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Abstract

Dynamics and Algorithms for Stochastic Search

Genevieve Beth Orr, Ph.D.
Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: Todd Leen

In this thesis we develop a mathematical formulation for the learning dynamics of
stochastic or on-line learning algorithms in neural networks. We use this formulation to
1) model the time evolution of the weight space densities during learning, 2) predict con-
vergence regimes with and without momentum, and 3) develop a new efficient algorithm
with few adjustable parameters which we call adaptive momentum.

In stochastic learning, the weights are updated at each iteration based on a single
exemplar randomly chosen from the training set. Treating the learning dynamics as a
Markov process, we show that the weight space probability density P(w,t) can be cast
as a Kramers-Moyal series

O P(w,t)

En = Ly P(w,t) (0.1)

where Ly p is an infinite-order linear differential operator, the terms of which involve
powers of the learning rate . We present several approaches for truncating this series
so that approximate solutions can be obtained. One approach is the small noise expan-

sion where the weights are modeled as a sum of a deterministic and noise component.

xiii



However, in order to provide more accurate solutions, we also develop a perturbation
expansion in g. We demonstrate the technique on equilibrium weight-space densities.
Unlike batch learning, stochastic updates are noisy but fast to compute. The speed-
up can be dramatic if training sets are highly redundant, and the noise can decrease the
likelihood of becoming trapped in poor local minima. However, acceleration techniques
based on estimating the local curvature of the cost surface can not be implemented
stochastically because the estimates of second order effects are much too noisy. Disre-
garding such effects can greatly hinder learning in problems where the condition number
of the hessian is large. A matrix of learning rates (the inverse hessian) that scales the
stepsize according to the curvature along the different eigendirections of the hessian is
needed. We propose adaptive momentum as a solution. It results in an effective learning
rate matriz that approximates the inverse hessian. No explicit calculation of the hessian
or its inverse is required. This algorithm is only O(n) in both space and time, where n

is the dimension of the weight vector.
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Chapter 1

Introduction

The goal of this thesis is to improve understanding of the behavior of stochastic learning
algorithms by mathematically modeling the weight dynamics. We then use this un-
derstanding to develop and implement a computationally efficient method for speeding
learning. A stochastic learning algorithm is a method of estimating an optimal value of
a parameter (e.g. weight in a network) by iteratively updating that parameter based on
both the current parameter value and an individual datum (input) presented from the
environment. The fluctuations of the incoming data appear as random noise, making
it natural to treat these algorithms probabilistically. Stochastic learning can be con-
trasted with batch learning which updates the parameter value at each iteration based
on an average over all inputs. Batch learning is deterministic and does not exhibit the
fluctuations present during stochastic learning.

Stochastic learning algorithms for neural networks have important advantages over
batch training methods. They require less storage and less computation at each iteration
which is particularly important when training sets are large and redundant. The inherent
noise in the learning process also lessens the chance of becoming stuck in local optima.
At the same time, the convergence (e.g. in mean square) is guaranteed if the learning
rate is annealed (decreased slowly towards zcro) at late times to remove the noise.

The general form of the stochastic algorithm we consider is

w(t+1) = w(t) + u(t) Hlw(t), z(t)] (1.1)



where ¢ is the time!, w(t) € IR™ is the weight vector, z(¢) € IR" is the data exemplar pre-
sented at time t, p(t) is the learning rate, and H|[...] € IR™ is the update function. The
exemplars z(t) can be either inputs or, in the case of supervised learning, input/target
pairs. For batch learning, the update function becomes H|w;] = (H[w;, ]}, where (-},
denotes average over all exemplars in the training set. Typically, the learning rate is
either held constant y(t) = o or is annealed according, say, to the schedule p(2) = po/t.
For gradient algorithms, the update function is the negative of the gradient of some cost

function, £.

1.1 Modeling Stochastic Search

In the first half of this thesis, we examine the late time convergence behavior for stochas-
tic algorithms from a mathematical perspective. We treat weight updates probabilisti-
cally as a Markov process whose weight-space density can be described using the infinite
order differential equation referred to as the Kramers-Moyal Expansion (KME). Much
of our analysis focuses on meaningful ways of truncating the Kramers-Moyal Expansion,
e.g. to the second order Fokker-Planck equation (FPE), so that approximate solutions
can be computed. We examine the case where learning rate is held constant as well as
the case where the learning rate is annealed. Convergence behavior in these two regimes
is quite different and thus needs to be treated separately. Most previous theoretical
development has examined what happens for a constant learning rate. We review these

results and extend them to the annealed regime.

1.2 Speeding Learning using Curvature

For many optimization algorithms, whether stochastic or batch, convergence rates can
be very sensitive to the choice of model parameters (e.g st). Techniques for speeding

batch algorithms often involve estimating either directly or indirectly the optimal values

1To simplify notation we will often express the time as a subscript, e.g. w(t) = w,.



of these parameters based on local properties (e.g. curvature) of the cost surface.

Basic gradient descent algorithms do not take curvature into account. The learning
rate parameter is picked in some ad hoc manner and the weights are moved in a direction
opposite the gradient of the cost function. There are two problems with this. First, the
gradient direction is often not the most direct path to the minimum. Second, a poor
choice of learning rate parameter can have a large effect on convergence rate. If slightly
too large, divergence can result. If too small, learning can be very slow.

Second order extensions of gradient descent attempt to correct these problems by
modeling the cost surface, £, as locally quadratic. If this assumption is valid then the
optimal weight vector w* can be predicted in from the current weight w. in one {(batch)
step by

o =we— (V2E) V€ (1.2)

W=we

This is the idea behind Newton’s Algorithm. Note that the learning rate “parameter”
in this case is a matrix (the inverse Hessian) that depends on the current position of the
weight. The Hessian is the second derivative of the cost function with respect to the
weights and will be denoted by R = V2€.

If the surface is not precisely quadratic, the predicted optimal weight is still likely
to move the current weight much closer to the true optimal weight. Repeated updates
can then be made. The downside of this method is that the Hessian is a matrix of size
m? where m is the number of weights. For large networks, computing, storing, and then
inverting R will generally offset any gains made in speed-up. Convergence takes fewer
iterations but each iteration is very costly.

To reduce computation and storage space, approximations of second order methods
are often made. For example, instead of using the full Hessian, the linearized Hessian (sec
Chapter 8) is used. The linearized Hessian has the advantage that it can be written as
an outer product thus simplifying some computation. In addition, the linearized Hessian
is positive definite thus providing added stability.

Another approximation is to assume that the Hessian is block diagonal, i.e. that the



correlation between weights for example between layers is zero. The most extreme case is
to assume that the Hessian is diagonal thus making storage requirements only O(m) and
making inversion trivial. How much is lost by neglecting off-diagonal elements depends
on the problem. For poorly conditioned problems whose weight axes are not aligned
with the eigendirections of the Hessian, this assumption can be quite poor.

Other simplifications include the quasi-Newton methods (e.g. BFGS) which keeps a
positive definite estimate of the inverse Hessian directly. Storage is still @(m?2) but no
matrix inversion is needed so that computation time is reduced from O(m3) to O(m?).
These algorithms are known to work well for small networks. However, as the number of
weights enter into the thousands (not uncommeon for real world problems) the compu-
tation time can still become excessive. Storage requirements may also exceed maximum
capacity although as memory becomes cheaper and more available this may be less of a
problem.

These techniques all use batch learning because accurate estimates of local curvature
are required; Stochastic estimates of local curvature are just too noisy. One approach to
remedy this problem is to use averages over time (iterations) instead of batch averages
over the training set to smooth out the noise. Time averaging decreases the numerical

sensitivity to noise while still retaining the efficiency of stochastic search.

1.3 Time Averages

One example of time averaging was suggested by Venter [Ven67]. His algorithm estimates
the diagonal components of the Hessian during the annealing phase of stochastic search.
At cach timestep the algorithm computes a finite difference approximation of the Hessian
from two stochastic gradient estimates computed at weights a small distance ¢; to either
side of the current weight. The difference approximations arc averaged over time. An
important and necessary component of this algorithm is that the finite difference interval

c; is annealed along with the learning rate. The weight update for each component of



(34

the weight has the form

(1.3)

Wiyl = Wt —

A1 (aS(wt+ct,m2,) L P~ ct,mzm))
t 2 ow ow

where

A; = min( max(a,B;), b)

0 <a<X<b<oo, where A= (926/0w?),

1 1 (0E(wj+cj,z25) OE(wj—cj,z2i41)
B = S i 6 T25) j = Cj, T2j )
¢ tZ:2Cj( Ow ow

7j=1

c 1
G = e where0<'y<§.

Note that two inputs, z9; and z9;41, are used at each iteration ¢. This algorithm has
several disadvantages. First, it assumes a diagonal Hessian. Second, it is not clear how
to best choose the parameters v, a, b, or c.

One very simple example of time averaging that has been observed to improve con-
vergence rates for gradient descent learning is to add a momentum term. Momentum,
as we will show, amounts to having weight updates based on an exponential average
of previous gradients rather than just the current gradient. In this thesis we extend
the theoretical analysis of equation (1.1) to include convergence results for stochastic
learning with momentum. We show that if the momentum parameter is chosen properly,
convergence rates can often be improved. Of course, the problem of choosing the optimal
learning rate parameter is now replaced with the equally difficult task of choosing the

optimal momentum parameter.

1.4 Adaptive Momentum

The second half of this thesis examines using momentum as a potential method for speed-
ing stochastic search. We study constant momentum for both constant and annealed
learning rates. In addition we present a novel technique for speeding learning during the

anncaling phase of stochastic search. We refer to this as adaptive momentum. Adaptive



momentum was inspired by our theoretical results on constant momentum obtained in
the first half of the thesis. It is a stochastic form of the optimal momentum parameter
matriz that adjusts itself based on the local curvature. No momentum parameter needs
to be set by the user. It achieves fast asymptotic convergence rates independent of the
learning rate. It is also efficient: Given m weights, each iteration is O(m) in both space
and time. We apply the algorithm to both linear and nonlinear problems of varying size

and complexity.



Chapter 2

Weight-Space Probability Densities

In this chapter we consider algorithms of the form
w(t+1) =w(t) + p Hiw(t),z()] (2.1)

where the z(t) are now treated as i.i.d. random variables with some known density
p(z) and where u is a constant. Equation (2.1) describes a random walk on w with
fixed timesteps (At = 1) and variable spatial steps Aw. The weights are thus random
variables whose probability density at time ¢t we denote by P(w,t).

In the first part of this chapter we develop a Kramers-Moyal Expansion (KME) for
the time evolution of P(w,t). Unfortunately the KME, being of infinite order, is not in
general! amenable to analytic solution, thus, a large part of our analysis is devoted to
developing principled methods of approximation. We also develop a backwards KME for
describing the distribution of first passage times. At the end of the chapter we compare

the theoretical predictions with simulations for several small problems.

2.1 Kramers-Moyal Expansion and Weight-Space Densi-

ties

In this section we present two different derivations of the Kramers-Moyal expansion

(KME) for P(w,t). The first is via the Kolmogorov equation which results in a differential

!See [LM93] for a case where it solvable.



difference equation. Transition to continuous time gives the KME. The second derivation
is via the (continuous time) Master Equation. Both derivations require conditions for

which the transition to continuous time is valid.

2.1.1 via the Kolmogorov Equation

Equation (2.1) describes a Markov process whose density evolves according to the Kol-

mogorov equation

P, (n+1)7r) = / dw P(w,n7) T(o'|w) (2.2)

where 7 has been introduced as a timescale (7 = 1 in (2.1)) and where T'(w'|w) is the

single step transition probability from state w to o/,
T(w' |w) = /dm p(z) 8 ~w— pHl[w,z]) (2.3)

where § is the Dirac Delta function. Equation (2.2) is an integral equation that is gen-
erally difficult to evaluate, however, it can be recast as a differential-difference equation
[LO94] by expanding the transition probability (2.3) as a power series in y (see Appendix
A) to give

. Plw,(n+1)r) — P(w,nTt)

Z(_-”)z > , 4 ((Hj Hj, ... Hj;), Plw,n7))  (2:4)

where w;, and Hj, are the jf,h component. of weight, and weight update, respectively.
Letting t = n7 and assuming 7 < t. the left side approximates? a derivative to give
[e ] ] m ]
(=p) o
T SPw,t) =) — 3 ((Hj,Hj,...H},), Pw,t)).

! : , ,
=t S Owj, Owj, ... Ow;,

(2.5)
This equation is called the Kramers-Moyal expansion. Approximate solutions can be
found by truncating to finite order. In particular. we can truncate to second order in u

to obtain a Fokker-Planck equation. This is the subject of Section §2.2.

2See appendix D for a more detailed discussion of the transition to continuous time.



2.1.2 via the Master Equation

Heskes [HSK92] uses an alternative derivation of (2.5) via a master equation. A master
equation can be obtained from (2.1) by treating time between transitions as a random
variable. In (2.1) we assumed that transitions occur precisely at t = 1,2,... so that at
t = n7 there have been exactly n transitions. Drawing on the work of Bedeaux [BLLS71],
Heskes instead sets the number of transitions in time ¢ be Poisson distributed. That is,

the probability of there being ezactly i transitions in time ¢ is

Bi,t) = ({) < (2.6)

7!

where 7 is the average time between transitions. Note that both the mean and the
variance of the number of transitions in time t is equal to ¢/7. We now have that that
the average rather than the eract number of transitions at ¢ = n7 is n. Defining p;(w) as
the probability of being at w after exactly 7 transitions, we then can write the probability

of being at weight w at time ¢ as
(oo}
Py(w,t) =) $(3, 1) pi(w). (2.7)
=0

Note that P, is not quite the same as the P in (2.2). At late times, however, the spread
of ¢ about the mean t/7 becomes small relative to ¢ so that Py is a good approximation
of P3.

To obtain the master equation, we first differentiate (2.7) with respect to time

{t’— o (é)i‘fr_j}pf(w) (2.8)
S S (e e

= (Z (i —1,t) pi(w) — Zqﬁ(z t) pz(w))

- %(qu(i- 1,8) pi(w) — P¢(w,t)>. (2.10)
i=1

atP¢,(w, t) =

e £

=

3Bedeaux also discusses bounds on the difference between the solution of the master equation and
P, when other densities for ¢(i,t) are used. Note that if we let &(i,#) = §(t — i) then we return to our
original formulation where transitions occur precisely at integer values of t.
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The first term on the right side can be written as

%i ¢(7' - 17 t) pi(w) = %§¢(Z - la t) / dw’ T(wlwl)pi—l(w’)

i=1
= / dw' T(le(d’) i ¢(i9t) pi(w,)
=0
= / dw' W(w|w') Ps(w', ) (2.11)

where

—T(“;l“") (2.12)

W(w|o') =

is the transition probability from state w’ to w per unit time. Inserting (2.11) into (2.10)

gives the master equation

OiPy(w,t) = / dw’ W(w|w') Py(w',t) — -:—_ Py(w,t)

/ do [W(Wlw') Py’ t) = We'|w) Po(w,)].  (2.13)

Just as we expanded the Kolmogorov equation in Appendix A, we can expand the
right side of (2.13) in a power series [Gar90] resulting in the Kramers-Moyal expansion
in (2.5) but with P replaced by P,;. Recall. for 7 < t, P; and P can be treated as
approximations of each other.

In summary, the weight-space probability density associated with the discrete time
stochastic algorithm given in (2.1) can be modeled at late times (7 < t) by the Kramers-
Moyal expansion, an infinite order partial differential equation. This expansion can be
derived either via a Kolmogorov equation as in subsection (2.1.1) or via a master equation

as just shown here.

2.2 Fokker-Planck Equation

The Kramers-Moyal expansion is in general intractable so that approximations must be
made. Knowing how to do this in a meaningful way is difficult. In this chapter and in

chapter 3 we present several approaches.
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One approach is to reduce the KME to a second order equation known as the Fokker-

Planck equation. The general form of a nonlinear Fokker-Planck (1-dimension) is

oP o 1 82
5 = —@A(y)P + §@B(y)P (2.14)

where A(y) and B(y) > 0 are any real differentiable functions. A is usually referred to
as the drift term and B as the diffusion or fluctuation term. The linear Fokker-Planck
equation refers to the case where A is linear in y and B is a constant.

Using the Fokker-Planck equation is appealing because it has been well studied in the
context of diffusion processes in physics and chemistry. Thus there is a well understood
physical interpretation that fits well with our intuition about the way weights evolve in
time.

There is another somewhat more obscure reason for using a Fokker-Planck equation
that is a result of the Pawula Theorem (see [Ris89] for details and proof). Stated in
terms of the Kramers-Moyal expansion for the transition probability P(w,t|w’,t’), the
Pawula Theorem in Risken’s words concludes that “the expansion may stop either after
the first term or after the second term, if it does not stop after the second term it must
contain an infinite number of terms.” That is, if only a finite number of terms are kept
past the second term, the transition probability must have negative values. However, as
we shall see in the next chapter, this does not necessarily mean that these extra terms
are useless.

Using the Fokker-Planck equation to model stochastic learning algorithms for neural
networks is not new (e.g. sec [HSK92, RS88, DV93, RSW90, HPS93]), yet there still
remains a limited understanding of the conditions under which such an approximation
is valid. In this section, we assume that the Kramers-Moyal equation (or equivalently,
the master equation) accurately models the probabilistic late time development of (2.1).
Given this, we are interested in understanding in what way a Fokker-Planck equation is

an appropriate limit or approximation of the Kramers-Moyal expansion.
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2.2.1 Fokker-Planck Limit

The infinite order Kramers-Moyal equation (2.5) is unsolvable analytically as it stands,
however, one can ask what it reduces to in the limit of infinitely small stepsize, i.e. u — 0.
However, Gardiner [Gar90] shows that the master equation (2.13) (or equivalently the
Kramers-Moyal equation) reduces to a Fokker-Planck equation in the limit of infinitely
small jump size only if the “scaling assumption” holds. The scaling assumption states
that the average stepsize and the variance of the stepsize must both be proportional to
the same parameter which, in this case, is p. If the scaling assumption does not hold,
we can not assume that the higher order terms in (2.5) vanish. Unfortunately, as Heskes
points out, the scaling assumption does not hold for (2.1) as can be seen from the fact
that (Aw), ~ O(p) and {((Aw — (Aw)x)2>z ~ O(p2). Thus, there is no limiting case
of the KME that results in a Fokker-Planck equation.

2.2.2 The Fokker-Planck Approximation: Truncation of the Kramers-
Moyal Expansion

Although the Fokker-Planck equation can not be considered as a limit of the master
equation, it can be considered as an approzimation to it. By viewing the Kramers-Moyal
expansion (2.5) as an expansion of the master equation in the “small” parameter u, we

can truncate (2.5) to obtain the nonlinear Fokker-Planck equation (1-dimension)

P(w, 8 ?
; Pt g: t_ —pis (01 (w) P, 1)) + -’;—3%25 (ar(w) P(w,1)) (2.15)

where a; = (H i(w,m))f. We present the XOR problem [LO92, OL93] later in the

chapter to illustrate how well (2.15) approximates the density P(w,1t).

