VS: An Optimistic Version Management System

Charles A. Adams
B A., California Polytechnic State University at San Luis Obispo
M.A., West Virginia Universiry

A thesis submitted 1o the faculty
of the Oregon Graduate Institute of Science and Technology
in partial fulfillment of the requirements for the degree
Master of Science in
Computer Science

December, 1950

The thesis "VS: An Optimistic Version Management System” by Charles A. Adams

has been examined and approved by the following Examination Committee:

Robert G. Babb II, Ph.D.
Professor
Thesis Research Adviser

N \
Jonathan Walpole, Ph.D.
Assistant Professor

o
Errol Crary, M.B.A.
Senior Engineer, Tektronix, Inc.

ACKNOWLEDGMENT

This thesis was made possible by the support and encouragement of many people.
I would like to express my appreciation fust and foremost to my wife, Glona, who
provided unwavering support. Robbie supplied much needed guidance and vision
throughout my term at Oregon Graduate Institute. Jonathan and Errol furnished
invaluable help on this thesis. Finally, T need to thank Kevin Jagla who provided

numerous hours of camaradene during our parallel journeys.

111

ABSTRACT

VS: An Optimistic Version Management System

Charles A. Adams
Oregon Graduate Institute of Science and Technology

Supervising Professor: Robert G. Babb I, Ph.D.

Designing, implementing and maintaining large complex software systems can be
a difficult task. The emergence of computer networks has made the task even more
complex. Managing large software engineering teams has proved to be problematic.
Over the years researchers and engineers have developed tools and technigues to

iraprove the productivity of these engineering teams.

VS is a prototype version management system. This study of wversion
management used VS as an example of an optimistic version management tool o
analyze the effects an improved tool could have on sofiware engineering productivity.
Specifically, the study looked at the domain-specific requirements of Large-Grain
Data Flow 2 to develop mechanisms that could help improve productivity during
sofiware design and analysis. It also investigated the domain-independent policies

and mechanisms needed within the software engineering field.

v

Table of Contents

Acknowledgment. ... iii
ADSITACE e e iv
List Of FIGUI@S oo, vii
List Of Tables ..o viii
T, INtroduchion .o,]
1.1 Integrated Software Development Environments ..o 2

1.2 Integrated Software Design Environments.............cocoooiiviiiieeieien 3

1.3 Outline of STUAY . .oooiiii e s 4

2. Current APProaches ..ot 6
2.1 Version ManagemMEIt oot eteiiae e aer e st taneaeeser e s s crrenene o 6

2.1.1 Text-based Version Management Tools ..o, 6

2.1.2 Configuration Management ToolS........coiiiiiiiiiiiiinnn. 10

2.1.3 Version Management Tools for Computer-Aided Design...... 12

2.2 Motivation for Management of the Design Processooooevoicccen e 14

23 incremental Development and Software Reusecccocoovevivviniiniien. 16

3. Implementation . ..o e 19
3.1 Overview of VS: An Optimistic Version Management System............ 19

3.1.1 Workspace Commandsc.ooeeiriiriiiimmnin e 20

3.1.2 Version Management Commands..........coeveooeiiiiiiiveeneeeineeen 21

313 Outpurfrom VS (s 23

3.2 Extension of RCS Check Out ..o 23

33 Extension of RCS Check In ..o 25

3.4 Extension of RCS Merge ... 28

3.3 The LGDF2 File ittt 31
4. Example VS Usage Scenarios ... 35
4.1 The Structure of VS oo 36
42 Sample Check Out Session .o, 38
4.3 Sample Check In Session with NotfiCationcoooivii i 41
4.4 Sample Check In Session with Intervening Check In .o, 43
4.5 Sample DFDMERGE Session with Error Policy Checking ..o 46
8. CONCIUSION oot 51
5.1 Assessment of VS for Version Management ..o, S1
52 Assessment of Need for Version Management. ..o, 54
5.3 Assessment of Need for Domain Specific Tools coiiiiiiiiiciniiini 56
REFERENCES .ot 58
APPENDIX A. VS LGDF2 File Version 110 ..o avee e 62
APPENDIX B. VS LGDF2 File Version 1.9. 1.1 oo 66
APPENDIX C. Users Manual for VS ..o eveeevee e, 71
APPENDIX D. UNIX Man Page for VS ..o e 89
Biographical NOLe ..o 91

vi

Figure

=

'
W

4-4

4-3

4-7

4-8

List of Figures

Title

SCCS DRl ittt et 7
RCS Deltas with Two Branches ..o S
]_GD/FZ Nerwork Example with Assumed Transitions ..o, 16
RCS Tree After Automatic Branching....ooooicicii e 26
An Example LGDF2 File v 34
The Single Process LGDEF2 DIAZIaAMm .oooiivviiiiciiicrs vt 36
The Top Level LGDE2 Diagram for VS, 37
A Portion of the dfd1-vIog FUE. ..o 40
VS LGDF2 Diagram Version 1.9 ..., 43
VS LGDE2 Diagram Version 110 . 43
VS LGDEF2 Diagram Version F.9. 1.1 e 45
VS LGDEF2 Diagram Version 1.11 . TR URPPPRO 48
The diffs.notaccepred File for Version 1.1} L, 49

V11

List of Tables

Table Title

3-1 The Workspace CoOmmAands ..o 20
3-2 The Version Management COMMANGS.........ccvivoiiiininiiiiiie e 21
3-3 The VS Ouiput TOKENS oo ieiieriri ittt e 23
3-4 The LGDF2 Diagram KeyWords ...t 32

vili

1. Introduction

Productivity within the sofiware engineering field has been 2 significant topic for
many years. Researchers, engineers and others continue to search for methods and
tools to improve productivity within this field. Fredrick Brooks has noted it is likely
that there is no "silver bullet” that by itself can provide order-of-magnitude improve-
ments in software engineering productivity [Brooks, 1987]. Thus, substantial gains
in productivity are likely to be the result of incremental developments in a variety of

areas.

In the past decades, we have witnessed many improvements in software technolo-
gy. The introduction of structured programming languages, user interface develop-
ment tools and other sofiware tools have helped improve individual software
engineers productivity. Recently, much energy has been expended in developing inte-
grated software development environments. Tools, such as Apollo Computer's Do-
main Software Engineering Environment (DSEE) [Leblang, 1983), and Sun
Microsystems’ Network Software Environment (NSE) [Miller, 1989], have shown
promise in helping improve software engineering productivity by providing assistance
during product development and release. Current research, using tools such as Cos-

mos [Walpole, 1988], has provided additional insight into these phases of a project.

On the other hand, studies of the software development process have noted that
close to three-fourths of all errors occur in the design stage of the product life-cycle
[Boehm, 1976), [Hamilton, 1976]. Robert Bailey has claimed that almost half the er-
rors made during the operaton of a new system are the result of faulty design deci-
sions [Bailey, 1983]). These errors often lead to major loses in productivity. Barry

Boehm has asserted that the cost to fix design errors duning the later stages of prod-

]

uct development is 50 to 100 ames higher than fixing them during the design stage
[Boehm, 1988]. The recent focus on rapid prototyping is in part due to the need to get
the requirements night early in the project life-cycle and thereby reduce the amoun: of
rework required later in the project [Boehm, 1987]. Penny Nii argued in a recent
monographl"thc coding crisis of the 1960’s and 1970's has turned into the design cri-

sis in the 1980’s" [Nii, 1990].

Major gains in software productivity are expected to occur, if gains in productivity
are achieved in all stages of software production. Better design tools, such as the
Visible Analyst Workbench and System Architect, have helped with the production of
diagrams for sauctured design methodologies [Nii, 1990]. The use of Data Flow Dia-
grams to represent software designs has become a standard part of many large sofi-
ware development projects. Yet, these tools and techniques do not by themselves
fulfill the designers’ need for accommodating, communicatning and controlling changes
during preduct design. For designers 1o be as productive as possible, the software
design environment must become a medium for communication which integrates peo-

ple, tools and infdrmation (Curtis, 1988].

1.1 Integrated Software Development Environments

Software development environments are being investigated by an increasing num-
ber of researchers and engineers. The number of tools for configuration management
1s growing almost daily. One type of tool used in all configuration management sys-
tems, the version management tool has been around for many years. For instance,
the Source Code Control System (SCCS) dates back to 1979 and the Revision Con-

trol System (RCS) was developed in the early 1980°s. These two tools have found

wide acceptance in the UNIX™ community. The recent development of tools like
DSEE, and NSE provides a means for integrating source code development and sys-
tems management. In general, these configuraion management tools provide the

glue to integrate version management with systermn constuction and maintenance.

The field of computer-aided design of mechanical and electrical systems has also
been examining its need for version management tools. In the most general sense,
the issues of version management in this relaied field are similar to the ones in soft-
ware design [Katz, 1990]. In each case, the changes in an object need to be tracked,
and controlled. Also, many of these changes must be addressed in a timely and ap-
propriate fashion by the affected development team(s). On the other hand, the arti-
facts produced by a chip designer, a programmer and a software designer are signifi-
cantly different. Thus, one should expect that there will always be the need for

domain-specific tools.

Although much has been written about version management tools and policies
needed during the development and maintenance of source code and chip designs, lit-

tle has been written about version management for software designs.

1.2 Integrated Software Design Environments

Software projects are growing in size and complexity. As the number of designers

on a project grows, the need for tools to assist in tracking, controlling and communi-

cating change also grows.

Version management of software designs is as important as the version manage-

ment of source code or customer documentation for a vanety of reasons. First, as at-

™ UNIX is a trademark of AT&T Bell Laboratories, Princeton, New Jersey.

tempts are made to increase software enginecering productivity through the use
incremental development, each incremental change is expected to be as error free as
possible. In addition, since this technique is characterized by a great many small
changes there is an increased need for communicanon between the affected engi-
neers. Second, as attempts are made to increase productivity through software re-
use, that software’s design becomes more imporiant. If a module is to be used effec-
dvely, each new project or engineer using the module will need an up-to-date and
easy to understand design for that module. And, when changes are made in the de-

sign and thus the module being reused, the effect of those changes can be widespread.

We are now seeing situarions where projects overlap so much that the design of
the sofrware being used by one project teamn is simultaneously being modified by an-
other project team. This need for concurrent read and write access to shared software
introduces new complexity into the management of software designs and source mod-
ules. Typically, these teams are trying to cooperate with each other, but often they
are forced into competing for shared resources. It has been asserted, that this compe-
tition can be reduced through the use of berer version management tools [Berliner,

1990).

The tools for version management need to be flexible and powerful becavse they
are needed by a wide variety of software design projects. Each project has somewhat
different requirements. Tools for version management and macking must meet both

domain-dependent and domain-independent requirements of these projects.

1.3 Outline of Study
This thesis reports on an investigation into the requirements for version manage-

ment. To aid this investigation VS, an example of a version management system,

was developed for use with Large-Grain Data Flow 2 diagrams. This study shows
that such a tool can be consoucted and could be used for version management. This
work indicates that the use of version management tools of this type at the design

stage could help increase the productivity of sofrware design teams.

Chapter 2 examines the current approaches to version management and structured
design/structured analysis. Chapter 3 presents the implementation of the version
management tool used for this research. Chapter 4 shows examples of how this tool
could be used in a large-scale software design effort. Chapter 5 gives a critique of the
accomplishments of this research and an assessment of how this research could fit in

with future investigations of software engineenng.

2. Current Approaches

While most research on improving productivity in software engineering has meated
the software design process and version management as distinct, this investgator
asserts that studying the overlap will help us in further improving productivity. Re-
search on version management of source code has shown that it can contribute t0 1m-
proved productivity during the code development and maintenance phases of a
project. It is thus expected that techniques of version management for software de-
signs could lead similar or greater improvements, if they were tailored for use in the

design process. These tools could assist in communication, control and maintenance.

21 Version Management

The following review of version management has been divided into three paris:
» areview of several text-based version management tools
+ an examination of several configuration management tools

« alook ar several tools for version management used within the computer-aid-

ed design field

This introduction to version management serves as the basis for the development
of VS. It also provides the basis for the analysis of the example scenarios used in

this research.

2.1.1 Text-based Version Management Tools

A significant early version management tool was the "Source Code Contol Sys-

tem (SCCS)" [Rochkind, 1975). This system was developed to:

+ reduce the amount of space needed to store multiple versions of a single

piece of source code
» ensure fixes that need to be applied to other versions are propagated properly
+ make changes readily identifiable
« provide for the cross reference of changes across modules
This tool provided these feamres by:
« storing all the changes to a module in a single file
+ giving programmers the means to protect source modules from updates
+ implementing an easy method for identifying versions

« storing who made the change, what the change was, when the change was

made, and why the change was made

This work inroduced the concept of software change “deltas." In SCCS, each time
a module is changed, the difference between the new version and rhe old version is

stored, see Figure 2-1.

/\
1.1] 1.2 \ / 1.3

Figure 2-1. SCCS Deltas.

SCCS’s protection scheme allowed programmers to set long term locks on particu-
lar delias; thereby, reduce the risk of someone damaging work on a delta that was in
progress. This scheme was expected to be supplemented by more sophisticaied pro-

tection offered by the operating system and project teamis,

SCCS proved exwemely useful to experienced programmers, who needed to ident-
fy how changes ingoduced problems into the software sysiems that they were devel-
oplng or maintaining. These facilities for documenting and identifying changes have

made SCCS very popular.

A second notable development in version management occurred with the develop-
ment of the "Revision Conmrol System (RCS)" (Tichy, 1982]). The goals for RCS are
very similar to those for SCCS. The improvements noted in RCS have proved them-

selves over the years that this system has been in use.

RCS introduced separate, reverse deltas to improve its retrieval performance. It
featured increased module protection by preventing two or more persons from putting
their changes on the same revision. RCS also provided a mechanism for branching of
deltas, see Figure 2-2. This branching mechanism has helped multple users and mul-

tiple projects work in parallel using shared modules.

