); its columns are contiguous across horizontal space, but its

column or row headers might not contain a regular number of tokens. It is

defined to the CCOL in the same way that a FoldedMatrix is defined.

- A DeNormalizedMatrix is one whose components contain an equal number of

tokens per component such that no token has whitespace and all tokens are

delimited by whitespace. It is defined to the CCOL in the same way that a

FoldedMatrix is defined. A DeNormalizedMatrix can be loaded by the PCL

into the database.

When a FoldedMatrix is assigned to a Matrix, or a Matrix to a DeNormalizedMatrix,

the target object inherits subcomponent names from the source object. See the

example for loading a MolecularOrbital object below.

Type checking between the textual objects or CCOL objects and the database is ac-

complished by comparing the types of source and target objects. The PCL determines the

type of database objects by referring to the database schema. Type conversion functions

are supplied either in the database or in the CCOL, and are named as in CCIL.

For example, to parse the final energy textual object in the output file the parser reads

the output template instance for energy for the GAMESS application. (See Figure 4.13.)

The template indicates the location of the text in the output file (after the final occur-

rence of the keyword "FINAL ENERGY"), its format (floating point), and where to put
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Output Thmplate
GAMESS energy

Keyword: final energy
occ: last
token: pre
type: float
DB: energy

Output Thmplate
GAMESS iterations

Keyword: iterations
occ: last
token: post
type: int
DB: iterations

Figure 4.13: Instances of OutputTemplate for energy and iterations.

the value in the database (CompExperiment.energy). The parser searches the output file

for the appropriate keyword occurrence and reads the value into transient memory as a

floating point object. The parser then loads that floating point value into the CompEx-

periment.energy database object for the particular computational experiment in context.

Because the parser is called in the context of a particular experiment, it knows which

experiment in the database to update.

Given the last occurrence in the output file of the text:

FINAL ENERGY IS -78.0561311759 AFTER 12 ITERATIONS

and the energy and iteration template instances depicted in Figure 4.13, the interpreter will

load the values -78.0561311759 and 12 into the database objects CompExperiment .energy

and CompExperiment. iterations for the experiment in context. The white space "IS"

is ignored.

A data elementin the CCOL is usually in a one-to-onecorrespondencewith a database

object. However, for complex textual and database objects such as molecular structure,

a data element may refer to components of the textual object, such as atom name. In

some cases, a textual object may undergo a series of transformations before being loaded

into the database. Thus, for example, data elements needed to describe the molecular

orbital textual object include names for the object and its components at each stage in

the transformation. The CCOL example below in Figure 4.14 gives the CCOL directives

to define a molecular orbital textual object as a FoldedMatrix, and to convert it first

to a Matrix and then to a DeNormalizedMatrix. The resulting denormalized matrix is
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Keyword: "Molecular Orbital Coefficients"
occ:last
token:pre
type: complex
DB:molecularOrbital

DEF FoldedMatrix molOrbTxt(nrow,ncol) {
{Colhead int cols (l..ncol),
Colhead char* slabel(l..ncol),
Colhead 21'X', float eigen (l..ncol)}
{Rowhead {

'99' int
'999' int
,XX ' Atomic Symbol
'XXXXXXXX' char*

Data float coef(l..ncol)

nrow,
atom,
aname,
label} }

};

Matrix molOrbMat = molOrbTxt;
StrikeBlanksFrom molOrbMat.label(l..nrow);
DeNormalizedMatrix molOrbDMat = molOrbMat;

USING molOrbDMat{
'nmo->nMOs'
'nmo->symmetry_labels' (l..ncol)
'nmo->orbital_energy' (l..ncol)
'nmo->so->atomicNumber' (l..nrow)
'nmo->so->label' (l..nrow)
'nmo->so->moCoeffs'(l..ncol,l..nrow)=

= cols(ncol);
= slabel(l..ncol);
= eigen(l..ncol);
= aname (1. .nrow);
= label(l..nrow);

coef (l..ncol,l..nrow)

Figure 4.14: Output template for parsing a molecular orbital.

assigned to the database object MolecularOrbital. An additional type conversions function

from AtomicSymbol to AtomicNumber will be invoked automatically, since the database

schema not only contains type definitions for AtomicSymbol and AtomicNumber, but also

type conversion functions from one to another. Note that molOrbDMat is a complex data

element, containing the data elements "slabel", "eigen", etc. "Using molOrbDMat" allows

the user to simplify references to the data elements within molOrbDMat. Thus, in the

context of the "Using molOrbDMat" complex statement, the statement

ttnmo->nMOs = cols(ncol)j"

really means: "assign the value in the textual object cols(ncol) of molOrbDMat to the

databaseobject'nmo->nMOs'".
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The proxy Parser-Converter-Loader methods process the directives given in Figure 4.14

as follows:

1. During the define phase, the parser identifies and defines the object to be parsed. It

searches the text file for the keyword "MolecularOrbitaICoefficients", and extracts

the FoldedMatrix molOrbTxt. Variables nrow and ncol contain the number of rows

and columns (respectively) of the original matrix. In the example given here, the

value of these variables can be assigned from a value in the database; in other cases,

they could be be deduced from the textual object by the parser.

2. During the convert phase, assigning the molOrbTxt object to a Matrix object

(moIOrbMat) causes the PCL to reformat the textual object from a folded matrix to

a matrix object (moIOrbMat). The masks ("999..." and "XX...") allow the parser

to determine the length of the label field in the row header and hence from where to

strike blanks. Once blanks are stricken from the row header, the matrix molOrbMat

can be assigned (and hence reformatted) to a denormalized matrix, molOrbDMat.

Because all three matrix forms share the same matrix components (Colhead, Row-

head and Data), names of components of molOrbTxt (e.g., aname) can be carried

forward.

No type conversions are required at this point.

3. During the load phase, components of the molOrbDMat are assigned to database

objects, as directed by the assignment statements. Type conversions supplied by the

database are applied at this point, for example AtomicName_to-AtomicNumber.

To summarize, during the define phase, a text file is searched by keyword, and a

textual object is extracted. During the convert phase the textual object is reformatted, if

necessary, in terms of an easily parsable type such as DeNormalizedMatrix, and a CCOL-

defined type conversion function may also be invoked. During the load phase, a textual

object (or where there was a conversion, an intermediate CCOL object) is loaded into the

database, perhaps invoking a database-resident conversion function.
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Using The CCOL

When adding a new application to the database, one must describe in the CCOL language

the application's output file(s) for each experiment type the application supports. Just

as for the CCIL, this involves writing a sequence of CCOL statements for each database

object to be loaded and loading these into the database as an output template.

As with the CCIL, there are three ways in which writing CCOL code alone might not

be sufficient for generating output files for an application:

1. If the new application's output file require a format conversion that cannot be ex-

pressed in the CCOL, a new database method must be added to the database schema.

2. The application schema itself may not be able to represent output of the new appli-

cation. Here, the schema must be modified.

3. The CCOL may not be adequate to define the output file, in which case the CCIL

grammar must be extended.

4.3.5 Mission Control

As shown in Figure 4.15, mission control encapsulates the proxy's network services in-

terface, and is responsible for launching and cancelling experiments. Mission control also

notifies the proxy that an experiment has completed and triggers it to capture the applica-

tion output; we call this last mission control function mooring an experiment. In addition,

mission control responds to requests about the status of ongoing experiments, such as

. Has my current experiment completed?

. How much CPU time and disk has the current experiment consumed?

. How much clock-time has elapsed since that experiment was launched?

. How close is the computation to converging?

. Did the most recent experiment terminate normally?
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Some of the queries above involve straightforward requests to the operating system regard-

ing process status. Others, such as how close a computation is to converging, are more

difficult to support and require monitoring the semantic state of the computation during

execution. Such. queries can typically be accommodated by parsing application-specific

intermediate files, in a manner analogous to the parsing of output files. Mission control is

also responsible for shipping the output file back to the database host.

Both operating system and application-specific information is required to monitor an

ongoing experiment. Operating system information is gleaned by the proxy directly from

operating system services and is not application-specific. However, information about an

experiment that will indicate how close it is to convergence is application-specific and is

gathered by the proxy using templates. A monitor template looks like an output template,

is written in the CCOL, and maps a textual data object to a database object, defining

any required syntactic translation. The textual data objects are found in intermediate

files created and updated by the application in the course of execution.

4.4 Computational Proxy Architecture

This section delineates the responsibilities of the proxy mechanism at both the system-level

and the user-level.

A conceptual architecture implied by the division of labor that we propose is shown

in Figure 4.16. Roughly, the proxy is the locus of experiment control and the connection

to operating system services on behalf of the user interface. Network (system) services

provide the proxy with the means for shipping files across the network and for starting up

processes anywhere in the network. The Database Monitor provides and controls access

to the database for the database client process. In our case, the database client process

(CCDB Client) is the CCDB User Interface, Le., the consumer of data from the database.

Analogously to how the Database Monitor provides data access by responding to queries

on experimental data, the Compute Monitor provides clients with access to programs and

files on computers that run computational applications, responding to requests for compu-

tational services. (Sample computational requests serviced by the proxy are enumerated
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in Figure 4.16 to the left of the CCDB Client box.)

A computer that runs a computational application is called a compute host. The proxy

interface to the Compute Monitor consists of database methods linked into the client pro-

cess; these methods can be invoked only when a database client process is active. The

Compute Monitor is part of the proxy architecture, but is a long-lived process, active when

the Database Monitor is active and available to service compute requests from computa-

tional clients. The Compute Monitor communicates with application processes through

network services, communicating either directly with file services on the compute hosts, or

with compute daemons running on those machines. One compute daemon process is active

per compute host; daemons explicitly start up and control computational processes. Note

that compute hosts need not all be the same type of computer; indeed, to be most useful

to the scientist, the Compute Monitor and network services should support a number of

different platforms.

4.4.1 System-level Requirements - Network Services

We want the proxy mechanism to spawn computational processes anywhere in the user's

computational environment. We thus extended a client-server database architecture to

include computation services that can operate in a heterogeneous computing environment.

Figure 4.17 illustrates a typical scenario for the use of the proxy mechanism in which

a scientist (ClientA) decides to schedule a computational experiment (ExpA). The proxy,

using experiment-, application-, and network-specific information, is the logical place for

estimating resource requirements and determining (with the user) where to run the appli-

cation.

Once the proxy knows where to run an experiment, it prepares one or more input

files and asks the Compute Monitor to send the files to that compute host along with

a message requesting that a new computational application process be spawned. Once

the computational process has been started, the Compute Monitor returns the process

identifier to the proxy, which updates the database accordingly. ClientA can log off the

system any time after scheduling the experiment and later log on as ClientB, requesting

the status of the experiment in question. In response to this query, the proxy generates a



Figure 4.17: A typical scenario for use of the proxy mechanism.
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status request message that the monitor sends to the appropriate compute host. The host

then queries the operating system for current CPU and disk utilization of that process,

which the Compute Monitor relays back to the user via the proxy. When the process

terminates, the compute host informs the proxy, which then parses the output file and

places the results of the experiment into the database. In addition, metadata about

the experiment, such as which computational application was used and the resources

consumed, are recorded in the database.

This scenario illustrates how a proxy provides application services within a network

of heterogeneous processors, maintaining a consistent view in the database of ongoing

application processes. To manage experiments in a network of compute hosts, the proxy

must access files across remote machines, as well as start up and monitor programs on

those machines. To simplify the user interface to these services, the proxy encapsulates

them with a common interface to minimize the architectural complexity. To simplify the

development of the proxy mechanism, and to assure that the mechanism be extensible

to new platforms, we proposed a division of labor between proxy, i.e., database, and the

operating system services.

Accessing files and programs within a heterogeneous network requires a global name

space for files and programs, authorization and security for file and program access, a

guarantee that the order of message delivery is the same as the order of message sends,

and directory services for locating programs and files. An adequate directory service for

programs must include the ability to register the its calling sequence (or signature) for a

program on the system. The design alternatives open to us for meeting these requirements

are to use existing UNIX tools, to use one of the emerging network services, or to implement

an interface to network services that is domain-specific to computational science. We argue

below that neither of the first two alternatives are sufficient, and go on to specify what

features are required to supply network services to computational science applications.

Existing network services generally supply either a remote procedure call (RPC) or

network message-passing facility. With RPC only, we would be required to create (fork)

an additional process on the same processor as the Compute Monitor, which would then

invoke the application process on the chosen processor. With message passing only, the
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Compute Monitor would pass an appropriate message to a compute daemon on the chosen

processor, which would then create the application process. We used a combination of

RPC and message passing to implement the computational proxy for our feasibility study.

While RPC and message passing worked reasonably well for our purposes in a distributed

but homogeneous architecture, subtle differences in UNIX implementations might make

this solution difficult to maintain and extend to multiple architectures. Thus we conclude

that UNIX tools such as remote procedure calls are not adequate for the proxy's needs for

manipulating remote processes.

Current trends in distributed operating systems and application integration environ-

ments suggest that the network services required by the computational proxy will be

supported within the next five years [14, 67, 72, 86, 131, 154]. Such "application inte-

gration architectures" [86] aim to provide secure network-wide access to programs, files

and other network facilities through a common interface. Specific systems propose, and

in some cases already provide, a range of solutions to the heterogeneous distributed com-

puting environment problem, from message passing mechanisms [67]or remote procedure

calls across heterogeneous architectures to whole systems aimed at producing the illusion

of seamless, one-system computing [14].

If application integration architectures such as Parallel Virtual Machine (PVM) [67]

and Distributed Computing Environment (DCE) [154] are currently available, why not

connect the user interface and the application directly using PVM or DCE? Why bother

with the proxy as an intermediary? Tools such as PVM and DCE provide only the operat-

ing system support necessary to build heterogeneous distributed applications. With PVM

or DCE one can write new programs that use distributed computing resources. Users of

computational applications do not want to write more programs, they want to use exist-

ing monolithic programs; they cannot rely on authors of those programs to rewrite their

applications using PVM or DCE. Our users need to start up processes that can run inde-

pendently for long periods of time, accessing those processes periodically to monitor their

status. We thus need a tool that will allow us to create systems that use the distributed

computing resources provided by the CCDB and the monolithic computational applica-

tions. PVM or DCE could be used as a basis for implementing the proxy architecture;
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but either alone is too low level a tool for our users and we would have to implement

additional functionality. DCE, for example, does not provide the following features:

. Starting up a remote stand-alone process. DCE requires that the process issuing a

remote procedure call remain active until the remote process completes. The proxy

is a client process, and should not remain active for days or weeks until a remote

process completes.

. Extracting program parameters in the syntax required by the application from the

database.

. Parsing program outputs into a common format and loading these into the database.

. Monitoring an ongoing process.

Furthermore, the DCE interface is a complex program-level interface, and the proxy

provides a good way to isolate this code from the rest of the system. In addition, at

the time we were designing the proxy infrastructure and implementing our prototype,

DCE was itself neither fully specified nore implemented. While PVM [67] meets many

of our functional requirements for a network infrastructure, we felt that it was not (yet)

available on an adequately broad range of architectures to satisfy our desire for portability.

As a result of our investigation of general-purpose services such as DCE and PVM, we

concluded that these are not widespread enough and operate at too Iowa level to provide

the same functionality as the proxy. Such systems could, however, be used to implement

higher level network services that the proxy could then use.

The following commands and features fulfill the proxy's requirements for network ser-

vices:

1. Remote Start Command (rstart). The Compute Monitor must be able to start up a

remote standalone application. Rstart takes four input parameters: an application

designator, a list of resource requirements, input parameters (as per the application

signature) and the name(s) of one or more input files. Rstart returns a remote

process identifier (rpid) of the application process.
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. The application designator identifies the application either fully or partially.

A full designation is equivalent to the system-wide application name, i.e., a

network cluster (local area network), processor name, and application. When

given a partial designation, i.e., a cluster, or a processor, or a computer type

as opposed to a processor name, the network service chooses the processor on

which to run the application.

. Any of the following resource requirements may be specified: computational

requirements, estimated file space needed, and estimated memory requirements.

. The program signature specifies the calling parameters for the application, since

the application calling parameter passed to rstart may have to be modified to

accommodate peculiarities of the particular computer on which the application

is run. For example, all installations will probably require that intermediate

files (which are usually large and often accessed) be local, but a particular

installation might choose not to use the standard file-name scheme for that

application.

. The input file name is usually passed to the application program as a calling

parameter.

. The remote process identifier rpid is an identifier unique across the network ser-

vice that will allow the Compute Monitor to query the status of the application

process.

2. A global name and directory service for files. Input and output files must be acces-

sible to both the proxy and the application. The proxy and Compute Monitor must

access the executable file for each application running on the processor of choice.

The signature for the executable files must be specifiable to the directory service.

3. Remote Process Status Command (rps). When the user process requests the cur-

rent status of an experiment, the Compute Monitor forwards an rps to the Network

Services. Rps has one parameter, rpid, and returns information about resource uti-

lization in terms of the machine running the experiment. Resource utilization should
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be "normalized" to generic terms that can be compared across multiple computer

processor types.

