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Abstract 

This thesis describes the combination of biochemical, biophysical, and 

computational tools to investigate the mechanism of pH-mediated activation of 

proprotein convertases. Proprotein convertases are a family of human serine 

endoproteases that are involved in processing of hormones, enzymes, and 

receptors. In order to spatiotemporally control this processing in distinct 

organelles of the secretory pathway proprotein convertases have evolved to 

sense the pH of the correct organelle to mediate activation. 

In this thesis I demonstrate (i) an enrichment of histidine residues in the 

propeptides of eukaryotic, but not prokaryotic, homologs of proprotein 

convertases and in propeptides of another eukaryotic pH activated protease 

family, (ii) that the propeptides of proprotein convertases sense pH and partially 

unfold at the pH of activation, (iii) and that proprotein convertases fine-tune the 

pH of their activation by using multiple titratable sites and adjusting the pKa 

values of a conserved histidine.  

Furthermore, this thesis describes other examples where the combination 

of computational biology with experimental methods allows a deeper 

understanding of the biology of proteins relevant in multiple diseases, ranging 

from protozoan parasites to cancer. 
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Introduction 

This thesis describes how combinations of experimental and computational 

approaches can be used to understand how proteins function. I will begin by 

introducing the biology of a protease family called proprotein convertases, which 

is the focus of the majority of this thesis. I will then introduce the concept of 

biological pH-sensors, which are protein whose biological function is modulated 

by the titration of side-chains within physiologically relevant pH ranges. A 

strong emphasis is put on the experimental and theoretical tools that are 

available to study these phenomena. Finally, I will describe algorithms that allow 

us to understand proteins at the level of sequence and structure. In the course of 

this introduction I want to convey how synergy between experiments and 

computation allow us to overcome many challenges that hinder investigation of 

protein function. 

1.1 Biology of proprotein convertases and their propeptides 

Proprotein convertases are serine endoproteases found in all metazoans. They 

are part of the larger family of subtilases, which are found in all domains of life 

[1]. Since many aspects of function and activation are shared by subtilases in 

eukaryotes, prokaryotes, and archaea I will begin by describing the 

commonalities of subtilases, mainly their catalytic mechanism and activation. 
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Subsequently, I will describe the unique features of proprotein convertases and 

finish by giving a review of the mechanisms by which propeptides modulate 

structure, function, folding, and dynamics of cognate proteins. 

 Subtilases: Phylogenetic distribution, mechanism and activation 

Subtilases are defined by their sequence similarity with bacterial subtilisin. They 

share a common fold, named the subtilase fold, and an arrangement of three 

residues, called the catalytic triad that, as the name suggests, is responsible for 

the catalysis of endoproteolytic digestion of proteins (Figure 1-1). Despite their 

commonality in chemical function, hydrolysis of peptide bonds, they differ 

vastly in their biological roles. While bacterial and archaeal homologs are mostly 

scavenger enzymes that digest extracellular proteins into peptide fragments for 

uptake into the host cell [2], many eukaryotic homologs are involved in the 

activation, not degradation, of proteins. The most prominent example is the 

proprotein convertase family, which is described in detail later. Other examples 

include plant subtilases, which appear to be critical in signal cascades triggered 

by pathogen interaction [3], and a subtilase in the malaria parasite plasmodium 

falciparum that is critical for egress of the parasite from the host cell [4]. The 

astonishing variability in biological roles is strikingly highlighted by the human 

homolog PCSK9, which despite a fully intact active site does not cleave any 

substrates but appears to function by binding to a surface receptor leading to 

receptor internalization [5]. This variability is caused by multiple factors, such as 

their sequence specificity, regulation of their activity within the cell and specific 

protein-protein interaction. 
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The active site of subtilases consists of three residues, a serine, histidine, and 

aspartate. Figure 1-1 A shows the arrangement of the catalytic triad within the 

subtilase fold as found in the crystal structure of Tk-subtilisin [6]. Based on this 

structure and other studies the following catalytic mechanism can be proposed 

[7] (Figure 1-1 B). The Michaelis-complex is formed by binding of the substrate 

backbone to the active site. Residues situated at the N-terminus of the cleavage 

site (P1, P2, etc.) have to be accommodated by the protease to allow for optimal 

orientation of the peptide bond. Specifically, P1 and P2 must fit into pockets, 

whose chemical environment is decisive in sequence specificity [8]–[11]. In most 

subtilases the residues C-terminal to the cleavage site (P1’,P2’, etc.) are not 

directly involved in specificity, although a recent crystal structure of subtilisin-

like protease 1 (SUB1) of plasmodium falciparum suggested some specificity for 

these residues [12]. The hydroxyl group of the active site serine then attacks the 

carbonyl-carbon of the substrate backbone, with the C-terminal part of the 

substrate acting as the leaving group, resulting in an acylenzyme complex. The 

hydrogen bound to the serine hydroxyl is buffered by the active site histidine, 

whose electronegativity is increased by the active site aspartate. Nucleophilic 

attack by a water molecule allows for release of the N-terminus of the substrate, 

again with the active site histidine involved in proton buffering. This step 

happens with relatively slow kinetics compared to the C-terminal part since the 

residues P1 and P2 form substantial interactions with the enzyme. 

This prolonged interaction is important in the activation mechanism of many 

subtilases. Like most proteases subtilases are expressed as zymogens, meaning 
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they are initially inactive and require post-translational modification for 

activation. In the case of subtilases the required modification is removal of an N-

terminal propeptide [13], which is usually ~80 residues long, but can be 

substantially longer in some homologs. This propeptide is required for the 

folding of the protease and therefore also called intramolecular chaperone 

(IMC)[14]. The role of the propeptide as a chaperone is described in more detail 

later in this chapter (Section 1.1.3). After folding, the peptide bond between 

propeptide and protease occupies the protease active site and  is primed for 

cleavage (Figure 1-2 B) [6]. Due to this optimal placement cleavage occurs 

rapidly and spontaneously in an intramolecular reaction [15]. The C-terminus of 

the propeptide, however, remains in the active site due to interactions formed by 

P1, P2 ,and a large interface between the beta-sheet of the propeptide and helices 

of the protease [6], [16]  (Figure 1-2 B). This complex is inactive as the propeptide 

C-terminus blocks access of substrate. Final activation requires proteolytic 

degradation of the propeptide. In bacterial subtilisin this is a stochastic process in 

vitro, as activation requires a random dissociation event which leads to a chain-

reaction, where one active protease molecule can proteolyze propeptides from 

other inactive complexes [17]. In vivo, where active protease already exists in the 

extracellular environment, inhibition of catalytic activity by the propeptide is 

likely a mechanism to delay activation until the protease reaches the extracellular 

environment. In other cases, such as the proprotein convertases, this last step 

requires an additional biochemical cue to trigger the activation [18] (Figure 1-2). 
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 Proprotein convertases: Tissue distribution and functions 

Proprotein convertases are the subtilase homologs found in metazoans. Their 

name derives from their primary function, namely converting proteins from their 

initial proforms into their mature forms by endoproteolysis. In humans there are 

nine members: PC1/3, PC2, Furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and 

PCSK9 [19]. However, only the first seven belong to the homology group of 

proprotein convertases/kexin, while SKI-1 belongs to the pyrolsin homology 

group and PCSK9 belongs to the Proteinase K family [1]. The first seven member 

share a common sequence specificity, cleaving after one or two basic residues, 

which can be rationalized by the high negative charge in the P1 and P2 pockets 

of their protease domains [8], [9]. As described earlier, PCSK9, at the current state 

of knowledge, does not cleave any substrates other than itself during activation, 

since the propeptide never dissociates [20]. While the proprotein convertases are 

very similar in their cleavage specificity, they differ in subcellular and tissue 

localization leading to different sets of substrates even though some overlap 

exists.  

PC1/3 and PC2 are the classic neuroendocrine convertases, expressed 

exclusively in neuroendocrine tissue [21], [22]. They are maximally active in 

mature secretory granules [23] where they process a wide array of neuropeptides 

and peptide hormones, such as insulin [24], glucagon [25], [26], and POMC 

derived peptides [27]. While many of these substrates are specific to either PC1/3 

or PC2, some peptides such as proinsulin are processed by both proteases and in 

single knockouts of either enzyme the other one can at least partially 
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compensate. Therefore, single knockout mice are viable, although they show 

metabolic diseases, while the double knockout is embryonic lethal in mice [28]. 

In patients mutations in PC1/3 have been associated with obesity [29], which 

might be connected to the role of PC1/3 in processing insulin and glucagon. 

PC4 is uniquely expressed in the germ line and PC4 knockout in mice 

leads to infertility in males [30]. This is believed to be due to the role of PC4 in 

activating metalloproteases of the ADAM family at the cell surface of sperm [31]. 

PC4 seems to also play roles in the ovaries and the placenta, but its function there 

is redundant with other proprotein convertases leading to no knockout 

phenotype [32]. 

PC5, PACE4, PC7, and furin are all nearly ubiquitously expressed and 

show redundancies both in vivo and in vitro. Furin and PC7 are active in the 

TGN, cell surface, and endosomes [33], [34], while PC5 and PACE4 seem to be 

active mainly at the cell surface [35], [36]. PC5, PC7, and furin have a C-terminal 

transmembrane helix, which tethers them to the plasma membrane, but furin and 

PC5 can be shed into the extracellular matrix [37]. PACE4 has no C-terminal 

transmembrane helix, although some isoforms might be membrane-associated 

due to a C-terminal hydrophobic cluster [38]. Despite these apparent overlaps in 

specificity, expression and cellular localization, knockouts in mice have distinct 

phenotypes. PC5 knockout mice die at birth, due to a lack of kidneys and other 

developmental defects [39]. This seems to be due to PC5s unique role in 

processing growth/differentiation factor 11 (GDF11), as GDF11 knockout mice 

share the phenotype and GDF11 seems to be cleaved by PC5 with the highest 
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efficacy. PACE4 knockout is lethal in about 25% of mice embryos due to defects 

in cardiac development and bone morphogenesis [40]. This might be connected 

to the role of PACE4 in processing the axis determinants Nodal and Lefty. PC7 

knockout mice are viable and healthy suggesting high redundancy with other 

proprotein convertases [41].  

Furin knockout mice die at embryonic day 11 because of cardiac ventral 

closure defects [42]. Furin has the widest array of identified substrates ranging 

from TGF𝛽-like growth factors, such as Lefty and BMP10 [43], the insulin 

receptor [44], adhesion molecules [45], [46], metalloproteases [47], and proton 

pump V-ATPase subunits [48]. Additionally, many pathogens rely on furin to 

process their proteins. Examples include gp160 of HIV [49] and the anthrax toxin 

[50]. Even though processing of these substrates is observed in tissue-specific 

knockouts, it is often severely impaired suggesting that furin is the major 

constitutive processing enzyme in the secretory pathway [51]. Probably due to 

this central role in many processing events no disease-causing mutations in furin 

are known, due to strong embryonic lethality of such mutations. However, furin 

plays central roles in many diseases. Besides the involvement of processing 

pathogenic proteins as described above, furin is often overexpressed in cancer 

[52] and atherosclerotic lesions [53]. In both cases, the role of furin in activating 

matrix metalloproteases is thought to contribute to cancer metastasis and 

atherosclerotic lesion rupture, respectively. Therefore inhibition of furin could be 

a therapeutic strategy against anthrax [54], HIV [55], and cancer [56]. However, 

practical use of furin inhibitors is hindered by its plethora of side effects. Clearly, 
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strategies that inhibit furin in a more specific manner, i. e. within specific cells or 

organelles, are needed. An example of such a specific inhibitor is the furin 

propeptide. 

The activation of furin closely resembles the activation of subtilisin described 

earlier (Figure 1-2 A). A signal peptide targets furin for cotranslational insertion 

into the endoplasmic reticulum (ER), where it folds and readily cleaves the 

propeptide after Arg107 of the 72RTKR75 motif at the C-terminus of the propeptide, 

which represents a strong furin cleavage motif [57]. After this cleavage the 

propeptide stays associated with the protease domain of furin, functioning as a 

temporary inhibitor with an apparent affinity of ~10 nM (Figure 3-5). Only after 

the complex has trafficked to the early Trans-Golgi network (TGN) the slightly 

acidic pH (6.5) triggers an internal cleavage at residue Arg72 [18], [58]. This is 

most likely due to protonation of histidine residues in the propeptides of furin, 

since mutation of a conserved histidine, His69, to leucine blocks the second 

cleavage upon acidification [59]. The second cleavage results in active and 

mature furin, which is then trafficked to the cell surface where some faction stays 

associated with the cell-surface and cycles back to the TGN, while another 

fraction is shed into the extracellular space. Therefore, furin activity is present in 

throughout most of the secretory pathway, from the early TGN to the cell 

surface. One rationalization of this activation pathway is that the inhibition of 

furin by the propeptide in the endoplasmic reticulum may protect proteins with 

exposed dibasic motifs during the folding process that are not intended to be 

cleaved. 
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Other paralogs of the proprotein convertase family are also activated by 

removal of the propeptide, but the second internal cleavage occurs within 

different compartments. For example PC1/3 rapidly cleaves its propeptide in the 

endoplasmic reticulum, but it remains associated with the protease domain. 

Furthermore PC1/3 requires processing at the C-terminus of the protease 

domain, which is auto-catalyzed in vitro, but in vivo only occurs after the protein 

complex trafficks into the mature secretory vesicles, which have a pH of about 

5.5. This suggests that the second cleavage of the PC1/3 propeptide requires a 

more acidic pH [23]. Interestingly, unlike PC1/3 and furin, PC2 does not undergo 

primary processing in the ER, but only after trafficking to secretory granules. It 

also requires the chaperone 7B2 in addition to its propeptide to fold properly and 

the C-terminus of 7B2 also acts as an inhibitor [60], [61]. The details of this 

mechanism are still unclear, but, similar to PC1/3 and furin, activation of PC2 in 

secretory granules seems to be triggered by low pH [62]. In the case of PC7, the 

propeptide dissociates readily from the protease domain in humans, while the 

rat propeptide can be immunoprecipitated with the protease [34]. Apparently, no 

second cleavage is required and intact propeptide is secreted into the media [34]. 

The activation of PC4 is not well established, but recombinant expression of PC4 

in mammalian cell results in active enzyme that can be recovered from the cell 

[63]. PC5/6 undergoes primary processing in the ER, but secondary processing 

does not occur during trafficking through the secretory pathway, resulting in 

membrane bound PC5/6:propeptide complex that undergoes final activation at 

the plasma membrane, probably through interaction with heparin sulfate 
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proteoglycans. Since PACE4 behaves similar to PC5/6 it probably uses a similar 

mechanism [36].  

 Propeptides: Powerful modulators of protein function 

Even though propeptides are degraded and are not part of the active enzymes, 

they are essential for the biogenesis of subtilases and modulate their cognate 

protease in many ways. Having to maintain the precise arrangement of the 

catalytic triad, the protease domains appear to evolve slowly when compared 

with their rapidly evolving cognate propeptides. Even though all propeptides of 

subtilases whose structure have been determined share a common fold (Figure 

1-3), their sequences have diverged substantially leaving almost no recognizable 

sequence similarity between different families. Hence, despite similar enzymatic 

activity of subtilases, much of the diversity in their biological roles may be due to 

differential regulation by their propeptides. Propeptides are not unique to 

subtilases, or even proteases in general, but are found in many proteins, such as 

hydrolases, cell adhesion molecules and growth factors. About 700 of the 20,000 

(~ 3.5%) reviewed human proteins in the UniProt database are annotated with a 

propeptide. 

In many cases propeptides are essential for folding cognate proteins and 

are therefore called intramolecular chaperones. In contrast to molecular 

chaperones such as GroEL or Hsp90, these propeptides act as true foldases [14]. 

That means that they accelerate the rate of folding instead of just preventing 

misfolding. In some proteins, including many subtilases, this is necessary due to 

the way by which their tertiary structure is stabilized. In contrast to most 
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globular proteins, the native state of these proteins has a higher free energy than 

both the unfolded and a partially folded molten globular state [14], [64]. These 

remain in their correctly folded conformation because the rate of unfolding is 

extremely slow. Since the equilibrium favors the unfolded state and the 

equilibrium constant is equal to the ratio of the folding and unfolding rate this 

necessitates that the rate of folding must be even slower. In order to reach the 

folded state these proteins therefore require a catalyst for the folding reaction 

and an interaction partner that initially shifts the equilibrium towards the folded 

state. The propeptide can fulfill both these roles. Since the propeptide is 

degraded after folding the protease is trapped in the folded state. This role of the 

propeptide is not unique to subtilases, but also found in alpha-lytic protease [64], 

lipases[65], and cathepsins [66]. While this concept, called kinetic stability, has 

been shown for bacterial subtilisin, there is no direct evidence that the eukaryotic 

subtilases are also kinetically stable, just the fact that they require the 

propeptides for folding [67], [68]. Kinetic stability has been demonstrated for the 

eukaryotic cathepsins, a lysosomal protease family that is amenable to in vitro 

folding studies [66].  

A fascinating finding is that modulation of the folding pathway by the 

propeptides can lead to differences in the activity of the mature protein. For 

example, point mutations in the propeptides of subtilisin E have to been shown 

to change kinetic parameters of subtilisin E [69] and cathepsin E shows 

differences in catalytic efficiency and inhibitor specificity after being folded by 

the propeptides of cathepsin D [70]. Modification of substrate specificity by 
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mutagenesis of the propeptide has also been demonstrated for subtilisin 

nattokinase [71], carboxypeptidase Y [72], and Rhizopus oryzae lipase [73]. Since 

the propeptide is no longer part of the active enzyme, these results suggest that 

the nature of the folded state is not independent of the folding pathway, a 

phenomenon that has been called “folding memory”. However, more research is 

needed to understand the mechanism of this phenomenon and to characterize 

the differences of the folded state on a structural level. 

Besides folding of the cognate protein, an important role of propeptides is 

inactivation of the immature protein. Initial synthesis of enzymes as inactive 

precursors, called zymogens, that require activation by proteolysis is especially 

common in proteases, but also found in other enzymes such as hydrolases [74], 

[75]. Besides enzymes, other proteins are kept in inactive forms by their 

propeptides, such as integrins [45] or the later described anthrax protective 

antigen [50] (Section 1.2.3). However, the mechanism by which the propeptide is 

removed to activate zymogens and other precursors varies from protein to 

protein. In many zymogens, the proform of the enzyme is not yet correctly 

folded for activity and a conformational change towards the active structure is 

triggered by removal of the propeptide. One such example is trypsin, where 

removal of the short N-terminal propeptide allows for formation of a salt-bridge 

between the new amino-terminus and Asp194, which triggers a conformation 

change that forms the substrate binding site [76]. Since in this case the proform is 

not capable of cleavage, an external protease is needed for activation. In the case 

of trypsin this enzyme is enterokinase [77]. This mechanism allows for stringent 
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protection of premature activation, which in this case limits trypsin activity to 

the intestine. In other enzymes, such as the subtilases, the enzyme folds into its 

active structure and is capable of cleaving its own propeptides. In these cases the 

propeptides also acts as a noncovalent inhibitor that remains bound even after 

cleavage from the enzyme. As described for bacterial subtilases and proprotein 

convertases (Section 1.1.1 and 1.1.2), final activation in this case requires 

additional degradation of the propeptides. This mechanism, in contrast to the 

one described earlier, allows activation to become independent of another 

protease, and thereby allows the integration of other signaling factors, such as 

pH or influx of calcium ions.  

In several proteins propeptides can mediate protein-protein interactions 

that prime them to be in proximity with other proteins after activation or 

facilitate their trafficking. Deciphering the effect of propeptides on protein 

sorting is not trivial because removal of N-terminal sequences often removes the 

signal peptide that targets proteins for secretion. However, even if only the 

propeptide is removed without removing the signal peptide many proteins show 

trafficking defects. Bacterial proteins accumulate inside the cell and eukaryotic 

proteins accumulate in the ER. This is probably not a direct consequence of the 

requirement for propeptides for trafficking, but is likely due to misfolding of the 

cognate protein. In some cases direct involvement of the propeptides in 

trafficking has been established. For example the signals for targeting 

carboxypeptidase Y and proteinase A into the yeast vacuole are contained in the 

propeptides [78], [79]. Another example of the diverse roles propeptides can play 
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in sorting proteins is human cathepsin B. While cathepsin B has a signal peptide 

that under normal circumstances targets cathepsin B to the ER and ultimately the 

lysosome, some transcript variants lack the exon that contains the canonical start 

codon [80]. Under these conditions translation starts at Met52, which results in 

removal of the signal peptide and parts of the propeptides. This exposes an 

amphipathic helix in the propeptide, which targets procathepsin B to 

mitochondria, where it triggers apoptosis [81]. Roles for propeptides in 

mediating protein-protein interaction are prominent in metazoan caspases. 

Specifically the initiator caspases that trigger the activation of the caspase 

cascades possess interaction domains in their propeptides that tether them to the 

larger protein complexes. In the case of caspases 8 and 9, death effector domains 

in their propeptides interact with the death-inducing signaling complex, while 

caspases 1, 4, and 5 encode caspase recruitment domains in their propeptides 

that recruit them to inflammosomes [82].  

In summary, these examples described here show how propeptides are 

essential for correct biological function. Although they are not part of mature 

enzymes, propeptides can drastically modulate protein function. They often 

appear to be involved in sensing biological signals to mediate temporal and 

spatial regulation of their cognate proteins.   

1.2 Biological pH-sensors and ways to study them 

Addition or removal of a proton is the smallest possible biochemical reaction. 

Since almost all biological processes happen in aqueous solution, with a nearly 

unlimited supply of protons, the effective concentration or activity of protons, 
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most commonly expressed as the negative decadic logarithm (pH), is an 

important characteristic of a biological compartments. Since proteins possess 

many titratable chemical groups their properties depend heavily on pH. Even 

though protons are the smallest chemical group, they confer one positive charge 

unit upon binding, thereby affecting electrostatics, and are able to convert 

hydrogen-bond donors and acceptors.  

In contrast to other chemical modifications of proteins, such as 

phosphorylation, acetylation, or deamidation, protonation is extremely fast and 

completely reversible. Due to this fact the protonation of a site as a function of 

pH can be modeled just using a thermodynamic constant, without having to 

consider kinetics. The constant used is pKa, which is defined as the pH at which 

a titratable site is 50% protonated, both in time- and ensemble-average, which 

due to the rapid kinetics of protonation can be considered identical. While these 

fast kinetics, together with the rapid diffusion of protons, make pH a useful 

regulatory mechanism for the cell, the rapid rates make experimental 

determination of protonation state difficult. 

The titratable sites in proteins are their amino- and carboxy-termini as 

well as the side-chains of multiple residues. The carboxyl groups of aspartate and 

glutamate both have acidic pKa values of about 4.4. The imidazole group of 

histidine is the only side-chain with a close to neutral pKa of about 6.5. Cysteine 

and tyrosine have slightly alkaline pKa values of 8.5 and 10.0, respectively, with 

both being uncharged at pH 7.0. Lysine and arginine have pKa values of 10.0 and 

12.0, respectively and are positively charged at neutral pH. Additionally, 
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phosphate groups bound to serine or tyrosine residues are titratable as well with 

pKa values close to 7.0 [83], [84].  

In the following section, I will first describe how cells regulate the pH of 

their compartments, which is critical for correct function of proteins. 

Subsequently, I will describe the underlying thermodynamic theory of allostery 

between protein structure and protonation. I will then review several examples 

of proteins that actively exploit the change in properties of titratable sites to use 

pH for regulation of their biological function. Finally, I will describe methods by 

which pH-sensors in proteins can be studied. 

 Cellular control of pH 

Under normal physiological conditions human cells maintain a cytosolic pH of 

7.2 and an extracellular pH of 7.4. The cytosolic pH is maintained by buffer 

systems, such as phosphate and CO2/HCO3-, which has the advantage of CO2 

being able to diffuse across membranes, thereby drastically increasing the 

buffering capacity, and by active regulation using pH-regulated proton pumps. 

The cell can raise its intracellular pH, to counteract an acid load, using V-type H+ 

pumps which use ATP as energy source, Na-H exchangers that use the intrinsic 

Na gradient of the cells or Na-HCO3-cotransporters, which also use the intrinsic 

Na gradient. Lowering the pH is achieved by passive diffusion of H+ and HCO3-, 

due to the intrinsic membrane voltage, and by Cl-HCO3-exchangers [85]. 

Since intracellular pH is tightly controlled, small changes in pH can have 

drastic effects. For example decrease of the intracellular pH by 0.3-0.4 pH units 

triggers apoptosis [86], while small increases of 0.2-0.3 pH units promote cell 
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proliferation [87]. Changes in intracellular pH have also been shown to be critical 

in cell migration [88]. The role of pH as a dynamic regulator of cell function has 

only recently been appreciated, because measurement of cytosolic pH is not 

trivial. While microelectrodes can be manufactured that are small enough to be 

used on cells, their introduction causes damage to the cell membrane. Initial 

approaches that aimed to overcome this problem were measurements of the 

passive diffusion of radiolabeled weak acids and bases across the membrane or 

to use NMR to measure the spectra of 31P. More recently, the most convenient 

way to measure intracellular pH is through the use of pH-dependent fluorescent 

dyes. While chemical fluorescent dyes can be used, strongly pH-dependent 

variants of GFP have been developed, which are easy to introduce and target to 

specific organelles [89]. 

While cytosolic pH is regulated closely around 7.2, organelles can have 

drastically different pH values. Most drastically, lysosomes are strongly acidic 

with a pH of 4.8 to 5.0. This provides an optimal environment for the hydrolytic 

enzymes found in lysosomes, which are organelles that are involved in the 

degradation of biomolecules. The requirement for acidic pH of these hydrolytic 

enzymes provides protection for the cell should these enzymes leak into the 

cytosol. In addition, most other cellular compartments display different pH 

values compared to the cytosol. While the ER has a similar pH to the cytosol, the 

downstream compartments of the secretory pathway become increasingly acidic. 

The pH of the Golgi network is about 6.4, while secretory granules acidify 

further until they reach a pH of about 5.4. The endocytotic pathway also employs 
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a pH gradient, with early endosomes being slightly acidic with a pH of 6.2 and 

late endosomes having a pH of about 5.2. The pH of these compartments is 

maintained by a flux equilibrium of H+ leak over their membrane and the action 

of ATP-dependent V-type H+-pumps [90]. 

In summary, pH is used by the cell both as a temporal regulator, as seen in 

apoptosis, and as a spatial regulator, as observed in the secretory pathway. 

Understanding how proteins sense these changes in pH is therefore critical for 

our understanding how their function is regulated within the cell. 

 The thermodynamics of pH sensing 

Before describing concrete examples of how proteins use the pH of the cell to 

regulate their activity, I will discuss the thermodynamic theory behind pH-

dependent conformational changes. I will begin with the simplest possible case 

of a two-state model with a single titratable site before describing more 

complicated cases with multiple titratable sites and cooperativity between them. 

These fundamental considerations about the thermodynamic theory of 

protonation has been established by Charles Tanford [91].  

Two-state model with a single titratable site 

The simplest possible case is a protein with two conformational states, one 

higher populated at basic pH, B, and one more populated at acidic pH, A. 

Furthermore, we assume that despite the presence of multiple titratable sites 

only one influences the equilibrium between the two states and acts as a pH-

sensor. This site either exists in a deprotonated state S or the protonated state SH. 

From these assumptions we can construct this simple thermodynamic model: 
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 𝐵 − 𝑆
𝐾𝑆

⇋ 𝐴 − 𝑆

𝐾𝑎𝐵 ↿⇂ ↿⇂ 𝐾𝑎𝐴

𝐵 − 𝑆𝐻 ⇋
𝐾𝑆𝐻

𝐴 − 𝑆𝐻

 

(1) 

Since B is the state preferentially assumed at high pH we can assume that 

[𝐾𝑆 =
[𝐴−𝑆]

[𝐵−𝑆]
] < 1 and [𝐾𝑆𝐻 =

[𝐴−𝑆𝐻]

[𝐵−𝑆𝐻]
] > 1. The proton dissociation constants 𝐾𝑎𝐵 

and 𝐾𝑎𝐴 are defined as follows: 

 𝐾𝑎𝐵 =
[𝐵 − 𝑆][𝐻+]

[𝐵 − 𝑆𝐻]
    𝐾𝑎𝐴 =

[𝐴 − 𝑆][𝐻+]

[𝐴 − 𝑆𝐻]
        (2) 

Since they describe the titration equilibrium under the assumption that the 

protein remains in one structural state, I will refer to these constants in the future 

as “microscopic” constants, or in the negative decadic logarithmic form as 

“microscopic” pKa values. Since the equilibrium constants are connected by a 

thermodynamic cycle it follows that 

 
𝐾𝑎𝐵

𝐾𝑎𝐴
=

𝐾𝑆

𝐾𝑆𝐻
 (3) 

Since 𝐾𝑆 and 𝐾𝑆𝐻 are not equal 𝐾𝑎𝐵 and 𝐾𝑎𝐴 must also be unequal. This means 

that the pKa of the titratable site must be different in the two conformational 

states, a basic principle that is often used to identify allosteric titratable site in 

proteins, either by computational methods or in cases where the protein can be 

locked in the two states by factors other than pH.  

However, in most cases these equilibrium constants are not readily 

accessible by experiments. In most cases one can only measure the effective 

dissociation of site S averaged over both conformational states. We can write the 

fraction of unprotonated site 𝑓𝑆 as follows:  
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 𝑓𝑆 =
[𝐴 − 𝑆] + [𝐵 − 𝑆]

[𝐴 − 𝑆] + [𝐵 − 𝑆] + [𝐴 − 𝑆𝐻] + [𝐵 − 𝑆𝐻]
 (4) 

Similarly we can write the fraction of conformation B, 𝑓𝐵, as: 

 𝑓𝐵 =
[𝐵]

[𝐴] + [𝐵]
 (5) 

However, in most cases we cannot measure the absolute fraction 𝑓𝐵, but only a 

biophysical value that depends on 𝑓𝐵, such as circular dichroism or fluorescence, 

as a function of pH. Since we don’t know if the value we reach at very low or 

very high pH represents a complete shift towards one site of the equilibrium (i.e. 

𝐾𝑆 = 0 and 𝐾𝑆𝐻 = ∞), it is more appropriate to define the apparent extent of 

conversion 𝑦𝐵: 

 
𝑦𝐵 =

𝑓𝐵 −
𝐾𝑆

1 + 𝐾𝑆
⁄

𝐾𝑆
1 + 𝐾𝑆

⁄ +
𝐾𝑆𝐻

1 + 𝐾𝑆𝐻
⁄

 
(6) 

Using equations 2, 3, 6, and 4 one can derive that both 𝑦𝐵and 𝑓𝑆 are equal and can 

be described as a Hendersson-Hasselbalch like equation with an apparent 

constant Ka* 

 𝑓𝑆 = 𝑦𝐵 =
𝐾𝑎

∗/[𝐻+]

1 + 𝐾𝑎
∗/[𝐻+]

 (7) 

With the apparent equilibrium constant 𝐾𝑎
∗ defined as 

 𝐾𝑎
∗ =

𝐾𝑆𝐻(1 + 𝐾𝑆)

𝐾𝑆(1 + 𝐾𝑆𝐻)
𝐾𝑎𝐵 =

1 + 𝐾𝑆

1 + 𝐾𝑆𝐻
𝐾𝑎𝐴 (8) 

Therefore in this simple case one would expect any spectroscopic or similar 

measurements that depend on 𝑓𝐵 to fit to a Henderson-Hasselbalch equation as a 

function of pH, with a midpoint that is equal to the apparent pKa* of the 

titratable site. Since this is the equilibrium constant that described the actual 

protonation of the titratable site I will refer to this value from here on as 
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“macroscopic” pKa. The macroscopic pKa will naturally be an average between 

the two microscopic pKa values, weighted by the difference between KS and KSH 

Two state-model with multiple titrating sites 

This model can be extended to two or more titrating sites. In order to account for 

two titrating sites one can introduce another titrating site, T, and the model 

shown in equation 1 is extended accordingly (Figure 1-4). This scheme is 

parameterized by 12 equilibrium constants: four that describe the equilibrium 

between the A and B state at each titration state, 𝐾𝑆𝑇, 𝐾𝑆𝐻𝑇, 𝐾𝑆𝑇𝐻, and 𝐾𝑆𝐻𝑇𝐻, and 

eight that describe the protonation equilibria. Two equilibria describe the 

protonation of individual sites in both conformational states, depending on 

whether the site is protonated first or second (See Figure 1-4 A). The titration 

curves for site S and T, 𝑓𝑆 and 𝑓𝑇, as well as the degree of apparent conversion, 

𝑦𝐵, can be described mathematically, under the assumption that in the acidic 

state the equilibrium constants for each site is independent of the other site, since 

the protein loses structure (𝐾𝑎𝐴𝑆1 = 𝐾𝑎𝐴𝑆2 = 𝐾𝑎𝐴𝑆 and 𝐾𝑎𝐴𝑇1 = 𝐾𝑎𝐴𝑇2 = 𝐾𝑎𝐴𝑇). 

Theoretical modeling of several example cases with arbitrarily chosen 

parameters shows that this system can have multiple complex behaviors (Figure 

1-4 B-E). The titration curves of S and T are no longer necessarily equal to the 

apparent degree of conversion, the slopes of the curves can become shallower or 

steeper, and can even show multiple steps.  

For example if the two titrating sites have very different pKa values, they 

titrate essentially independently, but the degree of structural conversion shows a 

two-step titration (Figure 1-4 B). If the pKa values are sufficiently similar, 
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cooperativity effects can emerge. If the titration of a single site has only little 

effect on the overall equilibrium (𝐾𝑆𝑇 ≅ 𝐾𝑆𝐻𝑇 ≅ 𝐾𝑆𝑇𝐻), negative cooperative 

effects emerge (Figure 1-4 C). In this case the titration curves show a two-step 

behavior as only one of them can be protonated, while the structural conversion 

is shifted towards more acidic pH values. In practice this can emerge if two 

titratable sites are in close proximity and the protonation of one site is stabilized 

by the other, due to hydrogen bonding.  

The two previous examples are given under the assumption that 

protonation leads to almost complete conversion of state B to state A (𝐾𝑆𝑇 ≅ 0 

and 𝐾𝑆𝐻𝑇𝐻 ≅ ∞). If this is not the case, the two sites can titrate very similar to a 

one-proton mechanism, while the overall structure conversion is acid-shifted and 

has a steeper slope (Figure 1-4 D). Finally the titrating sites can show positive 

cooperativity, leading to much steeper slope, both for the titration curves of S 

and T and the structural conversion (Figure 1-4 E). Under these conditions (𝐾𝑆𝑇 ≅

0, 𝐾𝑆𝐻𝑇𝐻 ≅ ∞, and 𝐾𝑎𝐴𝑆 ≅ 𝐾𝑎𝐴𝑇) the titration curves can be described as a function 

of the square of the proton concentration: 

 𝑓𝑆 = 𝐹𝑇 = 𝛾𝐵 =
𝐾𝑎

∗/[𝐻+]2

1 + 𝐾𝑎
∗/[𝐻+]2

 (9) 

This can be easily extended to multiple sites and written equivalent to the Hill 

equation: 

 𝑓𝑆 = 𝐹𝑇 = 𝛾𝐵 =
𝐾𝑎

∗/[𝐻+]𝑛

1 + 𝐾𝑎
∗/[𝐻+]𝑛

 (10) 

where 𝑛 is the number of titratable sites. This behavior is probably very easily 

explained from a structural perspective. If protonation of two sites contributes to 
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destabilization of a protein, positive cooperativity will almost certainly emerge. 

Since protonation at one site destabilizes the protein and destabilization of the 

protein favors protonation (see equation 3) this results in positive cooperativity. 

Therefore by placing multiple titrating sites at different positions that favor 

either the protonated or unprotonated form, protein can easily evolve positive 

cooperative pH-dependence. 

In summary one can appreciate that by coupling the titration of multiple 

sites to the equilibrium between two structural states, multiple complex titration 

behaviors can emerge, which allows a protein to fine-tune its response to 

changes in pH. In particular, positive cooperativity allows for responses that 

occur over small changes in pH, like protein encounter in cells. 

 Examples of pH-sensing proteins 

Since the cell goes to considerable lengths to ensure precise control of the pH in 

various compartments, it is not surprising that proteins use differences between 

organelles and in some cases minor changes of the pH within a compartment to 

regulate their function. While all proteins have intrinsically pH-dependent 

properties due to their numerous titratable groups, in many proteins specific 

titratable groups are strategically placed in order to achieve desired changes in 

structure and function as a consequence of changes in pH. The propeptides of 

proprotein convertases are of course the example that is the subject of this thesis. 

In the following sections I will discuss several examples of other biological pH-

sensors in order to demonstrate how during evolution the same principle has 

been used on numerous occasions. 
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Hemoglobin 

Hemoglobin, the protein responsible for the carriage of oxygen from respiratory 

organs to all other tissues, is optimized in several ways to allow rapid uptake of 

oxygen in the lung and release it in tissues. One of these mechanisms exploits the 

fact that solubilized CO2 will react with water to form bicarbonate and protons, a 

process that is catalyzed by the enzyme carbonic anhydrase. Therefore blood that 

has high carbon dioxide levels is more acidic than blood with low carbon dioxide 

levels. Hemoglobin’s affinity for oxygen is lower at acidic pH than at neutral pH, 

which is commonly referred to as the Bohr effect. This leads to rapid release of 

oxygen in peripheral CO2 rich blood and uptake of oxygen in CO2-depleted 

blood in the lungs [92].  

Inspection of the crystal structure of human Hemoglobin indicated that Hisβ146 

forms a salt bridge with Aspβ94 in the low oxygen-affinity T state. This salt bridge 

is broken in the high oxygen-affinity R state. Therefore, higher proton 

concentration would shift the equilibrium towards the protonated state of 

His146b and therefore towards the low-affinity T-state (Figure 1-5a) [93], [94]. 

Consistent with the thermodynamic theory described in Section 1.3.2 pKa 

measurement of histidine side-chains in the T and R state showed that the pKa of 

Hisβ146 changes from 6.5 in the R state to 8.0 in the T state [95]. While this 

difference was substantially larger than observed for other histidine residues, 

additional titratable sites probably contribute to the Bohr effect, since removal of 

Hisβ146 only reduces but does not abolish the Bohr effect [96]. While other 

histidine residues show much smaller differences in pKa between T and R state, 
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Berenbrink estimates that they contribute about 40% of the total Bohr effect [97]. 

Additionally, the amino group of the alpha-chain N-terminus has been shown to 

bind chloride in the R state and not in the T state, and therefore could explain the 

chloride dependence of the Bohr effect. Interestingly, the number of titratable 

sites, as estimated by the histidine content from sequence data seems to correlate 

well with experimentally determined buffer values between different vertebrate 

species. This indicates that during evolution the sensitivity of Hemoglobin 

towards protons is fine-tuned by the number of titratable sites [97]. 

Anthrax protective antigen 

The pH gradient of the secretory and endocytotic pathway is not only used by 

endogenous proteins, but also exploited by pathogens. Many viral and bacterial 

pathogens use the acidification of the endosomal compartment to trigger 

mechanisms for host-cell penetration. Also, many viral capsids mature during 

their transit through the secretory pathway and exploit the pH-gradient to 

regulate their maturation steps, as exemplified by the dengue virus [98]. Here I 

want to describe the mechanism of the anthrax toxin as an example, since it 

exploits the pH gradient of the endocytotic pathway in several ways and is also 

dependent upon furin. 

Anthrax toxin is secreted by Bacillus anthracis, the causative agent of anthrax. It 

consists of three proteins: Lethal Factor (LF), Edema Factor (EF), and Protective 

Antigen (PA) [99]. LF and EF are enzymes that are inserted into the cytosol, 

where they inactive MAP kinases and generate cAMP. PA is responsible for 

delivery of LF and EF into the cytosol. PA is bound by receptors on the cell in a 
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83 kDa form, which is subsequently activated by endoproteolysis to a 63kDa 

form by furin[50]. This allows self-assembly into a heptameric ring that can bind 

up to three molecules of LF and/or EF. This complex is then endocytosed and the 

following decrease in endosome pH triggers formation of a pore by PA, which 

allows entry of EF and LF into the cytosol.  

The hypothesis that low pH triggers the formation of a transmembrane pore by 

the PA63 prepore complex is supported by multiple experiments. Purified PA63 

forms non-selective cation channels in liposomes, with a rate constant that is 

dependent on the pH of the compartment to which PA63 was added [100]. 

Furthermore, PA63 can permeabilize the plasma membrane and translocate LF 

and EF across the plasma membrane if the extracellular pH is lowered, with an 

optimum at pH 5.5 [101]. Less is known about the mechanism by which PA63 

senses pH. Crystal structures of the prepore complex suggested that residues 

around the 2β2-2β3 loop that forms the transmembrane pore are responsible 

[102], however mutation of these residues changed but did not abolish pH-

sensitivity [103]. A recent cryo-EM structure of the mature pore suggests 

movement of the 2β10-2β11 loop is the trigger for pore formation and proposes 

the 2β10-2β11 loop as the pH-sensor [104]. Interestingly, this loop contains no 

histidine residues, but aspartate residues. These aspartate residues in this loop 

experience a drastically different environment in prepore and pore structure 

(Figure 1-5b). While the intrinsic pKa of aspartate is not close to the relevant pH-

range, equation 8 demonstrates that coupling of the protonation event to a 

conformational transition can change the effective pKa. 
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The proton gradient between the endosome compartment and the cytosol is also 

the driving force for translocation of EF and LF across the pore [105]. While 

proton cotransporters for metabolites normally use an alternating access 

mechanism, where simultaneous binding of protons and metabolite is required 

for isomerization of the transporter, the mechanism seems to be different for the 

anthrax toxin. The current model is a “brownian-ratchet”, where spontaneous 

movement of EF and LF are stabilized by deprotonation of acidic residues in the 

cytosol. The narrowest part of the pore is highly hydrophobic and therefore 

probably impermeable to deprotonated aspartate and glutamate [104]. Since 

protonation of these residues is more likely in the acidic endosome compartment 

this creates a driving force for translocation. 

Nitrophorin 4 

Nitrophorin 4 is found in the secretory glands of the kissing bug Rhodnius 

prolixus and is responsible for the delivery of nitrous oxide into the bitten tissue 

of a victim to initiate vasodilation. Selective uptake of NO in the salivary glands 

and release in the victim is supported by the difference in the pH, which is 5.5 in 

salivary glands and 7.5 in the victim’s tissue [106]. While the bond strength 

between the heme group of nitrophorin 4 and NO is pH dependent this change 

in NO affinity is also caused by a conformational change from a closed state at 

low pH to an open state at neutral pH. While this mechanism is similar to 

hemoglobin this conformational state is not influenced by the concentration of 

NO, providing no orthologous way to modify the equilibrium between open and 

closed state. So while crystal structures of the open and low state are available 
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[107], [108], only the effective macroscopic pKa of titratable sites could be 

determined by observing shifts in the pH-dependence after site-directed 

mutagenesis [109], with no means to study the difference between pKa between 

open and closed state experimentally. However, recent advances in 

computational prediction of pKa-values, described in more detail in Section 

1.3.4.2, allow prediction of pKa values based on structures, which are in this case 

are available for both states (Figure 1-5C). 

Prediction of pKa values in the open and closed state of all titratable side-

chains showed that the pKa of Asp30 was 8.6 in the closed conformation and 5.2 

in the open conformation [110]. Calculation of the pH-dependent free energy 

difference between the closed and open state using replica-exchange methods 

predicted a macroscopic pKa of 6.5 for Asp30, which is in agreement with 

experimental results [111]. Interestingly, even though the pH of the structural 

transition is closer to the intrinsic pKa of histidine, an acidic residue functions as 

the pH-sensor. However, in order to shift the effective pKa of an acidic residue 

into the neutral range, the microscopic pKa in the low pH structure must be 

strongly shifted to alkaline values. This requires the presence of strong tertiary 

structure at low pH and therefore is not possible for systems that lose structure at 

acidic pH, such as the propeptides of acid-activated proteases.  

 Approaches to study pH sensing proteins 

The small size of a proton and the rapid kinetics of protonation and 

deprotonation presents a unique challenge to gaining experimental insight into 

pH sensing mechanisms. In this section, I will review the most prevalent 
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methods used to investigate pH sensing in proteins and describe the hydrogen-

deuterium exchange method for histidine pKa determination that I employed in 

chapter 4 of this thesis. 

Titration of proteins 

The most basic method to study pH sensing in proteins is measurement of their 

structural or functional characteristics as a function of pH. Most often the first 

indication of the function of a protein as a pH sensor, is if these characteristics 

can affect biological function and happen at physiological pH. In each case the 

nature of these experiments is different based on the biology of the protein in 

question. Examples include the measurement of (i) hemoglobin oxygen affinity 

at different pH values [92], (ii) anthrax toxin translocation at different pH values 

[112], (iii) nitric oxide dissociation from nitrophorin 4 as a function of pH [106], 

and (iv) furin activation as a function of pH [18]. 

