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ABSTRACT 

 

With the recognition of the need for reproducibility in the face of increasing data complexity, 

we implemented a series of metrics and an interactive visualization prototype to facilitate 

discovery and interpretation for next generation sequencing use cases: copy number variant 

detection with exome sequencing and chromatin immunoprecipitation followed by sequencing 

(ChIP-seq). This interactive framework is an important first step to provide measurable and 

consistent check of data validity for each step of the analysis. The goal is to allow scientists to 

assess the validity of their methods, ensure the accuracy of the data and guide prioritization by 

obtaining high confidence findings.  It is important to note that the interactive component 

allows identification of issues or characteristics of the data that would have been missed in 

traditional static plots. We note this is an iterative process and with further evaluation and 

testing, additional metrics and contextual views can be added.   
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Chapter 1 Introduction & Background 

 

The advent of “big data” has changed how and what we analyze, the inferences that can be 

made as well as the power of the data itself (1). The very nature of big data – with respect to its 

characteristics of velocity, volume, variety and veracity - has also created new challenges, 

particularly with interpretation and “accessibility” of the data with respect to knowledge. Given 

the complexity of the data structures and algorithms needed to manage and process the data, 

the need for rigor and reproducibility at scale is key. There is also a need for transparency with 

regard to how the data has been analyzed and what impact the processing steps and algorithms 

have on the results, as well as a need to quantify the irreproducibility. With respect to the 

consumers of the data (analysts, end users who are being delivered results etc.), there is the 

potential for errors in the multi-step analyses or in the interpretation or assessment of the 

results.  

 

In a study by Prinz et.al from Bayer, there was an attempt to reproduce 67 projects from 

oncology, women’s health, and cardiovascular specialties(2). They found that only about 32% of 

the findings were either reproducible or in line with the reported scientific findings. Even more 

troubling was the finding that 65% of the repeated scientific work had conflicting and 

inconsistent results compared to the published findings. The inconsistencies among the studies 

occurred independent of domain and the prestige of the initial journal publication. Prinz and 

co-authors attribute this severe lack of reproducibility to a multitude of factors, such as 
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differences in statistical testing, potentially poor scientific practices, and underpowered studies. 

Studies that lack power are ultimately measuring statistical noise rather true effect size (2).  

 

Another examination of reproducibility was conducted on 53 scientific studies that had 

published pivotal and novel approaches in the past decade. The authors could only confirm 6 of 

the 53 studies (3). This lack of reproducibility was observed regardless of the journal’s impact 

score and number of citations referencing them. The authors reported issues with 

misinterpretation and inappropriate statistical testing and analysis, underpowered experiments 

and overall failure of the checks and balances system of the scientific process(4).  

In biomedicine, one source of the vast amount of data being produced is from high throughput 

sequencing, which has enabled new insights into the genome, transcriptome and epigenome of 

diverse species (5).  Genome sequencing can identify variations in DNA. Methylation and 

histone modification can also be identified by using DNA sequencing coupled with (5) 

immunoprecipitation (ChIP-seq) thus measuring the interaction of DNA with protein (11). 

Genetic information about the transcriptome and splice variants can be extracted by 

sequencing the translated RNA. The variety and volume in particular has challenges that 

traditional scientific methods had been inadequate to handle(6).  

 

Sources of Irreproducibility 

One of the most troubling aspects of the analysis of next generation sequencing data is the 

large number of processing steps and the variation in the methods and tools used for analysis 

which can lead to differences in results between studies and impact replication of findings. The 



4 
 

volume of the data obtained from sequencing can give researchers a false sense of security 

regarding the robustness of the data. However, changes in a single step in the analysis 

workflow leads to drastically different results. The inability to differentiate the statistical noise 

from the detectable signal is a major source of the irreproducibility we observe in these 

analyses.  

 

High throughput sequencing has further necessitated the development of new algorithms and 

computational tools using a variety of techniques to manage, process and analyze the massive 

amounts of data that are produced. These computational methods have their own 

assumptions, models and parameters that can potentially lead to varying results. Consequently, 

drastically varying results can be obtained based solely on evaluation methods.  

 

Quality statistics are often performed prior to processing high throughput sequencing reads, 

which assess potential artifacts from the experimental method or sequencing platform. 

FASTQC, a set of static graphs that generate statistical diagnostics, has revolutionized the 

interpretation of variation observed across next generation sequencing platforms. FASTQC 

generates quality control metrics and visualizations on the raw sequencing data generated by 

the sequencer(7). This simple analysis can assess and flag problems within raw data output, 

prior to performing hours of analysis.  However, validation of subsequent analysis of the 

computational methods is rarely ever performed. The assessment of downstream signal that 

evaluates the robustness of computational methods and the reproducibility of results, is equally 

important to prioritize and determine the confidence of results. However, quality assessment at 
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this point is rarely performed, and no metrics of the robustness of the data are provided. This 

provides no guide for assessment of stability of the findings and sensitivity to algorithmic 

parameters or processing steps. Computational and statistical models and algorithms should be 

treated as a tool or machine that is capable of finite degrees of error rather than an exact 

method of calculation. 

 

Moreover, different computational methods with different underlying assumptions make it 

difficult to compare them. The variability of these methods, such as different algorithms, 

models, assumptions, and the sheer number of techniques developed has complicated the 

analysis and introduced deviations, and inaccurate results, stemming from the computational 

method alone (12, 13). The variety of computational methods, the variability in how they are 

implemented and used and their ongoing development, as well as the dynamic annotations and 

genome builds, makes development of standard operating procedures (SOP) difficult. The 

ability to compare the quality of computational methods and produce equivalent and 

reproducible results is crucial to determine the biological confidence of high throughput 

sequencing data.  

 

Potential Solutions  

The lack of reproducibility and transparency highlights the urgent need for frameworks for 

communicating and accurately depicting the data to scientists. The growing amount of these 

enormous and dynamic datasets calls for changes in how we handle and access data. The 

datasets are often too large to open as a simple spreadsheet, too complicated and multifaceted 
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for simple visualizations. This renders the data inaccessible and essentially locked away from 

interpretation from a user who lacks computational training. Methods must adapt to help 

scientists interpret the data and facilitate discovery.   

 

Adjustment of the way data is visualized is a crucial component of exposing the data. Static 

two-dimensional visualizations have become inadequate in communicating and depicting big 

data. These visualizations don’t allow for the active interpretation and hypothesis generating 

interpretation that would allow us to expose large data sets. Additionally, overcomplicated 

plots like three-dimensional plots have been shown to be difficult to interpret and prone to 

misinterpretation (8). The revolution in analytics lies in interactive data visualization that allow 

the visualizer to filter, manipulate and interact with the data to immediately ask questions and 

generate hypotheses from the data (9). The development of these interactive frameworks also 

provides cross-platform, efficient methods for communicating the transformations and analysis 

of the data. The simple act of interacting with the data can communicate the filtering and 

characterize the multiple facets to new users. This level of transparency will improve the overall 

quality of scientific data and increase the reproducibility with clearly defined logical 

computational methods that will be become standards during analysis.  

 

The long-term goal is to increase data transparency and develop methods for interactive 

visualization that will guide intuitive interpretation. Data interpretation performed with 

tangible statistical metrics and interactive visualizations will enable differentiation between the 

relevant or truly biologically significant to the irreproducible statistically irrelevant signal. The 
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following framework will provide an evaluation of comparative computational methods. This 

tool will compare results from computational methods providing a statistical assessment of 

accuracy and reliability, while emphasizing the impact of algorithms and their parameters on 

data dynamics. Comparison based on shared measurable characteristics, like the sequencing 

depth at measured signal, can measure the robustness of the results obtained from these 

computational tools. 

 

Evaluating these analysis methods and algorithms requires extensive comparison and 

inspection of the results using comparative metrics and visualizations. For every new algorithm 

or version developed the comparison has to be reevaluated, recalibrated and normalized to 

equivocate results and allow a fair comparison of the performance.  The development of an 

interactive visualization framework for dynamic data abstraction and to compare 

computational methods is necessary. 

 

 The dynamics of interactive data visualization and exploration can expand the possibilities of 

static visualizations. Revolutionizing the interchange of information from simply data filtering, 

sorting and maneuvering to acting as a reproducible record of the transformations of analyses 

and providing a portable intuitive framework to communicate the transformation performed in 

analysis (9).  

 

Study Aims 
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In this study, the focus is on developing and implementing metrics, summaries and interactive 

visualizations to assess performance and reproducibility of different algorithms for two high 

throughput workflows use cases: ChIP-seq and Copy Number. The aims are:  

 

Aim 1: Develop and extend metrics, statistical summaries and visualizations to assess the 

performance and reproducibility of different algorithms and computational methods in high 

throughput workflows 

 

Aim 2: Implement metrics in an interactive framework for two use cases. Use cases will be 

enrichment regions from chromatin immunoprecipitation (ChIP-seq) and copy number variants 

(CNV) from exome sequencing 

 

Comparative metrics for computational methods is particularly difficult because of the vastly 

different approaches these methods use for detections. The computational workflows are often 

complicated multi-step, even multi-algorithmic processes involving multiple filtering steps, 

realignment, statistical thresholding steps, different underlying assumptions and parameter 

optimization. Variation and the abundance of methods make it difficult to assess and compare 

methods or define them for a particular data set and have resulted in the lack of consistency 

and have made reproducibility extremely difficult. One method I will use to compare the results 

is by calculating the irreproducible discovery rate (IDR). Briefly, this statistical metric uses 

biological replicates to measure the reproducibility of signal among replicates (10).   
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Methods that can assess and compare the performance of a computation, requires practical 

and universal measurements of comparison as well as methods of deconstruction to accurately 

and fairly compare and assess performance. However, the computational methods and tools 

used vary drastically depending on the type of next generation sequencing analysis being 

performed. Therefore, an analysis of comparative computational methods and metrics for 

assessment will be explained in context of two use cases of copy number variant (CNV) 

detection from whole exome sequencing and chromatin immunoprecipitation sequencing   

(ChIP-seq).  

