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Abstract

An

Object-Oriented

Heterogeneous Database Architecture

David Marshall Hansen, Ph.D.

Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: David Maier

Many data management environments face a critical need to integrate heterogeneous

data-data that are stored in varying locations using various data management systems

with diverse data formats and schemas. To address this problem, the database research

community has developed the concept of a heterogeneous database system (HDB) that

provides users with the illusion of a single unified database. However, HDBs rely on the

implicit assumption that all data to be integrated into the HDB are stored in full-fledged

database management systems (DBMS). This assumption leaves environments that need

to integrate non-DBMS data unserved by HDB systems. Furthermore, HDBs are complex

software solutions that are not easily implementable by database developers wrestling with

heterogeneous data. This thesis presents a new, easily implemented HDB architecture that

is suitable for integrating non-DBMS data.

The key to our architecture is using an object-oriented database management system

(OODBMS) as an implementation tool. Rather than developing an HDB from scratch, we

leverage the power and facilities of the underlying OODBMS to provide a query language,

application programmer interface, interactive query interface, concurrency control, etc.

xv



Using object-oriented technology gives us an additional benefit-our RDB becomes an

object-oriented RDB (OORDB) providing users with greater data model expressivity along

with a powerful behavioral component.

The OORDB architecture we present is independent of a particular OODBMS and

can be implemented using a number of commercial OODBMSs for a variety of data man-

agement environments. We describe one implementation of our architecture using the

GemStone OODBMS for accessing heterogeneous materials science data. This implemen-

tation demonstrates how easily the architecture can be implemented. We use this imple-

mentation to analyze the performance of the architecture and examine the effectiveness

of strategies for enhancing performance.

We conclude that for many environments with heterogeneous non-DBMS data, our

OORDB architecture provides a good solution that is easy to implement using commercial

OODBMS technology.
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Chapter 1

Introduction

1.1 Overview

Many data management environments face a critical need to integrate heterogeneous

data-data that are stored in varying locations using various data management systems

with diverse data formats and schemas. To address this problem, the database research

community has developed the concept of a heterogeneous database system (HDB) that pro-

vides users with the illusion of a single unified database [Kim95a, Ram91, SL90, LMR90,

LA86, EP90]. However, proposed HDB architectures implicitly assume that all data to be

integrated into the HDB are stored in full-fledged database management systems (DBMS).

This assumption leaves environments that need to integrate non-DBMS data unserved by

HDB systems. Furthermore, HDBs are complex software solutions that are not easily

implementable by database developers wrestling with heterogeneous data. This thesis

presents a new, easily implemented HDB architecture that is suitable for integrating non-

DBMS data.

1.2 What is a Heterogeneous Data Base?

Database researcher Won Kim provides the following succinct description of what an HDB

should be and do (referring to the concept as a multidatabase system (MDBS)):

Simply put, a multidatabase system (MDBS) is a database system that

resides unobtrusively on top of existing database and file systems (called local

database systems) and presents a single global database schema against which

1
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its users will issue queries and updates; an MDBS maintains only the global

schema, and the local database systems actually maintain all user data. The

global schema is constructed by consolidating (integrating) the schemas of the

local databases;... The MDBS translates the global queries and updates for

dispatch to appropriate local database systems for actual processing, merges

the results from them, and generates the final result for the user [Kim95a,

p.516].

Kim goes on to list 9 general objectives of an HDB (or MDBS) [Kim95a, pp.516-517]:

OBJECTIVE 1 It must obviate the need for a batch conversion and migration of data

from one data source (e.g., an ORACLE database) to another (e.g., a Sybase data-

base) .

OBJECTIVE 2 It must require absolutely no changes to the local database system

(LDBS) software; this preserves what is known as design autonomy. In other words,

an MDBS must appear to any of the LDBSs as just another application user.

OBJECTIVE 3 It must not prevent any of the LDBSs from being used in its native

mode. In other words, users of an LDBS may continue to work with the system for

transactions that require access only to data managed by the systems, while users

will use the MDBS to issue transactions that require access to more than one data

source. In this way, applications written in any of the LDBSs are preserved, and

new applications that require access to more than one data source may be developed

using the MDBS.

OBJECTIVE 4 It must make it possible for users and applications to interact with it in

one database language. In other words, the users and applications should not have

to work with the different interface languages of the LDBSs.

OBJECTIVE 5 It must shield the users and applications from the heterogeneity of the

operating environments of the LDBSs, including the computer, operating system,

and network protocol.
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OBJECTIVE 6 It, unlike most previous attempts at allowing the interoperability of

heterogeneous database systems, must support distributed transactions involving

both reads and updates against different databases.

OBJECTIVE 7 It must be a full-blown database system-that is, it must make avail-

able to users all the facilities provided by standard database systems, including

schema definition, non-procedural queries, automatic query optimization, updates,

transaction management, concurrency control and recovery, integrity control, ac-

cess authorization, both interactive and host-language application support, graphics

application development tools, and so forth.

OBJECTIVE 8 It must introduce virtually no changes in the operation and adminis-

tration of any of the LDBSs.

OBJECTIVE 9 It must provide run-time performance that approaches that of a homo-

geneous distributed database system.

Two points regarding Kim's description and objectives must be made. First, the de-

scription and objectives are prescriptive. That is, they are an ambitious list of capabilities

that an HDB should strive to achieve to be a fully-functional, non-intrusive solution. In

fact, while most of Kim's objectives are met by current HDB approaches, objectives deal-

ing with updating heterogeneous external data via the HDB (objectives 6 and 7) remain

a topic of research. Propagating updates to external data via an HDB is difficult because

it not only requires a mechanism, but an invertible mapping from elements of the hetero-

geneous schemas to elements of the homogeneous schema as well. Thus, HDBs typically

do not provide an update capability.

Second, though Kim's description mentions sitting atop "existing database and file

systems. . .", data that is not stored in a DBMS is rarely integrated into an HDB. Close

examination of Kim's objectives makes it clear that the objectives are biased toward

describing an HDB that accesses data managed by DBMSs. To begin with, Kim refers

to external sources as "local database systems". Objectives 2, 3, 6, and 7 deal with

transactional issues that are not typically relevant for files. Objective 4 mentions the
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"interface language" of the local databases. These subtle hints suggest that HDBs are

oriented towards supporting the integration of DBMS data and non-DBMS data is largely

ignored. As we shall see in Chapter 2, the prototypical HDB architecture, where queries

over the global HDB schema are translated into sub-queries that are passed along to local

databases for execution, all but excludes data that is not managed by a powerful DBMS.

1.3 What is the Problem with HDBs

We see two problems with current HDB approaches. First, the implicit assumption that

all external databasesl are managed using DBMSs makes these approaches unsuitable

for environments with data that is not stored in a DBMS. Kim's description notwith-

standing, his list of objectives is heavily biased towards integrating DBMS data and the

fact is that most HDB architectures provide little or no support for accessing non-DBMS

data. Second, and more generally, HDB systems are complex one-of-a-kind software so-

lutions that are not easily implemented by database developers wishing to integrate their

heterogeneous databases.

1.3.1 "Lightly-Managed" Data

One drawback of Kim's objectives, and virtually all HDB research, is that it presumes

that all external databases are managed using powerful general-purpose DBMSs. Fur-

thermore, the assumption is that these databases are relational [BHP92]. However, many

environments have "databases" that are not managed by a general-purpose DBMS includ-

ing: defense [AMR94], medicine [WH94], telecommunications [CD93], geophysics [DSH94],

molecular biology and genomics [Kar94, Ald93, SR94], chemistry [RL85], and materials

science [HS91]. "Databases" in these environments are often formatted files containing

large data sets that may include historical data (e.g., telephone customer records, chem-

istry experiment records) or databases of factual information (e.g., the map of a gene

fragment, physical properties of a material). The data in these sorts of databases remain

1We use the term external database as a synonym for local database from here on because it is more
accurate. The term local incorrectly connotes that the databases are co-located with the HDB. However,
in practice, databases accessed by an HDB are often distributed, sometimes widely.
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static once collected.

We term these databases "lightly-managed". The common characteristic of these

lightly-managed databases is that they lack a powerful, general-purpose query interface.

Instead, custom data access programs provide limited access to the data along pre-defined

access paths. Without a general-purpose query access mechanism, lightly-managed data-

bases remain outside the realm of current HDB approaches.

When dealing with lightly-managed data, some of Kim's objectives take on less signif-

icance, others more. Of the objectives listed, those that deal with the "design autonomy"

of the local DBMS and the coordination of distributed transactions (objectives 2, 3, 6, and

8) become largely irrelevant in the absence of a DBMS. Objectives that define the level of

transparency and performance (objectives 1, 4, 5 and 9) remain important, while objective

7-specifying that the HDB should be a full-fledged DBMS-takes on additional impor-

tance since it implies that the HDB should provide even greater query and management

capabilities than those of the lightly-managed database. In essence, an HDB that includes

a lightly-managed database should expand the capabilities for users of that database.

1.3.2 Keeping it Simple

Another drawback to most HDB systems is that they are very complex pieces of software.

Decomposing and optimizing a global query across the external databases is a complex task

in itself. The architecture of Pegasus, a heterogeneous information management system

from researchers at Hewlett-Packard Laboratories, is presented in Figure 1.1. Pegasus is

representative of the complexity of most HDB solutions.

As complex, customized pieces of software, each HDB solution is a one-of-a-kind system

that may be tailored for a particular environment. As of yet, HDBs remain a topic of

research. M.W. Bright et al., surveying current multidatabase systems, note that of the

16 HDBs surveyed, 13 are "prototypes" and the other 3 are "research" systems [BHP92,

p.56]. HDB research may eventually lead to a general-purpose HDB that is customizable

for a particular environment. However, as long as HDB systems continue to ignore lightly-

managed data, users with such data will find it a daunting task to develop or modify an

HDB to suit their needs.
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Figure 1.1: Pegasus Component Structure [SAD+95, p.669]

1.4 Our Thesis

Our thesis is two-fold. First, we believe that an HDB can provide optimized access to

lightly-managed databases. What is needed is a new HDB approach to integrating external

databases that does not assume them to be managed by a DBMS.

Second, we believe that a general-purpose high-level HDB architecture can be spec-

ified that is easy to implement. Ease of implementation has two facets. First, powerful

tools for implementing the HDB must be readily available. Second, the implementation

must be simple, straightforward, and must not require significant code development. The
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reader might reasonably ask how we hope to achieve much simplification in the devel-

opment of such a complex software system. The answer lies mainly in our decision to

use object-oriented database management system (OODBMS) technology for building an

HDB. Much of the complexity involved in programming an HDB is in the task of building

the components that translate, decompose and optimize a global query across external

databases. Our approach uses the query language and query processing engine of the

underlying OODBMS instead of developing a custom query engine. In fact, by building

an HDB using a DBMS as the implementation tool we leverage the features of the DBMS

to build an HDB with all the "full-blown" DBMS features outlined by Kim in objective

7. The HDB "inherits" the query language, concurrency mechanisms, application pro-

grammer interface, etc. of the underlying OODBMS. Furthermore, using object-oriented

technology to construct our HDB provides the added benefit of turning the HDB into an

object-oriented HDB (OOHDB). The power of the object-oriented paradigm is especially

significant when applying the HDB in domains where complex data models have hindered

the use of traditional DBMS technology, such as scientific data management [FJP90]. An

object-oriented data model provides a rich and powerful mechanism that can be used to

model data that is not easily decomposed into the rows and columns of the relational

model. An object-oriented data model can describe the domain using entities intuitively

understood by the users of the database.

1.5 Research Methodology

Chronologically, our research was conducted in three phases. We began by identifying a

suitable real-world domain for developing and testing an OOHDB. Next, we implemented

an OOHDB that provides users and their application programs with access to a number

of heterogeneous lightly-managed databases. Finally, a high-level generalized OOHDB

architecture was identified that can be applied in a variety of domains and implemented

using commercial OODBMS products.
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1.5.1 The Test Domain-Materials Science & Crystallography

Materials science provided a useful domain for implementing and testing an OOHDB.

Materials scientists rely extensively on programs and computerized data for conducting

research [HaI85]. Much of the data relevant to materials science is contained in lightly-

managed databases. In particular, published commercial data sets covering the crystal-

lographic structure of many materials are available from standards organizations. Data

stored using standardized data-interchange formats designed for crystallographers provides

another lightly-managed data source.

1.5.2 Implement an OOHDB for Materials Science

We implemented an OOHDB for crystallographic databases using a commercial OODBMS.

Our decision to use a "commercial-off-the-shelf" (COTS) OODBMS is an important fea-

ture of our research. HDB systems are too often constructed using custom software systems

that make the technology inaccessible to database developers. We choose to use COTS

systems to demonstrate that powerful tools for building an OOHDB are readily available.

This implementation was used to develop and test general techniques for HDB con-

struction and optimization. This implementation was carefully crafted to avoid using the

proprietary features of a particular OODBMS so that the architecture could be imple-

mented using a number of commercial OODBMSs.

1.5.3 Generalize a High-Level Architecture

Finally, we identified and developed the specification for an OOHDB architecture that is

independent of any particular data management domain or OODBMS. This architecture

is generalized from the implementation of the our OOHDB for materials science and

embodies a general methodology for constructing an OOHDB using a COTS OODBMS.

The architecture was examined in the light of three COTS OODBMS products to assess

its generality.
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1.6 Contributions of Research

The principal contribution of our research is the development of a high-level OOHDB

architecture. We believe that the architecture is:

. Suitable for integrating lightly-managed databases.

. Simple and easy to implement using a variety of COTS OODBMSs

1.7 Limitations

Our research is not without limitations, however, both in scope and applicability. The

scope of the research is confined to the development of an OOHDB architecture. HDB

research has a number of interesting problems we have not set out to solve including:

Tools and techniques for integrating heterogeneous schemas - Though we de-

veloped a global schema for our test domain, this thesis presents no new tools or

techniques for schema integration. We give examples of how we use the compu-

tational power of methods in the OODBMS to handle instances of syntactic and

semantic heterogeneity among external databases, but in general, the problem of

homogenizing heterogeneous schemas and data remains.

Updates and distributed transactions - As we noted previously, propagating up-

dates to heterogeneous databases via the OOHDB is an open research topic. Our

architecture does not attempt to solve this difficult problem. However, we do suspect

that the underlying transaction management capabilities of the OODBMS can be

used to implement distributed, heterogeneous transactions in an environment that

requires and supports them. Furthermore, in Chapter 6 we outline a mechanism for

extending our architecture to propagate updates. Of course the mechanism does not

solve the difficult problem of developing an invertible mapping from elements of the

external database schemas to elements of the homogeneous schema of the OOHDB.

Decomposing and optimizing global queries - Our architecture is quite different

from traditional HDB approaches. Thus the common problem of decomposing and
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optimizing global queries is not addressed. However, query optimization within our

OOHDB is an important consideration, and performance enhancing optimizations

are discussed as a part of the architecture.

At its current stage, our work is also somewhat limited in its applicability. The ar-

chitecture we have developed trades real-time currency of the data in the OOHDB for

enhanced query performance. Specifically, a static representation of the data in exter-

nal databases is constructed within the OODBMS. Updates, deletions, and insertions to

external databases are not immediately visible to users of the OOHDB. The representa-

tion within the OOHDB must be updated in order for external database modifications to

become visible. Thus, our architecture is probably not a suitable choice for transaction-

processing environments where external databases are in a constant state of change.

1.8 Outline of the Thesis

The remainder of this thesis follows a logical rather than chronological organization:

Chapter 2 examines approaches to accessing lightly-managed databases. Many of these

approaches fall far short of providing a true HDB. We also survey other HDB

research and demonstrate that lightly-managed data is not well served by current

HDB approaches.

Chapter 3 presents our high-level domain-independent OOHDB architecture. We de-

scribe how we will leverage the power of the underlying OODBMS to simplify the

implementation while still providing a full-fledged OOHDB. By using the database

features of the underlying OODBMS, most of the complexity in constructing an HDB

is eliminated. We evaluate our architecture using Won Kim's objectives discussed

in Section 1.2.

Chapter 4 presents a detailed description the implementation of our OOHDB for a ma-

terials science crystallographic database. This chapter demonstrates that the archi-

tecture can be implemented to solve a real-world problem and provides evidence for

our claim that the architecture can be easily implemented using COTS OODBMS
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technology. We analyze the performance of the materials science OOHDB and ex-

amine the effectiveness of strategies for enhancing performance.

Chapter 5 strengthens our claim that our architecture is OODBMS-independent by ex-

amining two other COTS OODBMS products to assess their suitability as targets for

implementing our OOHDB. Where a particular OODBMS would require changes to

the implementation described in Chapter 4, we present alternative implementation

strategies.

Chapter 6 revisits our thesis to assess the simplicity and suitability of our architecture

for lightly-managed databases. We reiterate the lessons we have learned along the

way and discuss some directions for future research.



Chapter 2

Related Research

Our discussion of related research examines work by others building HDBs as well as non-

HDB approaches to accessing lightly-managed data. While HDB approaches do a poor

job of integrating lightly-managed databases, non-HDB approaches make no attempt to

provide the transparent integration of an HDB.

2.1 Querying and Accessing Lightly-Managed Data

Most approaches to querying and accessing lightly-managed databases make no attempt

to provide the transparent integrated interface of an HDB.

2.1.1 Querying Files

Front-ends for querying data stored in operating system files have been around for quite

some time. The commercial product Datatrieve1 is typical of this genre of software solu-

tions.

Datatrieve adds high-level query capabilities to operating system files. Highly-struc-

tured record-oriented files are described using a Cobol-like schema syntax. Datatrieve

provides users and application programs with an SQL-like high-level query language for

expressing queries over data stored in operating system files. Access can be optimized by

constructing indexes. Two limitations to Datatrieve are that the data files need to follow

a very rigid record-oriented structure and second, although multiple files can be accessed

simultaneously, there is no capability for homogenizing heterogeneous data sources.

1Datatrieve is a registered trademark of Digital Equipment Corporation

12
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2.1.2 VISTA-A Metadata Approach

Another common approach to providing access to lightly-managed data is the "metadata"

approach typified by the VISTA System [DSH94]. The VISTA (Visual Interface for Space

and Terrestrial Analysis) System provides a visual query interface to large geophysical data

sets. VISTA provides the user with a database of metadata-data about the underlying

data sets, such as date and time of collection, location, and general features. Users of

VISTA query the metadata to locate data sets of interest. The data sets themselves are

stored using any number of non-DBMS data-interchange formats such as the Hierarchical

Data Format (HDF), Flexible Image Transport System (FITS), Network Common Data

Format (netCDF), etc. Once selected, a data set may be displayed and manipulated using

the VISTA System.

The approach taken by VISTA differs from our approach in a number of ways. First,

VISTA is clearly a domain-specific system. VISTA understands data-interchange formats

that are commonly used by scientists and is designed to display and manipulate geophysical

data sets. Second, VISTA uses a limited schema of metadata that does not allow a user

to query over all the attributes of the data. This approach is similar to other "directory"

approaches where the database is primarily used as a directory manager for locating the

real data. Third, VISTA is useful for locating data sets, but does not attempt to provide

users with a homogeneous view of the data. Finally, VISTA is an end-user system and

provides no general-purpose application programmer interface (API) for user applications.

VISTA can only pass selected data sets along to other data analysis software packages.

2.1.3 The Aurora Dataserver-An Extended Relational Approach

The Aurora Dataserver2 for visualization applications [XID94, Jir93] also provides a meta-

data approach, but takes the approach a step farther by integrating lightly-managed data-

bases as "dataset" values in an extended relational data model. The Aurora Dataserver is

built atop the Orion3 extended-relational database management system. The dataserver

2Aurora Dataserver is a trademark of XIDAK Inc., Palo Alto, CA
3Orion is a trademark of XIDAK Inc., Palo Alto, CA
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is targeted at providing relational data management for scientific domains with large "n-

dimensional coordinate data". The dataserver extends the relational model by defining

a new dataset type that provides bulk storage of data sets. The dataserver also defines

a set of operations for manipulating dataset values. Thus, while a query in VISTA re-

turns pointers to help the user locate the real data sets, an Aurora Dataserver query is

capable of returning the data sets themselves. Figure 2.1 depicts the Aurora Dataserver

architecture. The dataserver provides users and their applications with interfaces to the

database typical of a relational database management system. User-developed importer

Visualization Application

Aurora Dataserver API

fm

Aurora Dataserver

Figure 2.1: The Aurora Dataserver Architecture [Jir93, p.6]

and exporter functions are used by the dataserver to access external data. External data

sets are homogenized by converting them into instances of the Aurora Dataserver dataset

type. Files of external data can either be imported or "registered" with the dataserver.

Files that are imported are copied into Aurora's database and converted into datasets,

allowing the dataserver to optimize future data access. Registered files appear as dataset

values stored by the dataserver, but actually remain in their original location to minimize

data storage requirements.

1 1 'I' " 'I'

I I 1 1 1
1 1 1

1 1
,_i_"1 1 1 1

---*--- ___*---
1 ---j---, ' ...

,_t_,

' ...

f------ f-----, :'::::::::::.:' : II' ,-," ... I' )11 ,1, ... ,...--, 1
I '.... ,.,' ;," I1 1 1 1 \ " I 11___1 1

....------..... ...._-----; ...
....----...

,
I ...., ...., I 1 "'", 1 1\, 1

\Ij !).! ...!:-.!I ...... I} \ 1 ,r
.... " \1 ,

-..., .....'
Files DBMS CDROM Instrumentation Simulations



15

Although the Aurora Dataserver is a powerful tool for manipulating scientific data sets,

it is not versatile enough to be a true HDB. The narrowly defined dataset type used by

the Aurora Dataserver is only suitable for domains with data sets that are n-dimensional

coordinate data (e.g., matrices).

2.2 HD B Research

Heterogeneous database systems have been an on-going topic of research for many years.

HDB research is often divided into those systems that provide "interoperability" among

external databases (no global schema), and those that provide "integrated" access to exter-

nal databases through a global schema. Our research is interested in the more transparent

integrated solutions, so our discussion here is confined to integrated HDB approaches.

One of the earliest integrated HDB prototypes was the Multibase system [SBD+S1].

The simple diagram of Multibase shown in Figure 2.2 has influenced the direction of most

subsequent HDB research. The basic function of Multibase is to maintain a global schema

Global Query

Multibase

Software

Figure 2.2: The Multibase Architecture [SBD+S1, p.336]

and translate queries against that schema into queries over external databases (called "lo-

cal DBMS" by Multibase). An interesting consequence of this simple architecture is that

most HDB research presumes that external databases are managed by powerful DBMSs.