More direct information about the relationship between protonation and 

function can be gained by determining the structure of proteins at different pH 

values. In cases where the structure of both the acidic and the basic state is well 

defined, X-ray crystallography can be used to determine the structure of the two 

different states. This has been achieved for both hemoglobin and nitrophorin 4, 

which is one of the major reasons why their pH regulation is so well understood. 

An exciting development is the emergence of cryo-electron microscopy (cryo-

EM) as a method to determine structure at atomic-level resolution. Since pH 

heavily influences crystal formation it may at times be impossible to obtain 

crystal at a specific pH. However, cryo-EM does not require crystallization of 
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protein. The power of this approach is demonstrated by the low-pH triggered 

cryo-EM structure of the mature anthrax protective antigen pore structure [104], 

which had been impossible to crystallize.  

An alternative to high-resolution structural methods is the use of different 

forms of UV-Vis spectroscopy to analyze the structures of a protein as a function 

of pH. In some proteins, where the functional groups have characteristic 

absorbance one can just measure changes in the extinction coefficient or the 

absorption maxima as a function of pH. For example, the binding of nitric oxide 

to nitrophorin 4 can be monitored by changes in the absorption maximum of the 

heme group [106], while the absorption of the retinal ligand of rhodopsin has 

been used to study the pH dependence of photo-intermediates [113].  In cases 

where there are no specific absorbing groups the quantum yield and 

wavelength-maxima of the intrinsic fluorescence of tryptophan, phenylalanine, 

and tyrosine residues can be exploited as their fluorescence parameters depend 

on their local environment. Hence, by observing the change in fluorescence 

properties as a function of pH one can gather information about pH dependent 

structural changes. This has been successfully employed to measure differences 

in pH-dependence of hemoglobins from different species [114]. However, one 

must take care to exclude effects that are due to titration of the fluorophore and 

not due to changes in protein structure [115]. Another label-free alternative is the 

use of circular dichroism spectroscopy, which measures differences in absorption 

between left- and right-circularly polarized light, due to the asymmetrical local 

environment of absorbing groups. For example the peptide bond absorbs 
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between 190 and 240 nm and circular dichroism in this range (Far-UV CD) can 

give information about the secondary structure of a protein. A major advantage 

of UV-Vis methods is that the ease of these measurements allows titration of 

protein in small pH-increments and by using small pH-electrodes and automated 

pumps one can readily titrate the protein directly in a cuvette within a 

spectrometer. The use of UV-Vis spectroscopy is therefore the easiest way to 

obtain the apparent extent of conversion,𝛾𝐵, as a function of pH. 

Raman and infrared spectroscopy 

Spectroscopic methods can also be used to obtain direct information about the 

protonation status of residues. Protonation of a residue changes the available 

vibration modes, which can be detected either by infrared spectroscopy or by 

Raman spectroscopy. Infrared spectroscopy measures absorption of photons 

with an energy equal to the energy differences of various vibration modes [116]. 

Raman spectroscopy measures slight changes in the wavelength of scattered 

photons with higher energy than the vibration modes [117]. Besides differences 

in the underlying measurement technology, they differ in the nature of 

vibrational modes that can be detected. The practical hurdle that one has to 

overcome in both techniques is to isolate the spectral features of the particular 

residue whose protonation status one wants to analyze from the plethora of 

other vibration states in a protein molecule. 

Infrared spectroscopy has been successfully used to determine 

protonation status of aspartate and glutamate residues in bacteriorhodopsin 

[118]. Raman spectroscopy has been successfully used to assess the protonation 
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state of histidines [119]. In praxis Raman UV-spectra of proteins are often 

dominated by the vibration modes of the aromatic residues tyrosine and 

tryptophan. In order to isolate the vibration feature of a residue of interest one 

can use a difference spectrum of the native protein and the protein where the 

residue of interest has been mutated. Another approach is to use isotopic 

labeling. By performing the Raman experiment in deuterated buffer, the 

exchange of protons bound to the nitrogen atoms of the imidazole ring cause the 

emergence of a unique nitrogen-deuterium vibration mode that can be used to 

assess histidine protonation [120]. More recently, deuteration of the C2 atom in 

the imidazole sidechain has been used to specifically measure the protonation 

status of histidine in proteins [121].  

NMR 

Nuclear magnetic resonance (NMR) spectroscopy is probably the most powerful 

tool to study pH sensing, because it can provide simultaneous information about 

the titration state of specific residues and protein structure. Even though NMR 

allows direct detection of individual protons, in most cases NMR is not used to 

directly observe the proton bound to titratable side-chains, because these protons 

readily exchange with the solvent and solvent protons must be suppressed in 

most NMR experiments. Instead NMR experiments rely on observing shifts of 

peaks derived from the titratable side-chains, while the protein is being titrated. 

These shifts as a function of pH can then be fitted by a Henderson-Hasselbalch 

equation to determine the pKa of a residue [122]. One caveat of these 

experiments is that conformational changes due to changes in pH can also lead to 
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shifts in these peaks, which may obscure the measurement of true pKa values. 

Furthermore, it requires that peaks are observable in the complete titration range, 

which can be problematic if the conformational changes induce loss of structure, 

which leads to peak overlap, due to similar chemical environments and to peak 

broadening, because the chemical groups experience dynamic changes in their 

chemical environment. Additionally, NMR experiments require large amounts of 

purified, isotope labeled protein, which can be difficult to obtain and are limited 

by the size of proteins. 

New approaches have been developed that allow direct measurement of 

the equilibrium between protonated and unprotonated forms of a histidine side-

chain at a specific pH [123]. This is a very exciting development for proteins that 

lose structure as a function of pH, such as the propeptides of proprotein 

convertases. It also allows the determination of microscopic pKa values, instead 

of the macroscopic pKa value (see Section 1.3.2.1), which allows deeper insight 

into the thermodynamics of pH sensing. However, these approaches still require 

large amounts of isotope labeled protein and are in some cases very sensitive to 

systematic error caused by incomplete labeling. Furthermore these experiments 

have specific requirements for protein size, because of interference with protein 

tumbling [123]. 

Computational prediction 

Since determination of pKa values of individual residues is not straightforward, 

the rapidly increasing database of protein structures makes predicting pKa 

values from structural information a very intriguing prospect. There are three 
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principal methods to predict the pKa value of a titratable side-chain: (i) Solving 

of the Poisson-Boltzmann equation, (ii) molecular dynamics based methods, and 

(iii) empirical predictions. 

The Poisson-Boltzmann equation (PBE) describes the electric potential caused by 

a collection of point charges in an ion-screened solvent [124]. pKa prediction 

approaches based on the PBE assume that major factor in perturbing the acid-

dissociation constant of a titratable site within a protein is the difference in 

electric potential compared to the solvent [125]. Since the PBE for an irregular 

object like a protein cannot be solved analytically, these approaches divide the 

conformational space into finite grids and solve the PBE at each grid point 

numerically, dependent on a set of point charges derived from high-resolution 

structures for atom coordinates and force-field parameters for partial charges. 

Besides high dependence on accurate force field parameters these approaches 

suffer from the fact that they do not intrinsically take into account the 

conformational rearrangements upon protonation and the fact that the dielectric 

constant of the protein interior is poorly defined. 

While molecular dynamics normally cannot simulate chemical reactions 

(see Section 1.4.2.1), an approach called constant pH molecular dynamics 

(cpHMD) makes an exception for the protonation [126], [127]. cpHMD introduces 

a new coordinate, lambda, for each titratable site that describes whether the site 

is protonated and unprotonated. The potential function for this coordinate is 

derived from pH-dependent parameters optimized to reproduce pKa values in 

model components. Since the simulation will attempt to move down a potential 
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gradient it will populate the titration state that makes more favorable 

interactions with the rest of the protein. By performing the simulation at different 

pH values, i.e. different parameters for the lambda coordinate, one can 

computationally titrate the protein and then directly observe the equilibrium 

between protonated and unprotonated forms during the simulation. While these 

methods explicitly take conformational changes into account, it is hard to gauge 

for how long simulations need to be performed in order to fully explore the 

conformational space for each pH. Furthermore, these methods mostly rely on 

implicit solvent approaches to model the solvent, thereby potentially missing 

some physical solvent effects. 

Empirical methods describe the protein environment of a titratable site by 

a variety of measures, such as number of hydrogen bonding partners, 

hydrophobicity of neighboring residues, or distance from other charged sites. 

From these measures a scoring function is derived, that is optimized using a set 

of experimentally determined pKa values [128].  Empirical methods offer easy 

use and are computationally very efficient, while still performing as well as more 

sophisticated PBE approaches. However, empirical methods often fail in cases 

that are not well represented by the test set they were parameterized against. 

Recent benchmarking of various pKa prediction methods demonstrated that 

none of these methods offer perfect predictions and errors in predictions can 

easily be more than one pH unit [129]. However, they are potentially robust 

enough to identify side-chains whose pKa values are strongly distorted. 

Furthermore, since these prediction methods assume a rigid structure or even in 
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the case of cpHMD can only model minor structural changes, such approaches 

can provide microscopic pKa values. This can be very useful to predict pH 

sensors when structures of two different functional states are known, as shown 

in the case of nitrophorin 4. 

Hydrogen-deuterium exchange 

Even protons in groups with extreme pKa values will occasionally dissociate and 

then be replaced by protons from the solvent environment. While these groups 

will only spend a small amount of time in an unprotonated state, the rate at 

which this occurs can be measured by replacing the protons of the solvent with a 

different isotope, most often deuterium. Since the most common mechanism of 

protons abstraction is catalyzed by a hydroxonium ion, the rate constants of the 

exchange from hydrogen to deuterium are strongly pH dependent with the 

slowest rates at acidic pH (~2.6). The rate of exchange also depends on the 

solvent accessibility of the particular group and the free energy barrier of proton 

dissociation. This energy barrier is small if hydrogen is bound to a highly 

electronegative atom. As a consequence, hydrogen bound to nitrogen, oxygen, 

and sulfur can rapidly exchange within the sub-millisecond timescale. An 

exception is the hydrogen of the peptide-bond amide group. At neutral pH these 

hydrogens exchange with a half-life on the order of seconds. However, this 

exchange rate can be strongly reduced, either by protection of the amide from 

solvent or the participation of the amide in hydrogen bonds within the secondary 

structure of proteins. This is often exploited to gain information about protein 

structure [130]. 
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Protons bound to carbon, however, due to the low electronegativity of 

carbon, essentially do not exchange with the solvent. An exception is the 

hydrogen bound to the C2 carbon of the imidazole ring. In the protonated form 

of the imidazole ring the deprotonated C2 is stabilized, thereby lowering the 

energy barrier of hydrogen exchange (Figure 1-6 A)[131], [132]. This leads to an 

exchange rate with a half-life of several days, which although orders of 

magnitude slower than backbone amides can be measured experimentally. 

Since the exchange depends on the fraction of the histidine side-chain in 

the protonated form and on the concentration of the hydroxonium ion [131], 

[132], the rate constant for exchange 𝑘𝑒𝑥 can be written as: 

 
𝑘𝑒𝑥 = 𝑘2 ∗ [𝑂𝐻−] ∗

[𝐻𝑖𝑠𝐻+]

[𝐻𝑖𝑠𝐻+] + [𝐻𝑖𝑠]
 

(11) 

where 𝑘2 is the second-order rate constant of the rate-limiting proton abstraction. 

This formula can be rewritten as: 

 𝑘𝑒𝑥 =
𝑘2 ∗ [𝑂𝐻−]

1 +
[𝐻𝑖𝑠]

[𝐻𝑖𝑠𝐻+]

 (12) 

By multiplying with [𝐻+]
[𝐻+]⁄  and substituting in the dissociation constant of 

water 𝐾𝑊 = [𝐻+][𝑂𝐻−] and the equilibrium constant of the histidine acid-base 

reaction 𝐾𝑎 =
[𝐻𝑖𝑠][𝐻+]

[𝐻𝑖𝑠𝐻+]
 we can write the exchange rate as a function of proton 

concentration: 

 𝑘𝑒𝑥 =
𝑘2 ∗ 𝐾𝑊

[𝐻+] + 𝐾𝑎
 (13) 

 Therefore, the exchange rate approaches 0 under acidic conditions, where the 

proton concentration is very high and has a maximum value 𝑘𝑚𝑎𝑥 =
𝑘2𝐾𝑊

𝐾𝑎
 at basic 

conditions where 𝐾𝑎 ≫ [𝐻+]. By introducing 𝑘𝑚𝑎𝑥 this simple Hendersson-

Hasselbalch equation can be derived: 
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 log (
𝑘𝑚𝑎𝑥 − 𝑘𝑒𝑥

𝑘𝑒𝑥
) = 𝑝𝐾𝑎 − 𝑝𝐻 (14) 

By determining the exchange rate of the C2-proton as a function of pH one can 

derive the pKa and 𝑘𝑚𝑎𝑥 of a histidine side-chain. Figure 1-6 B shows an example 

titration curve of 𝑘𝑒𝑥 and how pKa and 𝑘𝑚𝑎𝑥 can be derived. One underlying 

assumption is that 𝑘2 is independent of pH, which is only true if the solvent 

accessibility of the histidine side-chain is independent of pH, which in case of pH 

dependent conformational changes is uncertain. However, this weakness applies 

similarly to other techniques such as NMR titration, where changes in peaks can 

be caused by protonation and/or conformational changes. 

There are multiple ways to measure the exchange rate of the C2-proton. 

Early studies used tritium, instead of deuterium, as the exchange label. This 

allows quantification of uptake by scintillation counting. However, first the 

protein must be digested into peptides, which have to be separated by 

chromatography and then be identified. While uptake can also be quantified 

using NMR this requires high concentration of protein and assignment of peaks, 

which can be a time-intensive process. Recent progress in mass spectrometry has 

made it fairly straightforward to identify peptide fragments and high resolution 

instruments also allow quantification of deuterium uptake with high precision 

[133]. The major advantage of using mass spectrometry is that it requires very 

little protein and can be applied to proteins with large molecular weight, which 

need not be in a highly purified form. Moreover, since information about the pKa 

is essentially encoded chemically in deuterium uptake it is not necessary for the 
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protein to remain stable in the whole pH range, as it would be if protonation 

would be measured directly by NMR. 

1.3 Computational approaches used in this thesis 

Computational algorithms that exploit the large amount of biological data stored 

in databases coupled with our physical understanding of proteins are now 

enabling us to analyze biological phenomena that are difficult to study using 

experimental methods. Most importantly computational approaches can lead to 

novel hypotheses, which can then be tested by experimental methods. To 

illustrate this, Chapter 5 of this thesis will describe multiple studies were I 

collaborated with several laboratories to overcome roadblocks in experimental 

approaches using computational techniques. In the following sections, I will 

describe the algorithms used to investigate the pH-sensing mechanism of 

proprotein convertases and to test or propose hypotheses in collaborative 

projects. 

 Sequence based approaches 

Homology detection and sequence databases 

Theoretically all the information for a proteins function is contained in its 

sequence [134]. Since protein sequences can be easily described by a computer as 

a string of symbols that represent each amino acid and given that genomic 

sequencing together with efficient prediction of open reading frames makes 

protein sequences almost trivial to obtain, it is highly desirable to be able to 

predict properties of a protein from its sequence. While it is possible to predict 
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certain properties, such as the mass or the secondary structure [135], using only 

the sequence information, the prediction of more complicated properties, such as 

enzyme mechanisms or ligand binding, requires knowledge of the tertiary 

structure of a protein. Although advances in protein structure prediction have 

made this idea more feasible (see Section 1.3.2.3), an easier approach to obtain 

information from the sequence is to compare it to other homologous proteins.  

We think of two sequences as homologous if they share a common 

ancestor. Since the evolutionary history of a sequence is not directly known the 

most common way to detect homology is to compare their sequences. If two 

sequences are more similar than we would expect by chance we infer that they 

are homologous[136]. It is important to note that due to the astronomical number 

of theoretically possible sequences and the fact that homologous sequences arose 

by natural mutation, while having to preserve function, it is very unlikely to 

make false positive assignments (to assume two sequences are homologous even 

though they are not). However, false negatives (two sequences are homologous 

even though we can detect no sequence similarity) are probably fairly common, 

given that proteins with similar structure and function often share no detectable 

sequence similarity (as in the case of subtilase propeptides) [137].  

There are multiple algorithms that can be used to infer similarity of two 

sequences. Since during evolution insertions and deletion are created, 

comparison of two sequences requires their alignment, which can be performed 

using the Smith-Waterman [138] or Needleman-Wunsch algorithm [139] to 

obtain local or global alignments, respectively . However, it is impractical to use 
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these algorithms to calculate similarity of a query sequence to all sequences in a 

database. More efficient heuristic algorithms, such as BLAST or FASTA [140], 

[141], have been developed to enable routine search of single sequences against 

large databases. Crucial to these algorithms is the calculation of an expectation 

value that gives an estimate for the probability that a detected similarity occurs 

purely by chance. This expectation value is critical to avoid false positive errors 

during a database search. 

A well maintained database of protein sequences is as important for 

homology detection as is an efficient search algorithm. The enormous increase in 

available sequence data has necessitated the creation of a robust database system 

to make these sequences rapidly and easily accessible. All published nucleotide 

sequences are deposited into primary DNA sequence databases, maintained by 

the International Nucleotide Sequence Database Collaboration (INSDC), 

consisting of the National Center for Biotechnology Information (NCBI), the 

European Bioinformatics Institute (EBI) of the European Molecular Biology 

Laboratory (EMBL), and the DNA Data Bank of Japan (DDBJ) [142]. Based on 

automatic annotation of coding regions protein sequence databases are created 

from the deposited DNA sequences. In particular the UniProt project maintains 

two protein databases: the first, TrEMBL, consists of all available non-redundant 

protein sequences; the second, SwissProt, is created by manual annotation and 

review of these sequences and is therefore able to provide rich annotation with 

domain regions, critical residues, post-translational modification, and links to 

other databases [143].  
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This rich annotation makes homology searches against the UniProt 

database particularly useful. Homology between two protein sequences implies 

that they evolved from a common ancestor and therefore share some degree of 

conservation in structure and function. Therefore, structural and functional 

annotations of homologous protein can probably be transferred to a query 

sequence with unknown function. Even more useful than aligning just two 

sequences is the alignment of several sequences in a multiple sequence alignment 

(MSA). In a MSA every row contains a sequence, while every column contains 

the residues of all sequences at a particular position. This allows the calculation 

of conservation scores for each position [144], which can be very helpful to 

understand protein function under the assumption that residues with important 

functions are more conserved than residues with no particular function. 

Furthermore, the coupling between residues at two different position (i.e. does 

the amino acid at one position influence which amino acid is found at another 

position) can be used to predict whether two residues are close in the tertiary 

structure and to find networks of functionally important residues [145], [146]. By 

employing statistical models of protein evolution one can use MSAs to calculate 

the most likely sequence of an evolutionary precursor to these sequences. This 

has proven to be a useful tool in understanding how proteins may have evolved 

[147]. Another use of MSAs is the calculation of sequence profiles, where the 

MSA is represented by the relative occurrence of each amino acid at every 

position in the MSA. Such sequence profiles can drastically increase the statistical 

power of a homology search, by reducing the false negative rate, and iterations 
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of BLAST searches that create MSA profiles is used by the PSI-BLAST algorithm 

to find distant homologs of a query sequence [141].  

Hidden Markov models 

While MSAs and the generation of statistical profiles from these alignments are 

powerful tools for homology detection, they have problems with the treatment of 

insertions and deletions. Since an insertion within one protein will introduce an 

additional column with a gap character in every other sequence, large 

alignments of diverse sequences tend to become very long, often an order of 

magnitude longer than the average sequence length. Therefore, a mathematical 

representation that can handle insertions and deletion more gracefully during 

the alignment process is needed. 

Hidden Markov models (HMM) were developed by Leonard E. Baum in 

1966 [148]. A Markov model describes a system as random transitions between 

discreet states, with probabilities that depend only on the previous state. Every 

state can emit different observables with probabilities that also only depend on 

that state and not on previously visited states. Cases where the underlying model 

is unknown and only observations of the model outcome are known are called 

hidden Markov models. Homologous proteins can be represented by a hidden 

Markov model (HMM) sequence profile, where the model represents the protein 

fold and requirements for amino acids at each position and individual protein 

sequences are emissions of this model. The most commonly used model is shown 

in Figure 1-7 A [149], where every position of the profile is represented by a 

match or a deletion state. Additionally insertion states are included between 
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match states. Match and insertion states can emit amino acids. A sequence can be 

represented as a path through this profile model as indicated in Figure 1-7 B. The 

Viterbi algorithm allows to calculate the path through the model that has the 

highest likelihood to produce this sequence [150]. Inversely, the Baum-Welch 

algorithm can be used to calculate the set of parameters for a model that have the 

highest likelihood to emit a set of sequences [151]. These algorithms can be used 

for homology detection in databases in three ways: (i) An initial BLAST search 

can be used to generate a preliminary MSA of the query sequence, which is then 

used to generate a HMM sequence profile using the Baum-Welch algorithm. 

Every sequence in the database is then tested by the Viterbi algorithm if it is an 

emission of this HMM-profile. (ii) Alternatively, HMM sequence profiles for 

every sequence in the database can be calculated beforehand. The query 

sequence is then tested against each of these models. (iii) The highest sensitivity 

is achieved by doing both, generating HMM sequence profiles for the search 

sequence and the database, as is done by the HHsearch server [152]. 

In addition to increasing the sensitivity of homology searches, HMM 

sequence profiles can also be used for automated domain annotations. For 

example, several databases maintain HMM profiles for domains that can be used 

to annotate domains found in database deposited sequences by searching each 

sequence for statistically significant local alignments against the HMM profile 

database. These databases differ in the ways the HMM profiles are generated. 

Pfam contains manually curated HMM profiles, which are generated using seed 

alignments that contains representatives for this domain that are chosen by a 
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human [153]. Superfamily [154] and Gene3D  [155] are based on the structural 

classification of domains found in the PDB database as curated by the SCOP 

[156] and CATH [157] databases, respectively. 

 Structure based approaches 

While sequences are very straightforward to represent computationally, 

structures are substantially more complex. Structures are most commonly 

represented by the Cartesian coordinates of every atom within an arbitrary 

reference frame. Many properties of a protein, such as the electrostatic potential 

[158], pore radii of ion channels [159], or presence of binding pockets [160] can be 

calculated from this description for any given protein. However, it is often more 

useful if the available conformational space of the protein can be explored to 

understand how its structure changes in response to stimuli. This can be used to 

predict binding of ligands or other proteins and to predict the structure of the 

protein from its sequence. In the following sections, I will initially illustrate two 

major classes of algorithms, Molecular Dynamics and Monte-Carlo, which are 

used to generate conformational ensembles and subsequently describe how these 

methods can be used to predict the structure of a protein from its sequence.  

Molecular dynamics 

In a molecular dynamics simulation every atom is characterized by its location in 

space and by its velocity. The simulation progresses by a fixed time step after 

which the coordinates evolve according to the velocities of the atoms and the 

velocities change according to the forces acting on each atom. The forces that act 

on each atom are approximated by fairly simple equations that are derived from 
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classical Newtonian physics, but are parameterized to model the quantum 

phenomena that govern the motions of atoms[161]. For example, the forces 

created by chemical bonds are simulated using a formula derived from Hooke’s 

law, analogous to spheres connected by springs. The bond and dihedral angles 

are modeled using similar formulas. Nonbonded forces are divided into a van-

der-Waals term, which heavily penalizes atoms that are closer than the sum of 

their van-der-Waals radii and mildly favors their proximity, and an electrostatic 

term that assumes a specific point charge for every atom [162]. Since the time 

step that can be used to advance the simulation is very short (typically 2fs) and 

the calculation of the nonbonded forces principally requires calculating a term 

for every possible pair of atoms, the simulation are computationally very 

expensive and limited in their timescale and number of simulated atoms. While 

approaches to alleviate these constraints, such as coarse-graining the atomic 

structure, representing the solvent by an intrinsic force-field term instead of 

individual solvent molecules, or steering the simulation towards the desired 

structure, can facilitate more extensive sampling, they all come at the cost of 

reduced accuracy [163]. 

The usefulness of molecular dynamics simulations has been most 

dramatically impacted by the rapid increase in computational power and the 

development of specialized hardware for molecular dynamics simulation [164]. 

Using these approaches the available timescales have been extended into the µs 

or even ms domain [165], which is long enough to simulate the binding of 

ligands [166] or folding of small proteins . Additionally, the maximal size of 
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simulated systems has been increased from traditionally small protein domains 

in a small solvent box to, most recently, a complete HIV virion [167]. 

Monte-Carlo sampling 

Similar to molecular dynamics simulations, Monte-Carlo sampling is performed 

by iterations of structural changes. However, the changes are not calculated 

according to forces, but are chosen randomly. The random step is then either 

accepted or rejected based on an energy evaluation of the resulting conformation. 

The most commonly used criterion for accepting a random move is the 

Metropolis criterion, where the move is accepted if it results in a lower energy 

and in case of an energy increase, the move is randomly accepted based on the 

Boltzmann equation [168]. Compared with molecular dynamics, the Monte-Carlo 

algorithm provides multiple advantages such as (i) more available flexibility in 

the move step, (ii) introduction of larger perturbations instead of small local 

movements of atoms,  (iii) representation of the protein by dihedral angles 

instead of Cartesian coordinates and (iv) the function that evaluates the energy of 

the system does not need to be differentiable. All these advantages allow more 

rapid sampling of the conformational space. The major disadvantages of Monte-

Carlo sampling are that the resulting trajectories are not biophysically 

meaningful and that the solvent cannot be explicitly modeled, because the large 

movements of a protein would require re-equilibration of the solvent molecules. 

The fact that Monte-Carlo sampling allows any kind of random perturbation is 

not only an advantage, but also a disadvantage, because the kind of 

perturbations must be carefully chosen and tested. 
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One of the most common software packages for application of Monte-

Carlo simulations is the ROSETTA package that was developed by David Baker’s 

group [169]. ROSETTA combines implementation of the Monte-Carlo algorithm 

with many possible types of perturbation, energy functions with increasing 

degrees of accuracy, and an internal representation of the atomic structure that is 

optimized for rapid application of moves and energy evaluation. Most 

importantly, these modules have been combined into specialized protocols to 

facilitate many types of predictions, such as structure prediction [170], protein 

design [171] or protein-protein docking [172]. 

Structure prediction 

Anfinsen’s hypothesis that the sequence of a protein determines its structure 

[134], implies that it should be possible to predict the structure of a protein from 

its sequence. Ideally one could just start with the atomic model of the extended 

peptide chain and by applying our knowledge of atomic motion, at least in 

appropriate simplifications as in molecular dynamics simulations, one should be 

able to simulate the folding of the protein. Indeed recent advances in 

computational power have enabled the routine folding of small proteins in 

molecular dynamics simulations [173]. However, with commonly available 

computational power, this approach is still impractical for most large proteins. 

The advances in computational structure predictions can best be judged 

by the Critical Assessment of Structure Prediction (CASP) competition wherein 

the attempts of different groups to predict the conformations of recently solved, 

but yet unpublished, structures are judged in an unbiased fashion [174]. Over the 
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last few years, the two most successful programs that try to predict using ab initio 

approaches are I-TASSER [175] and ROSETTA [170]. Both of these methods use a 

similar approach, wherein initial models are built by assembling the proteins 

from short fragments with structures sampled from the PDB. A Monte-Carlo 

algorithm is used to optimize the arrangements of these fragments into a 

structure, using a fairly coarse-grained energy function. The best scoring models 

from this approach are then subjected to further refinement using more detailed 

energy functions. Overall it is important to note that their accuracy is still limited 

to small proteins (<150 residues) and neither of these methods can predict correct 

structures consistently [176].  

The most accurate way to predict structures is to rely on the observation 

that structures evolve slower than sequences. Analysis of the PDB shows that 

most proteins pairs that have more than 40% sequence identity have highly 

similar structures. Even pairs with sequence identity as low as 20% are often 

highly similar [177]. In case of even lower sequence identity it becomes harder to 

accurately assume that two sequences are homologous, but it is not uncommon 

for two proteins with no detectable sequence homology to show similar 

structures. Homology modeling was first demonstrated by Andrej Sali, who 

developed the program MODELLER [178]. Homology modeling with 

MODELLER is performed by first searching the PDB database for homologous 

proteins by using an algorithm like BLAST, or for higher sensitivity a HMM 

based algorithm like HHsearch [152]. If a suitable homolog is found an 

alignment is built between the sequence of interest and the template protein. This 



50 

 

alignment is then used to derive constraints between main chain atoms from the 

template structure that are then used to build a structure of the protein of 

interest. The main advantages of homology modeling are the high accuracy if a 

template with high sequence identity is available and the fact that the accuracy of 

the model can be estimated from the sequence identity [179].  

1.4 Outline of thesis 

The major theme of this thesis is how computational and experimental 

approaches can be combined to gain deeper insight into protein function. Most of 

this thesis focuses on how propeptides of proprotein convertases sense 

organellar pH to mediate activation. In the second chapter I will describe how 

bioinformatics analysis of protease sequences enabled me to support the 

hypothesis that there is a functional requirement for histidine residues in the 

propeptides of proprotein convertases, which most likely is due to the role of 

histidine as a titratable residue. This work also hinted towards at the usage of 

multiple titration sites and demonstrated that another protease family, the 

cysteine cathepsins, rely on a similar mechanism. In the third chapter I describe 

how experimental approaches, mostly pH dependent circular dichroism 

spectroscopy, combined with molecular dynamics simulations, showed that the 

propeptides of proprotein convertases are sufficient to mediate pH sensitivity 

and to elucidate how the His69Leu mutation in the furin propeptides blocks 

activation. The fourth chapter describes how I employed a histidine hydrogen-

deuterium exchange mass spectroscopy technique to measure the histidine pKa 

values in proprotein convertase propeptides. This work demonstrated that pH of 
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activation is fine-tuned by modulating the energy landscape of pH-dependent 

allostery, indicated by a pKa shift of the conserved pH-sensing histidine. The 

final chapter describes collaborative efforts to understand protein function in a 

variety of diseases, ranging from cancer to leishmaniasis, where I contributed 

computational approaches to test or create hypotheses. 
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Figure 1-1: Structure and Mechanism of Subtilases.  

(A) Ribbon representation of the subtilase fold. The residues of the catalytic triad are 

shown in stick representation (B) Proposed mechanism of subtilase catalytic cycle 
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Figure 1-2: Mechanism of subtilase activation 

(A) Schematic of the activation mechanism of subtilases in prokaryotes and 

eukaryotes (B) Structures of activation intermediates of Tk-Subtilisin 

  



54 

 

 
Figure 1-3: Structures of subtilase propeptides 

Crystal structures of several propeptide:subtilase complexes and NMR solution 

structure of the PC1/3 propeptide. Proteases are shown as grey cartoon, while the 

basic fold of the propeptide is shown as red cartoon. Protein specific insertion are 

shown in blue. All propeptides share the same basic fold, with an anti-parallel beta-

sheet and two alpha-helices. In all cases the C-terminus is located in the active site 

with the helix-distal site of the beta-sheet contacting the protease. 
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Figure 1-4: Thermodynamic model of two-site titration allosteric regulation 

and example titration curves. 

Thermodynamic model of two-site allosteric equilibrium between state A and B (B) 
Theoretical titration curves where 𝑝𝐾𝑎𝑆 = 4 , 𝑝𝐾𝑎𝑇 = 8, 𝐾𝑆𝑇 = 0.1,𝐾𝑆𝐻𝑇 = 1,𝐾𝑆𝑇𝐻 = 0.2, and 

𝐾𝑆𝐻𝑇𝐻 = 1000, providing an example for independent titration of S and T (C) 

Theoretical titration curves where 𝑝𝐾𝑎𝑆 = 7.3 , 𝑝𝐾𝑎𝑇 = 7.35, 𝐾𝑆𝑇 = 0.01,𝐾𝑆𝐻𝑇 =
0.0101,𝐾𝑆𝑇𝐻 = 0.0101, and 𝐾𝑆𝐻𝑇𝐻 = 1000, providing an example for negative 

cooperativity between S and T (D) Theoretical titration curves where 𝑝𝐾𝑎𝑆 = 7.3 , 
𝑝𝐾𝑎𝑇 = 7.35, 𝐾𝑆𝑇 = 0.08,𝐾𝑆𝐻𝑇 = 0.25,𝐾𝑆𝑇𝐻 = 0.25, and 𝐾𝑆𝐻𝑇𝐻 = 1.25, providing an example 

for a behavior where titration does not completely convert B to A. A dashed line 

shows a Henderson-Hasselbalch titration curve as expected for a single site.(E) 

Theoretical titration curves where 𝑝𝐾𝑎𝑆 = 7.3 , 𝑝𝐾𝑎𝑇 = 7.35, 𝐾𝑆𝑇 = 0.01,𝐾𝑆𝐻𝑇 = 500,𝐾𝑆𝑇𝐻 =
500, and 𝐾𝑆𝐻𝑇𝐻 = 1000, providing an example for positive cooperativity between S and 

T. A dashed line shows a Henderson-Hasselbalch titration curve as expected for a 

single site.  
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Figure 1-5: Structures of low and high pH states of different proteins. 

(A) Crystal structures of deoxyhemoglobin and oxyhemoglobin. The close proximity 

of His146 and Asp94 in deoxyhemoglobin shifts the pKa to 8.0. Therefore protonation 

of His146 shifts the equilibrium towards deoxyhemoglobin. 

(B) Cryo-EM structure of mature anthrax protective antigen and crystal structure of 

the prepore from of anthrax protective antigen. Boxes indicate the different 

environments of Asp425 in the two structural states. 

(C) Crystal structures of closed and open form of Nitrophorin 4. In the closed form 

the pKa of Asp30 is predicted to be 8.6, presumably due to hydrogen-bonding with 

the peptide backbone around Leu130  
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Figure 1-6: Mechanism of histidine hydrogen-deuterium exchange 

(A) Mechanism of HD-exchange in the imidazole side-chain. The effective exchange 

rate kex  contains information about the equilibrium Ka because hydrogen abstraction 

can only occur in the protonated state with the rate-limiting step being base-

catalyzed (k2). 

(B) Example plot of measured kex as a function of pH. The pH of half-maximal 

exchange rate corresponds to the pKa of the side-chain. 
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Figure 1-7: Examples for Hidden Markov model sequence profiles 

(A) Example how HMM sequence profiles are constructed. Every conserved position is 

represented by a match state (M) that emits amino acids with site-specific 

probabilities. Sequences can have deletions at these positions, because the model 

can transit through deletion states (D) that do not emit amino acids. Insertions are 

introduced by insertions states (I). The probabilities of insertion and deletions are 

site specific and modeled by the probability of each match state to transit to the D or 

I state.  

(B) Example of how the sequence LDKPV can be emitted by a path through an 

example HMM sequence profile. The path through the HMM is shown in red arrows. 

The Viterbi algorithm produces the most probable path through an HMM profile given 

the profile parameters and a sequence. 
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2.1 Abstract 

Eukaryotic cells maintain strict control over protein secretion, in part by utilizing 

the pH-gradient maintained within their secretory pathway. How eukaryotic 

proteins evolved from prokaryotic orthologs to exploit the pH-gradient for 

biological function remains a fundamental question in cell biology. Our 

laboratory previously demonstrated that protein domains located within 

precursor proteins, propeptides, encode histidine-driven pH-sensors to regulate 

organelle-specific activation of the eukaryotic proteases furin and proprotein 

convertase-1/3. Similar findings have been reported in other unrelated protease 

families. By analyzing over 10,000 unique proteases within evolutionarily 

unrelated families, we show that eukaryotic propeptides are enriched in 

histidines when compared to prokaryotic orthologs. On this basis, we 

hypothesize that eukaryotic proteins evolved to enrich histidines within their 

propeptides to exploit the tightly controlled pH-gradient of the secretory 

pathway, thereby regulating activation within specific organelles. Enrichment of 

histidines in propeptides may therefore be used to predict the presence of pH-

sensors in other proteases or even protease substrates. 

2.2 Introduction 

Eukaryotes are descendants of distinct prokaryotic cells that united symbiotically 

and evolved complex cellular compartments called organelles [180]. Secretory 

and endocytic organelles maintain a precise pH-gradient from the endoplasmic 

reticulum (ER; pH~7.2) to secretory vesicles (pH~5.5) and provide unique 

environmental conditions essential for optimal protein structure and function 
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[181]. How eukaryotic proteins differ from prokaryotic orthologs, to be able to 

exploit the pH-gradient for biological function, is a fundamental question in cell 

biology, and represents a major challenge to our understanding of protein 

trafficking, protein evolution, and organelle complexity. Comparing secreted 

eukaryotic proteases with bacterial orthologs will help to decipher the theoretical 

underpinnings that enable proteins to exploit the pH-gradient within the 

secretory pathway, and provide general principles for the relationship between 

structure, dynamics and function of biomolecules. 

Proteases hydrolyze peptide bonds, and likely arose during evolution as 

simple catabolic enzymes to generate amino acid nutrients for primitive 

organisms [182]. Their ubiquitous distribution and presence of orthologs in 

prokaryotes, eukaryotes, and archea, makes proteases ideal models for analyzing 

selective pressures that drove adaptation of eukaryotic proteins to complex 

organelle trafficking. Since uncontrolled proteolysis can have catastrophic 

consequences, cells have evolved at least two distinct mechanisms to maintain 

tight spatiotemporal control of protease activity. The first involves co-evolution 

of specific endogenous inhibitors, typically within compartments distinct from 

those containing active enzymes. The second mechanism involves proteases 

being synthesized as inactive precursors called zymogens, which become active 

by limited intra- or intermolecular proteolysis. In some cases the two regulatory 

mechanisms are combined; N-terminal propeptides co-evolved to chaperone 

folding of cognate catalytic-domains and act as potent temporary inhibitors after 

cleavage from the catalytic-domain [2]. 
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Here we hypothesize that one of the ways proteases adapted to eukaryotic 

organelle systems was by encoding histidine-based pH-sensors in their N-

terminal propeptides. When encoded at suitable positions within domains, the 

unique pKa of histidine side-chains (~6.5) can alter electrostatic interactions and 

modify conformations through changes in pH within the secretory pathway. 

These changes can then either affect the inhibitory potential of propeptides, or 

can increase their susceptibility to proteolysis. 

2.3 Material and Methods 

 Conservation Analysis 

Analysis of conserved residues was performed using ConSurf with standard 

settings [144]. The crystal structure of the propeptide:subtilisin E complex (PDB: 

1SCJ) was used as input for analyzing bacterial subtilases, while a homology 

model for the catalytic domain of PC1 based on the crystal structure of furin 

(PDB: 1P8J) and an NMR solution structure of the PC1 propeptide (PDB: 1KN6) 

docked onto the catalytic domain using the subtilisin structure as a reference, 

was used for eukaryotic subtilases. Results were analyzed and plotted using the 

UCSF Chimera package [183]. 

 Data acquisition 

The BioMart interface of the InterPro database [184] was used to download 

UniProt sequence identifiers, start and stop positions, and taxonomy identifiers 

of annotations from the entries PF00082, PF00112, and PF00656 of the PFAM 

database for subtilases, cathepsins, and caspases, respectively [143], [153]. 
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Protein sequences were downloaded from the UniProt database. Sequences with 

two annotated catalytic domains or those marked as deprecated in the UniProt 

database were discarded. Phylogeny was downloaded from the PFAM database, 

and taxonomy was obtained from the NCBI Taxonomy homepage. 

 Tree construction 

 NCBI taxonomy based trees were constructed using taxonomy identifiers as 

input for the iTol Tree generator [185] and adding each protein as a node of their 

species. Trees were plotted using the ‘ape’ package written in R statistical 

computing language [186], [187]. 

 Statistical testing 

A non-parametric Mann-Whitney test was performed to assess differences in the 

distribution of Δ[AA] between prokaryotes and eukaryotes using the R statistical 

computing language. The effect size was calculated as U/mn, by dividing the test 

statistic U by the product of the two sample sizes [188]. 

 Sliding window analysis 

For each sequence the number of histidines, #His(i,k), in a window of length k 

starting at position i, ranging from 1 to n–k+1 were counted, where n is the length 

of the sequence. To account for different sequence lengths, the starting sequence 

positions were normalized as follows: 

#𝐻𝑖𝑠𝑁𝑜𝑟𝑚(𝑖, 𝑘) = #𝐻𝑖𝑠(
𝑖

�̃�
∗ 𝑛, 𝑘)              (1) 

Where, �̃� is the median sequence length and the term 
𝑖

�̃�
∗ 𝑛 was rounded to the 

nearest integer. For each position i, the #𝐻𝑖𝑠𝑁𝑜𝑟𝑚(𝑖, 𝑘)  values were averaged and 
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then divided by k to obtain the average histidine content, #His(i), at that position. 

This method assumes that differences in length due to insertion and deletions are 

evenly distributed within the protein. Using a multiple sequence alignment 

(MSA) for normalization would potentially account better for the position of 

insertions and deletions, but the number of sequences and the low quality of the 

alignment especially in the propeptide region rendered this approach 

impractical. 

2.4 pH-sensors in the propeptides of subtilases 

Subtilases, a ubiquitous super-family of serine proteases, represents an ideal 

group of homologs to analyze protein adaptation to eukaryotic organelles. 

Bacterial subtilases are mostly secreted and undergo pH-independent activation, 

while eukaryotic subtilases undergo pH-dependent activation, usually in specific 

organelles [2], [18]. Bacterial subtilisin and mammalian proprotein convertase 

(PC) sub-families constitute the most extensively studied subtilases [17], [58]. 

Despite evolutionary divergence, proteins in these subfamilies display common 

folds with conserved catalytic triads, and are almost always expressed as 

zymogens, with N-terminal and occasionally C-terminal propeptide extensions. 

Similar to bacterial subtilases, propeptides of PCs assist folding and require two 

ordered steps of proteolytic cleavage for activation [2]. Our understanding of PC-

activation is based on studies of pro-furin, a constitutively expressed PC-

homolog; the first cleavage occurs at a consensus site RTKR107↓ after protein 

folding in the ER and results in a non-covalent propeptide:protease complex. 

Activation requires an additional cleavage at the internal site 69HRGVTKR75↓ in 
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the furin propeptide, which only occurs when furin trafficks into the trans-Golgi 

network/endosomal system (TGN) [58]. Other PCs are activated in a similar 

manner, but within different organelles (8). Studies establish that (i) a conserved 

histidine residue (His69) in the propeptide of furin acts as a pH-sensor [189], (ii) 

the pH of the TGN is sufficient to trigger the second, activating cleavage of furin 

[18], (iii) propeptide-domains in PCs contain sufficient information to mediated 

pH-dependent activation of cognate proteases and undergo conformational 

changes that correlate with their respective pH of activation [190] (Chapter 3). 

Prokaryotic propeptides are stable over the pH range. Amino acid composition 

analysis shows an increased histidine content in propeptides of furin and PC1, 

compared to the average content in the UniProt database, while the bacterial 

propeptides show no such bias [191].  

To identify conserved sequence elements unique to either prokaryotic or 

eukaryotic subtilases, we performed an evolutionary conservation analysis using 

the ConSurf server [144]. Analysis of prokaryotic subtilisin and eukaryotic 

proprotein convertase families was initiated using sequences of Subtilisin E and 

Proprotein Convertase 1/3 (PC1/3), respectively. The resulting conservation 

scores were mapped on the X-ray structure of the propepide:Subtilisin E complex 

(PDB: 1SCJ) and on a homology model of the propeptide:PC1/3 complex (based 

on PDB: 1P8J and 1KN6), respectively (Figure 2-1). Catalytic domains of 

eukaryotic and prokaryotic subtilases depict a highly conserved core. On the 

contrary, propeptides demonstrate less sequence conservation, with the dibasic 
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cleavage motif at the C-terminus of eukaryotic propeptides representing the only 

conserved region. 

Since His69 was demonstrated to function as a pH sensor in furin [189], we 

analyzed whether histidine residues demonstrate any sequence conservation 

within propeptides. Although we could not identify absolutely conserved 

histidines in propeptides of eukaryotic subtilases, several positions in our 

alignment contain a histidine in a substantial fraction of sequences, especially at 

the position corresponding to His69 in furin (53.3% of sequences). In contrast, 

prokaryotic subtilases, which do not traverse the secretory pathway, appear to 

encode less histidines within their propeptides. When catalytic sequences are 

compared, we find strictly conserved histidines within prokaryotic and 

eukaryotic sequences, and studies indicate that they play essential roles in 

catalysis or protein stability [192]. Hence, biased enrichment for histidines 

appears localized within propeptides of eukaryotic subtilases. This is consistent 

with the hypothesis proposed in this chapter that encoding of histidines in the 

propeptides allows for sensing organellar pH to direct activation. 

