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Abstract 
 In the study of rare and undiagnosed diseases it is of critical importance to identify potential gene 

candidates for those disease in order to establish an appropriate treatment protocol. However, there may 

be insufficient resources available to investigate rare and undiagnosed diseases, so it may be necessary to 

identify potential gene candidates from patient clinical observations to narrow the focus of the 

investigation. Two approaches for identifying gene candidates are investigated and compared: the 

OWLSim package for comparing the semantic similarity of phenotypes and the Phenolog approach for 

identifying orthologous phenotypes by searching for orthologous gene enrichment between phenotypes. 

 In comparing the two approaches by measuring ranked-recall of known disease causative genes, 

the Phenolog approach performed better than the OWLSim package. However, each approach was able to 

exclusively identify known disease causative genes, indicating that a combined approach would provide a 

better retrieval of correct gene candidates than either method alone.   

 

Background 

        A fundamental goal in biology is to acquire a greater understanding of physiology, morphology, and 

disease. Through extensive observation and experimentation in model organisms, there is a wealth of 

knowledge available on the molecular and cellular processes in a wide range of species, from single-

celled organisms to multicellular plants, insects, and animals. In addition, there is an increasing amount of 

information on how genetic mutation results in alterations of those processes, and how those alterations 

ultimately result in changes that manifest as a mutant phenotype or disease. Despite the availability of this 

immense body of knowledge, the underlying mechanisms of many human diseases are poorly understood 

or unknown, particularly in the cases of rare or undiagnosed diseases. 

In the study of rare and undiagnosed diseases, it is of critical importance to identify the 

underlying genetic mechanisms that produce the phenotypes associated with a disease. However, with 

rare and undiagnosed diseases where funding may be limited for investigating a disease with a small 
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prevalence, additional tools are necessary to identify gene candidates that may be responsible for the 

phenotypes presented by the patient. Even as the costs of whole genome sequencing decrease and the 

analytical throughput increases, it is still beneficial to identify gene candidates to help narrow the focus of 

investigations for the underlying mechanism of an undiagnosed disease.  

As discussed by McGary el. al.1 (citing data from McKusick’s Online Mendelian Inheritance in 

Man2, the Mouse Genome Database3, WormBase4, Saccharomyces Genome Database5, and the 

Saccharomyces cerevisiae Morphological Database6), the number of gene to phenotype associations in 

model organisms has far outpaced the number of gene to phenotype associations in humans. Therefore it 

is expedient to utilize the existing gene-phenotype association data in model organisms in order to 

accelerate the number of gene-phenotype association discoveries in humans. However, there are 

significant barriers to comparing phenotypes of model organisms to clinical observations of human 

diseases, including differences in anatomy between organisms, dissimilar manifestations of phenotypes 

between organisms, and equating genes across species. In this study, two approaches for identifying gene 

candidates for human diseases were investigated that attempt to overcome these interspecies comparison 

barriers: identifying semantic similarity of phenotypic profiles using OWLSim and identification of 

orthologous phenotypes, or Phenologs, through testing for enrichment of orthologous genes between 

phenotypes. 

In order to properly describe approaches for identifying gene candidates for human diseases in 

model organisms, we must first properly define the relationship between diseases, phenotypes, genotypes, 

genes, and gene variants. A gene variant represents a mutation of a gene that is “abnormal” from the 

“normal” or “wild-type” version of the gene, resulting in many potential types of variation in the gene 

product including changes in expression, reduced function or loss of function, or accumulation of the 

gene product through reduced degradation. A mutation of a gene can be associated with an observable 

phenotype, with the sum total of the phenotypes associated with the gene mutation representing the 

phenotypic profile of that gene mutation.  
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A genotype is the sum total of gene mutations for an organism, which includes the background 

strain of the organism, if known, as compared to the reference genome of the organism. The variant 

genotype can result in one or more variant phenotypes, with the sum total of those phenotypes 

representing the phenotypic profile of the genotype (Figure 1A). For genotypes with more than one gene 

variant, there may be additional phenotype members of the phenotypic profile than found in the single 

variant genotypes due to direct or indirect interactions between the gene variants and/or their products. 

A disease can also be described as a collection of phenotypes, which for human disease may be 

comprised of clinical observations, with the sum total of the collection of phenotypes representing the 

phenotypic profile of the disease (Figure 1B). If the genotype of the diseased individual is known, a 

direct connection can be inferred between the genotype and the disease, with the caveat that in humans 

this relation is not as clear as the relation between genotypes and diseases in inbred strains of laboratory 

animals. However, in the absence of genotype data, the phenotypic profiles of diseases and genotypes can 

potentially be matched to infer an association between the genotype and the disease (Figure 1C). 
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The manifestation of all phenotypes in the phenotypic profile associated with a gene variant or 

disease is not required for an afflicted individual/organism, but instead the phenotypic profile represents 

the sum total of potential phenotypes that are associated with the gene variant or disease. The expression 

of the phenotype may be dependent upon developmental stage of the organism, environmental factors, or 

experimental conditions, and may include variability between individuals. By making comparisons 

between the full set of potential phenotypes included in a phenotypic profile, we can attempt to identify 

relationships between diseases and gene variants across species while allowing for variability in the 

presentation of the phenotypic profile. 