2.2.3 The Small Noise Expansion for Behavior within a Basin

The argument against truncating the Kramers-Moyal expansion as above to obtain a
nonlinear Fokker-Planck Equation is that P(w,t) implicitly depends on u so we can not
be certain of the order of the truncated terms. Heskes [Hes94] justifies this statement by

substituting the stationary solution of the one-dimensional Fokker-Planck equation back
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into the Kramers-Moyal expansion. He finds in this case that “all higher order terms are
of the same order of magnitude in 7 [the learning rate] as the first two terms.”

To be confident that the truncated terms can be neglected, we ezplicitly model the
u dependence in (2.5) using a technique referred to as the small noise expansion [Hes94,
Gar90, vK92]. The small noise expansion begins with the ansatz that w can be written

as

w=@(t) + /1€ (2.16)

where £ is a random variable that represents the nondeterministic deviations about a
deterministic path ¢(t). Note that both ¢ and £ (and thus also P(£,t) ) are assumed to
be independent of u (at least to O(u)). This formulation is consistent with our intuition
about the behavior of (2.1) after the weights have settled into a single basin of attraction:
¢ represents the “true gradient” path and the size of the fluctuations about this path
depends on the learning rate p.

Making a change of variable to £ [HSK92] transforms the Kramers-Moyal expansion

into the set of equations (see appendix (B))

dé(t) _ (o
dt aj (#(1)) (2.17)
apéi,t) _ Z > (z'(ir)l I == (m— ,)(¢(t))a£, {Em-ip(f t)} (2.18)

where?

ok .
oM (#(t) = o (H'(w.2), (2.19)

w=¢(t)

and where we have assumed that the timescale 7 scales as y = ¢7 for some constant c.

Equation (2.17) for ¢ describes the deterministic motion along the true gradient,
while (2.18) describes the fluctuations about the true gradient. To lowest order (m=2),
(2.18) becomes the linear Fokker-Planck equation (with c=1)

OP(&,t)

o P(,g t) (2.20)

= ~a{ (6(0) 5 € PED) + 5 o 6(0) 5

“Note that the previously defined a; is related to a( )by a; = a(o)
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Note that g does not appear. Thus, to lowest order, P(£,t) is independent of u and so
fulfills the conditions of the original ansatz.

Equation (2.18) can be used to solve for (£}, and (¢2) since

a) _ opP (£ 1)
- / de £25% 0 (2.21)
ade?) 3P(§ 1)
S = Jeesgs (222
Using the right hand side of (2.18) and integrating by parts gives
d = alm™=
_éfl _ Z D (gm-1y (2.23)

d{£2 (m 1) (m—2)
e Wi {2 T <sm-2>} (2.24)

Keeping only the m = 2 terms gives

%ﬁ) — cagl) €y = (f)t = (£>toe~r(to,t)/2 (2.25)
d(£2
——St ) = 2calV (2 + o)
t
= <£2)t = <§2)toe7(t°’t) + c/t ds e"(s’t)ag)) (&(s)) (2.26)

where

¥(t1,t2) = 2c‘/’t2 aﬁl)(qS(r))dT,

ty
The ansatz, however, does not seem appropriate for describing the transitions be-
tween basins. For example, consider gradient descent. Equation (2.17) shows that the

0 .

deterministic component decays down the gradient (o« ' is negative the gradient). To

move between basins would require moving up the gradient for at least a short period

of time. In addition, equation (2.25) diverges if agl)

is positive. This corresponds to

regions where the Hessian of cost function is negative, i.e. the regions between basins.
Note also that Fokker-Planck equation in (2.20) in linear in £&. Thus Heskes argues

that if we restrict ourselves to a Fokker-Planck equation, only the linearized equation

for P(£,t) is meaningful. In other words, using a nonlinear Fokker-Planck as in equation

(2.15) can only produce spurious results. In addition, this linearized Fokker-Planck is
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only valid at late times when the weight-density is completely contained within a basin,
i.e. it is not able to describe basin hopping. However, as the example with the XOR
problem will demonstrate, the nonlinear Fokker-Planck equation in (2.15) when applied
directly to w (as opposed to &) is able to accurately model the complex nonlinear behavior
that is involved in basin hopping. The results hardly seem spurious. Why it does such
a good job is not clear. When the learning rate is large, (2.15) does fail, but that is not
surprising because the higher order terms are expected to become more important as p
increases. In addition, a continuous time equation ceases to be a good approximation of

the behavior of the weights when the (finite) stepsize is large.

2.2.4 Higher Order Terms

Van Kampen [vK92, pp.267-272] explores the effect of keeping the next higher order
term in (2.18). Not only do higher powers of £ appear but so do derivatives up to fourth
order; a far different result than would have been obtained had the next term in the
Kramers-Moyal expansion been included. However, the resulting equation for P(£,¢t) is
no longer independent of p violating the original ensatz. The next chapter presents an
alternative approach for obtaining higher order terms for the special case of equilibrium

weight densities.

2.3 The Backward Kramers-Moyal Expansion and First

Passage Times

One way of characterizing convergence of the weights is by the first passage time; the
time required for a network initialized at wq to first pass into an € neighborhood D of a
global or local optimum w™ (see Figurc 2.1). In this section we derive analytic expression
for the first passage time.

We begin by writing the weight space density conditioned on the initial weight wq at

t=0as

P(w, njwy, 0) = / dw' P(w, njw'. 1) T(w' [wp). (2.27)
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Figure 2.1: First Passage Time. Sample search path entering € neighborhood
of optimum w*

That is, the probability of transitioning from wg to w in n iterations equals the probability

of first transitioning to w’ in one timestep, times the probability of then transitioning

from w' to w in n — 1 timesteps, summed over all w’. Substituting in the expression for

T(w'|wp) gives

Plw,nlo,0) = [ dw’ Pw,nlun,1) [ do pla) 66/ - wo = i Hlwo,2]) (2.28)

= (P(w,n~1llwg+ p H[wy,z]),0)},. (2.29)

In the last step we have used the property of time-shift invariance, i.e. P(w,n|w’,m) =

P(w,n~ 1|w',m—1). This property holds because we are using a constant learning rate
and we have assumed that the input density p(z) is stationary.

Next we let G¢(n;wp) denote the probability that a network initialized at wg has

not passed into the region D by the nt® iteration. We obtain G.(n;wg) by integrating

P(w,n | wp,0) over weights w not in D;
Ge(niwy) = / dw P(w,n | wo,0) (2.30)
DC

where D¢ is the complement of D. Substituting equation (2.29) into (2.30) and integrat-

ing over w we obtain the recursion
Gemiwo) = (Geln—Liwo + pH[wo,z]) ), - (2.31)

Before any learning takes place, we assume that none of the networks in the ensemble

have entered D. Thus the initial condition for G, is

Ge(Qywp) = 1, wp€ D . (2.32)
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Networks that have entered D are removed from the ensemble (i.e. the surface of D is

an absorbing boundary). Thus G, satisfies the boundary condition
Ge(nywg) = 0, wyeD . (2.33)

Finally, the probability that the network has not passed into the region D on or
before iteration n — 1 minus the probability the network has not passed into D on or
before iteration n is simply the probability that the network has passed into D ezactly

at iteration n. Thus the first passage time is
P! (njwp) = Ge(n ~ Liwp) — Ge(n;wo) (2.:34)

where PSP(n;wg) is the probability that a network initialized at wq first enters the

e-neighborhood D at the nt* iteration.
Finally the recursion (2.31) for G, can be expanded in a power series in p to obtain

the backward Kramers-Moyal equation

oo ; m y

# H. . A -1
Y5 X (HiHy. Hy, By By, B Cc(nm L) - (239)
Note that we can also truncate (2.35) to second order in u to obtain the backward

Fokker-Planck equation for G

G (tw) d . u? o2 _
T 5 = —ual(w)awGe(t,w) + 3 ag(w) aw2G€(t,w). (2.36)

2.4 Simulations

In this section we examine the XOR problem and competitive learning. We compare
simulations of the weight-space densities and first passage times with the theoretically
predicted values. The theoretical values are computed using the nonlinear Fokker-Planck
equation obtained by truncating the Kramers-Moyal Equation. The recursive solution
(2.31) for the first passage time is also examined. We postpone until the next chapter

the comparison of the nonlinear Fokker-Planck equation with the small noise expansion.
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Figure 2.3: XOR. Cost function for 1-
Figure 2.2: XOR architecture D slice.

2.4.1 The XOR Problem: Weight-Space Densities

The XOR problem is a well studied, simple but nontrivial nonlinear problem. We use
the standard 2-input/2-hidden/1-output architecture (9 weights = 6 connecting weights
+ 3 biases) shown in Figure 2.2. The network is trained by stochastic gradient descent

on the cross-entropy error function [LP91] given by
£t) =1n (g (1~v)'~*) (2.37)

where y; is the activation of the output node and d; is the desired target value at timestep
t. The hidden and output nodes use the sigmoid response function f(z) = 1/(1 + ™).
To provide global optima at finite weight values, the output targets are set to § and
1-4, withé << 1.

For computational tractability, we reduce the state space dimension by constraining
the search to one-dimensional subspaces of the weight space. Figure 2.3 displays the cost
function along one such subspace. The parameterization v is chosen to pass through a
global optimum at v = 0, and a known local optimum [LP91] at v = 1.0. In this

5 oceurs at v = 1.24.

one-dimensional slice, another local optimum

Figure 2.4a shows the evolution of P(v,t) estimated by simulation of 10,000 networks,
each receiving a different random sequence of the four input/target patterns. Initially
the density is peaked up about the local optimum at v = 1.24. At intermediate times,
there is a spike of density at the local optimum at » = 1.0. This spike is narrow since the

diffusion coefficient is small there. Figure 2.4b shows the evolution of P(v,t) obtained

*The local optimum at v = 1 is a local minimum even when viewed in the entire 9 dimensional space
whereas local minimum at v = 1.24 is a local minimum only in the 1-dimensional space.
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Figure 2.4: 1-D XOR. Time evolution of weight-space density (z = .025): a) simulation,
b) Fokker-Planck solution.

by numerical integration® of the Fokker-Planck equation.

Agrecment between the simulated and the Fokker-Planck density is very good. It
is important to note that the nonlinear Fokker-Planck equation is able to accurately
capture the highly nonlinear behavior of the density as it transitions befween basins of
attraction as well as the behavior within a basin. This result contradicts Heskes [HK93]
claims that only a lineor Fokker-Planck equation has any meaning, that is. any features
resulting from the nonlinearity can not be trusted. However, our cmpirical evidence here
suggests that for “small” learning rates the nonlincar Fokker-planck provides a good
estimate of P(w,t) even when transitions between basins occurs.

For large learning rates. the agreement between the Fokker-Planck predictions and
simulations is quite poor. An cxample of this is shown below for XOR first passage times.
In such cases, the contribution of the higher order truncated terms can not be neglected.
In addition. the continuous time assumption ccases to be a good approximation especially
at carly times.

We next look at the weight-space density for a 2-D slice through the XOR. weight:
space. Figure (2.5) shows the time evolution of the weight-space probability density
computed by numerical integration of the forward Kolmogorov ecquation. The learning
ratc is g = 0.25. Each graph in this figure displays the 2-dimensional cost surface with
the weight-space density superimposed on top of it. The weights are imitialized at the
back right (sce spike at £ = 0). The density moves down the cost surface and ends up in a

global minimum at ¢ = 100. Notice that at t = 34 some of the density temporarily spends

®We use a Crank-Nicholson differencing scheme for the numerical integration [PFTV87, for example}.
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Time=0 Time =10

Time = 28 Time = 34

Time = 100 True Gradient Descent

Figurc 2.5: 2-D XOR: Weight-space density for stochastic gradient descent computed by
numerical integration of the Kolmogorov equation. Bottom right graph shows the path
taken using truc (batch) gradient descent where cach spike represents the deterministic
position of the weight at one instant 1n time.
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Figure 2.6: 1-D XOR. Simulated (histogram) and theoretical (solid line) distributions of
first passage times for the cost function in (2.3) with v = 1.2, e = .1, and g = .025.

time in a local minimum (the right spike) before moving on to the global minimum. For
comparison, the bottom right graph shows the path (all 100 timesteps) taken by the
weights during true gradient descent (i.e. batch) training. True gradient descent is
deterministic so the “density” at each time-step is a delta function. After 100 timesteps,

the weights trained by true gradient descent are trapped in a local minimum.

2.4.2 The XOR Problem: First Passage Times

For the cost function shown in Figure 2.3, we calculate the distribution of first passage
times for networks, initialized at v = 1.2, entering within € = 0.1 of the global optimum at
v = 0. For this example we numerically integrate the backward Fokker-Planck equation
given in (2.36). In Figure 2.6 we compare the theoretical predictions (solid line) with
simulations from an ensemble of 10,000 networks (histogram) initialized at v = 1.2. For
this example the agreement is good at the small learning rate (¢ = 0.025) used, but
degrades for larger i as higher order terms in the expansion (2.35) become significant.
Figure 2.7a displays another 1-dimensional subspace for the XOR problem. Figure
2.7b compares simulations (histogram) with the Fokker-Planck solution (dashed). Here,
the Fokker-Planck solution is quite poor because the steepness of the cost function results
in large contributions from higher order terms in (2.35). We also display in Figure 2.7b
the exact density (solid) computed from the recursion in (2.31). As expected, the exact

and simulated densities agree very well.

2.4.3 Competitive Learning: First Passage Times and Basin Hopping

As a final example of first passage times, we consider competitive learning with two
2-D weight vectors symmetrically placed about the center of a rectangle. Inputs are

uniformly distributed in a rectangle of width 1.1 and height 1. Figure 2.8 displays the



22

0 w G -— Exact
a7 it - Fokker-Planck
b4 <
® i
3 g [ﬂ
o
- <
-0.5 0.0 0.5 1.0 15 sy 200 200 600 800
a) v b) First Passage Time

Figure 2.7: 1-D XOR - second example. a) Cost function. b) Simulated (histogram) and
theoretical (lines) distributions of first passage times with v = 1.0, ¢ = .1, and p = .05.

Figure 2.8: Competitive Learning. Inverted log of cost function.

log of the cost function inverted so as to better sce that there are two global and two
local optima.

Figure 2.9a shows a sample path with weights started near the local optimum (circles)
and switching to hover around the global optimum. The measured and predicted (from
numerical integration of (2.31)) distribution of times required to first pass within a

distance € = 0.1 of the global optimum is shown in Figure 2.9b.

2.5 Summary

In this chapter we have studied the time-evolution of the weight density during learning
using the Kramers-Moyal expansion derived either from the Kolmogorov equation or a
master equation. We discuss how to truncate the Kramers-Moyal equation to obtain
approximate solutions to the full expansion. We present two approaches for truncating.

The naive approach is to view the Kramers-Moyal expansion as an expansion in the
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Figure 2.9: Competitive Learning. a) Data (small dots) and sample weight path
(crosses). Arrows point to initial weight configuration (circles). b) First passage times.
€ =.1 and u = .05.

small parameter i and to truncate to some order in u. For example, truncating to
second order results in the nonlinear Fokker-Planck equation (2.15) which surprisingly
does a good job at predicting the complex time evolution across basins of the density for
the 1-dimensional XOR problem when the learning rate is small.

The argument against truncating in this manner is that the density implicitly depends
on p so that the order of the truncated terms can not be determined strictly by the
explicit power of . The small noise ansatz in (2.16) was then introduced as a way
to explicitly model the u dependence. This results in a deterministic equation for the
average trajectory and a linear Fokker-Planck equation for the behavior of the noise
about this trajectory.

Heskes used the results from the small noise expansion to argue that any nonlinear
behavior present in the nonlinear Fokker-Planck equation can only be spurious. However,
our examples with the XOR problem clearly show that much of the nonlinear behavior
is being captured by the nonlinear Fokker-Planck equation. Despite this, we do believe
that to properly truncate the Kramers-Moyal equation the y dependence must be made
explicit. The next chapter presents another approach for doing this that makes it possible

to compute solutions beyond the lowest order.



Chapter 3

Perturbation Analysis for LMS

In this chapter we use perturbation theory to explicitly model the u dependence in the
Kramers-Moyal expansion for the equilibrium density P.(w) = P(w, 00). This technique
enables us to recursively compute any finite order approximation of P(w) in terms of
the lower order approximations. Thus, unlike the small noise expansion where equations
above the second order appear difficult to solve, this technique makes it possible to
obtain equilibrium solutions to any finite order. In the first section we describe the
general technique!. We next illustrate the technique by computing the Least Mean
Square (LMS) equilibrium densities. We find that the lowest order solutions correspond

exactly to the solution obtained using the small noise expansion in Appendix D.

3.1 Perturbation Theory

The Kramers-Moyal expansion (2.5) in one-dimension can be written as

= (=)' &

T BtP(w,t) = Z 7! Bwi ( (Hi(w,x))xP(w,t))
=1 .

= Lpy Plw,t). (3.1

where Lpar is the differential operator implicitly defined by (3.1). At equilibrium the

left hand side is zero so we have
0 = Lrum Pelw). (3.2)

Equation (3.2) is a specific example of a problem of the general form LP = 0 where
L is some known operator. In this section we discuss a perturbative approach to solving

such problems.

!Unpublished notes of T. K. Leen.
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We first make the assumption that the operator £ and the solution P can be written

as a power series in some small parameter o

L = Lo+ali+aLy+... (3.3)
P = PO4aopP® 4+a2Pp® 4 . (3.4)

where the £; and P(®) are independent of a. Substituting (3.3) and (3.4) into LP =0

we obtain
0 = LoPO + a(LoPM + £, PO) + 2(LoP@ + £, PD) + LoPO) 4. (3.5)

Since « is arbitrary, the above sum is zero only if each coefficient of o vanishes inde-

pendently, that is,

0 = LoPO (3.6)

0 = LoPY4£,PO (3.7)

0 = Y LpPth, (3.8)
k=0

This set of equations is solved recursively as follows. First the eigenvalues A and the

eigenvectors Py and @) of the eigensystems

LoPy = —APy (3.9)
£HQx = —2Q, (3.10)

are solved where E(‘; is the adjoint? of Lo and where we require that {Py} and {Q,} each
form a complete set. It can be shown that (Py,Qx) = 8y where (a,b) denotes the
inner product of a and b.

The solution of (3.6) is then P(© = P,_g. Subsequent P are found by assuming

that they can be written as a linear combination of Py,

PO =3P, (3.11)
A

2If L is an operator defined on a space S of measurable functions. then the adjoint L' of L is defined
by (f.Lg) = (L'f,g), Yf,g € §. Here. (a.b) denotes the inner product of a and b.



26

Then, starting with (3.8):

Yo PP = Ly p)
k=1
- 5,0
= =) ay LoPy
A

= Z af\i).)\PA
)

Taking the inner product of both sides with @y gives
S(LPRLQy) = Y alA (PQw)
k=1 A

= Zag‘l))\ Sxn

A
= af\l,) X,

Substituting X for X', solving for a{’

of Pk<i),

, and plugging back into (3.11) gives P in terms
0 =V @ p, = S 5= (£, pli-k
PY=%"aP=3 3 S (LkPYTR Q). (3.12)
A A k=1

3.2 Computing the LMS Equilibrium Density

We now use the above method to compute the LMS equilibrium density. The first section
below describes the LMS algorithm.

