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ABSTRACT 

 

Randomization is a key characteristic of clinical trials which makes them the gold standard 

for determining treatment effectiveness. Response-adaptive randomization is desirable 

because it allows more patients to receive the best treatment; however, compared to 

traditional equal randomization, response-adaptive randomization is more likely to allow 

imbalance in prognostic baseline covariates. We propose a simple yet flexible two-stage 

randomization for multi-arm trials which marries response-adaptative and covariate-

balancing designs. The operating characteristics of the proposed methods were assessed 

via simulation for a variety of scenarios in which values of treatment success probability 

and patient response delay time were varied. The newly proposed methods consistently 

outperformed equal randomization in terms of reducing the proportion of treatment failures 

for subjects and compared favorably to response-adaptive only randomization while 

significantly improving the balance of prognostic covariates between treatment arms.  The 

proposed design also compared favorably with a Bayesian approach to response-adaptive 

covariate-balanced design, providing equal or better power and covariate-balance. 

 

 

INTRODUCTION 

 

In trials with human subjects and particularly when treatment failure may mean serious 

morbidity or mortality, there is a strong ethical imperative to treat subjects with the most 

promising treatment available. Response-adaptive randomization designs allow the 

probability of assigning a new patient to a particular arm of a trial to vary over the course 



2 
 

of the trial in response to the outcomes observed for previously enrolled patients in a 

systematic manner which does not compromise the validity of the results of the trial [1]. 

 

Interest in response-adaptive randomization stems not only from its ethicality, but also 

from more logistical advantages. A properly implemented response-adaptive 

randomization provides higher power compared to a static unequal allocation reducing 

sample size. It has been suggested that this advantage is more pronounced for trials having 

three or more arms [2].  In addition, recruitment may be easier if patients are more willing 

to enroll knowing their chances of receiving the best treatment are higher than in an equally 

randomized trial.  

 

The idea of response-adaptive design dates back as far as 1933 [3]; however, early attempts 

suffered from being deterministic. For example, the “play-the-winner” rule allocated the 

next patient to the same treatment if the previous patient’s outcome had been success and 

to the other treatment if the previous patient had experienced treatment failure [4]. More 

recently, numerous randomized response-adaptive designs, both Bayesian and Frequentist, 

have been proposed in the literature [1]; thus far, the Bayesian approach has predominated 

in terms of implementation.  In particular, the M.D. Anderson Cancer Center has pioneered 

this area with a number of significant response-adaptively randomized studies such as I-

SPY 2 and BATTLE [5,6]. 

 

Among response-adaptive randomization designs using frequentist methods, urn models 

have predominated in the literature [1]. They are based on a simple, intuitive model in 

which assignment to each of the k treatment arms is represented by k types of balls 

contained in an urn. A ball is drawn at random from the urn for each subject as they enroll 

and they are assigned to the arm corresponding to the type of ball which was drawn. The 
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composition of balls in the urn is updated over time depending on observed successes and 

failures for previously assigned patients. Notable variations on this basic urn model include 

the randomized “play-the-winner” strategy [7,8], in which additional balls of type k are 

added to the urn in response to success being observed for a patient on that arm, and the 

“drop-the-loser” strategy [9,10], in which balls of type k are removed from the urn in 

response to a failure being observed for a patient on that treatment arm. The “drop-the-

loser” strategy has been shown to be superior in terms of having lower randomization 

procedure variability (variability in the proportion of subjects assigned to each treatment 

arm) and consequently higher power [9], since power is a decreasing function of 

randomization procedure variability [10].  

 

A potential flaw of these response-adaptive randomization procedures is that many have 

not considered imbalance in baseline covariates believed to be prognostic [12]. One 

criticism in particular of response-adaptive designs has been that they introduce bias due 

to population drift, in which the subject population changes over time.  Covariate-balancing 

would help to correct for this phenomenon [13].  Particularly for trials with small to 

medium sample sizes, randomization alone may be inadequate to ensure that important 

covariates are balanced across multiple treatment arms. Campbell and McPherson found 

that for a two arm trial as many as 1000 subjects may be required before simple 

randomization provides adequate covariate balance [14]. Covariate imbalances, should 

they occur, may introduce bias into a trial’s estimates of treatment success [15]. For 

example, if older subjects have a lower probability of treatment success regardless of 

treatment than younger subjects and a substantially larger proportion of older subjects are 

assigned to Treatment A, then Treatment A might wrongfully be concluded to be inferior. 

Imbalanced prognostic covariates can, and should, be adjusted for in a post-hoc manner at 
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the analysis stage; however, a covariate-balanced design will improve the efficiency of the 

trial.  

 

It is important to distinguish covariate-balanced randomization from another adaptive 

approach involving baseline prognostic factors: covariate-adjusted randomization. 

Covariate-balanced randomization seeks to assign patients in such a way that baseline 

covariates are distributed evenly across all treatment arms for the purpose of reducing bias 

in the results of the trial. In contrast, the purpose of covariate-adjusted randomization is to 

assign more subjects with a certain baseline covariate profile to the best treatment for them 

based on the responses of previously randomized subjects with a similar baseline covariate 

profile [15]. It should become apparent that if there are indeed significant differences in 

treatment response based on a given covariate, then covariate-adjusted randomization will 

result in a greater amount of imbalance between treatment arms in regard to that covariate. 

Covariate-adjusted randomization is appropriate for prognostic factors where an 

interaction between treatment and covariate is expected. For example, Treatment A has a 

higher true probability of success for subjects with genetic marker A, while Treatment B 

has a higher true probability of success for subjects with genetic marker B. In contrast, 

covariate-balanced randomization is appropriate for prognostic factors where the effect of 

the covariate would be expected to be consistent across treatments. Our current discussion 

will be restricted to covariate balancing. 

 

Simple stratification has been the traditional approach to covariate balancing; however, 

prognostic score based randomization offers a more versatile approach because it allows 

for balancing on continuous covariates and a larger total number of covariates [12]. Pre-

stratification is adequate when only a small number of binary and/or categorical baseline 

variables (resulting in only a few strata) are of interest, but if balance across many 
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categorical variables or continuous variables is desired achieving marginal balance on each 

covariate between treatment arms becomes impractical if not impossible. Provided that 

achieving balance on the baseline covariates is only of interest in so far as they are 

predictive of the primary outcome, a potential alternative to pre-stratification based 

methods is to balance on a prognostic score, a linear combination of the covariates 

predictive of the outcome.  

 

Covariate-balanced randomization was first proposed by Taves in 1974 [16]. Taves 

minimization method, so-named for its intent to minimize differences between groups in 

regard to important baseline covariates, suffered from the same short-coming of 

determinism as early attempts at response-adaptive randomization; however, randomized 

versions of the minimization method from Pocock and Simon [17] and Wei [18] soon 

followed. Although they have been known for some time, Scott et al. found in their review 

of the literature that minimization methods of covariate balance are still rarely employed 

with only 4% of randomized trials published in the Lancet and the New England Journal 

of Medicine in 2001 reporting use of this method [19]. The authors cite the perception of 

additional administrative burden and uncertainty about the proper analysis techniques to 

employ in evaluating the results of a trial randomized in this way as major barriers to wider 

use [19].  

