
VS: An Optimistic Version Management System

Charles A. Adams

BA., California Polytechnic State University at San Luis Obispo

M A., West Virginia University

A thesis submitted to the faculty

of the Oregon Graduate Institute of Science and Technology

in partial fu]fillinent of the requirements for the degree
Master of Science in

Computer Science

December,1990

The thesis "VS: An OptimisticVersionManagementSystem" by Charles A. Adams

has been examined and apprqvedby the followingExamination Committee:

Roben G. Babb II, Ph.D.
Professor
Thesis Research Advisor

. \
Jonathan Walpole, Ph.D.
Assistant Professor

t:.':7'"
Errol Crary, M.B.A.
Senior Engineer, Tektronix, Inc.

,..,.

ACKNOWLEDGMENT

This thesis was made possible by the suppon and encouragementof many people.

I would like to express my appreciation fIrst and foremost to my wife, Gloria, who

provided unwavering suppon. Robbie supplied much needed guidance and vision

throughout my term at Oregon Graduate Institute. Jonathan and Errol furnished

invaluable help on this thesis. Finally, I need to thank Kevin Jagla who provided

numerous hours of camaraderie during our parallel journeys.

III

ABSTRACT

VS: An Optimistic Version Management System

Charles A. Adams

Oregon Graduate Institute of Science and Technology

Supervising Professor: Robert G. Babb II, Ph.D.

Designing, implementing and maintaining large complex software systems can be

a difficult task. The emergence of computer networks has made the task even more

complex. Managing large software engineering teams has proved to be problematic.

Over the years researchers and engineers have developed tools and techniques to

improve the productivity of these engineering teams.

VS is a prototype version management system. This study of version

management used VS as an example of an optimistic version management tool to

analyze the effects an improved tool could have on software engineering productivity.

Specifically, the study looked at the domain-specific requirements of Large-Grain

Data Flow 2 to develop mechanisms that could help improve productivity during

software design and analysis. It also investigated the domain-independent policies

and mechanisms needed within the software engineering field.

1V

Table of Contents

Acknowledgmen t iii

Abstract iv

List of Figures vii

List of Tables viii

1. Introduction . 1

1.1 Integrated Software Development Environments 2

1.2 IntegratedSoftwareDesignEnvironments 3

1.3 Outlineof Study 4

2. Current Approaches 6

2.1 VersionManagement 6

2.1.1 Text-basedVersionManagementTools 6

2.1.2 ConfigurationManagementTools 10

2.1.3 Version Management Tools for Computer-Aided Design 12

2.2 Motivation for Management of the Design Process 14

2.3 Incremental Development and Software Reuse 16

3. Implementation 19

3.1 Overview of VS: An Optimistic Version Management System 19

3.1.1 Workspace Commands 20

3.1.2 Version Management Commands 21

3.1.3 Output from VS 23

3.2 Extension of RCS Check Out 23

3.3 Extensionof RCS CheckIn 25

v

3.4 Extension of RCS Merge 28

3.5 The LGDF2 File... 31

4. Example VS Usage Scenarios 35

4.1 TheStructureofVS 36

4.2 Sample Check Out Session 38

4.3 Sample Check In Session with Notification 41

4.4 Sample Check In Session with Intervening Check In 43

4.5 Sample DFDMERGE Session with Error Policy Checking 46

5. Conelusion 51

5.1 Assessment of VS for Version Management 51

5.2 Assessment of Need for Version Management 54

5.3 Assessment of Need for Domain Specific Tools 56

REFERENCES 58

APPENDIX A. VS LGDF2FileVersion 1.10 62

APPEI'iDIX B. VS LGDF2File Version 1.9.1.1 66

APPE!\DIX C. Users Manualfor VS 71

APPENDIX D. VI-.axMan Page for VS 89

Biographical Note 91

Vl

List of Figu res

Fhwre Title

2-1 sces Deltas 7

2-2 RCS DeltaswithTwoBranches 9

2-3 LGDF:! Network Example with Assumed Transitions 16

3-1 RCS Tree After Automatic Branching 26

3-2 An Example LGDF2 File 3.+

4-1 The Single Process LGDF2 Diagram 36

4-2 The Top Level LGDF2 Diagram for VS 37

4-3 A Ponion of the dfd1-vlog FUe 40

4-4 VS LGDF2 Diagram Version 1.9 43

4-5 VS LGDF2 Diagram Version 1.10 43

4-6 VS LGDF2 Diagram Version 1.9.1.1 45

4-7 VS LGDF2 Diagram Version 1.11 48

4-8 The diffs.notaccepted File for Version 1.11 49

Vll

Table

3-1

3-2

3-3

3-4

List of Tables

Title

The VII'orkspace Commands 20

The Version Management Commands 21

The VS OurpLit Tokens 23

The LGDF2 Diagram Keywords 32

V111

1

1. Introduction

Productivity within the softWare engineering field has been a significant topic for

many years. Researchers, engineers and others continue to search for methods and

tools to improve productivity withi.n this field. Fredrick Brooks has noted it is likely

that there is no "silver bullet" that by itself can provide order-of-magnitude improve-

ments in software engineering productivity [Brooks, 1987]. Thus, substantial gains

in productivity are likely to be the result of incremental developments in a variety of

areas.

In the past decades, we have witnessed many improvements in software technolo-

gy. The introduction of structUred programming languages, user interface develop-

ment tools and other software tools have helped improve individual software

engineers productivity. Recently, much energy has been expended in developing inte-

grated software development environments. Tools, such as Apollo Computer's Do-

main Software Engineering Environment (DSEE) [Leblang, 1985], and Sun

Microsystems' Network Software Environment (NSE) [Miller, 1989], have shown

promise in helping improve software engineering productivity by providing assistance

during product development and release. Current research, using tools such as Cos-

mos [Walpole, 1988], has provided additional insight into these phases of a project.

On the other hand, studies of the software development process have noted that

close to three-fourths of all errors occur in the design stage of the product life-cycle

[Boehm, 1976], [Hamilton, 1976]. Roben Bailey has claimed that almost half the er-

rors made during the operation of a new system are the result of faulty design deci-

sions [Bailey, 1983]. These errors often lead to major loses in productivity. Barry

Boehm has assened that the cost to fix design errors during the later stages of prod-

2

uct development is 50 to 100 times higher than fixing them during the design stage

[Boehm, 1988]. The recent focus on rapid prototyping is in pan due to the need to get

the requirements right early in the project life-cycle and thereby reduce the amount of

rework required later in the project [Boehm, 1987]. Penny Nii argued in a recent

monograph "the coding crisis of the 1960's and 1970's has turned into the design cri-

sis in the 1980's" [Nii, 1990].

Major gains in software productivity are expected to occur, if gains in productivity

are achieved in all stages of software production. Better design tools, such as the

Visible Analyst Workbench and System Architect, have helped with the production of

diagrams for structured design methodologies [Nii, 1990]. The use of Data Flow Dia-

grams to represent software designs has become a standard pan of many large soft-

ware development projects. Yet, these tools and techniques do not by themselves

fulfill the designers' need for accommodating, communicating and controlling changes

during product design. For designers to be as productive as possible, the software

design environmentmust become a medium for communicationwhich integrates peo-

pIe, tools and information [Curtis, 1988].

1.1 Integrated Software DevelopmentEnvironments

Software development environments are being investigated by an increasing num-

ber of researchers and engineers. The number of tools for configuration management

is growing almost daily. One type of tool used in all configurationmanagement sys-

terns, the version management tool has been around for many years. For instance,

the Source Code Control System (SCCS) dates back to 1979 and the Revision Con-

trol System (RCS) was developed in the early 1980's. These two tools have found

3

wide acceptance in the UNIXTM community. The recent development of tools like

DSEE, and NSE provides a means for integrating source code development and sys-

tems management. In general, these configuration management tools provide the

glue to integrate version management with system construction and maintenance.

The field of computer-aided design of mechanical and elecnical systems has also

been examining its need for version management tools. In the most general sense,

the issues of version management in this related field are similar to the ones in soft-

ware design [Katz, 1990]. In each case, the changes in an object need to be tracked,

and controlled. Also, many of these changes must be addressed in a timely and ap-

propriate fashion by the affected development tearn(s). On the other hand, the arti-

facts produced by a chip designer, a programmer and a software designer are signifi-

cantly different. Thus, one should expect that there will always be the need for

domain-specific tools.

Although much has been written about version management tools and policies

needed during the development and maintenance of source code and chip designs, lit-

tIe has been written about version management for software designs.

1.2 Integrated Software DesignEnvironments

Software projects are growing in size and complexity. As the number of designers

on a project grows, the need for tools to assist in tracking, controlling and communi-

cating change also grows.

Version management of software designs is as imponant as the version manage-

ment of source code or customer documentation for a variety of reasons. First, as at-

1M UNIX is a trademark of AT&T Bell Laboratories, Princeton, New Jersey.

-- ._--

4

tempts are made to increase software engineering productivity through the use

incremental development, each incremental change is expected to be as error free as

possible. In addition, since this technique is characterized by a great many small

changes there is an increased need for communication between the affected engi-

neers. Second, as anempts are made to increase productivity through software re-

use, that software's design becomes more imponant. If a module is to be used effec-

tively, each new project or engineer using the module will need an up-to-date and

easy to understand design for that module. And, when changes are made in the de-

sign and thus the module being reused, the effect of those changes can be widespread.

We are now seeing sitUations where projects overlap so much that the design of

the software being used by one project team is simultaneously being modified by an-

other project team. This need for concurrent read and write access to shared software

inttoduces new complexity into the managementof softwaredesigns and source mod-

ules. Typically, these teams are trying to cooperate with each other, but often they

are forced into competing for shared resources. It has been assened, that this compe-

tition can be reduced through the use of bener version management tools [Berliner,

1990].

The tools for version management need to be flexible and powerful because they

are needed by a wide variety of software design projects. Each project has somewhat

different requirements. Tools for version management and tracking must meet both

domain-dependent and domain-independent requirements of these projects.

1.3 Outline of Study

This thesis repons on an investigation into the requirements for version manage-

memo To aid this investigation VS, an example of a version management system,

5

was developed for use with Large-Grain Data Flow 2 diagrams. This study shows

that such a tool can be constructedand could be used for version management. This

work indicates that the use of version management tools of this type at the design

stagecould helpincreasetheproductivityof sofrwaredesign teams.

Chapter 2 examines the current approaches to version management and struCtured

design/structured analysis. Chapter 3 presents the implementation of the version

management tool used for this research. Chapter 4 shows examples of how this tOol

could be used in a large-scale software design effort. Chapter 5 gives a critique of the

accomplishments of this research and an assessment of how this research could fit in

with future investigations of software engineering.

6

2. Current Approaches

While most research on improvingproductivity in software engineering has treated

the software design process and version management as distinct, this investigator

asserts that studying the overlap will help us in funher improving productivity. Re-

search on version managementof source code has shown that it can contribute to im-

proved productivity during the code development and maintenance phases of a

project. It is thus expected that techniques of version management for software de-

signs could lead similar or greater improvements, if they were tailored for use in the

design process. These tools could assist in communication, control and maintenance.

2.1 Version Management

The following review of version management has been divided into three parts:

· a review of several text-based version management tools

· an examination of several configuration management tools

· a look at several tools for version management used within the computer-aid-

ed design field

This introduction to version management serves as the basis for the development

of VS. It also provides the basis for the analysis of the example scenarios used in

this research.

2.1.1 Text-based Version Management Tools

A significant early version management tool was the "Source eode Control Sys-

tern (Secs)" [Rochkind, 1975]. This system was developed to:

· reduce the amount of space needed to store multiple versions of a single

7

piece of source code

. ensure fixes that need to be applied to other versions are propagated properly

· makechangesreadilyidentifiable

. provide for the cross reference of changes across modules

This tool provided these features by:

· storing all the changes to a module in a single file

. giving programmers the means to protect source modules from updates

. implementing an easy method for identifying versions

. storing who made the change, what the change was, when the change was

made, and why the change was made

This work inn-oducedthe concept of softwarechange "deltas." In sees, each time

a module is changed, the difference between the new version and the old version is

stored, see Figure 2-1.

1.1

Figure 2-1. sees Deltas.

sees's protection scheme allowed programmers to set long term locks on panicu-

lar deltas; thereby, reduce the risk of someone damaging work on a delta that was in

progress. This scheme was expected to be supplemented by more sophisticated pro-

tection offered by the operating system and project teams.

SCCS proved exn-emelyuseful to experiencedprogrammers, who needed to identi-

fy how changes inn-oduced problems into the software systems that they were devel-

oping or maintaining. These facilities for documenting and identifying changes have

made SCCS very popular.

A second notable development in version management occun-ed with the develop-

ment of the "Revision Control System (RCS)" [Tichy, 1982]. The goals for RCS are

very similar to those for SCCS. The improvements noted in RCS have proved them-

selves over the years that this system has been in use.

RCS inn-oduced separate, reverse deltas to improve its rettieval performance. It

featured increased module protection by preventing two or more persons from putting

their changes on the same revision. RCS also provided a mechanism for branching of

deltas, see Figure 2-2. This branching mechanism has helped multiple users and mul-

tiple projects work in parallel using shared modules.

This branching mechanism allowed the development of revision n-ees. The main

branch, i.e., those revisions numbered 1.1, 1.2, ..., 2.1, 2.2, etc., were called the trunk.

The highest numbered revision on the trunk, i.e. the most current revision, is referred

to as the top-oj-trunk. Each branch from the trunk is forked from a panicular revision.

