RESTING STATE FUNCTIONAL CONNECTIVITY MRI PREDICTS FUTURE REACTION TIME
VARIABILITY IN CHILDREN WITH AND WITHOUT ADHD

By
Mahnoosh Nik-Ahd
A THESIS
Presented to the Department of Public Health & Preventive Medicine
and the Oregon Health & Science University
School of Medicine
in partial fulfillment of the requirements for the degree of

Master of Public Health

July 2015



TABLE OF CONTENTS

ACKNOWIEAZEMENTS....ceeeiie ettt ettt st eaees e b eeb e e saesbesbsarsesssesbenseensessessssnessestenssnnes ii
A o] = ot F RS SRTSR SRS 1
T oo 11 T o ST 3
Materials & METNOAS. ..ottt ete e s testestesbe st stesae e e e essensensentans 10
Subject recruitment & INfOrMeEd CONSENT........covciieeiirieeice e e e eer e 11
(DI F=T=d e o1y Lol o g Yol =T LN ] TSRS 11
ol [0 Ty oY T ) (=Y o - RO 11
Demographics of ADHD group and TDC.......cuecieeeirecreieineeerreniiee e ereeeesseessessesssessesseenssssesses 11
Data CollECLION OVEIVIEW.....c.ccuieeeeeiee et ettt sttt e e e stesteste st saesaesee e e e e e nensenes 12
Predictive Variables (FEAtUIES) ...ttt et e tr s e sre et san s aeraen e nees 12
MRI @CQUISTEION.....eiee ettt et st e sre e te s e tesesaeeessseesnnsnnaneneans 12
TIMIRI PrOCESSING .. cuvivievrerteiicee et ce et eetbete e sresbeere s eebbes e e e saesbeetesrsasssesbennesasestestesrns 13
rS-FCMRI data redUCHION... ..o sttt st s s 13

Generation of ROIs & correlation matrices subsequently used as features in
(0T =Te [To1 A To o 0O U USRS 14
Outcome Measure: Change in Reaction Time Variability.......cceveevvneiececceeereerreeeeenees 14
Data analysis of functional brain networks: graph theory.......cccceveevveevececcennnnns 15

Support vector based multivariate pattern analysis: predicting outcomes

USINE FS-TCMR.cv ettt et et eeb e e b sbe e eraer e ssennes 16
RESUIES ..ttt ettt ettt e e e eae e e eaeeseeteeteste et stesaeseeee e e seseaseatensenbesten bt aesees et eserseneene s 20
DS CUSSION .. e cuetrttee sttt teees st eet e ste et te e st e et be s sae st e eases sbeeebaas seeaaeeesses sheessbeseesueeessee sbe e et be e erneesses sheasnbenneens 22
SUMMATY & CONCIUSIONS.....eiviieeieiitictieeecte et ettt b cbe e eeraeb e s e saesbeaneasaesbesbenssessesteanssrnessaenen 27
BT =T =T 0T T RO 28
PN o] 1= o | DS TR SU USROS 33



ACKNOWLEDGEMENTS

Firstly, | am grateful to my mentor, Dr. Damien Fair, who took me under his wing and was
genuinely invested both in my learning and in my success. | could not have asked for a better
research mentor —thank you, Damien, for protecting my time, being my advocate, and pushing
me to dig deep and truly understand. Thank you also to the other members of my thesis
committee — Dr. Joel Nigg and Dr. Shannon McWeeney — for their patience and insightful
guestions. Thank you to my friends in the Fair Lab: Alice, Marguerite, Brian, Benesketch,
Elizabeth, and Marc, who welcomed a medical student into their world and patiently answered
my endless questions.

My deepest gratitude also goes to my incredible family, especially my sister Farnoosh, for her
endless support and encouragement, without which this work would not have been
successfully completed. Many thanks also to my clinical mentor, Dr. JoDee Anderson, who
inspired me to go into Pediatrics and who continues to inspire me to live courageously and
persist against all odds. | am also grateful to my friends Marlene, Veronica, Sepi, Omar, Yassar,
Stacy, Yoyo, Yaser, Sherry, and Son, all of whom have contributed to my success and whose
support | have consistently relied on. Thank you to Dr. John Stull for his contagious love for
epidemiology and Dr. Bill Lambert for teaching me to exercise “precision of words and precision
of thought”.

This work was supported by the Oregon Multidisciplinary Training Program in Health Services
Research, Agency for Health Research and Quality (AHRQ) T32 HS017582.