3.2.1 The LMS Algorithm
The stochastic LMS learning algorithm is given by
w(t+1) = w(t) + pV,E(w(t),2(1)) (3.13)

where w(t) € R™ is the weight and 2(t) = {z(t),d(t)} is the input/target pair at time

t. The cost function is given by the squared error
1
E(w(t), 2(1) = 5(d(t) - w(t) - 2(1))* (3.14)

We assume that the training data is generated according to a “signal plus noise” model,

that is,
d(t) =w" - 2(t) + €(2) {3.15)
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where w* is the optimal weight vector and €(t) is i.i.d. noise with zero mean and variance
o2. Defining the weight error vector as v(t) = w(t)—w", we obtain the weight error update

equation
v(t+ 1) = »(t) — p Hv(t), 2(2)] (3.16)

with
Hiv(t), 2(8)] = VoE(u(t), 2(8)) = (e(t) - 2(2) - v(®)) a(2). (3.17)
3.2.2 Perturbative Approximation of the Equilibrium Density

Following the procedure in Section §3.1, we want to solve for successive approximations
of Pe(v) in

0 = LgumP(v)= Z (-:)l % ( (H'(v,2)): Pe(v)) (3.18)
i=1 .
= pu (-—— (H(v,2)), +p 5176 3 (H*(v,2)). + 42 (—;Q% (H*(v,2)), +) P.(v)

where H is given by (3.17) and (-), denotes expectation over = and €. The first step is
to write (3.18) as LP = 0 where £ and P have the form given by equations (3.3) and
(3.4). A natural choice would be to let @ = p, £L = Lgpr /1, and

(_1)1' ai

Li| =——

T 5o (Hi(v, 2)),. (3.19)

However, there is a better choice for LMS that results in an £y whose eigensystem is

completely known. We first expand H' in equation (3.17) to give

(—p)!
2!

ai ..
3 (((e —zv) :x:'> P.(v) )

e

H
-

lACA’M P.(v) =
ll,

® -

1

£ (51 o

i k=0

8

Il
_

We next make the change of variable3

v

(3.21)

@
i

Mo,

31t is probably not accidental that this corresponds up to a constant to the same change of variable
used in the small noise expansion. Note, at equilibrium, ¢ = 0.
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so that (3.20) becomes after simplification

1 - m 3 2i—m ai i
0=;£A-MPe(v) Z( VR (2 Z ( )i(!‘o?,._,zay,. (y Pe(y))

i=[ %]
(3.22)
Note that since (€) = 0, the m =1 term is 0. Thus, the lowest order term (m = 2) is
o 18
Lo Pe('u)"R(ayy’*’ 20 Q)Pe(y) (3-23)

where R = (z?) is the Hessian of the cost function for LMS averaged over the inputs.
The operator Ly in (3.23) is the Ornstein-Uhlenbeck operator [Gar90, Ris89] whose
eigensystem is known.

Now (3.22) is an expansion in /i rather than p therefore it seems more appropriate
to set o = ,/ji. However, in the case of gaussian inputs and noise that we examine next,

the odd powered terms vanish so that equating o with g is still appropriate.

3.2.3 Gaussian Inputs and Noise

If we assume that = and ¢ are gaussian distributed with zero mean then all odd moments

are 0 and even moments are given by

n)! 2n

Equation (3.22) then simplifies to

0= Z(MR)'ZT’( )(jl) ;’;(”‘J (y) ) - (3.25)

Thus, we can write

1
0= ;EKM Py)=(Lo+pLly+...) Pe(y)

2!
. 21 8J ,
= Rl =J =3, .
The first three £; are

Lo = 3R (20, + )

where

3
L = §R2 (483y2 +463y + 83)

5 ;
Ly = R (80)° +120;" +60)y + o)
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where 8, = 3"’—‘,.
y
The eigenfunctions and eigenvalues of £ are [Gar90]

2

Py (y) = %Ww (3.27)
A\ = kR (3.28)

where Hi(y) is the k** Hermite polynomial. The adjoint of Lg is the associated backward

equation

1
Li=R (yay + —2-33) (3.29)

with eigenfunctions

1
Q. (y) = T n Hi(y) (3.30)
1

Thus P{¥ (y) = Pa=o(y) is a gaussian with variance 3, independent of j. Higher order

corrections, P,,,(i) (y), can be obtained from (3.12). The first several are

POy = —l—e'_y2 = PO(y) = !

v T
2
POG) = JREI42MPO0) = PO0) = FR(-1+20) POW)
€

9
POy = R (-1-42+4P") =

e—vz /"‘03

9 . 42 4t
(2) = R?(—-1- 2=,
P (y) T R ( o7 +

) PO (2). (3.31)

pra?
3.3 Comparison of Approaches: An Example

So far we have discussed three approaches for approximating weight-space probability
densitics; the nonlinear Fokker-Planck equation, the small noise expansion, and the per-
turbative expansion. In this section we apply cach of these techniques to computing the
LMS equilibrium density and compare the results with the exact density obtained from
simulation. We assume gaussian zcro mean inputs and noise, and a constant learning
rate.

The 3t" order perturbative density we define to be
P (v) = PO(v) + uPM(w) + - + ' P (v) (3.32)

where the first several Pe(k) (v) are given in (3.31).
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We define Pe(‘m)(v) to be the LMS equilibrium density obtained from the lowest order
truncation of small noise expansion in (2.20). At equilibrium (¢ = o), ¢ = 0 and the
lefthand side of (2.20) is zero,

2
0 = LanPI™(€) = RO(E PE(E) + T 62PN o) (3.33)

Expressed in v coordinates, we find that £, is identical to u£y implying that Pés") (v) =
Pe(o) (v). This is not surprising since at equilibrium (¢ = 0) both the perturbative
and small noise expansions are derived from essentially the identical transformation:
y = \/po2v versus { = VY.

The nonlinear Fokker-Planck equation refers to (2.15), i.e., the truncated Kramers-

Moyal expansion which, for LMS at equilibrium with gaussian inputs, is
2
0= LrpPFP) (v) = pRO{v PFP) (v)} + %aﬁ {(Raf + 3R%?%) pFP) (v)} . (3.34)

It has the closed form solution [LM93]

1 R .\ ~(+zmw) 11 1
PFP) () = % (1 + §— ) " withK=B (5 —+ 3—§> (3.35)
€

where B(-,-) is the Beta function. Lpp is somewhere between the 0®* and 1 order

perturbative operators. Writing out the terms separately we have

w2 Ro? 423
0'€ 62 + R

Lrp(v) = pROv + 2. (3.36)

The first two terms correspond precisely pLo(v), the 0t% order perturbative operator.
The third term corresponds to part of p2L;(v). Note that £ also contains terms with
37¢ and 4** order derivatives. Thus the nonlincar Fokker-Planck equation is capturing
some but not all of the O(u?) effects.

Figure 3.1a compares Pe( FF) (dotted) and P, (pe ) (v) (solid) with the simulated density
(dashed) for gaussian inputs and noise with ;o = .Oo, 62 =1, and R = 4. Figure 3.1b does
the same except that Pe(%ert) {v) has been replaced with Pe(f;ert) (v). Recall that Pésn)('u),
the lowest order solutioﬁ from the small noise expansion is identical with P(p er) (v). For
other choices of inputs, the behavior was qualitatively the same.

Figure 3.1a shows that the 0" order perturbative solution does a better job at fitting

the truc density than the nonlincar Fokker-Planck. Thus, we do more harm than good
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-1

Figure 3.1: a) Comparison of densities from Fokker-Planck (dotted), simulation (dashed),
and 0t order perturbative density (solid) for gaussian inputs and gaussian noise with
p=.05 02=1,and R = 4. b) Same as a) but with 1% order perturbative density. Note
that for all &, the k*? order perturbative density is identical to the kt* order density from
the small noise expansion.

2, Petv

Figure 3.2: a) Comparison of densities from Fokker-Planck {dotted), simulation (dashed),
and 1%¢ order perturbative density (solid) for gaussian inputs and gaussian noise with
p=.10, 62 =1, and R = 4. b) Same as a) but with 4t order perturbative density.

by including only part of the O(u?) effects. This is similar to the conclusion drawn from
the pre-equilibrium behavior of LMS derived in Appendix D.

From Figure 3.1b we see that Pe(ﬂe")(v) is almost a perfect fit with the simulated
density. As higher order corrections are added the solution improves and then begins
to degrade. Oscillations appear and there are regions in the tails where the density
is negative (consistent with the Pawula theorem). This is particularly noticeable for
larger learning rates. For example, Figures 3.2a and 3.2b display the 15 and 4** order
perturbative densities, respectively, compared against the simulated and Fokker-Planck
densities for ;4 = .10. While Pe(ﬁe") is a much better fit than the Pe(FP), Pe(”:frt) is much

worse and exhibits oscillations. Unfortunately, it is not clear how to tell a priori how

many corrections produce the best fit.
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Moments of the Perturbative Densities

In the previous section we saw that there was a point at which adding higher order
perturbative corrections only degraded the solution. However, we show in this section
that the estimates of the moments continue to improve as higher order corrections are
included even though the density seems to degrade.

The n** moment of v can be computed from the perturbative densities as follows
) = [ doumPo) = () + (07, 4 4% ) (3.37)
where
(v") = /d'v v"P®) (v).

Equation (3.37) represents a power series expansion in g for the nt* moment of v.

Using the densities given in (3.31) we find that

2 3;10' R Suc’R?

poe ¢

(”2>0 = (v 2>1 (”2>2 = 3 (3.38)
3uq? 9;1 iR 81u a4R2

(’114>0 = 4 ( 4>l <’U4>2 16 (339)

These terms can be compared to the series expansion obtained directly from the ex-
pansion of the exact moments. The exact moments for the LMS weight error equilibrium

density are easily calculated directly from the update equation
vt+1)=v(t)+pule—vz)z.

Raising each side to the n*? power, taking expectations, setting (v") = lim;_, o, (v*(t)) =

lim; 00 (v™(t + 1)), and solving for (v") gives

n—1 n n k
() = = (@™ D ( . ) ( )uk(_l)m+k—n<zzk+m—n> "
m=0 k=n—m

m+k—-n
n n . )
Y| | wi). (3.40)
i=1 \ ?
Note that, since we are using gaussian inputs and noise, all odd moments of v will be

zero. The first two nonzero moments computed from (3.40) are

2 2
9 po’ of1 3uR  9(pR)
_— -t — — 4 ... 4
(v?y = 23R = po; (2 + 2 + 3 + (3.41)
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3u202(2 — 6pR + 21u%R?)

4 —_
(") 8 — 48uR + 1742 R? — 3903R3 + 3159 R°
1 3R 27(uR)?
= 3uo? (Z + l; + ({lﬁ ) +6(uR)% + ) . (3.42)

The first three terms in these expansions exactly correspond to first three terms obtained
by inserting (3.39) into (3.37) with n = 2 and 4. It is difficult to show that the moments
agree in general because the Pe(k) (v) are computed recursively, however, we believe this
to be the case.

Thus, even though the densities obtained from the perturbative expansion seem to
degrade as higher order terms are added, the perturbative moments continue to improve

and, in fact, correspond to the expansion of the exact moments.

3.4 Summary

In this chapter we presented a method for recursively computing equilibrium weight-
space densities to any finite order. We applied it to LMS and compared with previous
approaches. For the particular transformation used, the perturbative densities turned
out to exactly correspond to the densities computed using the small noise expansion.
The density obtained by just truncating the KME to second order contained some but
not all the O(x?) dependence.

As the first several perturbative corrections were included, the fit to the simulated
density clearly improved. However, as even higher order terms were included the density
estimates started to degrade even the estimate of the moments continued to improve.
Oscillations appeared and the density even became negative in regions. We currently

have no method of a priori knowing which order solution provides the best fit.



Chapter 4

Convergence Regimes for Annealed

Learning

In this chapter we study the convergence behavior of stochastic learning with an annealed
learning rate. We characterize the convergence rate by the time rate of change of the
squared weight error. We first derive a small noise expansion for the weight density and
use it to compute the evolution of the squared weight error for LMS. Analysis of nonlinear
problems is more difficult. However, we note that learning rates are typically annealed
only at late times after the weights have settled into a particular basin of attraction.
By assuming that the weights are already fluctuating about some local optimum, we are
able to derive asymptotic convergence results for nonlinear as well as linear networks.
Our analysis shows for annealed learning that the convergence behavior can be clas-
sified into two regimes based on whether the learning rate is above or below a specified
critical value. When below, the convergence rate is suboptimal. When above, the con-

vergence rate is optimal, i.e. proportional to %

4.1 Small Noise Expansion

The derivation for the small noise expansion for annealed learning is similar to that for
constant learning so that most of the details have been relegated to Appendix C. We

use the annealing schedule y(t) = £2 so that the ansatz becomes

v = @(t) + \/@g. (4.1)

With this change of variable, the KME reduces to the set of equations (see Appendix C)

o _ o o (9) (4.2)

ot  t

34
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ey _ 1 %PEY
ot T2t &

1 & " & (_l)i m—i o4 m—i
;mEﬁ(\/@) 2 T "8 g (€77 P& D).

(4.3)

Keeping the lowest order noise terms on the right side of (4.3) leaves

IPE,t) _ 1 GEP(1)
8t 2t B¢ (4.4)

which is independent of u and so fullfills the original ansatz. If we also include the next
lowest order term! then we have

PED) _ 1 {_ (1+zuoa§”) BEP(EY) | poad) «927’}_ (45)

ot 2t T ¢ T &2

From (4.5) we obtain

© = (€)™t (4.6)

@ = (@D rp [ oo ofl 4(g) (&7

to

where

vt = [ 142400 ]

131
and where (&) and (¢3) are (¢£) and (£2) at t = 0, respectively. We next apply these
results to LMS.

4.1.1 LMS

For LMS with update equation

u(t+1) = v(t) + B;—OH(v, £) = u(t) + % (€ — v(t) (1)) 2(£) (4.8)

the az(j ) coeflicients are

oV = (H(¢,1), = -R¢

agl) — <6H§;b.t)>z_____R

(0) (H2(¢, t)>r — Ro? + S¢2. (4.9)

R
N
i

'If we assume that 7 scales as u then this term would be included in the lowest (i.e. (1)) term.
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Thus, the eguations of motion become

$(t) = o (T)
2igR
07((],[2) - cxp /!2 @ [] _ 2’-1-'0 R] — (t_‘) T
ty 4 7 t2
2R _ 1
r 2

() (
€ = (&) <t°>2_“9£_]+@ ‘da (2)7_“5&1 (Ro? + 5¢°)
(

I
—~
Fan)
[=]
~

55 (1) (1)
2T t '

If we set (&) = (£3) = 0 and transform back to v we obtain

un It

0 = s+ /20 = 00 (2)° (410)

(%) = # 2

It

np i o

to\ " st 1 1(1‘.0) v
— 2 (b offe, |L_2(k
= (n) (t) T oeR—7 |1 o\ +
S °>(’°)“'n . (4.11)
i) { — _ - )
27 YO\ ¢ to t

where (1) and (vd) are the expected mean and variance at the initial time to.

Figure 4.1 compares simulations {dashed) with the theoretical formula (solid) given
in (4.11). In the simulations, we first. had the networks settle to equilibrinm before
annecaling was started. The grapbs in Figwre 4.1 display only the results once annealing
was started. For the theoretical curves. 1y = 1 and (v} was sct equal to the weight
variance of the simulations when anncaling was just turned on. That is, we forced the
curves to equal each other at ¢ = 1. The agreement is good particularly for small s.
This is not surprising since we have kept only the terms of lowest order in fig in the
Kramers-Moyal expansion. The theoretical curves tend to roll over carlier than the

simulations.
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Log 2<v2>) LMS: Theory vs Simulation
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Figure 4.1: Simulations (dashed) vs theoretical (solid) predictions of the squared weight
error of 1-D LMS for R=1, 6. =1, 7 =1, and p¢ = .01,.05, and 0.1. Simulations used
10000 networks.

4.2 Nonlinear Problems

Evaluating the even the lowest order equations of the small noise expansion is much
more difficult for nonlinear problems; further simplification is required. We therefore
make the reasonable assumption that annealing is turned on late in the training when
the deterministic component is very close to a local optimum. The o coefficients can

then be expanded about the minimum (¢=0)

oo k Jk Q]

i ¢F da;
SHROEDIE (4.12)

k=0 " =0
Keeping only the lowest order nonzero term gives

o) = (H(@$.2),l40d = -R¢ (4.13)
ol = d{H($2)), =R (4.14)

d¢ $=0
o = (HY¢,7),],.y = D (4.15)

where R and D are constants.

We now put equations (4.14) and (4.15) into equations (4.2), (4.6), and (4.7). For
simplicity, we have set 7 = 1. Solving yields the equations of motion for the weight error
at late times for the general nonlinear case

() = (o) (t—")“"R (4.16)

t

to 2uoR [I.(Q)D 1 1 (tO)onR
2 _ 2 v Y =
) = <">°(t) +2u0R—1 t to \t
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2 2uoR 2
= (@), + 102 1 (t_o) _mD 1
((v Yo+ TR =T to) - t A1 T (4.17)

In [LO94, OL94], we also obtain (4.17) by using the Kramers-Moyal expansion more
directly. Defining
C= / dVv (voT) P(v,t)

where v € R" is the N-dimensional weight error, we then have

% = / d¥v (vvT) ___ani, t (4.18)

= [ e (Z(ﬂ/,? o (WD), Pe)) @
%/ d¥v P(v,t) {v <H('u,a:)T>z+ <H('u,3:) ’UT>I}+

’t‘—§ / d¥v P(v,t) <H(v,x)H(v,x)T>x. (4.20)

Solving equation (4.20) by keeping only the lowest order nonzero terms in the expansion
of H(v,z) about the local minimum also yields (4.17).
Note that if we apply (4.17) to LMS we obtain

2y _ (2 t_o)""“”e p3Ro? 1 1 (to)%’*
(v*) = () (t 7y i (4.21)

instead of equation (4.11). This is because we have set a( )=D = Ro? (only lowest
order terms are kept) instead of ago) = Ro? + S¢?. When ¢ is small this is a good
approximation. Figure 4.2 compares the expected squared weight error from simulations
for 1-D LMS versus theoretical predictions from equation (4.21). As can be seen, the

agreement is good.

4.3 Asymptotic Convergence Regimes

Examination of (4.17) reveals that the late time convergence behavior falls into two
regimes. If 2ugR < 1, the first term on the right dominates so that the late time
convergence rate is proportional to (%)2“0 Note that this is slower tha.n . If2p0R > 1,
the second term dominates so that at late times the convergence rate is proportxona.l to

-i-. Thus, the fastest or “optimal” rate of convergence is proportional to % and is achieved
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Figure 4.2: 1-D LMS: a) Simulation results from an ensemble of 2000 networks with
R = 1.0 and ¢ = pg/t. b) Theoretical predictions. Curves correspond to (top to
bottom) o = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 .

if po > perit = TIE Summarizing, the two regimes are

. 9 1 ﬂO/Mcrii
Regime 1 (g0 < perit) @ (v*) ~ (;)
1

Regime 2 (1o > perit) :  {(v%) ~ -

where the convergence rate is suboptimal in regime 1 and optimal in regime 2. In regime
2, we define p1,,; to be the pp that minimizes cocflicient of % in the expression for ('02).
From (4.17) we obtain pop: = Ili' These results are the same as those derived by Goldstein
[Gol87].