 

Compared to the minimization method, the prognostic score approach has two major 

advantages. Firstly, the prognostic score approach allows balancing of continuous 

covariates directly, while minimization requires the categorization of continuous variables 

which poses a challenge if optimal cutoff values are unknown. Secondly, minimization 

methods fail in the presence of interactions between covariates introducing larger alpha 

errors, while the prognostic score approach can easily accommodate interaction terms in 
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the logistic regression model. The major disadvantage to the prognostic score approach; 

however, is that due to being model-based it may be less robust. 

 

The goal of this current work is to provide a Frequentist covariate-balanced response-

adaptive randomization for three or more arm superiority trials equivalent to what is 

currently available only in the Bayesian literature. Possible examples of a trial which could 

utilize the proposed randomization include a phase II trial with two or more novel 

pharmaceutical agents and a placebo or current standard care control arm or a behavioral 

intervention with two control arms, an active and a passive.  We will consider both 

stratification and a prognostic score approach based on the logistic regression model as 

proposed by Yuan [12], who utilized this approach in combination with a Bayesian method 

of response-adaptive randomization. 

 

The remainder of this thesis is laid out as follows. In the Methods section, we propose four 

novel designs which combine a response-adaptive and covariate-balanced approach to 

randomization. In the Results section, we evaluate the operating characteristics of our 

proposed designs via simulation and compare them with previously available 

randomization options including equal randomization, response-adaptive randomization 

without covariate balancing, and a Bayesian response-adaptive, covariate-balanced design. 

In the Discussion section, we discuss implications and limitations of the current work and 

propose future work.  We conclude with a statement of the major findings in the Summary 

and Conclusions section. 
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METHODS 

 

Four novel designs consisting of two approaches to response-adaptive randomization 

already present in the literature each combined with two approaches to covariate-balanced 

randomization present in the literature were considered.  Results presented are for a three 

arm study with a binary outcome. All simulation studies were conducted with 1,000 

repetitions using R software. 

 

Methods of Response-Adaptive Randomization 

 

The two methods of response-adaptive randomization considered were the generalized 

drop-the-loser (GDL) Urn model as presented by Sun et al. [10] and the Ridit scoring based 

method presented in Bandyopadhyay & De [20].  For both the Ridit and GDL Urn models, 

suppose there are three treatment arms, A, B, and C.  Probabilities of treatment success, �̂�𝑘, 

where k is A, B, or C, were estimated as follows, 

  

�̂�𝑘 =
𝑆𝑘+0.5

𝑁𝑘+1
, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝐴, 𝐵, 𝐶      (1) 

 

where Nk is the number patients assigned to treatment arm k and Sk is the number of 

successes observed among those Nk subjects. At the beginning of the trial a small number 

of subjects, n0, are equally assigned to the treatment arms to help stabilize the estimates of 

�̂�𝑘  prior to response-adaptive randomization.  The probabilities of treatment failure, �̂�𝑘, are 

simply the complements of �̂�𝑘. 

 

�̂�𝑘 = 1 − �̂�𝑘 , 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝐴, 𝐵, 𝐶      (2) 
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The algorithm for randomization using the Ridit method for three treatment arms is as 

follows, 

 

𝑅𝐴 =
1

3
+

1

6
(2�̂�𝐴 − �̂�𝐵 − �̂�𝐶) +

�̂�𝐵

6
(�̂�𝐴 − �̂�𝐶) +

�̂�𝐶

6
(�̂�𝐴 − �̂�𝐵)  

𝑅𝐵 =
1

3
+

1

6
(2�̂�𝐵 − �̂�𝐴 − �̂�𝐶) +

�̂�𝐴

6
(�̂�𝐵 − �̂�𝐶) +

�̂�𝐶

6
(�̂�𝐵 − �̂�𝐴)   (3) 

𝑅𝐶 =
1

3
+

1

6
(2�̂�𝐶 − �̂�𝐵 − �̂�𝐴) +

�̂�𝐵

6
(�̂�𝐶 − �̂�𝐴) +

�̂�𝐴

6
(�̂�𝐶 − �̂�𝐵)  

 

where Rk is the probability of assigning a new patient to treatment arm k at a given point in 

the trial, �̂�𝑘 and �̂�𝑘 are defined as in Equations 1 and 2. 

 

The GDL urn model proposed by Sun et al. [10] utilizes k+1 types of balls present in the 

urn. The additional type are termed immigration balls and when an immigration ball is 

randomly drawn, the composition of balls, Xk, in the urn is updated as follows prior to the 

new subject being randomized, 

 

𝑋𝑖 = 𝑋𝑖0, 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖0 > 0  

𝑋𝑘 = 𝑋𝑘0 +

1

�̂�𝑘
1

�̂�𝐴
+

1

�̂�𝐵
+

1

�̂�𝐶

,   𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝐴, 𝐵, 𝐶     (4) 

 

where �̂�𝑘  is defined as in (2) and Xk0 is the number of balls of type k present in the urn 

prior to the most recent immigration ball draw and Xi0 is the number of immigration balls 

which is a constant over of the course of the trial.  A value of 3 was chosen for Xi0.  Results 

were found to be insensitive to the numbers of treatment balls in excess of that value.  Then, 

the probability of assignment to a given treatment arm at a given time, Uk, as follows, 
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𝑈𝑘 =
𝑋𝑘

𝑋𝐴+𝑋𝐵+𝑋𝐶
, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝐴, 𝐵, 𝐶      (5) 

 

Methods of Covariate-Balanced Randomization 

 

When prognostic scoring was used as the method of covariate-balancing, the probability 

of assignment to a given treatment arm, Rk or Uk, was weighted by a factor of 𝜋𝐾 as follows, 

 

𝜋𝑘 = {
𝜙                     𝑖𝑓 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑡𝑜 𝑘 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 ∑ 𝐾𝑆 

1−𝜙

𝑘−1
     𝑖𝑓 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑡𝑜 𝑘 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐾𝑆 

   (6) 

 

where 𝜙 is a constant satisfying 1/k < 𝜙 ≤ 1. 

 

In the simple stratification approach to covariate-balancing, �̂�𝑘 was calculated separately 

for each strata with the estimate being based only on data from subjects belonging to the 

same stratum as the new subject to be randomized.  

 

Results involving the prognostic scoring method assume a standard normal distribution of 

prognostic scores with no assumptions made about the number or distributions of 

individual prognostic covariates. Results involving stratification assume a single equally 

distributed binary prognostic covariate. This can be thought of as equivalent to 

dichotomizing the prognostic score variable and stratifying based on prognostic score [21]. 

 

 

 



10 
 

Novel Response-Adaptive Covariate-Balanced Designs  

 

In summary, the novel models considered are: Ridit with prognostic scoring, in which the 

probability of assignment to a given treatment arm k, pr(k), is given by, 

 

𝑝𝑟(𝑘) = 𝜋𝑘𝑅𝑘         (7) 

 

where 𝜋𝑘 is defined as in (6) and 𝑅𝑘 is defined as in (3).   

 

GDL Urn with prognostic scoring, in which the probability of assignment to a given 

treatment arm k, pr(k), is given by, 

 

𝑝𝑟(𝑘) = 𝜋𝑘𝑈𝑘         (8) 

 

where 𝜋𝑘 is defined as in (6) and 𝑈𝑘 is defined as in (5).   

 

Stratified Ridit in which the probability of assignment to a given treatment arm k, pr(k), is 

given by, 

 

𝑝𝑟(𝑘) = 𝑅𝑘𝑠
         (9) 

 

where 𝑅𝑘𝑠
 is 𝑅𝑘 as defined in (3) for only patients in strata s.   