In order to identify gene candidates for human diseases from model organisms, we must identify 

similar phenotypic profiles across species by comparing the phenotypic profiles of human diseases and 

model organism gene variants. One existing tool for identifying similarities between phenotypic profiles 

is the OWLSim package, which provides semantic similarity metrics for entities (diseases, genes) and 

their attributes (phenotypes). A second tool that can be extended from single phenotype comparisons to 

comparisons of phenotypic profiles is the identification of Phenologs, or orthologous phenotypes, by 

identifying enrichment of orthologous genes between phenotypes. Both tools are described below. 

OWLSim 
   The OWLSim package7,8 provides tools for calculating the semantic similarity of entities based 

on their attributes through the utilization of ontologies, computational reasoners, and semantic similarity 

metrics. For the purpose of this study, the entities are gene variants or diseases, while the attributes are the 

phenotype members of the phenotypic profiles of the gene variants or diseases. Ontologies provide a 

controlled vocabulary for a domain of knowledge, describing the types, properties, and relationships 

between attributes while providing a hierarchical organization of attributes. Computational reasoners are 

used to reason across ontologies, moving across hierarchical relationships to identify inferred 

equivalencies at varying levels of detail within the ontology. Semantic similarity metrics are used to 

provide similarity scores for the described entities and their attributes based upon the rarity of the 

matching inferred attributes. 
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For example, when comparing Pax6 mutations between humans and mice, the “opaque cornea” 

phenotype in humans and the “small eyed” phenotype in mice would not normally match when 

performing computational string matching (Figure 2). However, using the OWLSim package the terms 

can be inferred to more general descriptions that match by computational string matching in a process 

known as subsumption. Scoring of the matching terms is dependent upon the frequency that the matching 

term appears in the set of annotations and the term’s depth in the ontology, with less frequent terms 

receiving higher scores. The scores are known as the Information Content (IC) score8,9, which is defined 

as the negative log of the probability that the description would be used to define a gene, genotype, or 

allele, with the probability of the description being equal to the total number of features annotated with 

that description divided by the total number of features. The highest scoring subsumed description for a 

pair of phenotypes is known as the least common subsumer.  

OWLSim can be used to identify candidate genes for human diseases in which the genetic basis is 

unknown by determining the semantic similarity of the phenotypic profiles of the disease and model 

organism gene variants8. OWLSim provides four semantic similarity metrics (maxIC, simIC, ICCS, and 

simJ) that provide a measure of the similarity of two entities (diseases/genes) and their attributes 

(phenotypic profiles). By comparing the phenotypic profile of a human disease in which the causative 

gene is unknown and the phenotypic profiles of variant genes in model organisms, candidate genes can be 

identified in model organisms whose orthologs may be associated with the disease in humans, either 

directly or through involvement in the same or similar biological pathway. In point of fact, the work 

performed by Washington et al. in determining the phenotypic similarity of genes between species often 

found that the most phenotypically similar gene variants between species were not always the sequence 

orthologs8. 



 7 

  
While the OWLSim package can be used to match diseases and genes that have semantically 

similar phenotypic profiles, it will naturally have difficulty in identifying similar phenotypes in organisms 

that arise from similar genes but present in phenotypes that are not semantically similar. This may occur 

due to the two compared organisms being highly disparate and not sharing anatomy (such as comparing 

humans to yeast), it may be due to insufficient annotation of the phenotypes or insufficient integration or 

mapping of ontologies across species, or may occur due to an abnormality of how the phenotype is 

presented in different organisms despite the phenotypes arising from the same mutated gene. In order to 

identify matching phenotypic profiles despite the presence of these “non-obvious” phenotype pairs, an 

alternative method to semantic similarity must be employed. 

Phenologs 
Mutations in a pair of genes that are orthologous between two disparate species may present in 

those species as phenotypes that are not obviously similar due to differences in anatomy, but at a 

molecular level the biochemical pathways involved may be analogous between the two organisms. 

Identification of these non-obvious phenotypic relations requires a different approach then matching 

phenotypes based on semantic similarity. For example, attempting to identify similar phenotypes between 

humans and yeast based on phenotypic expression is difficult due to the lack of anatomical features in 

yeast, a single-celled organism. Comparisons can be made at the cellular and molecular levels, but not 

with the emergent properties of the phenotype in the tissues and anatomical features of a multicellular 
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organism. For example, an abnormal angiogenesis phenotype in mice would not be obviously associated 

with reduced growth rates of yeast when exposed to the hypercholesterolemia drug lovastatin. However, 

the two phenotypes are associated with genes that are known to be orthologous1. 

