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Abstract 

Dynamics and Algorithms for Stochastic Search 

Genevieve Beth Orr, Ph.D. 

Oregon Graduate Institute of Science & Technology, 1995 

Supervising Professor: Todd Leen 

In this thesis we develop a mathematical formulation for the learning dynamics of 

stochastic or on-line learning algorithms in neural networks. We use this formulation to 

1) model the time evolution of the weight space densities during learning, 2) predict con- 

vergence regimes with and without momentum, and 3) develop a new efficient algorithm 

with few adjustable parameters which we call adaptive momentum. 

In stochastic learning, the weights are updated at each iteration based on a single 

exemplar randomly chosen from the training set. Treating the learning dynamics a 

Markov process, we show that the weight space probability density P(w,  t )  can be cast 

as a Kramers-Moyal series 

where L K M  is an infinite-order linear differential operator, the terms of which involve 

powers of the learning rate p. We present several approaches for truncating this series 

so that approximate solutions can be obtained. One approach is the small noise expan- 

sion where the weights are modeled as a sum of a deterministic and noise component. 

... 
Xlll 



However, in order to provide more accurate solutions, we also develop a perturbation 

expansion in p.  We demonstrate the technique on equilibrium weight-space densities. 

Unlike batch learning, stochastic updates are noisy but fast to compute. The speed- 

up can be dramatic if training sets are highly redundant, and the noise can decrease the 

likelihood of becoming trapped in poor local minima. However, acceleration techniques 

based on estimating the local curvature of the cost surface can not be implemented 

stochastically because the estimates of second order effects are much too noisy. Disre- 

garding such effects can greatly hinder learning in problems where the condition number 

of the hessian is large. A matrix of learning rates (the inverse hessian) that scales the 

stepsize according to the curvature along the different eigendirections of the hessian is 

needed. We propose adaptive momentum as  a solution. It results in an effective learning 

rate mat* that approximates the inverse hessian. No explicit calculation of the hessian 

or its inverse is required. This algorithm is only O(n) in both space and time, where n 

is the dimension of the weight vector. 

xiv 



Chapter 1 

Introduction 

The goal of this thesis is to improve understanding of the behavior of stochastic learning 

algorithms by mathematically modeling the weight dynamics. We then use this un- 

derstanding to develop and implement a computationally efficient method for speeding 

learning. A stochastic learning algorithm is a method of estimating an optimal value of 

a parameter (e.g. weight in a network) by iteratively updating that parameter based on 

both the current parameter value and an individual datum (input) presented from the 

environment. The fluctuations of the incoming data appear as random noise, making 

it natural to treat these algorithms probabilistically. Stochastic learning can be con- 

trasted with batch learning which updates thc parameter value a t  each iteration based 

on an average over all inputs. Batch learning is deterministic and does not exhibit the 

fluctuations present during stochastic Icarning. 

Stochastic learning algorithms for neural rlctworks have important advantages over 

batch training methods. They require lcss storage and less computation a t  each iteration 

which is particularly important when training sets arc large and redundant. The inherent 

noise in the learning process also lessens t.hc ch;tncc of becoming stuck in local optima. 

At the same time, the convergence (c.g. in mean square) is guaranteed if the learning 

rate is annealed (decreased slowly towards zero) at  late times to remove the noise. 

The general form of the stochastic algorithm we consider is 



where t is the time1, w(t) E Rm is the weight vector, x(t) E Rn is the data exemplar pre- 

sented a t  time t ,  p(t) is the learning rate, and H[. . .] E Rm is the update function. The 

exemplars x(t) can be either inputs or, in the case of supervised learning, inputltarget 

pairs. For batch learning, the update function becomes H[wt] G (H [wt , xt]), where (-), 

denotes average over all exemplars in the training set. Typically, the learning rate is 

either held constant p(t) = po or is annealed according, say, to the schedule p(t) = po/t. 

For gradient algorithms, the update function is the negative of the gradient of some cost 

function, E. 

1.1 Modeling Stochastic Search 

In the first half of this thesis, we examine the late time convergence behavior for stochas- 

tic algorithms from a mathematical perspective. We treat weight updates probabilisti- 

cally as a Markov process whose weight-space density can be described using the infinite 

order differential equation referred to as the Kramers-Moyal Expansion (KME). Much 

of our analysis focuses on meaningful ways of truncating the Kramers-Moyal Expansion, 

e.g. to the second order Fokker-Planck equation (FPE), so that approximate solutions 

can be computed. We examine the case where learning rate is held constant as well as 

the case where the learning rate is annealed. Convergence behavior in these two regimes 

is quite different and thus needs to be treated separately. Most previous theoretical 

development has examined what happens for a constant learning rate. We review these 

results and extend them to the annealed regime. 

1.2 Speeding Learning using Curvature 

For many optimization algorithms, whether stochastic or batch, convergence rates can 

be very sensitive to the choice of model parameters (e.g 1 1 ) .  Techniques for speeding 

batch algorithms often involve estimating either directly or indirectly the optimal values 

'To simplify notation we will often express the time as a subscript, e.g. w ( t )  = wt .  



of these parameters based on local properties (e.g. curvature) of the cost surface. 

Basic gradient descent algorithms do not take curvature into account. The learning 

rate parameter is picked in some ad hoc manner and the weights are moved in a direction 

opposite the gradient of the cost function. There are two problems with this. First, the 

gradient direction is often not the most direct path to the minimum. Second, a poor 

choice of learning rate parameter can have a large effect on convergence rate. If slightly 

too large, divergence can result. If too small, learning can be very slow. 

Second order extensions of gradient descent attempt to correct these problems by 

modeling the cost surface, E, as locally quadratic. If this assumption is valid then the 

optimal weight vector w* can be predicted in from the current weight w, in one (batch) 

step by 

This is the idea behind Newton's Algorithm. Note that the learning rate "parameter7' 

in this case is a matrix (the inverse Hessian) that depends on the current position of the 

weight. The Hessian is the second derivative of the cost function with respect to the 

weights and will be denoted by R = v:E. 

If the surface is not precisely quadratic, the predicted optimal weight is still likely 

to move the current weight much closer to the true optimal weight. Repeated updates 

can then be made. The downside of this method is that the Hessian is a matrix of size 

m2 where m is the number of weights. For large networks, computing, storing, and then 

inverting R will generally offset any gains made in speed-up. Convergence takes fewer 

iterations but each iteration is very costly. 

To reduce computation and storage space, approximations of second order methods 

are often made. For example, instead of using the full Hessian, the linearized Hessian (see 

Chapter 8) is used. The linearized Hessian ha. the advantage that it can be written as 

an outer product thus simplifying some computation. In addition, the linearized Hessian 

is positive definite thus providing added stability. 

Another approximation is to assume that the Hessian is block diagonal, i.e. that the 



correlation between weights for example between layers is zero. The most extreme case is 

to assume that the Hessian is diagonal thus making storage requirements only O(m) and 

making inversion trivial. How much is lost by neglecting off-diagonal elements depends 

on the problem. For poorly conditioned problems whose weight axes are not aligned 

with the eigendirections of the Hessian, this assumption can be quite poor. 

Other simplifications include the quasi-Newton methods (e.g. BFGS) which keeps a 

positive definite estimate of the inverse Hessian directly. Storage is still O(m2) but no 

matrix inversion is needed so that computation time is reduced from O(m3) to  O(m2). 

These algorithms are known to work well for small networks. However, as the number of 

weights enter into the thousands (not uncommon for real world problems) the compu- 

tation time can still become excessive. Storage requirements may also exceed maximum 

capacity although as memory becomes cheaper and more available this may be less of a 

problem. 

These techniques all use batch learning because accurate estimates of local curvature 

are required; Stochastic estimates of local curvature are just too noisy. One approach to 

remedy this problem is to use averages over time (iterations) instead of batch averages 

over the training set to smooth out the noise. Time averaging decreases the numerical 

sensitivity to noise while still retaining the efficiency of stochastic search. 

1.3 Time Averages 

One example of time averaging was suggested by Venter [Ven67]. His algorithm estimates 

the diagonal components of the Hessian during the annealing phase of stochastic search. 

At each timestep the algorithm computes a finite difference approximation of the Hessian 

from two stochastic gradient estimates computed at weights a small distance ct to either 

side of the current weight. The difference approximations arc averaged over time. An 

important and necessary component of this algorithm is that the finite difference interval 

ct is annealed along with the learning rate. The weight update for each component of 



the weight has the form 

where 

At = min(max(a,B,), b) 

0 < a < X < b < oo, where X G (d2&/dw2) z 

C 
Ct = - 1 

where 0 < y < - 
tr 2'  

Note that two inputs, x2t and x2t+l, are used at each iteration t. This algorithm has 

several disadvantages. First, it assumes a diagonal Hessian. Second, it is not clear how 

to best choose the parameters y, a,  b, or c. 

One very simple example of time averaging that has been observed to improve con- 

vergence rates for gradient descent learning is to add a momentum term. Momentum, 

as we will show, amounts to having weight updates based on an exponential average 

of previous gradients rather than just the current gradient. In this thesis we extend 

the theoretical analysis of equation (1.1) to include convergence results for stochastic 

learning with momentum. We show that if the momentum parameter is chosen properly, 

convergence rates can often be improved. Of course, the problem of choosing the optimal 

learning rate parameter is now replaced with the equally difficult task of choosing the 

optimal momentum parameter. 

1.4 Adaptive Momentum 

The second half of this thesis examines using momentum as a potential method for speed- 

ing stochastic search. We study constant momentum for both constant and annealed 

learning rates. In addition we present a novel technique for speeding learning during the 

annealing phase of stochastic search. We refer to this as adaptive momentum. Adaptive 



momentum was inspired by our theoretical results on constant momentum obtained in 

the first half of the thesis. It is a stochastic form of the optimal momentum parameter 

matrix that adjusts itself based on the local curvature. No momentum parameter needs 

to be set by the user. It achieves fast asymptotic convergence rates independent of the 

learning rate. It is also efficient: Given m weights, each iteration is O(m) in both space 

and time. We apply the algorithm to both linear and nonlinear problems of varying size 

and complexity. 



Chapter 2 

Weight-Space Probability Densities 

In this chapter we consider algorithms of the form 

where the x(t) are now treated as i.i.d. random variables with some known density 

p ( z )  and where p is a constant. Equation (2.1) describes a random walk on w with 

fixed timesteps (At = 1) and variable spatial steps Aw. The weights are thus random 

variables whose probability density a t  time t we denote by P(w, t). 

In the first part of this chapter we develop a Krarners-Moyal Expansion (KME) for 

the time evolution of P ( w ,  t). Unfortunately the KME, being of infinite order, is not in 

general1 amenable to analytic solution, thus, a large part of our analysis is devoted to 

developing principled methods of approximation. We also develop a backwards KME for 

describing the distribution of first passage times. At the end of the chapter we compare 

the theoretical predictions with simulations for several small problems. 

2.1 Kramers-Moyal Expansion and Weight-Space Densi- 

ties 

In this section we present two different derivations of the Kramers-Moyal expansion 

(KME) for P(w, t). The first is via the Kolmogorov equation which results in a differential 

'See [LM83] for a case where i t  sohable. 



difference equation. Transition to continuous time gives the KME. The second derivation 

is via the (continuous time) Master Equation. Both derivations require conditions for 

which the transition to continuous time is valid. 

2.1.1 via the Kolmogorov Equation 

Equation (2.1) describes a Markov process whose density evolves according to  the Kol- 

mogorov equation 

~ ( w ' ,  (n + 1 ) ~ )  = dw P(w, n r )  T(w'(w) S (2.2) 

where T has been introduced as a timescale (7 = 1 in (2.1)) and where T(wl(w) is the 

single step transition probability from state w to w', 

where 6 is the Dirac Delta function. Equation (2.2) is an integral equation that is gen- 

erally difficult to evaluate, however, it can be recast as a differential-difference equation 

[LO941 by expanding the transition probability (2.3) as a power series in /L (see Appendix 

A) to give 

where wj, and Hj,  are the jLh component of weight, and weight update, respectively. 

Lctting t = nT and assuming T << t .  thc left side approximatcs2 a derivative to give 

This equation is called the Kramers-Moyal expansion. Approximate sollitions can be 

found by truncating to finite order. In particular. wc can truncate to second order in p 

to obtain a Fokker-Planck equation. This is the subject of Section $2.2. 

'See appendix D for a more detailed discussion of the transition to continuous time. 



2.1.2 via the Master Equation 

Heskes [HSK92] uses an alternative derivation of (2.5) via a master equation. A master 

equation can be obtained from (2.1) by treating time between transitions as a random 

variable. In (2.1) we assumed that transitions occur precisely a t  t = 1,2,.  . . so that at 

t = nr there have been exactly n transitions. Drawing on the work of Bedeaux [BLLS71], 

Heskes instead sets the number of transitions in time t be Poisson distributed. That is, 

the probability of there being exactly i transitions in time t is 

where r is the average time between transitions. Note that both the mean and the 

variance of the number of transitions in time t is equal to t / r .  We now have that that 

the average rather than the exact number of transitions at t = nr is n. Defining pi (w ) as 

the probability of being at w after exactly i transitions, we then can write the probability 

of being at weight w at time t as 

Note that Pg is not quite the same as the P in (2.2). At late times, however, the spread 

of 4 about the mean t / r  becomes small relative to t so that P4 is a good approximation 

of p3. 

To obtain the master equation, we first differentiate (2.7) with respect to time 

3Bedeaux also discusses bounds on the difference between the solution of the master equation and 
Pe when other densities for d( i ,  t )  are used. Sote that if we let d(i, t )  = 6(t - i )  then we return to our 
original formulation where transitions occur precisely at integer m.lues of t. 



The first term on the right side can be written as 

where 

is the transition probability from state w' to w per unit time. Inserting (2.11) into (2.10) 

gives the master equation 

Just as we expanded the Kolmogorov equation in Appendix A, we can expand the 

right side of (2.13) in a power series [GarSol resulting in the Kramers-Moyal expansion 

in (2.5) but with P replaced by P+. Recall, for r << t ,  Pm and P can be treated as 

approximations of each other. 

In summary, the weight-space probability density associated with the discrete time 

stochastic algorithm given in (2.1) can be modeled a t  late times (r << t )  by the Krarners- 

Moyal expansion, an infinite order partial differential equation. This expansion can be 

derived either via a Kolmogorov equation as in subsection (2.1.1) or via a master equation 

as just shown here. 

2.2 Fokker-Planck Equation 

The Kramers-Moyal expansion is in general intractable so that approximations must be 

made. Knowing how to do this in a meaningful way is difficult. In this chapter and in 

chapter 3 we present several approaches. 



One approach is to reduce the KME to a second order equation known as the Fokker- 

Planck equation. The general form of a nonlinear Fokker-Planck (1-dimension) is 

where A(y) and B(y)  > 0 are any real differentiable functions. A is usually referred to 

as the drift term and B as the diffusion or fluctuation term. The linear Fokker-Planck 

equation refers to the case where A is linear in y and B is a constant. 

Using the Fokker-Planck equation is appealing because it has been well studied in the 

context of diffusion processes in physics and chemistry. Thus there is a well understood 

physical interpretation that fits well with our intuition about the way weights evolve in 

time. 

There is another somewhat more obscure reason for using a Fokker-Planck equation 

that is a result of the Pawula Theorem (see [Ris89] for details and proof). Stated in 

terms of the Krarners-Moyal expansion for the transition probability P(w, tlw', t ' ) ,  the 

Pawula Theorem in Risken's words concludes that "the expansion may stop either after 

the first term or after the second term, if it does not stop after the second term it must 

contain an infinite number of terms." That is, if only a finite number of terms are kept 

past the second term, the transition probability must have negative values. However, as 

we shall see in the next chapter, this does not necessarily mean that these extra terms 

are useless. 

Using the Fokker-Planck equation to model stochastic learning algorithms for neural 

networks is not new (c.g. see [HSK92, RS88. DV93, RSWSO, HPS93]), yet there still 

remains a limited understanding of the conditions under which such an approximation 

is valid. In this section, we assume that the Kramcrs-Moyal equation (or equivalently, 

the master equation) accurately models the probabilistic late time development of (2.1). 

Given this, we are interested in understanding in what way a Fokker-Planck equation is 

an appropriate limit or approximation of the Krarners-Moyal expansion. 



2.2.1 Fokker-Planck Limit 

The infinite order Kramers-Moyal equation (2.5) is unsolvable analytically as it stands, 

however, one can ask what it reduces to in the limit of infinitely small stepsize, i.e. p -+ 0. 

However, Gardiner [Gar901 shows that the master equation (2.13) (or equivalently the 

Kramers-Moyal equation) reduces to a Fokker-Planck equation in the limit of infinitely 

small jump size only if the "scaling assumption" holds. The scaling assumption states 

that the average stepsize and the variance of the stepsize must both be proportional to 

the same parameter which, in this case, is p. If the scaling assumption does not hold, 

we can not assume that the higher order terms in (2.5) vanish. Unfortunately, as Heskes 

points out, the scaling assumption does not hold for (2.1) as can be seen from the fact 

that (Aw), O(p) and ((Aw - (AW),)~), N 0(p2) .  Thus, there is no limiting case 

of the KME that results in a Fokker-Planck equation. 