The two regimes can be seen clearly for LMS in Figure 4.2. The dotted curves cor-
respond to regime 1 where the learning rate is suboptimal. The solid curves correspond

to regime 2.

4.4 Summary

We have shown that the small noise expansion can be used to obtain expressions for
the time evolution of the weight error for stochastic learning with constant learning

rate and annealed learning. The expressions for annealed learning reveal that late time
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convergence rates can be classified into two regimes where convergence rate refers to
the time rate of change of the weight error. For learning rates above a critical value,

convergence is optimal, that is, proportional to % The optimal learning rate is found to

be R~1.



Chapter 5

Stochastic Learning with Constant
Learning Rate and Constant

Momentum

The main focus of the remainder of this thesis is to examine methods for speeding
stochastic learning. In this chapter we examine adding momentum to standard stochastic
learning with a constant learning rate. We summarize previous results and then we
attempt a small noise expansion for the weights. Most of the results are for linear
networks due to the difficulty of evaluating nonlinear problems. Chapter 6 discusses
momentum with ennealed learning where we obtain asymptotic results for both linear
and nonlinear networks. Chapters 7 and 8 then present an algorithm with annealed

learning where the momentum is automatically adapted so as to obtain fast convergence.

5.1 Momentum

Learning is slow if the learning rate is not chosen well. Ideally, we want a learning rate
matrix proportional to the inverse Hessian so that the stepsize is scaled according to
the local curvature along the different eigendirections of the Hessian. However, many
algorithms and speed-up techniques based on estimating curvature (e.g. conjugate gradi-
ent, quasi-Newton, etc) cannot be used stochastically because estimates of second order
effects are too noisy. Onec simple alternative that has been observed to speed learning is
called momentum.

In stochastic learning with momentum each weight update includes not only the stan-

dard update term but also an additional term (called the momentum term) proportional

41
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to the previous weight update. The general form is
w(t+1) = w(t) + p Hw(t), z(t)] + Blw(t) — w(t — 1)) (5.1)

where H is the weight update function as before, i is the learning rate (assumed constant
in this chapter), and 8 is the momentum parameter which is a constant in the range
0 < B8 < 1. We refer to this equation as learning with constant momentum because the
parameter  is held fixed, in contrast to an adaptive 3 discussed later in the Chapters
(7) and (8).

By expanding out the right side of (5.1) we find that adding momentum is equiv-
alent to updating the weights based on an exponential average of H evaluated at past
timesteps, t

wit+1)=wt)+p) B Hlw(t-1),z(t—1i)] (5.2)
=0
where the weighting factor in this average is just 3. Thus, momentum may not only
speed learning but may also be an efficient method of smoothing out the noise in the
stochastic updates as compared with the costly batch mode average over training set.

To develop some intuition about momentum we can look at momentum with gradient
descent under simplified conditions. If 3! « 1 and if the gradient is not changing rapidly
over the significant terms in the exponential average then the finite sum can be replaced

by an infinite sum and the gradient can be pulled out to give

t o0
poY B VE-i = uVEY P

=0 =0

ﬁ A (5.3)

where for simplicity we use the notation V&; = VE(w(t), z(t)). Equation (5.3) says that

momentum cffectively increases the learning rate by a factor ﬁ

We define the effective learning rate, pi.g, for stochastic learning with momentum
parameter 3 as the learning rate that would be needed (using 8 = 0) to obtain an
equivalent rate of convergence. Thus, under these conditions p.g = TLLB Note that if

a true! exponential average were used, the effective learning rate would be p and not

w/(1—B).

!The more commonly used method of exponentially averaging a variable y based on a sequence of
estimates 7, has the form 3 = (1 — 3)g + 3yi—1 = (1 - 8) E:=0 3'yi—i. The exponential average used
with momentum does not include the initial factor of (1 — 3).
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To analyze the time evolution of the weights more precisely we again treat the update
equation as a Markov process. Note, that equation (5.1) is not first order. However it
can be recast as one by introducing a new variable Q(t) so that the system of equations
2(t) = {w(t),Q(t)} is first order. One choice is to set Q(t) = w(t — 1). Expressed in
terms of the weight error v = w — w”, equation equation (5.1) then becomes the first

order system

v(t+1) v(t) + p Hlv(t), z(t)] + B(v(t) — Q(t))
Qit+1) = u(t). (5.4)

5.2 Previous Results for LMS

In this section we review the results of Tugay and Tanik [T'T89], and Shynk and Roy
[SR90] for LMS with momentum. Both sets of authors study stability regions and time
constants for convergence in mean and mean square. Their analysis is based on examining

the roots of the transition matrix 4 defined by
E[z(t+ 1)] = A E[2(2)] (5.5)

where z(t+ 1) = {v(t + 1),v(¢)}7 as in (5.4) and v is the weight error ezpressed in the
cigen-coordinates of the Hessian. Tugay and Tanik use the diagram repeated here in
Figure 5.1 to display the roots as a function of ¢; = pA; for fixed 8. The roots occur in
pairs. They start out real (# and 1) for ¢; = 0. Increasing ¢;, we see that when ¢; reaches
(1 — /B)?, the roots become complex occurring in complex conjugate pairs. When ¢;
reaches (1 + \/B)2, the roots go back to being real. Finally, when ¢; > 2(1 + 8), one of
the real valued roots becomes larger than one and the algorithm diverges. In general,

it* root of A is complex if

(1-vB)?

(1+ vB)?
¥ <pn< — (5.6)

We note that the maximum of the two roots in the pair is smallest when the roots are
in the complex region. In this case, the magnitude of both roots in the pair is /@ for all

¢; falling in this complex region.
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Figure 5.1: Roots of the transition matrix A plotted in the complex plane as a function
of € = pA. We assume 3 is fixed.

5.2.1 Stability Regions

For convergence in mean, Shynk and Roy find the stability conditions to be

2(1+p5)

’\maa:

Bl <1 and 0<p< (convergence in mean) (5.7)

where ); is the 7** eigenvalue of the Hessian of the cost function and Apq; is the largest
such eigenvalue. Although these conditions allow for —1 < 8 < 0, Roy and Shynk note
that in their simulations, “a negative § can lead to degraded performance, even though
the algorithm is stable”. This is consistent with our own simulations where a negative 3
was never observed to improve learning over 3 = 0. Note also that a negative # would
result in an alternating sum in equation (5.2) which could result in oscillatory behavior.

Two necessary conditions for convergence in mean square [SR90] are

2(1 - 6%
O << BT B mer
N
BA; .
< 1 convergence 1n mean square). 5.8

Equations in (5.7) and (5.8) predict the region of stability but say nothing about the
rate of convergence as a function of i and 3. To do this, we look at the time constants.
5.2.2 Rate of Convergence: Time Constants

The time constant 7; is a measure of the convergence rate of the mean of the weight error

(v;) along the 7** eigendirection of the Hessian R. It is implicitly defined by the equation
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Figure 5.2: 1-D LMS with R = 1, g = .02, and o, = 1 (a) Plots of log(|{v}|) for
simulations using an ensemble of 1000 networks with v9 = 1000. (b) Comparison of
simulation and theory for the time constant before equilibrium where 7ipeory = ”_ and
Tsim = —1/s where s is the slope of log({v)) vs t. For 8 = .9, {v) oscillates about zero,
so we take s to be the slope of the envelope of log({v)).

(v;) o< €7t/7 and is related to the root r; of the transition matrix A by 7; = —1/In(r;).
For standard LMS without momentum, the time constant is /M5 = 1/(u);).

Roy and Shynk [SR90] show for slow convergence (i.e. uX; << 1 — 3), that the time

constant for LMS with momentum (referred to as MLMS) is

TMLMS o %Tfﬂ” O] (1= By 7EMS = 17}9 (5.9)
This predicts that as 3 is increased, the convergence rate of (v) improves (7 gets smaller)
and that the effective learning rate is u/(1—3). However, this result is only valid for small
u and B. The table in (5.2b) compares the predicted time constants with simulations for
p=.02, R=1, 03 = 1, and various 3. The agreement is fairly good up to 8 = .6 where
the conditions for slow convergence begin to break down. The corresponding graphs of
log([(v}|) are shown in (5.2a). We plot [(v)| rather than (v) so that the log can be taken.
Oscillations about zero thus look like “scallops”™. Note for 8 = .9, the eigenvalues of the
transition matrix are complex and oscillatory behavior is observed in (v).

Figure 5.3a plots simulations of log[v?] for LMS for ¢ = .02 and varying 8 (note
that all curves satisfy the stability condition in equations (5.8)). Consistent with the
time constant measurements for {v), we see that the convergence behavior for (v2) is not
monotonic in 3. That is, as 3 is increased the convergence rate increases up to at least
3 = .6, however, by the time 8 = .9 the convergence rate has degraded.

We see from Figure 5.3a that the variance flattens out at some nonzero equilibrium

value. This equilibrium variance of the weight error increases as 8 increases. This should
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Figure 5.3: 1-D LMS with R = 1, g = .02, and o = 1 (a) Plots of log({¢?)) for
simulations using an ensemble of 1000 networks with vg = 1000. (b) Comparison of
simulation and theory for the equilibrium weight variance (v?),___.

be expected for the following reason. When momentum is not present, increasing the
learning rate will increase the equilibrium variance (see discussion in the next section).
Since momentum increases the effective learning rate then increasing momentum, while
keeping the learning rate fixed, should also increase the variance. A related effect is shown
by Roy and Shynk: Increasing the momentum increases the misadjustment by a factor
of 1 4+ 8. The misadjustment is the excess mean squared error M = MSE — MSEin
where M SE,;, i1s the mean squared error at the optimal weight w*.

Given that the effective learning rate is u.g = u/(1—8) we can examine the effect of
varying 3 and p while keeping g fixed. Figure 5.4 displays simulations for 1-D LMS all
with the same pu.g. We see that all the curves are similar, except that as 3 is increased
there is a small rise in log(E[v?]) at very early times. Although this rise is slightly
corrected by a steeper slope, the best performance is still with 8 = 0. It appears then
that updating weights using momentum cannot outperform using an optimally chosen
learning rate without momentum.

One situation where we had hoped momentum would help is on poorly conditioned
problems, i.e. problems whose condition number p = A2/ Amin is much larger than 1.
To guarantee convergence in mean we require that the learning rate be constrained by
g < 1/Amer. However, u ~ 1/Apnar = p < 1/Anin so that convergence along the Apin
direction will be very slow. Thus, the overall convergence rate, which is determined by
the slowest time constant, will be very poor. The question is whether momentum can
speed learning along the A.;, direction without seriously degrading performance along

the Apnqz direction.
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Figure 5.4: Simulations of 1-D LMS with vy = 1000, R = 1, ¢, = 1 for an ensemble
of 1000 networks. u and B are varied so as to keep the effective learning rate fixed at

Beff = 155 = -02.

5.2.3 Minimizing the Maximum 7;

Unfortunately, Tugay and Tanik find that for stochastic learning with constant learning
rate, momentum cannot improve learning for poorly conditioned problems. They came
to this conclusion by finding the p and § that minimize the largest time constant

7" = min max 7;. (5.10)
w8

Recall that for a given (3, the maximum 7; is minimized if all the roots of A are complex,
i.e. u satisfies equation (5.6) for all A;. This is equivalent to placing the following bounds
on the p and u:

2
p<(if:§§) and “;T‘f)z<ﬂ<9—17‘/xmf. (5.11)

When (5.11) holds, the time constants are bounded by 7; < —lnlﬁ which we note is
independent of p. Choosing the smallest possible 8 that satisfies the bound on p then
results in the lowest bound on 7;.

When p is large, Tugay and Tanik show that the above analysis leads to

*(LMS
T (MLMS) ~ T—(-z-—)

which is a significant improvement over LMS.

However, it all falls apart when one remembers that the condition for convergence
in mean square given in (5.8) must also be met. This condition combined with (5.11)

results in the more restrictive bound

201 - 5%) (5.12)

P B+BRI- VAL
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Figure 5.5: Upper bound on the condition number as function of momentum .

Figure 5.5 displays this bound as a function of 8. When p is large, we see that this con-
dition forces B to be near 1 making the bound "E2—ﬂ large. As a result, 7*(MLMS) =~
7*(LMS). Thus, Tugay and Tanik conclude that using momentum to minimize the max-
imum time constant is not very useful. In fact, they conclude that the best convergence
rate with MLMS will always be about the same as the best convergence rate achieved
with LMS. The only possible advantage of MLMS is that it is less sensitive to noise and

results in smoother learning curves.

5.3 LMS: Equilibrium Weight Variance

Once equilibrium has been reached, we must anneal the learning rate to reduce the noise
or, alternatively, we must switch to batch mode. Since either option is costly, we would
prefer to find a learning method that reduces the weight variance as much as possible
before annealing. Does the averaging in momentum provide an efficient mechanism for
reducing the noise? We explore this question in this section.

As can be seen from where the curves flatten out in Figure 5.3a, that the squared
weight error at equilibrium increases as 3 is increased. This is not surprising since the
effective learning rate is increased. We compute the exact equilibrium variance for 1-D
LMS with momentum by starting with the equation (A6a) in Appendix A of Roy and
Shynk [SR90]

Clt+1) = [(1+8)?+2uR - 2u(1 + B)R + p2R?| C(t) + 2C(t - 1)
+[2uBR - 28(1 + B)]D(t) + p?02R (5.13)
D(t+1) = (1+8-pR)C(t) - BD(®) (5.14)
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Figure 5.6: Fixed p: Equilibrium weight variance for 1-D LMS as a func-
weight variance for 1-D LMS as a func- tion of B for R = 1, 0. = 1, and
tionof Bfor uy=.02, R=1,0.=1. feg = .02, and .2.

where C(t) = (v2(t)) and D(t) = (v(t)v(t — 1)). Gaussian inputs have been assumed so
that S = (z*) = 3R

Setting C(t+ 1) = C(t) and D(t+ 1) = D(t), we solve for the equilibrium variance
to get

) = (1+ B)a2pg (5.15)
2(1+p)(1 - B) — poR(3 + B)
which reduces to the correct LMS variance <v§=0> = T_Lg% when 3 = 0. Figure 5.3b
compares the equilibrium variance predicted from (5.15) with that computed from the
simulations. Note that for 3 small, (5.15) reduces to (v?) ~ <v[2,___0>/(1 - B).

Figure 5.6 shows how (v?) computed using (5.15) varies as a function of 3 for 1-D
LMS with R = 1, 02 = 1, and either gop = .2 or gy = .02. The increase in (v?) is
gradual for small B but is rapid as 3 gets closer to some critical value. The critical value
corresponds to where the denominator of (5.15) becomes zero. Note, that the weights
converge as long as the denominator is positive. Thus, a condition for convergence in

mean square is
21-p)1+8)
3+p

which is the same result as in equation (5.8).

pR <

To answer our original question of whether momentum is an effective way of reducing
the noise at equilibrium, we examine the asymptotic variance as a function of 8 while

keeping the effective learning rate fixed. To do this, we rewrite (5.15) in terms of p g to
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give
<‘l}2) — (1 + ﬂ)aezﬂ'eﬁ'
2(1+B) — peg R(3+ B)
2
= % for B =1 (5.16)

2
l‘leﬂ.oe f —
T 3R. - 3Rug or #=0.

As long as Ry.g < 1, the difference between 8 = 0 and 3 = 1 is slight. Figure 5.7
plots equation (5.16) as a function of 3 for two different values of p15. As can be seen,
increasing 3 does decrease the equilibrium variance but only very slightly. This can also
be seen in the simulation in Figure 5.4 where all the curves flatten out at about the same
value. Thus the averaging in momentum does not provide an efficient mechanism for

reducing late time noise.

5.4 Small Noise Expansion

In Appendix E we perform, rather unsuccessfully, a small noise expansion on stochastic

learning with momentum and constant learning rate. We used the same coordinates
Roy and Shynk with U(t) = {v(t), Q(t)}7 = {v(t),v(t — 1)}7 where v is assumed to be

the weight error. U is then written as the sum of a deterministic component and noise

v _ ¢v Ew
L)

The resulting transformed KME equation is

:ﬁw 0 ¢}; 0 6
P L A P(EL. s)
< \/—afw \/—35 ) (& ga.

s oo ¢ min(j,n) : (_1)', ; J i B
nz=:0u Z:Z Z Z dn+p—1) g l P B

1 j=0 [=0 p=max(0.1—n)

component

6:’

(n+p—i) Ayi—l- n4p—i
&™) B { €8P Plen a0} (5.18)
From the part of the n = 1 term we are able to extract the deterministic equations
doy
e = (e ) + i (H(d b0, 7)), (519)
d
. (5.20)

dt
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However the resulting noise equations were not very decipherable (see Appendix E). It
may be that a different set of transformations would produce a set of more intuitively
sensible equations. However, we did try many variations without much success.

Solving the deterministic equations for LMS with initial conditions ¢(0) = ¢{1,1}7
gives

bo(t) = 2ih ((—a +h+pR) e @R 4 (o4 b — uR) e-(a-")t/f) (5.21)

where a = (1 — 8 — uR)/2 and h = \/aZ — uR.

5.5 Summary

When the learning rate is small (4R < 1) momentum effectively increases the learning
rate and the convergence rate by a factor of 1/(1 — 3). However, adding momentum does
not appear to improve learning beyond what can be achieved using the optimal learning
rate without momentum even when the problem is poorly conditioned. One slight ad-
vantage of using momentum is that the exponential averaging can smooth learning and

slightly decrease the equilibrium weight variance.



Chapter 6

Stochastic Learning with Annealed

learning and Constant Momentum

Weights in the noise regime fluctuate about some local optimum w*. To reduce this
noise, the learning rate must be annealed. In this chapter, we extend the convergence
rate results for annealed learning discussed in Chapter (4) to include momentum.

In the noise regime, we assume that any deterministic component of the weight error
v = w — w” is essentially zero. This enables us to use an approach similar to that

in Section (4.2) to directly compute the time evolution of the weight error correlation

[LOY4].

6.1 Time Evolution of the Weight Error Correlation

The discrete time algorithm with momentum can be written as a system of equations:

oE+1) = o(t)+u() Hlv(®),2(2)] + 8 Q) (6.1)
Qt+1) = vt+1)—ov(t)
= Q)+ u(t) Hlo(), 2()] + (B — 1) Q) (6.2)
or in continuous time,
dz—(tt) = pu(t) Hv(t),z(t)]+ B Q) (6.3)
O = w0 B, 2]+ (5= 1) (0 (6.4)

where v(t) € R” is the weight error, u(t) is the learning rate, H is the weight update
function and z(t) is the data fed to the algorithm at time t. Defining Z = (v, Q)7 € R*N

52



53

and
H2(),2(8)] = u(t) Hlv(t), z(t)] + B Q(t)
p(t) Hlu(t), z(t)] + (B — 1) Q(¢)
we get
Zlt+ 1] = Z[) + H[Z(t),z(2)]
. iz -
STk H[Z(t),z(t)].