The second approach for identifying gene candidates for human diseases in this study is through 

the identification of Phenologs10,11. In the initial work by McGary et al., the authors extended the concept 

of orthologous genes to orthologous phenotypes by testing for the enrichment of orthologous genes 

between cross-species phenotype pairs (Figure 3). If a pair of phenotypes are determined to be a Phenolog, 

any unmatched orthologs from one organism would be considered gene candidates for the other organism 

and vice versa. Continuing that work, Woods et al. devised a matrix-based approach for incorporating 

multiple Phenologs to identify potential gene-phenotype associations and provide weighted rankings for 

those gene candidates. 

 

An important distinction between the current study and the prior Phenolog implementations for 

identifying gene candidates is that instead of directly comparing model organism phenotypes and human 

diseases, this study follows the approach used by OWLSim in treating a disease as a collection of 

phenotypes, represented as a phenotypic profile. This distinction requires that gene candidate predictions 

for multiple model organism phenotypes be combined, corresponding to the phenotypic profile of the 
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human disease. This also allows for the identification of gene candidates for undiagnosed human diseases, 

as gene candidate predictions can be assembled from Phenologs that correspond to the patient’s clinical 

observations. Here I test two approaches for combining the gene candidate prediction scores: a maximum 

scoring method and an additive scoring method.  

The goal of this study in examining the ability of OWLSim and Phenologs to identify gene 

candidates for human diseases is to compare the performance of these tools and identify whether or not a 

combination of the two approaches would be beneficial for identifying gene candidates for human 

diseases. Both approaches are tested for the recall of known disease causative genes as described in the 

OMIM morbid map, and the results of these tests are reported. 

 
Methods 
Data preparation 

Pre-scrubbed human (Human Phenotype Ontology: Annotations - HPO), mouse (Mouse Genome 

Informatics  - MGI), and zebrafish (The Zebrafish Model Organism Database - ZFIN) data were obtained from 

the Neuroscience Information Framework (NIF, http://neuinfo.org). Human data was retrieved from the 

NIF production views of HPO on 5/19/15, built on data retrieved from HPO on 11/22/14. Mouse data was 

retrieved from the NIF production views of MGI on 5/19/15, built on data retrieved from MGI on 

10/18/14. Zebrafish data was retrieved from the NIF production views of ZFIN on 5/19/15, built on data 

retrieved from ZFIN on 11/22/14. PANTHER data for identifying orthologs was also obtained from a NIF 

production view of PANTHER on 4/13/15, built on data retrieved from PANTHER on 11/25/14. For the 

purposes of this study, multi-gene genotypes were removed, as the contribution of each gene to a given 

phenotype is uncertain without additional investigation. 

OWLSim 
The OWLSim package produces several semantic similarity metrics when evaluating two 

phenotypic profiles: MaxIC, ICCS, SimIC, and SimJ. MaxIC is the highest IC score out of all matching 

EQ statements between two phenotypes. ICCS is a metric that takes all of the EQ statements for two 
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features and attempts to find the highest matching EQ statement for each EQ statement of the two 

features. The set of highest scoring EQ statements are known as the common subsumers, and the average 

IC score of the set is the ICCS. SimIC takes two phenotypic profiles and uses the ratio of the sum of the 

IC scores of the common EQ statements between the phenotypes over the sum of the IC scores of the total 

EQ statements between phenotypes. In addition to these three metrics, OWLSim also utilizes simJ, or the 

“Jaccard index,” which does not use IC values. SimJ is the ratio of the total number of descriptions in 

common between two phenotypic profiles over the total number of descriptions in both profiles. The 

scores provided by these four metrics represent the similarity of two phenotypic profiles of human 

diseases and model organism genes as determined by OWLSim, and were used for comparison with the 

gene candidate predictions identified using Phenologs. 

To identify potential gene candidates for human diseases, the phenotypic profiles of human 

diseases and mouse/zebrafish genes were compared using OWLSim. In order to compare phenotypic 

profiles between human diseases and mouse/zebrafish genes using OWLSim, a local instance of the 

OWLSim server, including the necessary ontologies, was downloaded and implemented. The OWLSim 

server and ontologies were downloaded from the OWLTools GitHub repository 

(https://github.com/owlcollab/owltools) and the phenotype-ontologies repository 

(https://code.google.com/p/phenotype-ontologies/) on 6/14/15. Phenotypic profile comparison queries 

were pre-assembled for all disease-gene comparisons, then used to query the OWLSim server. The results 

from successful queries were assembled for each disease-gene comparison, and then sorted by each 

OWLSim semantic similarity metric (maxIC, ICCS, SimIC, and SimJ) for comparison to Phenologs. 