Thus, the numbering scheme for a branch includes the revision from which it emanat-

ed, the branch number, and its location on the branch. For instance, the revision

1.1.1.2 emanated from the revision 1.1, is the first branch from that revision, and is the

second revision on this particular branch.

RCS, like SCCS, provides a long term locking mechanism to prevent two or more

users from placing competing changes on a revision. It is expected that each user,

who will be making changes to a conn-oiledmodule, will want to set a lock on the revi-

9

top-of-rrunk top-of-branch

1.3

Figure 2-2. RCS Deltas with Two Branches.

sion at the time of check out, make modifications and then release the lock at the time

of check in. In RCS, only one user at a time can own the lock on a revision. Thus,

while the revision is locked, it is under exclusive control of the locker.

This locking mechanism provides users with a means to enforce a first-to-check-

out, first-to-check-in policy. This mechanism helps ensure that each revision will be

based on the revisions that preceded it, because if the user is required to acquire the

lock at check out and release the lock at check in, all changeswill be based on the pre-

ceding ones.

This mechanism has proved very useful for projects that have users that tend to

step on one and another's changes, or that have users who rarely need concurrent

update access to shared modules. This mechanism essentially assures that changes

10

done by each engineer are done with knowledge of all the preceding work. With this

mechanism, branching and merging of branches are rarely needed because each user

is working serially. The existence of a lock can also serve as a flag to others that

changes are to be expected.

RCS also provided a command, res -I, which allows a user to place a lock on a revi-

sion. Thus, a person could do a check out, make changes, place a lock and then do a

check in. This means that even though a file is locked at the time of check out, the us-

er can proceed but then it is up to the user to ensure that his or her changes do not un-

knowingly "undo" previous work. In this case and when merging changes from

branches, checking the changes for errors and conflicts can sometimes be a non-trivial

task; because, the changes may be very subtle causing subtle execution errors, or the

size of the change may be very large, in which case it can be difficult to separate the

important changes from the chaff.

2.1.2 Configuration Management Tools

Recently version management has been studied within the auspice of configuration

management. Configuration management is concerned with system construction, ver-

sion management and the management of derived objects and releases. Systems,

such as Cosmos, DSEE and NSE, have been developed to provide version manage-

ment mechanisms within an integrated software development environment.

Apollo Computer's "Domain Software Engineering Environment (DSEE)"

{Leblang, 1984] was one of the first systems to provide this integration. Leblang

pointed out that in large complex development projects that may span multiple

projects, users need to be able to isolate themselves from some changes and at the

same time share as many modules as possible [Leblang, 1987]. DSEE also gave us-

II

ers the ability to specify who is to be notified when changes are made. This becomes

very useful when project team members need to know about updates that affect them

at the time they are made. This timely communication of changes can reduce the time

wasted in working with an out-of-date module. In DSEE, the change in the local

copy of the system could be made automatically by a cooperating program or at the

discretion of the affected user.

The work on "Cosmos," an integrated software development environment

[Walpole, 1988], [Walpole, 1989], addressed the integration of version management

tools with concurrency control. Cosmos provided a mechanism for long tenn transac-

tions based on cooperation rather than competition. "Whereas, DSEE provided dis-

tributed, concurrent read access to shared modules, Cosmos also provided a mecha-

nism which gave multiple users concUITentupdate access to shared modules. Using

an immutable object model, Cosmos was able to guarantee the consistency of these

long term transactions. Immutability was achieved by leaving old versions un-

touched and always creating a new version when a change was made. This process

was labeled "transfonnation."

The use of immutable objects gave Cosmos two significant advantages over previ-

ous systems. First, Cosmos was eminently suitable for supporting multiple users

and versions because of the concurrency control provided by the transaction mecha-

nism. Second, the problem of consistencybetween related objects was reduced to a

problem of naming groups of consistent immutableversions of objects. A configura-

tion object is provided by Cosmos to name groups of objects which define consistent

domains [Walpole, 1989].

Like each of these previous systems, Sun Microsystems' "Network Software En-

12

vironment (NSE)" provided a set of network-based version management commands.

Thus modules could reside anywhere in the available workspace. A user of NSE

works with design objects, typically files, and a configurationwhich is a collection of

one version each of the configuration's design objects. Object management in NSE

is based on a copy-modify-mergeparadigm. Locks are not used because modifica-

tions are mergedontothe controlledoriginalin a serialfashion.

A large number of other systems have been proposed and implemented in the past

few years. Systems, such as CVS II [Berliner, 1990], and Software BackPlane™

[Black, 1989], have implemented configuration management and version management

features similar to the ones mentioned above.

2.1.3 Version Management Tools for Computer-Aided Design

The field of computer-aided design (CAD) has shown considerable interest in ver-

sion management of electrical and mechanical desi"gns. Like software engineers,

these designers must manage large, complex, interrelated objects that change over

time [Katz, 1990]. Although the artifacts being manipulated by each of these users

may be unique, their version management systems must meet similar requirements

for storing,retrievingandcommunicatingchanges.

Many version management schema for CAD artifacts have some notion of a work-

space, Le., "a named repository for design objects" [Katz, 1990]. A workspace can

be either private, shared or archival. A private workspacebelongs to an individual de-

signer. A shared workspace is used by group of designersworking in parallel. An ar-

chival workspaceis used for storingand retrievingversionsfrompublic stores.

TMSoftwareBackPlane is a ttademark of Athenon Technology,Sunnyvale,California.

13

"

Change notification is also important to large CAD projects. ORION [Banerjee,

1987], a prototype object-orienteddatabase system, was developed at the Microelec-

tronies and Computer TechnologyCorporation. ORION contains an change notifica-

tion mechanism that has been integrated with the object-oriented database [Chou,

1989].

ORION incorporates both message-based and flag-based techniques for change

notification. When the flag-based approach is used, a data structure is updated and

the affected users are not notified of changes until they access the object. With the

message-based approach, users are notified of changes as they occur. With this later

approach the users can further select either immediate or deferred notification. Final-

ly, with this approach the notification can be based on the type of change made.

Version Server developed at the University of California, Berkeley provides ver-

sion management services for the elecnical CAD designs [Chang, 1989]. It orga-

nized design elemenrs into collections of component hierarchies and version histories

and provided for equivalences. This system's interface was quite similar to that of

NSE but did not provide as comprehensive an environment as DSEE or NSE. It did

however, provide facilities to handle a much wider range of data types than these oth-

er systems.

Many others have been working on the problems of configurationand version man-

agement of computer-aideddesign artifacts. The recent monograph by Randy Katz

presents a survey of the version models developed for the computer-aided design

field [Katz, 1990].

- - - -- ----..

14

2.2 Motivation for Management of the Design Process

Structured Design and Structured Analysis techniques have been advocated as a

method for managingthe sofrv.!aredesign process since the middle 1970's. Early pro-

ponents of softWareengineering,.such as Victor Basili, Barry Boehm, Edward Your-

don, have generally agreed that these techniquescan help increase the productivity of

software designers [Basili, 1978], [Boehm, 1976], [Yourdon, 1979], [Zelkowitz,

1979].

An early structured design tool PSL/PSA (Problem Statement Language/Problern

Statement Analyzer) [Teichroew, 1977] proved to be effective for formalizing system

requirements of large business-oriented applications. Users experiences with this

system have shown that the system helped force discipline on the designer [Reifer,

1978]. In addition, it assisted in the identification of errors in requirements specifica.-

nons.

Whereas PSL/PSA was primarily textual, SADTTM(Structured Analysis and De-

sign Technique) is a manual, hierarchical, graphical system for software design

[Ross, 1977]. Users of SADT have found it beneficial, allowing the end-user (i.e.,

someone without a formal software background) to evaluate designs [Combe lie,

1978]. This evaluation can help decrease the cost of software and increase overall

quality. Often the diagrams proved more useful than the accompanying prose.

The use of Data Flow Diagrams (DFDs) to reduce the complexityof the software

design effon has been advocated by many over the years [DeMarco, 1978], [Page-

Jones, 1980], [Babb, 1982]. The early research on DFDs [Babb, 1982], [Babb, 1984]

has shown that they could reduce the design errors made and help in producing more

SADT is a trademark of Soffech, Inc., Waltham,Massachusens.

15

efficient programs. This systems approach to design has now become widely used

throughoutthe softwareengineeringfield.

Funher formalization of the Data Flow paradigm has been introduced by David Di-

Nucci and Roben Babb as Large-Grain Data Flow (LGDF) [DiNucci, 1988] and

LGDF2 [DiNucci, 1990]. Large-GrainData Flow 2 (LDGF2) is a declarative graph-

ical language in which a program or software system is represented as an oriented

graph. Processes are represented as circles. Dataswitches are represented as veni-

cal rectangles selectively connected by pairwise arcs. The dataswitch contains the

data which is cross referenced to the data dictionary associated with the design and

the read/write penrussions for that dataswitch. An example network is shown in Fig-

ure 2-3.

LGDF2's language syntax is based on the F-Net model of Portable Parallel Soft-

ware Engineering [DiNucd, 1990]. Each F-Net. contains a set of variablesl

("dataswitches"), a set of operations ("processes") and set of instructions ("process

calls") which reference both operations and variables.

An F-Net variable contains both the imperative-language variable and the fmite-

state machine. Thus each variable possesses both its data state and itS control

state. A data state is equivalent to the data value in a traditional programming lan-

guage. A control state is equivalent to the current state of an element within a finite-

stare machine.

An F-Net operation contains a signature and an implementation. The signature

provides access to the variables connected to the process. It also identifies whether

the operation will use each variable for reading, writing, both reading and writing, or

1 Variables are often referred to as datapaths or switches.

Process Arc Dataswitch

16

Figure 2-3. LGDF2 Network Example with Assumed Transitions.

neither reading nor writing. Finally, the signature contains the allowed transitions for

each variable.

Each F-Net instruction provides a mechanism for instantiating an operation, by

binding each of its arguments to an F-Net variable and each transition to that vari-

able. The instructions thus control when an operation can be invoked by naming the

control state of each variable to which it arguments are bound.

The research on LGDF has shown it to greatly simplifydebugging complex parallel

programs [DiNucci, 1988]. This new formalism shows much promise for improving

productivityin the productionof parallelprocessingsoftWareand algorithms.

2.3 Incremental Development and Software Reuse

The promotion and use of incremental development [Boehm, 1981] of large com-

17

plex software systems places even more burdens on the design phase of projects.

Developing software in increments forces designers to scrutinize each module at ev-

ery step during its development.With this approach, each increment of software that

is designed and implemented must fit together with software that will be designed

and implemented in the future. Because most engineers are better at modifying that

which is already designed than they are at predicting the future, it is essential that

the design team be able to modify designs and modules quickly and painlessly as pos-

sible.

"Advancemanship" techniques of software development [Boehm, 1981] require de-

signers and programmers to specify the software scaffolding that is needed for any

large project. This scaffolding can include "dummy design elements" and "dummy

modules" which will be completed later in the project. These incomplete designs and

" modules are used until there is a clear and presen~need for more complete and thor-

oughly analyzed designs and modules. This paradigmforces the project team to track

and conn-ol the versions of the objects being used. Without version management,

modifications may be lost or modules may be used which are our-of-date.

Today, there is a concentrated effon within the software engineering community to

increase the amount of software reuse [Boehm, 1987], [Boehm, 1988]. A module

that can be shared across projects is a module that increases the productivity of the

second through nth project using that module. On the other hand, if a bug is discov-

ered in a shared module, its effect also goes across projects thereby having the oppo-

site effect. This software reuse is funher complicated by the need to modify modules

as the requirements for those modules change. As modules change, some projects

will need the changes, and some projects are going to want to continue to use their

18

own versIon. Thus, the design.of that particularversion is as imponant as the design

of the most currentversionor any otherversionon the changehierarchy.

19

3. Implementation

The work reported in this thesis is based on the version control tool called RCS

[TIChY21982]. RCS is available on many implementations of the UNlX Operating

System. VS, as a prototype version managementtool, extends RCS to handle the is-

sues involved with large-scale, multi-person, multi-project, network-based software

development. VS provides both domain-independent and domain-dependent facilities

for version storage, control and tracking.

This implementation of VS was used to study two questions. First, can a domain-

specific tool for distributed, optimistic version management be built on top of a readily

available version control tool? Second, will the use of such a tool improve productivity

in software engineering?

3.1 Overview of VS: An Optimistic Version Management System

VS is a user program v.TIttenin the C programming language that runs under

UNIX. It uses the UNIX system call interface mechanism to issue the RCS com-

mands. For instance, VS can issue the RCS check in (ci) and check out (co) com-

mands. VS uses the mechanismsprovided by RCS for storing and retrieving text, log-

ging changes, identifying versions and controlling access to files under version

management. It also extends the basic RCS capabilities. These extensions are de-

scribed in detail below.

VS uses an interface! similar to RCS except that the interface was formalized to

allow it to be used by either end-users or by other programs using the same protocol.

1 For this prototype a simplified user interface protocol was used. This protocol
w:asadopted to make the development of VS easier.

20

The interface protocol consists of either workspace commands or version manage-

ment commands. The User Manual for VS is provided in Appendix C. A UNIX man

pagefor VS is givenin AppendixD.

The r~mainderof this overview o~ VS is divided into three parts. First, the work-

space commands are presented. Second, an overview of the version management

commands is given. Third, VS's output protocol is presented.

3.1.1 Workspace Commands

The workspace commands provide a limited workspace control mechanism which

allows the user to query and connect to the available workspaces. The workspace

commands are given in Table 3-1.

Command Usage

PROJECT? Query the available workspaces

PROJECT: name Connect to a workspace

GAMEOVER End the program

Table 3-1. The Workspace Commands.