We define the generalized weight error correlation matrix as
& =E2z27] = /sz Z 2T P(Z,t) (6.5)

where P(Z,t) is the probability density of Z at time ¢ whose time evolution can be

written according to the Kramers-Moyal expansion

OP(Z,t) _
_—at =
igl: il J1a-di=1 6ZJ) BZJz . aZ <HJ] Hh HJ-’ z P(Z’ t) } ) (66)

where H jx denotes the j,'ch component of the 2N-component vector H ,and {...), denotes
averaging over the density of inputs.

Note that the convergence (in mean square) to w* is characterized by the average
squared norm of the weight error E[ |v|?] = Trace C where C = E[vvT ] is the upper
left quadrant of C.

Differentiating C with respect to time and using the Kramers-Moyal expansion (6.6)

we obtain an equation of motion for the generalized weight error correlation

/ dNz z 27 oP g Y. (6.7)
Integrating by parts leaves
‘%- /d“z Pizy|z (& Z:r)T> + <I~I(Z,z)>z z" |
+ /d“z P(z,t) ((Z.2)H(2,2)")_ (6.8)

where we have assumed that P(Z,t) and its derivatives are all zero at infinity.
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6.1.1 Asymptotics of the Weight Error Correlation

We now consider the late time behavior of (6.8) where we assume that the density P(Z, t)
becomes sharply peaked about Z = 0. Thus we can expand H (Z,z) in a power series
about Z = 0 and retain the lowest order non-trivial terms in (6.8). Thus we retain the

linear part of the drift vector

drift = ( H(Z,2) >x ~ KZ

K = -u(t) R BI
-wt)R (B- DI
2
Ry = < 3 >
v=0/

and where I is the N x N identity. We retain the constant part of the diffusion matrix

where

diffusion = (fi(z,x)fz(z,z)T ) ~ p(t)? D

- (32)

D <H(0,:r) H(0,z)T >¢

With these approximations, the time evolution of the weight correlation matrix C =

E[ZZT] evolves according to
dC ~ = ~
— =KC +C KT +ut)? D (6.9)
To evaluate this we define the evolution operator to be
t2
Ulto, t1) = exp [/ dr K('r)] (6.10)
t
and the solution to equation (6.9) becomes

C = Ult.t) C (to) UT(t,t0) + /t tdf w(r)2U(t,r) D UT(t,7) (6.11)

Again we emphasize that to study convergence of w™ we need only evaluate Trace C

which is the sum of the first N diagonal elements of C.
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6.1.2 o/t Learning Schedules

In Appendix F we evaluate (6.11) for learning rate schedules of the form u(t) = po/t.
The analysis assumes, without loss of generality, that the coordinates are chosen so that
R is diagonal with eigenvalues A; 2 =1...N. In this section we summarize and examine
the results. This analysis shows that the expected value of [v|?> at late times can be

written approximately as

N 2ugd
B[] ~ Y {E[v?(to)l (3) 7+

i=1
#d Dii 11 [t 3%
(1-58) (2pori —1+5) (? "% (7) ) } (6.12)

v=0 >.1:

and where v; are the components of v along the eigendirections of the Hessian. Note that

where

o€ €

we are assuming that we are in a region of the weightspace for which A; > 0. Therefore,

we must have 3 < 1 to prevent the exponent of %1 being negative. Defining

— Mo _ 1
”eﬂ=1_ﬁ and ”crit=2A_

min

we again find that there are two asymptotic regimes:

) , 1
Regime 1  peg > perit : El|”|2] ~ 3

NZ

Regime 2 e < plerie :  E[v[*] ~ (;) (Note,

Mol _ 2#0)‘min < 1) )
Hcrit 1- ﬁ

Comparison with Simulation

Figure 6.1 compares the simulated and theoretical results. The learning rate po is held
fixed while 3 is varied. Regime 1 (solid) corresponds to 3 > .6. As can be seen, all of
the curves in regime 1 all have about same slope while the slopes of the curves in regime
2 (dotted) vary and are less steep than those in regime 1.

Just as in the constant learning rate case, the results also imply that the asymptotic
behavior is the same for combinations of yp and 3 for which p.g = po/(1 — 3) is held

|4

fixed. Figure 6.2 displays results of simulations for which p.g = .5. The algorithm is
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Figure 6.1: LEFT — Simulation results from an ensemble of 2000 one-dimensional LMS
algorithms with momentum with R = 1.0, gp = 0.2. RIGHT - Theoretical predictions
from equation (6.12). Curves correspond to (top to bottom) 8 = 0.0, 0.4, 0.5, 0.6, 0.7,
0.8.

run at constant learning rate until the weights settle to their equilibrium state, then
annealing is turned on at to = 1. At early times (e.g. t < 100), the curves are quite
different!. At late times, the curves essentially overlap as long as 3 is small. However

for large B, E[|v|?] shifts upward slightly.

6.2 Optimal Momentum, 3,

For annealed learning without momentum the optimal scalar learning rate is pgopt =
1/Amin. Since adding momentum increases the effective learning rate by a factor of
1/(1 — B), we define the “optimal” $ as the value of momentum that satisfies pu.p =
po/(1 — B) = po,opt- Solving for B gives Bopt = 1 — uAmin. For the 1-D simulations in
Figure 6.1, B,,+ = .8 which corresponds to the bottom most curve.

Ideally, however, the optimal learning rate is a matriz equal to the inverse Hessian,

140,0pt = R™!. When such a learning rate is used, the stepsize of the weight update is

IThe curves vary quite a bit at early times even if E[|v|*] at t = t; is set to be the same for all yq.
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scaled independently along each direction of the Hessien so that optimally fast conver-
gence is obtained along each direction. We can now ask, given a scalar jg, what matriz

momentum parameter results in an effective learning rate matrix equal to pg opt? Setting
Heff = l‘O(I - ﬁopt)__l = R—I

where I is the identity matrix and solving for 3.y, we obtain the “optimal” momentum
matriz
Bopt =1 —po R (6.13)
In correspondence with the restriction 0 < /3 < 1 when 3 is a scalar, we now require that
Bopt have eigenvalues 0 < /\,(ﬂ ) < 1. From (6.13). we see that this leads to the restriction
on jig that po < 1/Apmqer Where Ay g, is the largest cigenvalue of R.
Thus, using a scalar ug with the momentum matrix Bop should give approximately
the same convergence behavior as using jip opr = R~ without momentum. The advantage
of using Bop: instead of pg opr is that the Hessian R is much easier to compute than the

inverse Hessian R~!. In fact, in the next chapter, we discuss how to stochastically

estimate Gop;.

6.2.1 Ramped Momentum

Recall that adding momentum for constant jz = yp is equivalent to computing an expo-

nential average of past gradients. For anncaled learning the expanded form of momentum
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is
t i
w(t+1)=w(t) — po Z ;t—ﬂ:;vgt_i' (6.14)
i=1

Thus, when annealed learning is used, the sum no longer has the form of a standard
exponential weighted average because of the factors tsz A slight modification to the

previous form of stochastic learning with momentum and annealed learning is
w(t+1) =w(t) - %ﬁwﬂt(w(t) —w(t—1)). (6.15)

where

Br= —ho (6.16)

for some constant 0 < By < 1. We refer to this as ramped beta because at t = 1 we have

Bt = 0, and at late times 8; = y. Expanding out (6.15) gives
t
wt+1) =w(t) - % S BiVE . (6.17)
i=1

This has the more standard form of an exponential average of past gradients since the %
factor is now pulled out of the sum. It also has the effect of weighting the older gradients
less. Figure 6.3 displays the results of using ramped momentum for the same parameters
that were used in Figure 6.2. Note that the dashed curves are the same in both figures
since 3 = 0. As can be seen, the behavior particularly at early times is much better for

ramped momentum.

6.2.2 Simulations with Large Condition Number

In this section we present simulations for a 4-D LMS network. The training data consists
of 1000 examples for which the eigenvalues of Hessian R range from about 1079 to 1.
Thus the condition number is p = 10°. We first train the network at constant learning
rate (o = .5) until no improvement is observed either in the mean squared error € or in
the squared weight error E[|v|?]. We then anneal the learning rate to remove the noise.
We anneal according to po/t, where t, is the time initialized to 1 when annealing is

turned on.
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Figure 6.4: 4-D LMS with p = 105 a) E[|v|?], b) Misadjustment. Learning rate is
annealed starting at ¢ = 10 according to p = po/t,. Curves correspond to 1) ug = .5
with 8 = 0,.99,7 — poR (dashed), and 2) pg = R~! without momentum. The learning
curve for constant learning rate g = pg is also shown for comparison. Each curve is an
average of 10 runs.

Five approaches are compared and displayed in Figure 6.4. They are

B=0_ ()

n,=0.5 B =.99 (2)

Annealed p —| B = ooy @)
o=~ B=0 4

Constant i =05 B=0 (g

The first three use an annealed learning rate with scalar learning rate parameter pg = .5.
They differ according to the choice of momentum parameter: 8 = 0, 8 = .99, and the
optimal momentum parameter 8 = I — pgR (dashed). The other two approaches are
shown for comparison. They are 1) the optimal learning rate ug = R~! with annealing
and 2) a constant learning rate g = g9 = .5 (no annealing). When annealing is used, it
is turned on at t = 10 in the figure (where t, is set to 1).

Figure 6.4a displays the squared weight error while Figure 6.4b displays the misad-
justment. At late times the best performance is observed with: 1,5 (approach 4 above)
and with pp = .5 combined with 3, (approach 3 above). In (6.4b) it is easy to see that
using po = .5 with B,,¢ results in convergence behavior very similar to pg = R~! while
using po = .5 with the scalar (3 results in slower convergence.

1

When the optimal learning rate po = R is used, the squared weight error first
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increases dramatically to as high as 108 (see Figure 6.4a) before converging very quickly.
To prevent the large initial rise, one can use the annealing schedule po/(t, + 7). When
7 = 10 or 1000 are used, the initial rise is much smaller but the value of E[[v|?] and the

MSE are essentially unchanged at late times.

6.3 Summary

In this chapter we examined the convergence of stochastic learning with an annealed
learning rate combined with momentum. As in the previous chapter where a constant
learning rate was studied, we find that adding momentum 1) increases the effective
learning rate by a factor of 1/(1 — ) and 2) does not does not improve convergence over
using the optimal learning rate without momentum.

We also defined an optimal momentum matrix and showed that the convergence
behavior was comparable to using pop: Without momentum. The advantage is that Bop:
is defined in terms of R while pop: is defined in terms of the more difficult to compute
R~!. In the next two chapters we show how Bopt can be stochastically evaluated very

efficiently so that no direct computation or storage of R is even needed.



Chapter 7

Adaptive Momentum for Linear
Networks

In this chapter we show how to estimate the optimal momentum matrix stochastically for
linear networks. We refer to this algorithm as adaptive momentum. When used during
the annealing phase of learning, adaptive momentum results in an effective learning
rate that is close to the optimal learning rate matrix, pop = R~1. Since Mopt Scales
the learning rate appropriately along the different eigendirections of the Hessian, it is
particularly useful for problems that are poorly conditioned.

Note that adaptive momentum requires setting very few parameters. Not only does
the algorithm automatically compute the appropriate momentum parameter but we also
find that the algorithm is quite insensitive to the choice of g, only requiring that po <
1/Amaz-

Simulations on linear problems of varying sizes and condition numbers are presented
and compared with the theoretical predictions. In the next chapter, we extend these

ideas to nonlinear networks.

7.1 Adaptive Momentum for LMS with annealed learning

The LMS algorithm with N inputs and M outputs with annealed learning and momen-

tum is
Wipl = Wy — {‘t_Oﬁgt + Bi(wr — we-1) (7.1)
1 Z T \2
gt = mZ(dt—’wt :I:t) (72)

=1
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where w € RVXM js the weight matrix, £ € IR is the cost function, d € RM is the
target vector, and z € R is the input vector. We shall only consider the case for one
output (M = 1) since a network with M outputs can be treated as M separate single
output networks.

The previous chapter showed that an effective learning rate of pg opt = R~ lisachieved
when the momentum parameter is Bopr = I — poR, where g < 1/Apq;. For linear
networks is R = <m a:T>. In general, R is unknown or expensive to compute, however,
we can stochastically estimate it using ﬁ(t) = xtmf where z, is the input at time ¢.

Thus we define adaptive momentum for linear networks as
B(t) =1 — pozszl, (1 output, M =1). (7.3)
The momentum term in (7.1) then becomes
BiAws = (I — pozy x?)Awt = Aw; — o (z’tI‘Awt) (7.4)

where Aw; = w; — wy—1. The dot product x?Awt is a scalar that is the same for each
weight component so that it needs to be computed only once at each weight vector
update rather than N times. Thus, computation of the momentum term is O(N).

An alternative to setting g < 1/Amqz, Which requires knowing Apqz, is to bound
the value of 3(t) to be above zero on a sample by sample basis. This method, which
we refer to as “capping”, is discussed in detail in Appendix G. Capping is less desirable
than setting po = 1/Anq-- However, it does prevent divergence when pg is chosen too

large.

7.2 Simulations for LMS

In this section we present simple 1, 2, and 4 dimensional simulations for LMS with
momentum. We also present a higher dimensional example from image compression.
We find that adaptive momentum consistently performs as well or better than constant
momentum. In addition, we find that not only are convergence rates asymptotically
optimal (i.e. o< 1/t) for adaptive momentum but that the magnitude of E[|v|?] at late

times appears to be independent of the learning rate parameter.
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Figure 7.1: 1-D LMS: a) Simulation results from an ensemble of 2000 one-dimensional
LMS networks with momentum using R = 1.0, g9 = 0.2, and 62 = 1. For comparison, a
simulation using fiop: = 1 and no momentum is also included. b) Same as a) but with
ramped .

7.2.1 1-D LMS

Figure 7.1a displays, for various values of 3, graphs of Log(E||v|?]) versus Log(t) for
simulations using 2000 1-D networks with R = 1, go = 0.2 and 62 = 1. Inputs are
gaussian distributed with zero mean. Also shown for comparison is a simulation using
the optimal learning rate parameter, pop = % = 1 without momentum. The networks
were first run at constant learning rate pg = .2 without momentum until equilibrium was
reached. Momentum was not used in the constant learning rate phase due to stability’
problems for large 3. One explanation for the initial increase in E[v?] for the 8 > 0
curves may be because momentum increases variance?. Note that Bopt =1 — poA = .6.
Figure 7.1b displays simulations for the same parameters but with ramped momen-
tum. As can be seen, the large rise in E[v"’] at early times is reduced, however, late time

behavior is not significantly changed.

!Convergence regions are different for constant and annealed learning. Some of the combinations
of p and B that result in convergence for annealed learning instead result in divergence if used with a
constant learning rate. In transitioning from a constant to an annealed learning phase, it would seem
advantageous to pick parameters so that the variance is matched at the boundary. However, we do not
address this issue here.

2If we had used momentum during the constant learning rate phase, the equilibrium variance would
have been larger than what is seen here for the 3 > 0 curves. Thus E[v?] at the point annealing is just
turned on (¢ = 0) would also have been larger. Of course, in some cases, the equilibrium variance would
have been infinite (see previous footnote).
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Figure 7.2: 2-D LMS Simulations: Behavior of log(E[|v|?]) over an ensemble of 1000
networks with A; = .4 and Xy = 4, 02 = 1. a) po = 0.1 with various 8. Dashed curve
corresponds to adaptive momentum. b) 3 adaptive for various pyg.

2-D LMS

Figure 7.2 displays log(E|[|v|%]) averaged over an ensemble of 1000 networks trained with
either constant or adaptive momentum. The eigenvalues of the Hessian R are A\; = 4
and Ap = 4 and the variance of € is 02 = 1. In Figure 7.2a the learning rate parameter is
the same for all curves (pp = 0.1) while 3 is varied. As the momentum is increased, the
convergence rate improves. The best performance occurs for both the optimal scalar®
momentum (ﬁc(,‘;fa” =1 — poAmin = .96) and adaptive momentum. Note, however, that
adaptive momentum is preferable in practice because the value of A, (and thus the
value of ﬂﬁ:ﬁal)) is, in general, unknown.

Figure 7.2b shows the behavior of log(E[|»|?]) for adaptive momentum while pq is
varied. After a few hundred iterations the value of log(E[|v|?]) is independent of ug (in

all cases po < 1/Amaz)-

7.2.2 4-D LMS with p~ 10°

We now return to the 4-D LMS problem first presented in Section §6.2.2. In Figure 7.3

we compare
1. pp= Ho.0pt = R~! with B =0,
2. po=.5 with 8 =B, =1 — poR,

3. po=.5with 8= ﬁadapt .

3For this particular example, we did not try the optimal learning rate matrix popr,0 = R™'.
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Figure 7.3: 4-D LMS with p = 10%: a) E[|v|?], b) Misadjustment. Learning rate is
annealed starting at ¢ = 10 according to u = po/t,. Curves correspond to 1) pg = .5
with 8 = I — poR (long dash), and 3) po = .5 with B,4ap: (short dash) Each curve is an
average of 10 runs.

Results for the first two cases are repeated from figure 6.4. As can be seen, the conver-
gence behavior of the misadjustment is similar for all three. E[[v|?] is similar for Boy

and Badapt While E[[v|?] initially diverges for Popt- At late times, all three are similar.

7.2.3 Image Compression

For a larger problem we consider predicting the center block of an image based on the
8 surrounding blocks. The image used is commonly known as “Lenna” or “the girl with
the hat” [GG93] and is shown in Figure 7.4. The block size is 4 x 4 making the target
dimension 16 (1 block) and the input dimension 128 ( 8 blocks of size 4 x 4). There are
a total of 3844 examples that have been divided into 2914 training examples and 930
test examples. The eigenvalues range from 1.06 x 1072 to 19.98. so that the condition
number for this problem is about p = 1.9 x 108.

Figure 7.5 displays the learning curves for

1. annealed learning with 8 = Bdapt,

2. annealed learning with 8 =0, and

3. constant learning rate (for comparison purposes).

As before, we have first trained (not shown completely) at constant learning rate pg =
.026 until the MSE and the weight error have leveled out. As can be seen Bq4qpt does

much better than annealing without momentum.
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Figure 7.4: Lenna Image: Target block is predicted from the 8 adjacent surrounding
blocks. Each block is 4 x 4.
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Figure 7.5: Lenna: a) Ef[v]?], b) Misadjustment. Learning rate is annealed starting at
t = 50 according to g = po/ta, jto = .026. Curves correspond to o = .026 with 3 =0
and po0 = .026 with 8,4, (dashed). The learning curve for constant learning rate 1 = pg
15 shown for comparison.
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7.3 Choosing g

In general, we want the learning rate to be as large as possible in the constant learning
rate phase. For stochastic LMS with constant learning rate, convergence in mean square
requires g9 < 2 (in 1-D) where, as before, R = (z?) and S = (z*). For gaussian inputs
(S = 3R?) this bound is go < 3%‘ (1-D) or p < ?TX,?? (multiple-D). Most problems are
not gaussian. However, rather than estimate S, a more expedient approach is to just set
Mo = 7&%.:’ i.e. a little below the gaussian bound.

To compute A, ,4,, we use the “on-line” algorithm developed by LeCun, Simard, and
Pearlmutter [LSP93]. It is based on the idea that repeatedly multiplying a vector by the

Hessian will ultimately align that vector along the eigenvector, e associated with the

maz’

maximum eigenvalue An,.. If the vector is also normalized before each multiplication

then the norm of the final vector will be equal to A,,.,. That is,
1. Start with an arbitrary vector po.