 

Copy number variation is a major source of genetic differentiation that has been associated 

with various phenotypes and diseases. The inherent limitations of exome sequencing make 

detection of the copy number variation a uniquely complicated computational problem. Exome 

CNV was detected using two computational methods; both using read depth as a method of 

detection. ExomeDepth, assumes a beta-binomial distribution of the read depths and 

subsequently uses a hidden Markov chain to combine copy change regions (11).  

 

The second copy number detection method, ExomeCNV, assumes read counts have a Poisson 

distribution then uses the circular binary segmentation algorithm to merge copy number 

variant regions(12). Chromatin immunoprecipitation with massively parallel sequencing (ChIP-

seq) has been used in identifying protein-DNA binding, histone modifications and nucleosome 

locations across the genome (13). Characterization of these binding sites allows the 

identification of locations essential in genetic regulation (13, 14).   Both of these methods are 
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widely used and utilize multi-step workflows with a large number of potential algorithms and 

parameters and make excellent use cases for an this prototype implementation.  

 

The interactive framework will be developed in R shiny developed by RStudio (15). Shiny is a 

web application framework that allows users to rapidly turn their analyses into interactive web 

applications. These applications can then by hosted on the web and accessible to anyone with 

access to the internet, without the installation of cumbersome programs and packages. Using a 

single program (Rstudio) to develop, analyze, and deliver data analyses allows scientist to easily 

and rapidly deliver their data and to prototype an interactive framework. The development of 

Shiny applications is also extremely versatile, with the potential to integrate HTML, Javascript 

and D3 as developed toolset and easily integrate them into the R shiny framework. Although, 

conflicts may arise in the package dependent scripts developed in R, the package dependency is 

among the many reasons for the ease of implementation and analysis in R. Additionally, latency 

issues can also arise based on the hosted server use in which the web application is ultimately 

launched. Despite these minor issues this application provides the ideal system for scientist to 

develop and launch interactive data frameworks.   
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 Exome Copy Number Detection Chapter 2

Introduction 

Copy number variation (CNV) is a major source of genetic variation that has been associated 

with various phenotypes responsible for the diversity in human as well increasingly attributed 

to human disease.  CNVs can range in sizes, from small focal length regions, as small as 50 

nucleotide bases, to regions that are a kilo base or larger. Variations can be categorized as 

regions of deletions or duplications. Deletions are observed regions that are missing when 

compared to a reference genome, resulting in an assumed loss of function (LOF) for that 

particular location of the genome. Duplications are variations in which a particular region is 

duplicated resulting in supposed gain of function (GOF) of that genome location (16). The use of 

massively paralleled sequencing to characterize CNVs has become increasingly popular. The 

random distribution of the short reads along the genome with higher coverage and resolution 

allows for more accurate estimation of the copy number than traditional methods using 

fluorescent in situ hybridization, array comparative genomic hybridization and SNP arrays (17, 

18).  

 

Whole exome sequencing (WES) has become an inexpensive alternative to whole genome 

sequencing. The targeted sequencing method can only capture the protein-coding regions, or 

exons, consisting of less than 1% of the genome (17). However, WES can be effective method in 

detecting genes harboring copy number gains and losses that affecting the presentation of 

disease phenotypes. Although, the inherent limitations of WES renders CNV detection from 

exome sequencing incapable of capturing large cross chromosomal variations and variations 
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within exonic junctions, breakpoints and non-coding regions, it provides a low cost alternative 

to identify single nucleotide variants as well as copy number changes in coding regions (18). 

A diverse set of tools has been developed to identify CNVs from WES sequencing and only a 

handful have been developed for somatic CNV detection (16, 18-21). The inclusion of a paired 

normal sample can be extremely advantageous in detecting accurate somatic copy number 

variants and correcting for background. The purity of the tumor and an accurate measurement 

of the cross contamination between tumor and normal pairs cannot often be estimated. This 

measurement, however, can significantly impact the sensitivity and specificity of CNVs that are 

detected. Additional considerations are caused by the limited capture of coding sequences, 

which introduces significant GC biases (16, 17). The correction of GC biases is necessary for 

analyzing exome sequencing, however, the following study used paired normal tissue sample 

from the same patient sequenced in conjunction with the tumor tissue. This method nullifies 

any significant biases background and biases caused by GC rich regions (18) 

The computational tools developed, for somatic CNV detection from WES data, use a diverse 

set of methods to detect CNVs with different assumptions, algorithms and models that impact 

the accuracy of CNV detection (17).  The majority of applications of CNV calling from WES data 

use the read depth of sequencing at targeted region to determine areas of gain and loss (17).  

Alternative methods, such as paired end or split read mapping, cannot account for the 

sparseness of the data obtained from WES.  

 

Once read depth regions have been established the regions are combined using a process called 

segmentation. Segmentation is performed using a variety of algorithmic techniques to merge or 
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differentiate the exons with copy number gains and losses contained within a single CNV event. 

The differentiation of these merging and stopping points also involves assumptions about the 

statistical distribution of reads in order to distinguish junctions of changing copy numbers. The 

regions are then interpreted statistically with various thresholds and measurements to 

determine the confidence of the variant, such as the log of the reads ratio of tumor to normal 

or Bayes Factor (19).  

 

IDR 

The perpetual development of new computational methodologies calls for comparative 

techniques that can measure the accuracy, reproducibility and performance of these new 

methods. Li et al. developed a potential solution to the statistical arbitrary thresholding, called 

the irreproducible discovery rate (IDR), which was originally applied to peaks in chromatin 

immunoprecipitation sequencing (ChIP-seq) experiments (10). This method assumes that real 

signal is reproducible and that noise is generally irreproducible among replicates.  

 

Thus, by providing measurements of the signal that is reproducible across biological replicates 

we can assess the correspondence between these replicates and precisely determined the 

threshold at which agreement between signal dissociates. Measuring the correspondence of 

biological replicates and IDR, therefore, uses biological replicates to compute an empirical 

statistical threshold, at which variability occurs. The IDR can then be compared to across 

computational methods. An evaluation of the reproducible signals from different methods can 

provide a method to assess the robustness of the computational methods (10).  
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ExomeCNV 

The following study uses two methods to detect exome CNV regions, both using read depth as a 

method of detection. ExomeCNV, uses the read coverage output from the GATK depth of 

coverage scripts. The ease of integration to a suite of tools capable of discovering somatic 

variants can save a significant amount of time when building pipelines for analysis. The suite of 

scripts has established a best practices guideline for mutation detection and could be 

integrated easily to include copy number detections(22). The distribution of read counts was 

assumed to follow a Poisson distribution. Next, segmentation is performed using circular binary 

segmentation algorithm to combine coverage and estimate the mean reads ratios (12).  

 

ExomeCNV, additionally, provides the input of a fixed normal contamination of the tumor rate, 

referred to as the admixture. The level of tumor purity has a major effect on the sensitivity and 

specificity of the called variant regions. The defaults assume a higher level of specificity and less 

false positives (12). An admixture rate of zero, assuming an entirely pure tumor, was set to 

establish a high level of sensitivity to capture a proportion of false positives (10). The resulting 

CNVs are reported as the log of the reads ratios and at a given threshold for specificity and 

sensitivity.  

 

ExomeDepth 

 The second CNV detector ExomeDepth, assumes a beta-binomial distribution of the read 

depths. Many CNV methods assume that reads follow a Poisson distribution with equal mean 
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and variance. Plagnol et al. found that the fit significantly improved using a beta-binomial 

model to account for the over dispersion of reads (11).   

 

The likelihood value for each exon is then combined using a segmentation method that 

implements a hidden Markov model. The model merges CNV calls across exons that use the 

prior probability to transition from different copy number states (11).  

The tumor and normal purity can also have a significant impact on the sensitivity of the CNVs 

detected. This parameter as the proportion of tumor in the tumor sample was set at 0, to 

capture the most amount of potential CNVs that could be detected. The resulting CNVs are 

reported with the corresponding prior probability.  

 

Data for Use Case: Gastrointestinal Stromal Tumors (GIST) 

This study will analyze cancer lesions, specifically gastrointestinal stromal tumors (GIST). These 

tumors occur primarily in older patients and are most common non-epithelial tumor of the 

gastrointestinal tract(24).  Its incidence has been observed worldwide at a rate of 11 and 19.6 

per million people at a rate of approximately 3300 to 6000 new diagnoses per year in the 

United States(25). In 1998, Hirota et al found that GIST harbored mutations in the c-kit proto-

oncogene, with over 75% of total GISTs harboring mutation in KIT tyrosine kinase (25, 26). 

Genotypic profiling found further mutations in the same kinase family and homologs of KIT, 

such as platelet derived growth factor PDGFrA, responsible for approximate 7-12% of GISTs. 