2.2.2 The Fokker-Planck Approximation: Truncation of the Kramers- 

Moyal Expansion 

Although the Fokker-Planck equation can not be considered as a limit of the master 

equation, it can be considered as an approxim,ation to it. By viewing the Krarners-Moyal 

expansion (2.5) as an expansion of the master equation in the "small" parameter p ,  we 

can truncate (2.5) to obtain the nonlinear Fokker-Planck equation (I-dimension) 

'7- 
d 

aP(w,t) = - Id -  (rrl(w) P(w, t))  + -- 
dt p2 @ ( n 2 ( ~ )  P(w,t))  (2.15) aw 2 aw2 

where a; - ( ~ ~ ( w , z ) ) ~ .  We present the XOR problem [L092, OL931 later in thc 

chapter to illustrate how well (2.15) approximates the density P(w, t). 

2.2.3 The Small Noise Expansion for Behavior within a Basin 

The argument against truncating the Kramers-Moyal expansion as above to obtain a 

nonlinear Fokker-Planck Equation is that P(w, t)  implicitly depends on p so we can not 

be certain of the order of the truncated terms. Heskes [Hes94] justifies this statement by 

substituting the stationary solution of the one-dimensional Fokker-Planck equation back 



into the Kramers-Moyal expansion. He finds in this case that "all higher order terms are 

of the same order of magnitude in q [the learning rate] as the first two terms." 

To be confident that the truncated terms can be neglected, we explicitly model the 

p dependence in (2.5) using a technique referred to as the small noise expansion [Hes94, 

Gar90, vK921. The small noise expansion begins with the ansatx that w can be written 

as 

w = d(t) + f i t  (2.16) 

where t is a random variable that represents the nondeterministic deviations about a 

deterministic path d(t). Note that both 4 and t (and thus also P(<, t)  ) are assumed to 

be independent of p (at least to O(p)) .  This formulation is consistent with our intuition 

about the behavior of (2.1) after the weights have settled into a single basin of attraction: 

4 represents the "true gradient" path and the size of the fluctuations about this path 

depends on the learning rate p .  

Making a change of variable to t [HSK92] transforms the Kramers-Moyal expansion 

into the set of equations (see appendix (B)) 

t)  
m ( - 1 ) l p Y  ai 

a t  = " m=2 C C i = l  i!(m - i)! aE ' 

njm-i'($J(t))7 {E"-'P((, t)) (2.18) 

and where we have assumed that the timescale T scales as /L = cr for some constant c. 

Equation (2.17) for describes the deterministic motion along the true gradient, 

while (2.18) describes the fluctuations about the true gradient. To lowest order (m=2), 

(2.18) becomes the linear Fokker-Planck equation (with c = l )  

'Note that the previously defined a, is related to a!') by 0; = a!') 



Note that p does not appear. Thus, to lowest order, P ( t ,  t) is independent of p and so 

fulfills the conditions of the original ansatz. 

Equation (2.18) can be used to solve for ( 0 ,  and (t2) since 

Using the right hand side of (2.18) and integrating by parts gives 

Keeping only the m = 2 terms gives 

where 

r ( t l ,  t2) 2c l ;  a!l)(b(T)) d7. 

The ansatz, however, does not  seem appropriate for describing the transitions be- 

tween basins. For example, consider gradient descent. Equation (2.17) shows that the 

deterministic component decays down the gradient (cry) is negative the gradient). To 

move between basins would requiro moving up the gradient for a t  least a short period 

of time. In addition, equation (2.25) diverges if a!') is positive. This corresponds to 

regions where the Hessian of cost function is negative, i.e. the regions between basins. 

Note also that Fokker-Planck equation in (2.20) in linear in (. Thus Heskes argues 

that if we restrict ourselves to a Fokker-Planck equation, only the linearized equation 

for P((, t )  is meaningful. In other words, using a nonlinear Fokker-Planck as in equation 

(2.15) can only produce spurious results. In addition, this linearized Fokker-Planck is 



only valid a t  late times when the weight-density is completely contained within a basin, 

i.e. it is not able to describe basin hopping. However, as the example with the XOR 

problem will demonstrate, the nonlinear Fokker-Planck equation in (2.15) when applied 

directly to w (as opposed to J )  is able to accurately model the complex nonlinear behavior 

that is involved in basin hopping. The results hardly seem spurious. Why it does such 

a good job is not clear. When the learning rate is large, (2.15) does fail, but that is not 

surprising because the higher order terms are expected to become more important as p 

increases. In addition, a continuous time equation ceases to be a good approximation of 

the behavior of the weights when the (finite) stepsize is large. 

2.2.4 Higher Order Terms 

Van Kampen [vK92, pp.267-2721 explores the effect of keeping the next higher order 

term in (2.18). Not only do higher powers of < appear but so do derivatives up to fourth 

order; a far different result than would have been obtained had the next term in the 

Kramers-Moyal expansion been included. However, the resulting equation for P(( ,  t )  is 

no longer independent of p violating thc original ansatz. The next chapter presents an 

alternative approach for obtaining higher order terms for the special case of equilibrium 

weight densities. 

2.3 The Backward Kramers-Moyal Expansion and First 

Passage Times 

One way of characterizing convergenre of the weights is by the f i r s t  passage time: the 

time required for a network initialized at, wo to first pass into an E neighborhood D of a 

global or local optimum w* (see Figure 2.1). In this section we derive analytic expression 

for the first passage time. 

We begin by writing the weight space density conditioned on the initial weight wo at 

t = O a s  

P ( w ,  nJw o ,  0 )  = dw' P ( w ,  nJw ' .  1 )  T ( w l J w o ) .  J (2.27) 



Figure 2.1: First Passage Time. Sample search path entering E neighborhood 
of optimum w' 

That is, the probability of transitioning from wo to w in n iterations equals the probability 

of first transitioning to w' in one timestep, times the probability of then transitioning 

from w' to w in n - 1 timesteps, summed over all w'. Substituting in the expression for 

T(w1lw0) gives 

In the last step we have used the property of time-shift invariance, i.e. P(w, n(wl, m) = 

P ( w ,  n - 1 (w', m - 1). This property holds because we are using a constant learning rate 

and we have assumed that the input density p(x) is stationary. 

Next we let G,(n;wo) denote the probability that a network initialized a t  wo has 

not passed into the region D by the nth iteration. We obtain G, (n; wo) by integrating 

P ( w ,  n I wo, 0) over weights w not in D; 

where DC is the complement of D. Substituting equation (2.29) into (2.30) and integrat- 

ing over w we obtain the recursion 

Before any learning takes place, we assume that none of the networks in the ensemble 

have entered D. Thus the initial condition for G, is 



Networks that have entered D are removed from the ensemble (i.e. the surface of D is 

an absorbing boundary). Thus G, satisfies the boundary condition 

Finally, the probability that the network has not passed into the region D on or 

before iteration n - 1 minus the probability the network has not passed into D on or 

before iteration n is simply the probability that the network has passed into D exactly 

at iteration n. Thus the first passage time is 

pfpt  (n; wo) = G, (n - 1 ; wo) - G, (n; wo) (2.34) 

where pfpt(n; wo) is the probability that a network initialized a t  wo first enters the 

+neighborhood D a t  the nth iteration. 
Finally the recursion (2.31) for G, can be expanded in a power series in p to obtain 

the backward Kramers-Moyal equation 

Note that we can also truncate (2.35) to second order in p to obtain the backward 

Fokker-Planck equation for G 

2.4 Simulations 

In this section we examine the XOR problem and competitive learning. We compare 

simulations of the weight-space densities and first passage times with the theoretically 

predicted values. The theoretical values are computed using the nonlinear Fokker-Planck 

equation obtained by truncating the Kramers-Moyal Equation. The recursive solution 

(2.31) for the first passage time is also examined. We postpone until the next chapter 

the comparison of the nonlinear Fokker-Planck equation with the small noise expansion. 
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Figure 2.3: XOR. Cost function for 1- 
Figure 2.2: XOR architecture D slice. 

2.4.1 The XOR Problem: Weight-Space Densities 

The XOR problem is a well studied, simple but nontrivial nonlinear problem. We use 

the standard 2-input/2-hidden/l-output architecture (9 weights = 6 connecting weights 

+ 3 biases) shown in Figure 2.2. The network is trained by stochastic gradient descent 

on the cross-entropy error function [LP91] given by 

where yt is the activation of the output node and dt is the desired target value a t  timestep 

t .  The hidden and output nodes use the sigmoid response function f (x) = 1/(1 + e-"). 

To provide global optima a t  finite weight values, the output targets are set to 6 and 

1 - 6, with 6 << 1. 

For computational tractability, we reduce the state space dimension by constraining 

the search to one-dimensional subspaces of the weight space. Figure 2.3 displays the cost 

function along one such subspace. The parameterization v is chosen to pass through a 

global optimum a t  v = 0, and a known local optimum [LP91] a t  ?I = 1.0. In this 

one-dimensional slice, another local optimum5 occurs at  v = 1.24. 

Figure 2.4a shows the evolution of P(71, t ) estimated by simulation of 10,000 networks, 

each receiving a different random sequence of the four inputltarget patterns. Initially 

the density is peaked up about the local optimum at v = 1.24. At intermediate times, 

there is a spike of density at  the local optimum at v = 1.0. This spike is narrow since the 

diffusion coefficient is small there. Figure 2.4b shows the evolution of P(v ,  t )  obtained 

 he local optimum at v = 1 is a local minimum even when viewed in the entire 9 dimensional space 
whereas local minimum at v = 1.24 is a local minimum only in the I-dimensional space. 
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Figure 2.4: 1-D XOR. Time evolution of weight-space density (J.l= .025): a) simulation,
b) Fokker-Planck solution.

by numerical integration6 of the Fokker-Planck equation.

Agreement between the simulated and the Fokker-Planck density is very good. It

is important to note that the nonlinear Fokker-Planck equation is able to accurately

capture the highly nonlinear behavior of the density as it transitions between basins of

attraction as well as the behavior within a basin. This result contradicts Heskes [HK93]

claims that only a linear Fokker-Planck equation has any meaning, that is, any features

resulting from the nonlinearity can not be trusted. However, our empirical evidence here

suggests that for "small" learning rates the nonlinear Fokker-planck provides a good

estimate of pew, t) even when transitions between basins occurs.

For large learning rates, the agreement between the Fokker- Planck predictions and

simulations is quite poor. An example of this is shown below for XOR first passage times.

In such cases, the contribution of the higher order truncated terms can not be neglected.

In addition, the continuous time assumption ceases to be a good approximation especially

at early times.

We next look at the weight-space density for a 2-D slice through the XOR weight

space. Figure (2.5) shows the time evolution of the weight-space probability density

computed by numerical integration of the forward Kolmogorov equation. The learning

rate is JL= 0.25. Each graph in this figure displays the 2-dimensional cost surface with

the weight-space density superimposed on top of it. The weights are initialized at the

back right (see spike at t = 0). The density moves down the cost surface and ends up in a

global minimum at t = 100. Notice that at t = 34 some of the density temporarily spends

GyVeuse a Crank-Nicholson differencing scheme for the numerical integration [PFTV87, for example].
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True Gradient Descent

Figure 2.5: 2-D XOR.: Weight-space density for stochastic gradient descent computed by
numerical integration of the Kolmogorov equation. Bottom right graph shows the path
taken using true (batch) gradient descent where each spike represents the deterministic
position of the weight at one instant in time.



Figure 2.6: 1-D XOR. Simulated (histogram) and theoretical (solid line) distributions of 
first passage times for the cost function in (2.3) with vo = 1.2, e = . l ,  and p = .025. 

time in a local minimum (the right spike) before moving on to the global minimum. For 

comparison, the bottom right graph shows the path (all 100 timesteps) taken by the 

weights during true gradient descent (i.e. batch) training. 'Due gradient descent is 

deterministic so the "density" a t  each time-step is a delta function. After 100 timesteps, 

the weights trained by true gradient descent are trapped in a local minimum. 

2.4.2 The XOR Problem: First Passage Times 

For the cost function shown in Figure 2.3, we calculate the distribution of first passage 

times for networks, initialized at v = 1.2, entering within e = 0.1 of the global optimum at 

71 = 0. For this example we numerically integrate the backward Fokker-Planck equation 

given in (2.36). In Figure 2.6 we compare the theoretical predictions (solid line) with 

simulations from an ensemble of 10,000 networks (histogram) initialized a t  v = 1.2. For 

this example the agreement is good a t  the small learning rate (p  = 0.025) used, but 

degrades for larger p as higher order terms in the expansion (2.35) become significant. 

Figure 2.7a displays another 1-dimensional subspace for the XOR problem. Figure 

2.7b compares simulations (histogram) with the Fokker-Planck solution (dashed). Here, 

the Fokker-Planck solution is quite poor because the steepness of the cost function results 

in large contributions from higher order terms in (2.35). We also display in Figure 2.7b 

the exact density (solid) computed from the recursion in (2.31). As expected, the exact 

and simulated densities agree very well. 

2.4.3 Competitive Learning: First Passage Times and Basin Hopping 

As a final example of first passage times, we consider competitive learning with two 

2-D weight vectors symmetrically placed about the center of a rectangle. Inputs are 

uniformly distributed in a rectangle of width 1.1 and height 1. Figure 2.8 displays the 
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Figure 2.7: l-D XOR - second example. a) Cost function. b) Simulated (histogram) and 
theoretical (lines) distributions of first passage times with vo = 1 .O, e = . l ,  and p = .05. 

Figure 2.8: Competitive Learning. Inverted log of cost function. 

log of the cost function inverted so as to better scc that there are two global and two 

local optima. 

Figure 2.9a shows a sample path with weights started near the local optimum (circles) 

and switching to hover around thc global opt.imrim. The measured and predicted (from 

numerical integration of (2.31)) distributio~i of times required to first pass within a 

distance E = 0.1 of the global optimum is sliown in Figure 2.9b. 

2.5 Summary 

In this chapter we have studied thc timc-evohltion of the weight density during learning 

using thc Kramers-Moyal expansion derived either from thc Kolmogorov equation or a 

master equation. We discuss how to truncatc the Kramcrs-Moyal equation to obtain 

approximate sohltions to the full expansion. Wr, present two approaches for truncating. 

The naive approach is to view thc Kramcrs-Moyal expansion as an expansion in the 



b) First Passage Time 

Figure 2.9: Competitive Learning. a) Data (small dots) and sample weight path 
(crosses). Arrows point to initial weight configuration (circles). b) First passage times. 
E = .1 and p =  .05. 

small parameter p and to truncate to some order in p. For example, truncating to 

second order results in the nonlinear Fokker-Planck equation (2.15) which surprisingly 

does a good job a t  predicting the complex time evolution across basins of the density for 

the 1-dimensional XOR problem when the learning rate is small. 

The argument against truncating in this manner is that the density implicitly depends 

on 11 so that the order of the truncated terms can not be determined strictly by the 

explicit power of p. The small noise ansatz in (2.16) was then introduced as a way 

to explicitly model the 11 dependence. This results in a deterministic equation for the 

average trajectory and a linear Fokker-Planck equation for the behavior of the noise 

about this trajectory. 

Heskes used the results from the small noise expansion to argue that any nonlinear 

bchavior present in the nonlinear Fokker-Planck equation can only be spurious. However, 

our examples with the XOR problem clearly show that much of the nonlinear behavior 

is being captured by the nonlinear Fokker-Planck equation. Despite this, we do believe 

that to properly truncate thc Krarners-Moyal equation the p dependence must be made 

explicit. The next chapter presents anothcr approach for doing this that makes it possible 

to compute solutions beyond the lowest order. 



Chapter 3 

Perturbation Analysis for LMS 

In this chapter we use perturbation theory to explicitly model the p dependence in the 

Krarners-Moyal expansion for the equilibrium density P,(w) G P ( w ,  00). This technique 

enables us to recursively compute any finite order approximation of P ( w )  in terms of 

the lower order approximations. Thus, unlike the small noise expansion where equations 

above the second order appear difficult to solve, this technique makes it possible to 

obtain equilibrium solutions to any finite order. In the first section we describe the 

general technique1. We next illustrate the technique by computing the Least Mean 

Square (LMS) equilibrium densities. We find that the lowest order solutions correspond 

exactly to the solution obtained using the small noise expansion in Appendix D. 

3.1 Perturbation Theory 

The Kramers-Moyal expansion (2.5) in one-dimension can be written as 

= LKM P(w, t ) .  (3.1) 

where .CKM is the differential operator implicitly defined by (3.1). At equilibrium the 

left hand side is zero so we have 

0 = C K ; ~  Pe(w) .  (3-2) 

Equation (3.2) is a specific example of a problem of the general form C P  = 0 where 

.C is some known operator. In this section we discuss a perturbative approach to solving 

such problems. 