This branching mechanism allowed the development of revision trees. The main
branch, i.e., thoge revisions numbered 1.1, 1.2, ..., 2.1, 2.2, etc., were called the rrunk.
The highest numbered revision on the trunk, i.e. the most current revision, 1s referred
to as the rop-of-trrunk. Each branch from the ounk is forked from a particular revision.
Thus, the numbering scheme for a branch includes the revision from which it emanai-
ed, the branch number, and its location on the branch. For instance, the revision
1.1.1.2 emanated from the revision 1.1, 1s the first branch from that revision, and is the

second revision on this particular branch.

RCS, like SCCS, provides a long term locking mechanism to prevent two or more
users from placing competing changes on a revision. It is expected that each user,

who will be making changes to a controlled module, will want to set a lock on the revi-

1op-of-trunk top-of-branch

1.3

1.2 1.1.1.1 1.1.2.1

1.1

Figure 2-2. RCS Deitas with Two Branches.
sion at the time of check out, make modificaiions and then release the lock ar the time
of check in. In RCS, only one user at a time can own the lock on a revision. Thus,

while the revision is locked, it 1s under exclusive control of the locker.

This locking mechanism provides users with a means 10 enforce a first-to-check-
out, first-to-check-in policy. This mechanism helps ensure that each revision will be
based on the revisions that preceded it, because if the user is required 1o acquire the
lock at check out and release the lock at check in, all changes will be based on the pre-

ceding ones.

This mechanism has proved very useful for projects that have users that tend to
step on one and another’s changes, or that have users who rarely need concurrent

update access to shared modules. This mechanism essentially assures that changes

10

done by each engineer are done with knowledze of all the preceding work. With this
mechanism, branching and merging of branches are rarely needed because each user
is working serially. The existence of a lock can also serve as a flag to others that

changes are to be expected.

RCS also provided a command, rcs -/, which allows a user to place a lock on a revi-
sion. Thus, a person could do 2 check out, make changes, place a lock and then do a
check in. This means that even though a file is locked at the time of check out, the us-
er can proceed but then it is up to the user o ensure that his or her changes do not un-
knowingly "undo" previous work. In this case and when merging changes from
branches, checking the changes for errors and conflicts can somerimes be a non-trivial
task; because, the changes may be very subtle causing subtle execution errors, or the
size of the change may be very large, in which case it can be difficult 1o separate the

ymportant changes from the chaff.

2.1.2 Configuration Management Tools

Recently version management has been studied within the auspice of configuration
management. Configuration management is concerned with system construction, ver-
sion management and the management of derived objects and releases. Systems,
such as Cosmos, DSEE and NSE, have been developed to provide version manage-

ment mechanisms within an integrated software development environment.

Apollo Computer’s "Domain Software Engineering Environment (DSEE)"
{Leblang, 1984] was one of the first systems to provide this integratuon. Leblang
pointed out that in large complex development projects that may span muluple
projects, users need to be able to isolate themselves from some changes and at the

same nme share as many modules as possible [Leblang, 1987). DSEE also gave us-

11

ers the ability to specify who 15 to be notified when changes are made. This becomes
very useful when project team members need to know abourt updates that affect them
at the time they are made. This umely communicaton of changes can reduce the time
wasted in working with an out-of-date module. In DSEE, the change in the local
copy of the system could be made automatcally by a cooperating program or at the

discretion of the affected user.

The work on "Cosmos,” an integrated sofrware development environment
[Walpole, 1988], [Walpole, 1989], addressed the integration of version management
tools with concurrency conwrol. Cosmos provided a mechanism for long term mansac-
tons based on cooperation rather than competition. Whereas, DSEE provided dis-
tributed, concurrent read access to shared modules, Cosmos also provided a mecha-
pism which gave muluple users concurrent update access to shared modules. Using
an immutable object model, Cosmos was able to guarantee the consistency of these
long term transactions. Immutability was achieved by leaving old versions un-
touched and always creating a new version when a change was made. This process

was labeled "ransformarion.”

The use of immutable objects gave Cosmos two significant advantages over previ-
ous systems. First, Cosmos was eminently suitable for supporting muldple users
and versions because of the concurrency control provided by the wansaction mecha-
nism. Second, the problem of consistency between related objects was reduced to a
problem of naming groups of consistent immutable versions of objects. A configura-
ton object is provided by Cosmos to name groups of objects which define consistent

domains [Walpole, 1989).

Like each of these previous systems, Sun Microsystems® "Network Software En-

12

vironment (NSE)" provided a set of network-based version management commands.
Thus modules could reside anywhere in the available workspace. A user of NSE
works with design objects, typically files, and a configuration which is a collection of
one version each of the configuration's design objects. Object management in NSE
1s based on a copy-modify-merge paradigm. Locks are not used because modifica-

tions are merged onto the controlled original in a serial fashion.

A large number of other systems have been proposed and implemented in the past
few years. Systemns, such as CVS II [Berliner, 1990], and Software BackPlane™
[Black, 1989], have implemented configuration management and version managernent

features simular 1o the ones menuoned above.

2.1.3 Version Management Tools for Computer-Aided Design

The field of computer-aided design (CAD) has shown considerable interest in ver-
sion management of elecmical and mechanical designs. Like software engineers,
these designers must manage large, complex, interrelated objects that change over
time [Katz, 1990]. Although the artifacts being manipulated by each of these users
may be unique, their version management SyStems must meet similar requirements

for storing, remieving and communicating changes.

Many version management schema for CAD artifacts have some notion of a work-
space, i.e., "a named repository for design objects” [Katz, 1990]. A workspace can
be either priv-éte, shared or archival. A private workspace belongs to an individual de-
signer. A shared workspace 1s vsed by group of designers working in paraliel. An ar-

chival workspace is used for storing and retrieving versions from public stores.

™Sofrware BackPlane is a wademark of Atherton Technology, Sunnyvale, California.

13

Change notification is also imporant 1o large CAD projects. ORION [Banerjee,
1987], a prototype object-oriented database system, was developed at the Microelec-
monics and Computer Technology Corporation. ORION contains an change notifica-
tion mechanism that has been integrated with the object-oriented database [Chou,

1989].

ORION incorporates both message-based and flag-based techniques for change
notification. When the flag-based approach is used, a data stmucture is updated and
the affected users are not noufied of changes until they access the object. With the
message-based approach, users are noufied of changes as they occur. With this later
approach the users can further select either immediate or deferred notification. Final-

ly, with this approach the notification can be based on the type of change made.

Version Server developed at the University of California, Berkeley provides ver-
sion management services for the electrical CAD designs [Chang, 1989]. It orga-
nized design elements into collections of component hierarchies and version histories
and provided for equivalences. This system’s interface was quite similar to thar of
NSE but did not provide as comprehensive an environment as DSEE or NSE. It did
however, provide facilities to handle a much wider range of data types than these oth-

er systems.

Many others have been working on the problems of configuration and version man-
agement of computer-aided design artifacts. The recent monograph by Randy Katz
presents a survey of the version models developed for the computer-aided design

field [Katz, 1990].

14

22 Motivation for Management of the Design Process

Smuctured Design and Swuctured Analysis techniques have been advocated as a
method for managing the software design process since the middle 1970's. Early pro-
ponents of software engineering, such as Victor Basili, Barry Boehm, Edward Your-
don, have generally agreed that these techniques can help increase the producdvity of
software designers [Basili, 1978], [Boehm, 1976], [Yourdon, 1979], [Zelkowitz,
1979].

An early souctured design tool PSL/PSA (Problem Siatement Language/Problem
Statement Analyzer) [Teichroew, 1977] proved to be effective for formalizing system
requirements of large business-oriented applications. Users experiences with this
systern have shown that the systern helped force discipline on the designer [Reifer,
1978]. In addidon, it assisted in the identification of errors in requirements specifica-

tions.

Whereas PSL/PSA was primarily textual, SADT™ (Structured Analysis and De-
sign Technique) is a manval, hierarchical, grapbical system for software design
[Ross, 1977). Users of SADT have found it beneficial, allowing the end-user (ie.,
someone without a formal software background) to evaluate designs [Combelic,
1978]. This evaluation can help decrease the cost of sofiware and increase overall

qualiry. Often the diagrams proved more useful than the accompanying prose.

The use of Data Flow Diagrams (DFDs) to reduce the complexity of the software
design effort has been advocated by many over the years [DeMarco, 1978], [Page-
Jones, 1980], [Babb, 1982]. The early research on DEFDs [Babb, 1982], (Babb, 1984}

has shown that they could reduce the design errors made and help in producing more

SADT is a wademark of SofTech, Inc., Waltham, Massachuserts.

efficient programs. This sysiems approach to design has now become widely used

throughout the software engineering field.

Further formalization of the Dara Flow paradigm has been introduced by David Di-
Nucci and Robert Babb as Large-Grain Data Flow (LGDF) [DiNucci, 1988] and
LGDF2 [DiNucci, 1990). Large-Grain Data Flow 2 (LDGF2) is a declarative graph-
ical language in which a program or software Sysiem is represented as an oriented
graph. Processes are represented as circles. Dataswitches are represented as verti-
cal rectangles selectively connected by pairwise arcs. The dataswitch contains the
data which is cross referenced to the data dictionary associated with the design and
the read/write permissions for thar dataswitch. An example network is shown in Fig-

ure 2-3,

LGDF2’s language syntax 1s based on the F-Net model of Portable Parailel Soft-
ware Engineering [DiNucci, 1990]. Each F-Net contains a set of variables!
("dataswirches"), a set of operations ('processes”) and set of instructions (“process

calls") which reference both operations and variables.

An F-Net variable contains both the imperative-language variable and the finite-
state machine. Thus each variable possesses both its dawa state and its control
state. A data state is equivalent to the data value in a madidonal programming lan-
guage. A control stare is equivalent to the current state of an element within a finite-

state machine.

An F-Net operation contains a signature and an implementation. The signature
provides access to the variables connected to the process. It also identifies whether

the operadon will use each variable for reading, writing, both reading and writing, or

! Variables are often referred to as datapaths or switches.

16

Process Arc Dataswitch

/c’ad neither

and read nor

\x:rite write

Figure 2-3. LGDF2 Network Example with Assumed Transitions.

neither reading nor writing. Finally, the signature contains the allowed mansitions for

each variable.

Each F-Net insmuction provides a mechanism for instantiating an operation, by
binding each of its arguments to an F-Net variable and each tansition to that van-
able. The instuctions thus control when an operation can be invoked by naming the

contro! state of each variable to which it arguments are bound.

The research on LGDF has shown it to greatly simplify debugging complex parallel
programs [DiNucci, 1988). This new formalism shows much promise for improving

productivity in the production of parallel processing software and algorithms.

2.3 Incremental Development and Software Reuse

The promotton and use of incremental development [Boehm, 1981) of large com-

17

plex software systems places even more burdens on the design phase of projects.
Developing software in increments forces designers to scrutinize each module at ev-
ery siep during its development. With this approach, each increment of software that
1s designed and implemented must fit together with sofrware thar will be designed
and implemented in the future. Because most engineers are better at modifying that
which is already designed than they are at predictng the future, it is essennal that
the design team be able 10 modify designs and modules quickly and painlessly as pos-

sible.

"Advancemanship" techniques of software development (Boehm, 1981] require de-
signers and programmers to specify the software scaffolding that is needed for any
large project. This scaffolding can include "dummy design elements" and "dummy
modules” which will be completed later in the project. These incomplete designs and
modules are used until there is a clear and present need for more complete and thor-
oughly analyzed designs and modules. This paradigm forces the project team to rack
and conwtrol the versions of the objects being used. Without version management,

modificanions may be lost or modules may be used which are out-of-date.

Today, there is a concenmated effort within the software engineering community to
increase the amount of software rense (Boehm, 1987], [Boehm, 1988]. A module
that can be shared across projects is a module that increases the productivity of the

h project using that module. On the other hand, if a bug is discov-

second through n
ered in a shared module, its effect also goes across projects thereby having the oppo-
site effect. This software reuse is further complicated by the need to modify modules

as the requirements for those modules change. As modules change, some projecis

will need the changes, and some projects are going to want to contnue to use their

18

own version. Thus, the design of that particular version is as important as the design

of the most current version or any other version on the change hierarchy.

19

3. Implementation

The work reported in this thesis is based on the version control tool called RCS
[Tichy, 1982]. RCS is available on many implementations of the UNIX Operating
Systern. VS, as a prototype version management tool, extends RCS to handle the is-
sues involved with large-scale, mulu-person, multi-project, network-based software
deveiopment. VS provides both domain-independent and domain-dependent facilites

for version storage, contol and macking.

This implementation of VS was used to study two questions. First, can a domain-
spectfic tool for distibuted, optimistic version management be built on top of a readily
avalable version control tool? Second, will the use of such a tool improve productivity

in software engineering’?

3.1 Overview of VS: An Optimistic Version Management System

VS is a user program wtitten in the C programming language thar runs under
UNIX. It uses the UNIX sysiem call interface mechanism 1o issue the RCS com-
mands. For instance, VS can issue the RCS check in (ci) and check out (co) com-
mands. VS uses the mechanisms provided by RCS for storing and retrieving text, log-
ging changes, idenufying versions and conmolling access to files under version

management. It also extends the basic RCS capabilities. These extensions are de-

scribed in detail below.

VS uses an interface’ similar to RCS except that the interface was formalized to

allow 1t to be used by either end-users or by other programs using the same protocol.

1 For this prototype a simplified user interface protocol was used. This protocol
was adopted to make the development of VS easier.

20

The interface protocol consists of either workspace commands or version manage-
ment commands. The User Manual for VS is provided in Appendix C. A UNIX man

page for VS is given in Appendix D.

The remainder of this overview of VS is divided into three parts. First, the work-
space commands are presented. Second, an overview of the version management

commands is given. Third, VS’s output protocol is presented.

3.1.1 Workspace Commands
The workspace commands provide 2 limited workspace control mechanism which
allows the user to query and connect to the available workspaces. The workspace

commands are given in Table 3-1.

Command Usage

PROJECT? Query the available workspaces
PROJECT: name Connect to a worksvace
GAMEQOVER End the program

Table 3-1. The Workspace Commands.