Phenologs 
Using the matrix-based gene-candidate prediction approach as described in the Phenolog 

extension paper by Woods et al.12, weighted gene-predictions were assembled for human diseases from 

mouse and zebrafish gene-phenotype associations. For each species included in the analysis, a gene-

phenotype association list was assembled, and then converted to ortholog-phenotype lists using 

PANTHER. Using PANTHER, the gene IDs were converted to the corresponding ortholog IDs using 
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orthologs with either the least diverged ortholog (LDO) or ortholog (O) designation. Groups of genes 

from the same orthogroup with identical PANTHER IDs, were collapsed into a single instance of the 

ortholog’s PANTHER ID to prevent overrepresentation of genes from the same orthogroup in subsequent 

ortholog enrichment calculations. Using these ortholog-phenotype lists, a matrix was created with rows 

corresponding to orthologs and columns corresponding to phenotypes. Each i,j position in the matrix was 

set to 1 if an association between the i-th gene/ortholog and the j-th phenotype was present.  

Based on the work of Woods et al.12, the following settings were used for the implementation of 

gene predictions for the Phenolog algorithm in this study. To determine the orthogroup-phenotype 

association predictions, the additive method was used to calculate Xij, the probability that orthogroup i is 

involved in phenotype j. In the additive method, Xij is calculated by taking the sum of all nearest neighbor 

phenotypes k, weighted by the similarity between phenotypes j and k. For the weighting function, the 

hypergeometric cumulative distribution function was used, while the Pearson sample correlation was used 

for the similarity function. The maximum number of nearest neighbor phenotypes k used in the phenotype 

matrix Φ was ten. 

To properly compare the Phenolog gene candidate predictions for single phenotypes to the 

OWLSim gene candidates for diseases (which are the gene candidates for the phenotypic profile of the 

disease, a combination of phenotypes), Phenolog scores for diseases were assembled from individual 

phenotypes corresponding to the phenotype members of the phenotypic profile of the disease. Two 

approaches were assessed for combining Phenolog gene candidate scores: a maximum score method 

where the highest prediction score for a gene candidate from the phenotypic profile member phenotypes 

was used; and an additive score method, in which the scores for a gene candidate were added from all 

phenotype members of the phenotypic profile. The gene candidates were then sorted by rank for each 

human disease and compared to the ranked gene candidate predictions obtained from the OWLSim 

package.  

 



 12 

Recall of known OMIM disease-gene associations 
To compare the performance of the OWLSim and Phenolog approaches in identifying known 

gene candidates for human diseases, each approach was tested for the ability to retrieve disease-gene 

associations present in the OMIM morbid map (http://omim.org/downloads) at the time of retrieval, 

which contains known disease causative genes. Out of the 6922 human disease-gene association records 

present in the OMIM morbid map, 4192 disease-gene associations had an available mouse ortholog for 

the disease-associated gene, while 3800 human disease-gene associations had an available zebrafish 

ortholog for the disease-associated gene. These disease-gene associations were further reduced when 

selecting for the mouse and zebrafish orthologs that are present in the gene-phenotype association data 

obtained from MGI and ZFIN, leaving 3834 records with matching mouse orthologs and 1694 records 

with matching zebrafish orthologs present in the MGI and ZFIN datasets, respectively. 

Ranked retrieval of the mouse and zebrafish orthologs of the OMIM morbid map genes was 

calculated and plotted for all morbid map disease-gene associations as well as for disease-specific 

comparisons between OWLSim and Phenolog approaches. All recall-rank and scatterplot graphs were 

created using Stata 12.1.  

All additional code created to perform the project, including Stata data analysis scripts, can be 

found on GitHub (https://github.com/bryanlaraway/phenothrowdown). Majority of the code is written 

using Python, version 3.4.3. 

 
Results 
Recall of known human disease-gene associations 

To compare the performance of the OWLSim and Phenolog approaches in identifying known 

gene candidates for human diseases, each approach was tested for the ability to retrieve disease-gene 

associations present in the OMIM morbid map, which contains known disease causative genes. Figure 4 

shows a comparison of the OWLSim metrics and Phenolog approaches in retrieving mouse and zebrafish 

orthologs of human genes associated with OMIM diseases. The Phenolog additive method performed 
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best, with 47.2% of the mouse/zebrafish orthologs being returned for the OMIM disease-gene 

associations within the first 50 gene candidates and 61.7% in the top 500 gene candidates (Table 1). The 

Phenolog max method performed second best, with 45.5% of the mouse/zebrafish orthologs being 

returned for the OMIM disease-gene associations within the first 50 gene candidates and 60.4% in the top 

500 gene candidates. Amongst the OWLSim semantic similarity metrics, maxIC returned the largest 

percentage of correct orthologs with 25.2% within the top 50 gene candidates and 51.5% within the top 

500 gene candidates, with ICCS, simIC, and simJ returning successively fewer genes within the top 50 

and 500 gene candidates (Table 1). 

 

 
Figure 4: Recall of correct ortholog using OWLSim and Phenolog gene candidate predictions for human 
diseases from mouse and zebrafish data. 
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Table 1: Recall of OMIM morbid map disease-gene associations. 