This assumption has resulted in HDB architectures that integrate lightly-managed data-

bases only as an after-thought if at all, and then not very well. Furthermore, the reliance

on a relational model for external DBMSs has become so ingrained in the research that
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one researcher has suggested that the relational data model should simply be adopted as

a standard, canonical model for building HDB systems [LA86].

2.3 Object-Oriented HDB Research

The notion of building an HDB presenting an object-oriented data model is relatively new

[Man89, SCGS91, CT91, LM91, Ber91, TSB92]. In some cases, the use of object-oriented

technology is for infrastructure only-the HDB appears relational to its users [LM91]. In

other cases, the HDB presents its users with an object-oriented data model yielding a

true OOHDB [CT91, Ber91, KDN90]. These OOHDB efforts are intended to exploit the

expressivity of the object-oriented data model to model complex objects.

One common strategy for homogenizing heterogeneous data using an OOHDB is the

view mechanism proposed by Bertino [Ber91]. The notion is that abstract classes, or views,

can be used to provide a homogenizing layer atop heterogeneous classes and objects.

Kaul et al. [KDN90] also propose an object-oriented view mechanism for integrating

data. Furthermore, they describe a prototype implementation using Smalltalk called the

ViewSystem. "External" classes of objects can be defined in the ViewSystem that are

"non-materialized". Queries over external classes result in a materialized collection of

objects that satisfy the query. The class hierarchy is used to group similar external and

internal class definitions together using a common superclass to provide a homogeneous

view of data.

The ViewSystem makes an attempt to integrate lightly-managed databases, however,

the mechanism used is primitive-importing files in their entirety on demand. Nonetheless,

this is one of the few attempts to address lightly-managed data in HDB research.

Both Kaul et al. and Bertino use a hierarchy of class definitions to homogenize hetero-

geneous data. However, we believe that the use of the class hierarchy as a mechanism for

homogenization has serious drawbacks and in Chapter 3 we will contrast this approach to

homogenization with our own.

Even more germane to our research, a few researchers are exploring the use of an

OODBMS as a tool for constructing an OOHDB [SAD+95, CL88, RD94, HMZ90].
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2.3.1 Building an OOHDB Using an OODBMS

Connors and Lyngbaek [CL88] appear to be the first to propose the use of an OODBMS

as a tool for constructing an HDB. They propose the use of the Iris4 OODBMS from

Hewlett- Packard Laboratories to construct a global data manager providing uniform access

to heterogeneous data. In choosing to use OODBMS technology as an implementation

tool, they note:

The extensible nature of an OODBMS, Le., the provision for abstract data

types and operations, makes it feasible to write interfaces to a wide variety

of existing information sources and that way create the illusion of a single

integrated database which can be queried in a uniform manner [CL88, p.162].

In other words, by leveraging the behavioral component of an OODBMS, the OODBMS

can be used as a tool for constructing an OOHDB.

They propose to access external data via "foreign functions" that retrieve data on de-

mand. For example, using a stock market database they suggest that the foreign function

MarketPrice, taking a stock symbol as input, could return the current market value of

a stock by interacting with an on-line quote service. Connors and Lyngbaek make an

important observation regarding this functional approach to integration:

The approach described in this paper has a procedural flavor. By using

information-importing functions, it is not necessary to globally conform the

local schemas. Rather, the programmer defining an information-importing

function explicitly specifies a procedure that implements a mapping from the

external information of interest to the importing database [CL88, p.164].

In essence, their approach achieves homogeneity by explicitly mapping heterogeneous data

to a homogeneous form during importation. This contrasts with the class-hierarchy ap-

proach to homogenization proposed separately by Kaul et al. and Bertino.

However, the foreign function approach to importing data does not appear to be partic-

ularly OODBMS-independent. While they suggest that their approach could be supported

41ris is now available commercially as OpenODB from Hewlett-Packard
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by other OODBMS with general-purpose programming languages, they conclude that:

Iris' support for generalized query processing capabilities and operations writ-

ten in arbitrary programming languages make it a better candidate for a global

data manager than many other OODBMSs [CL88, p.172].

However, we do not believe that "operations" in the form of the foreign functions used

by Iris are all that convenient or user-friendly. Foreign functions must be compiled and

carefully linked into the Iris query processing engine in order to be accessible. The process

as outlined here is clearly not for the casual Iris user. Furthermore, Iris is a functional

OODBMS that is object-oriented mostly in the sense that it allows for user-defined data

types. Generalized computational behavior in the form of methods is absent from the

Iris data model and must be added through the use of linked-in functions written in

"arbitrary" programming languages.

The work of Connors and Lyngbaek has a number of similarities to our own. Specifi-

cally, both use the power of the underlying OODBMS to provide the basic features of an

OOHDB. Both use a "procedural approach" to schema integration. However, where they

use foreign functions linked into the Iris query processing engine to access external data,

we use nothing more difficult to master than the data manipulation and method defini-

tion language of the underlying OODBMS. We believe that this makes our approach both

simpler and more general. Furthermore, our work presents an approach for integrating

and optimizing data stored in lightly-managed databases, a capability that the global data

manager may possess, but that remains unexplored.

2.3.2 The Pegasus OOHDB

Another OOHDB project developed using Hewlett-Packard's OpenODB product is the

Pegasus system [Sha93, SAD+95]. However, in contrast to the global data manager of

Connors and Lyngbaek, Pegasus represents a much more traditional HDB approach that

relies less on the native power of the underlying OODBMS than on a complex software

architecture (see Figure 1.1). With its reliance on powerful external DBMSs, the Pegasus
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system is typical of most HDB systems that are not well-suited to integrating lightly-

managed databases.

2.3.3 An OOHDB for Molecular Biology

Using the commercial OODBMS ObjectStore5, Rieche and Dittrich have implemented an

OOHDB for molecular biology that provides access to lightly-managed molecular biology

data [RD94]. Rieche and Dittrich describe a very pragmatic and domain-dependent ap-

proach to data integration that makes no pretense about trying to "invent new concepts

for federated database systems." The mechanism for querying lightly-managed data is

quite unique-global queries are transformed into programs that scan files for relevant

data. Files containing any relevant data are loaded in their entirety into the OOHDB.

This sort of brute-force file query mechanism demonstrates a common problem when

integrating lightly-managed databases into an HDB. Since lightly-managed databases

typically lack a query facility, either a query facility must be developed for files (as Rieche

and Dittrich have done), or the files must be brought into the HDB where a query facility

can be applied. Our architecture presents a simple and novel solution to this problem.

Our solution uses the query processing engine of the underlying OODBMS without loading

lightly managed databases entirely into the OOHDB.

2.4 Summary

Clearly, there are workable non-DBMS approaches capable of providing access to lightly-

managed data. But these approaches do not provide the benefits of an HDB-most no-

tably, they lack transparent integration of heterogeneous data.

Previous HDB research has concentrated primarily on providing access to data man-

aged by DBMSs and important sub-issues such as global query translation and optimiza-

tion, transaction management, schema integration, etc. We recognize that these continue

to be complex and difficult problems requiring solutions.

Research into the use of object-oriented technology for constructing an OOHDB IS

5 ObjectStore is a trademark of Object Design, Inc.
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providing both strategies for modeling heterogeneous data, as well as mechanisms for

constructing an OOHDB using an OODBMS. Approaches such as the global data manager

suggest that leveraging the power of an OODBMS system-in effect using a database

management system to build a database management system-is a reasonable approach.

In fact, we believe it is an approach that makes it much easier to build an OOHDB. Still,

integrating lightly-managed databases remain an after-thought, and common brute-force

integration approaches seem overly complex and inefficient.

We believe that building an OOHDB that integrates lightly-managed databases re-

quires a new approach. This thesis presents a new OOHDB architecture that provides

the efficient access to lightly-managed databases of the VISTA system while providing the

transparency and rich object-oriented data model of the Pegasus OOHDB.



Chapter 3

An Object-Oriented HDB Architecture

We have set two goals for our OOHDB architecture: the OOHDB should be easy to

implement and the OOHDB should be suitable for integrating lightly-managed databases.

In order to achieve a powerful OOHDB that is simple to implement, we rely on

OODBMS technology as an implementation tool. Implementing an OOHDB thus be-

comes a matter of harnessing the capabilities of the OODBMS rather than developing the

capabilities ourselves. The architecture we present here presumes a relatively common

object-oriented model based on classes of objects that encapsulate state and behavior.

The overall approach we use to integrate data is quite simple. As shown in Figure 3.1,

The OOHDB is populated with objects-one for each entity identified in each external

data source. These objects store no data within the OOHDB. Instead, when the object

needs some data (e.g., in response to a query), the object requests the data from another

object within the OOHDB that encapsulates all access to a particular data source. This

"database encapsulating object" retrieves and converts the required data from the external

data source. This approach allows us to integrate lightly-managed databases because it

does not require their data to be accessible via some powerful query processing facility.

All that we require is to be able to selectively retrieve an entity from a data source.

Section 3.1.3 will further clarify our proposal for integrating lightly-managed databases.

The most common alternative to our approach of populating the OOHDB with in-

dividual objects is to represent entire collections of external data entities with a single

"pseudo-collection" object in the OOHDB. When queried, this pseudo-collection object

translates the query into sub-queries over the external databases it represents. From our

perspective, the two problems with this approach are that it falls into the common trap

21
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Figure 3.1: Integrating External Data

of requiring external databases to be managed by a powerful DBMS and it requires sub-

stantial development to build robust query translators. Since we are intent on integrating

lightly-managed databases, we have developed an approach that minimizes the required

functionality of the external data source and uses the underlying OODBMS for query

processing and optimization.

Our approach is not without its limitations. The most obvious limitation is that

building a static representation of external data within the OOHDB means the OOHDB

may not always be up-to-date with respect to the external data. This static representation

may limit the applicability of our architecture where modifications to the external data

are very frequent such as on-line transaction-processing environments. In evaluating the

applicability of our approach to a particular environment, the important questions are

whether the currency of the OOHDB can be maintained efficiently, and whether users

of the OOHDB can tolerate data that may be out-of-date. The domains mentioned in
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Section 1.3.1 typically include large, slowly-changing databases that can benefit from our

approach.

A second limitation is that we expect use of the OOHDB to follow a predictable

pattern of access. The expected pattern is one where users will query large collections in

the OOHDB using common paths that we can optimize. This access pattern is typical

of the pattern that metadata approaches such as VISTA expect and accommodate for

scientific data. Queries using optimized paths will not require any access to external data

and new paths can be supported at any time. As we shall see in Chapter 4, accessing

external data is very time-consuming and must be minimized if the OOHDB is to achieve

reasonable performance.

3.1 Our Layered Architecture

The key feature of our architecture is the method we propose for connecting the objects

in the OOHDB with the external data sources that contain their data. As Figure 3.1

depicted, the architecture consists of three layers. The Schema Layer at the top of our

architecture is comprised of the objects defined by the user's domain schema. These are the

objects that users of the OOHDB query. The Database Encapsulation Object Layer in the

middle of the architecture contains "database encapsulating objects" (DEOs). Each DEO

encapsulates all access to a particular external data source. Finally, the External Data

Source Layer at the bottom of the architecture consists of the data sources themselves.

3.1.1 The Schema Layer

The purpose of the Schema Layer is to hide both the format and location heterogeneity

of external data. That is, users and their applications that query and manipulate the

objects of the domain schema should not be aware of the fact that the data is stored

externally in heterogeneous databases. There are two object-oriented approaches to hiding

heterogeneity.

One approach is to use the object-class hierarchy to mask heterogeneity. This is similar

to the "view"-oriented approaches of Kaul et al. and Bertino mentioned in Section 2.3.
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The idea is to use a common superclass to provide a "view" of a number of heterogeneous

classes. The superclass provides a homogenized interface and definition for the hetero-

geneous classes. For example, in Figure 3.2, the class Crystal provides a homogenized

interface to heterogeneous subclasses that draw data from different data sources. Each

external data source is encapsulated using an object that provides a homogeneous method

interface (above the dashed-line) to heterogeneous attributes (below the dashed-line).

Crystal
name

density

CrystalFromDatabasel CrystaiFromDatabase2 CrystalFromDatabaseN

-------------------

name: char *tmp;
for(i=O; i, size(atoms); i++) {

tmp =
strcat(tmp, atomName[i])

. . . I name: <method body>

density: <method body>

name: "name

density: "atomicMass *
1.66112/ volume --------------------

name: 'Aluminum Oxide'

atomicMass: 101.96
volume: 863.41

}
"tmp

density: "density

<attributes>

---------------------

atoms: [20, 13, 8]

density: 7.72

Figure 3.2: Homogenization Using the Class Hierarchy

The problem with this approach is that it uses the class hierarchy to hide implemen-

tation details. For example, if we wish to add InorganicCrystal as a subclass of Crys-

tal, InorganicCrystal must have its own hierarchy for masking heterogeneity as shown

in Figure 3.3. The class hierarchy quickly becomes muddled, unwieldy, duplicative, and

confused-a maintenance nightmare. Clearly the relationship between Crystal and Inor-

ganicCrystal is of a different sort than the relationship between Crystal and CrystalFrom-

Databasel. A class hierarchy is insufficient for distinguishing the difference and mixing

the two is problematic.
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Crystal
name
density

CrystalFromDatabasel CrystaiFromDatabase2 CrystalFromDatabaseNInorganicCrystal

spaceGroup name: Aname

density: AatomicMass '
1.66112/ volume

name: char 'tmp;
£or(i=O;i, size(atoms);i++) {

tmp =
strcat(tmp, atomName[i])

name: <method body>

density: <method body>--------------------
-------------------

)

Atmp

density: Adensity

<attributes>
name: 'Aluminum Oxide'

~

atoms: [20, 13,8]

density: 7.72

IOCrystalFromDatabasel IOCrystaiFromDatabase2 IOCrystalFromDatabaseN

name: Aname

density: AatomicMass '
1.66112/ volume

spaceGroup: AspaceGroup

name: char 'tmp;
£or(i=O;i, size(atoms);i++) (

tmp =
strcat(tmp, atomName[i])

name: <method body>

density: <method body>

spaceGroup: <method body>--------------------
------------------- Atmp

density: Adensity

spaceGroup: Anull

<attributes>
name: 'Aluminum Oxide'

atomicMass: 101.96

volume: 863.41

spaceGroup: 'Pnma'
~

atoms: [20, 13, 8]

density: 7.72

Figure 3.3: A Class Hierarchy Hiding Implementation Details

We take a different approach. Instead of using the class hierarchy to mask hetero-

geneity, we separate heterogeneous data source details from the inheritance hierarchy. We

begin by specifying a new "root" class from which most classes will inherit. In a typical

object-class hierarchy, each hierarchy is rooted in a common base class. In Figure 3.4, we

introduce a new root class, Virtual Object, with two attributes: a reference to a DEO, and

a key for this object that will be used by the DEO to retrieve the object's attribute values

from the external data source. Objects in the OOHDB that are drawn from external data

sources will have no attribute data stored within the OOHDB-all attribute values will
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be "null". The approach shown in Figure 3.4b provides a uniform hierarchy for model-

ing "native" objects whose data are stored within the OOHDB as well as objects stored

externally. The DEO and DEOKey attributes of native objects will be "null", indicating

that the data is stored within the OOHDB.

VirtualObject

aDEO

aDEOKey

AtomCrystal Atom Crystal

name

density

name

atomicNumber

name

density

name

atomicNumber

InorganicCrystal
spaceGroup

InorganicCrystal
spaceGroup

(a) Typical Inheritance (b) Inheriting DEO Attributes

Figure 3.4: Inheriting From a New Root Class

The DEO classes form a separate hierarchy that is used to encapsulate the details

of accessing external data sources. Figure 3.5 shows how one branch of the hierarchy

supports inheritance among domain classes while the other branch is used to encapsulate

the implementation details of accessing external data sources.

Our approach has the advantage that the class hierarchy containing domain schema

class definitions remains free of external data source implementation details. New data

sources can easily be added to the OOHDB by developing new DEOs without having to

reorganize an already cluttered class hierarchy.

Each Schema Layer object in the OOHDB refers to the DEO that encapsulates the

data source where the object's attribute data is located. The object stores a DEOKey

providing enough information for the DEO to identify and retrieve the Schema Layer
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Crystal Databasel Database2 DatabaseN

name

density
name: <method body>

density: <method body>

spaceGroup: <method body>

name: <method body>

density: <method body>

spaceGroup: <method body>

name: <method body>

density: <method body>

spaceGroup: <method body>

InorganicCrystal

spaceGroup

Figure 3.5: Separating Implementation from Inheritance

object's data when required.

When an attribute of a Schema Layer object is accessed via an accessing method, that

method passes a request along to the DEO to retrieve the data. For example, a C++

method for accessing an attribute may do nothing more than return the attribute value:

Pseudo-CodeFragment 3.1 Basic Attribute Access

float density() {

return this->density;

}

Our approach requires the use of attribute accessing methods that are extended to

forward the message along to the DEO if the attribute value is "null", otherwise just

return the value of the attribute:
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Pseudo-Code Fragment 3.2 Attribute Access With DEOs

float density() {

if (this->density == null)

return this->DEO->density(this->DEOKey);

else

return this->density;

}

The format of the DEOKey attribute will depend solely on the method used by the DEO

to access the external data source. For example, the DEOKey for an object stored in

a relational database might be the set of (attribute name, value) pairs that comprise a

primary key. An object stored in a file of formatted data records might use a DEOKey

consisting of the starting byte position in the file and the number of bytes that make up

the record. An object whose data is stored in a single file might simply use the file's

pathname as a DEOKey.

The method forwarding approach can easily be extended to allow the OOHDB to be

populated with a mixture of external and native objects. We extend Fragment 3.1 to test

the value of the attribute DEO to determine whether this object is located within the

OOHDB (DEO == null) or an external data source (DEO != null):

Pseudo-Code Fragment 3.3 Uniform Access to Internal and External Data

float density() {

if (this->density == null) && (this->DEO != null)

return this->DEO->density(this->DEOKey);

else

return this->density;

}

However, not all OODBMSs have a data model that require attributes to be accessed

via methods. Some OODBMSs allow direct "structural access" to attribute values. In

order to use our approach, attributes must be accessed primarily using methods. Requiring

access by methods forces a programming discipline onto developers of the OOHDB so that

they are careful to avoid structural access and rely on method-based access instead. In

Section 3.3 we will discuss a few exceptions to this rule that are designed to enhance

performance.
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Forwarding messages to the DEO provides a simple and powerful mechanism for trans-

parently retrieving data from external data sources on demand.

3.1.2 Database Encapsulation Object Layer

A DEO encapsulates all access to a single external data source and provides a homogeneous

interface to all of the schema objects drawn from that data source.

A DEO has three components. First, there is the method interface used by Schema

Layer objects to request data. Second, there is the interface to the external data source

that is used to retrieve data. Third, between these two, there is the method code that maps

the data from its heterogeneous external representation to the homogeneous representation

of the schema. Thus, though not of critical importance, we think of the DEO as a three-

layered entity itself as shown in Figure 3.6. Coincidentally, this three-layered design for the

DEO corresponds to Gio Wiederhold's proposal for "mediators" that provide an interface

between users and diverse data resources [Wie92]. The principle difference is that the

"users" of a DEO are the objects of the user's schema rather than the users themselves.

The top layer of the DEO is the homogeneous method interface used by Schema Layer

objects to request particular attributes to be retrieved. In Figure 3.6, the DEO provides

an interface for the name and density methods.

In the middle layer of the DEO, data is mapped from its external representation to the

representation used by the OOHDB schema. In Figure 3.6, for example, the name method

simply extracts the string from the external data while the density method computes the

density using the volume and atomic mass of the crystal's unit cell. These are trivial

examples of the powerful computation and conversion that a DEO can perform in order

to mask heterogeneity among data sources.

At the bottom of the DEO is the program code that communicates with an external

data source to retrieve data. The example in Figure 3.6 retrieves a record from a relational

database. The "where" clause of the query is constructed at runtime depending on the

DEOKey of the object that requested the data.

Notice that the granularity of retrieval between the DEO and the external data source

IS intended to be "large-grained". In our example, the DEO queries the database to
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Figure 3.6: The Database Encapsulation Layer

retrieve all of the attributes of the record being accessed (e.g., select c.*) rather than just

the name or density attribute. There are two reasons for this large-grained access. First,

choosing a maximal retrieval scheme where all of an object's data is retrieved at once

greatly simplified the DEO. This one-size-fits-all approach eliminates complex processing

to build custom queries to extract only the required data. Second, accessing a record from

an external data source is a time-consuming operation. By retrieving the extra attribute

values and then caching the data temporarily, we eliminate most of the cost of accessing

additional attributes from the same object. In Section 3.3 we discuss the benefits of

caching data in more detail.

aCrystal

name

density

---------------- ----------------

name density

name= tmpV =extract(volume)
extract(name) tmpM =extract(mass)

density=
tmpM * 1.66112/ tmpV

select c.* from crystal c where...

--------------- -----------------

External
Data Source
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3.1.3 External Data Source Layer

Though we consider the external data sources a layer of our architecture, this layer is

primarily comprised of the external sources and the software used to access their data. The

only requirement imposed by our architecture on this layer is that the data be accessible.

For data managed by a DBMS, we propose to use the API provided by the DBMS to access

the data. For a lightly-managed database, the access may be as simple as extracting some

portion of a file storing multiple entities, or retrieving an entire file that stores a single

entity.

Where general-purpose access is not available for accessing lightly-managed data, we

develop simple, generic interfaces to broad classes of data sources. For example, in Sec-

tion 4.3.3 we describe two simple, generic BSD socket-based applications: one for retrieving

a file given its pathname, and the second for retrieving a specified number of bytes from

a specified location in a large file. These two socket-based "servers" are examples of the

sort of minimal interface to a lightly-managed data source required by the OOHDB.

3.2 Objects, DEOs, andDatabases-An Example Query

As an example of how the architecture processes queries, consider a simple OOHDB with

the Schema Layer populated with Crystal objects drawn from external data sources. As-

suming that the OOHDB has a collection in the Schema Layer containing all the Crystal

objects called AllCrystals, the following C++-like query would be used to print the names

of all the "dense" crystals:

Pseudo-Code Fragment 3.4 A Simple Query

Crystal *c;

foreach (c, AllCrystals)

if (c->density() > 10.0)

cout « c->name();

This query iterates over the AllCrystals collection, sending each Crystal the density mes-

sage and then testing the result against the value 10.0.