The PROJECT? command provides a mechanism to query the available workspac-
es. The GAMEOVER command is used to exit from the VS program. The PROJECT:
command takes the single argument, i.e., the name of the workspace one wishes to
work in. If the workspace exists, VS places the user in that workspace. If the work-

space does not exist, VS can create the workspace and then place the user in it.

The PROJECT: command is implemented using the UNIX system call chdir. In

21

this prototype, a workspace is a UNIX directory. This simplified workspace mecha-

nism gives VS the ability to connect to either local or remote file systems.

The workspace comrnands were given a fixed protocol. Each identifier is exactly
eight characters long to simplify parsing. The argument for the PROJECT : command
follows the identfier and is expected to start with the argument separator, the space
character (ASCH SP), and end with the command separator, a camage return (ASCII
CR). The other commands are likewise terminated with a carmage return. Once VS
receives the command separator, it will parse the input Line and either report a pars-

INg eITor or attempt 1o execute the command given.

3.1.2 Version Management Commands
The version management commands provide access to the entire functionality of
RCS with the exception of the rcs command. The version commands implemented

are presented in Table 3-2.

Command Usage

CHECKIN- arguments Store a new version

CHECKOUT arguments Retrieve a version

DEDMERGE arguméents Merge a branch on to top of trunk
GAMEOVER End the progran

RCSDIFF~- arguments Compare two versions

RCSLIST- Query the controlleg files
RCSMERGE arguments Merge differences on to a file
SENDRLOG arguments Query the status of a file

2272222272 Return to the previous workspace

Table 3-2. The Version Management Commands.

o
(N

The version management commands were given a fixed protocol. Each identifier is
exactly eight characters long to sirnplify parsing. The arguments for a command are
expected to start with the argument separator, the space character (ASCII SP), and
end with the command separator, a carriage return (ASCII CR). Once VS receives
the command separator, it will parse the input line and either report a parsing error or

attempt to execute the command input.

The version management commands extend the capabilives of RCS in several sig-
nificant ways. Two of the commands, RCSLIST- and DFDMERGE are completely
new with VS. The RCSLIST- command lists all of the files in this workspace that
are under version management. The DFDMERGE command will be explained in detail
later in this secton. The improvements CRECKIN- and CHECKOUT offer over co and
ci from RCS are presented in derail later in this section. The GAMEOVER command is

both a version management command and a2 workspace command.

The other commmands RCSDIFF—, RCSMERGE, and SENDRLQG are idenncal in func-
tionality and interface to the corresponding RCS commands rcsdiff, rcsmerge,
and rlog. They provide access to the normal functionality of RCS without impacting
the extensions 10 RCS made by VS. These VS commands also further extend the
equivalent RCS commands by providing for a simplified input and output protocol. The
purpose of this simplificanon is to make it easier for the VS commands 10 be issued

and understood by other programs thus extending the functionality of VS.

In order to maintain the immutability of conwolled files, the RCS command rcs
was not implemented. In particular, the —o option of the rcs command allows the user
to delete particular revisions. With RCS, this action is not recorded and can not be

undone. Since, a deletion could be demimental to the operation of VS, this functional-

23

ity is not supported. Also, since the functionality provided with the rcs command

was not needed by this study, the entire command was not implemented.

3.1.3 Output from VS
A simplified output protocol consisting of a set of output tokens and strings is used

in this prototype. These tokens are shown in Table 3-3,

Qutput Usage

VPROMPT> VS is expecting an input

VMESSAGE string An informative message follows

VSERROR- string An error message follows

22222222 There are no more VMESSAGE or
VSERROR- strings

Table 3-3. The VS Output Tokens.

This simplified protocol provides the user and programmatic interface for VS. The
VPROMPT> indicates that VS is awaiting input. This input could then come from el-
ther a user or a program. The VMESSAGE response by VS indicates that the following
text, up until the 22222222, is an informational message or uninterpreted text from
the RCS commands or other UNIX system calls. The VSERROR response by VS indi-
cates that the following text up until the 22222222 is an error message and that the

last command has failed.

3.2 Extension of RCS Check Out

The co command in RCS remieves a revision from a RCS file and places it in a

working file. In currently available implementations of RCS, there is no mechanism

provided to record check outs. Thus. there is no means to inquire about who is using
or who has used a particular version of a RCS file. The RCS locking mechanism will
indicate whether a particular version s Jocked, and by whom if it 1s locked. It howev-

er does not indicate when the lock was applied.

The CHECKOUT command in VS provides the currently available options of co
along with 2 mechanism to record check out transactions. This command is used o
retrieve revisions from a RCS file. It also logs the successful CHECKOUT commands

issued.

This prototype has limited the CHECKOUT transaction to a simple linear sequence
of actions on a single file. The actions taken are: lock the status file, issue the RCS
co command, wait for the completion of the command, if the co command was suc-

cessful, record the check out and finally, always unlock the status file.

The record of check outs is stored in a status file. Files with the suffix -vlog ia
the RCS directory are the depository of VS status history. For instance, a working
file foo.dfd will have a RCS file foo.dfd, v and a VS status file foo.dfd-viog
accompanying it, if it is under VS contol. Under RCS, the versions of the conmolled
file are placed in the ,v file. In this implementaton the RCS directory or link is
assumed o be directly below the current working directory, i.e. the workspace, as set

by the PROJECT : command.

The VS status file contains a record of each successful check out. The record of the
check out contains the user namne, the date, the time, and the version number with the
indicator that this was a check out transaction. The status file is considered immuta-

ble and is updated via a transformation mechanism. This wansformauon 15 done by

v
W

VS appending the latest record on the end of the file. No records in this file are ever

intentionally deleted by VS.

To ensure that the check out transacdon is atomic and no records are lost because

of concurrent! writes 10 a status file, the status file is first Jocked, updated, and then
unlocked. VS uses Lhcl UNIX system call flock to implement this single exclusive
‘lock mechanism. In RCS, no short term locking was implemented because the as-
sumption was that the long term stict locking mechanism would be sufficient for con-

currency control.

3.3 Extension of RCS Check In

The RCS ci command stores new revisions into the RCS file. In the implementa-
tions now available, when locking is set to "strict” (which is recommended [Tichy,
1682]), the user must first lock the tip of an existing branch before checking in the
new version. This requirement for long term Jocks has been shown to lead to conflicts

when muldple users have need for modifying shared resources [Walpole, 1988].

The VS CHECKIN- command provides the functionality of ci along with a mecha-
nism to provide automatic branching rather than requiring "smict” locking. Durng a
check in, VS looks at the status file for any intervening check in between the version
to be checked in and the current top of tunk. If no intervening version is found, VS
can append this version onto the top of unk. For instance, if the current top of tunk
is version 1.1 and version 1.1 is the current working version then this working file can

be checked in as version 1.2, On the other hand, if an intervening version is found

! More powerful concurrency conmol mechanisms have been suggested and imple-
mented by other researchers [Miller, 1989], [Walpole, 1989].

26

then VS will automatically create a new branch from the version of the working file.
For instance, if the current top of trunk is version 1.2 and the working file is version
1.1 thea VS will create a version 1.1.1.1, as shown in Figure 3-1. This branch num-

bering scheme is explained in detai} in Chapter 2.

1.2 L1.1.1

1.1

Figure 3-1. RCS Tree After Automatic Branching.

This automatic branching mechanism allows users to adopt a first-come, first-
served check in policy as opposed the first-to-check-out, first-to-check-in policy en-
couraged by RCS. Thus, with VS, multiple users are allowed to have concurrent write
access 10 shared modules since concurrent modifications can proceed because version

serializadon and version consisiency are maintained without need for locking.

Autornatic branching ensures that each version is consistent to the version it was
created from [Walpole, 1989]. In the above example, both versions 1.2 and 1.1.1.1
were based on version l.1. These versions are then parallel but consistent with re-
spect to version 1.1. Also, the serialization of the changes is also maintained since

the merging would necessarily occur after the intervening check in.

Using the above example, the changes from version 1.1 to version 1.1.1.1 could be

merged on to the project’s branch, i.e., the top-of-trunk. On the other hand, if the

27

branch 1.1.1 were 10 be used as the project branch, then the changes from version 1.1
to version 1.2 could be merged on top of version 1.1.1.1. In either case, the task of

merging 1s done at the discredon of the user.

This is an optmisdc mechanism for three reasons. First, it assumes that the
merging required can be completed sansfactorily. In cases, where it is expected that
the merging will not be possible, the user can elect to use the first-to-check-ourt,
first-to-check-in mechanism provided with RCS. On the other hand, often the merge
can be completed quite easily either by hand or with help from tools, such as
DFDMERGE implemented as part of VS. Second, conflicts during merging are expected
10 be rare (Berliner, 1990]). In most cases, the versions created are going to be the
result of parallel, non-overlapping development. For instance, two users may want to
change the file £oo. c but it less likely that they both will want to modify the same el-
ement of that file. Finally, the forced branching is expected to rarely be needed
[Berliner, 1990]. In cases where work is being done serially, no overlapping updates
would be noted and thus forced branching would not be used. In addition, locking

would not be needed since no concurrent update conflicts would be noted.

It is believed thar this optimisnc check in policy will encourage more parallel devel-
opment, and thereby increase productivity for a varniety of reasons. First, users will
not be forced to wait for any locks to be released before checking in their changes.
This policy should also encourage users to make many, small changes which is en-
couraged by the incremental development methodologies [Boehm, 1981]. Finally,
locks will not have to be broken, (released by the super-user). With RCS, a user can
keep a version locked indefinitely and thus a simation can arise which requires that

the lock be released arbimrarily. This situation can never arise with the use of this op-

28

timistic mechanism.

Since VS has a record of each successful check out, a variety of change notification
policies based who is currently accessing a particular version could be enforced auto-
matically. In this prototype, a mechanism is established that automatically notifies
the user at the tme of check in of other users who have check outs logged against the
version that was used as the basis for the new version. It is then up to the user to

notify the other users that the modification has been completed.

More sophisticated change notifications mechanisms could be built on top of VS
using policy enforcing systems such as FOREST (Garlan, 1990]. For instance, one
could use FOREST to monitor the output from VS, and then have FOREST automati-
cally notify users of changes based on the policy esablished. Systems, such as ORI-
ON [Chou, 1989], have provided other change notification mechanisms, such as

resmicting the mail messages to the persons on the notification list for each version.

Like the CEECKOUT command, the status file is updated upon successful conclu-
sion of every check in. The same locking and transformation mechanisms developed

for CHECKQUT are used by CHECKIN-.

34 Extension of RCS Merge

The RCS commands, rcsmerge and co -3, provide a means for incorporating
changes between two versions into a third version. In the case of rcsmerge, the
modification is don¢ on the working file specified. Whereas, with co -3, a working
file is created as result of the command. In both cases, the modifications are done au-
tomatically. It 1s then up to the user to decide how to proceed once the working file

has been updated or created.

26

A typical command sequence for co -3 would be:
co -11.3 —-31.2.:1.2.1.1 foo.dfd

This would cause the version 1.3 to be locked and the changes from version 1.2 1o
version 1.2.1.1 would be applied to version 1.3. The working file could then be exam-
ined by the user. The user then has the option of accepting, rejecting or modifying the

working file.

In current versions of RCS, this examination must be completed by hand. Typical-
ly, @ user would do a comparison of version 1.3 to the current working file to see if the
modifications meet the requirements and policies of the project being worked on. This
examination can be exiremely labor intensive. It can also be error prone; especially,
when the examination requires a human to check a large number of subtle differences
that often are result of the merge. In addition, this examination often takes an expern
who can distinguish between changes that are cosmetic and those that could signifi-

cantly impact the project.

In VS, a new command DEDMERGE has been implemented which provides assis-
tance in this merging process. The DEFDMERGE command executes a RCS co -7
command and checks the differences between the working file and the current top-of-
munk version. This implementation provides a mechanism to enforce a policy on
which changes to accept, which to reject and which to refer to human authority. This
mechanism is provided in the form of a decision wee. The decision to accept, or reject

each portion of a change is based on the hard-coded checking done by VS.
In the prototype implementarion, the following policy 1s enforced:

= Accept all changes made to comments within the LGDF2 file

30

= Reject additions that leave a process with no connected dataswitches

= Reject additions that leave an arc without both a valid process and a valid

daraswiich
< Rejecrt additions that leave a switch with no arcs connected to it
= Notfy the user if any change 1s not covered by an existing decision

Although this mechanism is implemented within VS, it is easily modifiable based
on the needs of the end user. This could be done by editing the decision tree portion
of VS and recompiling VS. Also, a more powerful and flexible mechanism could be de-
veloped on top of VS using a policy enforcing system such as FOREST [Garlan,
1990).

Once the automated merge, 1s completed, the user then has the option of checking
the modifications in, modifying the changes, or rejecting the changes, based on the in-
formational messages that are retummed. The user could also have another program

monitoring the output to increase the amount of automatrion in this process.

In the Curren't implementation, the rev opton to the DEDMERGE command is a
branch version number such as 1.2.1.3. VS uses the version number given to deter-
mine the version number of the munk version from which the version was forked and
checks the differences between the version given and the wunk version. The changes
are then applied to the top of the trunk for the named file provided. This should be

modifiable to provide more flexibility by using the same techniques of co -3 which

lets the user specify all three versions.

The generation of differences is done by the rcsdiff command and stored in a

temporary file for parsing by the automated decision tree mechanism in VS. The ac-

31

cepted changes are left on the top of trunk version of the working file. The changes
that are rejected are placed in an ASCII file using a format compatible with the UNIX

patch program.

The choice of the particular reject decisions in VS show its ability to recognize er-
rof conditions specific to a software design method, in this case Large-Grain Data
Flow 2. The accepting comments decision shows the ability of VS to differentiate the
comments from other types of data. Finally, the "notify" decision shows the abiiity of

V'S 1o recognize changes that need to be handled by a human.