'Unpublished notes of T. K. Leen. 



We first make the assumption that the operator L and the solution P can be written 

as a power series in some small parameter a 

where the Li and P ( ~ )  are independent of a. Substituting (3.3) and (3.4) into LP = 0 

we obtain 

Since a is arbitrary, the above sum is zero only if each coefficient of ai vanishes inde- 

pendently, that is, 

This set of equations is solved recursively as follows. First the eigenvalues X and the 

eigenvectors PA and Qx of the eigensystems 

arc solved where LA is the adjoint2 of Lo and where we require that {PA}  and (Qx} each 

form a complete set. It can be shown that (Px,Qxl)  = 6 x . x 1  where (a: h)  denotes the 

inner product of a and h. 

The solution of (3.6) is then P ( O )  = Subsequent P ( ~ )  are found by assuming 

that they can be written as a linear combination of PA, 

'1f L is an operator defined on a space S of measurable functions. then the adjoint Lt of L is defined 
by ( f ,  L g )  = ( ~ ' f , ~ ) ,  V f , g  E S.  Here. (a. b)  denotes the inner product of a and b. 



Then, starting with (3.8): 

Taking the inner product of both sides with Qxt gives 

i 

C ( L ~ P ( ~ - * ) , Q ~ . )  = Ca!)X (PA, Qw) 
k= 1 X 

Substituting X for A', solving for a!), and plugging back into (3.11) gives P(') in terms 
of p ( W ,  

3.2 Computing the LMS Equilibrium Density 

We now use the above method to compute the LMS equilibrium density. The first section 

below describes the LMS algorithm. 

3.2.1 The LMS Algorithm 

The stochastic LMS learning algorithm is given by 

where w(t) E Ern is the weight and z(t)  = {z(t) ,  d(t)) is the inputltarget pair a t  time 

t. The cost function is given by the squared error 

We assume that the training data is generated according to a "signal plus noise" model, 

that is, 

d(t) = w' - z( t )  + ~ ( t )  



where w* is the optimal weight vector and ~ ( t )  is i.i.d. noise with zero mean and variance 

a:. Defining the weight error vector as v ( t )  w(t)-w*, we obtain the weight error update 

equation 

v ( t  + 1) = v ( t )  - p H[v( t ) ,  z ( t ) ]  (3.16) 

with 

H[v( t ) ,  z ( t )J  = VvE(u(t) ,  z ( t ) )  = - 4) v ( t ) )  ~ ( t ) .  (3.1 7 )  

3.2.2 Perturbative Approximation of the Equilibrium Density 

Following the procedure in Section 53.1, we want to solve for successive approximations 
of P,(v) in 

where H is given by (3.17) and (-), denotes expectation over x and E .  The first step is 

to write (3.18) as C P  = 0 where C and P have the form given by equations (3.3) and 

(3.4). A natural choice would be to let EY = p7 C = cKM/,!A, and 

However, there is a better choice for LMS that results in an Lo whose eigensystem is 

completely known. We first expand H~ in equation (3.17) to give 

We next make the change of variable3 

31t is probably not accidental that this corresponds up to a constant to the same change of variable 
used in the small noise expansion. Sote, at equilibrium. Q = 0. 



so that (3 .20)  becomes after simplification 

1 M m 

0 = - L K ~  P r ( v )  = C (-\D~-~ ( x m )  C ( 2i ) 2 i m  di m-i p e ( Y l  
P ,i! oF-m (Y 

m=2 
i= r 91 - 

(3 .22)  
Note that since ( E )  = 0, the m = 1 term is 0. Thus, the lowest order term (m = 2 )  is 

where R = ( x 2 )  is the Hessian of the cost function for LMS averaged over the inputs. 

The operator Lo in (3 .23)  is the Ornstein-Uhlenbeck operator [Gargo, Ris891 whose 

eigensystem is known. 

Now (3 .22)  is an expansion in ,/ji rather than p therefore it seems more appropriate 

to set a = Jli. However, in the case of gaussian inputs and noise that we examine next, 

the odd powered terms vanish so that equating a with p is still appropriate. 

3.2.3 Gaussian Inputs and Noise 

If we assume that x and e are gaussian distributed with zero mean then all odd moments 

are 0 and even moments are given by 

( 2 n ) !  Rn (2n)! a? 
(22") = and (e2n) = 

n! Zfl n!2n ' 

Equation ( 3 . 2 2 )  then simplifies to 

Thus, we can write 

1 o =  - L I \ ' M P ~ ( ? / )  = ( L o + P L I  +.. .  ) Pe(?/) 
P 

where 

The first three Cl  are 
1 

Lo = - R  2 ( 2 8 , ~  + 8;) 

3 
LI = - R ~  8 ( 4 $ y 2  + 4 % 9  + a;) 

5 
L2 = - 16 R~ (8gy3 + 12d;)92 + 6a;y + d:) 



where a; I &. 
The eigenfunctions and eigenvalues of L(O) are [Gar901 

where Xk(y)  is the kth Hermite polynomial. The adjoint of Lo is the associated backward 

equation 
1 LA = R (yay + ,a:) 

with eigenfunctions 
1 

(0) Thus Pe (y) = PA=0(y) is a gaussian with variance 4, independent of p. Higher order 

corrections, ~ f ) ( y ) ,  can be obtained from (3.12). The first several are 

9 
pL2'(9) = 32 R~ (-1 - 4y2 + 4y4)  P:O)(?~) j 

9 4v2 4v4 
P,(~)(?/) = - 32 R~ (-1 - - + -) pLO) (v) . (3.31) 

pa: P 0, 

3.3 Comparison of Approaches: An Example 

So far we have discussed three appro'whc3s for approximating wcight-space probability 

densities; the nonlinear Fokker-Planck cq~lation: tho small noise expansion, and the pcr- 

turbative expansion. In this section we apply each of these techniques to computing the 

LMS equilibrium density and compare tho results with tho exact density obtained from 

simulation. We assume gaussian zero mean inputs and noise, and a constant learning 

rate. 

The ith order perturbative density we dcfinc: to bc 

(k) where the first several Pe ( 1 ) )  arc: givcn in (3.31). 



We define P , ( ~ ~ ) ( V )  to be the LMS equilibrium density obtained from the lowest order 

truncation of small noise expansion in (2.20). At equilibrium ( t  = oo), r$ = 0 and the 

lefthand side of (2.20) is zero, 

Expressed in v coordinates, we find that L, is identical to pLo implying that P ~ ) ( V )  = 

P,(')(W). This is not surprising since a t  equilibrium (4 = 0) both the perturbative 

and small noise expansions are derived from essentially the identical transformation: 

?j = @v versus < = JTiv. 

The nonlinear Fokker-Planck equation refers to (2.15), i.e., the truncated Kramers- 

Moyal expansion which, for LMS a t  equilibrium with gaussian inputs, is 

It  has the closed form solution [LM93] 

where B(., -) is the Beta function. LFP is somewhere between the oth and lSt order 

perturbative operators. Writing out the terms separately we have 

The first two terms correspond precisely pLo(u), the oth order perturbative operator. 

The third term corresponds to part of p 2 ~ l  (v). Note that L1 also contains terms with 

3'd and 4" order derivatives. Thus the nonlinear Fokker-Planck equation is cap t~~r ing  

some but not all of the 0 ( p 2 )  effects. 

Figure 3. l a  compares PiFP) (dotted) and P,(") ( o )  (solid) with the simulated density 

(dashed) for gaussian inputs and noise with 11 = .05,0: = 1. and R = 4. Figure 3.lb does 

the same except that P:Y~) ( ~ I )  has been replared with P:Y')(V). Recall that ~!'")(r,), 

the lowest order solution from the small noise expansion is identical with P$") (v). For 

other choices of inputs, the behavior was qualitatively the same. 

Figure 3.la shows that the oth order perturbative solution does a better job at fitting 

the true density than the nonlinear Fokker-Planck. Thus. we do more harm than good 



Figure 3.1: a) Comparison of densities from Fokker-Planck (dotted), simulation (dashed), 
and oth order perturbative density (solid) for gaussian inputs and gaussian noise with 
p = .05, a! = 1, and R = 4. b) Same as  a) but with lSt order perturbative density. Note 
that for all k ,  the kth order perturbative density is identical to the kth order density from 
the small noise expansion. 

Figure 3.2: a) Comparison of densities from Fokker-Planck (dotted), simulation (dashed), 
and lSt order perturbative density (solid) for gaussian inputs and gaussian noise with 
p = .lo, a: = 1, and R = 4. b) Same as a) but with 4th order perturbative density. 

by including only part of the O(p2) effects. This is similar to the conclusion drawn from 

the pre-equilibrium behavior of LMS derived in Appendix D. 

From Figure 3.lb we see that P ~ ~ ' ) ( W )  is almost a perfect fit with the simulated 

density. As higher order corrections are added the solution improves and then begins 

to degrade. Oscillations appear and there are regions in the tails where the density 

is negative (consistent with the Pawula theorem). This is particularly noticeable for 

larger learning rates. For example, Figures 3.2a and 3.2b display the lSt and 4th order 

perturbative densities, respectively, compared against the simulated and Fokker-Planck 

densities for p = .lo. While P$") is a much better fit than the PLFP), P;:"~) is much 

worsc and exhibits oscillations. Unfortunately, it is not clear how to tell n priori how 

many corrections produce the best fit. 



Moment s  of t h e  Per turba t ive  Densities 

In the previous section we saw that there was a point a t  which adding higher order 

perturbative corrections only degraded the solution. However, we show in this section 

that the estimates of the moments continue to improve as higher order corrections are 

included even though the density seems to degrade. 

The nth moment of v can be computed from the perturbative densities as follows 

where 

(vn)k  = J d v V n ~ ~ * ) ( v ) .  

Equation (3.37) represents a power series expansion in p for the nth moment of v. 

Using the densities given in (3.31) we find that 

These terms can be compared to the series expansion obtained directly from the ex- 

pansion of the exact moments. The exact moments for the LMS weight error equilibrium 

density are easily calculated directly from the update equation 

Raising each side to the nth power, taking expectations, setting (vn)  = limt+m ( vn ( t ) )  = 

limt,, (vn ( t  + I ) ) ,  and solving for (vn)  gives 

Note that,  since we are using gaussian inputs and noise, all odd moments of v will be 

zero. The first two nonzero moments computed from (3.40) are 



The first three terms in these expansions exactly correspond to first three terms obtained 

by inserting (3.39) into (3.37) with n = 2 and 4. It  is difficult to show that the moments 
(k) agree in general because the P, (v) are computed recursively, however, we believe this 

to be the case. 

Thus, even though the densities obtained from the perturbative expansion seem to 

degrade as higher order terms are added, the perturbative moments continue to improve 

and, in fact, correspond to the expansion of the exact moments. 

3.4 Summary 

In this chapter we presented a method for recursively computing equilibrium weight- 

space densities to any finite order. We applied it to LMS and compared with previous 

approaches. For the particular transformation used, the perturbative densities turned 

out to exactly correspond to the densities computed using the small noise expansion. 

The density obtained by just truncating the KME to second order contained some but 

not all the 0(p2) dependence. 

As the first several perturbative corrections were included, the fit to the simulated 

density clearly improved. However, as even higher order terms were included the density 

estimates started to degrade even the estimate of the moments continued to improve. 

Oscillations appeared and the density even became negative in regions. We currently 

havc: no method of a priori knowing which order solution provides the best fit. 



Chapter 

Convergence Regimes for Annealed 

Learning 

In this chapter we study the convergence behavior of stochastic learning &th an annealed 

learning rate. We characterize the convergence rate by the time rate of change of the 

squared weight error. We first derive a small noise expansion for the weight density and 

use it to compute the evolution of the squared weight error for LMS. Analysis of nonlinear 

problems is more difficult. However, we note that learning rates are typically annealed 

only a t  late times after the weights have settled into a particular basin of attraction. 

By assuming that the weights are already fluctuating about some local optimum, we are 

able to derive asymptotic convergence results for nonlinear as well as linear networks. 

Our analysis shows for annealed learning that the convergence behavior can be clas- 

sified into two regimes based on whether the learning rate is above or below a specified 

critical value. When below, the convergence rate is suboptimal. When above, the con- 
I vergence rate is optimal, i.e. proportional to 7. 

4.1 Small Noise Expansion 

The derivation for the small noise expansion for annealed learning is similar to that for 

constant learning so that most of the details have been relegated to Appendix C. We 

use the annealing schedule p(t) = so that the an.5at.z becomes 

With this change of variable, the KME reduces to the set of equations (see Appendix C) 



Keeping the lowest order noise terms on the right side of (4.3) leaves 

which is independent of ,u and so fullfills the original ansatz. If we also include the next 

lowest order term1 then we have 

From (4.5) we obtain 

where 
'2 dq 

r ( t i ,  t2 )  1 1 I 7 [I + 2 Po a i l ) ( d ( q ) )  ] , 
and where (to) and (t;) are ( J )  and ( J 2 )  at t  = 0, respectively. We next apply these 

results to LMS. 

4.1.1 LMS 

For LMS with update equation 

( j  the a, coefficients are 

'If we assume that T scales as p then this term would be included in the lowest (i.e. O(1)) term. 
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Thus, the equations of motion become

(to)
~

4>(t) = 4>0 t
21'oR 1
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r -
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If we set (~o) = (~Z) = 0 and transform back to v we obtain

{iiO
(v) = 4> + V t (0

(v2) = 4>2+ J.Lo(e)t
21'oR 2 2
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) (
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[~ - t~(';) ¥] +
2 21'oR

poS (115)(
to
)

T

[
~ - ~

]2'T t to t
(4.11)

where (vo) and (115) are the expected mean and variance at the initial time to.

Figure 4.1 compares simulations (dashed) with the theoretical formula (solid) given

in (4.11). In the simulations, we first had the networks settle to equilibrium before

annealing was started. The graphs in Figure 4.1 display only the results once annealing

was started. For the theoretical curves, to = 1 and (115) wa..<;set equal to the weight

variance of the simulations when annealing wa..<;just turned on. That is, we forced the

curves to equal each other at t = 1. The agreement is good particularly for small J.Lo.

This is not surprising since we have kept only the terms of lowest order in J.Loin the

Kramers-Moyal expansion. The theoretical curves tend to roll over earlier than the

simulations.



Log( &>) LMS: Theory vs Simulation 

-1.4 

-1.6 

Figure 4.1: Simulations (dashed) vs theoretical (solid) predictions of the squared weight 
error of 1-D LMS for R = 1, a, = 1, T = 1, and po = .01, .05, and 0.1. Simulations used 
10000 networks. 

4.2 Nonlinear Problems 

Evaluating the even the lowest order equations of the small noise expansion is much 

more difficult for nonlinear problems; further simplification is required. We therefore 

make the reasonable assumption that annealing is turned on late in the training when 

the deterministic component is very close to a local optimum. The a coefficients can 

then be expanded about the minimum (4=O) 

Keeping only the lowest order nonzero term gives 

where R and D are constants. 

We now put equations (4.14) and (4.15) into equations (4.2): (4.6), and (4.7). For 

simplicity, we have set r = 1. Solving yields the equations of motion for the weight error 

at  late times for the general nonlinear case 



In [L094, OL94], we also obtain (4.17) by using the Krarners-Moyal expansion more 

directly. Defining 

C P / d N v  ( v  v T )  P ( v ,  t )  

where v E lRN is the N-dimensional weight error, we then have 

Solving equation (4.20)  by keeping only the lowest order nonzero terms in the expansion 

of H ( v ,  x )  about the local minimum also yields (4.17) .  

Note that if we apply (4.17) to LMS we obtain 

instead of equation (4.11) .  This is because we have set a?' = D = RO: (only lowest 

order terms are kept) instead of aiO' = RO: + S@. When 4 is small this is a good 

approximation. Figure 4.2 compares the expected squared weight error from simulations 

for 1-D LMS versus theoretical predictions from equation (4.21) .  As can be seen, the 

agreement is good. 

4.3 Asymptotic Convergence Regimes 

Examination of (4.17) reveals that the late time convergence behavior falls into two 

regimes. If 2poR < 1, the first term on the right dominates so that the late time 

convergence rate is proportional to ( f ) 2 ' 0 R .  Note that this is slower than f .  If 2 p 0 R  > 1 ,  

the second term dominates so that at  late times the convergence rate is proportional to 

i. Thus, the fastest or "optimal" rate of convergence is proportional to f  and is achieved 



Figure 4.2: 1-D LMS: a) Simulation results from an ensemble of 2000 networks with 
R = 1.0 and p = po/t. b) Theoretical predictions. Curves correspond to (top to 
bottom) po = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 . 