The PROJECT? command provides a mechanism to query the available workspac-

es. The GAMEOVERcommand is used to exit from the VS program. The PROJECT:

command takes the single argument, Le., the name of the workspace one wishes to

work in. If the workspaceexists, VS places the user in that workspace. If the work-

space does not exist, VS can create the workspace and then place the user in it.

The PROJECT:commandis implementedusing the UNIX system call chdir. In

21

this prototype, a workspace is a. UNIX directory. This simplified workspace mecha-

nism gives VS the ability to connect to either local or remote file systems.

The workspace commands were given a fixed protocol. Each identifier is exactly

eight characterslongto simplifyparsing.The argumentfor the PROJECT:command

follows the identifier and is expected to start with the argument separator, the space

character (ASCII SP), and end with the command separator, a carriage return (ASCII

CR). The other commands are likewise terminated with a carriage return. Once VS

receives the command separator, it will parse the input line and either repon a pars-

ing error or attempt to execute the command given.

3.1.2 VersionManagementCommands

The version management commands provide access to the entire functionality of

RCS with the exception of the rcs command. The version commands implemented

are presented in Table 3-2.

Usaqe

Store a new version

Retrieve a version

Merge a branch on to top of trunk

End the program

~ompare two versions

Query the controlled files

Merge differences on to a file

Query the status of a file

Return to the previous workspace

Table 3-2. The Version ManagementCommands.

Command

CHECK IN- arguments

CHECKOUT arguments

DFDMERGE arguments

GAMEOVER

RCSDIFF- arguments

RCSLIST-

RCSMERGE arguments

SENDRLOG arguments

ZZZZZZZZ

22

The version managementcommandswere given a fixed protocol. Each identifier is

exactly eight characters long to simplify parsing. The arguments for a command are

expected to start with the argument separator, the space character (ASCII SP), and

end with the command separator, a carriage return (ASCII CR). Once YS receives

the command separator, it will parse the input line' and either report a parsing eITor or

attempt to execute the command input.

The version management commands extend the capabilities of RCS in several sig-

nificant ways. Two of the commands, RCSLIST- and DFDMERGEare completely

new with YS. The RCSLIST- command lists all of the files in this workspace that

are under version management. The DFDMERGEcommand will be explained in detail

later in this section. The improvements CHECKIN- and CHECKOUT offer over co and

ei from RCS are presented in detail later in this section. The GAMEOVERcommand is

both a version management command and a workspace command.

The other commands RCSDIFF-, RCSMERGE,and SENDRLOGare identical in func-

tionality and interface to the corresponding RCS commands resdiff, resmerge,

and rlog. They provide access to the normal functionality of RCS without impacting

the extensions to RCS made by VS. These YS commands also further extend the

equivalent RCS commands by providing for a simplified input and output protocol. The

purpose of this simplification is to make it easier for the YS commands to be issued

and understood by other programs thus extending the functionality of YS.

In order to maintain the immutability of controlled flies, the RCS command res

was not implemented. In particular, the - 0 option of the rcs command allows the user

to delete particular revisions. With RCS, this action is not recorded and can not be

undone. Since, a deletion could be detrimentalto the operationof VS, this functional-

23

ity is not supported. Also, since the functionality provided with the res command

was not needed by this study, the entire command was not implemented.

3.1.3 Output from VS

A simplified output protocol consisting of a set of output tokens and strings is used

in this prototype. These tokens are shown in Table 3-3.

Output Usaqe

VPROMPT> VS is expecting an input

VMESSAGE string An informative message follows

VSERROR- string An error message follows

zzzzzzzz There are no more VMESSAGE or

VSERROR- strings

Table 3-3. The VS Output Tokens.

This simplified protocol provides the user and programmatic interface for VS. The

VPROMPT> indicates that VS is awaiting input. This input could then come from ei-

ther a user or a program. The VME SSAGE response by VS indicates that the following

text, up until the ZZZZZZZZ, is an informational message or unintexpreted text from

the RCS commands or other UNIX system calls. The VSERRORresponse by VS indi-

cates that the following text up until the ZZZZZZZZis an error message and that the

last command has failed.

3.2 ExtensionofRCSCheckOut

The co command in RCS retrieves a revision from a RCS file and places it in a

working file. In currently available implementationsof RCS, there is no mechanism

24

provided to record check outs. Thus, there is no means to inquire about who is using

or who has used a particular version of a RCS file. The RCS locking mechanism will

indicate whether a panicular version is locked, and by whom if it is locked. It howev-

er does not indicate when the lock was applied.

The CHECKOUTcommand in VS provides the currently available options of co

along with a mechanism to record check out transactions. This command is used to

retrieve revisions from a RCS file. It also logs the successful CHECKOUTcommands

issued.

This prototype has limited the CHECKOUTtransaction to a simple linear sequence

of actions on a single file. The actions taken are: lock the status file, issue the RCS

co command, wait for the completion of the command, if the co command was suc-

cessful, record the check out and finally, always unlock the status file.

The record of check outs is stored in a status fIle. Files with the suffix -vlog In

the RCS directory are the depository of VS status history. For instance, a working

file foo. dfd will have a RCS file foo. dfd, v and a VS status fIle foo. dfd-vlog

accompanying it, if it is under VS control. Under RCS, the versions of the controlled

file are placed in the ,v fIle. In this implementation the RCS directory or link is

assumed to be directly below the current working directory, i.e. the workspace, as set

by the PROJECT: command.

The VS status file contains a record of each successful check out. The record of the

check out contains the user name, the date, the time, and the version number with the

indicator that this was a check out transaction. The status file is considered immuta-

ble and is updated via a transformation mechanism. This transformation is done by

25

VS appending the latest record on the end of the file. No records in this file are ever

intentionally deleted by VS.

To ensure that the check out transaction is atomic and no records are lost because

of concurrent1 writes to a status file, the status file is first locked, updated, and then

unlocked. VS uses the UNIX system call flock to implement this single exclusive

'lock mechanism. In RCS, no short term locking was implemented because the as-

sumptionwas that the long term strict locking mechanismwould be sufficient for con-

currencycontrol.

3.3 Extension of RCS Check In

The RCS ci command stores new revisions into the RCS file. In the implementa-

tions now available, when locking is set to "strict" (which is recommended [Tichy,

1982]), the user must first lock the tip of an existing branch before checking in the

new version. This requirement for long term locks has been shown to lead to conflicts

when multiple users have need for modifying shared resources [Walpole, 1988].

The VS CHECKIN- command provides the functionality of ci along with a mecha-

nism to provide automatic branching rather than requiring "strict" locking. During a

check in, VS looks at the status file for any intervening check in between the version

to be checked in and the current top of trunk. If no intervening version is found, VS

can append this version onto the top of trunk. For instance, if the current top of trunk

is version 1.1 and version 1.1 is the current working version then this working file can

be checked in as version 1.2. On the other hand, if an intervening version is found

1 More powerful concurrency control mechanisms have been suggested and imple-
mented by other researchers [Miller, 1989], [Walpole, 1989].

26

then VS will automatically create a new branch from the version of the working file.

For instance, if the current top of trunk is version 1.2 and the working file is version

1.1 then VS will create a version 1.1.1.1, as shown in Figure 3-1. This branch num-

bering scheme is explained in detail in Chapter 2.

1.2

Figure 3-1. RCS Tree After Automatic Branching.

This automatic branching mechanism allows users to adopt a fIrst-come, first-

seIVed check in policy as opposed the first-to-check-out, flrst-to-check-inpolicy en-

couraged by RCS. Thus, with VS, multipleusers are allowed to have concurrentwrite

access to shared modules since concurrent modifIcationscan proceed because version

serialization and versionconsistencyare maintainedwithoutneedfor locking.

Automatic branching ensures that each version is consistent to the version it was

created from [Walpole, 1989]. In the above example, both versions 1.2 and 1.1.1.1

were based on version 1.1. These versions are then parallel but consistent with re-

spect to version 1.1. Also, the serialization of the changes is also maintained since

the merging would necessarily occur after the intervening check in.

Using the above example, the changes from version 1.1 to version 1.1.1.1 could be

merged on to the project's branch, Le., the top-of-trunk. On the other hand, if the

27

branch 1.1.1 were to be used as the project branch, then the changes from version 1.1

to version 1.2 could be merged on top of version 1.1.1.1. In either case, the task of

merging is done at the discretion of the user.

This is an optimistic mechanism for three reasons. First, it assumes that the

merging required can be completed satisfactorily. In cases, where it is expected that

the merging will not be possible, the user can elect to use the flrst-to-check-out,

flrst-to-check-in mechanism provided with RCS. On the other hand, often the merge

can be completed quite easily either by hand or with help from tools, such as

DFDMERGE implementedas pan of VS. Second, conflictsduring merging are expected

to be rare [Berliner, 1990]. In most cases, the versions created are going to be the

result of parallel, non-overlappingdevelopment. For instance, two users may want to

change the me foo. c but it less likely that they both will want to modify the same el-

ement of that file. Finally, the forced branching is. expected to rarely be needed

[Berliner, 1990]. In cases where work is being done serially, no overlapping updates

would be noted and thus forced branching would not be used. In addition, locking

would not be needed since no concurrent update conflicts would be noted.

It is believed that this optimistic check in policy will encourage more parallel devel-

opment, and thereby increase productivityfor a variety of reasons. First, users will

not be forced to wait for any locks to be released before checking in their changes.

This policy should also encourage users to make many, small changes which is en-

couraged by the incremental development methodologies [Boehm, 1981]. Finally,

locks will not have to be broken, (releasedby the super-user). With RCS, a user can

keep a version locked indefinitely and thus a situation can arise which requires that

the lock be released arbittarily. This situation can never arise with the use of this op-

28

timistic mechanism.

Since VS has a record of each successfulcheck out, a variety of change notification

policies based who is currently accessing a particular version could be enforced auto-

matically. In this prototype, a mechanism is established th3:tautomatically notifies

the user at the time of check in of other users who have check outs logged against the

version that was used as the basis for the new version. It is then up to the user to

notify the other users that the modification has been completed.

More sophisticated change notifications mechanisms could be built on top of VS

using policy enforcing systems such as FOREST [Garlan, 1990]. For instance, one

could use FOREST to monitor the output from VS, and then have FOREST automati-

cally notify users of changes based on the policy established. Systems, such as ORI-

ON [Chou, 1989], have provided other change notification mechanisms, such as

restricting the mail messages to the persons on the notification list for each version.

Like the CHECKOUTcommand, the status file is updated upon successful conc1u-

sion of every check in. The same locking and transformation mechanisms developed

for CHECKOUTare used by CHECKIN-.

3.4 Extension of RCS Merge

The RCS commands, rcsmerge and co -j, provide a means for incorporating

changes between two versions into a third version. In the case of rcsmerge, the

modificationis done on the working file specified. Whereas, with co - j, a working

file is created as result of the command. In both cases, the modificationsare done au-

tomatically. It is then up to the user to decide how to proceed once the working file

has been updatedor created.

29

A typical command sequence for co - j would be:

co -11.3 -jl.2.:1.2.1.1 foo.dfd

This would cause the version 1.3 to be locked and the changes from version 1.2 to

version 1.2.1.1 would be applied to version 1.3. The working file could .then be exam-

ined by the user. The user then has the option of accepting, rejecting or modifying the

working file.

In current versions of RCS, this examinationmust be completed by hand. Typical-

ly, a user would do a comparisonof version 1.3 to the cun-entworking me to see if the

modifications meet the requirementsand policiesof the project being worked on. This

examination can be extremely labor intensive. It can also be error prone; especially,

when the examination requires a human to check a large number of subtle differences

that often are result of the merge. In addition, this examinationoften takes an expert

who can distinguish between changes that are cosmetic and those that could signifi-

canny impact the project.

In VS, a new command DFDMERGEhas been implemented which provides assis-

tance in this merging process. The DFDMERGEcommand executes a RCS co - j

command and checks the differences between the working file and the cun-ent top-of-

trunk version. This implementation provides a mechanism to enforce a policy on

which changes to accept, which to reject and which to refer to human authority. This

mechanism is provided in the form of a decision tree. The decision to accept, or reject

eacb portion of a change is based on the hard-coded checking done by VS.

In the prototype implementation, the following policy is enforced:

· Accept all changes made to comments within the LGDF2 file

30

· Reject additions that leave a process with no connected dataswitches

· Reject additions that leave an arc without both a valid process and a valid

dataswitch

· Reject additions that leave a switch with no arcs connected ~oit

- Notify the user if any change is not covered by an existing decision

Although this mechanism is implemented within VS, it is easily modifiable based

on the needs of the end user. This could be done by editing the decision tree portion

of VS and recompiling VS. Also, a more powerful and flexible mechanism could be de-

veloped on top of VS using a policy enforcing system such as FOREST [Garlan,

1990].

Once the automated merge, is completed, the user then has the option of checking

the: modifications in, modifying the changes, or rejecting the changes, based on the in-

formational messages that are returned. The user could also have another program

monitoring the output to increase the amount of automation in this process.

In the current implementation, the rev option to the DFDMERGE command is a

branch version number such as 1.2.1.3. VS uses the version number given to deter-

mine the version number of the trunk version from which the version was forked and

checks the differences between the version given and the trunk version. The changes

are then applied to the top of the trunk for the named file provided. This should be

modifiable to provide more flexibility by using the same techniques of co - j which

lets the user specify all three versions.

The generation of differences is done by the rcsdiff command and stored in a

temporary file for parsing by the automateddecision tree mechanism in VS. The ac-

31

cepted changes are left on the top of trunk version of the working file. The changes

that are rejected are placed in an ASCII file using a fonnat compatible with the UNIX

patch program.