These mutations leads to the constitutive activation of KIT by arresting the conformation for 

ligand binding with stem cell factor (SCF), followed by homodimerization(25).  
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These mutations in GISTs are specific alternations responsible for the activation of the kinase 

that leads to uncontrolled oncogenesis. This specificity has led to the successful application and 

treatment with KIT kinase inhibitor imatinib mesylate (STI571, Gleevec®) as an inhibitor of the 

transmembrane receptor tyrosine kinase (27). However, 15% of GIST do not have a detectable 

KIT or PDGFrA mutation, this subset of ‘wild-type’ GIST are morphologically identical to 

identified mutant GIST, occurring in identical regions and expressing high levels of 

phosphorylated KIT (28), (Figure 1) The exact mechanism of this subset’s KIT activation is less 

clear but has been shown to consist of genetically heterogeneous groups associated with 

various mutations attributed to oncogenesis in other cancers (25).  By identifying the various 

genetic variants associated with wild type GIST can potentially define the various mechanisms 

of disease and provide the potential for new biomarkers for targeted therapy. 
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Figure 1: Genetic heterogeneity of gastrointestinal stromal tumors (GIST) and 
efficacy of imatinib mesylate (STI571, , Gleevec®). 

 

GIST has been shown to develop of resistance to treatment and is defined by primary and 

secondary resistance methods. Primary resistance develops within the first six months of 

treatment and is often a result of the varying sensitivities of the different KIT genotypes to 

imatinib(25). Additionally wild-type GIST displaying resistance has been shown to contain 

mutations downstream of the KIT that can be targeted directly with other specific 

inhibitors(29). 

 

 Secondary resistance, progression of disease after six months of treatment can occur through a 

multitude of mechanisms. The acquisition of secondary resistance mutations in KIT or PDGFrA 
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often occurs in the same gene or allele as the driving primary KIT or PDGFrA mutation(30). 

Further evidence has shown intra and inter lesion genetic heterogeneity in GIST  tumor. Leigl et 

al found 82% of GIST  lesion contained secondary mutations after first-line treatment with 

tyrosine kinase inhibitors (TKI)(31). This level of oncogenic variability and the polyclonal nature 

of these tumors significantly impact the efficacy of the TKI inhibitors. The importance of 

defining the various oncogenic mechanisms is crucial to provide effective inhibitors to the 

disease.   

 

The following study analyzed 41 GIST tumor lesions from 23 patients for cohort level 

summaries. Two lesions from single patient both extracted from the omentum were used to 

represent biological replicates for IDR analysis. The primary mutations showed two identical KIT 

mutations in both lesions, although inter tumor differentiation may occur between these 

lesions, the identical genetic morphology and localization provides a model with an expected 

minimal variation. Further metrics and visualizations will be used to assess these samples and 

to determine the underlying morphology that is consistent between them. Additionally, these 

metrics and visualization will present a comparative analysis of two copy number detection 

methods to assess their performance. 
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Methods 

Whole Exome Sequencing Alignment 

Alignment was performed against the UCSC Hg19 human reference using BWA MEM v 0.7.9a-

r786 with default parameters. Picard Tools v1.119 was used to mark duplicated reads followed 

by realignment around potential insertion-deletion events using and GATK v3.2-2-gec30cee 

INDEL realigner and subsequent recalibration of base quality scores. Coverage of the exome 

was summarized also using GATK v3.2-2 Depth of Coverage, counting fragments only within the 

target regions specified by the Roche system capture kit, Nimblegen SeqCap Exome version 2 

(Table 1).   

 

Copy Number Detectors 

ExomeCNV version 1.4 was implemented using R version 3.2.1 (12).  This CNV detection method 

began by initially calculating the log coverage from the depth of coverage files generated by 

GATK. The variants were then detected using ExomeCNV with an input parameter expecting 

zero normal contamination in the tumor sample, assuming a pure tumor sample.  

 

The tumor purity was not determined for the sequenced samples, although a heterogeneous 

tumor and normal mixtures is likely. Increasing the fraction of the potential normal 

contamination of tumor would in fact lead to less noise, increasing the specificity of the CNVs 

detected. However, the methods used in this analysis are dependent on a measurable noise 

component to distinguish the reproducible component signals from reproducible signal among 

biological replicates. Therefore, to avoid arbitrary assignment of tumor purity and to obtain the 
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entire spectrum of potential signal components, essential for calculating the IDR, CNV detection 

was performed assuming no normal contamination in the tumor sample. Segmentation was 

carried about by ExomeCNV optimized for the area under curve, maximizing the sensitivity and 

specificity (12).  

 

ExomeDepth version 1.1.5 was implemented using R version 3.2.1 (11). Count data was 

generated using the bam corresponding bam file and Nimblegen SeqCap Exome version 2 

captured exome intervals. The CNV were called and segmented using the normal sample from 

the patient as the reference. Additional parameters included a tumor proportion of 100% to 

maximize sensitivity and a HMM state transition probability of 1e-03.  
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Results and Discussion 

The 41 GIST lesions and corresponding paired normal form 23 patients had an average 

sequencing depth of 78x. Table 1 summarizes alignment metrics for the two lesions that will be 

used as biological replicates in this analysis.  

  Tumor1 Tumor2 Normal 
Total Reads 194281725 186158109 1.94E+08 
Unmapped Reads 2883984 2556289 2842003 
Duplicated Reads 105080570 96771053 99903730 
Total Coverage 
(Fragments) 

5015975655 5.014E+09 5.35E+09 

Average Coverage 
(Fragments/base) 

106.6 106.55 113.79 

Table 1. Whole Exome Sequencing Results. Parameters from 
Whole Exome Sequencing (WES) of 2 tumor lesions from a single 
patient and the matched normal tissue. 

 

Context-guided Visualization 

We note that during the iterative evaluation of the prototype for CNV, we were prompted by 

the interactive aspects of the system to develop and expand the initial queries. Importantly, it 

became clear that there were actually 3 context-specific comparisons that needed to be 

assessed: consistency in CNV calls across  methods for single patient sample, consistency across 

tumor samples within the same patient, and consistency in CNV calls across paired samples and 

cohort-level summaries.  

 

Six of the seven metrics could be applied to the three perspectives whereas the IDR required 

the use of biological replicates and was ideally applied to only the paired sample context.  The 

metrics were combined into an interactive framework toolset consisting of three applications to 



22 
 

address the contextual use cases, with interactive assessment of the reactive metrics from 

Table 2.  A fourth framework was developed for the IDR, to initially compare the results 

obtained from both CNV detectors at both copy number losses and gains. However, because of 

lack of confidence score reported by one of the CNV detectors, the IDR could only be applied to 

one of the CNV detection methods, ExomeDepth.  

Seven metrics and visualizations were assessed and implemented for WES for copy number 

detection (Table 2). Assessment of these metrics provides information on robustness of copy 

number detectors and would assist identifying high confidence CNVs. This assessment of the 

CNV methods will examine each of these metrics in our evaluation of ExomeCNV and Exome 

Depth the context-specific comparisons to visualize and assess these variant detectors.  

 

Visualizations and Metrics for Comparison Exome Copy Number Variant (CNV) 
Distribution and sizes of CNVs 
  

Comparative assessment of the region sizes can 
define an algorithms intended target region and 
can reveal biases from over fitting. 

Number of LOF and GOF CNVs identified 
by each CNV detection method 

Comparison of the number of regions can 
indicate information about the sensitivity and 
specificity of a particular detection method 

Overlap of CNV LOF and GOF for 
different analysis methods.  

Compare overlap of CNVs found by multiple 
detections methods.  

Fraction of Reads in variant region  Determine whether significant regions are 
biased by coverage. 

Circos plot LOF/GOF comparing analysis 
methods along genome 

Visual comparison of size and location along the 
genome of CNVs detected by each method.   

GC Enrichment Distributions Diagnostic for copy number variant detection to 
ensure GC correction are being made and no 
severe biases 

IDR Correspondence Curve and 
threshold 

Irreproducible discovery rate to determine 
significance threshold of peaks based on 
reproducibility of biological replicates (10).  

Table 2. Visualizations and Metrics for Comparison of Exome Copy Number Variants (CNV). 
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Distribution of CNV Sizes 

The number of copy number variants detected by ExomeCNV was less than the CNVs called by 

ExomeDepth. ExomeCNV found 251 and 202 CNV events, while ExomeDepth called 110 and 121 

CNV events  for Tumor 1 and Tumor 2, respectively (Table 3). Figure 2 indicates the size and 

distribution of the two copy number variant methods with both tumor replicates. The number 

of large CNV events, greater than 100kb, was larger with ExomeCNV, while moderately sized 

events between 10kb and 100kb were slightly lower. The increased frequency of large >100kb 

events may suggest a liberalness in the merging and segmentation of the two methods. 

ExomeCNV segmentation method using circular binary segmentation (CBS) may be more liberal 

in combining individual CNV segments the hidden Markov model that uses the likelihood across 

multiple exons. The larger number of events observed by ExomeCNV versus ExomeDepth can 

impacted by the statistical threshold and the model used. ExomeCNV’s models the reads from 

sequencing using a Poisson model, which assumes the mean and variance are equal. Issues of 

over dispersion and deviation from model assumptions can impact the calls.  

 

Figure 2 additionally shows a concerning lack of small or focal (≤1kb),  copy number variants 

called by ExomeDepth for both tumor replicates. Somatic CNVs frequencies in cancer have been 

shown to be inversely proportional to length, except for chromosome arm length CNVs (20, 32). 

Chromosomal arm length CNVs are observed to occur with marked increase in frequency in 

somatic CNVs (32). The lack of these large mega base long variants detected by ExomeDepth is 

most likely caused by the initiating parameters during the segmentation step of CNV. Exome 

Depth uses HMM and assigns the hidden Markhov states to each segment, determining 
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whether that segment is merged or segmented from adjacent regions, and is set at a default of 

50kb regions, which can impact the results.  