ABSTRACT
Background — ADHD is one of the most prevalent neurodevelopmental disorders in our society.
One of the hallmark features of ADHD is increased reaction time variability (RTV), which is
particularly significant among children, as RTV is implicated in many goal-directed behaviors
and later academic achievement. Recent brain imaging studies have revealed that those with
ADHD have atypical functional brain signatures compared with those without ADHD, suggesting
a neurobiological basis for ADHD that can be measured using brain imaging. Methods — This is a
historical cohort study of 32 children (7-14y) with ADHD and 40 children without ADHD. We
administered a test of reaction time variability at study entry and then at least at one other
time-point in the study. We use support vector machine-based multivariate pattern analysis to
determine whether connection features derived from resting state functional connectivity MRI
(rs-fcMRI) were able to predict longitudinal changes in a test of RTV. Hypothesis — We
hypothesized that baseline rs-fcMRI measurements would predict RTV in the sample as a whole
(i.e. ADHD and typically developing children as a single group). Furthermore, we expected that
predictions of change in reaction time variability would become more robust when considering
typically developing children and children with ADHD separately, as there are likely to be
predictive systems that are distinct in these two groups, as well. Results — Connectivity
between consensus features positively predicted changes in RTV when children with ADHD and
TDC were evaluated as a single group (Adjusted R? = 0.10, p = 0.0027), and predictive functional
networks include the cinguloopercular and ventral attention networks. When children with
ADHD were considered alone, connectivity between consensus features improves in its ability

to positively predict changes in RTV (Adjusted R = 0.3183, p < 0.0001), and predictive



functional networks include the cinguloopercular, default, visual, and ventral attention
networks. When considering TDC alone, predictive functional networks include the
cinguloopercular, default, and dorsal attention networks, and consensus features also positively
predict changes in RTV (Adjusted R®= 0.2813, p < 0.0001). Finally, group comparison between
predictive networks in ADHD vs. TDC reveals a degree of overlap (particularly between the
cinguloopercular and default networks), but also highlights specific subregions that are distinct
within these networks, including the anterior insula/frontal operculum (within the
cinguloopercular network), the inferior parietal subregion (within the frontoparietal network),
the lateral parietal and inferior temporal subregions (within the default network), and the
ventral vs. dorsal attention networks. Conclusion — We apply multivariate statistics along with
non-invasive brain imaging to use baseline functional connectivity measurements to predict
longitudinal change in RTV in children with and without ADHD. The functional connections that
predict RTV in these two groups overlap in some regions, but are significantly distinct in other
regions. While there are functional similarities in the brains of children with ADHD and TDC,
there are also innate differences in the functional connectivity of these two populations, and
these differences play a significant role in predicting longitudinal changes in RTV across these
two groups. Ultimately, this work has the potential to characterize an approach aimed at
identifying children at high-risk of deficits in future cognitive performance and thus associated

life outcomes such as academic achievement.



INTRODUCTION
ADHD is reported to affect 9.0% of children ages 13 to 18 years in the US, with an average age
of identification of 7 years (NIMH, ADHD). It is a neurodevelopmental disorder of childhood that
often carries into adulthood, costing our society between $36 billion to $52.4 billion annually
(Pelham et al., 2007). The main symptoms of inattention, hyperactivity, and impulsivity among
children with ADHD lead to lifelong functional impairments that affect many life outcomes,
including academic achievement. Children with ADHD are known to have academic
underachievement compared to typically developing controls (TDC), and these differences
persist across the lifespan from preschool readiness to university-level performance (Daley &
Birchwood, 2010). Thus, ADHD is a significant public health issue with important consequences
for the individual and society. However, one of the problems hindering our assessment of
ADHD is that we lack objective, biologically informative measures that can aid our

understanding of its etiology and to be used as stable prognosticators.

Neuroimaging offers a valuable tool to study the human brain non-invasively and may serve as
an important tool to characterize etiology and may have prognostic value. Resting-state
functional connectivity MRI (rs-fcMRI) in particular allows us to examine spontaneous activity
between anatomically distinct but functionally linked regions of the brain. Rs-fcMRI rests on the
principle that the spontaneous, low frequency (<0.1 Hz) blood oxygen level-dependent (BOLD)
signal reflects neuronal activity between functionally connected regions of the brain (Biswal et

al., 1995). In this way, changes in oxygen-rich blood flow serve as an indirect marker for



neuronal activation patterns. As described in detail by van den Heuvel and Hulshoff Pol (2010),
several group-level rs-fcMRI studies have shown the construction of functionally linked brain
networks during rest (Beckmann et al., 2005; Damoiseaux et al., 2006; Fox and Raichle, 2007;
Fox et al., 2005). Although these studies all used various methods with different groups of
subjects, they consistently demonstrated the emergence of the same or very similar functional
brain networks during rest. These findings suggests external validity in resting-state functional
networks. As a result, rs-fcMRI can be used to better elucidate group-level functional
differences in the human brain. Indeed, rs-fcMRI has proven to be a valuable tool to better

understand the neurobiology of ADHD.