Figure 3.7 demonstrates the processing performed by a particular Crystal in order to

respond to the density message. In the course of a query over AllCrystals, each Crystal
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object in turn receives a message asking for the value of its density attribute. If the density

is "null", then the DEO (if it exists) is asked to retrieve the data from the external data

source. The DEO first checks its cache, then optionally retrieves the entire record from

the external data source. The atomic mass and volume values are extracted and used to

compute the density value that is returned as the answer to the original message.

density

null 0.1962

External

Layer

-------_.

Schema

Layer

DEO

Layer

extract volume & mass
compute density

-------_.

'Aluminum Oxide','Al2 03',101.96,863.41

Figure 3.7: Message Execution Flowchart

This approach provides a high degree of transparency for users of the OOHDB. The

details of accessing the external data source and homogenizing the data are completely

hidden and automatic, However, the latency of accessing external data sources is not

hidden from the users. In fact, as described so far, our approach is likely to be unusable

for even moderately large collections of objects in the OOHDB. Fortunately, the OODBMS

provides mechanisms that can be used to address this performance problem.
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3.3 Making it Go Fast

The underlying OODBMS can be used to provide a number of performance-enhancing

mechanisms for our OOHDB. The most important mechanisms are caching external data

within the OOHDB and creating indexes. The ultimate goal when employing these tun-

ing mechanisms is to achieve query performance that approaches the native, optimized

performance of the underlying OODBMS.

3.3.1 Caching and Retaining Data

The easiest way to overcome the cost of accessing external data sources is to minimize

the need to access them by caching or retaining data that is frequently used by queries.

Of course, the obvious question is why bother retaining bits and pieces-why not simply

load all external data into the OODBMS? The primary reasons are space and resource

utilization. A part of the lure of any HDB design is the ability to provide access to very

large databases. These large databases, taken together, may be larger than can reasonably

be managed by a single database management system or hardware platform. Distributing

a heterogeneous database across a number of systems often hides the magnitude of the

whole database. Furthermore, users of large databases are often interested in only a small

subset of the data at any particular moment. Dedicating large computational and storage

resources to managing large amounts of rarely accessed data is not a wise use of resources.

Both DEO objects and Schema Layer objects provide reasonable locations for caching

and retaining data.

As we noted in Section 3.1.2, having each DEO cache recently read raw data records

eliminates wastefully re-reading the same record when more than one attribute is needed.

So we extend the design of each DEO's methods to first check a local cache within the

OOHDB. Our initial intuition was that a one-line cache containing the most recently read

data would be sufficient. The iterative nature of OODBMS queries suggested that the

cache would only be useful for accessing multiple attributes from the object referenced

by the iterator. However, as we will see in Chapter 4, the large performance penalty of

accessing external data suggests that a larger cache, one capable of holding a realistic
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"working set" of data, provides a substantial performance improvement. We propose to

manage the cache using a simple FIFO policy that minimizes the amount of bookkeeping

required.

However, the cache cannot be an attribute of the shared DEO object as that could cre-

ate a concurrency conflict among concurrent users. As data is read from external sources,

the DEO cache is updated. Since the cache appears to the OODBMS' transaction mech-

anism as a shared resource concurrent users accessing and updating the same DEO cache

would cause concurrency conflicts. Users would either be unable to concurrently access

the same external data source (under pessimistic concurrency control) or their transac-

tions would fail when the conflict was detected (under optimistic concurrency control).

The solution is for each OOHDB user to have a private cache for each DEO. The DEO

will need to identify which cache to use with a name that will be resolved at runtime.

This duplication has two drawbacks however. First, two users accessing the same data

will duplicate much of the raw data in each others DEO caches. Second, by dividing the

available space in the OODBMS among multiple caches, the size of each cache is reduced.

In order to support caching raw data, an early prototype of our architecture naively

created a private DEO object for every Schema Layer object [HMSW92]. The reasoning

was that these individual DEOs would provide a convenient location for caching raw

data read from external data sources. We hoped to be able to manage this caching to

provide fast access for small sets of objects that were being frequently accessed. However,

this strategy proved ineffective (due to the iterative nature of queries noted earlier) and

consumed large amounts of space within the OOHDB-space that was difficult to reclaim.

A single DEO with small private user caches has proven to be a more reasonable and

effective solution.

Likewise, Schema Layer objects can retain1 the attribute values retrieved from ex-

ternal data sources. Attribute values can be retained as they pass through the Schema

Layer objects by simply storing the value in the object's attribute. A simple extension to

1We differentiate between "caching" and "retaining" data. A cache is a shared fixed-sized data space
that may hold any data. On the other hand, an attribute of a particular object is not shared and has only
one value. Thus we talk of caching raw data but retaining attribute values.
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Fragment 3.3 supports retaining attributes:

Pseudo-CodeFragment 3.5 Attribute Access With Retention

float density() {

if (this->density == null && this->DEO != null)

if (retainAttributes)

{

this->density = this->DEO->density(this->DEOKey);

return this->density;

}

else

return this->DEO->density(this->DEOKey);

else

return this->density;

}

Here we assume some flag, "retainAttributes", that is set "true" or "false" by the OOHDB

user.

Retaining attribute values has two great benefits. First, the entire process of read-

ing and converting data from the external data source is eliminated-attribute data is

accessed using the native mechanisms of the OODBMS, all OOHDB extensions are by-

passed. Second, and most importantly, indexes can be constructed using these attribute

values to provide optimized query performance.

3.3.2 Indexing

By indexing large collections in the OOHDB along commonly accessed paths, many rou-

tine queries over these collections are processed without having to access external data

sources. Constructing an index trades space in the OOHDB for increased query perfor-

mance. Although all indexes consume space, our architecture carries the additional cost

of allocating space for the retained attribute values.

While some external data sources may already provide indexed access, their indexes are

not available to the query engine of the OODBMS and cannot be used. Furthermore, the

indexes supplied with external data sources are pre-determined and will vary from source

to source. However, using the indexing mechanism of the OODBMS, the OOHDB provides

uniformly optimized access across all external data sources. Furthermore, new optimized
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access paths can be added to the OOHDB to suit the needs of its users. Thus, while the

OOHDB may not be able to take advantage of an external data source's optimizations, it

is not hampered by the lack of such optimizations either. Since we expect lightly-managed

databases to be light on optimized access mechanisms, we believe that our architecture

presents a reasonable approach to optimization.

In order to construct an index then, the "retainAttributes" flag is turned on, the

attributes participating in the index are accessed (and thus retained), and the index

constructed using OODBMS indexing mechanisms:

Pseudo-CodeFragment 3.6 Building an Index

Crystal *c:

retainAttributes = TRUE;

foreach (c, AllCrystals)

c->densityO:

AllStudents->createlndex('density'):

retainAttributes = FALSE:

One problem with retaining attribute values is that it is difficult to manage and re-

claim space from retained attributes. Management is not as easy as the simple FIFO

management of a DEO cache. It is difficult, if not impossible to automatically determine

which attribute values should no longer be retained. Thus our architecture does not pro-

vide a management strategy or mechanism for disposing of retained data. The users of

the OOHDB can most accurately determine when attribute values should have their space

reclaimed by explicit disposal or by severing reachability (Le., resetting the attribute value

to "null") and collecting garbage.

3.4 Populating and Maintaining an OOHDB

One detail remains-how an OOHDB is populated and maintained. Populating the

OOHDB requires the OOHDB to be able to identify each entity in an external data

source that will be represented by an object in the OOHDB. Entities stored in a rela-

tional database, for example, can be identified with a simple query to retrieve all primary

keys (e.g., select c.id from c in Crystals).
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On the other hand, lightly-managed data sources do not provide such a convenient

query interface. We expect that data files storing single entities (e.g., scientific data-

interchange file formats) are likely to be managed using some sort of directory structure.

In such an environment, scanning the directory to obtain the file pathname is sufficient

for populating the OOHDB. New Schema Layer objects are created for each file in the

directory and the pathname of the file is used as the DEOKey:

Pseudo-Code Fragment 3.7 Scanning a Directory

struct direct **filenames;

Crystal c;

scandir(l/data/netCDF/", &filenames, NULL, NULL);

for(i=O; i<sizeof(*filenames); i++)

{

c = Crystal->new;

c->DEO = netCDFFile;

c->DEOKey = (*filenames) [i]->name;

AllCrystals->add(c);

}

Small numbers of single files may simply be added to the OOHDB manually by creating

an object and providing the file pathname as the DEOKey.

The other sort of lightly-managed data source we encounter are the large data files

that contain many entities. This sort of database is highly structured and the structure

can be exploited to identify the records (or entities) in the file. A Record typically encodes

information that identifies its beginning and possibly its end. These identifying bits of

syntax can be used in a linear scan of the file to populate the OOHDB with an object for

each entity identified. For example, a file using 80-column FORTRAN-like "cards" might

identify the first card of each record with a special character in column 80. We expect

this sort of file to be accessible via a general-purpose interface for reading from the file.

Fragment 3.8 is an example of the sort of processing required for scanning a file that is

accessible via a BSD socket-based server responding to requests to read a given number

of bytes from the file. The code simply steps through the file in 80-byte pieces creating

new Schema Layer objects each time the beginning of a record is detected (denoted by a
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special character in byte 80 in this example):

Pseudo-CodeFragment 3.8 Scanning a Multi-Record File
socket nbsDatabaseServer;

char[80] inbuf;

char[80] outbuf;

int bytesRead, position = 0;

Crystal c;

/* Request 80 bytes starting at the specified position */

scanf(outbuf, "80 %d", position);

write (nbsDatabaseServer,outbuf, sizeof(outbuf»;

bytesRead = read(nbsDatabaseServer, inbuf, sizeof(inbuf»;

/* Repeat until there we reach the end of the file */

while (bytesRead == 80) do

{

/* Is this the beginning of a new record? */

if (inbuf[79] = '*')

{

/* Patch the last record's end position */

if (c != NULL)

c->DEOKey[l] = position-l;

/* Create a new Crystal and initialize the DEO and key */

c = Crystal->new;

c->DEO = NBSCrystalDatabase;

c->DEOKey = NBSKey; /* a 2-integer array */

c->DEOKey[O] = position; /* byte offset where the record begins */

AllCrystals->add(c);

}

/* Increment the position in the file and request the next 80 bytes */

position += 80;

scanf (outbuf, "80 %d", position);

write (nbsDatabaseServer, outbuf, sizeof(outbuf»;

bytesRead = read(nbsDatabaseServer, inbuf, sizeof(inbuf»;

}

Since the population and maintenance functions are dependent on the structure of each

external data source, it makes sense to encapsulate these operations within the DEO. The

initial population operation creates Schema Layer objects within the OOHDB for each

entity identified in the external data source. Subsequent update operations will depend

largely on the way the external data source is managed. At one extreme are the external
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data sources that are read-only repositories of legacy information. In this case, an update

operation may not even be necessary. On the other extreme are the frequently updated

data sources where anything is liable to change. In this case deletions, insertions, and

updates to the external data must all be detected and reflected in the OOHDB. For very

active data sources, detecting modifications may be a non-trivial effort and our approach

may be unsuitable.

3.5 Summary

In summary, we wish to evaluate the design of our architecture in terms of the two goals

we presented at the beginning of this chapter as well as Won Kim's 9 Objectives for an

HDB from Chapter 1.

3.5.1 Did We Achieve Our Goals?

We believe this OOHDB is easy to implement using a wide variety of COTS OODBMS

products. We have used this architecture to implement an OOHDB for materials sci-

ence using the GemStone OODBMS (see Chapter 4). The architecture and methodol-

ogy for constructing an OOHDB outlined here relies on the basic features common to

OODBMSs-an object-oriented data model that encapsulates object state and behavior,

supplemented with a BSD socket interface to external software components. The minimal

functionality required of an OODBMS by our architecture is examined further in Chap-

ter 5 where we examine other COTS OODBMSs as tools for implementing an OOHDB

based upon our architecture.

We believe that the OOHDB is uniquely suited for integrating lightly-managed data-

bases. The key to integrating these databases is to build a representation of their data

within the OOHDB. Rather than using the class hierarchy to hide heterogeneity, we use a

mechanism based on forwarding messages. The approach involves extending each Schema

Layer class's attribute accessing methods to forward data access requests on to a DEO.

These DEOs provide a homogeneous interface to heterogeneous data using methods that

map external data to the homogeneous representation of the OOHDB.
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Our multi-layered architecture leverages the power of the underlying OODBMS to pro-

vide optimized query processing over heterogeneous data stored in external data sources.

3.5.2 Do We Meet Kim's Objectives

In Section 1.2 we presented Won Kim's objectives describing the capabilities of an HDB.

An obvious question is whether our OOHDB meets these objectives.

OBJECTIVE 1 obviate the need for batch conversion-Data from external data sources

is retrieved on demand by the OOHDB. The only batch-processing is the initial

population and subsequent updates of the OOHDB.

OBJECTIVE 2 no changes to local database system software-The OOHDB uses the

data access mechanisms provided by the external data source. For lightly-managed

databases, simple non-intrusive, general-purpose data access "servers" access the

data.

OBJECTIVE 3 users of local databases are unaffected-By using the data access mech-

anisms provided by the external data source, the OOHDB appears to the external

data source as just another user. External data source users and their applications

are unaffected.

OBJECTIVE 4 single database language-The OOHDB uses the data manipulation

language of the underlying OODBMS. Users are completely shielded from the het-

erogeneous interfaces of the external data sources by the DEOs.

OBJECTIVE 5 shield users from the heterogeneous operating environment-A single,

uniform data access mechanism is provided by the OOHDB that shields users from

the heterogeneity of computer and operating systems, networks, DBMSs, etc.

OBJECTIVE 6 distributed read/update transactions-As presented here, the OOHDB

does not provide distributed transaction management or updates. However, users

accessing the OOHDB do so using the transaction mechanisms of the underlying

OODBMS. We believe that, where necessary and feasible, the transaction envi-

ronment of the OODBMS could be extended to coordinate distributed transactions
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among external data sources that support distributed transactions. Modifications

to attribute updating methods could be used to provide distributed updates to the

external data sources from within a transaction environment. Of course, distributed

transactions and updates are still a significant research issue. In Chapter 6 we dis-

cuss supporting distributed transactions and updates from the OOHDB as a subject

for future research.

OBJECTIVE 7 must befull-blown database system-Clearly, the underlying OODBMS

is a full-blown database system. By constructing our OOHDB using an OODBMS

we leverage the schema definition, query processing and optimization, transaction

management, concurrency control, etc. of the OODBMS. The OODBMS will also

typically provide a host-language API for user programs to access the OOHDB as

well as interactive query facilities. Again, the ability to update data via the OOHDB

remains a research issue.

OBJECTIVE 8 no changes to local database administration-No changes to external

data source administration are required since the OOHDB interacts with those data

sources as an ordinary client. However, it may be the case that changes to external

data sources might be used to help maintain the OOHDB. For example, an external

database might be enhanced to write a change log that the OOHDB could use to

maintain its representation of the external database more efficiently.

OBJECTIVE 9 performance approaching homogeneous distributed system-Strategies

for enhancing performance, such as caching raw data and retaining attribute val-

ues, should be able to provide performance that approaches a homogeneous non-

distributed system. Where queries can be satisfied using retained attributes and

indexes within the OOHDB, performance will be equivalent to the native perfor-

mance of the underlying OODBMS. Furthermore, our approach gives the users of

the OOHDB control over query optimization. Users are insulated from changes to

external data sources that may affect performance (e.g., the removal of an index).

New optimizations can be added to the OOHDB using the mechanisms provided

by the OODBMS (e.g., indexes). The performance aspects of our architecture are
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further explored in Chapter 4 where we measure the performance of an OOHDB for

materials science.

Clearly our architecture meets most of Kim's criteria for an HDB. Leveraging the

power of an OODBMS for constructing an OOHDB allows us to meet many of these criteria

with little or no additional effort. Most importantly, we are able to meet these criteria

and provide high-level, optimized query performance for lightly-managed databases.

In Chapter 4, we discuss our efforts to take this high-level, OODBMS-independent

architecture and apply it to implementing an OOHDB for a scientific domain, materials

sCience.



Chapter 4

An Implementationof the OOHDB

Architecture

We have taken our architecture and implemented an OOHDB for materials scientists

and lightly-managed materials science data. The implementation of a materials science

OOHDB serves two primary purposes. First, it demonstrates that our architecture can

be constructed using commercial OODBMS technology. Second, it provides a testbed for

examining and analyzing the performance of our OOHDB architecture in a non-trivial,

real-world application.

4.1 The OODBMS-GemStone

GemStone, from Servio Corporationl, is a commercial object-oriented database manage-

ment system that evolved from object-oriented database research conducted in the mid-

80's [CM84, MS90, BOS91].

GemStone uses a client-server architecture with a single server ("stone") and multiple

clients ("gems") 2.

A database is logically broken into "segments", each user typically owning and con-

trolling a segment. Persistence is by reachability with both manual and scheduled au-

tomatic garbage-collection of non-reachable data. GemStone supports the creation of

indexes over non-sequenceable collections (e.g., sets and bags) by specifying a "path"

1Servio Corporation, 15400 N.W. Greenbrier Parkway, Suite 280, Beaverton, Oregon 97006.
2GemStone further allows the "gem" portion of the client to be separated from the application, providing

for an application-client-server distribution of processes.

43
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(e.g., molecule.formula.atoms.element.symbol). An index can be based on the immutable

object-identifiers (OlD) of the objects in the collection, or on the equality of attribute

values.

The data model of GemStone is based on the language Smalltalk-80 [GR83, KP86] and

provides a rich class-hierarchy of pre-defined classes (e.g., set, bag, array, integer, float,

boolean, string, dictionary, queue). The data definition and data manipulation language is

called "SmalltalkDB" and is a superset of the Smalltalk-80 language. Methods are coded

using SmalltalkDB and are compiled3 and stored within the database.

GemStone provides interactive user interfaces as well as application programmer inter-

faces for C and C++ and a Smalltalk interface compatible with Objectworks\Smalltalk

from ParcPlace Systems4 and SmalltalkjV from Digitalk5. In addition, GemStone pro-

vides a fully self-contained application development environment called GeODE (Gem-

Stone Object Development Environment).

4.2 The Domain-Materials Science

We have chosen to use materials science as a test domain for our OORDB implemen-

tation. Materials scientists have been leaders in the use of computers for modeling and

research. Computational models for materials science are well known and refined [RaI85].

In addition, there are many computer-readable lightly-managed data sources available for

materials science [RS91, Wi185, Ber85, Rum89, Mes84].

The particular problem we sought to address was to provide an integrated OORDB

for materials scientists and their application programs. The OORDB was to initially

integrate diverse sources of crystallographic data and be easily extended to integrate other

related materials science sub-domains, such as phase-diagram calculation, to provide a

wide-ranging information resource.

3Smalltalk methods are "compiled" into a machine-independent intermediate code that is interpreted
by the Smalltalk virtual machine at runtime.

4ParcPlace Systems, 1550 Plymouth Street, Mountain View, California 94043.
5Digitalk Inc., 9841 Airport Blvd., Los Angeles, California 90045
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Previously, applications such as the Desktop Microscopist-an application for gen-

erating computer-predicted diffraction patterns-accessed lightly-managed data sources

directly. However, as new data sources were added, the application's data model and

input-output routines were forced to change and adapt to the new data source. Further-

more, application users did not have access to a general query facility and were restricted

to accessing the data using a small number of pre-selected queries. The OOHDB provides

an application-independent interface and powerful query language for users and their ap-

plications and can integrate a wide range of materials science data.

4.2.1 Materials Science Schema

We began by developing an application-independent object-oriented model for materials

science data. As shown in Figure 4.1, the data model of the Schema Layer currently

supports a sub-domain of materials science, known as crystallography or structural anal-

ysis. Obviously, developing a uniform data model for the domain is a key ingredient for

building an OOHDB. In developing our model we have attempted to take a broad view of

materials science as a whole rather than limiting the model to the sub-domain of crystal-

lography. Thus, while crystallographers might reasonably model data with the "crystal"

at the heart of the model, we model materials as complex objects of sub-components (e.g.,

atoms comprise molecules comprise crystals comprise...). Our intention is to provide a

robust data model that can be extended to other sub-domains of materials science, such

as phase-diagram calculation.

Briefly, the important classes in Figure 4.1 include:

Element - the basic information for a periodic table element (e.g., atomic mass, atomic

number, sets of valid nuclear and electron configurations).

Element Configuration - a configuration of the electron shell for a particular element

(i.e., the number of electrons and their locations)

Nuclear Configuration - a configuration of the nucleus for a particular element (e.g.,

the number of neutrons in the nucleus).
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is-part-of.
is-a--------.

Figure 4.1: Object-Oriented Data Model for Materials Science

Atom - an element with a particular electron and nuclear configuration.

Formula - a list of atoms and coefficients describing a chemical formula (e.g., H20).

Molecule - a particular chemical and empirical formula along with other characteristics

of the molecule (e.g., molecular weight, melting temperature).

Crystal - a solid phase of a particular molecule having a crystalline structure.

U nit Cell - a basic description of the crystalline structure in the form of the distances

and angles that define the unit cell shape and size.

d-Spacing - meas~rements of the spacing and intensity of a diffraction pattern image

generated by scanning the crystal with an electron microscope.

Material - a collection of molecules in various phases.

Journal Reference - identifies the journal where the data for the particular object

was reported.
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Our OOHDB focuses on integrating data for crystals and their unit cell data. Many of the

other classes in Figure 4.1 simply provide basic structure for the model and are intended

to support extending the model to other materials science sub-domains. Appendix A

provides a description of the GemStone definitions for the classes of the Schema Layer as

depicted in Figure 4.1.

4.2.2 Data Sources Integrated

Our materials science OOHDB provides access to three types of data sources:

1. Large commercial databases on CD-ROM.

2. Single files written by scientific application programs.

3. Single files written using the Crystallographic Interchange Format.

The large, commercial databases are the National Bureau of Standards Crystal database,

and the International Centre for Diffraction Data PDF-2 database. Both are available

from the National Institutes of Standards and Technology (NIST) distributed on CD-

ROM [NIS92]. Both databases share a common format, NBS*AIDS83 [Int90]-an ASCII

file-format using a variable number of 80-column "cards" for each crystal record (see

Appendix B.l for an example). There are 22 card types defined by the NBS*AIDS83 doc-

ument. The format of each card type is fixed (i.e., the definition of the card determines

the position and format of data). Accessing attributes is thus a matter of extracting a

fixed number of bytes from a fixed position in a card. Some card types may be repeated

when necessary (e.g., multiple authors of a journal article documenting the crystal struc-

ture). Some card types are required (e.g., card "1"-unit cell parameters), others are

optional (e.g., card "B"-comments). The Crystal database contains data on approxi-

mately 136,000 crystals and occupies 167 megabytes. The PDF-2 database contains data

on approximately 51,000 crystals and occupies 127 megabytes6, with record sizes averaging

lK -3K bytes.