The choice of the panicular reject decisions in VS show its ability to recognize er-

ror conditions specific to a software design method, in this case Large-Grain Data

Flow 2. The accepting comments decision shows the ability of VS to differentiate the

comments from other r:ypesof data. Finally, the "notify" decision shows the ability of

VS to recognize changes that need to be handled by a human.

3.5 The LGDF2 File

The LGDF2 file, i.e., a controlled module, is an ASCn fIle. It contains the repre-

sentation of a LGDF2 diagram which was created either by a design aid, such as a di-

agram editor, or by a human designer. The text in the file contains the LGDF2

representation data and the RCS identification markers. VS requires the markers

$Header:$, $Revision:$, and $Source: $ for internal use. The use of the ad-

ditional markers is recommended for design maintenance.

The choice of an ASCn file was made for two reasons:

1) An ASCII file could be edited by a human designer and shared among a variety

of different computers and design tools.

2) the ASCII file could be easily stored and manipulated by RCS.

There are three classes of LGDF2 data representation tokens in the file: key-

words, commentsand strings. The keywordsare shownin Table 3-4.

32

Table 3-4. The LGDF2 Diagram Keywords.

Token Meaning/Usage

CCCCCCCC End of the LGDF2 diagram data

CENTRXY- argument Center XY position

DNUMBER- argument Dataswitch number

ENDXY--- argument End XY position

HEIGHT-- argument Height of a rectangle

LINE---- Arc type specifier

LPNUMBR- argument PNUMBER for a connected arc

LSNUMBR- argument SNUMBER for a connected switch

NAMESTR- argument Name string

NODE---- argument Diagram node type specifier

PERMISS- argument The read/write permission

PNUMBER- argument Process number

PROCESS- Process type specifier

RADIUS-- argument Radius of the process

SNUMBER- argument Dataswitch number

STARTXY- argument Start XY position

SWITCH-- Dataswitch type specifier

TITLE--- argument Title of the diagram

ULEFTXY- argument Upper left XY position

WIDTH--- argument Width of a rectangle

ZZZZZZZZ End of the LGDF2 diagram file

33

The keywords are expected to. be at the beginning of a line of text and some can be

followed by a string. The keywordsare all eight characterswide. A string is separat-

ed from a keyword by one or more spaces and terminated with a carriage return

(ASCII CR). Comments start with a # on the beginningof a line and are tenninated

with a carriage return(ASCIICR).

The LGDF2 data is separated from the RCS markers by the keyword CCCCCCCC.

The keyword ZZZZZZZZindicates the end of both the LGDF2 and RCS markers. The

keywords NODE , LINE , PROCESS- and SWITCH-- are a kind of type

specifier. Each type specifier contains a series of keywords, strings and comments.

An example LGDF2 me is shown in Figure 3-2. The fonnat for each type specifier is

presented in the user's manual in Appendix C.

This implementation of the LGDF2 diagram as an ASCII file allowed VS to be de-

veloped without the need for access to a design editor for creating LGDF2 diagram

files. It also provided VS the advantage of being able to use the RCS tools and the

UNIX tool patch. Finally, parsing of the file was simplified by the use of the fixed

format for the LGDF2 data.

NODE---
TITLE--- Test Program
ULEMXY- 100 100
i
PROCESS-
CENTRXY- 180 180
RADIUS-- 50
NAME.3TR-
ULEF'l'XY-
PNUMBER-
ULEFTXY-
*
LINE----
DtRIMBER- 1.1

STARTXY- 230 180

LPNUMBR- 1.1
ULEnXY- 240 190

PERMISS- AL

ENDXY--- 250 180

LSNUMBR- 1. 1

PERMISS- AR
f
SWITCH--
ULEFTXY -
WIDTH---
HEIGHT--
TITLE---
ULEFTXY-
SNUMBER-
ULEFTXY -
CCCCCCCC

$Author: adamsc $
$Date: 90/11/04 16:08:01 $

$Header: dfdnew,v 1.1 90/11/04 16:08:01 adamsc Exp $
$Locker: $

$Loq: dfdnew,v $
$Source: /usr/test/OGC/THESIS/src/PROJECT.dfdone/RCS/dfdnew,v $
$State: Exp $
$RCSfile:
$Symbo1icNames:
$CheckoutLog:
$AccessList:
ZZZZZZZZ

Process
130 170
1.1
190 190

f 1 Process

1.1

Arc

250 150
100
200
Switch f 1

260 170
1.1
290 390

Switch
#1

Dataswitch

or variable
1.1

$
$
$
$

Figure 3-2. An Example LGDF2 File.

34

35

4. Example VS Usage Scenarios

The current VS prototype can be used as a general-purpose tool for version man-

agement of shared, network-based software files. It has features which provide both

domain-independent version control built on top of RCS, .and specific support for

Large-Grain Data Flow 2 diagrams. Experience with VS in this design development

environment has led to some general recommendations for its application to larger de-

signs and other environments. The primary motivation for studying the use of this

version management tool is to determine the applicability of this class of tool to the

larger problem of version management of software design development. The use of

LGDF2 is particularly suited for this analysis since it is relatively simple, but con-

tains elements common to many other software design techniques.

In this example, the particular elements of the design are made up from the ele-

ments of the VS program itself. The choice of this example provided a means for ex-

amining the interplay between the version management system and the design

process when using a top-down structured design methodology. In order to demon-

strate the effects of multiple designers using this particular tool concurrently, several

of the examples use fictitious users "rest" and "adamsc". This allowed the testing

and evaluation of VS in more depth even though there was only one designer for this

implementation of VS.

36

4.1 The Structureof VS

VS began its life in the way advocated by most top-down structured methodolo-

gies as a single process with no hierarchy. This single process LGDF2 diagram is

shown in Figure 4-1. Then as the designer's knowledge of the requirements in-

creased and the development progressed, arcs, dataswitches and processes were

added and modified. The LGDF2 diagram for the current version of the VS prototype

is shown in Figure 4-2. .

stdin stdout

Figure 4-1. The Single Process LGDF2 Diagram.

37

VS Top Level Diagram string 1

messages
to the user

user
input

design

f11r

Figure 4-2. The Top Level LGDF2 Diagram for VS.

38

The example interactions presented in this chapter use the following fonnat:

· The column on the left shows the input and output from VS.

· The column on the right provides comments about the interaction.

In the left-hand column, all output from VS is shown in bold-face, all output from

the UNIX operating system is shown in italics, and user or program input is shown in

nonnal type.

4.2 Sample Check Out Session

A typical VS check out transaction would take place as shown below.

script starred on Sun Oct 1413: 18 : 56

1990

script is a program in UNIX to record

everything printed on the tenninal.

This is a program to print the% who ami

current user name.

adamsc

%vs This is the name of the program.

VMESSAGE vs: started This is a informational message

VPROMPT> PROJECT?

indicating VS has staned successfully.

The VPROMPT indicates VS awaiting

VMESSAGE vs: dfdone input. The user has asked VS to list

VMESSAGE vs: dfdtwo the available workspaces. The

response is two informational

messages that workspaces dfdone and

dfdtwo are available.

zzzzzzzz The ZZ:ZZ:ZZZ:Zindicates the end

39

VPROMPT> PROJECT: dfdone

of the informational messages.

The user has asked VS to connect to

the project workspace named dfdone in

the directory directly below the

current one. Note that the choice of

the name "dfdone" is arbitrary and

with VS's access to all the NFS

VMESSAGE vs: PROJECT.dfdone

networking capability, the user could

have selected any workspace in the

currently mounted directory space.

The VMESSAGE contains an

informational message indicating the

workspace to which VS has connected.

zzzzzzzz

VPROMPT> CHECKOUT dfdl The user has asked VS to check out

the LGDF2 diagram dfd!.

VMESSAGE co: RCS/dfd1,v --> dfdl The VS command echoes the RCS co

command generated output to make the

transition to VS easier for users

familiar with RCS.

VMESSAGE co: Revision 1.9 Like RCS, VS defaults to a check out

on the top-of-trunk. It is likely that a

higher level program or the user may

want to change this policy and if

40

needed, the user can employ any of the

RCS capabilitiesto implement

different policy.

VMESSAGE co: done The RCS co command output indicating

that the co was successful.

zzzzzzzz The end of the CHECKOUT messages.

VPROMPT> GAMEOVER The user has asked to exit from VS

and remain in the current workspace.

In the above sample check out, the user was adamsc. For purposes of this test,

the second user test issued the same command sequence. A ponion of the resulting

dfdl-vlog file is shown in Figure 4-3. Note that the check outs for both adamsc and

Figure 4-3. A Portion of the dfdl-vlog File.

test were recorded in the -vlog file for version 1.9 in case a project wants to track

who is using or has used a panicular version. In RCS no record of these transactions

is kept and thus there is no means to identify who is using any particular version of

the design.

co Sun Feb 25 11:11:41 1990 adamsc 1.6

ci Sun Mar 4 12:22:19 1990 adamsc 1.7

co Fri Oct 5 16:40:53 1990 test 1.7

ci Fri Oct 5 16:47:34 1990 test 1.8

co Fri Oct 5 16:48:17 1990 test 1.8

co Sun Oct 14 13:15:09 1990 test 1.8

ci Sun Oct 14 13:16:24 1990 test 1.9

ci Sun Oct 14 13:20:21 1990 adamsc 1.8.1.1

co Sun Oct 28 13:10:45 1990 adamsc 1.9

co Sun Oct 28 13:22:05 1990 test 1.9

41

4.3 Sample Check In Session.with Notification

A typical VS check in transaction with multiple persons having the top-of-trunk

checked out, but no intervening check in, is shown below.

script started ~n Mon Oct 15 12: 18 : 56

1990

% whoarni

adamsc

%vs

VMESSAGE vs: started

VPR~T> PROJECT: dfdone

VMESSAGE vs: PROJECT.dfdone

zzzzzzzz

VPR~T> CHECKIN- dfdl The user "hasasked VS to check in

the LGDF2 diagram dfdl.

VMESSAGE ci: .RCS/dfdl,v <-- dfd1VS echoes the outputs generated by

RCS ci.

VMESSAGE ci: New revision: 1.10; Like RCS, VS defaults to a check in

previous revision: 1.9 on the top-of-trunk. If a higher

level program or a user wants to

change this policy, all the RCS

capabilities of branching are available

withinVS.

Has check out of version 1.9

The VS command has read the -vlog

file and notes that either another

VMESSAGE ci: Notify user test

42

program or the user should notify the

user test that this modification has

zzzzzzzz
taken place.

The final CHECKIN- message.

VPROMPT> GAME OVER

Because the VS check out transaction for test has been recorded in the -vlog file

for the dfdl design, the VS CHECKIN- command can notify either the user, or another

program that others may be interested in the modification that has taken place. Under

RCS, no record was kept of the check outs and thus only a much more limited mecha-

nism for change notification could be implemented to enforce a change notification poli-

cy. As noted in Chapter 1, the dissemination of information about modifications to

design is one of the primary concerns during the design phase of any project. It has

also been shown that some projects need to establish formal communication chan-

nels, Le. project leaders are asked to track changes as they happen [Lord, 1988].

With this check in/check out mechanism it would be possible to automate that com-

munication process.

The graphical representation of version 1.9 of the LGDF2 diagram for the above

transaction is presented in Figure 4-4. Note that version 1.9 could be considered a

template since the form matched a ponion of the VS design, even though the names

bore no resemblance to VS names.

The version 1.10 shows the fIrst transformation from a template to the actual

43

Top Level Program SC

1.1 path! 1.2

1.1

Figure 4.4. VS LGDF2 Diagram Version 1.9.

LODF2 representation for a portion of the VS program. Figure 4-5 shows the result

of the changes checked in by the user adamsc. The LGDF2 file for Version 1.10 of VS

is presented in AppendixA.

Top Level Program vs

1.1 path ! 1.2

1.1

Figure 4.5. VS LGDF2 Diagram Version 1.10.

4.4 Sample Check In Sessionwith Intervening Check In

A typical VS check in transaction with someone having updated the top-of-trUnk

is shown below.

script started on Tues Oct 1613: 18 : 56

1990

% whoarni

test

%vs

44

VMESSAGE vs: started

VPROMPT> PROJECT: dfdone

VMESSAGE vs: PROJECT.dfdone

zzzzzzzz

VPROMPT> CHECKIN- dfdl

VMESSAGE ci: RCS/dfd1,v <-- dfd1

VMESSAGE ci: New revision: 1.9 .1.1UnlikeRCS, VS defaults to a check in

In the current system, the automatic branching mechanism forces the user to run

the DFDMERGE command as a separate transaction. In more sophisticated systems,

the controlling program could reduce this multiple step transaction to a single opera-

tion by combiningbothCHECKIN- andDFDMERGE.

The LGDF2 diagram after the check in is presented in Figure 4-6. Note that some

previous revision: 1.9 on an unused branch when the top of

trunk is higher than the revision the

user checked out. In this case, the user

had checked out version 1.9, and

version 1.10 already existed.

The user or higher level program was

notified that the branch has been

created. It is then up to the user or

higher level program to decide how to

respond to this automatic branching.

ZZZZZZZZ

VPROMPT> GAMEOVER

45

of the changes made by user adamsc are not in version 1.9.1.1 since both parties were

working in parallel. It should also be noted that the changes in version 1.9.1.1 may

not be desired by the project until they are "error free" or "blessed by a design re-

view."

Top Level Program SC

suing I 1.4

1.1 vs
command 1.2

1.2

1.1

Figure 4.6. VS LGDF2 Diagram Version 1.9.1.1.