4. Remote Done Command (rdone). The network service notifies the Compute Monitor

when the application process has terminated. Rdone is an unsolicited message from

the compute daemon to the Compute Monitor and has two parameters: rpid, and

the same resource information as rps.

5. Remote Kill Command {rkil~. The user process may wish to stop an experiment.

Rkill has one parameter, rpid.

We illustrate the use of the network commands required through the computational

proxy by an event trace of an interaction between the proxy and network services, given in

Figure 4.18. The processes involved are User, Proxy, Compute Monitor, Network Services

and Application; these are categorized as Client, Database or (Possibly) Remote Processes,

and so labeled at the bottom. The vertical lines indicate when these processes are active.

User and proxy together constitute a Database Client Process, and are active only when

a user is logged on and until responses from all outstanding events are received. The

Compute Monitor (a Database Process) and Network Services, on the other hand, are

normally active, waiting for requests to service. Of course, either the Compute Monitor or

Network Services could be interrupted. The Compute Monitor, like the Database Monitor,

must have crash recovery facilities. The Compute Monitor should be able to provide

relatively up-to-date information about on-going experiments even if network service is

interrupted. The gap in the Network Services event trace indicates a temporary lost of

service. Application Processes are active only when invoked. Each network service request

is represented by a horizontal arrow (left-to-right); responses are represented by horizontal

right-to-Ieft arrows. The process initiating the request or response is at the source of the

arrow.

Sections 3.2.4, 4.2.1, and 4.2.2 specified (respectively) information about applications,

computer platforms and particular computers (compute hosts) for the chemists and the

proxy. While this information could all be maintained by hand by the application registrar,

the network addresses for and the resource availability on compute hosts would be more
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appropriately maintained in near real time by the Compute Monitor using information

supplied by the network services.

4.4.2 User-Level Requirements - The User Interface

The proxy provides an application program interface to the system-level services defined

above, providing mechanisms and structures for launching, controlling and mooring com-

putational experiments. The proxy does not provide a user-level interface to its services.

This section describes a possible graphical user interface (front-end) to the database and

proxy.

The primary responsibility of such a front-end should be to provide suggestions for

input parameters to computational applications, based on both heuristics and previous

experiments stored in the database. Below are additional responsibilities that should be

assigned to the user interface from the point of view of the proxy. By this specification

of user interface responsibilities we aim to decant the responsibilities of the infrastructure

(proxy and database) further than we already have. The user interface should provide for:

1. Browsing the database, providing graphical and tabular views of objects such as

molecular structure, molecular orbitals, and tabular views of experiments. Editing

features for experiment inputs should also be supplied.

2. Initiating database searches for experiments on molecular structure, molecule name,

property type, chemist(s), laboratory and date. Once experiments have been re-

trieved, the user interface should allow for grouping selected experiments into named

(personal) collections and retrieving those collections by name.

3. Annotating both the user's own experiments and "personal copies of' others' exper-

iments. Annotations should be markable private or public. Of course, the database

stores annotations so that they can be accessed with their associated experiments,

but the user interface must provide a means for the user to annotate experiments

and to read annotations by other scientists.

4. Tabulating the resource utilization of previous experiments, and applying rules of

thumb to that data to predict resource utilization for a planned experiment. Again,
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the proxy's responsibility is providing data; the user interface should aid in inter-

preting that data.

5. Tabulating previous input parameter values, explicitly or implicitly, and making

recommendations with respect to such parameters as basis set, target application,

platform and particular computer.

6. Providing for an ongoing graphical "view" of the experiment in process using data

transferred by the proxy back to the client process or into the database. This

view could include resource utilization such as CPU, memory and disk, or semantic

information plotted on every iteration, such as energy gradient.

7. Contacting the user when an experiment has completed, and giving him or her an

opportunity to mark the experiment valid or successful. Once an investigation has

completed, the user interface should provide a means of marking experiments or

groups of experiments archivable, and marking a particular experiment confirmed

by another experiment. Of course, if the user has no current active interface at the

time the experiment terminates, then the proxy mechanism must contact the user

asynchronously. One way to do this is to generate an e-mail message; another is to

provide database support for storing and sending such user messages.

Dr. Feller and his associates at Battelle Pacific Northwest Laboratories have already

begun work on a front-end to ab initio computational chemistry applications that provides

similar functions to those delineated above [51].

The proxy depends on the user interface (1) to assure that an experiment object is

complete before a proxy receives a request to run an experiment and (2) to issue all

requests for proxy services.

4.5 Chapter Conclusion

This chapter considered design alternatives and defined our infrastructure for computa-

tional experiment management, the computational proxy. After showing a conceptual
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model of the proxy (its structures and behavior), we defined the functional tasks of regis-

tering applications, and launching and mooring experiments. The final section delineated

the proxy system's responsibilities in greater detail by discussing the interfaces of the

proxy with the system-level and user-level components of our architecture, namely the

network services and the user interface. In the following two chapters, we describe our

prototype implementation of the proxy itself and evaluate the proxy design.



Chapter 5

Implementing the Database and Proxy

The primary goal of our prototype effort was to demonstrate the feasibility of the com-

putational chemistry database and the computational proxy mechanism. Secondary goals

were to verify our hypotheses that (1) the model is flexible enough to capture syntactic

structures of input and output files for representative applications, (2) an object-oriented

database system can is sufficient for implementing the model, (3) the proxy can effectively

serve as a locus for experiment management, and (4) the proxy can hide syntactic hetero-

geneity without requiring special-purpose programming on an application-by-application

basis. In addition, building an implementation refined our requirements specification and

identified candidate vehicles (platform, language and database management system) for a

more extensive implementation.

After an initial feasibility study to identify acceptable database systems and languages

[42], we implemented a prototype database and computational proxy system for compu-

tational chemistry in C++ and Version 2.0 of ObjectStore, on the Sun SPARC Station 2

platform under SunOS (UNIX). Our implementation effort consisted of two phases: the

first to explore running computational applications from the database, and the second

to write an output file parser and loader that was driven by our own descriptions of

application outputs. We also defined output templates for the GAMESS and Gaussian

applications. The computational proxy mechanism itself is implemented as a persistent

C++ ObjectStore class. A Compute Monitor and compute daemons were implemented

in C and provided the computation services of distributed Sun workstations via standard

UNIX socket interfaces.

This chapter first relates, in Section 5.1, the implementation constraints we faced
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and the high-level implementation choices we made, and goes on to describe simplifying

assumptions, implementation issues and alternatives. The prototype implementation for

each of the major functional components of the proxy infrastructure is then discussed: the

implementation of the database services in Section 5.2, the implementation of input file

generation, experiment launching, and output file parsing in Section 5.3, and the method

we used to register applications with the proxy in Section 5.4. In Section 5.5 we discuss

our implementation of the network services component.

5.1 Implementation Constraints and Choices

The major constraint confronting us during implementation was limited personnel: one

full time Ph.D. candidate over the course of about two and a half years and two Mas-

ter's students part time for about ten months each. Since limited personnel precluded

implementing the entire model, we tried to choose features that were most essential to

the proxy concept. Thus, for example, we implemented neither a molecular search facility

nor polar coordinate representations of molecular structure, because other research and

development efforts are addressing these problems [23, 24, 45, 57, 58, 106]. Where we

limited the extent of implementation, we made a sincere effort to balance generality with

expected volume of use. For example, we limited our choice of applications to GAMESS

and Gaussian: GAMESS because it is the application with which our collaborators are

most familiar, and Gaussian because we believe it is the most well-known and extensively

used. For completeness' sake, we also considered input and output file formats for the

MELDF application. In limiting the number of experiment types to five, we chose the

first four (RHF with and without Gradient, Direct RHF, and UHF) because they probably

represent 90% of the experiments performed at our collaborator's laboratory; we chose the

fifth (SDCI) because of the diversity of syntactic structure in its output file.

The major high-level choices influencing the implementation of our system were the

decisions to use a commercial object-oriented database management system (DBMS) and

an object-oriented programming language along with the Sun architecture and UNIX.
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We opted for a commercial product because we felt it would be more reliable and well-

documented than a research prototype, and less time-consuming than building a database

from scratch. As for our decision to use object-oriented technology, we welcomed the

efficiency of directly modeling our constructs, rather than recasting our object-oriented

design into a non-object-oriented database system and language. This choice of object-

oriented technology entailed the second major constraint we faced, namely working with

an immature, albeit powerful and promising, technology. Thus, for example, we did not

use such proven productivity tools for compiler generation as LEX and YACC because

we wanted to take advantage of the data structures defined in our C++ classes when

writing compiler specifications, and we wanted to generate C++ code that used those

C++ classes. We could see no easy way to do this with LEX and YACC, or with other

lexical analyzers available at the time.

Our preliminary feasibility study led to two viable alternatives for a DBMS: Object-

Design's ObjectS tore [132] and Servio Logic's GemStone [163]. We chose ObjectStore

partially because our collaborators preferred a C++ prototype, and ObjectStore at that

time (we felt) provided a better C++ interface. ObjectS tore developers have two op-

tions for implementation: a C++ library interface to the database system routines and an

ObjectS tore-specific Data Manipulation Language (DML). The DML consists of several

extensions to C++, such as overloading the new operator to instantiate a new persistent

object and the foreach iterator over collections. We chose to use the DML because it is far

more intuitive to write and easier to read; however, choosing to use the DML precluded

the use of C++ programming environments, primarily because productivity tools such as

"smart" compilers or debuggers did not (at least then) recognize ObjectStore's extensions

to C++ or handle ObjectStore identifiers.

We chose to implement our prototype for a distributed but homogeneous environment,

rather than a heterogeneous environment, because we wanted to simplify the first imple-

mentation, and because we believe that the network services described in Chapter 4 will

alleviate the need for the proxy to deal explicitly with architectural heterogeneity. We

selected the Sun SparcStation 2 as the hardware vehicle for our implementation because

it is commonly used by computational chemists, has a good ObjectStore implementation,
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and is available both in our laboratory and our collaborator's. The choice of UNIX as

an operating system was imposed by our selection of the SparcStation, but because we

want our system to be as portable as possible, we chose the most general UNIX system

features we could for implementing system-level services. Thus, for example, we chose to

implement the proxy's message passing facility via UNIX sockets.

Before describing the implementation in more detail, we remind the reader of our

major system goals:

. Minimize the need for future schema changes to major domain entities. A common

domain-level information model is essential to integrating application programs and

data; if this information model is stable then substantive schema changes are rare.

We distinguished between changes to the model and changes to the schema: (1) A

domain model change occurs where an application contains domain-specific semantic

information not in the domain model, and (2) A mere schema extension may be

required when an application contains a syntactic type not handled by the proxy

layout or parsing mechanisms.

The former case (semantic changes) will occur infrequently, and the user community

should be consulted extensively before changing the model. The latter case (syntactic

changes) merely involves additive changes to the database schema; when the proxy's

syntactic transforms are inadequate for describing a new type, that type must be

added to the schema along with input or display methods and conversion functions

to or from the domain model. Such additive changes to the schema do not require

major updates the data in the database (Le., database migration).

. Minimize the need for special-purpose programmed interfaces to application pack-

ages. To that end, our implementation aimed to represent syntactic details of pro-

grams declaratively, rather than programmatically. This goal was based on the

assumption that, at least for the near term, application developers would have little

incentive to modify their applications to read and write common data structures.

As we saw in Section 4.1, this goal led to our designing an input file generation

language and an output file parser.
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These two overarching goals guided virtually all remaining implementation choices.

5.2 Implementation of Database Services

In this section, we describe our implementation in ObjectStore's Data Definition Language

(an extension of C++) of the domain-specific computational chemistry model. Figure 5.1

shows the entities of the model that we chose to implement. Object types not critical

to the computational proxy concept were either not implemented or implemented only

partially; these are shaded. For example, we only partially implemented the laboratory

experiment object. In addition, the idea of grouping molecules into families by molecular

templates, though interesting, is only of marginal interest to the computational proxy

project. We used only the Cartesian coordinates representation for molecular structure.

The basis set class was implemented, but basis set data itself still resides in a file-based

library rather than the database; the prototype constructs basis set instances on demand

from the existing file-based library. In some cases, we wanted to verify the ability of

ObjectStore to perform a particular function that would be useful to the domain, but not

critical to the proxy. Thus, for example, we implemented a feature to group experiments

into personal sets, but not into suites or investigations, since they are similar to personal

sets.

For ease of debugging, we implemented a collection for each major class; in ObjectStore

parlance, these are known as extents. For each extent we created a persistent variable

(database root) that allowed us to directly access the extent classes. Each persistent

variable in Figure 5.1 is underlined and an arrow is drawn to the class whose object-

identifiers its corresponding class contains.

We usedObjectStore's Schema Designer to generate our first physical schema with

classes and relationships between classes, making extensive use of ObjectStore extensions

to C++ for defining relationships and collection types. Binary relationships mapped

directly into attributes of the ObjectStore DML, and we found the modeling power of

the DML sufficient to represent even complex structures such as basis sets and molecular

orbitals. For us, one knowledge representation shortcoming of the DML was that only
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class-level, and not instance-level, methods were supported. Thus, for example, we could

not include in the computational application class a different method for each instance of

a computational application. To get around this problem, we included the name of the

function as an attribute of the application class. When we wanted to invoke the method

for a particular instance of a class, we passed the name of the instance level function to a

class method, and this method called the function.

5.2.1 Populating the Database

To test our schema, we loaded the database with 20 sample experiments. We implemented

the database loader as a C++ program that used the C++ iostream libraries to read highly

structured text files, copied from a set of representative experiments. The automatic loader

made it easy to modify the schema, refine the input data sets, and reload the database.

Entering data on an object-by-object basis was sometimes useful, so we also wrote an

interactive data entry program. An object editor and bulk loader would be a welcome

addition to ObjectS tore.

Loading experiment data post facto (Le., after the experiments have been performed)

involved loading data from files excerpted from the output files and formatted by hand.

Even with this meticulous preparsing, we were faced with the somewhat troublesome

issue of value-identity vs. object-identity. ObjectStore, like other object-oriented DBMS,

bases its identification of objects on object-identifiers, rather than on attribute values.

ObjectStore makes it easy to determine if two references to objects already in the database

are "identical" (one simply checks whether the two object-identifiers are equal), but there

is no automatic facility for recursively checking value-identity for two objects. These

object-identifiers are not known outside the physical DBMS, however, and one must base

determinations about identify of a new object with a database object on user-defined

value-identity. Therefore, in writing a data loader, one must either invent some value-

based identifier to link one object to another (as for a relationship) or physically embed

objects within the objects to which they relate (an interesting task for cyclic relationships!).

For our initial loader we chose the latter option, but decided in general not to create a

new object if a corresponding object with "equal values" already existed in the database.
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An exception to this rule is molecular structure; we did not check every atom in every

molecule to find out if there was an equal atom at exactly the same x-y-z location.

To determine unequivocally whether the database contains objects value-identical to

new objects one would have to write a program for each object that checks each attribute

in the candidate instance against each attribute in the existing instance; this is known as

"shallow equality". We found, as have others [138], that something akin to the relational

discipline of defining unique primary keys as tuple identifiers alleviates the necessity of

writing code to ascertain equality. To determine if a referred-to object was "equal-in-

value" to an object already in the database, we used either a combination of value-based

key values or an an artificially generated primary-key-like attribute (in effect, a serial

number). These serial numbers were assigned and inserted manually in the experiment

load files. This solution worked for our small prototype database, but would be impractical

for a large load file or for incremental loading into the database of experiments. In the

course of our research, this object-identity crisis pushed us towards the decision to initiate

experiments from the database. Thus, with our infrastructure, the experiment is invoked

in the context of the objects of interest, and duplicate object recognition is avoided.

A further (somewhat minor) shortcoming of C++ and ObjectStore was the lack of

a dictionary class in either. We responding by implementing our own dictionary-like

class to manage the three atomic identifier types: atomic name, atomic number, and

atomic abbreviation. The alternative to writing our own dictionary facility was to include

enumerated types explicitly as part of the schema. We shunned this approach because of

our belief that such dictionary information is data and data belongs in the database, not

in the schema.

5.2.2 Implementation of Queries and Database Operations

We chose to implement six database queries and operations, thus verifying the suitability

of ObjectStore as a vehicle for further implementation. These operations covered dis-

playing and deleting experiments, and creating new collections. Further details of this

implementation are given elsewhere [42, 43].
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5.2.3 Summary of Database Implementation Experience

Our experience implementing the computational chemistry database confirmed our hy-

pothesis that object-oriented technology is an appropriate medium for this application

area. The lessons learned fall into three categories: the modeling power of the language,

the ease with which we accomplished database management tasks, and the usefulness of

the programming environment. Of course, our comments about the database implemen-

tation are applicable specifically to the development environment we used, ObjectStore

and C++. Only in the case of modeling power can we generalize to other object-oriented

languages and databases.

The conceptual model mapped easily and intuitively onto object-oriented structures.