 

 

 

 

 

 

 

  ExomeCNV ExomeDepth 
  Tumor1 Tumor2 Tumor1 Tumor2 
Total called 
regions 

251 202 207 202 

CNV Type Gains Losses Gains Losses Gains Losses Gains Losses 
Number of 
CNV events 

102 149 103 99 17 190 36 166 

Minimum Size 
(bases) 

114 139 122 136 1970 82 498 73 

Maximum 
Size (bases) 

142.2 
x106   

87.9 
x106   

180.7 
x106   

120.6 
x106   

70600 55100 36000 45500 

Average Size 
(bases) 

18.5 
x106   

6.98 
x106   

18.9 
x106   

10 
x106   

89000 2120000 275000 1340000 

Table 3. Overview Frequency and size of CNVs detected by ExomeCNV and ExomeDepth (11, 
12) 
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Figure 2. Size and Distribution of CNV Size for two biological gastrointestinal stromal tumor 
(GIST) duplicates, Tumor 1 and Tumor 2 from a single patient evaluated using two copy 
number variant detectors ExomeCNV (12) and ExomeDepth (11). 

 

Number of LOF and GOF CNVs identified by each CNV detection method and  

The frequency of the copy number gains or duplications is significantly less than copy number 

losses detected with the different methods (Table 3). ExomeDepth only detected 31 of the 

combined CNV events, ExomeCNV, comparatively found 205 of the 452 events consisting of 

duplications.  

 

The size of the region identified by ExomeDepth is also markedly smaller, with sizes ranging 

from an average of 1283 bases to 1.34 mega bases (Mb), while comparatively ExomeCNV 

detected events from 114 bases to 180.7 Mb.  The average chromosome arm in the human  

genome reference Hg19 is approximately 65 Mb. The broad spectrum of events captured by 
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ExomeCNV and the significantly smaller frequency and size of CNV events identified by 

ExomeDepth suggests that there is a stricter statistical threshold for identifying CNV events as 

well as stricter thresholding of segmentation.  

 

Fraction of Reads in variant region  

The fraction of reads in CNV regions is drastically different for the two CNV detection methods 

(Table 4). ExomeCNV regions is shown in Figure 3 to provide a copy number state for each 

region in the entire genome, including regions assigned as a normal or diploid state. The results 

can then be filtered based on a measurable variant region, such as the reads ratio of tumor to 

normal. However, ExomeDepth only provides regions that observed some change in copy 

number. The method of segmentation may be involved in the observed discrepancy in the 

abundance of signal. Circular binary segmentation is used for ExomeCNV, in which regions are 

recursively merged or differentiated across the entire genome, regardless of their copy number 

state or statistical differentiation. The hidden Markov chain, method used by ExomeDepth for 

segmentation, uses the particular copy number state at a region to determine whether to 

merge or segment the region into a CNV state. If no CNV state change is observed, neither the 

region nor the state of the region is flagged within the indicated CNV results.  

 

  Tumor 1 FRIR 
Tumor1 

Tumor2 FRIR 
Tumor2 

Total Reads 197287594   188805115   
ExomeCNV  195569545 0.991 187256272 0.992 
ExomeDepth 3754029 0.019 3336425 0.018 

Table 4. Fraction of reads in CNV region. The total amount of 
reads called in detected region by copy number detector. 
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ExomeCNV

ExomeDepth
 

 

Figure 3. Circos plot of Tumor 1 from of the copy number results by two 
CNV detection methods, ExomeCNV and ExomeDepth. Screenshot of R 
shiny application CNV_Method_Comparison, focusing on method 
comparisons within the same sample and subject for high confidence 
calls. 
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The results reported from copy number detection methods differ substantially. ExomeCNV 

provides the copy number for each regions of coverage over the entire genome, with only the 

reads ratio to provide a method of filtering for regions of potential copy variant. However, the 

reported regions for ExomeDepth provide the reads ratio along with the Bayes factor for that 

region. The Bayes factor provides a measure of the confidence level for a particular variant call. 

No measure of confidence was observed, however, for ExomeCNV methods, with only the 

option of filtering by reads ratio available. 

 

ExomeCNV

ExomeDepth
 

 

Figure 4. Circos of Tumor 1 of CNV regions called by two CNV detection methods, 
ExomeCNV and ExomeDepth. Screenshot of R shiny application 
CNV_Method_Comparison, focusing on method comparisons within the same sample. 
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Filtered by log2 reads ratio < = -1 or log2 reads ratio >= 0.585. 

 

The results were filtered by reads ratio (R) with log2 reads ratio < = -1 or log2 reads ratio >= 

0.585, corresponding to reads ratios of 0.5 and 1.5, respectively. Filtering by the reads ratio led 

to a significant decrease in the amount of regions observed by ExomeCNV, the unfiltered 

variants depicted in Figure 3 and the filtered variants in Figure 4. While ExomeDepth regions 

went from an average of 204 copy number regions called to an average of 44 regions when 

filtered by reads ratio. The ExomeCNV regions decreased from an average of 227 regions to 

approximately 24 variant regions after filtering for an extreme reads ratio.   

 

Additionally, although there are some regions in which ExomeCNV and ExomeDepth CNVs are 

adjacent or flanking variant calls, for example in chromosome 1, 19 and 22 (Figure 4), there are 

no regions that overlap when filtered by reads ratio.  

 

Overlap of CNV for different analysis methods 

Figure 5 shows the statistical summaries and Venn diagram showing the correspondence of 

these log reads ratio (logR) filtered regions. None of the logR thresholded CNV ranges observed 

overlapped with one another across both methods. The lack of congruency emphasizes the 

fundamental differences in these detection methods, which led to different results. Because of 

the lack of overlap between log reads ratio thresholded regions the subsequent CNV summaries 

were not filtered by the log reads ratio threshold.  
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Table 5. Metrics of the overlap. 

Figure 5. Venn diagram of overlap. Overlap of two copy number variant calls, ExomeDepth and 
ExomeCNV, for a single GIST lesion filtered by reads ratio. Screenshot of R shiny application 
CNV_Method_Comparison, focusing on method comparisons within the same sample.   

 

The cohort context interactive visualizations (Figure 6) summarized CNVs across the 41 lesions 

analyzed, potentially identifying consensus variant regions that are common to the GIST copy 

variant profile. For example 13 LOF regions were detected by both ExomeDepth and ExomeCNV 

that overlapped in chromosome 22q. The loss of 22q is a common GIST copy variation (25). The 

cohort level summary can determine whether individual biases within a sample prevents 

congruency in highly confident or obvious variant regions. For example a poor quality paired 

normal in a single sample comparison of methods may decrease the sensitivity of the CNVs that 

can be detected. However, the cohort level summary reinforces that the lack of overlap at 

reads ratio threshold.  
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Figure 6. Screenshot of R shiny application CNV_cohort, comparing the copy number 
variants (CNVs) called  by two variant detection methods, ExomeDepth and ExomeCNV, 
across 41 gastrointestinal stromal tumor (GIST) lesions from 23 patients. 

 

The method comparison with a single sample context is able to observe and compare results 

CNV detection methods at a basic level. A comparison of copy number regions that overlap 

between the two detections methods, ExomeDepth and ExomeCNV, were detected in a single 

sample, and were unfiltered by reads ratio can be observed in Figure 6. 
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Figure 7. Circos of Tumor 1 of CNV regions called by two CNV detection 
methods, ExomeCNV and ExomeDepth. Screenshot of R shiny application 
CNV_Method_Comparison, focusing on method comparisons within the 
same sample. This is not filtered by log reads ratio, filtered by overlapping 
regions between CNV detection methods.  
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Table 6. Metrics of the overlap for ExomeDepth and ExomeCNV 

Figure 8. Venn diagram of overlap. Overlap of two copy number variant calls, ExomeDepth 
and ExomeCNV, for a single GIST lesion filtered for overlapping regions between the two 
methods. Screenshot of R shiny application CNV_Method_Comparison, focusing on method 
comparisons within the same sample.. 

 

The sex chromosomes X and Y were removed from the analysis since highly repetitive regions 

can cause biases in mapping and variant detection (33).  

 

Table 6 emphasizes the large discrepancy in the size of regions called, at 50 kilo bases for 

ExomeDepth and 14 mega bases for ExomeCNV. This difference in the size of regions was 

apparent in the observation of the distribution of reads but reinforced in the interactive 

visualization framework developed within this context. 

 

Additionally there are regions of high confidence, in consensus areas for both CNV detection 

methods (Figures 5,7,8, Tables 5-6). Low confidence regions can also be flagged by identifying 

84 19
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regions where variant detectors assign the opposite type of variant. These contradictory CNV 

regions, for example, when ExomeDepth calls a duplication and ExomeCNV identifies a deletion 

in overlapping regions can be flagged as potential areas where the algorithm or statistical 

model dealt with the differentiating read depth in very different ways.  

 

These overlapping regions (Figure 7,8) were found to consist entirely of ExomeDepth regions 

which were contained entirely within ExomeCNV regions. These regions consisted of ranges of 

congruency, in which an ExomeDepth range is nested entirely within a larger ExomeCNV variant 

range with an congruent assignation of copy number deletion or duplication. However, the 

congruent regions only consisted of 27 of the 84 overlapping regions. The majority of the 

overlapping regions were discrepant in the copy number variant that were called for a 

particular range. The large amount of discrepancy is explained by the drastic differences in 

these methodologies. The statistical model for significance of read ratios and the method of 

segmentation differs but the fundamental calculation of the reads ratio differs as well.  