In this example, the change of the title of the SWITCH 1.1 from "path I" to "vs

command" would be a helpful change for the entire design team. On the other hand, if

the project had established a policy that the top-of-trunk should only contain lines

that either establish inputs or outputs from off the graph, or are connected to both a

process and a switch. The addition of the lines 1.3 and 1.4 and the switch 1.2 would

be a violation of such a policy. Thus, this part of the change would not be useful to the

entire design team until the bubble joining line 1.4 was developed or the arc 1.4 was

extended to an output that is off the graph.

Also, since the users adamsc and test were working in parallel there is a productiv-

ity advantage to be gained if the work done be both users can supplementeach other

without changes done by one user conflicting with those done by the other user. In

46

this example, the users could have agreed in advance that the names of the datapaths

connected to process 1.2 would be established by user leSI and the names of the pro-

cesses would be established by user adamsc. In this case, user leSI is going to leave

the naming of the process 1.2 alone or the version manager is going to have to be sup-

plied with a mechanism to accept changes from user adamse and not from user leSI.

Otherwise, changes made by user leSI are going to be in conflict with changes done

by user adamse. These conflicts are not handled by this implementation of VS.

4.5 Sample DFDMERGE Sessionwith Error Policy Checking

A typical VS DFD:MERGE transaction with the mechanism that checks for

additions which result in unconnected lines, switches and processes is shown below.

scripl slarled on Tues Del 1614: 18 : 57 1990

% who ami

lesl

%vs

VMESSAGE vs: started

VPROMPT> PROJECT: dfdone

VMESSAGE vs: PROJECT.dfdone

zzzzzzzz

VPROMPT>DFDMERGE 1.9.1.1 dfd1 The user has asked VS to merge the

changes from version 1.9 to version

1.9.1.1 in the LGDF2 diagram dfd1

onto the top-of-trunk.

VMESSAGE rcsmerge: RuleAccept For informational purposes VS reports

Change its actionsduring the merge. In this

47

casethis sectionof thechangewas

accepted because a rule for this change

was found in the decision tree.

VMESSAGE rcsmerge: RuleDelete In this case, this section of the change

Change was rejected because a rule in the

decision tree indicated this section of

the change did not meet project policy.

Hmm... Looks like a context This informational message comes from

diff to me the patch program. Since VS uses the

The text leading up to this was: program patch to reverse the affect of

any rejected changes there will be a

Patching file dfd1 using Plan A series of such messages up until the

Bunk #1 succeeded at 28. output token 'ZZZ'ZZ'ZZZ.

done

zzzzzzzz

VPROMPT> GAMEOVER

VS implemented this merge mechanism in a five step process. At step one, the

RCS co - j command was used to create a new version of the working file. Then,

VS removed any notices of overlapping changes. The program then created a context

diff between the current working file in this case dfdl and the top-of-trunk which in

this case was version 1.10. The changes were checked using a decision ttee mecha-

nism so that the project policy would be followed. Finally, any changes to be rejected

are removed by applyinga reverse patch. In this case the addition of the lines 1.3 and

1.4 and switch 1.2 is removed. The rejectedportions of the patch were placed in the

48

file diffs.notaccepted. Figure 4-7 shows the LGDF2 diagram after the accep-

tanc,e of the changes that met the project policy. Figure 4-8 shows the

di ffs .notaccepted file for this modification.

Top Level Program vs

1.1 vs
command 1.2

1.1

Figure 4-7. VS LGDF2 Diagram Version 1.11.

Now that this ttansaction has been completed the user has the option of checking

the changes in using the CHECKIN- command, making more modifications prior to do-

ing a check in or deciding these changes are unnecessary, and leave the project

branch unchanged.

49

*** /tmp/,RCSt1017580 Men Dee 3 11:30:34 1990
--- dfdnew Men Dec 3 11:30:32 1990

*** 50,55

* Put my new change on top of trunk

I don't like this co~~ent line

t So I added another comment line

CCCCCCCC

$Author: adamsc $

$Date: 90/11/04 16:21:49 $

50,86 -----
Put my new change on top of trunk

I don't like this comment line

So I added another comment line

#
I have added another two lines and a switch

300 90
100
200

string
305 100
1.2
310 120

LINE----
DNUMBER- 1.3

Figure 4-8. The diffs.notacceptedFile for Version 1.11.

+
+
+ LINE----
+ DNUMBER-

+ STARTXY-
+ LPNUMBR-
+ ULEFTXY-

+ PERMISS-

+ ENDXY---
+ LSNUMBR-

+ PERMISS-

+ #

+ SWITCH--

+ ULEFTXY-
+ WIDTH---
+ HEIGHT--

+ TITLE---

+ ULEFTXY-

+ SNUMBER-

+ ULEFTXY-

+ t
+

+

1.2

205 180
1.3
280 150

AL
300 120
1.2
AR

50

*** 92;98
* Revision 1.1 89/10/22 11:47:30 adamsc

* Initial revision

#

$Revision: 1.11 $

$Source: /usr/test/OGC/THESIS/PROJECT.dfdone/RCS/dfdnew,v $

$State: Exp $

$RCSfile: $

129,135
* Revision 1.1 89/10/22 11:47:30 adamsc

* Initial revision

*

$Revision: 1.9.1.1 $

$Source:/usr/test/OGC/THESIS/PROJECT.dfdone/RCS/dfdnew,v $

$State: Exp $

$RCSfile: $

Figure 4-8. The diffs.notacceptedFile for Version 1.11 (continued).

+ STARTXY- 325 100

+ LPNUMBR- 1.4
+ ULEFTXY- 310 90

+ PERMISS- AL

+ ENDXY--- 350 100

+ LSNUMBR- 1.2

+ PERMISS- AR

+ *

CCCCCCCC

$Author: adamsc $

$Date: 90/11/04 16:08:01 $

51

S. Conclusion

The management of large, complex software development projects can be a very

difficult task. Problems of communication and control increase dramatically as project

size increases. It is generally accepted that productivity during source code develop-

ment and maintenance can be enhanced by the use of version management techniques

and tools. It is thus likely that productivity during the design phase of large complex

software design development could be enhanced through the use of improved version

management tools and techniques.

5.1 Assessment of VSfor Version Management

In the example application of VS, a version management system for Large-Grain

Data Row 2 diagrams,the DFDMERGEcommand was used to check design changes

against the project policy. DFDMERGEwas able to accept or reject changes based on

the policy established. This reduced the need for hand checking of design changes in

the example scenario.

This automated checking of designs could be extended in several ways. A system

could be built thar would allow the user to define the policy and then the tool would be

used to enforce thar policy. Also, a design checker, much like the Problem Statement

Analyzer, could be built to assist the user in identifying errors in LGDF2 designs.

In the example check in scenario, the automatedbranching mechanismwas used to

enforce a fIrst-come, first-served check in policy. This check in mechanism was able

to maintain the consistency of design changes without requiring the use of long term

locks.

This check in mechanismcould be funher extendedby combiningthe branchingand

52

merging steps. In a more integrated system, the functionality of CHECKIN- and

DFDMERGEcould be combined into a single command. This combined command could

also be improved by providing it with a mechanism for automated error checking.

The example scenarios als,oshowed VS's ability to record check outs and provide

a simple change notification mechanism. Because the record of check outs existed,

VS was able to notify users of overlapping check outs. The user was then expected

to notify the otheruser(s)of modificationsthat may haveaffectedthem.

This storage mechanism would allow a very sophisticated update mechanism be

built using a configurationmanagementtool. For instance, such a tool could monitor

the output from VS and then automaticallycheck out the new version of the module af-

ter the change is noted. The storage mechanism could be further extended to provide

a means to distinguish between users who are reading the version, and those who

are modifying the module.

It is contended that as the size of design project increases, the amount of communi-

cation required increases. Thus, tools or techniques that reduce this communication

should increase productivity. Tools, like VS, should help reduce the amount of com-

munication needed aboUt changes, because only the parties affected by a change are

notified of the change. This ability to better target change notification messages and

subsequent updates should help improve the efficiency of large software design teams.

Also, as the number of engineers on a design project increases, the likelihood of er-

rors introduced into the design increases, since there are more interfaces that affect

more engineers. With VS, it is possible to reduce these errors. This automated

checking should lead to increased productivity by reducing the amount of costly re-

work:done in the later stages of a project. Also, unneeded processes and variables

53

are identified and discarded early, so the amount of code developed and referenced but

not used at runtime is reduced.

In addition, when larger and more complex design projects use LGDF2, the compe-

titio~ for the locked versions of designs increases. Thus, it is imponant to reduce the

amount of competition for controlled resources to funher increase productivity. With

VS, this competition can be reduced through the elimination of the use of long tenn

locking. Thus, one user is not waiting for another to release a version lock. Even if

branches are used, with the current implementation of RCS the conflict is not eliminat-

ed, it is merely postponed because the check in onto the project's branch can not take

place until the version lock is released. With VS, locks are not used, and in most

cases, the merge can be done at the time that the branch is created. This should help

reduce the delay between the time that the branch is created and the time the merge

can take place. Since this delay could cause an arbitrary context switch which may be

at an inopportune time, the use of a first-come, first-served check in policy could be

noted by a reduction in the number of errors made during merges.

VS is an example of a version managementtool for Large-GrainData Flow 2 dia-

grams. This tool, with appropriate modifications, would also be useful for projects

that use similar structured design and analysis techniques. A version management

tool of this type could be developed for many different types of design development

techniques that employ a formal semantics and syntax. For instance, state transition

diagrams, conceptual object oriented designs and SCOOP-3, an Ada-based graphical

design method [Cherry, 1990], could be handled in a similar fashion. Although the de-

tailed implementation of VS was limited to LGDF2, the issues of checking for chang-

es that do not meet project policy, communication of changes to the affected parties in

54

a timely manner and the need for parallel development are universal within the soft-

ware engineering field.

VS was used on a very limited test. For a full verification of its effectiveness in a

large, distributed, development environment, a larger number of LGDF2 diagrams

and a larger number of projects would have to be analyzed. Although VS has shown

promise for the development of a fully integrated version management tool for LGDF2

diagrams it was not tested in conjunction with a higher level configuration manage-

ment tool, such as DSEE or Cosmos. A complete evaluation of VS would require its

use within such a tool.

S.2 Assessment of Need for Version Management

Version management has been an imponant part of software development for

many years. From the inceptionof SCCS through the recent developmentsin configu-

ration management, version managementhas proved beneficial in increasing software

engineers productivity. These productivity increases result from the ability of the

tools, such as RCS, to identify changes, isolate problematic changes, isolate experi-

mental versions from released versions and reduce the amount of storage space

needed for multiple versions of controlled files. Improvements in version management

have helped improve its ability to handle multiple person, multiple project software

development.

Systems, such as RCS and SCCS, have gained widespread acceptance within the

software engineering community, panicularly in the area of source code development.

On the other hand, little work has been done in studying how version management

can improve the productivity of software design teams. Few researchers have inves-

tigated what type of tools and techniques for version management are needed during

55

the design phase of the project life cycle.

There has been little research on what types of policies are used or needed for ver-

sion management of software designs. Recent policy setting systems such as

FOREST [Garlan, 1990], which make it easier to define pr9jectlsystem level policies,

have not been used in the design phase of a project; and typically, place most of their

emphasis on the code development phase of the project life-cycle. This research on

the other hand. has shown that the existing domain-independent tools do not have

the mechanisms to implement all the policies desired by most projects. More recent

version management and configuration management tools, such as DSEE and NSE,

have improved the state of the art when it comes to handling multiple person, multiple

project source code tracking and communication. But they have not addressed the

need for tools to enforce the error checking policies desired in large scale software de-

velopment.

This research has shown that changes in graphical software design anifacts, such

as Large-Grain !?ata Flow 2 diagrams can be tracked with tools such as RCS. Al-

though, the sofrware change deltas of SCCS and RCS will work fine for recording

changes in the LGDF2 diagrams, these older tools force competition for long tenn

locks on the controlled files which limits their effectiveness in large projects. Newer

tools, such as Cosmos, have addressed the competition problems but have had diffi-

culty gaining large-scale acceptance in part because of their lack of similarity to the

tools currently being used. In addition, none of these other systems provide much

help in enforcing policies about which changes should be added to the project's re-

lease branch and what changes should remain on an experimental branch. VS was

able to enforce a project policy that no unconnecteddataswitches should be merged

56

onto the top of trunk. In the future, softWare engineers may want the ability to mark

pans of the design they are currently modifying "as work in progress" and have the

system only accept changes that do not touch those parts of the design.

Finally, the version management tool must work effectively in the larger environ-

ment of both design and source code development. The current available version man-

agement tools provide little assistance in this integration. For instance, with most

version management tools, it is easy to make changes via a check out, edit and check

in process on a single module, but these tools do not have the ability to note how that

change will affect other parts of the project such as design documentation. It is

hoped, that sometime in the future that the change could be noted to a configuration

management tool which in turn could note the other modules that also need to be mod-

ified. Eventually, automated tools could be provided to assist in making these other

modifications.

5.3 Assessment of Need for Domain SpecificTools

As has been noted by Fred Brooks, improvements in productivity within software

engineering are going to be a result of incremental developments in a variety of areas

[Brooks, 1987]. Since close to three-founhs of all errors in softWare development can

be traced back to errors made in the design phase of the project, tools must be devel-

oped which tty to keep these errors from finding their way into the development phase

of a project. Breakdowns during the design phase can spell disaster or at best result

in much rework during the development phase. Thus, tools to help designers continue

to be as imponant as tools to help source code developers.