1 
if po > I L , ; ~  ~ f i  Summarizing, the two regimes are 

1 
Regime 2 (po > pmit) : (v2) - - 

t 

where the convergence rate is suboptimal in regime 1 and optimal in regime 2. In regime 

2, we define popt to be the that minimizes coefficient of in the expression for (v2). 

From (4.17) we obtain popt = A. These results arc the same as those derived by Goldstein 

[Go187]. 

The two regimes can be seen clearly for LMS in Figure 4.2. The dotted curves cor- 

respond to regime 1 where the learning rate is suboptimal. The solid curves correspond 

to regime 2. 

4.4 Summary 

We have shown that the small noise expansion can be lised to obtain expressions for 

the time evolution of the weight error for stochastic learning with constant learning 

rate and annealed learning. The expressions for annealed learning reveal that late time 



convergence rates can be classified into two regimes where convergence rate refers to 

the time rate of change of the weight error. For learning rates above a critical value, 

convergence is optimal, that is, proportional to f .  The optimal learning rate is found to 

be R - l .  



Chapter 5 

Stochastic Learning with Constant 

Learning Rate and Constant 

Momentum 

The main focus of the remainder of this thesis is to examine methods for speeding 

stochastic learning. In this chapter we examine adding momentum to standard stochastic 

learning with a constant learning rate. We summarize previous results and then we 

attempt a small noise expansion for the weights. Most of the results are for linear 

networks due to the difficulty of evaluating nonlinear problems. Chapter 6 discusses 

momentum with annealed learning where we obtain asymptotic results for both linear 

and nonlinear networks. Chapters 7 and 8 then present an algorithm with annealed 

learning where the momentum is automatically adapted so as to obtain fast convergence. 

5.1 Momentum 

Learning is slow if the learning rate is not chosen well. Ideally, we want a learning rate 

matrix proportional to the inverse Hessian so that the stepsize is scaled according to 

the local curvature along the different eigendirections of the Hessian. However, many 

algorithms and speed-up techniques based on estimating curvature (e.g. conjugate gradi- 

ent. quasi-Newton, etc) cannot be used stochastically because estimates of second order 

effects are too noisy. One simple alternative that has been observed to speed learning is 

called momentum. 

In stochastic learning with momentum each weight update incllides not only the stan- 

dard update term but also an additional term (called the momentum term) proportional 



to the previous weight update. The general form is 

where H is the weight update function as before, p is the learning rate (assumed constant 

in this chapter), and ,f3 is the momentum parameter which is a constant in the range 

0 5 /? < 1. We refer to this equation as learning with constant momentum because the 

parameter /? is held fixed, in contrast to an adaptive P discussed later in the Chapters 

(7) and (8). 
By expanding out the right side of (5.1) we find that adding momentum is equiv- 

alent to updating the weights based on an exponential average of H evaluated at past 

timesteps, 
t 

w(t + 1) = w(t) H[w(t - i ) ,x( t  - i)] 
i=O 

(5 .2)  

where the weighting factor in this average is just P. Thus, momentum may not only 

speed learning but may also be an efficient method of smoothing out the noise in the 

stochastic updates as compared with the costly batch mode average over training set. 

To develop some intuition about momentum we can look a t  momentum with gradient 

descent under simplified conditions. If pt << 1 and if the gradient is not changing rapidly 

over the significant terms in the exponential average then the finite sum can be replaced 

by an infinite sum and the gradient can be pulled out to give 

where for simplicity we use the notation VEt G VE(w(t),z(t)). Equation (5.3) says that 

momentum effectively increases the learning rate by a factor &. 
We define the effective learning rate, / ieff7 for stochastic learning with momentum 

parameter as the learning rate that would be needed (using P = 0) to obtain an 

equivalent rate of convergence. Thus, under these conditions pef = &. Note that if 

a true1 exponential average were used, the effective learning rate would be 11 and not 

i l / ( l  - PI. 

'The more commonly used method of exponentially averaging a variable y based on a sequence of 
estimates ij, has the form yi = ( 1  - O)G + Dyi-1 = (1 - 3) x:=o . The exponential average used 
with momentum does not include the initial factor of (1 - 9). 



To analyze the time evolution of the weights more precisely we again treat the update 

equation as a Markov process. Note, that equation (5.1) is not first order. However it 

can be recast as one by introducing a new variable a(t)  so that the system of equations 

z ( t )  - { w ( t ) ,  R ( t ) )  is first order. One choice is to set Q ( t )  = w ( t  - 1).  Expressed in 

terms of the weight error v G w - w" ,  equation equation (5.1) then becomes the first 

order system 

5.2 Previous Results for LMS 

In this section we review the results of Tugay and Tanik [TT89], and Shynk and Roy 

[SR90] for LMS with momentum. Both sets of authors study stability regions and time 

constants for convergence in mean and mcan square. Their analysis is based on examining 

the roots of the transition matrix A defined by 

where z ( t  + 1 )  G { v ( t  + I ) ,  v ( t ) I T  as in (5.4) and 11 is the weight error expressed i n  the 

cigen-coordinates of the Hessian. Tugay and T<mik use the diagram repeated here in 

Figure 5.1 to display the roots as a fiinction of c, /LA; for fixed p. The roots occur in 

pairs. They start out real (0 and 1) for c, = 0. Increasing ~ i ,  wc scc that when E; reaches 

(1 - fi)2, the roots become complex occilrring in complex conjugate pairs. When E ;  

reaches (1 + the roots go back to bcing real. Finally, when ci 2 2(1 + P ) ,  one of 

the real valued roots becomes larger t h i ~ l  oxic and the algorithm diverges. In general, 

ith root of A is complex if 

We note that the maximum of the two roots in tho pair is smallest when the roots are 

in tho complex region. In this case, the magnitlido of both roots in the pair is f i  for all 

E ;  falling in this complex region. 



Figure 5.1: Roots of the transition matrix A plotted in the complex plane as a function 
of e PA. We assume /3 is fixed. 

5.2.1 Stability Regions 

For convergence in mean, Shynk and Roy find the stability conditions to be 

I P I < I  and ~ < p <  2(1 + ') (convergence in mean) 
Xmax 

(5.7) 

where Xi is the ith eigenvalue of the Hessian of the cost function and A,,, is the largest 

such eigenvalue. Although these conditions allow for -1 < P < 0, Roy and Shynk note 

that in their simulations, "a negative /3 can lead to degraded performance, even though 

the algorithm is stable". This is consistent with our own simulations where a negative ,f3 

was never observed to improve learning over P = 0. Note also that a negative P would 

result in an alternating sum in equation (5.2) which could result in oscillatory behavior. 

Two necessary conditions for convergence in mean square [SR90] are 

N 
< 1 (convergence in mean square). 

i= 1 

Equations in (5.7) and (5.8) predict the region of stability but say nothing about the 

rate of convergence as a function of p and P.  To do this, we look a t  the time constants. 

5.2.2 Rate of Convergence: Time Constants 

The time constant 7, is a measure of the convergence rate of the mean of the weight error 

(1,;)  along the ith eigendirection of the Hessian R. It is implicitly defined by the equation 



Figure 5.2: 1-D LMS with R = 1, p = .02, and a, = 1 (a) Plots of log(l(v)l) for 
simulations using an ensemble of 1000 networks with vo = 1000. (b) Comparison of 
simulation and theory for the time constant before equilibrium where Tthmp = $$ and 
r,;, = -11s where s is the slope of log((v)) vs t .  For P = .9, (v) oscillates about zero, 
so we take s to be the slope of the envelope of log((v)). 

(v;) oc e-tlri and is related to the root r; of the transition matrix A by T; = -l/ln(ri). 

For standard LMS without momentum, the time constant is rkMS = l/(pXi). 

R,oy and Shynk [SR90] show for slow convergence (i.e. pX; < < 1 - P), that the time 

constant for LMS with momentum (referred to as MLMS) is 

1 - D  M L M S  = + p  LM.9 o* (1 - p)  T,&MS = -. 
7; 1 + 2p rz 

This predicts that as P is increased, the convergence rate of (v) improves (r gets smaller) 

and that the effective learning rate is p / ( l  -P) . However, this result is only valid for small 

p and p. The table in (5.2b) compares the predicted time constants with simulations for 

p = .02, R = 1, a: = 1, and various /jl. The agreement is fairly good up to P = .6 where 

the conditions for slow convergence begin to break down. The corresponding graphs of 

log(((v)I) are shown in (5.2a). We plot I(7i)l rather than (v) so that the log can be taken. 

Oscillations about zero thus look like "scallops". Note for P = .9, the eigenvalues of the 

transition matrix are complex and oscillatory behavior is observed in (v). 

Figure 5.3a plots simulations of log[v2] for LMS for 11 = .02 and varying 0 (note 

that all curves satisfy the stability condition in equations (5.8)). Consistent with the 

time constant measurements for (v), we see that the convergence behavior for (v2) is not 

monotonic in 0. That is, as p is increased the convergence rate increases up to a t  least 

0 = .6, however, by the time p = .9 the convergence rate has degraded. 

We see from Figure 5.3a that the variance flattens out at  some nonzero equilibrium 

value. This equilibrium variance of the weight error increases as P increases. This should 



k LMS with u=.02 

Figure 5.3: 1-D LMS with R = 1, p = .02, and a, = 1 (a) Plots of log((v2)) for 
simulations using an ensemble of 1000 networks with vo = 1000. (b) Comparison of 
simulation and theory for the equilibrium weight variance 

be expected for the following reason. When momentum is not present, increasing the 

learning rate will increase the equilibrium variance (see discussion in the next section). 

Since momentum increases the effective learning rate then increasing momentum, while 

keeping the learning rate fixed, should also increase the variance. A related effect is shown 

by Roy and Shynk: Increasing the momentum increases the misadjustment by a factor 

of 1 + p. The misadjustment is the excess mean squared error M = M S E  - MSEmin 

where MSE,;, is the mean squared error at  the optimal weight w*.  

Given that the effective learning rate is peg = p/(1 -/3) we can examine the effect of 

varying /3 and p while keeping peg fixed. Figure 5.4 displays simulations for 1-D LMS all 

with the same peg. We see that all the curves are similar, except that as is increased 

there is a small rise in log(~[v2])  a t  very early times. Although this rise is slightly 

corrected by a steeper slope, the best performance is still with @ = 0. It  appears then 

that updating weights using momentum cannot outperform using an optimally chosen 

learning rate without momentum. 

One situation where we had hoped momentum would help is on poorly conditioned 

problems, i.e. problems whose condition number p X m a x / X m i n  is much larger than 1. 

To guarantee convergence in mean we require that the learning rate be constrained by 

p < l / X m a , .  However, p - 1/XmaZ + p << l / X m i n  SO that convergence along the A,;, 

direction will be very slow. Thus, the overall convergence rate, which is determined by 

the slowest time constant, will be very poor. The question is whether momentum can 

speed learning along the Amin direction without seriously degrading performance along 

the Amax direction. 



Figure 5.4: Simulations of 1-D LMS with vo = 1000, R = 1, a, = 1 for an ensemble 
of 1000 networks. p and P are varied so as  to keep the effective learning rate fixed a t  
p,fl = fi = .02. 

5.2.3 Minimizing the Maximum r; 

Unfortunately, Tugay and Tanik find that for stochastic learning with constant learning 

rate, momentum cannot improve learning for poorly conditioned problems. They came 

to this conclusion by finding the p and /3 that minimize the largest time constant 

r m  = min m~ 7;. (5.10) 
cl,P 

R.ecal1 that for a given P, the maximum 7; is minimized if all the roots of A are complex, 

i.e. p satisfies equation (5.6) for all A;. This is equivalent to placing the following bounds 

on the p and p: 

When (5.11) holds, the time constants are bounded by ri < -& which we note is 

independent of p. Choosing the smallest possible j3 that satisfies the bound on p then 

results in the lowest bound on 7;. 

When p is large, Tugay and Tanik show that the above analysis leads to 

which is a significant improvement over LMS. 

However: it all falls apart when one remembers that the condition for convergence 

in mean square given in (5.8) must also be met. This condition combined with (5.11) 

results in the more restrictive bound 



Figure 5.5: Upper bound on the condition number as function of momentum P. 

Figure 5.5 displays this bound as a function of P .  When p is large, we see that this con- 

dition forces p to be near 1  making the bound -& large. As a result, r * ( M L M S )  = 
r * ( L M S ) .  Thus, Tugay and Tanik conclude that using momentum to minimize the max- 

imum time constant is not very useful. In fact, they conclude that the best convergence 

rate with MLMS will always be about the same as the best convergence rate achieved 

with LMS. The only possible advantage of MLMS is that it is less sensitive to noise and 

results in smoother learning curves. 

5.3 LMS: Equilibrium Weight Variance 

Once equilibrium has been reached, we must anneal the learning rate to reduce the noise 

or, alternatively, we must switch to batch mode. Since either option is costly, we would 

prefer to find a learning method that reduces the weight variance as much as possible 

before annealing. Does the averaging in momentum provide an efficient mechanism for 

reducing the noise? We explore this question in this section. 

As can be seen from where the curves flattcn out in Figure 5.3a, that the squared 

weight error a t  equilibrium increases as f3 is increased. This is not surprising since the 

effective learning rate is increased. We complitc thc exact equilibrium variance for 1-D 

LMS with momentum by starting with thc equation (AGa) in Appendix A of Roy and 

Shynk [SR90] 

C(t  + 1 )  = [ ( 1  + p12 + 2 p 2 ~ 2  - 2 p ( 1 +  P)R + p 2 ~ 2 ]  C ( t )  + P2c(t - 1 )  

+ [ 2 p P R  - 2 P ( 1 +  P) ]D( t )  + p 2 a 3  ( 5 . 1 3 )  

D( t  + 1 )  = ( 1  + 0 - p R ) C ( t )  - P D ( t )  ( 5 . 1 4 )  
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Figure 5.7: Fixed pe8: Equilibrium 
Figure 5.6: Fixed p: Equilibrium weight variance for 1-D LMS as a func- 
weight variance for 1-D LMS as a func- tion of /3 for R = 1, a, = 1, and 
t i o n o f p  for p =  .02, R =  1, a, = 1. peff = .02, and .2. 

where C(t) G (v2(t)) and D(t) G (v(t)v(t - 1)). Gaussian inputs have been assumed so 

that S G (x4) = 3 ~ ~ .  

Setting C ( t  + 1) = C(t) and D( t  + 1) = D(t),  we solve for the equilibrium variance 

to aet 

which reduces to the correct LMS variance (v$=,) = & when = 0. Figure 5.3b 

compares the equilibrium variance predicted from (5.15) with that computed from the 

simulations. Note that for 0 small, (5.15) reduces to (v2) !z ( ~ $ = ~ ) / ( l  - 8 ) .  

Figure 5.6 shows how (v2) computed using (5.15) varies as a function of for 1-D 

LMS with R = 1, a: = 1, and either po = .2 or po = .02. The increase in (v2) is 

gradual for small P but is rapid as gets closer to some critical value. The critical value 

corresponds to where the denominator of (5.15) becomes zero. Note, that the weights 

converge as long as the denominator is positive. Thus, a condition for convergence in 

mean square is 

which is the same result as in equation (5.8). 

To answer our original question of whether momentum is an effective way of reducing 

the noise a t  equilibrium, we examine the asymptotic variance as a function of P while 

keeping the effective learning rate fixed. To do this, we rewrite (5.15) in terms of p,ff to 



give 

As long as Rpeff << 1, the difference between P = 0 and P = 1 is slight. Figure 5.7 

plots equation (5.16) as a function of P for two different values of pef f .  AS can be seen, 

increasing 0 does decrease the equilibrium variance but only very slightly. This can also , 

be seen in the simulation in Figure 5.4 where all the curves flatten out at  about the same 

value. Thus the averaging in momentum does not provide an efficient mechanism for 

reducing late time noise. 

5.4 Small Noise Expansion 

In Appendix E we perform, rather unsuccessfully, a small noise expansion on stochastic 

learning with momentum and constant lcarning rate. We used the same coordinates 

Roy and Shynk with U ( t )  E {v ( t ) ,  0 ( t ) I T  E { ~ t ( t ) , u ( t  - 1 ) I T  where v is assumed to be 

the weight error. U  is then written as the slim of a deterministic component and noise 

component 

( n )  = (;;) +&(:)$ 

The resulting transformed KME equation is 

From the part of the n = 1 term we arc ablc to extract the deterministic equations 



However the resulting noise equations were not very decipherable (see Appendix E). It 

may be that a different set of transformations would produce a set of more intuitively 

sensible equations. However, we did try many variations without much success. 

Solving the deterministic equations for LMS with initial conditions 4(O) = c{l, 1IT 

gives 

C 
&(t) = 2h ((-a + h + pR) e-(a+h)tIT + (a + h - pR) e-(a-h)tlT 1 (5.21) 

where a = (1 - /3 - pR)/2 and h = d m .  