Object Design's Data Description Language (an extension of C++) and schema designer

tool made this mapping somewhat easier than it would have been with the C++ standard

class definition structures, because we did not have to explicitly define intermediate classes

for aggregates such as sets or lists. Mapping our conceptual model onto another object-

oriented language, in particular Small talk, might have been somewhat easier than using

standard C++, because those languages provide facilities not available in C++ such as

predefined dictionary classes and easily accessible instance-level methods. Even so, we

certainly found even standard C++ classes more intuitive than the relational tables into

which we would have cast our model had we chosen to implement our system as a relational

database.

ObjectStore is a "complete" [6]database management system and provided all the ma-

jor database functions we required: concurrency control, backup and recovery, distributed

client-server architecture, and excellent extensions to C++ for data definition and data

management. Indeed, we found ObjectStore's methods of mapping persistent memory

onto transient memory both transparent and efficient. Other database management tasks

where we would have appreciated more functionality include loading and modifying sin-

gle objects, bulk loading data from ASCII files, browsing the database, and displaying

(or printing) database objects. While the ObjectStore Database Browser was helpful in

browsing the database and performing simple ad hoc queries, the additional functionality
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of displaying floating point numbers and invoking user-programmed methods from the

browser is needed for scientific applications. ObjectStore provided neither a bulk loader

nor an object-entry and object-modification facility, and both of these would be helpful

in developing a database such as ours. Finally, because scientists need to display com-

plex types such as matrices, one would ultimately like to have a "scientific report writer" .

While it is perhaps unreasonable to expect such a specialized tool from a general-purpose

database system, a complex object renderer or report writer would have been a much

appreciated database tool - one from which more specialized tools could be built.

Our implementation experience indicated three shortcomings of the object-oriented

database and programming development environment for this application class. We expect

these shortcomings to be addressed within two years as more mature products and third-

party tools come on the market.

1. Lack of a programming environment. We advocate better integration of database

development environments with programming languages and programming environ-

ments. The major drawback of using ObjectStore's excellent DML was its incom-

patibility with third party C++ development environments. Furthermore, even

the rudimentary debugging facilities provided with ObjectStore were incompatible

with ObjectStore's run-time memory management, e.g., the debugging tool did not

expand object-identifiers and thus relationships could not be traversed using the de-

bugger. The lack of a debugging facility was a minor inconvenience for us given the

good database browser, but we would have liked to use a programming environment.

2. Lack of abstract data types (or a Class Library) for scientific applications. In time

we expect that class libraries for scientific application areas will be developed. For

our implementation, we would have liked a matrix type and a molecule type.

3. Lack of a C++ dictionary facility. A dictionary class would have provided us with

the facility to easily look up synonyms for database instances, e.g., we could have

referred to chemical element by using atomic name, or atomic abbreviation or atomic

number. However, C++ does not have a built-in dictionary class, and we had to code

a dictionary for periodic table conversions. For future extensions to the prototype,
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a class library for unit conversions (probably using a dictionary facility) would be

helpful; unit conversions would be useful not only for scientific applications but also

for commerce and internationalization efforts.

Overall, we found object-oriented technology an appropriate tool in implementing a

complex scientific database. The minor shortcomings we identified (primarily involving

needed development tools) will likely be addressed as the technology matures within the

next few years. The reader should note, however, that we did not test a number offeatures

that are often cited as requirements for scientific databases, such as the ability to handle

large data volumes, or to collect data at high rates [60, 61].

5.3 Implementation of the Computational Proxy

This section describes our implementation of the proxy's encapsulation of the applications'

syntactic heterogeneity. The implementation of the proxy prototype actually consisted of

three phases:

1. An initial feasibility study to determine if the ObjectStore database management

system was adequate for representing the computational chemistry database.

2. A first prototype that generated an input file, shipped it to a remote processor,

started up the computational application, performed rudimentary process monitor-

ing upon request, shipped the output file back to the database host, parsed some

single value outputs and placed these values in the database. This prototype was

application-specific and had no facility for describing input or output files declara-

tively.

3. An extension of the first prototype that addressed the most difficult problem identi-

fied during the prototype effort, namely describing the application output files and

parsing them. This constituted a first effort to describe output files descriptively,

and hence formed the basis of our specification for application registration.

The latter two phases are discussed here in two sections: the prototype proxy implemen-

tation for input file generation (5.3.1) and output fileparsing (5.3.2).
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Section 5.3.1 outlines the mechanism currently used to generate input files and launch

experiments. Because the major objective of the first prototype effort was to determine

the feasibility of managing experiments from the database, its major product was the

Compute Monitqr. The experience gained about input file generation from this effort

formed the basis for our definition of the Computational Chemistry Input Language.

Section 5.3.2 describes the effort to moor experiments by parsing application output

files. Our experience writing output templates for the GAMESS application indicates that

the output template structure is sufficient to cover the three representative applications.

As noted in Section 4.3.2, however, the application registrar will be obliged to enter

particular template instances for each application. Some template instances will serve

several experiment types, but the registrar must specify which templates apply to which

experiment types.

5.3.1 Generating Input Files and Launching Experiments

The prototype system contains a rudimentary facility for users to enter information about

computational experiments. Information directly relevant to the scientific subject of the

experiment is placed into the experiment object; that relevant to the running of the

experiment into the proxy object. We hand-coded an input file generation program in

C++ that transforms these database objects to the particular textual format required

by the GAMESS computational application. This program invokes methods to generate

textual representations of molecular structure and basis set for GAMESS. After generating

the input file, the proxy sends a message to the Compute Monitor (see Section 5.5) to

launch the experiment.

Our implementation efforts led us to conclude that handcoding a data input program

for each computational application would be unacceptable in the long run because of the

program maintenance required on new releases of the software. Generating input files

and invoking applications on remote processors led us to the specification of our input

and output file specification languages (the CCIL and CCOL) and of our requirements

specification for network services. We also determined that that the proxy methods for

generating basis sets for input files would probably have to be particularized by application.



161

We did not, however, actually implement an interpreter for the CCIL, choosing instead

to spend time working on output file parsing which we believed to be a more difficult

(though related) problem. We wanted to gain experience with the more difficult of these

tasks, and then apply what we learned to both the design of both the CCIL and CCOL

grammars, and to their implementations. Our ultimate objective is to make the CCIL

and the CCOL as similar as possible.

5.3.2 Output File Parsing

Initially, our prototype shipped output files back to the database host, where a simple

PERL script [185]picked out a few single-valued results (such as final energy), and updated

the database with those values. Our experience working with PERL gave us the basic

understanding of the different applications' output file layouts that led to the specification

of the CCOL. This section describes our experience specifying and implementing a more

extensive and declarative output file capture facility for the computational proxy. A

particular objective of the implementation was to generalize the parsing task to enable

a possible next step: building higher-level tools for generating parsers from a descriptive

layout language, namely the CCOL.

Implementation Alternatives

We considered two alternatives for implementing the output file parsing facility:

. Break the required task up into subtasks that could be handled by existing tools,

and use those to perform the subtasks. Under this scenario, one might use an

existing UNIX tool, such as PERL, or a specialized text processing language, such

as SNOBOL, to parse and reformat the output so that it could be read by the proxy

and captured in the database.

. Write a single system that integrated all required parsing and loading tasks as part

of the computational proxy.

The existing tool we explored was PERL. Though satisfactory for single-valued out-

puts, we found writing the PERL scripts for complex objects such as molecular orbitals
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somewhat daunting. We also saw no direct way to specify the correspondence between

data objects (output by PERL) and database objects, and therefore, we would have had to

define a separate language to link PERL output with database objects.! Furthermore, we

wanted a solution that would eventually incorporate a single parsing mechanism, rather

than having to deal with several languages. Finally, we felt that existing tools such as

PERL do not interface cleanly with database systems; database methods in C++ would

have to invoke the PERL scripts and load the objects parsed. We felt this constituted a

cognitive clash ("impedance mismatch") for the programmer [120]. As a result, we decided

against using existing tools such as PERL to implement the parser, and instead chose to

implement output file parsing directly as part of the proxy itself.

We thus chose the second alternative because we believed that using a single pro-

gramming language would help us better generalize the parsing problem so that we could

eventually design and implement a more general tool for parsing scientific text. One way

to implement the parser would have been to implement a compiler to read output tem-

plates and generate parsers (as database methods) for each application and experiment

type. Then, when the proxy was invoked to parse an output file, the database methods

would be used to parse that output file and load the data into the database. We opted

to write an interpreter rather than a compiler, however, because we wanted the database

methods that parsed output to be generated in C++ and there were as yet few proven

tools for C++ compiler generators. Furthermore, before investing the effort required for

writing a compiler we wanted to experiment with both the output-file parsing problem

and our output-file description language. We felt that writing an interpreter rather than a

compiler was a more efficient way to experiment. Thus, we decided to integrate the parser

directly with the proxy rather than use existing tools, and to implement an interpreter

rather than a compiler.

1We did not investigate writing a single language that would generate PERL scripts, and make the
necessary correspondences with the database objects.
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Design of the Output Template Interpreter

When an experiment has completed, the Compute Monitor informs the proxy mechanism,

which invokes the output file interpreter. The interpreter reads a list of output template

objects specifically for the computational application and experiment type of that experi-

ment, one template per database object to be loaded. The specification for the interpreter

is driven by the structure of output templates and is described in Section 4.3.4.

We decided that having the interpreter read output template objects rather than di-

rectly process template statements written in the CCOL would simplify the interpreter

design. We thus eliminated the need for the interpreter itself to include a CCOL lexical

analyzer and syntax checker by translating CCOL definitions into template objects. The

interpreter that we implemented assumes an intermediate step that translates the output

file description in the CCOL into output templates, one per object to be read by the proxy

mechanism. This step is now only semi-automated; our registration procedure currently

consists of writing a text file containing parsing directives for each destination database

object for each application and experiment type. A program then loads these directives

into the database as output templates.

For each database object to be loaded, the interpreter searches the output file for the

keyword given in the output template, then carries out the template's parsing directives.

The interpreter first delimits the textual object from its surrounding text, and then reads

the textual object into memory as per the type given in the template, comparing its type

to that of the target database object. If the types clash, the interpreter applies a simple

heuristic to determine the appropriate type conversion function. Where appropriate, stan-

dard C++ type conversion functions are used; where not appropriate, the class names of

the textual object and database object are concatenated to yield a data conversion func-

tion.

In the initial parsing phase, the interpreter works much like a lexical analyzer, moving

a cursor through the text and picking up or discarding tokens as directed.
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Implementation of the Interpreter

The "Parser-Converter-Loader" (PCL) fulfills the proxy's application output-file parsing

and loading functions, and is in effect an interpreter for output templates. This section

recounts our experience implementing the PCL. We outline the challenge and strategy of

this implementation, and describe its high-level program design. We also address to what

extent the PCL implements the system specification for the output-file parsing component

of the proxy outlined in Chapter 4 and what steps are now required for a registrar to

arrange for output files for a particular application to be parsed by the PCL.

The major design challenge we faced was how to load text from the file that was

different in type from its target database object. Even though we knew the type of

the textual object from the output template, C++'s dynamic run-time support was not

flexible enough to provide an easy solution to this problem. A secondary challenge was

implementing the complicated syntactic transformations as for folded matrices.

The strategy we used to meet our primary challenge was to overload the C++ input

operator (») for the experiment object, each object in the experiment class hierarchy

that might be an output of a computational application, and each type encountered in the

output file. By experiment class hierarchy, we mean every class related to the experiment

class that is a potential application output. About sixty operator functions were written.

Once a computational application has terminated and the output file is available for

parsing, proxy tells the experiment object to "read itself in". In the course of reading itself

in, the experiment object traverses its own hierarchy depth-first, sub-object by sub-object.

The experiment object hierarchy is traversed thrice: once to parse the output file and

load the textual objects into memory, then again to convert those objects, and finally to

actually load the objects into the database. The conversion phase can consist of syntactic

conversion (as for a folded matrix to an unfolded denormalized matrix) or a semantic

conversion (as from one database type to another). Note that the PCL implementation

thus belies the parsing order defined by the master template in the PCL specification;

this is a result of the implementation decision to overload the input operators for parsed

objects and start the parsing operation by telling the experiment object to "read itself
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in".

Each sub-object in the experiment hierarchy uses PCL methods to "read itself in".

PCL methods are available to the sub-objects because each object liable to be parsed,

converted and loaded is also a sub-class of "parsable object". The parsable object is an

abstract super-class that contains methods for interpreting output templates. To deter-

mine if it is to "load itself in", a parsable object determines whether there is an output

template object corresponding to itself, for the application and experiment type for its

corresponding experiment. (A PCL method is available to do this task.) If an output

template object corresponds to the database object, the parsing directives in the output

template are followed and that object is loaded. Eighteen directives were implemented.

For each experiment object to be read in, the PCL completes the following actions:

1. From the output template, determine the type of the textual object to be read, and

allocate the required storage by creating a new C++ object to hold the object as it

is parsed and converted, but before it is loaded into the database. For the purposes

of generality, a temporary object is created even if there is no conversion required

and the object could be directly read into the experiment object.

2. Read the textual textual object into memory by processing the parsing directives for

that object. Parsing the textual object involves positioning the cursor in the output

file to that object and performing syntactic transformations (such as reformatting a

folded matrix to an unfolded, denormalized matrix). Syntactic conversions done at

this step are only those that can be described using the CCOL.

3. Perform (semantic) type conversions (if needed) and move the data into persistent

storage, Le., into the database. The PCL determines the name of the conversion

method to use by concatenating the string that names the type of the object read

in, to the string "_to_", to the string that names the type of the database object.

Thus, for example, the method "bloaLtoJioat" would be invoked to convert a textual

object of type "bloat" to a database object of type "float". The type of the textual

object is known from the output template.

In addition to the path for the database object, the classnameof the objectto
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be loaded is found in the output template. Our design calls for the PCL to use

ObjectStore's MetaObjectProtocol (MOP) to look up the type of database object.

Note that looking up the type of an object in the MOP does not require that there be

an instance of the class whose type we request. The MOP is essentially a database

that holds ObjectS tore schema; types can be looked up using class names. Thus,

one can use the MOP to determine the object's type even if one might want to later

create the object as a result of parsing it. (For the prototype, we did not implement

an interface to the MOP. Instead, we implemented virtual functions that returned

the type of the database object for each database object.)

The strategy of rewriting the input operator for objects in this hierarchy and deriving

all experiment objects from a single base class ("parsable object") has several advantages:

1. Rewriting the C++ input operators makes for a clean connection between the

database schema and output templates. Because loading is accomplished in the

context of the experiment object, that object's methods are available to the PCL.

2. We could override the input operator for objects in the experiment class hierarchy

via the virtual member function, and get around the difficulties in C++ of dynamic

typing.

Its primary disadvantages are:

1. We had to write classes and input operators for each type of textual object (even

standard C++ types such as "string" or "int"). Writing these classes was easy, but

tedious and error-prone (and perhaps could be automated).

2. The order of parsing is controlled by the order of traversal of sub-objects in the exper-

iment object. Thus, our PCL may make several parsing passes through the output

file, even though the registrar initially ordered the CCOL statements according to

the order of textual objects in the output file.
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The PCL Implementation - Discussion

To determine how well our implementation of PCL matches the specification given in

Chapter 4, we examined the connection between the CCOL and the parsing directives. The

CCOL described in Section 4.3.4 is a relatively high-level language appropriate for use by

the registrar. Our specification calls for a CCOL compiler that takes CCOL statements (as

described) and writes output templates that can be processed by our interpreter. CCOL

statements are currently manually processed as follows:

1. CCOL statements referring to a particular experiment object, application and run

type are placed into a single file. Semi-colons are removed.

2. CCOL statements that unfold and denormalize matrices are translated into a sim-

plified language (see below).

3. A program loads these files into a list ordered by application, experiment type, and

experiment object, thus creating output template objects.

The current PCL directly interprets CCOL statements to load objects that require no

extensive syntactic transformations (such as final energy or molecular structure).

For complicated syntactic transformations needed for such textual objects as folded

matrices, however, CCOL statements must be converted into a simpler set of directives.

Recall that, in the case of parsing and loading a molecular orbital, CCOL statements

describe the format of a FoldedMatrix, and give directives to transform the folded matrix

to a matrix, strike blanks from the label field in that matrix, transform the matrix to a

denormalized matrix, and finally load components of the denormalized matrix into the

database.

Before PCL can process CCOL statements, they must be converted (or compiled) into

directives in the output template. We currently accomplish this conversion by hand. The

following scenario indicates how to convert CCOL statements:

1. The K: "Molecular Orbital Coefficients" directive positions the PCL cursor in the

correct location in the output file. There is no conversion needed.
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2. The CCOL declaration of the FoldedMatrix object triggers the reading of the folded

matrix.

3. The CCOL statement assigning the folded matrix to a matrix is replaced by a di-

rective "Unfold Matrix". Because the PCL cannot understand the masks in this

declaration, the number of columns and rows in the folded matrix must be commu-

nicated to the PCL. The unfold matrix directive causes the PCL to create a new

object of type matrix and to read an unfolded matrix into that object. The direc-

tive UnfoldMatrix has four integer parameters: number of rows, number of columns,

number of column headers and the length (in ASCII characters) of the row header.

The length of the row header must be constant across rows.