SoftWaredesign artifacts from systems like Large-Grain Data Flow 2, Data Flow

Diagramming and SADT, which use graphical techniques for project design develop-

57

ment need version management. Software design systems, like LGDF2 and PSL,

that have a formal semantics and syntax also provide the opportunity for development

of design analysis tools. For instance, VS and PSA provide design checking in much

the same way a program checker, such as lint does. Thus, with LGDF2 and PSL, it

should be possible to reduce the number of design errors in the project's released de-

sign.

Since the syntax and semantics of the design languages LDGF2 and PSL are

quite different, the further development of the error checking tools for these languag-

es will have to be domain-specific. And since error checking tools in general are lan-

guage specific, further developments in this area must be targeted at specific

languages. On the other hand, tools such as VS, which combine both domain-inde-

pendent and domain-specific features will be needed to continue to improve productiv-

ity within the field of software engineering. VS~ a prototype version management

system, should provide insight regarding future software tools development.

58

REFERENCES

Babb, Roben G. II, "Data-Driven Implementation of Data Flow Diagrams", in the
Proceedings of the 6th International Conference on Software Engineering, Tokyo,
Japan, September, 1982, pp. 309-318.

Babb, Roben G. II, "Parallel Processing with Large-Grain Data Flow Techniques",
IEEE Computer, Vol. 17, No.7, July, 1984, pp. 55-61.

Babb, Roben G. II, "A Data Flow Approach to Unifying Software Specification, De-
sign, and Implementation", in the Proceedings of the 3rd International Workshop
on Software Specification and Design, London, England, August 1985, pp. 9-13.

Bailey, Roben W., Human Error in ComputerSystems, Prentice-Hall,Inc. Englewood
Cliffs, New Jersey, 1983.

BaneIjee, Jay, et. aI., "Data Model Issues for Object-Oriented Applications", ACM
Transactions on Office Information Systems, Vol. 5, No.3, January, 1987, pp. 3-26.

Basili, Victor R., "A Panel Session-User Experience with New Software Methods",
in the Proceedings of the National Computer Conference, Anaheim, California,
June, 1978, pp. 629-630.

Berliner, Brian, "CVS II: Parallelizing Software Development", Unpublished paper,
available from author at Prisma, Inc., 5465 Mark Dablings Blvd. Colorado Springs,
Colorado, 1990.

Black, Eric, "Software Configuration Management with an Object-Oriented Data-
base", in the Proceedings of the Winter 1989 USENlX Conference, San Diego,
California, January, 1989, pp. 257.272.

Boehm, Barry W.,' R. McClean, and D. Urfrig, "Some Experience with Automated
Aids.to the Design of Large Scale Reliable Software", in the Proceedings of the In-
ternational Conference on Reliable Software, Los Angeles, California, April, 1975,
pp. 105-113.

Boehm, Barry W., "Software Engineering", IEEE Transactions on CompUters, , Vol.
25, No. 12, December, 1976, pp. 1226-1241.

Boehm, BarryW., Software EngineeringEconomics, Prentice-Hall, Inc. Englewood

59

Cliffs, New Jersey, 1981.

Boehm, Bany W., "Improving Software Productivity", IEEE Computer, Vol. 10, No.
9, September, 1987, pp. 43-57.

Boehm, Bany W. and Philip N. Papaccio, "Understandingand Controlling Software
Costs", IEEE Transactions on Software Engineering, Vol. 14, Np. 10, October
1988,pp.1462-1477.

Brooks, Frederick P Jr., "No Silver Bullet: Essence and Accidents of Software Engi-
neering", IEEE Computer, Vol. 10, No.4, April, 1987, pp. 10-19.

Chang, Ellis E., David Gedye, and Randy H. Katz, "The Design and Implementation
of a Version Server for Computer-AidedDesign Data", Software-Practice and
Experience,Vol. 19,No.3, March, 1989,pp. 199-222.

Chou, Hong-Tai, and Won Kim, "Versionsand Change Notification in an Object-Ori-
ented Database System", in the Proceedings of the ACM/IEEE Design Automa-
tion Conference,Anaheim,California,June, 1989,pp. 275-281.

Cherry, George W., Software Constructionby Object-OrientedPictures: Specifying
Reactive and Interactive Systems, Dorset House. Publishing, New York, New
York, 1990.

Combelic, Don, "Experience with SADT", in the Proceedings of the National Comput-
er Conference, AI)aheim, California, June, 1978, pp. 631-633.

Curtis, Bill, Herb Krasner, and Neil Iscoe, "A Field Study of the Software Design Pro-
cess of Large Systems", Communications of the ACM, Vol. 31, No. 11, Novem-
ber, 1988. pp. 1268-1287.

DeMarco, Tom, Structured Analysis and System Specification, Yourdon, Inc., New
York, New York, 1978.

DiNucci, David C. and Roben G. Babb II, "Practical Suppon for Parallel Program-
ming", in the Proceedings of the Hawaii InternationalConference on System Sci-
ence. Vol. II. SoftwareTrack,Kailua-Kona,Hawaii,January, 1988,pp. 109-118.

DiNucci, David C., "The LGDF2 Language and Preprocessor",available from author
at Oregon Graduate Institute of Science and Technology,Beaverton, Oregon, Oc-
tober, 1990.

60

Garlan, David and llias, Ehsan J., "Low Cost, Adaptable Integration Policies Tool for
Integrated Environments", to be published in the Proceedings of the Fourth Sym-
posium on Software Development Environments, Irvine, California, December,
1990.

Hamilton, Margaret and Saydean Zeldin, "Higher Order Software: A Methodology
for Defining Software", IEEE Transactions- on Software Engineering, Vol. 2, No.
1, March, 1976, pp. 9-32.

Katz, Randy H., "Towards a Unified Framework for Version Modeling", Unpublished
paper available from author at University of California, Berkeley, Computer Sci-
ence Division, Electrical Engineering and Computer Science Department, Berke-
ley, California, 1990.

Leblang, David B. and Robert P. Chase, Jr., "Computer-aidedSoftwareEngineering in
a Distributed Workstation Environment", in the Proceedings of the ACM SIG-
SOFf/SIGPLAN Software Engineering SvmDosiumon Software DeveloDmentEn-
vironments,January, 1984,pp. 104-112.

Leblang, David B. and Robert P. Chase, Jr., "ParallelSoftwareConfigurationManage-
ment in a Network Environment".IEEE Software,Vol. ,No. ,November, 1987,
pp.28-35.

Lord, Thomas, "Tools and Policies for the Hierarchical Management of Source Code
Development", in the Proceedings of the Summer 1988 USENIX Conference, San
Francisco, California, June, 1988, pp. 95-106.

Miller, Terrence C., "A Schema for Configuration Management", in the Proceedings of
the 2nd International Worksho on Software Confi uration Mana ement, Prince-

ton, New Jersey, October, 1989, pp. 26-29.

Nii, Penny H., "A Proposed Research Initiative in Knowledge-Based CASE Tools:
Biting the Silver Bullet", Stanford University, Computer Science Department, Pa-
lo Alto, California, Technical Report KSL 89-75, 1990.

Page-Jones, Meilir, The Practical Guide to Structured Systems Design, Yourdon
Press, New York,NewYork, 1980.

Reifer, Donald J., "Experience with PSLIPSA", in the Proceedings of the National
Computer Conference, Anaheim, California, June, 1978, pp. 630-631.

61

Rochkind, Marc J., "The Source Code Control System", IEEE Transactions on Soft-
wareEngineering,Vol. SE-1,No.4, December,1975,pp. 364-370.

Ross, Douglas T. and Kenneth E. Schoman, Jr., "Structured Analysis for Require-
ments Definition", IEEE Transactions on Software Engineering:, Vol. SE-3, No.1,
January, 1977,pp.6-15.

Teichroew, Daniel and Ernest A. Hershey III, "PSL/PSA: A Computer-Aided Tech-
nique for Structured Documentation and Analysis of Infonnation Processing",
IEEE Transactions on Software Engineering, Vol. SE-3, No.1, January 1977,
pp.41-48.

Tichy, Walter F., "Design, Implementation, and Evaluation of a Revision Control Sys-
tem", in the Proceedings of the 6th International Conference on Software Engi-
neering, Tokyo, Japan, September, 1982, pp. 58-67.

Walpole, Jonathan, Gordon S. Blair, J.R. Malik, and John R. Nichol, "A Unifying Model
for Consistent Distributed Software Engineering Environments", in the Proceed-
ings of the ACM SIGSOFf SIGPLAN Software En ineerin S m osium on Soft-

ware Development Environments, Boston, Massachusetts, November, 1988, pp.
183-190.

Walpole, Jonathan, Angus Barber, Gordon S. Blair and John R. Nichol, "Software De-
velopment Environment Transactions: Their Implementation and Use in Cosmos",
Unpublished paper, available from author at Oregon Graduate Institute of Science
and Technology, Computer Science Department, Beaverton, Oregon, 1989.

Yourdon, Edward and Larry L. Constantine, Structured Design: Fundamentals of a
Discipline of Computer Program Design, Prentice-Hall, Inc. Englewood Cliffs,
New Jersey, 1979.

Zelkowitz, Marvin V., Alan C. Shaw, and John D. Gannon, Principles of Software En-
gineering and Design, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1979.

62

APPENDIX A. Vs LGDF File Version 1.10

NO!:>E----

TITLE--- Top Level Program vs

ULEFTXY- 120 120

#

PROCESS-

CENTRXY- 180 180

RADIUS-- 50

NAMESTR- workspace command parser

ULEFTXY- 130 170

PNUt-1BE;R-1. 1

ULEFTXY- 190 190

#

LINE----

DNUMBER- 1.1

ULEFTXY- 240 190

STARTXY- 230 180

LPNUMBR- 1.1

PERMISS- AL

ENDXY--- 250 220

LSNUMBR- 1.1

PERMISS- AR

#

SWITCH--

ULEFTXY- 250 200

WIDTH--- 100

HEIGHT-- 200

TITLE--- path 1

ULEFTXY- 260 220

SNUMBER- 1.1

#

Put my new change on top of trunk

I don't like this comment line

So I added another comment line

CCCCCCCC

$Author: adamsc $

$Date: 90/10/29 07:33:55 $

$Header: dfd1,v 1.10 90/10/29 07:33:55 adamsc Exp $

$Locker: $

$Log:dfd1,v $

Revision 1.10 90/10/29 07:33:55 adamsc

*** empty log message ***

63

ULEFTXY- 290 390

#

LINE----

DNU!vf...3ER- 1.2

ULEFTXY- 270 190

STARTXY- 270 180

LPNur.1BR- 1.2

PER.fI1ISS- AL

ENDXY--- 500 220

LSNU!-1ER- 1.1

PERl-ESS- AR

#

PROCESS-

CENRXY- 500 180

RlmIUS-- 50

NAY£STR- version manage command parser

ULEFTXY- 450 170

PN'JMBER- 1.2

ULEFTXY- 460 190

64

spec.

#

Revision 1.1 89/10/22 11:47:30 adamsc

Initial revision

#

$Revision: 1.10 $

$Source:

#

Revision 1.9 90/10/14 13:16:23 test

*** epty log message ***

#

Revision 1.8 90/10/05 16:47:33 test

*** empty log message ***

#

Revision 1.7 90/03/04 12:22:18 adamsc

*** empty log message ***

#

Revision 1.6 90/02/21 19:57:39 test

*** ew.pty log message **

41

Revisio:i 1.5 90/02/21 19:43:05 adamsc

** empty log message ***

41

Revision 1.4 90/(-1/11 08:31:55 adamsc

test message using -m

#

Revision 1.3 90/01/03 19:36:54 adamsc

Changed the specification of the dfd files.

#

Revision 1.2 89/11/07 08:25:48 adamsc

Made a change from EEEEEEEE to ZZZZZZZZ to reflect new

65

/usr/test/OGC/THESIS/src/PROJECT.dfdone/RCS/dfdl,v $

$State: Exp $

$RCSfile: $

$SYIT~olicNames: $

$CheckoutLog: $

$AccessList: $

zzzzzzzz

66

APPENDIX B. Vs LGDF File Version 1.9.1.1

NODE----

TITLE--- Top Leve Program SC

GLEFTXY- 120 120

#

PROCESS-

CENTRXY- 180 180

RADIUS-- 50

NESTR- process 1

ULEFTXY- 130 170

PNUMBEE- 1.1

ULEFTXY- 190 190

#

LINE----

DNUMEER- 1.1

STARTXY- 230 180

LPNUMBR- 1.1

ULEFTXY- 240 190

PErolISS- AL

ENDXY--- 250 180

LSNUMBR- 1.1

PERMISS- AR

#

SWITCH--

ULEFTXY- 250 150

WIDTH--- 100

HEIGHT-- 200

TITLE--- vs command

ULEFTXY- 260 170

SNUMBER- 1.1

67

#

Put my new change on top of trunk

I don't like this comment line

So I added another comment line

#

I have added another two lines and a switch

ULEFTXY- 290 390

#

LINE----
DNUMBER- 1. 2

STARTXY- 270 180

LPNill-ffiR - 1. 2

ULEFTXY- 290 190

P Efu\.US S- AL

ENDXY--- 500 180

LSNU!.1BR- 1.1

PERI,.n SS- AR

#

PROCESS-

CENTRXY- 500 180

RP-_DIUS-- 50

NNESTR- process 2

ULEFTXY- 450 170

PN\Jr-ffiER- 1.2

ULEFTXY- 460 190

LINE----

DNUMBER- 1.2

STARTXY- 205 180

LPNUMBR- 1.3

ULEFTXY- 280 150

PERMISS- AL

68

ENDXY--- 300 120

LSNUMBR- 1. 2

PER"1I S5- ".R

#

CCCCCCCC

$Author: adamsc $

$Date: 90/11/04 16:08:01 $

$Header: dfd1,v 1.9.1.1 90/11/04 16:08:01 adamsc Exp $

$Locker: $

$Log:dfdl,v $

Revision 1.9.1.1 90/11/04 16:08:01 adarnsc

~** empty log message ~**

#

SWITCH--

ULEFTXY- 300 90

WIDTH--- 100

HEIG!-iT-- 200

T1TLE--- string

ULEFTXY- 305 100

SNm-!3ER- 1.2

ULEFTXY- 310 120

#

L1 lE----

DNUMBER- 1. 3

STARTXY- 325 100

LPNUMBR- 1.4

ULEFTXY- 310 90

PEPJvlISS- AL

ENDXY--- 350 100

LSNUMBR- 1. 1

PER1\1ISS- AR

69

#

Revision 1.9.1.1 90/11/04 09:48:05 test

*** empty log message ***

#

Revision 1.9 90/10/14 13:16:23 test

*** empty log message *~*

#

Revision 1.8 90/10/05 16:47:33 test

~ empty log message *

#

Revision 1.7 90/03/04 12:22:18 adamsc

*** empty log message ***

#

Revision 1.6 90/02/21 19:57:39 test

*** empty log message ***

spec.