 

Stratified GDL Urn in which the probability of assignment to a given treatment arm k, 

pr(k), is given by, 
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𝑝𝑟(𝑘) = 𝑈𝑘𝑠
         (10) 

 

where 𝑈𝑘𝑠
 is 𝑈𝑘 as defined in (5) for only patients in strata s. 

 

Bayesian Method 

 

The novel methods were compared to the Bayesian approach taken by Yuan et al. [12] in 

which probability of assignment to a given treatment arm is based on the posterior 

probability that treatment k is superior to all others, Sk, 

 

𝑆𝐴 = 𝑝𝑟(𝑝𝐴 = max {𝑝𝑘 , 1 ≤ 𝑘 ≤ 3}|𝑑𝑎𝑡𝑎) 

𝑆𝐵 = 𝑝𝑟(𝑝𝐵 = max {𝑝𝑘 , 1 ≤ 𝑘 ≤ 3}|𝑑𝑎𝑡𝑎)     (11) 

𝑆𝐶 = 𝑝𝑟(𝑝𝐶 = max {𝑝𝑘 , 1 ≤ 𝑘 ≤ 3}|𝑑𝑎𝑡𝑎) 

 

Noninformative priors ( Beta (1, 1) ) were used for the parameters pA, pB, and pC to facilitate 

a more direct comparison with the novel frequentist methods.  The posterior probability 

that treatment k is superior to all others is stabilized by taking the square root 

transformation as follows and this transformation was used to determine the allocation 

probability to each treatment arm, Tk, 

 

𝑇𝑘 =
√𝑆𝑘

√𝑆𝐴+√𝑆𝐵+√𝑆𝐶
        (12) 

 

This value is then weighted by the prognostic scoring factor, 𝜋𝑘, to give a probability of 

assignment to a given treatment arm k, pr(k), for the Bayesian design of, 
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𝑝𝑟(𝑘) = 𝜋𝑘𝑇𝑘         (13) 

 

Equal Randomization Method  

 

The novel methods were also compared to simple equal randomization in which the 

probability of assignment to a given treatment arm k, pr(k), is fixed, 

 

𝑝𝑟(𝑘) =
1

𝑘
         (14) 

 

Operating Characteristics  

 

Four criteria were used to assess the performance of the methods: the proportion of subjects 

assigned to the best treatment with a higher proportion being superior, the proportion of 

treatment failures experienced by subjects with a low value being superior, the average 

statistical power archived for a fixed total number of subjects in the trial with values above 

80% considered acceptable, and the imbalance in prognostic scores between the treatment 

arms at the conclusion of the trial as measured using Kolmogorov–Smirnov (KS) statistics 

for which smaller values indicate better balance between treatment arms. 

 

Scenarios 

 

Without loss of generality, Treatment A was fixed as the best treatment in terms of true 

probability of treatment success. Three potential scenarios about the true probabilities of 

success for the three treatment arms were considered. In the first scenario, the true 
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probabilities of success for both Treatment B and Treatment C were set to be equal and 

low (both 0.3) and the probability of success for Treatment A varied from 0.3 to 0.9 in 

increments of 0.1. In the second scenario, there was a small difference between the true 

probability of success for Treatment B (0.4) and that for Treatment C (0.3) and the 

probability of success for Treatment A varied from 0.5 to 0.9 in increments of 0.1. In the 

third scenario, there was a larger difference between the true probability of success for 

Treatment B (0.5) and that for Treatment C (0.3) and the probability of success for 

Treatment A varied from 0.6 to 0.9 in increments of 0.1.   

 

Both the novel designs and the Bayesian design used for comparison are two-stage with 15 

patients being equally randomized to provide adequate initial estimates of �̂�𝑘 in the first 

stage and 50 patients adaptively randomized in the second stage for a moderate total sample 

size of 65.  The sample size for equal randomization was fixed at 65 subjects for 

comparison.  Differing times to availability of patient treatment outcome was simulated by 

updating the estimates of �̂�𝑘 after the randomization of every 1 subject for instantaneous, 

every 10 subjects for short delay, and every 25 subjects for long delay. 

 

 

RESULTS 

 

Comparison with Equal Randomization 

 

All four novel designs, stratified Ridit, Ridit with prognostic scoring, stratified GDL Urn, 

and GDL Urn with prognostic scoring, significantly outperformed equal randomization 

with lower the proportions of total treatment failures (see Figure 1). 
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(a)  True Probability of Success for Treatment B=0.3      (b)  True Probability of Success for Treatment B=0.4      (c)  True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

(d)  True Probability of Success for Treatment B=0.3      (e)  True Probability of Success for Treatment B=0.4      (f)   True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 1: Comparison of proportions of total treatment failures for equal randomization 

versus Ridit and GDL Urn with prognostic scoring (a-c) and stratification (d-f).  Results 

are also available in table form in the appendices (See also Tables S1 & S2). 

 

Comparison with Response-Adaptive Randomization 

 

There was also little or no increase in the proportion of total treatment failures observed as 

a result of incorporating a covariate-balancing component compared to response-adaptive 

randomization alone regardless of whether the prognostic score was predictive of the 

outcome (see Figure 2). 
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(a) True Probability of Success for Treatment B=0.3      (b)  True Probability of Success for Treatment B=0.4      (c)  True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

(d) True Probability of Success for Treatment B=0.3      (e)  True Probability of Success for Treatment B=0.4      (f)  True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 2: Comparison of proportions of total treatment failures for GDL Urn (a-c) and 

Ridit (d-e) response-adaptive randomization alone versus response-adaptive randomization 

with prognostic scoring. (See also Table S3) 

 

Comparison with Bayesian Randomization  

 

When compared to the Bayesian design proposed by Yuan et al. [12], the novel designs 

had lower proportions of subjects assigned to Treatment A and higher proportions of total 

treatment failures (see Figure 3).  
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(a) True Probability of Success for Treatment B=0.3      (b)  True Probability of Success for Treatment B=0.4      (c)  True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

(d) True Probability of Success for Treatment B=0.3      (e)  True Probability of Success for Treatment B=0.4      (f)  True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 3: Comparison of novel designs with Bayesian design for proportion of subjects 

assigned to the best treatment (a-c) and proportion of total treatment failures (d-f). (See 

also Table S1) 

 

However, the novel designs outperformed the Bayesian design in terms of covariate 

balance and also power (see Figure 4) particularly at high probabilities of success for 

Treatment A.   
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(a) True Probability of Success for Treatment B=0.3      (b)  True Probability of Success for Treatment B=0.4      (c)  True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

(d) True Probability of Success for Treatment B=0.3      (e)  True Probability of Success for Treatment B=0.4      (f) True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 4: Comparison of novel designs with Bayesian design for covariate imbalance as 

measured by KS statistic (a-c) and statistical power (d-f) (See also Table S1). 

 

These results indicate that there is a maximum threshold past which higher proportions of 

subjects assigned to the best treatment become undesirable as very small sample sizes for 

the other two treatment arms both make it impossible to provide adequate prognostic 

covariate balance and inflate the type II error rate unacceptably, compromising the results 

of the trial. 

 

Comparison of Ridit and GDL Urn  

 

Although all novel approaches performed well, several noteworthy differences between the 

Ridit and GDL Urn methods when combined with covariate balancing methods were 
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observed.  In terms of proportion of subjects assigned to the best treatment, when 

prognostic scoring was used as the method of covariate balancing, the Ridit method 

performed as well or better than the GDL Urn model when the probability of treatment 

success for the best treatment was below 0.7; however, at higher values of probability of 

treatment success for the best treatment the GDL Urn model dominated.  When 

stratification was used there was no advantage to the GDL Urn model until the probability 

of treatment success for the best treatment reached 0.9 (see Figure 5).  

