
Automating Language Sample Analysis

Eric Morley

April 19, 2016

3

Acknowledgments
Working on this dissertation, and learning the skills I needed to do so, would not
have been possible without the many people who I’ve been fortunate enough
to have support me along the way. First and foremost I would like to thank
my adviser Brian Roark for his unending support and patience throughout this
process. My other advisers, Jan van Santen, Kyle Goreman, and Joel Tetreault
have also been integral to my success, and I feel lucky to have worked with them.

My life has taken many turns during the long journey from beginning graduate
school to defending this dissertation, with new people coming into my life, and
others leaving it. Throughout this time I’ve depended heavily upon others
for support, and without them I don’t think I would have completed this. So
thank you to my family: Mom, Dad, Andrew, Nana, Pop, and Jenny. To my
friends, who were there when I most needed them: Dan, Trevor and Jen, Sanjaya,
David, Steve, Mike, Matt, Bruckner, Sarah’s C and J, Karan, Everett, Ryan,
and last, but not least, Anna, who I have had the pleasure of collaborating with
on research. Thank you to my DWRT teammates for the camaraderie, pushing
me in workouts, and keeping me sane. Joe and Denise VanLeuven, thank you
for all the warmth you have showed me. I am glad you are still a part of my life.
Thank you to everyone whose path has crossed mine during this time: even if
they didn’t stay intertwined, I’m thankful for the time when they were.

The CSLU community has changed greatly during my time there. Some of
the professors I’ve learned so much from are still there, in particular Alex Kain
and Steven Bedrick. Others, like Richard Sproat, have moved on, usually to
Google. I feel lucky that I was at CSLU when I was, and that I had the chance
to learn from and work with so many talented people. Also included in those
are my fellow graduate students, especially Masoud, Mahsa, Emily, and Ethan.
Finally, thank you to Pat for holding the whole operation together. CSLU has
been so flexible with me: letting me move, first to Michigan, then to New York,
and giving me time off to gain professional experience. This flexibility has been
so valuable to me, so thank you all for affording me it.

The industry experience I have gained during graduate school has provided
motivation, technical skills, and some degree of freedom that have helped me
finish this dissertation. In particular, I’d like to thank Jason Brenier, who has
been, and continues to be, a wonderful mentor. I’d also like to thank some of
the people I’ve had the pleasure of working with over the years: Kunjan, Ken,
Anna, Brant, Ralph, Dave, and all of my colleagues at RedOwl. I’ve learned a
lot from you, and hope to continue to do so in the future.

4

Contents

1 Introduction 9

2 Clinical Background 15
2.1 Assessment of language . 16
2.2 SALT . 18

2.2.1 Elicitation . 20
2.2.2 Transcription . 21
2.2.3 Annotations . 24
2.2.4 Analysis and comparison 31

2.3 Neurodevelopmental disorders . 32
2.3.1 Language disorder and specific language impairment . . . 34
2.3.2 Autism spectrum disorders 36

2.4 Conclusions . 37

3 Data 39
3.1 SALT Corpora . 39

3.1.1 Conv Corpus . 40
3.1.2 ENNI Corpus . 43
3.1.3 Expository Corpus . 46
3.1.4 GillamNT Corpus . 47
3.1.5 NarSSS Corpus . 49
3.1.6 NarSR Corpus . 50
3.1.7 NZConv Corpus . 52
3.1.8 NZPerNar Corpus . 54
3.1.9 NZSR Corpus . 55

3.2 CLSU ADOS Corpus . 57
3.2.1 ADOS . 57
3.2.2 Participants . 59

3.3 Preprocessing of SALT Annotated Corpora 62
3.3.1 Desaltification . 62
3.3.2 Normalization . 65
3.3.3 Partitioning into sets . 66

3.4 Conclusions . 67

5

6 CONTENTS

4 Technical Background 69
4.1 Perceptron algorithm . 70

4.1.1 Example . 72
4.2 Graphs . 73
4.3 Supervised structured prediction: tagging 77

4.3.1 Structured perceptron . 78
4.3.2 Linear chain conditional random fields 80
4.3.3 Max margin Markov networks 82

4.4 Parsing . 84
4.4.1 Constituency parsing . 84
4.4.2 Dependencies and dependency parsing 87
4.4.3 Parsers . 94

4.5 Disfluencies and disfluency detection 94
4.5.1 Switchboard disfluency annotations 95
4.5.2 Automated disfluency detection 98

4.6 Grammar checking . 104
4.6.1 Spoken language . 105
4.6.2 Trainability . 107
4.6.3 Tunability . 110

4.7 Evaluation . 111
4.7.1 Randomized paired-sample test 112

4.8 Conclusions . 113

5 Maze Detection 115
5.1 Background . 116

5.1.1 Annotation guidelines . 116
5.1.2 Utility of maze annotations 117
5.1.3 Inter-annotator agreement 118

5.2 Automating maze detection . 119
5.2.1 Input and output . 120
5.2.2 Evaluation . 120

5.3 Maze Detector . 123
5.4 Corpus-specific and generic models 126

5.4.1 Baseline performance . 126
5.4.2 More general models . 130
5.4.3 Discussion . 137

5.5 Extrinsic evaluation . 138
5.5.1 Corpus-specific models . 139
5.5.2 Generic models . 145
5.5.3 Discussion . 148

5.6 Comparison of SALT corpora . 150
5.6.1 Tokens and types . 151
5.6.2 Maze counts and counts of words in mazes 154
5.6.3 Frequency of N-Grams in Mazes 156

5.7 Conclusions . 159

CONTENTS 7

6 SALT Error Code Detection 163
6.1 Introduction . 163

6.1.1 Scope of error detection 165
6.2 Evaluation . 166

6.2.1 Metrics . 167
6.2.2 Confidence Scores . 168
6.2.3 Interpretation of evaluation 169
6.2.4 Corpora . 170
6.2.5 Setting operating points by manipulating the proportion

of errors in training data 170
6.3 Baseline systems . 171

6.3.1 Microsoft Word . 172
6.3.2 ETS e-rater . 174

6.4 Classifier-based error detection 176
6.4.1 Methods . 176
6.4.2 Results and conclusions 178

6.5 Tagging-based error detection . 179
6.5.1 Methods . 179
6.5.2 Results and Conclusions 180

6.6 Dependency-based error detection 182
6.6.1 Methods . 183
6.6.2 Results . 191
6.6.3 Conclusions . 202

6.7 System combination: tagging- and dependency-based error detectors203
6.7.1 Methods . 203
6.7.2 Results and Conclusions 204

6.8 Random Walk-Based Error Detection 206
6.8.1 Methods . 206
6.8.2 Results . 214
6.8.3 Conclusions . 219

6.9 Error Analysis . 219
6.9.1 Other corpora . 222

6.10 Conclusions . 224

7 The clinical utility of SALT annotations 229
7.1 Predicting scores on structured instruments 229

7.1.1 Prediction . 230
7.1.2 Features . 230
7.1.3 Evaluation . 235
7.1.4 Predicting CCC-2 scores 238
7.1.5 Predicting CELF-4 scores 245

7.2 Using SALT to discriminate between diagnostic pairs 253
7.2.1 Leave-pair-out prediction and evaluation 254
7.2.2 Results . 255

7.3 Conclusions . 258

8 CONTENTS

8 Conclusions 261

A Maze detection experiments 267
A.1 Cross-corpus maze detection experiments 267
A.2 Extrinsic evaluation of maze detection 271

A.2.1 Baseline models . 273
A.2.2 FEDA All model . 284
A.2.3 Age model . 294
A.2.4 Conversational model 299
A.2.5 Narrative model . 302
A.2.6 NZ model . 309
A.2.7 WI model . 313

A Plots of features by age 319
A.1 Baseline features . 320
A.2 Transcript features . 326
A.3 SALT-1 features . 336

Chapter 1

Introduction

Many techniques developed in Natural Language Processing (NLP), a field of

research concerned with using computers to process human languages, have

moved from research labs to consumer products in recent years. Some well-

known products backed by these technologies include the grammar checker in

Microsoft Word, Google translate, and speech-driven digital assistants such as

Apple’s Siri. Natural language processing is also being used by businesses in

various ways, for example in fraud detection, legal investigations, and marketing.

This thesis develops extant and novel techniques to apply NLP to the automation

of language sample analysis.

Language sample analysis (LSA, not to be confused with latent semantic

analysis, which is not discussed in this thesis) is the practice of eliciting, tran-

scribing, and analyzing samples of spoken language. At present, LSA is used for

a variety of purposes, including research into language development and develop-

mental disorders (e.g. autism and language impairments), and less commonly, for

assessing a child’s language, or evaluating the effectiveness of remediative efforts.

LSA is typically used by researchers, and occasionally by practicing speech-

9

10 CHAPTER 1. INTRODUCTION

language pathologists, although tasks such as transcription and annotation may

be performed by trained assistants. The language analyzed typically comes from

children, many of whom are suspected of having developmental disorders that

impair their ability to use language. Although there are various frameworks

for LSA, they all involve transcribing what the child said, and then annotating

the transcripts. Researchers have recently been advocating the use of LSA to

complement structured instruments (essentially tests, see Chapter 2) because

some phenomena, including ones which may be informative for diagnosis, are

hard to capture using structured instruments alone (Tager-Flusberg et al., 2009).

The de facto standard system for LSA is the Systematic Analysis of Language

Transcripts, which is commonly referred to as SALT (Miller and Chapman, 1985).

SALT includes conventions on transcription and annotation. It also includes a

piece of software to compute summary statistics from one’s own transcripts, and

compare these with ones computed from included sets of reference transcripts.

We refer to these sets of reference transcripts as the SALT corpora, and we

investigate the consistency of annotations in the SALT corpora throughout this

thesis. We demonstrate in Chapters 5 and 6 that the annotation standards, along

with the consistency of the annotations themselves, vary widely between different

SALT corpora. The fact that these corpora are not annotated consistently

calls into question how useful they are for comparison. Variable standards and

consistency of annotations are critical issues for researchers and clinicians who

compare their own transcripts to the SALT corpora, whether with the SALT

software or in publications.

LSA presents two particular challenges to clinicians, particularly when com-

pared with structured instruments: it is time consuming, and in practice, it

appears to be difficult to perform consistently.1 In this thesis, we will address
1The creators of SALT, however, insist that it is both quick to perform, and that annotations

are reliable (ex. Miller et al., 2011, chap. 1).

11

both of these issues by introducing trainable, automated systems based on

techniques from NLP that are able to perform two critical steps of LSA: anno-

tating mazes (a simplified version of what are referred to as disfluencies in the

NLP and linguistics literature), and annotating grammatical errors. These two

annotations are illustrated below, with mazes indicated by parentheses, while

the grammatical error annotation, indicating an overregularized past tense form

(‘goed’), is in brackets:

(1.1) (I uh) I (uh) goed [EO] there.

Because the maze and grammatical error detection systems are automated, they

can reduce or eliminate the need for humans to annotate data. Furthermore,

the same system can be applied to multiple sets of transcripts; although these

systems will not annotate the data perfectly, they may be able to do so more

consistently than human annotators in certain cases. A reduction in annotation

variability leads to more reliable annotations, which is a critical step in improving

quality of care and outcomes (Ransom et al., 2005).

Automatically annotating transcripts for LSA may seem like a straightforward

task, similar to others in NLP: after selecting an annotation system, just use

existing techniques to automate its various components. In practice, however,

the annotations used for LSA vary quite substantially between groups, and we

explore many of these differences in this thesis. As a result, every component of

an automated system to annotate transcripts for LSA must be trainable. This

requirement, as well as several other characteristics of the data analyzed in LSA,

prevent existing techniques in grammatical error detection from being used for

LSA. In this thesis we propose and compare several systems for grammatical

error detection, all of which are trainable. In particular, we evaluate systems

based on classifiers, taggers, dependency parsers, and random walks to perform

error detection in Chapter 6.

12 CHAPTER 1. INTRODUCTION

LSA is a widely-known, but rarely used technique, and little is known on

what can and cannot be gleaned from analyzing transcripts with techniques

falling under the LSA umbrella. In this thesis, we address this deficit first by

investigating whether certain features derived from transcripts with manual

LSA-style annotations can be used to predict scores on widely used structured

instruments for language assessment, which, compared to LSA, are straightfor-

ward to administer and evaluate. We also investigate whether these features

can identify the presence of two potentially comorbid developmental disorders:

specific language impairment, and autism. When features derived from manually

annotated transcripts prove useful, we compare their effectiveness to the same

features derived from transcripts annotated using the automated systems we

propose. These investigations can be found in Chapter 7.

The contributions of this thesis are:

1. We adapt an existing system for disfluency detection to maze detection.

We show that the modified system’s performance on maze detection is

comparable to the original system’s performance on disfluency detection.

(Chapter 5)

2. We propose several novel techniques to explore the consistency of maze

annotations in the SALT corpora, and we identify some major inconsis-

tencies. We find that these inconsistencies are severe enough to prevent

us from training a model for maze detection that is appropriate for all

corpora. (Chapter 5)

3. We propose several automated, trainable systems to identify certain SALT

grammatical error codes, specifically those which can be identified by

looking at an utterance in isolation. Some of the systems we propose

outperform existing systems for similar tasks. In particular, we find that

13

two systems, one based on conditional random fields, and another based

on dependency parsing, perform particularly well. (Chapter 6)

4. We identify major inconsistencies in the quality of error code annotations

in the SALT corpora. These inconsistencies include: different corpora using

different sets of error codes; particular error codes being used differently in

different corpora; and a high rate of unannotated errors in certain corpora.

(Chapter 6)

5. We investigate whether features derived from transcripts with manual

SALT annotations can predict scores on structured instruments. When

they are able to do so, we evaluate whether automatically applied SALT

annotations are as informative. We find that features derived from SALT

annotations, whether manually or automatically produced, have some

predictive power. (Chapter 7)

6. We investigate whether features derived from transcripts with manual SALT

annotations can predict the presence of autism or a language impairment.

When they are able to do so, we evaluate whether automatically applied

SALT annotations are as informative. We find that SALT-derived features

are useful for predicting the presence of a language impairment, but not

autism. (Chapter 7)

In short, we highlight some challenges in applying techniques from NLP to

clinical data, and we propose several techniques for addressing these challenges.

The primary challenge that we identify is variable annotation quality: as we

investigate in detail, both mazes and grammatical errors are annotated differently

in different corpora, even though these corpora are ostensibly annotated following

the same standards. A secondary challenge is that systems to automatically

produce SALT maze or error code annotations should be tunable in terms of

14 CHAPTER 1. INTRODUCTION

precision and recall. The systems we propose for maze and error detection are

all trainable, and are therefore not tied to a particular annotation standard, and

they are tunable, thus enabling them to be used for a wide variety of downstream

purposes.

Finally, Table 1.1 contains a list of acronyms and initialisms used in this

thesis.

ADOS autism diagnostic observation schedule
ALI autism with impaired language
ALN autism language ‘normal’ (unimpaired)
ASD autism spectrum disorders
CCC Children’s Communicative Checklist (Bishop and Volkmar, 2003)
CELF clinical evaluation of language fundamentals (Semel et al., 2003, 2004)
CRF conditional random field
LI language impaired
LN language ‘normal’ (unimpaired)
LSA language sample analysis (never latent semantic analysis here)
M3N Maximum-margin Markov network
NLP natural language processing
POS part of speech
SLI specific language impairment
TD typically developing
VIQ verbal intelligence quotient (IQ)

Table 1.1: Acronyms and initialisms used in this thesis

Chapter 2

Clinical Background

This thesis focuses on extending and developing techniques from Natural Lan-

guage Processing to automate components of language sample analysis (LSA),

which is a collection of techniques designed to aid in the identification of devel-

opmental disorders. LSA stands in contrast to structured instruments, which are

easy to use and administer, but potentially limited in what sorts of linguistic

phenomena they can elicit. LSA is also used in research characterizing the deficits

in communication caused by various disorders. In this chapter we first present

an overview of how language is assessed in a clinical setting. We then give a

detailed overview of the SALT annotation system, which is the de facto standard

annotation system for LSA, and which we focus on automating components of in

Chapters 5 and 6. Finally, we turn our attention to two neurodevelopmental dis-

orders that involve impaired communication: language impairments and autism

spectrum disorders (ASD). These disorders are of particular interest to us both

because of the ways in which they impair communication, and also because we

have a corpus of manually transcribed and annotated transcripts collected from

children with confirmed diagnoses of ASD and language impairments (which we

15

16 CHAPTER 2. CLINICAL BACKGROUND

present in detail in Section 3.2).

2.1 Assessment of language

Assessment of a child’s language is typically performed either for diagnostic

purposes or for evaluating a child’s linguistic skills longitudinally, for example to

see whether a particular intervention has been effective. There are two broad

categories of tools for assessing a child’s language, which we discuss in turn:

structured instruments, and LSA.. Both have advantages and disadvantages,

although as we discuss below, structured instruments suffer from certain inherent

disadvantages. On the other hand, some issues with LSA can be addressed with

technology, and remaining ones may be addressable with more research.

Structured instruments elicit brief, easy to score, responses to a sequence of

items. For example, the CELF-4 includes nineteen multi-item sub-tests with

tasks such as object naming, word definition, reciting the days of the week, or

repeating sentences (Semel et al., 2003).

Structured instruments for language assessment are widely used, and two

major benefits of them are that they are reliable, and their results are easy

to interpret. Nevertheless, their applicability is rather limited. First, such

instruments are typically not applicable to populations that use non-standard

dialects or second-language learners. For example, Ellsworth and Fuse (2008)

noted that the ‘formulating sentences’ section of the CELF-4 is particularly

inappropriate for speakers of African American Vernacular English (commonly

referred to as AAVE). During this task, the child is presented with a picture, and

the examiner gives the child a word to use in a sentence that she produces. The

sentence is then scored as incorrect, partially correct, or correct. Some examples

of sentences that are grammatical in AAVE, but which are deemed incorrect in

the CELF-4 include:

2.1. ASSESSMENT OF LANGUAGE 17

1. There is children in the living room.

2. They playing a video game.

Even when used with their intended population, structured instruments

cannot capture all aspects of language. For example, they do not capture

pragmatic abilities or repetitiveness in conversation, both of which are relevant

to ASD, because conversations cannot follow an exact script. As a result, there is

a growing consensus among clinicians that LSA, which involves transcribing and

analyzing samples of natural language, should be used to augment structured

instruments. For example, Tager-Flusberg et al. (2009) recommend using LSA to

analyze a child’s phonological, grammatical and lexical abilities, as well as their

pragmatic and communication skills. In particular, they note that pragmatic and

communication skills are quite difficult to assess using structured instruments.

They also note that transcription and coding standards need to be tailored to the

phenomena of interest, and this is generally possible due to the flexible nature

of systems for LSA such as SALT (described below in Section 2.2).

In practice, clinicians use semi-structured instruments, which provide stan-

dardized situations and activities to elicit language, to collect language samples

for analysis. For example, the Autism Diagnostic Observation Schedule (Lord

et al., 2002) (discussed in Section 3.2.1) includes a task in which the child tells a

story based on a picture book without any words, and a conversation about the

child’s friends. As far as we are aware, LSA is not performed with transcripts of

arbitrary conversations or speech collected from a child.

Structured instruments may not capture as many aspects of language as

semi-structured instruments and LSA, but the power of LSA comes at a cost: it is

expensive to carry out, and interpreting the results of LSA is far more complicated

than interpreting those of structured instruments. First, LSA must be carried

out by trained annotators. Even optimistic assessments arguing that LSA is not

18 CHAPTER 2. CLINICAL BACKGROUND

expensive still estimate approximately five minutes of transcription and analysis

per minute of speech (Miller et al., 2011, p 7) under ideal circumstances (high

quality recording, familiar circumstances, intelligible and fluent speech). Second,

as we illustrate in Chapters 5 and 6, although there are corpora of annotated

transcripts available for comparison, annotation standards vary widely. As a

result, the validity of many metrics computed from these corpora as references or

norms for comparison is suspect. Third, only some of the metrics used in LSA are

well established, for example mean length of utterance in morphemes (MLUM)

(see Gorman et al., 2015, for an overview). Other metrics, for example those

related to mazes (similar to disfluencies in the linguistics and NLP literature,

discussed in Section 2.2.3), are known to be informative, but annotation standards

are not universal. Finally, the utility of error codes, and how to compare them

across speakers, remains an open question, but one which we begin to address in

Chapter 7.

2.2 SALT

The Systematic Analysis of Language Transcripts (SALT) system for LSA con-

sists of four components, each of which we discuss in this chapter: 1) elicitation

of language samples (Section 2.2.1), 2) transcription conventions (Section 2.2.2),

3) annotation conventions (Section 2.2.3), and 4) software analysis to analyze

manually annotated transcripts, and compare them to databases of other tran-

scripts (Section 2.2.4). Throughout this thesis, when we refer to ‘standard’ SALT

annotations and conventions, we simply mean those described in the reference

manual (Miller et al., 2011), or in the online training material (SALT Software,

2014d); all annotations and conventions not found in either of these sources will

be referred to as ‘non-standard’.

The SALT manual outlines several objectives for eliciting the optimum spoken

2.2. SALT 19

language sample (Miller et al., 2011, pp. 12-13):

1. Provide maximum information about the speaker’s language

• Vocabulary, syntax, semantics, and discourse

• Structure and organization

• Fluency, efficiency, and accuracy

2. Motivate the speaker to do their best talking

• Age appropriate

• Attentive listener or conversational partner

3. Identify speaker’s oral language strengths and weaknesses within:

• Community

• School

• Workplace

• Family

4. For school-aged children, clearly demonstrate the student’s difficulties with

functional language regarding:

• Classroom curriculum

• State-wide oral language standards

• Social language use

5. Optimize opportunity to interpret results

• Follow the relevant elicitation protocol

• Adhere to SALT transcription conventions

20 CHAPTER 2. CLINICAL BACKGROUND

• Where possible, compare performance to typical speakers (SALT

databases).

In this thesis, we distinguish between transcription and annotation, although

in the SALT guidelines these tasks are referred to together as ‘transcription’. Here,

we use transcription to mean the act of writing down the child and examiner’s

speech, while annotation refers to the application of maze annotations, bound

morpheme annotations, and grammatical error codes, none of which are standard

in written language. Although most of the criteria above concern the elicitation

step, we are primarily concerned with annotation. We include background on

elicitation and transcription because we will use the results of these processes,

i.e. the transcript, throughout the thesis.

2.2.1 Elicitation

SALT does not place any restrictions on the elicitation of language samples,

or how one goes about collecting a language sample from a child. The SALT

manual does, however, provide an overview of some relevant considerations.

One major consideration is the task used to elicit language. The tasks used

to elicit the SALT corpora are: conversation while playing (with toys or not);

ordinary conversation; narrative tasks, which involve telling or retelling a story;

and expository tasks, in which one presents a subject, for example describing

how to play a favorite game. A related consideration is whether the task itself

is appropriate for that child. For example, an expository task would almost

certainly be too complicated for a 5 year old. Other considerations include

how much language needs to be elicited, and whether there are comparable

transcripts in the SALT corpora, should one wish to compare summary statistics

from a transcript to the reference ones. We refer the reader to Chapter 2 of the

SALT manual (Miller et al., 2011) and Rice et al. (2010) for more information on

2.2. SALT 21

elicitation. Nevertheless, elicitation is somewhat peripheral to our investigations,

as we do not perform any ourselves.

2.2.2 Transcription

Transcription is the process of converting speech into text. In the case of SALT,

it is critical to establish rigorous conventions for transcription because the

transcripts are eventually analyzed quantitatively (see Section 2.2.4).

Words

In general, the SALT guidelines specify that words should be separated by spaces,

but the spelling conventions themselves are left to the researcher. The guidelines

note the importance of following the same spelling conventions in all transcripts.

This is particularly important because the SALT software counts the number of

word types, and variable spelling can inflate the word type count. For example,

if the word three is transcribed both as ‘three’ and ‘twee’, presumably to reflect

pronunciation, it will be counted as two tokens, which may not be appropriate.

Partial words are indicated by ‘*’, although the SALT guidelines give no in-

structions on how to distinguish partial words from non-standard pronunciations,

for example:

(1) C I have a po*.

E Potato?

The SALT software treats any string of letters delimited by spaces as a

word. This can lead to inflated word and morpheme counts in some cases. For

example, “I read The Chronicles of Narnia” has twice as many words as “I read

Lolita”, but this is simply due to the fact that one book title is longer than

the other. The SALT guidelines instruct transcribers to join certain phrases

words with underscores to count them as single words to avoid inflated word and

22 CHAPTER 2. CLINICAL BACKGROUND

morpheme counts. In particular, the guidelines specify that proper names, titles,

and repeated words or phrases should be joined, for example:

(2) C The_chronicles_of_Narnia.

(3) C Qaboos_bin_Said_Al_Said_of_Oman.

SALT marks single unintelligible words with X, unintelligible segments of

unspecified length with XX, and unintelligible utterances with XXX:

(4) C She took the X to the park.

(5) C We XX dog.

Sound effects are indicated with ‘%’. The same convention is also used to mark

“idiosyncratic forms”, which the SALT manual defines as “immature productions

which are consistent in reference to an object, person, or situation.” (Miller et al.,

2011, p 289):

(6) C The dog went %woof_woof.

(7) C I want a %coopa. NB: ‘coopa’ is an idiosyncratic form that means

‘cookie’

Utterances

SALT requires transcribers to segment speech into c-units, each of which is “an

independent clause with its modifiers” (Loban, 1976). In other words, a c-unit

is an independent clause and all subordinate clauses. Utterances are written

one per line, and each utterance is preceded by a single character indicating the

speaker (C for child, E for examiner). For example:

(8) C I saw them when I left the house.

(9) C I do/n’t know where they went.

2.2. SALT 23

Independent clauses linked with coordinating conjunctions (including ‘so’ in

some cases) are counted as different C-units:

(10) C The frog was sit/ing on a lily pad.

(11) C And then it jumped in.

Yes/no responses are counted as single C-units:

(12) E Is that the Spanish teacher?

C No.

C That/’s the Science teacher.

Certain phrases, which SALT refers to as ‘tags’ (in bold below), are not

counted as distinct C-units:

(13) C They miss/ed the bus, did/n’t they?

(14) C He’s gonna live with his dad, I guess.

If a C-unit contains a quote, all C-units within the quote after the first, are

treated as separate C-units:

(15) C And he said “I/’m ready”.

C “I want to go to the store now”.

Finally, every utterance must end with one of the seven punctuation marks

shown in Table 2.1. SALT does not provide other guidelines on punctuation

use within utterances, although typically only commas and quotation marks are

used.

We note that there are certain aspects of SALT transcription that are not

relevant to this thesis, for example transcribing pauses and non-speech actions

(ex. a child pointing to something). For more details on these, we refer the

interested reader to the SALT manual and the SALT online training materials.

24 CHAPTER 2. CLINICAL BACKGROUND

Mark Description Example
. Statement/comment; C He left.

not for abbreviations
? Question C Where is she?
! Surprise/exclamation C There it is!
~ Intonation prompt E And then you go to ~
ˆ Interrupted utterance E What isˆ

C A dog!
> Abandoned utterance C I was just >

Table 2.1: Utterance-final punctuation used in SALT

Speech is segmented into c-units in other corpora as well. The CHILDES

style manual (MacWhinney, 2015), which provides the guidelines for annotating

the eponymous collection of child’s speech and language corpora, prescribes

that utterances be split into c-units.1 C-units are a sensible way of segmenting

utterances in the CHILDES corpus, and one major reason for this is that c-

units are particularly useful for computing informative mean length of utterance

values. Nevertheless, c-units are not universal: the Switchboard corpus of

telephone conversations between adults is typically segmented into conversational

turns (Wheatley et al., 1995), although some have explored using alternative

forms of utterance segmentation. For example, Deshmukh et al. (1998) explored

using more acoustic cues to re-segment the Switchboard corpus to improve the

performance of an acoustic model for speech recognition.

2.2.3 Annotations

SALT contains three broad categories of annotations: ones to delimit bound

morphemes; mazes, which are typically referred to as disfluencies in the NLP
1The CHILDES manual claims that a c-unit “is defined as a main clause along with its

dependent (subordinate or coordinate) clauses” (MacWhinney, 2015, p 57), and further specifies
that “utterances [in CHILDES] should not include multiple main clauses”, implying that they
are not using standard c-units. In fact, the definition used in CHILDES, in which coordinate
clauses are separate c-units, is no different from the the standard c-unit Loban (see 1970, p 9).

2.2. SALT 25

literature; and error codes, which are used to identify, and optionally classify,

grammatical errors. Unlike morphological and maze annotations, there are some

error codes used in the SALT corpora (and the CSLU ADOS corpus) that are

not described in the SALT manual or online training materials. Again, we refer

to these codes as non-standard, and those codes that are included in the official

SALT resources as standard error codes.

SALT is not the only system for annotating disfluent speech, grammatical

errors, or morphemes. In particular, the CHAT annotation guidelines (MacWhin-

ney, 2015), which are used to annotate the CHILDES corpora of children’s speech

and language, provide annotations for all three of these categories. Interestingly,

one of the SALT corpora, namely ENNI, was originally annotated with CHAT

annotations, and then these were converted to SALT annotations. As noted

below, the CHAT annotation guidelines are more thorough than SALT ones.

In Chapters 5 and 6 we find that the quality of both the maze and error code

annotations in the ENNI corpus is higher than in the other SALT corpora. It

is quite possible that this is due to its having been annotated originally with

CHAT, but since it is the only such corpus we cannot say so conclusively.

Morphological annotations

SALT prescribes the annotation of certain inflectional morphemes and clitics, all

of which are shown in Table 2.2. These annotations are all delimited by a slash

‘/’, with the dictionary form of the root word to the left of the slash, and the

morpheme or clitic code to the right (ex. babies would be annotated as baby/s,

not babie/s). In all cases, the bound morpheme must be visible in the surface

form (ex. plural -s in dogs, but not in mice), and therefore irregular inflections

do not receive any morphological annotations in SALT.

The morphemes annotated following SALT conventions are all visible in

surface forms, which simplifies morphological annotations, particularly compared

26 CHAPTER 2. CLINICAL BACKGROUND

Morpheme An-
nota-
tion

Notes Example

Noun
plural -s

/s Not marked on words
representing single entity

dogs ! dog/s

pants ! pants

mice ! mice
Possessive
-’s

/z Not marked on possessive
pronouns

dog’s ! dog/z

hers ! hers
Possessive
plural -s’

/s/z babies’ ! baby/s/z

Past tense
-ed

/ed Only on main verbs, not past
participles

cried ! cry/ed

is closed ! closed
3rd person
singular -s

/3s Irregular forms are not
annotated

plays ! play/3s

does ! does
Progressive
-ing

/ing Only for progressive
construction

is cooking ! cook/ing

went jogging ! jogging
Negative
clitic -n’t

/n’t
or /’t

Irregular forms (typically
involving vowel changes) are
not annotated

doesn’t ! does/n’t

won’t ! won’t

NB: can’t ! can/’t
Contracted
‘be’

/’s,
/’m,
/’re

we’re ! we/’re

Contracted
forms of
‘will’,
‘would’,
‘have’

/’ll,
/’d,
/’ve

she’ll ! she/’ll

‘Non-
standard’
contrac-
tions

/h’s,
/d’s,
/d’d,
/’us

“the SALT database samples
were not coded for these
non-standard contractions”
(SALT Software, 2014b)

It’s ! it/h’s been

What’s ! What/d’s he
do?

What’d ! What/d’d he
do?

Let’s ! Let/’us go.

Table 2.2: SALT Morpheme Annotations

2.2. SALT 27

to the ones used in CHAT. Compared to SALT, CHAT distinguishes between far

more morphemes: in addition to all of the bound morphemes and clitics included

in SALT, CHAT also prescribes the annotation of adjective suffixes (ex. -er, -est),

participial suffixes (-en, -ing), derivational affixes (un-, -ly, -er, over-, pro-, etc.)

and others (MacWhinney, 2015, pp 114-115). CHAT also has conventions for

annotating irregular inflections, which is explicitly missing from SALT: mouse is

coded with a plural annotation in CHAT, and similarly ‘was’ is to be annotated

with both past tense and first-or-third-person-singular annotations. In SALT,

neither of these words would receive any morphological annotations.

Maze annotations

The SALT manual defines mazes as “filled pauses, false starts, repetitions, and

reformulations” (Miller et al., 2011, p 288). More information about each of these

categories is given in the online training material from SALT Software, specifically

in Course 1304. It is critical to note that none of the SALT materials provides a

definition of any of the constituents of mazes, for example reformulations, nor

do they reference a more rigorous definition of any of them. Partial words are

always included in mazes except for when they occur at the end of an utterance.

Finally, all contiguous spans of words in mazes are annotated with a single set of

parentheses. Chapter 5 deals extensively with mazes, including detecting them

automatically, and the quality of maze annotations in the SALT corpora.

Repetitions and Revisions The online SALT training course states that any

part of an utterance that is repeated or revised should be annotated as a maze.

Annotators are instructed to consider the earlier instances of repeated words as

mazes. In terms of the Switchboard disfluency annotations (Meteer et al., 1995,

p 24) (and described in Section 4.5.1), maze annotations capture reparanda and

interregna, but not repairs or interruption points. Here are examples of properly

28 CHAPTER 2. CLINICAL BACKGROUND

annotated revisions and repetitions (taken from SALT Software (2014b)):

(16) C And (you you) you can come.

(17) C (And it almost and it) and it almost took her.

(18) C (That/’s) this is the one.

Filled Pauses SALT provides a fixed list of filled pauses: ah, eh, er, hm,

hmm, uh, um. Words can be added to this list manually so that they are always

identified as a filled pause when they occur inside a maze, and individual tokens

can optionally be marked with [FP] to indicate that it is being used as a filled

pause, as in the utterance (from SALT Software 2014b):

(19) C And then (he like[FP]) he said he was (like[FP]) sorry.

Filled pauses must be included within a maze unless it is “spoken as an affir-

mation, negation or interrogation” (SALT Software, 2014b). This is illustrated

in the following example (from SALT Software 2014b), in which the examiner

says ‘um’ to encourage the child to continue, or presumably as what the online

materials refer to as an ‘interrogation’:

(20) C We bake/ed cookie/s.

E Um.

C Then we ate all of them.

The SALT annotations are far simpler than the Switchboard annotations

(discussed in Section 4.5.1), which distinguish between filled pauses (indicated

with {F . . . }), explicit editing terms ({E . . . }) among other non-sentence

elements, and revisions and restarts. All of these distinctions are collapsed in

SALT maze annotations.

2.2. SALT 29

Stuttering in the middle of a word Stuttering in the middle of a word is

delimited with underscores, with the repeated material included as partial words.

The material included as partial words must always be annotated as within a

maze; the rest of the word may or may not be in a maze, depending upon the

context. For example (from SALT Software 2014b):

(21) C He ate a green ap_ (p* p*) _ple.

(22) C He ate (an ap_ p* p* _ple) a green apple.

As discussed in Section 4.5, the Switchboard corpus uses a much richer

system of annotations for difluencies, which are quite similar to mazes, although

much more rigorously defined. The CHAT manual also includes guidelines for

annotating disfluencies (MacWhinney, 2015, pp 73-75). These guidelines are more

thorough than the cursory ones included in SALT, and the annotation system

itself is far more complicated, distinguishing between repetitions, ‘retracing’,

‘multiple retracings’, ‘reformulations’, and other sorts of disfluencies. In sum,

the SALT guidelines provide the simplest schema for annotating disfluent speech.

As we shall see in Chapter 5, however, even this simple schema is not applied

consistently by different research groups, suggesting that either quality control

may be an issue, or that the guidelines themselves should be made more rigorous.

Error codes

In no circumstances is the language transcribed in SALT transcripts ‘corrected’:

grammatical errors are written as they are produced. The SALT materials

provide suggested error codes to annotate grammatical errors. We present the

set of error codes included in the SALT online training material SALT Software

(2014b) in Table 2.3, along with examples of how they are used. For consistency

with the other error codes, we represent the omitted morpheme and word errors

with [OM] and [OW], respectively throughout this thesis. Unlike the ‘*’ notation,

30 CHAPTER 2. CLINICAL BACKGROUND

Code Explanation Examples
[EO:_] Inflectional overgeneralization; includes

correction
C He falled [EO:fell].

[EU] Utterance level errors; also replaces >2
omission/[EW] errors

C And they came to stopped. [EU]

[EW:_] Word-level error; may include correction C She is a [EW:an] athlete.
He is a [EW] sleep/ing.

/* Omitted morpheme C The car go/*3s fast.
* Omitted word C Give it *to me.

Table 2.3: Error codes in SALT Software (2014b)

but in line with the other SALT error codes, our notation does not require

annotators to posit a correction.

It is important to note that adding error codes to a transcript is not a

requirement for SALT transcription, and thus error codes are not present in

every valid SALT-annotated transcript. For example, the GillamNT corpus,

described in Section 3.1.4 has only four error codes in the entire corpus.

The set of error codes in Table 2.3 is by no means the definitive set of error

codes: researchers may elect to use only a subset of these, or to create their

own error codes. For example, the CSLU ADOS corpus, described in Section

3.2 contains the following non-standard error codes: [EC] for ‘inappropriate

response’ (‘Do you like ice cream?’ ‘Fight [EC]’), [EX] for extraneous word (‘I

showed the [EX] him’), and [EP] for pronominal errors (‘Him [EP] left.’).

The most relevant alternative schema for coding grammatical errors is the

one described in the CHAT manual (MacWhinney, 2015, pp 104-109) as it is

the only one of which we are aware that was designed for errors found in spoken

language, as opposed to written language. The CHAT manual defines codes

that capture errors at many different levels of language, including phonological,

morphological, semantic, and utterance-level errors. Furthermore, the CHAT

2.2. SALT 31

error codes are far more specific than the SALT error codes. For example, rather

than using a generic word-level error code ([EW]), CHAT distinguishes between

case errors (‘I saw he’), superfluous morphemes (‘ranned’ for ‘ran’ or ‘going’ for

‘go’), and otiose plural morphemes (‘kniveses’) among many others. Another

major difference between the CHAT and SALT standards for error codes is that

users of CHILDES are not encouraged to create new error codes, while users of

SALT are, should the need arise. From a computational perspective, the CHAT

standard would appear to be far preferable to SALT: the errors are more specific

and better defined, which in turn should make them easier to learn. Although

we do not investigate CHAT-annotated data in this thesis, future work should

investigate how effectively CHAT error codes can be automated, particularly in

comparison to SALT error codes.2

2.2.4 Analysis and comparison

The SALT system for LSA includes software can be used to analyze a transcript

by computing various summary statistics. These summary statistics are found

by counting occurrences in manually annotated SALT transcripts. The SALT

software can also select a reference sample of transcripts from the SALT corpora,

and then derive these same summary statistics so that the transcript of interest

can be compared to this reference. These samples can be selected using various

criteria, including task, age, gender, and grade level. Here we provide a brief

overview of some of the statistics computed by the SALT software. For more

details we refer the reader to Miller et al. (2011). We do not reference the SALT

software elsewhere in this thesis, but we do note that the variable standards and

quality of annotations (in particular maze and error code annotations) in the
2We note that the ENNI corpus was originally annotated following the CHAT standards,

but we only consider the SALT-annotated version here. In Chapter 6 we find that the quality
of the error code annotations in the ENNI corpus is substantially higher than those in any
of the other SALT corpora. Perhaps this could be a result of it originally being annotated
following the more thorough CHAT standards.

32 CHAPTER 2. CLINICAL BACKGROUND

SALT corpora undoubtedly affect these reference statistics.

The reference statistics computed by the SALT software that are relevant to

this thesis are:

• Transcript length in utterances and words

• Mean length of utterance (MLU) in words and morphemes (from morpho-

logical annotations described in Section 2.2.3

• Token and type count, type-token ratio

• Percentage of intelligible utterances (those excluding X, XX and XXX

tokens)

• Maze statistics: utterances with mazes, number of mazes, number of words

in mazes, percentage of all words in mazes

• Error statistics: omitted words and morphemes, word-level error codes,

utterance-level error codes

For the transcript of interest, the SALT software simply computes a raw

count or ratio. If the transcript is compared to transcripts from a reference

SALT corpus, then for each of the reference statistics above, the software reports

the mean, minimum, maximum, and standard deviation, taken over the selected

transcripts in the SALT corpus. We now turn our attention to the disorders that

impair language, as LSA in general, and SALT in particular, is not simply a

task in NLP, but rather a tool for diagnosing and characterizing these disorders.