#

Revision 1.1 89/10/22 11:47:30 adamsc

Initial revision

#

Revision 1.5 90/02/21 19:43:05 adamsc

*** empty log message ***

#

Revision 1.4 90/01/11 08:31:55 adamsc

test message using -m

#

Revision 1.3 90/01/03 19:36:54 adamsc

Changed the specification of the dfd files.

#

Revision 1.2 89/11/07 08:25:48 adamsc

Made a change from EEEEEEEE to ZZZZZZZZ to reflect new

70

#

$Revision: 1.9.1.1 $

$Source:

/usr/test/OGC/THESIS/src/PROJECT.dfdone/RCS/dfdl,v $

$State: Exp $

$RCSfile: $

$SymbolicNames: $

$CheckcutLog: $

$AccessLis~: $

zzzzzzzz

71

APPENDIX C. Users Manual for VS

VS User's Manual

Charles Adams

Oregon Graduate Institute of Science and Technology

31 December 1990

-.- - .----------

72

VS User's Manual

73

CONTENTS

1. HOWTO USE lliIS MANUAL ... 1

2. OVERVIEW 75
2.1 InvokingVS 75
2.2 The VSCommands 75

2.2.1 Workspacecommands 75
2.2.2 Versionmanagementcommands 75

3. INVOKING VS 76
3.1 VS Command Line Options 76

4. VS COMMANDSANDTHEIRPARAMETERS 77
4.1 WorkspaceCommands 77

4.1.1 PROJECT?Command 77
4.1.2 PROJECT:Command . 77
4.1.3 GA1vffiOVERCommand 78
4.1.4 WorkspaceCommandError 78

4.2 Version ManagementCommands 78
4.2.1 ClIECKIN- Command 79
4.2.2 ClIECKOUTCommand 80
4.2.3 DFDMERGECommand 81
4.2.4 GA1vffiOVERCommand 81
4.2.5 RCSDIFF-Command 82
4.2.6 RCSLIST-Command 82
4.2.7 RCS1vffiRGECommand 82
4.2.8 SENDRLOGCommand 82
4.2.9 ZZ2ZZ2Z2 Command.. 83
4.2.10 VersionManagementCommandError 83

5. COMPll..INGANDMODIFYINGTHE VSSOURCECODE 84

6. FII..EFORMATS 85
6.1 Large-GrainData Flow2 DiagramWorkingFile Format 85

6.1.1 LINE ElementFormat 85
6.1.2 NODE ElementFormat 86
6.1.3 PROCESS-ElementFormat 86
6.1.4 SWITCH--ElementFormat 86

6.2 -vlog Format 86
6.3 ,v Format 87

74

VS User's Manual

Charles Adams

Oregon Graduate Institute of Science and Technology

1. HOW TO USE THIS MANUAL

Readers wanting to get an overview of vs's features should consult Section 2.

Readers wanting to invoke the program should consult Section 3.

Readers wanting to execute any of the commands available within vs should consult Sec-
tion 3.

Readers who have just received the source code for vs and wish to compile it or modify it
should consult Section 4.

Section 5 presents a quick lookup reference guide to the commands and parameters of vs.

Rather than repeat all that is written in the documentation on the Revision Control Sys-
tem by Walter F. Tichy, I will suggest starting by reading the following documents:
Design, Implementation, and Evaluation of a Revision Control System by Walter F.
Tichy, in Proceedings for the 6th International Conference on Software Engineering,
IEEE, Tokyo, Japan, September, 1982.
Unix Programmer's Manual documentation RCSINTRO and the man pages for each ele-
ment of res used.

75

2. OVERVIEW

Vs is a Version Management System for Large-Grain Data Flow Diagrams. It provides
the command interface to the UNIxt Revision Control System along with the added func-
tionality never before available with RCS. The check-in and check-out commands have
additional functionality for handling optimistic version contro~ on any file that can be
handled by RCS. The branch merge command gives the user the additional capability of
automatic branch merging when processing Large-Grain Data Flow Diagram 2 (LGDF2)
files. The automated checking of LGDF2 files undenaken during merging is an example
of the project policy that can be implemented with a tool like vs.

2.1 Invoking VS

2.2 The VS Commands

Vs is divided into two functional areas. First, the workspace commands allow the user to
set and query the project workspaces available to vs. Second, the version management
commands allow the user to manipulate controlled modules.

2.2.1 Workspace commands

The workspace commands provide a limited namespace control via vs. The commands
available are "PROJECT: ", "PROJECT?" and "GAMEOVER".These commands have a
fixed length of eight characters and an ending space character plus the workspace name
in the case of the "PROJECT: "command.

2.2.2 Version management commands

The version management commands consist of the complete set of RCS commands with
the exception of the res command, plus the added capabilities of vs. The commands
"RCSLIST-", and "DFDMERGE"are new with vs. The commands "CHECKIN-", and
"CHECKOUT"are modified versions of ei and eo from RCS. The commands
"RCSDIFF-", "RCSMERGE"and "SENDRLOG" are unmodified except for the user
interface from RCS. Finally the commands "GAMEOVER" and "ZZZZZZZz" are
commands which allow the user to end the program or connect to the previous directory.
Again, like the workspace commands each command is eight characters in width plus a
space character and those commands that take arguments, the arguments are placed after
the space and before the carriage return.

t UNIX is a Trademark of Bell Laboratories.

76

3. INVOKING VS

The vs command is invoked by:

vs options

where options is none, or any combination of the two option parameters. The option~ can
appear in any order.

3.1 VS Command Line Options

OPTION
-echo
-debug value

EFFECT

Display on stdout the commands input from stdin.
Specify the level of debug messages to be printed.
o - all debug messages are printed.
6 - (the default) few debug messages are printed.

On successful invocation of vs it will display the prompt:

VPROMPT>

77

4. VSCOMMANDSANDTHEIR PARAMETERS

Vs has two levels of commands. The first level commands, called Workspace Com-
mands, allow the user to set and query workspaces. The second level commands, called
Version Management Commands, allow the user to invoke any of the RCS commands.
At both levels the vs command interpreter expects i.tsinput to come from stdin and sends
its messages to stdout.

4.1 Workspace Commands

COMMAND
PROJECT? 0

PROJECT: Oworkspace
GAMEOVERD

EFFECT

Display the available workspaces
Set the current working area to workspace
Exit gracefully from vs

4.1.1 PROJECT? Command

The PROJECT? command displays the currently available workspaces. Each
workspace is a directory directly below the current directory level. The names returned
are proceeded by the vs prompt VMESSAGE vs:. The name of the workspace varies in
length and is followed by the carriage return (OxI5) .character.

4.1.2 PROJECT: Command

The PROJECT: command sets the current workspace. The workspace is any valid
workspace name.

If the workspace named exists and is directly below the current directory, vs will send
back a prompt:

VMESSAGE vs: PROJECT. workspace

After sending all the debug messages specified, vs will change the current directory to the
workspace named and send the prompt for the Version Management Commands.

If the workspace named does not exist, vs will send back the following informational
message.

VMESSAGE vs: Working space "workspace" does not
exist.
VMESSAGE vs: Should I create this workspace [Y/N]?

The 0 is really a space (0x20) character and is required by the protocol.

78

Vs will then await input from the user. If the user inputs Y then vs will go ahead and
create the named workspace directly below the current level. Vs will then change the
current directory to the workspace named. If the user inputs anything Other than Y as the
first character of the input then vs will stay in the current directory and stay at the
Workspace Command level.

In essence, no action will be taken other than to reissue the input prompt:

VPROMPT>

4.1.3 GAMEOVER Command

The GAMEOVERcommand is used to exit from vs. Once the comm::nd is issued suc-

cessfully the program will cleanup after itself, exit from the program and return the
UNIX prompt.

4.1.4 Workspace Command Error

When a commandis nOtunderstood,vs will displaythe errorprompt:

VSERROR- vs: Unab1eto parse command

and then indicate allowed the Workspace Commands. The response will be:

VSERROR-vs: Expected: "PROJECT?", or "PROJECT:", or "GAMEOVER"
ZZZZZZZZ

Vs will then display the input prompt and wait for more input.

4.2 Version Management Commands

COMMAND
CHECKIN-Ooptions file
CHECKOUTOoptions file
DFDMERGEOrev file
GAMEOVERO

RCSDIFF-Ooptions file
RCSLIST-O

RCSMERGEGrrevl [-rrev2] [-p] file
SENDRLOGOoptions file
zzzzzzzzO

EFFECT
Store a new revision.
Retrieve a revision and store it in the workspace
Merge branch onto top of trunk.
Exit gracefully from vs.
Compare two revisions.
Display a list of the files under version management.
Add changes between revl and rev2 into the working file.
Display the revision information.
Return to the previous level.

The 0 is really a space (Ox20)character and is required by the protocol.

79

4.2.1 CHECKlN- Command

The checkin command stores new revisions into revision files. Each revision file has the
filename ending of , v. In addition, each revision file has a status file accompanying it
with the filename ending in -vlog. The revision files and status files are stored in a
directory named R~S that is directly below the cUITentdirectory level. Since the pro-
gram automatically creates a RCS directory for each workspace that it creates, it assumes
the RCS directory exists.

Whereas in ci RCS files can be specified in three ways (see the ci (IRCS) man
page), in vs they can only be referenced by the working filename. The filename for the
revision file and the status file are thus derived from the given filename.

Vs always looks in the directory . IRCS and nowhere else for the revision file and the
status file. If these files are not found an error is reported and the command is ter-
minated.

The checkin command requires that user have read/write access permission in the direc-
tory . IRCS and on the status file. It requires that the user have read access permission
on the working file, and the revision file. The checkin command automatically sets these
permissions when it is creating these files and the directory.

The checkin command provides automatic handling of revisions with optimistic version
control. It will check the revision number of the working file against the top-of-trunk
revision number and if they are not different, it will proceed to deposit the revision and
output the outcome of this execution. On the other hand, if the revision number on top of
trunk is greater than the revision number of the working file, the checkin command will
automatically store this revision on the next available branch based on the revision
number of the working file. This assure that no changes will be lost when multiple peo-
ple are working on the top of trunk and that revisions are deposited on a top of tiunk on a
first to arrive, first to checkin basis.

All errors encountered by the checkin command will be output to stderr. Each error mes-
sage will be introduced by the error prompt:

VSERROR- vs:

After outputting the error messages, vs will exit this command.

After successful depositing of the revision, vs will update the status file. The status file
will contain a record of the check in with the date and time, the user and the revision
number. This information is never deleted and contains an exhaustive history of the revi-
sion file.

80

Although all the options available with ci are available with the checkin command, this
command is most useful for default case, where all that is specified is:

CHECKIN- filename

The checkin command also features the option -po With this option, the input for the
working file is taken from stdin and the checkin command will attempt to deposit the
revision file as soon as the completion protocol message ZZZZZZZZ is received. Thus
all data received from stdin until the completion protocol message will be incorporated in
the filename given.

4.2.2 CHECKOUT Command

The checkout command retrieves revisions from revision files. Each revision file has the

filename ending to , v. In addition, each revision file has a status file accompanying it
with the filename ending in -vI og. The revision files and status files are stored in a
directory named RCS that is directly below the current directory. Since vs automatically
creates a RCS directory for each workspace that it creates, it assumes the RCS directory
exists.

When using the RCS ci command, the RCS files can be specified in three ways (see the
co (lRCS) man page), but with vs these files can only be referenced by their working
filename. The filename for the revision file and the status file are thus derived from the

working filename.

Vs always looks in the directory . IRCS and nowhere else for the revision file and the
status file. If these files are not found an error is reponed and the command is ter-
minated. .

The checkout command requires that user have read access permission in the directory
.IRCS, on the revision file and on the status file. It requires that the user have permis-
sion to write on the working file. The checkin command automatically sets these permis-
sions when it is creating these files and the directory.

The checkout command provides automatic handling of revisions with optimistic version
control. It does not require that the user check out a file locked to change the file and
check it in. Vs will record each check out in the status file. This allows vs to keep track
of all panies who are working on a given revision file. This information can be used by
other programs or routines for project tracking purposes.

The actual revision file check out is handled by the RCS co command. All the options
supponed by the co command are supponed by the checkout command. This includes
both keyword substitution and command line options within co.