35 The LGDF2 File

The LGDF2 file, i.e., a contolled module, is an ASCI file. It contains the repre-
sentation of a LGDF2 diagram which was created either by a design aid, such as a di-
agram editor, or by a human designer. The text in the file contains the LGDF2
representation data and the RCS identification markers. VS requires the markers
SHeader:$, SRevision:$, and S$Source:$ for intemal use. The use of the ad-

ditional markers is recommended for design maintenance.
The choice of an ASCII file was made for two reasons:

1) An ASCII file could be edited by a human designer and shared among a varety

of different computers and design tools.
2) the ASCII file could be easily stored and manipulated by RCS.

There are three classes of LGDF2 data representation tokens in the file: key-

words, comments and strings. The keywords are shown in Table 3-4.

Token Meaning/Usage

ccccceccec End of the LGDF2 diagram data
CENTRXY- argument Center XY position

DNUMBER- argument Dataswitch number

ENDXY~-- argument End XY position

HEIGHT-- argument Height of a rectangle
LINE-——-— Arc type specifier

LPNUMBR- argument PNUMBER for a connected arc
LSNUMBR~ argument SNUMBER for a connected switch
NAMESTR- argument Name string

NODE~-~-- argument Diagram node type specifier
PERMISS- argument The read/write permission
PNUMBER~- argument Process nuﬁber

PROCESS- Process type specifier
RADIUS-- argument Radius of the process
SNUMBER- argument Dataswitch number

STARTXY~- argument Staxt XY position

SWITCRHR-- Dataswitch type specifier
TITLE--- argument Title of the diagram

ULEFTXY- argument Upper left XY position
WIDTH--- argument width of a rectangle

22222222 End of the LGDF2 diagram file

Table 3-4. The LGDF2 Diagram Keywords.

33

The keywords are expected to-be at the beginning of a line of text and some can be
followed by a string. The keywords are all eight characters wide. A swing is separat-
ed from a keyword by one or more spaces and terminated with a carriage retumn
(ASCII CR). Comments start with a # on the beginning of a line and are terminated

with a carriage retum (ASCII CR).

The LGDF2 dama is separated from the RCS markers by the keyword CCCCCCCC.
The keyword 22222227 indicates the end of both the LGDF2 and RCS markers. The
keywords NODE——---, LINE--—-, PROCESS- and SWITCH-- are a kind of type
specifier. Each type specifier contains a series of keywords, swings and comments.
An example LGDF?2 file is shown in Figure 3-2. The format for each type specifier is

presented in the user’s manual in Appendix C.

This implementation of the LGDF2 diagram as an ASCII file allowed VS to be de-
veloped without the need for access to a design editor for creating LGDE2 diagram
files. It also provided VS the advantage of being able to use the RCS tools and the
UNIX tool patch. Finally, parsing of the file was simplified by the use of the fixed

format for the LGDF?2 data.

34

NODE—----
TITLE--- Test Program
ULEETXY- 100 100

#

PROCESS-

CENTRXY- 180 18¢
RADIUS-- 50
NAMESTR- Process ¥ 1

Process # 1

ULEETXY- 130 170 Process
PNUMBER- 1.1 1.1

ULEFTXY- 150 130

1

LINE-——-

DNUMBER- 1.1

STARTXY- 230 180

LENUMBR- 1.1 1.1

ULEFTXY- 240 190 Arc
PERMISS— AL

ENDXY-—- 250 180

LSNUMBR- 1.1

PERMISS- AR

#

SWITCH--

ULEETXY- 250 150 swicen

WIDTH--— 100 il .
HEIGHAT-- 200 Dataswitch
TITLE—--- Switch # 1 or Variabie
ULEFTXY- 260 170

SNUMBER- 1.1 11

ULEFTXY- 290 390

CCccceeece

SAuthor: adamsc $

Spate: 90/11/04 16:08:01 $

SHeader: dfdnew,v 1.1 90/11/04 16:08:01 adamsc Exp $

Slocker: $

Slog: dfdnew,v $

SSource: /usr/test/OGC/THESIS/szc/FROJZLCT.dfdone/RCS/dfdnew, v §
$5tare: Exp $
SRCSfile:
$SymbolicNames:
$CheckoutlLog:
SAccesslist:
2222272272

4 0 4» »

Figure 3-2. An Example LGDF?2 File.

35

4. Example VS Usage Scenarios

The current VS prototype can be used as a general-purpose tool for version man-
agement of shared, network-based software files. It has features which provide both
domain-independent version control built on top of RCS, and specific support for
Large-Grain Data Flow 2 diagrams. Expenence with VS in this design development
environment has led to some general recommendations for its application to larger de-
signs and other environments. The primary motivanon for studying the use of this
version management tool is to determune the applicability of this class of tool o the
larger problem of version management of software design development. The use of
LGDF?2 is particularly suited for this analysis since it is relarively simple, but con-

rains elements common to many other software design techniques.

In this example, the pamicular elements of the design are made up from the ele-
ments of the VS program iiself. The choice of this example provided a means for ex-
amining the interplay between the version management system and the design
process when using a top-down structured design methodology. In order to demon-
strate the effects of muliple designers using this pamicular ool concurrently, several
of the examples use fictitious users “ftest” and "adamsc”. This allowed the testing

and evaluation of VS in more depth even though there was only one designer for this

implementation of VS.

4.1 The Structure of VS

VS began 1ts life in the way advocated by most top-down smuctured methodolo-

gies as a single process with no hierarchy. This single process LGDF2 diagram is

shown in Figure 4-1.

creased and the development progressed, arcs, dataswitches and processes were

added and modified. The LGDF2 diagram for the current version of the VS prototype

ts shown in Figure 4-2.

36

Then as the designer’s knowledge of the requirements in-

stdin

1 stdout

Figure 4-1. The Single Process LGDF2 Diagram.

37

VS Top Level Diagram stringl

stning2

messages
to the user

user

Input Vs

commang

string:

version
management
command
parser

workspace
command
parser

string

smngbd

dog

eammand

stdout

design

ﬁJP,

Figure 4-2, The Top Level LGDF2 Diagram for VS.

38

The example interactions presented in this chapter use the following formar:
« The column on the left shows the input and output from VS.
« The column on the nght provides comments about the interaction.
In the left-hand column, all output from VS is shown in bold-face, all ourput from
the UNIX operating systerm is shown in italics, and user or program input is shown in

normal type.

4.2 Sample Check Out Session

A typical VS check out transaction would take place as shown below.

script started on Sun Oct 14 13: 18 . 56 script is a program in UNIX to record
1990 everything printed on the terminal.
% whoami This is a program to print the

current user name.

adamsc

YD v's This 15 the name of the program.

VMESSAGE vs: started This 1s a Informational message
indicating VS has started successfully.

VPROMPT> PROJECT? The VPROMPT indicates VS awaiting

VMESSAGE vs: dfdone input. The user has asked VS to list

VMESSAGE vs: dfdtwo the available workspaces. The

response is two informational
messages that workspaces dfdone and
dfdtwo are available.

22222227 The 277777277 indicates the end

VPROMPT> PRCJECT: dfdone

VMESSAGE

22222722%

VPROMPT>

VMESSAGE

VMESSAGE

vs: PROJECT.dfdone

CHEZCKOUT dfdl

co: RCS/dfdl,v —-—> dfdl

co: Revision 1.9

39

of the informational messages.

The user has asked VS to connect to
the project workspace named dfdone in
the directory directly below the
current one. Note that the choice of
the name “dfdone" is arbimary and
with VS’s access (o all the NFS
networking capability, the user could
have selected any workspace in the
currently mounted directory space.
The VMESSAGE contains an
informational message indicating the

workspace to which VS has connected.

The user has asked VS to check out

the LGDF2 diagram dfdl.

The VS command echoes the RCS co
command generated output to make the
transinon to VS easier for users
familiar with RCS.

Like RCS, VS defaults to a check out
on the top-of-tunk . It is likely thata
higher level program or the user may

want to change this policy and if

40

needed, the user can employ any of the
RCS capabilities to implement
different policy.
VMESSAGE co: done The RCS co command output indicating
that the co was successful. \
222222272 The end of the CHECKOUT messages.
VPROMPT> GAMECVER The user has asked to exit from VS

and remain in the current workspace.

In the above sample check out, the user was adamsc. For purposes of this test,
the second user rest issued the same command sequence. A poriion of the resulting

dfdl-vlog file is shown in Figure 4-3. Note that the check outs for both adamsc and

co Sun Febp 25 11:11:41 1990 adamsc 1.6
ci Sun Mar 4 12:;22:19 1990 adamsc 1.7
co Fri Oct 5 16:40:53 1990 test 1.7
ci Fri Oct 5 16:47:34 1990 test 1.8
co Fri Oct 5 16:48:17 1950 test 1.8
co Sun Oct 14 13:15:09 1990 rest 1.8
ci Sun Oct 14 13:16:24 1990 cest 1.9
cli Sun Cct 14 13:20:21 1990 adamsc 1.8.1.1
co Sun Cct 28 13:10:45 1590 adamsec 1.9
co Sun Oct 28 13:22:05 1590 test 1.9

Figure 4-3. A Portion of the dfd1-viog File.

test were recorded in the —vlog file for version 1.9 in case a project wants to track
who is using or has used a particular version. In RCS no record of these transactions
is kept and thus there is no means to identify who is using any particular version of

the design.

41

4.3 Sample Check In Session with Notification
A rtypical VS check in transaction with multiple persons having the top-of-munk

checied out, but no intervening check in, is shown below.

scripz started on Mon Oct 15 12: 18 : 56

1990

% whoami

adamsc

% vs

VMESSAGE wvs: started

VPROMPT> PROJECT: dfdone

VMESSAGE vs: PROJECT.dfdone

2Z2ZRZZ7Z7Z

VPROMPT> CHECKIN- dfdl The user has asked VS to check in
the LGDF2 diagram dfdl.

VMESSAGE ci: RCS/dfdl,v <—— dfdl VS echoes the outputs generated by
RCS ci.

VMESSAGE ci: New revision: 1.10; Like RCS, VS defaults to a check in

previous revision: 1.9 on the top-of-runk . If a higher
level program or a user wants to
change this policy, all the RCS
capabilities of branching are available
within VS.

VMESSAGE ci: Notify user test The VS command has read the -viog

Has check out of version 1.9 file and notes that either another

42

program or the user should notify the
user fest that this modification has
taken place.

22222222 The final CHECKIN- message.

VPROMPT> GAMECVER

Because the VS check out transaction for resr has been recorded in the —-vliog file
for the dfdl design, the VS CHECKIN- command can notify either the user, or another
program that others may be interested in the modification that has taken place. Under
RCS, no record was kept of the check outs and thus only a much more limited mecha-
nism for change notification could be implemented to enforce a change notfication poli-
cy. As noted in Chapter 1, the disserination of information about modifications to
design is one of the primary concerns during the design phase of any project. It has
also been shown that some projects need to establish formal communication chan-
nels, le. project leaders are asked to track changes as they happen [Lord, 1988].
With this check in/check out mechanism it would be possible to auromate that com-

munication process.

The graphical representaton of version 1.9 of the LGDE2 diagram for the above
mansacton is presented in Figure 4-4. Note that version 1.9 could be considered a
template since the form matched a portion of the VS design, even though the names

bore no resemblance to VS names.

The version 1.10 shows the first mansformaton from a template to the acual

43

Top Level Program SC

1.1 path 1 1.2

11

Figure 4-4. VS LGDF2 Diagram Version 1.9.

LGDF?2 representation for a portion of the VS program. Figure 4-5 shows the result
of the changes checked in by the user adamsc. The LGDF2 file for Version 1.10 of VS

is presented in Appendix A.

Top Level Program vs

version
management
command parser

workspace
command parser

1.1 path 1 12

1.1

1.2

Figure 4-5. VS LGDF2 Diagram Version 1.10.

4.4 Sample Check In Session with Intervening Check In

A rypical VS check in ransaction with someone having updated the top-of-trunk

is shown below.

script started on Tues Oct 16 13: 18 56
1990

% wnoami

rest

% s

VME SSAGE
VPROMPT>
VMESSAGE
222272222
VPROMPT>
VMESSAGE
VMESSAGE

previous

Z22222272

vs: started

PROJECT: dfdone

vs: PROJECT.dfdone

CHECKIN- dfdl

ci: RCS/dfdl,v <—— dfdil

ci: New revision:1.9.1.1Unlike RCS, VS defaulis to a check in

revision: 1.9 on an unused branch when the top of
trunk 18 higher than the revision the
user checked out. In this case, the user
had checked out version 1.9, and
version 1.10 already existed.
The user or higher level program was
notified that the branch has been
created. It is then up to the user or
higher level program to decide how to
respond to this automatic branching.

VPROMPT> GAMEOVER

In the current system, the automatic branching mechanism forces the user to run

the DFDMERGE command as a separafe transaction. In more sophisticated systems,

the controlling program could reduce this multiple step wansaction to 2 single opera-

tion by combining both CEECKIN- and DFDMERGE.

The LGDF2 diagram after the check in is presented in Figure 4-6. Note that some

45

of the changes made by user adamsc are not in version 1.9.1.1 since both parties were
working in parallel. It should also be noted that the changes in version 1.9.1.1 may
not be desired by the project unul they are “error free” or "blessed by a design re-

view."

Top Levet Program SC

vs
command

1.1

Figure 4-6. VS LGDF2 Diagram Version 1.9.1.1,

In this example, the change of the title of the SWITCH 1.1 from "path 1" to "vs
command” would be a helpful change for the entire design team. On the other band, if
the project had established a policy that the top-of-runk should only contain lines
that either establish inputs or outputs from off the graph, or are connected to both 2
process and a switch. The addition of the lines 1.3 and 1.4 and the switch 1.2 would
be a violation of such a policy. Thus, this past of the change would not be usefu! to the
entire design teamn until the bubble joining line 1.4 was developed or the arc 1.4 was

extended to an output that is off the graph.