 

(a)  True Probability of Success for Treatment B=0.3      (b) True Probability of Success for Treatment B=0.4      (c) True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

(d)  True Probability of Success for Treatment B=0.3      (e) True Probability of Success for Treatment B=0.4      (f) True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 5: Comparison of proportions of subjects assigned to the treatment with the highest 

true probability of success for Ridit versus GDL Urn with Prognostic Scoring (a-c) and 

Stratification (d-f).  (See also Table S1 & S2) 

 

It is important to note that due to the way the composition of balls (and; therefore, the 

probability of assignment to each treatment arm) in the urn model is updated there is a 
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built-in delay between ascertainment of the outcome for a patient and the incorporation of 

that information into the assignment of new subjects entering the trial. This has the 

important implications that the GDL Urn model would be expected to perform less well in 

terms of assigning subjects to the best treatment and reducing treatment failures compared 

to the Ridit method as the rate of subject recruitment or the delay in obtaining patient 

outcomes increases. Although, in general, the benefit of any response-adaptive 

randomization strategy will be reduced if relatively few patient outcomes will become 

available before the conclusion of recruitment, this effect may be compounded for the GDL 

Urn model.  When there was a significant delay in knowledge of patient outcomes (results 

shown are for a delay of 25 patients), the advantage to the GDL Urn model at high values 

of probability of treatment success for the best treatment observed with prognostic scoring 

was reduced in magnitude and the Ridit method more consistently outperformed the GDL 

Urn at values below 0.7 (see Figure 6). 

 

(a)  True Probability of Success for Treatment B=0.3      (b) True Probability of Success for Treatment B=0.4      (c) True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 6: Comparison of proportions of subjects assigned to the treatment with the highest 

true probability of success for Ridit versus GDL Urn with prognostic scoring with a delay 

of 25 subjects between randomization and knowledge of subject outcome.  (See also Table 

S5) 
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When simple stratification was used as the method of covariate-balancing, the Ridit method 

outperformed the GDL Urn method in terms of achieving better covariate balance while 

covariate-balancing via prognostic scoring favored the GDL Urn method over the Ridit in 

terms of covariate balance (see Figure 7). 

 

(a) True Probability of Success for Treatment B=0.3      (b) True Probability of Success for Treatment B=0.4      (c) True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

(d) True Probability of Success for Treatment B=0.3      (e) True Probability of Success for Treatment B=0.4      (f) True Probability of Success for Treatment B=0.5 

      True Probability of Success for Treatment C=0.3 True Probability of Success for Treatment C=0.3             True Probability of Success for Treatment C=0.3 

 

Figure 7: Comparison of average KS statistic (a measure of baseline covariate imbalance) 

for Ridit versus GDL Urn with prognostic scoring (a-c) and stratification (d-f).  See also 

(Table S7). 

 

Variability 

 

Because, in reality, only one study can be performed, the variability in, as well as the 

average values of, the proportion of total subjects assigned to the best treatment, the 

proportion of treatment failures, and the covariate imbalance between treatment arms is of 
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interest. When stratification was used as the method of covariate balancing, the GDL Urn 

showered lower variability than the Ridit method; however, when prognostic scoring was 

used, the Ridit method showed lower variability for all three measures when the true 

success probability of the best treatment was 0.7 or higher and the GDL Urn showed lower 

variability when the true success probability for the best treatment was lower (see Table 

S4 in the appendices).   

 

Optimization of Parameters 

 

Ideal values for the parameters n0 and  𝜙 were also investigated. Values of 3 or 5 were 

considered for n0 (see Table S5 in the appendices.). Although, in most cases, estimates of 

the true treatment success probabilities were found to be sufficiently stable for the purposes 

of response-adaptive randomization with only 3 patients equally randomized to each 

treatment arm in the first stage of the design, we have chosen and generally recommend 

the more conservative value of 5 to reduce variability. If limiting sample size is a major 

concern and delays in outcome availability are expected to be short, such as in an 

emergency medicine setting [22], 3 will be adequate (see Table S5 in the appendices). For 

the prognostic scoring parameter, 𝜙, values considered were 1/2 and 2/3 with 2/3 being 

selected as optimal because it yielded a significant improvement in covariate balance with 

only minor losses in terms of proportion of patients assigned to the best treatment and 

proportion of total treatment failures compared to 1/2 (see Table S6 in the appendices). If 

covariate-balance is of only secondary concern 1/2 is the superior choice. An example for 

which this might be the case is that of a study with a larger total number of subjects than 

the 65 considered here, as covariate imbalance decreases with increasing sample size even 

for a response-adaptive design with no covariate-balancing component [15]. 
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DISCUSSION 

 

It was found that, on average, all four proposed novel designs, stratified Ridit, Ridit with 

prognostic scoring, stratified GDL Urn, and GDL Urn with prognostic scoring, 

significantly outperformed equal randomization in terms of lowering the proportion of total 

treatment failures. In addition, there was little or no increase in the proportion of total 

treatment failures as a result of incorporating a covariate-balancing component compared 

to response-adaptive randomization alone regardless of whether the baseline covariates 

chosen to be balanced were predictive of the outcome while achieving significant 

improvement in covariate balance.  When compared to the Bayesian response-adaptive 

covariate-balanced design proposed by Yuan et al. [12], the novel designs had higher 

proportions of total treatment failures; however, in order to achieve lower proportions of 

total treatment failures the Bayesian design makes sacrifices in other operating 

characteristics, having higher covariate-imbalance and lower power, particularly at high 

values of true probability of success for the best treatment (above 0.6), due to the very high 

proportion of subjects assigned to one treatment which produces small sample sizes for the 

other two groups.  The proposed methods maintain good covariate balance and acceptable 

power (greater than 80%) regardless of true probabilities of success for the three treatment 

arms.  It is important to note that Bayesian designs incorporate the flexibility of specifying 

different priors.  A “skeptical” prior, representing a strong belief that all three treatments 

will be ineffective, and equally so, could reduce the proportion of subjects assigned to the 

best treatment, potentially bringing the results for covariate-balance and power from the 

Bayesian method more in line with those observed for the novel frequentist methods than 

the noninformative prior presented here. 
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The choice of the Ridit or GDL Urn model as the better method for response-adaptive 

covariate-balanced randomization was found to depend on the choice of covariate-

balancing method, the true probability of success for the most successful treatment, and the 

delay between patient randomization and knowledge of the treatment outcome. Prognostic 

scoring, true probability of success for the most successful treatment above 0.6, and short 

delays favored the GDL Urn. Stratification, true probability of success for the most 

successful treatment at or below 0.6, and long delays favored the Ridit method (see Table 

1). 

 

Table 1: Factors Influencing Choice of Ridit or GDL Urn for Response-Adaptive Design 

 True Probability of 

Success for Most 

Successful 

Treatment 

Covariate 

Balancing Method 

Delay in 

Availability of 

Treatment 

Outcomes1 

Favors GDL Urn >0.6 Prognostic Scoring ≤1/5 

Favors Ridit ≤0.6 Stratification >1/5 
1 Defined as the faction of the total number of patients in the trial whose outcome is still unknown when the last patient is randomized 

 

Differences between these two methods of response-adaptive randomization can be 

attributed to the inherent differences in the algorithms by which Uk and Rk values are 

calculated. Of particular note is the fact that Uk updates at random intervals in response to 

the drawing immigration balls while Rk is consistently updated after each patient outcome 

is observed. 