In the quest to understand the biology of ADHD and the markers that reflect its clinical
presentation, investigators often use measurements of executive functioning, reward, and
impulse control. Unlike ADHD symptomatology, validated cognitive tasks offer objective data
that can be measured with precision and accuracy. For example, a growing body of literature
hypothesizes that one of the hallmark features of ADHD is increased reaction time variability
(RTV). As described by Castellanos and Tannock (2007), reaction time variability serves as a
surrogate marker of “the moment-by-moment process of task performance, in which
individuals with ADHD have problems”. RTV is a particularly descriptive trait to examine, as it
highlights fluctuations in behavior of a given child over a period of seconds or milliseconds,
rather than hours, thus reflecting within-subject inconsistencies in behavior and task
performance over a relatively short time span (Castellanos et al., 2005). These inconsistencies

in behavior are an important finding in ADHD, in part because in order to maintain attention



toward efficient, goal-directed behaviors, one must be able to rapidly adapt thinking and
behavior to both dynamic internal states and external conditions (McLoughlin et al., 2014). In
this way, increased RTV suggests a deficit in cognitive flexibility. However, it is not entirely clear
that RTV represents this ability alone. As described by Kofler et al. (2013), RTV has also been
suggested to be secondary to difficulties in regulating the physiological system, particularly in
relation to energy metabolism, such that individuals with ADHD are postulated to have
astrocytes that produce insufficient lactate and thus problems with attention are said to be due
to disruptions in the supply of energy (Russell et al., 2006). Moreover, other investigators have
suggested that RTV is secondary to problems with maintaining arousal, such that individuals
with ADHD have defective noradrenergic activation centrally, and this theory is supported by
the improvement in arousal and attention exhibited with stimulant interventions, which are

thought to affect dopaminergic and noradrenergic pathways (Biederman & Spencer, 1999).

Regardless of the underlying mechanism, the outcome in children with ADHD remains the
same: under conditions that require fast and accurate responses, children with ADHD are
generally slower, less accurate, and have more variable reaction times compared to typically
developing children their age (Karalunas et al., 2012). Moreover, increased RTV has been
reported as a mediating variable in the relationship between ADHD and functional impairments
such as diminished academic achievement, particularly in relation to language skills and
mathematics (Sjowall & Thorell, 2014). Therefore, it becomes evident that RTV is implicated in
important outcomes such educational achievement, which in itself is linked to other significant

life consequences.



A meta-analysis of 319 studies examining RTV in children, adolescents, and adults with ADHD
found that regardless of symptom presentation, the task used to assess RTV, and physiologic
and/or cognitive state, increased RTV remains a reliable finding (Kofler et al., 2013). When
comparing individuals with ADHD to typically developing controls, the effect size (converted to
Hedges g) in this study ranges from 0.57 (corrected for sampling error in conjunction with
publication bias) to 0.89 (corrected for measurement unreliability), with 95% confidence
intervals ranging from 0.51-0.62 and 0.83-0.95, respectively. Thus, it becomes evident that
statistical significance aside, the magnitude of the difference in RTV detected by this study
when comparing individuals with ADHD to TDC is relatively strong. This is important, because
given an N of 319 studies, one would expect to detect a relatively strong effect size (as opposed
to a more nominal quantity) if there is indeed a true and meaningful underlying difference in
RTV between ADHD and TDC. As described in the meta-analysis by Kofler et al. (2013), those
with ADHD are noted to be “consistently inconsistent” (Rapport et al., 2001), and this trait is
evident in performance on a variety of neuropsychological tests (Kofler et al., 2008; Klein et al.,
2006), including tasks that assess reaction time related to working motor control (Klein et al.,

2006).

Because increased RTV is a hypothesized feature of ADHD, the regions of the brain that are
implicated in it could also further our understanding of ADHD. Given its pervasive nature, RTV
has been suggested as a possible endophenotype for ADHD (Castellanos et al., 2005;

Castellanos et al., 2009), where endophenotypes embody quantifiable characteristics that are



at least partially heritable and indicate an individual’s predisposition to demonstrate a given
condition or disease (Castellanos & Tannock, 2002). By studying a potential endophenotype of
ADHD in conjunction with rs-fcMRI, we hope to further our understanding of ADHD and one of
the potential markers of its etiology. Kofler et al. (2013) describe the considerable overlap
between the regions of the brain that are often associated with ADHD and those that
correspond to RTV. These regions include the anterior cingulate, dorsolateral prefrontal, and

orbitofrontal cortices (Bellgrove at al., 2004; MacDonald et al., 2006).

Furthermore, Karalunas et al. (2012) highlight the complex interplay that is uncovered by RTV,
including “stimulus encoding, rate of information processing, motor preparation and output,
speed-accuracy trade-off effects, and response bias”. Moreover, Karalunas et al. (2014)
underscore the lack of consensus regarding the specific neural correlates of RTV. For example,
they discuss the default mode network as a neural network that is thought to be very relevant
to RTV given the default mode network’s implications in attention. They describe results of a
study that showed that increased RTV in children with ADHD is associated with attenuated
deactivation of the default mode network (Fassbender et al., 2009). They suggest that this is in
contrast, however, to another study that found a non-significant association between RTV in
ADHD and levels of activation in the medial prefrontal cortex and precuneus, both of which are
regions that also help comprise the default network (Christakou et al., 2013). Karalunas et al.
(2014) also outline the results of two other fMRI studies that found an association between
increased RTV in children with ADHD and decreased activation of fronto-parietal brain regions

(Cao et al., 2008), as well as the right anterior cingulate gyrus (Konrad et al., 2006).