5.5 Summary 

When the learning rate is small (pR << 1) momentum effectively increases the learning 

rate and the convergence rate by a factor of 1/(1- p). However, adding momentum does 

not appear to improve learning beyond what can be achieved using the optimal learning 

rate without momentum even when the problem is poorly conditioned. One slight ad- 

vantage of using momentum is that the exponential averaging can smooth learning and 

slightly decrease the equilibrium weight variance. 



Chapter 6 

Stochastic Learning with Annealed 

learning and Constant Momentum 

Weights in the noise regime fluctuate about some local optimum w*. To reduce this 

noise, the learning rate must be annealed. In this chapter, we extend the convergence 

rate results for annealed learning discussed in Chapter (4) to include momentum. 

In the noise regime, we assume that any deterministic component of the weight error 

v  r w - w* is essentially zero. This enables us to use an approach similar to that 

in Section (4.2) to directly compute the time evolution of the weight error correlation 

[L094]. 

6.1 Time Evolution of the Weight Error Correlation 

The discrete time algorithm with momentlim can be written as a system of equations: 

or in continuous time, 

where v ( t )  E R~ is the weight error, p(t)  is the learning rate, H is the weight update 

function and x ( t )  is the data fed to the algorithm at time t .  Defining Z (u ,  Q ) ~  E R~~ 



and 

we get 

Z[t + 11 = Z[t] + I?[Z(t) ,x(t)]  

-= R [ Z ( t ) ,  x  ( t ) ] .  
dt 

We define the generalized weight error correlation matrix as 

where P(Z,  t )  is the probability density of Z a t  time t whose time evolution can be 

written according to the Kramers-Moyal expansion 

where Bj,  denotes the jLh component of the 2N-component vector fi, and (. . .), denotes 

averaging over the density of inputs. 

Note that the convergence (in mean square) to w' is characterized by the average 

squared norm of the weight error E [ I v  1 2 ]  = Trace C where C = E [ v  vT ] is the upper 

left quadrant of C . 
Differentiating 2; with respect to time and using the Kramers-Moyal expansion (6.6) 

we obtain an equation of motion for the generalized weight error correlation 

Integrating by parts leaves 

where we have assumed that P(Z ,  t)-and its derivatives are all zero a t  infinity. 



6.1.1 Asymptotics of the Weight Error Correlation 

We now consider the late time behavior of (6.8) where we assume that the density P ( Z ,  t )  

becomes sharply peaked about Z = 0. Thus wc can expand R(z, z) in a power series 

about Z = 0 and retain the lowest order non-trivial terms in (6.8). Thus we retain the 

linear part of the drift vector 

drift I ( I ? ( z , x ) )  E;: K Z  

where 

and where I is the N x N identity. We retain the constant part of the diffusion matrix 

diffusion -- ( E ( z , x )  I ? ( z , x ) ~ )  E;: p(t)2 fi 
2 

With these approximations, the time evolution of the weight correlation matrix c = 
E [ Z Z ~ ]  evolves according to 

To evaluate this wc define the evolution operator to be 

U ( t 2 ,  t l )  I exp [l: dr ~ ( r ) ]  

and the solution to equation (6.9) becomes 

t 
2. = U ( t ;  t o )  C ( t o )  uT(t, t o )  + lo d r  p(r)2 U ( t ,  T) fi u T ( t ,  7 )  (6.11) 

Again we emphasize that to study convergence of w" we need only evaluate Trace C 

which is the sum of the first N diagonal elements of C 



6.1.2 po/t Learning Schedules 

In Appendix F we evaluate (6.11) for learning rate schedules of the form p(t) = po/t. 

The analysis assumes, without loss of generality, that the coordinates are chosen so that 

R is diagonal with eigenvalues Xi i = 1 . . . N. In this section we summarize and examine 

the results. This analysis shows that the expected value of lvI2 at  late t i m e s  can be 

written approximately as 

where 

and where v; are the components of v along the eigendirections of the Hessian. Note that 

we are assuming that we are in a region of the weightspace for which Xi > 0. Therefore, 

we must have p < 1 to prevent the exponent of 9 being negative. Defining 

- PO - 1 
Peff = - and p,it = - 1 - P  2Xmin 

we again find that there are two asymptotic regimes: 

1 
Regime1 peff>p, i t :  E [ ~ v ~ ~ I - ,  

% 
R.egime 2 Peff < perit : E[~V 1 2 ]  - (f) 'wit ( Note, - 'en - - 2~0Xmin < 

Pcrit 1 - /'? 

Comparison with Simulation 

Figure 6.1 compares the simulated and theoretical results. The learning rate po is held 

fixed while P is varied. Regime 1 (solid) corresponds to /'? > .6. As can be seen, all of 

the curves in regime 1 all have about same slope while the slopes of the curves in regime 

2 (dotted) vary and are less steep than those in regime 1. 

Jlist in the constant learning rate case, the results also imply that the asymptotic 

behavior is the same for combinations of PO and for which peg = po/( l  - P )  is held 

fixed. Figure 6.2 displays results of simulations for which peff = .5. The algorithm is 
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Figure 6.1: LEFT - Simulation results from an ensemble of 2000 one-dimensional LMS 
algorithms with momentum with R = 1.0, /LO = 0.2. RIGHT - Theoretical predictions 
from equation (6.12). Curves correspond to (top to bottom) P = 0.0, 0.4, 0.5, 0.6, 0.7, 
0.8 . 

run a t  constant learning rate until the weights settle to their equilibrium state, then 

annealing is turned on a t  to = 1. At early times (e.g. t < loo), the curves are quite 

different1. At late times, the curves essentially overlap as long as /3 is small. However 

for large P, E [ ( u ( ~ ]  shifts upward slightly. 

6.2 Optimal Momentum, PVt 

For annealed learning without momentum the optimal scalar learning rate is / ~ o , ~ t  = 

l/Xmi,. Since adding momentum increases the effective learning rate by a factor of 

1/(1 - p), we define the "optimal" ,Ll as the value of momentum that satisfies p , ~  

po/( l  - P) = poqqt. Solving for P gives Popt = 1 - PA,;,. For the 1-D simulations in 

Figure 6.1, Popt = .8 which corresponds to the bottom most curve. 

Ideally? however, the optimal learning rate is a mat* equal to the inverse Hessian, 

 LO,,^^ = R-'. When such a learning rate is nsed, the stepsize of the weight update is 

'The curves vary quite a bit at early times even if E[lv12] at t = t o  is set to be the same for all po 
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Figure 6.2: 1-D LMS: Trade-off between 
PO and P ,  for Peff =  PO/(^ - P )  = -5 .  
R = 1, a, = 1, and 10000 networks. The 
dashed curve corresponds to j3 = 0.  

Figure 6.3: 1-D LMS: Trade-off between 
PO and Po, for Peff = P 0 l ( l  - Po) = -5 
when pt = ?Po. R = 1 ,  a< = 1 ,  and 
10000 networks. The dashed curve come- 
sponds to Po = 0 .  

scaled independently along each direction of the Hessian so that optimally fast conver- 

gence is obtained along each direction. We can now ask, given a scalar P O ,  what matrix 

momentum parameter results in an effective learning rate matrix equal to pO,opt? Setting 

where I is the identity matrix and solving for popt, we obtain the "optimal" momentum 

matrix 

Pwt = I - / L o R  (6.13) 

In correspondence with the restriction 0 _< /? < 1 when P is a scalar, we now require that 

POpt have eigenvalues 0 _< A!') < 1. From (G.  13). we see that this leads to the restriction 

on /LO that po < l/Am,, where A,,, is thc lwgcst. cigenvalue of R. 

Thus, using a scalar po with the momcnt.nni matrix Popt should give approximately 

the same convergence behavior as using = R-' without momentum. The advantage 

of using POpt instead of polopt is that the Hessian R is much easier to compute than the 

inverse Hessian R- l .  In fact, in thc next chapter, we discuss how to stochastically 

estimate Popt. 

6.2.1 Ramped Momentum 

Recall that adding momentum for constant / I  = /LO is equivalent to computing an expo- 

nential average of past gradients. For annealed learning the expanded form of momentum 



P' - 
w( t  + 1 )  = w ( t )  - Po -vEt- i .  

i= 1 t - i  

Thus, when annealed learning is used, the sum no longer has the form of a standard 

exponential weighted average because of the factors A. A slight modification to the 

previous form of stochastic learning with momentum and annealed learning is 

where 
t - 1  

Pt = -Po t 
for some constant 0 < Po < 1. We refer to this as ramped beta because a t  t = 1 we have 

pt = 0, and a t  late times Pt = Po. Expanding out (6.15) gives 

This has the more standard form of an exponential average of past gradients since the 

factor is now pulled out of the sum. It also has the effect of weighting the older gradients 

less. Figure 6.3 displays the results of using ramped momentum for the same parameters 

that were used in Figure 6.2. Note that the dashed curves are the same in both figures 

since /3 = 0. As can be seen, the behavior particularly at  early times is much better for 

ramped momentum. 

6.2.2 Simulations with Large Condition Number 

In this section we present simulations for a 4-D LMS network. The training data consists 

of 1000 examples for which the eigenvalues of Hessian R range from about to 1. 

Thus the condition number is p % lo5. We first train the network a t  constant learning 

rate (po = .5) until no improvement is observed either in the mean squared error E or in 

the squared weight error ~ [ l v 1 ~ ] .  We then anneal the learning rate to remove the noise. 

We anneal according to po/ t ,  where t ,  is the time initialized to 1 when annealing is 

turned on. 
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Figure 6.4: 4-D LMS with p = lo5: a) ~ [ l v l ~ ] ,  b) Misadjustment. Learning rate is 
annealed starting at t = 10 according to p = pO/ta. Curves correspond to 1) po = .5 
with p = 0: .99, I - poR (dashed), and 2) po = R-' without momentum. The learning 
curve for constant learning rate p = po is also shown for comparison. Each curve is an 
average of 10 runs. 

Five approaches are compared and displayed in Figure 6.4. They are 

Annealed p h (3) 

Constant I,I p, = 0.5 p = 0 (5) 

The first three use an annealed learning rate with scalar learning rate parameter po = .5. 

They differ according to the choice of momentum parameter: ,f? = 0, ,f? = .99, and the 

optimal momentum parameter ,f? = I - poR (dashed). The other two approaches are 

shown for comparison. They are 1) the optimal learning rate /lo = R-' with annealing 

and 2) a constant learning rate 11 = po = .5 (no annealing). When annealing is used, it 

is turned on at t = 10 in the figure (where t, is set to 1). 

Figure 6.4a displays the squared weight error while Figure 6.4b displays the misad- 

justment. At late times the best performance is observed with.pOpt (approach 4 above) 

and with po = .5 combined with popt (approach 3 above). In (6.4b) it is easy to see that 

using po = .5 with pVt results in convergence behavior very similar to po = R-' while 

using /LO = .5 with the scalar ,f? results in slower convergence. 

When the optimal learning rate po = R-' is used, the squared weight error first 



increases dramatically to as high as lo6 (see Figure 6.4a) before converging very quickly. 

To prevent the large initial rise, one can use the annealing schedule p o l ( &  + 7). When 

T = 10 or 1000 are used, the initial rise is much smaller but the value of E [ ( v ( ~ ]  and the 

MSE are essentially unchanged a t  late times. 

6.3 Summary 

In this chapter we examined the convergence of stochastic learning with an annealed 

learning rate combined with momentum. As in the previous chapter where a constant 

learning rate was studied, we find that adding momentum 1) increases the effective 

learning rate by a factor of 1 / ( 1  - P )  and 2 )  does not does not improve convergence over 

using the optimal learning rate without momentum. 

We also defined an optimal momentum matrix and showed that the convergence 

behavior was comparable to using popt without momentum. The advantage is that Popt 
is defined in terms of R while popt is defined in terms of the more difficult to compute 

R-l. In the next two chapters we show how POpt can be stochastically evaluated very 

efficiently so that no direct computation or storage of R is even needed. 



Chapter 7 

Adaptive Momentum for Linear 

Networks 

In this chapter we show how to estimate the optimal momentum matrix stochastically for 

linear networks. We refer to this algorithm as adaptive momentum. When used during 

the annealing phase of learning, adaptive momentum results in an effective learning 

rate that is close to the optimal learning rate matrix, pqt = R - l .  Since pqt scales 

the learning rate appropriately along the different eigendirections of the Hessian, it is 

particularly useful for problems that are poorly conditioned. 

Note that adaptive momentum requires setting very few parameters. Not only does 

the algorithm automatically compute the appropriate momentum parameter but we also 

find that the algorithm is quite insensitive to the choice of po, only requiring that /LO < 
l / ~ r n a z  

Simulations on linear problems of varying sizes and condition numbers are presented 

and compared with the theoretical predictions. In the next chapter, we extend these 

ideas to nonlinear networks. 

7.1 Adaptive Momentum for LMS with annealed learning 

The LMS algorithm with N inputs and M outputs with annealed learning and momen- 

tum is 

- 
Wt+l  = w t  - ~ v & t + ~ * ( W t  - w t - 1 )  

t (7.1) 



where w E J Z N X M  is the weight matrix, E E DZ is the cost function, d E J Z M  is the 

target vector, and x E IRN is the input vector. We shall only consider the case for one 

output ( M  = 1) since a network with M outputs can be treated as M separate single 

output networks. 

The previous chapter showed that an effective learning rate of po,wt = R-' is achieved 

when the momentum parameter is Popt = I - pOR, where po < l/A,,,. For linear 

networks is R = x xT . In general, R is unknown or expensive to compute, however, ( ) 
we can stochastically estimate it using k ( t )  = xt xr where xt is the input a t  time t .  

Thus we define adaptive momentum for linear networks as 

P(t) r I - poxt xT, (1 output, M = I). (7.3) 

The momentum term in (7.1) then becomes 

where Awt wt - wt-1. The dot product x?Awt is a scalar that is the same for each 

weight component so that it needs to be computed only once a t  each weight vector 

update rather than N times. Thus, computation of the momentum term is O ( N ) .  

An alternative to setting po < l/A,,,, which requires knowing A,,,, is to bound 

the value of P(t) to be above zero on a sample by sample basis. This method, which 

we refer to as "capping", is discussed in detail in Appendix G. Capping is less desirable 

than setting po = l/A,,,. However, it does prevent divergence when po is chosen too 

large. 

7.2 Simulations for LMS 

In this section we present simple 1, 2: and 4 dimensional simulations for LMS with 

momentum. We also present a higher dimensional example from image compression. 

We find that adaptive momentum consistently performs as well or better than constant 

momentum. In addition, we find that not only are convergence rates asymptotically 

optimal (i.e. x l l t )  for adaptive momentum but that the magnitude of ~ [ l v 1 ~ ]  at late 

times appears to be independent of the learning rate parameter. 



1 -D LMS with po = .2 I-D LMS with CI, = .2 

--- , . 1 -. 2 3 
/ / \-\ '., Log( t esq- B= adapt 

Figure 7.1: 1-D LMS: a) Simulation results from an ensemble of 2000 one-dimensional 
LMS networks with momentum using R = 1.0, po = 0.2, and a2 = 1. For comparison, a 
simulation using pqt = 1 and no momentum is also included. b) Same as a) but with 
ramped P. 

7.2.1 1-D LMS 

Figure 7.la displays, for various values of P ,  graphs of L O ~ ( E [ ( V ~ ~ ] )  versus Log(t) for 

simulations using 2000 1-D networks with R = 1, po = 0.2 and a2 = 1. Inputs are 

gaussian distributed with zero mean. Also shown for comparison is a simulation using 

the optimal learning rate parameter, popt = k = 1 without momentum. The networks 

were first run at constant learning rate po = .2 without momentum until equilibrium was 

reached. Momentum was not used in the constant learning rate phase due to stability1 

problems for large P. One explanation for the initial increase in E[v2] for the /3 > 0 

curves may be because momentum increases variance2. Note that POpt = 1 - poX = .6. 

Figure 7.lb displays simulations for the same parameters but with ramped momen- 

tum. As can be seen, the large rise in E [ V ~ ]  at early times is reduced, however: late time 

behavior is not significantly changed. 

'Convergence regions are different for constant and annealed learning. Some of the combinations 
of p and that result in convergence for annealed learning instead result in divergence if used with a 
constant learning rate. In transitioning from a constant to an annealed learning phase, it would seem 
advantageous to pick parameters so that the variance is matched at  the boundary. However, we do not 
address this issue here. 

21f we had used momentum during the constant learning rate phase, the equilibrium variance would 
have been larger than what is seen here for the P > 0 curves. Thus E[vZ] a t  the point annealing is just 
turned on ( t  = 0) would also have been larger. Of course, in some cases, the equilibrium variance would 
have been infinite (see previous footnote). 



Figure 7.2: 2-D LMS Simulations: Behavior of log(~[lv12]) over an ensemble of 1000 
networks with XI = .4 and X2 = 4, a: = 1. a) p0 = 0.1 with various p. Dashed curve 
corresponds to adaptive momentum. b) p adaptive for various po. 