 

In general, the potential limitations of this work are similar to those of any response-

adaptive randomization method.  One example is that, in our simulations, equal sample 

sizes have been compared, while, in practice, an equal randomization will require fewer 

subjects to achieve the same power as a response-adaptive randomization.  Each method 

of covariate balancing has its own limitations.  Covariate balancing by stratification limits 
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the type and number of prognostic covariates which may be balanced; while prognostic 

scoring is less robust, being susceptible to errors in the logistic regression model.  The 

better choice is highly study dependent and for that reason, results for both have been 

presented here.  A further limitation is that early stopping rules for either futility or efficacy, 

which may improve the performance of equal randomization in terms of minimizing the 

proportion of treatment failures, were not considered [13].  It would be of interest to explore 

the potential effects of stopping rules, for example, expanding the design to three-stages 

with poor performing treatment arms being dropped at an interim analysis.  Although this 

work has presented results for three arm studies with a binary outcome, either the GDL 

Urn or Ridit methods can be extended to four or more arms and modification to 

accommodate a continuous primary outcome is possible, perhaps by using a method of 

calculating �̂�𝑘 which weights patient outcomes based on magnitude of the observation.  In 

addition, more scenarios involving different true probabilities of success for the three 

treatment arms could be considered.  This work remains to be done in the future. 

 

SUMMARY AND CONCLUSIONS 

 

In conclusion, the novel response-adaptive covariate-balanced randomizations presented 

here provide a significant gain in ethicality over an equal randomization by increasing the 

proportion of subjects who experience treatment success.  They also offer a significant gain 

in efficiency over a response-adaptive only randomization while sacrificing little in terms 

of ethicality compared to the response-adaptive only randomization.  They provide a viable 

non-Bayesian alternative which was not previously available in the literature. 
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APPENDICES 

 

Table S1: Averages of operating characteristics (i-iv) with prognostic scoring as the 

method of covariate balancing. 

(i) Proportion of Subjects Assigned to Treatment A 

(ii) Proportion of Total Treatment Failures 

(iii) Measure of Prognostic Score Imbalance Between Arms  

(iv) Statistical Power 

(pA, pB, pC)  Ridit 

With 

Prognostic 

Scoring 

n0=5 

GDL Urn 

With 

Prognostic 

Scoring 

n0=5 

Bayesian 

With 

Prognostic 

Scoring 

n0=5 

(0.3, 0.3, 0.3) (i) 0.3400 0.3282 0.3319 

(ii) 0.7026 0.7013 0.6986 

(iii) 0.1616 0.1507 0.1718 

(iv) 94% 94% 94% 

(0.4, 0.3, 0.3) (i) 0.3641 0.3567 0.3907 

(ii) 0.6650 0.6628 0.6625 

(iii) 0.1631 0.1485 0.1718 

(iv) 94% 94% 94% 

(0.5, 0.3, 0.3) (i) 0.3980 0.3809 0.4675 

(ii) 0.6188 0.6241 0.6024 

(iii) 0.1645 0.1504 0.1844 

(iv) 94% 94% 94% 

(0.6, 0.3, 0.3) (i) 0.4302 0.4268 0.5352 

(ii) 0.5688 0.5722 0.5433 

(iii) 0.1659 0.1513 0.1988 

(iv) 94% 94% 93% 

(0.7, 0.3, 0.3) (i) 0.4653 0.4742 0.6213 

(ii) 0.5148 0.5129 0.4516 

(iii) 0.1703 0.1556 0.2328 

(iv) 94% 94% 84% 

(0.8, 0.3, 0.3) (i) 0.4944 0.5359 0.6995 

(ii) 0.4510 0.4313 0.3491 

(iii) 0.1760 0.1649 0.2812 

(iv) 94% 93% 64% 

(0.9, 0.3, 0.3) (i) 0.5360 0.6210 0.7758 

(ii) 0.3788 0.3283 0.2357 

(iii) 0.1842 0.1842 0.3425 

(iv) 94% 84% 24% 

(0.5, 0.4, 0.3) (i) 0.3823 0.3757 0.4289 
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(ii) 0.5918 0.5890 0.5784 

(iii) 0.1623 0.1510 0.1803 

(iv) 94% 94% 94% 

(0.6, 0.4, 0.3) (i) 0.4121 0.4138 0.4920 

(ii) 0.5431 0.5457 0.5244 

(iii) 0.1646 0.1508 0.1928 

(iv) 94% 94% 94% 

(0.7, 0.4, 0.3) (i) 0.4384 0.4585 0.5854 

(ii) 0.4939 0.4905 0.4408 

(iii) 0.1678 0.1544 0.2221 

(iv) 94% 94% 85% 

(0.8, 0.4, 0.3) (i) 0.4769 0.5239 0.6691 

(ii) 0.4356 0.4132 0.3468 

(iii) 0.1729 0.1618 0.2660 

(iv) 94% 93% 65% 

(0.9, 0.4, 0.3) (i) 0.5122 0.6113 0.7542 

(ii) 0.3675 0.3148 0.2329 

(iii) 0.1783 0.1838 0.3236 

(iv) 94% 94% 94% 

(0.6, 0.5, 0.3) (i) 0.3970 0.3940 0.4595 

(ii) 0.5162 0.5111 0.4941 

(iii) 0.1634 0.1509 0.1894 

(iv) 94% 94% 94% 

(0.7, 0.5, 0.3) (i) 0.4179 0.4439 0.5340 

(ii) 0.4683 0.4605 0.4301 

(iii) 0.1669 0.1550 0.2119 

(iv) 94% 94% 94% 

(0.8, 0.5, 0.3) (i) 0.4559 0.5089 0.6311 

(ii) 0.4133 0.3916 0.3360 

(iii) 0.1725 0.1624 0.2486 

(iv) 94% 94% 94% 

(0.9, 0.5, 0.3) (i) 0.4921 0.6011 0.7229 

(ii) 0.3486 0.2939 0.2330 

(iii) 0.1781 0.1825 0.3087 

(iv) 94% 93% 88% 

 

Table S2: Averages of operating characteristics (i-iii) with stratification as the method of 

covariate balancing. 

(i)     Proportion of Subjects Assigned to Treatment A 

(ii)    Proportion of Total Treatment Failures 

(iii)   Measure of Prognostic Score Imbalance Between Arms 

(pA, pB, pC)  Ridit GDL Urn 
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with 