Taken together, these results point to the ambiguity of the neural correlates underlying RTV. As
such, further clarification of the resting-state neural underpinnings of RTV, particularly in
children with ADHD, would be useful. Perhaps a more robust and clinically useful approach to
the question would be to determine whether brain signatures in children with and without
ADHD are able to predict future improvement in reaction time variability. This particular
guestion has not been previously elucidated. It is important because a stronger understanding
of those features of ADHD that can aid in prediction of an outcome such as RTV would allow
researchers to perhaps identify a critical period during which interventions could eventually

change important outcomes relevant to children with ADHD.

The present study aims to examine a longitudinal sample of children with and without ADHD to
determine whether SVM based multivariate pattern analysis, in combination with functional
connectivity MRI, can predict changes in RTV at a later time-point. By examining an objective
neuropsychological measure in conjunction with functional connectivity, we sought to further
elucidate the neural correlates underlying RTV, as well as suggest a model to predict future
RTV. In so doing, we hoped to create a stepping stone towards the identification of a potential
critical period during which effective interventions could decrease the risk of long-term deficits
in RTV. We hypothesized that baseline rs-fcMRI measurements would predict RTV in the
sample as a whole (i.e. ADHD and typically developing children as a single group). Furthermore,

we expected that predictions of change in reaction time variability would become more robust



when considering typically developing children and children with ADHD separately, as there are

likely to be predictive systems that are distinct in these two groups as well.



MATERIAL & METHODS
Subject recruitment and diagnostic procedures below followed previously published procedures

by Karalunas et al., 2014.

Subject Recruitment & Informed Consent: Study participants were ages 7 to 14 years old and
were recruited between 2007-2013 using a community-based recruitment strategy via
advertisements in mailing lists for parents of school-age children in public schools in Portland,
OR. The Institutional Review Board at Oregon Health & Science University provided ethical
approval of this study. Children provided written assent for the study, and their parent/legal

guardian provided written informed consent.

Diagnostic Procedure: A multi-step diagnostic procedure was used to screen eligible volunteers
and then classify them into one of two groups: ADHD vs. typically developing controls (TDC).
Those who did not meet our criteria for one of these two groups were excluded.

Parents completed standardized ratings of child behavior using the Conners’ Rating Scale-
Revised; the ADHD Rating Scale, the Child Behavior Checklist, and the Strengths and Difficulties
Questionnaires (SDQ). Teachers completed a Conners-lll, SDQ, and ADHD Rating Scale. Parents
were also interviewed by a Master’s-level clinician using the Kiddie Schedule for Affective
Disorders and Schizophrenia (K-SADS) to rule out co-morbid psychiatric disorders. Children also
completed a single short form of the Wechsler Intelligence Scale for Children (WISC-IV) under
the supervision of a PhD level licensed psychologist, and these tests were used to estimate Full

Scale IQ as described by Sattler (2004).
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The above measures, along with written observation notes from both a short clinical interview
of the child and from the tester who worked with the child, were compiled. These were
presented to a clinical diagnostic team consisting of a board-certified child psychiatrist and a
licensed clinical psychologist. They independently reviewed the cases and made an assignment;
their agreement rate was satisfactory and disagreements were resolved by consensus. Children
who did not meet criteria for ADHD and did not meet exclusion criteria were assigned to the
control group (TDC). Some of the TDC subjects were siblings of the children diagnosed with
ADHD. After all inclusion and exclusion criteria were applied, 32 children were assigned to the
ADHD group, 40 children were assigned to the TDC group, and 7 sibling pairs were included

(discussed below).

Exclusion Criteria: Subjects were excluded if they had: any major medical condition,
neurological impairment, history of seizure, head injury with loss of consciousness, substance
use disorder; prior diagnosis of mental retardation, Autism Spectrum Disorder, psychosis, or
mania; estimated 1Q < 70, use of long-acting psychotropic medications, or had a major

depressive episode at study entry.

Demographics of ADHD group and TDC: Among those with ADHD, the mean age was 10.1
years. 11 children with ADHD were female. 78% of the ADHD group was White, non-Hispanic

and 22% were non-White or Hispanic.
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Among the TDC group, the mean age was 9.4 years, and 19 of these children were female. 80%

of the TDC group were White, non-Hispanic and 20% were non-White or Hispanic.

Data Collection Overview: For each participant included in the study, two types of data were
collected longitudinally: 1) rs-fcMRI and 2) administration of a dual-task measure called the
Stop-Go Task, from which reaction time variability for go-trials was extracted, at each of at least
two different time-points (baseline and one year later), each separated by at least 1 year. The
task is described below. In order to be included in the study, a subject’s first rs-fcMRI scan must

have been completed within 6 months of first RTV measurement.