2.3 Neurodevelopmental disorders

The DSM-V describes neurodevelopmental disorders as “[manifesting] early in

development, often before the child enters grade school, and [being characterized]

2.3. NEURODEVELOPMENTAL DISORDERS 33

by developmental deficits that produce impairments of personal, social, academic,

or occupational functioning.” (American Psychiatric Association, 2013, p 31).

Many neurodevelopmental disorders involve impaired communication, although

the nature of these impairments varies widely. To illustrate, pragmatic commu-

nication disorder involves difficulties in the social use of language (and nonverbal

communication), such as following conventions in greeting or turn-taking (Amer-

ican Psychiatric Association, 2013, p 47), while childhood-onset fluency disorder

(commonly referred to as “stuttering”) involves impaired speech production, but

not social difficulties. Neurodevelopmental disorders are frequently comorbid,

meaning that a child may often have symptoms of more than one of them. For

example, many individuals with an autism spectrum disorder also have impaired

language. Finally, diagnosing neurodevelopmental disorders accurately and at an

early stage is critical, as appropriate early intervention tends to be more effective

than later intervention for various neurodevelopmental disorders, including both

language impairments (Gillon, 2000, 2002) and ASD (e.g. Rogers, 1998; Lovaas

and Smith, 2003; Eldevik et al., 2006). In this thesis, we are particularly inter-

ested in two neurodevelopmental disorders, namely specific language impairment

and ASD, because they both impair language, and because we have a corpus of

transcripts of spoken language collected from children with confirmed diagnoses

of both of these disorders (the CSLU ADOS corpus, described in Section 3.2).

We note that children who do not have any sort of neurodevelopmental

disorder are described as ‘typically developing’ (TD). The SALT and CSLU

ADOS corpora have various criteria for determining which children are TD, as

described in Chapter 3.

34 CHAPTER 2. CLINICAL BACKGROUND

1. Persistent difficulties in the acquisition and use of language across modalities
(i.e., spoken, written, sign language, or other) due to deficits in comprehension
or production that include the following:

(a) Reduced vocabulary (word knowledge and use).

(b) Limited sentence structure (ability to put words and word endings together
to form sentences based on the rules of grammar and morphology).

(c) Impairments in discourse (ability to use vocabulary and connect sentences
to explain or describe a topic or series of events or have a conversation).

2. Language abilities are substantially and quantifiably below those expected for age,
resulting in functional limitations in effective communication, social participation,
academic achievement, or occupational performance, individually or in any
combination.

3. Onset of symptoms is in the early developmental period.

4. The difficulties are not attributable to hearing or other sensory impairment,
motor dysfunction, or another medical or neurological condition and are not
better explained by intellectual disability (intellectual developmental disorder)
or global developmental delay.

Table 2.4: Diagnostic criteria for a language disorder taken from American
Psychiatric Association (2013, p 42)

2.3.1 Language disorder and specific language impairment

The DSM-V (American Psychiatric Association, 2013) lists four major criteria

involved in the diagnosis of a language disorder, and they are outlined in Table

2.4. We are particularly interested in specific language impairment (SLI), which

can be considered a particular type of language disorder. SLI has received a

great deal of attention in research, but it is not included in the DSM-V for a

few reasons, including a lack of consensus on the reliability and robustness of

the diagnosis itself. For example, nonverbal IQ is required to make a diagnosis

of SLI, but even if formal testing is available, it is not necessarily appropriate:

culturally appropriate tests are not available for speakers of nonstandard dialects

or learners of English as a second language, thus excluding many children from

a potential diagnosis of SLI (American Speech-Language-Hearing Association,

2.3. NEURODEVELOPMENTAL DISORDERS 35

2012).

Although SLI is not included as such in the DSM-V, it is typically diagnosed

in a similar manner to a language disorder by clinicians and researchers using

the following criteria (see ex. Tomblin et al., 1997; Hill et al., 2015):

1. Nonverbal or performance IQ above a minimum level (typically 80 or 85)

2. Concurrent standard language test score at least a certain amount below

the mean (typically 1.0 or 1.5 standard deviations)

3. No physical condition that would account for a communication deficit (ex.

sensory or hearing loss, cleft palate, brain lesion)

4. No metabolic, genetic, or neurological condition that would account for a

communication deficit (ex. an autism spectrum disorder)

Most research involving individuals with SLI tends to exclude speakers of non-

standard dialects and second language learners, thereby addressing (and sup-

porting) the ASHA’s criticism of the SLI diagnosis. Even though these criteria

are quite straightforward, it can be difficult to disentangle language impairments

from comorbid disorders, for example deficits in attention, motor functioning, or

learning ability. Goorhuis-Brouwer and Wijnberg-Williams (1996) found that

these complicating factors led them to revise the diagnosis of 75% of children in

a study involving 319 children diagnosed with SLI.

Individuals with SLI suffer from a wide variety of linguistic deficits. Some

of the most salient of these deficits are morphological, for example difficulties

with tense marking (Eadie et al., 2002; Leonard et al., 1997), subject-verb agree-

ment (Leonard et al., 1997), and pronominal case (Charest and Leonard, 2004),

or frequently omitting auxiliary verbs (Grela and Leonard, 2000). Clifford et al.

(1995) found that children with SLI were able to form a coherent narrative, with

events organized in the correct sequence, suggesting that SLI impacts production

36 CHAPTER 2. CLINICAL BACKGROUND

of language, as opposed to other processes, for example social knowledge. For a

thorough review of research characterizing the linguistic deficits observed with

SLI, we refer the reader to Leonard (2014), in particular Part II, Chapter 3.

2.3.2 Autism spectrum disorders

Autism spectrum disorders (ASD) encompass a wide range of disorders that share

a few common features, most notably impaired social communication and inter-

action, and restricted or repetitive interests, behaviors or activities (American

Psychiatric Association, 2013). These symptoms vary widely in severity across

individuals with autism. For example, social communication or interaction can be

mildly impaired, as when an individual has difficulty initiating social interactions

and carrying a conversation, but is able to speak in complete sentences. On

the other hand, social interaction can be severely impaired, with the individual

only responding to others with only a few intelligible words, and only when

addressed directly. Similarly, the severity of restricted or repetitive interests can

manifest itself mildly, as when an individual has difficulties switching between

activities, or severely, as when repetitive behaviors such as finger flicking or

hand flapping interfere with all activities. In this thesis we focus on the verbal

communication deficits that are indicative of autism, and we refer the reader

to the DSM-V (American Psychiatric Association, 2013) for a more thorough

overview of autism spectrum disorders, including its diagnosis.

Autism can affect language in a variety of ways, although there is a great

deal of variation between individuals. Two linguistic impairments characteristic

of autism are echolalia, repeating words or phrases (Tager-Flusberg et al., 2005,

2009), and neologisms—novel words (ex. ‘hana rra’ to mean ‘good’) (Volden

and Lord, 1991). Pragmatic deficits are also common in individuals with

autism (Cromer, 1981; Tager-Flusberg, 1985). Individuals with autism may

2.4. CONCLUSIONS 37

also have difficulties with receptive language (Tager-Flusberg, 1981), possibly

as a result of social deficits (Lord, 1985). Difficulties with prosody, both ex-

pressive (Shriberg et al., 2001) and receptive (Koning and Magill-Evans, 2001),

are also present among individuals with autism. Finally, although there are

individuals with autism who do not evidence grammatical impairments, the

majority do (Kjelgaard and Tager-Flusberg, 2001). These are often similar in

many ways to difficulties typical of specific language impairment, involving, for

example, difficulty with complicated syntax, and morphology, in particular the

past tense marker (-ed) (Roberts et al., 2004).

2.4 Conclusions

We have given a brief comparison of two ways of assessing language: structured

instruments and LSA, along with an overview of the de facto standard tool for

LSA, which is SALT. We have described the ways in which two neurodevelopmen-

tal disorders, namely SLI and ASD, can impair communication. Even though

structured instruments are key to identifying SLI and language impairments in

children with ASD, they are not effective for assessing all aspects of language.

Furthermore, structured instruments elicit language in artificially simple settings,

for example by asking children to list words, rather than in complex linguistic

interactions such as a conversation. As a result, they provide a somewhat limited

view of a child’s language. On the other hand, even though LSA may be able to

provide a richer view of a child’s linguistic competence, it is more expensive to

carry out than simply using structured instruments.

In Chapters 5 and 6, we will explore techniques to automate two of the

key annotations in SALT, namely mazes and error codes. This work has the

potential to expedite LSA. Less promisingly, our experiments in automating the

application of these annotations also reveals weaknesses in the SALT guidelines,

38 CHAPTER 2. CLINICAL BACKGROUND

and severe inconsistencies in the quality of annotations on the SALT corpora.

Finally, in Chapter 7, we perform preliminary experiments to see just how useful

SALT-annotated transcripts are for identifying language impairments and ASD,

and whether they can be used to predict a child’s score on structured instruments

that assess linguistic ability.

Chapter 3

Data

This chapter provides an overview of the data we use in our experiments. We

first present the SALT Corpora, which are included with the SALT software,

and referred to as ‘reference databases’ in the SALT manual (Miller et al., 2011).

We use the SALT corpora in our experiments on maze and SALT error code

detection, presented in Chapters 5 and 6, respectively. Next we give an overview

of the CSLU ADOS corpus, which we use in experiments predicting scores

on structured instruments and discriminating between different diagnoses in

Chapter 7. Finally, we discuss how these transcripts are processed for various

experiments.

3.1 SALT Corpora

The SALT software includes nine reference databases, which we will refer to

collectively as the SALT corpora. Table 3.1 shows where each was collected,

the age ranges of the speakers, and the size of each corpus both in terms of

transcripts and utterances. Note that only utterances spoken by the child are

counted, as we throw out all others. One group of corpora comes from New

39

40 CHAPTER 3. DATA

Age Speaker
Corpus Transcripts Utterances Range Location
Conv 584 82,643 2;9 – 13;3 WI & CA
ENNI 377 56,108 4;0 – 9;11 Canada
Expository 242 4,918 10;7 – 15;9 WI
GillamNT 500 40,102 5;0 – 11;11 USA
NarSSS 330 16,091 5;2 – 13;3 WI & CA
NarSR 500 14,834 4;4 – 12;8 WI & CA
NZConv 248 25,503 4;5 – 7;7 NZ
NZPerNar 248 20,253 4;5 – 7;7 NZ
NZSR 264 2,574 4;0 – 7;7 NZ

Table 3.1: Description of SALT corpora

Zealand, while the majority come from North America. All of the corpora

except for Expository include children at very different stages of language

development.

Four research groups were responsible for the transcriptions and annotations

of the corpora in Table 3.1. One group produced the Conv, Expository,

NarSSS, and NarSR corpora. Another was responsible for all of the corpora

from New Zealand. Finally, the ENNI and GillamNT corpora were transcribed

and annotated by two different groups.

We provide details on each of the SALT corpora, including how they were

collected and annotated, in turn. We also briefly describe any remarkable

qualities of the SALT annotations that are apparent from either previously

published descriptions of these corpora, or from a cursory inspection. Chapters

5 and 6 contain much deeper investigations into the SALT annotations in a few

of the SALT corpora.

3.1.1 Conv Corpus

The Conv corpus is the largest of the four SALT corpora produced by the

group at the University of Wisconsin, which also developed the SALT coding

3.1. SALT CORPORA 41

system, and the SALT software. The other corpora produced by this group are:

Expository (Section 3.1.3), NarSSS (Section 3.1.5), and NarSR (Section

3.1.6). It contains 584 transcripts with a combined total of 82,643 utterances.

Participants

The Conv corpus contains transcripts of spoken language collected from children

in both California and Wisconsin. The children in California were between

the ages of 4 years 4 months and 9 years 11 months, while those in Wisconsin

were between the ages of 2 years 9 months and 13 years 3 months. All of the

participants were described as typically developing (TD), and this was determined

using different criteria in California and Wisconsin. All of the children in

California were of average ability as determined by performance on standardized

tests, teacher reports, and the absence of special education services. These

inclusion criteria were also used to determine that the participants in California

were TD. In Wisconsin, participants came from a variety of ability levels, and

these ability levels were determined by their teachers. These participants were

determined to be TD based on their progress in school and the absence of special

education services.

Elicitation

The documentation of the Conv corpus does not go into detail regarding

the elicitation procedure. The description of the corpus simply states that the

examiner is to have a conversation with the participant about one of the following

topics, for which there are suggested prompts (Miller et al., 2011, p.190)

1. Classroom activities

• “Tell me about some of the things you’ve been doing in school lately.”

• Ask about specific classroom units

42 CHAPTER 3. DATA

2. Holidays

• “Did you do anything special for Halloween (or appropriate holiday)?”

• “Tell me about that.”

• “Are you going to do anything special for Christmas?”

3. Family activities, visits, locations, etc.

• “Are you going to visit your grandma and grandpa?”

• “Where do they live?”

• “How do you get there”

• “What do you do there?”

4. Family pets

• “Do you have any pets at home?”

• “Tell me about them.”

• “What do you have to do to take care of them?”

For young children, the examiners are simply instructed to elicit a language

sample through play, for example by playing with playdough or small toys with

the child and discussing the activity (SALT Software, 2014c).

Coding

Error Count % of utts.
[E0] 944 1.1%
[EU] 1,661 2.0%
[EW] 1,526 1.8%
[OM] 773 0.9%
[OW] 2,216 2.7%

Table 3.2: Counts of error codes in Conv corpus, which contains

3.1. SALT CORPORA 43

The Conv corpus contains the five error codes shown in Table 3.2 along

with the count of each code in the corpus. As with all other SALT corpora,

omission errors are indicated with ‘*’ prepended to the missing material (ex.

He like/*3s ice cream.), but we convert all of these to either [OM] or [OW] for

omitted morphemes or words, respectively. The set of error codes used in the

Conv corpus is identical to the one used in the other three corpora compiled by

the group at the University of Wisconsin (Expository, NarSSS, and NarSR).

3.1.2 ENNI Corpus

The ENNI corpus was produced by a research group at the University of Alberta,

and it is the only SALT corpus produced by this group. It is the second largest

SALT corpus, containing 377 transcripts with a total of 56,108 utterances.

Participants

Language N N
Ages group boys girls
4;0-4;11 TD 25 25

SLI 9 3
5;0-5;11 TD 25 25

SLI 8 6
6;0-6;11 TD 25 25

SLI 6 5
7;0-7;11 TD 25 25

SLI 10 3
8;0-8;11 TD 25 25

SLI 10 7
9;0-9;11 TD 25 25

SLI 5 5

Table 3.3: Summary of participants in ENNI database

The ENNI corpus was collected from 377 children between the ages of 4 years

0 months and 9 years 11 months old (Schneider et al., 2006). All of the children

lived in or around Edmonton in Alberta, Canada. The authors of the ENNI

44 CHAPTER 3. DATA

corpus put the children into two groups: typically developing (TD) and those

with a specific language impairment (SLI). We note that these names appear to

be conveniences, as diagnoses were not confirmed for either group. TD children

were identified by asking public and separate school teachers in the Edmonton

area for two children, one of each sex, from each of three achievement levels: low,

intermediate, and high.

Children with SLI came from three places that serve children with language

impairments: a public school that also serves children with learning disabilities,

a rehabilitation hospital, and the Capital Health Authority. All of the children

in the SLI group have language impairments that scored between 2 and 5 on the

Capital Health’s Severity Rating Scale, which goes from 1 (mild) to 5 (severe).

Children were excluded from the SLI group if they had any of the following

diagnoses: mental retardation, unmedicated ADD or ADHD, autism, hearing

impairment, severe visual impairment that would result in inability to see pictures

even with correction, or severe speech impairments. Children were not excluded

from the SLI group if they had motor delays, medicated ADD or ADHD, a

learning disorder, or a mild speech impairment.

Elicitation

The ENNI corpus contains transcripts of children telling a story to go along

with a book of pictures, an activity commonly referred to as ‘wordless picture

book’. There were six different sets of pictures used throughout the corpus. The

examiner prepared the child for the activity by having them tell a story for a

practice set of pictures, and after that the child told stories for two different sets

of pictures. For each set of pictures, the examiner began by showing the child

each of the pictures. Next, the examiner held the pictures so that she could not

see them, and more importantly, so that the child could not point to elements of

them. Instead, the child had to describe the entire story verbally. The examiner

3.1. SALT CORPORA 45

then asked the child to tell the story, turning the page when the child appeared

to be ready. The transcripts are of the child telling the two non-practice stories.

Transcription

The samples of spoken language were originally transcribed and annotated follow-

ing the CHAT transcription system used in the CHILDES database (MacWhin-

ney and Snow, 1990; MacWhinney, 1992). The transcripts were converted from

CHAT to SALT format, but the authors of the corpus did not specify whether

this was done automatically or manually (Schneider et al., 2014).

Coding

Error Count % of utts.
[EU] 3,332 5.9%
[EW] 4,916 8.8%
[OM] 10 <0.1%
[OW] 766 1.4%

Table 3.4: Counts of error codes in ENNI corpus

According to the SALT manual (Miller et al., 2011), there are only two error

codes used consistently throughout the ENNI database: [EW:], indicating a

word-level error (including the correction after the colon); and [EU], indicating

an utterance-level error. The ENNI corpus also includes annotations for omitted

words and a few annotations for omitted morphemes. Recall that we represent

these errors with the codes [OM] and [OW], respectively, throughout this thesis,

as discussed in Section 2.2.3. The error code counts in the entire ENNI corpus

are shown in Table 3.4.

46 CHAPTER 3. DATA

3.1.3 Expository Corpus

The Expository corpus is the smallest of the four SALT corpora produced by

the group at the University of Wisconsin, which also developed the SALT coding

system, and the SALT software. The other corpora produced by this group are:

Conv (Section 3.1.1), NarSSS (Section 3.1.5), and NarSR (Section 3.1.5). It

contains 242 transcripts with a combined total of 4,918 utterances.

Participants

The Expository corpus contains transcripts of spoken language collected from

children in Wisconsin. The children were in middle and high school (grades 5-7,

and grade 9), and were between the ages of 10 years 7 months and 15 years 9

months. There were 118 female participants, and 124 male participants. All of

the participants were typically developing (TD). All of the participants were

determined to be TD based on their progress in school and the absence of special

education services. The participants came from a variety of ability levels, which

were determined based on teacher reports and GPA.

Elicitation

The elicitation protocol for the Expository corpus is quite simple: the examiner

reads a prompt asking the participant to explain whatever game or sport she

chooses, the participant is given time to fill in a planning sheet, and then the

participant responds to the prompt using the notes she wrote on the planning

sheet. For the exact prompts, we refer the interested reader to the SALT

manual (Miller et al., 2011, pp. 208-210).

3.1. SALT CORPORA 47

Error Count % of utts.
[E0] 2 <0.01%
[EU] 109 0.3%
[EW] 459 1.1%
[OM] 30 <0.01%
[OW] 163 0.4%

Table 3.5: Counts of error codes in Expository corpus

Coding

The Expository corpus contains the five error codes shown in Table 3.5 along

with the count of each code in the corpus. As with all other SALT corpora,

omission errors are indicated with ‘*’ prepended to the missing material (ex.

He like/*3s ice cream.), but we convert all of these to either [OM] or [OW] for

omitted morphemes or words, respectively. The set of error codes used in the

Expository corpus is identical to the one used in the other three corpora

compiled by the group at the University of Wisconsin (Conv, NarSSS, and

NarSR).

3.1.4 GillamNT Corpus

The Gillam Narrative Tasks (GillamNT) corpus was produced by a research

group at the University of Texas at Austin, and it is the only SALT corpus

produced by this group. It is the third largest SALT corpus, containing 500

transcripts with a total of 40,102 utterances.

Participants

The GillamNT corpus was collected from 500 children between the ages of 5

years 0 months and 11 years 11 months old (Miller et al., 2011). There were

50 participants in each of the following age groups: 5 year olds, 9 year olds,

48 CHAPTER 3. DATA

10 year olds, and 11 year olds. There were also 100 participants in each of the

following age groups: 6 year olds, 7 year olds, and 8 year olds. There were

an equal number of male and female participants within each age group. The

participants came from four regions around the US: Northeast, South, Midwest,

and West, although the description of the GillamNT corpus does not define the

boundaries of any of these regions. None of the participants in the GillamNT

corpus had been identified as having any sort of disability, nor did any of them

receive special education services.

Elicitation

The examiners administering the Gillam Narrative Tasks followed the scripts

specified in the Gillam Test of Narrative Language guidelines (Gillam and

Pearson, 2004). Each child completes three tasks. In the first, the examiner

reads a story aloud to the child, asks the child comprehension questions, and

finally asks the child to retell the story. Only the child’s retelling is transcribed.

The second task involves telling a story based on a sequence of five pictures: first

the examiner tells a story based on a sequence of pictures, asks the child some

questions about the story, and then asks the child to tell a different story based

on a novel sequence of five pictures. Again, only the child’s story is transcribed.

The third task is very similar to the second, except that instead of a sequence of

five pictures, the examiner and the child tell stories about a single picture.

Coding

Error Count % of utts.
[OW] 4 <0.1%

Table 3.6: Counts of error codes in GillamNT corpus

The GillamNT corpus does not contain error annotations: although cursory

3.1. SALT CORPORA 49

manual inspection reveals there are grammatical errors in the corpus (ex. the

overgeneralized past form ‘comed’ appears 12 times in the corpus), there are

only four instances in which an omitted word ([OW]) error is annotated (with a

prepended ‘*’, as is customary).

3.1.5 NarSSS Corpus

Like the Conv (Section 3.1.1), Expository (Section 3.1.3), and NarSR (Section

3.1.6) corpora, the NarSSS corpus was produced by the group at the University

of Wisconsin. It contains 330 transcripts with a combined total of 16,091

utterances.

Participants

The NarSSS corpus contains transcripts of narrative samples collected from

children in Madison, Wisconsin between the ages of 5 years 2 months and 13

years 3 months. All of the participants were typically developing (TD), which

the creators of the corpus determined with two criteria: lack of special education

services, and normal progress in school. The children come from diverse economic

backgrounds, which was determined by eligibility for the free lunch program at

school. The children also have a variety of ability levels, which were determined

by teacher ratings.

Elicitation

Examiners elicited a narrative from the child on one of the following four topics:

1) a movie the child had seen; 2) a book the child had read; 3) an episode of a TV

show the child had seen; or 4) a familiar story such as Goldilocks or Red Riding

Hood. Typically the fourth topic, retelling a familiar story, was reserved for

younger kids. Examiners were also instructed to encourage the child to produce

50 CHAPTER 3. DATA

more language or to encourage the child to move on in the story if she is having

difficulties, using phrases such as ‘tell me more’, or ‘what else?’. Examiners

were expressly discouraged from helping the child tell the story, for example by

providing missing vocabulary.

Coding

Error Count % of utts.
[E0] 488 3.0%
[EU] 540 3.4%
[EW] 1,151 7.2%
[OM] 177 1.1%
[OW] 431 2.7%

Table 3.7: Counts of error codes in NarSSS corpus

The NarSSS corpus contains the five error codes shown in Table 3.7 along

with the count of each code in the corpus. As with all other SALT corpora,

omission errors are indicated with ‘*’ prepended to the missing material (ex.

He like/*3s ice cream.), but we convert all of these to either [OM] or [OW] for

omitted morphemes or words, respectively. The set of error codes used in the

NarSSS corpus is identical to the one used in the other three corpora compiled

by the group at the University of Wisconsin (Conv, Expository, and NarSR).

3.1.6 NarSR Corpus

The NarSR corpus, like the Conv, Expository, and NarSSS corpora, was

produced by the group at the University of Wisconsin. It consists of 500

transcripts with a combined total of 14,834 utterances.

Participants

The NarSR corpus contains transcripts of spoken language collected from

children in San Diego, California, as well as Madison and Milwaukee, Wisconsin.

3.1. SALT CORPORA 51

All of the participants from Wisconsin are described as typically developing (TD),

as determined by an absence of special education services, and normal progress

in school. The participants from Wisconsin came from a variety of ability levels

as determined by their teachers. The participants in California are described

as being of average ability as determined by performance on standardized

tests, teacher reports, and the absence of special education services. All of the

participants came from a variety of economic backgrounds. In Wisconsin, this

was determined by eligibility for the free lunch program at school, while in

California, socioeconomic status was determined by the mother’s highest level of

education.

Elicitation

Two different protocols were used for elicitation, one for children in preschool,

kindergarten, or first grade, and another for children in grades two through six.

The protocol for the younger children begins with the examiner instructing the

child that she will hear a story, and then she will have to retell it. A book is

present for both tellings, although both the examiner and child are instructed

not to read the story, but rather to loosely follow the pictures and the text. The

examiner either reads the story, ‘Frog, Where are You?’, or plays a recording of

someone reading it. Finally, the child retells the story. The protocol for older

children is similar, although the story is different (‘Pookins Gets her Way’),

and the text is covered in the book when the child retells the story. During

the first telling of the story, however, the child may either follow along with

the book with text, or the one with out, as determined by the examiner. As

in the elicitation of the NarSSS corpus, the examiner is instructed to provide

generic encouragement to the child (ex. ‘tell me more’ or ‘keep going’), but not

to provide the student with cues or vocabulary.

52 CHAPTER 3. DATA

Coding

Error Count % of utts.
[E0] 495 3.3%
[EU] 568 3.8%
[EW] 1,526 10.2%
[OM] 297 2.0%
[OW] 569 3.8%

Table 3.8: Counts of error codes in NarSR corpus

The NarSR corpus contains the five error codes shown in Table 3.8 along

with the count of each code in the corpus. As with all other SALT corpora, we

convert omission errors, indicated with ‘*’ to either [OM] or [OW] for omitted

morphemes or words, respectively. The set of error codes used in the NarSR

corpus is identical to the one used in the other three corpora compiled by the

group at the University of Wisconsin (Conv, Expository, and NarSSS).

3.1.7 NZConv Corpus

The New Zealand Conversation (NZConv) corpus was produced by a research

group at the University of Canterbury in New Zealand. It contains 248 transcripts

with a total of 25,503 utterances.

Participants

The NZConv corpus contains transcripts of spoken language collected from

children ages 4;5-7;7 in three major urban areas in New Zealand: Hamilton,

Christchurch, and Auckland. Participants were screened with the New Zealand

speech and language screening test to asses language development. Transcripts

from participants who performed very poorly on the receptive language portion of

the screening test were excluded from the corpus, as were transcripts containing

fewer than 45 utterances. The participants in the NZConv corpus come from a

3.1. SALT CORPORA 53

wide variety of ethnic backgrounds (62% New Zealand European, 22% Maori, 5%

Pasifika, 3% Asian, and 8% other). Finally, there was an even gender distribution

among the participants.

Elicitation

Speech-language therapists elicited the language samples in the NZConv corpus

following interview procedures described by Evans and Craig (1992). The

examiners discussed three subjects with each child: first, an object of the child’s

choice that she was asked to bring from her classroom at school; the child’s

family; and after-school activities. Examiners attempted to elicit at least 50

complete, intelligible utterances from each child in 10 minutes of conversation.

Coding

Error Count % of utts.
[E0] 174 0.1%
[EU] 376 1.5%
[EW] 479 1.9%
[OM] 172 0.1%
[OW] 242 0.1%

Table 3.9: Counts of error codes in NZConv corpus

The NZConv corpus contains the five error codes shown in Table 3.9 along

with the count of each code in the corpus. As with all other SALT corpora, we

convert omission errors, indicated with ‘*’ to either [OM] or [OW] for omitted

morphemes or words, respectively. The set of error codes used in the NZConv

corpus is identical to the one used in the other two corpora compiled by the

group at the University of Canterbury (NZPerNar in Section 3.1.8, and NZSR

in Section 3.1.9).

54 CHAPTER 3. DATA

3.1.8 NZPerNar Corpus

The New Zealand Personal Narrative (NZPerNar) corpus was produced by a

research group at the University of Canterbury in New Zealand. It contains 248

transcripts with a total of 20,253 utterances.

Participants

The NZPerNar corpus contains transcripts of spoken language collected from

children ages 4;5-7;7 in three major urban areas in New Zealand: Hamilton,

Christchurch, and Auckland. Participants were screened with the New Zealand

speech and screening test to asses language development. Transcripts from

participants who performed very poorly on the receptive language portion of

the screening test were excluded from the corpus, as were transcripts containing

fewer than 45 utterances. The participants in the NZPerNar corpus come

from a wide variety of ethnic backgrounds (62% New Zealand European, 22%

Maori, 5% Pasifika, 3% Asian, and 8% other). Finally, there was an even gender

distribution among the participants.

Elicitation

Speech-language therapists elicited the language samples in the NZPerNar

corpus following the Conversational Map technique (Peterson and McCabe, 1983).

Each session began with an examiner telling the child a story based on a photo

that they showed the child. After telling the story, the examiner asked the child

if anything similar had happened to her. If the child said yes, the examiner

asked her to tell a story about it. If she said no, the examiner repeated the

story-telling procedure with a different photo. This process was repeated until

the child produced at least three narratives and 50 complete and intelligible

utterances. Examiners encouraged the children to speak more, for example by

3.1. SALT CORPORA 55

asking “and then what happened?”, but they did not assist or evaluate the child

while she was telling a story.

Coding

Error Count % of utts.
[E0] 314 1.6%
[EU] 305 1.5%
[EW] 700 3.5%
[OM] 90 0.4%
[OW] 224 1.1%

Table 3.10: Counts of error codes in NZPerNar corpus

The NZPerNar corpus contains the five error codes shown in Table 3.10

along with the count of each code in the corpus. As with all other SALT corpora,

we convert omission errors, indicated with ‘*’ to either [OM] or [OW] for omitted

morphemes or words, respectively. The set of error codes used in the NZPerNar

corpus is identical to the one used in the other two corpora compiled by the

group at the University of Canterbury (NZConv in Section 3.1.7, and NZSR in

Section 3.1.9).

3.1.9 NZSR Corpus

The New Zealand Strory Retell (NZSR) corpus (also referred to as the New

Zealand Expository Corpus in the SALT manual (Miller et al., 2011)) was

produced by a research group at the University of Canterbury in New Zealand.

It contains 264 transcripts with a total of 2,574 utterances.

Participants

The NZPerNar corpus contains transcripts of spoken language collected from

children ages 4;6-7;7 in three major urban areas in New Zealand: Hamilton,

Christchurch, and Auckland. Participants were screened with the New Zealand

56 CHAPTER 3. DATA

speech and screening test to asses language development. Transcripts from

participants who were unable or unwilling to perform the task were excluded

from the corpus.

Elicitation

The elicitation procedure began with the child listening to a recording of a story

(Ana gets lost; Swan, 1992) twice while following along with a picture book. The

story has only been published in Tokelauan, thus minimizing the chances that

any of the children were familiar with it, and rendering it impossible for them to

read the story while listening to it (the recording was of an English translation).

After listening to the recording the first time, the examiner asked the child eight

comprehension questions. Examiners provided the correct answers to questions

that the child answered incorrectly to reduce the influence of comprehension

on the child’s retelling ability. After listening to the story a second time, the

child was asked to retell it without the aid of the book. The examiner would

encourage the child, but would not assist her in telling the story.

Coding

Error Count % of utts.
[E0] 55 2.1%
[EU] 55 2.1%
[EW] 98 3.8%
[OM] 13 0.5%
[OW] 32 1.2%

Table 3.11: Counts of error codes in NZSR corpus

The NZSR corpus contains the five error codes shown in Table 3.11 along

with the count of each code in the corpus. As with all other SALT corpora, we

convert omission errors, indicated with ‘*’ to either [OM] or [OW] for omitted

morphemes or words, respectively. The set of error codes used in the NZSR

3.2. CLSU ADOS CORPUS 57

corpus is identical to the one used in the other two corpora compiled by the group

at the University of Canterbury (NZConv in Section 3.1.7, and NZPerNar in

Section 3.1.8).

3.2 CLSU ADOS Corpus

The CSLU ADOS corpus was collected during a large scale study of autism and

language impairments. In addition to the ADOS (discussed below), participants

in the study (and their parents) also completed other tests, for example the

WISC-4 test of intelligence (Wechsler, 2003), and the CCC-2 parent questionnaire

to assess communication skills (Bishop and Volkmar, 2003). Most of these

instruments are not relevant to this thesis, so we do not discuss them here. Two

of these instruments are only relevant to Chapter 7, and are discussed there.

Here we present the ADOS corpus, which is relevant to much of this thesis.

We process the CSLU ADOS corpus differently, depending upon the task we

wish to perform (see Section 3.3), and in some cases this results in there being

a different number of non-empty utterances. For example, if we excise mazes,

then lines that only consist of a maze must be removed. Nevertheless, at most

we make use of 145 transcripts containing a total of 61,949 utterances.

3.2.1 ADOS

The Autism Diagnostic Observation Schedule (ADOS) is a semistructured stan-

dardized assessment that is used as a part of the process to diagnose ASD (Lord

et al., 2000). Semistructured instruments provide clinicians with standardized

situations and activities to perform, but unlike structured instruments (see

Sections 7.1.4 or 7.1.5 for detailed examples), semistructured instruments are

designed to elicit spontaneous behavior, including language.

The ADOS itself consists of four modules, each of which takes 30 minutes to

58 CHAPTER 3. DATA

Module 1 2 3 4
Language
level

Preverbal/single
words/phrases

Flexible
phrase speech

Fluent speech
child / adoles-
cent

Fluent speech
adolescent /
adult

Activities Anticipation
of a social
routine

Construction
task

Construction
task

Construction
task

Make-believe
play

Make-believe
play

Current work,
school, daily
living

Functional
and symbolic
imitation

Joint interac-
tive play

Joint interac-
tive play

SEQ: Plans
and dreams

Free play Free play Break Break
Snack Snack
Response to
name

Response to
name

Cartoons Cartoons

Response to
joint attention

Response to
joint attention

SEQ: Emo-
tions

SEQ: Emo-
tions

Birthday
party

Birthday
party

SEQ: Friends,
loneliness,
marriage

SEQ: Friends,
loneliness,
marriage

Bubble play Bubble play SEQ: Social
difficulties,
annoyance

SEQ: Social
difficulties,
annoyance

Anticipation
of a routine
with objects

Anticipation
of a routine
with objects

Creating a
story

Creating a
story

Demonstration
task

Demonstration
task

Demonstration
task

Conversation Conversation
/ reporting
a nonroutine
event

Conversation
/ reporting
a nonroutine
event

Description of
picture

Description of
picture

Description of
picture

Looking at a
book

Telling a story
from a book

Telling a story
from a book

Table 3.12: Overview of the four ADOS modules taken from (Lord et al., 2000,
3). Activities on the same line are similar in intent where possible.
SEQ=Socioemotional questions

3.2. CLSU ADOS CORPUS 59

administer. The choice of module is determined by the expressive language level

of the individual being tested, and these modules are outlined in Table 3.12.

Coding

Error Count % of utts.
[EC] 43 <0.1%
[E0] 235 <0.1%
[EU] 477 0.1
[EW] 1,542 2.5%
[EX] 342 0.1%
[OM] 923 1.5%
[OW] 847 1.4%
[WO] 83 <0.1%

Table 3.13: Counts of error codes in CSLU ADOS corpus. [EC] = inappropriate
response, [EX] = extraneous word, [WO] = word order error

ADOS sessions were recorded and child and examiner speech were later

transcribed. Transcribers were unaware of the child’s diagnostic status, cognitive

level, and language ability.

Transcription followed SALT guidelines: utterances were separated into c-

units, and the examiner and child’s speech were separated; mazes were annotated;

and grammatical errors were indicated as well. The set of error codes used in

the CSLU ADOS corpus, along with their counts, is shown in Table 3.13.

3.2.2 Participants

The 111 participants in this study ranged from ages 4 through 8. All of the

participants were native speakers of English who lived in the Portland, OR

metro area. Participants were recruited by a variety of means: children with

ASD were found through local healthcare specialists, education service districts,

autism clinics, parent groups, and non-profit autism organizations, and those

with language impairments were identified through local speech clinics, speech

60 CHAPTER 3. DATA

language pathologists, and the Oregon Speech and Hearing Association.

There were five exclusionary criteria for this study: 1) identified metabolic,

neurological, or genetic disorder; 2) gross sensory or motor impairment; 3) brain

lesion; 4) orofacial abnormality, for example a cleft palate; and 5) intellectual

disability. Furthermore, all participants included in the study produced ut-

terances with a minimum mean length of 3.0 morphemes per utterance. All

participants had a full-scale IQ of at least 70. IQ was determined using the

Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III; Wechsler,

2002) for children younger than 7, and with the Wechsler Intelligence Scale

for Children (WISC-IV; Wechsler, 2003) for children ages 7 and older. Finally,

during initial screening a speech language pathologist confirmed that the child

did not have any impairments affecting speech intelligibility.

Diagnosis

Language Autism No autism
Impaired ALI 25 SLI 19
Not impaired ALN 25 TD 42

Table 3.14: Diagnostic status of participants in CSLU ADOS corpus including
group labels. For example, ALI = autism and language impairment.

Most of the participants in the CSLU ADOS corpus fall into one of four

diagnostic categories, as shown in Table 3.14. We also note that the majority of

the participants in the study were male. In each group, there were the following

number of males: 23 in ALI (ASD + language impairment), 22 in ALN (ASD

+ no language impairment), 12 in SLI (language impairment, no ASD), and

30 in TD (neither ASD nor language impairment). Each child’s diagnosis was

confirmed in house following a standard set of procedures for identifying ASD

and language impairments (Prud’hommeaux et al., 2011).

ASD was diagnosed by a team of two clinical psychologists, a speech language

3.2. CLSU ADOS CORPUS 61

pathologist, and an occupational therapist with experience working with autism

spectrum disorders following the DSM-IV-TR criteria (American Psychiatric

Association, 2000). A child was assigned a diagnosis of ASD only when this

group reached a consensus. At present, best estimate clinical (BEC) judgement

by experienced clinicians is considered to be the most effective way to diagnose

ASD (Klin et al., 2000; Spitzer and Siegel, 1990). In addition to the group’s

BEC consensus, all children diagnosed with ASD had scores above the threshold

indicative of ASD on both the ADOS-G (Gotham et al., 2007) and Social

Communication Questionnaire (commonly referred to as the SCQ; Rutter et al.,

2003). Specifically, all children diagnosed with ASD scored at least 12 on the

SCQ, which is the recommended cutoff for research purposes (Lee et al., 2007).

Language impairments were identified using the Core Language Score on

the Clinical Evaluation of Language Fundamentals (CELF) (Semel et al., 2003,

2004), which captures both receptive and expressive language capabilities. In

particular, any child scoring at least 1 standard deviation below the mean on this

test (Core Language Score < 85) was identified as having a language impairment.

Two different variants of the CELF were used, dependent upon the age of the

child: the CELF Preschool-2 (Semel et al., 2004) was administered to children

younger than six years old, and the CELF-4 (Semel et al., 2003) to all children

six years or older.

There are two groups of participants that meet the criterion for a language

impairment, one with ASD (ALI), and one without (SLI). Inclusion in the SLI

group had two additional criteria beyond the score on the CELF: 1) a documented

history of language impairment or delay, and 2) BEC consensus that the child

has a language impairment and does not have ASD taking into account a wide

variety of evidence (including medical and family history, in-house and locally

based assessments, and information from school). We note that several children

62 CHAPTER 3. DATA

included in the SLI group scored above the threshold for ASD on either the SCQ

(n=8) or the ADOS-G (n=4), but not both. Previous research suggests that it

is common for children with a BEC diagnosis of SLI to score above thresholds

indicative of ASD on diagnostic assessments (Bishop and Norbury, 2002; Leyfer

et al., 2008). Children diagnosed with ASD following the procedures above were

included in the ALI group if they also met the criterion for impaired language,

and otherwise they were put into the ALN group.

Children in the TD group did not meet the criteria for either ASD or a

language impairment. There were several additional criteria for exclusion from

the TD group: a family history of autism or language impairments; a diagnosed

psychiatric disorder (for example ADHD); and scoring above the threshold for

ASD on either the SCQ or ADOS-G.

3.3 Preprocessing of SALT Annotated Corpora

We do not perform our experiments on unmodified SALT transcripts. Rather,

we preprocess the transcripts by desaltifying and normalizing the transcripts,

which we discuss in turn below. This preprocessing makes the experiments more

straightforward to conduct, and renders the results more meaningful.