ExomeCNV defines the reads ratio as in Equation 1. 

Equation 1:   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑋𝑋
𝑁𝑁𝑁𝑁�

𝑌𝑌
𝑁𝑁𝑁𝑁�

 

 

Where X and Y denote the number of reads mapped within the exon or segment being 

observed in the case (tumor) and control (matched normal). Nx and Ny representing the total 

number of aligned reads in the case and control, respectively (11).  
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ExomeDepth calculates read count ratio as the ratio of observed counts over the expected 

counts from the statistical model0. Preliminary read count ratios are calculated with Equation 

2, with X representing exonic read count for the test sample (tumor) and Y  the exonic read 

count for the reference sample (normal).  

Equation 2:   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑋𝑋
𝑋𝑋+𝑌𝑌

 

There are a multitude of reasons for these contradictory calls. For example, the read counts 

calculated by ExomeDepth were filtered for reads with a mapping quality of 20 or higher, 

perhaps decreasing the read counts in specific low quality locations, which led to arbitrary 

skewing of the copy number at that region when compared to the normal sample.   Despite this 

disparity the CNV callers identified 27 congruent regions which can be categorized as relatively 

confident regions of the copy number variation.  
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Tumor 1

Tumor 2
 

  

Figure 9. Circos of Tumor 1 and Tumor 2 of CNV regions called by ExomeDepth. Variant region 
are unfiltered by reads ratio. Screenshot of R shiny application CNV_Sample_Comparison, 
focusing on comparison of paired samples and the consensus signal produced by different 
CNV detection methods. 
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A  

Tumor 1

Tumor 2
 

B  

Figure 10. Circos of Tumor 1 and Tumor 2 of CNV regions called by ExomeCNV.  A) Unfiltered 
ExomeCNV regions provides copy number state for the entire genome. B) ExomeCNV regions 
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filtered by variant regions, reads ratio of < 0.5 and > 1.5. Screenshot of R shiny application 
CNV_Sample_Comparison, focusing on comparison of paired samples and the consensus 
signal produced by different CNV detection methods. 
 

 

The resulting context specific comparing the biological replicates depicts the consistency of the 

method. The differences in the two samples can be distinguished as unique to the particular 

tumor, and can either result from noise or inter-tumor variability. The consensus regions 

between these replicates could also help identify regions of high confidence and for calculation 

of the IDR. The variants detected are fairly consistent among biological replicates (Figure 10, 

11), for both CNV methods.  

 

Figure 11. Venn Diagram of Overlap 

Table 7. Statistical summary of Overlap. Overlap of Tumor 1 and Tumor2 CNV regions detected 
by ExomeDepth Screenshot of R shiny application CNV_Sample_Comparison, focusing on 
comparison of paired samples and the consensus signal produced by different CNV detection 
methods. 

 

41 
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Figure 12. Venn of Overlaps 

Table 8. Statistical summary of CNV overlaps of biological duplicates Tumor 1 and Tumor2 
GIST samples analyzed by ExomeCNV. Screenshot of R shiny application 
CNV_Sample_Comparison, focusing on comparison of paired samples and the consensus 
signal produced by different CNV detection methods. 

 

Irreproducible discovery rate (IDR) 

The IDR approach provides a ranked list of significant values between two biological replicates 

(10). A measure of correspondence between the two replicates is calculated based on these 

ranked values. However, only one of the CNV detection methods reported a significance score 

for the copy number state of a genomic region. ExomeDepth reported a Bayes Factor value, 

described as the log10 likelihood ratio of a variant call divided by the normal copy number (11).   

The IDR was applied to Bayes factor values obtained from ExomeDepth, measuring the 

correspondence between the biological replicates, tumor 1 and tumor2 and generated the 

correspondence curves in Figure 13. The correspondence curve attempts to find the junction at 

which the IDR, a measure of the correspondence of the biological replicates no longer becomes 

reproducible. The transition can be easier to obtain and visualize from the derivative of the 

11 
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correspondence plot (10). The proportion of signal that was estimated as reproducible between 

the two biological replicates was 0.6 of the total reproducible ExomeDepth signal.  

 

 

 

Figure 13. Correspondence curves for the CNV detector ExomeDepth. Correspondence 
between copy number variants detected on Tumor 1 and Tumor2. (A) The correspondence 
curves of the IDR versus the ranked proportion. (B) The derivative of the correspondence cure. 
The red line indicates the threshold used as the threshold for reproducibility to calculate the 
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IDR.  

 

The next step in estimating the IDR for each reproducible output from the replicates is applying 

the IDR’s statistical model and estimating the posterior probability for each observation (10). 

The model was fit with a reproducible proportion of 0.6 and 20 iterations, which was optimized 

based on the approximate proximity of the all the estimated parameters, i.e. mean, standard 

deviation, correlation,  of the model to the calculated parameters of the reproducible 

component.  

 

 

Figure 14. Number of Peaks at IDR Thresholds. Amount of CNV regions included at varying 
IDR thresholds for ExomeDepth. The lower IDR represents increased correspondence between 
the biological replicates, Tumor 1 and Tumor2.  
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A depiction of the number observations included at IDR thresholds (Figure 14) can help us 

identify the proportion of signal captures at various IDR thresholds. The threshold of 

irreproducibility is less apparent because of the limited signal observed by ExomeDepth. The 

IDR assumes that the ranked significance score consists of a significant amount of signal of both 

noise and truly biologically relevant signal (34). This method of CNV detection reported 110 

variants for Tumor 1 and 121 CNVs in Tumor2, which is low compared to other CNV callers (11).  

Because of the lack of significance score reported for the signal in ExomeCNV, a measure of the 

IDR could not be performed.  The output from ExomeCNV can instead by thresholded by the 

corresponding reads ratio. I must note, however, that this threshold is arbitrary and is does not 

have the statistical robustness of the IDR.  

 

GC Enrichment Distributions 

 

The percentage of guanine and cytosine (GC) bases in a genomic regions varies along the 

human genome, and has been found to effect the read coverage on next generation sequencing 

platforms, by affecting primer annealing. A study of sequencing platform biases found a 

positive correlation between read coverage and GC content when GC percentage was between 

24 to 47% (35).  

 

GC correction is performed by normalizing the read count for the GC percentage for each 

window of detection across the genome during segmentation analysis. This adjusted read count 

is then associated with the copy number to the corresponding genomic region (18).  
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However, study designs which use a case control or matched tumor and normal pair avoids the 

issue of GC enrichment. The associated read counts are differentiated from a paired tumor and 

normal sample are from the same patient and sequenced on the same platform. The effect of 

GC bias is cancelled out by directly comparing the genomes at each region (16, 18). 

Initial filtering of all CNV variants from both ExomeDepth and ExomeCNV lead to considerable 

decrease in the number of CNV observed by ExomeCNV. 

  



44 
 

Conclusion  

The evolution of the metrics development and context of visualization illustrated how a “hands-

on” interactive interface can change the way we interact with the data and think about it, 

facilitating discovery and the transfer of knowledge. This can be clearly seen in the CNV 

example where three different context specific needs were identified after initial testing of the 

prototype:  consistency in CNV calls across methods within a single tumor sample from a single 

patient (Figures 3,4, 5, 7, 8, 15), consistency across tumor samples within the same patient 

(Figures 9, 10, 16) and consistency in CNV calls across paired samples and cohort-level 

summaries (Figures 6, 17). The development of these interactive interfaces can communicate a 

multitude of metrics for the comparison of computational methods or samples, allowing the 

user to focus on the question asked and the data in front of them. 
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Figure 15. Method comparison with one sample. This framework observes the 
consistency in CNV calls across  methods within a single tumor sample from a single 
patient 
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Figure 16. Sample comparison observing consistency between tumor samples within a 
single patient 
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Figure 17. Cohort level comparison of CNV Detectors 
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 Chromatin Immunoprecipitation (ChIP-seq) Chapter 3

Introduction 

Nearly all aspects of genetic cellular activity involve the interaction of proteins with genetic 

material. The nature of these protein-DNA interactions is extremely diverse and has been 

shown to be involved in crucial pathways responsible for cellular structure, regulation and 

function (36). Understanding the associations of these protein-DNA interactions is crucial to 

understanding the biology that leads to genomic differentiation and disease. ChIP-seq provides 

methods of associating these regulatory and structural proteins to their genomic elements. The 

method identifies genome wide profiles of proteins, such as transcription factors, histone 

modifications, DNA methylation and nucleosome position. These protein profiles modify the 

composition of DNA and determine protein-DNA interaction sites (36). Due to the diverse range 

of ChIP-seq tools and its flexibility, ChIP-seq has an abundant amount of variability in its 

analytical methodologies. The multitude of methods available, over 31 open source analytical 

programs, adds to the diverse and vastly varied methods of evaluation used in ChIP-seq 

experiments (23, 37).   

 

CTCF (CCCTC-binding factor) is a highly conserved DNA binding protein (38). Evidence suggests 

that CTCF may be involved in regulating inter and intra chromosomal interactions, marking loci 

with a specific chromatin conformation (38, 39).  

 

The following study uses ChIP-seq to identify the CTCF binding sites in one of the four gibbon 

genera, Symphalangus syndactylus (Siamang). Gibbons have accumulated a multitude of large-
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scale chromosomal rearrangements in comparison with the other hominoids. The abundance of 

these large rearrangements is the result of an accelerated rate of karyotype evolution (40). The 

purpose of this project was to explore whether the chromatin conformation marked by the 

localization of CTCF regions, might predispose regions of breakage in the gibbon genome. This 

association between the CTCF binding region and their association with human-gibbon synteny 

breakpoints could help specify the underlying mechanism of chromosomal rearrangements in 

gibbons and possibly other species. 