4. The CCOL statement assigning the matrix to a denormalized matrix is replaced

by a directive "DenormalizeMatrix". This directive causes the PCL to follow sub-

directives (explained below) that reformat the matrix so that a constant number

of tokens appear in each row. The directive DenormalizeMatrix has two integer

parameters: number of rows and number of columns. The sub-directives needed to

accomplish this task are "move from above if blank" and "Move from right if blank" .
These directives each take two integer parameters, start and length.

. "move from above if blank" is used to carry forward text from one row header

to the next. Thus, the directive "move from above if blank 3,3" causes the PCL

to rewrite the following two row headers, moving three characters ("1 H") from

the third position in line 1 to the third position in line 2.

1 1 H 15

2 25 (1)

as:

1 1 H 15

2 1 H 25 (1)

. "move from right if blank" is used to remove embedded blanks from a row

header. The directive "move from right if blank 7,5" causes the PCL to rewrite
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the following row header, removing blanks from the string of length five that

begins at the seventh position:

2 1 H 25 (I)

as:

2 1 H 25(1)

For further details on how to transform the CCOL to directives of this form, and for

further details on the implementation of the PCL, see Donald Abel's Master's Thesis [1].

Adding Output Templates to the Database

For the registrar to add a new application or experiment type to the proxy, he or she must

first create the list of output templates for that application and experiment type. Then,

for each output template in this list, the registrar must complete the following tasks:

1. Determine which experiment object in the database schema corresponds to the tex-

tual object. This is the database object that is the target of the load. Its name is

used in the output template.

2. If the textual object is of a semantic type new to the database, the registrar must

add a class of the new type to the schema. For example, if the target database object

is molecular structure in Cartesian coordinates (Atom Cart) and the textual object

is molecular structure in polar coordinates, a new class for atomic structure in polar

coordinates (AtomPol) must be added. In addition, a conversion routine must be

written and added to the schema for the class to which the data is being converted

(here, "AtomPoLto..AtomCart" to convert from polar to Cartesian coordinates).

3. The registrar must write the output template for the new object in the CCOL (if

there is not already one in the database). Even if there is already such an output

template, the output template list for that application and experiment type must

be updated to point it.
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Our most difficult C++ implementation tasks were: (1) allowing for textual objects

of arbitrarily large size, (2) reformatting ill-formed textual objects, such as matrices con-

taining molecular orbitals, into well-formed matrices, and (3) adjusting for limitations of

the C++ language and ObjectStore.

To allow for textual objects of arbitrarily large size was a tedious but straightforward

programming task. We simply allocated memory for buffers as we read the input file.

Writing programs to parse well-formed matrices was a relatively simple task, given each

like row of text has the same number of tokens. However, writing programs as specified

in Chapter 4 to read and reformat folded and unfolded matrices would have involved

implementing a lexical analyzer that could act on positional cues, recognizing masks for

textual objects such as 'XXXXX' as "a numeric character field of length five, some of which

may be spaces", and directives to "strike blanks from" those textual objects. Rather than

do this, we chose to design new directives that could be more easily interpreted, and then

to rewrite the CCOL statements into those directives. For now, this rewrite task is carried

out by hand.

c++ and ObjectStore Limitations Encountered

The three limitations we encountered in the implementation of the PCL were: lack of

dynamic typing in C++, lack of instance-level methods in C++, and lack of support for

ternary relationships in ObjectStore.

We found it very awkward to program in C++ the dynamic typing we needed to

read in textual objects whose types were unknown at compile time. Even though the

templates tell the PCL input operator to expect an object with a type different from

itself, C++'s static typing makes it awkward to dynamically recast that object into the

appropriate type. For example, assume that the textual object of TotalEnergy for the

Gaussian output file must be read into memory as an object of type bloat, but that the

type of the corresponding TotalEnergy database object is float. Assume further that no

suitable automatic C++ type cast from bloat to float exists. C++ left us with two obvious

alternatives for where the conversion should be done:
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1. Read the entire experiment object, and then perform all conversions as the exper-

iment is loaded into the database. Under this scenario, all textual objects for one

experiment are read into a schema specialized for that application and experiment

type, e.g., one that includes the total energy as a bloat type. The type conversion

is then performed when the parser loads the object into the database schema. The

advantage of this approach is its simplicity; the disadvantage is schema prolifera-

tion, which would eventually have to be automated. For technical reasons, a schema

specialized for the entire experiment object is required, even if there is only one type

clash at a leaf node.

2. Perform the conversion as the textual object is being read. Under this scenario, the

interpreter reads an object as a text string and flags that object with its type. After

comparing types for the textual and database objects, the parser directly loads the

object if the types match. If the types do not match, the parser applies the appro-

priate type conversion function. For this approach, the only schema modification is

that new types must be defined as 0++ objects, and conversion functions to any

target types must be supplied. The implementation challenge arises from O++'s

inflexible dynamic typing capability: The interpreter must intercept an input oper-

ator's reading of an object to perform the type check and pass the textual object

through a conversion routine if there is a type clash.

Our solution to the dynamic typing problem used aspects of each of these alternatives. As

detailed above, we derived all objects in the experiment hierarchy from a single base class

"parsable object", and intercepted the input operator's reading of an object. Conversion

of foreign types to database types occurred after all objects from the output file had been

read in.

We also would have appreciated support for instance-level methods. By an instance-

level method we mean the ability to create a method associated with a particular instance

of a class. In our system, application-specific object display, input and convert functions

are essentially instance-level methods of templates. We would like to store different display,

input and convert methods for each template object. Unfortunately, C++ and ObjectStore
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provide only for methods at the class level. We experimented with writing instance-

level methods ourselves by defining function-valued attributes for some display, input and

convert functions.

When we needed to invoke these "instance-level" methods, we dynamically "linked"

the appropriate function to the class by passing the name of the function to be called to a

generic class method at the class-level for display, input, or convert. The generic method

then invoked the method whose name is passed to it; for a discussion of a similar technique,

see Coplien's Idioms and Paradigms [38].Thus, for example, to generate application- and

experiment-specific basis set instances, we provided appropriate conversion functions and

a table with names of those conversion functions and calls to each. The name of the

appropriate conversion function could be deduced from the name of the application, and

we simply searched the table of conversion function names and made the appropriate call.

The attentive reader will observe that we could have avoided this problem by defining

more classes; however, the number of classes needed would have been very large - one

per template - and significantly complicated our schema. A better solution is for the

ObjectS tore C++ preprocessor to provide handles for instance-level methods that could

be dynamically linked with class instances at runtime.

During our implementation of the proxy we also confronted a few limitations of the

ObjectS tore database management system, the most bothersome of which was the lack

of support for ternary relationships. Given an experiment object, we must determine

which template to use to parse that experiment's output file. Unfortunately, the ternary

relationship among a template, experiment type and application (see Figure 5.2) cannot be

directly represented in ObjectStore. The cardinality of this relationship is that there are

many templates per experiment type and application - one template for each experiment

attribute or experiment subclass attribute to be parsed and loaded. To deal with this

issue, we defined a new entity, ExpTypeForApp to represent the binary many-to-many

relationship between experiment type and application. To provide the interpreter with an

effective way of accessing output templates, we defined entities to group output templates

for a particular application and for a particular experiment type and application into lists.

The latter list is ordered as per the order in which an interpreter would most efficiently
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Thmplate

Computational
Experiment

Figure 5.2: Ternary relationship among Template, Experiment Type
and Application.

load experiment attributes and subclasses from the output file. To maintain integrity

constraints, one must verify that there is exactly one template per experiment object for

each experiment type and application when loading templates into the database.

Figure 5.3 shows our implementation of the above ternary relationships. The three

shaded boxes, TemplatesFor ExperimentTypeAndApplication, TemplatesFor Application,

and ExpTypeFor App, represent the classes needed to implement the relationships among

the template, application, experiment type, and experiment classes. Thus, for example,

to access the list of output templates needed to parse an output file for an experiment

of type "energy" run on GAMESS, we would navigate from the experiment object, to a

corresponding ExpTypeForApp object, and from there to the ListOITemplatesForExperi-

mentTypeAndApplication object. This list would then direct us to each template needed

to parse the output file.

While we attribute this limitation to ObjectStore, one should note that the limitation

is effectively that of the C++ language itself. The ObjectStore DML has provided effective

enhancements to the C++ class structure to model binary relationships, and to enforce

referential integrity and cardinality constraints.
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5.3.3 Summary and Conclusions of Proxy Implementation Experience

Our implementation of the proxy prototype demonstrated that the proxy mechanism is

feasible using existing technology. However, the C++ language itself has certain charac-

teristics that make that implementation difficult. In particular, object-oriented database

systems using C++ as their data modeling and application programming language would

benefit from additional modeling features such as ternary relationships and instance-level

methods. We also found it awkward to write C++ class methods that would allow in-

putting types different from those of the class itself.

We also consider that the amount of time required to write the general-purpose code to

parse the output files (approximately four person-months) is cost effective.2 This assumes,

on the basis of our experience, that it would take approximately two months to write a

special-purpose program to parse the output of the first application, and one month for

each application thereafter. It also assumes that writing and testing an output template

takes less than one week. These estimates, contrasting the difference in number of weeks

required to set up a proxy with output templates with the time required to set up a proxy

that uses special-purpose parsing, are tabulated below:

Given the estimates above, the break-even point for using output templates over

special-purpose parsing is four applications. This analysis does not take into account

the software maintenance that would be required with the special-purpose parsing option

- each new version of each application may include changes in the output files, thus

necessitating changes in the code written to parse the output files. Making changes to

2By "general-purpose code" we mean the time required to write the parser that interprets the output
templates.

w/output templates w/special-purpose parsing total wks compared

1 app 4 months + 1 week 2 months 17 v 8

2 apps + 1 week 1 month 18 v 12

3 apps + 1 week 1 month 19 v 16

4 apps + 1 week 1 month 20 v 20

5 apps + 1 week 1 month 21 v 24

6 apps + 1 week 1 month 22 v 28
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aparsing programis more expensiveand error-prone than making changes to an output

template.

We do not have adequate data to predict the cost-effectiveness of input templates,

though we suspect it would be similar.

5.4 Application Registration

This section shows how we entered application information into the database. We did

not implement an automated application registration facility for the proxy. Instead, the

procedure we used for registering an application to the prototype system involved using

a text editor to write information about the application into text files, and then loading

the application and template objects from those text files. We designed and implemented

programs to read and load into the database application objects and output templates.

Thus, in effect, we wrote a bulk loader for the application and template classes. Adding

a new application includes the following tasks:

1. Editing a file of Application instances to include the new application, and then
running the program to load the database with application instances. For example,
the following lines were added to the file to load the application object instance for
GAMESS:

name GAMESS

version 1

computer Sun4

fmtBSIFcn fmtBSIGAM

dateAvailable 2/19/92

timeAvailable 12:00:0

dateArchived 0/0/0

timeArchived 0:0:0

maxL 2

spherical false

maxS 30

maxP 30

maxD 30

maxF 0

maxG 0
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2. Making the program modifications necessary to build the input file for that appli-

cation. This process has four steps:

(a) Writing a program to generate an input file for the application, alter the call-

ing sequence of the program that invokes computational applications to call

this new program when the application is invoked. Compile and link the new

program with the computational proxy system.

(b) Providing a formatting function for basis set instances as required by the appli-

cation program. The new function should be given a name fmtBSlxxx, where

"xxx" is the first three letters of the application name. Thus, for example, the

function fmtBSIGAM formats the basis set instances for the GAMESS appli-

cation.

(c) Modifying the user query in the user interface to verify specifically if that

application should be used for the experiment about to be run.

(d) Modifying the program (in the Compute Daemon) that actually calls the com-

putational application with the calling sequence of the new application, and

the names of work files that the application expects.

3. Editing the file of Output Template instances to include template objects for each

experiment type, and then running the program to load the database with those

instances. For the ConvRHF experiment type of the GAMESS application, the

following lines were added to the file:

GAMESS

ConvRHF

*CompProxy

K "number of basis functions", Fa, PreT, unsigned short, "nfcns"

*CompExp

K "final energy", La, PreT, float, "energy"

K "cpu time", La, PreT, float, "cpuTime"

K "words of dynamic memory", La, PstT, long integer, "memory"

*Molecule

skip past "coordinates of all atoms"

skip past "--+"
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While this registration procedure worked well enough for the purposes of our prototype,

it would probably not be adequate for end users. Setting up the invocation of the new

application, in particular, needs refinement. Section 4.3.2 has described the application

registration procedure our final design requires.

5.5 Implementation of Network Services: The Compute

Monitor

Because computational packages run on a variety of platforms, proxies encapsulate op-

erating system and architectural complexity as well as the syntactic complexity at the

application level. This section describes our prototype implementation of the network ser-

vices required to allow the proxy to hide the distributed nature of the computing facilities

in the computational laboratory. We use the term client process to refer to the process

running the computational scientist's user interface; the client process requests database

services from the computational chemistry database and computational services of the

computational proxy.

In Section4.4weshowedhowthe proxy enables the user interfaceto request computa-

tion services from a compute monitor much as it now requests objects from the database.

We also described the three functional requirements of the network services required by

the proxy architecture, Le., to access files across remote machines, to start up programs

on remote machines, and to monitor the progress of those programs. We then went on

in Section 4.4.1 to specify five functional requirements for network service commands and

services:

. A global name and directory service for files.

. RemoteStart (rstart).

*Atom

K Itll, FO, PreT,string, "AtomicNumber"

K IItI, FO, PreT,unsigned short,"charge"

K tI" FO, PreT,float,"x",

K UII,FO, PreT,float,"y"

K "" FO," PreT,float,"z",
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. Remote Process Status (rps).

. Remote Done (rdone).

. Remote Kill (rkil~.

Below we describe our implementation of these network services. We chose to implement

the network only for distributed non-heterogeneous computing resources because of the

current complexity of implementing these services for different platforms.3 We believe that

the services we require will likely be available in the next five years, on an adequate range

of processors, through distributed operating system facilities. We wanted to implement

our own version of these services now, however, to verify our requirements analysis and

provide a realistic computing environment for the computational scientists testing the

prototype.

We implemented the network services component of the computational proxy on Sun4

workstations. Because our code implements the service at a very low level (UNIX system

calls and socket-level communication), and separates whenever possible platform-specific

and platform-general code, it is extensible to other platforms than Sun and could be used

to provide computation services for a working scientist.

5.5.1 Design Objectives

Our major objective for the conceptual design of the network services was a clean sep-

aration of responsibilities among the client process, the database and network services,

and the application(s). A clear demarcation is important because the network services are

likely to be more platform-dependent than database or proxy functions and, if implemented

separately, can be extended to other platforms more easily. Furthermore, as distributed

operating systems facilities provide these services, this part of the prototype implemen-

tation can be easily replaced. Finally, a clean separation of responsibility encourages a

3Note that implementing the proxy's network service commands on top of the Parallel Virtual Ma-
chine (PVM) [67] would have rendered the proxy ipso facto operational for non-heterogeneous computing
resources. However, we chose not to use PVM because (1) our users would have had to install PVM on
each machine running ab initio applications as well as on the database machine, and (2) PVM was not, at
least then, adequately widespread.
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cleaner separation of policy decisions from mechanism by isolating the user-level, domain-

specific decisions in the proxy. Separating policy from mechanism is important so that

policy can be more easily changed to support different domains and user requirements. In

principle one should be able to improve mechanism to support better performance without

affecting policy.

The proxy is the locus of experiment control for the user as well as the interface to the

network services, to which it issues directives and supplies application-level information.

Because the network services facility has access to resource availability information, it

should supply that information to the proxy and the user, as the basis for deciding where

to run the experiment.

One critical design requirement is that the network services must allow the client

process and the proxy to detach from the computation. If the computation cannot be

completed while the client process waits for the response, then the client process must be

able to disconnect from the system, returning later to check on its progress; the proxy

must be able to start up an application on a remote processor and not have to wait for it

to complete. This requirement is analogous to the need for data to reside in a database

without having to have a process remain active for the life of the data. As we shall see

below, this requirement eliminates otherwise acceptable implementation alternatives.

5.5.2 Implementation Alternatives

Our alternatives for supplying network services were to write our own from scratch or to

use an existing network-based computing environment. As pointed out by Geist and Sun-

deram [67], network-based computing environments fall into two categories, those based on

a specific distributed operating system [144]or programming paradigm [5], and those that

provide general-purpose computing environments. The former category is inconsistent

with the proxy objectives of providing computation services across a range of comput-

ing hosts, operating systems and architectures. Distributed computing systems in the

latter category typically provide networked computing environments with the following

characteristics: procedure-call access to system facilities, support for local inter-process



181

communication, and unreliable data delivery [67]. Prime examples include the Open Soft-

ware Foundation's Distributed Computing Environment (DCE)4 implementation of the

Object Management Group (OMG)'s Object Request Broker (ORB) [133, 154], the Oak

Ridge National Laboratory's Parallel Virtual Machine (PVM) [67], and Plan 9 from Bell

Laboratories [143].

At the time we began our work, the ORB specification was still under development.