2-D LMS 

Figure 7.2 displays log(~[lv12]) averaged over an ensemble of 1000 networks trained with 

either constant or adaptive momentum. The eigenvalues of the Hessian R are XI = .4 

and X2 = 4 and the variance of E is uz = 1. In Figure 7.2a the learning rate parameter is 

the same for all curves (po = 0.1) while P is varied. As the momentum is increased, the 

convergence rate improves. The best performance occurs for both the optimal scala?3 
( s c 4  = momentum (Pop, 1 - pOXmin = .96) and adaptive momentum. Note, however, that 

adaptive momentum is preferable in practice bccause the value of A,;, (and thus the 

value of ,Ow, (sea')) is, in general, unknown. 

Figure 7.2b shows the behavior of I O ~ ( E [ ~ V ~ ~ ] )  for adaptive momentum while po is 

varied. After a few hundred iterations the valiic of log(E[lv12]) is independent of po (in 

all cases po < l/X,,,). 

7.2.2 4-D LMS with p = lo5 
We now return to the 4-D LMS problem first presented in Section 56.2.2. In Figure 7.3 

we compare 

1. po = poTOpt R-I with p = 0, 

2. po = .5 with p = pwt G I - poR, 

3. po = .5 with p = padapt 

For this particular example, we did not try the optimal learning rate matrix p,,,.o = R-' . 



MSE 

Figure 7.3: 4-D LMS with p = lo5: a) ~ [ l v 1 ~ ] ,  b) Misadjustment. Learning rate is 
annealed starting at t = 10 according to p = p o / t a .  Curves correspond to 1) po = .5 
with /? = I - p o R  (long dash), and 3) po = .5 with Adapt (short dash) Each curve is an 
average of 10 runs. 

Results for the first two cases are repeated from figure 6.4. As can be seen, the conver- 

gence behavior of the misadjustment is similar for all three. ~ [ l v ) ~ ]  is similar for POpt 
and Padapt while E [ I v ~ ~ ]  initially diverges for popt. At late times, all three are similar. 

7.2.3 Image Compression 

For a larger problem we consider predicting the center block of an image based on the 

8 surrounding blocks. The image used is commonly known as "Lenna" or "the girl with 

the hat" [GG93] and is shown in Figure 7.4. The block size is 4 x 4 making the target 

dimension 16 (1 block) and the input dimension 128 ( 8 blocks of size 4 x 4). There are 

a total of 3844 examples that have been divided into 2914 training examples and 930 

test examples. The eigenvalues range from 1.06 x to 19.98. so that the condition 

number for this problem is about p = 1.9 x lo6. 

Figure 7.5 displays the learning curves for 

1. annealed learning with P = Padapt, 

2. annealed learning with ,6 = 0: and 

3. constant learning rate (for comparison purposes). 

As before, we have first trained (not shown completely) at  constant learning rate po = 

.026 until the MSE and the weight crror have leveled out. As can be seen Padapt does 

much better than annealing without momentum. 
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Figure 7.4: Lenna Image: Target block is predicted from the 8 adjacent surrounding
blocks. Each block is 4 x 4.
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Figure 7.5: Lenna: a) E[lvI2],b) Misadjustment. Learning rate is annealed starting at
t = 50 according to /L = /Lo/ta, 1'/'0= .026. Curves correspond to /LO= .026 with f3 = 0
and /Lo= .026 with f3adapt (dashed). The learning curve for constant learning rate I./,= /Lo

is shown for comparison.



7.3 Choosing po 

In general, we want the learning rate to be as large as possible in the constant learning 

rate phase. For stochastic LMS with constant learning rate, convergence in mean square 

requires po < (in 1-D) where, as before, R = (x2) and S = (x4). For gaussian inputs 

(multiple-D). Most problems are ( S  = 3 ~ ~ )  this bound is po < & (1-D) or p < 
not gaussian. However, rather than estimate S ,  a more expedient approach is to  just set 

PO = ,&, i.e. a little below the gaussian bound. 

To compute A,,,, we use the "on-line" algorithm developed by LeCun, Simard, and 

Pearlmutter [LSP93]. It  is based on the idea that repeatedly multiplying a vector by the 

Hessian will ultimately align that vector along the eigenvector, exmaz, associated with the 

maximum eigenvalue A,,,. If the vector is also normalized before each multiplication 

then the norm of the final vector will be equal to A,,,. That is, 

1. Start with an arbitrary vector po. 

2. Iterate: pt+l = W(pt) ,  where N(p) is the operator that normalizes p. 

3. Then 

lim l l ~ t  1 l = Amax 
t-bw 

lim pt = e~,,,.. . 
t-boo 

To implement this, we compute the product W ( p )  using the approximation 

where CY is some small constant. The "on-line" version is then implemented using a 

running average of p so that 

for some small constant y. To reduce the noise at  late times, one can also anneal y. 

Wr: set cr = y = .O1 and let the algorithm run for 1000 iterations. For Lenna, 

the predicted maximum eigenvalue was A,,, = 10.35 as compared to the exact value 

A,,, = 19.98 . We have found that this algorithm works well at  predicting A,,, to 



within a few percent for linear problems and is fairly insensitive to the values of a and 

7. 
In the next chapter we discuss in detail an online forward-backward algorithm for 

computing the product of the Hessian times a vector. This algorithm can replace the 

finite difference approximation for W ( p )  given in equation (7.5) with the exact (online) 

product. Note that the number of parameters is then reduced since a is no longer needed. 

7.4 Summary 

In this chapter we have introduced adaptive momentum, Padapt, for linear networks. 

Adaptive momentum is a stochastic implementation of the optimal momentum matrix, 

POpt, derived in the previous chapter. We describe an efficient implementation of Padapt 
and test it on linear networks of varying sizes and condition number. We find that Padapt 
is quite insensitive to the choice of po and that its performance is comparable to POpt. 

In the constant learning rate phase, we want learning rate to be po = y. Since S is 

. To compute A,,,, we use an "on-line" algorithm not known, we instead set po = 

by LeCun, et .  al., [LSP93]. Knowing A,,, is also useful for adaptive momentum in the 
1 annealing phase so as to insure that po < G. 



Chapter 8 

Adaptive Momentum for Nonlinear 

Networks 

In this chapter we present an algorithm for nonlinear adaptive momentum for use in the 

annealing phase of stochastic search. As in the linear case, adaptive momentum is a 

stochastic implementation of the optimal momentum parameter. Despite the complex- 

ity of nonlinear networks we have discovered an efficient implementation of nonlinear 

adaptive momentum. We present our implementation and demonstrate its effectiveness 

on several small and large networks. 

8.1 Form of PQdQpl 
As discussed in Chapter ( 6 ) ,  the optimal momentum parameter is 

1 
A p t  (wt ) = I - poR(wt ) (for po < -) 

Xmax 
(8.1) 

where R ( w t )  is the Hessian of the cost function cvalliatcd at the weight wt. Note that, 

unIike linear networks, the Hessian is not constant throughout the weight-space. A 

stochastic estimate of Popt is then 

1 
Padapt  (wt 7 xt ) = I - ~ 0 R t  (wt : xt (for /lo < -) 

Amax 
(8.2) 

where Rt (w t ,  z t )  is the instantaneous estimate of R ( w t )  based on the single exemplar x t  

presented at the tth timestep. The momentum term then becomes 

where Awt  (wt - w ~ - ~ ) .  Written in this way we see that we do not need to explicitly 

calculate: Rt, rather we just need to compute the product R t A w  . This can done efficiently 



using the algorithm developed by Pearlmutter [Pea941 for computing the product of the 

Hessian and an arbitrary vector. The algorithm requires only one forward-backward 

propagation to compute this product. 

8.1.1 Fast Multiplication of Hessian times a Vector 

Pearlmutter observes that given an arbitrary vector z (of the appropriate dimension), 

the product R z can be written as 

where E(w) is the cost function. He then defines the differential operator R , { . )  

where f ( w )  is some arbitrary function. The product Rz can then be written in terms of 

the operator R,(-}  

Now R,{.) follows all of the usual rules for differential operators (e.g. chain rule, etc). 

Therefore, if the standard forward-backward equations for computing ? e l  are sub- 

stituted into (8.6) and simplified using these rules, we obtain a set of forward-backward 

equations for computing Rtz .  We present the details below. 

Let xi denote the net input to a node i, 9; the output of a node i, and wij the weight 

connecting node j to node i. The standard forward computation is then 

yi = xi (input nodes) 

xi = C Wij?Ij  (non-input nodes) 
j  

Yi = a i ( x i )  (8.7) 

where a; is the nonlinearity of node i. Applying the operator R,{ . )  to the above forward 

pass equations gives 

R z { ~ i )  = R,{xi) = 0 (input nodes) 

R z { x i }  = C ( w i j ~ , { 9 ~ )  + z i j y j )  (non-input nodes) 
j  

R z  { y i )  = R z { x i ) ~ j ( x i )  (non-input nodes) 



where we have made use of the fact that Rz{w) = 2. 

The standard backward pass equations to compute the gradient are 

(output nodes) 

(non-output nodes) 

d& where e; z. For the squared error cost function, ei = yi - d; where di is the desired 

target. Applying the operator Rz{.) to the above backward pass equations gives 

R z  { } = zz{ei (Y,)} = e: (yi)Rz {yi) (output nodes) 

R, 
ax, 

The product R z  = 72, {a&/dwji) is then obtaincd from the last equation. Note that only 

a single forward-back pass is needed bcyond thc normal forward-backward propagation 

pass needed to compute the activations and gradients. 

8.2 Linearized Hessian 

To improve stability we can force R to bc positivc definite by using the linearized Hessian. 

Suppose we have the cost function 

where yk is the output of the kth output nodo when input x is presented and dk is the 

associated target. Then the instantancotls cstimato of the Hessian is 



The linearized Hessian is obtained by assuming the outputs are on average close to 

the targets (this is valid a t  late times in the training) so that the first term can be 

neglected to give 

This approximation can be further justified if we assume that we have an  unbiased 

model, i.e. yk(x) = E[dk(x] when the network is fully trained. In this case, the expected 

value of the first term can be written as 

Yyk ) = / ( d ( d k ) d ~ ( d ~ )  - d,) a2yk ( Y ~ ( x )  - dk) awijaw,m h i j  awlm P(dk l ~ ) P ( x ) d ( d k ) ~ ~  
x79 

Thus, the expected value of the Hessian and the linearized Hessian are the same for a 

fully trained network. 

8.2.1 Computing the Linearized Hessian 

The linearized Hessian can be obtained from the full Hessian by setting the targets to 

dk = y ~ ,  (see equation (8.12)). The forward equations in (8.8) remain the same and the 

backward equations in (8.10) reduce to 

R. {E )  = a,{t/.) (output nodes) 

72. {g ) = wj, 72, {E ]  ax j  
(non-output nodes) 

j 

a& {g } = ~ : ( x i )  a, {-} a ~ i  

(8.13) 

We tested the algorithm using both the linearized and the full Hessian and found no 

significant differences in the result. Since the linearized equations are simpler to compute 

and in some circumstances may be more stable, we chose to use the linearized equations. 



Figure 8.1: Phoneme Classification on training Figure 8.2: ~ ~ ~ k ~ ~ - G l ~ ~  Time Se- 
set: Learning rate is held fixed until the noise ,ieS for = 17, a = 0.2, and b = 0.1. 
regime is reached, then either 1) annealing (y) 
is turned on (solid) or annealing is turned on with 
adaptive momentum (dotted). po = 1. 

8.3 Simulations 

8.3.1 Phoneme Classification 

We next use phoneme classification as an example of a large nonlinear problem. The 

database consists of 9000 phoneme vectors taken from 48 50-second speech monologues. 

Each input vector consists of 70 perceptual linear predictive (PLP') coefficients [Hergo]. 

There are 39 target classes. The architecture was a standard fully connected feedforward 

network with 71 (includes bias) input nodes, 70 hidden nodes, and 39 output nodes for 

a total of 7700 weights. 

Figure 8.1 plots the percent of phonemes correctly classified a function of number 

of input presentations (timesteps). We trained the network with a fixed learning rate 

of po = 1 for a long time until the noise regime was reached. The early training is not 

shown in the figure, however, it will be discussed a little later. At around t = 15000 in 

the figure the annealing schedule of po/t  was started. The solid curve corresponds to 

/!I = 0 and the dotted curve corresponds to adaptive momentum. For /!I = 0, the noise is 

reduced but the percent classification does not improve. For adaptive momentum, there 

is a large improvement in the percent classification. 

'PLP is an all pole model of the auditory spectrum of speech that incorporates three basic concepts 
from the psychophysics of hearing: critical band resolution curves. the equal loudness curve, and the 
intensity-loudness power-law relation. 
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Figure 8.3: Mackey-Glass: Learning Small Drift 
rate is held fixed until the noise regime 
is reached, then (t = 10 in figure) 
annealing ( y )  is turned on with ei- Figure 8.4: Large drift indicates large 

ther p = 0 or adaptive momentum correlation between weight updates. 

(dotted). Learning curve for constant Small drift indicates that the weights 

learning rate without momentum is are in the noise regime. 

also shown for comparison. po = .127. 

8.3.2 Mackey-Glass 

In this section we look at the chaotic time series generated by integrating2 the Mackey- 

Glass differential delay equation 

The series for 7 = 17, a = 0.2, and b = 0.1 is shown in figure (8.2). 

We trained a network with 4 inputs, 38 hidden units, and one output using gradient 

descent to predict x( t  + 85) from the inputs {x(t), x(t-6), x(t-12), x(t-18)). As in the 

phoneme problem, we first trained the network a t  constant learning rate. The LeCun, 

et.al. algorithm estimated the maximum eigenvalue of the Hessian at our starting weight 

value to be about A,,, = 3.93 so that pa = .5/A,,, = .127. Once the MSE leveled out 

we turned on annealing with either P = 0 or adaptive momentum. Figure 8.3 displays 

the results. The learning curve without annealing is also shown for comparison. Since 

we do not know the precise minimum MSE we can not plot the misadjustment. 

2Code for generating the series was provided by John Moody. 



8.4 When to  Anneal 

For adaptive momentum to be useful, we need a method that automatically detects 

when the noise regime has been reached. To do this we turn to Moody and Darken's 

Adaptive-Search-Then-Converge (ASTC) algorithm which uses a statistic called the drift 

to monitor the noise present in the weight updates. Small drift indicates low correlation 

between subsequent weight changes, i.e. weights in the noise regime. Large drift indicates 

that weight changes are highly correlated and that learning is still taking place (see Figure 

8.4). 

Darken [Dar93] discusses several ways of defining the drift. We use the version that 

is most practical from an implementation perspective 

where indicates an exponential average over s < t with weighting factor 1/T. T 

starts out small and is slowly increased over time. The numerator is proportional to the 

average stepsize while the denominator is proportional to the standard deviation of the 

stepsize. Darken shows that for po < popt, the drift should increase a t  a rate of A + B& 
for some constants A and B. However, for large t this increases very slowly so that from 

a practical standpoint he argues that it can be taken as a constant that he sets a t  2. 

Thus, d(t) > 2 indicates that po < popt. 

The drift is computed at each iteration. The algorithm starts out with a constant 

learning rate (called "search" mode). When all components of the drift have changed 

sign a t  least once, the learning rate is annealed (called "converge" mode). At this point 

the algorithm continues to switch between search and converge modes for the remainder 

of the training as follows: 

1. When in converge mode: If one or more components of the drift exceed threshold=2, 

then switch to search mode. 

2. When in search mode: If all the components of the drift, that had exceeded 

threshold=:! in the previous converge mode, change sign then switch to converge 

mode. 

We tried several other values of the threshold but without improvement. One problem 

with this algorithm is that thc learning rate is either constant or decreasing, i.e. there 



is no principled mechanism for increasing the learning rate if it is initially set too small. 

As a result, it is best to start with a learning rate that is as large as possible. 

Several variants of the learning rate schedule can be used during the converge phase. 

For example, we can let p(t) = pO/(r  + t)  where p and T are parameters that must be 

chosen. At late times this behaves as po/t, however, it drops off more slowly a t  early 

times. In order to include as few adjustable parameters as possible, we implement the 

simple po/t schedule. 

Convergence behavior is very sensitive to the initial value of po. If po is too large 

the weights diverge and the algorithm (eventually) switches to converge mode where the 

learning rate is then decreased. However, recuperation from the initial divergence can 

take many iterations. On the other hand, if po is too small, convergence is very slow 

because the algorithm has no mechanism for increasing the learning rate. Ideally, we want 

the initial learning rate (during search mode) to be as large as possible without having 

the weights diverge. As previously discussed in Section $7.3, the bound for stochastic 

LMS with constant learning rate and gaussian inputs is po < for convergence in 

mean square. Clearly, for nonlinear problems where the cost surface is not quadratic 

and inputs are often far from gaussian this bound will not be correct. However, for lack 

of a better initial estimate, we again set /LO = G ,  ' i.e., slightly below this bound. 