Predictive Variables (Features) — resting state functional connectivity MRl measurements

MRI acquisition:

3 five minute rs-fcMRI scans were acquired in a single session at baseline. All MRI acquisition
steps closely follow the previously published work of Karalunas, Fair et al., 2014, Scanning was
completed at the OHSU Advanced Imaging Research Center using a 3.0 Tesla Siemens
Magnetom Tim Trio scanner with a twelve-channel head-coil. A high-resolution sagittal T1-
weighted MPRAGE sequence was collected (T= 3.58 ms, TR = 2300 ms, 256x256 matrix,
resolution = 1 mm, total scan duration = 9 min 14 sec). T2-weighted echo planar imaging (TR =
2000 ms, TW = 30 ms, flip angle =90°, FOV = 240 mm, 36 slices encompassing the entire brain,
slice thickness = 3.8 mm, in-plane resolution = 3.8 x 3.8 mm) in the oblique plane (i.e. parallel to

the ACPC) was used to collect BOLD images under continuous rest while children kept their eyes

12



open, fixated on a crossbar. After approximately 10 seconds (5 frames), steady-state

magnetization was presumed.

fMRI processing:

The following also closely follows the previously published work of Karalunas, Fair, et al., 2014.
In order to reduce artifacts, all functional images were processed using removal of a central
spike due to MR signal offset; correction for interspersed image acquisition without gaps, which
causes intensity differences in even vs. odd slices; head motion correction within and across
runs; and use of a whole brain mode value of 1000 for within-run normalization of intensity.
The MPRAGE scan was used to configure atlas transformation of all functional data for all
children. Movement correction and atlas transformation were then combined in one
interpolation to resample each run in atlas space using an isotropic 3 mm grid. The atlas-

transformed volumetric time-series was subsequently used for all remaining procedures.

rs-fcMRI data reduction:

Pre-processing steps included temporal bandpass filtering, spatial smoothing, regression of rigid
body head motion correction, whole brain regression, and regression of white matter and
ventricular signals, as described by Dosenbach et al., 2010. Motion correction is a critical issue
and was handled using recently proposed procedures, directed at framewise displacement (FD),

such that volumes greater than 0.3 FD were removed (Power et al., 2011; Fair et al., 2012).
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The following procedures closely follow the previously published work of Dosenbach et al.,

2010.

Generation of ROIs & correlation matrices subsequently used as features in prediction:

For each scan, the BOLD time-series was obtained for each of 99 predefined cortical and
subcortical regions of interest (ROIs) as previously described by Power et al. (2011) and Gordon
et al. (2014). Next, within each scan the BOLD time-series for each ROl was correlated
(Pearson’s r) with the BOLD time-series for all other ROls from that scan, creating a square
correlation matrix for each subject. This produced a 99x99 correlation matrix for each subject.
R-values subsequently underwent Fisher’s z-transformation in order to utilize normalized
correlation values, i.e. functional connections, which served as the features used in all analyses

that followed.

Outcome Measure: Change in Reaction Time Variability

The Stop-Go Task was administered by a Master’s level clinician at each of at least two time-
points in which subjects were assessed, as discussed above under Data Collection Overview. It
is described in detail by Nigg (1999), Only the Go trials were used here. In the Go-task, children
see either an “X” or an “O” (each is equally probable) on the screen and are instructed to press
the corresponding key as quickly as possible. This type of simple reaction time task with only
two options has many advantages for measuring RTV (Karalunas et al., 2014). This reaction
time is measured in milliseconds by the computer clock. In the second half of the task, on 25%

of trials, a tone sounds and the child is instructed to withhold his/her response, thus measuring
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inhibitory control (in ms). These trials were ignored and their potential effect on RTV on the Go

trials is discussed later.

The standard deviation (SD) of each subject’s reaction time (i.e. Go trials) was calculated across
all trials. Change in SD between at least two time-points (i.e. difference between a subject’s
first and last SD of reaction time) was calculated as a standard change score, and subsequently

served as the outcome used in prediction.

Data analysis of functional brain networks: graph theory

Subsequent methods relied on graph theory for analysis of functional networks that would
predict change in RTV. As described in detail by van den Heuvel and Hulshoff Pol (2010), brain
networks can be described as graphs composed of nodes that are connected by functionally
linked edges. After defining the collection of brain regions that will be represented as nodes,
the functional connections, which reflect communication between these nodes, are defined.
Within resting-state fMRI studies, the level of co-activation between brain regions is used as a
measure of connectivity, defined by the level of correlation between the resting-state fMRI
time-series. Using a graph approach, the level of functional connectivity (i.e. correlation)
between each possible pair of nodes in the network is computed (i.e. between all possible
regions or voxel pairs), resulting in a connectivity matrix. Finally, the existence of a connection
between two points can be defined as whether their level of functional connectivity exceeds a
certain predefined threshold (van den Heuvel & Hulshoff Pol, 2010). In this study, a predefined

threshold was not used. Rather, all connections between regions of interest were examined to
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see if patterns emerged that were predictive of change in RTV. This results in modeling the

brain as a functional network with connections between regions that are functionally linked.