6PDF-2 records are typically larger than Crystal records because they contain a number of optional
cards (most notably for d-spacings) that are not contained in the Crystal records.
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The OOHDB also provides access to data files that have been written by application

programs. Both the Desktop Microscopist7 and the CAChe8 computer-aided chemistry

program can store data in single ASCII files (one molecule or crystal per file). The

files written by the CAChe system and the Desktop Microscopist use different formats,

but are similarly comprised of (keyword,value) pairs such as "Space Group = 193" (see

Appendix B.2 and B.3 for examples). Thus, the format of these files are self-describing

(though not sufficiently to be read by humans) and not as rigid as the format of the

NBS databases. Attributes must be located by using a string search to find the keyword

("Space Group") and then extract the associated value ("193"). Desktop Microscopist files

are typically lK-3K bytes. CAChe system files can be much larger as they are intended to

support larger molecules and a wider range of applications. Typical file sizes range from

2K-40K bytes.

Finally, the OOHDB provides access to files written using the Crystallographic In-

terchange Format (CIF), based on the STAR self-describing file format [HAB91]. CIF is

one of an emerging number of "data interchange format" standards designed to promote

machine and program-independent file formats for exchanging data. CIF files are self-

describing ASCII files that can be viewed as structured groups of (keyword,value) pairs

(see Appendix B.4 for an example). The CIF format is extremely flexible. However, a data

dictionary defines the basic elements and their formats for particular domains. CIF syntax

has just a few structural elements including "data" segments, "loops", and "elements".

Basically, a data segment is a sequence of elements, each segment typically comprising a

single "record" with the potential for multiple records per CIF. Each element is a (key-

word, value) pair. What differentiates CIF files from other file formats is that CIF uses a

context-sensitive syntax of (keyword,value) elements. That is, a CIF allows the "value" to

be a structured loop of other (keyword,value) elements9. Thus the simple string searching

used to locate attributes and their values for Desktop Microscopist and CAChe files is not

sufficient. A CIF must be parsed in order to determine whether an element is a part of

7The Desktop Microscopist is distributed by Virtual Laboratories, Ukiah, California.
8CAChe is a registered trademark of CAChe Scientific.
9CIF does not allow loops within loops, although the underlying STAR format allows such nesting.
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a larger structure (Le., a loop) before the data can be extracted. File sizes are extremely

variable. The verbose nature of CIF files is designed to foster human-readability and

tends to make them large (the test file we used was approximately 30K bytes for a single

crystal) .

4.3 Our Layered Implementation

The three layers of the design (Section 3.1) were easily mapped into a GemStone imple-

mentation. OOHDB users access data using the materials science schema of Figure 4.1.

DEOs were created for each type of external data source accessed by the OOHDB and

two simple, general-purpose, platform and data-independent "servers" provide access to

external data sources.

4.3.1 The Schema Layer

Each of the materials science classes of Figure 4.1 is rooted in the class VirtualObject-a

subclass of the GemStone root class Object. VirtualObject adds two attributes to each

subclass-deo and deoKey.

As described in Sections 3.1.1 and 3.3.2, we extend the behavior of each attribute

accessing method to forward messages on to the DEO when we need to retrieve data

from an external data source. In GemStone, an object's attributes are typically accessed

via "accessing" methods bearing the same name as the attribute accessed. Normally, an

attribute accessing method simply returns the value of the attribute1o:

SmalltalkDB Fragment 4.1 Basic "spaceGroup" Accessing Method

spaceGroup

"Return the value of the instance variable 'spaceGroup'."

-spaceGroup

10Caret (") is equivalent to "return" andcanbe applied to variables or an expression where the result
of evaluating the expression is returned.
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In programming the OOHDB we extend these accessing methods to check for the

presence of a DEO, forward messages to the DEO if the attribute value is "nil", and

potentially retain the attribute value:

SmalltalkDB Fragment 4.2 OOHDB "spaceGroup" Accessing Method

spaceGroup

"Return the value of the instance variable 'spaceGroup'. "

(spaceGroup isNil) and: [deo notNil] ) ifTrue: [

virtualObjectCaching ifTrue: [

-spaceGroup := deo spaceGroup: deoKey]

ifFalse: [-deo spaceGroup: deoKey].

ifFalse: [-spaceGroup]

These six lines of code are an example of the conceptual template used by all attribute

accessing methods.

Our approach to integrating data has influenced how we manage the objects of the

schema. One of our objectives is to use as little space as possible within the OOHDB

to represent external data. However, when we create a new Schema Layer object (e.g., a

Crystal), GemStone pre-allocates space for each attribute of the object. A single Crystal

object uses 55 bytes of storage in our GemStone OOHDBll. Except for the deo and

deoKey attributes, all other attributes initially point to the undefined "nil" object. When

we created Crystal objects in the early versions of our materials science OOHDB, we

eagerly instantiated all of the related sub-objects as well-JournalReference, UnitCell,

ReducedUnitCell, etc. What we observed was that since these sub-objects are not shared

among Crystals, we could save considerable space in the OOHDB if we delayed the creation

of these sub-objects. Thus, we allow the unitCell, reducedUnitCell, and journaLReference

attributes of a Crystal object to remain "nil" rather than pointing to a new, empty object

of the appropriate class. When reference is made to a sub-object using an accessing

method, a new object is dynamically created by the DEO and returned using the same

mechanism demonstrated above for the spaceGroup method.

11GemStone does not provide a mechanism for directly assessing the space used by an object. All
space measurements presented here have been made by checking the overall free space in the database,
generating thousands of new objects, then re-checking the space available to determine how much space
the new objects used.
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While the space saved by delaying the creation of a particular sub-object is small

(a UnitCell has only 7 16-bit floats, for example), the cumulative effect for hundreds of

thousands of objects is substantial. Our materials science OOHDB currently contains

approximately 206,000 Crystals consuming approximately 11 megabytes of space. As-

suming that a Crystal's sub-objects would each occupy approximately 55 bytes of storage

as well, we estimate that delayed creation of Crystal sub-objects saves approximately

55 * 3 * 206,000 = 34 megabytes. While 34 megabytes is a large amount of space by

today's standards, shrinking the space required by a factor of 3 will become significant

as the OOHDB grows. Of course there is some overhead imposed by dynamically cre-

ating objects on demand. However, the overhead appears to be negligible at about 0.9

milliseconds per object.

4.3.2 Database Encapsulation Object Layer

A DEO class12 with methods for data retrieval and conversion is implemented for each

external data source. Appendix C provides a list of the DEO classes, their class attributes

and class methods. Each DEO is constructed similarly, and where possible, we have chosen

to model common characteristics using a small class hierarchy of DEOs. For example,

the NBSDatabaseRecord class encapsulates the common aspects of the nearly identical

CrystalRecord and PDFRecord DEOs. Similarly, the common file access mechanism of

the DMFile, CACheFile, and ClF DEOs are encapsulated in their common superclass

DatabaseFile.

In Section 3.1.2 we characterized the DEO as a component with three layers. At the

"top" of the DEO is the interface to the Schema Layer objects. The interface provides

complete coverage of all messages the DEO might receive from Schema Layer objects.

These interface methods use the general-purpose data extraction and conversion methods

of the DEO to retrieve a particular attribute or object. The spaceGroup method of the

PDF-2 database DEO provides an example:

12GemStone follows the Smalltalk model by allowing class definitions to contain both class attributes
and class methods. When only a single instance of a particular class is to be instantiated, the class object
itself can serve as both the definition and the only instance of the class.
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SmalltalkDB Fragment 4.3 PDF-2 DEO "spaceGroup" Method

spaceGroup: aKey

-(self getFrom: aKeyat: '3 ' from: 1 to: 8 dataType: #String)

This method uses the generic getFrom:at:from:to:dataType: method in the "middle" of

the DEO to extract and convert the space-group value from the overall record. Interface

methods for CIF, Desktop Microscopist and CAChe files are similar.

The "middle" of the DEO contains general-purpose methods for extracting a partic-

ular attribute from the entity and performing simple data-type conversions. The get-

From:at:from:to:dataType: method of the PDF-2 database DEO is a good example of the

processing that takes place. The getFrom:at:from:to:dataType: method extracts and con-

verts an attribute value from a PDF-2 record. It first checks the PDF-2 DEO cache to see

if the record is already present. Once the record is in the cache, the record is sequentially

scanned to locate the particular "card" that contains the data of interest (selected by the

"aN umber" parameter). Each card is 80 characters long and the card number is located

in byte 80. So the search for the proper card is accomplished by checking each 80th byte

until the card is found or the end of the record is reached (in which case "nil" is returned

to indicate missing data). If the proper card is found, the data in the range (from: to:) is

extracted and converted to the proper data type. A special case affects "codes" from the

NBS databases-short encodings of standard values designed to save space in the data-

base. The PDF-2 and Crystal database DEOs include a "codeDictionary" class variable

based on the GemStone Dictionary class that is used to map short codes to standardized

strings.

SmalltalkDB Fragment 4.4 PDF-2 DEO "getFrom" Method

getFrom: aKey at: aNumber from: start to: end dataType: aDataType

"Generic method to get data from the data record and convert to proper datatype"

I tempString temp c t i recSize I

"If the data isn't in the cache then get the data from the external file"

temp := (self cache at: aKey ifAbsent: [self getData: aKey]).

recSize := (aKey at: 2).

i :=O.

"Find the card that contains the data we're interested in.
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If it exists then copy the range from the data, otherwise just return nil.

Check the 80th character of each card to locate the card containing the data."

[(tempString isNil) and: [«temp size) >= (i + 80» and: [i < recSize ] ] ]

vhileTrue: [

«(temp at: (i + 80» = (aNumber at: 1» and:

[('1G*+' includesValue:

(temp at: (i + 80»)

ifTrue: [tempString

i := i + 80.

I «temp at: (i + 71» = (aNumber at: 2»])

:= temp copyFrom: (start + i) to: (end + i)].

].

(tempString isNil) if True: [-nil].

"Trim vhitespace if this isn't a code"

(aDataType -= #Code) ifTrue: [tempString := tempString trimWhiteSpaceIfNeeded].

"If in the course of truncating the data above it became empty then return nil"

(tempString = ") ifTrue: [-nil].

"Data is not nil so convert it to the datatype requested and return it."

"String?"

(aDataType = #String) ifTrue: [-tempString].

"Float?"

(aDataType = #Float) ifTrue: [-(SmallFloat fromString: tempString)].

"Integer?"

(aDataType = #Integer) ifTrue: [-(Integer fromString: tempString)].

"Code?"

(aDataType = #Code) ifTrue:

[-(self codeDictionary at:

«aNumber copyFrom: 1 to: 1) add: (start asString»

add: tempString) ifAbsent: [tempString]) ].

This method checks the DEO cache and uses getData: to retrieve the data from the

external data source if necessary. The attribute is extracted, converted and returned.

Some DEO objects have additional specialized methods for retrieving and building more

complex types of objects (e.g., the getdSpacings:onlyMax: method of the PDF-2 database

DEO that returns an Array of dSpacing objects).

The mechanism for extracting and converting attributes differs among the DEOs. In

the example above, the data is located using a byte offset within a particular record. For

the Desktop Microscopist and CAChe DEOs, the mechanism used to locate the data is

to sequentially search for a label string within the file {e.g., "Space Group = 193" in the
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Desktop Microscopist file in Appendix B.2).

Extracting data from CIF files is more complex. Though attributes are identified by

a label within a CIF file, a sequential substring search is insufficient for locating and

extracting an attribute. The problem is that an attribute may occur within the context

of a larger data structure such as a loop. Thus a CIF file must be parsed to accurately

locate and extract attributes. Our strategy is to convert the string representation of a

CIF file to a structured representation based on the GemStone Dictionary class that stores

(key,value) pairs. Thus a CIF data segment will be represented as a CIFDictionary where

the keys are the data labels, and the values are either CIFStrings or CIFLoops-a subclass

of CIFDictionary. The getFrom:at:in:dataType: method searches each CIFDictionary for

an attribute with the given label. If not found, the message performs an in-order traversal

of all embedded CIFLoop objects within the CIFDictionary.

One important lesson we have learned is that the format of an external data source can

have a great impact on the performance of the OOHDB. Extracting attributes from the

data of an external data source requires some modest computation. In general, the time

needed to extract attributes seems to be a function of how rigidly the data is structured. In

the case of the rigidly-structured NBS databases, the access mechanism retrieves a record

from the CD-ROM by directly accessing the data based on a byte-offset into the file. The

card containing the attribute is located by skipping through the record 80 bytes at a time

until the card is found. The attribute is then extracted directly from the card based

on the byte offset and length within the card. The more flexible Desktop Microscopist

and CAChe file formats have higher complexity since they must be searched sequentially

using substring matching. Searching a CIF file is even more complex since the file must

be parsed into a structured representation, then searched. Although CIF files are not

intended for data storage (as we are using them here) but for data interchange, data

interchange formats are increasingly being used for data storage.

At the "bottom" of each DEO lies a getData: method that retrieves the data for

a single entity from the external data source. Although all getData: methods share a

common semantic meaning, the implementation of the getData: method for each DEO is

dependent on the format and access mechanism of the external data source. The getData:
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method for the PDF-2 database DEO is representative of the socket-based mechanism we

use to retrieve a contiguous set of bytes from a large CD-ROM database. This method

first gets a handle on the line in the DEO cache that is going to be replaced and the size of

the cache line is increased if necessary to hold the new data. A read request is sent to the

byte-server in the form of start and end byte positions of the data in the file. The data is

read from the socket into the cache, the cache key is updated, and the data is returned.

SmalltalkDB Fragment 4.5 PDF-2 DEO "getData" Method

getData: aKey

Isock c k s 11

"Get the data from the external file server and place it in the cache."

sock := self socket.

self cache decrementLastIndex.

1 := self cache lineToReplace.

k := 1 at: 1. "The cache Key"

c := 1 at: 2. "The cache Data"

"Make sure this line is large enough to hold the data - but we only want to

grow. never shrink the lines"

(c size) < (aKey at: 2) ifTrue: [c size: (aKey at: 2)].

s := String withAll: 'r '.

"Write the request with start/end positions. Watch out for stale sockets!"

(sock write:

«(s add: «aKeyat: 1) asString» add: ' ') add:

«aKey at: 2) asString») <= 0 ifTrue: [-nil].

"Read the data from the socket"

sock read: (aKey at: 2) into: c.

"Update the value of the cache key"

kat: 1 put: (aKey at: 1).

kat: 2 put: (aKey at: 2).

Notice that we are very careful to reuse the space in previously allocated cache lines by

overwriting old data using the read:into: method. Reusing space is critical as it prevents

old cache data from simply becoming garbage that must be collected before the space can

be reused. If we naively allocated a new cache line each time we accessed an external

data source, the GemStone OODBMS would rapidly fill with the unreachable garbage of

previous cache lines and would periodically slow to collect all that garbage once space was

exhausted.
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For the file-based CIF, Desktop Microscopist, and CAChe data sources, the getData:

method is similar, but the key is a combination of host and file pathname.

In addition, each DEO also provides a method to initialize itself and establish a com-

munication link with the application used to access the external data. For example, the

PDF-2 database DEO uses the following initializeAccess method to create and initialize

a local cache and establish communication with the socket-based server for the PDF-2

database:

SmalltalkDB Fragment 4.6 PDF-2 DEO "initializeAccess" Method
initializeAccess

"Create a new socket. Create a cache if it doesn't exist (we

want to keep the old ones if they do exist as they may have 'hot' data

in them)"

UserGlobals at: #_PDFDatabaseSocket put: (GsSocket new).

(UserGlobals includesKey: #_PDFDatabaseCache) ifFalse: [

UserGlobals at: #_PDFDatabaseCache put:

(Cache new: 1000 key: #[-1,-1] data: «String new) size: 4000»].

"Try to connect to the server. If we fail, we'll close the socket so reads and

writes will fail as well"

«UserGlobals at: #_PDFDatabaseSocket) connectTo: 54321 on: 'lucy.cse.ogi.edu')

ifTrue: [-true]

ifFalse: [

(UserGlobals at: #_PDFDatabaseSocket) close.

-false.

]

An initializeAccess method must be called for each DEO that encapsulates an external

data source a user might access. The effect of forgetting to initialize a particular DEO

is that all data access will fail and the DEO will answer "nil" to all attribute requests.

Also, notice the use of "UserGlobals" as a location for the cache and socket in the example

above. In GemStone, each user has a "UserGlobals" name space. By placing the cache

and socket objects in a user's name space, DEO methods will access a user's private cache

and socket objects. Concurrency conflicts between users over the cache and socket objects

are thus eliminated since they are not shared among users.

While a DEO is theoretically comprised of three layers, an interesting modeling prob-

lem has arisen in our materials science schema that has forced us to augment the Database
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Encapsulation Layer. The problem is that the class Crystal has two attributes-unitCell

and reducedUnitCell-that are both instances of the UnitCell class. As such, both the

unitCell and reducedUnitCell will forward identical messages on to the DEO when they

need to retrieve data (e.g., volume: aKey). From the message signatures alone, the DEO

is unable to determine whether to return the attributes of the unit cell or reduced unit

cell.

One potential solution to this problem is to simply create a separate ReducedUnitCell

class and use different message signatures (Le., UnitCell with a, alpha, etc. and Reduce-

dUnitCell with reducedA, reducedAlpha, etc.). However, this approach causes the Schema

Layer to reflect a modeling problem at a lower level of the architecture and obscures

the fact that a reducedUnitCell attribute holds the same sort of object as the unitCell

attribute. It also requires us to maintain separate but equivalent class definitions and

method code.

The general solution we have chosen to implement places pseudo-DEO objects between

the Schema Layer objects and the DEO to resolve naming conflicts. The pseudo-DEO

objects have different classes that correspond to the separate entities stored in the external

data source. As depicted in Figure 4.2, the pseudo-DEO objects for the unitCell and

reducedUnitCell attributes provide the same interface to Schema Layer UnitCell class

objects. However, each sends a slightly different message along to the DEO (aKey at: 'D'

vs. aKeyat: 'E').

4.3.3 External Data Source Layer

As we mentioned in Section 4.2.2, the OOHDB currently provides access to 5 external data

sources-the two NIST databases as well as collections of Desktop Microscopist, CIF, and

CAChe files.

In order to make these data sources accessible to the OOHDB, we have developed two

platform-independent BSD socket-based "servers" that run outside of GemStone. Servers

are run on each machine that hosts data sources of interest to the OOHDB. The multi-

threaded servers are capable of interacting with multiple OOHDB sessions concurrently

by forking processes to service each OOHDB user.



aCrystal

unitCell :

reducedUnitCell:

deoKey : #[12345 .2040]

deo:

aUnitCell

a: NIL

b:NIL

c: NIL

alpha: NIL
beta: NIL

gamma: NIL
volume: NIL

deoKey : #[12345 .2040]
deo:

PDFReducedUnitCell

a : aKey

PDFRecord getFrom: aKey
at: 'D' from: 1 to: 8
dataType: #Float

PDFRecord

aUnitCell

a: NIL

b: NIL

c : NIL

alpha: NIL
beta: NIL

gamma: NIL
volume: NIL

deoKey : #[12345 ,2040]
deo:

PDFUnitCell

a : aKey

PDFRecord getFrom: aKey
at: 'E' from: 1 to: 8
dataType: #Float

getFrom: aKey at: aLine from: start to: end dataType: retumType

Figure 4.2: Pseudo-DEOs for Name Conflict Resolution
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A simple "byte-server" is used to access the two NBS databases (see Program D.l in

Appendix D). Multiple byte-servers run concurrently on the Macintosh, each accessing

a single database. The byte-servers respond to requests to read a given number of bytes

from a database file starting at a specified offset (e.g., "r 10385620 2040").

The second server is a nearly identical "file-server" that is used to access the Desktop

Microscopist, CIF, and CAChe files (see Program D.2 in Appendix D). A single file-server

is run on each host that stores files accessible via the OOHDB. The file-server responds

to requests to read an entire file (e.g., "r /ogijstudents/dhansen/CIF / Al.cif").

These two servers have been designed to be general enough for use with many similar

data sources. Although we do not currently access data managed by a DBMS, we an-

ticipate that a similarly generic "DBMS-server" could be developed that executed simple

queries for retrieving entities from the DBMS.

4.4 Objects, DEOs, andDatabases-An Example Query

Now that we have described the architecture and provided examples of the processing

involved in accessing external data, we turn to a concrete example to demonstrate how

the various layers interact and the overall query performance of our architecture.

Our materials science OOHDB focuses on the Crystal class. Users of the OOHDB

query the named GemStone collection AllCrystals that contains approximately 206,000

Crystals. All but a few Crystals are drawn from the two NBS CD-ROM databases. A

handful of Crystals are stored in Desktop Microscopist and CAChe data files. One Crystal

is available in a CIF file13.

We use the following simple query for most of the following discussion and performance

analysis:

SmalltalkDB Fragment 4.7 Example Query

AllCrystals select: [:c I c spaceGroup = 'R3m']

13The lack of CIF-based Crystal objects is due to the absence of CIF files in general. Though recently

proposed as a data interchange standard, it appears that CIF has yet to be widely adopted.
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This query iterates over the AliCrystals collection, sending each Crystal the spaceGroup

message. The query returns a collection of the Crystal objects with a matching spaceGroup

attribute value.

Figure 4.3 depicts the processing that takes place when a Crystal receives the space-

Group message. There are a maximum of five (5) message sends to retrieve an attribute

value from an external data source for a single Crystal:

1. The spaceGroup message to the Crystal.

2. The Crystal forwards the spaceGroup: message to the DEO with the Crystal's deoKey.

3. The DEO sends itself the getFrom:at:from:to:dataType: method to extract and convert

the spaceGroup value from the data.

4. The getFrom:at:from:to:dataType: method in turn sends the DEO the getData: mes-

sage to retrieve the entire data record from the external data source.

5. The DEO getData: method sends a message to the byte-server to retrieve the data

record.

Our layered implementation completely hides the details of accessing external data

sources. However, this mechanism does not hide the latency of accessing external data

sources from the user.

4.4.1 Assessing Performance

We have used Fragment 4.7 to test the performance of our architecture for accessing

external data sources.

Figure 4.4 depicts the target hardware and software environment. During development

and testing, Desktop Microscopist, CAChe, and CIF files were temporarily located on

Smoked where a single file-server process provided access to those files.