3.3.1 Desaltification

Before performing most of our experiments we remove some of the SALT annota-

tions. We refer to this process as desaltification1, and we perform desaltification

using a script written at CSLU by Emily Tucker-Prud’hommeaux and Géza

Kiss2. Desaltification can remove various items, for example sound effects (words

preceded by ‘%’), incomplete words, error codes, or maze annotations. Desaltifi-
1Some prefer the term desalination.
2Specifically, we use the most recent version of desaltify2.pl as of July 2, 2014. This

script is available upon request from the author.

3.3. PREPROCESSING OF SALT ANNOTATED CORPORA 63

Option Example Flag(s) Maze Error Feature
Keep lines not associated
with a valid activity label

b X X X

Preserve idiosyncratic
words without correc-
tions

hana_rra[=good]! hanna_rra Dd X X X

Include examiner speech e X
Remove incomplete
words

we*! ; i X X

Remove sound effects %pfft! ; k X X X
Preserve morphology seg-
mentation

boy/s/z l X

Preserve marking of
phrases

ice_cream P X X X

Preserve marking of
mazes

(um I) n X X X

Preserve marking of over-
lapping speech

<you are> o X

Include omitted mor-
phemes/words with
annotation

*she go/*3s q X X

Preserve error codes goed [EW] r X X
Preserve SALT contrac-
tions

gonna s X X X

Segment at sentence
boundaries even when
time stamps are included

T X X X

Tokenize punctuation
even if not tokenizing
words

go. ! go . Z X X X

Do not tokenize can/’t ! can’t z X X X

Table 3.15: Desaltify script options used with different experiments: maze
detection, error code detection, and feature extraction for predicting scores
on structured instruments and diagnostic discrimination tasks. Flag column
indicates flags used at the command line with desaltify2.pl.

64 CHAPTER 3. DATA

SALT: They (um) %pfft goed[EO] *to buy cookie/S.
MAZE: they um goed buy cookies .
ERROR: they um goed [EO] [OM] buy cookies .
FEATURE: they (um) goed [EO] [OM] buy cookie/S .

SALT: (Bu* bu*) but (I thought) < we ca/N’T> see it, can we? that.
MAZE: but (I thought) we can’t see it can we ?
ERROR: but I thought we can’t see it can we ?
FEATURE: (Bu* bu*) but (I thought) <we ca/N’T> see it can we ?

Figure 3.1: Examples of utterances processed with different desaltification
settings after normalization

cation can also involve removing the bound morpheme annotations (a form of

normalization, discussed below in Section 3.3.2), for example converting ‘go/3s’

to ‘goes’ or ‘run/ing’ to ‘running’. The desaltify script does so using a dictionary,

although more recently Gorman et al. (2015) have found that a model based

on linear classifiers and finite state transducers is highly effective for this task.

We refer the interested reader to the desaltify script for implementation details.

Here we only note the options used, not their implementations.

We produce three versions of each transcript using the desaltify script:

one for maze detection (Chapter 5), one for error code detection (Chapter 6),

and one from which we extract features when predicting scores on structured

instruments and performing a diagnostic discrimination task (Chapter 7). The

options used for each of these are shown and described in Table 3.15. For the

maze and error code detection tasks we use desaltification (and normalization,

discussed below) to create a very simple transcript that has only words and the

annotations of interest, whether they be mazes or error codes. In the case of

feature extraction, we use desaltification to simplify feature extraction. Figure

3.1 contains example utterances in their original SALT-annotated form (labeled

‘SALT’) along with their desaltified and normalized (see below) versions used

3.3. PREPROCESSING OF SALT ANNOTATED CORPORA 65

in our different investigations: MAZE for experiments around maze detection

(Chaper 5), ERROR for those around error code detection (Chapter 6), and

FEATURE for those around the clinical utility of SALT annotations (Chapter

7).

For clarity, Table 3.15 does not contain options that leave the text unmodified;

in all experiments, we used two such options: -F ‘keep file names unchanged’,

and -g ‘keep empty lines’. These options assist with matching transcripts that

have been desaltified differently, and the lines within them, respectively.

3.3.2 Normalization

In addition to desaltification, we also normalize the text before running ex-

periments. Text normalization is the process of converting text to a standard

form (Sproat et al., 2001). This may be as simple as lowercasing words for

finding a case-insensitive exact match, or could involve spelling out numbers

for pronunciation in a text to speech system (‘41’ ! ‘forty one’), or stemming

for looking up words in a dictionary (ex. ‘stemming’ and ‘stemmed’ become

‘stem’). More sophisticated forms of text normalization can involve abbreviation

expansion, for example expanding ‘5th Ave’ into ‘fifth avenue’. Such techniques

have a wide variety of applications, including in text-to-speech systems (Roark

and Sproat, 2014) or expanding text messages (Beaufort et al., 2010; Liu et al.,

2011) or social media data (Liu et al., 2012a,b) for further analysis.

First, we exclude any lines with unintelligible words from almost all of our

experiments. We retain these lines in transcripts desaltified with the feature

setting in Table 3.15 since we use the count of unintelligible words as a feature

in these experiments; unintelligible words are thrown out in all other cases (for

example before identifying mazes or error codes, and before computing the length

of an utterance). Second, we remove empty mazes, which can arise when a maze

66 CHAPTER 3. DATA

contains only sound effects and incomplete words, both of which we remove. We

convert the original annotations for ‘omitted word’ and ‘morpheme’ to error

codes:

(3.1) She *is go/*ing home. !

She *is go*ing home . !

She [OW] go [OM] home .

Third, we remove all non-final punctuation from every utterance because punctu-

ation use appears to be inconsistent across corpora. Fourth, for our experiments

in maze detection, we remove annotations for asides, which are delimited with

double parenthesis. Not all corpora annotate asides, and automatically detecting

asides is beyond the scope of this thesis. Finally, we perform sets of experiments

in error code detection in which manually annotated mazes are excised, and

others in which they are not, but in which the maze annotations are deleted. We

do not use features related to maze annotations in any of the error code detector

experiments. The examples in Figure 3.1 have been normalized following these

standards, in addition to having been desaltified following the settings described

above.

3.3.3 Partitioning into sets

We partition all of the SALT corpora, but not the CSLU ADOS corpus, into

training, development, and test sets. We use these sets for our experiments

in automatically detecting mazes (Chapter 5) and SALT error codes (Chapter

6). To do this, we: 1) desaltify and normalize all of the transcripts, using the

appropriate settings in Table 3.15 for the relevant experiment; 2) merge all of

the transcripts into a single file; 3) shuffle the lines randomly; and 4) partition

the lines such that 80% are in the training set, and 10% in both the development

and test sets.

3.4. CONCLUSIONS 67

3.4 Conclusions

We have presented an overview of the SALT-annotated corpora that sit at the

heart of this dissertation. We have seen that they contain transcripts of a variety

of tasks, and were collected from children with different ages and linguistic

abilities. The variety of linguistic ability is further compounded by the presence

of transcripts collected from children with autism, language impairments, or

both, in addition to neurotypical children. Looking at basic summary statistics of

these corpora, we also see hints of the diversity, or alternatively inconsistency, of

annotation styles. For example, the GillamNT corpus contains only four error

codes, and the ENNI corpus does not appear to use the overgeneralization code

[EO] which appears in most of the other corpora. We consider the inconsistency

of grammatical error code annotations in detail in Chapter 6, and similarly, we

compare maze annotations across the SALT-annotated corpora in Chapter 5.

Finally, in Chapter 7 we use the CSLU ADOS corpus to explore how useful

SALT-annotated transcripts are for identifying and characterizing developmental

disorders.

68 CHAPTER 3. DATA

Chapter 4

Technical Background

This chapter contains an overviews of techniques that are used in this thesis,

particularly in Chapters 5 and 6. We begin with an overview of the perceptron

algorithm in Section 4.1. As we discuss, the perceptron algorithm is a simple

but powerful algorithm for labeling a single item at a time. We then provide

a background on graph algorithms in Section 4.2, which underpin the graph-

based algorithms for structured prediction discussed in Section 4.3. Structured

prediction is a particularly relevant to NLP because language contains so much

structure, and we can begin to leverage some of it by using techniques for

structured prediction.

Next we discuss a variety of tasks in NLP that are particularly relevant to

this thesis. First, we present two approaches to inferring sentence structure,

namely constituency parsing (Section 4.4.1) and dependency parsing (Section

4.4.2). These basic techniques are applied in both disfluency detection (Section

4.5), which is closely related to maze detection (Chapter 5), and our experiments

in grammatical error detection in Chapter 6. We describe previous work in

grammatical error detection below in Section 4.6, and finally conclude with

69

70 CHAPTER 4. TECHNICAL BACKGROUND

descriptions of the evaluation procedures used throughout this thesis.

4.1 Perceptron algorithm

1: for all labels y do
2: w

(0)
y

= 0
3: end for
4: i 0

5: for t : 1..T do
6: for n : 1...N do
7: Let y

0
= argmax

y

w

(i)
y

· x
n

8: if y

0 6= y

n

then
9: w

(i+1)
y

0 = w

(i)
y

0 � x

n

10: w

(i+1)
y

= w

(i)
y

+ x

n

11: i i+ 1

12: end if
13: end for
14: end for
15: return w

i

Figure 4.1: Pseudocode for the multilabel perceptron algorithm. T is the number
of training iterations. w

i

is the weight vector at the i

th iteration, while x

n

and
y

n

are the n

th feature vector and labels, respectively. w

y

is the weight vector
for the label y.

The multilabel perceptron algorithm (Rosenblatt, 1958) is an online, error-

driven algorithm for supervised classification, and the pseudocode for this algo-

rithm is shown in Figure 4.1. Put formally, the perceptron’s task is to learn a

function h : X ! Y that predicts a single label y 2 Y from an input feature

vector x 2 X . In this thesis, we use the averaged multiclass perceptron, which

means that there can be an arbitrary but finite number N of different labels.

Since the perceptron algorithm is supervised, we need a training set of labeled

examples D = {X ,Y}. During learning, the perceptron learns a set of N weight

vectors W, where w

y

is the weight vector for the label y. We now describe

prediction, and then we will return to learning with the perceptron algorithm.

Predicting a label y0 for a feature vector x is quite simple once we have

4.1. PERCEPTRON ALGORITHM 71

learned the set of input weights W:

y

0
= argmax

y

w

y

· x (4.1)

Prediction is also done during training (line 7 in Figure 4.1): every time there

is an erroneous prediction, the weight vectors w 2 W get updated (lines 8-11

of the pseudocode). For a given training example (x, y), we predict its label y0.

If the prediction is correct, we do nothing. If, however, we do not predict the

true label y, then we update both w

y

and w

y

0 (lines 9-10). In other words, we

simply add x to the weight vector for the true label w
y

, and subtract x from

the weight vector for the predicted label w
y

0 when we predict the wrong label.

Because the weights are only updated when there is an erroneous prediction,

we say that this classifier is error driven. Furthermore, the perceptron is an

online training algorithm because the weights are updated after every training

example. In other words, we do not need to retrain the entire model if we find

some additional training data; we can simply update it.

One issue with the perceptron as we have described it thus far is that weight

vectors are modified whenever they result in an incorrect prediction, even if they

have been used in many correct predictions. The averaged perceptron prevents a

single erroneous prediction from radically changing such a weight vector: instead

of using the raw weights for prediction at test time, it uses the average weight

vector, taken across all updates (Freund and Schapire, 1999). Therefore, if a

particular weight vector stays unchanged across most training examples (because

it does not result in any mistakes with them), the average weight vector will be

quite close to it even if it yields a few mistakes later.

72 CHAPTER 4. TECHNICAL BACKGROUND

Current word Score Prediction Truth Update
you 0 - - None
go 0 - - None

home 0 - - None
she 0 - - None
go 0 - + C[go]+1! 1

home 0 - - None
Iteration 2

go 1 + - C[go]�1! 0

go 0 - + C[go]+1! 1

Table 4.1: Two iterations of perceptron training a to identify grammatical errors.
‘+’: error, ‘-’: no error.
The score is simply the weight of the entry C[w] where C is the feature weight
vector, and w is the current word. We only show steps with updates in Iteration
2.

4.1.1 Example

To make this description more concrete, let us look at a simple example of

grammatical error detection, a task we approach throughout this thesis. We have

two utterances: ‘you go home’, and ‘she go home’, the latter of which contains

a single error associated with the word ‘go’ (assuming we are not discussing

a dialect in which ‘she go’ is grammatical). Table 4.1 shows two rounds of

training a simple perceptron to predict whether a word is associated with a

grammatical error. We use a single feature for prediction: the word itself. As

can be seen in 4.1, the feature weight for C[go] simply oscillates between 0 and 1

because the word ‘go’ is grammatical in one utterance, but ungrammatical in

the other. Nevertheless, the perceptron algorithm correctly predicts that there

is no grammatical error associated with any of the other words.

4.2. GRAPHS 73

4.2 Graphs

Although the perceptron algorithm described above is suitable for a wide range

of problems, it is not so effective for addressing those where structure is critical,

as is the case for many problems in NLP, including our example problem of

grammatical error detection. This is because the perceptron algorithm considers

items in isolation, but language has structure. Graphs are a particularly powerful

tool for capturing structure in language, among their many other applications in

a diverse array of fields including sociology (ex. Breiger et al., 1975; Brandes,

2001), biology (ex. Enright et al., 2002), and logistics (ex. Zhan and Noon, 1998).

Here we begin with a brief overview of graphs, and later in Sections 4.4.1 and

4.4.2 we provide more background on two types of graphs that are particularly

relevant to language and NLP, namely constituency and dependency parse trees.

Graphs are also relevant to methods for structured prediction, which we discuss

in Section 4.3. For an excellent background on graphs and graph algorithms, we

direct the interested reader to Even (2011).

Formally, graphs consist of a set of vertices V , and a set of edges E, where

each edge e connects two vertices (v

i

, v

j

). Two vertices v

i

and v

j

are neighbors

if (v

i

, v

j

) 2 E. Graphs can be directed in which case the edges (v

i

, v

j

) and

(v

j

, v

i

) are distinct, or undirected, in which case they are not. Although this

description may seem abstract, graphs are a natural way to encode a wide

variety of information, including transit links between cities, social networks, and

syntactic structure. Social networks, for example, can be represented with an

undirected graph: each vertex represents a person, and each edge represents some

sort of connection between two individuals, say friendship. Because friendship

is mutual (at least in our graph), we don’t need to distinguish between Alice

being friends with Bob as opposed to Bob being friends with Alice. In some

cases, however, we may want to model asymmetrical relationships, which we can

74 CHAPTER 4. TECHNICAL BACKGROUND

do with a directed graph.

Graphs, whether directed or undirected, can be either unweighted or weighted.

In an unweighted graph, edges either exist or they do not; to continue with

the website example, the New York Times either links to a particular webpage

(in which case there would be an edge), or it does not (no edge). Although

this is a simple idea, it is quite powerful: it forms the core of the PageRank

algorithm (Brin and Page, 1998; Page et al., 1999), which was Google’s original

algorithm for ranking webpages in its search.

For binary distinctions, such as when webpages are either linked or not,

unweighted graphs are adequate. In many cases, however, some connections may

be stronger than others. For example, we could represent the road system of,

say, the United States with a graph: cities and towns are represented by vertices,

and the roads by edges. Clearly highways allow more traffic between two cities

than does a dirt road. To reflect this in our graph we assign weights to different

edges, for example a weight of 100 to an edge connecting two cities connected

by an interstate, and a weight of 1 to an edge connecting two cities (or more

likely towns) connected by a dirt road. Figure 4.2c shows a weighted graph.

Returning to the two example utterances introduced above (‘you go home’

and ‘she go home’), it is clear that we need context to know whether the word ‘go’

is grammatical or not. Based on these examples alone, we could conclude that

‘go’ is grammatical if it follows the word ‘you’, but not following ‘she’. A more

sophisticated analysis would posit that ‘go’ is ungrammatical if ‘she’ is the subject,

thus enabling us to identify ‘she probably go there often’ as ungrammatical.

Going further, we could add the exception that ‘go’ is grammatical with ‘she’

as the subject when it is in a subordinate clause, as in ‘it is necessary that she

go’. Each of these analyses suggests a different graphical structure: a sequence

(Figure 4.2b), a dependency parse (Section 4.4.2) and a constituency parse tree

4.2. GRAPHS 75

Alice

Bob

Carlos

Dan

(a) Undirected, unweighted graph: social network

She go home

(b) Directed, unweighted graph: utterance as a sequence of words

Seattle

Portland

Bend

Paulina

Eugene

100

50 5
100

(c) Undirected, weighted graph: roads

Figure 4.2: Examples of different types of graphs

76 CHAPTER 4. TECHNICAL BACKGROUND

(Section 4.4.1), respectively.

Random walks

Various properties of graphs can be explored using a random walk, which involves

starting at a vertex v

i

, and then taking some number of steps, each time going

to a randomly selected neighbor of the current node. For example, if we keep

traveling from port to port on a random container ship—ports are nodes, and

trade links are edges—we would likely be in Shanghai far more often than Miami

because more boats go to Shanghai. More generally, if we take enough boats,

we can learn various properties of the world’s trade networks: which ports are

busiest, which are the most integrated, and so on.

In a random walk, neighbors can each be selected with uniform probability, as

would typically be the case in an unweighted graph, or with different probabilities,

as would be the case in a weighted graph (and the container ship example).

Finally, in the case of directed graphs, a random walk can only go from vertex

v

i

to v

j

if (v
i

, v

j

) 2 E; having (v

j

, v

i

) 2 E is not sufficient to permit the random

walk to go from v

i

to v

j

. Continuing with the container ship example, there may

be a boat that goes from Portland to Seattle, but none from Seattle to Portland.

Although the random walk technique is quite simple, it has many applications

in NLP and related fields, including the previously mentioned PageRank algo-

rithm for information retrieval (Page et al., 1999), which identifies documents

of interest based on how many times they are reached during a random walk

on a graph in which documents are represented as nodes, and hyperlinks are

directed edges. Random walks are also used in the closely related LexRank

algorithm for text summarization (Erkan and Radev, 2004), as well as ones for

word-sense disambiguation (Mihalcea, 2005) and providing recommendations for

movies (Fouss et al., 2007).

4.3. SUPERVISED STRUCTURED PREDICTION: TAGGING 77

4.3 Supervised structured prediction: tagging

Supervised structured prediction is the task of learning to predict structured

output from labeled structured input. By structured, we mean that the input and

output have a graph structure, as opposed to being items considered in isolation,

as is the case with the basic perceptron (Section 4.1). Continuing with our error

detection example, if the input is a sequence of words, then structured output

could be a sequence of binary tags representing whether each word is associated

with an error or not, for example:

(4.2) you go home ! - - -

(4.3) she go home ! - + -

Approaching grammatical error detection at the word level as a as a sequence

tagging task should be far more fruitful than classifying a single word at a time

because we are able to leverage each word’s context to identify errors. For

example, ‘go’ is grammatical in the first utterance where it follows ‘you’, but

not in the second where it follows ‘she’. In this thesis, we treat maze detection

(Chapter 5) and error code detection (Section 6.5) as sequence prediction tasks,

which have the graphical structure illustrated in Figure 4.2b. Our experiments

treating SALT error code detection as a sequence prediction task is particularly

closely related to our running example of identifying grammatical errors at the

word level. We now introduce three techniques for structured prediction, which

we use in this thesis to predict sequences: the structured perceptron (Collins,

2002), linear chain conditional random fields (CRF) (McCallum and Li, 2003),

and max-margin Markov networks (M3N) (Taskar et al., 2003).

More formally, in supervised structured prediction the task is to learn a

function h : X ! Y that predicts a structured output y 2 Y from structured

input features x 2 X . To be clear then, h(x) is the set of labels predicted from

78 CHAPTER 4. TECHNICAL BACKGROUND

the input x. In supervised structured prediction we assume a training set of

N labeled data for training D = {X ,Y}. We also assume that there is a finite

number of distinct labels in Y.

Both CRFs and M3N are types of Markov networks, which are undirected

graph G = {V,E} in which each edge (i, j) 2 E is associated with a feature

function f(y

i

,y

j

,x). We are particularly interested in predicting sequences,

in which case the edges are all of the form (t, t � 1). Both CRFs and M3Ns

use a linear feature function of the input x, output y and feature weights w:

f(x

t

,y

t

,y

t�1;w) = w · f(x
t

,y

t

,y

t�1) to assign a score to the output label

sequence y given the input x. CRFs and M3Ns, however, compute weight vector

w quite differently.

4.3.1 Structured perceptron

1: for all labels y do
2: w

(0)
y

= 0
3: end for
4: i 0

5: for n : 1...N do
6: for t : 1..T do
7: y

0 argmax

y

0
w

(i)
y

· f(x,y0
)

8: if y

0 6= y

t

then
9: w

(i)
y

0 = w

(i)
y

0 � f(x,y

0
)

10: w

(i+1)
y

= w

(i)
y

+ f(x,y)

11: i i+ 1

12: end if
13: end for
14: end for
15: return w

i

Figure 4.3: Pseudocode for the structured perceptron algorithm. T is the number
of training iterations. x

t

is the feature vector at time t, y
t

is the corresponding
label. w

y

is the weight vector for the label y. f(x,y is the score of the sequence
of tags y given the sequence of feature vectors x. Notation based on McDonald
et al. (2010)

The structured perceptron (Collins, 2002) is a version of the perceptron

4.3. SUPERVISED STRUCTURED PREDICTION: TAGGING 79

algorithm discussed in Section 4.1 that has been modified to perform structured

prediction instead of classification. Although it is not used in this thesis, it is

perhaps the most straightforward tool for structured classification. We give a brief

overview of it here as a stepping stone for the reader unfamiliar with structured

prediction before describing more complicated techniques. The pseudocode of

the structured perceptron algorithm is shown in Figure 4.3.

As with the basic perceptron, the structured perceptron is an online, error

driven algorithm. During training, we make a prediction (line 7) , and we update

the model only when the prediction is wrong (lines 8-11). Instead of predicting

a single tag, however, we predict the label sequence with the highest score using

the Viterbi algorithm. Additionally, structured models use features that are

dependent upon labels predicted earlier in the sequence. Continuing with our

error detection example, let us use two features: the current word, and the

current word along with the previous word. In the first iteration, we would

predict the tag sequence for the grammatical utterance correctly, assuming ‘no

error’ is the default tag. At the second utterance, we would predict the following,

with the features and weights in the format (current word [weight], previous

word + current word word [weight])

(4.4) (she [0], go [0]) (go [0], she go [0]) (home [0], go home[0]) ! - - -

The second prediction is incorrect, and therefore we would need to increment

the weights of the the relevant features: (go, she go). Returning to the first

utterance, we would predict the following sequence:

(4.5) (you [0], go [0]) (go [1], you go [0]) (home [0], go home[0]) ! - + -

Since the second prediction in that sequence is incorrect, we would decrease the

feature weights for (go, you go). The model predicts the sequence of tags for the

second utterance correctly:

80 CHAPTER 4. TECHNICAL BACKGROUND

(4.6) (she [0], go [0]) (go [0], she go [1]) (home [0], go home[0]) ! - + -

At this point the structured perceptron has converged as it will always predict

the correct tag sequence for these two training utterances, and therefore it will

never be updated again.

4.3.2 Linear chain conditional random fields

e1 e2 e3

she

go

home

Figure 4.4: Illustration of the graphical structure of a conditional random field
used for grammatical error detection at the word level: observations capture
words (yellow squares), hidden states (blue circles) represent the predicted error
tag at each step. While predicting the label for each state, we may leverage
features from non-local observations (dashed edges).

The linear chain conditional random field (CRF) is a discriminative graphical

model that has many applications in natural language processing, including named

entity recognition (McCallum and Li, 2003), part-of-speech tagging (Toutanova

et al., 2003), disfluency detection (Qian and Liu, 2013) and chunking (Sha and

Pereira, 2003). We use the linear chain CRF to identify SALT error codes in

Section 6.5. Although there are other varieties of CRF, we do not discuss them

here because they are not used in this thesis, and we will only use the term

‘CRF’ to refer to linear chain CRFs throughout this thesis. We present a brief

overview of how CRF training and testing work, and we refer the interested

reader to Sutton and McCallum (2006) for a more thorough overview.

The CRF defines the conditional probability p(y|x) as follows:

p(y|x) = 1

Z(x)

TY

t=1

exp (w

k

· f(x
t

,y

t

,y

t�1)) (4.7)

4.3. SUPERVISED STRUCTURED PREDICTION: TAGGING 81

where x

t

is the t

th section of the structured input, and y

t

is the t

th section of the

structured output. For example, in our error tagging example, these would be

the t

th word and the predicted tag, respectively, which we illustrate in Figure 4.4.

The term Z(x) in Equation 4.7 is a normalization function, typically referred to

as the partition function. It is defined over a sequence of input feature vectors x:

Z(x) =

X

y

TY

t=1

exp (w · f(x
t

,y

t

,y

t�1)) (4.8)

Training

To train the CRF we simply need to estimate the weight vector w. This is done

with maximum likelihood estimation. Specifically, we maximize the log-likelihood

of a labeled training data D. Since the CRF models a conditional distribution,

namely p(y|x), we use the conditional log likelihood function:

`(w) =

X

x,y2D
log p(y|x) (4.9)

We substitute the CRF model in (4.7) into the conditional log likelihood equation:

`(w) =

X

x,y2D
log

1

Z(x)

TY

t=1

exp (w · f(x
t

,y

t�1,yt

)

!
(4.10)

which can be simplified to:

`(w) =

X

x,y2D

TX

t=1

w · f (x

t

,y

t

,y

t�1)�
X

x2D
logZ(x) (4.11)

There is typically no way to maximize `(w) analytically, and therefore

numerical methods are used. Although both gradient ascent and Newton’s

method are applicable to this problem, they are typically too slow to be used

in practice. The CRF implementation used in this thesis, CRF++ (Kudo,

2005), estimates w using the limited-memory Broyden-Fletcher-Goldfarb-Shanno

82 CHAPTER 4. TECHNICAL BACKGROUND

algorithm, which approximates Newton’s method very efficiently (Nocedal, 1980),

and is a common way of maximizing `(w). We use L2 regularization in all of

our experiments.

Prediction

Prediction with a CRF simply involves estimating the most probable sequence

of labels:

h(x) = argmax

y

p

w

(y|x) (4.12)

, which can be done with the Viterbi algorithm.

4.3.3 Max margin Markov networks

M3Ns, which we use for maze detection in Chapter 5, model the conditional

probability of the label sequence y given the observed features x as follows:

p(y|x) /
TY

t=1

exp (w · f(x,y
t

,y

t�1)) (4.13)

We note that Equation 4.13 is almost identical to the one defining the CRF

(Equation 4.7), aside from the normalizing function Z(x).

Training

She go home .
Truth - + - -
Pred. + - - -
Loss 1 0 1 0

Figure 4.5: Illustration of Hamming loss with identifying errors at the word level:
+ means error, - means no error. Total loss is 2.

As previously mentioned, the biggest difference between M3Ns and CRFs

4.3. SUPERVISED STRUCTURED PREDICTION: TAGGING 83

is in how they are trained: CRFs are trained by maximizing the conditional

likelihood of the weight vector w, while M3Ns involve learning a weight vector w

that maximizes the margin between the true label sequence y and the predicted

label sequence t(x) by solving the following constrained optimization problem:

min

w,⇠

1

2

kwk22 + C

NX

i=1

⇠

i

(4.14)

subject to the following two constraints:

8(x,y) 2 D : w · (f(x,y)� f(x, h(x)) � l(y, h(x))

⇠

i

� 0

(4.15)

One approach to solving this constrained optimization problem is coordinate

descent (Taskar et al., 2003).

In the above equations, ⇠
i

is a slack variable to absorb the errors in the i

th

training example, and C is a tuning parameter. The difference in the scores of the

predicted and true sequences (f(x,y)� f(x, h(x)) is referred to as the margin.

The M3N is trying to maximize the margin between scores assigned to the correct

label sequence and those assigned to incorrect sequences. Finally, l(y, h(x)) is a

loss function that compares the true label sequence y to the predicted one, h(x).

One of the most common loss functions is Hamming loss, which simply counts

the number of divergent labels in h(x), and which is illustrated in Figure 4.5.

Prediction

As with a CRF, prediction using a M3N simply involves estimating the most

probable sequence of labels:

h(x) = argmax

y

p

w

(y|x) (4.16)

84 CHAPTER 4. TECHNICAL BACKGROUND

, which can be done with the Viterbi algorithm.

4.4 Parsing

Sentences in human languages are not just bags of words with no internal

structure: words can be grouped into phrases, and pairs of words can be related,

for example a verb and its subject. This structure is referred to as syntactic

structure, and it is typically represented with a graph in which words are nodes,

and edges represent syntactic relationships. Although such representations are

more complicated than a simple sequence of words, they are also far more

powerful. Returning to our word-level grammatical error detection example, we

saw in Section 4.1 that making predictions while looking at a single word is less

effective than considering words as a sequence, because context is critical for

grammatical error detection: the word ‘go’ is grammatical in ‘you go home’, but

not in ‘she go home’.

In this section we give an overview of two representations of syntactic struc-

ture, namely constituency parses and dependency parses. We also discuss

approaches to predicting these structures, given an utterance (or sentence) as

input. While we do not use constituency parse trees anywhere in this thesis,

they are closely related to dependency parses, which are a key component of our

investigation into automated SALT error code detection in Chapter 6. For more

information on constituency parses, we refer the interested reader to Roark and

Sproat (2007).

4.4.1 Constituency parsing

Constituency parse trees, also commonly referred to as syntax trees, are a

graphical representation of sentence structure. Two example parse trees are

shown in Figure 4.6. We see that they encodes many levels of structure. For

4.4. PARSING 85

S

NP

She

VP

V

go

NP

home

(a)
S

NP

It

VP

V

is

ADJP

necessary

SBAR

IN

that

S

NP

she

VP

V

go

NP

home

(b)
S

NP

DT

The

JJ

small

NN

child

S

VP

VB

wants

VP

TO

to

VP

VB

play

PP

IN

with

NP

DT

a

NN

knife

(c)

Figure 4.6: Constituency parse trees

86 CHAPTER 4. TECHNICAL BACKGROUND

example, both utterances are subsumed under an S node, and ‘go home’ is

subsumed under a V P (verb phrase) node. These parse trees also encode

grammatical relations: the left children of S nodes are the subjects of the right

children, which are verb phrases, and ‘she go home’ in the second example is

clearly a subordinate clause, as it is under an SBAR span.

As suggested by the name, constituency parses are particularly useful for

identifying constituents, which are contiguous spans of words that form a single

syntactic unit. Although there are a variety of constituency tests, one of the

most straightforward is substitution, in which a constituent is replaced without

really changing the meaning. For example, we can replace several constituents

in Figure 4.6c: ‘she wants to play with it’, ‘she wants to do so’, or ‘she does’ (ex.

as an answer to the question ‘Does she want to play with a knife?’). For more

information on constituency tests in English, we refer the interested reader to

Burton-Roberts (2013).

There are at least two major difficulties involved in using constituency

parses for grammatical error detection in transcripts of spoken language. First,

constituency parsing is computationally expensive: the worst-case complexity of

constituency parsing is proportional to the cube of the number of words being

parsed (ex. Earley, 1970; Younger, 1967). For comparison, dependency parsing,

which we discuss below in Section 4.4.2, can be performed in linear time (Nivre,

2009). Similarly, taggers such as a CRF or M3N can be far more efficient than

methods based on constituency parsing.

The second issue in using constituency parses for error detection is that

constituency parses encode more structure than we may need, while the structure

we most obviously need is not necessarily encoded clearly. Many of the errors that

we will be trying to detect involve either a single word (ex. overgeneralization

errors such as ‘goed’) or pairs of words (ex. prepositional errors such as ‘played

4.4. PARSING 87

of’, and subject/verb agreement errors such as ‘she go’). They do not typically

involve entire constituents. For example, identifying a prepositional error, which

is indeed a common error in children’s speech, does not necessarily require access

to the verb phrase with a prepositional phrase as its left child (as in ‘play with

a knife’ in Figure 4.6c). In general, the verb and its accompanying preposition

will suffice, for example ‘play with’ vs ‘play of’. Similarly, constituency parses

do not encode some of the most basic grammatical relationships, for example

direct objects, in an explicit way. Identifying these relationships can be very

useful for word-level error detection: if we know that the word ‘she’ is a direct

object of a verb, the utterance is likely ungrammatical (ex. ‘I paid she’). As we

shall see below, dependency parses do encode such relationships, and they do so

explicitly.

4.4.2 Dependencies and dependency parsing

Dependency parsing is a widely-used formalism for representing the syntactic

structure of a sentence as a graph, and it is the only such formalism used in this

thesis. Dependency parsing has its roots in the work of Tesnière (1959), in which

he claimed that “the structural relationships establish dependency relationships

between the words. Each connection in principle unites a superior term to an

inferior term.” We refer to the superior term as the ‘head’, and the inferior

term as the ‘dependent’ throughout this thesis. In this section, we give relevant

background on dependency graphs and relations, and several techniques to learn

a dependency grammar from manually labeled parses. There has been a great

deal of research in NLP into dependency parsing, and here we give an overview

of the main techniques used for this task. This thesis does not propose novel

methods for dependency parsing, but dependency parsing is a critical component

of our investigation into techniques for automatically detecting SALT error codes

88 CHAPTER 4. TECHNICAL BACKGROUND

(Chapter 6).

Dependency relations

ROOT I saw her go home

nsubj

ROOT

nsubj

ccomp

dobj

Figure 4.7: A dependency parse of ‘I saw her go home’

The asymmetric relationship between the head and its dependent is referred

to as a ‘dependency’. We can represent dependency parses as graphs, as shown

in Figure 4.7, and the dependency relationships themselves are encoded in such

graphs as directed edges, or arcs. Finally, not all dependencies capture the same

functional category: one may be from a verb and its subject, while another may

be from a noun to its determiner. Different functional categories are encoded in

the arc labels. In Figure 4.7, the nsubj relationship indicates that the nominal

dependent is the subject of its verbal head, the dobj relationship indicates that the

nominal dependent is the direct object of its verbal head, the ccomp relationship

indicates that the clause headed by the dependent verb ‘go’ is the complement

of the head verb ‘saw’, and finally the Root arc has an imagined head, and its

dependent is typically the main verb of the sentence. For more detail on how

dependency relationships and functional categories are determined, we refer the

reader to Zwicky (1985), Chapter 6 of Hudson (1990), and De Marneffe and

Manning (2008).

Unlike constituent parses (discussed above in Section 4.4.1), which identify

phrases of words that are syntactically related, dependency parses identify pairs

of related words, and these are likely to be highly informative for identifying gram-

matical errors. For example, by having access to subject/verb, noun/determiner,

and verb/object relationships, we can easily identify several types errors that

4.4. PARSING 89

occur throughout the transcripts that we investigate here: verb agreement errors

(‘he go’), determiner errors (‘a dogs’), and some pronominal case errors (‘see

she’). These relationships are all explicitly encoded in dependency parses.

Dependency graphs

ROOT I saw a man yesterday who sold knives

Figure 4.8: Example of a non-projective dependency parse. The non-projective
arc is in red.

Dependency parses are represented as directed graphs G = {V,E}, where each

vertex v 2 V represents a word, and each edge (i, j) 2 E represents a dependency

relationship in which the word at index i is the head of the word at index j.

There are several restrictions on G. First, G must be weakly connected, meaning

that for every node v 2 V there must be an edge incident to v. G must also be

acyclic, which means that for every pair of nodes (v

i

, v

j

) 2 V either (i, j) 62 E or

(j, i) 62 E; G is not allowed to contain both of these edges. Each word must also

have a single head, which means that if (i, j) 2 E, then (k, j) /2 E, assuming

i 6= k. Finally, many algorithms for dependency parsing require all of the

dependencies to be projective. This means that for for every arc (i, j) 2 E there

is a directed path from i to every word k where i < k < j. In more visual terms,

this requirement prohibits arcs that cross each other, as illustrated in Figure 4.8.

There, we see that there is an arc from ‘man’ to ‘sold’, but there is no directed

path from ‘man’ to ‘yesterday’. We only use projective dependency parses in this

thesis, and therefore we focus our discussion on techniques for recovering such

dependency parses. For a discussion of techniques for non-projective dependency

90 CHAPTER 4. TECHNICAL BACKGROUND

parsing, for example maximum spanning tree-based algorithms, which are less

efficient than the transition-based dependency parsers discussed below, please

see McDonald et al. (2005).

Parsing algorithms

Dependency parsing is a fundamental task in NLP. Its most widespread form

involves learning a dependency grammar from a set of manually parsed sentences.

To evaluate the parser’s performance, one parses a set of test sentences, and

compares the predicted dependencies to the manually labeled ones. Although

some experiments in this thesis involve learning dependency grammars, we do not

evaluate any of them in the standard way (labeled or unlabeled attachment score,

which are simply the percentage of correct labeled or unlabeled dependency

relations) because appropriate data, with both manual dependency and SALT

annotations, is simply not available. We now present some basic algorithms for

dependency parsing.

One of the most widespread types of dependency parsers, and the one of most

relevance to this thesis, is the transition-based dependency parser. Transition-

based parsers all share the same basic components, and operate in quite similar

ways (Nivre, 2008). First, each sentence x is treated as a sequence of words

w1, . . . , wn

. We prepend the artificial Root symbol to the beginning of x, as

w0 (Nivre, 2006).1 A transition-based dependency parser starts with the Root

symbol on the stack �, and the rest of x in the buffer �. It also includes an

empty set of predicted arcs A. Throughout parsing, we represent the state of

the dependency parser as the triple c = (�,�, A). Starting from the initial state,

the parser follows different transitions, which involve moving words between

the stack � and the buffer �, and adding dependency arcs to A. The parse is
1For an interesting discussion of the effects of Root placement, we refer the interested

reader to Ballesteros and Nivre (2013)

4.4. PARSING 91

complete once the buffer � is empty.

Learning a transition-based dependency grammar can be quite straightfor-

ward: an oracle produces the set of transitions to produce the manual parse

for sentence x (Kay, 2000). These oracle transitions provide the gold labels for

the learning task, and features are extracted from the parser state c. We note

that features are not limited to words and their location in the stack or buffer;

training data typically includes more information, for example part-of-speech

tags or lemmatized forms (ex. ‘play’ for ‘playing’, ‘plays’, or ‘played’).

Although transition-based dependency parsers all share the same essential

architecture, there are also ways in which they vary. One such way is in the set of

transitions a parser uses. Two widespread transition systems, which we discuss

below, are called arc-standard and arc-eager. Two other variable components

of these parsers are the features used (ex. Zhang and Nivre, 2011), and the

oracle (ex. Nivre et al., 2009; Goldberg and Nivre, 2013), both of which are

also discussed below. Finally, we note that while we use dependency parsers

in this thesis (Chapter 6), we do so not to produce dependency parses, but

rather to identify SALT error codes. We do not modify the inner workings of

the parsers, and we only compare the effectiveness of complete parsers for this

task, as opposed to, say, investigating what kind of effect using a dynamic oracle

has on SALT error code identification.

Step Stack (�) Buffer (�) Action
1 Root John hit the ball Shift
2 Root John hit the ball Shift
3 Root John hit the ball Left-arc (hit ! John)
4 Root hit the ball Shift
5 Root hit the ball Shift
6 Root hit the ball Left-arc (ball ! the)
7 Root hit ball Right-arc (hit ! ball)
8 Root hit Right-arc (ROOT ! hit)

Figure 4.9: Steps to produce arc-standard parse of ‘John hit the ball.’

92 CHAPTER 4. TECHNICAL BACKGROUND

Arc-standard parsing Arc-standard parsing (Nivre, 2008) has three transi-

tions. In all of these, word i is the word at the top of the stack � and word j is

the second word on the stack �:

1. Left-Arc: Add an arc (j, i) to the set of arcs A. Pop word j from the

stack.

2. Right-Arc: Add an arc (i, j) to the set of arcs A. Pop word i from the

stack.

3. Shift: Move word j from the front of the buffer � to the top of the stack

�.

Figure 4.9 contains an example of arc-standard parsing.