Such a broad hypothesis is difficult to test experimentally, as it would require 

biochemical studies on a large number of proteins. However, amino acid 

composition can be easily calculated from large amounts of available sequence 

data, and one would expect a consistent bias for histidine content in propeptides 

of eukaryotic, but not prokaryotic proteins.  

To examine whether residue specific biases exist within eukaryotic 

propeptides, we computed the abundance of individual residues in propeptides 
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and catalytic domains in 6,533 unique subtilases from the PFAM database entry 

PF00082 [153]. We calculated for each sequence the difference in histidine content 

(Δ[His]) between the propeptide  ([His]Pro) and the catalytic-domain ([His]Cat). 

Positive Δ[His] values indicate abundance of histidines in propeptides, negative 

values signify abundance in proteases, while near zero values imply equal 

distribution. While Δ[His] values in individual proteins may be subject to 

random fluctuations, the absence of any functional requirements would result in 

a distribution centered around zero. If histidine residues in propeptides are 

required for the experimentally observed function of sensing organelle specific 

pH, they would be selected during evolution, and one would expect statistical 

bias for positive Δ[His] only within eukaryotic subtilases and near zero or 

negative Δ[His] for prokaryotes. 

For initial assessments, we plotted Δ[His] on a phylogenetic tree 

generated by the PFAM database (Figure 2-2A), which is consistent with 

homology groups defined earlier  [193], with the largest clades representing 

subtilisin, kexin, proteinase K, and pyrolisin, as well as the later characterized 

sedolisin family [194]. While the subtilisin family is exclusive to prokaryotes, the 

remaining four families contain eukaryotic and prokaryotic proteins, suggesting 

these families diverged before speciation. Interestingly, three of the four families 

display predominantly positive Δ[His] in eukaryotes, but not in prokaryotes. 

Only sedolisins show positive Δ[His] values in both prokaryotes and eukaryotes.  

The distributions of [His]Pro and [His]Cat (Figure 2-2B) establish that catalytic-

domains in subtilases display a distribution centered on 2%, with eukaryotes 
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having slightly higher [His]Cat values than prokaryotes, as expected from the 

average histidine content in the UniProt database (2.3%). While, the distribution 

of [His]Pro within propeptide-domains in prokaryotes shifts towards lower 

values, with several lacking histidines, the [His]Pro distribution in eukaryotic 

propeptides is shifted to higher values, much greater than in catalytic-domains. 

This bias is clearly evident by the Δ[His] distributions (Figure 2-2C) with median 

values of -0.56%  and 1.5% in prokaryotes and eukaryotes, respectively. This 

difference in distribution between prokaryotes and eukaryotes is unique to 

histidine and not observed for any other amino acid (Figure 2-3 and Figure 2-4). 

To quantify the significance of the difference in distribution between 

species, we employed a non-parametric Mann-Whitney test (Table 1) across all 

twenty amino acids. The test resulted p-values <0.05 for several amino acids 

indicating statistically significant differences in Δ[AA] distributions between 

eukaryotes and prokaryotes. Since large sample sizes can result in statistically 

significant p-values even for tiny differences, a more meaningful, sample size 

independent, measure of the difference in distribution can be obtained using 

effect sizes (U/mn) [188]. These values vary between 0.0 and 1.0, and estimate the 

probability that a random sample of Δ[AA] in eukaryotes is larger than a random 

sample of Δ[AA] in prokaryotes. Equal distribution of Δ[AA] in both species 

would result in an effect size of 0.5. As seen in Figure 2-2D, histidine shows the 

highest deviation from 0.5, suggesting this bias is not by pure chance. Only 

cysteine deviates substantially (more than 0.15 units) from 0.5, which is likely 

due to higher frequency of disulfide bonds in eukaryotes than prokaryotes. The 
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fact that deviation from 0.5 in the effect size for histidine is considerably greater 

than that observed for cysteine suggests a biological significance for a histidine 

bias.   

Since errors in database annotation and differences in length between 

propeptides and catalytic-domains may result in a false-positive bias, we 

developed a test that is independent of the start annotation in the PFAM 

database. We calculated histidine content in a 20-residue sliding window from 

the beginning of the sequence to the end of catalytic-domain for all sequences. 

After normalization to sequence length, we averaged the resulting histidine 

content profiles for eukaryotic and prokaryotic proteins. Eukaryotic proteins 

alone show an increase in histidine content in the first 100 residues 

corresponding to the propeptide (Figure 2-2E), while both species have increased 

histidine content at positions 200-250, likely due to the active-site histidine, along 

with a small increase at the C-terminus due to a conserved histidine in the 

catalytic-domain.  

To decipher correlations that may exist between the histidine bias and 

experimental evidence of pH-dependent activation, we analyzed histidine 

contents in propeptides and catalytic-domains of individual proteins (Figure 

2-2F). Most bacterial proteins display similar histidine content within 

propeptides and catalytic-domains (approximately 2%), with only Kumamolisin 

and Xanthomonalisin displaying histidine enrichment ( >4%) in cognate 

propeptides. Consistent with our hypothesis, both proteins undergo activation at 

acidic pH in vitro [195], [196], which is not surprising because their hosts display 



70 

 

optimum growth under acidic conditions. Since intracellular pH within cells is 

maintained near neutral, pH sensing is an ideal mechanism for discerning 

intracellular and extracellular environments.  Both proteins belong to the 

sedolisin family, which has evolved to function under acidic conditions [194], 

explaining the histidine bias in propeptides in eukaryotes as well as prokaryotes. 

Eukaryotic propeptides display histidine contents > 4%, excepting Proteinase K 

and SKI-1. Expression of proteinase K in E. coli produces active protease [197], 

and SKI-1 loses its propeptide in the ER [198], suggesting activation occurs at 

neutral pH, relaxing the necessity for histidines. 

2.5 pH-sensors in the propeptides of cathepsins 

 To investigate whether our hypothesis applies to other pH-activated, 

propeptide-dependent proteases, we analyzed histidine content in cathepsins, a 

large family of lysosomal cysteine peptidases [199], which similar to subtilases, 

can activate at acidic pH. Due to these parallels, we hypothesized that eukaryotic 

cathepsins should show a similar bias for histidine in their propeptides. 

We plotted the phylogenetic tree for cathepsin sequences (PFAM family PF00112) 

along with their Δ[His] values (Figure 2-5A) in a manner identical to subtilases. 

The two major well-studied cysteine cathepsin subfamilies are the cathepsin L-

like (CatL-like) and the cathepsin B-like (CatB-like) families, both of which 

activate at low pH [199]–[201]. The CatL-like family includes human cathepsins 

L, V, H, K, and S and the CatB-like family includes human cathepsin B. 

Additionally, humans encode five more cathepsin genes, which we do not 

discuss here due to their inability to autoactivate (cathepsin C and O) or unusual 
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long or short propeptides (cathepsin F and X, respectively) [199].  The CatL-like 

family shows positive Δ[His] values, the CatB-like family does not. Moreover, 

the distributions of [His]Pro and [His]Cat  in the CatL-like family mimics eukaryotic 

subtilases (Figure 2-5B), while the CatB-like family displays increased [His]Pro 

and [His]Cat values, leading to near-zero Δ[His] values (Figure 2-5C). Prokaryotic 

cathepsins show similar distributions as prokaryotic subtilases. The small 

number of prokaryotic sequences precludes a statistical comparison between 

species with robustness similar to subtilases.    

We next validated the increased histidine content in the CatL-like family 

propeptides and mapped the specific location of increased histidine content in 

the CatB-like sequences using the sliding window analysis (Figure 2-5D). 

Prokaryotic cathepsins showed low histidine content throughout the sequence, 

with one peak between residues 250 and 300, which is due to the catalytic 

histidine. Consistent with our hypothesis, an increase in histidine content exists 

within the first 100 residues of CatL-like sequences. Interestingly, CatB-like 

sequences show a moderate increase in histidine content within the first 100 

residues compared to prokaryotes, along with a second peak corresponding to 

the occluding loop within the catalytic-domain (Figure 2-5D and E). A 

comparison of the crystal structures of CatL and CatB (Figure 2-5E) shows that 

while the catalytic-domains of the two families are similar. However, compared 

to CatL, the CatB propeptide is truncated while its occluding loop in the 

catalytic-domain is longer and form direct contacts with its propeptide by 

extending into the region occupied by the CatL propeptide in a complex with its 
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cognate protease.  Notably, histidines within the occluding loop of CatB occupy 

similar spatial locations as histidine residues within the CatL propeptide (Figure 

2-5F). This suggests that the pH-sensing capability in CatB is encoded not only 

within the propeptide, but also in the occluding loop within the catalytic-

domain, which is consistent with experimental data demonstrating that the 

occluding loop interacts with the propeptide in a pH-dependent manner, and 

histidine to alanine substitutions within the occluding loop blocks activation 

[202]. Moving pH-sensitivity from propeptides onto catalytic-domains provides 

evolutionary advantages to CatB-like family by enabling members to switch 

between endo- and exopeptidases in a pH dependent manner [203]. In summary, 

histidine distribution in cathepsins is consistent with our hypothesis, although 

subtle variations can exist within individual propeptide-dependent protease 

families. 

2.6 The cytosolic caspase family encodes no pH-sensors in their 

propeptides 

Our hypothesis assumes that eukaryotic proteases require histidines in their 

propeptides to sense the pH of the secretory pathway. Therefore cytosolic 

proteases, such as the caspase-family, would be expected to show no histidine 

bias within their propeptides. Caspases are responsible for initiating apoptosis 

within eukaryotic cells [204] and are expressed as inactive zymogens that are 

activated by proteolytic processing similar to subtilases and cathepsins. 

We plotted the phylogenetic tree for caspase sequences (PFAM family PF00656) 

along with their Δ[His] values (Figure 2-6A) in a manner identical to subtilases 
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and cathepsins. The phylogenetic tree demonstrates that caspase homologs are 

found in metazoans, fungi, and plants. We excluded metacaspases (homologs in 

fungi and plants) from our analysis because their propeptides contain histidine 

residues that are involved in zinc binding [205]. Metazoan caspases demonstrate 

increased [His]Cat values, while the [His]Pro values are similar to that of 

prokaryotic caspases (Figure 2-6B). Consistently, Δ[His] values were slightly 

smaller for eukaryotic proteins (Figure 2-6C). The sliding window analysis of 

prokaryotic and eukaryotic caspases shows that there is no substantial histidine 

enrichment in the N-terminal residues (Figure 2-6D). Overall these results are 

consistent with the assumption that functional requirement of histidines in 

propeptides is unique to proteases that need to sense pH to direct their 

activation. 

2.7 Implications for other proteins and disease 

Since histidine enrichment correlates with pH-mediated activation in subtilases 

and cathepsins, we propose that it can be used to predict proteins that use a 

similar mechanism for activation. A list of all human proteins with annotated 

propeptides in the UniProt database, which have more histidines in their 

propeptides than expected, assuming a probability for histidine of 2.3%, (Table 

2.2) includes 52 proteins that are either secreted or targeted to the secretory or 

endocytotic pathway. While this bias can be random or caused by other factors, 

such as zinc binding sites, which could explain why metalloproteases such as 

ADAM and matrixmetalloprotease family members are frequent in the list, we 

propose that proteins with high histidine content in their propeptides use the pH 
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of the secretory pathway to regulate their activation. This not necessarily applies 

exclusively to proteases, as other proteins can also be inhibited by their 

propeptides. One example is Bone morphogenic protein 4 (BMP4), which has a 

histidine content of 6.23% (Table 2.2) suggesting a propeptide mediated pH-

sensing mechanism.  Indeed, sequential processing of the propeptide of BMP4 by 

furin is pH-dependent and a histidine residue in the propeptide (His251) has 

been implicated as pH-sensor [206] 

Our hypothesis suggests a prominent role of the pH gradient in the 

secretory pathway in orchestrating proteolytic processing of secreted proteins. 

Any disturbances in this gradient could lead to disregulation of protease activity, 

which in PCs and cathepsins can have adverse effects, and are associated with 

diseases like cancer, artherosclerosis, and Dent’s disease [206][207]. Since all 

these diseases are also associated with changes in cytosolic pH [208], [209], 

studies that address whether the secretory pH-gradient is also affected are 

needed to address the question of whether pH-disregulation plays a role in 

disturbing regulation of the secretory pathway. 

After a review of sequences in three evolutionary unrelated protease 

families we find a correlation of increased histidine content in propeptides with 

the requirement to sense pH. But does a correlation imply causality? Histidines 

play multiple unique roles in proteins because they can (i) function as proton 

exchangers in enzyme catalysis, (ii) form complexes with soft metals, (iii) provide 

unique hydrogen bonding geometry, and (iv) alter protein structure and 

interactions in a pH-dependent manner. Since propeptides are not part of the 
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active site that mediates proteolysis, and because propeptides analyzed in this 

study do not bind metal ions, one can exclude the first two roles. It is also 

unlikely that propeptides in eukaryotes have different hydrogen bonding 

requirements than their prokaryotic orthologs, thus endorsing their roles as pH-

sensors as the most likely explanation for the observed histidine bias. 
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Table 2.1: Results of Mann-Whitney tests to evaluate differences in distribution of 

Δ[AA] between eukaryotes and prokaryotes. 
Residue Eukaryotes  Prokaryotes U p U/mn 

A -2.01 -0.29 3484667 6.3 x 10-56 0.38 
V -0.03 -0.13 4692108 1.4 x 10-1 0.51 
L 1.27 1.53 4494450 1.8 x 10-1 0.49 
I -0.29 -0.61 4845335 2.4 x 10-4 0.53 
M -0.32 -0.44 4781449 5.7 x 10-3 0.52 
F 0.53 0.06 5019341 7.3 x 10-10 0.55 
Y -0.27 -1.00 5564109 3.6 x 10-44 0.61 
W -0.46 -0.92 5529692 3.2 x 10-41 0.60 
S -0.47 -0.18 4329195 2.2 x10-4 0.47 
T -1.36 -0.07 3616488 9.2 x 10-44 0.39 
N -1.63 -1.86 4339854 3.9 x 10-4 0.47 
Q 1.11 1.49 4198344 2.6 x 10-8 0.46 
C -1.25 -0.28 2881834 7.5 x 10-132 0.31 
G -5.2 -5.3 4576112 8.7 x 10-1 0.50 
P -0.67 0.04 3852582 8.5 x 10-26 0.42 
D -0.25 -1.52 5644738 1.9 x 10-51 0.62 
E 2.85 2.51 4864907 7.7 x 10-5 0.53 
H 1.53 -0.56 7048731 1.6 x 10-270 0.77 
K 1.45 1.58 4356812 9.6 x 10-4 0.47 
R 1.86 0.95 5376156 2.2 x 10-29 0.59 

For each amino acid the following numbers are reported: Median of Δ[AA]  for 

eukaryotes and prokaryotes, test statistic of the Mann-Whitney test, the resulting 

p-value, the effect size U/mn. Sample sizes were 2156 and 4256 for eukaryotes 

and prokaryotes, respectively. 
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Table 2.2: List of human proteins with histidine enrichment in their propeptides 
UniProt 
identifier 

Name Length 
propeptide 

Histidine 
content 

P(X>=k) Cellular location Location 

P12821 Angiotensin-
converting 
enzyme 

74 6.76% 2.80E-02 Secreted, Cell 
membrane 

C-terminus 

O14672 ADAM10 194 7.73% 5.08E-05 Cell membrane, 
Endomembrane 

N-terminus 

O75078 ADAM11 202 4.46% 4.54E-02 Cell membrane N-terminus 

Q9Y3Q7 ADAM18 168 4.76% 4.15E-02 Cell membrane N-terminus 

Q9P0K1 ADAM22 197 6.09% 2.22E-03 Cell membrane N-terminus 

O75077 ADAM23 227 4.85% 1.69E-02 Cell membrane N-terminus 

Q9UKF2 ADAM30 171 4.68% 4.52E-02 Cell membrane N-terminus 

Q9BZ11 ADAM33 174 5.17% 2.01E-02 Cell membrane N-terminus 

O15204 ADAM-like protein 
decysin-1 

175 6.29% 2.61E-03 Secreted N-terminus 

Q9H324 ADAM-TS10 208 5.29% 9.33E-03 Secreted N-terminus 

P58397 ADAM-TS12 215 6.05% 1.59E-03 Secreted N-terminus 

Q8TE57 ADAM-TS16 255 5.88% 9.60E-04 Secreted N-terminus 

Q8TE60 ADAM-TS18 237 5.91% 1.34E-03 Secreted N-terminus 

P59510 ADAM-TS20 232 4.74% 1.96E-02 Secreted N-terminus 

Q9UKP5 ADAM-TS6 223 8.52% 1.31E-06 Secreted N-terminus 

Q9P2N4 ADAM-TS9 269 4.09% 4.88E-02 Secreted N-terminus 

O95972 Bone 
morphogenetic 
protein 15 

249 5.22% 5.55E-03 Secreted N-terminus 

P12643 Bone 
morphogenetic 
protein 2 

259 5.79% 1.12E-03 Secreted N-terminus 

P12644 Bone 
morphogenetic 
protein 4 

273 6.23% 2.38E-04 Secreted N-terminus 

P18075 Bone 
morphogenetic 
protein 7 

263 5.70% 1.30E-03 Secreted N-terminus 

P55287 Cadherin-11 31 12.90% 5.36E-03 Cell membrane N-terminus 

Q13634 Cadherin-18 29 17.24% 4.82E-04 Cell membrane N-terminus 

P12830 Cadherin-1 132 6.06% 1.17E-02 Cell membrane, 
Endosome, Golgi 
apparatus 

N-terminus 

P14091 Cathepsin E 34 8.82% 4.29E-02 Endosome N-terminus 

P09668 Cathepsin H 85 8.24% 3.52E-03 Lysosome N-terminus 

P43235 Cathepsin K 99 6.06% 2.71E-02 Lysosome N-terminus 

P25774 Cathepsin S 98 8.16% 1.97E-03 Lysosome N-terminus 

Q6YHK3 CD109 antigen 25 12.00% 1.92E-02 Cell membrane C-terminus 

P0CG37 Cryptic protein 65 7.69% 1.70E-02 Cell membrane C-terminus 

Q14126 Desmoglein-2 26 11.54% 2.13E-02 Cell membrane N-terminus 

P12259 Coagulation 
factor V 

836 3.59% 1.27E-02 Secreted Internal 

P02765 Alpha-2-HS-
glycoprotein 

40 12.50% 2.17E-03 Secreted Internal 

P09958 Furin 83 6.02% 4.28E-02 Golgi apparatus, 
Cell membrane 

N-terminus 
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O60383 Growth/differenti
ation factor 9 

295 4.41% 2.04E-02 Secreted N-terminus 

P07686 Beta-
hexosaminidase 
subunit beta 

79 6.33% 3.58E-02 Lysosome N-terminus 

P55103 Inhibin beta C 
chain 

218 4.59% 3.07E-02 Secreted N-terminus 

P58166 Inhibin beta E 
chain 

217 5.07% 1.25E-02 Secreted N-terminus 

P51460 Insulin-like 3 47 14.89% 9.55E-05 Secreted Internal 

P19827 ITI heavy chain 
H1 

246 4.47% 2.84E-02 Secreted C-terminus 

Q99538 Legumain 110 9.09% 2.40E-04 Lysosome C-terminus 

P09848 Lactase-phlorizin 
hydrolase 

847 3.78% 5.15E-03 Apical cell 
membrane 

N-terminus 

P10253 Lysosomal alpha-
glucosidase 

42 9.52% 1.56E-02 Lysosome N-terminus 

P14151 L-selectin 10 20.00% 2.11E-02 Cell membrane N-terminus 

Q9NRE1 Matrix 

metalloproteinase
-26 

72 8.33% 6.34E-03 Secreted N-terminus 

P16519 PCSK2 84 8.33% 3.29E-03 Secretory vesicle N-terminus 

P29122 PCSK6 86 5.81% 4.86E-02 Secreted, 
Endoplasmatic 
reticulum 

N-terminus 

P01127 PDGF subunit B 112 5.36% 4.53E-02 Secreted N- and C-
terminus 

Q96B86 Repulsive 
guidance 
molecule A 

147 5.44% 2.10E-02 Cell membrane N- and C-
terminus 

P10600 Transforming 
growth factor 
beta-3 

280 5.00% 5.96E-03 Secreted N-terminus 

Q9BZD6 Proline-rich Gla 
protein 4 

32 9.38% 3.68E-02 Cell membrane N-terminus 

Q8N2E6 Prosalusin 163 5.52% 1.37E-02 Secreted N-terminus 

O43915 Vascular 
endothelial 
growth factor D 

216 6.02% 1.66E-03 Secreted N- and C-
terminus 

  



79 

 

 

 
Figure 2-1: Propeptides are more divergent than cognate catalytic domains. 

Conservation scores mapped onto a ribbon presentation of (A) Subtilisin E and (B) 

PC1/3. Thick tubes represent high divergence at this position while thin tubes 

represent conservation. Color indicates percentage of sequences that encode a 

histidine residue at this position from 0% (grey) to 100% (blue)  
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Figure 2-2: Histidines are enriched in propeptides of eukaryotic, but not 

prokaryotic, subtilases. 

 (A) Phylogenetic tree of subtilases from the PFAM database. Bars on the outside 

indicate the Δ[His] value of each sequence. A black circle represents 0%. Bars 

pointing outward and inward represent positive and negative Δ[His] values, 

respectively. Dashed circles outside and inside of the solid black circle represent 

Δ[His] values of ±1%. Eukaryotic, prokaryotic, and archean sequences are colored 

red, blue, and green, respectively. Black arcs on the outside mark the clades of 

major subtilase subfamilies. (B) Kernel density estimation of the distribution of 

[His]Pro and [His]Cat in prokaryotes and eukaryotes. (C) Kernel density estimation of 

the distribution of Δ[His] for prokaryotes and eukaryotes. (D) Effect size (U/mn) of 

the Mann-Whitney test for difference between the distributions shown in panel C 

performed for all 20 natural amino acids. (E) Sliding Window Analysis of average 

histidine content in eukaryotic and prokaryotic subtilases using a window of 20 

residues. The black dashed line indicates average histidine content in the UniProt 

database. Arrows indicate relative position of annotations for the end of the 

propeptide domain and the catalytic histidine residue according to subtilisin E and 

PC1/3. (F) Bar graph showing [His]Pro and [His]Cat  values for selected subtilases. 

Blue, red, and green shades represent prokaryotic, eukaryotic, and archean 

sequences, respectively.  Light shades indicate [His]Cat and dark shades indicate 

[His]Pro 
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Figure 2-3: Distribution of [AA]Pro and [AA]Cat for all 20 amino acids in 

eukaryotic and prokaryotic subtilases 
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Figure 2-4: Distribution of Δ[AA] for all 20 amino acids in eukaryotic and 

prokaryotic subtilases 
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Figure 2-5: Histidine enrichment exists only in propeptide domains of the 

Cathepsin L family, while it is also present in the occluding loop of the 

Cathepsin B family.  

(A) Phylogenetic tree of cathepsins from the PFAM database. Bars on the outside 

indicate the Δ[His] value of each sequence. A black circle represents 0%. Bars 

pointing outward and inward represent positive and negative Δ[His] values, 

respectively. Dashed circles outside and inside of the solid black circle represent 

Δ[His] values of ±1%. Eukaryotic, prokaryotic, archean, and viral sequences are 

colored red, blue, green, and cyan, respectively. Black arcs on the outside mark the 

clades of major cathepsin subfamilies, with the cathepsin L family shown in green 

and the cathepsin B family shown in purple. (B) Kernel density estimation of the 

distribution of [His]Pro and [His]Cat in cathepsin L and B families and in prokaryotes. 

(C) Kernel density estimation of the distribution of Δ[His] in cathepsin L and B 

families and in prokaryotes. (D) Sliding Window Analysis of average histidine content 

in cathepsin L and B families and in prokaryotes using a window of 20 residues. The 

black dashed line indicates average histidine content in the UniProt database. Arrows 

indicate relative position of annotations for the end of the propeptide domain and the 

catalytic histidine residue according to Cathepsin L and B, as well as the occluding 

loop in cathepsin B. (E) Structure superimposition of procathepsin L (PDB: 1BY8) and 

procathepsin B (PDB: 1MIR). The catalytic domains are shown in grey ribbon, while 

propeptides are shown in green and purple for cathepsin L and B, respectively. The 

occluding loop of cathepsin B is colored in orange and the corresponding loop in 

cathepsin L is colored green. The side-chains of histidine residues are depicted as 

stick representations. (F) A close up of interactions between the occluding loop and 

the propeptide. Colors are as above. 
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Figure 2-6: The cytosolic caspase family shows no histidine bias in 

propeptides.  

(A) Phylogenetic tree of caspases from the PFAM database. Bars on the outside 

indicate the Δ[His] value of each sequence. A black circle represents 0%. Bars 

pointing outward and inward represent positive and negative Δ[His] values, 

respectively. Dashed circles outside and inside of the solid black circle represent 

Δ[His] values of ±1%. Prokaryotic, metazoan, plant, fungal and other eukaryotic 

sequences are colored blue, yellow, cyan, purple and red, respectively. Black arcs on 

the outside depict the metazoan caspase and metacaspase families. (B) Kernel 

density estimation of the distribution of [His]Pro and [His]Cat in prokaryotes and 

metazoan shown in blue and yellow, respectively. (C) Kernel density estimation of 

the distribution of Δ[His] in metazoan and prokaryotic caspases shown in yellow and 

blue, respectively. (D) Sliding Window Analysis of average histidine content in 

metazoan and prokaryotic caspases using a window of 20 residues. Arrows indicate 

relative position of annotations for the end of the propeptide domain and the 

catalytic histidine residue according to Caspase 2. 
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The mechanism by which histidine 

protonation mediates activation 

This chapter is based on two manuscripts. The manuscripts have been edited to 

remove overlaps in abstract, introduction and discussion. Some experimental 

data that was not central to the objective of this chapter have been omitted, but 

are mentioned and cited within the text when necessary. The data in Figures 3-2, 

3-4, and 3-5 was generated by SLD and DMW.  

 

Propeptides Are Sufficient to Regulate Organelle-Specific pH-Dependent Activation of 

Furin and Proprotein Convertase 1/3 

 

Stephanie L. Dillon, Danielle M. Williamson, Johannes Elferich, David Radler, 

Rajendra Joshi, Gary Thomas, Ujwal Shinde 

 

This manuscript was published by the Journal of Molecular Biology on October 

12th 2013 in volume 423 issue 1 pages 47-62 

 

The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal 

Activation of Furin 

 

Danielle M. Williamson†, Johannes Elferich†, Parvathy Ramakrishnan1, Gary 

Thomas2 and Ujwal Shinde1 

 

†These authors contributed equally to this work 

 

This manuscript was published by the Journal of Biological Chemistry on May 7th 

2013 in volume 288 pages 19154-19165. 

 

 

  



89 

 

3.1  Abstract 

The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) 

cleave substrates at dibasic residues along the eukaryotic secretory/endocytic 

pathway. PCs are evolutionarily related to bacterial subtilisin and are 

synthesized as zymogens. They contain N-terminal propeptides (PRO) that 

function as dedicated catalysts that facilitate folding and regulate activation of 

cognate proteases through multiple-ordered cleavages. Previous studies 

identified a histidine residue (His69) that functions as a pH sensor in the 

propeptide of furin (PROFUR), which regulates furin activation at pH ~ 6.5 within 

the trans-Golgi network. Although this residue is conserved in the PC1 

propeptide (PROPC1), PC1 nonetheless activates at pH ~5.5 within the dense core 

secretory granules. Here, we analyze the mechanism by which PROFUR regulates 

furin activation and examine why PROFUR and PROPC1 differ in their pH-

dependent activation. Sequence analyses establish that while both PROFUR and 

PROPC1 are enriched in histidines when compared with cognate catalytic domains 

and prokaryotic orthologs, histidine content in PROFUR is ~2-fold greater than 

that in PROPC1, which may augment its pH sensitivity. Spectroscopy and 

molecular dynamics establish that histidine protonation significantly unfolds 

PROFUR when compared to PROPC1 to enhance autoproteolysis. We further 

demonstrate that PROFUR and PROPC1 are sufficient to confer organelle sensing on 

folding and activation of their cognate proteases. Swapping propeptides between 

furin and PC1 transfers pH-dependent protease activation in a propeptide-

dictated manner in vitro and in cells. Structural analyses and binding 
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experiments comparing the wild-type PROFUR with a nonprotonatable His69Leu 

mutant that blocks furin activation in vivo revealed protonation of His69 reduces 

both the thermodynamic stability of the propeptide as well as its affinity for furin 

at pH 6.0. Structural modeling and molecular dynamic simulations suggests that 

His69 does not directly contribute to the propeptide-enzyme interface but, rather, 

triggers movement of a loop region in the propeptide that modulates access to 

the cleavage site and, thus, allows for the tight pH regulation of furin activation. 

Our work establishes a mechanism by which His69 functions as a pH sensor that 

regulates compartment-specific furin activation and provides insights into how 

other convertases and proteases may regulate their precise spatiotemporal 

activation. 

3.2 Introduction 

Subsequent to guiding protease domain folding, propeptide-dependent 

subtilases undergo ordered proteolytic cleavages within their propeptide 

domains. The first cleavage forms catalytically inactive propeptide:protease 

inhibition complexes wherein propeptides noncovalently bind to protease active 

sites, while subsequent cleavages activate proteases by facilitating propeptide 

dissociation, enabling the now unmasked catalytic domain to cleave substrates in 

trans [58], [59], [210], [211]. While these obligatory cleavages in prokaryotes are 

extracellular events that delay onset of protease activity until after protein 

export, they control secretory pathway compartment-specific activation of 

substrate-specific eukaryotic PCs [210]. Since eukaryotic PCs evolved from 

propeptide-dependent and not propeptide-independent prokaryotic subtilases 
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[212], it is tempting to speculate that propeptides confer functional advantages 

through speciation, namely, to regulate organelle-specific activation of secretory 

pathway proteases, a complexity absent in unicellular prokaryotes, but is 

essential to maintain physiological homeostasis within eukaryotic cells [180], 

[181], [213]. For example, the activation of furin is regulated in a pH-dependent 

manner as it transits the secretory pathway [58]. In the neutral pH in the 

endoplasmic reticulum (ER), the propeptide is cleaved to form a stoichiometric 

propeptide:furin inhibition complex. Upon reaching the early TGN (pH 6.5), the 

furin propeptide (PROFUR) undergoes a second cleavage, which removes the 

inhibitory propeptide and thus activates furin [58]. While PC1 transits the 

secretory pathway in much the same way, the PC1 propeptide (PROPC1) remains 

in a stoichiometric complex with the PC1 protease domain until it undergoes its 

activating second cleavage upon reaching the dense core secretory granules 

(DCSGs; pH 5.5). A study by Feliciangeli et al. demonstrated that in furin [59], 

mutating residue His69 in the propeptide to a leucine can block activation of the 

complex in the TGN while allowing for correct folding, whereas a His69Lys 

substitution results in accumulation of unprocessed furin precursor in the ER 

[59]. On this basis, they suggested that the His69 in the propeptide not only is 

important for folding of furin but also is a vital pH sensor that regulates furin 

activation in the pH of the TGN. However, mechanisms by which the His69 

functions as a pH sensor in furin are unknown. Moreover, while the residue 

corresponding to His69 (in furin) is strictly conserved within the PC family, PC1 

and furin undergo their activating second cleavages at different pH values 
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within the TGN and DCSGs, respectively. This suggests that additional factors 

may play a role in regulating activation of the protease domains. 

In this chapter, we demonstrate through various biophysical, biochemical, cell-

based, and computational approaches that the PROFUR and PROPC1 contain 

sufficient information to confer organelle sensing on the folding and activation of 

cognate proteases. Circular dichroism (CD) spectroscopy as a function of pH 

establishes that the pH-dependent stability of propeptide domains coincides 

with the optimum pH for compartment-specific activation. Monitored by 

ellipticity at 222 nm, PROFUR undergoes a transition in structure, the midpoint of 

which occurs at pH 6.5, while the midpoint in structural transition for PROPC1 

occurs at a lower pH (pH~5.5). Furthermore, swapping propeptides between 

eukaryotic paralogs - furin and PC1 - transfers pH-dependent protease activation 

in a propeptide-dictated manner in vitro and in cells. Our results suggest that 

PROFUR and PROPC1 encode information essential for regulating compartment-

specific activation of cognate proteases and that other residues in addition to the 

conserved pH sensor His69 are necessary to enable subtle differentiation in pH-

dependent activation between furin and PC1. Using molecular dynamics (MD) 

simulations, we also demonstrate that histidine protonation leads to 

conformational changes in PROFUR but not in PROPC1. Together, our results 

provide insights into the structural mechanisms by which propeptides can 

regulate the pH-dependent activation of their cognate PCs. 

Although His69 protonation is required for furin activation, the precise 

mechanism by which this pH sensor mediates activation has remained unclear. 



93 

 

Here, we use WT-PROFUR and the deprotonated state mimic His69Leu-PROFUR to 

explore structure, stability, and pH-dependent binding, coupled with 

mathematical modeling and molecular dynamics, to understand how His69 

functions as a pH sensor. Taken together, our work explains the structural and 

mechanistic basis by which His69 regulates compartment-specific furin activation 

and provides insight into how other PCs may regulate their own activation. 

3.3 Materials and Methods 

 Expression and purification 

Codon-optimized genes encoding human PROFUR and mouse PROPC1 were 

synthesized from CELTEK genes, cloned into pET11a, and expressed in 

BL21(DE3) as previously described [214]. Inclusion bodies containing MATFUR 

and MATPC1 were isolated and proteins were purified using reverse-phase 

chromatography. Enzymatically active MATFUR and MATPC1 were obtained from 

recombinants expressing human VV:fur/f/ha/ΔTCK and mouse VV:mPC1 in 

BSC40 cells as previously described [59]. Cos-7 cells were maintained in 

Dulbecco's modified Eagle's medium high glucose medium (HyClone) 

containing 10% fetal bovine serum and 1% penicillin–streptomycin. Cells were 

incubated at 37 °C in a 5% CO2 environment as previously described [59]. 

 CD studies 

CD measurements were performed on an AVIV model 215 CD spectrometer 

using a 1 mm path-length cell at 4 C as described earlier [17], [212]. Briefly, 

propeptide samples (4 mg/mL) stored in 6 M GdnHCl (to avoid side-chain 
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modifications commonly seen when samples are stored in urea) were diluted to a 

final concentration of 0.4 mg/mL) and were refolded using stepwise dialysis 

against 50 mM cacodylate buffer, pH 7.4, containing 150 mM KCl (Buffer A) and 

decreasing amounts of urea. The proteins were dialyzed twice in Buffer A 

without urea, against Buffer A in different pH values (5.0–7.0), and then 

subjected to ultracentrifugation in TLA-100 for 30 min to remove particulates. 

The CD spectra between 200 and 260 nm were averaged over three independent 

experiments and plotted as a change in ellipticity at 222 nm as a function of pH 

and plotted as [θ] molar ellipticity deg cm2 dmol− 1. The PROSUB-C structure was 

obtained by a difference spectra between the cleaved PROSUB:S221C-subtilisin 

complex and mature subtilisin as described earlier [14]. 

Near-UV CD measurements were performed in 1 cm path length cells at 

4oC. Titrations were performed by adding small amount of acid or base using an 

automated syringe pump, mixing for 2 minutes with a small stir bar within the 

cuvette and direct automated measurement of the resulting pH with a small pH-

electrode (Microelectrodes Inc.). After mixing the CD-signal at 285 nm was 

measured and recorded. After titration from pH 8 to pH 4, the titration solution 

was changed and the very same sample was titrated back to pH 8 to demonstrate 

reversibility of the structural change. 

 MD simulations 

1SCJ [16], 1KN6 [215] and homology models of furin derived from 1KN6, and 

aqualysin derived from 1SCJ were used as Protein Data Bank models for PROSUB, 

PROPC1, PROFUR, and PROAQU, respectively. Homology models were built using 
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either SWISS-MODEL or MODELLER. All hydrogen and non-protein atoms 

were removed and hydrogen was added back using the autoPSF function in 

NAMD [216]. Structures were solvated in cubes with TIP3P explicit water using 

VMD, with a minimum distance of 12 Å to the edge. All simulations were carried 

out with periodic boundary conditions, particle mesh Ewald for long-range 

electrostatics, and a 12-Å cutoff for non-bonded interactions with the 

CHARMM22 force field using NAMD (version 2.5). Snapshots were saved every 

10 ps using a time step of 1 fs. The system was equilibrated by first constraining 

the protein and minimizing solvent for 1000 steps using a conjugate gradient 

algorithm. The solvent was initially equilibrated for 100 ps and then fully 

constrained, and the protein was minimized for 500 steps. The entire system was 

subsequently minimized and used in the simulations. MD simulations require 

defining of a potential function or a force field that describes the ways through 

which particles in a simulation will interact. Force fields can be defined at many 

levels of physical accuracy and those used in MD simulations often embody a 

classical treatment of particle-particle interactions, which can reproduce 

structural and conformational changes, but usually cannot reproduce precise 

chemical reactions. Therefore, to simulate the pH-dependent protonation 

reactions, we have approximated the pH environment by predetermining the 

protonation state in the starting structure, an approach that has been extensively 

employed in the field of molecular dynamics. For pH 7, we used the HSD 

parameters for histidine residues, which represent an uncharged side-chain, with 

a proton bound to the nitrogen atom in the delta position. To simulate an 
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environment of pH 6, we used the HSP parameter, which represents a positively 

charged histidine with protons bound to both nitrogen atoms. For testing the 

robustness of our simulations, we took two different models of PROFUR and 

PROPC1 and repeated the simulations as described above. An adjustment of the 

pH to exact values would require a prediction of the pKa values of individual 

residues, which was not practical in the given study. 

MD simulations for the His69Leu variant were performed in a manner 

identically to WT PROFUR after mutagenesis of His69 using VMD. 

 Amino acid content analysis 

Protein sequences for human furin, mouse PC1, subtilisin from Bacillus subtilis, 

and aqualysin from Thermus aquaticus families were obtained from the 50% 

sequence identity clusters UniRef50_P09958, UniRef50_P29120, 

UniRef50_P00782, and UniRef50_P08594 in the UniRef database, respectively. 

Subsequences representing the propeptides and the protease domain were 

extracted using annotation from the InterPro database entries IPR009020 and 

IPR000209, respectively. Sequences that were not annotated by both entries were 

omitted. The amino acid content of both domains in all sequences was calculated 

and averaged for each domain and protein family. Contents of amino acids 

belonging to individual groups were added and divided by the sum of their 

content in the whole UniProt database (release 2011_12). The multiple sequence 

alignment of selected prokaryotic and eukaryotic subtilases was obtained using 

ClustalW and colored using GeneDoc. 
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 Enzyme activity assays 

For all assays, 113 μM furin substrate (Abz-RVKRGLA-Tyr[3-NO2]) in dimethyl 

sulfoxide was incubated with 40 μL of secreted enzyme in 155 μL of 50 mM 

cacodylate buffer, pH 7.0, containing 1 mM CaCl2 and 50 mM KCl. Cacodylate 

buffer was used in all experiments to maintain consistency throughout the 

analyses. The assays were conducted on a SpectraMax-M2 spectrofluorometer 

equipped with a 96-well plate reader. Excitation wavelength was set at 320 nm 

while emission wavelength was set at 425 nm. The given values are averages of 

triplicate assays. The activity was normalized by quantifying the relative 

amounts of proteins secreted in the media using ImageJ software. 

 Isolation of in trans propeptide:protease complexes 

Since propeptides are potent competitive inhibitors of protease paralogs [214], 

PRO:MAT complexes in trans were generated by adding 10-fold excess of PROFUR 

and PROPC1 (~ 2 nM) to MATFUR or MATPC1 (~ 0.2 nM) in 50 mM cacodylate buffer, 

at different pH values (5.0 to 7.4) containing 150 mM KCl in a 96-well quartz 

plate. Complexes were incubated for 30 min at room temperature and the 

activities were assayed as described earlier [59]. The percent activity at each pH 

was calculated using the activity of uninhibited protease as a control. 
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3.4 Results 

 Eukaryotic propeptides harbor an internal cleavage site loop that is 

missing within their prokaryotic paralogs 

To understand how eukaryotic propeptides can mediate compartment‐specific 

activation of their cognate protease domains, we compared sequences and 

structures of prokaryotic propeptides - subtilisin (PROSUB) and aqualysin I 

(PROAQU)  - with eukaryotic propeptides - PROPC1 and PROFUR. While several 

laboratories have analyzed the sequences and structures of propeptides, no 

detailed comparison between the sequences and structures of the propeptides of 

prokaryotic and eukaryotic proteins has been conducted to date. PROAQU was 

selected because unlike its intrinsically unfolded prokaryotic homologue PROSUB, 

PROAQU adopts a well-defined structure and chaperones folding of its cognate 

protease domain. From the PC family members, we selected PROPC1 and PROFUR 

because despite significant sequence and structural similarity with prokaryotic 

orthologs (Figure 3-1A and B), they activate in different organelles along the 

proton gradient of the secretory pathway, a complexity missing in prokaryotes. 

Furin is optimally active at pH 6.5, consistent with its role in cleaving proprotein 

substrates in the mildly acidic environment of the TGN/endosomal system. PC1 

is optimally active at pH 5.5, consistent with its role in cleaving prohormone 

molecules in secretory granules. 

Amino acids absent between residues 75 and 81 in PROSUB (red box; Figure 

3-1A) coincide with organelle-specific cleavage sites within eukaryotes (red loop; 

Figure 3-1B). In prokaryotic subtilases, the secondary cleavage site is fairly 
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promiscuous and presumably occurs in the flexible region between β1 and α1 

(Figure 3-1B). Additionally, there are significant differences in residues 100–107 

within the propeptide domains between prokaryotic subtilisins and eukaryotic 

PCs. This C-terminal region harbors the primary cleavage site within 

propeptides and interacts with the substrate binding regions within cognate 

proteases to initiate activation. It is noteworthy that cellular substrates of PCs 

contain the consensus sequence [R/K]-Xn-[R/K]↓, identical to the primary 

cleavage site within propeptides [2]. Given the promiscuous specificity of 

bacterial subtilases when compared to the stringent substrate specificity of 

eukaryotic PCs, the differences between residues 100 and 107 reflect the 

requirement of PCs to cleave at highly conserved dibasic residues. This region 

reflects the divergence of propeptides from prokaryotes and eukaryotes to 

function with more cleavage specificity, likely due to the difference in cellular 

environment, namely, the inclusion of membrane-bound organelles in 

eukaryotes [2]. 

Since the previous chapter demonstrated an overall enrichment of 

histidine residues in the propeptides of eukaryotic subtilases, we next analyzed 

the fold increase in amino acid residues within the propeptides and cognate 

proteases within the specific protein families of this study with the UniProt 

database as our baseline (Figure 3-1C). The individual amino acid content for 

each family of propeptides and proteases was calculated and averaged. The 

contents of amino acids belonging to individual groups were added and divided 

by the sum of their content in the whole UniProt database (release 2011_12) to 
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obtain the fold change as described in Material and Methods. Fold values greater 

than 1 (varying shades of red) indicate residue enrichment in propeptide 

domains within an individual group, values less than 1 (varying shades of green) 

indicate depletion of specific residues within propeptides, while a value of 1 

(white) indicates no change. This graphical representation of the fold increase in 

specific groups of amino acid residues (Figure 3-1C) demonstrates that the His 

content in PROFUR and PROPC1 from eukaryotes is significantly greater than their 

cognate catalytic domains and prokaryotic paralogs. Furthermore, protease 

domains of prokaryotes are biased towards acidic and basic residues as 

demonstrated by Inouye et al. [217], [218], which was hypothesized to enhance 

kinetic stability within their catalytic domains [212]. The average composition of 

proteins in the UniProt database establishes histidine (2.27%) as the third least 

abundant residue and is ~4-fold less than leucine (9.67%), the most abundant 

residue. While propeptide domains generally display a bias for charged and 

polar residues when compared to proteases [217], it is noteworthy that within 

subtilases, only PROFUR and PROPC1 are rich in histidine content (Figure 3-1C) 

when compared with PROSUB and PROAQU and cognate catalytic domains.  

 CD spectroscopy demonstrates pH-dependent structural changes in 

eukaryotic propeptides 

Since the pKa (~ 6.0) of the imidazole side-chain of histidine is close to 

physiological pH, we next investigated whether small changes in proton 

concentration alter pH-dependent structural stability of propeptides in 

prokaryotes and eukaryotes. The secondary structures measured using CD 
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spectroscopy measured at pH 7.0 demonstrate that PROFUR and PROPC1 adopt 

structures similar to PROAQU and PROSUB-C complexed to subtilisin (Figure 3-2a). 

Since isolated PROSUB is intrinsically unstructured [16], the PROSUB-C structure 

was obtained by a difference spectra between the cleaved PROSUB:Ser221Cys-

subtilisin complex and mature subtilisin as described earlier [14].  