Therefore DCE was not a viable alternative for implementation. Plan 9 did not offer a

good match for our functional requirements and was not widespread enough to satisfy our

needs for portability. PVM was, at the time we investigated it, somewhat too primitive

and not quite widespread enough to satisfy our colllaborator's portability desires. As a

result, we chose to implement our own network service facility.

Alternative 1: Distributed Computing Environment (DCE)

DCE is a software system (see Section 2.2.2) that provides location transparency. That is,

users see a shared system for running applications, but need not be concerned about where

the computers that run those applications are physically located. Among other services,

DCE provides a global naming service for files, remote procedure calls across architec-

tures, security and directory services for locating programs and files, and a distributed file

service. Figure 5.4 extends Figure 4.16 to show how DCE might be integrated into the

computational proxy architecture.

The DCE global name space and file server would be acceptable for making input and

output files available to the proxy and applications. The RPC runtime library, in conjunc-

tion with the preprocessor-generated stub code, provides system-wide, type-safe dynamic

access to applications' signatures. Because DCE is based primarily on an RPC rather

than a message-passing model, the Compute Monitor, running on a DCE host, would call

a remote process (a compute daemon running on a DCE server) to start up an application.

To implement the proxy experiment infrastructure using DCE, given our understanding

of DCE, we would implement one active compute daemon per application. The compute

4DCE was formerly known as the Distributed Objects Environment (DOE).
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Figure 5.4: Using DCE to provide Network Services.
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daemon would start up and manage the ongoing application processes. As stated ear-

lier, however, we did not choose DCE for our prototype because its implementations were

unavailable.

Alternatives 2 and 3: PVM and Plan 9

PVM and Plan 9 aim primarily towards partitioning computing tasks along lines of ser-

vice functions [67]. PVM is designed specifically for use at the application program level,

providing a basis for rewriting computationally intense applications from supercomput-

ers to take advantage of processing power of distributed networks of workstations. We

needed a distributed computing system that operated at a higher level of granularity than

PVM, namely at the program rather than the procedure or subtask level. PVM would

have been particularly useful for distributing one particular computational chemistry ex-

periment over a network of workstations. Our major objective was, however, to schedule

experiments one by one on computers in a network. While we could have used PVM to

that end, we believe that implementing the proxy's network services in PVM would have

involved writing almost as much code as was needed to implement the services using UNIX



183

sockets. Furthermore (and more importantly), our collaborators believed that PVM was

not available on the range of processor types they used, and thus that a prototype written

using UNIX sockets would be more useful to them as a model for a future system.

Plan 9 is a multi-platform operating system and places special requirements on the

computer platforms that run it in terms of network characteristics, processing and storage

elements. We felt that Plan 9's requirements too greatly restricted the computational

chemists' compute hosts and network services.

The Chosen Alternative: Implement our own Network Services

As DCE was unavailable, and PVM and Plan 9 not well suited to our needs, we decided

to implement our own network service facility using UNIX operating system sockets and

remote procedure calls. We required a combination of RPC and message passing at a

higher level of abstraction than was offered by the alternatives. While we could have used

the distributed facilities available in PVM to manage communication between our Com-

pute Monitor and daemons, we felt that the considerable effort required to learn PVM

and to extend its capabilities would not be worthwhile. We intended the implementation

as a proving ground for the five functional requirements, but in retrospect observe that

the proxy's network service component (implemented with UNIX sockets) is really quite

portable because: (1) UNIX sockets themselves vary little from computer type to com-

puter type, and (2) the proxy's network service component totals only about 100 lines

of code. Thus, when porting the proxy's network services to a new processor type, one

need review and revise a relatively small program that is unlikely to change very much.

While implementing the proxy's network services using UNIX sockets was a good choice

at the time we implemented the prototype, as lower-level network services offer greater

functionality and become more widely available, our decision should be revisited.

5.5.3 Physical Design and Implementation

This section describes the physical design of the network services component of the proxy

architecture and its implementation. In particular, we describe the program-level access

to distributed computation services in terms of the division of the proxy responsibilities
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into two functional units, the Compute Monitor and compute daemons. We also show

how information and control flow between the Monitor and daemons.

The computational proxy architecture is based on a client-server model. In a dis-

tributed databas~ system a database server, typically one for each processor that houses

part of the distributed database, handles data requests to that part of the database.

There is sometimes a separate process (or a number of distributed processes), a database

monitor, that keeps track of which servers and hosts are responsible for which data, and

which database servers are currently running. In some systems, all database requests pass

specifically through a database monitor.s Our network services architecture is analogous

to those database architectures that have a central database monitor: a client process re-

quests computation services from the proxy, which then passes the request to a Compute

Monitor. The Compute Monitor is a process that keeps track of which compute hosts are

currently available, and is responsible for sending a request for starting the computation

to the appropriate host and then retrieving the result from the host. Compute daemons

running on compute hosts serve a purpose analogous to that of database servers: on each

compute host a daemon carries out computation requests from the monitor. The Com-

pute Monitor and compute daemons are long-lived processes, started up as the machine

is booted and remaining active as long as the processor is running.

The proxy is the mechanism whereby the client process communicates with the Com-

pute Monitor and stores information about an ongoing computation (such as the process

ID of the process carrying out the computation) across user sessions. Placing the pro-

cess communication in the database between the user and the computation makes sense

because information about the experiment (stored in the database) is required to launch

experiments or to make sense of ongoing process information about the experiment. Fig-

ure 5.5 depicts the architecture for the computational proxy and computation services.

The proxy's computation services consist of one Compute Monitor per database system,

and many compute daemons, one for each processor where a computational application

5Because of the potential performance bottleneck with this design, some systems instead set up conven-
tions so that a central database monitor is bypassed on specific requests. A database monitor mechanism,
however, remains responsible for determining whether particular distributed databases are available.
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Figure 5.5: Implementation of the Computation Services Architec-
ture.

might run. Just as in a distributed database system where a particular database server

services requests for the data residing on the computer on which it runs, a compute dae-

mon services computation requests that will run on the compute host on which it resides.

In our system, the Compute Monitor runs on the same machine as the database monitor,

but it could run on a different machine.

A proxy request to the Compute Monitor for computation services indicates which

application to run, the input parameters and input file(s) to that application, and ap-

proximations of resources required. The Compute Monitor takes a request from the proxy

mechanism and matches it with a particular compute host on the network. The Compute

Monitor maintains in the database information about which compute hosts run which

computational applications and about the status of each, e.g., available or unavailable;

not busy or busy.6

Once a compute host is selected, the Compute Monitor moves its input file and sends

a message to the appropriate compute daemon to start up the desired application. After

thus invoking the application, the compute daemon passes the process identifier of the

process running the experiment back to the Compute Monitor, and the computational

proxy subsequently updates the database accordingly. This information (compute server

and process ID) enables the proxy mechanism to monitor the ongoing experiment. The

6 A host is "available" if it is currently running and connected to the network. A host is "not busy" if
it has excess resources and can take on additional tasks.
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Compute Monitor also manages the proxy's monitoring requests by passing them to the

appropriate compute daemon.

When an experiment terminates, the compute daemon so informs the Compute Mon-

itor, which updates the database with the status "experiment complete". The compute

daemon sends the output file associated with the experiment back to the Monitor, thus

triggering the parsing of the file and the placing of the results in the database. If the

client process that requested the experiment is still active, the Compute Monitor signals

the client process via the proxy. Note that neither the Compute Monitor nor the com-

pute daemons write to the database. Only the computational proxy writes information

about the computational process to the database; thus, there is no need for an operation

analogous to a database commit to coordinate changes to the database record of the com-

putation. The synchronous message passing functionality among the proxy, monitor and

the daemons maintains the proper order of requests and responses.

The Compute Monitor and compute daemons are implemented in C. Messages are sent

between the monitor and daemons via UNIX sockets. A compute daemon responds to two

messages: (1) start an application process, and (2) determine the status of an ongoing

application process. The computational proxy generates input files, and the Compute

Monitor sends them to the appropriate host. We used the UNIX remote file copy (RCP)

command to transfer input files to the compute host and output files from the compute

host. File names are generated according to a simple algorithm using chemist's name,

molecule and application. Output files are parsed by the computational proxy on the

database host. For now, the Compute Monitor maintains a hard-coded list of machines on

which specificapplications run. Further details about the implementation of the Compute .

Monitor and daemons are available in Meenakshi Rao's master's thesis [151].

5.5.4 Summary of the Network Services Implementation Experience

Our experience in implementing the message passing, file transfer, remote procedure call,

and procedure status request facilities needed for the computational proxy were useful

in fine tuning the proxy's network services requirements. However, we believe that the

network services facilities that we required and developed have a much broader user base
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than computational science. Such services should be provided by an operating system

service, independently of the proxy architecture, Even with such services, however, the

domain-level database and proxy infrastructure are both needed to supply the distributed

system with application-level information about the required services. Furthermore, a

database and proxy together are needed to supply a domain-specific application program

interface (API) between client processes and distributed system services.

Our review of currently available network service facilities also indicates that our crit-

ical requirement of being able to detach from remote and ongoing processes is not directly

provided by existing services such as PVM or Plan 9. To use these would require the im-

plementation and systems management of Compute Monitors and compute daemons not

unlike those we have already implemented. Our implementation experience has demon-

strated that this capability to detach is both necessary and attainable. Thus, for an

industrial-strength proxy implementation, we recommend building the proxy's computa-

tion services with a system such as DCE that implements the ORB specification.

5.6 Summary of the Implementation Experience

We end this chapter with a short summary of the prototype implementation experience.

The computational chemistry database can store experimental data across three major,

and representative, computational applications (GAMESS, Gaussian and MELDF) for five

commonly used experiment types, namely Conventional Restricted Hartree Fock (RHF),

Direct RHF, Conventional RHF with Gradient, Unrestricted Hartree Fock (UHF), and

Single and Doubles Configuration Interaction (SDCI). These experiment types were chosen

because they are the most commonly used.7

The proxy prototype mechanism successfully invokes computational experiments for

the GAMESS application in a distributed environment, generates input files for GAMESS

and parses output files for GAMESS. The prototype implementation was reviewed by com-

putational chemists and application developers at Battelle Pacific Northwest Laboratory,

who find that the prototype embodies adequate functionality for launching, controlling

7Our collaborators estimated that 90% of all experiments fell into these categories.
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and mooring computational experiments we expect novice users to run.

While we did not formally analyze the performance of the prototype, we observe that

the time the proxy takes to generate the input files and parse output files is virtually

noise compared to that needed for running the experiment, and is more than justified by

the convenience of having the proxy generate these files and manage experiments. With

respect to transferring input and output files in their entirety across the network, we

further note that we could observe no appreciable response time difference (on a local area

network) between running experiments of about three minutes in duration on local and

remote compute hosts. That this response time difference is imperceptible to the human

user is not surprising, since the file size of output files rarely exceeds one megabyte, even

for very large experiments. Transmitting these files over a wide area network (WAN) might

take longer than over a local network, but users would typically run only larger experiments

(processes running an hour or longer) over the WAN. For calculations running an hour or

longer, the time required for sending files back and forth from the database host to the

compute host is dwarfed by the time required to complete the calculation.

In addition to our observations about adequate functionality and performance, our

experience suggests that implementing the proxy is cost effective in situations where a site

provides end-user support for more than four applications.

Implementing the database and proxy identified additional database management sys-

tem functionality needed to more fully support the computational chemistry database and

its development. We saw a need for object-oriented database support for ternary relation-

ships, and for additional object database tools, namely text parsing and formatting tools

for database query results (i.e., report generation). Our development experience indicates

a need for better integration between programming language and database development

tools, class libraries for scientific applications, and a C++ dictionary class.

Finally, we observe that our implementation of the proxy involved only Sun worksta-

tions. To extend it for a heterogeneous environment would involve extending the Compute

Monitor's socket-level communication and writing compute daemons for other platforms,

a task that would involve reviewing (and perhaps modifying for different variants of the
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UNIX operating system) about 100 lines of code in the proxy's network services compo-

nent. While such special-purpose programming is probably cost effective, we believe that

in the longer term it will become practical to rewrite the Compute Monitor and compute

daemons using a distributed object service such as the Open Software Foundation's Dis-

tributed Computing Environment (DOE). Such high level services are preferable to lower

level tools for distributed .computing such as Parallel Virtual Machine (PVM), although

any of these alternatives would probably be more cost effective in the long run to the

low-level systems programming approach we used.

This prototype implementation demonstrated the feasibility of implementing the com-

putational chemistry database and the proxy, even with existing database management,

programming language, and network services tools.



Chapter 6

Validating the Model and the Proxy

Chapter 5 recounted the implementation of our infrastructure, and showed that the pro-

posed design could be realized with a modest amount of programming effort relative to

the benefit derived. Simply having a working system, however, only demonstrates the

realizability of the infrastructure - it does not show that the database plus proxy are

useful. This chapter, then, assesses the utility of proxies; here we evaluate the database

and proxy design.

We have chosen to evaluate utility along three dimensions. First, in Section 6.1 we

measure our infrastructure against a typical user scenario; we ask if user requirements

are met by the infrastructure as it is now conceived. Second, in Section 6.2, we turn our

attention specifically to the domain model of the infrastructure and ask three questions:

Is the domain model sufficiently general to cover a useful range of ab initio computational

chemistry applications? Are its structures intuitive enough for casual users and yet sophis-

ticated enough to represent the needs of experienced theoretical chemists? Is the model

extensible to a wider range of applications and chemistry domains? Third, Section 6.3

considers the effectiveness of the computational services component of the infrastructure,

i.e., it evaluates the proxy mechanism itself.

We contend that these three measures constitute an adequate validation of the proxy

infrastructure. If the infrastructure as conceived (data and computation services) meets

the needs of computational chemists, if both these components as designed are both ad-

equate for computational chemistry and extensible to allied domains, and if the design is

feasible, then the proxy infrastructure is a valid solution to the problems facing ab initio

computational chemists.

190
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6.1 The Infrastructure as a Whole: A User Scenario

This section considers a user scenario for a single computational chemistry experiment to

evaluate the database and proxy as currently designed. The scenario is the benchmark

against which we verify whether our infrastructure does what it is supposed to do. We

assume a user front-end that employs the database to help the user make intelligent

selections of applications and application parameters. The user front-end "fills in a proxy"

with parameters needed to run the experiment, and calls the proxy with requests for

scheduling and monitoring the experiment.

In Section 3.1, we introduced a typical scenario for the use of computational chemistry

applications involving a single state of a single molecule. We then identified which difficul-

ties within that scenario were alleviated by providing a database of past runs. Chapter 3

concluded that such a database alone does not alleviate all of the difficulties in managing

experiments in a distributed computing environment, and Chapter 4 introduced the proxy

mechanism to address those difficulties.

Below, we specialize that same scenario to consider an experiment on ethylene, this

time assuming a database of past runs, the proxy infrastructure and a user interface. The

front-end is modeled on Dr. David Feller's prototype and design for the Computational

Chemistry Input Advisor (CCIA) [51], currently under development at Battelle's Pacific

Northwest Laboratory. We use the scenario first to show that the proxy fills an important

gap in experiment management - a gap not readily filled by the database and user

interface alone. Second, reading the scenario with an understanding of the proxy design

and implementation demonstrates that the proxy does what it is supposed to do. Third,

the scenario highlights features needed for the proxy to mature to a practical infrastructure

for experiment management.

The scenario assumes the chemist's workstation is a Sun4 named coho that is running

the user interface as a database client process. The GAMESS application is installed both

on another Sun4 named chinook and on a Cray supercomputer; our chemist has access to

each of these machines. Where the database itself resides is not relevant to this scenario,

but the most likely place for it is on a third computer.
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1. Specify subject molecule and desired result. Rather than using a molecular

editor to define ethylene's structure from scratch, the chemist searches the database

for previous experiments on ethylene. She finds a match by searching the database

for all molecules with the chemical formula CH4; two years ago, another chemist in

the lab had used the Gaussian application to determine the lowest energy values for

ethylene. In her current investigation, our chemist aims to determine an optimized

structure for ethylene using a new implementation of the RHF algorithm introduced

by the GAMESS application. Even though GAMESS and Gaussian use different

input formats for molecular structure, our chemist can use the structure from the

previous experiment as a starting point because the database can present molecular

structures produced by Gaussian using formats required by GAMESS.

Our chemist asks the front-end to set up a new experiment using the molecular

structure from the previous experiment as a first estimate. In response to her request,

the front-end sends a message to the proxy class which in turn creates a new instance

of itself for the subject molecule, desired result, and application that the chemist

has thus far specified.

2. Consult previous runs on similar molecules. The chemist uses the ethylene

structure to search the database for molecules in the same family as ethylene, re-

trieving experiments on ethylene, ethane and methylene.

3. Annotate records of previous runs. While consulting previous experiments, the

chemist notices that results of two of the experiments have since been corroborated

by independent work at another laboratory. She attaches a personal annotation to

those experiments.