Step Stack (�) Buffer (�) Action
1 Root John hit the ball Shift
2 Root John hit the ball Left-arc (hit ! John)
3 Root hit the ball Right-arc (ROOT ! hit)
4 Root hit the ball Shift
5 Root hit the ball Left-arc (ball ! the)
6 Root hit ball Right-arc (hit ! ball)
7 Root hit Reduce

Figure 4.10: Steps to produce arc-eager parse of ‘John hit the ball.’

Arc-eager parsing Arc-eager parsing has four transitions (Nivre, 2008). Al-

though some of these share the same names with transitions in arc-standard

parsing, the definition of the transitions may be slightly different. Again, word i

is the word at the top of the stack � and word j is the word at the front of the

buffer �:

1. Left-Arc: Add an arc (j, i) to the set of arcs A. Pop word i from the

stack. This is allowed so long as i is not Root and i does not have a head.

2. Reduce: Pop the stack �. This is allowed so long as i has a head.

4.4. PARSING 93

3. Right-Arc: Add an arc (i, j) to the set of arcs A. Move j from the front

of the buffer � and push it onto the stack �. This is allowed so long as j

does not have a head.

4. Shift: Move word j from the front of the buffer � to the top of the stack

�.

Figure 4.10 contains an example of arc-eager parsing.

Features and oracles

Transition-based dependency parsers extract features from the current parser

state ⌃ at each step. During training, an oracle produces the gold label. During

testing, the parser simply predicts a transition using the extracted features.

At present, the most widely used feature set in dependency parsing is the one

proposed by Zhang and Nivre (2011). This feature set includes simple features,

for example words and part of speech tags for words in particular positions, for

example at the front of the buffer or on the top of the stack. It also includes

features capturing the distance between heads and dependents, and higher-order

features, for example the head of the rightmost dependent of the word at the

top of the stack. For a full exposition of these features, we refer the interested

reader to the original paper.

The oracle determines the next transition the parser should choose. Until

recently all oracles were static. Static oracles take a dependency parse, and

following a set of rules, produce a sequence of transitions that produce that parse.

In many cases dependency parses exhibit spurious ambiguity, which means that

there may be more than one sequence of transitions that produce the exact

same parse. In practice, however, the oracle’s rules cause it to produce a single

sequence of transitions for any given parse. More recently, Goldberg and Nivre

(2013) proposed using a dynamic oracle. Static oracles assume that all previous

94 CHAPTER 4. TECHNICAL BACKGROUND

transitions up to the current point in a parse are correct, while dynamic oracles

do not. Instead, dynamic oracles yield the optimal transition at the current

point. Dynamic oracles improve parser performance, and one of the parsers we

use in our experiments, Redshift (Honnibal and Johnson, 2014), uses a dynamic

oracle.

4.4.3 Parsers

Parser / version Transitions Features Oracle
MaltParser 1.8.1 Arc-eager Zhang and Nivre (2011) Static
Redshift -
experimental

Arc-eager Zhang and Nivre (2011),
Honnibal et al. (2013)

Dynamic

Stanford
Lexicalized Parser

Not
transition-
based

N/A

Zpar 0.7 Arc-eager Zhang and Nivre (2011) Static

Table 4.2: Parsers used in this thesis

Table 4.2 contains an overview of the parsers used in this thesis, particularly in

Chapter 6. We now turn our attention to two higher-level tasks that incorporate

techniques for structured inference as well as dependency parsing, and which are

focus of this thesis: disfluency detection and grammar checking.

4.5 Disfluencies and disfluency detection

A key feature of spoken language is the extensive presence of disfluencies, which

Bortfeld et al. (2001) found to occur at a rate of 5.97 per 100 words in spontaneous

speech. As we discuss in more detail below, several phenomena fall under the

umbrella of disfluencies, ranging from filled pauses (‘um’, ‘uh’) to complex

revisions:

(4.17) I want to go to Dallas by uh I mean fly to Denver first.

4.5. DISFLUENCIES AND DISFLUENCY DETECTION 95

Systems that interact with spoken language need to be able to automatically

identify disfluencies: unless disfluent elements are deleted, it can be quite difficult

to interpret the utterance. If the disfluency were retained in the above example,

the user’s interaction could be long and frustrating, with the system possibly

trying to arrange a ticket from Dallas to Denver, or one just to Dallas, instead

of offering a ticket straight to Denver, which is what the user actually wants.

Disfluencies are not just a source of inconvenience for automated systems—

they also shed light on various phenomena in the biomedical domain. For

example, disfluencies appear to be more common in populations with deficits in

inhibitory control, such as the elderly (Kemper et al., 1992; Mortensen et al.,

2006) and people with ADHD (Engelhardt et al., 2011). Engelhardt et al.

(2013) found that lower inhibitory control, and to a lesser extent lower IQ, both

increase the rate of disfluency production in typically developing individuals.

Mazes, which are the equivalent of disfluencies in SALT (see Section 2.2.3), have

been analyzed in research into develompental disorders, as noted in Section

2.3. Automating disfluency or maze detection has the potential to expedite

such research by reducing, or even eliminating, the time needed to annotate

transcripts. Furthermore, automated annotations could be more consistent than

manual annotations, particularly ones applied by different groups. This is in

fact an issue in the SALT corpora, as discussed in Section 5.6.

4.5.1 Switchboard disfluency annotations

Category Example
Filled pause I uh want a sandwich.
Editing term He I mean she left already.
Discourse marker She is, you know, a lawyer.

Table 4.3: Types of disfluencies annotated in Switchboard

The Switchboard annotations (Meteer et al., 1995), have become the de facto

96 CHAPTER 4. TECHNICAL BACKGROUND

standard for disfluency annotations in the field of natural language processing.

The Switchboard annotations split disfluencies into two major types: non-

sentence elements, and restarts. These two categories of disfluencies vary in how

difficult they are to detect automatically.

The most straightforward type of disfluency to identify automatically is the

filled pause. Filled pauses are a closed class that minimally contains ‘uh’ and

‘um’. Uniquely among the disfluency categories, filled pauses are always disfluent.

There are three other closed-class2 categories of disfluencies: editing terms

(‘I mean’, ‘excuse me’), discourse markers (‘well’, ‘you know’), and coordinating

conjunctions (‘but’, ‘but anyway’, ‘and’). Unlike filled pauses, these terms are

not always disfluent. For example, ‘you know’ is a discourse marker in the first

of these utterances, but not the second:

(4.18) It’s {F you know } that kind of place.

(4.19) You know that we can’t afford that.

Filled pauses, editing terms, coordinating conjunctions and asides are all

grouped together in a category labeled non-sentence elements. As shown in

the example above, non-sentence elements are delimited with braces and coded

with a the first letter of the relevant category (F, E, C or A). Asides are defined

as “when the corresponding sequence of words interrupts the fluent flow of the

sentence AND the sentence later picks up from where it left off” (Meteer et al.,

1995, p. 15). For example:

(4.20) I think those satellites {D you know} {A or not satellites, but the

spaceflights } could really spy.

This definition of aside is quite vague, and even the original annotation guidelines

contain examples where the authors are not confident whether certain disfluencies
2
Closed-class means that all possible words or phrases in each category could be enumerated,

at least in theory.

4.5. DISFLUENCIES AND DISFLUENCY DETECTION 97

should be annotated as asides. The authors present three examples of utterances

that may contain asides, even though they admit that “it is not clear that this is

the right analysis” (Meteer et al., 1995). One of these examples is:

(4.21) I don’t know if it’s even true that it’s always unanimous because I

thought there were cases [where + {F uh} {A I don’t know if it’s the

difference between felonies and misdemeanors, but } where] it was okay

for a state to have it {D like } eleven out of twelve.

Restarts are disfluencies that serve to correct whatever the speaker has just

said. In the Switchboard annotations, restarts are broken into four parts, each

of which can be seen in the following utterance:

(4.22)

I want to go [to Dallas| {z }
RM

IPz}|{
+ {F uh } {E I mean }| {z }

IM

to Denver| {z }
RR

] on Monday.

First, there is the reparandum (RM), which contains the words the speaker

wants to correct. The interruption point (IP) marks the beginning of the

correction. The interregnum (IM) contains filled pauses and editing terms, and

precedes the repair (RR), which contains the correction. The IP is the only

component of a restart that is a single point in time; all other components are

spans of time. Note that while the reparandum cannot be empty, the interregnum

can be. It can be difficult to distinguish deletions (with an empty interregnum)

and substitutions:

(4.23) They only give you [a +] so many cents for each bottle.

(4.24) They only give you [a + so] many cents for each bottle.

Switchboard also permits nested disfluencies:

98 CHAPTER 4. TECHNICAL BACKGROUND

(4.25) It must be depressing [to + to] [walk + walk] the halls [and see + [

and + and] see] all these people.

As detailed in Section 2.2.3, SALT maze annotations are binary: words are

either in a maze or they are not, and therefore there is no internal structure to

mazes, and no need to distinguish between substitutions and deletions:

(4.26) They only give you (a) so many cents for each bottle.

(4.27) It must be depressing (to) to (walk) walk the halls (and see and)

and see all these people.

In sum, the Switchboard disfluency annotations are far richer than the

SALT maze annotations. Maze annotations are binary, thus collapsing all of the

distinctions made by the Switchboard annotations between non-sentence elements,

restarts, and the components of both of these categories. Maze annotations also

cannot be nested, and therefore have minimal structure compared to Switchboard

disfluencies.

4.5.2 Automated disfluency detection

Automatic disfluency detection is a well-established task in NLP, and is certainly

the most relevant field of research to automating maze detection, which we

address in Chapter 5. There are, however, four ways in which maze detection

differs from disfluency detection. First, many disfluency detection systems

leverage features from the speech signal, but as discussed below, using the speech

signal is often not practical for maze detection. Second, nearly all previous

research in the field of disfluency detection has ignored data collected from

children, let alone ones who may have impaired language or communication.

Third, there are limited resources for SALT-annotated data: we are not aware

of SALT-annotated corpora that also have manual parse and part of speech

4.5. DISFLUENCIES AND DISFLUENCY DETECTION 99

annotations, as is the case with the Switchboard corpus. Finally, SALT maze

annotations are far simpler than other disfluency annotations, most notably

the ones used in Switchboard, and as a result, some methods for disfluency

detection are not directly applicable to maze detection. We address each of these

distinctions in turn.

Techniques for disfluency detection can be divided into speech-first and text-

first approaches (Nakatani and Hirschberg, 1993): in the former, one extracts

features primarily from the speech signal (for example prosodic cues such as

pitch), while in the latter, one ignores the speech signal, attempting to identify

disfluencies only from text. Many approaches fall in-between, for example lever-

aging both textual and prosodic features (ex. Ferguson et al. 2015). Approaches

leveraging the speech signal cannot be leveraged in several of the experiments

performed here due to lack of audio. Even if the audio is available, as with the

CSLU ADOS corpus (see Section 3.2), there is often all sorts of noise that make

it difficult, if not impossible to extract reliable cues and time alignments from

the speech signal, including clapping, overlapping speech, and banging toys. As

a result, we only consider previous work in text-first disfluency detection that

does not leverage features from the speech signal.

Previous research on automatically identifying disfluencies has almost exclu-

sively focused on conversational language from adults who lack any acknowledged

language impairment or neurological disorder (i.e. who are presumably TD).

Such spoken language which may differ markedly from the spoken language

we would typically annotate with SALT, which tends to come from children,

and often ones suspected of having impaired language or communication. This

focus is due at least in part to the paucity of data, particularly the lack of

corpora comparable in size and annotation quality to the Switchboard corpus.

Several corpora, all of which contain spoken language collected from presumably

100 CHAPTER 4. TECHNICAL BACKGROUND

TD adults, have fallen out of favor compared with Switchboard, both because

they are smaller (in the case of the CallHome corpus (Canavan et al., 1997)),

and because the language in many of them is more templatic, coming from

narrow domains such as planning air travel with either an automated dialog

system (ex. the ATIS corpus (Hemphill et al., 1990)) or another human (the

AMEX (Kowtko and Price, 1989) and Verbmobil corpora (Wahlster, 2000)), or

railroad freight transportation, as in the TRAINS corpus (Heeman and Allen,

1995). Although some transcripts in the CHILDES database (MacWhinney,

1992), which contains transcripts of spoken language collected from children,

do contain limited disfluency annotations, we are not aware of any attempts to

automatically identify these disfluencies.

One of the first investigations taking a text-first approach to disfluency

detection was conducted by Charniak and Johnson (2001). There, they used

boosted linear classifiers to identify edited words. Later, Johnson and Charniak

(2004) improved upon the linear classifiers’ performance with a tree adjoining

grammar-based noisy channel model. Briefly, tree adjoining grammars are

a formalism powerful enough to describe the cross-serial dependencies words

commonly observed in disfluencies. More simply, tree adjoining grammars are

powerful enough to describe the following structure, which cannot be described

with a simple constituency parse because lines in them cannot cross:

(4.28) [to Dallas + {F um } to Denver]

Zwarts and Johnson (2011) improved the noisy channel model by adding in a

re-ranker that leveraged features produced by a large language model. Georgila

(2009) investigated a wide variety of techniques to identify candidate disfluencies,

including conditional random fields, hidden-event language models, and maximum

4.5. DISFLUENCIES AND DISFLUENCY DETECTION 101

entropy models, and then using integer linear programming to decide which

candidate disfluencies to accept.

Recent research has focused on jointly performing dependency parsing (dis-

cussed in Section 4.4.2) and disfluency detection. This technique has its roots

in the combination of constituency parsing and disfluency detection, which was

first suggested by Charniak and Johnson (2001), although only later did this

line of research become more popular (Johnson and Charniak, 2004; Lease et al.,

2006; Miller, 2009; Miller et al., 2009). Approaching disfluency detection as

an extension of constituency parsing is quite natural, as both involve identi-

fying spans of words. Nevetheless, in this thesis we do not attempt to adapt

constituency-parsing based techniques for disfluency detection to the task of

maze detection because these techniques are no longer the best performing, nor

are they as efficient as the best-performing techniques.

At present, the best-performing text-first disfluency detector is the one pro-

posed by Honnibal and Johnson (2014), which does indeed perform dependency

parsing and disfluency detection jointly. Differences in training and decoding

make the performance of this system difficult to compare to the one proposed

by Rasooli and Tetreault (2013), but Honnibal and Johnson’s system narrowly

outperforms another joint dependency parser/disfluency detector proposed by

Rasooli and Tetreault (2014).

Although performing disfluency detection jointly with dependency parsing is

clearly effective, this technique is not easily adaptable to the sort of data that

one would typically annotate with SALT because there is simply no in-domain

training data containing both manual maze and dependency parse annotations.

Producing manual dependency parses requires trained annotators and is time-

consuming. Using domain adaptation techniques with an automatic dependency

parser is also unlikely to be effective: as we show in Chapter 5, the SALT corpora

102 CHAPTER 4. TECHNICAL BACKGROUND

do not constitute a homogeneous domain. Given that there are such discrepancies

between corpora of spoken language collected from children ostensibly annotated

following the same standards, it seems unlikely that a corpus of spoken language

annotated collected from adults, annotated with entirely different standards,

namely Switchboard, would provide appropriate training data for a joint maze

detector/dependency parser.

Qian and Liu (2013) proposed the highest-performing text-first disfluency

detector that does not leverage any sort of syntactic or dependency annotations.

Their detector operates in three steps, and heavily leverages the Switchboard

annotations. Unlike most of the aforementioned research, Qian and Liu do not

approach disfluency detection as a bracketing task in which spans of disfluent

words are identified. Instead, they approach disfluency detection as a tagging task

in which sequences of tags are identified. Specifically, each word can have one

of five tags: not disfluent (S-O), single word disfluency (S-D), begin multiword

disfluency(B-D), inside multiword disfluency (I-D), and end multiword disfluency

(E-D). Mapping between disfluency brackets and tags is trivial:

(4.29) (I) I (uh I think) I think he left

!

I/S-D I/S-O uh/B-D I/I-D think/E-D I/S-O think/S-O he/S-O left/S-O

The first pass of Qian and Liu’s disfluency detector identifies non-sentence

elements (filled pauses, editing terms, etc.), while the the second and third steps

detect reparranda. The non-sentence element detector is a conditional random

field tagger, and it uses features constructed from words, part-of-speech (POS)

tags, and word/POS tuples (these features are presented in detail in Section 5.3).

Specifically, it uses n-grams orders 1-3 (sequences of 1-3 words, POS tags, or

word/POS tag tuples). It also uses binary features that capture whether one

or two words or part of speech tags are repeated exactly (they refer to these as

4.5. DISFLUENCIES AND DISFLUENCY DETECTION 103

‘logic uni/bigrams’. For example, such a feature comparing the current word

(‘for’, underlined) to the previous word (him) in:

(4.30) I bought it for him for her.

would be negative, but comparing it to two words back (‘for’) would be positive.

The second and third steps of Qian and Liu’s disfluency detector identify

reparranda using essentially the same features as the first step. One minor

difference between the non-sentence element detector and the reparrandum

detector is that the latter uses a M3N tagger (Section 4.3.3) instead of a CRF

tagger (Section 4.3.2). A more substantial difference is that each step after the

first uses features extracted not only from the unmodified utterance, but also

from the utterance after disfluent elements identified in the previous steps have

been excised.

In some ways, Qian and Liu’s disfluency detector is easily adaptable to maze

annotation because it only uses features extracted from words and POS tags, and

these can be automatically extracted without any difficulty, even from the sort

of data that would typically be annotated with SALT. On the other hand, Qian

and Liu’s detector leverages distinctions made by Switchboard annotations that

are absent in SALT maze annotations. Specifically, it identifies non-sentence

elements in one step, and reparranda in another, while SALT does not distinguish

between these two categories. Furthermore, Qian and Liu demonstrate that

each additional pass improves disfluency detection. Nevertheless, we believe that

Qian and Liu’s detector is particularly appropriate to adapt to the task of maze

detection due to the fact that it only uses very simple features, and because even

a single pass of their detector performs well on Switchboard.

We now turn our attention to previous research in grammar checking, which

unlike all of the work in disfluency detection, has focused primarily on written

language.

104 CHAPTER 4. TECHNICAL BACKGROUND

4.6 Grammar checking

Previous research in NLP has addressed several tasks related to handling ungram-

matical sentences: grammatical error detection, which only involves identifying

whether a sentence contains a grammatical error; grammatical error classification,

which requires identifying the type of any errors in a sentence (ex. subject-verb

agreement error in ‘She leave.’); and finally grammatical error correction, which

requires producing the grammatical version of an ungrammatical sentence. We

refer to these tasks collectively as grammar checking. Most previous research in

grammar checking has focused on developing two types of tools: ones to assist

native speakers while proofreading, which have been the focus of commercial

research, and tools to assist second language learners, which have been a more

popular interest in academic research.

The task of automatically identifying SALT error codes has three key charac-

teristics that distinguish it from more traditional grammar checking, and these

three characteristics lead us to identify three requirements for a useful SALT

error code detector. First, SALT error codes are applied to transcripts of spoken

language collected from children, including ones suspected of having a language

impairment, and therefore a SALT error code detector must be robust to phenom-

ena in spoken language. Second, SALT error codes are not typically applied in a

consistent manner across corpora and research groups. For example, comparing

Tables 3.4 and 3.7, we see that the ENNI corpus does not include the [EO]

overgeneralization code, but the NarSSS corpus does; overgeneralization errors,

along with a variety of others, are annotated with [EW] codes (word-level errors)

in the ENNI corpus. Finally, there are various ways a SALT error detector

could be used, for example: sampling a few utterances likely to contain an error,

annotating utterances before manually correcting them, or removing utterances

without errors before manual annotation of the rest. Each of these uses suggests

4.6. GRAMMAR CHECKING 105

a different operating point in terms of precision and recall, and therefore a SALT

error code detector should be tunable—i.e. the user should be able to adjust the

trade-off between precision and recall. As we discuss below (Section 4.6.3), this

ability is notably absent from many grammar checking systems.

Having enumerated the key differences between a SALT error code detector

and a traditional grammar checker, we now turn to previous research in grammar

checking, particularly as it relates to the task of automating SALT error code

application and its three key requirements.

4.6.1 Spoken language

Most of the research in grammatical error checking has focused on developing

tools to proofread formal, written English, which differs in several critical ways

from the transcripts of spoken language that we are interested in analyzing. First,

spoken language contains disfluencies, which are absent from written language,

and incomplete utterances, which are acceptable in spoken language, even though

incomplete sentences are typically considered ungrammatical in written language.

We are aware of no previous work in grammar checking that has investigated the

robustness of a grammar checker to either disfluencies or incomplete utterances.

There has, however, been a small amount of research on grammar checking in

transcripts of spoken language. Bowden and Fox (2002) propose a rule-based

system to diagnose errors in spoken language from non-native speakers of English.

Their system, however, is not trainable, and furthermore, it is not able able

to evaluate sentences with more than a single clause. Lee and Seneff (2006)

proposed a system to identify a variety of errors in transcripts of conversations

in which users interact with a spoken dialog system to book a flight. This system

uses an n-gram language model to produce candidate corrections for an utterance

with simulated errors, and then a stochastic context free grammar to rerank

106 CHAPTER 4. TECHNICAL BACKGROUND

these candidates. Their system performs quite well, but it is only evaluated

in a narrow domain. Although their system has two trainable components,

it is unclear clear how one could use it to classify grammatical errors instead

of correcting them. Lee and Seneff (2008) also proposed a system that uses

template-matching on parse trees to correct verb errors in transcripts of spoken

language from Japanese learners of English. This system is evaluated on open-

domain dialogs, but since it is template-based, it is not trainable. Crucially, none

of these investigations address disfluencies or incomplete utterances: the only

mention of these phenomena is in Lee and Seneff (2008), which does not attempt

to correct incomplete sentences, and which notes that “colloquial phenomena”,

for example using like as a filler, are difficult to process. In a sense then, these

works have addressed grammar checking of language that happens to be spoken,

as opposed to archetypal spoken language.

More recent investigations have dealt with spoken language that is quite

distinct from written language. Caines and Buttery (2010) found a logistic

regression model was able to identify the zero-auxiliary construction (e.g. ‘You

going home?’), which is comparatively rare in written language, with over

96% accuracy (Caines and Buttery, 2010). Even though the zero-auxilliary

construction is not necessarily ungrammatical, identifying such constructions

may be useful as a preprocessing step to a grammaticality classifier. They also

demonstrated that their detector can be integrated into a statistical parser

yielding improved performance, although they are vague about the nature of the

parse improvement (Caines and Buttery, 2010, p. 6). However, when Hassanali

and Liu (2011) reimplemented this zero-auxilliary detector and adapted it to

transcripts of spoken language collected from children, they found that its

performance was extremely poor.

Hassanali and Liu (2011), which is the most relevant investigation to this

4.6. GRAMMAR CHECKING 107

thesis, evaluated several methods for grammatical error detection in transcripts

of spoken language from children, some of whom had impaired language. They

identified 11 types of errors in these transcripts, and compared three types of

systems designed to identify the presence of each type of error: 1) rule based

systems; 2) decision trees that use rules as features; and 3) naive Bayes classifiers

that use a variety of features. They were able to identify all error types well (F1

> 0.9 in all cases), and found that in general the statistical systems outperformed

the rule based systems. The authors explicitly note that “as is prevalent in spoken

language corpora, these transcripts had disfluencies, false restarts and incomplete

utterances which sometimes pose problems to the parser” (Hassanali and Liu,

2011, p 4), but it is not clear from the paper how these were handled3

4.6.2 Trainability

Grammar checkers designed for written language are typically designed to identify

deviations from standard formal, written English. Although there is no single

definition of what constitutes ‘correct’ written English, some types of errors are

universally acknowledged, including: subject-verb agreement errors, prepositional

errors, and omitted articles. Other constructions may be grammatical, but

unacceptable to certain writers, for example split infinitives or prepositions at

the end of a sentence. And beginning a sentence with ‘and’. In other words, most

users of such grammar checkers are trying to produce language that conforms to

similar, if not identical, standards. This situation means that grammar checkers

do not have to be trainable for them to be effective.

The grammar checker in Microsoft Word (MS Word) is likely the world’s most

widely used. Like many previous systems, most notably IBM’s Epistle (Heidorn

et al., 1982; Jensen et al., 1983), the MS Word grammar checker consists of

a hand-built grammar that is used to parse sentences. This grammar is quite
3The authors did not respond to an email asking about this either.

108 CHAPTER 4. TECHNICAL BACKGROUND

flexible, which allows even ungrammatical sentences to be parsed. For example,

intransitive verbs are allowed to take direct objects, even though they will be

penalized for doing so (Leacock et al., 2014). We note that this flexibility is

not universal among hand-built parsers: link grammar parsers fail to parse

ungrammatical utterances by design (Sleator and Temperley, 1991). In addition

to these flexible rules, the MS word grammar checker also has the ability to

fit parses of substrings into a complete parse. Typically a given sentence will

yield multiple parses, which are then scored heuristically, and this score is used

to determine whether or not the sentence contains a grammatical error. Due

to the hand-crafted rules and heuristics, the MS Word grammar checker is not

trainable. It is, however, somewhat customizable: users are allowed to select

which errors they want to be alerted to (see page 173 for a description of these

options). For more details on the grammar checker in MS Word, including a

history of the system’s development, we refer the interested reader to Leacock

et al. (2014).

Although not available for consumer use, ETS E-Rater (Attali and Burstein,

2004), which is a system for automatically grading essays, contains a well-

developed grammar checking component (Shermis and Burstein, 2013). ETS

E-Rater does not only flag utterances that contain errors; it also identifies the

types of errors in them. While the details of ETS e-Rater are proprietary, it

consists of a variety of detectors of specific types of grammatical errors, some

of which are statistical, and others of which are rule-based. Like the grammar

checker in MS Word, these detectors are set to a high precision operating point

so as to avoid false positives. Like MS Word, e-Rater has many manually-tuned

components, and therefore is not easily adaptable to novel standards or different

error sets. For a more detailed overview of ETS e-Rater, we refer the interested

reader to Gamon et al. (2013, pp 262-263).

4.6. GRAMMAR CHECKING 109

More recent research has focused on data-driven techniques for grammar

checking, and most systems are based on techniques from machine learning,

machine translation, language modeling, or a combination of these. Many also

include hand-crafted rules because certain types of errors, for example verb

overgeneralization (ex. ‘eated’ instead of ‘ate’), are easier to identify and correct

with rules than with data-driven approaches (Gamon et al., 2013). Nevertheless,

each of these types of systems is trainable, at least to an extent, and we give a

brief overview of each in turn.

The use of machine-learning based techniques, and in particular classifiers, for

grammatical error detection has its roots in research on identifying spelling errors

in English where either homophones (‘your’ and ‘you’re’) or similar sounding

words (‘effect’ for ‘affect’) are confused (Golding, 1995). These approaches

looked at the context of the confused words to create separate models for each

set of them. This approach is viable for such spelling errors because there

are only so many of them, but extending it to arbitrary grammatical errors is

not practical. More recently, several systems proposed for the CoNLL shared

tasks on grammatical error correction (Ng et al., 2013, 2014) have used error-

specific classifiers for grammar checking (Rozovskaya et al., 2013; van den Bosch

and Berck, 2013; Rozovskaya et al., 2014). Approaches based on error-specific

classifiers, however, are impractical for SALT error code detection, where the set

of errors is not consistent across corpora. A different classifier based approach

at the CoNLL 2013 shared task used a single classifier to propose corrections

and a language model to filter these corrections (Jia et al., 2013). This system,

however, refines all of the manual error labels using a set of rules, which limits

its ability to be adapted rapidly to novel error sets.

Both the language-modeling and machine translation-based approaches in

the CoNLL 2013 and 2014 shared tasks leveraged the corrections included in

110 CHAPTER 4. TECHNICAL BACKGROUND

the training data. The language modeling approaches typically compared the

probability of an observed n-gram with the probability of n-grams of potential

corrections, while the machine translation approaches treat grammar correction

as a translation task: the input is a sentence that potentially contains an error,

and the output is the corrected sentence (Ng et al., 2013, 2014).

Although the approaches described above can be successful for formal, written

English, and could easily be extended to other domains where corrected text

is available (ex. instant messaging), they are not necessarily appropriate for

identifying SALT error codes. First, these approaches are far more useful for

correcting a wide variety of errors than they are for classifying them. Identifying

and classifying errors, however, are the primary goal of automatically identifying

SALT error codes, as most error codes do not include corrections. Finally, given

the inconsistencies we identify in the SALT maze and error code annotations

(Chapters 5 and 6, respectively), it seems highly likely that the corrections

would be inconsistent as well, thus making it quite difficult to learn an effective

language model or model for machine translation, leaving aside issues of data

sparsity.

4.6.3 Tunability

Commercial grammar checkers typically have very specific demands regarding

their operating point, which is the balance between flagging true as well as false

errors. For example, the grammar checker in MS Word underlines sentences

with errors to draw a user’s attention to them. In this scenario, the designers

found it important to reduce the number of falsely flagged errors to below one

per page on average, because users find a high number of falsely flagged errors

to be irritating (Helfrich and Music, 2000). They also found that preferences

about errors vary among users: German writers tend to care about case and

4.7. EVALUATION 111

capitalization errors, while French and Spanish writers are more interested in

agreement errors. Helfrich and Music describe how user feedback is used to tune

the MS Word grammar checker very finely, but this process is highly involved.

Such a laborious tuning procedure is reasonable for a commercial tool that needs

to be tuned once, as is the case with MS Word’s grammar check, but it is far too

expensive to be applicable to a SALT error code detector. Some other grammar

checkers, particularly the machine learning and language-modeling based tools

proposed for the CoNLL shared tasks (Ng et al., 2013, 2014), are easily tuned,

even if they are not adaptable to SALT error code detection for reasons discussed

above in Section 4.6.2.

4.7 Evaluation

Throughout this thesis we evaluate systems in terms of precision (P), recall (R)

and F1 score (F1). These are defined as follows:

P =

tp

tp+ fp

(4.31)

R =

tp

tp+ fn

(4.32)

F1 =

2PR
P + R

(4.33)

where tp and fp are the counts of true and false positives, respectively, and fn is

the count of false negatives. All of these range between 0 and 1, with 1 indicating

perfect performance. To illustrate, suppose we have a system that identifies

ungrammatical utterances: if it has high precision, then most of the utterances

it identifies as ungrammatical will in fact be ungrammatical; if it has high recall,

then it will have identified most of the ungrammatical utterances in the data set.

112 CHAPTER 4. TECHNICAL BACKGROUND

In practice, there is typically a trade-off between precision and recall. In many

cases, including the maze and SALT error code detectors described in Chapters

5 and 6, users of automated systems can set the operating point of the system,

or in other words, change the balance between precision and recall. Finally, the

F1 score combines precision and recall into a single metric. In general, we use

the F1 score instead of, say, the mean of precision and recall, because the F1

score is not particularly sensitive to improvement in either one of precision or

recall, but rather improvement in both of them.

4.7.1 Randomized paired-sample test

Many of the experiments in this thesis involve comparing the output of two

systems A and B. In order to determine whether the distribution of the outputs

yielded by two systems are significantly different, we adopt the randomized

paired-sample test proposed by Noreen (1989) (see also Yeh (2000)).

Let A be the system with lower performance, and B be the system with

higher performance. We first compute the difference d in performance between

the two systems. Then, we repeatedly construct a random set of predictions for

each input item by choosing between the outputs of system A and B with equal

probability. We evaluate the performance of these randomly varied predictions

n times, and if it exceeds the performance of the baseline system by at least d,

we count the iteration as a success. We can then compute an upper bound on

the significance level p:

p s

n+ 1

(4.34)

where s is the number of successful iterations (Noreen, 1989).

This procedure can be used to compare the output of any two systems, and in

this thesis we use it to compare systems that predict maze annotations (Chapter

4.8. CONCLUSIONS 113

5), scores on structured instruments (Chapter 7), and the presence of autism or

a language impairment (also in Chapter 7). This procedure is also agnostic to

the performance metric used, whether it be F1-score, a correlation metric such

as Kendall’s tau, or the area under the receiver operating curve.

Although the randomized paired-sample test does not tell us whether the

system of interest B performs significantly better than the baseline system A, it

does tell us whether the outputs of A and B are drawn from significantly different

distributions. If the output of the two systems are drawn from significantly

different distributions, and the output of B is better than the output of A, then

this suggests, but does not show conclusively, that B outperforms A.

4.8 Conclusions

In this chapter we have provided the necessary background for the rest of this

thesis. We began with an overview of classification, graphs, and parsing, in

particular dependency parsing. These topics underpin the areas of NLP that are

most relevant to this thesis, namely disfluency detection and grammar checking.

Disfluency detection is very closely related to maze detection, which we explore

in Chapter 5. There we see that minor modifications to Qian and Liu’s disfluency

detector enable it to perform maze detection with comparable performance to

disfluency detection. Using this detector, we also identify severe inconsistencies

in the maze annotations in the SALT reference corpora.

At first glance, grammar checking appears to be similar to SALT error code

detection (Chapter 6); after all, both tasks consist of identifying and labeling

ungrammatical language. Nevertheless, we have argued that a useful tool to

identify SALT error codes has several differences from most previously proposed

grammar checkers. First, a SALT error code detector needs to be trainable so

that a given research group can have it produce annotations that are in line with

114 CHAPTER 4. TECHNICAL BACKGROUND

their own, rather than ones that conform to a universal standard. Second, it

needs to be robust to phenomena in spoken language. Third and finally, the user

must be able to tune the trade-off between precision and recall so that it can be

used for a wide variety of tasks. Having provided the necessary background, we

now continue to our own work, beginning with automating maze detection.

Chapter 5

Maze Detection

In this chapter we consider several issues pertaining to automating SALT maze

annotations, which indicate disfluent speech. After a brief review of the maze

guidelines and their utility in both research and language sample analysis, we

present a simple tool that is able to identify mazes quite effectively.1 We

evaluate the maze detector both in terms of how well it replicates manual maze

annotations, and in terms of how much certain statistics derived from transcripts

with automatic maze annotations diverge from ones computed from transcripts

with manual maze annotations. These statistics are all ones that are used for

research into language development and impairment, as discussed in Chapter 2.

We also explore whether it is possible to use the same maze detector for multiple

corpora, or whether the annotations and language vary too much between corpora

for this to be effective. Finally, we examine the consistency of maze annotations

in the SALT corpora, as well as potential differences between the SALT corpora,

for example differences in utterance segmentation or richness of vocabulary. We

identify severe inconsistencies with standard maze annotation practices in the
1Much of the work in this chapter is based on our paper Challenges in Automating Maze

Detection (Morley et al., 2014).

115

116 CHAPTER 5. MAZE DETECTION

GillamNT corpus, which we discuss in Section 5.6.3. These inconsistencies

affect the reference statistics, for example mean length of utterance, computed

from the GillamNT corpus, making it of questionable value as a reference

database.

5.1 Background

5.1.1 Annotation guidelines

(You have you have um there/’s only) there/’s ten people
(a) SALT maze annotation

[[You have + you have] + {F um}] [there/’s only + there/’s] ten people
(b) Switchboard disfluency annotation

Figure 5.1: Maze and disfluency annotations

As discussed in more detail in Section 2.2.3, the SALT manual gives very

brief guidelines for annotating mazes, defining them simply as “filled pauses, false

starts, and repetitions and revisions of words, morphemes and phrases” (Miller

et al., 2011, p. 48). Although this definition implicitly acknowledges differences

between filled pauses, false starts, and repetitions, SALT maze annotations do

not: contiguous spans of words in mazes are simply delimited with a single set

of parentheses. This means that mazes cannot be nested (either properly or

improperly), maze spans cannot overlap, and mazes have no internal structure.

SALT maze annotations are perhaps best viewed as binary word-level annotations:

each word is either in a maze, or not in a maze. Figure 5.1 illustrates the flat

nature of maze annotations, and for contrast, it also shows the same utterance

annotated following the Switchboard guidelines (Shriberg, 1994), discussed in

Section 4.5.1, which are widely used by speech and NLP researchers.

The self-paced SALT online training materials (SALT Software, 2014b) con-

5.1. BACKGROUND 117

tain a few more details regarding maze annotation. They indicate that in cases

where there is a choice of words to mark, annotators are to consider the final

production successful, and the previous productions as being in a maze. For

example, in the utterance:

(5.1) (I) I saw it.

it would be incorrect to mark the second occurrence of the word ‘I’ as being in a

maze. Additionally, both partial words, and stuttering in the middle of a word

are always included in mazes:

(5.2) He ate (an ap_ p* p* _ple) a green apple.

(5.3) I saw (hi*) them go.

Recall that partial words are indicated by the spoken material followed by ‘*’,

and that stutters are delimited by ‘_’ with any repeated sounds followed by ‘*’,

as described in Section 2.2.2.

5.1.2 Utility of maze annotations

Mazes have sparked interest in the literature about child language disorders,

where they are typically analyzed from a language processing perspective in which

disruptions to fluency are viewed as a consequence of monitoring, detecting and

repairing language, potentially including speech errors (Levelt, 1993; Postma and

Kolk, 1993; Rispoli et al., 2008). Several studies have found that as grammatical

complexity and utterance length increase, the number of mazes increases in

typically developing children and children with language impairments (MacLach-

lan and Chapman, 1988; Nippold et al., 2008; Reuterskiöld Wagner et al.,

2000; Wetherell et al., 2007). Mazes in narrative contexts have been shown

to differ between typical children and children with specific language impair-

ment (MacLachlan and Chapman, 1988; Thordardottir and Weismer, 2001),

118 CHAPTER 5. MAZE DETECTION

though others have not found reliable group differences (Guo et al., 2008; Scott

and Windsor, 2000).

In addition to the potential usefulness of analyzing language in mazes, mazes

must be identified and excised in order to calculate many statistics used in

language sample analysis, even ones as basic as mean length of utterance, and

type or token counts. In addition to these statistics, the SALT software also

computes the mean number of mazes per utterance, and the mean number of

words per maze, both of which obviously require maze annotations to compute.

Finally, maze annotations are critical for analyzing errors: some mazes are in

fact self-corrections of language or speech errors, and therefore errors within

mazes should generally be ignored. In practice, error codes are not typically

annotated within mazes.

5.1.3 Inter-annotator agreement

Heilmann et al. (2008) investigated inter-annotator agreement on several types of

SALT annotations, including maze annotations. They investigated agreement on

maze annotations under three conditions. In all three, they measured agreement

between annotators in terms of the number of words and bound morphemes

in mazes, as well as maze placement, which is essentially maze spans. For

example, the following pair of annotations contain four disagreements at the

word/morpheme level (you, have, there, /’s), and a single disagreement at the

maze placement level:

(5.4) (You have you have um there/’s only) there/’s ten people

(5.5) You have (you have um there/’s only there/’s) ten people

If, however, excising different mazes results in the same utterance, then maze

disagreements are ignored. For example, the following pair of annotations would

5.2. AUTOMATING MAZE DETECTION 119

be counted as having zero disagreements because excising either maze produces

the utterance ‘I went to the store’:

(5.6) I went (I went) to the store

(5.7) (I went) I went to the store

Heilmann et al. (2008) first measured inter-annotator agreement in terms of

transcription consensus. First an annotator transcribed and annotated a sample

of spoken language. A second annotator then reviewed the first transcriber’s work,

and the two resolved any discrepancies through discussion. The authors found

both maze placement and maze word/morpheme agreement to be 99% when

measured under this condition. For the second condition, protocol coding accuracy,

they had annotators with ten hours of training and under a year of experience

transcribe a recording of spoken language along with SALT annotations. They

then had expert annotators review these transcripts and record the number

of disagreements. Heilmann et al. (2008) reported 98% agreement for maze

placement and 100% agreement for maze word/morpheme agreement under

this condition. For the final condition, independent transcription accuracy, two

teams of annotators with unspecified amounts of experience transcribed the

same sample of spoken language and applied SALT annotations. Crucially,

the annotators were each blind to the other’s transcriptions and annotations.

Heilmann et al. (2008) reported 98% agreement for maze placement and 100%

maze word/morpheme agreement under this condition.

5.2 Automating maze detection

Here we describe how maze detection can be approached as a task in NLP.

Specifically, we describe the input and output of the task, and discuss evaluation.

120 CHAPTER 5. MAZE DETECTION

5.2.1 Input and output

We assume that the input to the maze detector will be a single c-unit, which is

defined as “an independent clause with its modifiers” (Miller et al., 2011). We

also assume that there are no SALT annotations, for example morphological

annotations or error codes, within the c-unit, and that all partial words, non-

speech sounds, and punctuation have been removed, as described in Section 3.3.