The pH-dependent structural stability of various propeptides was 

monitored by observing changes in negative ellipticity at 222nm as a function of 

pH (Figure 3-2b); as a representative example, we show the complete CD 

spectrum of PROFUR at the two ends of the pH range (pH 7.4 and pH 5.0) 

compared with a completely denatured PROFUR (Figure 3-2c). It is noteworthy 

that when the pH of the buffer is lowered from pH 7.4 to pH 5.0, PROFUR loses 

approximately 25% of its ellipticity at 222 nm when compared with the 

propeptide completely denatured in 8 M urea. Furthermore, changes in negative 

ellipticity at 222 nm as a function of pH (Figure 3-2b) suggest that the 

conformation of PROFUR tends to stabilize at approximately -2800deg cm2 dmol−1 

under acidic conditions but does not reach the ellipticity of completely unfolded 

PROFUR (approximately -20 deg cm2 dmol-1). This suggests that the changes in pH 

do not result in complete unfolding and that PROFUR may adopt a partially folded 

molten-globule-like state similar to that observed using NMR spectroscopy 

under acidic conditions [219]. The NMR data also suggest that PROPC1 and 

PROFUR do not aggregate in their isolated forms. 

When conformational changes of the propeptides as a function of pH are 

compared, it is evident that PROPC1 and PROFUR unfold at different pH values, 
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~5.5 and ~6.5, respectively (Figure 3-2B). Although the unfolding of PROPC1 is not 

complete at pH 5.0, the structure of PROPC1 at a pH below 5.0 was not analyzed 

because it is beyond the range of the buffering capacity of our system. While this 

prevents the accurate determination of the midpoint of unfolding transition in 

the case of PROPC1, changing buffer systems to accommodate lower pH is 

problematic because diverse ions can differentially influence structure, stability, 

and/or activity of the propeptide and protease system. Nonetheless, comparing 

the folding transition profiles of PROFUR and PROPC1 suggests that PROPC1 is more 

stable with regard to pH-dependent unfolding when compared with PROFUR. 

Under similar conditions, PROSUB and PROAQU are stable with minor changes in 

conformation. Due to its intrinsically unstructured state, PROSUB would not be 

expected to undergo conformational changes as a function of pH. However, 

studies have suggested that an increase in proton concentrations can induce 

molten-globule like states into unfolded proteins [220]–[223]. Our studies suggest 

that acid-induced folding is not observed in case of PROSUB. It is noteworthy that 

the pH-associated structural transitions PROPC1 and PROFUR correlate with 

organelle-specific pH values necessary for activating the mature catalytic 

domains, MATPC1 and MATFUR [33]. We next investigated whether propeptides 

alone are sufficient for pH-dependent activation of cognate proteases in vitro. 

 Swapping propeptides between PC1 and furin reassigns pH-dependent 

activation 

To monitor in vitro activation of propeptide:protease inhibition complexes, we 

measured enzyme activity as a function of pH (see Materials and Methods). 
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Figure 3-2d demonstrates that PROFUR:MATFUR and PROPC1:MATPC1 show 

maximum activation at pH ~6.5 and pH ~5.5, respectively, consistent with the 

optimal activation pH of their zymogens [33]. However, the PROPC1:MATFUR 

complex (wherein PROPC1 substitutes PROFUR) forces the catalytic domain of furin 

(MATFUR) to now display PC1-like activation. Similarly, replacing PROPC1 with 

PROFUR causes the catalytic domain, MATPC1, to alter its activation to mimic furin 

(pH ~6.5; Figure 3-2d). Together, the CD spectroscopy, sequence/structural 

congruence with PROSUB, and the reassignment of activation pH by swapping 

PROFUR and PROPC1 support the hypothesis that eukaryotic propeptides 

recognize and regulate pH-dependent activation of their cognate proteases in 

vitro. This finding could also be confirmed in vivo using constructs that trap 

complexes in the endoplasmic reticulum [190]. 

 Histidine protonation alters conformational dynamics of eukaryotic 

propeptides 

Based on experimental studies, we had hypothesized that the protonation of 

His69 and potentially other histidine residues may induce conformational 

changes within PROFUR to mediate pH-dependent activation [189]. Moreover, 

although His69 is conserved, PROPC1 undergoes its pH-dependent activation at a 

much lower pH (5.0). To better understand how histidine protonation may 

influence propeptide conformations, we conducted MD simulations on PROFUR 

and PROPC1 with unprotonated (pH 7) or protonated (pH 6) histidine residues, 

using PROSUB and PROAQU from prokaryotes as controls. MD simulations can 

provide information that complements biophysical and biochemical studies on 
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mechanisms of propeptide-mediated protease activation in eukaryotes [161]. 

Early MD simulations of the unfolding of reduced bovine pancreatic trypsin 

inhibitor on a 500 ps time scale suggest the formation of a molten-globule-like 

state that was compact but expanded relative to the native bovine pancreatic 

trypsin inhibitor (11–25%), which is consistent with experimental data [224], 

[225]. MD simulations have also analyzed the structure and fluctuations of 

“native” apomyoglobin in aqueous solution for a period of greater than 0.5 ns 

and have yielded a detailed model for structure and fluctuations in 

apomyoglobin, which complements the experimental studies [226]. Unfolding 

simulations using MD methods have yielded insights into the mechanism of 

extreme unfolding cooperativity in the kinetically stable alpha-lytic protease, a 

protein that exploits the mechanism of propeptide-dependent folding [227]. In 

these studies, the simulated alpha-lytic protease unfolding pathway produces a 

robust transition‐state ensemble that is observed within the 10 ns simulation 

and is consistent with prior biochemical experiments demonstrating that 

unfolding proceeds through a preferential disruption of the domain interface. 

Furthermore, the authors demonstrate that αLP unfolds extremely 

cooperatively, while trypsin, a protein that folds independent of its propeptide, 

undergoes gradual unfolding under identical conditions of simulations. MD 

simulation studies have also been used to investigate the role of hydrogen 

bonding involving the backbone in hen egg white lysozyme, using native as well 

as partly and fully thionated lysozyme [228]. The results of the simulations show 

that the structural properties of fully thionated lysozyme clearly differ from 
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those of the native protein, while partly thionated lysozyme changes only 

slightly when compared to native lysozyme. In these studies, the extent of 

observed unfolding remains constant after 10 ns. Hence, in our studies, MD 

simulations are performed on a 10 ns time scale. We compared the similarity of 

structures to the starting conformation by measuring the root-mean-square 

deviation (RMSD) values at Cα in every residue of the propeptide domain, along 

equally spaced snapshots of the simulation trajectory. Simulations suggest that 

while PROSUB and PROAQU are stable, PROPC1 and PROFUR display enhanced 

conformational dynamics (Figure 3-3 A and B). Our time-evolved, pH-

dependent, residue-specific conformational dynamics suggest that although 

eukaryotic propeptides display local fluctuations at neutral pH, histidine 

protonation enhances overall movement and potentially exposes the 

compartment-specific second cleavage site loop for proteolysis in PROFUR 

(residues 70 to 80) when compared with PROPC1, which is more stable at pH ~6.0-

7.0 (Figure 3-3A). Under identical conditions, PROSUB and PROAQU from 

prokaryotes display remarkable stability towards histidine protonation (Figure 

3-3B). To further dissect the structural changes, we plotted the global unfolding 

of PROFUR and PROPC1 as a function of time and at the two different pH values 

(Figure 3-3C). Global unfolding (Q score), which was computed using the 

fraction of native contacts that are retained as a function of time during the 

simulation at different pH values, demonstrates that PROFUR appears to undergo 

significant changes in the native-like contacts upon protonation of the histidine 
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residues. Under similar conditions, PROPC1 appears to be more stable at both pH 

values. 

Since our model for PROFUR is based on a homology model derived from 

the NMR structure of PROPC1, it can be argued that the model may not 

correspond to an energetically favorable conformation and the simulations may 

be biased by the homology model. To address this issue, we have performed two 

additional independent simulations on PROFUR and PROPC1 and for a longer time 

scale (Figure 3-3D). To analyze the structural changes, we plotted the RMSD of 

the core and the secondary cleavage site loop between the initial structure and 

equally spaced snapshots of the trajectory of simulation, both as a function of 

time and at two different pH values (Figure 3-3D). While PROPC1 remained stable 

at both pH values, PROFUR showed increasing RMSD values throughout the 

simulation at pH 6, while remaining stable at pH 7. The results confirm our 

earlier simulations on a shorter time scale and suggest that 

protonation/deprotonation of histidine residues play a role in the conformational 

destabilization of PROFUR compared to PROPC1. While our simulations do not 

provide information on why PROPC1 is more stable that PROFUR towards pH-

dependent unfolding, they corroborate our experimental observations on the pH-

dependent stabilities of the propeptides. His69 in furin and the corresponding His 

residue in PC1 reside closely to other histidine residues and charged residues in 

the cleavage loop (Figure 3-3E). The interaction of this protonated His with these 

other residues may provide key insights into why the activation pH values of 

furin and PC1 differ dramatically. 
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Together with our biophysical, biochemical, and cell-based studies, the 

MD simulations suggest that upon protonation of His residues, PROFUR 

undergoes conformational changes that may potentially destabilize the 

propeptide domain to expose the internal cleavage site for proteolysis. Given that 

PROPC1 undergoes activation at pH ~5.5 in the DCSGs and remains stable upon 

His protonation, we can conclude that either additional residues must play a role 

in the activation of PROPC or the time scale of the simulations is too short to 

capture the unfolding event. 

 The constitutively deprotonated mimic of the pH Sensor, His69Leu-

PROFUR, is more stable than WT-PROFUR 

To understand the mechanism by which His69 functions as a pH sensor, we 

undertook detailed structural analyses of WT-PROFUR and the His69Leu-PROFUR 

variant reported previously, which mimics the nonprotonated state of the pH 

sensor, using CD and intrinsic fluorescence spectroscopy. Prior studies indicate 

that the His69Leu-PROFUR chaperones efficient folding of the catalytic domain of 

furin (MATFUR), as measured by autoprocessing of His69Leu-PROFUR to form a 

stable His69Leu-PROFUR-MATFUR complex [189]. However, unlike the WT-PROFUR-

MATFUR complex, His69Leu-PROFUR-MATFUR remains trapped in a stable state, 

unable to become active at acidic pH. On the other hand, the His69Lys-PROFUR 

variant, which represents a constitutively protonated state of the pH sensor, fails 

to fold correctly and is rapidly degraded inside the cell [189]. Hence, it was not 

used in our analyses. 
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The far UV CD spectrum of the isolated WT-PROFUR revealed the existence 

of a significant secondary structure (Figure 3-4A). Substituting the pH sensor, 

His69, with Leu caused a slight increase in the secondary structure, as seen by the 

shift in the peak from 206 to 208 nm with a concomitant increase in negative 

ellipticity at 222 nm in His69Leu-PROFUR. Because α-helices absorb strongly at 222 

nm and 208 nm [229], our results suggest that substituting residues that mimic 

the deprotonated state of the pH sensor marginally increase the α-helicity within 

the isolated His69Leu-PROFUR. 

Likewise, we examined the tertiary structure of the protein by exciting the 

protein using a wavelength of 295 nm where the tryptophan emission spectrum 

is dominant over the weaker tyrosine and phenylalanine fluorescence [230]–

[232]. As seen in Figure 3-4B, WT-PROFUR displays a maximum peak at 342 nm. 

Under identical conditions, the intrinsic tryptophan fluorescence is enhanced 

slightly with a blue shift in its emission spectrum (maximum at 339 nm) when 

His69 is substituted by leucine. This indicates that the tryptophan residues are 

less exposed to solvent when His69 is replaced by a leucine, suggesting that the 

structure may be more packed. 

To better understand the extent of stabilization, we next measured the 

thermodynamic stability of WT-PROFUR and its variant relative to their unfolded 

states. Thermodynamic stability occurs when a system is in its lowest energy 

state when compared with all other accessible states within the same reaction 

environment. It can be measured by monitoring changes in the secondary 

structure with progressive addition of chaotropes such as urea or guanidine 



109 

 

hydrochloride [233]. Figure 3-4C compares chaotrope-induced conformational 

changes in WT-PROFUR or His69Leu-PROFUR using circular dichroism 

spectroscopy. The transitions were fitted using a standard Marquardt algorithm 

with constraints for the base line set from using the circular dichroism ellipticity 

of the folded and unfolded proteins [17], [212]. The data demonstrate that 

His69Leu-PROFUR (ΔGNU =1.424 ± 0.12 kcal) is more stable than WT-PROFUR (ΔGNU 

= 0.921 ± 0.09 kcal/mol). This indicates that the constitutively deprotonated 

variant His69Leu -PROFUR is stabilized by ~0.5 kcal/mol when compared with WT-

PROFUR. 

Because propeptides are bona fide temporary inhibitors of proteases [217], 

we next asked how an increase in thermodynamic stability affects the inhibitory 

function of isolated WT-PROFUR and His69Leu-PROFUR by comparing IC50 values 

as described under “Experimental Procedures” (Figure 3-4D). Analysis of the 

data gives an estimated IC50 concentration for WT-PROFUR, at pH 6.5, of ~33 nM, 

3-fold higher than that estimated for His69Leu-PROFUR (IC50 ~11 nM). This 

establishes a link between the increased thermodynamic stability of the His69Leu 

substitution and its ability to act as an inhibitor of MATFUR, as indicated by the 

decrease in IC50. Taken together, the circular dichroism and fluorescence spectra, 

along with the analyses of thermodynamic stabilities, suggest that the 

nonprotonated mimic of the pH sensor subtly increases both secondary and 

tertiary structure, and enhances the overall thermodynamic stability and 

inhibitory function of His69Leu-PROFUR. 
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  His69Leu-PROFUR is more stable toward pH-dependent unfolding 

Because pro-furin undergoes its primary cleavage in the neutral environment of 

the ER to form a cleaved, non-covalently associated PROFUR-MATFUR complex 

that transits in to the mildly acidic TGN to become active, we next examined how 

changes in pH affect the structure, stability, and binding affinity of WT-PROFUR 

and His69Leu-PROFUR. Propeptides were purified, refolded, and analyzed for 

their secondary structure content using CD spectroscopy as described 

(“Materials and Methods”). The results show that WT-PROFUR undergoes pH-

dependent unfolding with an isosbestic point at ~208 nm (Figure 3-5A). A plot of 

the changes in CD signal at 222 nm as a function of pH suggests that WT-PROFUR 

undergoes a cooperative sigmoidal transition to a more unstructured state. 

Interestingly, the midpoint of this transition occurs at pH ~6.0, close to the 

optimal pH for activation of furin. Under identical conditions, His69Leu-PROFUR is 

more stable. Although it does undergo some pH-dependent unfolding, with a 

midpoint of transition, likewise, at pH ~6.0, it is critical to note that not only it is 

more stable at neutral pH than the WT, but also that it is not unfolded to the 

same extent, suggesting that the unfolding response to pH is blunted. In 

comparison, the change in structure of isolated MATFUR across this pH range is 

not significant (Figure 3-5C, colored lines), nor does the addition of glycerol 

markedly change the structure of MATFUR (gray line). Taken together, this 

suggests that the protonation status of His69 may drive pH-dependent 

conformational changes in the isolated furin propeptide. Our results indicate that 

lowering the pH triggers a transition between a folded state at pH 7.4 and a less 
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folded, but not completely unstructured, state at pH 5.0. Mutations of titratable 

group His69 to leucine marginally increase secondary structure at pH 7.4 and, to a 

larger extent, at pH 5.0 (Figure 3-5B), suggesting that protonation of His69 is 

essential for the pH-dependent transition between the two states. 

Next we measured the changes in thermodynamic stability of the WT-

PROFUR and His69Leu-PROFUR, as described earlier (Figure 3-5C), under conditions 

of varied pH. Our data suggest that the overall thermodynamic stability of the 

proteins decreases when the pH becomes more acidic (Figure 3-5D). The greater 

change in thermodynamic stability of His69Leu-PROFUR as a function of pH 

suggested that the His69Leu substitution enhanced the thermodynamic stability 

in the isolated propeptide when compared with WT-PROFUR. 

Because the concentration of protons affects the conformation of WT-

PROFUR and His69Leu-PROFUR, we next measured how this conformational change 

affects the IC50 values as a function of pH (Figure 3-5D). The data demonstrate 

that the IC50 values for WT-PROFUR and His69Leu-PROFUR change as a function of 

pH, with the maximum inhibitory concentration required for both proteins at pH 

6.0 (Figure 3-5D) and the midpoint of the conformational transition being 

ascertained using CD spectroscopy (Figure 3-5B). Moreover, three important 

features in Figure 3-5D are noteworthy. 1) The IC50 value for WT-PROFUR at pH 

7.4 (~12 nM) is about 4-fold higher than at pH 6.0 (IC50 ~50 nM); 2) the IC50 value 

for His69Leu-PROFUR at pH 6.0 (~17 nM) is about 3-fold lower than that for WT-

PROFUR (IC50 ~50 nM); and 3) when the pH is lower than the optimum for 

activation (pH ∼6.0), the IC50 value drops to lower concentrations of propeptides 
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for both WT-PROFUR and His69Leu-PROFUR, suggesting an apparent increase in 

binding affinity. To examine whether pH denatures or inactivates MATFUR, we 

also monitored changes in the secondary structure (Figure 3-5C) and the activity 

of furin across this pH range with no propeptide present (Figure 3-5F). It is 

worth noting that although the activity of furin does decrease as pH drops, it 

remains active, with an activity at pH 5.0 roughly 50% of that observed at pH 6.0, 

where IC50 is highest. This suggests that furin remains structurally stable, 

indicating that increased affinity at pH 5.0 is likely a chemical phenomenon. 

Hence, the change in IC50, which is roughly 40-fold lower at pH 5.0 than at pH 

6.0, cannot be explained by changes in activity alone. We are currently unable to 

examine directly how pH affects the propeptide-furin complex because of the 

high concentrations of mature furin required to create stoichiometric complexes.  

 Molecular Dynamics of WT and His69Leu PROFUR: 

We hypothesized that introduction of the His69Leu into our model should 

stabilize the structure. To test this hypothesis, we first compared the root mean 

square fluctuations (RMSF) values of WT-PROFUR at pH 7.0 and pH 6.0 (Figure 

3-6A). Although histidine protonation increased fluctuations at almost all 

residues, the highest increase was observed in the loop flanked by β2 and β3 in 

proximity of residue 61 and within the C-terminal half of the cleavage loop. The 

largest increase was observed for His80, whereas His69 did not show any change 

upon protonation and remained stable. The His69Leu substitution reduced 

conformational fluctuations during the simulation at pH 7, with an even greater 
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stabilization observed at pH 6. Interestingly, in His69Leu-PROFUR, His80 appears to 

be the most stabilized compared with residues at pH 6. 

Analysis of the root mean square deviation values compared with the 

starting structure (Figure 3-6B) as well as ribbon representation of the starting 

and end structures (Figure 3-6C) revealed that during the simulation, the core 

region remains largely stable at pH 7.0 in the WT and His69Leu-PROFUR. It is 

important to note that the loop regions, which had a very high root mean square 

deviation during the simulation of WT-PROFUR, were stabilized substantially by 

the His69Leu variant. At pH 6, the core domain of the WT lost its native structure, 

indicated by rising root mean square deviation values. Compared with WT-

PROFUR, the His69Leu variant stabilized the core and loop region significantly, 

although a slight increase in root mean square deviation was still observed. 

Hence, our MD simulations suggest that although the loop region shows a 

high degree of flexibility during simulations using both protonated and 

unprotonated histidines in WT-PROFUR, the core remains stable in simulations 

using unprotonated histidines but loses structure in simulations using 

protonated histidines. Introduction of the His69Leu substitution into our model 

greatly increased stability of the core region during our simulation using 

protonated histidines, confirming that protonation of His69 alone plays an 

important role in the pH-mediated structural changes. Interestingly, His69Leu 

mutations also lead to an increase in stability in the loop regions that stayed 

buried during the simulation. Taken together, the MD simulations are consistent 

with our hypothesis that changes in physical properties of the side-chain at the 
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pH sensor position has a strong influence on the structure of the activation loop 

and also suggest that leucine, because of its greater hydrophobicity, may not be a 

faithful representation of unprotonated histidine. 

 Protonation of histidine residues in addition to His69 are involved in 

pH-sensing 

Since the His69Leu variant still displays pH-dependent conformational changes 

(Figure 3-5) we asked whether the conformational change in WT PROFUR is 

caused by two protonation events. To do this we used Near-UV circular 

dichroism, which characterizes the structural environment of tyrosine and 

tryptophan residues. PROFUR displays strikingly different Near-UV CD spectra at 

low and high pH (Figure 3-7A). Titration from pH 8.0 to 4.0 using 200 mM HCl 

showed a sigmoidal transition of the Near-UV signal at 285nm, that was 

perfectly reversible if the same solution was titrated back to pH 8.0 using 200 

mM NaOH (Figure 3-7B). This indicates that the pH-dependent conformational 

transition is indeed thermodynamically controlled and that pH and not ionic 

strength is modulating PROFUR structure. A fit of equation 10 derived in Chapter 

1.2.2.2 resulted in an apparent pKa of 6.32±0.04 and an exponent n of 1.6±0.2. 

This indicates that more than one titratable site is involved in the structural 

transition, as one would expect n of 1 for titration of a single site. The same 

experiment performed for the His69Leu variant resulted in an apparent pKa of 

6.05±0.07 and an exponent n of 0.9±0.2 (Figure 3-7C). This again is consistent with 

an additional titrating residue that is coupled to the structure of PROFUR. 
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To examine the possibility that another histidine residue is the additional 

titrating site, individual histidine residues in PROFUR were mutated to leucine or 

arginine to mimic the protonated and unprotonated form of histidine, 

respectively. Secondary structures of the various variants were then analyzed 

using far-UV circular dichroism with the wild-type PROFUR as a control (Figure 

3-8). If protonation of a specific histidine residue contributes to the loss of 

secondary structure in PROFUR at low pH, we would expect that mutation of this 

histidine to an arginine may lead to loss of secondary structure at neutral pH, 

while mutation to leucine may reduce the loss of secondary structure at acidic 

pH. Consistent with earlier result, the His69Leu variant stabilizes PROFUR against 

unfolding under conditions of acidic pH, although the H69R variant does not 

substantially destabilize the structure of PROFUR at neutral pH. It is noteworthy 

that His52Arg leads to a loss of secondary structure at neutral pH, while a 

His52Leu variant stabilizes PROFUR at acidic pH, indicating a role of His52 in pH-

mediated structural changes. Surprisingly, both His66 variants strongly stabilize 

the secondary structure of PROFUR at acidic pH, while having no substantial 

effect at neutral pH. Substitution of leucine and arginine at His80 and His84 

display no substantial effect on secondary structure loss at both acidic and basic 

conditions, suggesting that these histidine residues do not augment the 

sensitivity of the pH sensor. In summary these data suggest that both His52 and 

His66 might contribute to the pH-mediated structural changes of PROFUR. 
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3.5 Discussion 

 Propeptides are sufficient to impart pH-sensing 

Our work provides insight as to why nature may have imposed differential 

selective constraints that alter both sequence and the asymmetrical distribution 

of histidine residues in two functional domains, namely, the propeptides and 

their cognate catalytic domains within furin and PC1. In this article, we 

demonstrate that PROFUR and PROPC1 are enriched in histidine content when 

compared with cognate proteases and prokaryotic orthologs (Figure 3-1C), 

consistent with the general enrichement of histidine in euklaryotic propeptides 

described in chapter 2. Spectroscopic studies demonstrate that changes in pH can 

induce conformational changes only within PROFUR and PROPC1, while their 

prokaryotic orthologs, PROSUB and PROAQU, are largely unaffected (Figure 3-2A 

and B). Since swapping propeptides between eukaryotic paralogs transfers pH-

dependent protease activation in a propeptide-dictated manner (Figure 3-2D), 

while allowing folding and cellular localization [191], our results argue that 

PROFUR and PROPC1 may have evolved from prokaryotic orthologs to encode 

histidine-driven pH sensors that enable furin and PC1 to recognize and adapt to 

cellular organelles. Our MD simulations suggest that histidine protonation may 

be sufficient to induce conformational changes that enable the second activating 

cleavage of the propeptide and are consistent with our spectroscopic analysis. 

While it would be interesting to compare the structures of the chimeras with 

those of the wild-type complexes and examine how their structures are affected 
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by changes in pH, such experimentation is currently unfeasible due to the high 

concentrations of protein required for CD spectroscopic analysis. 

It is important to note that despite histidine enrichment, the specific 

location of these residues within the amino acid sequences of propeptides can 

vary significantly (Figure 3-1A and Figure 3-3E). Moreover, the His69 that was 

identified as a primary pH sensor in PROFUR [59] is also conserved in PROPC1, 

although the pH-dependent activation of furin and PC1 differs significantly [33]. 

This suggests that additional undetermined residues and/or cellular factors must 

play a significant role in pH-dependent activation of their cognate protease 

domains. Propeptides also contain several charged residues [217] that may 

interact with protonated and non-protonated histidine residues, thereby enabling 

subtleties in their sensitivity to compartment-specific pH. Hence, our studies 

emphasize the necessity of more detailed analyses of the differences between pH 

sensors of PROFUR and PROPC1 using detailed site-directed mutagenesis studies, 

to tease out the interplay with residues in the proximity of their cognate pH 

sensors. 

 Mechanism of pH-dependent activation of furin 

There are at least three possible mechanisms (Figure 3-9) through which the 

stoichiometric inhibition complex (PROFUR-MATFUR) can become active upon 

reaching the TGN. The first mechanism posits that protonation of the pH sensor, 

along with other histidine residues, can induce dissociation of PROFUR from 

MATFUR, which then triggers the second proteolytic cleavage [215], [234]. The 

second mechanism postulates that pH causes partial unfolding of the propeptide, 
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which enables the second cleavage site to access the active site, promoting 

proteolysis in a cis reaction. The third mechanism hypothesizes that protonation 

of the pH sensor induces conformational changes that allow a mature furin 

molecule to access the loop that harbors the second internal cleavage site in trans 

[2], [59]. In these cases, subsequent cleavage facilitates propeptide dissociation. 

To test these possibilities, we undertook various in vitro experiments. Our 

results are most consistent with the hypothesis that the cleavage loop is critical to 

the overall structure and stability of the propeptide for the following reasons. 

The data demonstrate that a 25-fold increase in proton concentration 

observed between pH 7.5–6.0 causes a ~3.5-fold change in apparent binding 

affinity for WT-PROFUR. Moreover, the His69Leu pH sensor variant affects the 

apparent binding affinity ~3.5-fold. To further test this, we built a mathematical 

model that assumed that protonation of the pH sensor promoted dissociation 

(data no shown here, but in [235]), allowing it to be processed. By varying Ka, we 

determined the effect of varying the affinity between the propeptide and 

protease on the rate of activation, which is a stochastic process in bacterial 

subtilisin [17]. Our simulation results demonstrate that ~10-fold changes in the 

affinity between PROFUR and MATFUR have only a minimal effect on the rate of 

activation within physiologically relevant range of values. It is noteworthy that 

our experimental data establish that the change in affinity because of the 

substitution is ~3-fold, which argues that dissociation alone cannot account for 

lack of activation of the His69Leu-PROFUR-MATFUR complex observed in cell-based 

studies. 
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MD simulations suggest that His69 protonation affects furin activation by 

increasing the conformational dynamics of the cleavage loop. At acidic pH, 

histidine residues within WT-PROFUR are protonated, including the pH sensor, 

His69. However, when His69 is replaced by Leu, the conformational dynamics of 

the loop are reduced dramatically, despite all of the remaining histidine residues 

being protonated (Figure 3-6). Hence, the protonation status of His69 alone affects 

the dynamics of the activation loop of the wild-type and mutant propeptides at 

two different pHs. Our simulations suggest that at pH 6.0, where the imidazole 

side-chain of histidine is protonated, a dramatic movement in the loop region of 

PROFUR precedes the overall unfolding of the propeptide domain. This movement 

is reduced substantially in the case of the His69Leu variant, resulting in 

diminished unfolding of the propeptide as seen in Figure 3-6. 

It is important to note that His69 is solvent-accessible yet abuts a pocket 

formed partly by the hydrophobic core residues. Above the pH optimum of 

activation (pH > 7.0), the packing of the deprotonated His69 into the core 

maintains a well packed structure that favors the bound state. However, upon 

protonation, the imidazole ring becomes charged, disrupting the packing and 

resulting in destabilization and local unfolding that exposes the cleavage site. 

Hence, the results of our experimental and simulated data indicate that 

structural changes alter the accessibility of the cleavage site, thus raising the 

question of how the cleavage site becomes available to the active site. Although 

we cannot definitely distinguish between the possibility that the loop movement 

simply moves the cleavage site into a position more accessible to the active site in 
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cis, or that there is a larger destabilization of the packing of the hydrophobic core 

that allows processing by a second molecule of furin in trans (Figure 3-9), 

findings reported previously may lend some insight. In earlier work we observed 

that when the pH sensor, His69, was mutated to leucine, no activation of furin 

takes place under basal conditions [59]. Experiments where excess active furin 

was added to the inhibition complex indicated that at a non-permissive pH, 

exogenous furin was unable to affect activation of the inhibited furin. This 

suggests that the cleavage loop is inaccessible to free furin molecules at a pH 

outside of its optimum. Therefore, we argue that activation is mediated by 

proteolysis permitted by movement in the cleavage loop that only occurs upon 

protonation of the pH sensor and that dissociation occurs subsequently to 

processing. 

Given this model, it is interesting to consider the possibility that activation 

is not concomitant with processing but, rather, that the C-terminal part of the 

propeptide sits in the substrate binding pocket and likely remains bound there 

for a period of time before it too dissociates to release inhibition. This is 

consistent with studies that demonstrate that the C-terminal propeptides 

fragments are potent inhibitors of furin [236], [237]. We do not know whether, 

upon cleavage, there is a change in affinity or structure or if another protease 

plays a role in the dissociation [238]. We can speculate that after the propeptide is 

cleaved at Arg75, the shorter peptide fragment that lies in the substrate binding 

pocket is simply too short to make efficient contacts with residues of the protease 

and dissociates or, alternatively, that the cleavage allows a structural change to 
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take place that promotes dissociation. A final alternative possibility is that the 

peptide fragment then becomes a substrate for cleavage in trans by another 

protease, such as carboxypeptidase [239]. Although we cannot yet distinguish 

between these possibilities, future work will undoubtedly shed further light on 

this step of activation.  

 Implications of the pH Sensor in the activation of proprotein 

convertases 

The data presented here suggest an overarching model for activation of the PCs 

using furin as an example. Upon entering its window of activation, His69, the pH-

sensor in furin, is protonated to destabilize the hydrophobic pocket in which the 

pH sensor sits. Destabilization pushes the cleavage loop outward, thus allowing 

the catalytic site access to the secondary cleavage site. At the same time, a certain 

amount of flexibility in the association of the propeptide with the protease 

domain is preserved, which allows this cleavage to act as a finely tuned trigger.  

In this work, we have employed biophysical, biochemical, and 

computational approaches to investigate pH-dependent activation of furin, the 

canonical proprotein convertase. Our results provide insight into the way in 

which mature furin recognizes and responds to the changing pH of the secretory 

pathway and allow us to propose a mechanism for regulated activation. We have 

demonstrated that the propeptides of furin and PC1 alone contain information 

necessary for their compartment-specific activation. However, the residue that 

corresponds to His69 in furin is conserved within all PCs, suggesting that 

additional factors must augment the subtle differences between the pH optima of 



122 

 

individual PCs. This may be in part mediated by the distribution of additional 

histidines, as we demonstrate that in the case of PROFUR additional histidine 

contribute to pH-dependent conformational changes (Figure 3-7 and Figure 3-8), 

and other charged residues within the propeptides of PCs.  
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Figure 3-1: Comparison of sequences, structures, evolution, and 

composition biases of propeptides in prokaryotic and eukaryotic subtilases.  

The pink and gray background in (a) through (d) indicates prokaryotes and 

eukaryotes, respectively. (a) Multiple sequence alignment (MSA) displaying 

conservation between eukaryotic subtilases and prokaryotic orthologs. Numbering is 

based on furin. Residues shaded black are 100% conserved, those shaded dark gray 

are > 80% conserved, and those shaded light gray are > 50% conserved. The 

conserved pH sensor in furin is shaded green and the secondary cleavage loop is 

indicated by the red box. Red X's represent an insertion of five residues in aqualysin. 

Pink shading represents prokaryotes while the light gray represents eukaryotes. 

Secondary structures displayed below MSA are based on PROPC1 (1KN6). Motifs N1 

and N2 depict folding nucleation sites for MATSUB. (b) Structures of propeptides 

displayed as ribbon diagrams. PROSUB structure was extracted from the 

propeptide:subtilisin (1SCJ), while PROAQU structure is a homology model based on 

1SCJ and 2W2M. The structure of PROPC1 is derived from the NMR (1KN6) while 

PROFUR represents a homology model of PROPC1. (c) Heat map displaying amino acid 

content within the propeptides and catalytic domains of prokaryotic subtilisin and 

aqualysin and eukaryotic PCs, furin and PC1. Protein sequences for furin (n = 26), 

PC1 (n = 14), subtilisin (n = 69), and aqualysin (n = 7) families were obtained from 

the 50% sequence identity clusters UniRef50_P09958, UniRef50_P29120, 

UniRef50_P00782, and UniRef50_P08594 in the UniRef database, respectively. 

Amino acid content for each family of propeptides and protease domains was 

calculated and averaged. Contents of amino acids belonging to individual groups 

were added and divided by the sum of their content in the whole UniProt database 

(release 2011_12) to obtain the fold change. Within an individual group, fold values 

greater than 1 indicate residue enrichment, values less than 1 indicate residue 

depletion, while a value of 1 indicates no change. 
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Figure 3-2: pH-dependent structure and function of propeptides.   

(a) Secondary structures determined using CD spectroscopy performed at pH 7.0 

and plotted as molar ellipticity [θ] deg cm2 dmol− 1. (b) Structural stability of 

propeptides monitored by changes in ellipticity at 222 nm as a function of pH. (c) 

The secondary structure of PROFUR at pH 7.4 and 5.0, compared with completely 

denatured furin. The arrow marks 222 nm on the scale. (d) Type of eukaryotic 

propeptide dictates pH optimum for activation of the propeptide:protease complex. 

The activation optimum for MATFUR shifts from pH ~ 6.5 in the presence of PROFUR to 

pH ~ 5.5 when PROPC1 forms the complex. Conversely, MATPC1 activation shifts from 

pH ~ 5.5 in the presence of PROPC1 to pH ~ 6.5 when PROFUR forms its complex. 

Values are measurements of three independent experiments.  
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Figure 3-3: pH-dependent structural dynamics of prokaryotic and eukaryotic 

propeptides.  

(a) Green and blue cartoons represent initial and final structures of the simulations, 

respectively. The second cleavage site loop (red/salmon) in PROFUR (structure on the 

right side) is stable when histidines are deprotonated (pH 7.0; bordered by black 

box) but changes conformation upon histidine protonation (pH 6.0; bordered by red 

box). The dynamics of the loop are unaffected by the histidine protonation status of 

PROPC1 (cartoons on the left side). Under identical conditions, PROSUB and PROAQU 

show insignificant changes in dynamics as a function of pH. (b) Protonation‐status‐

dependent, time-resolved, residue-specific dynamics of PROSUB, PROAQU, PROPC1, and 

PROFUR. Arrowhead indicates secondary cleavage site and color scale represents 

RMSD from initial structures. (c) Global unfolding (Q score) of PROFUR and PROPC1 at 

different pH values. Unfolding was computed using the fraction of native contacts 

that are retained as a function of time during the simulation at different pH values 

and suggests that PROFUR undergoes global unfolding at a pH of 6.0 when compared 

with pH 7.0 and with PROPC1 at both pH 7.0 and 6.0, respectively. (d) Evaluating the 

robustness of independent MD simulations using different models and longer time 

scales. We compared the similarity of structures to the starting conformation by 

measuring the RMSD within the propeptide domain, along equally spaced snapshots 

of the simulation trajectory. Our results suggest that while PROPC1 appears stable at 

different pH values, PROFUR displays significantly larger conformational changes, 

which may contribute to its increased proteolytic susceptibility at pH 6.0, and is 

consistent with our spectroscopic studies. (e) A comparison of the structural 

locations of various histidine residues in PROFUR and PROPC1. The pH sensor His69 in 

PROFUR (green) along with other histidine residues (blue) and their corresponding 

residues with PROPC1 are depicted. Hydrophobic residues surrounding His69 in PROFUR 

are depicted in yellow, while the asterisks denote residue substitutions at cognate 

histidine residues. 
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Figure 3-4: His69Leu-PROFUR is more structured than WT-PROFUR.  
A, the secondary structure of WT-PROFUR and His69Leu-PROFUR determined via CD 

spectroscopy at far UV, performed at pH 7. 0, and plotted as molar ellipticity (θ) 

deg/cm2/dmol. B, tertiary structure of wild-type or mutant propeptide determined by 

measuring intrinsic tryptophan fluorescence after excitement with λ = 295 nm. C, 

thermodynamic stability of the propeptides monitored by changes in ellipticity (θ) at 

λ = 222 nm as a function of urea concentration. Data were fit to a standard three-

state equation using a Marquardt algorithm. D, normalized activity, used to estimate 

IC50 values, determined by monitoring cleavage of the fluorogenic peptide substrate 

Abz-RVKRGLA-Tyr[2-NO2] with increasing amounts of WT-PROFUR or His69Leu-PROFUR 

present. All data are averaged over three independent experiments. 
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Figure 3-5: His69Leu-PROFUR is more stable than WT-PROFUR to pH-induced 

unfolding.  

A, pH-dependent secondary structure of WT-PROFUR performed at pH 7.0–5.0 and 

plotted as molar ellipticity. B, changes in secondary structure of the isolated 

propeptides monitored by changes in ellipticity at λ = 222 nm and plotted as a 

function of increasing pH. The midpoint of the unfolding transition for both peptides 

occurs at pH ~6.0. C, CD structure of MATFUR at varying pH (colored lines) and with 

the addition of 30% glycerol (gray line). The dotted line represents the spectra of 

denatured MATFUR. D, thermodynamic stability of WT-PROFUR and His69Leu-PROFUR as 

a function of pH, given in calories (Cal). E, IC50 values for WT-PROFUR (top panel) 

and His69Leu-PROFUR (bottom panel) as a function of pH. F, activity of furin in the 

absence of the propeptide at varying pH. All values are given as a percentage of 

maximum activity and are the average of three independent experiments. 
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Figure 3-6 Molecular dynamics simulations of His69Leu PROFUR 

MD simulations were performed on WT-PROFUR and His69Leu-PROFUR using NAMD as 

described under “Materials and Methods.” A, top panel, RMSF as a function of residue 

number for WT-PROFUR. Bottom panel, differences between the RMSF of simulation 

with His69Leu-PROFUR and the WT (ΔRMSF). Negative values indicate reduced 

fluctuations, and positive values indicate increased fluctuations because of the 

His69Leu point mutation. Values obtained under a simulated pH of 7 are shown in 

black, whereas values obtained under simulated pH of 6 are shown in red. B, RMSF 

values for the core region (all except for the loop) are shown by dashed lines, and 

loop regions (residues 70–79) are depicted by solid lines and plotted as a function of 

simulation time. Black lines represent WT-PROFUR, and red lines represent His69Leu-

PROFUR. C, ribbon representation of the starting (red) and final (blue) structures of 

the simulations. The secondary cleavage site, Arg75, is indicated in the cleavage loop 

(blue), and the pH sensor, His69, is indicated in green. All simulations were done over 

10 ns. 
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Figure 3-7: Near-UV titration of WT and His69Leu PROFUR 

(A) Near-UV circular dichroism spectra of WT PROFUR  at pH 4 of pH 9. 

(B-C) Titration of WT PROFUR (B) and His69Leu PROFUR (C). Structural transition is 

monitored by circular dichroism at 285 nm. Titration started at pH 8.5 and was 

performed by injecting small amounts of acid to elicit an about 0.2 pH unit shift. 

After the solution reached the titration solution was changed to base and titration 

was performed back to pH 8.5. Data is fitted using equation 10 in chapter 1.2.2.2  

  



133 

 

 
Figure 3-8: Far-UV circular dichroism spectra of single-point variants of 

PROFUR.  

Every histidine was mutated to either leucine or arginine. Spectra were obtained at 

pH 4.0 and pH 8.0. Spectra of the leucine (green) and arginine (red) mutant at every 

histidine position are shown superimposed with the spectrum of the wild-type PROFUR 

(blue) for comparison. 
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Figure 3-9: Potential mechanisms of furin activation 
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4.1 Abstract 

Propeptides of proprotein convertases regulate activation of their protease 

domains by sensing the organellar pH within the secretory pathway. Earlier 

experimental work highlighted the importance of a conserved histidine residue 

within the propeptide of a widely studied member, furin. A subsequent 

evolutionary analysis found an increase in histidine content within propeptides 

of secreted eukaryotic proteases compared to their prokaryotic orthologs. 

However, furin activates in the trans-golgi network at a pH of 6.5 while a 

paralog, proprotein convertase 1/3, activates in secretory vesicles at a pH of 5.5. It 

is unclear how a conserved histidine can mediate activation at two different pH 

values. In this manuscript we measured the pKa values of histidine residues 

within the propeptides of furin and proprotein convertase 1/3 using a histidine 

hydrogen-deuterium exchange mass spectrometry approach. The high density of 

histidine residues combined with an abundance of basic residues provided 

challenges for generation of peptide ions with unique histidine residues, which 

were overcome by employing ETD fragmentation. During this analysis we found 

slow hydrogen-deuterium exchange in residues other than histidine at basic pH. 

Finally, we demonstrate that the pKa of the conserved histidine in proprotein 

convertase 1/3 is acid-shifted compared to furin, and is consistent with its lower 

pH of activation.  
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4.2 Introduction: 

The addition or removal of a proton represents the smallest possible chemical 

alteration of a protein, but can change the charge by one unit and alter the status 

of hydrogen bond donors and acceptors[240]. Changes in cellular proton 

concentrations (pH) can therefore induce rapid reversible chemical modifications 

by shifting the equilibrium of titratable amino acid side-chains between their 

unprotonated and protonated forms, thus perturbing the electrostatic potential to 

drive changes in protein structure, dynamics, and interactions. Hence, there is 

significant interest in experimentally measuring equilibrium constants (pKas) for 

protonation/deprotonation of specific amino acid residues within a protein[84].  

The ligand binding affinities and catalytic activities of numerous proteins 

are sensitive to physiologically relevant changes in cellular pH[181]. Histidine is 

a unique amino acid because the pKa of its imidazole side-chain is close to 

physiological pH, thus positioning the side-chain as a charge relay system within 

the catalytic sites of proteins and as a sensor that recognizes subtle perturbations 

in local pH. An evolutionary analysis demonstrates that eukaryotic propeptide-

dependent, secreted proteases are specifically enriched in histidine residues 

within their propeptides, but not cognate catalytic domains or prokaryotic 

orthologues[241]. Selective enrichment of histidine residues in propeptides is 

hypothesized to regulate the organelle-specific, pH-dependent activation of 

eukaryotic proteases, a finding that was experimentally confirmed in furin, a 

constitutively expressed proprotein convertase (PC)[58]. 
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PCs take inactive proteins and peptides and, via endoproteolytic cleavage, 

produce active hormones, enzymes and other critical components of the cellular 

machinery along the secretory pathway, in the extracellular matrix, and at the 

cell surface[207]. The PC family includes nine members, furin, PC1/3, PC2, PC4, 

PACE4, PC5/PC6, PC7/LPC/PC8, SKI/S1P, and NARC-1/PCSK9, all of which are 

initially synthesized as proproteins at the endoplasmic reticulum (ER) and 

undergo folding in the ER lumen. Upon completion of folding, the N-terminal 

propeptide is cleaved in an autocatalytic reaction, but remains associated with 

the protease and blocks proteolytic activity by occupying the catalytic active site. 

Final activation requires a second cleavage within the propeptide, which occurs 

only after the propeptide:PC complex trafficks into the correct organellar 

compartment[2]. PCs have been implicated in a wide array of pathologies where 

regulation of the timing and/or location of their activation are altered through 

genetic aberration or environmental stress[242].  

Organellar pH seems to be the major biochemical cue that triggers the 

final activation step of PCs as individual paralogs display differences in their 

pH-dependent activation. For example, furin activates at pH 6.5, the pH of the 

early trans-golgi network (TGN)[18], while PC1/3, a neuroendocrine specific PC 

activates at pH 5.5, the pH of mature dense core secretory granules[243]. 