4. Choose input parameters for the current run. The front-end uses its own

rules of thumb and data from the previous experiments to offer "advice" on key

input parameters. Drawing on this advice, in conjunction with her own experience

as a GAMESS user and her own interpretation of the previous experiments, our

chemist begins to select the required input parameters. She sets the ConvRHF

Experiment Type parameter, and asks the front-end for advice on a basis set. Since
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she is exploring its new structure-optimization algorithm, not all the information

of the previous experiments will be applicable. For instance, GAMESS does not

support the DunningDivGrad Basis Set, and one of the experiments on ethane uses

that basis set. Two viable alternatives are presented by the front-end: STO-3G and

3-21G. Our chemist chooses 3-21G, and uses the same level of theory parameter that

was employed by one of the previous experiments using it.

5. Run the experiment. Thus far, the experiment has been built inside the database,

Le., parameters have not been translated to the format required by GAMESS. Our

chemist is now ready to run the experiment, which consists of the following subtasks:

(a) Select a target machine. Because this is a preliminary run, our chemist

decides to run the experiment on the Sun4 workstation chinook, and so informs

the proxy.

(b) Estimate resource requirements. To determine if the experiment as cur-

rently conceived is feasible for running on chinook, she asks the front-end for

an estimate of resource requirements, e.g., CPU time and scratch disk space.

Based on heuristics and previous experiments, the front-end predicts the ex-

periment would take five days. That estimate agrees with our chemist's own

intuition, so she decides to use the less powerful basis set (STO-3G). The front-

end reminds her that the level of theory she had suggested is too high for the

STO-3G basis set, and suggests an appropriate change. The new estimate is 6

hours of CPU time.

(c) Start the experiment. Our chemist starts the experiment by issuing a com-

mand to the front-end, which in turn passes it to the proxy. The proxy then

generates the GAMESS input file, offers the front-end (Le., the chemist) the

options of reviewing it and returning to Step 4 to modify input parameters.

If the experiment is satisfactory as is, the proxy transfers the file to the Sun4

chinook. The proxy then sends a message to the Compute Monitor to invoke

the application on chinook. Note that the chemist starts the experiment, but

the proxy generatesthe input file, transfers it to the computational host, and
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invokes the application.

(d) Monitor the experiment. Two hours later, before going home for the day,

our chemist asks the proxy for a status report on the experiment. She learns it

has used twenty minutes of CPU time, and is using 400 megabytes of memory

and two gigabytes of intermediate disk storage. Confident that the calculation

is proceeding, she goes home.

Note that our chemist does not have to log on to the remote machine in order to

monitor the experiment, nor to find out whether her experiment has terminated.

(e) Transfer results. When the process running the experiment terminates at

4:17 am, the proxy transfers the output file back to the machine on which the

proxy is running.

6. Analyze results, adjust parameters, and rerun the experiment until it

runs successfully. Our chemist notes that the experiment process terminated

normally, and checks the results in the database. The results are plausible but

because our chemist wants more refinement on the structure, she decides to run

the experiment again. She sets up a new experiment using the molecular structure

just calculated with the more powerful basis set and higher level of theory, and

schedules it on the Cray supercomputer. On this second run, she also requests that

the property hydrophobicity be calculated, because she will verify her theoretical

results by corroborating them with a laboratory value for the hydrophobicity of

ethylene. This laboratory experiment resides in the database as well, so a comparison

of the figures can be made easily.

As a result of her request to rerun the experiment, the proxy creates a new exper-

iment object, replacing the old basis set and level of theory parameters. It then

replicates itself, setting the computer platform on which to run the experiment to

Cray.

The chemist repeats scenario items 5 and 6 with the "new" experiment and proxy.

Our chemist need not make extensive changes to her experiment as a result of chang-

ing the target machine on which the experiment runs; the proxy generates the new
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GAMESS input file and transfers it to the Cray before starting the experiment.

7. Make public and archive the results of the experiment. Once our chemist

has successfully completed the investigation and validated results, she makes the last

computational experiment public, and flags the preliminary experiment on chinook to

be archived in two months. Our chemist discovers that the hydrophobicity calculated

by the successful computational experiment is corroborated by that measured by the

laboratory experiment, and marks the computational experiment "confirmed". This

confirmation creates a reference from the computational experiment to the labora-

tory experiment (and vice versa), so that other chemists can consult the confirming

laboratory experiment for this structure optimization of ethylene.

Figure 6.1 summarizes the differences in support for computational chemistry experi-

ment management offered (1) without database or proxy, (2) with an experiment database

only, and (3) with the full infrastructure, i.e., database plus proxy. The proxy provides

support needed for preparing, running and analyzing, and rerunning experiments - a

gap not filled by the user interface and database alone. The proxy provides a uniform

application program interface for the front-end across applications, a means of loading

experiment data into the database, and a consistent view of each ongoing computational

process. A number of practical details must be resolved before the proxy can support the

scenario above scenario. This follow-on work involves engineering changes to the design

and to the implemented prototype; they are specified below.

Assuming a proxy front-end, the current proxy design can support the scenario above

with the exceptions noted below:

1. Substructure definition and structure-level searching. By substructure definition,

we mean the ability to define substructures of the subject molecule. By structure-

level and substructure-level searching we mean the ability to search the database

of past experiments for experiments on molecules of like structure. Substructure

definition and structure-level searching needs to be integrated with the data model

and implemented before previous experiments on similar molecules can be retrieved.

The current implementation searches only by molecule name.
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Figure 6.1: Support for managing computational experiments
Currently, with Database and with Proxy plus Database.

The absence of substructure definition and structure searching does not affect the

operation of the proxy per se. Current research and development in molecular struc-

ture searching addresses these problems [45, 105, 121, 194],

and the CCDB could be extended to support these new techniques.

2. Support for the relationship between computational and laboratory experiments. A

computational experiment can be driven by anomalies in the laboratory, or can be

used as a precursor to a laboratory experiment.

The current data model has not explored the structures of laboratory chemistry

that would be required to set up more than a relationship that simply connects two

specific experiments.

3. Provisions for annotation. Extending the Experiment class to provide for individual

annotations of previous experiments would provide individual scientists a mechanism

for storing and sharing their comments about others' experiments. Delcambre's

current research in scientific databases addresses this issue [46].

Currently Database Database
Only + Proxy

from scratch, can find structures of structures easily
1. Define molecule. with editor previous experiments transformable

ad hoc can find "like" can find "like"
2. Consult previous experiments. experiments experiments

ad hoc can annotate the can annotate the
3. Annotate previous experiments. use file system public database public database

ad hoc can view "like" can also view and transform

4. Choose input parameters. experiments parameters
adhoc viewinglike exp helps: canalso:

5. Run the experiment. .select machine .build & transfer Input file.estimate resources start & monitor experiment.transfer & capture output

6. Analyze results, adjust parameters.
ad hoc side-by-sideviewof output auto-loaded to db

exoeriments in db easv to adiust narameters
ad boc ad boc potentially easy to

6a. Rerun experiment, until successful. replicate experiments

ad hoc must explicitlyload automatically load results
7. Make public and archive results. results Into database experiment validation



197

In addition to the conceptual changes above, our analysis of the proxy infrastructure

indicates that the following engineering issues would have to be considered before the

system could be deployed in a practical setting:

1. Authorization and billing. For now, the proxy starts up a remote job without regard

to whether the chemist has an account on that machine. Only the proxy need have

an account. Obviously, if experiments were billed to individual chemists, or chemists'

groups, then the database would have to keep track of who ran what when, and what

resources were used; alternatively, the proxy could pass the user ID through to the

network services, but this would require the database to store passwords, the proxy

to provide user authentication and the network services to conduct a remote login.

While critical to the deployment of the proxy infrastructure, implementation of

authorization and billing was outside the scope of this thesis.

2. File transfer optimization. The user scenario calls for the transfer of input files

generated by the database to the compute host, and of output files generated by the

application back to the database machine. We have not optimized the proxy design

with respect to file transfer. In particular, network traffic improvements could be

attained in some cases by shipping objects, rather than text files, across the network.

We felt that the above changes constitute engineering rather than research issues, and

that the usefulness of the proxy mechanism could be demonstrated without considering

authorization, billing and network traffic considerations.

6.2 Data Services: The Computational Chemistry Model

In this section, we evaluate our data model's generality, extensibility and usability. First,

to determine if our model was sufficiently general to cover a useful range of ab initio

computational chemistry applications we asked our collaborators to indicate which objects

were most important and most likely to exhibit variability across applications. We also

asked which applications would be most representative with respect to text representation

of those objects. Molecular structures and molecular orbitals were chosen as the most
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important complex objects for the domain, and Gaussian and GAMESS chosen as the

representative applications. We then tried to represent the text equivalents of molecular

structures and molecular orbitals for the Gaussian and GAMESS applications, and saw

that our model and template structures were able to express those objects. Though hardly

conclusive, these preliminary checks offer some evidence that our model and template

structures are general enough to represent the ab initio computational chemistry objects

of interest.

Secondly, to determine if our model is extensible to a wider range of chemistry domains,

we reviewed our model with other researchers interested in developing an object-based

analysis of chemical research. Other researchers from CAChe Scientific, Battelle Pacific

Northwest Laboratories, and IBM Almaden Research joined us in an effort to develop

extensible computer-based systems that help the experimental chemist conceive, conduct,

analyze and report chemical experiments. Dubbed the "Chemistry Objects Research Ar-

chitecture (CORA) Working Group, this group developed a conceptual model (Figure 6.2)

to support systems that enable both laboratory and theoretical chemists to use molecular

modeling and theoretical chemistry tools [118]. Similarities between our model and the

CORA model become obvious as one changes the names of the CORA entities to those

of our model, e.g., chemical sample to molecule and list of projects to suite of experiment.

The CORA concepts of plan and schedule are analogous to the functions performed by

the proxy infrastructure. The similarities between our model and the CORA model offer

some evidence that our model could be extended to a wider range of chemistry than ab

initio alone.

To measure the usability of our model, we asked computational chemist Dr. David

Feller to determine whether he, an expert chemist, would find the model usable. We

also reviewed our model with systems analysts at Battelle Pacific Northwest Laboratory

who had conducted a user survey of computational chemists. Both Dr. Feller and the

PNL systems analysts found our model adequate. Though these offer evidence that our

domain model is satisfactory, Battelle's user surveys and our own reviews with the user

and registrar scenarios indicate that the following extensions are needed before the system

would be of practical use:
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. Generalization of Property. Each observable property in the database is now explic-

itly modeled as a distinct database class or class attribute. The concept of property

should be abstracted so that new properties can be defined by users dynamically, as

instances of the property class.

. Additional ways of representing molecular structure. For now, molecular structure is

represented only as Cartesian coordinates. While this is increasingly the representa-

tion of choice, most ab initio applications accept other molecular representations as

input. Furthermore, many individual researchers have legacy data in those represen-

tations. Our model should be extended to represent molecular structure in internal

coordinates, and should be modified to accept data using standard display formats

such as that of the Brookhaven Protein Data Bank (PDB) [2].

. A more extensive implementation of the laboratory experiment class. While our

model currently represents laboratory experiment and laboratory apparatus, we have

not provided full support for comparing computational and laboratory experiments.

Such support would be needed for connecting computational and laboratory ex-

periments using the confirms relationship. The computational chemistry database

should be extended to input laboratory data output by computerized laboratory

equipment.

. Further specification and implementation of the extensions to Experiment for an-

notation, and to Molecule for molecular substructure identification and structure

searching.

. Further specification of automated data migration. We do not provide for migrat-

ing unsuccessful experiment objects off-line. A chemist will likely wish to preserve

only the final "successful" experiment in an investigation. We provide no auto-

mated mechanism for deleting or archiving unsuccessful experiments. Without such

a mechanism, the database will grow inordinately large.
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6.3 Computational Services: the Proxy

In Section 6.1 we addressed the issue of whether our infrastructure as a whole meets

the functional needs of the chemist. In Section 6.2 we went on to consider the domain

model, and asked if it was general, extensible and usable enough to deliver the data services

required by our infrastructure. Here we evaluate the part of the infrastructure that models

application programs and processes, i.e., the computational proxy itself. Whether the

proxy is sufficiently efficient has been addressed along with implementation; we noted

that the time needed to generate an input file and send it, and to send an output file

back and parse it is virtually "noise" with respect to the time needed to complete the

average computational experiment. Whether the proxy is effective has been addressed

in Section 6.1 above. Here, we emphasize the extensibility of the design. We believe

that the critical test for our infrastructure involves a determination of its extensibility

and portability. Is the effort we have expended amortizable over a number of different

applications for ab initio computational chemistry?

To answer this question, we first consider (Section 6.3.1) how easily new ab initio

computational chemistry applications can be added to the system. An allied question is

how easy it is to add support for computational applications running on "new" computer

platforms. By appealing not to an end-user scenario, but to a registrar's scenario -

the steps needed to add a new application to the system, we show the extensibility of

our design, and determine what is needed to deploy the proxy and database beyond the

computational environment explicitly supported by the prototype.

We then turn to the question of whether the experiment and proxy classes serve a

useful range of experiment types and applications. In Section 6.3.2 we identify the range

of application input and output we can support with the current design. Finally in Sec-

tion 6.3.3 we ask whether the proxy design is portable to other database management

systems than ObjectStore and other platforms than Sun.
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6.3.1 Adding New Applications to the Infrastructure.

This section considers the effort required to add new applications to those already sup-

ported by the proxy, and to maintain existing applications across application program

modifications. For the sake of simplicity, we assume that our methods for expressing the

new application's input and output files are adequate; this question is explicitly addressed

in Section 6.3.2.

For an application to be accessed from our infrastructure, the computational proxy

must "know" what platforms and machines that application runs on, the application

signatures, and how to map database objects to and from the application's input and

output file formats. The process by which the proxy comes to "know" these facts is

called registration. As described in Chapter 4, our aim is for application registration to

be conducted by a chemist, the registrar, who knows the computational application well,

but who need not be a programmer. The application registration facility is also used to

update an old registration to match a new release.

In this section, we outline the process for registering an application. We ask whether

the effort required to register and maintain an application with the proxy is justified by the

benefit the proxy delivers. Below are the steps now required to register a new application:

1. Add the appropriate instance of computational application to the database. The user

first adds the following information to an ASCII file: name of application, platform

type(s) on which the application runs, application version, date installed. Then he

or she runs a program to reload all application objects into the database.

2. Determine which chemical properties generated by the application one wishes to

load into the database. If a property of interest is generated by the application but

is not currently represented in the database, it must be added.

3. Determine the experiment types supported by the application. This involves study-

ing the application to determine which of its options support the experiment types

already defined. The registrar may wish to add new experiment types to the CCDB.

4. Write the input and output templates needed for each experiment type to describe
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the input and output files for the application. If certain display types in the ap-

plication cannot be handled by the template descriptions, the registrar must write

appropriate input, display and conversion methods. As with application instances,

the registrar must reload existing template instances to add new template instances.

5. If the application to be registered runs on a computer platform not already supported

by the proxy, then one must add an instance of computer platform to the database

and set up the network services component to support that platform. Adding a

new computer platform is conceptually the most complex task in registering a new

application, and must now be conducted by a programmer.! To add a computer

platform to the database, one must:

(a) Adapting a compute daemon program to the new platform. This probably

involves about 100 lines of code.

(b) Add an instance of computer platform to the database.

(c) Add one or more instances of particular computer for that platform type to

the database. In addition, one must associate a socket number to each new

instance of particular computer on the computer where the Compute Monitor

is running. On each new particular computer, one must similarly associate a

socket number for the computer on which the Compute Monitor is running.

Socket numbers are now hardcoded into the Compute Monitor.

6. Add an application signature to the infrastructure for each platform on which the

application runs. The application signature for each application, Le., its procedure

call, is now hard-coded (not data-driven). Thus, the registrar (or a programmer)

must modify the C program that generates the procedure call to the application.

The locations of input and output files and the application signature are currently

programmed into the part of the infrastructure that starts up experiments. Adding

the application signature involves adding about 6 lines of code for each experiment

type for each application.

1Currently, the proxy will work only with platforms running versions of UNIX that support socket
communication.
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The most tedious of the tasks above is preparing input and output templates for an

application. Neither adding an application signature nor adding a new platform is difficult,

though these activities require some familiarity with the infrastructure internals and with

the C language. A half-day should be sufficient for a database programmer working with

a registrar who knows the application. Adding a new platform type, however, requires the

services of a systems programmer. Using the existing program as a model, adding a new

platform would probably take a week to ten days.

After considering the registration procedure that we propose above, we observe that

the following changes to the data model and the proxy infrastructure would make the

system easier to manage:

1. Experiment type should be explicitly added (as an entity) to the database schema.

"Experiment type" is now represented only as a text field in experiment. As we eval-

uated our current design and implemented our prototype, however, experiment type

emerged as a prospective semantic device for comparing experiments and grouping

application descriptors such as input and output templates.

2. Molecular property should be generalized, if possible, as a single database class. Our

domain model currently specifies each chemical property of interest as a separately

described entity. Whenever a new application is added to the system, the properties

it calculates must already be represented in the domain model. If the domain model

contained one general representation of chemical property, adding an application

that calculated a "new" property would mean defining a new property in terms of

the general representation. The registrar would not have to make a schema change.