Also, since the users adamsc and resr were working in parallel there is a productiv-
ity advantage to be gained if the work done be both users can supplement each other

without changes done by one user conflicting with those done by the other user. In

46

this example, the users could have agreed in advance that the names of the datapaths
connected (o process 1.2 would be established by user resr and the names of the pro-
cesses would be established by user adamsc. In this case, user resr is going to leave
the naming of the process 1.2 alone or the version manager is going to have to be sup-
plied with a mechanism to accept changes from user adamsc and not from user resz.
Otherwise, changes made by user rest are going to be in conflict with changes done

by user adamsc. These conflicts are not handled by this implementation of VS.

4.5 Sample DFDMERGE Session with Error Policy Checking

A typical VS DFDMERGE mansaction with the mechanism that checks for

additions which result in unconnected lines, switches ang processes is shown below.

script started on Tues Oct 16 14: 18 : 57 1990

% whoami

test

% vs

VMESSAGE vs: started

VPROMPT> PROJECT: dfdone

VMESSAGE vs: PROJECT.dfdone

22222227

VEROMPT> DFDMERGE 1.9.1.1 dfdl The user has asked VS to merge the
changes from version 1.9 to version
1.9.1.1 in the LGDF2 diagram dfd1
onto the top-of-trunk.

VMESSAGE rcsmerge: RuleAccept Forinformational purposes VS reports

Change its actions during the merge. In this

47

case this section of the change was
accepted because a rule for this change
was found in the decision wee.
VMESSAGE rcsmerge: RuleDelete In this case, this secton of the change
Change | was rejected because a rule in the
decision wee indicated this section of
the change did not meet project policy.
Emm... Looks like a context This informational message comes from
diff to me the patcn program. Since VS uses the
The text leading up to this was: program patch to reverse the affect of
any rejected changes there will be a
Patching file dfdl using Plan A series of such messages up until the
Bunk #1 succeeded at 28. output token ZZZ7Z72777.
done |
22222222

VPROMPT> GAMEOVER

VS implemented this merge mechanism in a five step process. At step one, the
RCS co —-3j command was used 1o create 2 new version of the working file. Then,
VS removed any notices of overlapping changes. The program then created a context
diff between the current working file in this case dfd) and the top-of-trunk which in
this case was version 1.10. The changes were checked using a decision wee mecha-
nism so that the project policy would be followed. Finally, any changes to be rejected
are removed by applying a reverse patch. In this case the addition of the lines 1.3 and

1.4 and switch 1.2 is removed. The rejected portions of the patch were placed in the

48

file diffs.notaccepted. Figure 4-7 shows the LGDF2 diagram after the accep.-
tance of the changes that met the project policy. Figure 4-8 shows the

diffs.notaccepted file for this modification.

Top Level Program vs

version
management
command parser

Vs
command

workspace
command parser

1.1

1.1

1.1 1.2

Figure 4-7. VS LGD¥2 Diagram Version 1.11.

Now that this tansacton has been completed the user has the option of c¢hecking
the changes in using the CHECKIN~ command, making more modifications prior to do-
ing a check in or deciding these changes are unnecessary, and leave the project

branch unchanged.

49

x** /rmp/,RCSt1017580 Mcon Dec 3 11:30:34 1850
—--— dfdnew Mon Dec 3 11:30:32 13990
EXXXRXAXXXXX XX X %
xxx 50,55

Put my new change on top of trunk

I don’t like this comment line

So I added another comment line

cceeeccee

SRuthcr: adamsc $

$Date: 90/11/04 16:21:49 S

-—— 50,86 =-----—
Put my new change on top of trupk
4 I don’t like this comment line
So I added another comment line

+ ¢

+ # I have added another two lines and a switch
+ LINE~--~-=

+ DNUMBER- 1.2

+ STARTXY- 205 180
+ LPNUMBR- 1.3

+ ULEFTXY- 280 1590
+ PERMISS- AL

+ ENDXY--- 300 1290
+ LSNUMBR- 1.2

+ PERMISS- AR

+ #

+ SWITCH--

+ ULEFTXY- 300 990
+ WIDTH--- 100

+ HEIGHT-- 200

+ TITLE--— string
+ ULESTXY- 305 100
+ SNUMBER- 1.2

+ ULEFTXY- 310 120
+ #

+ LINE-=--

~

DNUMBER- 1.3

Figure 4-8. The diffs.notaccepted File for Version 1.11.

50

+ STARTXY- 325 100
+ LPNUMBR- 1.4

+ ULEFTXY- 310 90
+ PERMISS- AL

+ ENDXY--- 350 100
+ LSNUMBR- 1.2

+ PERMISS- AR

+ #

CCCcccee

SAuthor: adamsc $
SDate: 90/11/04 16:08:01 $
XXk kK ok ok okk kXX %k kX
xx%x 02 98
Revision 1.1 89%/10/22 11:47:30 adamsc
Initial revision
#
! SRevision: 1.11 §
SSource: /usr/test/CGC/THESIS/PROJECT.dfdone/RCS/didnew,v §
$State: Exp $
SRCSfile: $

——= 128,135 ~—---
¥ Revision 1.1 89/10/22 11:47:30 adamsc
Inictial revision
#

! SRevision: 1.9.1.1 §
SSource:/usr/test/0GC/THEZSIS/PROJECT.dfdone/RCS/dfdnew, v §
$State: Exp $
SRCSfile: $

Figure 4-8. The diffs.notaccepted File for Version 1.11 (continued).

51

5. Conclusion

The management of large, complex software development projects can be a very
difficult task. Problems of communication and control increase dramatically as project
size increases. It is generally accepted that productivity during source code develop-
ment and maintenance can be enhanced by the use of version management rechniques
and tools. It is thus likely that productivity during the design phase of large complex
software design development could be enhanced through the use of improved version

management tools and techniques.

5.1 Assessment of VS for Version Management

In the example application of VS, a version management system for Large-Grain
Data Flow 2 diagrams, the DEFDMERGE command was used to check design changes
against the project policy. DEFDMERGE was able 10 accept or reject changes based on
the policy established. This reduced the need for hand checking of design changes in

the example scenario.

This automated checking of designs could be extended in several ways. A system
could be built that would allow the user to define the policy and then the tool would be
used to enforce that policy. Also, a design checker, much like the Problem Statement

Analyzer, could be built to assist the user in 1dentifying errors in LGDF2 designs.

In the example check in scenario, the automated branching mechanism was used to
enforce a first-come, first-served check in policy. This check in mechanism was able
to maintain the consistency of design changes without requiring the use of long term

Jocks.

This check in mechanism could be further extended by combining the branching and

52

merging steps. In a more integrated system, the functionality of CHECKIN- and
DEDMERGE could be combined into a single command. This combined command could

also be improved by providing 1t with a mechanism for automated error checking.

The example scenarios also showed VS’s ability to record check outs and provide
a simple change notification mechanism. Because the record of check outs existed,
VS was able to notify users of overlapping check outs. The user was then expected

10 notify the other user(s) of modifications that may have affected them.

This storage mechanism would allow a very sophisticated update mechanism be
built using a configuration management tool. For instance, such a tool could monitor
the output from VS and then automarically check out the new version of the module af-
ter the change is noted. The storage mechanism could be further extended to provide
a means to distinguish berween users who are reading the version, and those who

are modifying the module.

It is contended that as the size of design project increases, the amount of communi-
cation required increases. Thus, tools or techniques that reduce this communicartion
should increase productivity. Tools, like VS, should help reduce the amount of com-
munication needed aboutr changes, because only the parties affected by a change are
notified of the change. This ability to better target change notification messages and

subseguent updates should help improve the efficiency of large software design teams.

Also, as the number of engineers on a design project increases, the likelihood of er-
rors introduced into the design increases, since there are more interfaces that affect
more engineers. With VS, it is possible to reduce these errors. This automated
checking should lead to increased productivity by reducing the amount of costly re-

work done in the later stages of a project. Also, unneeded processes and variables

53

are 1dentified and discarded early, so the amount of code developed and referenced but

not used at runtime is reduced.

In addition, when larger and more complex design projects use LGDF2, the compe-
aoon for the locked versions of designs increases. Thus, it is important to reduce the
amount of competition for controlled resources to further increase productivity. With
VS, this competition can be reduced through the elimination of the use of long term
locking. Thus, one user is not waiting for another to release a version lock. Even if
branches are used, with the current implementation of RCS the conflict is not eliminat-
ed, it is merely postponed because the check in onto the project’s branch can not take
place until the version lock is released. With VS, locks are not used, and in most
cases, the merge can be done at the timne that the branch is created. This should help
reduce the delay between the time that the branch is created and the time the merge
can take place. Since this delay could cause an arbirary context switch which may be
at an 1nopportune time, the use of a firsti-come, first-served check in policy could be

noted by a reduction in the number of errors made during merges.

VS is an exarr;ple of a version management tool for Large-Grain Data Flow 2 dia-
grams. This tool, with appropriate modifications, would also be useful for projects
that use similar structured design and analysis techniques. A version management
tool of this type could be developed for many different types of design development
techniques that employ a formal semantics and Syntax. For instance, state transition
diagrams, conceptual object oriented designs and SCOOP-3, an Ada-based graphical
design method [Cherry, 1990], could be handled in a similar fashion. Although the de-
tailed implementation of VS was limited to LGDF2, the issues of checking for chang-

es that do not meet project policy, communication of changes to the affected parties in

54

a timely manner and the need for parallel development are universal within the soft-

ware engineering field.

VS was used on a very limited test. For a full verification of its effectiveness in a
large, dismbuted, development environment, a larger number of LGDF2 diagrams
and a larger number of projects would have to be analyzed. Although VS has shown
promise for the development of a fully integrated version management tool for LGDF2
diagrams it was not tested in conjunction with a higher level configuration manage-
ment tool, such as DSEE or Cosmos. A complete evaluation of VS would require its

use within such a tool.

52 Assessment of Need for Version Management

Version management has been an imporant part of software development for
many years. From the inception of SCCS through the recent developments in configu-
ration management, version management has proved beneficial in increasing software
engineers productivity. These productivity increases result from the ability of the
tools, such as RCS, to identify changes, i1solate problematic changes, isolate expen-
mental versions from released versions and reduce the amount of storage space
needed for multiple versions of controlled files. Improvements in version management
have helped improve its ability to handle muluple person, multple project software

development.

Systems, such as RCS and SCCS, have gained widespread acceptance within the
software engineering community, particularly in the area of source code development.
On the other hand, litle work has been done in studying how version management
can improve the productivity of software design teams. Few researchers have inves-

tigated what type of tools and techniques for version management are needed during

the design phase of the project life cycle.

"There has been little research on what types of policies are used or needed for ver-
sion management of software designs. Recent policy sewing systems such as
FOREST [Garlan, 1990], which make it easier to define project/system level policies,
have not been used in the design phase of a project; and rypically, place most of their
emphasis on the code development phase of the project life-cycle. This research on
the other hand, has shown that the existing domain-independent tools do not have
the mechanisms to implement all the policies desired by most projects. More recent
version management and configuration management tools, such as DSEE and NSE,
have improved the state of the art when it comes to handling multiple person, multiple
project source code tracking and communication. But they have not addressed the
need for tools to enforce the error checking policies desired in large scale sofrware de-

velopment.

This research has shown that changes in graphical software design artifacts, such
as Large-Grain Data Flow 2 diagrams can be tracked with tools such as RCS. Al-
though, the software change deltas of SCCS and RCS will work fine for recording
changes in the LGDF2 diagrams, these older tools force competition for long term
locks on the controlled files which limits their effectveness in large projects. Newer
oels, such as Cosmos, have addressed the competition problems but have had diffi-
culty gaining large-scale acceptance in part because of their lack of similarity to the
tools currently being used. In addition, none of these other systems provide much
help in enforcing policies about which changes should be added to the project’s re-
lease branch and what changes should remain on an experimental branch. VS was

able to enforce a project policy that no unconnected dataswitches should be merged

56

onto the top of trunk. In the future, sofrware engineers may want the ability 10 mark
parts of the design they are currently modifying "as work in progress” and have the

system only accept changes that do not touch those parts of the design.

Finally, the version management tool must work effecnvely in the larger environ-
ment of both design and source code development. The current available version man-
agement tools provide little assistance in this integration. For instance, with most
version management tools, it is easy to make changes via a check out, edit and check
in process on a single module, but these tools do not have the ability to note how that
change will affect other parts of the project such as design documentation. Ir is
koped, that sometime in the future that the change could be noted to a configuration
management tool which in turn could note the other modules that also need to be mod-
ified. Eventvally, auromated tools could be provided to assist in making these other

modifications.

5.3 Assessment of Need for Domain Specific Tools

As has been noted by Fred Brooks, improvements in productivity within software
engineering are going to be a result of incremental developments in a variety of areas
{Brooks, 1987]. Since close to three-fourths of all errors in software development can
be traced back to errors made in the design phase of the project, tools must be devel-
oped which oy to keep these errors from finding their way into the development phase
of a project.) Breakdowns during the design phase can spell disaster or at best result
in much rework during the development phase. Thus, tools to help designers continue

to be as important as tools to help source code developers.

Software design artifacts from systems like Large-Grain Data Flow 2, Data Flow

Diagramming and SADT, which use graphical techniques for project design develop-

57

ment need version management. Software design systems, like LGDF2 and PSL,
that have a formal semantics and syntax also provide the opportunity for development
of design analysis tools. For instance, VS and PSA provide design checking in much
the same way a program checker, such as lint does. Thus, with LGDF2 and PSL, it
should be f)ossible to reduce the number of design errors in the project’s released de-

sign.

Since the syntax and semantics of the design languages LDGE2 and PSL are
quite different, the further development of the error checking tools for these languag-
es will have to be domain-specific. And since error checking tools in general are lan-
guage specific, further developments in this area must be targeted at specific
languages. On the other hand, tools such as VS, which combine both domain-inde-
pendent and domain-specific fearres will be needed to coniinue to improve productiv-
ity within the field of sofrware engineering. VS, a prototype version management

system, should provide insight regarding future software tools development.

58

REFERENCES

Babb, Robert G. II, "Data-Driven Implementation of Data Flow Diagrams”, in the
Proceedings of the 6th International Conference on Software Engineering, Tokyo,
Japan, September, 1982, pp. 309-318.