Support vector based multivariate pattern analysis (MVPA): predicting outcomes using rs-
fcMRI

The present study used support vector machine (SVM) and support vector regression (SVR)
based MVPA (as previously described by Dosenbach et al., 2010 and Fair et al., 2013) to predict
future RTV at the level of the individual. Briefly, SVM based MVPA is an algorithm-based
method that uses statistical learning theory to classify individual children. While there are
certainly other multivariate pattern analysis methods, this particular machine learning
approach was chosen based on the experience of this study’s investigators, in addition to
existing SVR approaches that have previously been used in other domains, e.g. in the prediction
of age using resting-state data alone (Dosenbach et al., 2010), as well as the use of functional
connectivity to distinguish between combined vs. inattentive subtypes of ADHD (Fair et al.,
2013). Moreover, because functional connectivity MRI data is multi-dimensional, SVM is a
useful approach given its ability to manage these dimensions, while generally maintaining
resilience to overfitting (Dosenbach et al., 2010). Non-linear functions known as kernels are
used to map input vectors onto a higher dimensional feature space. A hyperplane is
subsequently designed in the feature space to maximize the margin between two classes of

data and thus optimize distinguishing between the two sets.

16



Details regarding our SVR approach can be seen in Fair et al. (2013). In brief, for all SVR
classifications we used epsilon-insensitive SVRs. Parameters were set with C=Infinity,

epsilon=0.00001 with ¢ = 2 (as in (Dosenbach, et al., 2010)). We use Spider

(http://people.kyb.tuebingen.mpg.de/spider/main.html), an object orientated environment for

machine learning in Matlab (MATLAB 7.1.0, The Mathworks, Natick, MA), for generating the

models (Fair et al., 2013).

Predictions of RTV for children with and without ADHD were based on the top 25 functional
connections that were consistently predictive in each fold (or round) of leave-one-out-cross-
validation (LOOCV). Here, the scan for each subject served as the test sample once, while the
remaining scans for all other subjects served as the training sample, creating as many folds of
LOOCV as there were subjects. This iterative method of training the sample developed a
decision function in MATLAB that was later used to make a prediction about a given test
subject. In this way, functional connectivity measurements informed the prediction of change in

RTV.

We first used baseline functional connectivity measurements to predict changes in RTV for the
sample as a whole (i.e. ADHD and TDC taken together as a single group, n = 72) and applied the
same parcellation strategy to study the same 99 ROlIs in each brain. After extraction of the
BOLD time-series for each ROI for each child, next, within each scan, we examined the
correlation (Pearson’s r) between the BOLD time-series for each ROl with the BOLD time-series

for all other ROIs from that scan. These correlation values represented functional connections
17



in the brain. Correlation values were subsequently placed in a 99x99 matrix for each of the 72
children, where each cell represented the strength of the functional connections between each
of the 99 ROIs for that child. Next, each child was removed, one at a time, leaving 71 matrices,
where each matrix represented the functional correlation matrix for each of the remaining

children.

Change in RTV for each of the remaining 71 children was placed in a vector. Then the
aforementioned correlation matrix and RTV vector were used to generate a new matrix, where
each cell represented the correlation between functional connectivity and RTV for each of the
remaining children. This new matrix was subsequently used to extract the top 25 features
based on the strength of their r values, as is done under univariate feature selection. We then
used MATLAB to generate a model that uses these top 25 features to predict change in RTV and
then tested the model for its ability to predict RTV for the child that was removed. Next, we re-
inserted the child that had been removed into the subject pool, removed the next child, and
then repeated this process until we had removed each child, generated a model based on all of

the remaining children, and put each child back.

Thus, there were 72 rounds (folds) in this process, which generated 72 models and 72 matrices
that contained the top 25 features used with each of these models. Those features that
consistently came out across all rounds of this process were termed consensus features.
Consensus features were subsequently placed in a new matrix, and the r-values across each

row were summed (i.e. node strength), as each sum contained the functional connections that
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comprised each ROI. This information was then used to map the functional connections back

onto the brain using CARET (Version 5.65).

Next, we divided the sample into ADHD only and TDC only and repeated the same methods
above for each group. Given n = 32 for the ADHD group, 32 models were generated and 32
matrices that contained the top 25 features used with each of these models was considered.
Similarly, for the TDC group (n = 40), 40 models and 40 matrices that contained the top 25

features for each of these models was derived.

Finally, we performed t-tests between the functional connections that were thought to be
predictive in ADHD vs. those that were predictive in TDC, in order to highlight functional
connections found to be significantly distinct (p<0.05) between the two groups. In this case,
summed t-scores were used, as these scores contained the functional connections between
each ROI, in order to map these functional connections back onto the brain as ROls (analogous

to the procedure above using r values).
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REsuLTs
Baseline functional connectivity measurements have the potential to predict longitudinal
changes in reaction time variability (Figure 1a). Predictive functional networks include the
cinguloopercular and ventral attention networks. In particular, connectivity between consensus
features in the sample as a whole (i.e. ADHD and controls combined), positively predicted
changes in RTV in the current sample, such that connectivity between consensus features

explained approximately 10% of the variance in change in RTV (p = 0.0027; Figure 1b).