We approximate A,,, for nonlinear networks just as we did for linear networks, 

using the algorithm by LeCun, et.  al. [LSP93] described in Section $7.3. However, the 

Hessian is not constant throughout the weight space for nonlinear problems so that even 

if our initial estimate of the A,,, is accurate: the eigenvalue spectrum may change after 
1 a number of weight updates. One possibility is to periodically recompute po = =, 

however, in our current implementation /LO is computed only once a t  the start of training. 

8.4.1 ASTC with Adaptive Momentum (MASTC) 

To combine ASTC with adaptive momentum (referred to as MASTC) we use the drift 

to first detect the noise regime. Once detected, annealing is turned on with adaptive 

momentum and the drift is no longer computed. There is no switching back and forth 

between the two phases because a) we assume that once we are in some noise regime 

there is no switching between basins of local minima. and b) since adaptive momentum 

results in an effective learning rate that is optimal for that basin there should be no need 

to return to a constant learning rate. When ASTC is used without adaptive momentum, 
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Figure 8.5: Phoneme Classification: 
Percent Correct on training set (solid) 
and test set (dotted) as function of the 
number of input presentations. Top 
two curves correspond to MASTC. 
The lower two curves correspond to 
ASTC. po = 1. 
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Figure 8.6: Phoneme Classification 
using Conjugate Gradient Descent: 
Percent Correct on training set (solid) 
and test set (dotted) as function of the 
number of epochs. One epoch equals 
one pass through the data, i.e. 9000 
input presentations. 

the scalar learning rate po is far from optimal particularly if the Hessian is poorly con- 

ditioned. Thus the learning rate schedule po/ t  generally decreases the learning rate too 

quickly3. As a result, the algorithm thrashes between search and converge modes in an 

attempt to correct for this. 

8.5 ASTC and MASTC Applied to Phoneme Classifica- 

t ion 

We now return to the phoneme classification problem in section 38.3.1 . We compare 1) 

ASTC, 2) MASTC, and 3) conjugate gradient descent which is a batch algorithm. The 

maximum eigenvalue was computed to be about A,,, = 1.33, however, a learning rate 

of 110 = 1 did not result in divergence. Figure 8.5 displays the results for both training 

set (solid) and test set (dotted). MASTC (top two curves) performs much better than 

straight ASTC. Though not shown in this figure, we actually saw improvement in the 

classification by keeping the learning rate constant far past the point where ASTC first 

switches to converge. This means that ASTC signals the arrival in the noise regime too 

3The optimal learning rate along the i t h  eigendirection of the Hessian is po,,,, = k. However, we 
know that po < l/A,,, otherwise the weights would diverge in the search phase. Thus, po is too small 
along the eigendirections for which A; < A,,,. 



early. Further analysis is required to determine how to correct this problem. 

Both ASTC and MASTC train faster than conjugate gradient descent4 (CGD). Figure 

8.6 displays the classification performance as a function of epoch. One epoch corresponds 

to one pass through the data (9K inputs). 

Timing estimates showed that one "epochn5 of MASTC is roughly equivalent to 

about 9 epochs of CGD. However, this number possibly can be decreased because the 

CGD code has been carefully optimized whereas MASTC was not. After 100 epochs the 

CGD performance was only about 39% on the training set. The performance for ASTC 

with adaptive momentum after the only 100,000 input presentations was about 47%. 

Performance on the test set was only slightly better for MASTC. 

A rough comparison of the relative complexity of the two calculations shows that 

one epoch of adaptive momentum should take about 3 times as long as one epoch of 

CGD. To show this, we let N be the number of weights in the network and we assume 

that the number of training examples, T, is large compared to N. This means that the 

calculation of the gradient is the dominant factor in CGD since the gradient calculation 

is O ( N T )  and the remaining calculations arc O ( N ) .  We shall also assume that the total 

number of weights is large compared to the number of nodes so that terms on the order 

of the number of nodes can be neglected. 

For each training example, the gradicnt calculation requires one forward-backward 

pass as given in equations (8.7) and (8.9). The forward calculation requires approxi- 

mately 2N add/multiplies. For example. consider a network with no input nodes, nl 

hidden nodes, and n2 output nodes. Tho total number of weights is N = nl (no +n l ) .  To 

compute the hidden layer activations. wc miist. pcrform nonl multiples plus nl (no - 1) 

adds. The output activations then rcqi~irt 711 n p  multiplies plus n2(nl - 1) adds. The 

total number of add/multiples is then 

nlno + nl  (no - 1) + nln2 + n2(nl - 1) = 2711 (TL:! + no) - ( n l  + 722) M 2nl (no + n2) = 2N. 

(8.15) 

Note that the sigmoid calculation has not bccn included because it is on the order of the 

4Conjugate gradient descent was performed using nopt written by Etienne Barnard and made available 
through the Center for Spoken Language Understanding at the Oregon Graduate Institute. 

'For stochastic gradient descent, we define an epoch to be n input presentations, where n is the 
number of training examples. Because the n inputs are chosen at random with replacement from the 
entire training set, some inputs may occur several times and some may not occur at all over the course 
of one epoch. 



number of nodes rather than the number of weights. 

The gradient is then obtained from the backward calculation given in equations (8.9). 

The gradients for the top layer weights are given by 

a E  - = y j 0 . e .  I = y . 6 .  
aw,, 3 3  ' 3  

a& . where 6; z, z = 1,. . . , n l ,  and j = 1,. . . , n2. Computing Jj is O(nz) and so can be 

neglected. Thus, the number of multiplies is nln2. The gradients for the next layer are 

given computed as 
a& -= y k ~ :  C w j i  6, = yk 6, 

dwik 
j 

where i and j range as before, and k = 1,. . . ,no. Computing the 6i require approxi- 

mately 2nl n2 add/multiplies. Computing the gradients from the 6;'s then requires nonl 

multiples. Thus the backward calculation takes approximately 

If the number of inputs is on the order of the number of outputs (i.e. no - n2), then 

N x 2nonl = nln2 so that the above expression is approximately 2N. Thus the forward- 

backward calculation for one training example is O(2N + 2N = 4N). 

For batch learning, the gradient for each example must be added into the overall 

average gradient. This requires N adds for each example. Therefore, to compute the 

average gradient for batch mode is approximately O(5N) per example. 

For stochastic gradient descent, each training example requires the 4N add/multiplies 

as  discussed above for the forward-backward pass. In addition, each weight update 

requires N multiples (by the learning rate) plus N subtractions to obtain wt+l. This 

gives approximately 6N add/multiplies. 

We now include the adaptive momentum term 

where RAwt  is computed using the linearized hessian given in equations (8.8) and (8.13). 

The forward calculation in (8.8) is similar in complexity to the forward equations in (8.7) 



except that there is an additional matrix multiplication (from the z term) requiring ap- 

proximately 2N add/multiples. The backward equations in (8.13) have the same com- 

plexity as the standard backward equations in (8.9) so that the total forward-backward 

calculation for computing Rawt takes about 

4N (forward) + 2N (backward) = 6 N  

add/multiplies. 

Given Rawt ,  the momentum term in (8.16) then requires N multiplies (by p ) ,  plus 

N adds (to add in Awt). Finally adding the whole result to update wt+l takes another N 

adds. Thus, the momentum terms requires GN+N+N+N = 9 N  add/multiples on top of 

the 6N add/multiplies for the standard stochastic update calculations. Thus, stochastic 

gradient descent with adaptive momentum takes about 6 N  + 9 N  = 15N add/multiplies, 

or about 3 times as many as CGD. 

We also note that adaptive momentum is used only during the annealing phase and 

not throughout the entire training process. Before annealing, the drift term in ASTC is 

computed to determine when annealing should be turned on. Once annealing is turned 

on, the drift is no longer computed but adaptive momentum is turned on. The complexity 

of the drift is similar to that of adaptive momentum. The numerator of the drift is an 

exponential average of the weight change. This requires 3N add/multiples per training 

example. The denominator is an exponential average of the standard deviation of the 

weight change and requires about 5N add/multiplies. Finally, the numerator must get 

divided by the denominator. Thus, the drift computation is about the same complexity 

as the computation of the adaptive momentum term, 9N. There is also the additional 

cost (- N) =sociated with checking to see if the drift is above or below threshold. 

8.6 Summary 

In this chapter we have presented an efficient algorithm for computing nonlinear adaptive 

momentum that makes use of Pearlmutter's algorithm [Pea941 for computing the product 

of the Hessian and an arbitrary vector. We test the algorithm on a phoneme classification 

problem and on the Mackey-Glass problem during the (late-time) annealing phase of 

learning. 

For adaptive momentum to be effective, we need to know when the noise regime has 

been reached. To this end, we use the drift statistic from Moody and Darken's ASTC 



algorithm to signal this transition. Unfortunately, the drift statistic tends to signal the 

noise regime too early. Further work is needed to correct this. 



Chapter 9 

Future Directions 

To develop a complete algorithm for stochastic search there are still major issues that 

must be solved. The first and most critical one is how to speed learning before the 

noise regime has been reached. This is important because most of the training time is 

spent in the constant learning rate phase. In fact, for some problems, over training can 

occur even before the noise regime is reached, thus making annealing unnecessary. One 

possible technique that we discuss below is adaptive momentum modified to work in the 

constant learning rate phase. 

Another issue is how to improve ASTC so that 1) it better detects the noise regime 

and 2) has some principled method for increasing the learning rate when needed. This 

latter point, however, is tied to the issue of optimizing performance in the constant 

learning rate phase, i.e. solving one probably solves the other. 

In the long run, however, a better approach to training neural networks may be a 

hybrid algorithm: i.e. one that uses a combination of batch and stochastic techniques. 

9.1 Stochastic Algorithms for the Search Phase 

As was mentioned in the introduction, speed-up techniques often work by estimating 

algorithm parameters (e.g. learning rates) by modeling the local curvature of the cost 

surface. For stochastic algorithms this is difficult because stochastic estimates of curva- 

ture are too noisy to be of much use. An alternative is to use time averaging to remove 

the noise. However, a problem with time averaging is that it is difficult to know how 

to weight past values. For example, suppose we have the quantity (call it X) whose 

exponential average is given by 



If Xt is changing rapidly, then the exponential weighting factor a should be small so 

that more recent values of Xt are weighted more heavily than earlier values. In such a 

case, the estimate of (X)t can still be quite noisy and will lag the true value. If Xt is 

not changing rapidly then it is better to have the weighting factor be large so that more 

terms are contributing in a significant way to the average. The more terms included, the 

more the noise will be reduced. In adaptive momentum, we average the gradients. In 

the noise regime the average gradient is close to zero and not changing rapidly so that 

the update term is very approximately 

This is precisely the Newton step update. However, if the gradient is changing rapidly as 

it is in the constant learning rate phase, it can not be pulled out of the sum. This means 

we are no longer approximating the Newton update. One approach to correct this may 

be to rescale the gradients in the exponential average in accordance to how much they 

are expected to change. 

Another difficulty in applying adaptive momentum to the constant learning rate 

phase is that the optimal momentum parameter does not have a simple form. Even for 

the very simple case of 1-D LMS, the optimal fJ milst satisfy [TT89] 

In multiple dimensions X could be replaced with R. Solving for fJ would require ne- 

gotiating square roots of matrices. Would stochastic estimates be possible? Hopefully, 

approximations could be made that would bc efficient to calculate and accurate enough 

to make a difference in the learning speed. 



9.2 Detecting the Noise Regime 

One of the problems with ASTC was that, for both linear and nonlinear problems, it 

consistently switched from search phase to converge phase to soon. However, the first 

converge phase was usually very short (sometimes only a few iterations) indicating that 

the algorithm quickly realizes that it switched too quickly. Unfortunately, by this point 

the learning rate had already decreased quite significantly1. 

ASTC detects end of the first search phase when the all components of the drift have 

changed sign a t  least once. One possible reason that this might occur too early may 

be due to the noise present in the drift estimate. Recall that the drift is computed as 

an exponential time average whose weighting factors are hardwired. The noise, which 

tends to be larger early in the training, may result in spurious sign changes. One simple 

solution would be not register the occurrence of any sign changes until a few epochs have 

passed. This of course is not particularly satisfactory because there may be instances 

where annealing needs to be done early, for example, if the initial learning rate chosen 

is too large. Alternative solutions need to be found. 

9.3 Hybrid Algorithms 

It  may be that some mix between batch and stochastic is needed. By "mix" we mean 

either 1) batch and stochastic are used at different stages of training, or 2) the batch size 

itself is varied. For example, in the first approach, it may be that stochastic is better to 

use early in the training where the noise is useful in exploring the cost surface and where 

careful estimates of the cost surfacc arc not yet necessary. Once a good basin is found, 

some fast batch algorithm such as conjugate gradient descent might be more effective at  

finding the minimum. 

The second approach could be used as an alternative to annealing the learning rate. 

The amount of noise present in the weight updates is controlled either by the learning 

rate or by the batch size. Batch learning (zero noise) generally refers to averaging over 

the entire training set a t  each iteration. One could also use "small batches" where 

'This would be less of a problem if we used an annealing schedule that rolled over more slowly than 
F, e.g e. However, such schedules invariably introduce additional parameters that must be adjusted. 
One of our goals was to minimize the number of adjustable parameters so we did not use these alternative 
schedules. 



the weight updates at each iteration are averaged over some subset (perhaps randomly 

chosen) of the training set. A batch size of 1 would correspond to pure stochastic while a 

batch size equal to the size of the training set would correspond to pure batch. Thus, an 

alternative to annealing the learning rate would be to slowly increase the batch size as 

needed so as to decrease the noise without annealing. We would need to 1) determine the 

batch size schedule that optimizes learning and 2) determine how this method compares 

in performance with standard annealing. At each iteration, the cost of the batch average 

must be weighed against the amount of noise that can be tolerated. As an aside, we also 

note that small batches could be practical when algorithms are run on multiprocessor 

systems where batch algorithms are easier to implement in parallel. 
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Appendix A 

Expansion of the Kolmogorov Equation 

In this appendix we derive the differential difference equation in (2.4) by starting with 

the Kolmogorov equation given in (2.2). With single step transition probability defined 

in (2.3), the Kolmogorov equation is 

= / d x p ( x ) J d w P ( w , n r ) 6 ( u 1 - w - p H [ w , x ] )  (A.l) 

where w, w' E Em. We next make a Taylor series expansion of the 6 function where wj, 

and Hj, are the jib component of weight, and weight update, respectively, 

" (-PI; p(wl, (n  + 1)r )  = dw P(w, n r )  x - 
i! 

/ d~ 6(w1 - W) P(w,  n r )  Hjl Hj2 . . . Hji 

Integrating over x and moving the i = 0 term to the left side leaves the differential- 

difference 

P(wl, (n  + 1) r )  - P(wl, n r )  
7 - - 

7 



2 (-4; 
i ! 

( ( H i l  Hj2 . . . H j i ) ,  P(w',  nr)  ) . (A.3) 
i=l  j l ,  ...j, =I  



Appendix B 

Small Noise Expansion for Stochastic 

learning with Constant Learning Rate 

The Krarners-Moyal equation for stochastic learning with a constant learning rate in 

1-dimension is 

The small noise expansion requires making a change of variable from { w ,  t )  to { J ,  s )  

where 

The partial derivatives transform as 

and the density transforms as 

where p ( ( ,  .9) denotes the density of < at time s and $$$ is the Jacobian. 

With these coordinate changes, (B.l) becomes (renaming s + t )  



Expanding ~ ' ( 4 ( t )  + f i t ,  x )  in a power series about 4 gives 

- ( d m k  ay)(,) ( H i ( 4 ( t )  + fit? x))= = C L, 

where 

Now inserting this into (B.3) results in 

Next make a change of index m = i + k to give 

00 m 
T ap(t? t )  4 a p ( t , t )  = c c 

a!m-i) ( 4 )  5 ( tm- i  p( t ,  t ) )  . (B.7) a t  f i  m=li=l i !  (m - i)!  at 

Since 4 is arbitrary, we can define it so that the m = 1 term on the RHS cancels the 

second term on the LHS 

Simplifying, obtain the system of equations 

dP( t7 t )  - - 2 2 (-1)i,lfnt-?l/2 d" 
at i ! (71?  - i)! nlm-i ' (4( t ))  7 { C ~ - ~ P ( ~ ,  t ) }  . (B . IO)  

m=2i=1 at 
Since the choice of timescale is arbitrcwy. we can asslime that T scales ES p = cr 

where c is some constant. Then the tr~znsformed equations become 

00 rn (-1)clL(m-2)/2 di 

dt m=2 i=l - Z ) !  m i ( 4 ( t ) ) 7  at t ) }  (B.12) 

which to lowest order (m = 2): are indcpcndcnt of 11. 



Appendix C 

Small Noise Expansion for Annealed 

Learning 

The Kramers-Moyal equation for stochastic learning with an annealed learning rate in 

1-dimension is 

The small noise expansion =sumes one can make a change of variable from { w ,  t )  to 

{(, s )  where 

The partial derivatives transform as 

a d ( d  d s d  - = -- 
at +-- 

dt d( dt ds 

and the density transforms as 

where P ( ( ,  s )  denotes the density of t at time s  and is the Jacobian. 