 

The particular data set was chosen after having worked with it during a lab rotation, and finding 

that the two biological replicates of the Siamang genera had higher quality mappings and 

sequencing in the CTCF sequencing and the input control.  The Hylobates genus, were obtained 

from two species Hylobates moloch and Hylobates pileatus, which may introduce additional 

variability not ideal for comparison of biological replicates. One of the three replicates 

sequenced from the Hoolock genus had drastically more peak regions identified by MACS14 

(41) which was used during in a prior analysis to identify peak regions. This drastic increase was 

most likely caused by poor quality sequencing or inferior quality of the matched input control. 

The Siamang samples also had the most consistent signal between the two replicates when 

analyzed with MACS14. The affinity of these biological replicates was thought to increase the 

sensitivity when comparing these regions by different analysis methods.  

Accurate filtering of binding sites is affected by a multitude of variables, from experimental 

variation to methods of analysis and detection. Extensive customization can be applied with the 

experimental design. For example, the methods can be varied depending on the specificity and 
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sensitivity of the antibodies, the size of the protein, the binding sites being identified, and the 

potential inclusion of controls. Additionally, the methods and functions of ChIP-seq algorithms 

(i.e. peak callers) which computationally determine the genomic regions of protein binding, can 

vary significantly.  

 

It would be an exhaustive and unrewarding endeavor to attempt to review all potential peak 

callers and to assess their performance and accuracy. Comparative assessments of smaller 

subsets of peak callers have already been performed (37, 42-44).  The purpose of the analysis 

will be to present the results from these computational methods in a novel way that will enable 

us to truly distinguish the validity and quality of results from analysis of ChIP-seq data. The 

following analysis will be performed using two computational methods. The presentation of the 

metrics and distinct conclusions that we can draw with a quantifiable validity will enable us to 

distinguish the true biologically significant signal from the noise. Moreover, the development of 

an interactive interface to visualize and filter the results will provide a novel method 

communicating and transforming the results. The two types of peak callers used to identify 

CTCF regions in established lymphoblast cell lines from Siamang were, MACS2 (41) and 

BayesPeak (44).  

 

A ChIP-seq experiment starts with the NA-protein crosslinking of the DNA to the protein from 

isolated tissue or cells. The DNA-protein complex is then sheared into small fragments through 

sonication and bound to an antibody specific for the targeted protein. Subsequently, antibody-

protein-DNA compound is isolated through immunoprecipitation, often using streptavidin-
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coated magnetic beads. The entire complex is then unbound and the DNA isolated is used to 

generate a next-generation sequencing library (31).  Subsequent mapping and computation 

uses algorithms and statistical modeling to differentiate the sequencing reads that have 

accumulated at sites of protein binding. The binding regions are detected as “peaks” regions of 

the genome where multiple reads align that are indicative of areas where the protein was 

bound.  

 

Experimental Factors contributing to Analysis 

There are multiple potential sources of potential experimental artifacts in ChIP-seq 

experiments. First, antibody specificity and quality can determine the accuracy of identified 

binding regions. Second, uneven fragmentation of the DNA caused by open regions of the 

genome, corresponding to open chromatin, can lead to biased read lengths in some locations 

(13). Finally, regions of repetitive sequences in the genome can appear enriched for reads 

because of miss-mapped sequencing reads. These artefacts are often corrected using controls, 

to nullify regions of ambiguity.  An input DNA control uses a portion of DNA sample prior to 

immunoprecipitation, but otherwise is treated as the DNA obtained from the ChIP-seq 

experiment.  The mock IP DNA control consists of sequenced DNA obtained from 

immunoprecipitation without the addition of an antibody. DNA from a non-specific IP can also 

be used as a control in which a common antibody, for example immunoglobin G, is used to 

isolate DNA that is not binding the protein of interest, identifying indiscriminant binding sites 

and potential false positives (13). 
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The size of the binding site region being identified can have a significant factor in peak 

detection. The region in which enrichment occurs can vary from narrow punctate regions that 

cover a few hundred base pairs (bp), associated with most transcription factors, to some 

histone modifications that cover kilo bases. Further variation can be observed with proteins 

that bind RNA polymerases, where the range of binding regions can vary from narrow to broad 

regions of accumulated reads or peaks.  

 

Computation: Peak Calling 

A multitude of computational tools have been designed to analyze ChIP-seq data and locate 

protein binding sites from sequencing reads (44).  These tools have been developed and 

optimized using different types of computational algorithms, different proteins, controls and 

conditions under different assumptions.  

 

Two peak callers were used to analyze the ChIP-seq data in my project: MACS2, a model based 

analysis of ChIP-seq and BayesPeak. MACS2 uses a model based approach to identify regions of 

tag enrichment. Tags from ChIP-seq read are usually 20-50 bp sequences that represent the 5’ 

(beginning) of the sheared DNA fragment. These tags exist in both forward and reverse strands 

resulting in bidirectional enrichment and a bimodal distribution for a single binding site (14).  

With MACS2, these tags, forward and reverse, are then shifted a half distance toward each 

other to identify a region of enrichment (45). However, if the binding site consists of a broad 

region spanning multiple kilo bases, assigning the summit as the average distance between the 

two distributions is no longer accurate. The symmetrical single peak profile cannot be assumed 
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for broad peaks that can span several hundred kilo bases for RNA polymerases and some 

histone markers. These binding regions are rarely strongly localized and will consist of complex 

tag densities that may even contain more than one summit.  

 

BayesPeak, on the other hand, computes the summit based on a priori probabilities, this model 

and other predictive algorithms are more accurate predictions of the binding sites of these 

broad regions (44). 

 

After peak shifting, MACS2 identifies peaks modeling the tag distribution along the genome 

with a Poisson distribution. A local fold enrichment is calculated based on windows of the 

genome and false discovery rate is determined empirically from the number of peaks in the 

input control (45). However, over-dispersion of peaks, such as wide regions associated with 

some histone marks, would not be accurately modeled with a Poisson distribution, which 

assumes that the standard deviation equals the mean.  

 

BayesPeak uses a hidden Markhov model to identify enriched locations in small (100-300 bp) 

genomic windows. First, the tag counts are assumed and modeled with the negative binomial 

statistical distribution. Then Bayesian methods, uses the posterior probability to identify 

significantly enriched binding regions. The disadvantages of the BayesPeak method, however, 

are its dependency on the prior probability and the finite window region that is evaluated along 

the genome without regard as to where the true junction may lie.  
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Irreproducible Discovery Rate 

The comparison of these two computational peak calling methods would be difficult because of 

the fundamental differences in output of the statistical distribution. MACS2 outputs a 

significance score based on the FDR and is therefore represented as a p-value or q-value. 

Alternatively, BayesPeak measures significance as the posterior probability based on the 

Bayesian hidden Markov model that detected enriched locations, ranging from 0 to 1, with 1 

representing enriched regions.  

 

Li et. al. explain a solution to this inability to compare different statistical measurement by 

converting them to the rank-based method of the irreproducible discovery rate (IDR). The IDR 

uses biological replicates to compute a significance score based on the reproducibility of the 

peak. The model assumes that real peaks are reproducible and that noise is irreproducible 

among replicates. Therefore, each peak is assigned a probability of reproducibility. This is one 

of many statistical solutions being developed to compare the accuracy of methods with vastly 

diverse techniques. (10) 

 

New computational methodologies require comparative techniques that can measure the 

accuracy, reproducibility and performance of these new methods. Care needs to be taken in the 

selection of the underlying algorithms as well as the parameters to provide the most accurate 

biological results. A comparative framework for analysis of peak calling algorithms can 

determine the robustness and appropriateness of a peak calling method. Table 1 briefly 

explains metrics and visualizations that can be used to assess the downstream results from 
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multiple peak callers. These metrics and visualizations help guide decisions regarding the 

validity and credibility of results from various peak callers.  

  



56 
 

Methods 

MACS2 

CTCF ChIP-sequencing was performed on lymphoblast cell lines established from two Siamang 

gibbon, male and female, using the protocol described in Schmidt et al (46).  The CTCF-bound 

DNA was immunoprecipitated using an Anti-CTCF rabbit polyclonal antibody. The resulting DNA 

library was sequenced with 36 bp reads (Illumina Sequencing). Sequencing reads were aligned 

to the genome reference (Nleu3.0) using BWA MEM v 0.7.9a-r786. Duplicated sequencing reads 

were marked using Picard tools version 1.96. Samtools version 1.1 was used to retrieve 

uniquely mapped reads with a mapping quality greater than 20 and to sort and covert to 

aligned tagAlign files for peak calling  (Table 9).  Peak calling was performed using MACS version 

2 (45), with an estimated gibbon genome size of 2.2 Gbp. MACS2 p-value threshold was set at p 

=1e-1, instead of the recommended p=1e-7 for analysis using the irreproducible discovery rate.  

Although no p-value value threshold could have also been used, the IDR can be sensitive to the 

amounts of signal observed. A comparison using relative equal amounts of peaks between 

biological duplicates with a significant proportion of true signal provides better results that are 

either not thresholded with a large proportion of captured noise. If, for example, no 

significance threshold was applied, the real signal can potentially be drowned out by an infinite 

amount of noise, rendering identification of a minute amount reproducible true signal difficult 

(34). 