Swapping propeptides between furin and PC1/3 switches their sensitivity to pH-

dependent activation, demonstrating that the pH-sensor, which recognizes 

organellar pH and regulates protease activation, is localized within the 

propeptide[191]. Studies identify histidine 69 (His69) as the pH-sensor in the furin 
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propeptide (PROFUR), as its substitution with a leucine blocks pH-mediated 

activation[189]. Protonation of His69 does not substantially decrease the affinity 

of the propeptide at acidic pH, but induces a local conformational change that 

increases accessibility to a second cleavage site for proteolysis[235]. 

Nuclear magnetic resonance (NMR) is the most powerful and preferred 

method to investigate pH-mediated mechanisms, as titratable protons as well as 

conformational changes can be directly observed within a protein[123]. 

However, NMR spectral interpretations become difficult if a protein is 

intrinsically unstable at neutral and acidic pH, as observed in PROFUR [219]. Mass 

spectrometry on the other hand identifies peptides by their characteristic mass 

and is independent of conformational changes that may occur in the protein[244]. 

The slow hydrogen-deuterium (HD) exchange within the imidazole ring of 

histidine residues can be exploited to assess the local pKa of histidine 

residues[245]. In proteins, the C2 hydrogen in imidazole rings can be exchanged 

with deuterium with a half-life of days, which is substantially slower than 

hydrogen bound to oxygen, nitrogen, or sulfur atoms. Therefore, by incubating a 

protein in deuterated buffer for several days, followed by a shorter incubation 

(~30min) in hydrogen-containing buffer, one can selectively label the imidazole 

ring with deuterium. This uptake can then be quantified with mass spectrometry. 

Since the exchange rate depends on the protonation state of the histidine residue, 

one can determine histidine pKas by performing this experiment at different pH 

values. This method has been successfully used to determine the pKa of 

individual histidine residues in RNase A[245] and dihydrofolate reductase[246], 
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and helped to probe the mechanism by which long range interactions can 

stabilize the formation of a complex between anthrax protective antigen and its 

receptor capillary morphogenesis protein-2[247]. 

Although the pH sensor in furin has been identified[189], several 

important questions about the mechanism of pH-mediated activation of PCs 

remain unanswered. For example, the residue corresponding to His69 in PROFUR 

is conserved in the propeptide of PC1/3 (PROPC1). Nevertheless PC1/3 requires a 

ten-fold higher proton concentration for its activation when compared with 

furin, suggesting that additional factors are critical for fine-tuning pH 

sensitivities of individual PC paralogs. While it is clear that His69 in PROFUR is 

critical, it is likely that other histidine residues also play roles given that H69L-

PROFUR variant displays moderate structural changes as a function of pH [235]. In 

this study we address these important mechanistic questions about the pH-

mediated activation of PCs by measuring the histidine pKa values in PROFUR and 

PROPC1 using hydrogen-deuterium (HD) exchange mass spectrometry. The high 

density of histidine residues and positively charged residues in these 

propeptides provides challenges for proteolytic separation, which we overcome 

by combining the use of Electron-Transfer Dissociation (ETD), Collision Induced 

Dissociation (CID) and proteolysis using pepsin. Analysis of this data 

demonstrated a thus far unappreciated slow-dynamic HD exchange in residues 

other than histidine, which may provide an approach to probe the local 

environment of additional amino acid residues. We find that His72 in PROPC1, 

which corresponds to the established His69 pH-sensor of PROFUR, has an acid-
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shifted pKa of about 5.6, a value that is consistent with its pH for activation. 

These results now provide a chemical basis for how PROFUR controls activation of 

its cognate catalytic domain at the more neutral pH in the TGN (pH~ 6.5) when 

compared with PROPC1, which requires a more acidic pH for activation of the 

catalytic domain of PC1/3 in the dense core secretory granules (pH~ 5.5).  

4.3 Experimental Section: 

 Purification of propeptides:  

PROFUR and PROPC1 were expressed in E. coli BL21/DE3 and purified by ion-

exchange chromatography in 5M urea. After purification proteins were 

concentrated and stored in 6M guanidinium hydrochloride. Before experiments 

were performed, proteins were refolded by dialyzing twice against a 100x 

volume of 50mM Tris pH7.4/50mM NaCl. After refolding the protein was 

centrifuged for 30 minutes at 100,000g to remove aggregates and concentration 

was determined by the absorption at 280nm. Point mutations in PROFUR were 

generated using the Quikchange protocol and purified identically as wild-type 

PROFUR. 

 HD exchange:  

D2O buffers contained 50mM sodium acetate (pH3.5-4.5), 50mM MES (pH5.0-

7.5), and 50mM HEPES (pH 8.0-9.0). The pH was adjusted using DCl or NaOD, 

with a pH electrode calibrated with standard buffer solution without correcting 

for the isotope effect, as in previous studies[245], [246]. Conductivity was 

adjusted with sodium chloride to match a 50mM MES/50mM NaCl buffer at pH 
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5.0. About 20g of propeptides were diluted 1:50 into 100l of deuterium buffer. 

A control sample was diluted into the same amount of H2O buffer. The samples 

were kept at 37oC for 72h. After this incubation the exchange was quenched by 

addition of 10l formic acid and the samples were dried using a SpeedVac.  For 

pepsin digestion the sample was resuspended in 20l of potassium phosphate 

buffer at pH 2.3 containing 0.4g of pepsin. After a 30 minute digest at 37oC the 

samples were dried again and resuspended in 50l of 100mM ammonium 

bicarbonate. The samples were incubated for 30 minutes at room temperature to 

allow for back exchange of polar hydrogens. Samples for whole-protein ETD 

analysis were directly resuspended in ammonium bicarbonate and allowed to 

back-exchange for 30 minutes.  After drying in a SpeedVac the samples were 

stored at -80oC until measurement.  

 Mass analysis:  

Mass analysis was performed using an Orbitrap Fusion instrument (Thermo 

Scientific). Samples were resuspended in 30l 0.1% formic acid. For whole-

protein ETD analysis, the sample was automatically desalted using a 1x10 mm 

protein Opti-Trap™ cartridge (Optimize Technologies, Oregon City, OR) and 

eluted using 50% acetonitrile/0.1% formic acid (v/v) directly into an electrospray 

ionization (HESI-II) probe (Thermo Scientific). The instrument was set up to 

cycle between different ETD reaction times (5ms/10ms/20ms) and MS3 analysis 

using collision-induced dissociation (CID) as indicated in the Results section. 

Data was collected using the OrbiTrap mass analyzer in a mass range from m/z 

500-1600 at 60,000 resolution and ETD performed on the most intense +14 charge 
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state of the propeptide. For peptic digest analysis the sample was desalted using 

a peptide 1x10 mm Opti-Trap™ cartridge and then separated on a 0.5x150 mm SB 

C-18 reverse-phase column (Agilent Technologies). Peptides were eluted at a 

10μl/min flow rate using a linear gradient from 2% to 50% actetonitrile in water 

containing 0.1% formic acid (v/v). The instrument was set up to collect survey 

scans at a mass range from m/z 400-2000 and cycle with ETD MS2 scans targeting 

histidine containing peptides at specific elution times. Specific elution times were 

determined by an initial test digest of unexchanged propeptide with the 

instrument set up for data-dependent MS2 fragmentation using higher-energy 

collisional dissociation (HCD) for peptides with charge states 1-2 and ETD for 

peptides with higher charge states. 

 Data processing:  

For the whole protein ETD analysis, scans during the elution of the protein were 

averaged. The spectra generated using the three different reagent reaction times 

were searched for the expected isotopic distribution of all possible c and z 

fragments at charge states from +1 to +10. Fragments were considered identified 

if the root mean square deviation (RMSD) between the expected and measured 

isotopic distribution was smaller than 10% at one of the different reaction times. 

If a fragment was found at multiple reaction times, the reaction time with the 

best RMSD was chosen. MS3 spectra were processed similarly, by searching for 

features with the expected mass of all theoretical fragments. To identify peptic 

peptides, survey scans were searched for the expected isotopic distribution of all 

possible peptides, assuming no preferential cleavage of pepsin. Matches were 
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ordered by intensity and the identity of peptides with histidines was verified by 

manual inspection of triggered MS2 scans. 

To determine the rate of hydrogen deuterium exchange one must calculate 

the deuterium uptake from mass measurements of the peptide or fragment ions. 

This information is encoded in the shifting pattern of the isotopic distribution. 

Previously the uptake has been derived either from the ratio of the monoisotopic 

(I) and I+1 peak[245] or by calculating the average mass from the isotopic 

distribution, where the difference from the unexchanged average mass is used to 

quantify the uptake of deuterium[248]. The first method has the disadvantage 

that it cannot be used in the cases of peptides containing two or more histidines. 

We also found that using the average mass was susceptible to artifacts due to the 

lowest intensity peaks being unreliably detected. To overcome these problems 

we chose to calculate the uptake by a fit of the observed isotopic distribution 

with a linear combination of the theoretical isotopic distributions of the non-

exchanged and fully exchanged peptides, which, in the case of peptides 

containing single histidines, can be derived by simply shifting the peaks by one 

mass unit. This concept can easily be extended to peptides containing multiple 

histidines by deriving theoretical models of complete exchange at two or more 

sites by shifting the peaks by two or more mass units. It also allows calculation of 

the uptake with only a subset of peaks, as long as the number of peaks is larger 

than the number of exchanging sites. For analysis of exchange at pH 10.0, where 

the number of exchanging site was unknown we used the average mass for 

quantification of deuterium uptake. After calculation of uptake the exchange rate 
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was calculated using the following formula[245], where 𝑢 is the calculated 

uptake and t is the exchange time: 

 𝑘 = −
ln(1 − 𝑢)

𝑡
 (1) 

pKa and kmax values were derived by fitting the exchange rates at different pH 

values to the following equation[245]: 

 log (
𝑘𝑚𝑎𝑥 − 𝑘

𝑘
) = 𝑝𝐾𝑎 − 𝑝𝐻 (2) 

Data processing was performed using python scripts based on the mass 

spectrometry library of the mMass program[249].   

 Homology modeling and pKa prediction:  

Homology models of PROFUR were build using the MODELLER program[178] 

using the automodel module. Five models were built for each of the 20 models 

deposited for PROPC1 NMR structure[215]. pKa values were predicted using the 

PROPKA program version 3.1 [128]. 

4.4 Results and Discussion: 

 Identifying ions containing a single histidine residue using whole-

protein electron-transfer dissociation and proteolytic digestion:  

To measure deuterium uptake at individual histidine residues within a protein, it 

is essential to obtain peptides that contain a single histidine residue[245]. This is 

often achieved using trypsin, a protease that cleaves proteins mainly at the C-

terminus of lysine and arginine amino acids. However, a tryptic digestion of 

PROFUR fails to produce peptides that contain a single histidine residue, most 

likely because of the abundance of lysine (6%), arginine (13%) and histidine (6%) 
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residues, as well as the presence of a 15 amino acid region that contains nine 

positively charged residues; four histidines and five arginine and lysines, as 

illustrated in Figure 4-1A.  On the other hand, the high positive charge makes 

PROFUR a promising candidate for electron transfer dissociation (ETD), a process 

that induces fragmentation along the peptide backbone in a sequence-

independent manner. Hence, we initially employed the easy-ETD module of the 

OrbiTrap Fusion instrument to fragment PROFUR inside the mass spectrometer in 

a “top-down” manner. 

Injections of PROFUR into the OrbiTrap produce multiple charged states 

that range from +8 to +14 (Figure 4-1B). ETD fragmentation of PROFUR with a +14 

charge produces a fragmentation pattern that is highly dependent on the reaction 

time (Figure 4-1C), where many fragments can only be identified at specific 

reaction times, either because they are not present or because they overlap with 

other fragments. Using various reaction times, 15 and 21 of the 83 possible c and 

z fragments, respectively, can be identified from the resulting MS2 spectra. A 

peptide fragment is considered suitable to quantify deuterium uptake only when 

the root mean square deviation between the observed and the expected isotopic 

distribution is smaller than 10%. The above criteria identify fragment ions c29 

and z24 containing His52 and His84, respectively, along with ion z28 that includes 

His84 and His80, which can be used to calculate deuterium uptake of His80 by 

subtracting the deuterium uptake of His84.  Although the fragment c46, which 

includes His52, His66, and His69, is observable, differentiating mass increases 
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between His66 and His69 is not feasible due to the lack of appropriate smaller 

fragment ions.  

To overcome this problem we subjected PROFUR with a +14 charge to 

collision-induced dissociation (CID), which is a process that displays greater 

sequence specific cleavage than ETD. Top-down methods for 

hydrogen/deuterium exchange of backbone amide hydrogen have been shown to 

be successful only when using ETD as a fragmentation mode[130], [250], since 

CID causes scrambling of exchanged deuterium along the protein backbone[251]. 

This is of no concern in this study, as the deuterium is bound to C2 in the 

imidazole side-chain. The CID-MS2 spectrum identifies fragment y47 (+8 charged 

state) as the most intense ion (Figure 4-1D). The OrbiTrap Fusion allows the 

selection of the y47 ion for subsequent MS3 fragmentation using CID, which 

yields the fragment y47_b6 that only contains His66. The ETD fragmentation of 

y47 generates the y47_c17 ion that contains both His66 and His69. The difference 

between the masses of y47_c17 and y47_b6 ions yields the mass increase of His69. 

Figure 4-1E shows the observed isotopic distribution of the fragment ions used 

for deuterium uptake determination. 

To test whether this whole protein CID/ETD approach allows for accurate 

measurements of deuterium uptake into the imidazole side-chain, we repeated 

the experiment by cleaving PROFUR using pepsin. Cleavage by pepsin produces 

peptides that allow the measurement of His52 and His66 (Figure 4-2A-B). 

Although pepsin digest produces a peptide containing His69 alone, it is of very 

low abundance due to low probability for cleavage at Phe67 and Thr73 and poor 
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retention of the resulting peptide on the reverse phase chromatography column. 

Moreover, cleavage between His80 and His84 residues is not observed when using 

pepsin, and hence ETD was employed to obtain accurate masses of fragments 

that contain His69, His80 and His84 (Figure 4-2C). While this results in lower 

intensity of the fragment ions when compared with the whole peptide masses, it 

does not require determination of deuterium uptake by subtracting two mass 

measurements. Thus, using a combination of both ETD and CID in a “top-down” 

approach or pepsin cleavage and ETD, we successfully measured the mass of 

fragments that contain individual histidine residues. 

 Individual histidine residues in PROFUR display comparable pKa values, 

but vary in their solvent accessibility:  

To calculate the pKa and kmax values for protonation of individual histidine 

residues, we performed HD exchange for 72h at 37oC at different pH-values as 

described in the methods and fitted the exchange rates of individual histidine 

residues to equation 2 (Figure 4-3). Since the fit indicates more than one 

exchanging site at high pH, we excluded the data points at pH 8.5 and 9.0 for 

His52 generated using the whole protein ETD/CID approach. Moreover, since 

PROFUR displays changes in conformation as a function of pH[191], the precise 

fitting of the exchange rates to equation 2, which assumes no changes in protein 

conformation, can only report the apparent pKa values (pKaapp) for the 

protonation of histidine residues.  

Both whole protein ETD/CID and pepsin digestion approaches 

demonstrate that the pKaapp values for all histidine residues are close to 6.0, while 



149 

 

measurement of the maximal exchange rate kmax at the imidazole ring shows that 

individual histidine residues in PROFUR differ substantially in their solvent 

accessibility (Table 4-1). For example, His52 displays the highest rate of HD 

exchange when compared with all other histidine residues in PROFUR. It is worth 

noting that the kmax values obtained by the two methods are different for His52, 

His66 and His69, but are similar for His80 and His84 (Table 4-1).  The anomaly in 

kmax values for His52, His66 and His69 obtained using the different approaches is 

due to at least two factors; first, while the pepsin digest approach measures mass 

increase in ten residues around His52, the whole-protein ETD approaches 

measures mass increase in 28 residues N-terminal of His52. The analyses of these 

peptides demonstrates additional deuterium incorporation occurs in the R-group 

of amino acids located within the extra 19 residues present in the ETD, but not 

the pepsin digestion approach. The additional exchange is greatest at alkaline 

pH, explaining the multi-site exchange observed at pH 8.5 and 9.0. This finding 

is described in more detail below (Figure 4-4).  Second, the lower maximal 

exchange rate for His66 identified in the ETD/CID approach, is likely a result of 

the low intensity of the y47_b7 fragment, which may lead to an underestimation 

of HD exchange. The exchange at His69 in the ETD/CID approach is computed by 

subtracting the exchange of His66 from the exchange into the y47_c16 ion, which 

likely leads to overestimation of deuterium uptake in His69. In retrospect, the 

pepsin digest approach appears to be less prone to artifacts, although the ETD 

approach provides insights into additional amino acids that could undergo HD 

exchange under alkaline conditions. Since in-instrument fragmentation 
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techniques, such as CID and ETD, generate a single break in the peptide 

backbone, only exchange in the first N-terminal and C-terminal histidines can be 

directly measured using MS2 spectra. To quantify deuterium uptake at internal 

histidine residues, one must either use the difference between two fragments, or 

employ MSn spectra to further fragment peptide ions. While the first approach 

correctly assigns deuterium uptake at His80 and His84 in PROFUR, it poses a 

disadvantage because errors in the measurement of the mass of individual 

fragments tend to be magnified. However, the second approach, which employs 

the MS3 spectra to measure the mass increase of His66, poses a disadvantage by 

severely reducing the intensity of the fragment ions, which may lead to the 

underestimation of histidine uptake. Certainly further advances in top-down 

mass spectrometry, such as charge-state pooling, will help to overcome these 

difficulties. 

Overall these finding suggest that the local protein environment only 

marginally influences the protonation equilibrium of the imidazole side-chain in 

PROFUR, but influences the HD exchange rate due to its solvent accessibility and 

local hydrogen bonding as seen by the higher kmax values for His52 and His80 

compared to His66, His69, and His84. This indicates that the local protein 

environment is different for these histidine residues. 

 Alkaline pH induces HD exchange of carbon-bound protons in addition 

to the C2-proton in the imidazole ring:  

Since the c29 fragment in PROFUR appears to exchange at more than one site 

under conditions of alkaline pH (pH  8.5) as described earlier, we next 
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investigated whether (i) carbon-bound protons residues other than the C2-proton 

of the imidazole ring in histidine can undergo HD exchange and (ii) deuterium 

uptake can be analyzed in pepsin derived peptides that lack histidine residues. 

Quantification of deuterium uptake by fitting the experimental data to a model 

with two exchanging sites shows that an increase in pH above 8.0 enhances 

deuterium uptake into the c29 fragment (Figure 4-4A). Analysis of pepsin-

generated peptides establishes that peptides 25MQGQKVFTNTW36 and 

37AVRIPGGPANSVA49, which are N-terminal of His52 and are part of the C29 

fragment ion, demonstrate deuterium uptake at pH 8.5 and 9.0 (Figure 4-4B). The 

magnitude of these mass increases is consistent with the additional HD exchange 

observed in the c29 fragment obtained using ETD. However, peptides 

57GQIFGGDY64 and 88QREPQVWL95, which also lack histidine residues, 

demonstrate no deuterium uptake at pH 8.5 and 9.0.  Since the additional HD 

exchange at alkaline pH may result from the fact that an increasing OH- 

concentration likely removes carbon-bound protons at other residues, 

experiments were also conducted at a pH of 10.0. The results demonstrate the 

magnitude of deuterium uptake increases in the peptides 25MQGQKVFTNTW36 

and 37AVRIPGGPANSVA49, but also causes deuterium uptake within peptides 

57GQIFGGDY64 and 88QREPQVWL95, which display no HD exchange at pH of 9.0 

(Figure 4-4C). Identical experiments conducted in non-deuterated buffer at pH 

10.0 show no mass increase, thus confirming the mass increase observed in 

deuterated buffers results from HD exchange and not due to chemical 
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modifications, such as a deamidation event that would also cause a 1Da mass 

increase[252].  

To investigate which residues undergo HD exchange at alkaline pH, we 

monitored deuterium uptake within CID fragments of 25MQGQKVFTNTW36 and 

37AVRIPGGPANSVA49 at pH 10.0 (Figure 4-4D-E). Our analyses show that in 

both cases, asparagine residues are most prone to uptake of deuterium, with 

additional (albeit smaller) uptake in glycine, glutamine and threonine residues. 

While in the 25MQGQKVFTNTW36 peptide deuterium uptake seems to be 

mediated by multiple residues, in the 37AVRIPGGPANSVA49 peptide deuterium 

uptake is clearly limited to Asn46 and Gly43, while Gly42 shows no uptake. This 

indicates that slow HD exchange in residues other than histidine is not only 

dependent on the chemical nature of the side-chain, but also on the context of the 

local environment within the protein. 

The mass increases may be due to HD exchange of backbone amides with 

very slow kinetics, as they are occasionally noted in proteins[253]. However, they 

are still observed after back-exchange of already digested protein. It is hard to 

imagine that small peptides could provide such strong protection of backbone 

amides. This leads to the possibility that protons bound to carbon atoms other 

than the C2 carbon of the imidazole ring can exchange at alkaline pH. One such 

example is the uptake of deuterium by racemization at C-atoms of serine 

residues during HD exchange of immunoglobulins at pH 8 and 40oC for four 

weeks[254]. HD exchange at C atoms by base-catalyzed racemization also 

occurs at N-substituted glycine-containing peptides at a pD of 12.3[255] and may 
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explain the exchange we observe in Gly27 and Gly43 at pH 10.0. However, the 

majority of the exchange at pH 8.5 and 9.0 can probably be attributed to 

asparagine (Figure 4-4D-E). Asparagine is prone to racemization due to 

formation of a succinimide intermediate[256], whose product due to the low 

concentration of ammonia compared to water is almost always an aspartate. The 

tetrahedral intermediate during succinimide formation can however racemize 

back to an asparagine containing peptide[257].  It is likely that the low stability of 

PROFUR allows sufficient protein backbone flexibility to permit racemization. 

This observation shows that caution must be used when measuring 

histidine pKa by HD exchange to remove this influence from curve fittings. This 

is easily achieved in practice since this exchange shows a characteristic pH 

profile, where no saturation of the exchange rate is observed at basic pH. While 

in this study the unexpected exchange observed at residues other than histidine 

was an artifact it may be useful in the study of protein aging and misfolding.  

Since racemization depends on local flexibility of the protein backbone it may 

also be helpful in studying disordered protein regions and warrants further 

study. 

 His72 in PROPC1 displays a pKaapp shifted to a more acidic value:  

PROFUR and PROPC1 adopt similar three-dimensional structures but differ in the 

density and distribution of histidine residues within their otherwise conserved 

sequences. Circular dichroism studies demonstrate that PROPC1 requires about 

ten-fold higher proton concentration to undergo a 50% loss in its secondary 

structure when compared with PROFUR [191]. Consistent with these studies, 
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biochemical approaches show that PROFUR mediates activation of MATFUR at a pH 

of 6.5, while its paralog, PROPC1 modulates activation of MATPC1 at a pH of 5.5. 

The lower pH of activation of PROPC1 may result from lower pKa values of a 

subset or all histidine residues in the propeptide. To examine this possibility we 

measured the pKa values of individual histidine residues in PROPC1 using the 

pepsin/ETD hybrid approach that gives the best results for PROFUR (Figure 5). 

The results demonstrate that three of the four histidine residues have pKaapp 

values of ~6.0, similar to those in PROFUR. However, His72, displays a 

substantially lower pKaapp value of 5.6 (Table 4-2). While the maximal exchange 

rates are slightly less than those observed for PROFUR, this finding is consistent 

with the higher structural stability PROPC1.  

 A structural interpretation of histidine pKa values:  

Our data suggests that histidines within PROFUR display similar pKaapp values, but 

differ in their observed exchange rates, while individual histidines in PROPC1 

display substantial differences in their pKaapp values. How can one rationalize 

these differences using available sequence and structural information? A 

sequence alignment between PROFUR and PROPC1 establish that only one 

histidine, His69 in PROFUR, has a direct equivalent in His72 within PROPC1 (Figure 

4-6A). His52 in PROFUR is unique with no direct counterpart in PROPC1. The other 

histidine residues are not directly identical in their positions but are all situated 

around the second cleavage site Arg72 and Arg78 in PROFUR and PROPC1, 

respectively. To analyze this in a structural context we created homology models 

of PROFUR based on the solution NMR structure of PROPC1 (Figure 4-6B-C).  
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In order to rationalize the measured pKaapp values we used the PROPKA 

program to predict histidine pKa values based on the NMR solution structures of 

PROPC1 and the PROFUR homology models (Figure 4-6D-E). In the case of PROPC1, 

the predicted pKa values are consistent with the measured pKaapp values for 

His67, His75, and His85. His72 is predicted to have the most basic pKa values of all 

histidines, while it has the most acidic pKaapp. Interestingly for two of the 20 

NMR structures the pKa of His72 is predicted to be strongly acidic. In these 

structures the imidazole side-chain is not exposed to the solvent but is packed 

under residues of the cleavage loop. Theoretical consideration of pH sensing 

suggests that titratable residues involved in pH-driven structural changes should 

have divergent theoretical pKa values in the two different structural states with 

an observed pKa value that is between these two values[258]. Since the observed 

pKaapp is between the pKa predicted for His72 buried within the loop and His72 

pointing towards the solvent, this suggests that movement of His72 from the 

buried conformation towards the solvent is part of the pH sensing mechanism. 

The fact that His72 is the residue corresponding to the previously identified 

primary pH-sensor His69 in PROFUR confirms a central role in pH sensing, 

although specific histidine residues are likely to augment the sensitivity of His72 

in PROPC1 (Williamson, et al manuscript in preparation). 

Predicted pKa values for PROFUR vary substantially between histidines compared 

to the consistent pKaapp values that were measured. This might be due to low 

quality of the homology model due to the low sequence identity (~40%) and the 

fact that PROFUR in solution shows strong structural dynamics and probably is in 
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a molten-globule like state[219]. The predicted pKa for His52 is especially acidic, 

probably due to burial of His52 between the two alpha helices. Since His52 displays 

the fastest observed HD exchange rate (Table 4-1), this suggests that His52 is more 

solvent exposed than this structural model suggests.  

Since association with the protease likely stabilizes the propeptide 

structure, this might change the effect of histidine protonation. However, since 

the propeptide:protease complex is not stable enough in vitro (data not shown) 

we are currently limited to studying isolated propeptides. Since the PROPC1 

solution structure is similar to structures of propeptides in complex with 

proteases[215], it is likely that principles observed in isolated propeptides also 

apply to the complex. 

4.5 Conclusion: 

Previous knowledge about the pH sensing mechanism of proprotein convertases 

was based on mutagenesis of histidine residues, which might introduce artifacts 

beside the removal of a titratable group. Therefore the use of the histidine HD 

exchange method on wild-type propeptides provides orthogonal knowledge. We 

show that while all histidines in PROFUR show a similar pKaapp they do experience 

different local environments. We furthermore show that the activation of PC1/3 

at lower pH can be explained by a shift of the pKa of the primary pH-sensor 

His72 to a more acidic value. Comparison of this value with predictions based on 

a NMR structure suggests the movement of the conserved primary pH-sensor 

His72 from a protected pocket towards the solvent may be one of the key events in 

pH-mediated activation.  
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Table 4.1: Parameters of histidine HD exchange rate fits for PROFUR at different pH 

values using equation 2 

 Whole protein ETD/CID Pepsin/ETD 

Histidine pKaapp kmax pKaapp kmax 

H52 6.04±0.04 0.0175±0.0003 6.07±0.02 0.0124±0.0001 

H66 5.84±0.08 0.0045±0.0002 5.98±0.03 0.0069±0.0001 

H69 6.13±0.05 0.0155±0.0003 6.04±0.05 0.0063±0.0002 

H80 6.04±0.08 0.0112±0.0003 6.02±0.03 0.0094±0.0002 

H84 5.96±0.08 0.0077±0.0003 6.04±0.07 0.0073±0.0002 
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Table 4.2: Parameters of histidine HD exchange rate fits for PROPC1 at different pH 

values using equation 2 

Histidine pKaapp kmax 

H67 6.31±0.03 0.0068±0.0001 

H72 5.61±0.06 0.0034±0.0001 

H75 5.97±0.03 0.0057±0.0001 

H85 5.85±0.04 0.0052±0.0001 
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Figure 4-1: Identification of ions for HD exchange measurements for 

individual histidines using the whole-protein ETD/CID approach.  

(A) Sequence of PROFUR with histidines colored red and other basic residues colored 

in blue. Numbers indicate sequence position of histidines. Colored bars indicate the 

fragments that were used to measure individual histidine masses. (B) Mass spectrum 

of whole PROFUR. (C) Mass spectra after ETD reaction of the M14+ ion. Reaction time 

of ETD is indicated. Colored peaks indicate fragments used for later analysis. (D) 

Mass spectra after CID fragmentation at 30% collision energy. Most abundant 

fragments y47 and y46 are indicated. (E) Close-up of isotopic peaks of fragments 

used to measure deuterium uptake. Dashed vertical lines indicate expected m/z, and 

horizontal vertical lines indicate expected relative intensity given the natural isotopic 

abundances in the given peptides. 
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Figure 4-2: Identification of ions for HD exchange measurements for 

individual histidines using the pepsin/ETD approach.  

(A) Sequence of PROFUR with histidines colored red and other basic residues colored 

in blue. Numbers indicate sequence position of histidines. Colored bars indicate the 

peptides that were used to measure individual histidine masses. (B) Close up of 

isotopic peaks of peptides used to measure deuterium uptake. Dashed vertical lines 

indicate expected m/z, and horizontal vertical lines indicate expected relative 

intensity given the natural isotopic abundances in the given peptides. On the right 

MS2 spectra generated by indicated fragmentation methods are shown to verify 

identification. Peaks associated with expected fragments are colored in green and 

labeled. (C) Close-up of isotopic peaks of ETD generated peptide fragments used to 

measure deuterium uptake. Dashed vertical lines indicate expected m/z, and 

horizontal vertical lines indicate expected relative intensity given the natural isotopic 

abundances in the given peptides. 
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Figure 4-3: pH-dependent HD exchange rate of PROFUR 

(A) Rate of HD exchange as a function of pH for individual histidine residues as 

determined by the whole-protein ETD/CID approach for PROFUR. Three data points for 

each pH are shown and are derived from independent experiments. The result of a 

non-linear fit against equation 2 is shown as a solid line. Results of the fit are listed 

in Table 1. (B) Same as in panel A, but with data derived from the pepsin/ETD 

approach. 
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Figure 4-4: HD exchange in residues other than histidine 

(A) Deuterium uptake as a function of pH into fragment c29 of PROFUR determined by 

a fit of the isotopic distributions against a model of 2 exchanging sites. (B) 

Deuterium uptake into histidine-free peptides as a function of pH. (C) Deuterium 

uptake at pH 10.0 into histidine free peptides either in H2O or D2O buffer. (D) 

Deuterium uptake into CID-generated fragments of the 25MQGQKVFTNTW36 and 
25MQGQKVFTNT35 peptides after exchange for 72h at pH 10. The different b- and y-

series are color-coded and connected by lines. Uptake as determined by whole 

peptide masses is indicated in green, including the uptake into the 25MQGQKVFT33 

peptide. (E) Deuterium uptake into CID-generated fragments of the 
37AVRIPGGPAVANS49 peptide after exchange for 72h at pH 10. The b- and y-series 

are color-coded and connected by lines. Uptake as determined by whole peptide 

masses is indicated in green, including the uptake into the 37AVRIPGGPAVA47 peptide. 
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Figure 4-5: pH dependent HD exchange in PROPC1 

The rate of HD exchange as a function of pH for individual histidine residues in 

PROPC1. Three data points for every pH are shown and are derived from independent 

experiments. The result of a non-linear fit against equation 2 is shown as a solid line. 

Results of the fit are listed in Table 2. 
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Figure 4-6: Structural interpretation of measured pKaapp and maximal 

exchange rates 

(A) Sequence alignment of human PROFUR and PROPC1. Conserved residues are 

shaded in grey and histidines are shown in red. (B) Solution NMR-structure of PROPC1 

[215]. All 20 deposited structures are superimposed. Histidine residues are shown in 

stick representation and color coded according to figure 5. (C) Homology model of 

PROFUR based on PROPC1. Best scoring model based on each of the 20 deposited 

structures of PROPC1 are superimposed. Histidine residues are shown in stick 

representation and color coded according to figure 3. (D) Histidine pKa predictions of 

PROFUR using the PROPKA program. Predictions based on 5 models per template 

structure are shown as a boxplot with the median shown as a bold line, the 

interquartile range shown as a box, and the range defined as 1.5 times the 

interquartile range shown as whiskers. Outliers are shown as black spheres. The 

experimentally determined pKaapp values are shown as a dashed red line. (E) 

Histidine pKa predictions of PROPC1 using the PROPKA program. Predictions are based 

on each of the 20 deposited structures. Data is depicted as described for panel D. 
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Using computational techniques to 

understand protein function in 

disease 

This chapter is based on four manuscripts and focuses on my contributions of 

computational techniques in collaborative projects. The collaborating laboratories 

generated the experimental data shown in figures 5-3,5-4, and 5-5. The 

experiments were designed based on my models. 

 

Identification of the intracellular gate for a member of the equilibrative nucleoside 

transporter (ENT) family. 

 

Valdés R, Elferich J, Shinde U, Landfear SM 

 

This manuscript was published by The Journal of Biological Chemistry on 

February 4th 2014 in volume 289 pages 8799-8809 

 

Monoubiquitination Is Critical for Ovarian Tumor Domain-containing Ubiquitin 

Aldehyde Binding Protein 1 (Otub1) to Suppress UbcH5 Enzyme and Stabilize p53 

Protein 

 

Yuhuang Li, Xiao-Xin Sun, Johannes Elferich, Ujwal Shinde, Larry L. David and 

Mu-Shui Dai 

 

This manuscript was published by The Journal of Biological Chemistry on 

January 8th 2014 in volume 289 pages 5097-5108 

 

Cotranslational folding inhibits translocation from within the ribosome-Sec61 translocon 

complex. 

 

Conti BJ, Elferich J, Yang Z, Shinde U, Skach WR. 
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This manuscript was published by Nature Structural and Molecular Biology on 

February 23rd 2014 in volume 21 pages 228-235 

 

Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins 

 

Monika A. Davarea, Anna Saborowskib, Christopher A. Eidea, Cristina Tognona, 

Rebecca L. Smitha, Johannes Elferich, Anupriya Agarwala, Jeffrey W. Tynera, 

Ujwal P. Shinded, Scott W. Loweb, and Brian J. Druker. 

 

This manuscript was published by Proceedings of the National Academy of 

Sciences on November 26th 2013 in volume 110 number 48 pages 19519-19524 
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5.1 Abstract 

The exponential increase of computational power coupled with the development 

of increasingly sophisticated algorithms and the standardization of protocols for 

deposition of sequence and structure data into publicly available databases have 

created an environment where computational biology is a powerful technique to 

generate and test hypotheses. This chapter demonstrates several examples how 

computational methods can be combined with experiments. The first example 

shows how structure prediction can be used to gain insight into a transporter 

that was not amenable to structural studies in vitro. Hypotheses about the 

structure and mechanism of a purine transporter of Leishmania donovani were 

generate in silico and then tested in vitro. In the second example, a specialized 

structure prediction technique was first used to test a hypothesis about the 

mechanism by which mono-ubiquitination of an enzyme called Otub1 stabilizes 

p53. After arguing against this hypothesis the structural models were used to 

propose an alternative hypothesis that was then tested using site-directed 

mutagenesis. In the third example sequence and structure databases were 

combined to test a hypothesis about folding during cotranslational transport into 

the ER. The results did not support the hypothesis that evolution selected against 

small domains in N-terminal regions of secreted proteins and therefore points to 

more complex mechanisms. The last example shows how structure prediction 

can be used to quickly rationalize inhibitor binding to pharmacological targets 

and to explain potential resistance mechanisms. This can speed up iterations of 

initial studies, clinical studies, and inhibitor improvements. 
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5.2 LdNT1: Understanding purine uptake of parasites on a 

structural level 

 Introduction 

Leishmania donovani is a protozoan parasite and the pathogenic agent of visceral 

leishmaniasis, a disease that currently affects 12 million people worldwide. Since 

current treatment options have problems with toxicity, high cost, and emerging 

resistance, new therapeutic strategies that target biochemical processes unique to 

the parasite are needed [259]. 

One potential strategy relies on the fact that Leishmania are unable to synthesize 

purines de novo and rely on uptake of purines from their hosts. In order to 

transport nucleosides through the membrane Leishmania donovani encodes two 

nucleoside transporters, LdNT1 and LdNT2 [260]. Inhibition of these 

transporters would be a promising approach for treatment of leishmaniasis, but 

structural information about these transporters is sparse. Direct structural 

studies of these transporters are hindered by the inability to overexpress these 

transported in orthogonal expression system or in the parasite. Given the lack of 

close homologs in prokaryotes that might be more amenable to structural 

studies, this means that experimental insights into the structure-function 

relationships are limited to genetic and biochemical approaches, such as site-

directed mutagenesis and crosslinking. In order to guide these studies and 

interpret their results, computational techniques have been successfully 

implemented to predict the structure using ab initio techniques and relying on 

experimentally determined structures of proteins with remote homologies [261]. 
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Models built using these approaches have been successfully used to predict point 

mutations that affect the transporter function [261] and guide crosslinks at the 

extracellular gate of the transporter [262].  

Despite the success of these computational approaches, questions remain 

regarding the mechanism by which purines are transported across the membrane 

remain. LdNT1 belongs to the major facilitator superfamily (MFS) of 

transporters, which are believed to function using an “alternating access” 

mechanism, where the transporter can exist in two different conformational 

states, where one is open to the outside of the cell and the other is open to the 

cytosol [263]. Using HMM sequence profiles to identify a remote homology of 

LdNT1 to the fucose transporter whose structure had recently been solvent in an 

outward facing conformation [264], a homology model was built. The model was 

then used to predict point mutations in the structure at a position that likely 

corresponds with the intracellular gate. The mutations were then analyzed for 

loss of transporter function and were used as targets for creating crosslinks in the 

transporter. Results from these studies suggest that LdNT1 also functions by use 

of an “alternating access” mechanism. 

 Materials and Methods 

The sequence of LdNT1.1 was first aligned to FucP using a Hidden Markov 

profile comparison, generated by HHsearch software, employing the HHPred 

web server and default parameters [265]. This alignment produced a probability 

score of 98.4% and an E value 2.0 × 10−5. The profile for LdNT1.1 was built 

automatically by searching a profile database based on UniProt clustered at 20% 
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sequence identity using HHblits [266]. The profile for FucP was one that was 

catalogued in the HHPred database. A homology model of LdNT1.1 was then 

generated from this alignment and the FucP crystal structure employing the 

MODELLER software [178]. The model was then visualized using PyMOL 

software (PyMOL Molecular Graphics System, Schrödinger LLC). 

 Results 

Previously, our laboratory had developed an ab initio model of LdNT1.1 that 

showed an inside-open conformation (Figure 5-1). Since LdNT1.1 is a member of 

the major facilitation superfamily (MFS), we speculated that like other members 

of this family it would function by an alternating-access mechanism, where the 

two pseudo-symmetrical halves of the transporter undergo a ~38 degree “rocker-

switch” motion [262]. When we approximated the resulting outside-open 

conformation by applying this motion to the ab initio model, we saw as expected 

an opening of the outside gate, where residues Ala61, Phe374, and Gly350, that were 

shown to crosslink, move apart from another. However, upon inspecting the 

inside gate we found strong clashes of helices 11 and 2 as well as helices 10 and 5, 

indicating that the ab initio structure did not represent a biophysical meaningful 

model of the inside gate. 

To acquire information about the inside gate we used the recently 

published structure of the e. coli fucose transporter (FucP) [264] as a template for 

homology modeling. FucP was crystallized in an outward-open conformation. A 

HMM-profile search identified FucP as a homolog of LdNT1.1 as described in 

“Materials and Methods”. Even though the sequence identity is extremely low 
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(13%), the alignment had strong statistical support (Figure 5-2). While the 

alignment is ambiguous in some of the transmembrane helices, the C-termini of 

helices 5 and 11, as well as the N-termini of helices 4 and 10 are well aligned. 

Since these ends make up the inside gate in the FucP structure, we reasoned that 

a homology model may provide meaningful information about the inside gate. 

The homology model derived from the FucP template and the alignment 

in Figure 5-2, as expected, showed that the inside site of the transporter was 

shielded from solvent by interactions made by helices 4, 5, 10, and 11. To test the 

accuracy of the inside gate structure extensive side-directed mutagenesis of 

residues at the ends of helices 4,5,10, and 11 were performed. Eighteen residues 

(TM4: Thr160, Tyr161, Gly162, Met163, Phe164, Phe167; TM5: Thr174, Met175, Met176; TM10: 

Leu444, Val445, Leu446; TM11: Met466, Gly467, Ile468, Ser469, Ile470, Leu471) were mutated 

to alanine and introduced into a Δldnt1Δldnt2 L. donovani double null mutant 

that is genetically deficient in the LdNT1.1, LdNT1.2, and LdNT2 genes and 

consequently provides a null background for transport of nucleosides. This 

allowed for testing of the nucleoside uptake capability of these mutants in a 

native environment (Figure 5-3D). Six of these residues strongly impaired 

nucleoside uptake (>90%) compared to wild-type, mutation of one residue 

slightly impaired uptake (88%), while the other residues had only modest or no 

impact on nucleoside uptake (<70%). The reduction of uptake could not be 

explained by the amount of surface expression (Figure 5-3E). When we mapped 

the position of the mutations that impacted transporter function onto the 

homology model, we found that they clustered strongly at the interface formed 
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between the helices 4,5,10, and 11 (Figure 5-3A), while residues that did not 

impact transporter function were not part of the interaction between the N- and 

C-terminal half of LdNT1.1 (Figure 5-3B). Mapping of the critical mutations onto 

the previous inside-open ab initio model shows that these residues do not appear 

to interact in the inside-open state. However, only after the transition of the 

transporter to the model that represents the in the inside-closed state do these 

residues appear to interact. Since five of the critical residues within the putative 

inside gate are hydrophobic, while the two others are glycine residues, I 

proposed that the inside gate is most likely formed by residues Tyr161, Met175, 

Val445, Ile468, and Ile470. 

To further test the prediction that these residues likely form the inside 

gate, I proposed sites for crosslinking using site-specific introduction of cysteine. 

For this purpose I chose sites, that would crosslink the interface between (1) 

helices 4 and 11 (Ser158Cys/Leu465Cys), (2) between helices 5 and 10 

(Met176Cys/Met442Cys), as well as crosslinks between (3) helices 4 and 5 

(Gly162Cys/Ser173Cys) and (4) helices 10 and 11 (Gly447Cys/Gly467Cys) (Figure 5-4 

A-B). The distances between the Cα atoms of the introduced cysteine residues 

was 5.8 and 7.8 Å, for crosslink 1 and 2, respectively and 12.4 and 13.5 Å for 

crosslinks 3 and 4. Introduction of these mutations into a cysteine-less 

background resulted in a nonfunctional transporter and therefore their effect was 

assessed in the wild-type sequence, which contains five endogenous cysteine 

residues. For crosslink 3, no activity could be detected even in the wild type 

background and is therefore no longer discussed.  
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Notably, all three double cysteine mutant transporters completely lost the 

ability to catalyze active adenosine transport upon cross-linking with the 

relatively short reagents MTS-3-MTS (~5 Å in length and flexible; range of S-S 

distances, ∼3–6 Å) (38) or o-PDM (∼6 Å in length and rigid; range of S-S 

distances 7.67–10.47 Å) [267], [268]. However, these crosslinkers also caused 

significant reduction in transporter activity when used on single cysteine 

mutants. In contrast, preincubation with the longer length cross-linking reagents 

p-PDM (∼10 Å in length and rigid; range of S-S distances, 9.20–12.29 Å) [267], 

[268] or MTS-17-O5-MTS (~22 Å in length and flexible; range of S-S distances, ~3–

22 Å) [269] strongly inhibited adenosine influx in Δldnt1Δldnt2 L. donovani 

parasites transfected with the three double cysteine mutants, 

S158CTM4loop/L465CTM11 (p-PDM, ~6-fold inhibition; MTS-17-O5-MTS, ~5-

fold inhibition), M176CTM5/M442CTM10 (p-PDM, ~28-fold inhibition; MTS-17-

O5-MTS, ~20-fold inhibition), and G447CTM10/G467CTM11 (p-PDM, ~8-fold 

inhibition; MTS-17-O5-MTS, ~8-fold inhibition) double mutant constructs, but 

had almost no effect on single cysteine mutants (data not shown here, but in 

[270]). Moreover, analysis of cysteine mutants with p-PDM by western blots, 

shows shifts of protein mobility after p-PDM treatment, consistent with the 

distance between the modified residues, but no such shifts in single-cysteine 

mutants (Figure 5-4). This indicates that these residues are indeed close in the 

structure of LdNT1.1 in some sampled conformational states. 
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 Discussion 

Although the sequence identity between LdNT1.1 and FucP is low (13%), 

homology models of other proteins with similar or lower degrees of identity, 

such as the HIV protease modeled on distantly related aspartyl proteases [271], 

[272], have successfully provided valuable structural models to interrogate the 

function of those proteins. In the case of the HIV protease model the 

computational structure was subsequently validated by the crystal structure of a 

retroviral protease [273]. Indeed, modeling from remote sequence similarities has 

been justified by “the general observation that protein structures are better 

conserved through evolution than are the sequences which overlay them” [271]. 