With these coordinate changes, (C.l) becomes 

Expanding (H')~ about 4 

where 
(k) ai (4) = (&Hi@? x ) ) ~  

and putting into (C.3) gives after simplification 

Making the change of index m = i + k we finally arrive at 

+- me) s) - - 
2 s at 

We now implicitly define 4 so that the term with 6 on the left cancels the m = 1 term 

on the right, 

- / X 4 ( . 9 ) m ( t 7 s )  PO dF = -iEa\0)(4) 7- m(<, at a (C.8) 

Equations (C.7) and (C.8) become (renaming s + t )  

d4  - - - -- 
dt 7 t (C-9)  

- F m(C, t )  + 
m(F,t) - -- -- 

at  2 t a< 2 t 
(C.10) 

( di 
i! (m, - i)! 

P ( ( ;  t ) )  . 
m=2 i= 1 



Keeping only the m = 2 term and setting c = Lf;f? leaves the system of equations 

Note that the lowest order terms are independent of p thus fulfilling the original ansatz. 

From this, we can solve for the time evolution of (0 and (t2) 

Solving yields 

where (Oo and (e2)' are ( t )  and (t2) evaluated a t  t  = to, respectively, and 



Appendix D 

Time Evolution of 1-D LMS: 

Comparison with Discrete and 

Continuous Time Solutions 

Neural network learning takes place in discrete time. However, continuous time dynamics 

are more amenable to analysis and approximation. Thus, we have analyzed the time 

evolution of the weights by simplifying the exact discrete time equations using two stages 

of approximation. First, we assumed that for small learning rates and for late times we 

can transition to continuous time equations. We then approximate the continuous time 

equations by carefully expanding out in p and truncating to some desired order. Both 

stages of approximations are necessary because the dynamical equations for nonlinear 

problems are otherwise intractable. 

In this appendix we explore the effect of these approximations by examining a very 

simple system that is solvable exactly: 1-D linear networks. We solve both the discrete 

and continuolls time equations for thc first two moments of the weight error, (7)) and 

(.112). We compare these results to each other and also to the moments obtained from 

the small noise expansion. We assume a constant learning rate throughout. 

D.l  Discrete-Time Evolution of Weights 

In this section we derive the exact discrete time expression for the time evolution of the 

expected weight error and squared weight error for LMS with a constant learning rate. 

As before, the update function for LMS is H [ v :  z ]  = ( e t  - vt z t ) z t  so that the update 



equations for the weight error and squared weight error become 

where e is zero mean noise. Taking expectation over the inputs gives 

where R = ( x 2 ) ,  S = (z4), and 0: = (e2) .  We solve these difference equations to obtain 

where (vo)  and ( v i )  are the first and second moments of v at t  = 0, respectively. Note that 

the equilibrium variance (at t = m) is the same as previously predicted, ( v g )  = 6. 
Assuming that p is small, we can use the identity 

to rewrite the equations in (D.4) to lowest order in p 

We can also introduce a timescale r where t  = nr and n is the iteration number. 

The above equations then become 

D. 2 Continuous-Time Evolution of Weights 

To transition to continuous time we assume the timescale r defined as above is small 

relative to t (i.e. n is large) so we can expand ( u ( n r  + r ) )  about t = nr 

d ( t ~ ( t ) )  + r 2 d 2 6 ~ ( t ) )  . . a 

( v ( t  + T I )  = ( v ( t ) )  + 7 7  dt2 (D.8)  



To lowest order in T we have 

or 
d(v) - M -'R(v). 
dt 7 

Similarly, for (v2) we find 

Solving yields 

The equation for (v2) correctly predicts the equilibrium variance ( t = m). Otherwise, 

these equations do not look quite like either (D.4) or (D.7). However, we recall that the 

above continuous time equations are only valid for small T. If we let T + 0 then ( ~ ( t ) )  

goes to zero for all t  (assuming that -2R + p S  < 0) and ( v2 ( t ) )  becomes a constant. 

However, if we assume that the timescale T scales with p so that f is constant', we 

obtain in the limit as r ,  p + 0 

These are identical to the lowest order discrete equations in (D.7). Since we have 1) 

truncated a t  O(T) in (D.8) and 2 )  set T x then we must assume that the continuous 

time equations are only valid to O ( p ) .  

'Letting T + 0 is equivalent to letting n + oo thus we expect (u) and (u2) to approach their 
equilibrium \dues in this limit. However? if we simultaneously let p 0 so that VT is constant then we 
are in a sense slowing down the learning process at the same rate that we are speeding up time. 



D.3 Small Noise Expansion applied to LMS with a Con- 

stant Learning Rate 

We now use the small noise expansion discussed in Section $2.2.3 to approximate the 

continuous time equations of the previous section. The weight error a t  time t is described 

by v(t) = +(t) + ,/jIt where 4 represents the deterministic motion and J represents the 

fluctuations about the deterministic path. The lowest order2 (m = 2) time evolution of 

4 and < were found from equations (2.17), (2.25), and (2.26) to be (with to = 0) 

where 

7( t l ,  t2) 5 2 1; n\ ')(4(s)) ds. 
7 

Inserting the coefficients for 1-D LMS 

we can compare the equations for the timc evolution of ( v )  and (v2) in (D.lO) and (D.l l )  

with those derived here using the small noisc rxpansion 

d(v) - - 
dt 7 

P = - - R (u) 
7 

(D.18) 

d(v2 > - -  - d42 - + p x =  d(J2) 2 4 1 ' 0 \ 0 ' + - - ( 2 n ,  /12 ( 1 )  (< 2 )+n!j")) 
dt dt  7 7 

p2 RU: 
= 1 (-2R(v2) + P S ~ ~ )  + -. 

7 7 
(D.19) 

Comparing these with (D.lO) and (D. l l )  wc scc that the equation for (v) is identical. If 

the equation for (u2 )  in (D.19) had an additional $S (;S2) then the b2 would be replaced 

'If all orders are retained, the solution should be identical to solving the entire Kramers-Moyal 
Expansion which, in turn. should be identical to the solution obtained of the full continuous time equation 
given in the previous section. 



with a (v2) and the eqiiation would match (D. l l )  precisely. However, only the lowest 

order (m  = 2) equations for the noise ( have been kept so we would not expect this term 

to be present. The term $S (F2) does not appear until m = 4. 

Solving equations (D.14)-(D. 16) we obtain 

With (((0)) = 0, (vo) = $(0) and (v;) = d2(0) + p(t2(0)), the equations for the weight 

error become 

( ~ ( t ) )  = 4(t) + fi ([(t)) = 4(0) e-9 + fi (((0)) e-+ 
-.+ 

= (vo) e (D. 23) 

(v2(t)) = 42(t) + C1 (t2(t)) 
2 

- &(o) e-? + p((2(0)) e-* + -(I - e -*) + p2S 42(0) t e-v - 
2 7 

As expected, the mean is identical to the exact continuous time solution. Equation 

(D.24) can bc obtained from the full continuolis time solution in (D.12) by expanding 

and truncating to O(p) as follows. Let & = and e* ~ l :  1 + 9. Note that the 

last approximation is quite poor as t becomes large, however, the effect is muted by the 

e 7 multiplicative factor. Inserting these approximations into (D. 12) and truncating3 

to O(p) (remembering that is O(1)) then gives (D.24). 

D.4 Comparison to Simulations 

Figure D.l compares the prediction of (u2) using the discrete time eqiiation (D.4), the 

full continuous time equation (D.12), and the small noise expansion (D.24). A large 

learning rate (p  = .2) has been chosen so as to highlight the differences. If /L is very 

- - - 

3To obtain (D.13) we let p and r actually go to zero. 



Figure D.l: 
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Predictions of the squared weight error for 1-D LMS with gaussian inputs 
1, a: = 1, (vo) = 1000, and p = .2. Simulations used 10000 networks. 
curves were computed using (v:) = lo6, 42(0) = lo6, (t2(0)) = 0, and 

small (e.g. .002), then all of the curves would be indistinguishable to the eye. For p = .2, 

the discrete time curve lies right on top of the simulations, as it should. All of the curves 

except the small noise expansion accurately predict the equilibrium variance. What is 

somewhat surprising is that the small noise expansion predicts the pre-equilibrium slope 

more accurately than the full continuous time equation. Perhaps this should be expected 

because the continuous time solution can only be guaranteed to be accurate to O(p) even 

though it contains terms that are 0 (p2 ) .  For 1-D LMS, these extra terms help when 

it comes to predicting the equilibrium variance, however, they hurt when it comes to 

predicting the pre-equilibrium slope. In contrast, the lowest order small noise expansion 

keeps on19 those terms that are O(p) while throwing away everything else. 

These results would seem to imply that the higher order terms for the equilibrium 

density calculated in the previous chapter using a perturbative expansion are not valid. 

However, we note that the full continuous time equations predict the correct equilibrium 

variance. We believe that this is not accidental. To study equilibrium behavior, we can 

let r -+ 0 while keeping p fixed. The scaling was necessary so that the pre-equilibrium 

behavior would still be visible. 

D.5 Summary 

In this chapter, we have examined the very simple network of 1-D LMS to better under- 

stand the approximations being made in first transitioning to continuous time and then 

approximating the continuous time solutions using the small noise expansion. We chose 



a 1-D LMS network because its discrete and continuous time equations are easily solved 

exactly thus making precise comparisons possible. We discover that the continuous time 

equations can only be trusted up to O ( p )  if we assume that the timescale 7 scales with 

p. In such a case, it seems preferable to use the lowest order small noise expansion rather 

than the full continuous time solution because the small noise expansion only keeps O ( p )  

terms. 



Appendix E 

Small Noise Expansion for Constant 

Learning with Momentum 

The algorithm for stochastic learning with a constant learning rate and constant mo- 

mentum in 1-dimension can be written as 

In vector form it can be written as 

The Kramers-Moyal equation for this is then 

The small noise expansion requires making a change of variable from {v, R, t )  to 

{tu r 50, s) where 



The partial derivatives transform as 

and the density transforms as 

where ?- is the Jacobian. 
v,fi,t) 

we can also rewrite (G{G;-~) as 

Expanding ~ ' ( v  = 4, + fitW, z] about v = 4, gives 

where 

We can also rewrite 

where A( (, - tfi and A& G 4, - 4n. We also note that A$ m j~ so we define 



Now putting (E.9), (E.11), and (E.12) into (E.8) gives 

Using (E.13) and the transformations in (E.6) and (E.7), (E.5) becomes 

Making the change of index n = i + k - p and rearranging the order of summation 

we finally arrive at  

The n = 0 term on the right is 

and the n = 1 term is 

It  makes most intuitive sense to cancel the 6', and 40 terms on the left side of (E.15) 

with the n = 1, i = 1, 1 = 0, and p = 0 terms on the right because the resulting 

deterministic equations resemble the continuous time versions of (E.l) and (E.3) 



Taking the lowest order term on the right (n = 0 )  leaves the equations for the noise 

E. l  Deterministic Solution for LMS 

For LMS, we have 

a!'' = (H)zlv=4w = -R4w 

so that the deterministic equations (E.18) and (E.19) can then be written as 

where 

The solution can formally be written as 

To extract the actual components of 4 wo write 

A = P D P - I  

4 ( t )  = d(0) PC"'/'P-' 

where 



For the initial condition 4(O) = c ( ) we have 

Note that $u - is O ( p )  as originally assumed, 

R e - a t / ~  
( e - h t / r  - e h t / r )  = - p R c eWatlT mu - 40 = p 

h 2h sinh (F) . 



Appendix F 

Evaluation of the Squared Weight Error 

for po/ t  Learning Rate Schedules and 

Constant Momentum 

In this appendix we evaluate the squared weight error E[(vI2] for annealed learning with 

momentum. E[lvI2] is the trace of the upper left quadrant of weight error correlation 

matrix, Z; . We have from equations (6 .5)  and (6.1 1 )  in chapter ( 6 )  that 

where 

(F. 5 )  

(F .6 )  

We assume a learning rate schedule of the form p ( t )  = p o / t .  We also =surne, without 

loss of generality, that the coordinates are chosen so that R is diagonal with eigenvalues 

A; i = l  ... N .  



F. l  Computing the Evolution Operator U 

To compute U ,  we first diagonalize the exponent of U 

where A is a 2N x 2N diagonal matrix. Letting diag [ ai ] denote an N x N diagonal 

matrix with diagonal elements a1 , a2, . . . aN, we can write 

I diag [ gi+ ] 
Q-l(t2, t i )  = ( ) 

I diag [gi- ] 

where 

1 
i = -(-(I - P)(t2 - t l )  - log (t2ltl) f 6) 2 

Si* = ( ( l - P ) ( t 2 - t l ) - / ~ o X i l o g ( t 2 / t 1 ) ~  dZ) / (2po~i log( t2 / t l ) )  

hi = (1 - ~ ) ~ ( t 2  - t1)2 - 2(P + l)(t2 - t,)}loXi log (t2ltl) + p:~: log2(t2/t1) 

The evolution operator U is then 

dia" - ( S i -  e x ~ ( ' ? ; + ) + ( S i + )  exp('?i- diaS [ ( g i + ) ( ~ i - )  ( e ~ p ( q ; - ) - e x p ( q i + ) )  1 ) 
~ i +  ) - ( g i -  I ( 9 i + ) - ( g 1 - )  

= ( diag [e* Si+ ] diag [ is+) e x p ( q i + l - ( . % - )  ( ~ i + ) - ( ~ i - )  ~ x P ( % - )  

F.2 Homogeneous Solution 

From (F.2), we see that (and thus C )  is composed of two terms. The first term we 

refer to as the homogeneous solution and the second term is the particular solution. In 

this section we compute the diagonal components of CH where CH is the homogeneous 

solution of C ,  

CH = Top left Quadrant of { ~ ( t ;  to) (to) UT(t, to)} . (F . l l )  



Multiplying out U(t, to)6 (to)uT (t, to), we obtain 

To simplify this, note that 

and 

So that 

Keeping terms in e 6  we get 

We can expand fi 

so that for to and t large we have 



(CH)ii can now be simplified using the above approximations: 

Assuming that mean square of the weight update (i.e. E[vivj]) is larger than the E[viQj] 

or E[QiRj] we have 

F.3 Particular Solution 

We now compute the diagonal components of the particular solution C p ,  where 

Cp = Top left Quadrant of U(t, r )  fi uT( t ,  r )  

and 

uT( t ,  7) = Q(t, r )  A(t, r) Q- ' ( t , r ) .  

Multiplying out we obtain 

where gi* and q;* are functions of t and r .  Expanding out the integrand and keeping 

terms with e"+ we get 

Letting 

t - r  
9;- (1 + gi+) = Si- - Si+ ": 

~ o X i  log(t/r) ' poXi log(t/r) 

we get 

Integrating we find 



F.4 Squared Weight Error and Convergence Regimes 

Combining the homogeneous and particular solutions in (F.14) and (F.16) we find 

Inspection of (F.17) reveals that there are two regimes of interest: 

1 .  For po 2 pml 1 2, E [IvI2] drops off asymptotically as i. 
PlrOX,;, 

2. For po < pm;t, E [ I u ( ~ ]  drops off asymptotically as (f) '-' . 



Appendix G 

Capping Adaptive Momentum for 

Linear Networks 

Adaptive momentum for linear networks was defined in chapter 7 as 

To avoid divergence, we require that po < l /Xma,  where A,,, is the largest eigenvalue 

of the Hessian of the cost function. In cases where we do not want to compute A,,,, an 

alternative is to cap each sample of padapt SO that its eigenvalues are bounded between 

0 and 1. Note that the eigenvalues of R are all positive so that we need only bound the 

eigenvalues of Padapt from below. In I-dimension. this is easily achieved by setting 

Note that this is not ideal in that it. bounds each sample of Padapt to be above zero 

which is very different from bounding ( [ 9adap t ) z  above zero. Even if po < K, the noise 

in z may result in 1 - p0z? being ncgat,ivc for some zt.  Thus. even when / L O  is well below 

- ' , the expected value of Padapt may no longer cqlial (1 - p O x ~ ) Z .  
Amnr 

We have found in our simulations that rapping docs prcvent divergence in cases when 
1 ' pcrformance is slightly degraded when po is larger than L. However, whcn / L O  < ~i,., 

capping is used probably because on average [jadapt is no longer equal to 1 - pOR. Thus, 

our preference is to appropriately choose /LO and not cap padapt. However, in the event 

that this is not possible, we present the idea of capping. 

A natural extension of capping to multiple dimensions is to first define 



where I is the N x N identity matrix. Then padapt is derived from y by zeroing out y's 

negative eigenvalues. To do this, we first diagonalize 7 to get y = QQQ-' where 

and z2 r xTz. Then we have 

Multiplying this out we find that 
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