However, as demonstrated in Figure 2b, this association is larger in the ADHD group than the
control group, at least qualitatively. In the ADHD group, connectivity between consensus
features positively predicted changes in RTV more strongly (Adjusted R? = 0.3183, p < 0.0001).
When considering only children with ADHD, predictive functional networks include the default
and visual networks in addition to the cinguloopercular and ventral attention networks (Figure
2a). Of note, this is a qualitative difference, as the ADHD-only model was not tested against the

ADHD+TDC model to denote a comparative difference (which we test more directly below).

Moreover, predictions of RTV also appear to improve in strength qualitatively when considering
only TDC (vs. ADHD+TDC taken together as a single group), and predictive functional networks
include the cinguloopercular, default, and dorsal attention networks (Figure 3a). Connectivity
between consensus features also appears to improve in its ability to explain the variance in
predicted changes in RTV on a qualitative level, explaining approximately 28.13% of the

variance of changes in RTV (P < 0.0001; Figure 3b).
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Thus, there is overlap in the brain networks that predict these changes in TDC compared to
children with ADHD, particularly between the cinguloopercular and default networks. However,
on a qualitative level, there are also certain predictive subregions within these networks that
appear to be significantly distinct in predicting changes in RTV in children with ADHD vs. TDC
(Figure 4). These subregions include the anterior insula/frontal operculum (within the
cinguloopercular network), the inferior parietal subregion (within the frontoparietal network),
the lateral parietal and inferior temporal subregions (within the default network), and the

ventral vs. dorsal attention networks.
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DiScusSION
In this preliminary study, we used baseline functional connectivity measurements in
conjunction with multivariate statistics to predict longitudinal changes in RTV in children with
and without ADHD. While there are functional similarities in the neural correlates thought to be
predictive of RTV in children with ADHD compared to TDC (e.g. overlap in the cinguloopercular
and default networks), there are also innate differences in the functional connectivity of these
two populations. These differences lie mostly in specific subregions that are distinct within
shared networks, including the anterior insula/frontal operculum (within the cinguloopercular
network), the inferior parietal subregion (within the frontoparietal network), the lateral parietal
and inferior temporal subregions (within the default network), and the ventral vs. dorsal
attention networks. Moreover, these intrinsic differences appear to play a significant role in
predicting longitudinal changes in RTV across these two groups, as evidenced by the fact that
consensus features become more robust in their predictive ability, at least qualitatively, when

the sample (ADHD+TDC) is separated into ADHD alone and TDC alone.

As described in Kofler et al. (2013), there are various etiological models that account for varying
RTV as an outcome of ADHD. For example, Attentional Lapse Models describe RTV as an index
of breaks in attention (Leth-Steensen et al., 2000). Some of the subregions within brain
networks that are thought to be distinct in ADHD vs. TDC in our study, particularly the anterior
insula/frontal operculum within the cinguloopercular network, are also suggestive of this, as
these are regions of the brain implicated in maintaining alertness and attention (Sadaghiani &

D’Esposito, 2014). Additionally, the lateral parietal and inferior temporal subregions within the
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default mode network, which are also thought to be distinct in ADHD vs. TDC in our study,
might also support models that consider RTV to represent lapses in attention or deficits in
maintaining arousal, as the default mode network is most active when the mind wanders and is
not engaged in a specific task (Karalunas et al., 2014). In fact, as described by Kofler et al. (2013)
and proposed by Sonuga-Barke & Castellanos (2007), it is these regular oscillations in resting-
state networks that lead to frequent lapses of attention in ADHD under the Default Mode

Network Model of ADHD.

Of note, while the demographics of our subjects are grossly similar, we did not control for
potential confounders, e.g. sex, age, race, SES, etc., in order to conserve power given our
relatively modest sample size. Therefore it is possible that these confounders contribute to the
magnitude of findings though it is unlikely that they explain the entirety of this magnitude.
Moreover, learning changes functional connectivity and the resulting spontaneous activity of
the human brain (Lewis et al., 2009). As such, rs-fcMRI serves as a reflection of the summed
experiences of a given individual (Lewis et al., 2009), and it is plausible that these experiences
are in part shaped by these potential confounders. What we have shown are regions of the
brain that are predictive of this behavioral change, and these precursors may have had an
effect on these brain regions or the functional connections between them. Thus, these brain
regions serve as gross predictors and thus downstream, potential biomarkers, with the effects

of these potential confounders inherent in them.
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Additionally, 7 out of our 72 subjects were sibling pairs, creating a mixed sibling, non-
independent design. There was no matching between cases and controls whom were
unrelated, as the primary aim of this study was to use the brain to predict changes in RTV
within participants in childhood, regardless of age, gender, and diagnosis. This study was not
examining how the brain changes with RTV, which would necessitate matching. However,
matching does become relevant in the secondary aim of determining how the models behave
when considering ADHD-only and TDC-only. While the groups were generally matched based on
age and race, gender does appear slightly skewed, and secondary analyses should control for

gender as well.