Metric Recall in top 50 hits Recall in top 500 hits Total Recall 

OWLSim maxIC 25.2% 51.5% 87.1% 

OWLSim ICCS 13.8% 42.0% 87.1% 

OWLSim simIC 11.4% 35.2% 87.1% 

OWLSim simJ 10.4% 29.0% 87.1% 

Phenolog max 45.5% 60.4% 66.8% 

Phenolog additive 47.2% 61.7% 66.8% 

Total observations = 4235 
 
 

When examining the contribution of mouse (Figure 5) and zebrafish (Figure 6) data individually 

to the identification of correct orthologs for known disease-gene associations for known OMIM human 

disease-gene associations, the mouse data provided a greater percentage of human orthologs within the 

top 50/500 gene candidates than the zebrafish data. The top scoring OWLSim metric, MaxIC, only 

returned 11.5% of the correct orthologs within the top 500 gene candidates using zebrafish data, but 

returned 52.4% of the correct orthologs in the top 500 gene candidates when using mouse data (Table 2). 

In comparison, the additive and maximum Phenolog methods returned 32.1% and 31.8% of the correct 

orthologs within the top 500 gene candidates when using zebrafish data, respectively, and 61.8% and 

60.3% when using mouse data. The greater performance of the Phenolog methods is to be expected given 

that humans and mice are closer than humans and zebrafish in regards to phylogenetic distance, as there 

are larger barriers for determining semantically similar phenotypes due to greater differences in anatomy 

and physiology between humans and zebrafish than humans and mice. 
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Figure 5: Recall of correct ortholog using OWLSim and Phenolog gene candidate predictions for human 
diseases from mouse data. 
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Figure 6: Recall of correct ortholog using OWLSim and Phenolog gene candidate predictions for human 
diseases from zebrafish data. 
 
 
Table 2: Recall of OMIM morbid map disease-gene associations using only mouse or zebrafish datasets. 

Metric Recall in top 500 mouse hits Recall in top 500 zebrafish hits 

OWLSim maxIC 52.4% 11.5% 

OWLSim ICCS 42.4% 9.7% 

OWLSim simIC 35.3% 5.8% 

OWLSim simJ 28.3% 7.6% 

Phenolog max 60.3% 31.8% 

Phenolog additive 61.8% 32.1% 

Total observations = 4235 
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Overlap of known human disease-gene association retrieval 
Due to the greater phylogenetic distance between humans and zebrafish than humans and mice 

and the corresponding greater differences in anatomy and physiology, it is expected that OWLSim would 

have increased difficulty in identifying correct gene candidates using zebrafish data than the Phenolog 

approaches. In support of this prediction, it is necessary to examine the overlap in known disease 

causative gene retrieval for each method when varying the datasets. When using the full dataset 

(comparing OWLSim maxIC and Phenolog additive metrics), 1705 known orthologs are identified by 

both OWLSim and Phenolog methods, with the Phenolog additive metric exclusively identifying an 

additional 772 correct orthologs and the OWLSim maxIC metric exclusively identifying an additional 363 

correct orthologs (Figure 7A). When using only mouse data, the results are similar, with 1646 orthologs 

identified by both methods, 723 orthologs identified by the Phenolog Additive metric, and 363 orthologs 

identified by the OWLSim MaxIC metric (Figure 7B). However, when using only zebrafish data, 101 

orthologs identified by both methods, 444 orthologs identified by the Phenolog Additive metric, and 95 

orthologs identified by the OWLSim MaxIC metric (Figure 7C), indicating that the Phenolog method has 

greater performance in retrieving known disease causative genes than OWLSim between species with 

greater phylogenetic distances. Additionally, due to each gene candidate prediction method uniquely 

identifying disease causative genes across all datasets, it is clear that a combined gene candidate 

prediction approach will perform better than either approach in isolation. 
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Figure 7: Recall of correct ortholog using OWLSim and Phenolog gene candidate predictions for human 
diseases from indicated dataset. 
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Discussion 
Recall of known disease causative genes 
    In evaluating the OWLSim and Phenolog approaches to identifying gene candidates for human 

diseases, it is necessary to take a closer look at the retrieval of known disease causative genes for a 

selection of human diseases. The retrieval of known disease causative genes for breast cancer, 

osteoporosis, Pfeiffer Syndrome, and SHEP2 are described below. As the OWLSim maxIC metric and 

Phenolog additive method performed best, the examination will focus on these metrics unless otherwise 

noted.   