Stratification 

n0=5 

with 

Stratification 

n0=5 

(0.3, 0.3, 0.3) (i) 0.3306 0.3326 

(ii) 0.7000 0.6981 

(iii) 0.0731 0.0963 

(0.4, 0.3, 0.3) (i) 0.3667 0.3593 

(ii) 0.6678 0.6634 

(iii) 0.0767 0.0986 

(0.5, 0.3, 0.3) (i) 0.4055 0.3829 

(ii) 0.6199 0.6228 

(iii) 0.0791 0.1080 

(0.6, 0.3, 0.3) (i) 0.4357 0.4175 

(ii) 0.5711 0.5748 

(iii) 0.0874 0.1122 

(0.7, 0.3, 0.3) (i) 0.4835 0.4590 

(ii) 0.5070 0.5189 

(iii) 0.0990 0.1204 

(0.8, 0.3, 0.3) (i) 0.5199 0.5118 

(ii) 0.4395 0.4439 

(iii) 0.1129 0.1255 

(0.9, 0.3, 0.3) (i) 0.5600 0.5838 

(ii) 0.3645 0.3479 

(iii) 0.1239 0.1320 

(0.5, 0.4, 0.3) (i) 0.3866 0.3724 

(ii) 0.5873 0.5922 

(iii) 0.0806 0.1102 

(0.6, 0.4, 0.3) (i) 0.4186 0.4040 

(ii) 0.5428 0.5466 

(iii) 0.0827 0.1172 

(0.7, 0.4, 0.3) (i) 0.4608 0.4463 

(ii) 0.4834 0.4910 

(iii) 0.0915 0.1240 

(0.8, 0.4, 0.3) (i) 0.5004 0.5019 

(ii) 0.4213 0.4229 

(iii) 0.1033 0.1297 

(0.9, 0.4, 0.3) (i) 0.5380 0.5706 

(ii) 0.3550 0.3354 

(iii) 0.1162 0.1359 

(0.6, 0.5, 0.3) (i) 0.3955 0.3900 

(ii) 0.5123 0.5152 

(iii) 0.0849 0.1219 

(0.7, 0.5, 0.3) (i) 0.4340 0.4307 

(ii) 0.4595 0.4597 

(iii) 0.0905 0.1255 

(0.8, 0.5, 0.3) (i) 0.4709 0.4791 

(ii) 0.4036 0.4022 

(iii) 0.1017 0.1327 

(0.9, 0.5, 0.3) (i) 0.5113 0.5528 
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(ii) 0.3336 0.3190 

(iii) 0.1179 0.1401 

 

Table S3: Averages of operating characteristics (i-iii) for comparison between no 

covariate-balancing method, covariate-balancing with strong association between 

balanced covariate and outcome and no association between balanced covariates and 

outcome 

(i) Proportion of Subjects Assigned to Treatment A 

(ii) Proportion of Total Treatment Failures 

(iii) Measure of Prognostic Score Imbalance Between Arms  

(pA, pB, pC)  GDL Urn 

without 

Covariate-

Balancing 

n0=5 

GDL Urn 

with 

Prognostic 

Scoring 

and 

Strong 

Association 

n0=5 

GDL Urn 

With 

Prognostic 

Scoring 

and 

No 

Association 

n0=5 

(0.3, 0.3, 0.3) (i) 0.3340 0.3301 0.3282 

(ii) 0.6989 0.6991 0.7013 

(iii) 0.2433 0.1513 0.1507 

(0.4, 0.3, 0.3) (i) 0.3586 0.3537 0.3567 

(ii) 0.6654 0.6618 0.6628 

(iii) 0.2471 0.1499 0.1485 

(0.5, 0.3, 0.3) (i) 0.3899 0.3834 0.3809 

(ii) 0.6159 0.6276 0.6241 

(iii) 0.2457 0.1511 0.1504 

(0.6, 0.3, 0.3) (i) 0.4283 0.4234 0.4268 

(ii) 0.5726 0.5739 0.5722 

(iii) 0.2486 0.1526 0.1513 

(0.7, 0.3, 0.3) (i) 0.4742 0.4740 0.4742 

(ii) 0.5146 0.5099 0.5129 

(iii) 0.2542 0.1557 0.1556 

(0.8, 0.3, 0.3) (i) 0.5380 0.5354 0.5359 

(ii) 0.4303 0.4331 0.4313 

(iii) 0.2657 0.1632 0.1649 

(0.9, 0.3, 0.3) (i) 0.6244 0.6278 0.6210 

(ii) 0.3240 0.3233 0.3283 

(iii) 0.2916 0.1867 0.1842 

(0.5, 0.4, 0.3) (i) 0.3799 0.3712 0.3757 

(ii) 0.5918 0.5944 0.5890 
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(iii) 0.2456 0.1494 0.1510 

(0.6, 0.4, 0.3) (i) 0.4147 0.4128 0.4138 

(ii) 0.5437 0.5451 0.5457 

(iii) 0.2463 0.1505 0.1508 

(0.7, 0.4, 0.3) (i) 0.4587 0.4562 0.4585 

(ii) 0.4885 0.4885 0.4905 

(iii) 0.2566 0.1540 0.1544 

(0.8, 0.4, 0.3) (i) 0.5315 0.5203 0.5239 

(ii) 0.4088 0.4146 0.4132 

(iii) 0.2682 0.1612 0.1618 

(0.9, 0.4, 0.3) (i) 0.6186 0.6112 0.6113 

(ii) 0.3124 0.3132 0.3148 

(iii) 0.2941 0.1799 0.1838 

(0.6, 0.5, 0.3) (i) 0.3961 0.3984 0.3940 

(ii) 0.5147 0.5180 0.5111 

(iii) 0.2502 0.1523 0.1509 

(0.7, 0.5, 0.3) (i) 0.4436 0.4434 0.4439 

(ii) 0.4600 0.4597 0.4605 

(iii) 0.2566 0.1548 0.1550 

(0.8, 0.5, 0.3) (i) 0.5099 0.5060 0.5089 

(ii) 0.3905 0.3920 0.3916 

(iii) 0.2638 0.1617 0.1624 

(0.9, 0.5, 0.3) (i) 0.6074 0.5927 0.6011 

(ii) 0.2905 0.2995 0.2939 

(iii) 0.2899 0.1811 0.1825 

(pA, pB, pC)  Ridit 

without 

Covariate-

Balancing 

n0=5 

Ridit 

with 

Prognostic 

Scoring 

and 

Strong 

Association 

n0=5 

Ridit 

With 

Prognostic 

Scoring 

and 

No 

Association 

n0=5 

(0.3, 0.3, 0.3) (i) 0.3356 0.3350 0.3400 

(ii) 0.6973 0.6983 0.7026 

(iii) 0.2520 0.1630 0.1616 

(0.4, 0.3, 0.3) (i) 0.3752 0.3673 0.3641 

(ii) 0.6646 0.6640 0.6650 

(iii) 0.2531 0.1615 0.1631 

(0.5, 0.3, 0.3) (i) 0.4131 0.3959 0.3980 

(ii) 0.6167 0.6215 0.6188 

(iii) 0.2568 0.1622 0.1645 

(0.6, 0.3, 0.3) (i) 0.4587 0.4265 0.4302 

(ii) 0.5618 0.5724 0.5688 

(iii) 0.2628 0.1662 0.1659 

(0.7, 0.3, 0.3) (i) 0.4920 0.4584 0.4653 

(ii) 0.4996 0.5146 0.5148 

(iii) 0.2674 0.1691 0.1703 

(0.8, 0.3, 0.3) (i) 0.5375 0.4962 0.4944 
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(ii) 0.4306 0.4540 0.4510 