Babb, Robert G. II, "Parallel Processing with Large-Grain Data Flow Techniques”,
IEEE Computer, Vol. 17, No. 7, July, 1984, pp. 55-61.

Babb, Robert G. II, "A Data Flow Approach to Unifying Software Specification, De-
sign, and Implementation”, in the Proceedings of the 3rd International Workshop
on Software Specification and Design, London, England, August 19835, pp. 9-13.

Bailey, Robert W., Human Error in Computer Systems, Prentice-Hall, Inc. Englewood
Chiffs, New Jersey, 1983.

Banerjee, Jay, et. al, "Data Model Issues for Object-Oriented Applications”, ACM
Transactions on Office Information Systems, Vol. 5, No. 3, January, 1987, pp. 3-26.

Basili, Victor R., "A Panel Session-User Experience with New Software Methods”,
in the Proceedings of the National Computer Conference, Anaheim, California,
June, 1978, pp. 629-630.

Berliner, Brian, "CVS II: Parallelizing Software Development”, Unpublished paper,
available from author at Prisma, Inc., 5465 Mark Dablings Blvd. Colorado Springs,
Colorado, 1990.

Black, Eric, "Software Configuration Management with an Object-Oriented Data-
base", in the Proceedings of the Winter 1989 USENIX Conference, San Diego,
California, January, 1989, pp. 257.272.

Boehm, Barry W., R. McClean, and D. Urfrig, “Some Experience with Automated
Aids to the Design of Large Scale Reliable Software”, in the Proceedings of the In-
ternational Conference on Reliable Software, Los Angeles, California, April, 1975,
pp. 105-113.

Boehm, Barry W., "“Software Engineering", ITEEE Transactions on Computers, , Vol
25, No. 12, December, 1976, pp. 1226-1241.

Boehm, Barty W., Software Engineering Economics, Prentice-Hall, Inc. Englewood

59

Cliffs, New Jersey, 1981.

Boehm, Barry W., “"Improving Software Productivity”, IEEE Computer, Vol. 10, No.
9, September, 1987, pp. 43-57.

Boehm, Barry W. and Philip N. Papaccio, "Understanding and Controlling Software
Costs", IEEE Transactions on Software Engineenng, Vol. 14, No. 10, October
1988, pp. 1462-1477.

Brooks, Frederick P Jr., “No Silver Bullet: Essence and Accidents of Software Engi-
neering”, [EEE Computer, Vol. 10, No. 4, April, 1987, pp. 10-19.

Chang, Ellis E., David Gedye, and Randy H. Katz, "The Design and Implementation
of a Version Server for Computer-Aided Design Data", Software-Practice and
Experience, Vol. 19, No. 3, March, 1989, pp. 199-222.

Chou, Hong-Tai, and Won Kim, "Versions and Change Notification in an Object-Ori-
ented Database System", in the Proceedings of the ACM/IEEE Design Automa-
tion Conference, Anaheim, California, June, 1989, pp. 275-281.

Cherry, George W., Software Construction by Object-Oriented Pictures: Specifying
Reaciive and Interactive Systems, Dorset House Publishing, New York, New
York, 1990.

Combelic, Don, "Experience with SADT", in the Proceedings of the National Comput-
er Conference, Anaheim, California, June, 1978, pp. 631-633.

Curtis, Bill, Herb Krasner, and Neil Iscoe, “A Field Study of the Software Design Pro-
cess of Large Systems”, Communicagons of the ACM, Vol 31, No. 11, Novem-
ber, 1588, pp. 1268-1287.

DeMarco, Tom, Srructured Analysis and System Specification, Yourdon, Inc., New
York, New York, 1978.

DiNucci, David C. and Robert G. Babb II, "Practical Support for Parallel Program-
ming", in the Proceedings of the Hawaii International Conference on System Sci-
ence, Vol. I1. Software Track, Kailua-Kona, Hawaii, January, 1988, pp. 109-118.

DiNucci, David C., "The LGDF2 Language and Preprocessor”, available from author
at Oregon Graduate Institute of Science and Technology, Beaverton, Oregon, Oc-
tober, 1990.

60

Garlan, David and Iias, Ehsan J., "Low Cost, Adaptable Integration Policies Tool for
Integrated Environments”, 10 be published in the Proceedines of the Fourth Sym-
postum on_Software Development Environments, Irvine, California, December,
1990.

Hamilion, Margarer and Saydean Zeldin, "Higher Order Sofiware: A Methodology
for Defining Sofiware"”, IEEE Transactions on_Software Engineering, Vol. 2, No.
1, March, 1976, pp. 9-32.

Katz, Randy H., "Towards a Unified Framework for Version Modeling”, Unpublished
paper available from author at University of California, Berkeley, Computer Sci-
ence Division, Electrical Engineering and Computer Science Department, Berke-
ley, California, 1990.

Leblang, David B. and Robent P. Chase, Jr., "Computer-aided Software Engineering in
a Dismbuted Workstation Environment”, in the Proceedings of the ACM SIG-
SOFT/SIGPL AN Software Engineering Symposium on Software Development En-
vironments, January, 1984, pp. 104-112,

Leblang, David B. and Robert P. Chase, Jr., "Paralle] Software Configuration Manage-
ment in a Network Environment", IEEE Software, Vol. , No. , November, 1987,
pp. 28-35.

Lord, Thomas, "Tools and Policies for the Hierarchical Management of Source Code
Development”, in the Proceedings of the Summer 1988 USENIX Conference, San
Francisco, California, June, 1988, pp. 95-106.

Miller, Terrence C., “A Schema for Configuration Management”, in the Proceedings of
the 2nd International Workshop on Software Configuration Management, Prince-
ton, New Jersey, October, 1989, pp. 26-29.

Nii, Penny H., "A Proposed Research Initiative in Knowledge-Based CASE Tools:
Biting the Silver Bullet", Stanford University, Computer Science Deparument, Pa-
lo Alto, California, Technical Report KSL 89-75, 1990.

Page-Jones, Meilir, The Pracrical Guide to Structured Systems Design, Yourdon
Press, New York, New York, 1980.

Reifer, Donald J., "Experience with PSL/PSA", in the Proceedings of the National
Computer Conference, Anaheim, California, June, 1978, pp. 630-631.

61

Rochkind, Marc J., "The Source Code Control System”, IEEE Transactions on Soft-
ware Engineering, Vol. SE-1, No. 4, December, 1975, pp. 364-370.

Ross, Douglas T. and Kenneth E. Schoman, Jr., "Swmuctured Analysis for Require-
ments Definition”, IEEE Transactions on Software Engineering, Vol. SE-3, No. 1,
January, 1977, pp. 6-15.

Teichroew, Daniel and Emest A. Hershey III, "PSL/PSA: A Computer-Aided Tech-
nique for Swtuctured Documentation and Analysis of Informadon Processing”,
[EEE_Transactions on Software Engineering, Vol. SE-3, No. 1, Januvary 1977,
pp.41-48.

Tichy, Walter F., "Design, Impiementation, and Evaluation of a Revision Contol Sys-

tem”, in the Proceedings of the 6th International Conference on Software Engi-
neering, Tokyo, Japan, September, 1982, pp. 58-67.

Walpole, Jonathan, Gordon S. Blair, J.R. Malik, and John R. Nichol, "A Unifying Model
for Consistent Distmbuted Software Engineering Environments”, in the Proceed-
ings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Sofi-
ware Development Environments, Boston, Massachusetts, November, 1988, pp.
183-190.

Walpole, Jonathan, Angus Barber, Gordon S. Blair and John R. Nichol, "Software De-
velopment Environment Transactions: Their Implementaton and Use in Cosmos",
Unpublished paper, available from author at Oregon Graduate Institute of Science
and Technotogy, Computer Science Department, Beaverton, Oregon, 1989.

Yourdon, Edward and Larry L. Constantine, Srructured Design: Fundamentals of a
Discipline of Computer Program Design, Prentice-Hall, Inc. Englewood Cliffs,
New Jersey, 1979.

Zelkowitz, Marvin V., Alan C. Shaw, and John D. Gannon, Principles of Software En-
gineering and Design, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1979.

APPENDIX A. Vs LGDF File Version 1.10

NODE-=--

TITLE--- Top Level Program vs
ULEETXY- 120 120

, A

PROCESS-

CENTRXY- 1806 180
RADIUS-- 5C
NAMESTR- workspace command parser

ULEETXY- 130 170

—

PNUNMZZR- 1.
ULSETXY- 190 190
#

LINE-—--
DNUM2ER- 1.1
ULEETXY~ 240 190
STARTXY~ 230 180
LPNUMBR- 1.1
PERMISS- AL
ENDXY-=~ 250 220
LSNUMZR-

2
}mt

PERMISS— AR

#

SWITCH--
ULEFTXY- 250 200
WIDTH--- 100
HEIGHT-- 200
TITLE--- path 1
ULEFTXY- 260 220
SNUMBER- 1.1

ULEFTXY- 290 399
#
LINE——~~

DNUMBER-

1.2
ULEFTXY- 270 190
270 180

ENDXY—-—— 500 220
LSNeERrR- 1.1
PERMZESS- AR
£
PROCESS-
CENTRXY- 5C0 180
RADITS-- 5C
NZMISTX- version marnage comrmand parser
ULESTXY- 430 17C
ER- 1.2
ULEE™XY- 460 180

Put my new change c¢cn top of trunk
I don’t like this comment line

So I added another comment line

SAutnor: adamsc $

$Date: 90/20/29 07:33:55 3

S$Header: dfdl,v 1.10 90/10/2% 07:33:55 adamsc Exp $
$Locker: $

$Log:dfdl,v $

Rewvision 1.10 S80/10/29 (7:33:55 adamsc

§ *** empty log message **x

O 22222222 t¢e reflect

Revisiorn 1.6 90/106/14 13:16:23
§# **x erpty log message *x~

#

Revision 1.8 88/10/05 16:47:33
& *x*x emprty 105 mMessage x**

#

Revisiorn 1.7 93/03/04 12:22:18
FOA*k empDly 10g message *xx

#

Revision 1.6 50/02/22 12:57:38
$# **%x empty lCg message **~

%

Revision 1.5 S60/02/21 1%9:43:05
§ *=* erpty 10g mesgsage **x~

i

Revigion 1.4 S0/0./11 08:31:55
¥ CesT message using —-m

#

Revision 1.3 SL/81/03 15:36:54
Changed the specificztion of the
#

Revision 1.2 89/11/07 08:25:48
Made a charge from EEEEEETE

ec.

#

Revision 1.1 89%/10/22 11:47:30
§# Initial revision

#

SRevision: 1.10 §

SSovrce:

test

test

adamsc

test

adamsc

adamsc

dfd files.

adamsc

acamsc

/usr/test/OGC/THESIS/sr¢c/PROJECT.dfdone/RCS/dEd1, v $
$State: E¥p $
SRCSfile:
SSymbolicNames:

$CheckoutlLog:

Ly W N »n

SAccessList:

22222222

APPENDIX B. Vs LGDF File Version 1.9.1.1

NODE=-—-

TITLE--- Top Level Program SC
CLEFTAY- 120 120

#

PROCESS-

RADIUS-~ 50

NAMESTR- »pDrcces

CLEFTXY- 130 170
1

PNUMBER- 1.

ULEFTXY- 190 190
§

LINE-——~
DNUMRZR~ 1.1
STARTXY~ 230 188
LENUMBR- 1.1
ULZFTXY- 240 130
PERMISS- AL |
ENDXY--- 250 180
LSNUMER- 1.1
PERMISS- AR

#

SWITCH--
ULEFTXY- 250 150
WIDTH--- 100
HEIGHT-- 200
TITLE--- vs command
ULEFTXY- 260 170
SNUMBER=- 1.1

ULEFTXY~ 290 390

DNUMBER- 1.2
STARTXY- 270 180
LENUMBR- 1.2
ULEETXY- 25C 150
PERMISS- AL
50 180

w

ENEXY——-

[

LSNULMBR~-

RADIUS-- 50
NAMESTR- prccess 2
ULEFTXY- 45C 170
PNUMEZIR- 1.2
ULEETXY- 460 1¢0

£

4 Put my new change on top of trunk

I don’t like this comment line

=i

Sc I added another comment line

#

4 I have added another two lines and a switch
LINE-——-

DNUMBER~ 1.2

STARTXY- 205 180

LPNUMBER- 1.3

ULEETXY- 280 1590

PERMISS—- AL

ENDXY———
LENUMER-
PERMISS-
#

SWITCH--

CLEFTXY-

DNUMBZR-

STARTXY-

ENDXY——~
LSNUMBR-
PERMISS-
3

ccceeecce

SEhuthor:

68

300 120
1.2
AR

308 90
108
200
string
305 100
1.2
31C 120

1.3
325 1€C0
i.4
310 90
AL
350 100
1.2
AR

ademsc $

$Date: 50/11/04 16:08:01 $

SHeader:

SLocker:

$Log:dfdl

dfdl,v 1.9.1.1 80/11/04 16:08:01 adamsc Exp 3
$

;v §

Revision 1.9.1.1 90/11/04 16:08:01 adamsc

$ xxx empty 1og message ***

#

Revision 1.9.1.1 650/11/04 09:4£:05 rtest

x* empty loc message *

¥

Revision 1.9 90/1C/14 13:1¢:23 test

f *** empty l0g mMessage ***

#

§ Revision 1.8 90/10/C3 16:47:33 test

*** empTy log message *rx*

#

Revision 1.7 90/03/04 12:22:18 adarsc

$ =** empty l¢g message ***

#

Revisicn 1.€ 9C/C2/2Y 19:57:39 test

§ *** empty log message ***

§

§ Revisicn 1.5 90/C2/2: 19:43:05 ademsc

*** empTy log message ***

¥

Revision 1.4 §0/01/11 08:31:5% adamsc

test message using -m

#

Revision 1.3 90/01/03 19:36:54 adamsc

Changed the specification of the dfd files.

#

Revision 1.2 89/11/07 08:25:48 acamsc

Made a change from EEEEEEEE to 22222ZZZ to
spec.