3. The database loaders for computational application, computer platform and partic-

ular computer should be rewritten to add instances incrementally to the database,

rather than having to reload all instances en masse. Clearly, reloading all applica-

tions when adding one is impractical for a working system. A data-entry program for

these classes would be more appropriate than a program that loads classes from files.

Such a program would be more easily written were the database system to provide an

object-entry tool Gust as most relational database systems include form-generation
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facilities f.

4. A registrar user interface should be provided. Such a user interface would generate

templates in our data description language from a graphical display of sample data

structures.

5. As intimated in the discussion on network services in Section 4.4, the network ser-

vices should provide a facility for registering platform types and platforms, and for

calling application programs across the network. This facility would greatly simplify

the steps in our application registration procedure that involve adding application

signatures, computer platforms, and particular computers.

Even without the changes above, we conservatively estimate that it would take twelve

days for a registrar to add a new application (running on a new platform). This esti-

mate assumes that the registrar is already familiar with the syntax and semantics of that

application, and that only a few major sets of experiment types are supported for each

application. An additional ten days of systems-level programming is required to add a

new platform under the current implementation. If the changes above were implemented,

the time required for registrar and system programmer might be reduced by half.

The process for maintaining the proxy support of an application across new releases

of the application will typically involve following each of the steps laid out above for new

applications. At each step, the registrar must determine the extent to which the database

description of that application must be modified for the new release. Adapting to a new

release could be as simple as modifying an output template to add a new observable

property as output, or it could involve adding numerous experiment types and computer

platforms to the infrastructure.

Whether or not the benefit derived from using the proxy justifies the effort spent

implementing the proxy infrastructure and registering each application depends on many

factors such as: the frequency of use of computational applications at a site, the likelihood

of a single user using several different platforms, and the level of user expertise with

2Servio Logic's Geode provides an "object-entry" tool.
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respect to different computing environments and applications. The extent to which a large

majority of experiments at a site can be expressed as manageable number of experiment

types supportable by the proxy is also significant. It will not be practical to designate

experiment types to fit all combinations of parameters to all applications. Our intuition is

that the proxy will be beneficial in laboratories where most experiments run by non-expert

users fit into less than a dozen experiment types, and where users are generally willing

to define their experiments using the basic experiment types, modifying the experiment

input files by hand if needed for more complex experiments.

6.3.2 Profile of Applications Readily Supported

Clearly the efficacy of the proxy depends on the expressiveness of the languages that

describe input and output files. This section profiles the applications and experiment

types supported by the proxy infrastructure, describing the range of inputs and outputs

that can be represented by the proxy's templates.

The proxy's input file description language, CCIL, allows for describing input files

composed of the following textual objects:

. Database objects formatted using the default display method from the schema or

an alternate display method. There are no "automagic" higher-level display types

such as matrix (as in the output file language). Minor control for complex types

can be imposed by breaking up the type into its components, specifying the display

format separately, and iterating over the members of a collection. For example, the

user can define a display for molecules by formatting the molecule level information,

and then using the ITERATE OVER command to display each atom according to

a particular method or format.

. Textual objects generated from database objects using simple data transformations,

e.g., a database value of "MPl" transformed to "1".

· Default values for database objects with null values for an application or experiment

type.
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simple textual objects given as single tokens, and complex textual objects such as molec-

ular structure and molecular orbitals, even where the number of tokens differed across a

sequence of textual objects of the same type.

6.3.3 Portahility of the Proxy System

The proxy has been implemented using ObjectStore on Sun3's running the SunOS. Thus,

for now, the infrastructure prototype handles only Sun3 workstations. Though we at-

tempted to use general UNIX concepts in our design and portable procedures in our im-

plementation, we have not tested the portability of the infrastructure to other platforms.

As for porting the infrastructure to run on other platforms, the database management

system, ObjectStore, runs on a variety of workstations. Thus, the major effort in porting

the infrastructure to work on any of the platforms supported by ObjectStore lies in porting

the Compute Monitor (written in C) to those machines.

Using a platform other than Sun as a compute host for computational applications is

discussed above in Section 6.3.1, and requires porting the compute daemon. The infras-

tructure can support a platform if the socket interface is supported between the Compute

Monitor and the new platform. In general, code using UNIX sockets is easily portable

[186].

We have not as yet considered porting the proxy to a database management system

other than ObjectStore. Porting it to another object-oriented database system would be

practical as long as the programming language that interfaces with the database man-

agement system supports calls to C programs. Porting the infrastructure to a relational

database system would be quite difficult, because we have taken advantage of the ability

to implement behavior as part of the abstract data type definitions.

6.3.4 Concluding Remarks on Evaluating the Computational Services

To gauge how applicable the infrastructure is to other computational chemistry appli-

cations, we have considered the overhead required to support new applications and new

platforms. With few or no changes the proxy design will service an application that has

the following characteristics:
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.Takes input and output from textual files.

. Runs on UNIX platforms that support sockets.

Obviously, of course, new applications that interface directly with the database can be

easily supported.

6.4 Summary of the Validation

In this chapter we provided three measures of effectiveness in managing computational

chemistry experiments, and we evaluated our proxy infrastructure against those measures.

First, we showed that, as currently designed, the infrastructure (Le., the computational

database and proxy together) meets the needs of computational chemists as defined by a

typical user scenario. Next we described why we believe our database design is general,

extensible and usable. (1) We demonstrated generality by showing that the database can

handle the most complex objects for representative applications. (2) We demonstrated

extensibility by showing that our model is consistent with a more general domain model

for chemistry. (3) We demonstrated usability by reviewing the system with computational

chemists who use ab initio applications and with analysts developing support applications

for computational chemists.

That the infrastructure is extensible to domains traditionally allied to ab initio chem-

istry strengthens this validation. Our evaluation of the infrastructure's computational

services (Le., the proxy itself) showed extensibility of the proxy by developing a profile

of the applications and platforms that the infrastructure would support with little or

no change. We conclude that the infrastructure is usable as designed for computational

chemistry experiment management. However, the validation process suggests that cer-

tain improvements will enhance the proxy's value; these are summarized in the section on

follow-on work in Chapter 7.



Chapter 7

Contributions, Lessons-Learned and
Future Work

Our research has resulted in an infrastructure for computational experiment management

that solves problems of data management and program interoperability. We focused on

one particular domain of computational science (ab initio computational chemistry), be-

lieving that delving into one domain in detail and then generalizing would yield better

results than surveying the field. In Chapter 2, we set the context for this work by de-

scribing research related to our own. We went on in Chapters 3 and 4 to show how the

current computing environment available to computational scientists falls short of pro-

viding adequate support, and then articulated our design for the domain database and

computational services that constitute our infrastructure. In Chapter 5, we described the

prototype implementation that not only helped us refine that design but demonstrated its

feasibility. Finally, in Chapter 6, we evaluated our infrastructure.

In this chapter, we conclude the discussion of our work. Section 7.1 describes the

problem we set out to solve and roughly outlines our approach. We then go on to briefly

summarize our solution to the file management and interoperability problems facing com-

putational chemists in Section 7.2. Section 7.3 lays out our contribution to computer

science research. With a more practical flavor, Section 7.4 recounts the lessons we learned

- lessons that we hope constitute helpful feedback to those developing computational

science applications and infrastructure. In Section 7.5 we suggest follow-on work to our

research, indicating in Section 7.6 what work we ourselves intend to pursue. We conclude

the thesis in Section 7.7.

210
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7.1 The Need for an Infrastructure for Computational Ex-

perimentation

Advances in raw computing power over the last twenty years have enabled scientists from

many disciplines to effectively model physical phenomena. Indeed, "computational sci-

ence" is becoming a subdiscipline in its own right, of such complexity that not only

writing, but using, the programs that implement these computational models of physical

phenomena requires considerable training. Unfortunately, even highly trained compu-

tational scientists find themselves overwhelmed with the complexity of the computing

environment in which they work.

A computational scientist typically uses five or six applications, distributed on a net-

work of three or four different hardware and operating systems. Because input and output

file formats for many applications are idiosyncratic, the scientist must deal with numer-

ous file format conversions, sometimes writing programs to perform those conversions and

usually having to explicitly invoke the format conversion programs. Because a typical

scientific study may involve running hundreds of computational experiments, these scien-

tists also must deal with complex file management tasks - moving files back and forth

among several platforms and keeping track of hundreds of input and output files. The

environment is further compounded by the fact that the applications are computationally

intensive and "long-lived" - a single experiment takes anywhere from several minutes to

several months to complete. In sum, computational scientists work in a complex labo-

ratory consisting of semantically complex distributed applications that require significant

file management, file format conversions, and the use of different programs running on a

number of different platform types.

Traditionally, computer science research in the service of computational science has

aimed to make the computations run faster. While there is of course still need for this,

we also need to make computational applications easier to use - both for specialists and

for users just now gaining access to these powerful tools. Our own research falls into

this latter category, aiming to facilitate use of computational applications. We initially

believed a database of past experiments for the computational scientist would adequately
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simplify the environment. Such a database would provide important examples to use as

models for setting up new experiments as well as alleviating file management tasks facing

scientists. However, our exploratory research revealed that a database to hold experiment

data was not enough: we also needed to populate that database and to support the actual

running of the applications. Making the database an integral part of the actual running

of experiments could accomplish both goals, but to achieve this we needed to link the

applications to the database. Because it is highly unlikely that these applications will be

rewritten to connect directly with either a database system or any particular infrastructure

software (at least in the near future), we treated them as legacy applications, albeit legacy

applications for which new versions are released once or twice yearly. The nature of these

"legacy applications", however, precluded interfacing them to the database using naive

encapsulation techniques.

Motivated by these observations, we designed an infrastructure for experiment man-

agement that consists of a domain-specific experiment database and an object-oriented

interface relating it to the applications. Our infrastructure is "middleware" - sitting

between a user interface and the standalone computational applications installed on a

distributed network of compute hosts. Because we believe the key to interoperability is

a common conceptual view of the underlying data, and because of the value we place

on maintaining persistent records of ongoing experiments that can be made available to

cooperating distributed user applications, we built this "middleware" within a database

tradition. The infrastructure in effect extends a database management system to support

computation services.

To demonstrate the feasibility of our approach, we implemented a prototype. We chose

an object-oriented database system as the implementation vehicle becausewe believed that

the complex scientific data with which we dealt could best be modeled by object-oriented

structures.
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7.2 Computational Proxies: An Infrastructure for Exper-

iment Management

Our solution to computational science interoperability problems consists of a single domain-

specific information model to facilitate comparability of experimental data and of an

object-oriented persistent structure to maintain information about application programs

and experiment processes. We implemented our infrastructure as a database to provide

persistent records of ongoing and past experiments. We chose object-oriented technology

for implementation because of the high level of complexity of the information model- we

did not feel that current record-based database technology could model these structures

effectively.

Our data-centered infrastructure supports computation as well as data management.

The domain-specific database provides database services that meets the twofold needs of

individual scientists: keeping track of experiment inputs and outputs for one's own work,

and referring to previous experiments that can be used as models for future experiments.

We developed conceptual and information models for the domain of ab initio computa-

tional chemistry; from the information model we prepared logical and physical designs,

subsequently implementing the Computational Chemistry Database in an object-oriented

database system, ObjectStore.

The other component of our infrastructure provides computation services, and essen-

tially consists of an abstract data type, the computational proxy, that models scientific pro-

grams and processes within an object database. We have developed computational proxies

specifically for the domain of ab initio computational chemistry, but believe the resulting

infrastructure is applicable to computational science in general and will help simplify the

complex computing environment in which computational scientists find themselves.

A computational proxy is an object-oriented abstract data structure - with accompa-

nying functions and database services. A proxy represents, within the database, an active

process running a scientific application (usually on a remote computer). Proxies model

not only application programs (computational characteristics and interface), but also the
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invocation and execution of those programs. Because proxies model the execution of pro-

grams, they are especially useful for controlling lengthy application processes - users

can consult a proxy to determine the status of a computation or tell the proxy to stop a

particular computation without having to log on to the remote computer that is running

that computation. Proxies launch and monitor experiments, generate data input to the

experiment from the database, and capture experimental results. We have endeavored

to provide the computational proxy's functions while hiding semantic and syntactic dif-

ferences between applications and environments. Because the proxies maintain persistent

records of on-going experiments in the database, those records are readily accessible to the

scientist even if the computer that is running the experiment is temporarily inaccessible.

Our ultimate goal for the proxy mechanism is to provide ways to register computational

applications declaratively with the database, without writing special purpose programs.

We made progress toward this goal with the conception of templates. Templates are

written specifically for a particular application by a user (the registrar) who is very familiar

with that application. Input templates contain a specification of an application's input file

designed so that the proxy can interpret the template in the context of experimental data

and generate an input file for that application. We have specified a language for defining

input templates called the Computational Chemistry Input Language (CCIL). In our

design and implementation of output templates we have made further progress toward the

goal of registering applications declaratively. Output templates describe output files for

a subset of computational chemistry applications and guide the proxy's parser in loading

experimental results into the database. We have described a language for output template

specification, the Computational Chemistry Output Language (CCOL), and implemented

the corresponding interpreter, the Parser-Converter-Loader (PCL).

Concomitant with the goal of declaratively defining computational applications to

the database is our second goal, running those applications automatically - without

requiring the user to intervene manually. We believe that the scientist need be familiar

with no more than one operating environment, but still be able to run experiments in many

other environments. We have good progress toward this goal. The infrastructure we have

designed and implemented includes a component called the Compute Monitor. When an
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experiment is scheduled by the user, the proxy passes a message to the Compute Monitor,

which passes the input file to the machine on which the experiment is to run and in turn

passes a message to that machine to invoke the chosen application. Another infrastructure

component, the compute daemon, resides on each computer where applications are run. A

compute daemon receives and carries out the Compute Monitor's requests to start, query

and stop experiments. While we have implemented programs for message passing and

remote process control (via UNIX sockets), we believe that a more viable implementation

would use a vendor-supplied network service. Because (to our knowledge) no appropriate

network service yet exists, we have defined the requirements for such a service.

Our third goal for this research is to provide a suitable migration path for the legacy

applications with which we work. Both input to and output from these applications

is currently effected via ASCII files. In the proxy infrastructure, we generate an input

file for each experiment and copy it to the compute host on which the experiment is to

run. Experiment results are captured by parsing the application's output file and loading

objects into the database. Eventually, we advocate modifying the applications themselves

to read and write objects directly. However, we realize that this goal is not feasible until

considerable practical experience helps determine what object interface is appropriate for

this domain.

7.3 Research Contributions

Computational proxies offer functionality not now provided in database systems, fulfill-

ing key requirements for database use by computational scientists. The infrastructure

we propose can be used in a migration path from stand-alone legacy applications to an

integrated environment where users can invoke applications distributed across a network

without having to learn syntactic idiosyncrasies of multiple applications and command

languages. As important as the seamless launching of applications is the possibility of

comparing outputs from different programs, or of using the output of one program as the

input to another, without having to write file conversion programs. Our infrastructure

can also be used directly by applications that can read and write structures conformable
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to our database.

Our information model has been validated as intuitive by an expert computational

chemist and systems analysts at Battelle Pacific Northwest Laboratory who have con-

ducted a preliminary needs analysis for a similar database. Thanks to a related conceptual

modeling effort (the CORA project), we have come to believe that the model is general-

izable to laboratory chemistry, and that it is intuitive to chemists already working within

the lab chemistry tradition. Finally, we have some evidence that the model is sufficiently

general to serve most non-expert use of three representative code packages. (Non-expert

use is expected to increase dramatically over the next five years.) We also suspect that

generating input files and parsing output files for the general cases we define can provide

first-cut input files and some support for loading results into a database for expert users.

We have demonstrated the feasibility of the infrastructure (database plus proxy) by

implementing its salient features in a commercially available object-oriented database sys-

tem (ObjectStore). The performance of the prototype database itself is adequate for

generating inputs from the database and loading outputs into the database. Our imple-

mentation of the output template interpreters has suggested that output file parsers are

amenable to automated construction and thus further validates the infrastructure. We

have illustrated the proxy's utility by comparing the amount of programming required to

interface computational applications to a database with and without the proxy.

The major contributions of our work are described in the sections that follow. Its more

general significance lies in the evidence it offers of the utility of a unifying data model as

a first step toward solving interoperability problems and of the promise of a data-centered

approach to simplifying a heterogeneous computing environment for the end user.

A Conceptual Data Model for Computational Chemistry.

Even though much of the information contained in a conceptual data model is implicitly

understood by those who work within a given domain, it is usually not written down and

certainly not written down in a manner accessible to computer science researchers. In this

situation, subtle differences arise between how individuals or research groups define specific

entities or relationships. Researchers from other sub-domains of the same discipline, or
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from other disciplines will not have internalized the model. Even if some sub-domains use

the same terms, the terms may carry different meanings.