The hardware configuration consists of two Sun SPARCstation 1114workstations,

14SPARCstation is a registered trademark of SPARC International, Inc., licensed exclusively to Sun
Microsystems.
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Figure 4.3: Responding to the spaceGroup Message

61



62

Macintosh Q950 Macintosh IIfx
CA iles NBS CD-ROM
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MacServer
File Server
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GemStone
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Figure 4.4: Hardware and Network Configuration

"Coho" and "Smoked", running SunOS4.1.3. Each workstation has 48MB of main mem-

ory. We are currently running v4.0.1 of the GemStone OODBMS. The GemStone server

("stone") runs on Coho and any of the various front-end clients ("gems") (Le., topaz,

GeODE, GemStone Smalltalk, C, C++ Interfaces) may be run on either Smoked or Coho

and accessed via any X-Terminal. File-server processes (file-server C Program D.2) are

run on Smoked and Coho to provide access to the Desktop Microscopist, CAChe, and

CIF files stored on those systems. Two Macintosh15 systems, "Lucy" (a IIfx) and the

unnamed Q950, provide access to the two CD-ROM databases and support for the Desk-

top Microscopist application program. Lucy hosts the NBS CD-ROM using an Apple

CD300e double-speed CD-ROM drive with an average seek time of 295 milliseconds and

a peak transfer rate of 300k bytes per second. Two byte-server processes (byte-server

lSMacintosh is a registered trademark of Apple Computer.
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C Program D.116) run in the background on Lucy to provide access to the two data-

bases, Crystal and PDF-2, contained on the NBS CD-ROM. BSD sockets17 are used for

communication between GemStone and the byte and file-servers.

All tests were conducted during periods when the systems were otherwise lightly-

loaded.

We begin by reporting the data access performance of the OOHDB where the attributes

requested are not retained by the Schema Layer objects nor is any raw data cached by

DEOs in the Database Encapsulation Layer. This test examines the worst-case perfor-

mance of the architecture where all attribute values must be retrieved from the External

Data Source Layer of the architecture. The performance of this test is poor enough that

we ran Fragment 4.7 over a subset of 2,000 Crystals drawn from the AllCrystals collection

of 206,000 Crystals. Table 4.1 shows the results of running Fragment 4.7 on the 2,000

Crystal subset.

Table 4.1: Un-optimized Query Performance (in seconds)

The large disparity between elapsed clock time and GemStone CPU usage in Table 4.1

suggests that GemStone is idle for most of this query. The vast majority of the time is being

spent accessing data from the CD-ROM databases via the network. In fact, performance is

particularly poor since data is requested from the external data sources in a random order.

Since the objects in AllCrystals are not sorted by their location in external data sources,

we expect that we are likely paying the average 295 milliseconds of seek time overhead

16The byte-servers running on the Macintosh are slightly modified versions of C Program D.l since the
Macintosh does not support forking child processes.

17The implementation of BSD sockets for the Macintosh is provided by the Grand Unified Socket Inter-
face (GUSI), a freeware package developed and supported by Matthias Neeracher.

R Elapsed Time GemStone CP U

1 1168 51
2 1152 48
3 1142 47

4 1155 48

Average 1154 48
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each time we access the CD-ROM. Combined with the small size of the records on the

CD-ROM (2k-4k bytes), each CD-ROM access thus takes approximately 300 milliseconds

of set-up and read time-the seek time thus being a major source of overhead. This

random access pattern negates the benefit of CD-ROM drive and filesystem buffers. One

unexplored optimization might be to sort the AllCrystals collection by deo and deoKey to

improve the performance of accessing external data sources, making better use of buffers

by accessing data in the order it is stored on the disk. However, it is not clear that the effort

required to sort the AllCrystals collection would substantially improve the performance.

Since we expect most queries to minimize external access by querying retained attributes

and cached raw data first, the few objects that are selected and require external access

are unlikely to be co-located in the external databases.

What is clear is that this level of performance is unacceptable. Fortunately, our ar-

chitecture and GemStone provide a number of mechanisms for minimizing external access

and optimizing query performance.

4.5 Making it Go Fast

In order to optimize the performance of our materials science OOHDB we must be able

to identify and optimize commonly used access paths. Since we can not hope to optimize

every arbitrary query, our goal is to optimize those paths typically accessed by users

to make broad first cuts at the data. Materials scientists typically use chemistry, d-

spacings, space group, unit cell volume, etc. to reduce the search space to a small size.

By optimizing these sorts of query paths we can provide performance that approaches

the optimized performance of the underlying OODBMS for queries over the OOHDB as

a whole.

The two principle optimization mechanisms we employ are caching data from exter-

nal data sources in the Database Encapsulation Layer to minimize external access, and

retaining attribute values in the Schema Layer and building indexes to speed up query

processing.
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4.5.1 Caching Data

Caching raw data is a simple and powerful mechanism for improving the performance

of our architecture. If the DEO has cached the raw data record from a previous read,

the DEO can extract and convert the attribute value from the cached data, eliminating

external data access. The processing depicted in Figure 4.3 is reduced to three messages:

1. The spaceGroup message to the Crystal.

2. The Crystal forwards the spaceGroup: message to the DEO with the Crystal's deoKey.

3. The DEO uses its getFrom:at:from:to:dataType: method to extract and convert the

spaceGroup value from data in the cache.

The caches for the NBS CD-ROM database DEOs are managed using a FIFO re-

placement policy. The cache is composed of two parts: a keys attribute based on the

SortedCollection GemStone class providing o (1og2n) access using a binary probe, and a

data attribute based on the GemStone Array class that holds the cache lines. We separate

the keys from the data for two reasons. First, it improves the performance of maintaining

the cache since only the keys must be reordered when a cache line is replaced and second,

it allows us to manage the cache using a FIFO cache-replacement policy that would be

difficult to implement if the cache were reordered each time a line were replaced.

We tested the effectiveness of DEO caches by executing Fragment 4.7 twice in suc-

cession. The first time the query was executed, the DEO caches were empty and the

results were as presented earlier in Table 4.1. A side effect of this first execution was that

the caches were filled with the raw data for the 2,000 Crystal subset. Thus the second

execution of the query accessed the raw data from the cache, eliminating all external data

access. The caches were then emptied and this pair of tests re-run several times. Table 4.2

and Figure 4.5 compare the results from Table 4.1 with empty caches to the same query

over the same 2,000 Crystal subset with the caches full.

As we would expect, the results in Table 4.2 and Figure 4.5 show that GemStone's

CPU usage is a much greater percentage of the overall clock time now that the network

and CD-ROM latency have been removed.
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Table 4.2: Performance With Caching (in seconds)

Run

1
2
3

4
Average

Cache Empty
Elapsed Time GemStone CPU

1168 51
1152 48
1142 47
1155 48
1154 48

Cache Full

Elapsed Time GemStone CP U
22 11
21 13
27 11
25 13
24 12

The performance improvement achieved by eliminating external data access is dramatic

and suggests that maintaining large fixed-size caches within the DEOs is a very effective

tuning mechanism. The use of DEO caches will be most effective in cases where users

execute queries over the AllCrystals collection to select a subset that they will work with

for some time. If such a "working set" fits within the DEO caches, we eliminate all external

access for subsequent queries over the working set.

4.5.2 Retaining Attribute Values

Retaining attribute values, such as the spaceGroup, in each Crystal provides yet another

dramatic performance increase. An OORDB query that accesses retained attributes be-

haves like an ordinary OODBMS query-the Schema Layer objects simply return the

value of the attribute in response to the query. There is no interaction with the Database

Encapsulation or External Data Source Layers of the architecture at all. The processing

depicted in Figure 4.3 is reduced to one message:

1. The spaceGroup message to the Crystal.

Accessing retained attribute values provides a level of performance that allows us to

query the entire collection of 206,000 Crystals in reasonable time. Table 4.3 presents

the results of running Fragment 4.7 over the entire collection of 206,000 Crystals with

the spaceGroup attribute having been previously accessed and retained by each of the

Crystals.
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Figure 4.5: Performance Chart for Caching

The performance boost here is derived from eliminating the message overhead of com-

municating with the DEOs, the o (lOg2n) search of the DEO caches, and the extraction

and conversion of raw data. Querying retained attributes is equivalent to querying the

underlying OODBMS in its native mode. While retaining attribute values is an effective

tuning mechanism, an even greater benefit of retaining attributes is that indexes can be

constructed for them to provide optimized query performance.
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Table 4.3: Performance with Retained Attributes (in seconds)

Run

1
2
3

4
Average

~ Elapsed Time
" 159

154
158
155
157

4.5.3 Indexing

GemStone CPU

51
53
54
53
53

We retained the spaceGroup attribute for each of the 206,000 Crystals in the OOHDB

and then built an index for the collection AllCrystals using this attribute. Table 4.4 and

Figure 4.6 compare access using an index to the results from Table 4.3 where retained

attributes were accessed.

Table 4.4: GemStone Optimized Query Performance

Run

1
2
3
4

Average

Attribute Access

Elapsed Time GemStone CP U
159 51
154 53
158 54
155 53
157 53

Using Index
Elapsed Time GemStone CP U

8 7
8 7
12 6
12 6
10 7

The use of indexes provides yet another leap in performance. Queries using OODBMS

indexes are native, optimized OODBMS queries. Furthermore, indexing should scale well

(0 (log2n)) as the size of the OOHDB grows. The only drawback to the use of indexes is

that Fragment 4.7 must be modified slightly in GemStone:

SmalltalkDB Fragment 4.8 Example Query (optimized form)
AllCrystals select: {:c I c.spaceGroup = 'R3m'}

The use of the query delimiters "n" and the "dot notation" (Le., c.spaceGroup) are used

in GemStone to indicate that the query processor should bypass the method interface and
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Figure 4.6: Performance Chart for Indexed Access

use structural access instead, together with indexes if they exist.

However, if the spaceGroup attribute has not been retained by all Crystal objects,

then the answer to Fragment 4.8 will be completely different than the answer to Frag-

ment 4.7. Accessing objects via the method interface, Fragment 4.7 will return the proper

answer, albeit slowly, while Fragment 4.8, bypassing the method interface and accessing

the attribute values directly, will return an empty set since for each Crystal the attribute

value "nil" will fail to match 'R3m'. While this divergent behavior may appear to be a se-

rious drawback, the fact is that most OODBMSs require queries to "break encapsulation"

and resort to structural access in order to use optimizations such as indexes. Any time
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the method interface to an attribute does more than simply return the attribute value,

queries that use methods can not be considered semantically equivalent to queries that

use structural access.

4.5.4 PerformanceSummary

We have presented performance results that explore four levels of performance: un-

optimized, cached raw data, retained attributes, and indexed access. The first two levels

were examined using a subset of the AllCrystals collection, while the last two levels were

examined by querying the entire collection.

In order to draw a comparison between all four levels of performance, we use the average

times reported in Table 4.2 to estimate the theoretical performance of our un-optimized

and raw data cache queries for the entire set of 206,000 Crystals using a theoretical cache

capable of holding all 206,000 Crystals. For the most part, our estimates can assume linear

behavior. However, the DEO caches are searched using a simple binary probe so the time

required to search a cache of size m for n Crystals will grow as n log2m. The time spent

searching the cache is significant and so we must account for this non-linear behavior in

order to derive accurate estimates. We have "profiled" the performance of Fragment 4.7

with the DEO caches empty and full to identify the portion of GemStone CPU time spent

searching the cache. If we assume that the DEO caches are capable of holding all of the

data (Le., n = m), then we can estimate the amount of CPU time GemStone will spend

searching DEO caches with the following equation:

(sizeoj(AllCrystals) 1sizeoj( Crystal SubSet) )*

((CPUTime - CPUCacheSearchTime)+

CPUCacheSearchTime * log2(sizeoj(AllCrystals) 1sizeoj( Crystal SubSet) ))

With the cache empty, Fragment 4.7 spends 10.79% of the 48 seconds of GemStone

CPU usage searching the cache for a total of 5.2 seconds. Thus, our estimate of the

GemStone CPU usage required for querying a collection of 206,000 Crystals with no cache

hits on a theoretical 206K-line cache is:

(206/2) * ((48 - 5.2) + 5.210g2(206/2))= 7990 seconds
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In estimating the total elapsed clock time for this query, we note that the vast majority of

the time is spent communicating with the external database. That portion of the elapsed

clock time should scale linearly. So to estimate the elapsed clock time we compute the

time for the linear, non-CPU portion and add the GemStone CPU usage computed above:

((1154 - 48) * (206/2)) + 7990 = 121908 seconds

With the cache full, Fragment 4.7 spends 18.90% of the 12 seconds of GemStone CPU

usage searching the cache for a total of 2.3 seconds. Thus, our estimate of the GemStone

CPU usage required for querying a collection of 206,000 Crystals with 100% cache hits on

a theoretical 206K-line cache is:

(206/2) * ((12 - 2.3) + 2.310g2(206/2)) = 2583 seconds

Again, we estimate the elapsed clock time by assuming that non-CPU time scales linearly:

((24 - 12) * (206/2)) + 2583 = 3819 seconds

Figure 4.7 presents a log plot summary comparing the estimated performance for un-

optimized and DEO cache queries computed above to the actual results from Table 4.4

for attribute retention and indexed query access.

One notable feature of Figure 4.7 is that each of the optimizations we have discussed

provides an improvement of at least one decimal order of magnitude over lower states of

optimization. The degree of improvement at each level of optimization suggests that each

optimization has a place in the OOHDB architecture. Since we cannot cache all raw data or

retain all attributes and construct indexes over them, we expect that a particular OOHDB

will make judicious and appropriate use of each optimization mechanism to provide the

optimal level of performance in a reasonable amount of space. For our materials science

OOHDB this means retaining a few commonly queried attributes, such as spaceGroup and

maxdSpacing, as well as using large DEO caches.

The other notable feature of the results in Figure 4.7 is the large affect that accessing

external data sources has on performance. External access must clearly be minimized

in order to achieve reasonable performance. Fortunately, the tuning mechanisms we have
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Figure 4.7: Estimated* and Actual Performance for 206,000 Crystals

presented here provide reasonable and effective mechanisms for minimizing costly external

access.

4.5.5 Alternative Access Structures

In addition to built-in indexes, we have devised additional "alternative access structures"

for optimized access to the data in the OOHDB. The purpose of these structures is to

provide alternative optimization mechanisms in cases where indexes cannot be used or are

not efficient.
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One alternative access structure is the CrystalByElement "dictionary". The Crystal-

ByElement dictionary is designed to give optimized access to subsets of AllCrystals based

on the chemistry of the Crystal. For each element symbol (e.g., AI), CrystalByElement

stores a subset of AllCrystals containing all Crystals where the chemical formula includes

that element. These subsets comprise a set of pre-computed queries for each Element of

the form:

SmalltalkDB Fragment 4.9 Element Query
AllCrystals select: [:c I (c molecule formula atoms)

detect: [:a I a element symbol = #AlJJ

Initially, CrystalByElement was developed because an earlier version of GemStone did

not permit index paths to contain multi-valued objects (e.g., a Set) in the path. Thus

we were unable to build an index for AllCrystals using the path molecule.formula.atoms.-

element.symbol because "atoms" is a set of Atoms. Though version 4.0 of GemStone does

permit multi-valued objects in an index path, GemStone still builds an index for each of the

intermediate steps in the index path. So, for the path moleculeJormula.atoms.element.-

symbol, five indexes are constructed. Since we are only interested in accessing Crystals

by element symbols, the intermediate indexes (Le., molecule, moleculeJormula, molecule.-

formula.atoms, moleculeJormula.atoms.element) are irrelevant and somewhat wasteful.

The following query is an example of how we might query AllCrystals looking for

Crystals with Aluminum and Copper in their formula:

SmalltalkDB Fragment 4.10 Query AllCrystals by Element

AllCrystals select: [:c I «c molecule formula atoms)

detect: [:a I a element symbol = #CuJ) and: [

(c molecule formula atoms) detect: [:a I a element symbol = #AlJJJ

In contrast to Fragment 4.10, selecting a subset of AllCrystals for a given element using

the CrystalByElement structure can be achieved in constant time based on the number

of elements. This performance is the result of pre-computing the subsets and sequentially

searching the CrystalByElement dictionary for the appropriate subset. The real power of

this structure is that disjunctive and conjunctive queries, such as that in Fragment 4.10,

can be written using set intersect and union operations that have linear O(max(n, m))
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performance where nand m are the cardinality of the sets. This linearity occurs because

GemStone maintains collections sorted by OlD allowing GemStone to union or intersect

collections by merging the sorted collections. So we can rewrite Fragment 4.10 using the

CrystalByElement structure and set intersection operations:

SmalltalkDB Fragment 4.11 Query using CrystalByElement

(CrystalByElement at: #Cu) * (CrystalByElement at: #Al)

Fragments 4.10 and 4.11 select 387 of the 206,000 Crystals in the OOHDB. Table 4.5 shows

the performance improvement between Fragment 4.10 and the set-based Fragment 4.11.

These sort of pre-computed queries are useful primarily where a large collection can be

Table 4.5: Performance Using the CrystalByElement Structure (in seconds)

Run

1
2
3

4
Average

Querying AllCrystals
Elapsed Time GemStone CP U

2878 1285
2717 1224
2711 1230
2721 1231
2757 1243

Using CrystalByElement
Elapsed Time GemStone CP U

3 1
2 1
1 1
2 1
2 1

partitioned into possibly overlapping subsets using a discrete variable. CrystaLByElement

stores 98 overlapping subsets of the AllCrystals collection-one subset for each of 98

chemical elements that are present in the crystals.

A second alternative access structure is CrystalBy Volume, based on the GemStone

SortedCollection class. The CrystaLByVolume collection holds (unitCell. volume, crystal)

pairs-one for each of the 206,000 Crystals. This structure essentially forms an index

for AllCrystals using the volume attribute of the unitCell. CrystalBy Volume is searched

using a simple o (log2n) binary probe. The obvious question is why not retain and build

an index over the volume attribute? The reason we use this alternative access structure

is to minimize the space used in the OOHDB. As we noted in Section 4.3.1, we delay

the creation of many of a Crystal's sub-objects, such as the unit Cell, to minimize the

space used in the OOHDB. If we were to build an index over the volume attribute of
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the unitCell we would have to instantiate the unitCell sub-object for every Crystal, which

would allocate some space for all of the other attributes of the unit Cell. While instantiating

unitCell objects and retaining the unitCell.volume attribute value mayor may not pose a

space problem, we used this opportunity to examine the effectiveness of such an alternative

access structure.

Fragment 4.12 uses the CrystalBy Volume structure to retrieve the set of Crystals that

have a unitCell volume within a specific range (similar methods for equality, less-than,

and greater-than are also defined):

SmalltalkDB Fragment 4.12 Query using CrystalBy Volume

CrystalByVolume retrieveRange: (CrystalByVolume findRangeInclusive: #[999.0,1004.0])

Table 4.6 demonstrates that Fragment 4.12 performs similarly to the index-based query

reported in Table 4.4 where we observed an average of 10 seconds of elapsed time and 6

seconds of GemStone CPU usage. This similarity is to be expected since the Crystal-

By Volume structure behaves much like an index.

Table 4.6: Performance Using the CrystalBy Volume Structure (in seconds)

Run

1
2
3
4

Average

~ Elapsed Time
" 13

11
11
10
11

GemStone CP U

3
2
3
2
3

These two alternative access mechanisms demonstrate the potential for constructing

special-purpose query evaluation mechanisms. Of course it remains up to the users of the

OOHDB to use these structures in their queries. New structures can similarly be built to

optimize other important common access paths.
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4.6 Populating and Maintaining the OOHDB

In Section 3.4 we noted that each DEO should also include methods to populate and

maintain the OOHDB. There are two aspects to population and maintenance. The first

is determining what objects are present in the external data source and the second is

populating the OOHDB with empty Schema Layer objects.

In the case of the PDF-2 database DEO, we determine where records begin and end in

the database by scanning the file looking for a '1' in the 80th character of each 80-column

card-indicating that this is the first card of a new record. The following getKeysStartin-

gAt: method uses the same getData method presented earlier to scan the database 80

bytes at a time, detecting where records begin, and building an array of keys for the

records in the database:

SmalltalkDB Fragment 4.13 PDF-2 DEO "getKeys" Method
getKeysStartingAt: start

"get the offsets into the file"

I keys string i done I

self initializeAccess.

keys := Array new.

i := start.

done := false.

"Start reading 80-byte chunks from the server. Each time byte 80

holds a '1' we have the beginning of a new record. For each record

add a 2-element array to 'keys' with the offset and the number of

bytes for this record."

[done] whileFalse: [

"Get 80 bytes from the server - we're done if less than 80 get

returned."

string := self getData: #[i, 80].

(done := (string size < 80) ) ifFalse: [

string at: 80 = $1 ifTrue: [

"Patch the size of the last record"

keys size> 0 ifTrue: [

(keys last) at: 2 put: (i - «keys last) at: 1»].

"Add this new offset to the array"

keys add: #[i, 0] ].

i := i + 80 ] ].

"Patch the last key's number of bytes"

keys size> 0 ifTrue: [(keys last) at: 2 put: i].
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This method accepts a single parameter that determines the start position of the scan.

This parameter is useful for maintaining the OOHDB since the PDF-2 database is updated

by appending data. Thus new releases of the PDF-2 database can be scanned quickly by

beginning with the last known record and scanning forward.

The buildCrystals: method that populates the OOHDB with Crystal objects for each

record identified in the PDF-2 database uses the getKeysStartingAt: method. The boolean

parameter "update" is used to determine whether buildCrystals: scans the entire file, or

scans for new data appended to the file:

SmalltalkDB Fragment 4.14 PDF-2 DEO Population Method
buildCrystals: update

"Add new Crystal objects for each record in the external database"

I keys key newCrystal max newMolecule empFormula chemFormula e c n k m

self initializeAccess.

update ifTrue: [

"Find the largest key for this database so far"

max := AIICrystals detect: [:c I c deo == self].

AIICrystals do: [:c I (c deo == self) and: [

«c deoKey) at: 1) > «max deoKey) at: 1)] ifTrue: [

max := c] ].

"Get the keys for the new data at the end of the file"

keys := self getKeysStartingAt: «max deoKey) at: 1) + «max deoKey) at: 2)]

ifFalse : [

"Get all the keys in the file"

keys := self getKeysStartingAt: 0].

keys do: [:key I

"Create a new Crystal with self as the DEO and using this key"

newCrystal := (Crystal withDEO: self withKey: key).