Breast Cancer 
Breast cancer is associated with one phenotype in the HPO dataset, breast carcinoma, and the 

disease is directly associated with nine genes: KRAS, TSG101, TP53, BRIP1, SLC22A18, PPM1D, 

RB1CC1, PIK3CA, and AKT1. The breast carcinoma phenotype is associated with 22 genes, which 

includes the nine genes associated directly with the disease. Within the OMIM morbid map, breast cancer 

is indicated to be associated with 23 genes, with 21 genes having phenotyped mouse or zebrafish 

orthologs in the MGI and ZFIN datasets. The retrieval of the mouse and zebrafish orthologs of these 

genes by OWLSim (maxIC) and Phenologs (additive method) is shown in Figure 8, along with the 

scoring of additional gene candidates. Some known disease causative genes are only retrieved by one 

method or the other, as indicated by the positioning of known disease causative genes scores along either 

the maxIC or Phenolog additive axis. OWLSim was able to retrieve nine disease causative orthologs 

while five orthologs were retrieved by Phenologs, with an overlap of two orthologs retrieved by both 

methods. The gene candidate with the best combined scoring of both methods was the zebrafish ortholog 

for TP53 (maxIC score: 6.45, Phenolog additive score: 10.98). However, while the mouse ortholog for 

TP53 had the same Phenolog score (Phenolog additive score: 10.98), it was not retrieved by any 

OWLSim metric. This is particularly interesting given that mice have greater anatomical similarities to 

humans than zebrafish, particularly in regards to the presence of breast tissue, which mice possess but 

zebrafish do not. Given these anatomical differences, it would be expected that genes associated with a 
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disease of the breast in humans would be more likely to be retrieved by OWLSim from organisms with 

the same anatomical features, but in this circumstance that is not the case. 

 

 
Figure 8: Scoring of known breast cancer causative genes and additional gene candidates from OWLSim 
(maxIC) and Phenolog (additive) methods. Random jitter applied to allow for visualization of overlapping 
data points. 
 

 
In addition to the genes present in the OMIM morbid map, five mouse orthologs tied for the top 

OWLSim maxIC score (6.55): large tumor suppressor (Lats1); neuregulin 3 (Nrg3), which is involved in 

mammary gland morphogenesis13; relaxin/insulin-like family peptide receptor 1 (Rxfp1), a gene shown to 

be involved in cancer growth and metastasis14; relaxin 1 (Rln1), a gene involved in inhibition of tumor 

growth15; and hairless (Hr), which in addition to relations to loss of hair16 is also associated with tumor 

development17 and preventing apoptosis18. The top Phenolog gene candidate was transformation related 
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protein 63 (Trp63), a gene known to be associated with mammary cancer stem cell renewal19, which tied 

with the score for the mouse and zebrafish orthologs of TP53 (Phenolog additive score: 10.98). 

Using GeneMANIA20 to analyze the top 21 Phenolog gene candidates not included in the OMIM 

morbid map, there are several genes present that are involved with stem cell regulation and proliferation, 

the Wnt signaling pathway, and morphogenesis of glands, branching structures, and epithelial layers, all 

of which can be related to breast cancer. 

The ten nearest-neighbor phenotypes that informed the Phenolog scores were the zebrafish 

phenotypes 'abnormal(ly) neoplastic whole organism' and 'abnormal(ly) disrupted protein 

phosphorylation', and the mouse phenotypes 'increased esophageal papilloma incidence', 'increased 

pilomatricoma incidence', 'prognathia', 'increased teratocarcinoma incidence', 'abnormal umbilical cord 

blood vessel morphology', 'abnormal urethral gland morphology', 'increased melanoma incidence', and 

'abnormal head size'. 

Colorectal Cancer 
Colorectal cancer is associated with five phenotype in the HPO dataset: neoplasm of the stomach; 

uterine leiomyosarcoma, renal cell carcinoma, hereditary nonpolyposis colorectal carcinoma, and 

transitional cell carcinoma of the bladder. These five phenotypes are associated with 84 genes, which 

includes nineteen genes associated directly with the disease. Within the OMIM morbid map, colorectal 

cancer is indicated to be associated with 23 genes, with 22 genes having phenotyped mouse or zebrafish 

orthologs in the MGI and ZFIN datasets. The retrieval of the mouse and zebrafish orthologs of these 

genes by OWLSim (maxIC) and Phenologs (additive method) is shown in Figure 9, along with the 

scoring of additional gene candidates. Some known disease causative genes are only retrieved by one 

method or the other, as indicated by the positioning of known disease causative genes scores along either 

the maxIC or Phenolog additive axis.  

OWLSim was able to retrieve sixteen disease causative orthologs for colorectal cancer, while 

fifteen orthologs were retrieved by Phenologs, with an overlap of twelve orthologs retrieved by both 

methods. The gene candidate with the best combined scoring of both methods was the zebrafish ortholog 
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for TP53 (maxIC score: 7.33, Phenolog additive score: 30.83). However, while the mouse ortholog for 

TP53 had the same Phenolog score (Phenolog additive score: 30.83), it was not retrieved by any 

OWLSim metric, similarly to the results for breast cancer. This is particularly interesting as humans, 

mice, and zebrafish do have anatomical similarities in regards to the gastrointestinal tract, which should 

allow for comparisons by OWLSim between the three species where the lack of breast tissue in zebrafish 

may have prevented those same comparisons. This indicates that the lack of retrieval of the mouse 

ortholog of TP53 for breast cancer has less to do with the comparison of breast anatomy between species 

when comparing phenotypic profiles, and instead points to a deficiency somewhere else, such as in the 

annotation of TP53 in mice, annotation of breast cancer related phenotypes in mice, or insufficient 

annotation of breast cancer in the mouse phenotype ontology.  