Making explicit the conceptual data model implicitly used in the sub-discipline sets the

semantic foundation for both interdisciplinary work and data interchange between pro-

grams and people. Without a conceptual data model common to the application programs

commonly used in the sub-discipline, the syntactic differences between these programs

cannot be resolved. Without a conceptual data model common to the application-domain

supported by the proxy, for example, we would not be able to define experiment types

across applications because we could not establish semantic correspondence between prop-

erties output by two different applications. Without a common conceptual data model, it

would be scientifically unwise to use the output of one application as the input to another,

or to compare two outputs of the same name from two applications. The benefits above

derive from a common conceptual model whether or not it is actually implemented as a

common representation; where the model is implemented, we can resolve data incompati-

bilities among n formats with writing 2n transforms. 1

Without a conceptual data model common to the application programs commonly used

in the sub-discipline, neither the semantic content nor syntactic form of data produced in

one laboratory would be fully discernible to scientists working in other laboratories. As

important, without such a model it is difficult to write programs to import data accurately

from outside laboratories.

Our data model for ab initio computational chemistry contributes to the possibility

of a future data interchange standard not only for computational chemistry but for the

molecular sciences in general [118].

The Proxy Structure and Mechanism

The idea of modeling a computational process as a database construct suggests possibilities

for similar innovation by other researchers seeking ways to provide integrated computing

lWhile it is true that data differences between programs can be resolved where both semantic and
syntactic correspondences have been defined, one needs n2 data conversion routines to resolve syntactic
differences among n programs.
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environments. An important characteristic of computational science applications is their

complex inputs and long execution times. Representing both the application program

and an invocation of that program as objects allows us the flexibility we need (1) to

separate supplying inputs to the program from scheduling its execution, (2) to run the

program asynchronously from the database client session, and (3) to control and monitor

the application process. The naive wrapper approach, on the other hand, does not separate

invocation from execution. Our separation allows fine-tuning (or replicating) invocations

and controlling execution. A wrapper can only superficially filter input and output, and

cannot monitor an experiment [117].

Declarative Specification of Program Interfaces

The mechanisms we have developed to define application interfaces declaratively, without

writing new programs, contribute to the research areas of program and database inter-

operability. The interfaces to the application programs in the domain with which we

are dealing are typically ASCII files. Using our Computational Chemistry Output Lan-

guage (CCOL), a user (the registrar) can write output templates that define the output

file formats for these applications. The proxy interprets output templates in the context

of a particular experiment object to parse an output file and load experiment results.

The Computational Chemistry Input Language (CCIL), based on our experiences with

the CCOL, is a first step toward a similar declarative specification for input file formats

that would guide automated input file generation. The CCIL suggests possibilities for

object-oriented database report writers.

The direct value of the CCOL and CCIL to our own infrastructure is their provision

of declarative specifications to help automate the interface between the database and

application program, avoiding tedious and error-prone special-purpose format translations.

More generally, the languages and mechanisms in our infrastructure suggest (1) a

basis for layout languages and parsing mechanisms that could be incorporated into object-

oriented class libraries, and (2) an alternate way of approaching some schema integration

tasks, Le., resolving syntactic differences among semantically equivalent data.
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The Prototype Database Itself

The database we developed not only confirms the feasibility of our design, but also provides

an infrastructure for further research in integrating intelligent user interfaces with scientific

systems and in developing distributed database and operating system support for this

application domain.

The proxy enables building a database that can serve as a repository of past exper-

iments. The user can draw upon this database directly or indirectly (through the user

interface) in setting up parameters and or estimating resource requirements for prospective

experiments. The computational chemistry database thus establishes an empirical basis

upon which both human users and intelligent user interfaces might make rational schedul-

ing decisions. With data about past experiments, one could experiment with heuristics

for parameter selection, and policies and mechanisms for distributed scheduling.

7.4 Lessons Learned

We readily admit that computational proxies are most useful in domains where a rela-

tively stable conceptual model covers a large majority of the applications in use and that

proxies do not provide a solution for integrating all applications with object databases.

However, we do think that proxies are applicable in other scientific domains and likely

to be useful in areas beyond those. Indeed, the approach seems appropriate to any ap-

plication areas where legacy programs have complex input and output structures, where

computations are lengthy, where there are a variety of possible execution platforms and

where it is desired to support intelligent interfaces for non-expert users. Because rela-

tively powerful computers are becoming ubiquitous, and public communications networks

are making even more powerful computers widely available, the use of computational tools

is becoming widespread. Once usable only by experts in large relatively rich laboratories

with considerable support staff, computational applications are becoming available to less

well-endowed or to isolated researchers. Thus the use of existing, arcane computational

tools and the demand for tools that make them easier to use are likely to increase -

before the tools themselves become easy to use.
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Below we offer advice to others embarking on projects similar to ours. We think this

advice is relevant to those managing the evolution from legacy applications running stand-

alone on heterogeneous platforms to an integrated domain-specific system of application

services. We emphasize three aspects of our work as applicable to building infrastructure

to support legacy systems and integrate applications or databases into a single framework:

1. The importance of a domain-level data model. As pointed out in Section 7.3 above,

a common conceptual data model is critical to integrating diverse applications or ex-

isting schemas. Without agreement at the conceptual level, syntactic differences and

format differences cannot be resolved. Even worse, any two applications may have

subtle semantic differences that will render the comparison of results scientifically

meaningless, even though that comparison may be plausible on the surface.

2. A clear division of labor between system components. Our infrastructure has defined

one plausible division of labor among database, network services, user interface and

application. The database should not only provide distributed database services but

also support displaying and transforming data of different syntactic formats. The

database can provide computation services as well, but these should be implemented

in consort with a network service that spans the operating systems and architectures

needed by and available to the computational scientist. The database is the logical

place to maintain domain-specific information, including information about previous

runs to pass to the network services (or the user) for scheduling decisions.

3. Our experience with object-oriented technology. We found that semantic data mod-

els do not capture behavioral aspects well, whereas an object-oriented framework

gave us several mechanisms for coping with the complexity of our conceptual model.

These mechanisms included grouping attributes into a single object, modeling be-

havioral aspects directly, using class hierarchies, and customizing abstract data types

to a particular application.

We also found object-oriented languages and database systems quite appropriate for

expressing and implementing our information model. In particular, we could map

conceptual level classes, operations and hierarchies directly into counterparts in the
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database's data definition language without a lot of encoding. The OODBS provided

a data manipulation language that allowed us to implement many operations without

recourse to an external application language. This behavioral capability is also

useful for building routines to convert to and from particular formats. In spite of

these advantages, however, we found several shortcomings in the current object-

oriented modeling tools, languages and database systems during our work. These

are summarized below in Section 7.5.

Inevitably, the demand for increasing the usability of computational tools will lead to

the tools themselves being modified. While we do not expect that all the important legacy

applications in any given domain will be modified to interface directly with a particular

database system or even with a particular conceptual data model, building versions of

those applications to read and write standard data structures requires somewhat less

drastic changes. Indeed, data interchange formats for several scientific domains are being

developed [21, 63, 129, 153, 183]. One could first use proxies to interface the database

to standalone input and output files of major experiment types, and then build a proxy

interface to read standard file interchange formats directly from the application. Thus

proxies would offer a staged migration from standalone heterogeneous applications to a

domain-specific database available to many applications.

7.5 Follow-on Work

This section identifies three areas of follow-on work suggested by our research: (1) engi-

neering changes to the computational chemistry applications and to our own infrastruc-

ture, (2) engineering changes to the object-oriented development vehicles we used, and

(3) research opportunities identified by our work. After discussing follow-on work we turn

in Section 7.6 to the portions of it that we ourselves suggested by our research, intend to

pursue as future work.
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7.5.1 Engineering Changes to the Applications and Infrastructure

Work defining our infrastructure has led us to believe that the computational chemistry

community should consider adopting a common object interchange schema standard rather

than a common file interchange format. Given a common semantic-level definition of

objects such as molecular structures or basis sets, syntactic variations among programs

can be handled with syntactic transforms. If these applications write distinct objects as

output rather than text, or in addition to it, the need for complex parsing of output text

is alleviated.

We emphasize again here that the infrastructure we have designed is an application

interface framework; it is not meant as an end-user interface to computational applications.

An The end-user interface under development at PNL will provide a browser for our

database and expert system advice for setting input parameters. We would also like to

see improved support for registering new proxy types. An application registrar interface

would provide a more effective way of loading application instances and writing templates

than is now available.

In the course of evaluating our work, we observed that certain engineering changes

to the design would render the infrastructure more effective in practise. Although some

features of our conceptual model were not directly required in the implementation to

demonstrate our research on computational support, they are needed for a practical sys-

tem. These include substructure definition and structure searching, the generalization of

the property class, facilities for experiment annotation and migration, and a closer inte-

gration of laboratory experiment to computational experiment. Security and accounting

features must be added, and some benchmarks performed to determine if optimization

of file transfer activities should be pursued. In addition to these enhancements to the

database, the infrastructure's Compute Monitor could be rewritten to take advantage of

future network services that (as they become available) will provide a higher abstraction

of application process control than is now available. Finally, we recommend a further

prototype implementation effort to write an input file generator as per our design and to

refine the output file parser. This last task might uncover additional research questions.
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7.5.2 Engineering Changes to Object-Oriented Tools

As we said above in Section 7.4, we were in general pleased with the choice of object-

oriented technology as a vehicle for this research. However, object-oriented tools and

technology are still in their infancy, and we have identified changes we think would facili-

tate efforts such as ours.

The first is improving the system design and conceptual modeling methodology that

is available. As for the second, we recall for the reader our recommendations in Chapter

6 for improving the object-oriented language (C++) and database system (ObjectStore).

Many of these desiderata fall into the category of providing a richer semantics or typing

system. With a richer type system that allows for easily defining syntactic variants, we

believe that some problems now classified as "schema integration" issues could be more

simply resolved as "syntactic" differences.

Program generators for parsing external files and displaying database objects consti-

tute our third recommendation for improving object-oriented development environments.

While the parser generators and display functions specialized for scientific applications

may be too specialized to warrant commercial development, general methods and tools

would help many fields in addition to scientific domains. We believe that program gen-

erators specialized for creating textual renditions of data stored in a database can and

should be developed. Such "layout languages" would provide in effect report writers that

could generate formatted data from the database to be used for reports and papers, as

well as input files. We emphasize that both kinds of program generators must associate

objects in the database with new display formats for that data and must be easy enough

for scientists to use without learning arcane syntax.

The fourth area ripe for object-oriented tool development is database support for mech-

anisms that would simplify the scientist's search space during experiment construction.

We would like to see deductive query support available to an expert-system component of

the user interface. A deductive query mechanism would complement the type extensibility

features of object-oriented databases - a researcher could, we believe, use deductive mech-

anisms together with the object typing facility to enforce semantic integrity constraints
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at the experiment level. Deductive capabilities in the database would provide support

for having one application input parameter constrain another, determining whether input

parameters are compatible or extracting options from the database to fill certain input

slots. For example, once the molecule that is the target of a computational experiment

is chosen, the only sensible basis sets are those with basis functions for every atomic el-

ement in the molecule. Also, chemists need to query the domain database on the basis

of approximate rather than exact matches. In advising a user on basis-set selection, we

want to scan the database for "like experiments"; however, the measure of similarity needs

to be type dependent, varying for molecule, chemical property, and so forth. We believe

that a database query facility incorporating work on fuzzy sets could provide searches on

"families" of molecules, for example.

The reification of computations, programs and resources as objects in the database

expands the context in which deductive capabilities could be applied, enhancing the above

possibilities. Given computations, programs and resources as objects, one can reason over

events and resources.

7.5.3 Follow-on Research Opportunities

We suggest three categories of follow-on work with respect to the computational proxy

itself: (1) extensions of the conceptual model, (2) enhancements to the proxy structure,

and (3) use of the proxy structure to rationalize scheduling of resources in a distributed

or parallel computing environment. Section 7.6 covers future research opportunities we

ourselves will pursue.

1. Extensions of the conceptual model. The conceptual data model that we have de-

veloped is appropriate for ab initio computational chemistry. Extensions that would

make the data model useful to other sub-domains include laboratory apparatus,

semi-empirical computational applications and an extensible property class.

2. Enhancements to the proxy structure to manage series of experiments. In the com-

putational chemistry domain (and in other scientific domains), scientists often want

to perform collections of related runs where one or more parameters are varied over
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some range. For example, one might vary the distance and orientation between two

molecular fragments in order to generate an energy surface. The capability to set up

an experiment "script" from which a series of experiments can be generated would

be very helpful for such needs.

It seems a direct extension of our work to construct "meta-proxies" that represent

collections of executions and implement experiment "scripting". Another common

pattern of activity is stringing together computations by different programs, with

the output of one being used as the input to the next. Modeling such chains of

computations as sequences of proxies seems another natural enhancement. Clearly

this would require the specification of a scripting language.

3. Enhancements to handle non-computational applications. Proxies are currently

aimed at programs with a "batch" interface, where all input data are available

at the start of a run, and output files are available at completion. If the proxy

infrastructure could be extended to applications, such as molecular editors, that

are more interactive than computational applications, their effectiveness as tools for

computational science would be enhanced.

4. Use of the proxy structure to rationalize scheduling of resources in a distributed or

parallel computing environment. There are two ways that proxies could help inter-

facing to distributed experiments or to experiments running on parallel computers:

(a) Interface the proxy to be able to run an experiment on distributed or parallel

systems. Once ab initio applications are rewritten so that a single experiment

can be run on distributed or parallel systems, the proxy should be extended

accordingly. Running ab initio applications on such systems will likely intro-

duce additional complexity for the user such as specifying how to configure

the parallel processors for a particular experiment. Extensions of the proxy

infrastructure and user interface could do much to help in this regard. These

extensions would not necessarily mean that the proxy need talk to multiple

processes; in the future, it should be possible for the proxy to talk to a single

point of control (a global scheduler).
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(b) Providing information about likely resource needs of experiments by extrapolat-

ing from past resource use. As applications are rewritten to run on distributed

or parallel systems, a global scheduler could make use of more information about

resource requirements than users can now typically provide. Our study of the

data structures and computations suggests that certain interesting character-

istics of the computational process may be predictable from the input data,

given an adequate sampling of previous computations on similar input data.

Maintaining a database of previous runs, and "mining" those past experiments

to provide hints from the proxy on setting up new experiments could prove

useful if the proxy could pass such information to the applications.

7.6 Future Work

We decided to limit the scope of this dissertation to a particular sub-domain of chemistry

because we felt that more could be accomplished initially by exploring one domain in

detail than generalizing about many. We wanted to base our work on detailed empirical

observations about the objects of interest (programs and data) in a particular sub-domain.

However, we recognize that our contribution will be even more valuable if it is generalized

to domains other than ab initio computational chemistry and to other target languages

and database systems than C++ and ObjectStore. To that end, we are continuing our

work by exploring whether (1) prospective or current users of Dr. Thomas Marr's genomic

database application Genome Topographer also need access to computational biology ap-

plications, and (2) whether these applications have a profile sufficiently similar to ab initio

computational chemistry applications to warrant use of the proxy infrastructure. If so,

we shall explore generalizing the proxy infrastructure such that it could be implemented

for Genome Topographer, implemented in the object-oriented database system GemStone.

Developing a proxy for Genome Topographer would involve extending GemStone to pro-

vide computational services as we have extended ObjectStore. The extensions would allow

for parameterized interface of the database to existing computation-intensive genomic ap-

plications running on a variety of platforms [41, 122].
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The research we have proposed has two objectives: (1) To demonstrate that our work

on computational proxies is generalizable to scientific domains other than computational

chemistry, and serviceable as a model for the development of a database interface with

so-called "legacy" applications and newer stand-alone computational programs running

on a variety of computing platforms. (2) To make computational operations as well as

genomic data available to molecular biology researchers.

In addition to our planned and funded work extending the idea of proxies to other

domains, we note that our collaborators Dr. David Feller, Mr. D. Michael DeVaney, Ms.

K. Schuchardt, Dr. Tom Keller, and others in the Molecular Science Research Center at

Pacific Northwest Laboratory have embarked on a five-year implementation of a Compu-

tational Chemistry Database. We look forward to opportunities for further collaboration,

to consider how to deploy the proxy mechanism in their ambitious effort, and to share

further our own design efforts and implementation experiences. Computational scientists

at the Molecular Science Research Center are also actively rewriting several computational

chemistry applications to improve their performance. Dr. Thorn Dunning has indicated

interest in suggestions about building more flexible interfaces to those programs that we

might offer from this work.

7.7 Final Remarks

We conclude that the proxy construct is an effective mechanism for solving the problems

of program interoperability that plague computational science and for improving the ac-

cessibility of computational applications. While it is probably not possible to automate

the construction of proxies for every parameter of every application in a given domain,

it is possible to automatically generate interfaces for a significant and useful subset of

experiment types. Our proxy infrastructure, when used in consort with a viable domain

model, provides a viable migration path from standalone heterogeneous applications to a

shared distributed database environment for computational science.

We are pleased to offer this contribution to the democratization of hitherto arcane

and elusive yet powerful scientific tools. We are also convinced that the methodology we
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used in this research - detailed examination of the tools and data of a particular group of

users - suggests a viable methodology for using empirical observation in computer science

research. The "empirical" world where we gathered our primary data and that we used

to corroborate our findings was a collection of artifacts, application programs, and data

generated by those applications programs, as well as observations about the real-world

use of those artifacts. We sincerely hope that our work will make that empirical world a

better place for scientists to work.
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