Furthermore, RTV is a measure composed of several different parameters. For example,
Karalunas et al. (2014) note that several different cognitive processes, including stimulus
encoding, information processing (the speed of which is also affected by variables such as
motivation, level of arousal, etc.), and motor preparation are involved in RTV, and separating
RTV into these components is often completed using various statistical models. One such model
is the diffusion model, which focuses on several parameters including drift rate. Drift rate is
described as the rate at which information is collected in relation to the criteria an individual
has set to elicit a response. In the diffusion model, slower drift rates denote information
processing that is slower and less efficient. Children with ADHD are known to have slower drift
rates, and this is said to, at least in part, explain increased RTV in children with ADHD (Karalunas

et al., 2014). Therefore, while our results suggest a model to predict future RTV, our results are
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not specific as to what is being predicted, and future studies may elicit better specific

parameters of RTV to be used in prediction.

Moreover, individuals with ADHD are known to exhibit decreased post-error slowing compared
to TDC, such that after making an error, controls have a tendency to slow subsequent reaction
times as an adaptive cognitive mechanism in order to prevent further errors (Balogh & Czobor,
2014). The differential post-error slowing that is typical of children with ADHD compared to TDC
was not controlled for in this study. As a result, it is possible that this difference in post-error
slowing between the two groups could also confound estimated differences in RTV between
these groups. Subsequent analyses should determine whether within a particular dataset, this

differential post-error slowing confounds results.

While we recognize that this work has limited cross-replication given its small power, this work
is still promising, at least as a stepping stone, in improving our assessment of cognitive
development as it relates to RTV, both in children with and without ADHD. It is important to
emphasize that this is a preliminary study illustrating proof of concept, and as such, we
recognize that a larger sample size is necessary in order to test these conclusions, with a true
training set and a true test set, so that LOOCV does not become necessary. Moreover, because
we used LOOCV, when examining the sample as a whole, for example, we derived 72 models.
Yet, in order for this to be truly clinically useful, we would need 1 model. Ultimately, however,
given these limitations, this work is important from a more global perspective - if we can

predict a given child’s RTV trajectory, then we have the capacity to ultimately stratify children
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according to risk, and to eventually create timely, targeted interventions to prevent long-term
impairments in RTV. Thus, this work has the potential to characterize an approach aimed at
identifying children at high-risk of deficits in future cognitive performance and thus associated

life outcomes such as academic achievement.
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SUMMARY & CONCLUSIONS
Overall we find that baseline rs-fcMRI has the potential to predict longitudinal changes in RTV in
children with ADHD, as well as TDC. The functional connections that predict RTV in these two
groups overlap in some regions, but are significantly distinct in other regions. These intrinsic
differences in the functional connectivity of these two populations appear to play a significant
role in predicting longitudinal reaction time variability across these two groups. Future work
will be needed to confirm these findings, but the current results provide a needed and
important stepping stone to using non-invasive imaging as a prognosticator of future cognitive

functions in ADHD.
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Figure 1 a) Regions represent functional connections found to be consensus features in prediction. Each ROI
served as a node in determining patterns of regions that were predictive. To determine the connection
strength in each node, the strength assigned to an individual functional connection (i.e. between the two
ROIs that make up that functional connection) was summed. Therefore, nodes with the greatest predictive
connectivity are assigned a greater strength and are represented in green. Predictive functional networks
include the cinguloopercular and ventral attention networks.

b) The regression line on the scatterplot reflects predicted vs. true change in reaction time variability (in
milliseconds), where each subject is represented by an asterisk. Connectivity between consensus features
positively predicts changes in reaction time variability in the current sample (Adjusted R? = 0.10, p = 0.0027).
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Figure 2 a) When considering only children with ADHD, predictive functional networks improve in strength and
include the cinguloopercular, default, visual, and ventral attention networks. b) Connectivity between
consensus features also improves in its ability to positively predict changes in reaction time variability when the
sample only includes children with ADHD (Adjusted R? = 0.3183, p < 0.0001).
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Figure 3 a) When considering only TDC, predictive functional netweorks improve in strength (relative to ADHD
& TDC taken together as a single group) and include the cinguloopercular, default, and dorsal attention
networks, while certain predictive subregions are distinct in TDC. b) Connectivity between consensus features
improves in its ability to positively predict changes in reaction time variability when the sample only includes

TDC (Adjusted R? = 0.2813, p < 0.0001).
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Figure 4) Group comparison between predictive networks in ADHD vs. TDC reveals a
degree of overlap (particularly between the cinguloopercular and default networks), while
uncovering specific distinct subregions within these networks. These subregions include
the anterior insula/frontal operculum (within the cinguloopercular network), the inferior
parietal subregion (within the frontoparietal network), the lateral parietal and inferior
temporal subregions (within the default network), and the ventral vs. dorsal attention
networks.
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