"Look for an existing Molecule with the same name and formula, if

found, this Crystal will point to that Molecule"

c := self chemicalFormula: key.

n := self compoundName: key.

newMolecule := AIIMolecules detect: {:m I (m.name = n) &&

(m.formula.formula = c)} if None: [

"Existing Molecule not found. Create a new one"

m := Molecule new.
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"Share formula objects if the chemical and empirical formulas

are identical"

chemFormula := Formula fromString: c.

empFormula := Formula fromString: (e := self empiricalFormula: key).

(c = e) if True: [empFormula := chemFormula].
m name: n.

m formula: chemFormula.

m empiricalFormula: empFormula.

"Add this Molecule to the set of all Molecules"

AIIMolecules add: m.

m].

newCrystal molecule: newMolecule.

"Add this new crystal to the set of all crystals and update the

optimized access paths for that collection"

AIICrystals add: newCrystal.

newCrystal addToAccessPaths]

Together, buildCrystals and getKeysStartingAt provide the mechanism for populating and

maintaining the OOHDB for the PDF-2 DEO. The initial population of our materials

science OOHDB from the two NBS CD-ROM databases using the buildCrystals method

takes approximately 48 hours of elapsed time-a predictable result given that in Sec-

tion 4.5.4 we estimated it would take 121,908 seconds (approximately 34 hours) of elapsed

time to query all 206,000 Crystals from the CD-ROMs with no cached or retained data.

The added expense in populating the OOHDB is due to the fact that we are required to

access the CD-ROM databases 80-bytes at a time in order to locate the beginning of each

record. Some computational overhead is also incurred as we connect new Crystal objects

to pre-existing Molecules. Fortunately, as we noted earlier, these CD-ROM databases are

updated by appending new data. The design of our buildCrystals method thus provides

much better performance during subsequent updates of the OOHDB.

Population and maintenance methods for the other DEOs are similar. The primary

difference is that new objects are detected by scanning a directory looking for new files

instead of scanning a single large file looking for the beginning of records.
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4.7 Summary

In assessing our materials science OOHDB, we wish to revisit our primary goals-a simple-

to-implement OOHDB that integrates lightly-managed data.

We believe that the implementation presented here demonstrates how simply the ar-

chitecture can be constructed. The implentation required very little code development.

Attribute accessing methods were each extended with a few additional lines of SmalltalkDB

code. The implementation of DEOs was relatively simple as well. For example, the meth-

ods implementing the DEO for the PDF-2 database consist of approximately 300 lines of

commented SmalltalkDB code. The two generic servers for bytes and files total 335 lines of

commented C code. Alltogether, the amount of code writen to implement our GemStone-

based materials science OOHDB totalled approximately 800 lines of commented GemStone

SmalltalkDB code and 335 lines of commented C code.

The five data sources accessed by the materials science OOHDB are all in the form of

lightly-managed data. The sources range from the highly-structured NBS CD-ROM data-

bases to the context-sensitive single-file CIF format. As our performance numbers demon-

strate, commonly used query paths can be optimized to achieve performance equivalent to

the optimized performance of the underlying OODBMS. Alternative access structures are

used to enhance performance where OODBMS optimizations are insufficient or in order

to provide a more space-efficient optimization.

The materials science OOHDB we have presented here is a relatively straightforward

GemStone implementation of our OOHDB architecture. In Chapter 5 we examine two

popular commercial OODBMSs in light of our architecture and assess their suitability to

serve as implementation tools for our OOHDB architecture.



Chapter 5

Architectural Portability

We assessthe generality of our OOHDB architecture by examining two other popular!

commercial OODBMSs for their suitability as tools for implementing our OOHDB archi-

tecture. This chapter briefly looks at the O2 and ObjectStore OODBMSs. We examine

these two databases in particular for two pragmatic reasons. First, we have access to-

and at least limited experience with-both products. Second, characteristics of these two

products are key elements in the definition of the Object Database Standard (ODMG-

93) [Cat93] that attempts to specify a vendor-independent standard for object databases.

Specifically, the data model and C++ language bindings of ObjectStore and the object-

oriented 02SQL data manipulation language of O2 have, in large measure, been adopted

for the ODMG standard. Thus, by exploring these two OODBMSs we implicitly address

issues that are likely to have even wider applicability.

5.1 Required OODBMS Features

Our architecture imposes very few requirements on the underlying OODBMS. The re-

quirements include:

An object-oriented data model encapsulating structure and behavior. The be-

havioral component is essential since it provides the mechanism for transparently

accessing external data and mapping the data to the homogeneous OOHDB schema.

1GemStone, ObjectStore, and O2 were the commercial OODBMSs covered by Communications of the

ACM in a Special Section on Next Generation Database Systems [Cat91].

80



81

Where that behavior is stored (within the OODBMS or in OS files) or where it is

executed (client or server) does not appear to be important.

A computationally complete data manipulation language. The power of the lan-

guage is important if we are to be able to provide mappings from arbitrary external

data representations to the homogeneous OOHDB schema.

Support for accessing external data sources (e.g., BSD sockets). Access to data

stored in an external DBMS may also be provided by the OODBMS via a direct

OODBMS-DBMS "gateway".

The ability to store and detect "null" attribute values. The transparency of our

approach relies on our ability to forward messages to a DEO when the attribute

value in the OODBMS is null.

A querylanguage allowing method invocation. Invoking methods in queries is es-

sential since we use attribute accessing methods to transparently access external

data on demand. Structural access will be used where appropriate for optimized

access.

These minimal requirements are met by both O2 and ObjectStore and are likely to be

met by many OODBMSs. Though our architecture uses inheritance and procedural pro-

gramming languages, it is likely that other paradigms would be sufficient as well (e.g.,

conformance-based typing and functional programming languages). However, the archi-

tecture presented in Chapter 3 would need to be modified accordingly.

O2, from O2 Technology2, is a commercial object-oriented database management sys-

tem that evolved from object-oriented database research conducted in the late-80's by

researchers at GIP Altair [LRV90, Deu91].

202 Technology, 7 rue de Parc de Clagny, 78035 Versailles Codex, France
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O2 uses a client-server architecture with a single server, the 02Engine, and multiple

clients.

A database is logically broken into "schemas" and "bases". Each base is an implemen-

tation of a schema, but multiple bases may share a common schema. The owner of the

base controls access to the data in that base. Persistence is by reach ability with manual

garbage-collection of non-reachable data. O2 supports the creation of indexes over non-

sequenceable collections (e.g. sets and bags) that have been stored in a base using an

explicit name (e.g., AllCrystals).

The data model of O2 is loosely based on C++ [ES90] with the data model divided

between primitive types (e.g., integer, float, char) and structured types (e.g., set, list,

tuple, class). The 02Kit provides a small class library of definitions including date and

text classes. The data definition language is 02C, a C++-like language for specifying the

structure of objects and the program code for methods. Applications can be developed

using the 02Tools graphical programming environment and the 02Look GUI toolbox

using 02C. 02C methods are compiled and stored within the database, then dynamically

linked and executed on demand. In addition to 02C, O2 provides a non-procedural data

manipulation language called 02SQL that is limited to read-only queries (i.e., no "insert",

"update", or "delete" syntax). O2 also provides application programmer interfaces for C

and C++.

For the most part, O2 meets or exceeds the minimal capabilities required by our

architecture. O2 is similar to GemStone functionally and architecturally. The most notable

difference is the shift from a Smalltalk-oriented data model and database language to a

C++-oriented data model with data manipulation languages based on C and SQL.

Communicating with external data sources from O2 via BSD sockets is accomplished

by writing 02C methods that create, read, and write to BSD sockets. Since 02C is a

superset of ANSI C, methods can utilize the full functionality of the C language including

function libraries.

One difficulty with O2 is that the type system is divided into structured types and

primitive types. Primitive types, such as integer, float, and char, do not have object

semantics and most importantly, there is no notion of a "null" value for a primitive type.
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This poses a problem for our message forwarding approach since it depends on detecting

that an attribute has a null value.

One potential solution to this null-value problem is to select and set aside some legal

value for each primitive type to serve as a null value. For example, we may decide to

use the largest representable negative integer value as "null" for integer attributes. The

obvious drawback of this approach is that both the methods in the OOHDB and the users

of the OOHDB must be aware of the value chosen lest a null value be misinterpreted as

real data.

A second approach is to wrap all primitive types in a structured type that does have a

null representation. For example, we might define a class Integer where an instance holds

nothing but an integer value. Objects of the Integer class would either have to be able

to respond to all operations normally performed over integer values, or else all operations

involving Integer objects would have to be coded in such a way that they operated over

the integer value inside the Integer object (e.g., *i+*j). However, when operating on the

values stored inside Integer objects, care must be taken to re-wrap the integer result within

a new Integer object (e.g., *k = *i + *j). So, while this approach avoids the potential

for confusing a null value with real data, it requires some discipline on the part of the

database method developers and users to constantly wrap primitive types within objects

and to carefully maintain that wrapping. This approach was used in the construction of

an O2 prototype of our materials science OOHDB that was a port of our early GemStone

OOHDB [HM94]. The port was functional in less than two weeks of single-programmer

effort.

Wrapping primitive types in objects proved to be a workable solution to the lack of

null values for primitive types. So, for example, we declared a class Integer in O2 that is

of "type" integer:

OODBMS Fragment 5.1 O2 Primitive Type Wrapper Class Definition

class Integer inherit Object public type

integer

end;

The O2 type system allows this sort of class declaration tying a class to a single type.
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The integer value of an object of class Integer are accessed using C-like pointer syntax

(Le., *i). Using this approach we were able to create Schema Layer methods that forward

messages on to DEOs after testing the value of the attribute:

OODBMS Fragment 5.2 02 Attribute Accessing Method

method body SpaceGroup: String in class Crystal

{

if (self->spaceGroup == nil) && (self->deo != nil)

if (virtualObjectCaching)

return self->spaceGroup = self->deo->spaceGroup(self->deoKey);

else

return self->deo->spaceGroup(self->deoKey);

else

return self->spaceGroup;

}

Method 5.2 is a straightforward port of SmalltalkDB Method 4.2. Porting other elements

of the architecture from GemStone to 02 was similarly straightforward.

Query 5.3 is an example of an un-optimizable 02SQL query that uses method-based

attribute access similar to Query 4.7. Like Query 4.7, this query cannot be optimized by

02 because it accesses the attribute using a method rather than direct structural access.

OODBMS Fragment 5.3 02 Example Query

select c from c in AllCrystals

where c->SpaceGroup == "R3m"

Query 5.4 is an example of an optimizable query that uses structural access similar to

GemStone Query 4.8:

OODBMS Fragment 5.4 02 Example Query (optimized form)

select c from c in AllCrystals

where c.spaceGroup == "R3m"

Queries 5.3 and 5.4 have only minor syntactic differences. The use of '\~paceGroup"

in Query 5.3 and ":2:paceGroup" in Query 5.4 is due to the fact that 02 uses a common

name-space for both methods and attributes within a class. As a result, whereas we had

both an attribute and method called "spaceGroup" for our Crystal class in GemStone,
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we must differentiate between the two in 02-"spaceGroup" for the attribute name and

"SpaceGroup" for the name of the method accessing that attribute.

Another aspect of O2 that required a small modification to our GemStone implemen-

tation is the lack of private user data spaces within an O2 database. As we noted in

Section 4.3.2, we created persistent socket and DEO cache objects in each user's data

space to avoid concurrency conflicts between users. In O2, the problem of concurrent ac-

cess to sockets and caches must be solved using a different approach since a "base" in O2

is a monolithic data space shared by all users. Fortunately, O2 provides "global variables"

that solve the problem nicely. Concurrent access to sockets and caches is achieved by

declaring global socket and cache variables at run-time. These global variables are not

persistent and are private to a user, thus global variables are free of concurrency conflicts.

Methods that access global variables declare them as "extern" and references to them are

resolved at run-time. One drawback to this solution, however, is that global variables

do not persist beyond the database session in which they were created. As a result, the

contents of the caches are lost between sessions. One potential solution is for each user

to write their caches to persistent uniquely named objects in the database before leaving

O2, then retrieve the caches into global variables when they initialize their next session.

The 02-based OOHDB prototype we developed demonstrated that O2 is suitable for

implementing our OOHDB architecture. An O2 OOHDB requires a few changes to the

approaches used in GemStone, most notably in handling null values. In addition, where we

were able to leverage GemStone's rich class hierarchy for building elements of the OOHDB

infrastructure (e.g., SortedColiection for implementing caches, Dictionary for alternative

access structures), O2 requires the OOHDB implementer to develop these sort of support

classes themselves.

5.3 ObjectStore

ObjectStore, from Object Design, Inc.3, is a commercial object-oriented database man-

agement system based on the C++ programming language [Obj92, OHMS92, LLOW91].

30bject Design, Inc., Twenty Five Mall Road, Burlington, MA 01803
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ObjectStore uses a client-server architecture where client applications request database

pages from the server in response to page faults generated by the application.

ObjectStore uses a "Directory Manager" that provides a hierarchical organization of

databases and objects within databases. This "directory" structure is used both to pro-

vide a name-space for persistent data and to control access to data via permission mode

information. Persistence in ObjectS tore is requested explicitly at object creation time

using an overloaded new() function that takes a C++ pointer to an ObjectStore data-

base as a parameter indicating the database in which the object is to be stored. Objects

are deleted from a database using an overloaded delete() function. This form of explicit

persistence is in contrast to the implicit persistence-by-reachability used by GemStone

and O2. ObjectStore supports the creation of indexes over collections (e.g., set, bag, and

list). While GemStone and O2 indexes use a B-Tree structure, 0 bjectStore provides both

B-Tree and hash- based indexes.

The data model of ObjectStore is based directly on C++ with some extensions, most

notably, support for collection types. The data model is divided between primitive types

(e.g. int, float, char) and structured types (e.g. array, struct, class). The data defi-

nition and data manipulation language is C++ with extensions including instantiating,

manipulating and expressing queries over collections. In contrast to GemStone and O2,

ObjectStore does not store schemas or methods within the database. Instead, schemas

and methods are coded using C++ and stored in C++ header files. Moreover, databases

are not defined by a particular fixed schema, but incrementally by the schemas of all

applications that access the database. ObjectStore provides a general-purpose database

browser that can examine data and perform rudimentary value-based queries. However,

the browser cannot execute methods.

For the most part, ObjectStore also meets or exceeds the minimal capabilities required

by our architecture. ObjectStore is quite different from GemStone and O2 both function-

ally and architecturally. ObjectStore is used primarily as a back-end server to provide

persistence for C++ application data. The vast majority of processing in an Object-

Store application takes place on the client side. Fortunately, our architecture imposes no

restrictions on the architecture of the underlying OODBMS.
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Communicating with external data sources from ObjectS tore via BSD sockets is also

straightforward. ObjectStore methods are coded in C++ and compiled and linked with

standard libraries, such as BSD sockets, into each application that accesses ObjectStore.

As one might expect, the division of ObjectStore's data model into primitive and

structure types presents the same problem with detecting null attributes for primitive

types that we noted for O2. Fortunately, the problem can be addressed in two ways with

ObjectStore. The first solution is similar to the O2 approach of wrapping primitive types

in classes. However, ObjectStore classes cannot be based simply on a primitive type as in

O2, but instead must contain some typed attribute:

OODBMS Fragment 5.5 ObjectStore Primitive Type Wrapper Class Definition

class Integer {

public:

int value;

};

This sort of encapsulation results in a rather clumsy syntax for accessing the value of a

wrapped primitive type (e.g., k-> value = i-> value + j-> value).

However, the ObjectStore data model permits typical C++ pointers in class definitions.

So a better solution is to simply use pointers to primitive types in a class definition:

OODBMS Fragment 5.6 ObjectStore Class Definition

class Crystal : public Solid {

public:

int *spaceGroupNumber;

char *spaceGroup;

UnitCell *unitCell, *reducedUnitCell;

};

This solution still requires care to avoid confusing a pointer to a primitive type with a

value of that type in the development of methods (e.g., *k = *i + *j).

ObjectStore's explicit persistence is a very different paradigm from the persistence-by-

reachability used by both GemStone and O2. For our purposes, however, the persistence

model is not critical. In fact, explicit persistence may be quite beneficial since it prevents

the creation of garbage within the OODBMS as data from external sources passes through
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the OOHDB. Where we must be careful to reuse previously allocated space by overwriting

old data in our GemStone implementation (Section 4.3.2), we can simply use transient

objects in ObjectStore and avoid the problem altogether. Of course explicit persistence

has its own set of problems, not the least of which is the difficulty of identifying garbage

data that was not properly deleted explicitly.

Transient objects also provide a solution to the problem of shared sockets and DEO

caches. While these transient objects were created within the database for O2, this is

unnecessary for ObjectStore. Because all method code is compiled and linked into each

ObjectStore application, these transient objects can simply be application-global C++

objects. However, as was the case with O2, if we wish the caches to persist between

sessions, some mechanism for making them persist between sessions will be required.

We believe that ObjectStore is a suitable OODBMS for implementing our OOHDB

architecture. An ObjectStore OOHDB would require a few changes to the approaches used

in GemStone, again, most notably in handling null values. Like O2, ObjectStore does not

provide a wealth of pre-defined classes for building elements of our OOHDB infrastructure.

However, since ObjectStore is based directly on C++, add-on class libraries for C++

can be used to supply an ObjectStore database with helper classes. The hash-based

indexes provided by ObjectStore might be useful for providing the sort of optimized access

to Crystals based on chemistry that the CrystalByElement alternative access structure

provides in our GemStone OOHDB (Section 4.5.5).

5.4 Summary

We have briefly examined two different commercial OODBMS systems and believe that

either would be a suitable tool for implementing our OOHDB architecture.

The greatest recurring obstacle to implementation is the mixed type system that di-

vides objects between primitive types and structured types. This division makes it im-

possible to distinguish null values among primitive types. This null-value problem is an

unfortunate consequence of the prevalence of C++-influenced type systems among com-

mercial OODBMSs. Our general solution is to restrict the use of primitive types and use
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primitive types wrapped in classes or pointers to primitive types instead. While these

solutions impose a coding discipline on the implementors and users of the OOHDB, the

solutions effectively provide a notion of null values for primitive types. It is our opinion

that many OODBMSs have unfortunately taken a step backwards in data modeling due

to the lack of a well-defined and consistent approach to handling missing or null data.

However, we expect this issue to be addressed more completely as OODBMSs mature.

Our experience in porting an early GemStone prototype of our OOHDB for materials

science to O2 suggests that the architecture is easy to port and we believe that many

popular commercial OODBMSs provide the minimal support required to implement our

architecture, giving our approach wide applicability.



Chapter 6

Conclusion

We began our research with the goal of developing an easy-to-implement OOHDB provid-

ing access to lightly-managed databases. Our research intended to bridge the gap between

so-called metadata approaches that provide a query interface to data sets via a meta-

data database but fail to integrate heterogeneous data sets, and current HDB approaches

that provide a homogeneous view of heterogeneous data but fail to integrate data that is

not stored in a powerful DBMS. The result has been the development of a domain- and

OODBMS-independent OOHDB architecture providing optimizable access to a variety of

data sources including lightly-managed databases.

Our architecture can be easily implemented by database developers faced with inte-

grating heterogeneous data to provide a robust and powerful OOHDB. The architecture

is easy to implement because it can be constructed using a commercial OODBMS as the

implementation tool. With the advent of object-oriented database technology combining

expressive data models with computationally complete behavior, it has become possible

to use the database as something more than a passive repository for data. The great

benefit of using an OODBMS as an implementation tool is that the database features of

the OODBMS (e.g., query language, optimization mechanisms, GUI, transaction mecha-

nism) can be used as-is by the OOHDB. Thus, implementing an OOHDB becomes largely

a matter of extending the behavior of the OODBMS to behave like an OOHDB rather

than developing all the database functionality for an OOHDB from scratch. The Data-

base Encapsulation and External Data Source Layers of our materials science OOHDB

were implemented in approximately 800 lines of commented GemStone SmalltalkDB code

and 335 lines of commented C code for the general-purpose BSD socket-based servers.

90
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Users accessing our materials science OOHDB are left with the impression that they have

merely been using a typical GemStone database-the heterogeneous aspects being com-

pletely hidden.

We believe that the architecture has wide applicability. There are many environments

where accessing lightly-managed heterogeneous data is a major concern. In fact, the

explosion in automated data generation and collection in science (e.g., Earth Observing

Station, Atmospheric Radiation Modeling, mapping the human genome) demands new

approaches to integrating large volumes of data that are not stored in traditional database

management systems. While traditional metadata approaches are currently in wide use,

our work demonstrates that object-oriented database technology provides a solution that

can enhance the transparency of heterogeneous data access and provide greater database

functionality as well.

6.1 Lessons Learned

Taking our architecture from a concept to an implementation taught us anum ber of lessons

that are somewhat tangential to our thesis but worth noting nonetheless.

6.1.1 OODBMSs are Powerful Tools

First and foremost, using a commercial OODBMS as an implementation tool proved very

successful. OODBMSs have matured to the point where they are suitable for complex

real-world applications. We cannot overemphasize how much the power of the underlying

OODBMS simplified the implementation of our OOHDB. GemStone in particular was

a pleasure to work with. For someone interested in building an OOHDB using our ar-

chitecture, we would recommend using the GemStone OODBMS for four reasons. First,

of the OODBMSs we have discussed here, we feel it is the most mature, full-featured,

and robust. Second, the incremental development model encouraged by the GemStone

architecture makes it much easier to develop and test complex systems. To some degree,

incremental development is also possible in O2, but ObjectS tore's use of C++ requires a

fully-functional system to be developed as a whole before it can be tested and debugged.
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Third, as we noted in Chapter 5, GemStone provides a much richer pre-defined set of

classes than many OODBMSs. GemStone classes such as Dictionary and SortedCollection

can be used to implement many of the structures useful in building an OOHDB. Finally,

a GemStone-based OOHDB can provide enhanced functionality by taking advantage of

GemStone-specific features that give the user much greater access to the internal workings

of GemStone. We discuss some ideas for enhanced functionality exploiting GemStone's

unique capabilities in Section 6.2.

6.1.2 Data Interchange Formatted Files =I DBMS

Another lesson we learned was that data interchange formats (DIFs), such as the Crystal-

lographic Interchange File, are not queried very efficiently. DIFs are designed to promote

the portable exchange of entire data sets and have limited query support. In general, as

the structural flexibility of our data sources increased, the efficiency of accessing them to

retrieve data decreased. The proliferation of DIF standards and the historical absence of

database systems capable of modeling complex data has led to an undesirable situation

where some environments have turned to DIF files as a data storage medium [MH94]. We

do not believe that storing large data sets as collections of DIF files is a good long-term

solution. We hope that the advent of more powerful data modeling paradigms, such as

object-oriented data models and databases, will stem this use of DIF files for storage.