(iii) 0.2762 0.1754 0.1760 

(0.9, 0.3, 0.3) (i) 0.5798 0.5297 0.5360 

(ii) 0.3514 0.3842 0.3788 

(iii) 0.2876 0.1813 0.1842 

(0.5, 0.4, 0.3) (i) 0.3946 0.3816 0.3823 

(ii) 0.5880 0.5876 0.5918 

(iii) 0.2561 0.1640 0.1623 

(0.6, 0.4, 0.3) (i) 0.4276 0.4152 0.4121 

(ii) 0.5391 0.5453 0.5431 

(iii) 0.2570 0.1632 0.1646 

(0.7, 0.4, 0.3) (i) 0.4730 0.4447 0.4384 

(ii) 0.4824 0.4925 0.4939 

(iii) 0.2643 0.1678 0.1678 

(0.8, 0.4, 0.3) (i) 0.5140 0.4752 0.4769 

(ii) 0.4163 0.4328 0.4356 

(iii) 0.2722 0.1720 0.1729 

(0.9, 0.4, 0.3) (i) 0.5537 0.5092 0.5122 

(ii) 0.3438 0.3674 0.3675 

(iii) 0.2799 0.1795 0.1783 

(0.6, 0.5, 0.3) (i) 0.4073 0.3934 0.3970 

(ii) 0.5095 0.5118 0.5162 

(iii) 0.2592 0.1655 0.1634 

(0.7, 0.5, 0.3) (i) 0.4470 0.4272 0.4179 

(ii) 0.4559 0.4648 0.4683 

(iii) 0.2654 0.1686 0.1669 

(0.8, 0.5, 0.3) (i) 0.4843 0.4569 0.4559 

(ii) 0.3970 0.4129 0.4133 

(iii) 0.2683 0.1711 0.1725 

(0.9, 0.5, 0.3) (i) 0.5276 0.4838 0.4921 

(ii) 0.3322 0.3520 0.3486 

(iii) 0.2808 0.1750 0.1781 

 

Table S4: Standard deviations of operating characteristics (i-iii) for Ridit, GDL Urn, and 

Bayesian 

(i) S.D. of Proportion of Subjects Assigned to Treatment A 

(ii) S.D. of Proportion of Total Treatment Failures 

(iii) S.D. of Measure of Prognostic Score Imbalance Between Arms  

(pA, pB, pC)  GDL Urn 

With 

Prognostic 

Scoring 

n0=5 

Ridit 

With 

Prognostic 

Scoring 

n0=5 

Stratified 

GDL 

Urn 

n0=5 

Stratified 

Ridit 

 

n0=5 

Bayesian 

With 

Prognostic 

Scoring 

n0=5 
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(0.3, 0.3, 0.3) (i) 0.0497 0.0720 0.0409 0.0703 0.0962 

(ii) 0.0546 0.0565 0.0573 0.0580 0.0571 

(iii) 0.0274 0.0309 0.0491 0.0425 0.0371 

(0.4, 0.3, 0.3) (i) 0.0588 0.0761 0.0472 0.0756 0.1041 

(ii) 0.0584 0.0605 0.0575 0.0593 0.0612 

(iii) 0.0254 0.0302 0.0527 0.0450 0.0370 

(0.5, 0.3, 0.3) (i) 0.0629 0.0775 0.0525 0.0754 0.1151 

(ii) 0.0603 0.0643 0.0606 0.0628 0.0653 

(iii) 0.0266 0.0316 0.0579 0.0464 0.0441 

(0.6, 0.3, 0.3) (i) 0.0754 0.0785 0.0591 0.0813 0.1134 

(ii) 0.0676 0.0628 0.0635 0.0661 0.0697 

(iii) 0.0283 0.0311 0.0597 0.0512 0.0504 

(0.7, 0.3, 0.3) (i) 0.0835 0.0780 0.0652 0.0790 0.1084 

(ii) 0.0710 0.0642 0.0669 0.0646 0.0723 

(iii) 0.0287 0.0324 0.0618 0.0578 0.0740 

(0.8, 0.3, 0.3) (i) 0.0893 0.0788 0.0656 0.0780 0.0909 

(ii) 0.0777 0.0621 0.0683 0.0628 0.0697 

(iii) 0.0341 0.0353 0.0651 0.0586 0.0912 

(0.9, 0.3, 0.3) (i) 0.0896 0.0791 0.0637 0.0750 0.0596 

(ii) 0.0764 0.0599 0.0648 0.0570 0.0536 

(iii) 0.0478 0.0401 0.0667 0.0656 0.0976 

(0.5, 0.4, 0.3) (i) 0.0654 0.0745 0.0519 0.0778 0.1118 

(ii) 0.0613 0.0595 0.0647 0.0615 0.0636 

(iii) 0.0247 0.0307 0.0567 0.0451 0.0419 

(0.6, 0.4, 0.3) (i) 0.0750 0.0774 0.0592 0.0795 0.1199 

(ii) 0.0648 0.0629 0.0628 0.0641 0.0672 

(iii) 0.0258 0.0313 0.0619 0.0488 0.0512 

(0.7, 0.4, 0.3) (i) 0.0852 0.0796 0.0657 0.0777 0.1164 

(ii) 0.0710 0.0631 0.0635 0.0601 0.0715 

(iii) 0.0274 0.0310 0.0646 0.0539 0.0676 

(0.8, 0.4, 0.3) (i) 0.0928 0.0760 0.0721 0.0791 0.1017 

(ii) 0.0742 0.0620 0.0660 0.0626 0.0701 

(iii) 0.0378 0.0340 0.0683 0.0602 0.0845 

(0.9, 0.4, 0.3) (i) 0.0947 0.0766 0.0679 0.0728 0.0692 

(ii) 0.0764 0.0550 0.0613 0.0544 0.0518 

(iii) 0.0451 0.0380 0.0698 0.0658 0.0936 

(0.6, 0.5, 0.3) (i) 0.0780 0.0762 0.0577 0.0784 0.1151 

(ii) 0.0643 0.0623 0.0607 0.0652 0.0639 

(iii) 0.0271 0.0306 0.0642 0.0527 0.0526 

(0.7, 0.5, 0.3) (i) 0.0896 0.0803 0.0698 0.0794 0.1258 

(ii) 0.0670 0.0619 0.0644 0.0652 0.0691 

(iii) 0.0283 0.0323 0.0693 0.0545 0.0613 

(0.8, 0.5, 0.3) (i) 0.0977 0.0753 0.0753 0.0772 0.1156 

(ii) 0.0726 0.0630 0.0630 0.0613 0.0697 

(iii) 0.0298 0.0337 0.0700 0.0606 0.0792 

(0.9, 0.5, 0.3) (i) 0.0964 0.0790 0.0723 0.0764 0.0883 

(ii) 0.0707 0.0540 0.0625 0.0559 0.0574 

(iii) 0.0423 0.0400 0.0710 0.0674 0.0964 
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Table S5: Averages of operating characteristics (i-iii) for Ridit versus GDL Urn with 

increasing delay in knowledge of subject outcomes (delay is measure in terms of number 

of subjects who will be randomized between when a given subject is randomized and  when 

that subject’s treatment outcome is known) 