2. Iterate: pyy1 = RN (p:), where N'(p) is the operator that normalizes p.

3. Then
tl_lfgallpt“ = Amaz
limp, = ey,,.-
t—o00

To implement this, we compute the product RA(p) using the approximation

RN (p) e TEW + N (p)) = VEW)

«

(7.5)

where o is some small constant. The “on-line” version is then implemented using a

running average of p so that

VE(w + aN(p)) — VE(w)

(o]

(7.6)

per1=(1—-7)pe +7

for some small constant . To reduce the noise at late times, one can also anneal 7.
We set a = 4 = .01 and let the algorithm run for 1000 iterations. For Lenna,
the predicted maximum eigenvalue was Ay, = 19.35 as compared to the exact value

Amar = 19.98 . We have found that this algorithm works well at predicting Apqz to
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within a few percent for linear problems and is fairly insensitive to the values of & and
7.

In the next chapter we discuss in detail an online forward-backward algorithm for
computing the product of the Hessian times a vector. This algorithm can replace the
finite difference approximation for RN (p) given in equation (7.5) with the exact (online)

product. Note that the number of parameters is then reduced since « is no longer needed.

7.4 Summary

In this chapter we have introduced adaptive momentum, B,4.p:, for linear networks.
Adaptive momentum is a stochastic implementation of the optimal momentum matrix,
Bopt, derived in the previous chapter. We describe an efficient implementation of B,ggpt
and test it on linear networks of varying sizes and condition number. We find that 8,4,p¢
is quite insensitive to the choice of pg and that its performance is comparable to B,p.
In the constant learning rate phase, we want learning rate to be pp = %. Since S is
not known, we instead set ug = ﬁ To compute Apqz, We use an “on-line” algorithm
by LeCun, et. al., [LSP93]. Knowing A4z is also useful for adaptive momentum in the

annealing phase so as to insure that pg < ,\JT



Chapter 8

Adaptive Momentum for Nonlinear
Networks

In this chapter we present an algorithm for nonlinear adaptive momentum for use in the
annealing phase of stochastic search. As in the linear case, adaptive momentum is a
stochastic implementation of the optimal momentum parameter. Despite the complex-
ity of nonlinear networks we have discovered an efficient implementation of nonlinear
adaptive momentum. We present our implementation and demonstrate its effectiveness

on several small and large networks.

8.1 Form of Bdap

As discussed in Chapter (6), the optimal momentum parameter is

Bopt(wi) = I — poR(wy) (for po < 3 ! ) (8.1)

max

where R(w;) is the Hessian of the cost function evaluated at the weight w;. Note that,
unlike linear networks, the Hessian is not constant throughout the weight-space. A

stochastic estimate of 8,5 is then

) (8.2)

Badapt(wt, Tt) = I — poRe(wy, 7¢) (for po <

mazr

where R;(w;, ;) is the instantaneous estimate of R(w;) based on the single exemplar z,

presented at the t*" timestep. The momentum term then becomes
Badapt Awe = (I — poR:) Awr = Awy — poRAwy (8.3)

where Aw; = (wp — wy—1). Written in this way we see that we do not need to explicitly

calculate R;, rather we just need to compute the product R Aw . This can done efficiently

69
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using the algorithm developed by Pearlmutter [Pea94] for computing the product of the
Hessian and an arbitrary vector. The algorithm requires only one forward-backward

propagation to compute this product.

8.1.1 Fast Multiplication of Hessian times a Vector

Pearlmutter observes that given an arbitrary vector z (of the appropriate dimension),

the product Rz can be written as

0 (w+rz,x)
R(w) z= or ——aw— 0 (84)
where £(w) is the cost function. He then defines the differential operator R, {-}
0
RAS@} = o fw+72) (85)
r=0

where f(w) is some arbitrary function. The product Rz can then be written in terms of

the operator R,{-}

Riz=R, {-6359%"”—)}. (8.6)

Now R, {-} follows all of the usual rules for differential operators (e.g. chain rule, etc).

o€ ‘:’x are sub-

Therefore, if the standard forward-backward equations for computing
stituted into (8.6) and simplified using these rules, we obtain a set of forward-backward
equations for computing R;z. We present the details below.

Let z; denote the net input to a node ¢, y; the output of a node 7, and w;; the weight

connecting node j to node i. The standard forward computation is then

Yi = (input nodes)
r; = Z WijY; (non-input nodes)
J
yi = 0i(zi) (8.7)

where o; is the nonlinearity of node 7. Applying the operator R,{:} to the above forward

pass equations gives

RAyi} = R.{zi}=0 (input nodes)
R Az} = Z(winz{yj} + zi;y;) (non-input nodes)

j
R:Ayi} = R {zi}oli(z:) (non-input nodes) (8.8)
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where we have made use of the fact that R,{w} = .

The standard backward pass equations to compute the gradient are

o€ = e;(y;) (output nodes)

Oy

o€ o€

% = ; wji 3_:1:1 (non-output nodes)

o€ o0& (8.9)

—_— = yi —_—
Owji 0z;
where ¢; = 3‘9 For the squared error cost function, ¢; = y; — d; where d; is the desired
target. Applying the operator R,{-} to the above backward pass equations gives

R {5} = Refestw)} = R0} (output nodes)
o€ o€ oE
R, {EZ} = XJ: (wﬁ R, {—a;;} + zj,-aTJ) (non-output nodes)
o€ _ 1o o€ "
] - oo (i
o€ o€ o€
R, {-(';(;J:} = ¥R, {a } +R, {711} 'j . (810)

The product Rz = R, {0 /Owj;} is then obtained from the last equation. Note that only
a single forward-back pass is needed beyond the normal forward-backward propagation

pass needed to compute the activations and gradients.

8.2 Linearized Hessian

To improve stability we can force R to be positive definite by using the linearized Hessian.

Suppose we have the cost function

(di — yx(z,w))? (8.11)

N =
NE

£ =

k=]

where yy is the output of the k** output node when input z is presented and dy is the

associated target. Then the instantancous estimate of the Hessian is

2
e _ Z ((dk ) Oyx _ Ovk Ouk ) . (8.12)

aw,J 6w1m Bw,'j aw,m 6&),‘1‘ &u,m
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The linearized Hessian is obtained by assuming the outputs are on average close to
the targets (this is valid at late times in the training) so that the first term can be

neglected to give
>*E ~ Oyr Oy
3wij3w1m ~ 6w,] Bwlm
This approximation can be further justlﬁed if we assume that we have an unbiased
model, i.e. yg(z) = E[dg|z] when the network is fully trained. In this case, the expected

value of the first term can be written as

Bw,- H aw,m

2
<<yk(x)~dk)M> = [ ([ tnytipcto) - ) 522 Piaatn)Ploid)en
z,q

52 8%y,
- / &P (o) 5 g" P(z)d®dz — / dkP(dklz)a—u-é—P(x)d(dk)d:c

= 0
Thus, the expected value of the Hessian and the linearized Hessian are the same for a
fully trained network.
8.2.1 Computing the Linearized Hessian

The linearized Hessian can be obtained from the full Hessian by setting the targets to
di. = yx (see equation (8.12)). The forward equations in (8.8) remain the same and the

backward equations in (8.10) reduce to

R, {gf } = R.{yi} (output nodes)
{gy—} = Z wjii R { 56;_ } {non-output nodes)
R g} - er{5)

o€
Rz{aTﬁ} = %R { } (8.13)

We tested the algorithm using both the linearized and the full Hessian and found no
significant differences in the result. Since the linearized equations are simpler to compute

and in some circumstances may be more stable, we chose to use the linearized equations.
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Figure 8.1: Phoneme Classification on training Fjgure 8.2: Mackey-Glass Time Se-
set: Learning rate is held fixed until the noise rjes for r = 17, a = 0.2, and b = 0.1.
regime is reached, then either 1) annealing (£2)

is turned on (solid) or annealing is turned on with

adaptive momentum (dotted). pp = 1.

8.3 Simulations

8.3.1 Phoneme Classification

We next use phoneme classification as an example of a large nonlinear problem. The
database consists of 9000 phoneme vectors taken from 48 50-second speech monologues.
Each input vector consists of 70 perceptual lincar predictive (PLP!) coefficients [Her90].
There are 39 target classes. The architecture was a standard fully connected feedforward
network with 71 (includes bias) input nodes, 70 hidden nodes, and 39 output nodes for
a total of 7700 weights.

Figure 8.1 plots the percent of phonemes correctly classified as a function of number
of input presentations (timesteps). We trained the network with a fixed learning rate
of pg = 1 for a long time until the noise regime was reached. The early training is not
shown in the figure, however, it will be discussed a little later. At around ¢ = 15000 in
the figure the annealing schedule of jo/t was started. The solid curve corresponds to
3 = 0 and the dotted curve corresponds to adaptive momentum. For = 0, the noise is
reduced but the percent classification does not improve. For adaptive momentum, there

is a large improvement in the percent classification.

IPLP is an all pole model of the auditory spectrum of speech that incorporates three basic concepts
from the psychophysics of hearing: critical band resolution curves, the equal loudness curve, and the
intensity-loudness power-law relation.
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Figure 8.3: Mackey-Glass: Learning
rate is held fixed until the noise regime
is reached, then (¢ = 10 in figure)
annealing (42) is turned on with ei-
ther 8 = 0 or adaptive momentum
(dotted). Learning curve for constant
learning rate without momentum is
also shown for comparison. o = .127.

Figure 8.4: Large drift indicates large
correlation between weight updates.
Small drift indicates that the weights
are in the noise regime.

8.3.2 Mackey-Glass

In this section we look at the chaotic time series generated by integrating? the Mackey-
Glass differential delay equation

az(t—171)

z=-bz(t)+ T+ @)

The series for 7 = 17, a = 0.2, and b = 0.1 is shown in figure (8.2).

We trained a network with 4 inputs, 38 hidden units, and one output using gradient
descent to predict z(t + 85) from the inputs {x(t), x(t-6), x(t-12), x(t-18)}. As in the
phoneme problem, we first trained the network at constant learning rate. The LeCun,
et.al. algorithm estimated the maximum eigenvalue of the Hessian at our starting weight
value to be about Apqr = 3.93 so that po = .5/Ame: = .127. Once the MSE leveled out
we turned on annealing with either 8 = 0 or adaptive momentum. Figure 8.3 displays
the results. The learning curve without annealing is also shown for comparison. Since

we do not know the precise minimum MSE we can not plot the misadjustment.

2Code for generating the series was provided by John Moody.
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8.4 When to Anneal

For adaptive momentum to be useful, we need a method that automatically detects
when the noise regime has been reached. To do this we turn to Moody and Darken’s
Adaptive-Search-Then-Converge (ASTC) algorithm which uses a statistic called the drift
to monitor the noise present in the weight updates. Small drift indicates low correlation
between subsequent weight changes, i.e. weights in the noise regime. Large drift indicates
that weight changes are highly correlated and that learning is still taking place (see Figure
8.4).

Darken [Dar93] discusses several ways of defining the drift. We use the version that

is most practical from an implementation perspective

(VE)r
VIVE = (VEIT) DT

where (-)7 indicates an exponential average over s < t with weighting factor 1/7. T

d(t) = VT (8.14)

starts out small and is slowly increased over time. The numerator is proportional to the
average stepsize while the denominator is proportional to the standard deviation of the
stepsize. Darken shows that for ug < pigpe, the drift should increase at a rate of A+ B Vi
for some constants A and B. However, for large t this increases very slowly so that from
a practical standpoint he argues that it can be taken as a constant that he sets at 2.
Thus, d(t) > 2 indicates that po < popt.

The drift is computed at each iteration. The algorithm starts out with a constant
learning rate (called “search” mode). When all components of the drift have changed
sign at least once, the learning rate is annealed (called “converge” mode). At this point
the algorithm continues to switch between search and converge modes for the remainder

of the training as follows:

1. When in converge mode: If one or more components of the drift exceed threshold=2,

then switch to search mode.

2. When in search mode: If all the components of the drift, that had exceeded
threshold=2 in the previous converge mode, change sign then switch to converge

mode.

We tried several other values of the threshold but without improvement. One problem

with this algorithm is that the learning rate is either constant or decreasing, i.e. there
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is no principled mechanism for increasing the learning rate if it is initially set too small.
As a result, it is best to start with a learning rate that is as large as possible.

Several variants of the learning rate schedule can be used during the converge phase.
For example, we can let u(t) = po/(7 + t) where p and 7 are parameters that must be
chosen. At late times this behaves as pg/t, however, it drops off more slowly at early
times. In order to include as few adjustable parameters as possible, we implement the
simple g9/t schedule.

Convergence behavior is very sensitive to the initial value of ug. If ug is too large
the weights diverge and the algorithm (eventually) switches to converge mode where the
learning rate is then decreased. However, recuperation from the initial divergence can
take many iterations. On the other hand, if yp is too small, convergence is very slow
because the algorithm has no mechanism for increasing the learning rate. Ideally, we want
the initial learning rate (during search mode) to be as large as possible without having
the weights diverge. As previously discussed in Section §7.3, the bound for stochastic
LMS with constant learning rate and gaussian inputs is po < 3/\—3; for convergence in
mean square. Clearly, for nonlinear problems where the cost surface is not quadratic

and inputs are often far from gaussian this bound will not be correct. However, for lack

of a better initial estimate, we again set o = 5 /\:m, i.e., slightly below this bound.

We approximate Apq, for nonlinear networks just as we did for linear networks,
using the algorithm by LeCun, et. al. [LSP93] described in Section §7.3. However, the
Hessian is not constant throughout the weight space for nonlinear problems so that even
if our initial estimate of the A4, is accurate, the eigenvalue spectrum may change after
a number of weight updates. One possibility is to periodically recompute pop = ”;,

mazr

however, in our current implementation pg is computed only once at the start of training.

8.4.1 ASTC with Adaptive Momentum (MASTC)

To combine ASTC with adaptive momentum (referred to as MASTC) we use the drift
to first detect the noise regime. Once detected, annealing is turned on with adaptive
momentum and the drift is no longer computed. There is no switching back and forth
between the two phases because a) we assume that once we are in some noise regime
there is no switching between basins of local minima, and b) since adaptive momentum
results in an effective learning rate that is optimal for that basin there should be no need

to return to a constant learning rate. When ASTC is used without adaptive momentum,
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input presentations.

the scalar learning rate g is far from optimal particularly if the Hessian is poorly con-
ditioned. Thus the learning rate schedule po/t generally decreases the learning rate too

quickly3. As a result, the algorithm thrashes between search and converge modes in an

attempt to correct for this.

8.5 ASTC and MASTC Applied to Phoneme Classifica-
tion

We now return to the phoneme classification problem in section §8.3.1 . We compare 1)
ASTC, 2) MASTC, and 3) conjugate gradient descent which is a batch algorithm. The
maximum eigenvalue was computed to be about Aper, = 1.33, however, a learning rate
of pg = 1 did not result in divergence. Figure 8.5 displays the results for both training
set (solid) and test set (dotted). MASTC (top two curves) performs much better than
straight ASTC. Though not shown in this figure, we actually saw improvement in the
classification by keeping the learning rate constant far past the point where ASTC first

switches to converge. This means that ASTC signals the arrival in the noise regime too

3The optimal learning rate along the i** eigendirection of the Hessian is o, opr = +-. However, we
know that po < 1/Amar otherwise the weights would diverge in the search phase. Thus, o is too small

along the eigendirections for which A; < Amaz-
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early. Further analysis is required to determine how to correct this problem.

Both ASTC and MASTC train faster than conjugate gradient descent? (CGD). Figure
8.6 displays the classification performance as a function of epoch. One epoch corresponds
to one pass through the data (9K inputs).

Timing estimates showed that one “epoch”® of MASTC is roughly equivalent to
about 9 epochs of CGD. However, this number possibly can be decreased because the
CGD code has been carefully optimized whereas MASTC was not. After 100 epochs the
CGD performance was only about 39% on the training set. The performance for ASTC
with adaptive momentum after the only 100,000 input presentations was about 47%.
Performance on the test set was only slightly better for MASTC.

A rough comparison of the relative complexity of the two calculations shows that
one epoch of adaptive momentum should take about 3 times as long as one epoch of
CGD. To show this, we let N be the number of weights in the network and we assume
that the number of training examples, T', is large compared to N. This means that the
calculation of the gradient is the dominant factor in CGD since the gradient calculation
is O(NT) and the remaining calculations are O(N). We shall also assume that the total
number of weights is large compared to the number of nodes so that terms on the order
of the number of nodes can be neglected.

For each training example, the gradient calculation requires one forward-backward
pass as given in equations (8.7) and (8.9). The forward calculation requires approxi-
mately 2N add/multiplies. For example. consider a network with ng input nodes, n,
hidden nodes, and ny output nodes. The total number of weights is N = nj(ng+n;). To
compute the hidden layer activations, we must perform ngn; multiples plus n;(ng — 1)
adds. The output activations then require n)ns multiplies plus no(n; — 1) adds. The

total number of add/multiples is then

ning +n{ng — 1) + nino + ne(n) — 1) = 2n(n2 + np) — (n; + n2) = 2n1(no+n2) = 2N.
(8.15)

Note that the sigmoid calculation has not been included because it is on the order of the

*Conjugate gradient descent was performed using nopt written by Etienne Barnard and made available
through the Center for Spoken Language Understanding at the Oregon Graduate Institute.

5For stochastic gradient descent, we define an epoch to be n input presentations, where n is the
number of training examples. Because the n inputs are chosen at random with replacement from the
entire training set, some inputs may occur several times and some may not occur at all over the course
of one epach.
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number of nodes rather than the number of weights.
The gradient is then obtained from the backward calculation given in equations (8.9).
The gradients for the top layer weights are given by

o€

By Y oje; =i d;

where §; = g'fjv 1=1,...,m, and j = 1,...,n2. Computing J; is O(n2) and so can be
neglected. Thus, the number of multiplies is njne. The gradients for the next layer are

given computed as

o€
B yko':'zwji d; = yx b
j
where 7 and j range as before, and k = 1,...,ny. Computing the §; require approxi-

mately 2nino add/multiplies. Computing the gradients from the 4,’s then requires ngn;

multiples. Thus the backward calculation takes approximately
ning + 2nine + ngny = 3nine +ngny = 2nne + N

If the number of inputs is on the order of the number of outputs (i.e. ng ~ n2), then
N = 2ngn; = ning so that the above expression is approximately 2N. Thus the forward-
backward calculation for one training example is O(2N + 2N = 4N).

For batch learning, the gradient for each example must be added into the overall
average gradient. This requires N adds for each example. Therefore, to compute the
average gradient for batch mode is approximately O(5N) per example.

For stochastic gradient descent, each training example requires the 4V add/multiplies

as discussed above for the forward-backward pass. In addition, each weight update
Wiy] =Wt — uVE;

requires N multiples (by the learning rate) plus N subtractions to obtain w;y;. This
gives approximately 6N add/multiplies.

We now include the adaptive momentum term
Awt + [LRtAUJt (816)

where RAw; is computed using the linearized hessian given in equations (8.8) and (8.13).