6.1.3 Interfacing an Application Program to the OOHDB

Finally, in the course of our research, we worked to interface a Macintosh-based application

program for crystallographic simulation, the Desktop Microscopist, to the OOHDB. In the

course of connecting the application to the database, we made an interesting discovery.

We found it beneficial to connect the two indirectly. That is, rather than having the

Desktop Microscopist construct and execute GemStone queries directly, it sends query

parameters to a "query-server" that constructs and executes a GemStone query as shown

in Figure 6.1.

The Desktop Microscopist passes query parameters in the form of a string contain-

ing triples, (attribute, relationalOperator, value), to the "macServer" which in turn uses
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Macintosh
Desktop Microscopist

123

'element,=,AI,spaceGroup,=,R3m' AppleTalk

macServer

GemStone
C-/nterface

123

query: 'element,=,AI,spaceGroup,=,R3m'

Sun
GemStone

select: [:c I c.spaceGroup='R3m']

Figure 6.1: Indirect Application Query Interface

the string as the argument to the query: method sent to the DMQueryServer object in

GemStone. The DMQueryServer constructs and executes an optimized query, such as the

query in Figure 6.1 that uses an index over the spaceGroup to select from AllCrystals and

intersects the result with the subset of Crystals containing Aluminum:

SmalltalkDB Fragment 6.1 Optimized Application Query

(AllCrystals select: [:c I c.spaceGroup = 'R3m')*

(CrystalByElement at: #Al)

The number of Crystals matching the selection criteria is returned by the DMQuery-

Server to the Desktop Microscopist via the macServer. Beyond the query: message, the

DMQueryServer responds to messages that subsequently retrieve one or all of the objects

that were selected by a query: message, as well as messages that allow the Desktop Micro-

scopist user to store the results of a query: in a named collection in GemStone for further

reference.
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Initially, this indirect query mechanism was the product of necessity since the C-

compiler used in the development of the Desktop Microscopist was not compatible with the

GemStone C-interface for the Macintosh. So the Desktop Microscopist uses AppleTalk to

communicate with the simple macServer on the Macintosh that sends the query parameters

on to the DMQueryServer object in GemStone using the GemStone C-Interface. However,

this indirect query mechanism provides an important benefit that was not foreseen. The

benefit is that the DMQueryServer object is able to build optimized queries that take

advantage of the optimizations and alternative access structures we have built into the

OOHDB. Of course, this functionality could have been programmed into the Desktop

Microscopist and, in fact, we initially built the query-construction and execution behavior

into the macServer running on the Macintosh (compiled with a GemStone C-interface

compatible compiler). However, we eventually ported this behavior to the DMQueryServer

object coded in SmalltalkDB and simplified the macServer. The advantage of having the

SmalltalkDB DMQueryServer construct and execute queries is that it can be incrementally

extended in a matter of minutes as new optimizations and structures are added to the

OOHDB without having to modify and recompile a C-coded server. Thus, instead of

simultaneously trying to debug a C program, the interface to GemStone, and the queries

themselves, we need only debug the queries generated by the SmalltalkDB methods of the

DMQueryServer in GemStone (using the much friendlier Smalltalk-based debugger built

into GemStone). This development and porting effort clearly demonstrated the power and

flexibility of extracting common behavior from application programs and embedding them

in the OODBMS.

6.2 Future Directions

One of the most obvious topics of future research would be to apply our OOHDB archi-

tecture to another data management environment. We would be most interested in an

environment with very large entities (e.g., satellite images, scientific data sets) that in-

volved a multi-level storage hierarchy (e.g., disk, CD-ROM, robotic tape systems, archive

tapes). It would be interesting to analyze the space and time efficiency of the OOHDB
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for a particularly challenging environment.

In addition, there are two classes of follow-on research that could continue from our

work. First, there are minor enhancements that would refine elements of the architecture

or its implementation. These enhancements might take advantage of the features that

a particular OODBMS offers for implementation. The second sort of research are the

substantial extensions to the architecture to address current deficiencies, improve the

architecture substantially, or accommodate new sorts of data sources.

6.2.1 Minor Enhancements

Most of the minor enhancements we envision would occur by exploiting the particular

features of the underlying OODBMS. These enhancements would detract a bit from

the OODBMS-independent nature of the architecture, but could provide higher levels of

performance and transparency for a given OODBMS.

One OODBMS-independent enhancement would be to parse CIFs lazily. There is no

reason to parse the entire CIF when extracting a particular piece of data from a CIF.

We can imagine extending the CIF class to hold partially-parsed CIF structures that

are parsed incrementally as needed. Because logically related data is likely to have close

physical proximity within a CIF, we expect that a CIF would probably never be completely

parsed as the portion completed would include most of the relevant data. Since CIFs made

up such a small portion of our data, however, we did not invest any effort in optimizing

the parsing process.

Another relatively OODBMS-independent enhancement would be to use multi-valued

logic for representing missing data. We currently rely on a "null" value for attributes

to indicate when data should be retrieved from an external data source. The problem

with this approach is that the data may be missing from the external data source as well.

However, since we have only one way of representing the fact that the data is missing, the

architecture naively attempts to retrieve the data from the external data source over and

over again each time the null value is encountered. What is needed is another "undefined-

Object" (to use Smalltalk parlance) that looks and behaves like null but is distinct from

null so that we can detect whether or not a previous attempt to retrieve the data has been
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made. While this enhancement is somewhat OODBMS-independent, of the OODBMSs

we have examined here, only GemStone provides sufficient access to the internals of the

OODBMS to support this sort of strategy.

A GemStone-specific enhancement would be to build support for forwarding messages

into the Behavior class that controls how methods are executed in GemStone. The idea

would be for the basic attribute access method we presented back in Method 4.1 on

page 49 to behave exactly like Method 4.2. We believe that simple modifications to the

"perform" methods can be used to forward messages on to a DEO when the attribute

value is null. However, tinkering with the way GemStone performs methods is not to

be undertaken lightly. Such an "enhancement" may have unintended consequences for a

GemStone database that manages other sorts of data that are not OOHDB-related.

6.2.2 Major Extensions

We have identified three major architectural extensions that would require substantial

follow-on research: handling updates, combining lightly-managed and DBMS external

data sources within the OOHDB, and parallelizing external data access.

Handling Updates

Handling updates is a difficult problem for two reasons. First, the fact that the DEO maps

data from the heterogeneous representation to the homogeneous schema of the OOHDB

means that a corresponding inverse mapping must exist so that changes made within the

OOHDB can be written through to the external data source. Where the mappings are

trivial and inverse functions easy to develop, we would suggest extending our approach

by extending attribute updating methods to forward updates on to DEOs much the same

way that attribute accessing methods forward read requests. The DEO would convert and

write the updated data back to the external data source.

The second problem with updates is coordinating transactions among the external data

sources. Where distributed transactions are supported, the transaction mechanisms of

the OODBMS might be used to coordinate a distributed transaction among external data

sources. However, distributed transactions are a significant research topic unto themselves.
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In the absence of distributed transactions, an alternative strategy is to use some sort of

"compensating" transaction in the event of failure. A compensating transaction is an

"inverse" transaction that undoes committed portions of a partially-completed distributed

transaction [NZ94]. However, compensating transactions are not atomic and leave the

external databases temporarily open to inconsistency.

From what we have observed in our work as well as the work of others, the main goal of

an HDB is usually to provide integrated read access to heterogeneous data. For the most

part, modifying data appears to be a task that is best left to the external databases. Thus,

it is not clear that providing updates through the OOHDB is a critical need. However, we

also observe that in many cases users would like to use heterogeneous data to augment a

new application. In that case, our OOHDB provides a unique solution by allowing users

to use a common schema for storing their new data within the OOHDB while providing

transparent access to external data.

Combining Lightly-Managed and DBMS Data Sources

One of the limitations of our approach is that the static representation we build within

the OOHDB limits the applicability of our architecture where data sources are frequently

changing. We believe that our architecture can be extended by introducing "proxy collec-

tion" objects that represent a whole collection of objects in an external data source. This

is the traditional approach taken when building an OOHDB that integrates data from

external DBMSs. The proxy collection responds to an OOHDB query by constructing a

DBMS-specific sub-query that is passed along to an external DBMS.

We believe that an approach that combines static and proxy collections together can

provide uniform and transparent access to a wider variety of external data. In a GemStone

OOHDB, we envision creating a new sort of "hybrid" collection class that provides similar

behavior to the standard collection classes. A hybrid collection object would hold two very

different sorts of objects. One sort of object would be a standard collection containing

the static objects we currently use to access lightly-managed data, such as the AllCrystals

collection. The other sort of object in the hybrid collection would be proxy collection

objects that each represent an entire collection of objects stored in an external DBMS.
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Queries in the form of select messages to the hybrid collection would simply be forwarded to

each of the collection objects in the hybrid collection. Standard collection objects would

respond by executing and return the results of the select message as is done currently.

Proxy collection objects would respond by using the selection predicate from the select

message to construct and execute a sub-query against an external DBMS.

Of course, this sketch of a solution ignores many of the details of implementing this

hybrid collection class. True transparency will require that the hybrid collection behave

much like a standard collection in every way and it is not clear how difficult that would

be to achieve.

In addition, this solution relies on our ability to extend the query behavior of the

OODBMS. In fact, of the OODBMSs discussed here, only GemStone provides this sort of

access to the semantics of the query language. In most OODBMSs, the query language is

a separate and reserved syntax that is built into the OODBMS and not modifiable by the

OODBMS user. GemStone is unique in this regard since the query language is comprised

of messages to collection classes-messages that can be re-implemented and overridden by

user-defined collection subclasses.

Parallelizing External Access

From the results summarized back in the log plot of Figure 4.7 on page 72, it is obvious that

accessing external data is costly. What is also obvious is that the OOHDB and CPU are

largely idle when accessing external data. This under utilization of the CPU suggests that

the throughput of external access could be improved if we accessed multiple data sources

in parallel-up to an order-of-magnitude increase in throughput in an optimistic scenario.

Of course the increase in throughput would depend on the distribution of external data

sources, the sharing of resources (e.g., disks, CPU, network), the relative speed of the

different resources, and the nature of the query. For these reasons we did not choose to

invest any effort in parallelizing data access.

Nonetheless, parallelizing external data access in an environment with many data

sources that are accessed frequently by OOHDB queries could provide substantial perfor-

mance improvement. One GemStone-specific solution is to use the RCQueue (Reduced
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Conflict Queue) class that provides inter-transaction communication between GemStone

sessions. An RCQueue object is not bound by the transaction semantics of different data-

base sessions and can be safely manipulated by multiple GemStone sessions. Parallelizing

access in a GemStone OORDB would involve spawning separate GemStone sessions for

each external data source. DEOs in the user's session would place access requests for

data in specific RCQueues for the other GemStone sessions to perform. The user's session

would retrieve and process the results returned via a second RCQueue from the other

sessions as they became available.

Another solution would be to simply use the current BSD socket interface to external

data sources as a sort of request queue. DEOs would flood sockets with all the data

requests and then asynchronously retrieve and process the results as they became available.

While this may seem to be a solution that could be used in an O2 or ObjectStore OORDB,

as we noted previously, the query languages for these systems are a reserved syntax. Thus

the inability to alter the flow of control within a query means that this solution can not

be implemented in OODBMSs with a separate, "closed" query language.

Accessing Non-Traditional Data Sources

In addition to providing access to DBMS data as discussed above, it would also be inter-

esting to explore accessing non-database sorts of data sources from the OORDB. These

data sources might include remote ftp archives, on-line information services, or even real-

time sensor data. An interesting research question is how to provide access to dynamic

external data that is not bound by the transaction semantics of the OORDB.

As these suggestions demonstrate, there are a number of ways our OORDB architec-

ture, and specific implementations of the OORDB, could be extended to provide both

greater functionality, transparency, and higher levels of performance.
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Appendix A

Materials Science Classes

VirtualObject (Objectsubclass)
Class Variables

virtualObjectCaching
Class Methods

Instance Creation

withDEO:withKey:
Accessing

virtualObjectCaching
Updating

virtual 0 bjectCaching:
Instance Variables

deo

deoKey
Instance Methods

Accessing
deo

deoKey
Private

deo:

deoKey:

Atom (VirtualObject subclass)
Class Methods

Instance Creation
new
element:

element :electron Configuration:
element :nuciearConfiguration:

element :nuciearConfigurat ion :electron Configuration:
Instance Variables

element

electron Configuration
nuciearConfiguration

Instance Methods

Updating

electron Configuration:
element:

nuciearConfiguration:
Accessing

electron Configuration
element

nuciearConfiguration
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asString

DSpacing (VirtualObject subclass)
Instance Variables

d

intensity
h
k
I

Instance Methods

Accessing
d

intensity
h
k
I

Updating
d:

intensity:
h:
k:
I:

ElectronConfiguration (VirtualObject subclass)
Instance Variables

element

electron Configuration
electronAffinity
electronNegativity
orbital
valence

atomicRadii
ionizationPotential

Instance Methods

Updating
element:

electron Configuration:
electronAffinity:

electronNegativity:
orbital:
valence:

atomicRadii:
ionizationPotential:

Accessing
element

electron Configuration
electronAffinity

electronNegativity
orbital
valence
atomicRadii

ionizationPotential

Element (Virtual Object subclass)
Instance Variables

name

symbol
atomicNumber
atomicMass
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discovery

defaultElectronConfiguration
defaul tN uclearConfiguration
electron Configurations
nuclearConfigurations

Instance Methods

Updating
name:

symbol:
atomicNumber:
atomicMass:

discovery:

defaultElectron Configuration:
defaul t NuclearConfiguration:
electron Configurations:
nuclearConfigurations:

Accessing
name

symbol
atomicNumber
atomicMass

discovery

defaultElectronConfiguration
defaultN uclearConfiguration
electron Configurations
nuclearConfigurations
asString

Formula (VirtualObject subclass)
Class Methods

Instance Creation

fromString:
Instance Variables

atoms
formula

Instance Methods

Testing
includesAtom:

Comparing

Updating
atoms:
formula:

Accessing
atoms
formula

asString

JournalReference (Virtual Object subclass)
Instance Variables

author
coden

page
volume

year
Instance Methods

Updating
author:
coden:

page:
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volume:

year:
Accessing

author
coden

page
volume

year

Material (VirtualObject subclass)
Instance Variables

name

phases

journalReference
Instance Methods

Accessing
name

phases

journalReference
Updating

name:

phases:
journal Reference:

Molecule (VirtualObject subclass)
Instance Variables

name
formula

empiricaiFormula
Instance Methods

Updating
name:
formula:

empirical Formula:

Accessing
name
formula

empiricalFormula

asString

N uclearConfiguration (VirtualObject subclass)
Instance Variables

element

isotope
abundance

nuclearMagneticMoment
thermalN CrossSection

nuclearSpin

bScatteringLength
coherentCrossSection
totalScatter

Instance Methods

Updating
element:

isotope:
abundance:

nuclearMagneticMoment:
thermalNCrossSection:
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nuclearSpin:

bScatteringLength:
coherentCrossSection:
total Scatter:

Accessing
element

isotope
abundance

nuclearMagneticMoment
thermalNCrossSection

nuclearSpin

bScatteringLength
coherentCrossSection
total Scatter

Phase (VirtualObject subclass)
Instance Variables

name
molecule

density

meltingTemperature
boilingTemperature
journalReference

Instance Methods

Updating
name:
molecule:

density:

meltingTemperature:
boilingTemperature:
journalReference:

Accessing
name
molecule

density

meltingTemperature

boilingTemperature
journalReference

Gas (Phase subclass)

Liquid (Phase subclass)

Solid (Phase subclass)

Crystal (Solid subclass)
Instance Variables

unit Cell

spaceGroup
spaceGroupNumber
reducedUnitCell

dSpacings
maxdSpacing

Instance Methods

Formatting
for DesktopMicroscopis t

Updating
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unitCell:

reducedUnitCell:

spaceGroup:

dSpacings:
maxdSpacing:
addToAccessPaths
deleteFromAccessPaths

Accessing
spaceGroup
unitCell

reducedUnitCell

dSpacings
spaceGroupNumber

maxdSpacing

Glass (Solid subclass)

QuasiCrystal (Solid subclass)

U nitCell (VirtualObject subclass)
Instance Variables

a
b
c

alpha
beta

gamma
volume

Instance Methods

Comparing=
Updating

a:
b:
c:

alpha:
beta:

gamma:
volume:

Accessing
a
b
c

gamma
alpha
beta
volume



Appendix B

Database Examples

B.l A NBS Crystal/PDF-2 Database Record

Record types, identified by the character in column 80, contain the following information:

1 - Cell Parameters

2 - Cell Parameter Standard Deviations

3 - Space Group, Z, Density

4 - Crystal Data Space Group, Z, Density

5 - File, Class, and Registration Indicators

6 - Compound Name

7 - Chemical Formula

8 - Empirical Formula

9 - Literature Reference

A - Structure type

B - Comments

C - Matrix for Initial Cell-Crystal Data Cell

D - Reduced Cell

E - Crystal Data Cell

F - Pattern Information (1)
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G - Pattern Information (2)

H - Extinction Conditions

I - Powder Pattern

J - Update/Revision

+ - Information for Hanawalt and Fink Indexes

* - Information for Max-d Index

K - Processing History and Entry Termination

Monophenylbutazone

mofebutazone

M UP381598X1

232.28 0.00 P381598X4

2210-63-1 P381598X5

P 1P381598X6

C 2P381598X6

P381598X7

P381598X8

1987 Rose, H., Eli Lilly and Company, Indianapolis, C1P381598X9

Indiana, USA. 2P381598X9

Assay 100.1% by N.A.T. 1P381598XB

100.5-102.5 C MP 2P381598XB

CuKa 1.5418 F Ni DD S 114.6 P381598XF

F BB P381598XG

11.0900100 9.80000 3 6.75000 13 1P381598XI

5.76000 16 5.45000 5 4.82000 45 2P381598XI

4.48000 26 4.34000 15 4.10000 23 3P381598XI

3.97000 3 3.7200039B 3.65000 3 4P381598XI

3.41000 17 3.29000 29 3.21000 3 5P381598XI

3.09000 1 2.97000 8 2.88000 5 6P381598XI

2.78000 1 2.69000 8B 2.48000 1 7P381598XI

2.31000 3 2.23000 2 2.17000 3 8P381598XI

2.05000 1 1.98400 4 1.93200 1 9P381598XI

B 11.1/X 4.82/5 3.72/43.29/3 4.48/3 4.10/2 3.41/2 5.76/2 4.34/2 6.75/1P381598X+

B 11.1/X 9.80/1 6.75/1 5.76/2 5.45/1 4.82/5 4.48/3 4.34/2 4.10/2 3.97/1P381598X*

01/31/87 03/27/87tk 88/ 2/24 0 0 10 86/03/05P-22564 P381598XK

o

C13 H16 N2 02

C13 H16 N2 02

OPCOMC
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B.2 A Desktop Microscopist File

Secondary Source = 0

Lattice Type = 6

Space Group = 193

a = 7.5450

b = 7.5450

c = 7.5450

alpha = 90.0000

beta = 90.0000

gamma = 120.0000

Volume = 123.9901

Reduced a = 0.0000

Reduced b = 0.0000

Reduced c = 0.0000

Reduced alpha = 0.0000

Reduced beta = 0.0000

Reduced gamma = 0.0000

Reduced Volume = 123.9901

JCPDF File# = 0

JCPDF Card# = 0

K W 3 0 9

Year Discovered = 1800

Element List, (#) = 3

= 18
= 73
= 7

Atom Positions (#) = 26

19 1 0.0000 0.0000 0.2500

19 1 0.0000 0.0000 0.7500

74 7 0.4800 0.0000 0.2500

74 7 0.0000 0.4800 0.2500

74 7 0.5200 0.5200 0.2500

74 7 0.5200 0.0000 0.7500

74 7 0.0000 0.5200 0.7500

74 7 0.4800 0.4800 0.7500

8 6 0.5000 0.0000 0.0000

8 6 0.0000 0.5000 0.0000
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8 6 0.5000 0.5000 0.0000

8 6 0.5000 0.0000 0.5000

8 6 0.0000 0.5000 0.5000

8 6 0.5000 0.5000 0.5000

8 10 0.4550 0.6670 0.2500

8 10 0.3330 0.7880 0.2500

8 10 0.2120 0.5450 0.2500

8 10 0.5450 0.3330 0.7500

8 10 0.6670 0.2120 0.7500

8 10 0.7880 0.4550 0.7500

8 10 0.6670 0.4550 0.2500

8 10 0.7880 0.3330 0.2500

8 10 0.5450 0.2120 0.2500

8 10 0.3330 0.5450 0.7500

8 10 0.2120 0.6670 0.7500

8 10 0.4550 0.7880 0.7500

Wyckoff Positions (#) = 4

a2 1 19 0.0000 0.0000 0.0000

g6 7 74 0.4800 0.0000 0.2500

f6 6 8 0.2200 0.0000 0.2500

j12 10 8 0.4550 0.6670 0.8990

#User Defined Atoms (#) = 0

Listing of Dspacings + Intensities

o 1 0 6.5342 23.9844

1 0 0 6.5342 23.9844

1 1 0 3.7725 2.8415

o 0 2 3.7725 73.9098

1 1 1 3.3742 10.8603

o 2 0 3.2671 62.0676

2 0 0 3.2671 62.0676

o 1 2 3.2671 12.8614

1 0 2 3.2671 12.8614

1 1 2 2.6676 4.0787

2 0 2 2.4697 33.5595

o 2 2 2.4697 33.5595

1 2 0 2.4697 9.4727

2 1 0 2.4697 9.4727

2 1 1 2.3471 8.8404

1 2 1 2.3471 8.8404

o 3 0 2.1781 8.9813

3 0 0 2.1781 8.9813

1 1 3 2.0926 7.7465
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2 1 2 2.0663 3.3598