(i)     Proportion of Subjects Assigned to Treatment A 

(ii)    Proportion of Total Treatment Failures 

(iii)   Measure of Prognostic Score Imbalance Between Arms  

(pA, pB, pC)  GDL 

Urn 

n0=3 

Delay= 

0 

Ridit 

n0=5 

Delay= 

0  

GDL 

Urn 

n0=3 

Delay= 

10 

Ridit 

n0=5 

Delay= 

10 

GDL 

Urn 

n0=3 

Delay= 

25 

Ridit 

n0=5 

Delay= 

25 

(0.3, 0.3, 0.3) (i) 0.3306 0.3356 0.3316 0.3373 0.3326 0.3304 

(ii) 0.6999 0.6973 0.7001 0.7031 0.6999 0.7015 

(iii) 0.2626 0.2520 0.2675 0.2500 0.2742 0.2533 

(0.4, 0.3, 0.3) (i) 0.3799 0.3752 0.3774 0.3709 0.3758 0.3717 

(ii) 0.6606 0.6646 0.6642 0.6649 0.6614 0.6624 

(iii) 0.2665 0.2531 0.2685 0.2520 0.2701 0.2544 

(0.5, 0.3, 0.3) (i) 0.4192 0.4131 0.4163 0.4135 0.4093 0.4069 

(ii) 0.6145 0.6167 0.6180 0.6175 0.6177 0.6160 

(iii) 0.2706 0.2568 0.2717 0.2568 0.2754 0.2571 

(0.6, 0.3, 0.3) (i) 0.4605 0.4587 0.4625 0.4549 0.4571 0.4488 

(ii) 0.5640 0.5618 0.5617 0.5627 0.5624 0.5666 

(iii) 0.2742 0.2628 0.2760 0.2611 0.2787 0.2620 

(0.7, 0.3, 0.3) (i) 0.5122 0.4920 0.5016 0.4936 0.4965 0.4890 

(ii) 0.4954 0.4996 0.5028 0.5014 0.5002 0.5025 

(iii) 0.2889 0.2674 0.2873 0.2685 0.2891 0.2641 

(0.8, 0.3, 0.3) (i) 0.5551 0.5375 0.5479 0.5357 0.5306 0.5275 

(ii) 0.4239 0.4306 0.4272 0.4332 0.4352 0.4376 

(iii) 0.2963 0.2762 0.2923 0.2786 0.2944 0.2760 

(0.9, 0.3, 0.3) (i) 0.5976 0.5798 0.5955 0.5738 0.5769 0.5654 

(ii) 0.3446 0.3514 0.3412 0.3540 0.3524 0.3610 

(iii) 0.3104 0.2876 0.3099 0.2871 0.3096 0.2883 

(0.5, 0.4, 0.3) (i) 0.3976 0.3946 0.3908 0.3905 0.3863 0.3881 

(ii) 0.5881 0.5880 0.5901 0.5896 0.5865 0.5891 

(iii) 0.2698 0.2561 0.2722 0.2544 0.2754 0.2586 

(0.6, 0.4, 0.3) (i) 0.4409 0.4276 0.4408 0.4245 0.4297 0.4266 

(ii) 0.5346 0.5391 0.5411 0.5425 0.5425 0.5377 

(iii) 0.2726 0.2570 0.2758 0.2594 0.2778 0.2595 

(0.7, 0.4, 0.3) (i) 0.4816 0.4730 0.4793 0.4685 0.4743 0.4624 

(ii) 0.4760 0.4824 0.4799 0.4837 0.4864 0.4885 

(iii) 0.2782 0.2643 0.2816 0.2650 0.2812 0.2654 
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(0.8, 0.4, 0.3) (i) 0.5314 0.5140 0.5218 0.5098 0.5100 0.5055 

(ii) 0.4068 0.4163 0.4161 0.4204 0.4200 0.4210 

(iii) 0.2945 0.2722 0.2921 0.2730 0.2893 0.2697 

(0.9, 0.4, 0.3) (i) 0.5756 0.5537 0.5661 0.5517 0.5529 0.5380 

(ii) 0.3309 0.3438 0.3366 0.3472 0.3440 0.3521 

(iii) 0.3025 0.2799 0.3066 0.2822 0.3028 0.2808 

(0.6, 0.5, 0.3) (i) 0.4227 0.4073 0.4096 0.4066 0.4083 0.4021 

(ii) 0.5045 0.5095 0.5074 0.5092 0.5062 0.5132 

(iii) 0.2714 0.2592 0.2725 0.2554 0.2760 0.2581 

(0.7, 0.5, 0.3) (i) 0.4557 0.4470 0.4592 0.4473 0.4529 0.4401 

(ii) 0.4529 0.4559 0.4521 0.4608 0.4530 0.4564 

(iii) 0.2774 0.2654 0.2796 0.2656 0.2856 0.2610 

(0.8, 0.5, 0.3) (i) 0.5050 0.4843 0.5022 0.4862 0.4865 0.4780 

(ii) 0.3880 0.3970 0.3917 0.3971 0.3964 0.3994 

(iii) 0.2931 0.2683 0.2891 0.2687 0.2932 0.2718 

(0.9, 0.5, 0.3) (i) 0.5418 0.5276 0.5344 0.5270 0.5256 0.5129 

(ii) 0.3198 0.3322 0.3235 0.3315 0.3298 0.3351 

(iii) 0.2970 0.2808 0.3021 0.2789 0.2968 0.2801 

 

Table S6: Averages of operating characteristics (i-iii) for different values of 𝜙  

(i)     Proportion of Subjects Assigned to Treatment A 

(ii)    Proportion of Total Treatment Failures 

(iii)   Measure of Prognostic Score Imbalance Between Arms 

(pA, pB, pC)  GDL Urn 

n0=5 

𝜙 =2/3 

GDL Urn 

n0=5 

𝜙 =1/2 

(0.3, 0.3, 0.3) (i) 0.3301 0.3347 

(ii) 0.6991 0.6964 

(iii) 0.1513 0.1809 

(0.4, 0.3, 0.3) (i) 0.3537 0.3628 

(ii) 0.6618 0.6649 

(iii) 0.1499 0.1811 

(0.5, 0.3, 0.3) (i) 0.3834 0.3935 

(ii) 0.6276 0.6183 

(iii) 0.1511 0.1813 

(0.6, 0.3, 0.3) (i) 0.4234 0.4293 

(ii) 0.5739 0.5722 

(iii) 0.1526 0.1851 

(0.7, 0.3, 0.3) (i) 0.4740 0.4825 

(ii) 0.5099 0.5051 

(iii) 0.1557 0.1904 

(0.8, 0.3, 0.3) (i) 0.5354 0.5478 

(ii) 0.4331 0.4250 

(iii) 0.1632 0.1991 
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(0.9, 0.3, 0.3) (i) 0.6278 0.6386 

(ii) 0.3233 0.3164 

(iii) 0.1867 0.2215 

(0.5, 0.4, 0.3) (i) 0.3712 0.3764 

(ii) 0.5944 0.5919 

(iii) 0.1494 0.1800 

(0.6, 0.4, 0.3) (i) 0.4128 0.4172 

(ii) 0.5451 0.5435 

(iii) 0.1505 0.1840 

(0.7, 0.4, 0.3) (i) 0.4562 0.4675 

(ii) 0.4885 0.4843 

(iii) 0.1540 0.1869 

(0.8, 0.4, 0.3) (i) 0.5203 0.5373 

(ii) 0.4146 0.4061 

(iii) 0.1612 0.1976 

(0.9, 0.4, 0.3) (i) 0.6112 0.6276 

(ii) 0.3132 0.3030 

(iii) 0.1799 0.2200 

(0.6, 0.5, 0.3) (i) 0.3984 0.3973 

(ii) 0.5180 0.5124 

(iii) 0.1523 0.1841 

(0.7, 0.5, 0.3) (i) 0.4434 0.4511 

(ii) 0.4597 0.4595 

(iii) 0.1548 0.1871 

(0.8, 0.5, 0.3) (i) 0.5060 0.5123 

(ii) 0.3920 0.3888 

(iii) 0.1617 0.1942 

(0.9, 0.5, 0.3) (i) 0.5927 0.6040 

(ii) 0.2995 0.2931 

(iii) 0.1811 0.2172 

 

 

 

 