The forward calculation in (8.8) is similar in complexity to the forward equations in (8.7)
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except that there is an additional matrix multiplication (from the z term) requiring ap-
proximately 2N add/multiples. The backward equations in (8.13) have the same com-
plexity as the standard backward equations in (8.9) so that the total forward-backward
calculation for computing RAw; takes about

4N (forward) + 2N (backward) = 6N

add/multiplies.

Given RAw;, the momentum term in (8.16) then requires N multiplies (by ), plus
N adds (to add in Awy). Finally adding the whole result to update w;;) takes another N
adds. Thus, the momentum terms requires 6N+N+N+N = 9N add/multiples on top of
the 6N add/multiplies for the standard stochastic update calculations. Thus, stochastic
gradient descent with adaptive momentum takes about 6 N +9N = 15N add/multiplies,
or about 3 times as many as CGD.

We also note that adaptive momentum is used only during the annealing phase and
not throughout the entire training process. Before annealing, the drift term in ASTC is
computed to determine when annealing should be turned on. Once annealing is turned
on, the drift is no longer computed but adaptive momentum is turned on. The complexity
of the drift is similar to that of adaptive momentum. The numerator of the drift is an
exponential average of the weight change. This requires 3N add/multiples per training
example. The denominator is an exponential average of the standard deviation of the
weight change and requires about SN add/multiplies. Finally, the numerator must get
divided by the denominator. Thus, the drift computation is about the same complexity
as the computation of the adaptive momentum term, 9N. There is also the additional

cost (~ N) associated with checking to see if the drift is above or below threshold.

8.6 Summary

In this chapter we have presented an efficient algorithm for computing nonlinear adaptive
momentum that makes use of Pearlmutter’s algorithm [Pea94] for computing the product
of the Hessian and an arbitrary vector. We test the algorithm on a phoneme classification
problem and on the Mackey-Glass problem during the (late-time) annealing phase of
learning.

For adaptive momentum to be effective, we need to know when the noise regime has

been reached. To this end, we use the drift statistic from Moody and Darken’s ASTC
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algorithm to signal this transition. Unfortunately, the drift statistic tends to signal the

noise regime too early. Further work is needed to correct this.



Chapter 9

Future Directions

To develop a complete algorithm for stochastic search there are still major issues that
must be solved. The first and most critical one is how to speed learning before the
noise regime has been reached. This is important because most of the training time is
spent in the constant learning rate phase. In fact, for some problems, over training can
occur even before the noise regime is reached, thus making annealing unnecessary. One
possible technique that we discuss below is adaptive momentum modified to work in the
constant learning rate phase.

Another issue is how to improve ASTC so that 1) it better detects the noise regime
and 2) has some principled method for increasing the learning rate when needed. This
latter point, however, is tied to the issue of optimizing performance in the constant
learning rate phase, i.e. solving one probably solves the other.

In the long run, however, a better approach to training neural networks may be a

hybrid algorithm. i.e. one that uses a combination of batch and stochastic techniques.

9.1 Stochastic Algorithms for the Search Phase

As was mentioned in the introduction, speed-up techniques often work by estimating
algorithm parameters (e.g. learning rates) by modeling the local curvature of the cost
surface. For stochastic algorithms this is difficult because stochastic estimates of curva-
ture are too noisy to be of much use. An alternative is to use time averaging to remove
the noise. However, a problem with time averaging is that it is difficult to know how
to weight past values. For example, suppose we have the quantity (call it X) whose

exponential average is given by

(X), = (1-a)X,+a(X),_,
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t
= (1 —a) ZaiXt._.,"

=0
If X, is changing rapidly, then the exponential weighting factor a should be small so
that more recent values of X; are weighted more heavily than earlier values. In such a
case, the estimate of (X), can still be quite noisy and will lag the true value. If X, is
not changing rapidly then it is better to have the weighting factor be large so that more
terms are contributing in a significant way to the average. The more terms included, the
more the noise will be reduced. In adaptive momentum, we average the gradients. In
the noise regime the average gradient is close to zero and not changing rapidly so that

the update term is very approximately

t
wt+1) = po Y (I - poR) VE(ws—i,z—;)
i=0

~ (qu(I - #OR)i) (VE(wr, )
1=0
= R (VE(wi, ), (9.1)

This is precisely the Newton step update. However, if the gradient is changing rapidly as
it is in the constant learning rate phase, it can not be pulled out of the sum. This means
we are no longer approximating the Newton update. One approach to correct this may
be to rescale the gradients in the exponential average in accordance to how much they
are expected to change.

Another difficulty in applying adaptive momentum to the constant learning rate
phase is that the optimal momentum parameter does not have a simple form. Even for

the very simple case of 1-D LMS, the optimal $ must satisfy [T'T89]
(1-VB)? <mor < 1+ VB (9-2)

In multiple dimensions A could be replaced with R. Solving for 8 would require ne-
gotiating square roots of matrices. Would stochastic estimates be possible? Hopefully,
approximations could be made that would be efficient to calculate and accurate enough

to make a difference in the learning speed.



84

9.2 Detecting the Noise Regime

One of the problems with ASTC was that, for both linear and nonlinear problems, it
consistently switched from search phase to converge phase to soon. However, the first
converge phase was usually very short (sometimes only a few iterations) indicating that
the algorithm quickly realizes that it switched too quickly. Unfortunately, by this point
the learning rate had already decreased quite significantly!.

ASTC detects end of the first search phase when the all components of the drift have
changed sign at least once. One possible reason that this might occur too early may
be due to the noise present in the drift estimate. Recall that the drift is computed as
an exponential time average whose weighting factors are hardwired. The noise, which
tends to be larger early in the training, may result in spurious sign changes. One simple
solution would be not register the occurrence of any sign changes until a few epochs have
passed. This of course is not particularly satisfactory because there may be instances
where annealing needs to be done early, for example, if the initial learning rate chosen

is too large. Alternative solutions need to be found.

9.3 Hybrid Algorithms

It may be that some mix between batch and stochastic is needed. By “mix” we mean
either 1) batch and stochastic are used at different stages of training, or 2) the batch size
itself is varied. For example, in the first approach, it may be that stochastic is better to
use early in the training where the noise is useful in exploring the cost surface and where
careful estimates of the cost surface are not yet necessary. Once a good basin is found,
some fast batch algorithm such as conjugate gradient descent might be more effective at
finding the minimum.

The second approach could be used as an alternative to annealing the learning rate.
The amount of noise present in the weight updates is controlled either by the learning
rate or by the batch size. Batch learning (zero noise) generally refers to averaging over

the entire training set at each iteration. One could also use “small batches” where

!This would be less of a problem if we used an annealing schedule that rolled over more slowly than
£ eg #%. However, such schedules invariably introduce additional parameters that must be adjusted.
One of our goals was to minimize the number of adjustable parameters so we did not use these alternative

schedules.
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the weight updates at each iteration are averaged over some subset (perhaps randomly
chosen) of the training set. A batch size of 1 would correspond to pure stochastic while a
batch size equal to the size of the training set would correspond to pure batch. Thus, an
alternative to annealing the learning rate would be to slowly increase the batch size as
needed so as to decrease the noise without annealing. We would need to 1) determine the
batch size schedule that optimizes learning and 2) determine how this method compares
in performance with standard annealing. At each iteration, the cost of the batch average
must be weighed against the amount of noise that can be tolerated. As an aside, we also
note that small batches could be practical when algorithms are run on multiprocessor

systems where batch algorithms are easier to implement in parallel.
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Appendix A

Expansion of the Kolmogorov Equation

In this appendix we derive the differential difference equation in (2.4) by starting with
the Kolmogorov equation given in (2.2). With single step transition probability defined

in (2.3), the Kolmogorov equation is
P (n+1)7) = / dw P(w,nt) /dx p(z) §(w' —w— pHl[w,z])
= /d:z: p(z)/ dw P(w,nT) 6(w'_— w—pH[wz]) (A.1)

where w,w’ € R™. We next make a Taylor series expansion of the § function where wj,

and H;, are the jf,h component of weight, and weight update, respectively,

PW',(n+1)1) = /d::: p(m)/ dw P(w,n1) > (—;)
=1 :
S HyH,...H & 5w - w)
J J2 r 44y
Pt ! ow' Ol ... 0w
= (=) & &
= dz p(z) —_—
_/ ; i! jl,§=1 Gw;l ow;, ...Bw;-‘,
/ dw §(u' — w) Pw,nr) H;,H,, ... H;,
= /dm plz) S .(_Z_"") 3
s
ai

{H;,Hj,...Hj, P(u',n1)}. (A.2)
O, B, .. Owl TR !

Integrating over z and moving the ¢ = 0 term to the left side leaves the differential-
difference

., P, (n+1)1r) = P(w',n7) _

T
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i (=p)' i &
i=1 ! J1yee-di=1 6“’5’1 aw.;'z o .3&);._ ( <Hjl sz o Hji)x P(w’, "T) ) . (A'3)



Appendix B

Small Noise Expansion for Stochastic

learning with Constant Learning Rate

The Kramers-Moyal equation for stochastic learning with a constant learning rate in
1-dimension is

T&Hwﬂ—zgfi&ﬂ“FWx»P@ﬂ} (B.1)

The small noise expansion requires making a change of variable from {w,t} to {¢, s}
where

1
E—EW—W»

s =t

The partial derivatives transform as

9 _ 80 050 -40

5 ~ 0tof  Bds  JROE ' s
9 _ X9 ,69_138
Aw 0w Bwds /uoft

and the density transforms as

Pl.t) =Pl |5E0] = p(e.o (B.2)
where P(&, s) denotes the density of £ at time s and B{ﬁ% is the Jacobian.
With these coordinate changes, (B.1) becomes (renaming s — t)
OP(,t) T $OP(L, 1) (=vi)' ;
- e y & o 2 (@0 + VRO, PED). (B

=1
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Expanding H'(¢(t) + /£, z) in a power series about ¢ gives

) + e, = 3 VD ) (B.4)
k_.
where

o () = 5 k (H (B.5)

w=¢(t)

Now inserting this into (B.3) results in

L OPEY) TIOPEY) | 2N LDV
e Zlkzo - OF = (f"P(& 1). (B6)

Next make a change of index m =i + k to give

_OPEY) wap(s ) _ & & (1) f)"‘ (mi i
iy 3:1):1 e ) 5 (5 P(,t). (BT)

Since ¢ is arbitrary, we can define it so that the mm = 1 term on the RHS cancels the

second term on the LHS

T$OP(Et) _ ©,,, 9P, 1)
“E % via (¢) —— % (B.8)
Simplifying, obtain the system of equations
d
S 7 oot (B.9)
OP(6,t) _ g (D22 meiy m—i
== = £ TE:?;WO' N e {g P(,)}. (B.10)

Since the choice of timescale is arbitrary. we can assume that 7 scales as p = cr

where ¢ is some constant. Then the transformed equations become
dg(t)
dt
OPE.t) _ | §n g (SRR mei
R yoy e Ty (¢<m 3 {f P8} (B12)

m=2i=1

= coy(g(t)) (B.11)

which to lowest order (m = 2), are independent of .



Appendix C

Small Noise Expansion for Annealed

Learning

The Kramers-Moyal equation for stochastic learning with an annealed learning rate in

1-dimension is

(-uo)i o i
praT e { (H'(w,x)), P(w,t} }. (C.1)

r 8Pt =3

The small noise expansion assumes one can make a change of variable from {w, t} to

{£, s} where
t
§ = (w- ¢(t))\/-;0-
t

s =

The partial derivatives transform as

o _ %0 00
ot oto¢ Ot ds

¢ 5 . 0 0
- (m-Vmt) a+m
d _ %09 0950
% — wd  Bwos
_ [59
B o O

and the density transforms as

o, s

Plu.t) = P, | 305 t;

- \/EP(ﬁ,s) (C.2)
10

where P(&, s) denotes the density of £ at time s and g%% is the Jacobian.
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With these coordinate changes, (C.1) becomes

G o) B
£l (/)2 { (oo Be)), [Zricn } o0

Expanding (H')_about ¢

(o + [Be,2)) z(\/' e) L (emio.0), = Z(\ﬂ)k @)

(C 4)

where

ol (9)= (LeHi(4,2)) (C.5)

and putting into (C.3) gives after simplification

OP(E,5) , PEss) I
Os - 2ss (2s \/7¢( )) s
Iyt (\/_) P Z (€PE9). ©9

Making the change of index m = i + k we finally arrive at

8’P(§,3) 'P(E,s) 3’P(£,s)
3 2y (£ - = j(s)) Tt -
1 & m ( 1)1 [l,() (m—-z) i
;Zz(m—i)!i! (V s ) () o 56 (5 P(&s)). (CT)

We now implicitly define ¢ so that the term with ¢ on the left cancels the m = 1 term

) = 2[Ry ), 9

Equations (C.7) and (C.S) become (renammg s —t)

on the right,

dp _ po oi)(¢)

@ - T 1 (C.9)
P, 1) 673(& ) P(a,t)

ot - 2 (C.10)

5> (\/m) Z,. L el @) 5 2 (e Pee).

m=2
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Keeping only the m = 2 term and setting c = £2 leaves the system of equations
d$ _ o)
— = ¢ —
dt t
PE1) _ € OPEY P
ot 2t O¢ 2t
c

0 9?
. (—aﬁl)(¢)a—£f PE,) + saf OF 140 t)) :

+

Note that the lowest order terms are independent of i thus fulfilling the original ansatz.

From this, we can solve for the time evolution of (£) and (£?)

R = [EeDege=L (11 caPw) 1)
6<£2> — ap(fat) 2
o = [ Tae
- %{(1+20a§1)(¢)) (€ +ca}. (C.12)
Solving yields
& = (€)™t (C.13)
4
(€ = ()@ +c /t %’e*“*” o’ (4(9)) (C.14)

where (€), and (¢2), are (€) and (£?) evaluated at t = to, respectively, and

t2
st = [0 [1+zeal@@) ],



Appendix D

Time Evolution of 1-D LMS:
Comparison with Discrete and

Continuous Time Solutions

Neural network learning takes place in discrete time. However, continuous time dynamics
are more amenable to analysis and approximation. Thus, we have analyzed the time
evolution of the weights by simplifying the exact discrete time equations using two stages
of approximation. First, we assumed that for small learning rates and for late times we
can transition to continuous time equations. We then approximate the continuous time
equations by carefully expanding out in g and truncating to some desired order. Both
stages of approximations are necessary because the dynamical equations for nonlinear
problems are otherwise intractable.

In this appendix we explore the effect of these approximations by examining a very
simple system that is solvable exactly: 1-D linear networks. We solve both the discrete
and continuous time equations for the first two moments of the weight error, {v) and
(v?). We compare these results to each other and also to the moments obtained from

the small noise expansion. We assume a constant learning rate throughout.

D.1 Discrete-Time Evolution of Weights

In this section we derive the exact discrete time expression for the time evolution of the
cxpected weight error and squared weight error for LMS with a constant learning rate.

As before, the update function for LMS is H[v.z] = (&; — v; x¢)z; so that the update
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equations for the weight error and squared weight error become
M1 = Y + F 72 (Et — U .’Bt) T (D].)
'vt2+1 = v+ 2 (e —vexy) Tvp + p? (€ — vy z,)? z? (D.2)
where € is zero mean noise. Taking expectation over the inputs gives
(ver1) = (1—pR){w)
(i) = (Q-2uR+p?S)(v})+p?0?R (D-3)
where R = (z?), § = (z*), and 02 = (¢?). We solve these difference equations to obtain
{(w) = (1-pR){vw)

- _ 2ayt
Ww?) = (1—2uR+ 28y ud) + LU= mE+WS) op (D.4)

2R — uS ¢

where (vp) and (vg) are the first and second moments of v at t = 0, respectively. Note that

2
the equilibrium variance (at ¢ = 0o) is the same as previously predicted, (vZ ) = ERL)Z:?'

Assuming that 4 is small, we can use the identity
(14a)b = ednli+a) - cbla=%+..) o, ba (Ja| < 1) (D.5)
to rewrite the equations in (D.4) to lowest order in
() = (vg) e Rt
() ~ (v3)e R4 %"2 (1 - 6'2"}“) . (D.6)

We can also introduce a timescale 7 where t = nr and n is the iteration number.

The above equations then become

<Un=t/r> = (’Uo) e_tf—'
() ™ () e 4 22 (1 ). (D.7)

D.2 Continuous-Time Evolution of Weights

To transition to continuous time we assume the timescale 7 defined as above is small

relative to t (i.e. n is large) so we can expand (v(nT + 7)) about ¢t = nr

_ d{v(t)) d*(u(t))
(it+ 7)) = (W) +7 = + 72 i (D.8)
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To lowest order in 7 we have

rHUD) o ot 4 1)~ (0(0)) = (H 2] (D39)
. d{v)
- = —%E(v). (D.10)
Similarly, for (v2) we find
d<”j(t» ~ E(-2R+ pS)(v?) + 21;"2 (D.11)
Solving yields
(B = (w)e T
0) = (e g () o)
T (OB P L e

The equation for {v2) correctly predicts the equilibrium variance ( t = co). Otherwise,
these equations do not look quite like either (D.4) or (D.7). However, we recall that the
above continuous time equations are only valid for small 7. If we let 7 = 0 then (v(¢))
goes to zero for all ¢ (assuming that —2R + pS < 0) and (v?(t)) becomes a constant.
However, if we assume that the timescale 7 scales with p so that £ is constant!, we

obtain in the limit as 7,4 — 0

@®) = (w)e T
2uRt 2 2uRt
(v (1) = (v%)e"ﬂr_' + %E (1 - e—'E;—) . (D.13)

These arc identical to the lowest order discrete equations in (D.7). Since we have 1)
truncated at O(7) in (D.8) and 2) set 7 oc u, then we must assume that the continuous

time equations are only valid to O(u).

etting 7 = 0 is equivalent to letting n = oo thus we expect (v) and <v2> to approach their
equilibrium values in this limit. However, if we simultaneously let  — 0 so that ur is constant then we
are in a sense slowing down the learning process at the same rate that we are speeding up time.
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D.3 Small Noise Expansion applied to LMS with a Con-

stant Learning Rate

We now use the small noise expansion discussed in Section §2.2.3 to approximate the
continuous time equations of the previous section. The weight error at time ¢ is described
by v(t) = ¢(t) + /B¢ where ¢ represents the deterministic motion and ¢ represents the
fluctuations about the deterministic path. The lowest order® (m = 2) time evolution of
¢ and ¢ were found from equations (2.17), (2.25), and (2.26) to be (with tn = 0)

PY = LaPiw) (D.14)
)~ Lo = ) = €@ (D.15)
d(€® _ p ol £ o 00

= = 2Co () +

- <52<t)>=<52<0>>e7‘°")+§ [ase0a@6s)  ©16)

where t
2u 2
(ty.t2) = 7’/! o\ (4(s)) ds.
1
Inserting the coefficients for 1-D LMS
¥ =-Rp, oV=-R o) = Ro?+ 5¢? (D.17)

we can compare the equations for the time evolution of (v) and (v2) in (D.10) and (D.11)

with those derived here using the small noise expansion

d [
= —;RW (D.18)
d{v? de¢? d{£2 12
AL = L ap Ll el ()4 of?)