 

 
Figure 9: Scoring of known colorectal cancer causative genes and additional gene candidates from 
OWLSim (maxIC) and Phenolog (additive) methods. Random jitter applied to allow for visualization of 
overlapping data points. 
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In addition to the genes present in the OMIM morbid map, four mouse orthologs tied for the top 

OWLSim maxIC score (11.67): beta-actin (Actb); polo-like kinase 3 (Plk3), which acts as a tumor 

suppressor and is inferred to bind to TP5321; tuberous sclerosis 1 (Tsc1), a tumor suppressor; and 

proteasome subunit, beta type 9 (Psmb9), which also has a role as a tumor suppressor. As with breast 

cancer, the top Phenolog gene candidates included transformation related protein 63 (Trp63), but also 

included transformation related protein 73 (Trp73), which is a member of the p53 family of transcription 

factors along with Trp63, both of which tied with the score for the mouse and zebrafish orthologs of TP53 

(Phenolog additive score: 30.83). 

Osteoporosis 
Osteoporosis is directly associated with three genes in HPO (COL1A1, VDR, COL1A2) and a 

single phenotype, osteoporosis. The osteoporosis phenotype is associated with 78 genes in the HPO 

database. Of the eight genes associated with the disease in the OMIM morbid map, there are six 

phenotyped genes with mouse and zebrafish orthologs available. Of these six human genes, OWLSim 

was able to retrieve five orthologs for five genes within the top 500 hits: mouse orthologs for COL1A2 

(collagen, type I, alpha 2), LRP5 (low density lipoprotein receptor-related protein 5), VDR (vitamin-D 

receptor), and CALCR, and the zebrafish ortholog for COL1A1 (collagen, type I, alpha 1). Phenolog gene 

candidate predictions included the mouse orthologs for LRP5, VDR, and COL1A2. The retrieval of the 

mouse and zebrafish orthologs of these genes by OWLSim (maxIC) and Phenologs (additive method) is 

shown in Figure 10, along with the scoring of additional gene candidates.  
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Figure 10: Scoring of known osteoporosis causative genes and additional gene candidates from OWLSim 
(maxIC) and Phenolog (additive) methods. Random jitter applied to allow for visualization of overlapping 
data points. 

 
Additional Phenolog gene candidates include members of the collagen family (Col1a1, Col2a1, 

Col9a1, Col10a1, Col11a1, and Col27a1, all tying for the top prediction), thyroid hormone receptors 

(Thra and Thrb), and fibroblast growth factor receptors (FGFR2 and FGFR3). Using GeneMANIA20 to 

analyze the top 18 Phenolog gene candidates not included in the OMIM morbid map, there is enrichment 

of mouse orthologs related to collagen, connective tissues, extracellular matrix, and skeletal system 

morphogenesis. In comparison, the top gene candidates identified by OWLSim are enriched in orthologs 

related to ossification, bone and tissue remodeling, and bone resorption. 

    The ten nearest neighbor phenotypes used to assemble the Phenolog gene candidate predictions for 

osteoporosis were 'abnormal femur morphology', 'abnormal compact bone morphology', 'increased width 

of hypertrophic chondrocyte zone', 'increased long bone epiphyseal plate size', 'osteoarthritis', 'decreased 
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bone mineral density', 'abnormal long bone epiphysis morphology', 'abnormal epiphyseal plate 

morphology', 'decreased interleukin-9 secretion', and 'abnormal joint capsule morphology'.  

Pfeiffer Syndrome 
Pfeiffer Syndrome is a syndrome characterized by craniosynostosis and abnormalities of the 

hands and feet22,23. It is directly associated with two genes in the HPO database, FGFR1 and FGFR2, and 

28 phenotypes. Through the additional gene-phenotype annotations available in HPO for these 28 

phenotypes and the corresponding gene-phenotype annotations, Pfeiffer Syndrome is associated with an 

additional 1153 genes. As Pfeiffer Syndrome has both a large phenotypic profile for OWLSim to compare 

with the phenotypic profiles of mouse and zebrafish genes, as well as a large set of gene-phenotype 

associations for use by Phenologs, it makes a good test case for comparing the two approaches.  