BayesPeak 

BayesPeak version 1.20.0 (44) was used as the second peak callers. Bedtools v2.21.0 was used 

to convert bam alignment files from BWA MEM to bed files. Some of the chromosomes from 
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Nleu3.0 produced error outputs, hence each chromosome was split and evaluated separately, 

using default bin sizes of 100 bases.  
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Results and Discussion  

  Sequences Length Reads Uniquely 
Mapped 

Gibbon1 CTCF 30362590 36 12068703 
Gibbon1 Input Control 27592805 36 14516517 
Gibbon2 CTCF 27581495 36 13642550 
Gibbon2 Input Control 44911572 36 26031195 

Table 9. General Metrics for Gibbon 1 and Gibbon 2, female and male, 
ChIP sequencing of CTCF binding regions. 

Seven metrics and visualizations were assessed and implemented (Table 10) for ChIP-seq. 

These metrics and visualization will help guide decisions regarding the validity and credibility of 

results from various peak callers.  

Visualizations and Metrics for Comparison ChIP-seq Analysis 
FRiP (Fraction of Reads in Peaks)  Significant peaks are biased by coverage 

(32, 47) 
Cross-correlation analysis Correlation between tags plotted against 

size of strand shift. Correlation between 
fragment length and read length can assess 
the signal to noise ratio. (32) 

Number of peaks identified by peak calling 
method. 

The number of regions identified can 
indicate the sensitivity and specificity of a 
particular peak calling method 

Distribution of peak size or size of 
enrichment regions identified. 

Assessment of the enrichment region size 
can define an algorithms intended target 
region and can reveal biases from over 
fitting.  

Venn diagram of Peaks that overlap from 
different peak calling methods and 
algorithms. 

Comparison of overlapping peaks, with an 
interactive scalable percentage overlap 
between 0% to 100% overlap 

IDR Correspondence Curve for each analysis 
methods 

Irreproducible discovery rate to determine 
empirical significance threshold of peaks 
based on reproducibility of biological 
replicates (10). 

IDR threshold for each analysis methods 
Number of peaks called at various IDR 

IDR threshold at which signal increases 
without reproducibility.  
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Table 10. Metrics and Visualizations for Comparison of the ChIP-seq Peak Calling Methods. 

 

For comparison of the two computational peak callers, MACS2 and BayesPeak, we compared 

the FRiP (Fraction of Reads in Peaks) score (Table 11), cross correlation peaks (Figures 18-19 

and Table 12) , and the number of peaks called by each method (Table 13). Additionally, we 

considered distribution of size of enrichment regions (Figure 20), and utilized Venn diagrams for 

examining overlaps (Figure 21-22). Lastly, an assessment of the IDR applied to both of these 

peak calling methods (Figure 23-25).  

 

Fraction of Reads in Peaks 

The fraction of all reads that fall within an identified peak region (FRiP) can provide a general, 

first-call metric of the success of the immunoprecipitation and sequencing.  The FRiP can vary 

depending on the targeted binding site, the antibody specificity and the sequencing depth.  

Some binding sites are rare and a low frequency of true peak enrichment is expected. CTCF, on 

the other hand, have high number of enrichment sites across the genome and can lead to FRiP 

scores that exceed expectations (32, 48).  The ENCODE consortium guidelines scrutinize any 

ChIP-seq experiments with a FRiP score lower than 1% (32). 

 

  Gibbon1 FRiP 
Gibbon1 

Gibbon2 FRiP 
Gibbon2 

Total Reads 30362590   27581495   
MACS2 3810192 0.125 3811112 0.138 
BayesPeak 3737088 0.123 2152122 0.078 

Table 11. Fraction of reads in peaks (FRiP) score for Gibbon 1 and 
2, female and male, ChIP sequencing results analyzed using two 
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computational peak callers MACS2 and BayesPeak. 

 

The FRiP scores from the gibbon range from 7.8% to 13.8%, indicative of the high number of 

enrichment regions of CTCF.  The FRiP is relatively consistent between the peak callers for 

gibbon 1, with 12.5% and 12.3% for MAC2 and BayesPeak, respectively. However, gibbon 2 

shows a distinct variation in FRiP scores, with 13.8% for MACS2 and 7.8% for BayesPeak, 

indicating that the FRiP is variable and dependent on the computational method. The inverted 

relationship, with gibbon 1 having a lower FRiP than gibbon 2 for MACS2 but a higher FRiP than 

gibbon 2 for BayesPeak analysis makes it apparent that FRiP does not measure the relative 

success of the immunoprecipitation but the overall success versus failure of the experiment as 

a whole.  

 

Cross-correlation analysis 

Strand cross-correlation relies on the fact that reads from ChIP-seq experiments cluster around 

the locations specific to the enrichment site. The enrichment of the aligned reads will cluster a 

finite distance, depending on the fragment length, from the center or focal point of the binding 

site region (49). The clustering can then be analyzed by calculating the Pearson linear 

correlation between the adjacent clustering strands. Cross-correlation values will, therefore, 

increase representing the enrichment corresponding with the fragment length and a second 

location of enrichment, representing the “phantom”/noise peak that corresponds with the read 

length (32, 48).  
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The normalized cross-correlation coefficient (NSC), is calculated as the fragment length cross-

correlation normalized by the background. The relative strand cross-correlations (RSC) is the 

cross-correlation at the fragment and the read length. These two ratios provide a method of 

quantifying the signal-to-noise ratio in the data.  

Gibbon 1 Cross Correlation Plot

 

Figure 18. Cross correlation peaks of lymphoblast cell line from Gibbon Sample 1 ChIP-
sequencing of CTCF regions. Two cross-correlation peaks are usually observed in a ChIP 
experiment, one corresponding to the read length (‘‘phantom’’ peak) and one to the average 
fragment length of the library. X-axis: the strand shift, Y-axis: cross correlation value. Cross 
correlation analysis estimates of the fragment length is shown with the dashed red line and 
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the phantom peak is shown with the blue line. 

 

Gibbon 2 Cross Correlation Plot

 

Figure 19. Cross correlation peaks of lymphoblast cell line from Gibbon Sample 2 ChIP-
sequencing of CTCF regions. Two cross-correlation peaks are usually observed in a ChIP 
experiment, one corresponding to the read length (‘‘phantom’’ peak) and one to the average 
fragment length of the library. X-axis: the strand shift, Y-axis: cross correlation value. Cross 
correlation analysis estimates of the fragment length is shown with the dashed red line and 
the phantom peak is shown with the blue line.  
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Sample Estimated 
Fragment 
Length 

Correlation 
of Fragment 
Length 

Phantom 
Peak 
Length 

Correlation 
of Phantom 
Peak 

NSC RSC Quality 

Gibbon1 150 0.31 45 0.22 2.67 1.85 Very 
High 

Gibbon1 
Input 
Control 

115 0.18 35 0.18 1.11 1.05 Medium 

Gibbon2 115 0.22 45 0.21 1.55 1.31 High 
Gibbon2 
Input 
Control 

95 0.26 35 0.27 1.04 0.73 Medium 

Table 12. Cross-correlation analysis of CTCF ChIP-sequencing of two gibbon lymphoblast cell 
lines. Estimated fragment length is the length strand cross-correlation with the highest 
correlation, that correlation is show in the adjacent column. The NSC is the Normalized strand 
cross-correlation coefficient, NSC=highest cross correlation of the fragment peak/minimum 
value of cross-correlation. The RSC is the Relative strand cross-correlation coefficient (RSC) = 
(highest cross correlation of the fragment peak-minimum value of cross-correlation) / (highest 
cross correlation of the phantom peak/minimum value of cross-correlation). The quality tag 
based on thresholded RSC (49). 

The standards established by Kharchenko et. al. threshold solely on the RSC, with higher RSC 

representing higher quality ChIP-seq (Table 12) (49). The quality analyzed by this metric is 

defined as the differentiation between the fragment clustering versus the clustering of the read 

length from the forward and reverse strands. Table 12 also includes cross-correlation analysis 

on the control sequencing. The quality of the normal samples is lower than the CTCF 

sequencing regions indicating that the estimated fragment peaks have a closer correlation to 

the read length and the signal consists of a significant amount of random reads. Since this is 

observed and expected from our input control samples, this observation verifies the quality of 

the control and differentiates the CTCF sequencing as distinct from the not immunoprecipitated 

input control background regions.  
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Landt et. al. suggests that a successful ChIP experiment consists of an NSC of 1.05 and an RSC of 

0.8 (32). Both CTCF regions are found to meet this standard, with NSC of 2.67 and 1.85 and RSC 

of 1.55 and 1.31 for gibbon sample 1 and sample 2, respectively.  

 

Frequency of peaks identified by peak calling method 

The basic metric of the number of peaks called by a peak caller can be a simple comparison of 

the performance of the computational method (Table 13).  

  Number of Peaks 
  

  Gibbon 1 Gibbon 2 
MACS2 304497 596976 
BayesPeak 159069 186467 

Table 13. Total signal or number of peaks called for 
both Gibbon 1 and Gibbon 2 for two peak callers 
MACS2 and BayesPeak 

This experiment found that the number of peaks called for MACS2 to is much larger than the 

number of peaks generated from BayesPeak. The increased number of enrichment regions 

identified by MACS2 may be caused by potential thresholding issues or other differences in the 

statistical model used for peak detection. The Poisson model assumes that the mean and the 

standard deviation are equal and is sensitive to over dispersion of reads. False positives 

increase with reads that have a larger variance than expected from the mean.  

 

Although BayesPeak does not require individual and separate chromosome files, the 

implementation resulted in output errors from the combined file. Chromosomes that were not 

found in both ChIP-seq samples with corresponding chromosomes within the input control 

alignment files would cease with errors.  These references from Nleu3.0 were constructs 
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identified as either as mitochondrial references, or unlocalized and unplaced scaffolds. 