R 2
"—T"L. (D.19)

= g (—2R(v?) + uS9?) +

Comparing these with (D.10) and (D.11) we see that the equation for (v) is identical. If
the equation for (v?) in (D.19) had an additional %35 (£?) then the ¢? would be replaced

2If all orders are retained, the solution should be identical to solving the entire Kramers-Moyal
Expansion which, in turn, should be identical to the solution obtained of the full continuous time equation
given in the previous section.
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with a (v?) and the equation would match (D.11) precisely. However, only the lowest
order (m = 2) equations for the noise £ have been kept so we would not expect this term
to be present. The term ‘%S (£2) does not appear until m = 4.

Solving equations (D.14)-(D.16) we obtain

s(t) = ¢(0) e (D.20)
€@y = (€O)e (D.21)
2u Rt t uR(t—s _,,___
(@) = (o) + £ / dse™ 7 (Ro? + 5 ¢2(0) )
= (2O +Z : (1— "L')+#S¢2(O)t -2 (D.22)

With (£(0)) = 0, (vo) = ¢(0) and (v3) = ¢%(0) + (¢2(0)), the equations for the weight

error become

= (0t (D.23)

(W) = ¢2(t)+u(£2(t))
wR  po?

2p Rt 2 2 2u Rt
= $0)e " +;L<£2 (0))e " +T(1_e——“,—)+ © S‘i(o)te_.{_

2x Rt 2 2uR?
= ((”o>+¢2(0 £ St) e+ B (1m0, (D.24)

As expected, the mean is identical to the exact continuous time solution. Equation
(D.24) can be obtained from the full continuous time solution in (D.12) by expanding
and truncating to O(u) as follows. Let 5‘;{—‘?_‘:% ~ L;i and eﬂzri =1+ ‘f;ﬂ Note that the
last approximation is quite poor as t becomes large, however, the effect is muted by the
e~ multiplicative factor. Inserting these approximations into (D.12) and truncating?

to O(u) (remembering that £ is O(1)) then gives (D.24).

D.4 Comparison to Simulations

Figure D.1 compares the prediction of (v2) using the discrete time equation (D.4), the
full continuous time equation (D.12), and the small noise expansion (D.24). A large

learning rate (u = .2) has been chosen so as to highlight the differences. If p is very

3To obtain (D.13) we let u and T actually go to zero.
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"°°s( E[w?])

- O e N W e

Figure D.1: Predictions of the squared weight error for 1-D LMS with gaussian inputs
with R = 1, ¢2 = 1, (v} = 1000, and g = .2. Simulations used 10000 networks.
Theoretical curves were computed using {(v3) = 108, #%(0) = 105, (¢2(0)) = 0, and
S = 3R

small (e.g. .002), then all of the curves would be indistinguishable to the eye. For p = .2,
the discrete time curve lies right on top of the simulations, as it should. All of the curves
except the small noise expansion accurately predict the equilibrium variance. What is
somewhat surprising is that the small noise expansion predicts the pre-equilibrium slope
more accurately than the full continuous time equation. Perhaps this should be expected
because the continuous time solution can only be guaranteed to be accurate to O(u) even
though it contains terms that are @(p2). For 1-D LMS, these extra terms help when
it comes to predicting the equilibrium variance, however, they hurt when it comes to
predicting the pre-equilibrium slope. In contrast, the lowest order small noise expansion
keeps only those terms that are O(u) while throwing away everything else.

These results would seem to imply that the higher order terms for the equilibrium
density calculated in the previous chapter using a perturbative expansion are not valid.
However, we note that the full continuous time equations predict the correct equilibrium
variance. We believe that this is not accidental. To study equilibrium behavior, we can
let 7 — 0 while keeping u fixed. The scaling was necessary so that the pre-equilibrium

behavior would still be visible.

D.5 Summary

In this chapter, we have examined the very simple network of 1-D LMS to better under-
stand the approximations being made in first transitioning to continuous time and then

approximating the continuous time solutions using the small noise expansion. We chose
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a 1-D LMS network because its discrete and continuous time equations are easily solved
exactly thus making precise comparisons possible. We discover that the continuous time
equations can only be trusted up to O(u) if we assume that the timescale T scales with
1. In such a case, it seems preferable to use the lowest order small noise expansion rather
than the full continuous time solution because the small noise expansion only keeps O()

terms.



Appendix E

Small Noise Expansion for Constant

Learning with Momentum

The algorithm for stochastic learning with a constant learning rate and constant mo-

mentum in 1-dimension can be written as

v(t+1) = u(t)+pH[v(t),z(D)]+ B(v(t) — Q) (E.1)
Qt+1) = w(t) (E.2)
= Q@)+ (w(t) — Q). (E.3)

In vector form it can be written as
v(t+1) ) _ [ o(t) + pH[u(t), z(£)] + B(v(t) — Q(t))
Q(t+1) Q1) v(t) — Q(t)

The Kramers-Moyal equation for this is then

(o )(5)
Q(t) Go

(E.4)

0P, Q1) = Z (- 1)’ Zo( )% ( <G{G;—J‘ zP(v,Q,t)). (E.5)

The small noise expansion requires making a change of variable from {v,,t} to

{£w,&q, s} where

1
& = ('U—¢w(t))ﬁ
1
- (Q- —
éa ( <I5Q(t))\//7

s = t.
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The partial derivatives transform as

o _ b0 _do 0
15} Vi O, i 6{9 as
g _ 138
ov NAL®
o _ 190
N VI 9q
and the density transforms as
¢us s 1
P(0,2,6) = (6w tn,0) [ 2| — 2P (e 0,0)
where %3_52 is the Jacobian.
We can also rewrite <G{G;_j > as
(Gi657) = ((wH+Bw - (v-Q)~)

=0

Expanding H'[v = ¢, + /., z] about v = ¢,, gives

<H‘[v,x]>x RS %2 £k a%} (H'[v, ]

rv=¢w
k/2
= Y S etaln)

k=0

where

o) = 2 (i,

—¢w
We can also rewrite

i~

(v - = (Ap+ VBAL T =) ( i;l )ug(Af)”(Aqs)"“"’

p=0

where Af = €&, — &q and Ad = ¢, — dpn. We also note that A¢ x p so we define

—

PAY

R

Ad

i ( . )I‘l (Hl>z 81 (v — Q).
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(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)
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Now putting (E.9), (E.11), and (E.12) into (E.8) gives

. j oo il —1\ it —
(6ics) =X 3% ( ) ( ) B #1a{(g0) (Bo) 17 .M a0,
1=0 k=0 p=0 Y4 :
(E.13)
Using (E.13) and the transformations in (E.6) and (E.7), (E.5) becomes
[ $e 2 _$a 0 |
Vi 8 /i Ba
0o i J oo il ; k— ; b — 1 . —_—
S Yy sy Ol ( j ) ( ; ) ( , , ) A oY (g0) (BR) I

0 ) P, ta,s) =

i=1 j=0 =0 k=0p=0

W { &5(207 Ptu.0,9)} (E.14)

Making the change of index n = ¢ + k¥ — p and rearranging the order of summation
we finally arrive at

$o 8 92 8 0
(—\/_ afw \/I_; 650 )P(ﬁwafﬂas)

2 oo ¢ min(jn) (—l)i : J i B
nZ::Ou gz 2 Z dn+p—i\ ; ! p B

j=0 =0 p-ma.x(Oz —n)
af™7 () (B0 765 = { &m0 Plentan o)} (E.15)

The n = 0 term on the right is
RHS,- ) ————— (AP E.16
0 ;‘1;0 - (j)ﬁagwj%,_]h o'P}  (B16)

and the n = 1 term is

i min(z,1)

RHS,_, = \/ﬁiz l}f ii _ (-1)f ; j i—1 it
) =] j=0 1I=0 p=max(0i d{l1+p—1)! 7 l p

D

(14p—i) , Tvie ~i
79 (3) Ip——ag ae | & e P (B.17)

It makes most intuitive sense to cancel the d)'“, and qb.g terms on the left side of (E.15)
with the n = 1,72 = 1, { = 0, and p = 0 terms on the right because the resulting
deterministic equations resemble the continuous time versions of (E.1) and (E.3)

T¢o = u{H[po,z))+ B (¢ — d0) (E.18)
Tde = ¢o—da (E.19)
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Taking the lowest order term on the right (n = 0) leaves the equations for the noise

a’P(&u,f ,3) 7 ;
8s - Z Z il (j ) p W{(Aﬁ) P} (E.20)

i=1 j=0
E.1 Deterministic Solution for LMS

For LMS, we have
o) = (H),|,_gp, = —Ro

so that the deterministic equations (E.18) and ( E.19) can then be written as
d¢(t)

_ (%

o= (¥)

. (ﬂ—uR —ﬂ).
1 -1

The solution can formally be written as

d(t) = ¢p(0)eA™,

= Ag(t)

where

To extract the actual components of ¢ we write

A = pPDpP!
$(t) = ¢(0)PcP /7P~

D - —a-—h 0
0 —a+h
po_ (l—a—h 1—a+h)
1 1

where

Pl = _1_ -1 1l—-a+h
2h\ 1 -14a+h
1
a = §(l—ﬁ+uR)

h = y/a?— puR.

(E.21)

(E.22)

(E.23)

(E.24)
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For the initial condition ¢(0) = ¢ ( 1 ) we have
B(t) = ¢u(t) | _ ¢ [ (ma+h+uR) e~@tht/T 4 (g 4+ h — pR) e~ (@—h)t/7
pa(t) )  2F (=0 + k) e~@HDUT 4 (g 4 h) =la=We/T
Note that ¢,, — ¢q is O(u) as originally assumed,

—at/T —at/T
¢w—¢Q=H"'———Rce (e‘ht/r—eht/r) - pRee T sinh (E) .

h 2h



Appendix F

Evaluation of the Squared Weight Error
for uo/t Learning Rate Schedules and

Constant Momentum

In this appendix we evaluate the squared weight error E[[v|?] for annealed learning with
momentum. E[[v|?] is the trace of the upper left quadrant of weight error correlation

matrix, C . We have from equations (6.5) and (6.11) in chapter (6) that
& = EzZ7]= /dNZ z 2" P(Z,1) (F.1)

= U(t,to) C (to) UT(t,t0) + /t th u(m)2 U@, 7) D UT(t,7) (F.2)

where
t2
Uty t1) = exp[t dr K(T)] (F.3)
k = [ HOE BT (F.4)
—-u()R (B-1I
R = <v3.£ v=0>x (F.5)
zZ = {v,Q} (F.6)

We assume a learning rate schedule of the form p(t) = po/t. We also assume, without
loss of generality, that the coordinates are chosen so that R is diagonal with eigenvalues
Aii=1...N.
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F.1 Computing the Evolution Operator U

To compute U, we first diagonalize the exponent of U

—poRlog (t2/t1)  B(ta — )]
—poRlog (t2/t1) (8- 1)(ta —t1)]

where A is a 2N x 2N diagonal matrix. Letting diag|[ a; ] denote an N x N diagonal

t2
dr K(1) =

ty

) = Q(tz, tl) A(tz,tl) Q_l(t‘Za tl)

matrix with diagonal elements ay,a9,...ay, we can write

A(te,t1) = ( diag[[)m+] diag?'rr ] ) (F.7)
(F.8)
diag [ —gi-/(9i+ — 9i-) ] diag|[ gi+/(9i+ — gi-) ]
Qt2,t1) = F.9
(t2: ) ( diag[1/(gi+ — 9i-)]  diag[—1/(gi+ — gi-) ] ) 9
-1 _ I diag| giy |
Q (ta,t1) = ( I diag[gi. ] ) (F.10)

where
Mg = %(—(1 = B)(t2 — t1) ~ poXilog (t2/t1) = Vhy)
giz = ((1—=PB)ta—t1) — poXilog (t2/t1) F vV'hi)/(2poi log (ta/t1))
hi = (1—P)2%(ta — 1) — 2(8+ 1)(t2 ~ t1)poi log (ta/t1) + udX2log?(t2/t1) .

The evolution operator U is then

U(te,t1) = exp [/ttz dr K('r)] = QerQ~!

1

(9i+ )~ (gi-) {gir)—(9i—)
diag [ EXPAThig )~ XPATi— ] diag [ (9i+) exp(niy)—(g:—) exp(ni—) ]

{9i4)—(gi-

( diag[ —(gi—) exp(ni4)+(gi4+) exp(ni ) ] diag[ (9i4){gi—)(exp(ni—)—exp(nit)) ] )
9i+)—\Gi-
F.2 Homogeneous Solution

From (F.2), we see that C (and thus C) is composed of two terms. The first term we
refer to as the homogeneous solution and the second term is the particular solution. In
this section we compute the diagonal components of Cy where Cp is the homogeneous

solution of C,

Cy = Top left Quadrant of {U(t,to) C (to) UT(t,to)} . (F.11)
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Multiplying out U(t, 0)C (to)UT (¢, o), we obtain
1

(9i+ — 9i-)?

(—gi—e"* + gi1e™=)(gitgi- ) (€™~ — ™) (5' (to)ii+n +C (to)i+N,i) +

(9i+9i-)* (™~ — em+)2C (tO)i+N,i+N}

(CH)ii {(—gi—€"‘+ + gie€™)2C (to)iit

To simplify this, note that

o= VB Bl-t0)
poXilog(t/te)’ ! poA; log(t/te) ’
and
o2t = g=(1-B)(t—to) (VA (L) Thod
to
So that

. 2 —p);
(Cr)i = (llokzlo}f(t/to)) e~ (1=B)(t—to) (%t_) H y
¢ 0

B(t — to)
poA; log(t/to)

(gi-eV™ ~ (giy + gi=) + gixe™VP)(C (t0)iiyn +C (to)isrns) +

ﬁ(t—tO) 2 —Vhi/ v ~ . .
(#okilog(t/to)) (VN2 = VBI2YC (o) N ¢ (F.12)

{(—gi-e‘/ﬁ‘/2 +gire VRI2)2 C (to)ii +

Keeping terms in eVhi we get
(1oXi log(t/to))? o= (1=-B)(t—to)+vh; (_ﬁ) B 9

(CH)ii =~

h; to
? C(t ii+Mé t0)iicn + C (to)igni)+
{92 € ta)es+ 00 (0)ssan +C (t0)iemd)
2

Bt — to) - o
(,uo/\,lo—g(t/to)) o (t0)1+1\‘,z+}\‘} .

We can expand vh;
Vhi = (1= B)(t — to) —

so that for tp and t large we have

148
1-p

poXi log(t/tg) + - -

vhi = (1-B)(t-1t)
~(1-Ale-to)+VE & —1E podilog(t/to)
L a-p-w)
9= % Tuonilog(t/te) (F.13)
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(CH)ii can now be simplified using the above approximations:

(Cr)ii = (%) = {5' (to)ii + (Tf_ﬁj (5’ (to)ii+n +C (tO)i+N,i) +
(Tf—ﬁ)zé (tO)i+N,i+N} -

Assuming that mean square of the weight update (i.e. E[v;v;]) is larger than the Efv;Q;]
or E[Q:§2;] we have

—2pX;
t\ 175 =
(Cr)ii = (;(;) C (t0)i,i. (F.14)
F.3 Particular Solution
We now compute the diagonal components of the particular solution Cp, where
t 2 -
Cp = Top left Quadrant of { / dr % Ut,7) D UTG, 7)} (F.15)
to

and
UT(t,7)=Qt,7) Alt,7) Q71 (¢, 7).

Multiplying out we obtain

—gi—e" + gir €% 4 (girgi) (€T ~ 6""‘))2 D
gi+ — Gi- *
where ¢;4+ and 7;+ are functions of t and 7. Expanding out the integrand and keeping

t 2
©ryi= [ a2 (
to T

terms with e+ we get

t 2 /o . Nig \ 2
Ho gi-(1+gi4)e +)
i~ dr — i
Cryan [ ar 4 ( D

9i+ — Gi-
Letting
N
t—r7 (1-B)t-r1) . (T)‘L"f—a
(14 giy) 8 ———, gi- —gis ® ——————, and "+ = [ -
9i-( 9i+) oA log(t/T) g 9it poXilog(t/T) t

we get
2;49 A;

2 D.. t
o~ ’“I'ODM /d i(:) 1-48
Cra~ape ), 2\7)
Integrating we find

9 2u03;
o # Dii 1_1 (=7
P~ T8y (2uon = T+ ) (t o (t) ) ' (F.16)
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F.4 Squared Weight Error and Convergence Regimes

Combining the homogeneous and particular solutions in (F.14) and (F.16) we find

E[|v|2] = Trace[CH+Cp]
200X

g: {5 (to)ii (%0) Ty

p4 Dii 1 1 (t 2ok
(1-08)2pori -1+ 0) (t to(t) )} (F.17)

Inspection of (F.17) reveals that there are two regimes of interest:

Q

1. For po > perit = QIT;%-, E[|v|?] drops off asymptotically as %
2unAm‘~n
2. For po < perit, E[[v[%] drops off asymptotically as (%) 1-#



Appendix G

Capping Adaptive Momentum for

Linear Networks

Adaptive momentum for linear networks was defined in chapter 7 as
Badapt =1 — pozrz], (1 output, M = 1). (G.1)

To avoid divergence, we require that g < 1/An., Where Ap,, is the largest eigenvalue
of the Hessian of the cost function. In cases where we do not want to compute A4z, an
alternative is to cap each sample of Bygqp so that its eigenvalues are bounded between
0 and 1. Note that the eigenvalues of R are all positive so that we need only bound the

cigenvalues of f,44p¢ from below. In 1-dimension, this is easily achieved by setting
Badapt = max(0,1 — 1101,2)., {1-dimension). (G.2)

Note that this is not ideal in that it bounds cach sample of B,4qp: to be above zero
which is very different from bounding (B,dapt}, above zero. Even if pp < /\—m'l::’ the noise
in £ may result in 1 — poz? being negative for some z;. Thus. even when g is well below
;\-t, the expected value of Bggqpt may no longer equal (1 —~ ugx,z)x.

We have found in our simulations that capping does prevent divergence in cases when
{20 is larger than 3\.:7 However, when pg < A—"f: performance is slightly degraded when
capping is used probably because on average f34qp¢ is no longer equal to 1 — pgR. Thus,
our preference is to appropriately choose jp and not cap Badap:- However, in the event
that this is not possible, we present the idea of capping.

A natural extension of capping to multiple dimensions is to first define
— T
y=I-pzrx (G.3)
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where I is the N x N identity matrix. Then B4qpt is derived from v by zeroing out v’s

negative eigenvalues. To do this, we first diagonalize vy to get v = Q¥Q~! where

_ : _ 2
¥ = dmg[l,...,l, 1— ppz ]N
( —zo/x) —z3f/T) ... —zn/z1 /TN \
1 0 0 zo/zN
0 1 :
Q =
0 TN-1/TN
\ 0 1 1 )
( —z129 22 —23 -—z370 ... —INT2 \
—T1x3 —Z2T3 222 - :E% —TINT3
1
Q' = 5
T —INTN_1
—T1ZN —T9TN z? — 2%
K TIZN  ToTN IN-_1TN z3; /
and z2 = zTz. Then we have
Badapt = Q diag [ 1,...,1, max(0,1 - poz?) | Q7' (G.4)
Multiplying this out we find that
zzT 9
Badapt =1+ —- (—1 + max(0,1 — poz?) ) (G.5)

or

Badapt =1 —czz7, where ¢ = min(ug, 1/z2). (G.6)
p
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