1 2 2 2.0663 3.3598

o 3 2 1.8863 3.4075

3 0 2 1.8863 3.4075

2 2 0 1.8863 37.5820

2 2 1 1.8299 8.5205

3 1 0 1.8123 6.2491

1 3 0 1.8123 6.2491

1 3 1 1.7621 6.7877

1 2 3 1.7621 6.9849

3 1 1 1.7621 6.7877

Elastic Constants

1.2900 1.0700 1.0700 0.0000 0.0000 0.0000

1.2900 1.0700 0.0000 0.0000 0.0000

1.2910 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.8200 0.0000

0.1100

Physical Parameters (#) = 0

Thermodynamic Parameters (#) = 0

Crystal Faces (#) = 6

1 0 0 13.0683

-1 0 0 13.0683

o 1 0 13.0683

o -1 0 13.0683

o 0 1 15.0900

o 0 -1 15.0900



B.3 A CAChe File

molstruct68_Dec_11_1991_10:20:01 new Ox0100

Written by Molecule Editor on Thu Aug 13 14:18:54 1992

Using Data Dictionary 11/4/91 2:59 PM
Version 2

local_transform

0.091256 0.000000 0.000000 0.000000

0.000000 0.091256 0.000000 0.000000

0.000000 0.000000 0.091256 0.000000

-0.061712 -0.061712 -0.061712 1.000000

object_class connector

property dflag MoleculeEditor noUnit 0 1 HEX

property objCls1 MoleculeEditor noUnit 0 1 NAME

property objID1 MoleculeEditor noUnit 0 1 INTEGER

property objCls2 MoleculeEditor noUn it 0 1 NAME

property objID2 MoleculeEditor noUnit 0 1 INTEGER

ID dflag objCls1 objID1 objCls2 objID2

1 OxO atom 1 crystal 1

2 OxO atom 2 crystal 1
3 OxaO atom 2 bond 1

4 OxaO atom 1 bond 1

property_flags:

object_class crystal

property a MoleculeEditor angstrom 4 1 FLOAT

property b MoleculeEditor angstrom 4 1 FLOAT

property c MoleculeEditor angstrom 4 1 FLOAT

property alpha MoleculeEditor degree 5 1 FLOAT

property beta MoleculeEditor degree 5 1 FLOAT

property gamma MoleculeEditor degree 5 1 FLOAT

property rflag MoleculeEditor noUnit 0 1 HEX

property CellMultiplier MoleculeEditor noUnit 3 3 FLOAT

property Space-Group MoleculeEditor noUn it 0 32 STRING

property Descriptor MoleculeEditor noUnit 0 80 STRING

ID a b c alpha beta gamma rflag CellMultiplier
1 5.4100 5.4100 5.4100 90.00000 90.00000 90.00000 Ox7043 1.000 1.000 1.000

property_flags:

ID Space-Group Descriptor

1 Fm-3m none

property_flags:

object_class atom

property rflag MoleculeEditor noUn it 0 1 HEX
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property sym MoleculeEditor noUnit 0 2 STRING

property xyz_coordinates MoleculeEditor angstrom 7 3 FLOAT

property anum MoleculeEditor unit 0 1 INTEGER

property chrg MoleculeEditor charge_au 0 1 INTEGER

property conf MoleculeEditor noUn it 0 1 NAME

property Label MoleculeEditor noUn it 0 3 STRING

ID rflag sym xyz_coordinates anum chrg conf Label

1 Ox5052 0 1.35250001.35250001.3525000 8 0 sp3 0

2 Ox5052 Ce 0.00000000.00000000.0000000 58 0 d2sp3 Ce

property_flags:

object_class bond

property type MoleculeEditor noUnit

property rflag MoleculeEditor noUnit

ID type rflag

1 single Oxf045

property_flags:

o 1 NAME

o 1 HEX
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B.4 A CIF File

##############################################################################

### CIF submission form for molecular structure report (Acta Cryst. C) ###

### Version: 7 October 1991 ###

##############################################################################

# This is an electronic "form" for submitting a structural paper to Acta Cryst.

# Section C as a Crystallographic Information File. Full details of the format

# of such files are given in the paper "The Crystallographic Information File

# (CIF): a New Standard Archive File for Crystallography" by S. R. Hall, F. H.

# Allen and I. D. Brown [Acta Cryst. (1991), A47, 655-685]. An example of a

# completed CIF form may be obtained by sending the one-line request

# 'send example.cif'

# to sendcifOiucr.ac.uk. Queries or requests for further information should be

# directed to techedOiucr.ac.uk.

#

#

#

#

#

#

#

#

Note that all fields should be numeric or character type EXCEPT those which

are flagged as 'text' - free-form text of any length may be included in

these latter fields provided the text block begins and ends with a semicolon

as the first character of a new line. . Note also that the query marks

'?' are significant as placeholders, and should not be deleted where a data

item is not given, UNLESS the accompanying data name is also deleted.

Lines should not exceed 80 characters in length.

#==============================================================================

data_global

#==============================================================================

# 1. SUBMISSION DETAILS

# Name and address of author for correspondence

Dr Anthony C. Willis

Research School of Chemistry

Australian National University

GPO Box 4

Canberra, A.C.T.

Australia 2601

'616 249 4109'
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_publ_contact_author_fax

_publ_contact_author_email

'616 249 0750'

willisORSC3.anu.oz.au

_publ_requested_journal

_publ_requested_coeditor_name

'Acta Crystallographica C'

?

Please consider this CIF submission for publication as a New Structure

paper in Acta Crystallographica Section C. The figures, chemical

structure diagram (scheme), Transfer of Copyright Agreement form and

structure factors will be sent on receipt of your acknowledgement letter.

#==============================================================================

# 2. PROCESSING SUMMARY (IUCr Office Use Only)

_journal_date_to_coeditor ?

_journal_date_from_coeditor ?

_journal_date_accepted ?

_journal_date_printers_first ?

_journal_date_printers_final ?

_journal_date_proofs_out ?

_journal_date_proofs_in ?

_journal_coeditor_name ?

_journal_coeditor_code ?

_journal_coeditor_notes
?

_journal_techeditor_code

_journal_techeditor_notes
?

?

_journal_coden_ASTM

_journal_name_full

?

?
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_journal_year ?

_journal_volume ?

_journal_issue ?

_journal_page_first ?

_journal_page_last ?

_journal_suppl_publ_number ?

_journal_suppl_publ_pages ?

#==============================================================================

# 3. TITLE AND AUTHOR LIST

trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-1,3-oxazolidin-S-one

# The loop structure below should contain the names and addresses of all

# authors, in the required order of publication. Repeat as necessary.

loop_

_publ_author_name

_publ_author_address

'Willis, Anthony C.' #<--'Last name, first name'

Research School of Chemistry

Australian National University
GPO Box 4

Canberra, A.C.T.

Australia 2601

'Beckwith, Athelstan L.J.'

Research School of Chemistry

Australian National University

GPO Box 4

Canberra, A.C.T.

Australia 2601

'Tozer, Matthew J.'

Research School of Chemistry

Australian National University

GPO Box 4
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Canberra, A.C.T.

Australia 2601

-Data omitted for brevity-
#==============================================================================

# 5. CHEMICAL DATA

trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-1,3-oxazolidin-5-one

_chemical_name_common

_chemical_formula_moiety

_chemical_formula_structural

_chemical_formula_analytical

_chemical_formula_sum

_chemical_formula_weight

_chemical_melting_point

_chemical_compound_source

?

'C18 H25 N 03'

?

?

'C18 H25 N 03'

303.40

?

?

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

C ? .017 .009 International_Tables_Vol_IV_Table_2.3.1

H ? 0 0 International_Tables_Vol_IV_Table_2.3.1

o ? .047 .032 International_Tables_Vol_IV_Table_2.3.1

N ? .029 .018 International_Tables_Vol_IV_Table_2.3.1

#==============================================================================

# 6. CRYSTAL DATA

_symmetry_ceIl_setting orthorhombic

_symmetry_space_group_name_H-M 'P 21 21 21'

_symmetry_space_group_name_Hall 'P 2ac 2ab'

loop_



'x,y,z'

1/2-x,-y,1/2+z

1/2+x,1/2-y,-z

-x, 1/2+y, 1/2-z

_cell_length_a

3ell_length_b

_cell_length_c

_cell_angle_alpha

_cell_angle_beta

_cell_angle_gamma

_cell_volume

_cell_formula_units_Z

_cell_measurement_temperature

_cell_measurement_reflns_used

_cell_measurement_theta_min

_cell_measurement_theta_max

_cell_special_details

?

_exptl_crystal_description

_exptl_crystal_colour

_exptl_crystal_size_max

_exptl_crystal_size_mid

_exptl_crystal_size_min

_exptl_crystal_density_meas

_exptl_crystal_density_diffrn

_exptl_crystal_density_method

_exptl_crystal_F_OOO

_exptl_absorpt_coefficient_mu

_exptl_absorpt_correction_type

_exptl_absorpt_correction_T_min

_exptl_absorpt_correction_T_max

123

5.959(1)

14.956(1)

19.737(3)

90.0

90.0

90.0

1759.0(3)

4

293

25

25

31

prism
colourless

0.32

0.27

0.10

1.146

?

?

656

0.59

'shelx76 gaussian'

.933

.824

#==============================================================================

-Data omitted for brevity-



Appendix C

Database Encapsulator & Cache Classes

C.l Database Encapsulator Classes

DatabaseEncapsulator (Object subclass)

CA CheFileReduced U nit Cell (DatabaseEncapsulator subclass)
Class Methods

Accessing
a:
b:

c:

alpha:
beta:

gamma:
volume:

C A CheFile U ni t Cell (DatabaseEncapsulator subclass)
Class Methods

Accessing
a:
b:
c:

alpha:
beta:

gamma:
volume:

CIFReducedUnitCell (DatabaseEncapsulator subclass)
Class Methods

Accessing
volume:
a:
b:
c:

alpha:
beta:

gamma:
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CIFUnitCell (DatabaseEncapsulator subclass)
Class Methods

Accessing
volume:
a:
alpha:
b:
beta:
c:

gamma:

D MFileRed uced U ni t Cell (DatabaseEncapsulator subclass)
Class Methods

Accessing
a:
alpha:
b:
beta:
c:
gamma:
volume:

D MFile U ni tCell (DatabaseEncapsulator subclass)
Class Methods

Accessing
b:
a:
c:

alpha:
beta:

gamma:
volume:

DatabaseFile (DatabaseEncapsulator subclass)
Class Methods

Private

getData:
getFrom:line:
get From :fromP refix :toS uffix :dat atype:

CACheFile (DatabaseFile subclass)
Class Methods

Accessing

spaceGroupString:
Private

cache

cacheKey
get From :atKeyword:datatype:
initializeAccess

External Interface
unit Cell:
reducedUnitCell:

journalReference:
chemical Formula:

spaceGroup:
author:
coden:

page:
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year:
volume:

spaceGroupNumber:

dSpacings:

maxdSpacing:

CIF (DatabaseFile subclass)
Class Methods

Accessing
author:

year:
volume:

page:
coden:

molecularWeight:
chemicalFormula:

Private

arrayOfStringFromCIF:
cache

cacheKey:
cache:

cacheKey
getData:
getFrom:at :in :dataType:
flatten:
initializeAccess

External Interface
journalReference:
unitCell:
reducedUnitCell:

dSpacings:
maxdSpacing:

DMFile (DatabaseFile subclass)
Class Methods

Accessing
chemicalFormula:
name:

spaceGroupNumber:

maxdSpacing:
dSpacings:

Private
cache

cacheKey
initializeAccess

External Interface
journalReference:
author:
coden:

year:
volume:

page:
unitCell:
reducedUnitCell:

NBSDatabaseRecord (DatabaseEncapsulator subclass)
Class Variables

codeDictionary
Class Methods
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Accessing

alloyFlag:
authorsAspectEditorial:
authorsCalculatedDensity:
authorsMeasuredDensity:
authorsSpaceGroup:
authorsSpaceGroupEditorial:
authorsSpaceGroupNumber:
authorsZ:
authorsZEditorial:
cdReferenceCode:

casRegistryNumber:
cdApproximatedDensity:
cdAspectEditorial:
cdCalculatedDensity:
cdSpaceGroup:
cdSpaceGroupEditorial:
cdSpaceGroupNumber:
cdZ:
cdZEditorial:
chemicalFormula:

chemicalFormulaApproximation:
chemicalFormulalndex:
comments:

compound Classes:
compoundName:
compoundNamelndex:
crystalSystem:

databaseFlag:
empirical Formula:

empiricalFormulaApproximation:
empiricalFormulaEditorial:

inorganicFlag:
mineral Flag:
molecularWeight:
molecular Weight Editorial :
organicFlag:
structurePearsonEdi torial:

structurePearsonSymbol:
structureType:
dSpacings:
maxdSpacing:
referencelntensity Ratio:
reference Code:

journalVolume:
journalCoden:

journalAuthor:
journalYear:
journalPage:

Initialization

getKeysStartingAt:
PrifJate

codeDictionary
getData:

longString:lineChar:from :to:
getFrom:at :from:to:dataType:
getdSpacings:onlyMax:
buildCrystalsFrom:to:

External Interface
spaceGroup:
spaceGroupNumber:
journalReference:
page:
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author:

coden:
volume:

year:

CrystalRecord (NBSDatabaseRecord subclass)
Class Methods

Private
cache

cacheKey
socket
initializeAccess

External Interface
reducedUnitCell:
unitCell:

PDFRecord (NBSDatabaseRecord subclass)
Class Methods

Private
cache

cacheKey
socket
initializeAccess

External Interface
reducedUnitCell:
unitCell:

CrystalRed uced U ni t Cell (DatabaseEncapsulator subclass)
Class Methods

Accessing
a:
alpha:
b:
beta:
c:

gamma:
metricSymmetryCode:
reducedFormNumber:

volume:

Crystal Unit Cell (DatabaseEncapsulator subclass)
Class Methods

Accessing
aStdDev:

alphaStdDev:
authorsA:

authorsAlpha:
authorsB:
authorsBeta:
authorsC:
authorsGamma:
authorsVolume:

averageErrorinAxialLengths:
bStdDev:
betaStdDev:
cStdDev:
cameraDiameter:
cdA:
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cdAlpha:
cdB:
cdBeta:
cdC:

cdDeterminantOIDanformMatrix:
cdFirstDeterminativeRatio:
cdGamma:
cdSecondDeterminativeRatio:
cdTransformMatrix:
cdVolume:
cellEditorial:
errorEditorial:
filter:
filterCode:

gammaStdDev:
instrumentCode:

least SquaresIndicator:
lowerLimit:

pdfEditorialLeastSquares:
pdfEditorialRhombohedral:

qualityIndex:
radiationOfStudy:
radiation Used:
sourceOfUnitCellData:

spacingStandard:
standard Code:
structure:

truncationFlag:
wavelength:

External Interface
a:

alpha:
b:
beta:

c:

gamma:
volume:

P D FReduced U ni t Cell (DatabaseEncapsulator subclass)
Class Methods

Accessing
a:

alpha:
b:
beta:
c:

gamma:
metricSymmetryCode:
reducedFormN umber:
volume:

PDFUnitCell (DatabaseEncapsulator subclass)
Class Methods

Accessing
aStdDev:

alphaStdDev:
authorsA:

authorsAlpha:
authorsB:
authorsBeta:
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authorsC:
authorsGamma:
authorsVolume:

averageErrorinAxialLengths:
bStdDev:
betaStdDev:
cStdDev:
cameraDiameter:
cdA:

cdAlpha:
cdB:
cdBeta:
cdC:
cdDeterminantOfI'ranformMatrix:
cdFirstDeterminativeRatio:
cdGamma:
cdSecondDeterminativeRatio:

cdTransformMatrix:
cd Volume:
cellEditorial:
errorEditorial:
filter:
filterCode:

gammaStdDev:
instrumentCode:

least SquaresIndicator:
lowerLimit:

pdfEditorialLeastSquares:
pdfEditorialRhombohedral:
quality Index:
radiationOfStudy:
radiation Used:
sourceOfUnitCellData:

spacingStandard:
standardCode:
structure:

truncationFlag:
wavelength:

External Interface
a:

alpha:
b:
beta:
c:

gamma:
volume:

CIFDictionary (SymbolDictionary subclass)
Class Methods

Instance Creation

fromStringArray:
Instance Methods

Searching
findDataAt:

CIFLoop (CIFDictionary subclass)
Class Methods

Instance Creation

fromStringArray:
Instance Methods
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Accessing
dataName

CIFString (String subclass)

C.2 Cache Class

Cache (Object subclass)
Class Methods

Instance Creation

new :someKeys:data:sortBlock:
Instance Variables

keys
data

lineToReplace
Instance Methods

Accessing
keys
data

lineToReplace
at:ifAbsent:

Updating
keys:
data:

lineToReplace:

incrementLineToReplace



Appendix D

Socket-Based Servers

C Program D.l Generic Byte-Server

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#include <ermo.h>

/*

* This programis a general-purposebyte server. It acceptstwo

* parameters,a TCP portnumber,and a filename.
*

* The programhas two components.
*

* The firstcomponentis the parent. The parentlistensfor

* new servicerequestsand forksa new copyof itselffor each

* request.
*

* The secondcomponentis the child. The childacceptsread

* requestsof the form:

* byte-offset number-of-bytes

* The specifiednumberof bytesare read from the file and

* returnedto the requester. When the requesterclosesthe

* socket,the childexits.

*/

FILE *f ile ;

main (argc, argv, argp)

char **argv, **argp;

int argc;

{

132
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int serverSock, clientSock;

struct sockaddr_in server;

extern void serveClient();

1* There should be a port number and filename parameter. *1

if (argc != 3)

{

perror("no filename and/or port number");

exit (1) ;

}

1* Open the file *1

if (! (file = fopen (argv [2] , "r"»)

{

perror("opening file") ;

exit(1);

}

1* create a socket *1

serverSock = socket(AF_INET, SOCK_STREAM, 0);

if (serverSock < 0)

{

perror("opening stream socket");

exit (1) ;

}

1* Name socket using wildcards, and bind to the port. *1

server.sin_family = AF_INET;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = atoi(argv[l]);

if (bind (serverSock, (struct sockaddr *)&server, sizeof server) < 0)

{

perror("binding stream socket");

exit(1);

}

1*

* The parent listens to the socket forever, waiting for connect

* requests. Once a connection is requested, a child is forked to

* service the request.

*1

listen(serverSock,100);

for(;;)

{

1* Wait for a connection request, fork a child. *1

if «clientSock = accept(serverSock, (struct sockaddr *)0, (int *)0» < 0)
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{

perror("connecting to client socket");

continue;

}

/*

* If we're the child, not the parent, then service the

* request.

*/
if (fork() == 0)

serveClient(clientSock);

else

/* Close the server socket and wait for new request */

close(serverSock);

} /* end for */

} /* end Byteserver */

void serveClient(msgsock)

int msgsock;

{

long offset, numbytes, last_offset

char inbuf[1024] , outbuf[8192];

int rval;

int i,k;

0, last_numbytes = 0;

/*

* Continue servicing requests from this client until they close

* the socket.

*/
do

{

/* Clear the input buffer */

bzero(inbuf, sizeof inbuf);

/* Read a message */

if «rval = read(msgsock, inbuf, 1024» < 0)

perror("reading stream message");

/*

* If the message wasn't a "close" message then read

* data from the file and send the data to the client

*/
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if (rval)

{

/* Read the offset and # of bytes from the message */
sscanf (inbuf, lI%d %d", &offset, &numbytes);

/*

* If the offset vas negative or the number of bytes <=0

* return an empty message, the request was bad.
*/

if (offset < 0 I I numbytes <= 0)

vrite(msgsock, inbuf, 0);
else

{

/*

* If this is a repeat request, no need to read the data,

* just return the un-changed outbuf again.
*/

if (offset ==last_offset &&numbytes ==last_numbytes)

write (msgsock, outbuf, numbytes);
else

/* Read the data from the file */

if (fseek(file, offset, 0»

write(msgsock, outbuf, 0);
else

/* If the read failed, return an empty message */

if (!fread(outbuf, 1, numbytes , file»

write(msgsock, outbuf, 0);
else

/* Send the data to the requester */

vrite(msgsock, outbuf, numbytes);

} /* end else */

/* Keep track of the last request */
last_offset =offset;

last_numbytes =numbytes;

} /* end if */

} while (rval != 0);

close (msgsock) ;
exit(O);

} /* end serveClient*/
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C Program D.2 Generic File-Server

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#include <ermo.h>

1*

* This program is a general-purpose file server. It accepts one

* parameter, a TCP port number.

*

* The program has two components.

*

* The first component is the parent. The parent listens for

* new service requests and forks a new copy of itself for each

* request.

*

* The second component is the child. The child accepts read

* requests of the form:

* file_pathname

* The specified file is opened and its contents read and

* sent to the requester. When the requester closes the

* socket, the child exits.

*1

main(argc, argv, argp)

char **argv, **argp;

int argc;

{

int clientSock, serverSock;

struct sockaddr_in server;

extern void serveClient();

1* There should be a port number parameter. *1

if (argc != 2) {

perror ("no port number");

exit (1) ;

}

1* create a socket *1

serverSock = socket(AF_INET, SOCK_STREAM, 0);

if (serverSock < 0) {

perror("opening stream socket") ;

exit(1) ;

}
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1* Name socket using wildcards, and bind to the port. *1

server.sin_family = AF_INET;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = atoi(argv[l]);

if (bind (serverSock, (struct sockaddr *)kserver, sizeof server) < 0) {

perror(IIbinding stream socket") ;

exit(1);

}

1*

* The parent listens to the socket forever, waiting for connect

* requests. Once a connection is requested, a child is forked to

* service the request.

*1

listen(serverSock, 100);

for(;;){

1* Wait for a connection request, fork a child. *1

if «clientSock = accept(serverSock, (struct sockaddr *)0, (int *)0» < 0) {

perror(IIconnecting to client socket");

continue;

}

1*

* If we're the child, not the parent, then service the

* request.

*1
if (fork() == 0)

serveClient(clientSock);

else

1* Close the server socket and wait for new request *1

close(serverSock);

} 1* end for *1

} 1* end Fileserver *1

void serveClient(msgsock)

int msgsock;

{

FILE *file;

long offset, numbytes, last_offset = 0, last_numbytes = 0;

char inbuf[1024] , outbuf[8192];

int rval;
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int i,k;

1*

* Continueservicing requests from this client until they close
* the socket.

*1

do {

1* Clear the input buffer *1
bzero(inbuf, sizeof inbuf);

1* Read a message *1

if «rval = read(msgsock, inbuf, 1024» < 0)

perror("reading stream message") ;

1*

* If the message wasn't a "close" message then read
* data from the file and send the file to the client

*1

if (rval) {

1* Open the file using the pathname from the message *1

file = fopen(inbuf, "r");

1*

* If the file open succeeded, read and send the file in

* manageable chunks until EOF.
*1

if (file)

while (!feof(file» {

numbytes = fread(outbuf, 1, sizeof(outbuf), file);
write(msgsock, outbuf, numbytes);

} 1* end while *1

1* Send an empty message to indicate EOF (or bad filename) *1

write(msgsock, outbuf, 0);

} 1* end if *1

} while (rval != 0);

close(msgsock);
exit(O);

} 1* end serveClient*1
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