Again, both training and test data are preprocessed in the same way, and we

remove all utterances with unintelligible words from both training and test data.

One would expect that including punctuation would facilitate maze detection,

and preliminary experiments suggest this is indeed the case. Nevertheless, we

remove punctuation for two reasons. The first reason is that doing so is standard

practice in the disfluency detection literature, largely because the output of a

speech recognition system would not necessarily include punctuation. Second,

we do not want inconsistencies in punctuation between corpora to affect maze

detection performance.

The maze detector outputs a single tag for each word in the input (see

example 4.29), and this gets converted to a binary tag that indicates whether

that word is or is not in a maze.

5.2.2 Evaluation

We evaluate the maze detector both intrinsically and extrinsically. Intrinsic

evaluation, which is quite common in NLP tasks, captures how well a system

replicates manual annotations, while extrinsic evaluation captures how useful

the system output is for a downstream task. Extrinsic evaluation is critical to

our investigation because maze detection is not simply a task in NLP, but rather

a necessary step of language sample analysis using SALT. Here we discuss both

intrinsic and extrinsic evaluation as they apply to an automatic maze detector.

5.2. AUTOMATING MAZE DETECTION 121

Intrinsic evaluation

Gold: (and then it oh) and then it (um) put his wings out .
Prediction: (and then it) oh and then it (um) put his wings out .

Word Gold Pred. Outcome
and 7 7 TP
then 7 7 TP
it 7 7 TP
oh 7 FN
and, then, it TNx3
um 7 7 TP
put, his, wings, out TNx4

(a) Tagging evaluation
Span Gold Pred. Outcome
(and then it oh) 7 FN
(and then it) 7 FP
(um) 7 7 TP

(b) Bracketing evaluation

Figure 5.2: Tagging and bracketing evaluation for maze detection; 7indicates
word or span is in a maze
TP = True Positive, FP = False Positive, TN = True Negative, FN = False
Negative

We evaluate our maze detectors intrinsically in two different ways: tagging

performance and bracketing performance, both of which are standard forms of

evaluation for various tasks in the NLP literature. Tagging performance captures

how effectively maze detection is done on a word-by-word basis, while bracketing

performance describes how well each maze is identified in its entirety. For both

tagging and bracketing performance, we count the number of true and false

positives and negatives, as illustrated in Figure 5.2. In tagging performance,

each word gets counted once, while in bracketing performance we compare the

predicted and observed maze spans. We use these counts to compute performance

in terms of precision, recall, and F1-score. See Section 4.7 for details on these

scores.

Note that partial words and punctuation are both excluded from test data,

122 CHAPTER 5. MAZE DETECTION

and hence from evaluation. We eliminate punctuation because it does not need

to be included in mazes: punctuation is not counted in summary statistics (e.g.

MLU, word count, etc.), and punctuation errors are not captured by the SALT

error codes. Although we excise partial words for our experiments here, others

may choose to include them. If this is done, partial words should be excluded

from evaluation because they are always in mazes, and therefore can be detected

trivially with a simple rule. We exclude partial words from detection for this

reason, and so that performance metrics are comparable across corpora, even

if they vary widely in the frequency of partial words. Finally, future work in

maze detection may want to exclude both punctuation and partial words from

evaluation so that our results can be used as a baseline.

We use the randomized paired-sample procedure described in Section 4.7.1 to

compare pairs of models for maze detection. In particular, we use this test to see

whether the tagging or bracketing F1 scores of the two models are significantly

different.

Extrinsic evaluation

While precision and recall allow us to compare two different maze detectors,

they do not give us a complete picture of how useful the maze detectors are in

automating a step of SALT: in SALT, maze annotations permit the computation

of certain summary statistics, and ideally automatically applied maze annotations

will yield statistics similar to ones derived from manual annotations. Specifically,

maze annotations are directly used to compute: MLU in words (and morphemes),

token and type counts, the number of utterances with mazes, the total number

of mazes, the number of words in mazes, and the percentage of words in mazes.

After comparing various system configurations in terms of intrinsic performance

(in Section 5.4), i.e. how well they are able to reproduce manual annotations,

we will look at how summary statistics derived from the output of the best-

5.3. MAZE DETECTOR 123

performing system compare to ones derived from manually annotated transcripts.

This investigation is in Section 5.5.

5.3 Maze Detector

Category Features
Unigrams t

i�2, t

i�1, t

i

, t

i+1, t

i+2

Bigrams t

i�1ti, t

i

t

i+1

Trigrams t

i�2ti�1ti, t

i�1titi+1, t

i

t

i+1ti+2

Logic Unigrams I(t

i

, t

i�j

)

�4 j 4; j 6= 0

Logic Bigrams I(t

i�1ti, t

j�2tj�1)

I(t

i

t

i+1, t

j

t

j+1);

�4 j 4; j 6= 0

Predicted tag y

i�1

Table 5.1: Feature templates for maze word detection, following Qian and Liu
(2013). We extract all of the above features from both words and part-of-speech
(POS) tags, albeit separately. t

i

indicates the current word or POS tag, while
t

i�1 is the previous one and t

i+1 is the following. The function I(a, b) is 1 if a
and b are identical, and otherwise 0. y

i�1 is the tag predicted for the previous
word.

We carry out our experiments in automatic maze detection using a statistical

maze detector we first presented at the CLPsych workshop2 (Morley et al., 2014).

This detector learns to identify mazes from manually labeled data using the

features extracted from words and automatically predicted part of speech tags.

For classification, we use the Max Margin Markov Network ‘M3N’ classifier in

the pocketcrf toolkit (available at http://code.google.com/p/pocketcrf/),

which is the same classifier that Qian and Liu (2013) use in the second and third

steps of their disfluency detector (discussed in Section 4.5). The M3N classifier,

described in Section 4.3, is particularly appropriate for maze and disfluency

detection: it is a kernel-based classifier that is also able to leverage the sequential
2The results in this thesis differ from those in the CLPsych paper due to differences in

normalization. For example, utterances with unintelligible words were included in the CLPsych
experiments, but we exclude them here.

http://code.google.com/p/pocketcrf/

124 CHAPTER 5. MAZE DETECTION

Index
U

nigram
B

igram
Trigram

Logic
unigram

Logic
bigram

Label
W

ord
P

O
S

W
ord

P
O

S
W

ord
P

O
S

W
ord

P
O

S
W

ord
P

O
S

0
I

P
R

P
$

I
$

P
R

P
$

$
I

$
$

P
R

P
0

0
0

0
S-O

1
saw

V
B

D
I

saw
P

R
P

V
B

D
$

I
saw

$
P

R
P

V
B

D
0

0
0

0
B

-M
2

the
D

T
saw

the
V

B
D

D
T

I
saw

the
P

R
P

V
B

D
D

T
0

0
0

0
E

-M
3

saw
V

B
D

the
saw

D
T

V
B

D
saw

the
saw

V
B

D
D

T
V

B
D

1
1

0
0

S-O
4

the
D

T
saw

the
V

B
D

D
T

the
saw

the
D

T
V

B
D

D
T

1
1

1
1

S-O
5

dog
N

N
the

dog
D

T
N

N
saw

the
dog

V
B

D
D

T
N

N
0

0
0

0
S-O

Figure
5.3:

Features
extracted

for
each

w
ord

in
the

sentence
‘I/P

R
P

saw
/V

B
D

the/D
T

saw
/V

B
D

the/D
T

dog/N
N

’w
here

w
/X

indicates
w

ord
w

has
the

P
O

S
tag

X
.

$
is

a
sym

bolto
pad

the
beginning

and
end

ofsentences.
For

space
and

clarity,w
e

only
include

bigram
s

and
trigram

s
to

the
left

ofthe
current

position,and
logic

unigram
s

and
bigram

s
w

ith
j
=
�
2.

5.3. MAZE DETECTOR 125

nature of the data in this problem (Taskar et al., 2003).

The feature set used by our maze detector is summarized in Table 5.1, and

we note that it is identical to the feature set used by the ‘filler word’ detector in

the disfluency detector proposed by Qian and Liu (2013). Figure 5.3 contains a

concrete example of these features. We now present these features in turn.

Our maze detector extracts features from both words and of part-of-speech

(POS) tags that are up to three items long. Such sequences are referred to

as unigrams, bigrams, and trigrams, respectively, and sequences of unspecified

length are called n-grams. One type of feature that we use is the word (or POS

tag) n-gram itself. For example, features such as the unigram ‘um’, or the bigram

‘the the’, or its corresponding POS bigram ‘DET DET’, are likely to be strong

indicators of mazes. POS n-grams may intuitively seem to be weaker indicators

of mazes than word n-grams, but word n-grams are naturally sparser: there are

far more sequences of three words that will never occur in the data as compared

to sequences of three POS tags that we will not observe.

The other type of feature we extract is called a logic n-gram. Logic n-grams

are a binary function of two n-grams. If the two n-grams are the same, it returns

1, and if they are different, it returns 0. We extract logic n-gram features by

comparing word (or POS) n-grams starting at the current word with n-grams

starting at nearby words. Logic n-gram features capture the intuition that

repeated sequences of words or n-grams are strong cues of mazes.

We use the following label set: S-O (not in maze); S-M (single word maze);

B-M (beginning of multi-word maze); I-M (in multi-word maze); and E-M (end

of multi-word maze). The M3N classifier allows us to set a unique penalty for

each pair of confused labels, for example penalizing an erroneous prediction of

S-O (failing to identify maze words) more heavily than spurious predictions of

maze words (all -M labels). This ability is particularly useful for maze detection

126 CHAPTER 5. MAZE DETECTION

because maze words are so infrequent compared to words that are not in mazes.

We note that in some bracketing tasks, for example phrase chunking and

named entity recognition, converting between bracketing and tagging notation

may not be trivial, for example in the case where there are adjacent chunks

or entities. This is not the case for maze detection, however, because adjacent

mazes are not permitted by the SALT guidelines. Therefore when interpreting

the predictions of the M3N classifier, we simply count any word with a tag ending

in -M as being in a maze, and any word tagged S-O as not being in a maze. For

tagging evaluation this is sufficient, and for bracketing evaluation, we convert

these binary annotations to brackets, thus removing the possibility of adjacent

mazes or illegal sequences (ex. S-O E-M).

5.4 Corpus-specific and generic models

In this section we train and test our maze detector on different sets of data

in pursuit of two goals. First, we want to identify the maze detector with the

highest performance in terms of intrinsic evaluation. In Section 5.5 we evaluate

this detector further, by evaluating it extrinsically. Our second goal in this

section is to get a preliminary idea of the inconsistencies in the data: does a

maze detector trained on all of the SALT corpora outperform ones with smaller

training sets because it is able to leverage more data, or are these corpora too

heterogeneous for this to be the case? Our investigation into the consistency of

maze annotations in the various SALT corpora (Section 5.6) will be guided by

what we find here.

5.4.1 Baseline performance

As a baseline, we train corpus-specific maze-detection models on the training set

of each corpus. We report maze detection performance on the development set

5.4. CORPUS-SPECIFIC AND GENERIC MODELS 127

Ta
g

B
ra

ck
et

Si
ze

C
or

pu
s

A
ge

s
M

LU
R

an
k

P
R

F1
P

R
F1

C
o
n
v

2;
9

–
13

;3
6.

6
1

0.
77

5
0.

79
8

0.
78

6
0.

68
3

0.
67

9
0.

68
1

E
N

N
I

4;
0

–
9;

11
8.

9
2

0.
89

8
0.

83
2

0.
86

4
0.

79
1

0.
79

1
0.

79
1

G
il

la
m
N

T
5;

0
–

11
;1

1
9.

8
3

0.
89

2
0.

88
1

0.
88

6
0.

79
5

0.
80

3
0.

79
9

N
Z
C

o
n
v

4;
5

–
7;

7
6.

4
4

0.
83

1
0.

83
3

0.
83

2
0.

71
9

0.
75

7
0.

73
7

N
Z
P
er

N
a
r

4;
5

–
7;

7
7.

0
5

0.
88

2
0.

84
0

0.
86

1
0.

77
8

0.
75

9
0.

76
8

N
a
r
S
S
S

5;
2

–
13

;3
9.

1
6

0.
79

6
0.

79
5

0.
79

5
0.

64
8

0.
65

1
0.

64
9

N
a
r
S
R

4;
4

–
12

;8
9.

7
7

0.
79

5
0.

79
7

0.
79

6
0.

63
1

0.
66

2
0.

64
6

E
x
po

si
to

ry
10

;7
–

15
;9

13
.9

8
0.

67
0

0.
67

2
0.

67
1

0.
59

7
0.

64
7

0.
62

1
N

Z
S
R

4;
0

–
7;

7
8.

2
9

0.
83

6
0.

87
5

0.
85

5
0.

66
1

0.
70

3
0.

68
1

Ta
bl

e
5.

2:
B

as
el

in
e

m
az

e
de

te
ct

io
n

pe
rf

or
m

an
ce

on
de

ve
lo

pm
en

t
se

ct
io

ns
of

SA
LT

co
rp

or
a:

co
rp

us
-s

pe
ci

fic
m

od
el

s;
M

LU
=

m
ea

n
le

ng
th

of
ut

te
ra

nc
e

in
cl

ud
in

g
m

az
es

128 CHAPTER 5. MAZE DETECTION

of each SALT corpus in Table 5.2, which also includes the rank of the size of

each corpus (1 = biggest, 9 = smallest). For more information on how the SALT

corpora are divided into training, development, and test sets see Section 3.3.3.

Table 5.2 shows that our maze detector performs far better on some cor-

pora than on others, both in terms of tagging and bracketing performance.

We note that maze detection performance is not solely determined by corpus

size: tagging performance is substantially worse on the largest corpus (Conv)

than the smallest (NZSR). Furthermore, utterance length does not appear to

determine performance on maze detection: performance is relatively low on

both the Expository and Conv corpora, which have the longest and second

shortest mean length of utterance (MLU), respectivel. Meanwhile, performance

is relatively high on the GillamNT and NZConv corpora, which have the

second longest, and shortest MLUs, respectively. Finally, we see that maze

detection performance appears to be independent of the age of the children

whose speech is transcribed, as most corpora contain samples from children

with a wide variety of ages, and maze detection performance can differ greatly

between corpora collected from children with similar age ranges (ex. ENNI and

NarSR).

We note that in general, the tagging performance on maze detection we

observe here is similar to state-of-the-art disfluency detection performance on

Switchboard (Rasooli and Tetreault (2014) report F1=0.841). This is not to say

that maze detection is a solved task, but rather that techniques for disfluency

detection are likely applicable to maze detection, and therefore advances in

disfluency detection may be adapted to maze detection without much difficulty.

This is not surprising given how similar the two tasks are. Nevertheless, some

techniques for disfluency detection may require resources that are not available

for maze detection, for example data that has both manual dependency parse

5.4. CORPUS-SPECIFIC AND GENERIC MODELS 129

and maze annotations (Rasooli and Tetreault, 2014).

Cross-corpus performance

Corpus Tag Bracket
P R F1 P R F1

Conv 0.290 0.815 0.427 0.238 0.486 0.319
ENNI 0.653 0.784 0.712 0.608 0.665 0.635
Expository 0.363 0.762 0.492 0.370 0.496 0.424
GillamNT 0.892 0.881 0.886 0.795 0.803 0.799
NarSSS 0.601 0.798 0.686 0.503 0.595 0.545
NarSR 0.578 0.783 0.665 0.522 0.589 0.554
NZConv 0.393 0.874 0.542 0.343 0.610 0.439
NZPerNar 0.428 0.891 0.579 0.362 0.613 0.455
NZSR 0.730 0.814 0.770 0.570 0.658 0.611

Table 5.3: Model trained on GillamNT, tested on SALT development sets; see
Appendix A.1 for complete results of cross-corpus experiments. Results in bold
are better than baseline, all others are equal or worse.

We evaluate each of the corpus-specific models on the development set of

each of the other SALT corpora. For the sake of brevity, we do not include all of

the results here, although they are given in Appendix A.1.

In general, we find that the performance of corpus-specific models tend to

degrade when they are tested on the development set of corpora other than the

one on which they are trained. The GillamNT exhibits more severely degraded

performance than any of the others, as can be seen in Table 5.3: tagging F1 on

five of the nine SALT corpora is lower than the worst-performing baseline model

(Expository, F1=0.671). We see in Table 5.3 that the GillamNT model tends

to perform with low precision and high recall on many SALT corpora. This is

likely because the GillamNT corpus has a higher proportion of words in mazes

than the other corpora, as discussed in Section 5.6.2, and because parenthetical

comments are annotated as mazes in this corpus, as discussed in Section 5.6.3.

We find that for most corpora, the highest performing model is the baseline

model (i.e. the one trained on the training fold of the same corpus). This is

130 CHAPTER 5. MAZE DETECTION

unequivocally the case for four of the eight corpora: Conv, ENNI, GillamNT

and NarSR. The results are less clear for the NZSR corpus, where both the

Conv and ENNI models perform as well as the baseline. The Conv model

also performs as well as the baseline on the NZPerNar corpus. Somewhat

surprisingly, the Conv model performs significantly better than the baseline

models on both both the NarSSS and NZConv corpora. Specifically, on

NarSSS tagging F1 improves from 0.795 to 0.803 (p = 0.065), and bracketing

F1 improves from 0.649 to 0.677 (p = 0.022). On NZConv tagging F1 improves

from 0.832 to 0.852 (p 0.001), and bracketing F1 improves from 0.737 to

0.783 (p 0.001). Overall then, it appears that the baseline models yield the

highest performance on six of the eight SALT corpora (although in two of these

cases there were other models as good as the baseline), and in two cases there

were models that outperformed the baselines. We now explore whether we can

outperform the baseline by training models on data from more than one corpus.

5.4.2 More general models

We now evaluate the performance of more general models for maze detection,

namely ones that are trained on multiple corpora. We are interested in this for two

reasons: first, a model trained on more data should outperform a model trained

on less, provided the corpora, including both the language and annotations, are

sufficiently similar; and second, models that can be effectively used with multiple

corpora are more useful than corpus-specific models, particularly for labeling

new data. Our procedure for training and testing such a model is as follows:

first, we select a set of corpora S from the SALT corpora. We then combine all

of the training sets of the corpora in S, and train a model. We note that the

training and development proportions of each corpus in S are proportional: if

20% of the training utterances are from corpus c, then 20% of the development

5.4. CORPUS-SPECIFIC AND GENERIC MODELS 131

utterances will be as well. Next, we combine the development sets of S, and

use this combined development set to tune the loss matrix to balance precision

and recall. Finally, we test the model on each of the development sets in S

individually.

Throughout this section, we use ↵ = 0.1 to determine whether one system

performs significantly higher than another, and we compute the p value using

the randomized paired-sample procedure described in Section 4.7.1. When any

of the more general models outperforms the corpus-specific baseline in terms

of either tagging or bracketing performance, we will report: its F1 score; the

difference in F1 score, relative to the baseline (�); and the significance level

(p). We use 7 to indicate when a more general model yields a lower F1 score

than the baseline model.

All Model

We construct the All model by letting S be the set of all SALT corpora. Table

5.4 shows the performance of the All model on the development folds of the

SALT corpora, and indicates where it improves performance significantly over the

corpus-specific baseline. We find that the All model does not yield significant

improvement in terms of either tagging and bracketing performance on six

of the nine corpora. There is improvement on the following three corpora in

terms of both tagging and bracketing: Conv (tagging F1=0.791, � = 0.005,

p 0.010; bracketing F1=0.696, � = 0.015, p 0.003); NarSSS (tagging

F1=0.807 �=0.012, p 0.013; bracketing F1=0.673, �=0.023, p 0.039);

and NZConv (tagging F1=0.848, �=0.0.016, p 0.001; bracketing F1=0.774,

�=0.037, p 0.002).

132 CHAPTER 5. MAZE DETECTION

Corpus Sig. improved Not improved F1 (baseline ! All)
Tag
p

Bracket
p

Tag
p

Bracket
p

Bracket Tag

Conv 0.010 0.003 0.786 !
0.791

0.681!
0.696

ENNI 7 7 0.864 !
0.833

0.791 !
0.760

Exposi-
tory

7 7 0.670 !
0.655

0.621 !
0.593

GillamNT 7 7 0.886 !
0.774

0797!
0.686

NarSSS 0.013 0.039 0.795 !
0.807

0.649 !
0.673

NarSR 0.167 0.185 0.796 !
0.801

0.646 !
0.658

NZConv 0.001 0.002 0.832 !
0.848

0.737!
0.774

NZPerNar 7 7 0.861 !
0.849

0.768 !
0.735

NZSR 0.480 7 0.855 !
0.853

0.681 !
0.682

Table 5.4: Performance of the All maze detection model including comparison
to the baseline on development sets of SALT corpora

Corpus Sig. improved Not improved F1 (baseline ! All)
Tag
p

Bracket
p

Tag
p

Bracket
p

Bracket Tag

ENNI 7 7 0.864 !
0.829

0.791 !
0.745

GillamNT 7 7 0.886 !
0.787

0797!
0.667

NarSSS 7 7 0.795 !
0.762

0.649 !
0.624

NarSR 7 7 0.796 !
0.781

0.646 !
0.638

Table 5.5: Performance of the Age maze detection model including comparison
to the baseline on development sets of SALT corpora

5.4. CORPUS-SPECIFIC AND GENERIC MODELS 133

Age-specific model

We train a single Age-specific model on the corpora listed in Table 5.5. These

corpora contain transcripts collected from children roughly aged 4-12 (see Table

3.1). As can be seen in in Table 5.5, the age-based model performs worse than

the baseline on all four of these corpora.

Task-Specific Models

Corpus Sig. improved Not improved F1 (baseline ! All)
Tag
p

Bracket
p

Tag
p

Bracket
p

Bracket Tag

Conv 0.009 0.004 0.786 !
0.791

0.681!
0.696

NZ-
Conv

0.001 0.002 0.832 !
0.848

0.737!
0.774

(a) Conv Model

Corpus Sig. improved Not improved F1 (baseline ! All)
Tag
p

Bracket
p

Tag
p

Bracket
p

Bracket Tag

ENNI 7 7 0.864 !
0.820

0.791 !
0.736

GillamNT 7 7 0.886 !
0.756

0797!
0.659

NarSSS 7 0.226 0.795 !
0.787

0.649 !
0.658

NarSR 7 7 0.796 !
0.789

0.646 !
0.645

NZPerNar 7 7 0.861 !
0.833

0.768 !
0.723

NZSR 7 0.306 0.855 !
0.862

0.681 !
0.679

(b) Nar Model

Table 5.6: Performance of task-specific maze detection models including compar-
ison to the baseline on development sets of SALT corpora

We construct two task-specific models for maze detection: one for conversa-

tions, and the other for narrative tasks. As shown in Table 5.6a, the Conv model

134 CHAPTER 5. MAZE DETECTION

trained on the Conv and NZConv significantly improves performance on the

both corpora relative to the baselines, both in terms of tagging and bracketing

performance. The improvements on the Conv corpus are statistically significant,

but not particularly large for either tagging (F1=0.791, �=0.005, p 0.009)

or bracketing (F1=0.681, �=0.015, p 0.004) performance. On the NZConv

corpus, tagging performance improves a small amount (F1=0.848, �=0.016,

p 0.001), while bracketing performance improves substantially (F1=0.774,

�=0.037, p 0.002). A model for narrative tasks (Nar) trained on the corpora

shown in Table 5.6b does not improve performance on any of the constituent

corpora, relative to the baseline.

Research Group-Specific Models

Corpus Sig. improved Not improved F1 (baseline ! All)
Tag
p

Bracket
p

Tag
p

Bracket
p

Bracket Tag

NZ-
Conv

7 7 0.832 !
0.820

0.737!
0.733

NZPerNar 7 7 0.861 !
0.845

0.768 !
0.736

NZSR 7 7 0.855 !
0.846

0.681 !
0.670

(a) NZ Model

Tag Bracket
Corpus F1 � p F1 � p
Conv 0.790 0.004 0.088 0.700 0.019 0.001
Expository 0.690 0.019 0.059 0.680 0.059 0.009
NarSSS 0.829 0.033 0.001 0.723 0.074 0.001
NarSR 0.820 0.024 <0.001 0.686 0.040 0.002

(b) Comparison of WI model performance to baseline

Table 5.7: Performance of the research group-specific maze detection models
relative to the baseline on development sets of SALT corpora

There are two groups of researchers that have annotated multiple corpora:

5.4. CORPUS-SPECIFIC AND GENERIC MODELS 135

Universal Domain 1 Domain 2
Domain Sentence features features features

1 She saw him [She, saw, him] [She, saw, him]

2 The sheep ate [The, sheep, ate] [The, sheep, ate]

Figure 5.4: Illustration of features extracted with FEDA. Note that no ‘Domain
1’ features are extracted from utterances in ‘Domain 2’, and vice versa.

a group in New Zealand (NZ), which annotated the NZConv, NZPerNar,

and NZSR corpora; and another group in Wisconsin (WI), which annotated

the Conversation, Expository, NarSSS, and NarSR corpora. We train a

research group-specific model for each of these two groups.

The WI model outperforms the baseline models in all cases, in some cases

quite substantially (on Expository and to a lesser extent on NarSSS). This

is shown in Table 5.7b. On the other hand, the NZ model does not improve

performance on any of the corpora annotated by that group relative to the

corpus specific baseline models, as shown in Table 5.7a.

Domain adaptation

We now apply the so-called Frustratingly Easy Domain Adaptation (FEDA)

algorithm proposed by Daumé III (2007). This simple algorithm is essentially a

preprocessing step that can be applied to any domain adaptation problem: the

original feature set, which is common to all domains, is augmented to include

a copy of features that are specific to each domain. As a result, there are no

D
src

-specific features for data from domain D
trg

. For a concrete example, see

Figure 5.4, which illustrates FEDA, using only word unigrams as features: there

are no ‘Domain 1’ features extracted from the utterance from Domain 2; only

‘Domain 2’ and ‘Universal’ features are extracted from this utterance. We note

that FEDA is not specific to maze detection, and after modifying the training

136 CHAPTER 5. MAZE DETECTION

Corpus Sig. improved Not improved F1 (baseline ! All)
Tag
p

Bracket
p

Tag
p

Bracket
p

Bracket Tag

All Conv 0.001 7 0.786 !
0.806

0.681!
0.729

ENNI 0.001 7 0.864 !
0.931

0.791 !
0.887

Exposi-

tory

7 7 0.670 !
0.383

0.621 !
0.276

GillamNT 0.001 7 0.886 !
0.928

0797!
0.867

NarSSS 0.001 7 0.795 !
0.821

0.649 !
0.734

NarSR 0.001 7 0.796 !
0.823

0.646 !
0.708

NZConv 0.001 7 0.832 !
0.861

0.737!
0.786

NZPerNar 0.086 7 0.861 !
0.867

0.768 !
0.770

NZSR 0.028 7 0.855 !
0.877

0.681 !
0.709

Age ENNI 0.001 7 0.864 !
0.927

0.791 !
0.875

GillamNT 0.001 7 0.886 !
0.932

0797!
0.872

NarSSS 0.001 7 0.795 !
0.818

0.649 !
0.730

NarSR 0.001 7 0.796 !
0.820

0.646 !
0.705

Conv Conv 7 7 0.786 !
0.785

0.681!
0.686

NZConv 0.001 7 0.832 !
0.854

0.737!
0.762

Nar ENNI 0.001 7 0.864 !
0.931

0.791 !
0.883

GillamNT 0.001 7 0.886 !
0.932

0797!
0.875

NarSSS 0.001 7 0.795 !
0.818

0.649 !
0.726

NarSR 0.001 7 0.796 !
0.816

0.646 !
0.686

NZPerNar 7 7 0.861 !
0.852

0.768 !
0.752

NZSR 0.028 7 0.855 !
0.878

0.681 !
0.705

NZ NZConv 0.001 7 0.832 !
0.858

0.737!
0.777

NZPerNar 0.178 7 0.861 !
0.864

0.768 !
0.765

NZSR 0.077 7 0.855 !
0.870

0.681 !
0.705

WI Conv 0.001 7 0.786 !
0.800

0.681!
0.729

Exposi-

tory

7 7 0.670 !
0.366

0.621 !
0.261

NarSSS 0.001 7 0.795 !
0.816

0.649 !
0.740

NarSR 0.015 7 0.796 !
0.808

0.646 !
0.694

Table 5.8: Performance of FEDA-trained models including performance to
baseline corpus-specific models

5.4. CORPUS-SPECIFIC AND GENERIC MODELS 137

and test features, training and testing proceeds as usual.

We re-create each of the more generic models explored above in Section

5.4.2 using FEDA. As Table 5.8 shows, generic models trained with FEDA

tend to outperform the baseline models in terms of tagging performance, but

not bracketing performance. The lack of improvement in bracketing perfor-

mance is unsurprising: the M3N classifier optimizes for tagging, not bracketing

performance. Furthermore, each utterance yields fewer bracketing predictions

compared to tagging predictions, thus a mistake in bracketing is more costly

than a mistake in tagging.

5.4.3 Discussion

We have seen that simply combining different training sets is typically not an

effective strategy for building models for maze detection, although there are

notable exceptions (the WI and Conv models). In the majority of cases, multi-

corpus models perform worse than corpus-specific models, even though they are

trained on more data. By adopting a simple technique for domain adaptation,

namely FEDA, we are able to construct models from multiple corpora that

reliably improve maze detection performance (in terms of tagging) on nearly all

of their constituent corpora, relative to the corpus-specific models.

These results suggest that there are inconsistencies between the different SALT

corpora, but they do not tell us what these inconsistencies are. Some possible

inconsistencies between these corpora could involve differences in language,

utterance segmentation, or in maze annotation conventions varying across corpora.

We examine the differences between these corpora in Section 5.6.

138 CHAPTER 5. MAZE DETECTION

5.5 Extrinsic evaluation

Having compared various models for maze detection in terms of how well they

replicate manual annotations, we now consider the utility of the annotations

they produce. Specifically, maze annotations are critical for computing sum-

mary statistics from transcripts, most notably: utterance length, the number of

types in an utterance, the number of mazes in an utterance, and maze lengths.

These statistics are all computed by the SALT software from manually anno-

tated transcripts, but ideally one could compute nearly identical statistics from

unannotated transcripts.

We use two setups to compare summary statistics computed from automati-

cally annotated transcripts to those computed from manually annotated ones.

The first setup is leave-transcript-out (LTO) evaluation. In this scenario, we

train a model on all of the transcripts save one, use the model to annotate the

held-out transcript, then compute the summary statistics from the automati-

cally annotated transcript. We repeat this procedure for every transcript. For

simplicity, we use the penalty matrix tuned on each corpus’s development set,

which yields approximately balanced precision and recall.

This ‘leave-one-out’ procedure is ideal for extrinsic evaluation, but it is

extremely expensive as a new model must be trained for each transcript. We

propose the following procedure to generate simulated transcripts, which is much

faster than LTO evaluation:

1. Create a simulated transcript by sampling utterances randomly from the

development (or test) fold along with true and predicted maze annotations

2. Record the statistic (ex. MLU) computed from the manually annotated

simulated transcript

3. Record the same statistic from the automatically annotated simulated

5.5. EXTRINSIC EVALUATION 139

transcript

In practice, we create 1,000 simulated transcripts from which we compute

the relevant statistics. These transcripts are each 200 utterances long, following

the observation made by Gavin and Giles (1996) that MLU test/retest reliability

was not sufficiently high for transcripts under 175 utterances long. We compare

the difference in means in the two statistics over all of the trials, and we also

use the Wilcoxon signed-rank test to see whether the differences are statistically

significant. The statistics we compute are the means of: tokens per utterance

(mean length of utterance or MLU), types per utterance, mazes per utterance,

and maze length. We report the mean difference between the reference statistics

derived from manually and automatically annotated transcripts, along with the

p value from the Wilcoxon signed-rank test, and the effect size r. As a rule of

thumb, an effect size r of 0.1 is interpreted as small, 0.3 as medium, and 0.5 as

large. We also report the correlation between summary statistics derived from

manually and automatically annotated transcripts both in terms of Pearson’s ⇢

and Kendall’s ⌧ .

5.5.1 Corpus-specific models

Leave transcript out

We compare the four summary statistics (tokens per utterance (ie MLU), types

per utterance, mazes per utterance, and maze length) derived from manual

annotations to those derived from the baseline models’ predictions. As shown in

Table 5.9, nearly all of the summary statistics derived from automatic annotations

are significantly different from those derived from manual annotations, yet

the two values are typically very highly correlated. Appendix A.2 contains

plots illustrating the relationship between the summary statistics derived from

manually and automatically annotated transcripts, along with both linear and

140 CHAPTER 5. MAZE DETECTION

Corpus µ � |�µ| p r ⇢ ⌧

Conv 6.20 1.30 0.27 0.001 0.842 0.985 0.906
ENNI 8.09 1.37 0.10 0.001 0.254 0.995 0.942
Expository 13.04 1.93 0.31 0.001 0.704 0.989 0.904
GillamNT 8.57 1.96 0.16 0.001 0.266 0.990 0.924
NarSSS 8.05 1.47 0.29 0.001 0.710 0.979 0.878
NarSR 8.74 1.42 0.15 0.001 0.367 0.989 0.915
NZConv 5.81 0.95 0.06 0.894 0.008 0.996 0.951
NZPerNar 6.24 0.96 0.08 0.001 0.663 0.994 0.944
NZSR 7.41 1.06 0.15 0.001 0.349 0.977 0.890

(a) Token count
Corpus µ � |�µ| p r ⇢ ⌧

Conv 5.99 1.18 0.21 0.001 0.840 0.988 0.915
ENNI 7.72 1.22 0.05 0.001 0.165 0.998 0.962
Expository 11.79 1.54 0.20 0.001 0.751 0.995 0.918
GillamNT 8.14 1.76 0.11 0.001 0.195 0.993 0.941
NarSSS 7.75 1.31 0.20 0.001 0.658 0.986 0.897
NarSR 8.34 1.27 0.10 0.001 0.293 0.994 0.939
NZConv 5.67 0.89 0.04 0.001 0.335 0.998 0.966
NZPerNar 6.09 0.90 0.06 0.001 0.761 0.998 0.957
NZSR 7.20 0.96 0.10 0.001 0.391 0.989 0.917

(b) Type count
Corpus µ � |�µ| p r ⇢ ⌧

Conv 0.28 0.14 0.03 0.001 0.346 0.940 0.816
ENNI 0.30 0.16 0.04 0.001 0.574 0.952 0.823
Expository 0.49 0.21 0.08 0.389 0.092 0.930 0.725
GillamNT 0.45 0.24 0.06 0.001 0.129 0.925 0.799
NarSSS 0.41 0.19 0.07 0.001 0.536 0.909 0.745
NarSR 0.37 0.19 0.06 0.001 0.497 0.944 0.790
NZConv 0.26 0.13 0.03 0.001 0.398 0.970 0.844
NZPerNar 0.29 0.14 0.03 0.661 0.029 0.956 0.853
NZSR 0.38 0.23 0.07 0.719 0.027 0.899 0.752

(c) Maze count
Corpus µ � |�µ| p r ⇢ ⌧

Conv 1.78 0.41 0.43 0.001 0.566 0.523 0.396
ENNI 1.98 0.58 0.36 0.001 0.682 0.707 0.591
Expository 1.96 0.57 0.64 0.001 0.845 0.604 0.464
GillamNT 2.29 1.03 0.44 0.001 0.639 0.796 0.700
NarSSS 1.96 0.55 0.36 0.823 0.012 0.511 0.423
NarSR 2.02 0.58 0.38 0.001 0.612 0.628 0.533
NZConv 1.75 0.45 0.31 0.001 0.767 0.771 0.602
NZPerNar 1.91 0.50 0.42 0.001 0.841 0.747 0.618
NZSR 1.99 0.92 0.44 0.001 0.603 0.628 0.602

(d) Maze length

Table 5.9: Reference statistic prediction accuracy from LTO procedure with
corpus-specific maze detection models; all values of ⇢ and ⌧ significant at p 0.001

level. All values of µ and � refer to counts from manual counts. Correlations
and differences in mean are computed over transcripts.

5.5. EXTRINSIC EVALUATION 141

(a) Conv - MLU (b) ENNI - maze count

(c) GillamNT - maze length (d) NarSSS - type count

Figure 5.5: Comparison of observed summary statistics with predictions from
LTO procedure on various SALT corpora

142 CHAPTER 5. MAZE DETECTION

isotonic regression lines. These plots convey similar information to Table 5.10,

in particular the tight correlation between the summary statistics.

Even where the summary statistics derived from automatic annotations are

significantly different, they are generally not substantially different (the maze

length statistics on certain corpora may be exceptions). This is illustrated in

the plots in Figure 5.5 as well. In the case of MLU, a difference of 0.103 words

corresponds to roughly one month of development (between the ages of 2 and

5) (Scarborough et al., 1986). Put into temporal terms, the mean error in MLU

produced by the baseline systems is roughly between two and three weeks.

Simulated Transcripts

5.5. EXTRINSIC EVALUATION 143

Corpus µ � |�µ| p r ⇢ ⌧

Conv 6.08 0.28 0.04 0.001 0.211 0.982 0.884
ENNI 8.13 0.24 0.06 0.001 0.743 0.974 0.863
Expository 12.03 0.39 0.07 0.018 0.075 0.974 0.860
GillamNT 8.79 0.31 0.05 0.001 0.250 0.983 0.886
NarSSS 8.08 0.28 0.06 0.103 0.052 0.970 0.848
NarSR 8.77 0.29 0.05 0.095 0.053 0.976 0.868
NZConv 5.82 0.22 0.04 0.014 0.078 0.979 0.875
NZPerNar 6.38 0.23 0.04 0.001 0.590 0.981 0.882
NZSR 7.49 0.11 0.05 0.001 0.837 0.969 0.853

(a) Token count
Corpus µ � |�µ| p r ⇢ ⌧

Conv 5.89 0.26 0.03 0.233 0.038 0.991 0.918
ENNI 7.76 0.21 0.04 0.001 0.777 0.990 0.916
Expository 10.94 0.30 0.06 0.001 0.544 0.978 0.871
GillamNT 8.33 0.27 0.04 0.514 0.021 0.987 0.902
NarSSS 7.78 0.25 0.04 0.001 0.591 0.985 0.895
NarSR 8.38 0.25 0.04 0.001 0.438 0.986 0.900
NZConv 5.69 0.21 0.03 0.001 0.481 0.990 0.915
NZPerNar 6.22 0.22 0.04 0.001 0.800 0.991 0.919
NZSR 7.30 0.10 0.05 0.001 0.864 0.980 0.887

(b) Type count
Corpus µ � |�µ| p r ⇢ ⌧

Conv 0.26 0.04 0.02 0.001 0.374 0.841 0.653
ENNI 0.31 0.03 0.02 0.001 0.377 0.863 0.689
Expository 0.49 0.03 0.09 0.001 0.866 0.736 0.537
GillamNT 0.42 0.04 0.02 0.001 0.698 0.866 0.688
NarSSS 0.44 0.04 0.03 0.001 0.546 0.794 0.598
NarSR 0.37 0.04 0.04 0.001 0.818 0.791 0.609
NZConv 0.25 0.03 0.03 0.001 0.797 0.844 0.670
NZPerNar 0.30 0.03 0.01 0.002 0.097 0.861 0.689
NZSR 0.35 0.02 0.03 0.001 0.861 0.741 0.572

(c) Maze count

144 CHAPTER 5. MAZE DETECTION

Corpus µ � |�µ| p r ⇢ ⌧

Conv 1.80 0.19 0.14 0.001 0.267 0.595 0.422
ENNI 2.08 0.20 0.18 0.001 0.796 0.686 0.490
Expository 2.05 0.16 0.37 0.001 0.865 0.169 0.100
GillamNT 2.27 0.21 0.10 0.001 0.464 0.855 0.661
NarSSS 2.02 0.16 0.11 0.001 0.237 0.589 0.409
NarSR 2.11 0.17 0.14 0.001 0.680 0.649 0.439
NZConv 1.80 0.22 0.15 0.001 0.534 0.688 0.492
NZPerNar 1.98 0.21 0.12 0.001 0.429 0.800 0.581
NZSR 2.37 0.12 0.13 0.001 0.819 0.696 0.490

(d) Maze length

Table 5.10: Reference statistic prediction accuracy using baseline maze detection
models; all values of ⇢ and ⌧ significant at p 0.001 level. All values of µ and �

refer to counts from manual annotations on simulated transcripts. Correlations
and differences in mean are computed over simulated transcripts.