#

¥ Revision 1.1 88/1:10/22

Initial revision

11:47:3C adamsc

69

reflect new

¥
SRevision: 1.9.1.1 §

SSource:
/usr/test/0OGC,/TASSI3,/src/PROJECT . dfdone/RCS/8fd1,v §

V]

$State: Exp §

SRCSfile: S
SSymbolichames: $
SCheckcocuzlca: $
SAccessliszt: S

2222222Z

APPENDIX C. Users Manual for VS

VS User’s Manual

Charles Adams

Oregon Graduate Institute of Science and Technology

31 December 1990

71

VS User’s Manual

72

73

CONTENTS
1. HOW TO USE THIS MANUAL oottt 1
2. OVERVIEW oottt et e ettt em ettt ee e e e e e te e et e s e e 75
T2 IRVOKINE VS ettt e e et 15
2.2 The VS COMMANGS «riiiiiiiiie oottt e eee e et e et e ot 75
2.2.1 Workspace COMMANGSccooiriiiiiii it eieeire oo e st sree e sea e ens 75
2.2.3 Version management COMMANGAS ...ococeiiiiiiairrraiieen e eaeiee e ovae s s siaea e 75
3. INVOKING VS et ettt e e e 76
3.1 VS Command Line OPUOMS ..coooioiiiiii ittt sie sttt e 76
4. VS COMMANDS AND THEIR PARAMETERS ... i 77
4.1 Workspace COMMANGS ..oicvivriiiiioieiiirioe et ie e et er e e v s 77
4.1.1 PROJECT? COMIMANG ...coeviimiiieeei et r e enes 77
4.1.2 PROJECT: COMMAN ..ottt e ae e 77
4.1.3 GAMEOVER COMMANG ..ovviieiiiciiiieie e een oo 78
4.1.4 Workspace Command EITOTcccooiiiininoin i 78
4.2 Version Management COMMANASoccoovviiieiirie e eensieeiena e s ee e 78
4.2.1 CHECKIN- Commandcoooiiioiiie e s st e e 79
4.2.2 CHECKOUT COMMANA .oouveiiit i e enn 80
4.2.3 DFDMERGE COmMAandoooiiiiiii oot see e e 81
4.2.4 GAMEOVER Commandccc.oooiurivriioneriririaree st e e se e g1
4.2.5 RCSDIFF- COmMMANA ...t ettt 82
4.2.6 RCSLIST- COMMANG ..ot e eae e eee e e 82
4.2 7 RCSMERGE COMMANG <.eoeiie et ettt eeeea e 82
4.2.8 SENDRLOG COmMmMAandccovviiiiiiiniieiiiices e oo 82
429 ZZ777777 COMMANG ..ooooiiiiiiiiei ettt 83
4.2.10 Version Management Command EmTOr ... 83
5. COMPILING AND MODIFYING THE VS SOURCE CODE ...coocvievivieinrreerirennas 84
6. FLE O R M A T S i et e s s et e e et ee e eee e e e s e n e e eee e 85
6.1 Large-Grain Data Flow 2 Diagram Working File Format 85
6.1.1 LINE---- Element FOMMAL ...oooiii oot evnns 85
6.1.2 NODE---- Element FOIMAtoooiiiioiiie e ee e 86
6.1.3 PROCESS- Element FOMIAL ..ot e 86
6.1.4 SWITCH-- Element FOMAl ..ot e eeer e 86
6.2 =VIOE FOITIIAL «.oiviriiiieiirie sttt ettt oo e eae e e emteeeee e 86

6.3 VU FOTINAL oo e et e e e e et 87

74

VS User’s Manual

Charles Adams

Oregon Graduate Institute of Science and Technology

1. HOW TO USE THIS MANUAL
Readers wanting 1o get an overview of vs’s features should consult Section 2.
Readers wanting to invoke the program should consult Section 3.

Readers wanting to execute any of the commands available within vs should consult Sec-
tion 3.

Readers who have just received the source code for vs and wish to compile it or modify it
should consult Section 4.

Secuon S presents a quick lookup reference guide to the commands and parameters of vs.

Rather than repeat all that is written in the documentation on the Revision Contro) Sys-
tern by Walter F. Tichy, I will suggest starting by reading the following documents:
Design, Implementation, and Evaluation of a Revision Control System by Walter F.
Tichy, in Proceedings for the 6th Iniernational Conference on Sofrware Engineering,
IEEE, Tokyo, Japan, September, 1982.

Unix Programmer’s Manual documentation RCS/NTRO and the man pages for each ele-
ment of rcs used.

75

2. OVERVIEW

Vs is 2 Version Management System for Large-Grain Data Flow Diagrams. It provides
the command interface to the UNIXt Revision Conmol System along with the added func-
tonality never before available with RCS. The check-in and check-out commands have
additional functionality for handling optimistic version contol on any file that can be
handled by RCS. The branch merge command gives the user the additional capability of
automatic branch merging when processing Large-Grain Data Flow Diagram 2 (LGDF2)
files. The automated checking of LGDF?2 files undertaken during merging is an example
of the project policy that can be implemented with a tool like vs.

2.1 Invoking VS

2.2 The VS Commands

Vs is divided into two functional areas. First, the workspace commands allow the user to
set and query the project workspaces available to vs. Second, the version management
commangds allow the user to manipulate controlled modules.

2.2.1 Workspace commands

The workspace commands provide a limited namespace contol via vs. The commands
available are "PROJECT: ", "PROJECT?" and "GAMEOVER". These commands have a
fixed length of eight characters and an ending space character plus the workspace name
in the case of the "PROJECT : " command.

2.2.2 Version management commands

The version management commands consist of the complete set of RCS commands with
the exception of the rcs command, plus the added capabilities of vs. The commands
"RCSLIST-", and "DFDMERGE" are new with vs. The commands "CHECKIN-", and
"CHECKOUT" are modified versions of c¢i and co from RCS. The commands
"RCSDIFF-", "RCSMERGE" and "SENDRLOG" are unmodified except for the user
interface from RCS. Finally the commands "GAMEOVER" and "2722222ZZ" are
commands which allow the user to end the program or connect to the previous directory.
Again, like the workspace commands each command is eight characters in width plus a
space character and those commands that take arguments, the arguments are placed after
the space and before the carriage retumn.

1 UNIX is a Trademark of Bell Laboratories.

76

3. INVOKING VS§
The vs command is invoked by:
VS options

where options is none, or any combination of the two option parameters. The options can
appear in any order.

3.1 VS Command Line Options

OPTION EFFECT
-echo Display on stdout the commands input from stdin.
-debug value Specify the level of debug messages to be printed.
0 — all debug messages are printed.
6 — (the default) few debug messages are prninted.

On successful invocation of vs it will display the prompt:

VPROMPT>

77

4. VS COMMANDS AND THEIR PARAMETERS

Vs has two levels of commands. The first level commands, called Workspace Com-
mands, allow the user to set and query workspaces. The second level commands, called
Version Management Commands, allow the user to invoke any of the RCS commands.
At both levels the vs command interpreter expects its input to come from stdin and sends
1S messages to stdout.

4.1 Workspace Commands

COMMAND EFFECT

PROJECT?03 Display the available workspaces
PROJECT : Oworkspace Set the current working area 10 workspace
GAMEOVERQO Exit gracefully from vs

4.1.1 PROJECT? Command

The PROJECT? command displays the cumrently available workspaces. Each
workspace is a directory directly below the current directory level. The names returned
are proceeded by the vs prompt VMESSAGE vs:. The name of the workspace varies in
length and is followed by the carriage return (Ox15) characeer.

4.1.2 PROJECT: Command

The PROJECT: command sets the current workspace. The workspace is any vahd
workspace name.

If the workspace named exists and is directly below the current directory, vs will send
back a prompt:

VMESSAGE vs: PROJECT.workspace

After sending all the debug messages specified, vs will change the current directory to the
workspace named and send the prompt for the Version Management Commands.

If the workspace named does not exist, vs will send back the following informational
message.

VMESSAGE vs: Working space "workspace" does not
exist.
VMESSAGE vs: Should I create this workspace [Y/N]?

The O 1s really a space (0x20) character and is required by the protocoi.

78

Vs will then awair input from the user. If the user inputs ¥ then vs will go ahead and
create the named workspace directly below the current level. Vs will then change the
current directory to the workspace named. If the user inputs anything other than Y as the
first character of the input then vs will stay in the current directory and stay at the
Workspace Command level.

In essence, no action will be taken other than to reissue the input prompt:

VPROMPT>

4.1.3 GAMEOVER Command

The GAMEOVER command is used 1o exit from vs. Once the comm::nd is issued suc-
cessfully the program will cleanup after itself, exit from the program and retumn the
UNIX prompt.

4.1.4 Workspace Command Error

When a2 command is not understood, vs will display the error prompt:

VSERROR~- vs: Unable to parse command

and then indicate allowed the Workspace Commands. The response will be:

VSERROR- vs: Expected: "PROJECT?", or "PROJECT:", or 'GAMEOVER"
2Z2Z7Z2Z27

Vs will then display the input prompt and wait for more input.

4.2 Version Management Commands

COMMAND EFFECT

CHECKIN-{optionsfile Store a new revision,

CHECKOUTOoptions file Retrieve a revision and store it in the workspace
DEDMERGEOrev £ile Merge branch onto top of trunk.

GAMEOVERO Exit gracefully from vs.

RCSCLIFF-Ooptions file Compare 1wo revisions.

RCSLIST-0 Dasplay a list of the files under version management.
RCSMERGEMrrevl (-rrevz)[-p] f£ile Addchanges between revl and rev? into the working file.
SENDRLOGoptions file Display the revision information.

222222220 Return 1o the previous level.

The O is really a space (0x20) character and is tequired by the protocol.

79

4.2.1 CHECKIN- Command

The checkin command stores new revisions into revision files. Each revision file has the
filename ending of ,v. In addition, each revision file has a status file accompanying it
with the filename ending in -vlog. The revision files and status files are stored in a
directory named RCS that is direcly below the current directory level. Since the pro-
gram automatically creates a RCS directory for each workspace that it creates, it assumes
the RCS directory exists,

Whereas in ci RCS files can be specified in three ways (see the ci (1RCS) man
page), in vs they can only be referenced by the working filename. The filename for the
revision file and the status file are thus derived from the given filename.

Vs always looks in the directory ./RCS and nowhere else for the revision file and the
status file. If these files are not found an error is reported and the command is ter-
minated.

The checkin command requires that user have read/write access permission in the direc-
tory ./RCS and on the status file. It requires that the user have read access permission
on the working file, and the revision file. The checkin command automatically sets these
permissions when it is creating these files and the directory.

The checkin command provides automatic handling of revisions with optimistic version
control. It will check the revision number of the working file against the top-of-trunk
revision number and if they are not different, it will proceed to deposit the revision and
output the outcome of this execution. On the other hand, if the revision number on top of
trunk is greater than the revision number of the working file, the checkin command will
automatically store this revision on the next available branch based on the revision
number of the working file. This assure that no changes will be lost when mulaple peo-
ple are working on the top of trunk and that revisions are deposited on a top of wunk on a
first to arrive, first to checkin basis.

All errors encountered by the checkin command will be output to stderr. Each error mes-
sage will be introduced by the error prompt:

VSERROR~ Vv3:

After ourputting the error messages, vs will exir this command.

After successful depositing of the revision, vs will update the status file. The status file
will contain a record of the check in with the date and ame, the user and the revision
number. This information is never deleted and contains an exhaustive history of the revi-
sion file.

80

Although all the options avaudable with ci are available with the checkin command, this
commanad is most useful for defauli case, where all that 1s specified is:

CHECKXIN- filename

The checkin command also features the option -p. With this option, the input for the
working file is taken from stdin and the checkin command will attempt to deposit the
revision file as soon as the completion protocol message ZZZZZZZZ is received. Thus
all data received from stdin until the completion protocol message will be incorporated in
the filename given.

42,2 CHECKOUT Command

The checkowr command retrieves revisions from revision files. Each revision file has the
filename ending 10 , v. In addition, each revision file has a status file accompanying it
with the filename ending in -vlog. The revision files and status files are stored in a
directory named RCS that is directly below the current directory. Since vs automatically
creates a RCS directory for each workspace that it creates, it assumes the RCS directory
exists.

When using the RCS c¢i command, the RCS files can be specified in three ways (see the
co (1RCS) man page), but with vs these files can only be referenced by their working
filename. The filename for the revision file and the starus file are thus derived from the
working filename.

Vs always looks in the directory . /RCS and nowhere else for the revision file and the
status file. If these files are not found an error is reported and the command is ter-
minated. '

The checkour command requires that user have read access permission in the directory
. /RCS, on the revision file and on the status file. It requires that the user have permis-
sion to write on the working file. The checkin command automatically sets these permis-
sions when it is creating these files and the directory.

The checkour command provides automatic handling of revisions with optimistic version
control. It does not require that the user check out a file locked to change the file and
check it in. Vs will record each check out in the status file. This allows vs to keep rack
of all parties who are working on a given revision file. This information can be used by
other programs or routines for project tracking purposes.

The actual tevision file check out is handled by the RCS co command. All the options
supported by the co command are supported by the checkout command. This includes
both keyword subsrtitution and command line options within co.

81

All errors encountered by the checkour command will be output to stderr. Each error
message will be introduced by the error prompt:

VSERROR- vs:

After outpurting the error messages, vs will exit this command.

After successful execution of the check out, vs will update the staws file. The staws file
will contain a record of the check out with the date and time, the user and the revision
number. This information 1s never deleted and contains an exhaustive history of the revi-
sion file.

4.2.3 DFDMERGE Command

The dfdmerge command provides additional functionality to the RCS co
-jbranchrevno:trunkrevno command. The dfdmerge command takes the branch
revision specified and merge the changes between the branch revision and the trunk revi-
sion from which it emanated onto the top of ounk.

To do this vs will execute a RCS co command. Ir will then execuie a rcsdiff com-
mand. Vs will then use its internal deciston tree to determine which changes can
automatically be applied onto the top of trunk, i.e. the changes meet the project policy.