Furthermore, we have performed site-directed mutagenesis and chemical cross-

linking that support this model and define specific residues likely to contribute 

to the intracellular gate. 

The cysteine cross-linking studies also support the identification of the 

intracellular gate, as residues within predicted gate helices are close enough in 

the inward-closed conformation (Figure 5-4) to be cross-linked to each other. 

Because p-PDM cross-links all three cysteine-cysteine pairs, they must be within 

9.20–12.29 Å of each other, not far from the predictions of the model. The shorter 

predicted distances between introduced Cys-158–Cys-465 (5.8 Å) and Cys-176–

Cys-442 (7.8 Å) could either indicate that these residues are somewhat farther 

apart than predicted by the model or that they are able to react with p-PDM as 

they breathe apart during opening of the gate. 
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It is noteworthy that the inward-closed and outward-closed 

conformations are probably not the only two structural states important for 

function of LdNT1.1. Crystallographic studies have identified “occluded states” 

of multiple MFS members [274]–[277], intermediate structures in which the 

substrate is not directly accessible to solute on either the extracellular or 

intracellular face of the membrane. Such states are likely to exist for LdNT1.1 as 

well. 

5.3  Otub1: Novel mechanism of p53 stabilization 

 Introduction 

The p53 tumor suppressor is one of the major guardians of the cell against 

cancer. Upon sensing DNA damage or other unfavorable conditions, p53 

protects the cell by functioning as a transcription factor that induces apoptosis or 

cell cycle arrest to stop propagation of the damage. In order to overcome this 

protection against uncontrolled cell division, tumors have either mutations that 

inactivate p53 or severely reduce p53 levels. Stabilization of p53 as way to 

increase its effective cellular concentrations might be an approach to prevent 

tumor growth [278]. 

The levels of p53 inside a cell are controlled by many factors. Mouse double 

minute 2 homolog (Mdm2) is the most important negative regulator. Mdm2 

affects p53 by multiple mechanisms: It inactivates p53 by binding, downregulates 

p53 expression, and has E3-ligase activity causing ubiquitination of p53 and 

subsequent degradation of p53 by the proteasome [279]. Overexpression of 

Mdm2 is one of the mechanisms by which cancers reduce p53 levels. Positive 
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regulation of p53 levels can be achieved by deubiquitination, catalyzed by 

deubiquitination enzymes. Surprisingly, one of these enzymes, ovarian tumor 

domain-containing Ub aldehyde-binding protein 1 (Otub1), stabilizes p53 not by 

deubiquitination but by inhibiting the cognate E2-ligase of Mdm2, UbcH5 [280]. 

Several other studies have established that Otub1 can bind to other E2-ligases. 

Most importantly a crystal structure of a complex of a different E2-ligase Ubc13 

with Otub1 showed that Otub1 can bind to the ubiquitin-charged E2-ligase 

(Ubc13~Ubq), thereby blocking access of substrate to the E2-ligase [281].  

The Dai laboratory discovered that Otub1 needs to be monoubiquitinated on 

either residue Lys59 or Lys109 in order to stabilize p53 and that 

monoubiquitination increased binding of Otub1 to UbcH5 [282]. While structure 

determination using X-ray crystallography or cryo-electron microscopy would be 

the gold standard to understand the structural basis of the role of 

monoubiquitination, these techniques are labor and time intensive and are often 

precluded by limited stability or intrinsic disorder of the sample. Using a 

specialized program based on the ROSETTA package I was able to demonstrate 

that monoubiquitination does not stabilize an Otub1-UbcH15 complex similar to 

the Otub1-Ubc13 complex, but rather involves binding of the Otub1 bound 

ubiquitin to the “backside” of UbcH15. My prediction was subsequently 

confirmed by site-directed mutagenesis. 

 Materials and Methods  

All modeling was performed using the UBQ_Gp_LYX-Cterm application of the 

Rosetta 3.5 suite [283] using standard parameters according to the 
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documentation. For modeling of the quaternary complex, the crystal structure 

4DDI was used. UbcH5b and UbcH5b∼Ub were included using the “extra-

bodies” option. A total of 500 independent models were created for either Lys59 

or Lys109 ubiquitination. For modeling of monoubiquitinated Otub1, the crystal 

structure 2ZFY was used. A total of 200 models were created for either Lys59 or 

Lys109 ubiquitination. The resulting models were clustered, and the highest 

scoring structure of the most populated cluster was used for further analysis. 

 Results 

How does monoubiquitination promote Otub1-E2 interaction? Biochemical [284] 

and structural [281], [285] studies have shown that Otub1 preferentially binds to 

Ub-charged E2 (E2~Ub). Because UbcH5 preferentially binds to 

monoubiquitinated Otub1 (Otub1-Ub) [282], we reasoned that 

monoubiquitination at Lys59 or Lys109 may stabilize the Otub1-UbcH5 interaction 

by forming a quadruple molecular complex containing Otub1-Ub·UbcH5~Ub via 

direct interaction of Otub1-linked Ub with UbcH5~Ub within the 

Otub1·UbcH5~Ub complex characterized previously [285]. Thus, we modeled the 

quaternary complex between UbcH5b~Ub and Otub1-Ub using Rosetta software 

[283]. After extensive sampling of the conformational space available to Ub, we 

found that Ub linked to Lys109 was unable to form a direct interaction with 

UbcH5b~Ub (Figure 5-5A). Ub linked to Lys59 formed interactions with 

UbcH5b~Ub in a small subsets of sampled conformations (Figure 5-5B). Because 

ubiquitination of either Lys59 or Lys109 has a similar effect to regulate p53, we 

suggest that Ub linked to Otub1 does not stabilize Otub1-UbcH5 interaction 
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through direct interactions within the characterized Otub1·UbcH5∼Ub complex 

[285]. 

To further understand how monoubiquitination promotes Otub1-UbcH5 

interaction, we modeled the structures of monoubiquitinated Otub1 alone. 

Interestingly, for monoubiquitination at either Lys109 or Lys59, the most frequently 

sampled poses exposed the canonical Ile44 interface of Ub, potentially allowing 

for the interaction of Ub with the “backside” of UbcH5 against the catalytic Cys 

known previously for donor Ub binding [286], [287]. When we superimposed the 

Ub linked to Otub1 with Ub (charged to another UbcH5) bound to the backside 

of UbcH5b (PDB code 3A33), we found no steric clashes between UbcH5b and 

Otub1. This suggested that the Ub covalently linked to Otub1 could facilitate the 

Otub1-UbcH5 interaction through binding to the backside Ub-interacting surface 

of UbcH5 (Figure 5-5C). This backside interaction of UbcH5 with Ub involves 

key residues, including Ser22 on UbcH5 and Ile44 on Ub (Figure 5-5C, right panel) 

[287]. To test this possibility, we first examined whether mutating Ser22 on UbcH5 

to Arg (UbcH5Ser22Arg) could affect this backside UbcH5-Ub interaction because 

this mutation has been shown to disrupt the Ub-UbcH5 interaction [287]. As seen 

in Figure 5-5C, although wild-type GST-UbcH5 can bind to the 

monoubiquitinated Otub1, the GST-UbcH5Ser22Arg mutant fails to bind. 

Similarly, mutating Ser22 to Leu (UbcH5Ser22Leu) also disrupted the binding 

between UbcH5 and the monoubiquitinated Otub1 (Figure 5-5D). These mutants 

generate a steric clash with Ub Ile44 because of the larger side-chain of Arg or Leu 

compared with Ser [287], [288]. Next, we asked whether mutating Ile44 of Ub to 
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Ala with a smaller side-chain can also affect the binding. The mutant Ub-I44A 

(UbIle44Ala) can still be used for Otub1 monoubiquitination in vitro (Figure 5-5E). 

Using the reaction mixture containing Otub1 monoubiquitinated with UbIle44Ala 

(Otub1-UbIle44Ala) for GST pulldown assays, we found that wild-type GST-

UbcH5 indeed failed to interact with Otub1-UbIle44Ala (Figure 5-5E, last lane). 

Interestingly, the Ile44Ala mutation likely relieves the steric clash generated by 

the Ser22Ile mutation through complementation, resulting in the rescued binding 

between UbcH5Ser22Leu and Otub1-UbIle44Ala (Figure 5-5E). Together, these 

results demonstrate that monoubiquitinated Otub1 interacts with the backside 

Ub-interacting surface of UbcH5 through the covalently linked Ub. This backside 

binding could potentially cripple the self-assembly of UbcH5~Ub conjugates 

thought to be critical for ubiquitin transfer to substrates and poly-Ub chain 

formation [286], [287], thereby suppressing the Ub-conjugating activity of 

UbcH5.  

 Discussion 

The novel mechanism described here could exist in parallel with a mechanism 

described previously wherein Otub1 binds to E2~Ub [281], [285] and they act in 

concert to potentiate the function of Otub1 to suppress E2. Previous structural 

studies have shown that binding of a free Ub to the distal Ub-binding site on 

Otub1 causes a conformational change of Otub1 to form an N-terminal Ub-

binding helix, allowing for the binding of the donor Ub [281], [285]. This Otub1 

binding blocks the interaction of the donor Ub with another E2 and the attack on 

the thioester bond by an acceptor Ub and also suppresses Ub transfer [287]. 



180 

 

Future studies are warranted to address how the two distinct mechanisms could 

interplay, timely and spatially, and whether the mechanism described here is 

also regulated by the cellular concentration of free Ub or the molecular ratio of 

charged versus uncharged E2 molecules. Alternatively, monoubiquitinated 

Otub1 could bind to Ub-charged E2 to form a quadruple inhibitory complex 

(Otub1-Ub·E2~Ub) through the backside UbcH5-Ub interaction. This quadruple 

complex would then form an infinite spiral, as in the case of the self-assembly of 

E2~Ub conjugates [287] through the donor Ub interaction with Otub1. This 

complex could, therefore, disrupt the assembly of E2~Ub conjugates and 

suppress the Ub transfer and efficient polyubiquitination of substrates [286]. In 

this scenario, it is important to test whether monoubiquitination of Otub1 could 

result in a conformational change to promote the donor Ub binding to Otub1. 

Thus, future characterization of the structure of the inhibitory Otub1-

Ub·UbcH5~Ub complex would provide further insights into how Otub1 

suppresses E2. 

5.4 Ribosome-Sec61 translocon: The role of small structured 

domains in cotranslational secretion 

 Introduction 

Biosynthesis of secreted proteins involves recognition of an amino-terminal 

signal sequence by the signal recognition particle and subsequent targeting of the 

ribosome and the nascent chain to the endoplasmic reticulum. There the 

ribosome binds to the Sec61 channel and the protein is cotranslationally inserted 

into the ER [289]. While this simple mechanism suggests that only the signal 
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sequence determines whether a protein is inserted into the ER, experimental 

evidence has shown that the cargo protein can also influence translocation. For 

example, interactions of basic residues of the native chain with the translocon 

complex determines the topology of transmembrane proteins [290] and domains 

that fold before the ribosome is targeted to the ER can block translocation [291].  

During formation of the ribosome-Sec61 complex about 50 to 60 residues of the 

nascent chain can accumulate in a vestibule formed by the ribosome and Sec61 

before being inserted through the Sec61 pore [292]. In order to answer the 

question whether folding of small cargo domain within this vestibule could 

influence translocation, the Skach laboratory demonstrated that insertion of a 

small zinc-finger domain can block translocation in a zinc-dependent manner, 

even after the ribosome-polypeptide complex has been recruited to the ER [293]. 

Even though these studies demonstrate that folding of a small domain can 

influence translocation, they are based on an artificial system. In order to answer 

the question whether this phenomenon caused evolution to select against small 

independent folding units in secretory protein right after the signal peptide, I 

performed a sequence analysis of the almost completely determined human 

proteome. By annotating domains using HMM sequence profiles of known 

folded domains stored in available databases I found that no such selection is 

found and that the cell probably uses other mechanisms to prevent premature 

folding of small secreted domains. 
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 Material and Methods 

Reviewed entries of human proteins (20,266 total) from the UniProt database 

(http://www.uniprot.org/) were parsed into soluble secretory (1,905) and soluble 

cytosolic and nuclear proteins (8,485) on the basis of their cellular location and 

signal-peptide annotations. Proteins with annotated transmembrane segments 

were excluded. The search strings were 'organism:9606 AND reviewed: yes AND 

annotation:(type: location Cytoplasm OR Nucleus) NOT annotation: 

(type:transmem) NOT annotation: (type:signal)' for cytosolic and nuclear 

proteins and 'organism:9606 AND reviewed: yes AND annotation:(type: signal) 

NOT annotation: (type:transmem)' for secretory proteins. 

To determine whether proteins in the two cohorts contained predicted 

structured domains within their N-terminal regions, UniProt identifiers were 

mapped to the Superfamily (http://supfam.org/) and Gene3D 

(http://gene3d.biochem.ucl.ac.uk/) databases. These databases annotate domains 

within protein sequences with hidden Markov models on the basis of the 

structural classification databases SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) 

and CATH (http://www.cathdb.info/). From these annotations, the percentage of 

proteins with domains within the first 100 residues downstream of the predicted 

signal-sequence cleavage (secretory proteins) or within 100 residues after the N-

terminal methionine (cytosolic and nuclear proteins) was calculated. 

 Results and Discussion 

In this study the zinc-finger domain was selected as the model for analyzing the 

effect of domain folding during translocation. Although zinc-finger domains are 
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common in the N-terminal region of cytosolic and nuclear proteins, analysis of 

the SCOP and CATH structural databases revealed that they are rare in the 

secretory proteome (Figure 5-6 b). We therefore tested whether the hypothesis 

that small folding domains are selected against in the first 100 residues in 

secretory proteins can be verified by a lower frequency of secretory proteins with 

a small domain encoded within the first 100 residues. Surprisingly and contrary 

to the hypothesis, small structurally defined (sub)domains are nearly twice as 

common within the first 100 residues within secreted proteins as are domains of 

similar size within the first 100 residues of cytosolic and nuclear proteins (Figure 

5-6 a). One of the plausible reasons for this higher abundance of small domains 

within N-terminal region of secretory proteins may arise from the fact that 

secretory proteins are on average shorter than cytoplasmic ones. Indeed, some of 

the most common domains found at the N-terminus of secreted proteins are 

small tightly folded signaling proteins, such as interleukins or small adhesion 

mediating SCR-like domains (Figure 5-6 b).   

This means that protection against premature folding of small proteins 

during translocation must occur through some other mechanism. As expected, 

approximately 70% of these secretory domains contain disulfide bonds (Figure 

5-6 c), which would stabilize folding only after ER entry or perhaps under 

conditions of oxidative stress. These findings raise the possibility that folding 

kinetics or stability may confer unique translocation properties on secretory 

cargo that are coupled to their cognate signal sequences [294]. However, further 

work is needed to determine the extent to which protein domains that are less 
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stable than the zinc finger domain examined in this study may affect the general 

translocation processes. 

5.5 ROS1: New drugs for treatment of small cell lung cancers 

 Introduction 

Receptor tyrosine kinases (RTK) are activated by extracellular ligands, such as 

growth factors, cytokines, and peptide hormones. Upon binding their respective 

ligands by their extracellular domains, the signal is passed along their 

transmembrane helix to the cytosolic kinase domain, which then catalyzes 

autophosphorylation or phosphorylation of substrates. Since the downstream 

signaling of RTKs often leads to cell growth and survival pathways, aberrant 

activation of RTKs by chromosomal rearrangements or point mutations drives 

many cancers. By using small molecules that specifically inhibit a particular RTK 

that drives a specific tumor, one can prevent further growth of the cancer or even 

reduce the cancer burden. Such “targeted therapy” has the advantage of having 

minimal side effects when compared to classical chemotherapy treatments and 

often leads to a higher quality of life for the patient while allowing higher 

therapeutic doses [295]. However, an intrinsic problem of this approach is the 

emergence of resistance through point mutations, which accumulate in the 

targeted RTK to prevent the inhibitor from binding or to display activity inspite 

of inhibitor binding. Therefore, rapid development of new inhibitors that can 

overcome the resistance acquired by the RTK against the first-line treatment is 

required [296]. 
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ROS1 is an RTK that is activated by chromosomal rearrangements in a subset of 

glioblastomas, non-small-cell lung cancers and cholangiocarcinomas [297]–[299]. 

The close similarity of ROS1 with another RTK, ALK, have lead to clinical trials 

testing the effect of the ALK inhibitor crizotinib on ROS1-driven cancers [300]. 

Although the results are promising, a subset of patients acquires point mutations 

in ROS1 making the kinase domain develop resistance against crizotinib due to 

point mutations in ROS1.  To overcome this problem, the Druker laboratory 

developed an unbiased screen of potential RTK inhibitors and identified foretinib 

as a novel ROS1 inhibitor. Furthermore, foretinib maintains it potentency against 

point mutations in ROS1 that confer resistance to crizotinib [301]. Since no 

structural data for ROS1 was available, I built homology models of ROS1 bound 

to either crizotinib or foretinib to rationalize the potency of foretinib against 

crizotinib resistant ROS1. 

 Materials and Methods 

Homology models were created using the MODELLER software package. To 

create the model of ROS1 in complex with crizotinib the crystal structures of 

ALK bound to crizotinib (PDB: 2XP2) was used as template. The model of ROS1 

bound to foretinib was built using the crystal structures of c-Met bound to 

foretinib (PDB: 3LQ8) and of ALK R1275Q bound to type-II inhibitor N-(4-

chlorophenyl)-5-[(6,7-dimethoxyquinolin- 4-yl)oxy]-1,3-benzoxazol-2-amine 

(PDB: 4FNY) as templates. For each ligand 800 models were created and ranked 

based on their DOPE scores. The top ten models were inspected and showed 

consistent results. The top structure was chosen for the structural depiction. 
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 Results and Discussion 

A BLAST search of the sequence of the ROS1 kinase domain against the PDB 

identified ALK as the closest homolog with 50% sequence identity. Since a crystal 

structure of ALK bound to crizotinib was available, binding of crizotinib to ROS1 

was modeled using this structure as a template (PDB: 2XP2). Crizotinib is a type-

I inhibitor, meaning it binds only to the ATP binding pocket, but not to the so-

called DFG-pocket, which in this structure is occupied by the phenylalanine 

residue of the DFG-motif (DFG-in). Foretinib is a type-II inhibitor, meaning it 

also binds to the DFG-pocket. Therefore binding of foretinib is not compatible 

with a DFG-in conformation of the kinase. In order to overcome this problem, I 

used a multi-template modeling approach using the crystal structure of ALK 

bound to another type-II inhibitor (PDB: 4FNY) and the crystal structure of MET 

bound to foretinib (PDB: 3LQ8) as templates. This is necessary due to the lower 

sequence identity (40%) of MET to ROS1. By using the approach the drug 

interaction are more closely modeled by the kinase bound to the right inhibitor 

(MET-foretinib), while the rest of the structure is modeled using the better 

template (ALK). Comparison of the resulting models (Figure 5-7) shows that 

overall the two structures are similar, with the exception of the activation loop 

that has to acquire different structures due to the variation in binding of a type-I 

and type-II inhibitor. 

We then mapped mutations (Gly1971Glu, Leu1947Arg, Leu1982Phe, Val2098Ile, 

Cys2060Gly), which were found to confer resistance to crizotinib [301], onto the 

structures obtained through homology modeling. While the Gly1971Glu mutation 
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in the N-terminal lobe is located in a loop that is distant from the ligand binding 

site, both the Leu1947Arg and Leu1982Phe mutations are in proximity of structural 

features involved in ligand binding (nucleotide binding loop and helix αC, 

respectively). In the C-terminal lobe, the Val2098Ile mutation is proximal to the 

DFG motif of the activation loop, while Cys2060Gly is located within the alpha-

helical part of the C-terminal lobe. Importantly, mutations of Leu1152 in ALK, a 

residue homologous to Leu1982 in ROS1, confer crizotinib-resistance [302] and a 

mutation of Leu1152 was recently identified in a crizotinib-treated NSCLC patient 

with clinical resistance [303]. Also, mutations in ALK that are proximal to the 

DFG motif exhibit increased resistance to crizotinib [302]. 

Since none of the mutations directly affect interactions between the 

inhibitor and the kinase, they most likely affect drug binding through allosteric 

interactions. While Leu1947, Leu1982, and Val2098 map closely to the active site and 

may disturb the active site, residues Gly1971 and Cys2060 are distant and may affect 

the kinetics of an induced fit structural rearrangement that was recently 

identified as critical for drug affinity in the kinase proteases Src and Abl [304]. 

5.6 Conclusion 

These examples demonstrate a variety of scenarios where sequence and structure 

based computational methods were critical to understand the underlying 

biology. In the first example, structure prediction using homology modeling of 

LdNT1.1 was the starting point of the study. All experiments were designed to 

test the proposed model. In the absence of such a structural model many more 

mutations would need to be screened and would be much harder to interpret. In 
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the second example predictions of Otub1-Ub structures were used to the first test 

a hypothesis of the mechanism by which ubiquitination of Otub1 causes p53 

stabilization. After the computational model was not consistent with the initial 

hypothesis, the modeling was used to propose an alternate hypothesis, which 

was subsequently tested through experimentation. In the third example 

bioinformatics was used to examine a hypothesis that is not testable by 

experimentation. The hypothesis, which poses that during evolution, secreted 

proteins selected against small folded domains at their N-termini, cannot be 

readily tested by experimentation. However, the combination of publicly 

available genomic sequences and experimentally determined structures allowed 

us to address this question. While the results were not consistent with the 

hypothesis, they provided an alternate explanation for how premature folding of 

passenger domains might be prohibited. In the last example, computational 

methods provided a way to interpret data obtained using cell-based approaches. 

While advancements in high-throughput cell culture allow for rapid testing of 

compounds and mutations, it is often not always feasible to directly follow them 

up by structure determination by X-ray crystallography or NMR spectroscopy. In 

the absence of experimental structural data, modeling is the best way to interpret 

the results. 
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Figure 5-1: Ab initio computational model of LdNT1.1 

Left, indicated are residues that were mutated to cysteines. Tan cylinders represent 

predicted TM helices and are numbered 1–11. Residues at the extracellular termini of 

helices 1, 2, and 7 that were mutated to cysteines are indicated by space filling 

models: pink is Ala-61TM1, green is Phe-74TM2, and red is Gly-350TM7. The view is from 

the extracellular surface toward the interior, indicating that the ab initio model 

predicted an inward-open conformation. The figure was generated using PyMol. A 

suggestive model for the outward-open conformation (right) is given by rotating the 

N-terminal domain (helices 1–6) and the C-terminal domain (helices 7–11) 38° 

around an axis (red line) parallel to the lipid bilayer 
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Figure 5-2: Alignment of LdNT1.1 and the e. coli fucose transporter 

Red bars indicate position of transmembrane helix segments in FucP. 
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Figure 5-3: Homology model of outward-open state of LdNT1.1 and 

mutations that affect activity 

(A-C) TM helices are indicated as cylinders and are numbered I-XI, and the 

connecting hydrophilic loops are not shown. Images on the left represent views along 

an axis parallel to the membrane (inside of the cell on top, outside of the cell on 

bottom), whereas images on the right are views perpendicular to the membrane 

from the inside toward the outside. A, six critical residues whose mutation to alanine 

inhibits adenosine uptake by >90% are indicated as space-filling structures in red. 

The yellow residue is Met-175, discussed in the text, whose mutation to alanine 

inhibits uptake by 78%. B, residues at the inner ends of TM helices, whose mutation 

to alanine either inhibits adenosine uptake more modestly or activates uptake, are 

shown as space-filling structures in green. C, image of LdNT1.1 in the inward-closed 

and inward-open conformations showing the inner gate transitioning from closed to 

open state. The inward-closed image and the space-filling structures are as in A, 

whereas the inward-open image represents the ab initio model for LdNT1.1 that was 

reported previously (15). 

(D) Uptake of 1 μM [3H]adenosine (y axes) was quantified for the Δnt1/Δnt2 double 

null mutant of L. donovani expressing either wild type (WT, filled bars) LdNT1.1 or 

this transporter with the designated alanine point mutations (open bars). The data 

are separated according to each TM helix. The level of uptake for WT was set at 

100%, and numbers on the y axes represent percent uptake of each mutant relative 

to wild type LdNT1.1. Each uptake value in this and subsequent figures represents 

the mean and S.D. (error bars) for at least three independent uptake measurements. 

(E) Surface expression of WT and each mutant was quantified by surface 

biotinylation followed by purification of biotinylated proteins on streptavidin beads. 

The streptavidin bound fractions were separated by SDS-PAGE, blotted, and probed 

with antibody directed against the NT1-loop VII (top) or the myo-inositol transporter 

LdMIT (bottom). The numbers under each lane represent the relative surface 

expression of each alanine point mutant relative to that of WT LdNT1.1 after 

normalization to the LdMIT signal for each lane.  
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Figure 5-4: Crosslinks based on homology model 

(A-B) For each substituted cysteine, amino acids located in the N-terminal helix 

bundle (TM1-TM6) are shown as space-filling structures in green, and those in the C-

terminal helix bundle (TM7-TM11) are shown in red. The images show the LdNT1.1 

inward-closed model seen from the inside toward the outside of the cell. Image A 

depicts the dual cysteine mutants between TM4 (IV) and TM11 (XI) (S158C/L465C) 

(labeled 1) and the cysteine pair between TM5 (V) and TM10 (X) (M176C/M442C) 

(labeled 2). Image B shows the dual cysteine pair between TM4 (IV) and TM5 (V) 

(G162C/S173C), labeled 3, and that between TM10 (X) and TM11 (XI) (G447C-

G467C), labeled 4. The black lines show the interconnections between each cysteine 

pair. 

(C) Membranes were isolated from parasites expressing WT or double cysteine 

mutant LdNT1.1 cross-linked (+) or not (−) with p-PDM, separated on SDS-PAGE, 

blotted onto a membrane, and probed with the NT1-loop VII antibody (left panels). 

Single cysteine mutants were treated identically (right panels). 
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Figure 5-5: UbcH5 binds preferentially to monoubiquitinated Otub1 through 

backside UbcH5-Ub interaction. 

(A and B) Conformational freedom of ubiquitin tether to Lys-59 (A) or Lys-109 (B) in 

the ternary Oub1-Ub/UbcH5b-Ub complex. Otub1 is shown as a green cartoon with 

transparent surface, UbcH5b is shown in blue, with the ubiquitin tethered to the 

active site cysteine shown in yellow. Models for ubiquitin tethered to Otub1 are 

shown superimposed in purple, with the surface representing the maximal extend of 

the available conformational space. 

(C) Modeling of the Ub-Otub1/UbcH5b interaction through docking of Ub linked to 

either Lys-59 (top left panel) or Lys-109 (bottom left panel) with the backside of 

UbcH5b. Otub1, UbcH5b, and Ub are colored green, blue, and yellow, respectively. 

Lys-59 and Lys-109 of Otub1, Ile-44 of Ub, and Ser-22 of UbcH5 are indicated in 

red. The enlarged view in the right panel shows the canonical Ub Ile-44 interacting 

with Ser-22 on UbcH5.  

(D and E) UbcH5S22R and UbcH5S22L do not bind to monoubiquitinated Otub1. The 

in vitro ubiquitination reaction mixture containing both monoubiquitinated and 

unmodified Otub1 was incubated with GST alone, GST-UbcH5c, GST-UbcH5S22R, or 

GST-UbcH5S22L immobilized onto GSH beads. After washing, bead-bound proteins 

were assayed by IB analysis.  

(F) Mutating Ser-22 to Leu rescues the binding defect of UbcH5 with Otub1-UbI44A. 

His-Otub1 was subjected to an in vitro ubiquitination reaction using recombinant 

UbI44A. The reaction mixture containing both monoubiquitinated (Otub1-UbI44A) 

and unmodified Otub1 was incubated with GST alone, GST-UbcH5c, or GST-

UbcH5S22L immobilized onto GSH beads. After washing, bead-bound proteins were 

assayed by IB analysis. 
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Figure 5-6: Frequency and identity of N-terminal domains in secretory 

versus cytosolic and nuclear proteins. 

a) Table showing percentage of cytosolic and nuclear or secretory proteins that 

contain structurally defined domains in the first 100 residues from the N-terminus or 

the first 100 residues beyond the predicted signal sequence based on structural 

classification via SCOP and CATH databases. Top row includes all domains, whereas 

bottom row includes only those domains shorter than 50 residues. Actual number of 

proteins with domains and total proteins are shown in parentheses. Although the 

number of proteins varies between the databases, both analyses show that discrete 

domains are more commonly found in N-terminal regions of secretory proteins. b) 

Identity of the 15 most frequent domains found based on the SCOP database is 

indicated and plotted as the number of cytosolic and nuclear or secretory proteins 

that contained the domain. Average domain length is shown in parenthesis. Similar 

results were obtained using the CATH database, but are not shown since CATH uses 

numerical identifiers. c) Of the domains located within the first 100 residues of the 

secretory cohort based on the SCOP database, 70.4% had annotated disulfide 

bridges in the Uniprot database. 
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Figure 5-7: Homology models of ROS1 bound to crizotinib and foretinib 

Homology models of ROS1 bound to crizotinib (magenta) and foretinib (orange). The 

ligands are shown in colored stick representation, while the protein is shown in grey 

ribbon. Differences in the activation loop conformations are highlighted by coloring 

them according to the respective ligands. Residues, which were found to confer 

resistance to crizotinib when mutated, are highlighted in red and shown as stick 

representation. 
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Summary and conclusions 

I would like to close my thesis by reflecting on the biological problems addressed 

in this thesis as well as on the approach of using iterations of computational 

predictions with experimental verification. These iterations are highly 

synergistic. First computationally generated hypotheses or models, such as the 

LdNT1 homology model (Chapter 5.2), can be the starting point for experiments 

testing this hypothesis or vice versa new experimental insights can be the 

starting point for computational testing of a hypothesis, such as the question 

whether folding of small domains at the N-terminus of secreted protein blocks 

translocation (Chapter 5.4). The use of computational methods can drastically 

increase the insight gained by experiments, for example by testing a hypothesis 

based on experiments on a single model protein using thousands of protein 

sequences, as in the histidine bias analysis (Chapter 2), or by simulating an 

experimentally observed phenomenon. For example the molecular dynamics 

simulation of the furin propeptide with protonated histidines (Chapter 3.4.4 and 

3.4.7) allowed a deeper understanding of the consequences of histidine 

protonation than what would be experimentally possible. However, almost all 

computational experiments use simplified representation of the biological 

systems involved. While these assumptions are often well justified, nevertheless 
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the value of computational predictions is drastically increased if the predictions 

are experimentally verifiable. For example the prediction of an alternative 

binding mode of Otub1 and UbcH5b (Chapter 5.3) does only contribute to our 

knowledge because we were able to design experiments based on the predicted 

model to verify its accuracy. In the following sections I will summarize the 

biological insights that were gained in this thesis and highlight how combination 

of computation and experiments worked synergistically.   

6.1 Histidine protonation in the propeptides of furin and PC1/3 is 

responsible for pH-mediated activation of cognate catalytic 

domains 

Multiple lines of evidence in this thesis support the idea that histidine 

protonation in the propeptides of furin and PC1/3 is responsible for the pH-

mediated activation of furin and PC1/3. First, swapping the propeptides of furin 

and PC1/3 exchanges their pH of activation (Figure 3-2) and the secondary 

structure content of the propeptides is reduced at the pH of activation (Figure 

3-2). Both propeptides share a high content of histidine residues (Figure 3-1) and 

molecular dynamics simulations show that protonation of histidine residues has 

a strong impact on the structural stability of the furin propeptide (Figure 3-3). 

We did not observe similar differences for the PC1/3 propeptide, which might be 

due to the limited timescale of the simulation. In the case of furin one particular 

histidine, His69, had been previously implicated as a pH-sensor [59]. Consistent 

with the hypothesis we found that mutation of His69 to leucine increased the 

overall stability of the propeptide and reduced the amount of secondary 
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structure loss of the propeptide (Figure 3-4 and Figure 3-5). Furthermore, 

molecular dynamics simulations showed that mutation of His69 to leucine leads 

to a reduced loss in structure upon histidine protonation, especially in the loop 

that contains the secondary cleavage site (Figure 3-6). 

6.2 Histidine enrichment is an evolutionary mechanism for 

propeptides of proteases to become pH-sensitive 

Even though the high degree of sequence diversity in the propeptides of 

proprotein convertase made it hard to identify absolutely conserved features in 

eukaryotic homologs, we found that an increase in histidine content in the 

propeptide is a unique feature of eukaryotic subtilases (Figure 2-2). The fact that 

we observed a similar enrichment in the propeptides of a completely unrelated 

protease family that is also activated by low pH (Figure 2-5), suggests that use of 

histidine residues in propeptides is an example of convergent evolution. This is 

supported by the fact that we do not observe such enrichment in a cytosolic 

protease family (Figure 2-6). 

Presumably, introduction of histidine residues is an easy way to evolve 

pH regulated activation. Propeptides of subtilases are only under a weak 

evolutionary pressure to maintain their precise structure, compared to the 

protease domain, which has to maintain the precise arrangement of the catalytic 

center (Figure 2-1). Furthermore, the structural stability of propeptides appears 

to be optimized to balance structural integrity so as to maintain inhibition, but be 

flexible enough to allow cleavage for activation [15]. By inserting a histidine at a 

position that can accommodate an uncharged imidazole chain, but not a positive 
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charge, the activation is immediately coupled to pH. So mutation of a single 

residue is sufficient for a gain of function. Subsequently, introduction of 

additional histidine residue and fine-tuning of the stability of the propeptide 

allows for a precise yet facile modulation of the pH of activation. 

6.3 Multiple histidine residues are involved in shaping the pH-

dependent energy landscape of PROFUR 

Coupling multiple titration sites to the structure of a protein is functionally 

advantageous, because it allows for modulation of the effective pH of structural 

loss by altering the protein environment of either titratable site, potentially 

allowing for quicker adaptation to optimal pH of activation. Most importantly, it 

allows for a stronger dependence of the structure on proton concentration (See 

Chapter 1.2.2.2, equation 10). This allows greater pH specificity, because the 

protein can achieve a stronger perturbation of the equilibrium between 

structured and unstructured state due to a smaller change in proton 

concentration. 

We found that the propeptide of furin indeed shows a stronger 

dependence on pH than one would expect from one titrating site (Figure 3-7). 

Further mutagenesis studies suggest that beside His69, the primary pH-sensor, 

His52 and His66 could be involved in pH-sensing (Figure 3-8), even though 

mutation of His66 alone does not impact pH-mediated activation [59]. Data from 

our laboratory (Williamson, et. al. manuscript in preparation) shows that 

additional His residues fine-tune the sensitivity of the propeptide of PC1/3 

towards pH-dependent activation. 



201 

 

6.4 Differences in pH-activation are due to modulation of the pKa-

value of a conserved histidine residue 

Proprotein convertases use pH to direct their activation. It is therefore critical 

that their propeptides are optimally tuned to confer activation in the right 

organelle. Measurement of histidine pKa values using histidine hydrogen-

deuterium exchange mass spectrometry shows that activation of furin and PC1/3 

at different pH values is at least partially due to a difference in the pKa of the 

primary pH sensor (furin: His69, PC1/3: His72). This histidine is probably critical 

for pH-mediated activation since it contributes to the structural flexibility of the 

cleavage loop and also provides a positive charge at the P6 position upon 

protonation, which is favored by furin [59]. Therefore a shift from a pKa of 6.0 in 

furin to 5.6 in PC1/3 can explain why PC1/3 requires a higher proton 

concentration for activation. Comparison of the measured pKa values of His72 in 

PC1/3 with computational predictions and thermodynamic theory of pH-

mediated conformational changes (Figure 4-6) suggests that outward movement 

of His72 from a pocket formed by the cleavage loop is an important determinant 

of activation. 

6.5 Combination of proteolysis, CID, and ETD fragmentation 

allows for measurement of residue-specific deuterium uptake 

in side-chains 

Even though the high resolution of an OrbiTrap mass spectrometer makes 

measurement of the effectively sub Dalton mass increase in histidine hydrogen-

deuterium uptake possible, an important technical hurdle is the measurement in 
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a residue specific manner. While in the case of histidine hydrogen-deuterium 

exchange a residue specific analysis does not require cleavage at every peptide 

bond, but only between every histidine residue, the high density of histidine 

residues in the furin and PC1/3 propeptides made this a challenging endeavor. 

My work demonstrated that this hurdle can be overcome either by a “top-down” 

combination of using CID and ETD on the undigested propeptide or by 

combining pepsin digestion with ETD (Figure 4-1 and Figure 4-2). However, the 

use of pepsin digestion and ETD was much more robust, suggesting that further 

technique refinement is needed for top-down approaches.  

An interesting discovery made during analysis of the exchange data was 

that residues other than histidine were able to undergo hydrogen-deuterium 

exchange at long time scales at basic pH (Figure 4-4). By using CID, I was able to 

measure this exchange in a residue specific manner, my results demonstrate that 

asparagine and glycine are likely the primary exchanging sites. While backbone 

scrambling prevents the use of CID in peptide backbone exchange, this is no 

concern in this case, since the exchange occurs in the side-chain or at the C-alpha 

atom.  

6.6 Computational tools allow rapid testing and generation of 

biological hypotheses 

Several examples in this thesis show how computational tools can provide 

insight into biological problems. Automated domain annotation using hidden 

Markov model sequence profiles was used to test two hypotheses: (i) Eukaryotic 

proteases use histidine residues in their propeptides to sense organellar pH to 
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direct compartment-specific activation (Chapter 2) and (ii) secreted proteins 

select against small folded domains at their N-terminus (Chapter 5.4). In both 

cases HMM sequence profiles allowed me to test a hypothesis, formulated by 

experiments with a model protein, using thousands of protein sequences. While 

the results were consistent with the hypothesis in the first case, I was able to 

reject the latter hypothesis, which implied that secreted proteins must use other 

mechanisms to prevent premature folding of small N-terminal passenger 

domains. 

Protein structure prediction using homology modeling was employed to 

obtain a structure of the furin propeptide, which was used to enable both 

biochemical and in silico experiments throughout this thesis. Homology 

modeling using a distant homolog was used to obtain a structure of the outside-

open conformation of LdNT1.1, which enabled the design of experiments that 

defined the inside gate of LdNT1.1 (Chapter 5.2). Homology modeling was also 

fundamental to rationalize drug interactions of novel therapeutics against the 

kinase ROS1 (Chapter 5.5). 

Protein structure prediction can be used not only for the prediction of 

tertiary structure, but also for prediction of quaternary structure. In Chapter 5.3 I 

used a specialized algorithm employing Monte-Carlo sampling of the 

conformational freedom of ubiquitin tethered to a lysine residue in OTUB1 to 

argue against the initial hypothesis that the interaction of OTUB1 to UbcH5b is 

strengthened by a direct interaction of the ubiquitin tether to OTUB1 with 

UbcH5b within a previously solved OTUB1/UbcH5b~Ub complex. The modeling 
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was then used to propose an alternative hypothesis for how mono-ubiquitination 

of OTUB1 is critical for its function. Based on a previous observation that 

ubiquitin can bind to the “backside” of UbcH5b I proposed that ubiquitin 

tethered to OTUB1 interacts with the “backside” of UbcH5b, which explains the 

increased interaction of monoubiquitinated OTUB1 with UBcH5b. Site-directed 

mutagenesis based on this model was then used to verify this hypothesis. 

Molecular dynamics simulations were used to test the hypothesis that 

protonation of histidine residues is responsible for the pH-dependent 

conformational changes observed experimentally (Figure 3-3 and Figure 3-6). In 

the absence of experimental structures of the propeptides at different pH-values, 

molecular dynamic simulations and the application of knowledge-based pKa 

prediction using the available NMR structure of the PC1/3 propeptide (Figure 

4-6) is the only way to gain insight into the activation mechanism at the atomic 

level. Together these data suggest that the unprotonated primary pH-sensor 

His69/His72 stabilizes the cleavage loop of the propeptide. Protonation causes the 

histidine to move out of a solvent accessible hydrophobic, so as to destabilize the 

loop, exposing the second cleavage site within the propeptide for proteolysis, 

which results in activation. 

6.7 Future directions 

Several developments in experimental approaches and as well as computational 

capabilities will drastically increase the use of combinations of experiment and 

computation. More and more experiments can be performed in a high-

throughput manner, which necessitates the use of computational methods to 
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interpret their results. Moreover, results of these experiments will often be stored 

in publicly available databases that enable the benchmarking of computational 

predictions and also allow to test biological hypotheses. Examples of such 

databases include Proteomics DB [305], which archives results of proteomics 

experiments of different tissues, the STRING database [306], which archives 

protein-protein interactions, or PathwayCommons [307], which archives 

biological pathway information.   

While computational approaches, especially simulations, have benefitted 

from specialized computers to increase both the system sizes and timescales that 

can be simulated [164], they greatest impact will probably be due to the 

increasing power of general-purpose computers. While the two-fold increase in 

computational power of computer chips doubles every 18 months, commonly 

referred to as Moore’s law, seems to slow down [308] we are still seeing a rapid 

increase in available computational power. This is reflected in ambitious 

simulation goals that have recently been pursuit such as simulation of the human 

brain [309] or bacterial cells [310]. 

Furthermore, improvements in the algorithms will increase the accuracy 

of computational predictions. For example in the field of molecular dynamics 

new force fields that take polarization effects into account have improved the 

accuracy of simulations [311]. Another exciting development is the use of 

machine learning to automatically detect patterns in large biological datasets and 

to generate predictions [312].  
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These advancements in computational tools could be used to further 

understand the pH-mediated activation of proprotein convertases. Many of the 

experiments described in this thesis were performed on isolated propeptides. A 

critical step in understanding the activation mechanism is to understand whether 

interaction of the propeptide with the protease modulates pH-dependent 

conformational changes and the pKa values of histidines. The fact that the 

propeptide is a substrate of the protease makes it difficult to perform these kinds 

of experiments in vitro, as the propeptide will be digested as soon as the pH is 

lowered. It is difficult to block proteolytic degradation in vitro without 

perturbing the interaction of propeptide and protease (data not shown), 

however, this could be achieved in silico. The advancements in timescales that 

can be simulated and improved force-fields described above, together with the 

cpHMD techniques described in Chapter 1.2.4 could be used to simulate the 

behavior of the propeptide in complex with the protease. In order to verify the 

accuracy of this simulation one could also simulate the propeptide by itself using 

the same approach and test whether the experimental pKa-values and pH-

dependent conformational changes can be reproduced. Furthermore, this 

computational system could then be used to predict point mutations that should 

modulate pH-mediated activation in vivo, which can subsequently be tested 

experimentally, thus starting the next iteration of computation and experiment. 
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A1 

Software for analysis of histidine 

hydrogen-deuterium exchange 

A1.1 Introduction 

The analysis of the histidine hydrogen-exchange mass spectrometry experiments 

described in Chapter 4 requires analysis of a large number of liquid-

chromatography mass spectrometry data files. Furthermore, conditions for 

fragmentation of the protein into single-histidine ions must be found. This 

requires iterations of experiments with modifications of the experimental 

parameters necessary for fragmentation. For efficient use of the available 

instrument time, these results must be easily and rapidly interpretable. Although 

software for the analysis of hydrogen-deuterium exchange already exists [313]–

[315], it is optimized for the analysis of amide backbone exchange, which differs 

significantly in the both the kinetics of the exchange process and the 

experimental setup involved. Mainly, the back-exchange of deuterium with 

hydrogen during mass measurement, which is the major concern in backbone 

exchange experiments, can be almost neglected in histidine hydrogen-deuterium 

exchange due to the extremely long time scales involved, especially under 

conditions of acidic pH. Furthermore, the available software for experiments 

involving backbone hydrogen-deuterium exchange are not optimized to measure 
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exchange within specific fragments, but rather attempt to measure as many 

peptide fragments as possible.  Peptide identification is either done just by 

precursor mass or more accurately by relying on proteomics software, like 

MASCOT or SEQUEST [316], [317]. While these proteomics software packages 

are very sophisticated and efficient for identification of proteins in complex 

mixtures they are not optimized to search for specific peptides in the digest of a 

purified protein. 

These shortcomings of the existing software for the analysis of histidine 

hydrogen-deuterium exchange forced me to develop my own set of scripts that 

would initially allow for the rapid identification of fragment and peptide ions for 

optimizing a strategy for fragmentation, and subsequently integrate the many 

LC-MS experiments at different pH conditions into the desired pKa and kmax 

values. 