Moreover, the shorter constructs also output errors because of the bin sizes and the state 

assignment for the hidden Markhov chain Monte Carlo algorithm used by BayesPeak. These 

constructs were excluded from the peak calling analysis from BayesPeak. Although, no error 

was observed with MACS2, this may be one source of the discrepancy in the total of called 

peaks from both models and should be noted.  

 

Distribution of the size of enrichment region called by algorithms 

The size of the enrichment region identified can be indicative of specific biases MACS2 

identifies slightly smaller regions (Figure 20). This may be because of Poisson distribution 

observed by MACS, which a much more liberal statistical model than the binomial 

distribution.  
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Figure 20. Distribution of CTCF enrichment regions identified for two gibbons lymphoblast cell 
lines, analyzed using two peak callers BayesPeak and MACS2.  Boxplot including peaks with 
widths from 0 to 400 bases, the truncated signal showing the larger outlier regions identified 
by both peak callers are also shown. X-axis: Category of gibbon and computational analysis 
peak calling method used. Y-axis: width or size, in bases, of the regions identified.  
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Venn diagram of Peaks that overlaps 

The interactive framework provides a context for to visualize the various types of overlap 

between the two samples and the computational methods. 

A  

B  

Figure 21. Overlaps and statistical summaries between ChIP-sequencing of CTCF regions for 
gibbon lymphoblat cell lines. (A) MACS2 peak calling method for ChIP-seq, overlap between 
both gibbon samples. (B) BayesPeak peak calling method for ChIP-seq, overlap between both 
gibbon samples. . Screenshot of R shiny application Sample_Comparison_chipseq, focusing on 
sample comparisons within a peak detection method.  
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The observation of the sample variability within a computation method can be visualized in 

Figure 21. The number overlapping peaks identified with MACS2 is much larger than the 

overlaps located by BayesPeak. MACS identified 75709 overlapping peak regions versus the 

48719 peak regions found by BayesPeak.   

Additionally, the widths of the identified regions varied with the computational method, 

MACS2 calls narrower peak regions, with an average width of 170 bases, while BayesPeak had 

an average enrichment region of 273 bases. The expected peak size of a CTCF region is 

approximately 200-300 bp, and BayesPeak is clearly the more accurate when comparing the 

average size of the region. Bayespeak identifies larger enrichment regions, a potential cause of 

this discrepancy may be caused by the read shifting that MACS2 performs. MACS2 initially shifts 

forward and reverse strands of enrichment toward each other, to account for tag enrichment 

from 5’ and 3’ ends of the reads. Read shifting also helps to find the summit of reads, but may 

change the approximation of the width of the enrichment region. Bayespeak on the other hand 

does not rely on read shifting identify enrichment regions. The discrepancy between the sizes 

of the enrichment regions, although slight, may be slight because of the narrowness in the 

expected region, which requires less read shifting from MACS2. Therefore, a significant amount 

error would be expected from a targeted protein with a larger enrichment region, for example 

in cases where enrichment regions are kilo bases long with multiple summits.   

Gibbon sample 1 was found to have a lower proportion of overlaps. MACS had 20% overlap 

with gibbon 2, while gibbon 2 had 77% of the identified peaks overlap with the gibbon1.  This 

discrepancy in the overlaps indicates a higher proportion of unique reads were identified for 

gibbon 1. However, the proportion of shared peaks in BayesPeak consists of 23% for gibbon 1 
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and 21% for gibbon2, indicating a nearly equal amount of shared and unique proportion of 

peaks identified by for both biological replicates. The differences in these proportions may be 

caused by MACS2, statistical model, which is sensitive to over dispersion. A potential increased 

variance of reads observed in the gibbon sample 1, would cause an increase in the number of 

regions called for that sample.  

 

(A)  

(B)  

Figure 22. Number of total overlaps between enriched regions identified by two different peak 
calling methods for the same a single lymphoblast gibbon cell line. Consensus exists if there is 
any overlap between the ranges of the peak region. (A) Gibbon sample 1 cell line comparison 
of the overlaps between both peak calling methods. (B) Gibbon sample 2 cell line comparison 



70 
 

of the overlaps between both peak calling methods.  

 

The percentage overlap from Figure 22, shows that there are significantly more regions 

identified by MACS2 than there are for BayesPeak. BayesPeak has a higher proportion of 

overlapping peaks between the two methods, with approximately 20% and 84%, of BayesPeak 

signal also contained in MACS2, for gibbon 1 and 2 respectively. MACS2, on the other hand, has 

a 6% and 26% overlap with the peak region identified by BayesPeak, indicating an increased 

sensitivity in the algorithm and statistical model used by MACS2 versus BayesPeak.  

 

IDR threshold for each analysis methods and IDR Correspondence Curves 

The irreproducible discovery rate was applied for both computational methodologies of MACS2 

and BayesPeak. The correspondence between the biological replicates, gibbon 1 and gibbon 2 

can be obtained from the correspondence curves in Figure 23A and 24A. The junction at which 

the slope of this correspondence curves converts from a line with a slope of 1 to a x2 line 

represents the ranked proportion at which signal no longer becomes reproducible. This 

transition can be easier to extract from the derivative of the correspondence plot (Figure 23B 

and 24B).  
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Figure 23. Correspondence curves for the ChIP-seq peak caller, MACS2. Correspondence  
measured between gibbon 1 and gibbon2 . (A) The correspondence curves of the IDR versus 
the ranked proportion. (B) The derivative of the correspondence cure. The green  line 
indicates the threshold for the proportion of signal that was reproducible to calculate the 
IDR. 

Correspondence Curve for MACS2 
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Figure 24. Correspondence curves for the ChIP-seq peak caller, BayesPeak. Correspondence  
CTCF binding regions identified from ChIP-sequencing of two gibbon lymphoblast cell lines. 
(A) The correspondence curves of the ranked proportion of the called enrichment regions 
significance score to the measured correspondence between the samples. The blue line 
indicates perfect correspondence. X-axis: The proportional ranked list of peaks. Y-axis: a 
measure of correspondence. (B) The derivative of the correspondence curve representing 

Correspondence Curve of 
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the change of correspondence along the decreasing order of significance. X-axis: The 
proportional ranked list of peaks. Y-axis: a measure of the change in correspondence. 
 

The proportion that is reproducible was 0.5 for the MACS2 peaks and 0.6 for the BayesPeak 

peaks.  The higher transition point for MACS2 indicates that it has a higher reproducibility with 

a later occurrence of the transition from reproducible signal to non-reproducible signal. 

 

The rank proportion of the total signal was used to determine the IDR for each observation by 

applying the IDR’s statistical model and estimating the posterior probability (10). The model 

was fit with the reproducible proportion and 20 iterations for both peak callers. The iterations 

were optimized based on the proximity of the fitted model’s parameters, i.e. mean, standard 

deviation, correlation,  to the calculated parameters of the reproducible component.  

 

The IDR for each observation provides a measure of the irreproducibility of that component. 

The IDR assumes that reproducible output consists of the true signal while non-reproducible 

consists only of noise a threshold of the IDR would represent would ideally represent that 

transition (10). Therefore, the amount of signal captured at a particular IDR threshold can be 

indicative of the sensitivity of a particular peak caller. Figure 25 highlights that MACS2 produces 

more reproducible signal for all IDR thresholds.   
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Figure 25. Irreproducible discovery rate (IDR) at different number of included peaks, plotted at 
various IDR thresholds for BayesPeak and MACS2 peak callers analyzed for CTCF ChIP-seq from 
two gibbon lymphoblast cell lines. Peaks are selected using the IDR for each observation. X-axis: 
The rank list of peaks, ranked by the IDR, Y -axis: Irreproducible discovery rate (IDR).  

 

The interactive framework developed for the IDR filters the peak observation of the 

reproducible components by their corresponding calculated IDR (Figure 26). The framework 

allows users to select the IDR threshold by observation and peaks identified. The potential to 

filter based on the maximum of overlap of the methods could also be a useful component, 

reinforcing the identification of any known enrichment region with confidence in the remaining 

overlapping regions.  
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Figure 26. Screenshot of R shiny application IDR_chipseq, focusing on peak list filtering by IDR 
threshold.  

 

The multitude of factors involved in ChIP-seq experiments, from the experimental parameters 

to the variety of peak calling methods, highlights the need for a these types of metrics to allow  

researchers to identify high confidence peaks and understand how different factors influence 

each method. It is critical to note that this type of consensus approach and metrics would not 

be a replacement for experimental follow-up and validation.  
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 Final Conclusions Chapter 4

The evolution of the metrics of metrics development and context for the visualization 

illustrated how a “hands-on” interactive interface can change the way we interact with the data 

and think about it, facilitating discovery and transfer knowledge. This can be clearly seen in the 

CNV example where three different context specific needs were identified after initial testing of 

the prototype. 

 

The development of the tools and methods to increase data transparency can help increase 

scientific reproducibility. This interactive prototype framework is an important first step in 

providing a measurable and consistent check of data validity at the final step in analysis. These 

metrics and guidelines would allow scientist to check the validity of their methods and ensure 

the accuracy of the data.  It is important to emphasize that the interactive visualizations 

allowed identification of issues or characteristics of the data that would have been missed in 

traditional, static plots.  The type of framework provide efficient, robust and transparent access 

to the data, allowing an investigator to interact with and query the data. This is critical for 

quality control as well as considerations for rigor and reproducibility.  It also emphasizes the 

need for a greater focus on human-data interaction.  
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