The decision wee specified can have one of two actions:
1. Make the change specified.
2. Do not make the change specified.

Upon successful completion of the dfdmerge command the input prompt will be returned
and vs will await more input. At this point the user has a new working file that is a
modification of the top of trunk. All errors encountered by the dfdmerge command will
be output to stderr. Each error message will be introduced by the error prompt:

VSERROR~ vs:

After outputting the error messages, vs will exit this command.

4.2.4 GAMEOVER Command

The GAMEOVER command is used to exit from vs. Once the command is issued suc-
cessfully the program will cleanup after itself, exat from the program and retum the
UNIX prompt.

4.2.5 RCSDIFF- Command

The resdiff command will compare two revisions of the revision file specified. This com-
mand is exactly the same as the RCS rcsdiff command in UNIX. See the
rcsdiff (1RCS) man page for more information.

After executing the RCS rcsdiff command, vs will output the completion protocol
message. Vs will then output the input prompt and wait for more input.

4.2.6 RCSLIST- Command

The reslist command will list the revision files in the RCS directory. Each revision file
will be listed by its working filename proceeded by the introductory protocol message
VMESSAGE.

If no RCS directory exists directly below the current working directory, vs will output
the ertor prompt VSERROR- followed by the message VSERROR vi: unable to
open dir "RCS'".

After listing the files or sending the error prompt, vs will output the completion protocol
message. Vs will then output the input prompt and will wait for more input.

4.2.7 RCSMERGE Command

The rcsmerge command will compare two revisions of the revision file specified and then
update the working file based on the differences between the two revisions. This com-
mand is exactly the same as the RCS rcsmerge command in UNIX. Sece the
rcsmerge (1RCS) man page for more information.

The rcsmerge command after executing the RCS rcsmerge command, vs will output
the completion protocol message. Vs will then output the input prompt and will wait for
more input.

4.2.8 SENDRLOG Command

The sendrlog command will display the RCS history and status of the file specified. This
command is exactly the same as the RCS rlog command in UNIX. See the
rlog(1RCS) man page for more informarion.

The sendrlog command after execuring the RCS rlog command, vs will ourput the
completion protocol message. Vs will then output the input prompt and will wait for
more input.

4.29 727277717277 Command

&3

The 2zzzzzzz command will reset the working space to to the original directory. Upon
successful completion the command, vs will be placed in Workspace Commands mode.

Afrer complering the zzzzzzzz command, vs will output the completion protocol message.
Vs will then output the input prompt and will wait for more input.

4.2.10 Version Management Command Error

When vs fails to understand a command, it will display the error prompt:

VSERROR- vs: Unable to parse command

and then indicate allowed the Version Management Commands. The response will be:

VMESSAGE vs: Expected: "CHECKIN-
"RCSDIFF-
YRCSMERGE
"RCSLIST-
"GAMEQOVER
2222722272

", V“CHECKOUT ",
", "SENDRLOG ",
v, nZZ2Z2ZZZ ",
", "DFDMERGE" or

|

Vs will then display the input prompt and wait for more input.

84

5. COMPILING AND MODIFYING THE VS SOURCE CODE

For all of you who are so brave as to attempt to look at this code, there 1s a Makefile pro-
vided.

The source code is divided up into four source modules: definestring.c, definetables.c,
dfd_merge.c, and vs.c and four header files: definestring.h, definetables.h, dfd_merge.h
and rules.h.

The vs.c file contains the main function.

&5

6. FILE FORMATS

6.1 Large-Grain Data Flow 2 Diagram Working File Format
Synopsis

filename

Description

This ASCI file will contain the data for a particular revision of a Large-Grain Daia Flow
Diagram revision file. It is formaited as a series of lines of the form:

Protocol_Message Data

The protocol message is a feld inmoducing the data that follows it. The protocol
messages are:

NODE-—-—, PROCESS-, LINE----, SWITCE--, CCCCCCCC,
22227222722, CENTRXY-, RADIUS--, NAMESTR-, ULEFTXY-,
PNUMBER-, DNUMBER-, STARTXY-, PERMISS-, ENDXY---,
SNUMBER-, WIDTH---, HEIGHT~~, TITLE---, §#, S,

The # introduces any comment line.

The $ introduces any RCS marker data.

The CCCCCCCC token is used to separate the LGDF2 data from the RCS marker data.
The 22ZzZZZ7Z inwoduces the end of the file.

All other protocol messages introduce LGDF2 data. The following commands introduce
elements of the LGDF?2 file.

NODE-—--
PROCESS-
LINE----
SWITCH--

These commands have the following formats.

6.1.1 LINE---- Element Format
Each line element will have the following dara;

DNUMBER- number of the line
ULEFTXY~ x location and y location of the DNUMBER-
STARTXY- x location and y location of line start

LPNOMBR- number for the process attached at the start

end

PERMISS- permission ¢n line start

ENDXY--- x location and y location of line end
LSNUMBR- number for the switch attached at the start
end

PERMISS- permission on line end

6.1.2 NODE---- Element Format
Each NODE element will have the following data:

TITLE--- title of the node
ULEFTXY- x location and y location of the TITLE

6.1.3 PROCESS- Element Format
Each process element will have the following data:

CENTRXY- x location y location

RADIUS-- size

NAMESTR- name of the process element

OLEFTXY- x location and y_location of the NAMESTR-~
PNOMBER- number rfor the process

ULEFTXY- x location and y_ location of the PNUMBER-

6.1.4 SWITCH-- Element Format
Each switch element will have the following data:

OLEFTRXY x_location y location

WIDTH--- width of switch
HEIGHT-- height of switch
TITLE-—— name of the switch element

ULEFTXY- x location and y location of the TITLE

6.2 -vlog Format
Synopsis
JRCS/filename-vlog

86

or

or

87

Description

This file contains the revision history of the associated revision file. It is formatted as a
senies of lines of the form:

action weekday month day time year username revision_number
This is an ASCII file with fixed length fields except for the revision number which is
completed with "\n" (the newline character). The acuon field is either ci or co. The
fields weekday, month, .., and year are result of output from the Utek date

command. The usermame is padded with leading spaces to make it 21 characters wide.
All characters in the usemame that exceed this width will removed.

6.3 ,v Format
Synopsis
JRCS/filename,v

Description

This file will contain the revisions for the working file. It is a standard RCS rcsfile with
the exception that it contains the revisions of the LGDF2 working file. For more infor-
mation on the format of the ASCII file, see the rcsfile(SRCS) man page.

88

INDEX

¥ e e 87
o 110 1 = O T U P O ROy U OO U USROS TSSOSO R SR 76
SO0 e e e ar e 76

172 1o - ST USSP U SRSTUSUU TP 86
CHECKIN- COMIMANG ..ottt et et e ettt e e s ettt a e e e ens 79
CHECKOUT COMIMANG oottt et ettt et et e 80
Command Ling OPIONSoouiriiiiiiisi ettt ettt e s eve st stae s sensane e nseaasees 76
Compiling and Modifying the VS Source Code ...t 84
DE D ME R GE COmMIM AN oottt e et e e e e e e ae e st e e e e e te e e ees g1
) O I AES ot ettt e e e ettt e e e s 85
GAMEOVER COMIMANG ..ottt 78, 81
Large-Grain Data Flow 2 Diagram Working File ..., 85
LGDE2 WOTKING FLIE (it e st e eee e as st assaoae s came e e s aaesraae e s e 85
LN e BIBIMENL ottt e e e e 83
N O D E - mm ELOIMIEIIE « oottt et ettt e et e et e e e e e area e 86
PROCES S EIEIMEBNL oo iitrireeeiie et e e e e e 86
PROJECT: COMMANG oottt e e, 77
PROTJECT? COMMANG oot et e e e e e e et r e e e e s araas 77
ROCSDIFF- COMMANA ittt oo e e e st e st ee e ee e e e e e s v 82
ROCSLIST- COMMANA oottt e ettt e e e e ettt e e 82
RCSMERGE COMIMANG ..oreievireereiie et eeee e e oot e s e e s e e e e et e e e e e e et eeeien s 82
SENDRLOG COMMANG oot ea e et e et et e e e e e 82
SWITCH-- EIBMEDNT 1ottt it e e ma e a2 e b et et eae e s cb b asees 86
Version Management Commana EITOT ... 83
N P R M P T S oo e ettt ettt e e e e e e e 76,78
VS E R R O R oot e e e et e e 78, 83
Workspace COMMANA EITOTov.iioieie ittt eb st ce s e searaes 78

Z277 7777 COMIMANG ..ottt cees e ee ettt e e e e et e 83

89

APPENDIX D. UNIX Man Page for VS

VS(1) UNIX Programmer’s Manua) VSl
NAME
vs - A Version Management System for Large-Gratn Dawa Flow Diagrams
SYNOPSIS
vs [-echo] (-debug value)
DESCR{PTION

Vs 1akes a sel of inpuws from stdin and manages mulaple revisions of pseudo lext files. This system pro-
vides the feamres of e Revision Conrol Sysiem (RCS) by Walter F Tichy and additonal funcoonahiy
provided via a semi-intelligent interface program.

OPTIONS
-ecbo Dispiay on stdout the commands inpul from stdin.

~debug value
Specify the level of debug messages 10 be printed.
Valye 0 - all debug messages are pnnted.
Value 6 - (the default) no debug messages are printed.

Getting Started with VS
Rather than repeat all that is wnnen 1n the the documentaton on the Revision Conmro! System by Walter F.
Tichy, { will suggest siarting by reading the following documents:
Design, Implemersation, and Evaluation of a Revision Conirol System by Walter F. Tichy. tn
Proceedings for the 6th Internanional Conference on Software Engineering. IEEE, Tokyo, Japan,
September, 1982, Unix Programmer's Manua] documentation RCS/MTRO and the man pages for
each element of rcs used.)
Vs provides a superset of the RCS commands with some additonal funcuonalicy not available in other ver-
sion management systems. Once vs is invoked ut acis as command language interpreter for version
management commands. Afier being invoked successfully vs replies on sidout with the message vs-
started.
The command nterpreler then waits for input from stdin. 1t parses the input and acts according 10 1l nouon
of version management.

When no working space has been set vs accepls the weorkspace commands:
PRCJIECT?
PROJECT:
GAMEOVER
If a command is given thal vs does not understand vs responds with the message:
VMESSAGE vsa: Unable to parse command
VMESSAGE vs: Expected: "PROJECT?", cr "PROJECT:", or "GAMEODVIR™
222222212
and then waits for more input.

When a working space has been set successfolly vs accepts the version management commands:
CHECKIN-
CHECKOUT
DFDMERGE
GAMEOVER
RCSDIFF-
RCSLIST-
RCSMERGE
SENDRLOG
22222222
I a command is given that vs does not undersmand vs responds with the message:

50

VS(1) . UNIX Programmer’s Manual VS{1)

VMESSAGE vs: Unable tc parse the cormand input.
VMESSAGE vs: Expected: “CHECKIN- ", “CHECKOCT ", "RCSDIFF- ",
"SENCRLOG ", "RCSMERGE ", "“22222222 ",
"RCSLIST- ", or "GAMECVER "
22222222
and then waits for more 1nput.

COMMAND SYNTAX AND SEMANTICS
The workspace commands have the following syntax and semantics.

PROJECT?D
Prini out the list of workspaces direcdy under the current direcion

PROJECT : Thame
Change 1o the workspace with the given name,

GAMEOVER]
Exil the version conrol shell.

The version managemen(commands have the following synax and semantics.

CHECKIN-(lssring
Use Lhe ci command 1o store new revision nito version conwrol files.
CHECROUTIsiring
Use the co command 10 retieve revisions from version conrol files
DFDMERGRsiring
Use the dfdmerge command 10 incorporate the differences between 1wo revisions of a version con-
rol file into the corresponding working file.

GAMEOVERD]
Exit the version control shell.

RCSDIFF-Diring
Use the rcsdiff command 1o compare two revisions of each version conool file given.

RCSLIST-0
Print out the list of pseudo-files under version conmo! under the duectory /RCS.
RCSMERGEIsiring
Use the resmerge command to incorporate the differences berween two revisions of 2 version con-
o) file inio the corresponding warking file.

SENDRLOGXstring
Use the rlog command o print out starus infformanon about version conwol files.

rzzzzzz20
Change back o level and reset the workspace.
The T is really a space (0x20) charater and is required by the protocol.

IDENTIFICATION
Awhor: Charles Adams, Oregon Graduate Insarule of Science and Technology, Beaverion, Oregon
Revision Number: 0.2 ; Release Date: 90/11/06.

SEE ALSO

resinro{1L), ci{1L}), co{1L), res(iL), resdiff(1L), resmerge(1L), rlog(1L), resfile(SL)
BUGS

Many but unknown at this time.

91

BIOGRAPHICAL NOTE

The author was born 28 Janvary 1948, in Madison, Wisconsin. He attended vari-
ous public schools in Madison until 1964 when he moved to West Covina, California.

He graduated from Covina High School in 1966.

In October 1966 the author began military service in the United Srtates Air Force.
He was stationed for the most of his duty in West Germany where he attained the

rank of Staff Sergeant and was Honorably discharged in August 1970.

In September 1970 the author entered Los Angeles Valley College and transferred
to California Polytechnic State University of San Luis Obispo in September 1972. He

graduated with a Bachelor of Arts in Speech Communication in June 1975.

In August 1975 the anthor entered West Virginia University as a teaching assis-
tant and graduated with a Master of Arts in Speech Communication in August 1976.

He then attended University of Oregon from September 1976 to June 1978.

In June 1978 the author began a position as Marketing Manager for Northwest Mi-
crocomputer Systems. This position lasted unal June 1982 when the author began

working for Electro Scientific Industries as a Lead Technical Writer.

The author began his present position as Software Engineer with Tekwonix, Inc. in

January 1987. He has been married for five years to the former Gloria Smith.

	Charles Adams thesis to page 40.pdf
	Charles Adams thesis to page 91.pdf