A1.2 Overall design 

The software consists of three applications. The first two applications are used to 

support design of a protein fragmentation strategy to measure deuterium uptake 

in individual histidine residues. The first application, Fragment_analyzer, 

automatically examines MS2 or higher MSn spectra to identify fragments that 

can be reliably measured and the fragmentation parameters that provide optimal 

measurements of the isotopic distribution. The second application, 

Peptide_analyzer, is used to analyze proteolytic digests of proteins and is 

optimized for the detection of the maximal number of peptides derived from 

digest of a purified protein, in contrast with the commonly used proteomics 
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software that assumes a complex mixture of proteins. The last application, 

Exchange_quantifier, is used to analyze the data that is obtained by using the 

derived strategy, to quantify uptake and to obtain pKa and kmax values after the 

exchange at different pH values has been performed. 

All three application are implemented in python using the mass 

spectrometry library of the mMass application [249]. Parameters are specified in 

JSON format and ouput is performed in JSON format [318], which can be 

visualized using HTML and Javascript templates based on the D3.js library [319]. 

A1.3 Individual Applications 

A1.3.1 Fragment_analyzer 

The Fragment_anaylzer program requires two input files: First the data from the 

liquid-chromatography mass spectrometry (LC-MS) experiment in the mzml 

format [320] and a JSON file with options. An example option file is shown in 

Figure A1-1. The user has to specify the sequence of the protein or peptide that is 

being fragmented as well as the type of ions that should be searched for (b and y 

for CID, c or z for ETD). Furthermore the user should provide the range of 

charge states as well as the approximate elution time. The elution time does not 

have to be precise, as the program will automatically select the scans with the 

most intense measurements. 

The algorithm will calculate the theoretical isotopic distribution of all 

possible fragments, depending of the fragmentation method used and the 

selected range of charge states. It will then average all spectra with the same 

fragmentation parameters, indicated by the same filter string, that have more 
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than half-maximal ion intensities. This is a safe approach in case of top-down 

measurements where only one peak during the chromatography is expected, but 

in analysis of proteolytic digests care must be taken that not two different 

precursors with similar m/z values contribute. In this case the parameters allow 

for selection of an elution window to average only the desired data.  

After averaging all spectra are checked for presence of any of the 

precalculated theoretical isotopic distributions. If at least half of the expected 

isotopic peaks are present the program will calculate the root mean square 

difference (RMSD) between the observed isotopic distribution and the expected 

isotopic distribution after normalization of the isotopic peak with the highest 

intensity to one.   

Figure A1-2 shows an example output of this program. On top the 

sequence of the precursor is displayed and red and blue brackets indicate the 

presence of N-terminal or C-terminal fragments, respectively. Bold brackets 

indicate an RMSD of better than 10%, while thin brackets indicate an RMSD 

better than 20%. A table below lists for each of the identified fragments the 

RMSD, ion intensity, and the number of matched peaks. It further lists the charge 

state and the set of parameters that resulted in the best RMSD. The program also 

provides plots of the average m/z profile of the isotopic distribution to manually 

verify that this fragment has a good signal-to-noise ratio. Additionally, for every 

possible fragment the program provides RMSD, intensity, and number of peak 

parameters for every charge state and every set of parameters.  
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A1.3.2 Peptide_analyzer 

Similar to the Fragment_analyzer, the Peptide_analyzer program accepts an 

mzml file and a parameter file as input. The peptide_analyzer program is 

optimized for analysis of standard data-dependent LC-MS experiments, but does 

not require it. However, the analysis of triggered MS2 spectra will help to 

confirm correct identification of peptides.  

The parameter file (example shown in Figure A1-3) specifies the sequence 

of the protein as well as parameters that influence the range of peptides that will 

be searched for. The “charge_states” option specifies the minimal and maximal 

charge states that will be searched for. “maximal_peptide_length” specifies the 

maximal length of peptide that will be generated. Since the application is right 

now only tested for peptic digests and no enzymatic specificity is assumed, that 

is the only way to reduce the number of theoretically possible peptides. 

“mz_range” should equal to the m/z-range that is used in the LC-MS experiment. 

Only peptide ions that fall into this m/z-range will be considered.  

The program initially calculates all potential peptides that could be 

generated from the protein sequences and calculates the theoretical isotopic 

distributions for all charge states of these peptides according to the above 

described parameters. Since this is the most computationally expensive part of 

the program, the result can be saved and reused in subsequent searches against 

the same protein sequence (option “buffer_iso_dist”). After calculation of the 

theoretical isotopic distributions the program iterates through all collected 

survey scans and checks for detection of any of the theoretical isotopic 
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distribution. Detection of the isotopic distribution is verified by calculating the 

RMSD between theoretical and observed isotopic distribution as in the 

fragment_analyzer application. The “rms_threshold” options provides the RMSD 

value that will be used to check if the program will consider this isotopic 

distribution as detected. If a sufficiently low RMSD is detected the intensity is 

saved together with the elution time of the survey scan to later construct a 

chromatogram for this ion. Furthermore, the measured m/z spectrum of the ion 

is saved for averaging in a following step. 

After this initial search the collected data is rearranged to calculate for 

each peptide chromatograms of different charge states and the average of the 

detected m/z profiles. Furthermore, the program catalogs all MS2 scans that were 

triggered with a parent mass that could be consistent with this peptide. Since 

primary identification is just done by peptide mass, and often the peptide mass 

of multiple peptides is identical the program compiles a list for each peptide ion 

of other potential peptide ions that could show a similar isotopic distribution.  

Figure A1-4 shows screenshots of the visualization of these results. Figure 

A1-4 A shows an overview of the results that is presented on the top of the page. 

Below the sequence logo every bar represents a peptide whose isotopic 

distribution has been detected in at least one scan. The bars are sorted and 

colored according to the overall intensity. High intensity ions likely are true 

identification, while low intensity ions are often just chance matches to noise. 

Every bar is a hyperlink to the detailed matching results of each fragment, which 

are described in more detail below. Since the number of potential matches can be 
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overwhelming and in this application one simply searches for peptides that 

contain specific residues, the application offers a rapid way to filter peptides. 

Clicking on residues results in display of only peptides that contain this residue, 

while clicking twice excludes all peptides that contain this residue. This way one 

can quickly display a list of all peptides that contain for example a unique 

histidine (Figure A1-4 B). 

In the detail view of each peptide three different kinds of information are 

displayed for each charge state (Figure A1-4 C). First a chromatogram of the 

observed ion intensity during the liquid chromatography, where dashed lines 

indicates points at which MS2 scans were triggered against this ion. Second, the 

averaged m/z profile with indications of the theoretical m/z distribution, similar 

to the ones displayed in the Fragment_analyzer application. Lastly, a table list all 

peptides which could show a similar isotopic distribution (at least two isotopic 

peaks overlap). A click on these peptides links to their detail view, so the user 

can cross-check which peptide actually fits better. Especially useful to discern 

between two peptide, that share a similar mass is inspection of the MS2 scans if 

available. Clicking the dashed bars in the chromatogram will open a MS2 viewer 

(Figure A1-4 D). Peaks that can be linked to peptide fragments are colored and a 

calculated Xcorr score [321] allows quantification of the goodness of fit between 

two peptides with the same parent mass.  

A1.3.3 Exchange_quantifier 

The previous two applications are used to create a strategy of protein 

fragmentation that allows measuring of deuterium uptake in single histidine 
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residues. Once ions for all histidine residues have been identified, the actual 

experimental can be performed. The results of this experiment are multiple LC-

MS data files, three per pH tested in this study. This application uses information 

about the strategy and the LC-MS files and automatically generates the final pH 

vs exchange rate plots. 

The necessary information is passed to the application in three parameter 

files. The first (Figure A1-5 A) lists the fragments whose exchange should be 

quantified. These can be whole peptides or fragmentation ions, in which case the 

level of fragmentation, fragmentation type and precursor mass must be specified. 

The next file (Figure A1-5 B) list all mzml files and the conditions from which 

they were obtained. Most importantly they specify the pH and exchange time 

after which the measurement was made. Furthermore, control experiments, 

where the protein was never exposed to deuterium, can be specified. While this 

is not strictly necessary, it is highly recommended to exclude other chemical 

modifications that could introduce slightly different isotopic distributions 

compared to the theoretically derived one. For each condition, multiple files can 

be listed, which will be treated as replicas. The last file (Figure A1-5 C) assigns 

which fragments should be used to generate parameters for each histidine 

residue. Multiple fragments per histidine can be listed in order to have internal 

controls.  

Data analysis is performed in several steps. Initially, the program 

constructs chromatograms for every fragment in all experiments. Figure A1-6 A 

shows an example. The chromatograms are normalized between replicas, and the 
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overall intensity is shown on the right. Replicas are color coded throughout the 

analysis. This is to verify that every fragment could be reliably detected in all 

mass spectrometry experiments. For every experiment the m/z profile of each 

fragment is average between all scans where the fragment had more than half-

maximal intensity. The peak intensity module (Figure A1-6 B) shows this profile 

as well as a zoom-in of the I+1 peak. This is to verify that the mass defect 

between addition of a neutron to carbon or hydrogen does not result in a 

splitting of this peak, which would interfere with the analysis here. On the right 

the results of peak intensity quantification is shown. Peak intensity can be 

quantified by multiple algorithms. Here either the peak height is used (1) or the 

integral under the curve (2). In most cases these two methods are extremely 

consistent, but I found in most cases the integral to be more robust. Notably, the 

intensities are no longer associated with m/z values but with an integer I, that is 0 

for the monoisotopic peaks and then denotes the number of added neutrons. 

This array of intensities as a function of added neutrons is then used to 

quantify the uptake of neutrons at each pH (Figure A1-6 C). Three different 

algorithms are compared. First the ratio of the monoisotopic peak and the I+1 

peak is used as described in [133] (“peak_ratio”), secondly the increase in 

average mass can be used as in [248] (“av_mass”), and as described in Chapter 4 

the uptake can be quantified by fitting a linear combination of the theoretical 

isotopic distribution and the theoretical isotopic distribution after complete 

exchange (“fit”). Each of these algorithms requires an isotopic distribution of the 

fragment with no deuterium uptake, which is either derived from the theoretical 
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isotopic distribution or a control experiment after incubation in H2O 

(“exp_cont”). 

Finally the program calculates the rate constant of exchange from the 

observed uptake and fits equation 14 found in Section 1.2.4.4 to the data in order 

to obtain pKa and kmax values(Figure A1-6 D). 

A1.4 Discussion 

The software described here is optimized to first support rapid evaluation of 

protein fragmentation by proteolytic or in-instrument methods, such as ETD or 

CID. Later it allows rapid integration of HD-exchange data collected by a thus 

derived fragmentation strategy into quantified deuterium uptake per histidine 

and finally the pKa.  

The whole implementation is done in python, based on a library written in 

python with only a few pieces of native code to achieve rapid manipulation of 

the large amounts of data. That means it is easily portable and able to run on 

multiple operating systems. The output is performed as a JSON file, which has 

the advantage of being easy to parse by many platforms. This is especially useful 

for the visualization of the output in HTML and javascript. This allows rapid 

implementation of rich and interactive user experience, such as the peptide 

filtering tool. It also means that the results can be easily sent to customers in a 

core setting, who do not need specialized software to view the data.  

One of the major innovations of this software is the method by which 

peptides are searched for. Previously, hydrogen-deuterium exchange software 

either identified fragments just on the parent mass or used identification of a 
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proteomics software such as Mascot or SEQUEST. These software packages 

identify peptides based on rapidly calculated cross-correlation scores between 

MS2 spectra and theoretical MS2 spectra, which are then statistically evaluated 

using a decoy database. They tend to have large false-negative rates, have limits 

on the minimal peptide length detectable, and are designed to work with fairly 

specific proteases, such as trypsin. All these shortcomings are of low concern for 

proteomics studies, but are critical for hydrogen-deuterium exchange. However, 

the two main issues that they are optimized to overcome, false positive 

identification and comparison to a large sequence library, are not as big of a 

concern when a purified protein is analyzed. Therefore, the approach here uses 

initially brute-force comparison of the isotopic distribution of all possible 

peptides to the spectra, and subsequently compiles them into an easily for the 

user interpretable fashion, which allows later verification of the peptide 

identification performed by MS2 spectra. 

The usage of the RMSD value to compare expected and experimental 

isotopic distribution used here has no large benefit compared to simple 

comparison of the peptide mass, since two peptides with a similar mass have 

similar isotopic distributions. The reason why the RMSD value is used 

extensively in the software is that precise quantification of the isotopic 

distribution is critical for calculation of deuterium uptake and therefore 

restricting potential hits to ions whose isotopic distribution can be precisely 

measured is an efficient approach. 



218 

 

This software can be easily adopted for other experiments where 

sequence-specific quantification of isotope incorporation at different 

experimental conditions is needed. For example, it could be used to quantify the 

percentage of glycosolyated or phosphorylated proteins after treatment with 

glycosidases or phosphatases in H218O [322]. Also it has proven very useful in the 

analysis of the exchange into residues other than histidine that is described in 

Chapter 4.4.3.  

Further development will focus on creating a statistically robust way to 

automatically verify peptide identification. This score could include the RMSD, 

the mass error, peptide intensity, the presence of other peptides that were cut at 

the same sites, and the number of other peptides in the same protein and a decoy 

database that could create the same score. Furthermore, the output of the results 

in HTML format suggest the integration of the software into server-based mass-

spectrometry analysis, where the storage of data and calculation are performed 

on a server, requiring just a simple web browser on the user side. 
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Figure A1-1: Parameter file for Fragment_analyzer application 

  

{ "sequence" : "MQGQKVFTNTWAVRIPPGVANSAVAVARKHGFLNL", 

  "fragmentseries" : ["c","z"], 

  "charge_states" : [1,10], 

  "elution_region" : [400,800] } 
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Figure A1-2: Screenshots of Fragment_analyzer application 

(A) Logo and overview (B) Average spectrum of isotopic distribution. Theoretical 

distribution is shown in dashed lines and blue crossbars (C) Overview of RMSD, 

intensity, and number of peaks for every charge state with all paramters  
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Figure A1-3: Parameter file for Peptide_analyzer application 

  

{ "sequence" : "MQGQKVFTNTWAVRIPPGVANSAVAVARKHGFLNL", 

  "sequence_name" : "FIMC", 

  "mz_range" : [200,1800], 

  "charge_states" : [1,10], 

  "max_peptide_length" : 50, 

  "elution_region" : [300,900], 

  "rms_threshold" : 0.15, 

  "buffer_iso_dist" : true  } 
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Figure A1-4: Screenshots of Peptide_analyzer application 

(A) Sequence with bars indicating potentially identified peptides, sorted and colored 

by ion intensity. (B) Filtering peptides based on inclusion of specific residues (H66, 

green) and exclusion of other residues (H52 and H69, red) (C) Detail view for 

individual peptides. For every charge state a chromatogram, averaged m/z profile 

and a list of peptides with overlapping isotopic distribution is shown. (D) MS2 viewer 

can be invoked by clicken one of the dashed lines in (C). Peaks that can be 

associated to fragment ions are colored. 
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Figure A1-5: Parameter files for Exchange_quantifier application 

(A) Fragment parameters (B) Experimental condition parameters (C) Histidine 

parameters  

  

[{ "name": "YHF_1",  

   "sequence": "YHF",  

   "charge": 1,  

   "spectrum": { "level": 1},  

   "quantify_region": [602,635] },  

 { "name": "KRSLSPHRPRHSRL_c7_1",  

   "sequence": "KRSLSPHRPRHSRL",  

   "fragment": true,  

   "fragmentserie": "c",  

   "fragmentsite": 7,  

   "charge": 1,  

   "spectrum": { "level": 2, "precursormz": 433.01 }, 

   "quantify_region": [465,535]}] 

[{ "name": "9.0",  

   "control" : false,  

   "ph": 9.0,  

   "time": 72,  

   "files" : [ "../9_0.mzML", "../9_0_rep2.mzML","../9_0_rep3.mzML" 

]},  

 { "name": "3.5",  

   "control" : false,  

   "ph": 3.5,  

   "time": 72,  

   "files" : [ "../3_5.mzML", "../3_5_rep2.mzML", 

"../3_5_rep3.mzML"]},   

 { "name": "H2O",  

   "control" : true,  

   "time": 0,  

   "ph": 5.5,  

   "files" : [ "../H20_rep2.mzML", "../H20_72_rep3.mzML",  

                     "../H2O.mzML"]}] 

[{ "name":"H66", 

   "fragments": ["YHF_1","YHFWHRGVT_c2_1"] }, 

 { "name":"H80", 

   "fragments": ["KRSLSPHRPRHSRL_c7_1"] } 

] 
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Figure A1-6: Screenshots of Exchange_quantifier application 

(A) Chromatogram and intensity of every fragment to be analyzed in all 

experiments. Every pH condition is shown separately and replicates are 

superimposed in different colors. 

(B) Averaged m/z profiles of fragments under all experimental conditions and results 

of peak quantification by two algorithms (1: Peak height, 2: Peak integral) 

(C) Quantification of deuterium uptake by three different algorithms and two 

different non-uptake distributions 

(D) Plot of exchange rate as a function of pH calculated from fragments according to 

parameter file. 
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This appendix lists the publications that were generated during my PhD. 

A2.1 Publication included in this thesis 

Dillon SL, Williamson DM, Elferich J, Radler D, Joshi R, Thomas G, Shinde U. 

Propeptides are sufficient to regulate organelle-specific pH-dependent activation 

of furin and proprotein convertase 1/3. J Mol Biol. 2012 Oct 12;423(1):47-62. 

 

Elferich J, Williamson DM, Krishnamoorthy B, Shinde U. Propeptides of 

eukaryotic proteases encode histidines to exploit organelle pH for regulation. 

FASEB J. 2013 Aug;27(8):2939-45.  

 

Williamson DM*, Elferich J*, Ramakrishnan P, Thomas G, Shinde U. The 

mechanism by which a propeptide-encoded pH sensor regulates spatiotemporal 

activation of furin. J Biol Chem. 2013 Jun 28;288(26):19154-65.  

 

Davare MA, Saborowski A, Eide CA, Tognon C, Smith RL, Elferich J, Agarwal 

A, Tyner JW, Shinde UP, Lowe SW, Druker BJ. Foretinib is a potent inhibitor of 

oncogenic ROS1 fusion proteins. Proc Natl Acad Sci U S A. 2013 

Nov26;110(48):19519-24.  



228 

 

 

Li Y, Sun XX, Elferich J, Shinde U, David LL, Dai MS. Monoubiquitination is 

critical for ovarian tumor domain-containing ubiquitin aldehyde binding protein 

1 (Otub1) to suppress UbcH5 enzyme and stabilize p53 protein. J Biol Chem. 2014 

Feb 21;289(8):5097-108.  

 

Valdés R, Elferich J, Shinde U, Landfear SM. Identification of the intracellular 

gate for a member of the equilibrative nucleoside transporter (ENT) family. J Biol 

Chem. 2014 Mar 28;289(13):8799-809.  

 

Conti BJ, Elferich J, Yang Z, Shinde U, Skach WR. Cotranslational folding 

inhibits translocation from within the ribosome-Sec61 translocon complex. Nat 

Struct Mol Biol. 2014 Mar;21(3):228-35. doi: 10.1038/nsmb.2779. Epub 2014 Feb 23. 

PubMed PMID: 24561504; PubMed Central PMCID: PMC4351553. 

 

Elferich J, Williamson DM, David LL, Shinde U. pKa determination of histidine 

residues in the propeptides of furin and PC1/3 using histidine hydrogen-

deuterium exchange mass spectrometry. Anal Chem. 2015. Pending minor 

revisions. 

A2.2 Publications not included in this thesis 

Wang H, Elferich J, Gouaux E. Structures of LeuT in bicelles define conformation 

and substrate binding in a membrane-like context. Nat Struct Mol Biol. 2012 Jan 

15;19(2):212-9.  



229 

 

 

Dikeakos JD, Thomas L, Kwon G, Elferich J, Shinde U, Thomas G. An 

interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on 

endosomes to down-regulate MHC-I. Mol Biol Cell. 2012 Jun;23(11):2184-97.  

 

Nili M, David L, Elferich J, Shinde U, Rotwein P. Proteomic analysis and 

molecular modelling characterize the iron-regulatory protein 

haemojuvelin/repulsive guidance molecule c. Biochem J. 2013 May 15;452(1):87-

95.  

 

Tran KD, Rodriguez-Contreras D, Vieira DP, Yates PA, David L, Beatty W, 

Elferich J, Landfear SM. KHARON1 mediates flagellar targeting of a glucose 

transporter in Leishmania mexicana and is critical for viability of infectious 

intracellular amastigotes. J Biol Chem. 2013 Aug 2;288(31):22721-33.  

 

Soysa R, Wilson ZN, Elferich J, Forquer I, Shinde U, Riscoe MK, Yates PA, 

Ullman B. Substrate inhibition of uracil phosphoribosyltransferase by uracil can 

account for the uracil growth sensitivity of Leishmania donovani pyrimidine 

auxotrophs. J Biol Chem. 2013 Oct 11;288(41):29954-64.  

 

Williamson DM, Elferich J, Shinde U. Mechanism of Fine-tuning pH Sensors in 

Proprotein Convertases: Identification of a pH-sensing Histidine Pair in the 



230 

 

Propeptide of Proprotein Convertase 1/3. J Biol Chem. 2015 Jul 30. pii: 

jbc.M115.665430.  

 



231 

 

Literature 

[1] R. J. Siezen and J. A. Leunissen, “Subtilases: the superfamily of subtilisin-like serine 

proteases.,” Protein Sci., vol. 6, no. 3, pp. 501–23, Mar. 1997. 

[2] U. Shinde and G. Thomas, “Insights from bacterial subtilases into the mechanisms of 

intramolecular chaperone-mediated activation of furin.,” Methods Mol Biol., vol. 768, pp. 

59–106, Jan. 2011. 

[3] V. Ramírez, A. López, B. Mauch-Mani, M. J. Gil, and P. Vera, “An extracellular subtilase 

switch for immune priming in Arabidopsis.,” PLoS Pathog., vol. 9, no. 6, p. e1003445, Jan. 

2013. 

[4] M. J. Blackman, H. Fujioka, W. H. L. Stafford, M. Sajid, B. Clough, S. L. Fleck, M. Aikawa, 

M. Grainger, and F. Hackett, “A Subtilisin-like Protein in Secretory Organelles of 

Plasmodium falciparum Merozoites,” J. Biol. Chem., vol. 273, no. 36, pp. 23398–23409, Sep. 

1998. 

[5] M. C. McNutt, T. A. Lagace, and J. D. Horton, “Catalytic activity is not required for 

secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells.,” J. Biol. 

Chem., vol. 282, no. 29, pp. 20799–803, Jul. 2007. 

[6] S.-I. Tanaka, H. Matsumura, Y. Koga, K. Takano, and S. Kanaya, “Four new crystal 

structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight 

into structural changes during maturation.,” J. Mol. Biol., vol. 372, no. 4, pp. 1055–69, Sep. 

2007. 

[7] J. Kraut, “Serine Proteases: Structure and Mechanism of Catalysis,” Annu. Rev. Biochem., 

vol. 46, no. 1, pp. 331–358, Jun. 1977. 

[8] S. Henrich, I. Lindberg, W. Bode, and M. E. Than, “Proprotein convertase models based 

on the crystal structures of furin and kexin: explanation of their specificity.,” J. Mol. Biol., 

vol. 345, no. 2, pp. 211–27, Jan. 2005. 

[9] S. Henrich, A. Cameron, G. P. Bourenkov, R. Kiefersauer, R. Huber, I. Lindberg, W. Bode, 

and M. E. Than, “The crystal structure of the proprotein processing proteinase furin 

explains its stringent specificity.,” Nat. Struct. Biol., vol. 10, no. 7, pp. 520–6, Jul. 2003. 

[10] Y. Takeuchi, S. Noguchi, Y. Satow, S. Kojima, I. Kumagai, K. Miura, K. T. Nakamura, and 

Y. Mitsui, “Molecular recognition at the active site of subtilisin BPN’: crystallographic 

studies using genetically engineered proteinaceous inhibitor SSI (Streptomyces subtilisin 

inhibitor).,” Protein Eng., vol. 4, no. 5, pp. 501–8, Jun. 1991. 



232 

 

[11] T. Holyoak, C. A. Kettner, G. A. Petsko, R. S. Fuller, and D. Ringe, “Structural basis for 

differences in substrate selectivity in Kex2 and furin protein convertases.,” Biochemistry, 

vol. 43, no. 9, pp. 2412–21, Mar. 2004. 

[12] C. Withers-Martinez, M. Strath, F. Hackett, L. F. Haire, S. A. Howell, P. A. Walker, E. 

Christodoulou, C. Evangelos, G. G. Dodson, and M. J. Blackman, “The malaria parasite 

egress protease SUB1 is a calcium-dependent redox switch subtilisin.,” Nat. Commun., vol. 

5, p. 3726, Jan. 2014. 

[13] H. Ikemura, H. Takagi, and M. Inouye, “Requirement of pro-sequence for the production 

of active subtilisin E in Escherichia coli,” J. Biol. Chem., vol. 262, no. 16, pp. 7859–7864, Jun. 

1987. 

[14] U. Shinde, Y. Li, S. Chatterjee, and M. Inouye, “Folding pathway mediated by an 

intramolecular chaperone.,” Proc. Natl. Acad. Sci. U. S. A., vol. 90, no. 15, pp. 6924–8, Aug. 

1993. 

[15] E. Subbian, Y. Yabuta, and U. P. Shinde, “Folding pathway mediated by an intramolecular 

chaperone: intrinsically unstructured propeptide modulates stochastic activation of 

subtilisin.,” J. Mol Biol., vol. 347, no. 2, pp. 367–83, Mar. 2005. 

[16] S. C. Jain, U. Shinde, Y. Li, M. Inouye, and H. M. Berman, “The crystal structure of an 

autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution,” J Mol Biol., 

vol. 284, no. 1, pp. 137–144, 1998. 

[17] E. Subbian, Y. Yabuta, and U. P. Shinde, “Folding pathway mediated by an intramolecular 

chaperone: intrinsically unstructured propeptide modulates stochastic activation of 

subtilisin.,” J Mol Biol., vol. 347, no. 2, pp. 367–83, Mar. 2005. 

[18] E. D. Anderson, J. K. VanSlyke, C. D. Thulin, F. Jean, and G. Thomas, “Activation of the 

furin endoprotease is a multiple-step process: requirements for acidification and internal 

propeptide cleavage,” Embo J., vol. 16, no. 7, pp. 1508–1518, 1997. 

[19] N. G. Seidah, M. S. Sadr, M. Chrétien, and M. Mbikay, “The multifaceted proprotein 

convertases: Their unique, redundant, complementary, and opposite functions,” J. Biol. 

Chem., vol. 288, no. 30, pp. 21473–21481, 2013. 

[20] E. N. Hampton, M. W. Knuth, J. Li, J. L. Harris, S. A. Lesley, and G. Spraggon, “The self-

inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin 

within the C-terminal domain,” Proc. Natl. Acad. Sci., vol. 104, no. 37, pp. 14604–14609, 

Sep. 2007. 

[21] S. Ohagi, J. LaMendola, M. M. LeBeau, R. Espinosa, J. Takeda, S. P. Smeekens, S. J. Chan, 

and D. F. Steiner, “Identification and analysis of the gene encoding human PC2, a 

prohormone convertase expressed in neuroendocrine tissues.,” Proc. Natl. Acad. Sci. U. S. 

A., vol. 89, no. 11, pp. 4977–81, Jun. 1992. 



233 

 

[22] E. Jansen, T. A. Ayoubi, S. M. Meulemans, and W. J. Van de Ven, “Neuroendocrine-

specific expression of the human prohormone convertase 1 gene. Hormonal regulation of 

transcription through distinct cAMP response elements.,” J. Biol. Chem., vol. 270, no. 25, 

pp. 15391–7, Jun. 1995. 

[23] S. Benjannet, N. Rondeau, L. Paquet, A. Boudreault, C. Lazure, M. Chrétien, and N. G. 

Seidah, “Comparative biosynthesis, covalent post-translational modifications and 

efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: 

glycosylation, sulphation and identification of the intracellular site of prosegment 

cleavage of PC1 and P,” Biochem. J., vol. 294 ( Pt 3, pp. 735–43, Sep. 1993. 

[24] E. M. Bailyes, D. L. Bennett, and J. C. Hutton, “Proprotein-processing endopeptidases of 

the insulin secretory granule.,” Enzyme, vol. 45, no. 5–6, pp. 301–13, Jan. 1991. 

[25] A. Bonic and R. B. Mackin, “Expression, purification, and PC1-mediated processing of 

human proglucagon, glicentin, and major proglucagon fragment.,” Protein Expr. Purif., 

vol. 28, no. 1, pp. 15–24, Mar. 2003. 

[26] Y. Rouillé, M. Bianchi, J. C. Irminger, and P. A. Halban, “Role of the prohormone 

convertase PC2 in the processing of proglucagon to glucagon.,” FEBS Lett., vol. 413, no. 1, 

pp. 119–23, Aug. 1997. 

[27] S. Benjannet, N. Rondeau, R. Day, M. Chretien, and N. G. Seidah, “PC1 and PC2 are 

proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic 

residues.,” Proc. Natl. Acad. Sci., vol. 88, no. 9, pp. 3564–3568, May 1991. 

[28] N. Scamuffa, F. Calvo, M. Chrétien, N. G. Seidah, and A.-M. Khatib, “Proprotein 

convertases: lessons from knockouts.,” FASEB J., vol. 20, no. 12, pp. 1954–63, Oct. 2006. 

[29] I. S. Farooqi, K. Volders, R. Stanhope, R. Heuschkel, A. White, E. Lank, J. Keogh, S. 

O’Rahilly, and J. W. M. Creemers, “Hyperphagia and Early-Onset Obesity due to a Novel 

Homozygous Missense Mutation in Prohormone Convertase 1/3,” J. Clin. Endocrinol. 

Metab., vol. 92, no. 9, pp. 3369–3373, Sep. 2007. 

[30] M. Mbikay, H. Tadros, N. Ishida, C. P. Lerner, E. De Lamirande, A. Chen, M. El-Alfy, Y. 

Clermont, N. G. Seidah, M. Chretien, C. Gagnon, and E. M. Simpson, “Impaired fertility in 

mice deficient for the testicular germ-cell protease PC4,” Proc. Natl. Acad. Sci., vol. 94, no. 

13, pp. 6842–6846, Jun. 1997. 

[31] S. Basak, M. Chrétien, M. Mbikay, and A. Basak, “In vitro elucidation of substrate 

specificity and bioassay of proprotein convertase 4 using intramolecularly quenched 

fluorogenic peptides.,” Biochem. J., vol. 380, no. Pt 2, pp. 505–514, 2004. 

[32] Q. Qiu, A. Basak, M. Mbikay, B. K. Tsang, and A. Gruslin, “Role of pro-IGF-II processing 

by proprotein convertase 4 in human placental development.,” Proc. Natl. Acad. Sci. U. S. 

A., vol. 102, no. 31, pp. 11047–52, Aug. 2005. 



234 

 

[33] G. Thomas, “Furin at the cutting edge: from protein traffic to embryogenesis and 

disease.,” Nat. Rev. Mol. Cell Biol., vol. 3, no. 10, pp. 753–66, Oct. 2002. 

[34] E. Rousselet, S. Benjannet, J. Hamelin, M. Canuel, and N. G. Seidah, “The proprotein 

convertase PC7: Unique zymogen activation and trafficking pathways,” J. Biol. Chem., vol. 

286, no. 4, pp. 2728–2738, 2011. 

[35] N. Nour, G. Mayer, J. S. Mort, A. Salvas, M. Mbikay, C. J. Morrison, C. M. Overall, and N. 

G. Seidah, “The cysteine-rich domain of the secreted proprotein convertases PC5A and 

PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of 

metalloproteinases.,” Mol. Biol. Cell, vol. 16, no. 11, pp. 5215–26, Nov. 2005. 

[36] G. Mayer, J. Hamelin, M. C. Asselin, A. Pasquato, E. Marcinkiewicz, M. Tang, S. 

Tabibzadeh, and N. G. Seidah, “The regulated cell surface zymogen activation of the 

proprotein convertase PC5A directs the processing of its secretory substrates,” J. Biol. 

Chem., vol. 283, no. 4, pp. 2373–2384, 2008. 

[37] P. B, M. G, W. W, H. M, D. F, and S. U, “‘Shed’ furin: mapping of the cleavage 

determinants and identification of its C-terminus,” Mar. 2001. 

[38] K. Mori, S. Kii, A. Tsuji, M. Nagahama, A. Imamaki, K. Hayashi, T. Akamatsu, H. 

Nagamune, and Y. Matsuda, “A novel human PACE4 isoform, PACE4E is an active 

processing protease containing a hydrophobic cluster at the carboxy terminus.,” J. 

Biochem., vol. 121, no. 5, pp. 941–8, May 1997. 

[39] R. Essalmani, A. Zaid, J. Marcinkiewicz, A. Chamberland, A. Pasquato, N. G. Seidah, and 

A. Prat, “In vivo functions of the proprotein convertase PC5/6 during mouse 

development: Gdf11 is a likely substrate.,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 15, 

pp. 5750–5, Apr. 2008. 

[40] D. B. Constam and E. J. Robertson, “SPC4/PACE4 regulates a TGFbeta signaling network 

during axis formation.,” Genes Dev., vol. 14, no. 9, pp. 1146–55, May 2000. 

[41] P. Villeneuve, S. Feliciangeli, G. Croissandeau, N. G. Seidah, M. Mbikay, P. Kitabgi, and 

A. Beaudet, “Altered processing of the neurotensin/neuromedin N precursor in PC2 

knock down mice: a biochemical and immunohistochemical study.,” J. Neurochem., vol. 82, 

no. 4, pp. 783–93, Aug. 2002. 

[42] A. J. Roebroek, L. Umans, I. G. Pauli, E. J. Robertson, F. van Leuven, W. J. Van de Ven, and 

D. B. Constam, “Failure of ventral closure and axial rotation in embryos lacking the 

proprotein convertase Furin.,” Development, vol. 125, no. 24, pp. 4863–4876, 1998. 

[43] D. Susan-Resiga, R. Essalmani, J. Hamelin, M.-C. Asselin, S. Benjannet, A. Chamberland, 

R. Day, D. Szumska, D. Constam, S. Bhattacharya, A. Prat, and N. G. Seidah, “Furin is the 

major processing enzyme of the cardiac-specific growth factor bone morphogenetic 

protein 10.,” J. Biol. Chem., vol. 286, no. 26, pp. 22785–94, Jul. 2011. 



235 

 

[44] B. Robertson, J. Moehring, and T. Moehring, “Defective processing of the insulin receptor 

in an endoprotease- deficient Chinese hamster cell strain is corrected by expression of 

mouse furin,” J. Biol. Chem., vol. 268, no. 32, pp. 24274–24277, Nov. 1993. 

[45] L. J, L. J, S. M. J, B. S, P. F, C. M, M. J, and S. N, “Endoproteolytic processing of integrin 

pro-α subunits involves the redundant function of furin and proprotein convertase (PC) 

5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7,” Feb. 

2000. 

[46] H. Posthaus, C. M. Dubois, M.-H. Laprise, F. Grondin, M. M. Suter, and E. Müller, 

“Proprotein cleavage of E-cadherin by furin in baculovirus over-expression system: 

potential role of other convertases in mammalian cells,” FEBS Lett., vol. 438, no. 3, pp. 

306–310, Nov. 1998. 

[47] H. Sato, T. Kinoshita, T. Takino, K. Nakayama, and M. Seiki, “Activation of a recombinant 

membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with 

tissue inhibitor of metalloproteinases (TIMP)-2,” FEBS Lett., vol. 393, no. 1, pp. 101–104, 

Sep. 1996. 

[48] E. Louagie, N. A. Taylor, D. Flamez, A. J. M. Roebroek, N. A. Bright, S. Meulemans, R. 

Quintens, P. L. Herrera, F. Schuit, W. J. M. Van de Ven, and J. W. M. Creemers, “Role of 

furin in granular acidification in the endocrine pancreas: identification of the V-ATPase 

subunit Ac45 as a candidate substrate.,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 34, pp. 

12319–24, Aug. 2008. 

[49] E. Decroly, M. Vandenbranden, J. Ruysschaert, J. Cogniaux, G. Jacob, S. Howard, G. 

Marshall, A. Kompelli, A. Basak, and F. Jean, “The convertases furin and PC1 can both 

cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into 

gp120 (HIV-1 SU) and gp41 (HIV-I TM),” J. Biol. Chem., vol. 269, no. 16, pp. 12240–12247, 

Apr. 1994. 

[50] S. S. Molloy, P. A. Bresnahan, S. H. Leppla, K. R. Klimpel, and G. Thomas, “Human furin 

is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg 

and efficiently cleaves anthrax toxin protective antigen.,” J. Biol. Chem., vol. 267, no. 23, pp. 

16396–16402, Aug. 1992. 

[51] A. J. M. Roebroek, N. A. Taylor, E. Louagie, I. Pauli, L. Smeijers, A. Snellinx, A. Lauwers, 

W. J. M. Van de Ven, D. Hartmann, and J. W. M. Creemers, “Limited redundancy of the 

proprotein convertase furin in mouse liver.,” J. Biol. Chem., vol. 279, no. 51, pp. 53442–50, 

Dec. 2004. 

[52] D. E. Bassi, H. Mahloogi, R. Lopez De Cicco, and A. Klein-Szanto, “Increased furin activity 

enhances the malignant phenotype of human head and neck cancer cells.,” Am. J. Pathol., 

vol. 162, no. 2, pp. 439–47, Feb. 2003. 

[53] H. Turpeinen, E. Raitoharju, A. Oksanen, N. Oksala, M. Levula, L.-P. Lyytikäinen, O. 

Järvinen, J. W. M. Creemers, M. Kähönen, R. Laaksonen, M. Pelto-Huikko, T. Lehtimäki, 



236 

 

and M. Pesu, “Proprotein convertases in human atherosclerotic plaques: the 

overexpression of FURIN and its substrate cytokines BAFF and APRIL.,” Atherosclerosis, 

vol. 219, no. 2, pp. 799–806, Dec. 2011. 

[54] T. Komiyama, J. A. Swanson, and R. S. Fuller, “Protection from anthrax toxin-mediated 

killing of macrophages by the combined effects of furin inhibitors and chloroquine.,” 

Antimicrob. Agents Chemother., vol. 49, no. 9, pp. 3875–82, Sep. 2005. 

[55] E. D. Anderson, L. Thomas, J. S. Hayflick, and G. Thomas, “Inhibition of HIV-1 gp160-

dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant.,” J. Biol. 

Chem., vol. 268, no. 33, pp. 24887–24891, Nov. 1993. 

[56] D. E. Bassi, R. Lopez De Cicco, H. Mahloogi, S. Zucker, G. Thomas, and A. J. Klein-Szanto, 

“Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human 

cancer cells.,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 18, pp. 10326–31, Aug. 2001. 

[57] J. W. M. Creemers, M. Vey, W. Schafer, T. A. Y. Ayoubi, A. J. M. Roebroek, H.-D. Klenk, 

W. Garten, and W. J. M. Van de Ven, “Endoproteolytic Cleavage of Its Propeptide Is a 

Prerequisite for Efficient Transport of Furin Out of the Endoplasmic Reticulum,” J. Biol. 

Chem., vol. 270, no. 6, pp. 2695–2702, Feb. 1995. 

[58] E. D. Anderson, S. S. Molloy, F. Jean, H. Fei, S. Shimamura, and G. Thomas, “The ordered 

and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone 

is required for enzyme activation,” J Biol Chem., vol. 277, no. 15, pp. 12879–12890, 2002. 

[59] S. F. Feliciangeli, L. Thomas, G. K. Scott, E. Subbian, C.-H. Hung, S. S. Molloy, F. Jean, U. 

Shinde, and G. Thomas, “Identification of a pH sensor in the furin propeptide that 

regulates enzyme activation.,” J. Biol. Chem., vol. 281, no. 23, pp. 16108–16, Jun. 2006. 

[60] G. J. Martens, J. A. Braks, D. W. Eib, Y. Zhou, and I. Lindberg, “The neuroendocrine 

polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2.,” Proc. Natl. 

Acad. Sci., vol. 91, no. 13, pp. 5784–5787, Jun. 1994. 

[61] X. Zhu and I. Lindberg, “7B2 facilitates the maturation of proPC2 in neuroendocrine cells 

and is required for the expression of enzymatic activity.,” J. Cell Biol., vol. 129, no. 6, pp. 

1641–50, Jun. 1995. 

[62] N. S. Lamango, E. Apletalina, J. Liu, and I. Lindberg, “The proteolytic maturation of 

prohormone convertase 2 (PC2) is a pH-driven process.,” Arch. Biochem. Biophys., vol. 362, 

no. 2, pp. 275–282, 1999. 

[63] a Basak, B. B. Touré, C. Lazure, M. Mbikay, M. Chrétien, and N. G. Seidah, “Enzymic 

characterization in vitro of recombinant proprotein convertase PC4.,” Biochem. J., vol. 343 

Pt 1, pp. 29–37, 1999. 

[64] J. L. Sohl, S. S. Jaswal, and D. A. Agard, “Unfolded conformations of alpha-lytic protease 

are more stable than its native state.,” Nature, vol. 395, no. 6704, pp. 817–9, Oct. 1998. 



237 

 

[65] D. Rodriguez-Larrea, S. Minning, T. V Borchert, and J. M. Sanchez-Ruiz, “Role of 

solvation barriers in protein kinetic stability.,” J. Mol. Biol., vol. 360, no. 3, pp. 715–24, Jul. 

2006. 

[66] S. Pietschmann, M. Fehn, G. Kaulmann, I. Wenz, B. Wiederanders, and K. Schilling, 

“Foldase function of the cathepsin S proregion is strictly based upon its domain 

structure.,” Biol. Chem., vol. 383, no. 9, pp. 1453–8, Sep. 2002. 

[67] E. D. Anderson, S. S. Molloy, F. Jean, H. Fei, S. Shimamura, and G. Thomas, “The ordered 

and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone 

is required for enzyme activation.,” J Biol Chem., vol. 277, no. 15, pp. 12879–90, Apr. 2002. 

[68] L. Muller, A. Cameron, Y. Fortenberry, E. V. Apletalina, and I. Lindberg, “Processing and 

sorting of the prohormone convertase 2 propeptide,” J. Biol. Chem., vol. 275, no. 50, pp. 

39213–39222, 2000. 

[69] U. P. Shinde, J. J. Liu, and M. Inouye, “Protein memory through altered folding mediated 

by intramolecular chaperones.,” Nature, vol. 389, no. 6650, pp. 520–2, Oct. 1997. 

[70] Y. Yasuda, T. Tsukuba, K. Okamoto, T. Kadowaki, and K. Yamamoto, “The role of the 

cathepsin E propeptide in correct folding, maturation and sorting to the endosome,” J. 

Biochem., vol. 138, no. 5, pp. 621–630, 2005. 

[71] Y. Jia, H. Liu, W. Bao, M. Weng, W. Chen, Y. Cai, Z. Zheng, and G. Zou, “Functional 

analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin 

nattokinase.,” FEBS Lett., vol. 584, no. 23, pp. 4789–96, Dec. 2010. 

[72] A. Satomura, M. Nagayama, N. Miura, K. Kuroda, and M. Ueda, “Modification of 

enzymes by protein folding memory,” FASEB J, vol. 27, no. 1_MeetingAbstracts, p. 784.1–, 

Apr. 2013. 

[73] A. Satomura, K. Kuroda, and M. Ueda, “Novel protein engineering of lipase by protein 

folding memory (567.1),” FASEB J, vol. 28, no. 1_Supplement, p. 567.1–, Apr. 2014. 

[74] R. L. Proia and E. Soravia, “Organization of the gene encoding the human beta-

hexosaminidase alpha-chain.,” J. Biol. Chem., vol. 262, no. 12, pp. 5677–81, Apr. 1987. 

[75] F. S. Hagen, F. J. Grant, J. L. Kuijper, C. A. Slaughter, C. R. Moomaw, K. Orth, P. J. O’Hara, 

and R. S. Munford, “Expression and characterization of recombinant human acyloxyacyl 

hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides.,” 

Biochemistry, vol. 30, no. 34, pp. 8415–23, Aug. 1991. 

[76] W. Bode, P. Schwager, and R. Huber, “The transition of bovine trypsinogen to a trypsin-

like state upon strong ligand binding,” Journal of Molecular Biology, vol. 118, no. 1. pp. 99–

112, 1978. 



238 

 

[77] Y. Kitamoto, X. Yuan, Q. Wu, D. W. McCourt, and J. E. Sadler, “Enterokinase, the initiator 

of intestinal digestion, is a mosaic protease composed of a distinctive assortment of 

domains.,” Proc. Natl. Acad. Sci., vol. 91, no. 16, pp. 7588–7592, Aug. 1994. 