81

All errors encountered by the checkout command will be output to stderr. Each error
message will be introduced by the error prompt:

VSERROR- vs:

After outputting the error messages, vs will exit this command.

After successful execution of the check out, vs will update the status file. The status file
will contain a record of the check out with the date and time, the user and the revision
number. This information is never deleted and contains an exhaustive history of the revi-
sion file.

4.2.3 DFDMERGE Command

The dfdmerge command provides additional functionality to the RCS co
-jbranchrevno:trunkrevnocommand. The dfdmerge command takes the branch
revision specified and merge the changes between the branch revision and the trunk revi-
sion from which it emanated onto the top of trunk.

To do this vs will execute a RCS co command. It will then execute a rcsdi ff com-

mand. Vs will then use its internal decision tree to determine which changes can
automatically be applied onto the top of trunk, i.e. the changes meet the project policy.

The decision tree specified can have one of two actions:

1. Make the change specified.

2. Do not make the change specified.

Upon successful completion of the dfdmerge command the input prompt will be returned
and vs will await more input. At this point the user has a new working file that is a
modification of the top of trunk. All errors encountered by the dfdmerge command will
be output to stderr. Each error message will be introduced by the error prompt:

VSERROR- vs:

After outputting the error messages, vs will exit this command.

4.2.4 GAMEOVER Command

The GAMEOVERcommand is used to exit from vs. Once the command is issued suc-
cessfully the program will cleanup after itself, exit from the program and return the
UNIXprompt.

82

4.2.5 RCSDIFF. Command

The rcsdiff command will compare two revisions of the revision file specified. This com-
mand is exactly the same as the RCS rcsdiff command in UNIX. See the
rcsdiff (lRCS) man page for more information.

After executing' the RCS rcsdiff command, vs will output the completion protocol
message. Vs will then output the input prompt and wait for more input.

4.2.6 RCSLIST. Command

The rcslisl command will list the revision files in the RCS directory. Each revision file
will be listed by its working filename proceeded by the introductory protocol message
VMESSAGE.

If no RCS directory exists directly below the current working directory, vs will output
the error prompt VSERROR- followed by the message VSERROR vi: unable to
open dir "RCS".

After listing the files or sending the error prompt, vs will output the completion protocol
message. Vs will then output the input prompt and will wait for more input.

4.2.7 RCSMERGE Command

The rcsmerge command will compare two revisions of the revision file specified and then
update the working file based on the differences between the two revisions. This com-
mand is exactly the same as the RCS rcsrnerge command in UNIX. See the
rcsmerge (lRCS) man page for more information.

The rcsmerge command after executing the RCS rcsrnerge command, vs will output
the completion protocol message. Vs will then output the input prompt and will wait for
more input.

4.2.8 SENDRLOG Command

The sendrlog command will display the RCS history and status of the file specified. This
command is exactly the same as the RCS r 1og command in UNIX. See the
rlog(iRCS) man page for more information.

The sendrlog command after executing the RCS rlog command, vs will output the
completion protocol message. Vs will then output the input prompt and will wait for
more input.

83

4.2.9 ZZZZZZZZ Command

The zzzzzzzzcommand will reset the working space to to the original directory. Upon
successful completion the command, vs will be placed in Workspace Commands mode.

After completing the zzzzzzzzcommand, vs will output the completion protocol message.
Vs will then output the input prompt and will wait for more input.

4.2.10 Version Management Command Error

When vs fails to understanda command,it willdisplaythe errorprompt:

VSERROR- vs: Unableto parse command

and then indicate allowed the Version Management Commands. The response will be:

VMESSAGE vs: Expected: "CHECKIN-
"RCSDIFF-
"RCSMERGE
"RCSLIST-
"GAMEOVER

", '"CHECKOUT ",

", "SENDRLOG ",

If, "ZZZZZZZZ If,

", "DFDMERGE" or
"

ZZZZZZZZ

Vs will then display the input prompt and wait for more input.

84

s. COMPD..INGANDMODIFYING THE VSSOURCE CODE

For all of you who are so brave as to attempt to look at this code, there is a Makefile pro-
vided.

The source code is divided up into four source modules: definestring.c, definetables.c,
dfd_merge.c, and vs.c and four header files: definestring.h, definetables.h, dfd_merge.h
and rules.h.

The vS.c file comains the main function.

85

6. FILE FORMATS

6.1 Large-Grain Data Flow 2 Diagram Working File Format

Synopsis

filename

Description

This ASCII file will contain the data for a panicular revision of a Large-Grain Data Flow
Diagram revision file. It is formatted as a series of lines of the form:

Protocol Message Data

The protocol message is a field introducing the data that follows it. The protocol
messages are:

NODE ,
ZZZZZZZZ,
PNUMBER- ,

SNUMBER- ,

PROCESS-, LINE , SWITCH--,
CENTRXY-, RADIUS--, NAMESTR-,
DNUMBER-, STARTXY-, PERMISS-,

WIDTH---, HEIGHT--, TITLE---, #, $,

CCCCCCCC,

ULEFTXY-,
ENDXY---,

The # introduces any comment line.

The $ introduces any RCS marker data.

The CCCCCCCCtoken is used to separate the LGDF2 data from the RCS marker data.

The zzzzzzzzintroduces the end of the file.

All other protocol messages introduce LGDF2 data. The following commands introduce
elements of the LGDF2 file.

NODE----
PROCESS-
LINE----
SWITCH--

These commands have the following formats.

6.1.1 LINE Element Format

Each line element will have the following data:

DNUMBER- number of the line

ULEFTXY- x_location and y_location of the DNUMBER-
STARTXY- x location and y_location of line start

86

number for the process attached at the start orLPNUMBR-
end
PERMISS-
ENDXY---
LSNUMBR-
end

PERMISS- permission on line end

permission on line start
x_location and y_location of line end
number for the switch attached at the start or

6.1.2NODE ElementFormat

Each NODE element will have the following data:

~ITLE--- title of the node

'ULEFTXY- x location and y_location of the TITLE

6.1.3 PROCESS- Element Format

Each process element will have the following data:

CENTRXY-
RADIUS--
NAMESTR-
ULEFTXY-
PNUMBER-
tJLEFTXY-

x_location y_location
size

name of the process element

x_location and y_location of the NAMESTR-
number for the process
x location and y_location of the PNUMBER-

6.1.4 SWITCH-- Element Format

Each switch element will have the following data:

IULEFTRXY
WIDTH---
EEIGHT--
TITLE---
ULEFTXY-

x_location y_location
width of switch

height of switch .

name of the switch element

x location and y_location of the TITLE

6.2 -vlog Format

Synopsis

JRCS/filename-vlog

87

Description

This file contains the revision history of the associated revision file. It is fonnatted as a
series of lines of the fonn:

action weekday month day time year username revision_number

This is an ASCII file with fixed length fields except for the revision number which is
completed with "\n" (the newline character). The action field is either ci or co. The
fields weekday, month, ..., and year are result of output from the Utek date
command. The usemame is padded with leading spaces to make it 21 characters wide.
All characters in the usemarne that exceed this width will removed.

6.3 ,v Format

Synopsis

JRCS/filename, v

Description

This file will contain the revisions for the working file. It is a standard RCS rcsfile with
the exception that it contains the revisions of the LGDF2 working file. For more infor-
mation on the format of the ASCII file, see the rcsfile(5RCS) man page.

88

INDEX

,v 87

-debug 76
-echo 76
-vlog 86

CfIECKIN-Command 79
CHECKOUTCommand 80
CommandLine Options .. 76
Compilingand Modifyingthe VS SourceCode 84

DFD~RGE Command 81

File Formats 85

GA~OVER Command 78, 81

Large-Grain Data Flow 2 Diagram Working File 85
LGDF2 Working File.. 85
LINE Element 85

NODE Element 86

PROCESS- Element 86
PROJECT:Command 77
PROJECT?Command 77

RCSDIF'F-Command 82
RCSLIST- Command . 82
RCSMERGECommand 82

SENDRLOGCommand 82
SWITCH--Element 86

VersionManagementCommandError 83
VPROMPT> 76, 78
VSERR0 R- 78,83

78Workspace Command En-or

ZZZZZZZZ Command 83

...

89

APPENDIX D. UNIX Man Page for VS

VS(I) UNIX Programmer's Manual

NA..\{E
vs - A Version Management System for Large-Grain Data Flow Diagrams

SYNOPSIS

vs [-echo] [-debug value]

DESCRIPTIOS

Vs takes a set of inputs from stdin and manages multiple revisiorts of pseudo text files. This system pro-
vides the featUres of the Revision Control System (RCS) by Waller F. Tichy and additional functionality
provided via a semi-intelligent interface program.

OPTIOSS

-ecbo Display on stdout the commands input from stdin.

-debug value
Specify the level of debug messages to be printed.
Value 0 - all debug messages are printed.
Value 6 - (the default) no debug messages are printed.

Getting Started with VS
Rather than repeat all that is wrinen in the the documentation on the Revision Control System by Walter F.
Tich)'. I will suggest starting by reading the following documents:

Design, ImplewlIlotion. and Evalumion of 0 Revisinn COlllro/ System by Walter F. Tichy, in
Proceedings for the 6th /nlerflQlional Conference on Software Engineering. IEEE, Tokyo, Japan,
September, 1982. Unix Programmer's Manual documentation RCS/lvTRO and the man pages for
each element of res used. .

Vs provides a superset of the RCS commands with some additionaJ functionality not available in other ver-
sion management systems. Once vs is invoked it acts as command language interpreter for version
management commands. After being invoked successfully vs replies on stdout with the message \IS:
started.

The command interpreter then waits for input from stdin. It parses the input and acts according to it notion
of version management.

When no working space has been set vs accepts the workspace commands:
PROJECT?

PROJECT:
GAMEOVER

If a command is given that vs does not understand vs responds with the message:
VHESSAGE vs: Unable to parse command

VHESSAGE vs: Expected: "PROJECT?", or "PROJECT;", or "GAMEOVER"
zzzzzzzz

and then waits for more input.

When a working space has been set successfully vs accepts the version management commands:
CHECKIN-
CHECKOUT

DFDMERGE
GAMEOVER

RCSDIFF-

RCSLIST-

RCSMERGE
SENDRLOG

ZZZZZZZZ

If a command is given that VIidoes not understand vs responds with the message:

90

VS (1) UNIX Programmer's Manual VS (I)

ZZZZZZZZ

and then waits for more input

COMMA."l) STh7AX A.."l)SEMASTICS

The workspace commands have Ihe following syntax and semantics.

PROJECT?O

Print out the list of workspaces directly under the current director)'.

PROJECT: Clr1ame
Change to the workspace with the given name.

GANEOWRO
Exit the version control shell.

The version management commands have the following syntax and semantics.

CHECI'CIN-Drtring
Use the ci command to store new revision into version control files.

CHECJtOtrl'Drtring
Use the co command to retrieve revisions from version control files.

DFDMERGEDrtring
Use the dfdmerge command to incorporate the differences between two revisions of a version con-
trol IDeinto the corresponding working file.

GAMEOVERD

Exit the version control shell.

RCSDIFF-Drtring
Use the rcsdiffcommand to compare tWorevisions of each version control file given.

RCSLIS'l'-O
Print out the list of pseudo-files under version control under the directory ./RCS.

RCSMERGEOslring
Use the rcsmerge command to incorporate the differences betWeen two revisions of a version con-
Irol IDeinto the corresponding working file.

SENDRLOGOs-tring
Use the rlog command to print out status information about version control files.

zzzzzzzzO
Change back to level and reset the workspace.

The 0 is really a space (0x20) charater and is required by the):I'Otocol.

WE!Io7IDCATIOS

AlUhor: Charles Adams, Oregon Graduate Institu1e of Science and Technology, Beavenan, Oregon
Revision Nwnber: 0.2 ; Release Dale: 9O/ll~.

SEE ALSO
rcsintro{lL), ci(1L), co(1L), rcs(1L), rcsdiff(lL), rcsmerge(1L), rlog(1L), rcsfile(5L)

BUGS
Many but unknown at this time.

VMESSAGE vs: Unable to parse the command input.
VMESSAGE vs: Expected: "CHECKIN- ", "CHECKOUT ", "RCSDIFF- ",

"SENDRLOG ", "RCSMERGE ", "ZZZZZZZZ ",
-RCSLIST- ", or "GAMEOVER

91

BIOGRAPIDCAL NOTE

The author was born 28 January 1948, in Madison, Wisconsin. He attended vari-

ous public schools in Madison until 1964 when he moved to West Covina, California.

He graduated from Covina High School in 1966.

In October 1966 the author began military service in the United States Air Force.

He was stationed for the most of his duty in West Germany where he attained the

rank of Staff Sergeant and was Honorably discharged in August 1970.

In September 1970 the author entered Los Angeles Valley College and transferred

to CaliforniaPolytechnicState Universityof San Luis Obispo in September 1972. He

graduatedwith a Bachelorof Ans in SpeechCommunicationin June 1975.

In August 1975 the author entered West Virginia University as a teaching assis-

tant and graduated with a Master of Ans in Speech Communicationin August 1976.

He then attendedUniversityof OregonfromSeptember1976to June 1978.

In June 1978 the author began a position as Marketing Manager for Northwest Mi-

crocomputer Systems. This position lasted until June 1982 when the author began

working for Electro Scientific Industries as a Lead Technical Writer.

The author began his present position as SoftwareEngineer with Tektronix, Inc. in

January 1987. He has been married for five years to the former Gloria Smith.

	Charles Adams thesis to page 40.pdf
	Charles Adams thesis to page 91.pdf