We now use the simulated transcripts procedure (described at the beginning

of this Section) to compare the four summary statistics (tokens per utterance (ie

MLU), types per utterance, mazes per utterance, and maze length) derived from

manual annotations to those derived from the baseline models’ predictions. We

remind the reader that the simulated transcript procedure is far less computation-

ally expensive than LTO extrinsic evaluation, which it is trying to approximate.

We see in Table 5.10 that the results of the simulated transcript procedure are

broadly in line with those from LTO extrinsic evaluation: all of the summary

statistics derived from the automatically annotated simulated transcripts are

highly correlated with the true values, and while they are typically significantly

different from one another, they are not substantially different. This suggests

that the simulated transcript procedure is an effective method to perform extrin-

sic evaluation of maze detection models. This finding is particularly relevant to

our experiments below evaluating the generic models extrinsically: performing

LTO evaluation under these circumstances is prohibitively expensive since some

of these models may be trained on several thousand transcripts, and training a

single model may take half an hour.

5.5. EXTRINSIC EVALUATION 145

Appendix A.2 contains plots illustrating the relationship between the sum-

mary statistics derived from manually and automatically annotated transcripts,

along with both linear and isotonic regression lines. These plots convey simi-

lar information to Table 5.10, in particular the tight correlation between the

summary statistics.

5.5.2 Generic models

We now compare the four summary statistics (tokens per utterance (ie MLU),

types per utterance, mazes per utterance, and maze length) derived from man-

ual annotations to those derived from predictions made by models trained on

multiple corpora, i.e. generic models. We perform these experiments primarily

using the simulated transcript procedure described on page 138 because perform-

ing these experiments in a leave-transcript out manner is so computationally

expensive—there can be thousands of transcripts incorporated into a single

model. Nevertheless, we do present partial results from leave-transcript-out

experiments below in Section 5.5.2.

As shown in Table 5.9, nearly all of the summary statistics derived from

automatic annotations are even closer to the true values than the ones extracted

from automatic annotations produced with the baseline corpus-specific models.

Although the summary statistics from the annotations produced by the generic

model are significantly different from ones derived from manual annotations, the

observed and predicted values are typically very highly correlated. Appendix

A.2 contains plots illustrating the relationship between the summary statistics

derived from manually and automatically annotated transcripts, along with both

linear and isotonic regression lines. These plots show similar information to

Table 5.11, in particular the tight correlation between the summary statistics.

146 CHAPTER 5. MAZE DETECTION

Simulated Transcripts

Corpus µ � |�µ| p r ⇢ ⌧
Conv 6.10 0.29 0.04 0.001 0.291 0.984 0.891
ENNI 8.13 0.23 0.06 0.001 0.751 0.975 0.865
Expository 12.04 0.40 0.07 0.586 0.017 0.974 0.855
GillamNT 8.78 0.30 0.05 0.001 0.198 0.981 0.880
NarSSS 8.09 0.28 0.06 0.421 0.025 0.968 0.842
NarSR 8.79 0.29 0.05 0.674 0.013 0.975 0.863
NZConv 5.81 0.23 0.04 0.006 0.087 0.980 0.882
NZPerNar 6.39 0.23 0.04 0.001 0.573 0.981 0.882
NZSR 7.49 0.11 0.05 0.001 0.825 0.964 0.838

(a) Token count
Corpus µ � |�µ| p r ⇢ ⌧
Conv 0.26 0.04 0.02 0.001 0.368 0.826 0.638
ENNI 0.31 0.03 0.02 0.001 0.358 0.858 0.679
Expository 0.48 0.03 0.09 0.001 0.866 0.740 0.549
GillamNT 0.41 0.04 0.03 0.001 0.713 0.857 0.678
NarSSS 0.43 0.04 0.03 0.001 0.584 0.813 0.626
NarSR 0.37 0.04 0.04 0.001 0.829 0.778 0.586
NZConv 0.25 0.03 0.02 0.001 0.784 0.846 0.664
NZPerNar 0.30 0.03 0.02 0.001 0.128 0.854 0.675
NZSR 0.35 0.02 0.03 0.001 0.856 0.766 0.595

(b) Type count
Corpus µ � |�µ| p r ⇢ ⌧
Conv 0.26 0.04 0.02 0.001 0.368 0.826 0.638
ENNI 0.31 0.03 0.02 0.001 0.358 0.858 0.679
Expository 0.48 0.03 0.09 0.001 0.866 0.740 0.549
GillamNT 0.41 0.04 0.03 0.001 0.713 0.857 0.678
NarSSS 0.43 0.04 0.03 0.001 0.584 0.813 0.626
NarSR 0.37 0.04 0.04 0.001 0.829 0.778 0.586
NZConv 0.25 0.03 0.02 0.001 0.784 0.846 0.664
NZPerNar 0.30 0.03 0.02 0.001 0.128 0.854 0.675
NZSR 0.35 0.02 0.03 0.001 0.856 0.766 0.595

(c) Maze count

5.5. EXTRINSIC EVALUATION 147

Corpus µ � |�µ| p r ⇢ ⌧

Conv 1.77 0.19 0.14 0.001 0.354 0.601 0.419
ENNI 2.09 0.21 0.18 0.001 0.784 0.712 0.503
Expository 2.06 0.17 0.38 0.001 0.865 0.223 0.136
GillamNT 2.26 0.21 0.10 0.001 0.392 0.838 0.642
NarSSS 2.03 0.17 0.11 0.001 0.210 0.602 0.415
NarSR 2.13 0.16 0.15 0.001 0.732 0.629 0.431
NZConv 1.80 0.21 0.14 0.001 0.492 0.656 0.457
NZPerNar 1.98 0.21 0.11 0.001 0.375 0.793 0.587
NZSR 2.37 0.13 0.13 0.001 0.804 0.691 0.484

(d) Maze length

Table 5.11: Reference statistic prediction accuracy using All maze detection
model; all values of ⇢ and ⌧ significant at p 0.001 level. All values of µ and �

refer to counts from manual annotations on simulated transcripts. Correlations
and differences in mean are computed over simulated transcripts.

As we saw in Section 5.4.2, models trained on multiple corpora do not

routinely outperform the corpus-specific baselines unless they are trained with

FEDA, a simple technique for domain adaptation. In nearly all cases, the FEDA-

trained models outperform the corpus-specific baseline models. Here, we evaluate

the FEDA-trained All model extrinsically, because it is appropriate for all of

the SALT corpora, while Appendix A.2 contains similar results for all of the

other FEDA-trained models, including plots illustrating the relationship between

the summary statistics derived from manually and automatically annotated

transcripts, along with both linear and isotonic regression lines. We note,

however, that some manually annotated data is required to apply a FEDA-trained

model to a new data set because FEDA involves both corpus-independent and

corpus-specific features.

As shown in Table 5.11, the All model allows us to compute token and type

statistics that are in most cases significantly, but not substantially, different from

the ones computed from manually annotated transcripts. The major exception

to this is on the Expository corpus, where we observe severely degraded

performance compared to the baseline model. This degradation is likely due to

148 CHAPTER 5. MAZE DETECTION

the language in the Expository corpus being different from the language in

the other corpora since is the only one with transcripts of an expository task.

For all other corpora, however, the correlations between the summary statistics

computed from manually and automatically annotated transcripts are extremely

high. Therefore, unless there is a severe domain mismatch, as is the case with

the Expository corpus, using a generic model to apply maze annotations from

which one will compute summary statistics appears to be an effective strategy,

even though baseline models tend to produce annotations of higher intrinsic

quality.

Leave transcript out

The leave-transcript-out procedure for predicting maze annotations is computa-

tionally expensive to perform, particularly with the generic models, which are

built from thousands of transcripts. Furthermore, the exact results produced by

the leave-transcript-out procedure do not appear to be substantially different

from those produced by the simulated transcript procedure described above,

even though the simulated transcript procedure is far cheaper to execute. For

example, in Table 5.12 we see that the summary statistics predicted from tran-

scripts automatically annotated using the simulated transcript procedure are

comparable to those predicted from simulated transcripts. Furthermore, there

do not appear to be systematic differences between the summary statistics from

transcripts automatically annotated using these two procedures.

5.5.3 Discussion

In this section we have seen that the most effective way of training a maze

detector on the SALT corpora is typically to train a different model for each

corpus. This is somewhat surprising, as one would expect more training data to

5.5. EXTRINSIC EVALUATION 149

Corpus µ � |�µ| p r ⇢ ⌧

Conv LTO 6.20 1.30 0.22 0.001 0.818 0.991 0.924
SIM 6.08 0.29 0.05 0.001 0.266 0.982 0.882

Expository LTO 13.04 1.93 0.50 0.001 0.846 0.986 0.891
SIM 12.04 0.41 0.08 0.152 0.045 0.974 0.858

NarSSS LTO 8.06 1.47 0.16 0.001 0.485 0.990 0.921
SIM 8.07 0.29 0.06 0.122 0.049 0.971 0.849

NarSR LTO 8.74 1.42 0.11 0.001 0.226 0.994 0.935
SIM 8.78 0.29 0.05 0.011 0.080 0.974 0.860

(a) Token count
Corpus µ � |�µ| p r ⇢ ⌧

Conv LTO 5.89 0.26 0.03 0.792 0.008 0.990 0.914
SIM 5.99 1.18 0.18 0.001 0.829 0.993 0.932

Expository LTO 10.95 0.32 0.07 0.001 0.586 0.978 0.868
SIM 11.79 1.54 0.27 0.001 0.839 0.993 0.912

NarSSS LTO 7.78 0.26 0.04 0.001 0.568 0.986 0.897
SIM 7.75 1.31 0.10 0.001 0.498 0.994 0.940

NarSR LTO 8.38 0.26 0.04 0.001 0.391 0.984 0.892
SIM 8.34 1.27 0.07 0.002 0.163 0.997 0.954

(b) Type count
Corpus µ � |�µ| p r ⇢ ⌧

Conv LTO 0.28 0.14 0.03 0.001 0.254 0.949 0.823
SIM 0.26 0.03 0.02 0.001 0.400 0.829 0.642

Expository LTO 0.49 0.21 0.10 0.001 0.744 0.941 0.761
SIM 0.49 0.04 0.09 0.001 0.866 0.770 0.578

NarSSS LTO 0.41 0.19 0.07 0.001 0.607 0.921 0.772
SIM 0.43 0.04 0.02 0.001 0.585 0.822 0.627

NarSR LTO 0.37 0.19 0.05 0.060 0.101 0.950 0.808
SIM 0.37 0.04 0.04 0.001 0.821 0.780 0.596

(c) Maze count
Corpus µ � |�µ| p r ⇢ ⌧

Conv LTO 1.78 0.41 0.33 0.001 0.407 0.574 0.424
SIM 1.79 0.21 0.15 0.001 0.354 0.596 0.417

Expository LTO 1.96 0.57 0.76 0.001 0.846 0.483 0.353
SIM 2.06 0.16 0.39 0.001 0.866 0.171 0.113

NarSSS LTO 1.96 0.55 0.37 0.001 0.692 0.681 0.554
SIM 2.02 0.17 0.11 0.001 0.235 0.611 0.415

NarSR LTO 2.02 0.58 0.40 0.001 0.741 0.720 0.628
SIM 2.13 0.17 0.15 0.001 0.674 0.599 0.412

(d) Maze length

Table 5.12: Comparison of summary statistics derived from maze annotations
produced by WI model: leave-transcript-out (LTO) and simulated transcript
(SIM) procedures

150 CHAPTER 5. MAZE DETECTION

yield a better model, and therefore one would also expect that using all available

SALT-annotated data would produce the best model. As we have seen in this

section, and above in Section 5.4, however, models trained on multiple SALT

corpora do not appear to produce better maze annotations than corpus-specific

models, regardless of whether we evaluate them intrinsically (as in Section 5.4)

or extrinsically, as we have done in this section. This suggests that there are

systematic differences between the SALT corpora. In the next section, we show

that one major difference between these corpora lies in the quality of the maze

annotations: the annotations in at least one of the corpora (GillamNT) do not

follow the SALT guidelines.

5.6 Comparison of SALT corpora

Although there are instances where a maze-detection model trained on multiple

corpora outperforms corpus-specific models on each of its constituent corpora,

this is generally not the case. We now turn our attention to the SALT corpora

themselves to see why this might be the case; after all, one would expect a

model trained on more data, particularly data that ostensibly comes from the

same domain, to outperform a model trained on less data. In particular, we will

look at high-level characteristics of the SALT corpora, such as token and type

counts. We will also investigate whether there are differences in what words

frequently appear in mazes across tasks, and whether there are similar differences

between research groups. In particular, we are interested in whether there are

differences between the SALT corpora that are not accounted for by the nature

of the tasks, or the ages of the participants. We find that the maze annotations

in one of the SALT corpora, GillamNT, deviates from the SALT guidelines,

annotating parenthetical comments as mazes alongside ‘true’ mazes. This issue

with annotations is discussed further in Section 5.6.3.

5.6. COMPARISON OF SALT CORPORA 151

Note that throughout this section we do not excise mazes before computing

any statistics unless explicitly noted. Thus, for example, when we discuss

‘utterance length’, this means the number of words in an utterance, regardless of

whether these words are in mazes. This is in contrast to standard practice in

language sample analysis, in which mazes are excised before computing, say, mean

length of utterance. However, given that we are trying to pinpoint differences

in the SALT corpora, we do not want to risk introducing additional variability

from potentially inconsistent maze annotations.

5.6.1 Tokens and types

In each utterance of the SALT corpora, we count: the number of tokens, the

number of types, and the token to type ratio. Table 5.13 contains statistics

summarizing the distribution of these counts in each of the SALT corpora, sorted

by the mean.

In Table 5.13a, we see that the Expository corpus has far more words per

utterance than any of the other corpora. From Table 5.13b, we see that these

utterances do not simply consist of the same word repeated over and over; the

mean type count per utterance in Expository is substantially higher than for

any of the other SALT corpora. This is not surprising because unlike the other

corpora, none of the participants in the Expository corpus is younger than

10. Among the other corpora, we see that the conversational ones (Conv and

NZConv) have fewer words per utterance than the others.

One could quite reasonably divide the SALT corpora into three groups,

based on the mean length of utterance in terms of either tokens or types: 1)

Expository; 2) Conv, NZConv (and potentially NZPerNar); and 3) the four

other corpora together in a group. In other words, the mean length of utterances

in each of the corpora seems to correspond nicely to the task it contains. To

152 CHAPTER 5. MAZE DETECTION

Corpus Mean Std Skew Max
NZConv 6.4 3.9 1.5 47
Conv 6.6 4.7 1.8 67
NZPerNar 7.0 4.1 1.5 56
NZSR 8.2 3.8 1.1 30
ENNI 8.9 4.0 1.3 46
NarSSS 9.1 5.3 1.6 60
NarSR 9.7 5.1 1.7 67
GillamNT 9.8 5.1 1.4 49
Expository 13.9 8.4 1.7 76

(a) Tokens per utterance
Corpus Mean Std Skew Max
NZConv 6.0 3.3 1.0 32
Conv 6.1 4.0 1.3 41
NZPerNar 6.5 3.4 0.8 33
NZSR 7.5 3.0 0.5 21
ENNI 8.1 3.1 0.9 31
NarSSS 8.3 4.2 1.1 37
NarSR 8.8 3.9 1.3 42
GillamNT 8.9 4.0 1.0 33
Expository 12.2 6.2 1.1 52

(b) Types per utterance
Corpus Mean Std Skew Max
NZConv 1.043 0.127 9.465 7.500
Conv 1.045 0.115 4.038 3.00
NZPerNar 1.054 0.135 4.734 4.000
NZSR 1.074 0.144 2.828 2.286
ENNI 1.083 0.147 2.872 3.000
NarSSS 1.077 0.146 3.165 3.000
NarSR 1.087 0.151 3.098 3.750
GillamNT 1.087 0.153 3.430 4.000
Expository 1.099 0.135 1.886 2.042

(c) Token/type ratio per utterance

Table 5.13: Summary statistics from the SALT corpora, including all words in
mazes

5.6. COMPARISON OF SALT CORPORA 153

verify this quantitatively, we pool the corpora of conversational tasks into one

group, and the corpora of narrative tasks into another. The Expository corpus

stands alone as its own group. We then compare the utterance lengths of each

pair of groups using the Mann-Whitney U test with Bonferroni correction3 to

see whether the populations are the same (the null hypothesis), or whether the

utterance lengths from one group tend to be larger than the other. In all cases

the Mann-Whitney U statistic is extremely large, indicating that the utterance

lengths in the pairs of groups follow different distributions: Conversation vs.

Expository (p < 0.001; r=0.228), Conversation vs. Narrative (p < 0.001; r=0.293)

and Expository vs. Narrative (p < 0.001; r=0.130). We interpret this as meaning

the differences within the transcripts in these three groups, at least in terms of

utterance length, are dwarfed by the between-group differences, and as a result,

we can consider them as three distinct groups.

As Table 5.13a shows, the SALT corpora contain some very long utterances.

Here, for example, is the longest utterance from NarSR, which also includes a

very long and complicated maze.

(5.8) (if she didn’t get her way she would if if she didn’t get her way if she

didn’t get her way she wouldn’t in the in if if she if she didn’t get her if

she and if she didn’t get her way really if she and) if she didn’t get her way

she would make bad faces (and) and throw apples and yell very loudly .

As illustrated by the mean utterance lengths in that table, these utterances

appear to be exceptional, and therefore they should not be taken as conclusive

evidence of poor utterance segmentation. There are, however, no major surprises

in the statistics in Table 5.13 that would suggest radical differences between the

corpora beyond what one would expect due to the different tasks they contain.
3Bonferroni correction is typically considered the most conservative form of correction,

and therefore results identified as statistically significant after such correction should remain
statistically significant under other forms of correction as well

154 CHAPTER 5. MAZE DETECTION

5.6.2 Maze counts and counts of words in mazes

Corpus Mean Std Skew
NZConv 5.5% 12.4 3.1
Conv 5.1% 11.9 3.3
ENNI 5.8% 11.2 2.2
NZPerNar 6.2% 12.5 2.6
Expository 6.7% 11.9 3.0
NarSR 7.0% 12.4 2.3
NZSR 7.4% 13.6 2.3
NarSSS 8.0% 13.8 2.4
GillamNT 10.3% 18.9 2.5

(a) Percent of words in mazes per utterance
Corpus Mean Std Skew Max
NZConv 0.3 0.5 2.2 6
Conv 0.3 0.6 2.4 7
NZPerNar 0.3 0.6 2.1 5
ENNI 0.3 0.6 1.9 5
NZSR 0.4 0.7 1.9 5
NarSR 0.4 0.7 1.8 6
NarSSS 0.5 0.7 1.8 5
Expository 0.5 0.8 1.7 6
GillamNT 0.5 0.7 1.7 6

(b) Mazes per utterance
Corpus Mean Std Skew Max
NZConv 1.8 1.6 3.6 22
Conv 1.8 1.5 3.2 21
NZPerNar 1.9 1.7 3.0 16
ENNI 2.0 1.6 2.8 20
NZSR 2.0 1.7 3.0 16
NarSSS 2.0 1.8 3.5 23
Expository 2.0 1.9 3.5 23
NarSR 2.1 1.9 4.9 45
GillamNT 2.3 2.2 3.0 29

(c) Maze lengths

Table 5.14: Summary statistics from the mazes in the SALT corpora

We count the following for each utterance in each of the SALT corpora: the

percentage of tokens in mazes, the number of mazes, and the length of each maze.

Table 5.14 contains statistics summarizing the distribution of these counts in each

5.6. COMPARISON OF SALT CORPORA 155

of the SALT corpora, sorted by the mean. Due to the discrepancies in utterance

length across the SALT corpora, we felt that presenting the counts of tokens

in mazes would be uninformative.4 We also omit the maximum percentage of

words in mazes in each corpus because there are always utterances that consist

entirely of words in mazes, for example ‘um’.

Looking at Table 5.14a, we see that the maze rate is lower in conversational

tasks than in narrative tasks. This is perhaps unsurprising, as one would expect

the conversational tasks to have a lower cognitive load than the narrative tasks,

and high cognitive load has been found to increase the rate with which speakers

produce mazes, including both disfluencies and filled pauses (Müller et al.,

2001). That being said, the three tables in 5.14 illustrate that the GillamNT

corpus has an unremarkable number of mazes per utterance, but these mazes

are relatively longer than the ones in other corpora. In terms of the statistics

in Table 5.14, the other SALT corpora appear quite similar, and none seems

particularly remarkable.

Comparing Tables 5.13a (or 5.13b) and 5.14a, we see that unsurprisingly,

the longer the utterances in a corpus (including words in mazes), the higher the

percentage of words in mazes it contains. One exception to this is Expository:

it has by far the longest mean length of utterance, but the percentage of words in

mazes in the corpus is near the middle. Quantitatively, the Pearson correlation

between mean tokens per utterance and the mean percentage of words in mazes

per utterance is only 0.378 (p = 0.315) when we include all corpora. However,

when we exclude the Expository corpus, we observe a significant correlation

between these two summary statistics (r = 0.739, p = 0.036). A likely explanation

for why the Expository corpus bucks this trend is simply that the transcripts

in it are collected from much older children than any of the other corpora. Even
4This differs from maze length: in an utterance of 10 words, if every other word were in a

maze, we would have an average maze length of one word, but if the first five words were, then
the average maze length is five words. In both cases, however, there are five words in mazes.

156 CHAPTER 5. MAZE DETECTION

the youngest participants in the Expository corpus (10 years 7 months) are

older than the oldest participants in many of the other corpora.

5.6.3 Frequency of N-Grams in Mazes

Rank Conv ENNI NZPerNar Expository
1 and and then and then and and um and they can also
2 we go we then the then and and we um there’s no
3 it was it the the rabbit then then I mainly used for
4 and I and the then the and and my team serves and
5 um I have the the giraffe I went I then the red

(a) Trigrams most likely to appear in mazes
Rank Conv ENNI NZPerNar Expository

1 I like to and then he I went to you have to
2 you have to and then the and um and and then you
3 and then we and then they and then we you can get
4 and then I and then and when I was um and then
5 I don’t know and the elephant I had to if the ball

(b) Most frequent trigrams in mazes
Rank Conv ENNI NZPerNar Expository

1 they they um and she and um there was um and then
2 um the um castle castle castle and and and when you are
3 went to um is he is and the and you just like
4 go to um um the um um well um if it goes
5 it’s it’s a and he and I um I if the other

(c) Trigrams in mazes with highest pointwise mutual information; minimum trigram
count of 5 in each corpus

Table 5.15: Common trigrams in mazes in three different corpora

We expect that certain n-grams should appear more frequently in a maze

than others. To capture this intuition, we inspect the most common n-grams in

mazes in the SALT corpora, and the n-grams that appear particularly frequently

in mazes. We also inspect the n-grams which share the highest pointwise mutual

information with being in a maze while occurring at least five times in each of

the SALT corpora. For example, in the Conv corpus, the most common bigram

in mazes is ‘and then’, the bigram ‘um I’ is in a maze more frequently than

5.6. COMPARISON OF SALT CORPORA 157

any other bigram (98.7% of its occurrences), and the bigram ‘um so’ has the

highest pointwise mutual information with being in a maze (12.72). While none

of these observations is surprising, inspecting n-grams from mazes organized by

frequency does provide insights into ways maze annotations in particular SALT

corpora diverge from the standard.

In all but one corpus (GillamNT, discussed in Section 5.6.3) we find nothing

particularly surprising in either the n-grams that tend most strongly to appear

in mazes, or in the n-grams that appear the most in mazes. To illustrate, Table

5.15a shows the trigrams that are most likely to appear in mazes when they

occur in four of the SALT corpora. The trigrams from three of the four corpora

(not Expository) are unremarkable: all of them contain either repeated words

or filled pauses. Although the trigrams from the Expository corpus look

interesting, most of them tend to appear quite rarely. For example, ‘they can

also’ appears three times, and two of those times it is in a maze, and ‘then the

red’ only occurs twice, once in a maze.

Table 5.15b shows the trigrams in these same corpora with the highest number

of occurrences in mazes. Again, most of these contain repeated words. The

trigrams that do not occur frequently appear outside of mazes as well, which

suggests that the entire trigram is repeated, for example:

(5.9) (And the elephant) and the elephant is sitting there.

Finally, Table 5.15c shows the trigrams in these corpora with the highest pointwise

mutual information with being in a maze. The trigrams in Table 5.15c all occurred

at least five times, but we explored other thresholds as well. Lower thresholds,

however, tend to yield noisier n-grams, namely ones that appear only a time or

two in the entire corpus, possibly only in mazes.

158 CHAPTER 5. MAZE DETECTION

maze fluent
n-gram freq. freq.
I don’t remember 62 4
I forgot the 56 4
that’s all I can 42 2
I don’t know the 18 2
I can think of 18 2

Table 5.16: Selected n-gram frequencies in mazes and fluent segments in the
GillamNT corpus

GillamNT

Table 5.16 shows some n-grams from the GillamNT corpus that appear much

more frequently in mazes than outside of them. The fact that these n-grams

appear so rarely outside of mazes rules out the possibility that they are included

in mazes because they are repetitions. Examples of utterances with these phrases

include:

(5.10) And (I don’t remember his name).

(5.11) (I don’t remember the rest of it).

(5.12) (And then I don’t remember the rest).

(5.13) (Th* that/’s all I can think of).

(5.14) (No that/’s all I can know).

(5.15) (I forgot the boys name).

(5.16) (And then um I forgot the next part).

In addition to some missing morphological annotations (don’t, which occurs

632 times in the corpus, should be do/n’t, which appears only four times), it

appears that utterances containing these n-grams are parenthetical remarks that

5.7. CONCLUSIONS 159

have been annotated as mazes. According to SALT conventions, parenthetical

remarks are to be annotated with double parentheses (SALT Software, 2014a):

(5.17) The boy ((I can/’t remember his name)) left the house.

but in the GillamNT corpus, there is not a single utterance that contains this

annotation. It is therefore not the case that the examples above are simply one-off

annotation errors; rather, parenthetical remarks are systematically annotated as

mazes in the GillamNT corpus. This explains why the GillamNT corpus has

a relatively high percentage of its words in mazes, as shown in Table 5.14a. In

light of this finding, it is not surprising that including data from the GillamNT

corpus in the training data for a maze detector degrades system performance on

other corpora as seen in Table 5.3.

Collapsing the distinction between mazes and parenthetical remarks affects

the statistics computed from the GillamNT corpus: mazes are always excluded

from MLU, while parenthetical remarks may optionally be included; the number

of mazes in a transcript, and the average number of words per maze are both

statistics that SALT software reports. Estimates of MLU, maze counts, and the

number of words per maze derived from transcripts in the GillamNT corpus

will be systematically inflated because parenthetical remarks are annotated as

mazes in this corpus.

5.7 Conclusions

We have seen that automated approaches to disfluency detection can be applied

in a straightforward manner to the related task of maze detection. Specifically, we

adapt the disfluency detector proposed by Qian and Liu (2013) to this task, and

we see that in general this maze detector performs comparably to the disfluency

detector in terms of F1 score. We evaluate corpus-specific baseline models, and

160 CHAPTER 5. MAZE DETECTION

find that in most cases, we are not able to train more effective models by simply

training on the merged training sets of multiple corpora. However, by using a

simple technique for domain adaptation (FEDA, see Section 5.4.2), we are able

to leverage training data from multiple corpora effectively, and train models that

outperform the corpus-specific baselines. We also find that summary statistics

extracted from automatically annotated transcripts tend to be significantly, but

not substantially, different from those computed from manually annotated ones.

We have also investigated the SALT corpora to see whether there are sys-

tematic differences in language or maze annotations. Many of our findings are

unsurprising, for example that mean utterance length is shortest in corpora of

conversations, longer in ones of narrative tasks, and longest in the corpus of

an expository task (Expository). We find that examining the most frequent

n-grams in mazes, specifically those that occur frequently in mazes but rarely

outside of them, to be a particularly effective way of inspecting maze annota-

tions. Doing so has alerted us to a severe issue with the GillamNT corpus:

both mazes and parenthetical comments are annotated the same way there

(with single parentheses), while SALT conventions specify that mazes should

be annotated with single parentheses and parenthetical comments with double

parentheses. Deviant annotation standards are not only an issue for training

automatic maze detectors, but also for interpreting reference statistics computed

from the GillamNT corpus.

Based on our findings, we believe that the SALT annotation system should

include more rigorous guidelines for maze annotations, and that the mazes

reference databases should be re-annotated following the same standards. At

present, the maze annotations in different corpora tend to vary slightly, as

illustrated by the fact that the corpus-specific models typically outperform

models trained on more data. We believe the most likely culprit for this are the

5.7. CONCLUSIONS 161

vague maze guidelines in the SALT manual. Adding detail to these guidelines

will help clinicians and researchers annotating their own data. More importantly,

it will allow valid comparisons between summary statistics derived from these

transcripts and the reference transcripts in the SALT corpora. At present,

however, this is not possible because all of these corpora are annotated differently,

following standards that are not sufficiently detailed to allow them to be applied

elsewhere.

162 CHAPTER 5. MAZE DETECTION

Chapter 6

SALT Error Code Detection

6.1 Introduction

SALT error codes are used to capture a wide variety of grammatical errors.

As discussed in more detail in Section 2.2.3, these errors include, but are

not limited to, overregularization errors ([EO]), omitted words ([OW]) and

morphemes ([OM]), and other word-level ([EW]) and utterance-level ([EU])

errors. Nevertheless, particular error codes do not necessarily capture the same

set of errors in each SALT corpus, and different research groups tend to use

particular error codes differently. This can be seen with a quick glance at the

counts of error codes in the various SALT corpora (for more detail see Section

3.1): the ENNI corpus has no [EO] codes, and hardly any [OM] codes, while the

Conv corpus has a fair number of both. It is not that the two corpora contain

radically different types of errors, it is simply that the errors annotated with

[EO] and [OM] codes in the Conv corpus are annotated with [EW] in the

ENNI corpus.

There are three major impediments to using existing techniques for grammat-

163

164 CHAPTER 6. SALT ERROR CODE DETECTION

ical error detection and classification, discussed in Section 4.6, to detect SALT

error codes. First, many existing error detectors tend to be designed to identify

a specific set of errors, and they cannot be re-trained easily, if at all, to identify

different ones. The grammar checker in Microsoft Word and ETS e-rater, both

of which we use as baselines, are examples of such systems. Using such systems

to detect SALT error codes requires the user to map the system’s output to

error codes, which is not a trivial task, as discussed in Section 6.3.1. The second

impediment is that the vast majority of error detectors are designed for formal,

written language. Although there are many errors that affect both spoken and

written language, for example verb agreement errors, there are many differences

between spoken and written language that are relevant to error detection. For

example, punctuation and spelling errors are completely irrelevant to transcribed

speech, yet they are critical to identify in a written setting. Similarly, disfluencies

do not affect written language, but they are common in spoken language. As

discussed in Section 4.6, some current techniques in grammatical error correction

may be applicable to SALT error code detection, but there are likely to be major

obstacles in adapting them to this task. For example, some of the cutting-edge

research in grammatical error detection leverages parallel corrected data, which

is simply unavailable for SALT-annotated transcripts.

We propose several systems for SALT error code detection, each of which

model different amounts of linguistic structure. These range from a minimal

amount in the utterance-level classification approach (Section 6.4), through

neighboring words in a tagging approach (Section 6.5), to dependency structure

(Section 6.6 and 6.8). All of these approaches are entirely data-driven, and

are not designed with any corpus-specific features, and thus they should be

applicable to any SALT-annotated corpora

After exploring various systems with different configurations, we look at the

6.1. INTRODUCTION 165

output of one of them to see what sorts of errors it identifies, and which ones it

fails on (Section 6.9). Finally, in Section 6.9.1 we examine the consistency of

the manual labels in different corpora. We argue that labeling consistency is the

most plausible explanation for why the detectors’ performances vary so widely

across corpora. Such inconsistency should come as no surprise given one of our

findings in Chapter 5, namely that the quality of maze annotations are highly

variable between the SALT corpora.

6.1.1 Scope of error detection

Minimal context
to identify

Error type Example Notes

Word Overgeneralization I goed [EO : went]
to the store .

Sentence Subject agreement She are [EW : is]
over there .

Subject case Him [EW : he] left
.

Omitted word What [OW] you
selling ?

Standard North
American English

Conversation Gender errors She [EW : he] left. Antecedent in con-
versation

Factual errors Cathy [EW : Joan]
is tall .

If already dis-
cussed in conversa-
tion

Pragmatic errors Mom [EU] . Response to ‘Did
you stop?’

Real world Factual errors The house is blue
[EW : red] .

If not discussed in
conversation

Pragmatic errors Good morning
[EU] .

Said at night

Table 6.1: Overview of errors and the context required to identify them. Errors
above the double line are within the scope of this thesis.

The amount of language and linguistic structure needed to identify a gram-

matical error varies depending upon the type of error. At the minimum, a

single word is required: overgeneralized forms such as goed and robuster are

ungrammatical regardless of context. Next, we have errors that can be identified

166 CHAPTER 6. SALT ERROR CODE DETECTION

by looking at a single utterance, even if they only involve a few words within it,

for example case errors (‘Him left.’) and using the wrong preposition (‘played of

the ball’). Other types of errors, for example factual errors, gender errors, and

pragmatic errors, may require either multiple utterances from a single transcript,

or real world knowledge to identify. In this thesis, we are only attempting to

identify errors that can be identified with a single utterance, and this set of

errors naturally includes those which can be identified with a single word. We

indicate these errors, along with examples of errors that require more context,

and are therefore out of scope, in Table 6.1. This table is by no means exhaustive

with regards to enumerating all of the classes errors identifiable in each context.

To be clear, we do not alter the SALT corpora based upon Table 6.1. As

a result, there will be training and test utterances with errors that we are not

interested in detecting. Furthermore, some of these errors will be ones that we

cannot reasonably expect any existing system to detect, for example pragmatic

errors or factual errors. In the error analysis in Section 6.9, however, we do

consider whether the errors missed by our system could reasonably be caught,

or whether they are errors that require more context than a single utterance to

identify.

6.2 Evaluation

Evaluating system performance in tagging tasks on manually annotated data is

typically straightforward: we simply compare system output to the gold standard.

Such evaluation assumes that the best system is the one that most faithfully

reproduces the gold standard and thus best mimics the behavior of one or

more annotators. This is not necessarily the case with the task of automatically

applying SALT error codes, however, and different users may want to use systems

with different operating points. For example, some users may want to inspect

6.2. EVALUATION 167

a small sample of utterances that likely contain errors, while others may wish

to exclude utterances that are unlikely to contain errors from manual labeling.

Here we explain the metrics we use to summarize system performance, and how

we are able to tune these using confidence scores.

6.2.1 Metrics

Evaluation Level: error utterance
Individual error codes Has error?

Gold error codes: [EW] [EW] Yes
Predicted error codes: [EW] [OW] Yes

Evaluation: TP FN FP TP

Figure 6.1: Illustration of utterance and error level evaluation
TP = true positive; FP = false positive; FN = false negative

A tool that identifies utterances with any error that would be marked by a

SALT error code can be applied in a variety of ways. Most obviously, it can be

used to expedite an annotator’s work by removing utterances without any error

codes from consideration. Such a tool could also be used to get a quick sample

of utterances with errors, which may be of interest to clinicians. As discussed in

Chapter 7, even extremely coarse features derived from SALT annotations, for

example a binary feature for each utterance indicating the presence of any error

codes, can be of immense utility for identifying language impairments. These

applications suggest that one key way of evaluating a system to automatically

apply SALT error codes is as a binary classifier: each utterance, both in the

manually annotated data and system output either contains an error code, or it

does not. We will label this form of evaluation utterance, and it is illustrated

in Figure 6.1.

A tool that identifies specific SALT error codes also has several applications.

Most obviously, it could speed up manual annotation. As explored in Chapter 7,

automatically detected error codes can also be used to predict scores on several

168 CHAPTER 6. SALT ERROR CODE DETECTION

structured instruments. To this end, we compute precision, recall, and F1 score

from the counts of each error code in each utterance. We will label this form of

evaluation as error level, and it is illustrated in Figure 6.1. Our graph-based

system, presented in Section 6.8, is unable to predict repeated error codes, and

therefore we evaluate how well it can identify specific error codes in a slightly

different way, described in Section 6.8.1.

We are not aware of any analyses performed with SALT error codes that

takes into account their location. As a result, we see no reason to evaluate any

of the detectors in terms of how well they predict the locations of specific error

codes.

6.2.2 Confidence Scores

Each of the predictions output by systems we propose is accompanied by a

confidence score, although this is not the case for the output of MS Word or

ETS e-rater (in Section 6.3). We are able to count each prediction as positive or

negative at a particular threshold ✓ quite easily: if the confidence score of that

prediction is at least ✓, we count it as positive, and if not, we count it as negative.

This applies to both individual error code predictions and to predictions of

whether an utterance contains an error. So, for example, if we predict that the

utterance ‘him can go home’ contains an [EW] code with a confidence of 70, then

for ✓ � 70 we retain the prediction, and for ✓ < 70, we ignore it.

We present our results in the form of plots illustrating the trade-off between

precision and recall at a wide range of confidence levels, as can be seen in Figure

6.9. We also include the area under the curve (AUC) for each curve in the legend

of the plot. AUC summarizes the overall range operating points accessible with

a particular system, and ranges from 0 (worst) to 1 (best).

6.2. EVALUATION 169

6.2.3 Interpretation of evaluation

Precision, recall and F1 score are common ways of evaluating system performance

in the field of natural language processing. In general, systems with higher F1

score are preferred. External considerations, however, can inform the choice of

how to balance the trade-off between precision and recall. For example, users

tend to prefer grammar checkers (such as the one in Microsoft Word) to be

biased towards precision, or in other words ones that do not flag grammatical

sentences unnecessarily, even if they fail to flag ungrammatical ones (Helfrich

and Music, 2000). It is for this reason that the 2014 CoNLL shared task on

grammatical error correction chose to use F0.5, which weights precision more

heavily than recall, instead of the more widely used F1 score, which weights

precision and recall equally (Ng et al., 2014).

In the case of automatically applying SALT error codes, there does not seem

to be an ideal operating point because there are many ways one could use the

output of such a system. For example, a research group could use a SALT error

code detector to identify utterances without any error codes so that time is not

wasted manually coding them. In such a scenario, one would want to use a

system with high recall so that utterances with errors do not get removed from

the coding process. On the other hand, if a researcher simply wants to see a

small sample of ungrammatical utterances in a transcript, a system with high

precision would be appropriate so that they are not given a sample containing

grammatical utterances. One can imagine other scenarios with different ideal

operating points, for example using automatically predicted error codes to predict

scores on structured instruments (see Chapter 7). The bottom line is that it is

important for a system that detects SALT error codes to be able to trade off

precision and recall, and that these systems should be evaluated at a variety of

operating points.

170 CHAPTER 6. SALT ERROR CODE DETECTION

6.2.4 Corpora

The SALT corpora are not all the same size, and they do not contain the same

number of error codes. Some, in fact, contain very few error codes. We exclude

GillamNT from this chapter because it only has four [OW] codes in the entire

corpus. Other corpora, specifically Expository and NZSR have so few that

their development folds (10% of the entire corpus) have fewer than 100 error

codes each. As a result, a single prediction can have a dramatic impact upon

precision and recall, thus making it very difficult to compare system performance.

Throughout this chapter, rather than simply presenting a high-level overview

of performance on all of the SALT corpora, we focus our experiments on the

three largest corpora (Conv, ENNI, and NarSR). We do so because SALT

error code is a novel task, and we believe that presenting a smaller variety of

results in depth will yield a clearer, more informative investigation than simply

carrying out these experiments on as many corpora as possible. Nevertheless, we

do include baseline results for all of the SALT corpora that include error codes,

which is all of them except for GillamNT.

6.2.5 Setting operating points by manipulating the pro-

portion of errors in training data

Corpus Utterances Errors % Error
Conv 64,034 5,176 8.1%
ENNI 46,556 5,821 12.5%
NarSR 11,502 1,660 14.4%
Expository 3,916 427 10.9%
NarSSS 12,645 1,369 10.8%
NZConv 19,663 1,020 5.2%
NZPerNar 15,728 1,169 7.4%
NZSR 2,148 229 10.7%

Table 6.2: Errors in unmodified training folds of SALT corpora. Corpora used
in this chapter are in the top portion of the table.