The retrieval of known disease causative genes and additional gene candidates by OWLSim 

(maxIC) and Phenologs (additive method) is shown in Figure 11. Note that in the figure, the one low 

scoring disease causative gene is an additional zebrafish ortholog for FGFR1. All least diverged orthologs 

were successfully retrieved by Phenologs. OWLSim was able to retrieve three out of four potential 

mouse/zebrafish orthologs for FGFR1 and FGFR2, missing the mouse ortholog for FGFR2. The rankings 

for the zebrafish orthologs were rather low, with the ortholog for FGFR1 ranking 1341st and the ortholog 

for FGFR2 ranking 6192nd. However, the retrieval of the mouse ortholog for FGFR1 ranked 139th. 
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Figure 11: Scoring of known Pfieffer Syndrome causative genes and additional gene candidates from 
OWLSim (maxIC) and Phenolog (additive) methods. Random jitter applied to allow for visualization of 
overlapping data points. 

 
Through the combination of the 10 nearest neighbor phenotypes for each of Pfeiffer Syndrome’s 

28 phenotypes, Pfeiffer has a total of 188 unique nearest neighbor phenotypes, consisting of 132 mouse 

phenotypes and 56 zebrafish phenotypes. From this large set of nearest neighbor phenotypes, there is 

naturally a large set of gene candidates for Pfeiffer syndrome. Using the Phenolog max score method, the 

zebrafish and mouse orthologs for FGFR1 and FGFR2 were tied for the 52nd highest ranked orthologs 

with a max score of 9.997 (maximum score is 10.0). However, using the Phenolog additive score method, 

the zebrafish and mouse orthologs for FGFR1 and FGFR2 were tied for the highest ranked orthologs with 

an additive score of 193.46, with the next highest score being 103.33. In total, 53 orthologs had the 

highest Phenolog additive score, consisting of 10 zebrafish orthologs and 43 mouse orthologs. Using 

GeneMANIA, the zebrafish orthologs are enriched in development, regeneration, and wound healing 
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functions. The mouse orthologs are enriched in transmembrane receptor kinase activity, cell-signaling 

pathways, protein phosphorylation, growth and development pathways, and cell motility. 

SHEP2 
Skin/Hair/Eye Pigmentation 2 (SHEP2) is a condition resulting in red hair, fair skin, and freckles, 

as well as increased susceptibility to UV-induced skin damage due to greater expression of 

pheomelanin/reduced expression of eumelanin24. Within the HPO dataset, SHEP2 is associated with one 

phenotype, red hair, which is associated with six genes: OCA2, PDE4D, POMC, PRKAR1A, TYRP1, 

and ZNF469. However, within HPO, SHEP2 is not directly related with any genes. Although in the 

OMIM morbid map there is one gene associated with SHEP2, the melanocortin 1 receptor (MC1R), this 

gene association is not present in the HPO dataset for either the gene-disease association with SHEP2 or 

the gene-phenotype association with red hair. This provides an opportunity to test the retrieval of a known 

gene association when the gene is not currently associated with the disease or associated phenotype in the 

dataset, serving as an example for finding a correct novel gene candidate for an undiagnosed disease. 

The retrieval of orthologs of the known disease causative gene (MC1R) and additional gene 

candidates by OWLSim (maxIC) and Phenologs (additive method) is shown in Figure 12. While the 

zebrafish ortholog for MC1R was not retrieved by either Phenolog method and the OWLSim maxIC and 

ICCS metrics, it was retrieved by the OWLSim simIC and simJ metrics. However, both of these 

OWLSim metrics ranked the zebrafish ortholog poorly, with the simIC metric ranking the ortholog at 

position 907th and simJ ranking the ortholog at position 819th. In contrast, for the mouse ortholog of 

MC1R, the Phenolog additive and max methods both returned a rank of 4th. In addition, the maxIC 

OWLSim metric provided a ranking of 1st, with rankings of 251st, 555th, and 2051st for ICCS, simIC, 

and simJ, respectively. 

 
 
 



 28 

 
Figure 12: Scoring of known SHEP2 causative genes and additional gene candidates from OWLSim 
(maxIC) and Phenolog (additive) methods. Random jitter applied to allow for visualization of overlapping 
data points. 

 

Conclusions 

In the comparison of the OWLSim and Phenolog approaches to identifying gene candidates for 

human diseases from model organism data, the Phenolog additive approach performed best overall in 

recalling known disease causative genes. While the Phenolog additive and maximum methods performed 

similarly, the additive method had a small performance advantage over the maximum method. In 

addition, the additive method appears to return known disease causative genes at higher ranks than the 

maximum method. Both OWLSim and Phenolog approaches are able to exclusively identify known 

disease causative genes, indicating that each method can provide uniquely valuable gene candidate 

predictions for undiagnosed diseases. However, the Phenolog method was able to exclusively identify a 

greater portion of known disease causative genes between humans and zebrafish, indicating that 
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Phenologs will perform better than OWLSim when comparing species that are further apart in regards to 

phylogenetic distance. Although the Phenolog approach performed better than OWLSim, a combined 

approach will naturally yield a greater return of positive disease gene candidates than either method alone. 
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