[78] L. A. Valls, C. P. Hunter, J. H. Rothman, and T. H. Stevens, “Protein sorting in yeast: the 

localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide.,” 

Cell, vol. 48, no. 5, pp. 887–897, 1987. 

[79] D. J. Klionsky, L. M. Banta, and S. D. Emr, “Intracellular sorting and processing of a yeast 

vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information.,” 

Mol. Cell. Biol., vol. 8, no. 5, pp. 2105–2116, 1988. 

[80] K. Müntener, R. Zwicky, G. Csucs, and A. Baici, “The alternative use of exons 2 and 3 in 

cathepsin B mRNA controls enzyme trafficking and triggers nuclear fragmentation in 

human cells.,” Histochem. Cell Biol., vol. 119, no. 2, pp. 93–101, Feb. 2003. 

[81] K. Müntener, R. Zwicky, G. Csucs, J. Rohrer, and A. Baici, “Exon skipping of cathepsin B: 

Mitochondrial targeting of a lysosomal peptidase provokes cell death,” J. Biol. Chem., vol. 

279, no. 39, pp. 41012–41017, 2004. 

[82] C. Pop and G. S. Salvesen, “Human caspases: Activation, specificity, and regulation,” J. 

Biol. Chem., vol. 284, no. 33, pp. 21777–21781, 2009. 

[83] J. Srivastava, D. L. Barber, and M. P. Jacobson, “Intracellular pH sensors: design principles 

and functional significance.,” Physiology (Bethesda)., vol. 22, pp. 30–9, Feb. 2007. 

[84] G. R. Grimsley, J. M. Scholtz, and C. N. Pace, “A summary of the measured pK values of 

the ionizable groups in folded proteins.,” Protein Sci., vol. 18, no. 1, pp. 247–51, Jan. 2009. 

[85] W. F. Boron, “Regulation of intracellular pH.,” Adv. Physiol. Educ., vol. 28, no. 1–4, pp. 

160–179, 2004. 

[86] S. Matsuyama, J. Llopis, Q. L. Deveraux, R. Y. Tsien, and J. C. Reed, “Changes in 

intramitochondrial and cytosolic pH: early events that modulate caspase activation during 

apoptosis.,” Nat. Cell Biol., vol. 2, no. 6, pp. 318–25, Jun. 2000. 

[87] R. Schreiber, “Ca2+ signaling, intracellular pH and cell volume in cell proliferation.,” J. 

Membr. Biol., vol. 205, no. 3, pp. 129–137, 2005. 

[88] C.-H. Choi, B. A. Webb, M. S. Chimenti, M. P. Jacobson, and D. L. Barber, “pH sensing by 

FAK-His58 regulates focal adhesion remodeling.,” J. Cell Biol., vol. 202, no. 6, pp. 849–59, 

Sep. 2013. 

[89] G. Miesenböck, D. A. De Angelis, and J. E. Rothman, “Visualizing secretion and synaptic 

transmission with pH-sensitive green fluorescent proteins.,” Nature, vol. 394, no. 6689, pp. 

192–5, Jul. 1998. 



239 

 

[90] P. Paroutis, N. Touret, and S. Grinstein, “The pH of the secretory pathway: measurement, 

determinants, and regulation.,” Physiology (Bethesda)., vol. 19, no. 4, pp. 207–15, Aug. 2004. 

[91] C. Tanford, “Ionization-linked Changes in Protein Conformation. I. Theory,” J. Am. Chem. 

Soc., vol. 83, no. 7, pp. 1628–1634, Apr. 1961. 

[92] J. V. Kilmartin and L. Rossi-Bernardi, “Interaction of hemoglobin with hydrogen ions, 

carbon dioxide, and organic phosphates,” Physiol Rev, vol. 53, no. 4, pp. 836–890, Oct. 

1973. 

[93] B. Shaanan, “Structure of human oxyhaemoglobin at 2.1 A resolution.,” J. Mol. Biol., vol. 

171, no. 1, pp. 31–59, 1983. 

[94] G. Fermi, M. F. Perutz, B. Shaanan, and R. Fourme, “The crystal structure of human 

deoxyhaemoglobin at 1.74 A resolution.,” J. Mol. Biol., vol. 175, no. 2, pp. 159–174, 1984. 

[95] J. A. Lukin and C. Ho, “The structure--function relationship of hemoglobin in solution at 

atomic resolution.,” Chem. Rev., vol. 104, no. 3, pp. 1219–30, Mar. 2004. 

[96] L. J. Parkhurst, D. J. Goss, and M. F. Perutz, “Kinetic and equilibrium studies on the role 

of the .beta.-147 histidine in the Root effect and cooperativity in carp hemoglobin,” 

Biochemistry, vol. 22, no. 23, pp. 5401–5409, Nov. 1983. 

[97] M. Berenbrink, “Evolution of vertebrate haemoglobins: Histidine side chains, specific 

buffer value and Bohr effect.,” Respir. Physiol. Neurobiol., vol. 154, no. 1–2, pp. 165–84, Nov. 

2006. 

[98] I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. 

Kuhn, M. G. Rossmann, and J. Chen, “Structure of the immature dengue virus at low pH 

primes proteolytic maturation,” Science (80-. )., vol. 319, no. 5871, pp. 1834–1837, 2008. 

[99] J. A. T. Young and R. J. Collier, “Anthrax toxin: receptor binding, internalization, pore 

formation, and translocation.,” Annu. Rev. Biochem., vol. 76, pp. 243–65, Jan. 2007. 

[100] R. O. Blaustein, T. M. Koehler, R. J. Collier, and A. Finkelstein, “Anthrax toxin: channel-

forming activity of protective antigen in planar phospholipid bilayers.,” Proc. Natl. Acad. 

Sci. U. S. A., vol. 86, no. 7, pp. 2209–2213, 1989. 

[101] J. C. Milne and R. J. Collier, “pH-Dependent permeabilization of the plasma membrane of 

mammalian cells by anthrax protective antigen,” Mol. Microbiol., vol. 10, no. 3, pp. 647–

653, 1993. 

[102] C. Petosa, R. J. Collier, K. R. Klimpel, S. H. Leppla, and R. C. Liddington, “Crystal 

structure of the anthrax toxin protective antigen.,” Nature, vol. 385, no. 6619, pp. 833–838, 

1997. 



240 

 

[103] M. Mourez, M. Yan, D. B. Lacy, L. Dillon, L. Bentsen, A. Marpoe, C. Maurin, E. Hotze, D. 

Wigelsworth, R.-A. Pimental, J. D. Ballard, R. J. Collier, and R. K. Tweten, “Mapping 

dominant-negative mutations of anthrax protective antigen by scanning mutagenesis.,” 

Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 24, pp. 13803–13808, 2003. 

[104] J. Jiang, B. L. Pentelute, R. J. Collier, and Z. H. Zhou, “Atomic structure of anthrax 

protective antigen pore elucidates toxin translocation.,” Nature, vol. advance on, Mar. 

2015. 

[105] B. A. Krantz, A. Finkelstein, and R. J. Collier, “Protein translocation through the anthrax 

toxin transmembrane pore is driven by a proton gradient,” J. Mol. Biol., vol. 355, no. 5, pp. 

968–979, 2006. 

[106] J. F. Andersen, X. D. Ding, C. Balfour, T. K. Shokhireva, D. E. Champagne, F. A. Walker, 

and W. R. Montfort, “Kinetics and Equilibria in Ligand Binding by Nitrophorins 

1−4:  Evidence for Stabilization of a Nitric Oxide−Ferriheme Complex through a Ligand-

Induced Conformational Trap †,” Biochemistry, vol. 39, no. 33, pp. 10118–10131, Aug. 2000. 

[107] A. Weichsel, J. F. Andersen, S. A. Roberts, and W. R. Montfort, “Nitric oxide binding to 

nitrophorin 4 induces complete distal pocket burial.,” Nat. Struct. Biol., vol. 7, no. 7, pp. 

551–554, 2000. 

[108] J. F. Andersen, A. Weichsel, C. A. Balfour, D. E. Champagne, and W. R. Montfort, “The 

crystal structure of nitrophorin 4 at 1.5 A resolution: transport of nitric oxide by a 

lipocalin-based heme protein.,” Structure, vol. 6, no. 10, pp. 1315–1327, 1998. 

[109] R. E. Berry, M. N. Shokhirev, A. Y. W. Ho, F. Yang, T. K. Shokhireva, H. Zhang, A. 

Weichsel, W. R. Montfort, and F. A. Walker, “Effect of mutation of carboxyl side-chain 

amino acids near the heme on the midpoint potentials and ligand binding constants of 

nitrophorin 2 and its NO, histamine, and imidazole complexes.,” J. Am. Chem. Soc., vol. 

131, no. 6, pp. 2313–27, Feb. 2009. 

[110] N. V Di Russo, D. A. Estrin, M. A. Martí, and A. E. Roitberg, “pH-Dependent 

conformational changes in proteins and their effect on experimental pK(a)s: the case of 

Nitrophorin 4.,” PLoS Comput. Biol., vol. 8, no. 11, p. e1002761, Jan. 2012. 

[111] N. V Di Russo, M. A. Martí, and A. E. Roitberg, “Underlying thermodynamics of pH-

dependent allostery.,” J. Phys. Chem. B, vol. 118, no. 45, pp. 12818–26, Nov. 2014. 

[112] G. J. A. Rainey, D. J. Wigelsworth, P. L. Ryan, H. M. Scobie, R. J. Collier, and J. A. T. 

Young, “Receptor-specific requirements for anthrax toxin delivery into cells.,” Proc. Natl. 

Acad. Sci. U. S. A., vol. 102, no. 37, pp. 13278–83, Sep. 2005. 

[113] S. Jäger, I. Szundi, J. W. Lewis, T. L. Mah, and D. S. Kliger, “Effects of pH on rhodopsin 

photointermediates from lumirhodopsin to metarhodopsin II.,” Biochemistry, vol. 37, no. 

19, pp. 6998–7005, May 1998. 



241 

 

[114] R. E. Hirsch and R. W. Noble, “Intrinsic fluorescence of carp hemoglobin: a study of the R-

---T transition.,” Biochim. Biophys. Acta, vol. 914, no. 3, pp. 213–9, Aug. 1987. 

[115] A. WHITE, “Effect of pH on fluorescence of tryosine, tryptophan and related 

compounds.,” Biochem. J., vol. 71, no. 2, pp. 217–20, Feb. 1959. 

[116] A. Barth, “Infrared spectroscopy of proteins.,” Biochim. Biophys. Acta, vol. 1767, no. 9, pp. 

1073–101, Sep. 2007. 

[117] G. J. Thomas, “New structural insights from Raman spectroscopy of proteins and their 

assemblies.,” Biopolymers, vol. 67, no. 4–5, pp. 214–25, Jan. 2002. 

[118] K. Gerwert, “Molecular Reaction Mechanisms of Proteins Monitored by Time-Resolved 

FTIR-Spectroscopy,” Biol. Chem., vol. 380, no. 7–8, pp. 931–935, Jan. 1999. 

[119] Q. Wu, F. Li, W. Wang, M. H. Hecht, and T. G. Spiro, “UV Raman monitoring of histidine 

protonation and H–2H exchange in plastocyanin,” J. Inorg. Biochem., vol. 88, no. 3–4, pp. 

381–387, Feb. 2002. 

[120] G. Balakrishnan, A. A. Jarzecki, Q. Wu, P. M. Kozlowski, D. Wang, and T. G. Spiro, “Mode 

Recognition in UV Resonance Raman Spectra of Imidazole: Histidine Monitoring in 

Proteins,” J. Phys. Chem. B, vol. 116, no. 31, pp. 9387–9395, Aug. 2012. 

[121] K. W. Hoffman, M. G. Romei, and C. H. Londergan, “A New Raman Spectroscopic Probe 

of Both the Protonation State and Noncovalent Interactions of Histidine Residues,” J. Phys. 

Chem. A, vol. 117, no. 29, pp. 5987–5996, Jul. 2013. 

[122] G. Platzer, M. Okon, and L. P. McIntosh, “pH-dependent random coil (1)H, (13)C, and 

(15)N chemical shifts of the ionizable amino acids: a guide for protein pK a 

measurements.,” J. Biomol. NMR, vol. 60, no. 2–3, pp. 109–29, Nov. 2014. 

[123] N. Shimba, Z. Serber, R. Ledwidge, S. M. Miller, C. S. Craik, and V. Dötsch, “Quantitative 

identification of the protonation state of histidines in vitro and in vivo.,” Biochemistry, vol. 

42, no. 30, pp. 9227–34, Aug. 2003. 

[124] N. Baker, N. Baker, M. Holst, M. Holst, F. Wang, and F. Wang, “Adaptive multilevel finite 

element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible 

surfaces in biomolecular systems,” J. Comput. Chem., vol. 21, no. 15, pp. 1343–1352, 2000. 

[125] D. Bashford and K. Gerwert, “Electrostatic calculations of the pKa values of ionizable 

groups in bacteriorhodopsin.,” J. Mol. Biol., vol. 224, no. 2, pp. 473–486, 1992. 

[126] J. Khandogin and C. L. Brooks, “Constant pH molecular dynamics with proton 

tautomerism.,” Biophys. J., vol. 89, no. 1, pp. 141–57, Jul. 2005. 

[127] J. Khandogin and C. L. Brooks, “Toward the accurate first-principles prediction of 

ionization equilibria in proteins.,” Biochemistry, vol. 45, no. 31, pp. 9363–73, Aug. 2006. 



242 

 

[128] M. H. M. Olsson, C. R. SØndergaard, M. Rostkowski, and J. H. Jensen, “PROPKA3: 

Consistent treatment of internal and surface residues in empirical p K a predictions,” J. 

Chem. Theory Comput., vol. 7, pp. 525–537, 2011. 

[129] E. Alexov, E. L. Mehler, N. Baker, A. M. Baptista, Y. Huang, F. Milletti, J. Erik Nielsen, D. 

Farrell, T. Carstensen, M. H. M. Olsson, J. K. Shen, J. Warwicker, S. Williams, and J. M. 

Word, “Progress in the prediction of pK a values in proteins,” Proteins: Structure, Function 

and Bioinformatics, vol. 79, no. 12. pp. 3260–3275, 2011. 

[130] K. D. Rand, M. Zehl, and T. J. D. Jørgensen, “Measuring the Hydrogen / Deuterium 

Exchange of Proteins at High Spatial Resolution by Mass Spectrometry : Overcoming Gas-

Phase Hydrogen / Deuterium Scrambling,” 2014. 

[131] J. H. Bradbury, B. E. Chapman, and F. A. Pellegrino, “Hydrogen-deuterium exchange 

kinetics of the C-2 protons of imidazole and histidine compounds,” J. Am. Chem. Soc., vol. 

95, no. 18, pp. 6139–6140, Sep. 1973. 

[132] J. D. Vaughan, Z. Mughrabi, and E. C. Wu, “Kinetics of deuteration of imidazole,” J. Org. 

Chem., vol. 35, no. 4, pp. 1141–1145, Apr. 1970. 

[133] M. Miyagi and T. Nakazawa, “Determination of pKa values of individual histidine 

residues in proteins using mass spectrometry,” Anal. Chem., vol. 80, no. 17, pp. 6481–6487, 

Sep. 2008. 

[134] C. B. Anfinsen, “Principles that govern the folding of protein chains.,” Science, vol. 181, no. 

96, pp. 223–30, Jul. 1973. 

[135] D. T. Jones, “Protein secondary structure prediction based on position-specific scoring 

matrices.,” J. Mol. Biol., vol. 292, no. 2, pp. 195–202, 1999. 

[136] M. O. Dayhoff, W. C. Barker, and L. T. Hunt, Establishing homologies in protein sequences, 

vol. 91, no. C. Elsevier, 1983. 

[137] W. R. Pearson, “An introduction to sequence similarity (‘homology’) searching.,” Curr. 

Protoc. Bioinformatics, vol. Chapter 3, p. Unit3.1, Jun. 2013. 

[138] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences.,” J. 

Mol. Biol., vol. 147, no. 1, pp. 195–197, 1981. 

[139] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for 

similarities in the amino acid sequence of two proteins.,” J. Mol. Biol., vol. 48, no. 3, pp. 

443–453, 1970. 

[140] W. Pearson, “Finding protein and nucleotide similarities with FASTA.,” Curr. Protoc. 

Bioinformatics, vol. Chapter 3, p. Unit3.9, 2004. 



243 

 

[141] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. 

Lipman, “Gapped BLAST and PSI-BLAST: A new generation of protein database search 

programs,” Nucleic Acids Research, vol. 25, no. 17. pp. 3389–3402, 1997. 

[142] Y. Nakamura, G. Cochrane, and I. Karsch-Mizrachi, “The international nucleotide 

sequence database collaboration,” Nucleic Acids Res., vol. 41, no. D1, 2013. 

[143] The UniProt Consortium, “Reorganizing the protein space at the Universal Protein 

Resource (UniProt),” Nucleic Acids Res., vol. 40, no. Database issue, pp. D71–5, 2012. 

[144] H. Ashkenazy, E. Erez, E. Martz, T. Pupko, and N. Ben-Tal, “ConSurf 2010: calculating 

evolutionary conservation in sequence and structure of proteins and nucleic acids.,” 

Nucleic Acids Res., vol. 38, no. Web Server issue, pp. W529–33, Jul. 2010. 

[145] S. W. Lockless and R. Ranganathan, “Evolutionarily conserved pathways of energetic 

connectivity in protein families.,” Science, vol. 286, no. 5438, pp. 295–299, 1999. 

[146] D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pagnani, R. Zecchina, and C. Sander, 

“Protein 3D structure computed from evolutionary sequence variation,” PLoS One, vol. 6, 

no. 12, 2011. 

[147] M. J. Harms and J. W. Thornton, “Analyzing protein structure and function using 

ancestral gene reconstruction.,” Curr. Opin. Struct. Biol., vol. 20, no. 3, pp. 360–6, Jun. 2010. 

[148] L. E. Baum and J. A. Eagon, “An inequality with applications to statistical estimation for 

probabilistic functions of Markov processes and to a model for ecology,” Bulletin of the 

American Mathematical Society, vol. 73, no. 3. pp. 360–364, 1967. 

[149] S. R. Eddy, “Profile hidden Markov models.,” Bioinformatics, vol. 14, no. 9, pp. 755–763, 

1998. 

[150] A. J. Viterbi, “A personal history of the Viterbi algorithm,” IEEE Signal Process. Mag., vol. 

23, no. 4, p. 8, 2005. 

[151] L. R. Welch, “Hidden Markov Models and the Baum-Welch Algorithm,” IEEE Inf. Theory 

Soc. Newsl., vol. 53, no. 4, pp. 1,10–13, 2003. 

[152] J. Söding, “Protein homology detection by HMM-HMM comparison,” Bioinformatics, vol. 

21, no. 7, pp. 951–960, 2005. 

[153] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. 

Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. Sonnhammer, S. R. Eddy, A. 

Bateman, and R. D. Finn, “The Pfam protein families database,” Nucleic Acids Res., vol. 40, 

no. Database issue, pp. D290–301, 2012. 

[154] D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough, “The SUPERFAMILY database 

in 2007: Families and functions,” Nucleic Acids Res., vol. 35, no. SUPPL. 1, 2007. 



244 

 

[155] J. G. Lees, D. Lee, R. A. Studer, N. L. Dawson, I. Sillitoe, S. Das, C. Yeats, B. H. Dessailly, 

R. Rentzsch, and C. A. Orengo, “Gene3D: Multi-domain annotations for protein sequence 

and comparative genome analysis,” Nucleic Acids Res., vol. 42, no. D1, 2014. 

[156] A. Andreeva, D. Howorth, S. E. Brenner, T. J. P. Hubbard, C. Chothia, and A. G. Murzin, 

“SCOP database in 2004: refinements integrate structure and sequence family data.,” 

Nucleic Acids Res., vol. 32, no. Database issue, pp. D226–D229, 2004. 

[157] C. A. Orengo, F. M. G. Pearl, and J. M. Thornton, “The CATH domain structure 

database.,” Methods Biochem. Anal., vol. 44, pp. 249–271, 2003. 

[158] F. Dong, B. Olsen, and N. A. Baker, “Computational Methods for Biomolecular 

Electrostatics,” Methods in Cell Biology, vol. 84. pp. 843–870, 2008. 

[159] M. Pellegrini-Calace, T. Maiwald, and J. M. Thornton, “PoreWalker: A novel tool for the 

identification and characterization of channels in transmembrane proteins from their 

three-dimensional structure,” PLoS Comput. Biol., vol. 5, no. 7, 2009. 

[160] S. M. Saberi Fathi and J. a Tuszynski, “A simple method for finding a protein’s ligand-

binding pockets.,” BMC Struct. Biol., vol. 14, no. 1, p. 18, 2014. 

[161] M. Karplus and J. Kuriyan, “Molecular dynamics and protein function.,” Proc. Natl. Acad. 

Sci. U. S. A., vol. 102, no. 19, pp. 6679–6685, 2005. 

[162] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, 

“CHARMM: A program for macromolecular energy, minimization, and dynamics 

calculations,” J. Comput. Chem., vol. 4, no. 2, pp. 187–217, 1983. 

[163] H. Lei and Y. Duan, “Improved sampling methods for molecular simulation,” Current 

Opinion in Structural Biology, vol. 17, no. 2. pp. 187–191, 2007. 

[164] D. E. Shaw, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. 

Lerardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. M. Deneroff, M. A. 

Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S. C. Wang, 

R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, and K. J. Bowers, 

“Anton, a special-purpose machine for molecular dynamics simulation,” Communications 

of the ACM, vol. 51, no. 7. p. 91, 2008. 

[165] D. E. Shaw, K. J. Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin, 

R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. a Moraes, R. O. Dror, S. Piana, Y. Shan, 

B. Towles, J. K. Salmon, J. P. Grossman, K. M. Mackenzie, J. a Bank, C. Young, M. M. 

Deneroff, and B. Batson, “Millisecond-scale molecular dynamics simulations on Anton,” 

Proc. Conf. High Perform. Comput. Netw. Storage Anal. SC 09, no. c, p. 1, 2009. 

[166] R. O. Dror, H. F. Green, C. Valant, D. W. Borhani, J. R. Valcourt, A. C. Pan, D. H. Arlow, 

M. Canals, J. R. Lane, R. Rahmani, J. B. Baell, P. M. Sexton, A. Christopoulos, and D. E. 



245 

 

Shaw, “Structural basis for modulation of a G-protein-coupled receptor by allosteric 

drugs.,” Nature, vol. 503, no. 7475, pp. 295–9, 2013. 

[167] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A. M. Gronenborn, 

K. Schulten, C. Aiken, and P. Zhang, “Mature HIV-1 capsid structure by cryo-electron 

microscopy and all-atom molecular dynamics.,” Nature, vol. 497, no. 7451, pp. 643–6, 2013. 

[168] U. HANSMANN and Y. OKAMOTO, “New Monte Carlo algorithms for protein folding,” 

Curr. Opin. Struct. Biol., vol. 9, no. 2, pp. 177–183, 1999. 

[169] A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson, R. Jacak, K. Kaufman, P. 

D. Renfrew, C. A. Smith, W. Sheffler, I. W. Davis, S. Cooper, A. Treuille, D. J. Mandell, F. 

Richter, Y. E. A. Ban, S. J. Fleishman, J. E. Corn, D. E. Kim, S. Lyskov, M. Berrondo, S. 

Mentzer, Z. Popović, J. J. Havranek, J. Karanicolas, R. Das, J. Meiler, T. Kortemme, J. J. 

Gray, B. Kuhlman, D. Baker, and P. Bradley, “Rosetta3: An object-oriented software suite 

for the simulation and design of macromolecules,” Methods Enzymol., vol. 487, no. C, pp. 

545–574, 2011. 

[170] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker, “Protein Structure Prediction 

Using Rosetta,” Methods in Enzymology, vol. 383. pp. 66–93, 2004. 

[171] F. Richter, A. Leaver-Fay, S. D. Khare, S. Bjelic, and D. Baker, “De novo enzyme design 

using Rosetta3,” PLoS One, vol. 6, no. 5, 2011. 

[172] C. Wang, P. Bradley, and D. Baker, “Protein-Protein Docking with Backbone Flexibility,” 

J. Mol. Biol., vol. 373, no. 2, pp. 503–519, 2007. 

[173] S. Piana, K. Lindorff-Larsen, and D. E. Shaw, “Atomic-level description of ubiquitin 

folding.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 15, pp. 5915–20, 2013. 

[174] A. Kryshtafovych, K. Fidelis, and J. Moult, “CASP10 results compared to those of previous 

CASP experiments,” Proteins Struct. Funct. Bioinforma., vol. 82, no. SUPPL.2, pp. 164–174, 

2014. 

[175] A. Roy, A. Kucukural, and Y. Zhang, “I-TASSER: a unified platform for automated 

protein structure and function prediction.,” Nat. Protoc., vol. 5, no. 4, pp. 725–38, Apr. 

2010. 

[176] C. H. Tai, H. Bai, T. J. Taylor, and B. Lee, “Assessment of template-free modeling in 

CASP10 and ROLL,” Proteins Struct. Funct. Bioinforma., vol. 82, no. SUPPL.2, pp. 57–83, 

2014. 

[177] H. H. Gan, R. A. Perlow, S. Roy, J. Ko, M. Wu, J. Huang, S. Yan, A. Nicoletta, J. Vafai, D. 

Sun, L. Wang, J. E. Noah, S. Pasquali, and T. Schlick, “Analysis of protein 

sequence/structure similarity relationships.,” Biophys. J., vol. 83, no. 5, pp. 2781–2791, 2002. 



246 

 

[178] N. Eswar, D. Eramian, B. Webb, M.-Y. Shen, and A. Sali, “Protein structure modeling with 

MODELLER.,” Methods Mol. Biol., vol. 426, pp. 145–159, 2008. 

[179] D. Baker and A. Sali, “Protein structure prediction and structural genomics.,” Science, vol. 

294, no. 5540, pp. 93–96, 2001. 

[180] T. M. Embley and W. Martin, “Eukaryotic evolution, changes and challenges,” Nature, vol. 

440, no. 7084, pp. 623–630, 2006. 

[181] J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nat 

Rev Mol Cell Biol., vol. 11, no. 1, pp. 50–61, 2010. 

[182] C. Lopez-Otin and J. S. Bond, “Proteases: multifunctional enzymes in life and disease,” J 

Biol Chem., vol. 283, no. 45, pp. 30433–30437, 2008. 

[183] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, 

and T. E. Ferrin, “UCSF Chimera--a visualization system for exploratory research and 

analysis,” J Comput Chem., vol. 25, no. 13, pp. 1605–1612, 2004. 

[184] S. Hunter, P. Jones, A. Mitchell, R. Apweiler, T. K. Attwood, A. Bateman, T. Bernard, D. 

Binns, P. Bork, S. Burge, E. de Castro, P. Coggill, M. Corbett, U. Das, L. Daugherty, L. 

Duquenne, R. D. Finn, M. Fraser, J. Gough, D. Haft, N. Hulo, D. Kahn, E. Kelly, I. Letunic, 

D. Lonsdale, R. Lopez, M. Madera, J. Maslen, C. McAnulla, J. McDowall, C. McMenamin, 

H. Mi, P. Mutowo-Muellenet, N. Mulder, D. Natale, C. Orengo, S. Pesseat, M. Punta, A. F. 

Quinn, C. Rivoire, A. Sangrador-Vegas, J. D. Selengut, C. J. Sigrist, M. Scheremetjew, J. 

Tate, M. Thimmajanarthanan, P. D. Thomas, C. H. Wu, C. Yeats, and S. Y. Yong, “InterPro 

in 2011: new developments in the family and domain prediction database,” Nucleic Acids 

Res., vol. 40, no. Database issue, pp. D306–12, 2012. 

[185] I. Letunic and P. Bork, “Interactive Tree Of Life v2: online annotation and display of 

phylogenetic trees made easy,” Nucleic Acids Res., vol. 39, no. Web Server issue, pp. W475–

8, 2011. 

[186] E. Paradis, J. Claude, and K. Strimmer, “APE: Analyses of Phylogenetics and Evolution in 

R language,” Bioinformatics, vol. 20, no. 2, pp. 289–290, 2004. 

[187] R Core Team, “R: A Language and Environment for Statistical Computing.” R Foundation 

for Statistical Computing, 2012. 

[188] R. G. Newcombe, “Confidence intervals for an effect size measure based on the Mann-

Whitney statistic. Part 1: general issues and tail-area-based methods,” Stat Med., vol. 25, 

no. 4, pp. 543–557, 2006. 

[189] S. F. Feliciangeli, L. Thomas, G. K. Scott, E. Subbian, C.-H. Hung, S. S. Molloy, F. Jean, U. 

Shinde, and G. Thomas, “Identification of a pH sensor in the furin propeptide that 

regulates enzyme activation.,” J Biol Chem., vol. 281, no. 23, pp. 16108–16, Jun. 2006. 



247 

 

[190] S. L. Dillon, D. M. Williamson, J. Elferich, D. Radler, R. Joshi, G. Thomas, and S. Ujwal, 

“Propeptides are sufficent to regulate organelle-specific pH-dependent activation of furin 

and proprotein convertase 1/3,” J. Mol. Biol., vol. Accepted M, 2012. 

[191] S. L. Dillon, D. M. Williamson, J. Elferich, D. Radler, R. Joshi, G. Thomas, and U. Shinde, 

“Propeptides Are Sufficient to Regulate Organelle-Specific pH-Dependent Activation of 

Furin and Proprotein Convertase 1/3,” J Mol Biol., vol. 423, no. 1, pp. 47–62, 2012. 

[192] P. Carter and J. A. Wells, “Engineering enzyme specificity by ‘substrate-assisted 

catalysis,’” Science (80-. )., vol. 237, no. 4813, pp. 394–399, 1987. 

[193] R. J. Siezen and J. A. Leunissen, “Subtilases: the superfamily of subtilisin-like serine 

proteases,” Protein Sci., vol. 6, no. 3, pp. 501–523, 1997. 

[194] A. Wlodawer, M. G. Li, H. Alla Oyama, B. M. Dunn, and K. Oda, “Structural and 

enzymatic properties of the sedolisin family of serine-carboxyl peptidases.,” Acta Biochim 

Pol., vol. 50, no. 1, pp. 81–102, 2003. 

[195] K. Oda, M. Sugitani, K. Fukuhara, and S. Murao, “Purification and properties of a 

pepstatin-insensitive carboxyl proteinase from a gram-negative bacterium,” Biochim 

Biophys Acta., vol. 923, no. 3, pp. 463–469, 1987. 

[196] H. Oyama, T. Hamada, S. Ogasawara, K. Uchida, S. Murao, B. B. Beyer, B. M. Dunn, and 

K. Oda, “A CLN2-related and thermostable serine-carboxyl proteinase, kumamolysin: 

cloning, expression, and identification of catalytic serine residue,” J Biochem., vol. 131, no. 

5, pp. 757–765, 2002. 

[197] F. A. Gunkel and H. G. Gassen, “Proteinase K from Tritirachium album Limber. 

Characterization of the chromosomal gene and expression of the cDNA in Escherichia 

coli,” Eur J Biochem., vol. 179, no. 1, pp. 185–194, Jan. 1989. 

[198] N. G. Seidah, S. J. Mowla, J. Hamelin, A. M. Mamarbachi, S. Benjannet, B. B. Toure, A. 

Basak, J. S. Munzer, J. Marcinkiewicz, M. Zhong, J. C. Barale, C. Lazure, R. A. Murphy, M. 

Chretien, and M. Marcinkiewicz, “Mammalian subtilisin/kexin isozyme SKI-1: A widely 

expressed proprotein convertase with a unique cleavage specificity and cellular 

localization,” Proc Natl Acad Sci U S A., vol. 96, no. 4, pp. 1321–1326, 1999. 

[199] V. Turk, V. Stoka, O. Vasiljeva, M. Renko, T. Sun, B. Turk, and D. Turk, “Cysteine 

cathepsins: from structure, function and regulation to new frontiers,” Biochim Biophys 

Acta., vol. 1824, no. 1, pp. 68–88, 2012. 

[200] B. Turk, I. Dolenc, V. Turk, and J. G. Bieth, “Kinetics of the pH-induced inactivation of 

human cathepsin L,” Biochemistry, vol. 32, no. 1, pp. 375–380, 1993. 

[201] Y. Nishimura, T. Kawabata, and K. Kato, “Identification of latent procathepsins B and L in 

microsomal lumen: characterization of enzymatic activation and proteolytic processing in 

vitro,” Arch Biochem Biophys., vol. 261, no. 1, pp. 64–71, 1988. 



248 

 

[202] O. Quraishi, D. K. Nägler, T. Fox, J. Sivaraman, M. Cygler, J. S. Mort, and A. C. Storer, 

“The occluding loop in cathepsin B defines the pH dependence of inhibition by its 

propeptide,” Biochemistry, vol. 38, no. 16, pp. 5017–5023, 1999. 

[203] C. Illy, O. Quraishi, J. Wang, E. Purisima, T. Vernet, and J. S. Mort, “Role of the occluding 

loop in cathepsin B activity,” J Biol Chem., vol. 272, no. 2, pp. 1197–1202, 1997. 

[204] E. M. Creagh, H. Conroy, and S. J. Martin, “Caspase-activation pathways in apoptosis and 

immunity,” Immunol Rev., vol. 193, pp. 10–21, 2003. 

[205] L. Tsiatsiani, F. Van Breusegem, P. Gallois, A. Zavialov, E. Lam, and P. V Bozhkov, 

“Metacaspases,” Cell Death Differ, vol. 18, no. 8, pp. 1279–1288, 2011. 

[206] C. Degnin, F. Jean, G. Thomas, and J. L. Christian, “Cleavages within the prodomain 

direct intracellular trafficking and degradation of mature bone morphogenetic protein-4.,” 

Mol Biol Cell., vol. 15, no. 11, pp. 5012–20, Nov. 2004. 

[207] N. G. Seidah and A. Prat, “The biology and therapeutic targeting of the proprotein 

convertases.,” Nat Rev Drug Discov., vol. 11, no. 5, pp. 367–83, May 2012. 

[208] B. A. Webb, M. Chimenti, M. P. Jacobson, and D. L. Barber, “Dysregulated pH: a perfect 

storm for cancer progression.,” Nat. Rev. Cancer, vol. 11, no. 9, pp. 671–677, 2011. 

[209] M. Naghavi, R. John, S. Naguib, M. S. Siadaty, R. Grasu, K. C. Kurian, W. B. van Winkle, 

B. Soller, S. Litovsky, M. Madjid, J. T. Willerson, and W. Casscells, “pH Heterogeneity of 

human and rabbit atherosclerotic plaques; a new insight into detection of vulnerable 

plaque,” Atherosclerosis, vol. 164, no. 1, pp. 27–35, 2002. 

[210] N. G. Seidah, G. Mayer, A. Zaid, E. Rousselet, N. Nassoury, S. Poirier, R. Essalmani, and 

A. Prat, “The activation and physiological functions of the proprotein convertases,” Int. J. 

Biochem. Cell Biol., vol. 40, no. 6–7, pp. 1111–1125, 2008. 

[211] K. Nakayama, “Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in 

processing of a wide variety of precursor proteins.,” Biochem. J., vol. 327 ( Pt 3, pp. 625–

635, 1997. 

[212] E. Subbian, Y. Yabuta, and U. Shinde, “Positive selection dictates the choice between 

kinetic and thermodynamic protein folding and stability in subtilases.,” Biochemistry, vol. 

43, no. 45, pp. 14348–60, Nov. 2004. 

[213] M. Soskine and D. S. Tawfik, “Mutational effects and the evolution of new protein 

functions,” Nat. Rev. Genet., vol. 11, no. 8, pp. 572–582, Aug. 2010. 

[214] X. Fu, M. Inouye, and U. Shinde, “Folding pathway mediated by an intramolecular 

chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not 

obligatorily linked,” J. Biol. Chem., vol. 275, no. 22, pp. 16871–16878, 2000. 



249 

 

[215] M. A. Tangrea, P. N. Bryan, N. Sari, and J. Orban, “Solution structure of the pro-hormone 

convertase 1 pro-domain from Mus musculus.,” J Mol Biol., vol. 320, no. 4, pp. 801–12, Jul. 

2002. 

[216] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. 

Skeel, L. Kalé, and K. Schulten, “Scalable molecular dynamics with NAMD,” Journal of 

Computational Chemistry, vol. 26, no. 16. pp. 1781–1802, 2005. 

[217] U. Shinde and M. Inouye, “Intramolecular chaperones: polypeptide extensions that 

modulate protein folding.,” Semin. Cell Dev. Biol., vol. 11, no. 1, pp. 35–44, Feb. 2000. 

[218] Y. J. Chen and M. Inouye, “The intramolecular chaperone-mediated protein folding,” 

Current Opinion in Structural Biology, vol. 18, no. 6. pp. 765–770, 2008. 

[219] S. Bhattacharjya, P. Xu, H. Xiang, M. Chrétien, N. G. Seidah, and F. Ni, “pH-induced 

conformational transitions of a molten-globule-like state of the inhibitory prodomain of 

furin: implications for zymogen activation.,” Protein Sci., vol. 10, no. 5, pp. 934–42, May 

2001. 

[220] A. L. Fink, L. J. Calciano, Y. Goto, T. Kurotsu, and D. R. Palleros, “Classification of acid 

denaturation of proteins: intermediates and unfolded states.,” Biochemistry, vol. 33, no. 41, 

pp. 12504–12511, 1994. 

[221] Y. Goto, N. Takahashi, and A. L. Fink, “Mechanism of acid-induced folding of proteins.,” 

Biochemistry, vol. 29, no. 14, pp. 3480–3488, 1990. 

[222] V. N. Uversky and Y. Goto, “Acid denaturation and anion-induced folding of globular 

proteins: multitude of equilibium partially folded intermediates.,” Curr. Protein Pept. Sci., 

vol. 10, no. 5, pp. 447–455, 2009. 

[223] P. E. Wright and H. J. Dyson, “Linking folding and binding,” Current Opinion in Structural 

Biology, vol. 19, no. 1. pp. 31–38, 2009. 

[224] V. Daggett and M. Levitt, “A model of the molten globule state from molecular dynamics 

simulations.,” Proc. Natl. Acad. Sci. U. S. A., vol. 89, no. 11, pp. 5142–5146, 1992. 

[225] V. Daggett and M. Levitt, “Protein unfolding pathways explored through molecular 

dynamics simulations.,” J. Mol. Biol., vol. 232, no. 2, pp. 600–619, 1993. 

[226] C. L. Brooks, “Characterization of ‘native’ apomyoglobin by molecular dynamics 

simulation,” J. Mol. Biol., vol. 227, no. 2, pp. 375–380, 1992. 

[227] N. L. Salimi, B. Ho, and D. a Agard, “Unfolding simulations reveal the mechanism of 

extreme unfolding cooperativity in the kinetically stable alpha-lytic protease.,” PLoS 

Comput. Biol., vol. 6, no. 2, p. e1000689, Feb. 2010. 



250 

 

[228] W. Huang, A. P. Eichenberger, and W. F. van Gunsteren, “Molecular dynamics simulation 

of thionated hen egg white lysozyme.,” Protein Sci., vol. 21, no. 8, pp. 1153–61, 2012. 

[229] N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary 

structure.,” Nat. Protoc., vol. 1, no. 6, pp. 2876–2890, 2006. 

[230] N. J. Greenfield and N. J. Greenfield, “Analysis of the kinetics of folding of proteins and 

peptides using circular dichroism.,” Nat. Protoc., vol. 1, no. 6, pp. 2891–9, 2006. 

[231] S. K. Nair, T. J. Thomas, N. J. Greenfield, A. Chen, H. He, and T. Thomas, 

“Conformational dynamics of estrogen receptors alpha and beta as revealed by intrinsic 

tryptophan fluorescence and circular dichroism.,” J. Mol. Endocrinol., vol. 35, no. 2, pp. 

211–223, 2005. 

[232] J. R. Lakowicz, B. P. Maliwal, H. Cherek, and A. Balter, “Rotational freedom of tryptophan 

residues in proteins and peptides.,” Biochemistry, vol. 22, no. 8, pp. 1741–1752, 1983. 

[233] N. J. Greenfield, “Determination of the folding of proteins as a function of denaturants, 

osmolytes or ligands using circular dichroism.,” Nat. Protoc., vol. 1, no. 6, pp. 2733–2741, 

2006. 

[234] M. A. Tangrea, P. Alexander, P. N. Bryan, E. Eisenstein, J. Toedt, and J. Orban, “Stability 

and global fold of the mouse prohormone convertase 1 pro-domain,” Biochemistry, vol. 40, 

pp. 5488–5495, 2001. 

[235] D. M. Williamson, J. Elferich, P. Ramakrishnan, G. Thomas, and U. Shinde, “The 

mechanism by which a propeptide-encoded pH sensor regulates spatiotemporal 

activation of furin.,” J. Biol. Chem., vol. 288, no. 26, pp. 19154–65, Jun. 2013. 

[236] A. Basak and C. Lazure, “Synthetic peptides derived from the prosegments of proprotein 

convertase 1/3 and furin are potent inhibitors of both enzymes.,” Biochem. J., vol. 373, no. 

Pt 1, pp. 231–239, 2003. 

[237] A. Basak, F. Jean, N. G. Seidah, and C. Lazure, “Design and synthesis of novel inhibitors 

of prohormone convertases.,” Int. J. Pept. Protein Res., vol. 44, no. 3, pp. 253–261, 1994. 

[238] R. Day, C. Lazure, A. Basak, A. Boudreault, P. Limperis, W. Dong, and I. Lindberg, 

“Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues 

and enhanced processing in the presence of carboxypeptidase activity,” J. Biol. Chem., vol. 

273, no. 2, pp. 829–836, 1998. 

[239] S. Tanco, X. Zhang, C. Morano, F. X. Avilés, J. Lorenzo, and L. D. Fricker, 

“Characterization of the substrate specificity of human carboxypeptidase A4 and 

implications for a role in extracellular peptide processing,” J. Biol. Chem., vol. 285, no. 24, 

pp. 18385–18396, 2010. 



251 

 

[240] A. Schönichen, B. A. Webb, M. P. Jacobson, and D. L. Barber, “Considering protonation as 

a posttranslational modification regulating protein structure and function.,” Annu. Rev. 

Biophys., vol. 42, pp. 289–314, Jan. 2013. 

[241] J. Elferich, D. M. Williamson, B. Krishnamoorthy, and U. Shinde, “Propeptides of 

eukaryotic proteases encode histidines to exploit organelle pH for regulation.,” FASEB J., 

vol. 27, no. 8, pp. 2939–45, Aug. 2013. 

[242] M. Chrétien, N. G. Seidah, A. Basak, and M. Mbikay, “Proprotein convertases as 

therapeutic targets.,” Expert Opin. Ther. Targets, vol. 12, no. 10, pp. 1289–1300, 2008. 

[243] S.-N. Lee, E. Prodhomme, and I. Lindberg, “Prohormone convertase 1 (PC1) processing 

and sorting: effect of PC1 propeptide and proSAAS.,” J. Endocrinol., vol. 182, no. 2, pp. 

353–64, Aug. 2004. 

[244] A. G. Woods, I. Sokolowska, A. G. Ngounou Wetie, K. Wormwood, R. Aslebagh, S. Patel, 

and C. C. Darie, “Mass spectrometry for proteomics-based investigation.,” Adv. Exp. Med. 

Biol., vol. 806, pp. 1–32, Jan. 2014. 

[245] M. Miyagi and T. Nakazawa, “ac research Determination of pK a Values of Individual 

Histidine Residues in Proteins Using Mass Spectrometry,” Exch. Organ. Behav. Teach. J., 

vol. 80, no. 17, pp. 6481–6487, 2008. 

[246] V. Mullangi, X. Zhou, D. W. Ball, D. J. Anderson, and M. Miyagi, “Quantitative 

measurement of the solvent accessibility of histidine imidazole groups in proteins.,” 

Biochemistry, vol. 51, no. 36, pp. 7202–8, Sep. 2012. 

[247] V. Mullangi, S. Mamillapalli, D. J. Anderson, J. G. Bann, and M. Miyagi, “Long-range 

stabilization of anthrax protective antigen upon binding to CMG2.,” Biochemistry, vol. 53, 

no. 38, pp. 6084–91, Sep. 2014. 

[248] N. Hayashi, H. Kuyama, C. Nakajima, K. Kawahara, M. Miyagi, O. Nishimura, H. Matsuo, 

and T. Nakazawa, “Imidazole C-2 hydrogen/deuterium exchange reaction at histidine for 

probing protein structure and function with matrix-assisted laser desorption ionization 

mass spectrometry.,” Biochemistry, vol. 53, no. 11, pp. 1818–26, Mar. 2014. 

[249] M. Strohalm, D. Kavan, P. Novák, M. Volný, and V. Havlíc ̌ek, “mMass 3: A Cross-
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