6.3. BASELINE SYSTEMS 171

In all of our experiments we explore the effect of varying the proportion of

utterances in the training data that contain an error. We set the percentage of

utterances with an error in the training data by removing utterances randomly: if

we want a higher percentage of errors than the original corpus contains, we remove

utterances without any errors, and similarly, we remove utterances with errors

to produce a training corpus with a lower percentage of errors. We evaluate

training folds with 10%, 20%, 30%, . . . , 100% of the utterances contain an

error, in addition to the unmodified training corpora with the error percentages

shown in Table 6.2. We do not alter the development or test folds under any

circumstances.

Varying the percentage of utterances with an error in the training data

affects system performance. In the case of confidence-based systems, different

percentages permit different ranges of operating points. For these systems, we

present results from the training fold yielding the best range of operating points,

which we defined as the one with the highest area under the precision/recall

curve (see Section 6.2.3). For the dependency-based error detection system,

which does not produce confidence scores, adjusting the percentage of utterances

with an error in the training data allows us to control the operating point: by

increasing the percentage of utterances with an error, we can improve recall at

the expense of precision. We combine the resulting models to produce confidence

scores, as discussed in Section 6.6.1.

6.3 Baseline systems

As discussed in Section 4.6, the vast majority of grammatical error detectors are

designed for formal English written by typically developed adults, as opposed to

transcripts of spoken language collected from children who may have develop-

mental disorders. Here, we investigate how well the grammar check function in

172 CHAPTER 6. SALT ERROR CODE DETECTION

Microsoft Word, and ETS e-rater, two of the best-developed grammatical error

detectors, perform at the task of identifying SALT error codes. We describe

each of the systems in turn, and report their performance detecting utterances

with errors in the SALT corpora. Since neither of these systems is able to detect

specific SALT error codes, we do not report Error performance.

6.3.1 Microsoft Word

Microsoft (MS) Word includes a function to identify grammatical errors in the

user’s writing. This grammar checker was designed with the errors produced

in formal, written English by native speakers in mind, as opposed to informal,

spoken English (Shermis and Burstein, 2013).1 For more on the differences

between As a result, it can identify many types of errors that are irrelevant

to our investigation, for example punctuation errors or misused words (ex.

substituting ‘effect’ for ‘affect’), as shown in Table 6.3. Nevertheless, MS Word’s

grammar check can identify certain errors one would observe in SALT-annotated

data, for example subject-verb agreement errors. These categories of errors are

also shown in Table 6.3.

We test the performance of MS Word’s grammar check on the development

folds of each SALT corpus, as shown in Table 6.4. Note that we are only able

to evaluate it in terms of Utterance performance, as Microsoft Word only

identifies errors; it does not categorize them. Furthermore, even if we were to

identify which errors in the data corresponded to each option in Table 6.3, we

would still have to map them to SALT error codes. These mappings, however,

are not one-to-one. For example, ‘subject-verb agreement’ errors include errors

with both [EW] and [OM] codes. As a result, using MS word to identify SALT

error codes is likely to be quite difficult, and since error code conventions can
1See Section 4.6 for more on the differences on performing grammar checking with spoken

as opposed to written language.

6.3. BASELINE SYSTEMS 173

Error Description Used here?
Capitalization Capitalization problems, such as proper nouns

(“Mr. jones” should be “Mr. Jones”) or titles
that precede proper nouns (“aunt Helen” should be
“Aunt Helen”). Also detects overuse of capitaliza-
tion.

7

Fragments and run-ons Sentence fragments and run-on sentences. 7
Misused words Incorrect use of adjectives and adverbs, compar-

atives and superlatives, “like” as a conjunction,
“nor” versus “or,” “what” versus “which,” “who” ver-
sus “whom,” units of measurement, conjunctions,
prepositions, and pronouns.

7

Negation Use of multiple negatives. X
Noun phrases Incorrect noun phrases; a/an misuse; number agree-

ment problems in noun phrases (“five machine” in-
stead of “five machines”).

X

Possessives and plurals Use of a possessive in place of a plural, and vice
versa. Also detects omitted apostrophes in posses-
sives.

7

Punctuation Incorrect punctuation, including commas, colons,
end-of-sentence punctuation, punctuation in quo-
tations, multiple spaces between words, or a semi-
colon used in place of a comma or colon.

7

Questions Nonstandard questions such as, “He asked if there
was any coffee left?”, “Which makes an offer a good
solution?", and “She asked did you go after all?”.

7

Relative clauses Incorrect use of relative pronouns and punctuation,
including “who” used in place of “which” to refer
to things, “which” used in place of “who” to refer
to people, unnecessary use of “that” with “what-
ever” and “whichever,” or “that’s” used in place of
“whose.”

7

Subject-verb agreement Disagreement between the subject and its verb,
including subject-verb agreement with pronouns
and quantifiers (for example, “All of the students
has left” instead of “All of the students have left”).

X

Verb phrases Incorrect verb phrases; incorrect verb tenses; tran-
sitive verbs used as intransitive verbs.

X

Table 6.3: Options available and used here in Microsoft Word 2010’s grammar
check (Microsoft, 2015)

174 CHAPTER 6. SALT ERROR CODE DETECTION

Corpus P R F1
Conv 0.464 0.139 0.214
ENNI 0.530 0.276 0.363
Expository 0.364 0.170 0.232
NarSSS 0.367 0.131 0.193
NarSR 0.425 0.145 0.216
NZConv 0.333 0.174 0.228
NZPerNar 0.385 0.162 0.228
NZSR 0.200 0.077 0.111

Table 6.4: Performance of MS Word Grammar Check on development folds of
SALT corpora; Utterance evaluation; mazes not removed

vary across corpora, the mapping would need to be revised repeatedly.

As can be seen in Table 6.4, Microsoft Word’s grammar check does not

perform very well. In general, it yields predictions with higher precision and

lower recall. We note that the relatively high-precision operating point is to be

expected, as one of the design goals of Microsoft Word’s grammar check is to

avoid presenting users with false positives (Helfrich and Music, 2000).

6.3.2 ETS e-rater

ETS e-rater is an automatic system to assess writing proficiency (). As with

MS Word, ETS e-rater was designed to identify deviations from formal, written

English, as opposed to informal, spoken English. Like MS Word, e-rater can

identify many types of errors that are irrelevant to our investigation, for example

punctuation and capitalization errors, as shown in Table 6.5. E-rater, however,

identifies grammatical errors more finely than MS Word. For example, grammar

check can identify certain errors one would observe in SALT-annotated data, for

example subject-verb agreement errors, and these categories of errors are also

shown in Table 6.3.

We test the performance of the ETS e-rater on the development folds of

6.3. BASELINE SYSTEMS 175

Error type Used here? Error type Used here?
Fragments X Run-on sentences 7
Garbled sentences X Subject-verb agreement X
Ill-formed verbs X Pronoun errors X
Possessive errors Wrong or missing word X
Proofread this! X Determiner noun agreement X
Missing or extra article X Confused words 7
Wrong form of word X Faulty comparisons 7
Preposition error X Nonstandard word form X
Negation error X Wrong part of speech X
Wrong article X Spelling 7
Capitalize proper nouns 7 Missing initial capital letter in a sentence 7
Missing question mark 7 Missing final punctuation 7
Missing apostrophe 7 Missing comma 7
Hyphen error 7 Fused words 7
Compound words 7 Duplicates 7
Extra comma X

Table 6.5: Error types available and counted here in ETS e-rater ()

Corpus P R F1
Conv 0.081 0.419 0.136
ENNI 0.151 0.244 0.187
Expository 0.073 0.191 0.106
NarSSS 0.102 0.283 0.149
NarSR 0.190 0.235 0.210
NZConv 0.055 0.459 0.098
NZPerNar 0.066 0.296 0.108
NZSR 0.064 0.125 0.085

Table 6.6: Performance of ETS e-rater on development folds of SALT corpora;
Utterance evaluation; mazes not removed

each SALT corpus, as shown in Table 6.6. We only evaluate it in terms of

Utterance performance, since mapping the errors identified by e-rater do not

correspond perfectly to SALT error codes. For example, ‘subject-verb agreement’

errors include errors with both [EW] and [OM] codes. As a result, using ETS

e-raterd to identify SALT error codes is likely to be quite difficult, and since

error code conventions can vary across corpora, the mapping would need to be

176 CHAPTER 6. SALT ERROR CODE DETECTION

revised repeatedly.

As can be seen in Table 6.6, the ETS e-rater performs worse than the MS

Word grammar checker (see Table 6.4). As a result, we will only use the MS

Word performance as a baseline in the remaining experiments in this chapter.

Unlike MS Word, ETS e-rater yields predictions with higher recall and lower

precision. This is understandable, given that the ETS e-rater is designed to assess

writing skills, and is not subject to the same sort of user interface considerations

as MS Word.

6.4 Classifier-based error detection

The classifier we discuss here is based on one proposed by Hassanali and Liu

(2011), and we originally presented it in the context of using automatically

produced SALT error codes to predict the presence of Autism spectrum disorder

and a language impairment (Morley et al., 2013). This classifier is only able

to make predictions at an utterance level, and it ignores any deeper structure

present in an utterance because the only features it uses are pairs of words that

appear close to one another.

6.4.1 Methods

Hassanali and Liu (2011) investigated rule- and classifier-based approaches to

identify six specific errors in the Paradise corpus (Paradise et al., 2005), which

contains transcripts of spoken language collected from children, some of whom

have otitis media, a hearing disorder. We re-implemented their classifiers,and

found that only one of them (‘misuse of -ing participle’) was able to detect SALT

error codes. It is this classifier that we discuss here. We refer readers curious

about the other classifiers to their original paper (Hassanali and Liu, 2011) as

well as our follow-up work (Morley et al., 2013).

6.4. CLASSIFIER-BASED ERROR DETECTION 177

The classifier uses two types of features: word bigrams, which are all pairs of

adjacent words in the original utterance (ex. ‘the classifier’ and ‘classifier uses’

at the beginning of this sentence); and word skip-1 bigrams, which are all pairs

of words that have a single word between them in the original utterance (ex.

‘this uses’ and ‘classifier two’ at the beginning of this sentence). These features

are extracted from the entire utterance, as this classifier works at the utterance

level.

Hassanali and Liu (2011) used a Naive Bayes classifier, but here we use the

C-support vector classifier in scikit (Pedregosa et al., 2012) instead. We decided

to do so because this classifer’s probability estimates are more reliable than

those from the Naive Bayes classifier as it does not make the same independence

assumptions. Classification is performed on one utterance at a time. The

support vector classifier allows us to predict which utterances contain any SALT

errors without any difficulty. Using it to predict specific error codes, however,

is complicated because a single utterance can have more than one error code,

but expanding the number of labels to be predicted (ex. labels representing

combinations of error codes observed together in an utterance) risks introducing

issues with data sparsity. Furthermore, if we were to use multiple classifiers (ex.

one for each error code) or a multilabel classifier, we would still not be able

to predict that an utterance contains more than one instance of a particular

error code. We therefore only evaluate this classifier in terms of Utterance

performance, i.e. how well it can identify utterances with an error.

We train and test the utterance-level classifier, varying the presence of mazes,

using the manual maze annotations. We also vary the proportion of utterances

with an error in the training data to be 10%, 20%, . . . , 100% by randomly

removing utterances, but we only report the results with the highest area under

the P/R curve, as described in Section 6.2.2.

178 CHAPTER 6. SALT ERROR CODE DETECTION

6.4.2 Results and conclusions

(a) Conv (b) ENNI

(c) NarrativeSR

Figure 6.2: Classifier performance on the development folds of several SALT
corpora varying the presence of manually annotated mazes
MS word performance on data with mazes

Overall, we find that the utterance classifier yields very poor performance,

even worse than MS Word, as can be seen in Figure 6.2. On most corpora, there

is a minimal range of operating points available, even though the classifier’s

predictions come with confidence scores. The utterance-level classifier is, however,

robust to the presence of mazes across most operating points.

6.5. TAGGING-BASED ERROR DETECTION 179

6.5 Tagging-based error detection

The utterance-level classifier described in the previous section models essentially

models utterances as a bag of words and n-grams. Its poor performance suggests

that perhaps more linguistic structure needs to be modeled in order to identify

SALT error codes effectively. Therefore in this section, we approach SALT error

code detection as a tagging task, meaning we model the utterance as a sequence of

words, and that we try to find the most likely sequence of tags for each utterance.

To see how this contrasts with the classification approach, let us consider the

common task of part-of-speech (POS) tagging. In a classification approach, we

could simply label each word with its most common tag, so perhaps ‘bear’ is

labeled as a noun (NN) wherever it occurs. This is fine in phrases like ‘the

bear’, but not for ones like ‘we bear’, in which ‘bear’ is actually a verb. Tagging

approaches, however, take into account the frequency with which particular

sequences of tags are observed. Continuing with the example of ‘we bear’, ‘PRP

VB’ is very common, but ‘PRP NN’ is rare, and therefore the sequence ‘PRP

VB’ with ‘bear’ as a verb is more likely than the sequence ‘PRP NN’ with ‘bear’

as a noun.

To approach SALT error code detection as a tagging task, we assign a single

tag to each word: if there is an error code to the right of the word, then that

word is tagged with the error code, and if there is no error code there, then it

is labeled as ‘no error’. So, for example, the utterance ‘him [EW] can go home’

would be labeled: ‘EW NE NE NE’, where NE is the label for ‘no error’.

6.5.1 Methods

We perform classification using the CRF++ toolkit with the default settings (Kudo,

2005). CRF++ is a linear-chain conditional random field (CRF) tagger, and for

more details on CRFs, we refer the reader to Section 4.3.2. We use the features

180 CHAPTER 6. SALT ERROR CODE DETECTION

Example
Description Feature Location (i = 0 at ‘goed’)
Word unigrams w

i

�1 i 1 goed
Word bigrams w

i

w

i+1 �1 i 0 goed home
POS unigrams p

i

�1 i 1 VBD
POS bigrams p

i

p

i+1 �1 i 0 VBD ADV
POS trigrams p

i

p

i+1 �2 i 0 VBD ADV </S>
Word+POS w

i

p

i

�1 i 1 goed+VBD
Word+POS / Word w

i

p

i

w

i+1 �1 i 0 goed+VBD home
Word / Word+POS w

i

w

i+1pi+1 �1 i 0 goed home+ADV
Word+POS / POS w

i

p

i

p

i+1 �1 i 0 goed+VBD ADV
POS / Word+POS p

i

w

i+1pi+1 �1 i 0 goed+VBD ADV

Table 6.7: Features used in tagger, index of current word is 0, word to left is -1,
and word to right is 1.
Examples in table have i = 0 and are taken from sentence: ‘we goed home’ with
POS tag sequence ‘PRP VBD ADV’ when current word is ‘goed’. </S> is a
padding symbol.

illustrated in Table 6.7, all of which are extracted from words and POS tags.

We train and test the CRF tagger on data that contains mazes, and on data

that has had the manually annotated mazes excised.

6.5.2 Results and Conclusions

In Figure 6.3 we see that the CRF tagger comfortably outperforms the MS

Word baseline in terms of Utterance performance and that it is largely robust

to mazes. The CRF tagger also outperforms the utterance-level classifier by a

wide margin (see Figure 6.2). The plots in Figure 6.3 show that performance

varies greatly across different corpora, both in terms of Utterance and Error

evaluation. In particular, performance on ENNI is substantially better than

the other two corpora. Finally, we see that Utterance performance is in all

cases somewhat higher than Error performance. This is unsurprising, as the

correct Error level predictions are a proper subset of correct Utterance level

6.5. TAGGING-BASED ERROR DETECTION 181

(a) Conv - Utterance (b) Conv - Error

(c) ENNI - Utterance (d) ENNI - Error

(e) NarSR - Utterance (f) NarSR - Error

Figure 6.3: CRF tagger performance on the development folds of several SALT
corpora varying the presence of manually annotated mazes
MS word performance on data with mazes

182 CHAPTER 6. SALT ERROR CODE DETECTION

predictions.

6.6 Dependency-based error detection

ROOT I saw her go home

nsubj

ROOT

nsubj

ccomp

dobj

(a) Dependency parse of ‘I saw her go home’

ROOT Her go home

nsubj

ROOT

dobj

(b) Dependency parse of *‘Her go home’

Figure 6.4: Dependency structure indicative of a grammatical error

Certain grammatical errors can be identified by looking at a single word, or

even a sequence of words, but many cannot. For example, the overgeneralized

form ‘goed’ is always ungrammatical, but whether the word ‘her’ is grammatical

depends upon its context. Consider the utterances shown in Figure 6.4. The

utterance in 6.4b is contained fully within utterance 6.4a, yet it is ungrammatical.

‘Her go home’ is ungrammatical because the subject of the main verb is in

the accusative case. This is not obvious if we only consider these utterances

as strings of words. In terms of dependencies, however, we see that in the

grammatical utterance, the dependent in the nsubj dependency headed by the

main verb (ie the verb headed by ROOT) is in the nominative case (‘I’), while in

the ungrammatical utterance, there is an accusative pronoun (‘Her’) in this same

structural position. This can be seen in the parses in Figure 6.4 by following

the red arcs. We now explore ways of using dependency parses to identify SALT

error codes, motivated by the observation that dependency structure can be

helpful for identifying grammatical errors.

6.6. DEPENDENCY-BASED ERROR DETECTION 183

We propose a simple method to train a dependency grammar that can be

used to identify specific SALT error codes. Our procedure has several parameters

that can easily be set by the user, and we explore the effect of these parameters

on system performance. Recall from the discussion in Section 6.2.3 that unlike

many tasks in NLP, the SALT error code detection system with the highest

F1 score is not necessarily the best one for all purposes; depending upon the

intended use, one may prefer a system with higher precision at the expense of

recall, or vice versa.

6.6.1 Methods

Setting Description
Parser Which parser we use
Arcs labeled Which arc labels are augmented with error codes
Label encoding How error codes are encoded in arc labels
Recovery How to decide which error codes are in the output

Table 6.8: Template for settings of dependency parse-based SALT error detection
system

Our method for training and using a dependency grammar to identify specific

SALT error codes is as follows (and a concrete example is given below):

1. Produce dependency parses of utterances that have been annotated with

SALT error codes

2. Augment the parses to include representation of any SALT error codes

3. Optionally modify the proportion of utterances in the training set with

any errors

4. Train a new dependency grammar on these augmented parses

5. Parse new data using this grammar

184 CHAPTER 6. SALT ERROR CODE DETECTION

6. Recover the error codes from these parses

Steps 1, 3, 4, and 5 are simple enough: dependency parsers can parse unseen

data (steps 1 and 5); they can be trained (step 4); and using random sampling,

we can vary the proportion of utterances that contain an error (Step 3). The

most effective method for Step 2, incorporating the SALT error codes into the

dependency parse, is not obvious. In this thesis, we investigate ways of encoding

SALT error codes in dependency arc labels. This raises two key challenges:

1) determining which arcs should be labeled, and 2) determining how these

arcs should be labeled. How we encode SALT error codes in dependency arc

labels determines the range of ways in which the error codes can be recovered.

Therefore, each time we propose a different way of encoding the SALT error

codes in the dependency parses, we will also discuss how to decide which SALT

error codes are predicted in the parser’s output (Step 6).

We now present several methods to encode SALT error codes in dependency

arc labels. We use the template in Table 6.8 throughout this section and

the presentation of our experimental results (Section 6.6.2) to summarize the

experimental settings.

Basic algorithm

ROOT him can not can not get up .

nsubj+[EW]

aux

neg

aux

neg

ROOT

prt

P

Figure 6.5: Basic error-code augmented parse of ‘Him [EW] (can not) can not
get up .’

6.6. DEPENDENCY-BASED ERROR DETECTION 185

Setting Description
Parser Any
Arcs labeled Arc going into word to left of error code
Label encoding As itself (ex. nsubj becomes nsubj+EW)
Recovery Each augmented arc label corresponds to a single

error code

Table 6.9: Basic settings of dependency parse-based SALT error code detection
system

A very simple way of encoding SALT error codes in dependency arc labels

is by augmenting a single arc label with the appropriate SALT error code. In

Figure 6.5, we show such a parse. Specifically, we append the appropriate SALT

error code to the label of the arc going into the word to the SALT error code’s

left. To recover the error codes, we simply look at the predicted arc labels for

any that have an error code in them. Table 6.9 shows the settings for the basic

algorithm.

Illustration of basic algorithm

Now that we have presented a concrete method to encode SALT error codes

in a dependency parse, let us walk through a toy example of all five steps of

the algorithm. In Step 1, we take an existing dependency grammar, and use

it to parse utterances that have been annotated with SALT error codes. In all

of our experiments, we perform Step 1 with a dependency grammar trained on

the Switchboard Treebank (Godfrey et al., 1992). The Switchboard Treebank

contains manually produced constituency parses of transcribed conversations.

We pre-process the Switchboard Treebank by removing all partial words as well

as all words dominated by EDITED nodes. We then convert the phrase-structure

trees to dependencies using the Stanford dependency converter (De Marneffe

et al., 2006) with the basic dependency scheme, which produces dependencies

186 CHAPTER 6. SALT ERROR CODE DETECTION

that are strictly projective. Next, we parse the SALT-annotated utterances with

the grammar trained on the Switchboard Treebank:

SALT annotations Dependency parse (Step 1)

I [OW] very happy ROOT I very happy

ROOT advmod

amod

Her [EW] is here ROOT Her is here

ROOT

nsubj advmod

In Step 2, we augment the arc label going into the word to the left of each SALT

error code:

SALT annotations Augmented dependency parse (Step 2)

I [OW] very happy ROOT I very happy

ROOT+[OM] advmod

amod

Her [EW] is here ROOT Her is here

ROOT

nsubj+[EW] advmod

In Step 3 we can alter the percentage of utterances that contain an error by

randomly selecting utterances from the output of Step 2. In this example we will

not remove any utterances, but in our experiments we vary the proportion of

utterances with an error in the training data to be 10%, 20%, 30%, . . . , 100%. We

note that since the vast majority (>80%) of utterances are grammatical in all of

the SALT corpora, most of these operating points involve removing grammatical

utterances, not ungrammatical ones. In Step 4, we train a dependency grammar

on the modified parses that remain after Step 3. In Step 5, we parse new

6.6. DEPENDENCY-BASED ERROR DETECTION 187

utterances using this grammar, and in Step 6, we recover the error codes from

these parses:

Utterance Predicted parse (Step 5) Predicted

Error Codes

(Step 6)

Him go home ROOT Him goes home

ROOT

nsubj+[EW] dobj

[EW]

I like chocolate ROOT I like chocolate

ROOT

nsubj dobj

None

Getting confidence scores

Parse Predicted error codes
Parse 1 None
Parse 2 [EW]
Parse 3 [EW], [EW]
Evaluation Confidence Scores
Utterance 2
Error [EW-1]: 2; [EW-2]: 1

Table 6.10: Illustration of confidence scores from three parses of utterance: ‘Him
can go home’

Our dependency-based system does not have an obvious way to produce

confidence scores: even if a parser is able to produce them for individual parses,

it is not able to do so for specific arc labels. To address this shortcoming, we train

11 models for each experiment, each trained on data with a different percentage

of utterances containing an error (10%, 20%, 30%, . . . , 100%, along with the

original data). For a given utterance, we are then able to produce 11 predictions,

one for each model.

188 CHAPTER 6. SALT ERROR CODE DETECTION

Using these 11 models we are able to extract confidence scores for Utterance

evaluation quite easily: each prediction of an error contributes one point so that

the confidence score for each utterance ranges from 0 (no model predicts an

error) through 11 (all models predict an error). Producing confidence scores

for Error evaluation is only slightly more complicated: for each utterance,

we count the number of parses in which each error code is predicted. When a

particular error code is predicted more than once in a parse, we assign indices

to the error codes in each parse (ex. first [EW] code or third [OM] code) before

counting confidence scores. This is illustrated in Table 6.10.

Error code representation: generic error code

ROOT Him goed home

nsubj+[ER]

ROOT+[ER]

dobj

Figure 6.6: Arcs augmented with generic error label: ‘Him [EW] goed [EO]
home’

Setting Description
Parser Any
Arcs labeled Arc going into word to left of error code
Label encoding All errors labeled as [ER]
Recovery An augmented arc label means the utterance con-

tains a SALT error code

Table 6.11: Generic error code settings of dependency parse-based SALT error
code detection system

In the basic algorithm, we augment a single arc with the error code itself.

This approach has the advantage of encoding specific error codes, but if we

are only trying to identify utterances that contain an error code, then we only

need a generic error code. Specifically, in Step 2, we can augment arc labels

with a generic error code (say ‘+ER’), as illustrated in Figure 6.6 rather than

6.6. DEPENDENCY-BASED ERROR DETECTION 189

with specific SALT error codes. This configuration is presented in Table 6.11.

Using generic error codes in Step two has the advantage of alleviating data

sparsity relative to using specific error codes because there are many more arc

labels to learn than with a single generic error code, and therefore there will be

more observations per arc label when we use a single generic error code. The

disadvantage of this method is that it precludes identifying specific SALT error

codes.

Error code representation: concatenated error codes

ROOT Him goed home

nsubj+[EO]+[EW]

ROOT+[EO]+[EW]

dobj

Figure 6.7: Arcs augmented with concatenated error label: ‘Him [EW] goed
[EO] home’

Setting Description
Parser Any
Arcs labeled Arc going into word to left of error code
Label encoding All errors codes in utterance are concatenated into

a single label used throughout the utterance
Recovery Each constituent label within an augmented arc

label corresponds to a single error code

Table 6.12: Concatenated error code settings of dependency parse-based SALT
error code detection system

It is possible that there are interactions between errors in utterances with

multiple errors (ex. ‘Him [EW] goed [EO] home’), and therefore augmenting arc

labels with concatenated error codes may improve system performance relative to

the basic arc labels, particularly in terms of Error level performance on utter-

ances with multiple errors. We construct the concatenated error labels without

repeated errors. We sort the error codes alphabetically to avoid introducing un-

necessary data sparsity (we see no reason to learn the labels ‘nsubj+[EO]+[EW]’

190 CHAPTER 6. SALT ERROR CODE DETECTION

and ‘nsubj+[EW]+[EO]’ separately). Table 6.12 contains this configuration.

Augmenting multiple arc labels: Neighbor-N

Setting Description
Parser Any
Arcs labeled Arc going into word to left of error code and N

neighboring or all words
Label encoding Basic, generic, or concatenated
Recovery Dependent upon arc label encodingl

Table 6.13: Neighbor-N error code settings of dependency parse-based SALT
error code detection system

ROOT Him just goed home

ROOT+[EO]

nsubj+[EW]

advmod+[EO]+[EW] dobj+[EO]

Figure 6.8: Arcs augmented with Neighbor-1: ‘Him [EW] just goed [EO] home’

By augmenting more than a single arc label with a SALT error code we

increase the number of augmented arcs in the training data thereby reducing data

sparsity. On the other hand, augmenting multiple arc labels with error codes will

likely result in decreased precision as a result of overpredicting augmented arc

labels at test time. We propose a simple procedure for augmenting multiple arc

labels with a SALT error codes, which we will refer to as Neighbor-N: augment

the arcs going into the N words to the right and left of the SALT error code.

We consider values of N from 1 through 5, and Neighbor-All, in which we

augment all arc labels in utterances with a SALT error code.

Following the Neigbor-N procedure with either generic or concatenated

encoding schemas illustrated in Figures 6.6 and 6.7, respectively, is straightfor-

ward because the error codes are encoded in the same way in every arc label. If,

however, we wish to extend the baseline encoding schema in which arc labels

6.6. DEPENDENCY-BASED ERROR DETECTION 191

are augmented at most with one error code, then we must decide what to do

in utterances with multiple SALT error codes. As illustrated in Figure 6.8, we

propose that if an arc is near enough to more than one error code, then it should

be augmented with a concatenation of the relevant error codes, and that other arc

labels should be augmented with a single error code. As with the concatenated

encoding schema, if an arc label is to be augmented with multiple error codes,

we remove duplicate error codes and sort them alphabetically before augmenting

the arc label. The configuration for Neighbor-N encoding is presented in Table

6.13.

6.6.2 Results

We first use the basic algorithm to answer two key questions: 1) is this method

for detecting SALT error codes robust to mazes?, and 2) are some parsers better

than other for this task? As detailed below, we find that neither the presence of

mazes nor the choice of parser has much of an impact on error code detection

performance. The finding about mazes is particularly important: there is no

need to perform maze detection as a preprocessing step to SALT error code

detection.

After the initial experiments, we investigate the utility of different ways of

representing error codes in the dependency parses. We perform these experiments

on data that includes mazes, and the parser we use is MaltParser (Nivre, 2003)

with the default settings. We selected MaltParser for these experiments because

it is far faster to train than Zpar, and RedShift was unable to train a model

in certain cases (specifically on the NZSR corpus with 40% or more of the

utterances containing an error).

192 CHAPTER 6. SALT ERROR CODE DETECTION

(a) Conv - Utterance performance (b) Conv - Error performance

(c) ENNI - Utterance performance (d) ENNI - Error performance

(e) NarSR - Utterance performance (f) NarSR - Error performance

Figure 6.9: Dependency-based detector performance on SALT development folds:
varying the presence of mazes

6.6. DEPENDENCY-BASED ERROR DETECTION 193

Setting Description
Parser MaltParser with default settings
Arcs labeled Arc going into word to left of error code
Label encoding As itself (ex. nsubj becomes nsubj+EW)
Recovery Each augmented arc label corresponds to a single

error code

Table 6.14: Settings of dependency parse-based SALT error code detection
system for maze detection experiments

Basic algorithm: Do mazes matter?

We train the error detection system with the configuration described in Table

6.14 (the basic algorithm) on two versions of each SALT corpus: one with mazes

present, and the other with all manually identified mazes excised. We do not

vary the presence of mazes between the training and development folds; models

trained on data with mazes present are only ever tested on development folds

with mazes present, and models trained on data with mazes excised are only

ever tested on development folds with mazes excised.

The results of these trials are shown in Figure 6.9. We see that the presence

or absence of mazes does not substantially affect system performance for most

corpora, either in terms of Utterance or Error evaluation. Given these

results, we will not perform an in-depth investigation of how to combine error

code and maze detection.

Basic algorithm: Does the choice of parser matter?

We evaluate the effectiveness of several parsers for SALT error code detection

following the configuration in Table 6.15. Specifically, we use: Malt parser (Nivre,

2003), Redshift (Honnibal et al., 2013), and ZPar (Zhang and Clark, 2011). We

only evaluate the default settings of Malt Parser and ZPar, but we try two

194 CHAPTER 6. SALT ERROR CODE DETECTION

(a) Conv - Utterance performance (b) Conv - Error performance

(c) ENNI - Utterance performance (d) ENNI - Error performance

(e) NarSR - Utterance performance (f) NarSR - Error performance

Figure 6.10: Dependency-based detector performance on SALT development
folds: different parsers

6.6. DEPENDENCY-BASED ERROR DETECTION 195

Setting Description
Parser MaltParser and ZPar with default settings, Red-

shift with Zhang and Full feature sets
Arcs labeled Arc going into word to left of error code
Label encoding As itself (ex. nsubj becomes nsubj+EW)
Recovery Each augmented arc label corresponds to a single

error code

Table 6.15: Settings of dependency parse-based SALT error code detection
system for comparing different parsers

settings for Redshift: the Zhang feature set, and the Full feature set, both of

which are described in Section 4.4.

Figure 6.10 shows the Error and Utterance performance of the error

detectors built with each of these parsers on several SALT corpora. These plots

illustrate that while the choice of parser does have an effect upon SALT error

code detection performance, none of the parsers yields better performance than

the others on all corpora. Looking at Figure 6.10, we see that Zpar is the best

parser by a wide margin for ENNI and by a smaller one onNarSR. Zpar’s

performance on Conv is similar to the other parsers’ even though it is the second

lowest. We perform our remaining experiments with MaltParser because it is

the fastest to train, and its performance is on the whole comparable to the other

parsers’.

Error code representation: generic error codes

We now evaluate our error detection system with generic error codes, following

the settings in Table 6.16. This system is unable to identify specific errors, and

therefore it can only be evaluated with Utterance evaluation, and not Error

evaluation. In Figure 6.11, we see that using generic error codes does not have

much of an effect on system performance.

196 CHAPTER 6. SALT ERROR CODE DETECTION

Setting Description
Parser MaltParser with default settings
Arcs labeled Arc going into word to left of error code
Label encoding All errors as [ER]
Recovery Each augmented arc label corresponds to a single

error code

Table 6.16: Settings of dependency parse-based SALT error code detection
system for generic error code experiments

(a) Conv (b) ENNI

(c) aNarSR

Figure 6.11: Dependency-based detector Utterance performance on SALT
development folds: generic error codes

6.6. DEPENDENCY-BASED ERROR DETECTION 197

Error code representation: concatenated error codes

Setting Description
Parser Any
Arcs labeled Arc going into word to left of error code
Label encoding All errors codes in utterance are concatenated into

a single label used throughout the utterance
Recovery Each constituent label within an augmented arc

label corresponds to a single error code

Table 6.17: Concatenated error code settings of dependency parse-based SALT
error code detection system

We now evaluate our error detection system with concatenated error codes,

following the settings in Table 6.17. In Figure 6.12, we see that using concate-

nated error codes has hardly any effect on Utterance performance. Error

performance on ENNI drops relative to the dependency baseline (with the ‘basic’

encoding schema) when concatenated error codes are used, but it is effectively

the same as the baseline for the other two corpora.

Augmenting multiple arc labels: Neighbor-N

Setting Description
Parser Any
Arcs labeled Arc going into word to left of error code and N

neighboring or all words
Label encoding Basic, generic, or concatenated
Recovery Dependent upon arc label

Table 6.18: Neighbor-N error code settings of dependency parse-based SALT
error code detection system

We run the experiments to evaluate the Neighbor-N labeling schemas

following the configuration in Table 6.18. Figure 6.13 shows the effect on

performance of using the Neighbor-N encoding schema with basic arc error

labels (i.e. the arc labels are augmented with specific error codes) for three of

the SALT corpora. The most notable effect of the Neighbor-N labeling schema

198 CHAPTER 6. SALT ERROR CODE DETECTION

(a) Conv - Utterance performance (b) Conv - Error performance

(c) ENNI - Utterance performance (d) ENNI - Error performance

(e) NarSR - Utterance performance (f) NarSR - Error performance

Figure 6.12: Dependency-based detector performance on SALT development
folds: concatenated error codes

6.6. DEPENDENCY-BASED ERROR DETECTION 199

(a) Conv - Utterance (b) Conv - Error

(c) ENNI - Utterance (d) ENNI - Error

(e) NarSR - Utterance (f) NarSR - Error

Figure 6.13: Dependency-based detector Utterance performance on SALT
development folds: Neighbor-N labeling schema with basic error arc labels

200 CHAPTER 6. SALT ERROR CODE DETECTION

is to enable high-recall operating points to have precision above the minimum

level (i.e. only predicting errors). In terms of Utterance evaluation, this does

not come at the expense of precision at any given values of recall. This is not

the case for Error evaluation, however, where all of the Neighbor-N systems

have lower precision than the baseline at given values of recall.

Comparing the dependency-based system to the tagger

Figure 6.14 compares the performance of the dependency-based algorithm with

the baseline systems, all detecting SALT error codes with mazes present. The

results for the dependency-based algorithm in Figure 6.14 are from the highest

performing systems for each corpus, noted alongside each plot. First, we see

that on the ENNI corpus, the dependency-based detector clearly outperforms

the tagger both in terms of Utterance and Error performance. All of the

systems perform substantially better on the ENNI corpus than on the Conv

and NarrativeStoryRetell corpora. For these two corpora, we find that

the CRF-based tagger outperforms the dependency-based error detector both in

terms of Utterance and Error evaluation. Finally, we note that the Zpar

baseline system is the best performing of all the dependency-based systems in

terms of AUC on Error evaluation for all three corpora, even though it still

performs worse than the CRF-based tagger in two of these three corpora.

The effect of labeling schemas on the number of arc labels

Table 6.19 shows the observed number of arc labels in each of the SALT corpora

under each of the labeling schemes examined thus far along with the theoretical

maximum number of arc labels, which is simply the number of error labels times

the number of unaugmented arc labels. First, we see that in many corpora

the specific error labels are somewhat restricted in their distribution, relative

to arc labels: in many corpora the observed number of arc labels under the

6.6. DEPENDENCY-BASED ERROR DETECTION 201

(a) Conv - Utterance performance,
Neighbor-All

(b) Conv - Error performance, Zpar base-
line

(c) ENNI - Utterance performance, Zpar
baseline

(d) ENNI - Error performance, Zpar base-
line

(e) NarSR - Utterance performance,
Neighbor-1

(f) NarSR - Error performance, Zpar
baseline

Figure 6.14: Comparison of dependency-based algorithm to CRF tagger and MS
Word

202 CHAPTER 6. SALT ERROR CODE DETECTION

N N Basic Generic Concatenated
Corpus Codes Labels Max Obs Max Obs Max Obs
Conv 6 45 270 229 90 87 2,880 409
ENNI 4 45 180 139 90 85 720 196
Expository 5 45 225 118 90 78 2,880 141
NarSSS 6 45 270 184 90 85 2,880 274
NarSR 6 45 270 173 90 84 2,880 250
NZConv 6 45 270 170 90 80 2,880 234
NZPerNar 6 45 270 167 90 84 2,880 227
NZSR 6 41 246 109 82 68 2,624 130

Table 6.19: Arc label counts under different labeling schemas

‘basic’ labeling schema is around 60-70% of the theoretical maximum. Not

surprisingly, the generic error labels are more widely distributed. We attribute

the massive discrepancy between the theoretical maximum and observed counts

of arc labels under the ‘concatenated’ schema to the fact that many of the

possible combinations of error codes simply do not occur. For example, Conv

has 28 concatenated error codes, which is the highest of any of the SALT corpora,

but still far lower than the 2

6 � 1 = 63 concatenated error codes possible in that

corpus.

Finally, we note that it is somewhat surprising that all of the schemas for

encoding error codes in dependency arc labels yield similar performance. Simply

based on the number of arc labels to learn, one would expect the ‘generic’

labeling schema to yield the best Utterance performance, and the ‘basic’

labeling schema to yield the best Error performance, but this is not always

the case.

6.6.3 Conclusions

In this section we have seen that dependency grammars can be trained to

identify SALT error codes. This approach tends to outperform tools developed

6.7. SYSTEM COMBINATION: TAGGING- AND DEPENDENCY-BASED ERROR DETECTORS203

for formal, written language, namely Microsoft Word and the ETS e-rater.

Like the CRF tagger, the dependency-based method is agnostic to the set of

error labels used, and is robust to mazes. Although it has an operating point

that can be manipulated by varying the proportion of training utterances that

contain an error, it does not output a confidence score. We have proposed a

way to combine models, which enables us to rank outputs, although control

over the trade-off between precision and recall is less fine-grained than with

systems that produce true confidence scores. In most cases the CRF tagger

outperforms the dependency-based method, but there are some instances (ENNI

- Utterance) where the opposite is true. This suggests that there is some merit

to the dependency approach, even if it is not appropriate for every corpus.

6.7 System combination: tagging- and dependency-

based error detectors

The tagging- and dependency-based methods for SALT error code detection

outperform all of the other methods we explore (including the random walk-

based error detector explored below in Section 6.8). Neither the tagging- nor the

dependency-based system clearly outperforms the other, which suggests model

combination. We combine these two systems by incorporating the predictions of

the dependency-based error detector into features used by the CRF tagger.

6.7.1 Methods

We add the possibly-augmented arc label output by the dependency-based

error detector to the original feature set used by the CRF tagger. While we

experimented with other features, for example arc label bigrams and POS tags

combined with arc labels, we found using arc labels alone to be equally effective.

204 CHAPTER 6. SALT ERROR CODE DETECTION

Furthermore, we found that using the augmented arc labels yielded slightly

higher performance than simply using the predicted error code. For reference,

the original feature set used by the CRF tagger is shown in Table 6.7.

Using augmented arc labels as a feature complicates training: we cannot

train a CRF tagger using the usual version of this feature in our training sets

because they contain the true error code, which is the label we are trying to

predict. Furthermore, when we extract features in testing, we will not find

dependency arcs augmented with true error codes, but rather the augmented

arc labels predicted by the dependency-based error detector. We address this

issue by using arc labels predicted using cross-validation as features in training.

Specifically, we partition the training set of a particular corpus into ten folds,

and then train a dependency-based error detection model on nine of these folds.

We use the labels predicted by this model as the features for the utterances in

the held-out fold. We repeat this procedure for all ten folds.

6.7.2 Results and Conclusions

Table 6.15 shows the performance of the CRF tagger that incorporates the output

of the dependency-based error detector. We see that combining these systems

improves performance in some cases, but not across the board. For example, the

joint system allows higher levels of precision on ENNI corpus at levels of recall

below about 0.6 compared to either the CRF tagger or dependency-based error

detector alone, but performance on the Conv and NarSR corpora is essentially

the same as the original CRF tagger. Based on these preliminary results, it

appears that combining these two systems can be fruitful, but not dramatically

or reliably so.

6.7. SYSTEM COMBINATION: TAGGING- AND DEPENDENCY-BASED ERROR DETECTORS205

(a) Conv - Utterance (b) ENNI

(c) NarSr - Error

Figure 6.15: Performance of CRF tagger incorporating features from dependency-
based error detector on the development folds of several SALT corpora. Mazes
included, Utterance evaluation.

206 CHAPTER 6. SALT ERROR CODE DETECTION

6.8 Random Walk-Based Error Detection

We now introduce a random walk-based algorithm to identify SALT error codes.

This method, like our classifier, tagger, and dependency-based error detection

methods, is data-driven, and is agnostic to the set of error codes. Like the

dependency-based method, the random walk-based method allows us to capture

more complicated relations between words in an utterance than does the tagger,

which simply treats each utterance as a sequence of words, or the classifier, which

essentially treats each utterance as a bag of words and bigrams. The random

walk-based method also addresses the main weakness of the dependency-based

method, namely its inability to produce confidence scores.

6.8.1 Methods

We begin by describing our basic random walk-based algorithm for SALT error

code detection. We then describe some variants of this method, including ones

that have information from dependency grammars trained to identify SALT error

codes encoded in the graph structure. For simplicity, we begin with methods to

detect utterances that contain any error codes. We then propose a method to

identify specific error codes, each with accompanying confidence scores.

Basic Algorithm

Our basic algorithm for random walk-based SALT error code detection is as

follows, and we illustrate the first two steps with the SALT-annotated utterance

‘Him [EW] can go home’:

1. Convert the utterance into a graph in which each node represents a single

word. In the basic algorithm, the graph is unweighted, undirected, and

fully connected, as shown in Figure 6.16.

6.8. RANDOM WALK-BASED ERROR DETECTION 207

Him

can

go

home

[ER] [ER]

[ER]

Figure 6.16: Basic graph representation of utterance ‘Him [EW] can go home’

2. Label edges in the graph with any SALT error code in the utterance. In

the basic algorithm, for each SALT error code e in the utterance, we label

any edge incident to the node representing the word to the left of e (in

the original SALT-annotated utterance) as an error edge. For example, in

Figure 6.16, we label the edges incident to the node labeled ‘Him’ with

[ER].

3. Take a random walk of N steps, beginning at any node. At each step:

(a) If training with an offline algorithm (ex. SVM), extract features,

and store these along with the true arc label. Offline training is not

explored in this thesis.

(b) If training with an online algorithm (ex. perceptron), extract features,

predict whether or not the edge just crossed has an error label, and

update the classifier.

(c) If testing, extract features and use a classifier to predict whether or

208 CHAPTER 6. SALT ERROR CODE DETECTION

not the edge just crossed has an error label. Store this prediction. At

the end of the random walk, we return the number of times an error

was predicted. This number ranges from 0 (least likely to have an

error) to N (most likely to have an error).

The basic algorithm described above can be elaborated upon in many ways.

First, in Step 1, we could construct a directed or weighted graph, or one that is

both directed and weighted. In Step 2, we can vary both which edges we label,

and how we label them. In Step 3, we have a choice of what features to extract,

and of which classifier to use. We explore variations of all of these, aside from

the choice of classifier, and they are described below.

Throughout our experiments, we use an averaged perceptron (Collins, 2002)

for classification. We selected this algorithm due to its ability to handle large

numbers of features, as well as the fact that it is an online learning algorithm,

which simplifies training in practice because we do not need to extract features

from every step of every random walk before training. Averaged perceptrons

also perform well on a wide variety of tasks in NLP, including part of speech

tagging (Spoustová et al., 2009) and dependency parsing (Honnibal et al., 2013).

For more information on perceptrons, please see Section 4.1.

As was the case with the CRF tagger, we can vary the proportion of utterances

in the training data that contain an error. In all of our experiments, we train on

data in which 10%, 20%, 30%, . . . , 100% of the utterances have an error. For

the sake of clarity, we only report results from the training data that yields the

highest AUC for each corpus.

We evaluate the random walk-based detector at different confidence levels ✓,

which in our experiments range from 0 and 100, because we set the length of the

random walk (N) to be 100 in all of our experiments. We then count utterances

with a score of at least t as containing an error, and utterances with a score

6.8. RANDOM WALK-BASED ERROR DETECTION 209

below t as not containing an error. Utterance evaluation then proceeds as

described in Section 6.2.

Detecting Specific Error Codes

Most of our experiments in this section are only designed to identify utterances

that contain an error. For many scenarios, for example reducing an annotator’s

workload by filtering out utterances that do not contain any errors, or getting a

sample of the ‘worst’ utterances to see what kinds of error the child produces,

this is sufficient. Nevertheless, it may be the case that one wants to predict

specific error codes. In this case, we modify the basic algorithm to label ‘error

edges’ (see Figure 6.16) with specific error codes rather than a generic error

label. The averaged perceptron classifier can perform multiclass classification,

and therefore we simply train it to predict the label of the edge just crossed.

For evaluation, we keep track of c confidence scores where c is the number of

different error codes in the data. The extra confidence score is for ‘no error code’.

We also need to set c thresholds for evaluation. Then, whenever the confidence

score for a particular error code meets or exceeds that threshold, we count the

utterance as containing that particular error code.

Using the random-walk based algorithm to predict counts of individual error

codes is not straightforward, and precludes us from evaluating the random walk-

based system’s Error performance. To illustrate, consider again the utterance

‘him [EW] can go home’, and its graph representation (see Figure 6.16 on page

207). If an [EW] code is predicted crossing the edge between ‘him’ and ‘go’, and

then again between ‘home’ and ‘him’, should these contribute towards a single

predicted [EW] code or multiple [EW] codes? Now suppose that a particular

edge is traversed several times during the walk, and each time a different error is

predicted. If we can uniquely map this edge to a word, should we predict a long

sequence of error codes, which is potentially unrealistic (ex. ‘Him [EW] [EU]

210 CHAPTER 6. SALT ERROR CODE DETECTION

Individual error codes
Gold error codes: [EW] [EW]

Gold set error codes: [EW]
Predicted error codes: [EW] [OW]

Error Evaluation: TP FN FP
Error-Set Evaluation: TP TN FP

Figure 6.17: Illustration of Error-Set evaluation
TP = true positive; FP = false positive; FN = false negative

[OM] can go home’)? If we cannot map this edge to a particular word, should

we allow more error codes to be predicted than there are words in the utterance?

Although these issues are beyond the scope of this thesis, we do still evaluate

how effectively the random walk-based method can predict specific error codes.

We do this by removing duplicate error codes from manual annotations before

performing Error evaluation. We call this form of evaluation Error-Set, and

it is contrasted with Error evaluation in Figure 6.17.

Features

During the random walk, we extract features from the current word and the

previous h words in the history of the random walk. We experiment with two

sets of features: basic features, and features that depend upon a dependency

parse using a grammar trained to identify SALT error codes, as described in

Section 6.6. These features are illustrated in Figure 6.18.

Incorporating dependency features requires a more complicated training

procedure. To see why this is so, consider what happens with the ‘error label’

features if we train our detector on gold features and gold labels. Recall that

the error label features are simply the SALT error codes that are appended to

dependency arc labels. The gold error label feature is then a highly reliable

indicator of whether the arc just crossed should be labeled True or False (as

6.8. RANDOM WALK-BASED ERROR DETECTION 211

Category Feature Example features

Basic Word him; can
Part of speech PRP; MD

Dependency

Head word go; go
Part of speech MD; MD
Arc label nsubj; aux
Error label [ER]; none

Labels
False; True

(a) Features and labels in random walk-based error detection. Examples are from a
random walk after two steps: ‘can’, ‘him’.

ROOT Him can go home

ROOT

nsubj+[ER]

aux dobj

(b) Dependency parse using a dependency grammar for SALT error code detection;
generic error code

Figure 6.18: Description of features along with examples using the utterance:
‘Him [EW] can go home’

an error arc, or not). When testing, however, the error labels are not the gold

SALT error codes attached to dependency arcs. Instead, they are the error codes

predicted by a grammar. They are therefore substantially less reliable than the

gold error arc labels. Similar problems affect the other dependency features.

To address this issue, we use cross-validation to produce dependency parses

with predicted error codes:

1. Split the training data into 10 folds of equal size. The training data

contains both manual SALT annotations and dependency parses (from a

grammar trained on, say, Switchboard)

2. For each fold f :

(a) For all utterances not in f , augment the arc labels with the generic

212 CHAPTER 6. SALT ERROR CODE DETECTION

error label [ER] based on the manual SALT annotations.

(b) Train a grammar on these augmented parses.

(c) Use the resulting grammar to parse the utterances in f .

(d) Extract features from the parses of f , and labels from the manual

SALT annotations.

Varying Arc Weights

By using a fully connected, unweighted graph, we ensure that no pair of words

is precluded from consideration during the random walk. On the other hand,

not all pairs of words are equally tightly coupled. Adding weights to the graph

encoding of an utterance captures the intuition that some pairs of words are

more tightly coupled than others. For example, words that are nearer to each

other in a dependency parse are typically more tightly coupled than words that

are far apart in a dependency parse. We expect “closer” pairs of words to be

more relevant for identifying grammatical errors than more distant ones. For

example, in ‘Him [EW] can go home’, ‘him’ and ‘go’, which are adjacent in

the correct dependency parse, and this pair of words is key to identifying the

grammatical error. On the other hand, ‘him’ and ‘home’ are farther apart, and

do not seem to be useful for identifying the grammatical error.

To assign weights to each arc in the graph representing utterance u, we first

get the k-best dependency parses of u. Then, the raw weight of the arc (a, b)

from word a to word b is simply the number of times that the arc (a, b) appears

in the k-best dependency parses of u.

We explore two types of weighted graphs, namely directed and undirected

weighted graphs. To construct the directed weighted graph, we simply use the

raw arc weights. To construct the undirected weighted graph, we set the weight

of the edge between word nodes a and b to be the raw weights of (a, b) and (b, a)

6.8. RANDOM WALK-BASED ERROR DETECTION 213

and

then

he

flewed

away

34458

51

874:[ER]

57:[ER]

919:[ER]

943:[ER]

(a) Directed weighted graph

and

then

he

flewed

away

402
874:[ER]

64

588:[ER]

949:[ER]

56

987:[ER]

(b) Undirected weighted graph

Figure 6.19: Weighted graphs from 1000 best parses of ‘And then he flewed [EW]
away’ (from ENNI). Edges with weight < 50 not shown.

214 CHAPTER 6. SALT ERROR CODE DETECTION

added together. To account for the fact that not all words will be connected

in the resulting graph, including ones that possibly should be, we smooth the

observed frequencies with Laplacian (add-one) smoothing. Thus, all of the words

are connected in the resulting graph, which also prevents the random walk

from getting stuck at any point. Figure 6.19 illustrates both the directed and

undirected weighted graphs, albeit with low-weight edges hidden for the sake of

clarity.

6.8.2 Results

We now present from our results with the random walk-based error detector.

Recall that we train and test 11 models for each corpus as we vary the proportion

of utterances in the training data that contain an error. For the sake of clarity,

we do not present results from each model. Instead, for each configuration, we

present a single curve for each corpus, specifically the one with the highest area

under the precision/recall curve.

Basic algorithm: basic features

We first evaluate graph error detector using only the basic features, namely

words and part of speech tags, with a history length of two (i.e. extracting

features from only the current word and the previous word in the random walk).

As in all of our experiments, the random walk in each utterance is 100 steps

long, and therefore the confidence scores for each utterance are between 0 (least

likely to contain an error) and 100 (most likely to contain an error). We see

the performance of the random walk-based error detector change as we vary the

threshold t at which we count an utterance as containing an error in Figure 6.20;

the left end of each line is with t = 100, yielding the highest precision, and the

right end is with t = 0, yielding the highest recall.

6.8. RANDOM WALK-BASED ERROR DETECTION 215

(a) Conv - Utterance (b) Conv - Error

(c) ENNI - Utterance (d) ENNI - Error-Set

(e) NarSR - Utterance (f) NarSR - Error-Set

Figure 6.20: Performance on SALT development folds: graph error detector with
basic features alone, and both basic and dependency features

216 CHAPTER 6. SALT ERROR CODE DETECTION

Basic algorithm: adding dependency features

We now add in the dependency features illustrated in Figure 6.18, and again we

use a history length of two (i.e. extracting features from only the current word

and the previous word in the random walk). Plots comparing the performance

enabled by the dependency features as compared to the basic features for several

corpora are also shown in Figure 6.20. For some corpora, the addition of

the dependency features clearly improves performance. This is the case with

ENNI. The dependency features improve Error-Set performance on NarSR

while degrading Utterance performance. The dependency features degrade

performance on the Conv corpus.

Basic algorithm: varying the history length

In previous experiments we have used a history length of two, meaning we extract

features from the current word and the previous word in the random walk. Here,

we evaluate our detector using other history lengths: 4, 8, 16, and 32. For each

detector, we use the feature set that yields the better performance of the two we

have tried: basic and basic + dependency. Figure 6.21 shows the results of these

experiments, noting which feature set is used with each corpus. In most cases,

using a longer history length degrades performance, although doing so does open

up some higher-precision, lower-recall operating points on the NarSR corpus.

Varying Arc Weights

The plots in Figure 6.22 clearly illustrate that using k-best dependency parses

to set arc weights degrades performance relative to the baseline in which the

arcs are unweighted.

6.8. RANDOM WALK-BASED ERROR DETECTION 217

(a) Conv – Utterance – basic features (b) Conv – Error-Set – basic features

(c) ENNI – Utterance – basic + depen-
dency features

(d) ENNI – Error-Set – basic + depen-
dency features

(e) NarSR – Utterance – basic features (f) NarSR – Error-Set – basic features

Figure 6.21: Performance on SALT development folds varying the history length:
2 (baseline), 4, 5, 10, 20

218 CHAPTER 6. SALT ERROR CODE DETECTION

(a) Conv - Utterance (b) Conv - Error-Set

(c) ENNI - Utterance (d) ENNI - Error-Set

(e) NarSR - Utterance (f) NarSR - Error-Set

Figure 6.22: Performance on SALT development folds: using k =10, 100, 1000
best dependency parses to set arc weights

6.9. ERROR ANALYSIS 219

6.8.3 Conclusions

Like the CRF tagger (and the poorly-performing utterance classifier) the random-

walk based error detector presented in this section is able to produce confidence

scores for each utterance. It does so more naturally than the dependency-based

method, which requires multiple models to assign a confidence score to an

utterance (see Section 6.6.1). Unlike these two methods, however, it is unable

to predict multiple error codes per utterance. Furthermore, its performance is

lower than both the CRF tagger and the dependency-based method on all three

corpora.

6.9 Error Analysis

In this chapter we have explored many variants of four systems for identifying

utterances with SALT error codes (a classifier, a CRF tagger, the dependency-

based system, and the random walk-based system) and we have evaluated it

on the development folds of seven SALT corpora. Here we look at the errors

produced by the baseline dependency-based system using Zpar on the ENNI

corpus. We selected this system because its Utterance performance is nearly

the best, and its Error performance is quite good as well (see Figure 6.14).

We set a minimum threshold of 9 for counting predicted errors, and we chose

this threshold because it gives the highest Utterance F1 score. Concretely,

its Utterance performance is P=0.83, R=0.67, and F1=0.74, and its Error

performance is P=0.82, R=0.59, F1=0.69.

First, we re-annotated the first 3,000 utterances in the development portion

of the ENNI corpus at the utterance level, indicating which ones contain an

error, and which do not. All utterances that we marked as containing an

error contain at least one overt error, namely one that can be identified by

220 CHAPTER 6. SALT ERROR CODE DETECTION

looking at that utterance without any context (see Section 6.1.1). We did not re-

annotate the individual error codes. Although the ENNI documentation contains

descriptions of the error codes used in the corpus, we were not trained alongside

the annotators. As a result, we do not feel qualified to redo the error codes;

identifying ungrammatical utterances, however, is much more straightforward.

After re-annotation, we find that Utterance performance is P=0.71, R=0.69,

F1=0.70. The small decrease in precision and increase in recall both have the

same cause: utterances being re-classified as not having an error, likely due to

the error being covert.

Category Example Count TP FP FN
A/an substitution a elephant 33 31 1 1
Negation And the lifeguard can not

do nothing
8 3 0 5

Omitted word They are going eat outside. 32 22 0 10
Overgeneralization sitted 46 32 0 14
Pronominal case Then her put a bandage on. 20 19 0 1
Verb agreement or
tense error

Then he give it to the girl. 124 85 3 36

Other/multiple errors Then the horse went for
swimming.

79 40 1 38

Table 6.20: Breakdown of errors in first 3,000 utterances of the re-annotated
ENNI development fold. TP means the utterance was identified as having an
error during re-annotation and the baseline dependency system using Zpar, and
analagously for FN for FN.

Next, we assigned a category to each of the utterances we identified as

containing an error. The categories, along with examples and counts in the

ENNI development fold are shown in Table 6.20. Some of the errors in Table 6.20

are harder to detect than others: a/an substitution errors and overgeneralization

errors can easily be identified by regular expressions and a dictionary, respectively.

Our system is quite effective at identifying a/an substitution errors, but less so

at identifying generalization errors. Our system appears to be quite effective

at identifying pronominal case errors, only missing one of the 18 observed. It

6.9. ERROR ANALYSIS 221

is somewhat less effective at identifying omitted words and verb agreement or

tense errors, although it still is able to identify the majority of these.

The major area where our system struggles is with ‘other/multiple’ errors,

which is a true grab-bag. Many of the utterances with an error in this category

that our system successfully identifies in fact have several errors that fall under

other categories, for example a verb tense error along with an a/an substitution

error. Some of these utterances that are missed by our system have an error

that we would hope to catch, alongside other, more difficult-to-detect errors. An

example of this is ‘and the long time he catch it far away [EU] .’. This utterance

contains a verb agreement error, but even after that is corrected the utterance

does not make any sense and so should receive an [EU] code. Finally, some of

the ‘other’ errors that our system misses are lexical errors for example ‘(uh) they

told questions [EW] .’. We expect these errors to be particularly difficult to

identify because they are likely to be sparse in the training data.

Of the 3,000 utterances we re-annotated, there were originally 409 that were

marked as containing an error. During re-annotation, we identified six utterances

that had an unmarked error. We also identified 75 utterances that were originally

coded as containing an error, but which we do not believe to contain any errors.

The discrepancies in our annotations relative to the original may be because

our standards differ from those of the ENNI annotators, which is inevitable

given that we were not trained together. For example, we see no reason for the

the utterance ‘she had to sit on the bench til her knee felt better .’ to contain

an error code, but the original ENNI annotations include an [EW] code after

‘til’. Another potential source of disagreement is that we, unlike the original

annotators, are looking at utterances out of context. To illustrate:

(6.1) E: Where are the balloons?

C: And the balloons [OW] up in the sky.

222 CHAPTER 6. SALT ERROR CODE DETECTION

(6.2) E: What did you see?

C: A bird.

::pause::

C: And the balloons up in the sky.

Since our detectors only considers an utterance at a time, it is not reasonable

to expect it to identify errors that are only clear in context. Although such

errors are clearly present in the data, the vast majority of errors that have been

manually annotated are overt errors that are identifiable without context.

6.9.1 Other corpora

Original ! Revised ENNI Conv NarSR
Error ! no error 20 32 73
No error ! error 0 44 36
Original error ct 140 93 163
Revised error ct 121 103 125
Overturn rate 2.0% 7.6% 10.4%

Table 6.21: Comparison of original and re-done utterance-level error annotations
on first 1,000 utterances in development folds

Throughout this chapter we have observed that most of the systems we have

tried perform far better on the ENNI corpus than on either Conv or NarSR.

To investigate why this is the case, we re-examine the first 1,000 utterances in

the development sections of these two corpora, marking which contain any overt

errors. We refrain from re-annotating these utterances with SALT error codes

because our standards of when to apply specific error codes are likely to be

different due to the fact that we were not trained with the original annotators.

Nevertheless, we should agree with the original annotators on utterance-level

annotations.

After re-annotating which utterances have an error in the first 1,000 utterances

of the development codes of these corpora, we count how many differences we

6.9. ERROR ANALYSIS 223

observed relative to the original annotations. Counts of the differences in

annotation are shown in Table 6.21. Specifically, we count how many utterances

the original annotators marked as containing an error that we identify as not

containing an error (error ! no error), and how many utterances have errors

that were unmarked in the original annotations (no error ! error).

The overturn rates in Table 6.21 are the percentage of utterances where we

disagree with the original annotators regarding whether there are any errors

in that utterance. We see that ENNI, which is the corpus most amenable to

automatic error code detection, has a low overturn rate (2%), while the other

two corpora have much higher rates of overturn. These utterances are ultimately

a random sample from the three corpora, and therefore there is every reason

to believe they are representative of the corpora as a whole. If, as is almost

certainly the case, the labels in the training folds are as consistent as the ones we

re-annotated, then it is not surprising that all of the systems perform far better

on ENNI than on Conv and NarSR: the training fold of ENNI has reliable

labels, while the labels used in training on the other corpora are very noisy.

Other plausible explanations for why performance on ENNI is so much higher

than on Conv and NarSR fall apart upon closer examination. One potential

explanation for the good performance on ENNI is that it is a narrative task and

therefore has far more restricted language than conversational corpora. This,

however, suggests that performance on NarSR should be comparable, but it

is in fact quite low. Another possibility is that many of the errors marked in

Conv and NarSR are covert, while those in ENNI are overt. Looking again

at Table 6.21, we see that while there are potentially covert errors in all of the

corpora (error ! no error), there are still far more missed errors in Conv and

NarSR than in ENNI.

224 CHAPTER 6. SALT ERROR CODE DETECTION

6.10 Conclusions

System Trainable Predict specific
errors

Confidence
scores

MS-Word 7 7 7
ETS e-rater 7 7 7
Classifier X 7 X
Tagger X X X
Dependency X X Using multiple

models
Random walk X Yes, but not re-

peated ones
X

Table 6.22: Summary of systems’ features presented in this chapter

In this chapter we have presented several data-driven methods for SALT error

code prediction: an utterance level classifier, a CRF tagger, a dependency-based

method, and a random-walk based method, the features of which are summarized

in Table 6.22. We show the performances of the best systems of each type in

Figure 6.23. Of these systems, the CRF tagger and the dependency-based

method typically yield the best performance, whether it is in terms of identifying

utterances with any error codes (Utterance evaluation) or identifying specific

error codes (Error evaluation), although neither method clearly outperforms

the other on different corpora. A simple approach to combining these two

systems did not improve performance unambiguously, and perhaps a better way

of combining them would yield better results. Importantly, we found that neither

the CRF tagger nor the dependency-based method is negatively affected by the

presence of mazes. This means that there is no need to either detect mazes and

error codes jointly (although this approach may be a fruitful direction for future

research), or to detect them in a pipelined approach.

We re-annotated the first 1,000 utterances in the development folds of all

three corpora, and found that ENNI, on which we observed relatively high

performance throughout our experiments, has far more consistent annotations

6.10. CONCLUSIONS 225

(a) Conv - Utterance (b) Conv - Error

(c) ENNI - Utterance (d) ENNI - Error

(e) NarSR - Utterance (f) NarSR - Error

Figure 6.23: Comparison of best performing systems of each type, NB: all graph
methods are evaluated with Error-Set instead of Error evaluation

226 CHAPTER 6. SALT ERROR CODE DETECTION

Method P R F1
MS Word 0.464 0.139 0.214
ETS e-rater 0.081 0.419 0.136
Classifier 0.086 0.034 0.049
Tagger 0.324 0.353 0.338
Dependency 0.218 0.236 0.226
Joint 0.310 0.397 0.348
Random walk 0.283 0.247 0.263

(a) Conv

Method P R F1
MS Word 0.530 0.276 0.363
ETS e-rater 0.151 0.244 0.187
Classifier 0.013 0.049 0.021
Tagger 0.656 0.658 0.657
Dependency 0.566 0.604 0.585
Joint 0.662 0.664 0.663
Random walk 0.637 0.434 0.516

(b) ENNI

Method P R F1
MS Word 0.425 0.145 0.216
ETS e-rater 0.190 0.235 0.210
Classifier 0.109 0.113 0.111
Tagger 0.477 0.445 0.461
Dependency 0.280 0.252 0.265
Joint 0.431 0.433 0.432
Random walk 0.388 0.391 0.389

(c) NarSR

Table 6.23: Comparison of different error detection systems. Results for tunable
methods reported at highest F1 with approximately balanced P/R. Mazes
removed, Utterance evaluation. Maximum performances for each corpus are
in bold.

6.10. CONCLUSIONS 227

than the Conv and NarSR corpora, on which we consistently observed low

performance. We ascribe the poor performance on these two corpora to the

inconsistent annotations that we believe are present throughout all folds. We

found in informal experiments that the performance of some of our SALT error

code detectors is quite low on the other SALT corpora, hence it is likely that

these corpora may have low-quality error code annotations as well. The fact

that the dependency-based system outperformed the CRF tagger on what may

be the only consistently-annotated corpus further underscores the utility of this

method in addition to the CRF tagger for SALT error code detection.

In our error analysis, we found that the of all error types, the ENNI-trained

system had the most trouble identifying utterances with verb agreement and

tense errors, as well as ones containing multiple or rarely-observed errors. Even

so, our system was able to identify the majority of these errors, and it did so

with quite high precision. Furthermore, the ability to adjust the operating point

of the system allows users to adjust the output depending on their needs: if they

are annotating data then a high-recall operating point is appropriate, and if they

are trying to get an idea of what errors a child produces, then a high-precision

operating point is better.

228 CHAPTER 6. SALT ERROR CODE DETECTION

Chapter 7

The clinical utility of SALT

annotations

In this chapter we investigate the clinical utility of features derived from SALT-

annotated transcripts of spoken language. First, in Section 7.1.1, we look at

whether such features can be used to predict scores on structured instruments

that capture various aspects of linguistic competence, and in particular, whether

these features can be used to predict scores on structured instruments more

effectively than verbal IQ. Next, in Section 7.2, we investigate whether these

features can be used to distinguish between different diagnostic pairs that vary

in the presence of either autism or a language impairment.

7.1 Predicting scores on structured instruments

We begin by investigating whether we can use features derived from SALT-

annotated transcripts to predict sub-scores on two widely-used structured in-

struments for assessing language: CCC-2 and CELF-4. We begin by describing

229

230 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

the procedures we follow for extracting features from these transcripts and then

predicting scores, as well as for evaluation. We then present the two structured

instruments in turn, along with the results from our experiments.

7.1.1 Prediction

We use a leave-transcript-out procedure to predict scores on structured instru-

ments. Concretely, we are given a set of children C, and for each child c

i

2 C,

we have her SALT-annotated transcript t

i

, age a

i

, and a structured instrument

score s

i

. Using ages and various features extracted from the SALT-annotated

transcripts collected from all children except for c

i

, we train a model m
i

to

predict the score on the structured instrument of child c

i

. In our experiments,

we use ordinary least squares linear regression to predict the test score for each

child. We use ordinary least squares because it provides a natural baseline

for this relatively novel task. Furthermore, while we have performed informal

experiments to evaluate other regression methods (elastic net and LASSO), none

of them obviously outperforms ordinary least squares linear regression.

7.1.2 Features

We use seven different sets of features in all of our experiments, each reflecting

a transcript with a different level of manual annotation. These features are

shown in Table 7.1. The Baseline feature set captures very basic data about the

child: age, verbal IQ (VIQ), utterance length (captured with TkCt), and type

count. The Transcript feature set excludes VIQ, instead capturing phenomena

that are easy to derive from a basic manual transcript of the child’s spoken

language. The SALT feature sets require progressively more complicated types of

annotations, ranging from mazes (SALT-1) to marking utterances as containing

errors (SALT-2) through full SALT annotation (SALT-5). As described in Table

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 231

Group Feature Description
Baseline Age Child’s age in months

TkCt Token count
TpCt Type count
VIQ Concatenated WPPSI3

& WISC4 VIQ standard
scores

Transcript All baseline features excluding VIQ along with:
CEOlp # of times examiner

speaks while child is
talking

ECOlp # of times child speaks
while examiner is talk-
ing

IncCt Incomplete word count
UmUhRat Ratio of ‘um’ to ‘uh’
UnintCt Unintelligible word

count
SALT-1 All Transcript features along with:

MpCt Morpheme count
MazeCt Maze count
MazeTkCt Token count within

mazes
MazeTpCt Type count within

mazes
NoMazeTkCt Token count outside of

mazes
NoMazeTpCt Type count oustide of

mazes
SALT-2 All SALT-1 features along with:

NErrUtt Number of utterances
with any SALT error
codes

SALT-3 All SALT-1 features along with:
ErrCt Count of SALT error

codes
SALT-4 All SALT-1 features along with:

UtLErrCt Count of utterance level
errors (EC / EU)

WdLErrCt Count of word level
errors (all other error
codes)

SALT-5 All SALT-1 features along with:
XCt Count of individual er-

ror codes (X=EC, EO,
. . . ; see Table 2.3)

Table 7.1: Features used for test score prediction and diagnostic classification

232 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

7.1, we then derive counts from these annotations. For example, the SALT-2

feature NErrUtt is simply the count of the number of utterances with any

error codes.

We compute most of the features in Table 7.1 for each utterance. We then use

the following summary statistics as features for test score prediction: minimum,

maximum, median, mean, standard deviation. The only exception to this is the

ratio feature UmUhRat, which we compute using the entire transcript, and of

course the Age and VIQ features, which are simply given for each child.

For each test, we first predict scores using features derived from the man-

ually annotated ADOS transcript. In the event that we observe a significant

correlation between the observed and predicted test scores at the ↵ = 0.05

level, we investigate which features are the most important for predicting the

test score in question. We then use features extracted from transcripts with

automatically produced maze and SALT error code annotations. This can be

seen as another way of extrinsically evaluating the maze and error code detectors,

and in particular whether automatically produced SALT annotations capture

the same informative cues as the manual annotations.

As shown in Table 7.1, we use features extracted from manual maze and error

code annotations. When these features are useful for predicting a particular

metric, we also investigate whether the same features derived from automatic

SALT annotations are as effective. To do so, we obviously need to apply

automated maze and error code annotations.

We use the M3N-based maze detector described in Chapter 5 to produce

automatic maze annotations. We compare two models for maze detection. The

first model is trained on the training set of the ENNI corpus, and it is tuned

to have balanced precision and recall on the ENNI development set. The

second model for maze detection is in fact a collection of models: we predict

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 233

maze annotations on the CSLU transcripts in a leave-transcript-out (LTO)

manner. We use the same penalty matrix (which determines the operating point)

throughout the LTO procedure as is used to train the ENNI model. For clarity

and conciseness, we will refer to features extracted from automatically produced

annotations using these models as ENNI features and LTO features, respectively.

Similarly, we will refer to features extracted from the manual annotations as

manual features.

We use the CRF tagger described in Section 6.5 to produce SALT error code

annotations. Again, we use two models: one trained on the training set of the

ENNI corpus, and the other trained following the LTO procedure with the CSLU

transcripts. We selected the CRF tagger for error detection because it performs

well on a wide variety of corpora, even though there are some cases where the

dependency-based system using Zpar as the parser outperforms the CRF tagger.

Distribution of features

The features in Table 7.1 capture some aspects of each child’s spoken language.

Although we do not perform an in-depth analysis of how these features are

distributed across children of different ages and with different diagnoses, we do

wish to show the reader some of the variety we observe.

Figure 7.1 shows how a few of the features from the Baseline and SALT-1 sets

are distributed over different diagnostic groups and children of different ages. In

Figures 7.1a and 7.1b we see that the um-uh ratio in children with autism (ASD)

is vastly lower than in children without autism (nASD). On the other hand,

looking at the distribution of the token counts per utterance (TkCt) in Figures

7.1c, 7.1d, 7.1e, and 7.1f tells us that this feature appears to be more affected by

the presence of a language impairment (i.e. between the language normal (LN)

and language impaired (LI) groups) than by the presence of autism (i.e. between

the autism (ASD) and no autism (nASD) groups). These distributions of features

234 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

(a) UmUhRat - ASD (b) UmUhRat - nASD

(c) TkCt - ASD (d) TkCt - nASD

(e) TkCt - LI (f) TkCt - LN

Figure 7.1: Distribution of features across diagnostic groups and ages

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 235

are entirely what one would expect based on the literature (see discussion in

Section 2.3), but it is nevertheless useful to confirm that this is the case, rather

than to assume it.

Appendix A contains similar plots for all of the Baseline and SALT features,

for all of the diagnostic categories (ALI, ALN, SLI, TD), as well as the two

composite categories: ASD (ALI + ALN), nASD (SLI + TD), LI (ALI + SLI),

and LN (ALN + TD). The plots in Appendix A are grouped by feature rather

than by diagnostic group to facilitate the comparison of the distributions of

these features between diagnostic groups.

Accounting for age

A potential criticism of the feature set in Table 7.1 is that the child’s age is

simply thrown in as if it were an additive factor. Simply removing age will not

do, however, as age has a great impact upon language development, and therefore

upon many, if not all, of the features we use in this chapter. To address these

issues, we evaluate a second set of features, which we will refer to as age-group

percentile features. These features are derived from the ones in Table 7.1: instead

of using raw feature values or ratios, we use the percentile of each feature’s value,

taken among children of the same age. For example, instead of using the raw

TkCt feature for a child that is 8 years, 3 months old, we would report the

percentile of the TkCt feature among all children in the study aged 8;0-8;11.

We contrast the age-group percentile features with the default features described

above.

7.1.3 Evaluation

We evaluate the predicted test scores produced by our leave-transcript-out

regression procedure in two ways. First, we look at the correlation between

236 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

the predicted test score and the true test score in terms of Kendall’s tau rank

correlation coefficient (⌧). We use the ⌧ statistic because it is non-parametric.

We compute ⌧ as follows: let o
i

and p

i

be the observed and predicted test scores

for child i. We then count the number of concordant and discordant pairs of

observations (o
i

, p
i

), (o
j

, p
j

), iterating over all pairs of observations. A pair is

concordant if both o

i

> o

j

and p

i

> p

j

, or o

i

< o

j

and p

i

< p

j

. Similarly, a pair

is discordant if o
i

< o

j

and p

i

> p

j

, or o

i

> o

j

and p

i

< p

j

. If there are no ties,

then we report ⌧

a

:

⌧

a

=

c� d

c+ d

We account for ties with the ⌧

b

statistic, as follows:

⌧

b

=

c� dp
(c+ d+ t

o

)(c+ d+ t

p

)

where t

o

is the number of ties where o

i

= o

j

,and similarly t

p

is the count of ties

where p

i

= p

j

. If there are no ties, then naturally ⌧

a

= ⌧

b

. We note that the

⌧ statistic ranges between -1 (perfect disagreement in rankings) and 1 (perfect

agreement in rankings).

We use the randomized paired-sample test described in Section 4.7.1 to

see whether the predicted scores yielded by different feature sets come from

significantly different distributions. In particular, we compare the performance

yielded by different feature levels (ex. SALT-1 vs SALT-3), and features of the

same level extracted from three different sources: manual, ENNI, and LTO

features. When comparing features of the same level, at the onset of each of the

iterations of the randomized paired-sample test we randomly select which variant

(manual, ENNI or LTO) to use for each feature. We use the same version of

each feature across all children, so we do not train or test on data that includes

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 237

both manual and automatic versions of the same feature. To compare different

feature levels, we select one of the levels at random at each iteration of the

LTO procedure, i.e. each time we train and test a model. Whether comparing

automatic and manual features, or different feature levels, we perform 1,000

iterations of the randomized paired-sample test, each time producing an estimate

of Kendall’s tau that we then compare to the baseline in order to determine

whether the trial is a success.

We will be performing multiple comparisons of correlation coefficients for

each feature set: seven comparisons for the manual features, and five comparisons

for the ENNI and LTO feature sets. We correct for this by using the Bonferroni

correction: given a desired level of significance ↵, and n comparisons, we test for

significance at the ↵/n level. In our experiments, we opt to use an ↵ level of

0.05. After correction then, we test for statistically significance of the correlation

coefficients using ↵ = 0.007 for experiments involving manual features, and

↵ = 0.01 for experiments involving ENNI and LTO features.

We evaluate the relative importance of different features by testing how well

each feature is able to predict a particular metric using by averaging the relative

importance of each feature (in terms of R2) over all possible orderings (Kruskal,

1987), which is implemented in the R package relaimpo (Grömping et al., 2006).

We use this method because it accounts for both direct and indirect effects,

which occur when a feature of interest f is among the first and last regressors,

respectively.

Stability of features

The features in Table 7.1 are all derived from transcripts of children’s speech.

One potential issue is that these features may be sensitive to which utterances are

analyzed. This is a relevant issue in cases where there are not enough resources

to annotate all of the available transcribed speech collected from a child: if these

238 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

features are sensitive to which utterances are selected for annotation, then extra

care needs to go into selecting them. Furthermore, features that are sensitive to

which utterances are analyzed should be less useful than ones that are not, since

their apparent usefulness may only be due to chance.

We use the split half procedure to determine how sensitive the features in

Table 7.1 are to the choice of which utterances are analyzed (Guttman, 1945).

A single iteration of the split half procedure is as follows:

1. Randomly split each child i’s transcript in two, t
i1 and t

i2, by assigning

the utterances to either with equal probability

2. Perform two rounds of leave-transcript-out prediction, one with the set of

t

i1, and the other with the set of t
i2

3. Record the correlation of metrics predicted for each child from t

i1 with the

ones predicted from t

i2

We report the average correlation between the two predicted metrics from 100

iterations of the split-half procedure. For correlation, we use Pearson’s r, which

quantifies the strength of linear dependence between the two predicted metrics.

7.1.4 Predicting CCC-2 scores

The Children’s Communicative Checklist-2 (Bishop and Volkmar, 2003) is a

questionnaire used to assess a child’s ability to communicate. The CCC-2

contains 70 items that capture different aspects of communication, and the entire

questionnaire is to be filled by one person who knows the child well, for example

a parent or teacher. Each item contains a single behavior, such as speaking

repetitively about subjects that nobody is interested in, and the person filling

out the questionnaire is asked to assign a numerical frequency to that behavior

ranging from 0 (never) to 3 (several times a day or always). Each question falls

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 239

Category Example item
A Speech Pronounces words in a babyish way, such as ‘chim-

bley’ for ‘chimney’ or ‘bokkie’ for ‘bottle’.
B Syntax Leaves out ‘is’, e.g. ‘Daddy going to work’ instead

of ‘daddy is going to work’.
C Semantics Is vague in choice of words, making it unclear what

s/he is talking about, e.g. saying ‘that thing’ rather
than ‘kettle’.

D Coherence Is hard to make sense of what s/he is saying (even
though words are clearly spoken).

E Inappropriate initiation It’s difficult to stop him/her from talking.
F Stereotyped language Says things s/he does not seem to fully understand

(may appear to be repeating something s/he heard
an adult say). So, for instance, a 5-year old may
be heard to say of a teacher “she’s got a very good
reputation.”

G Use of context Asks a question even though s/he has been given
the answer.

H Non-verbal communication Smiles appropriately when talking to people.
I Social relations Shows concern when other people are upset
J Interests Reacts positively when a new and unfamiliar ac-

tivity is suggested.

(a) Categories and example items from CCC-2
Composite score Items
General communication Sum of items A through H
Social interaction deviance (A + B + C + D) - (E + H + I + J)

(b) Items included in different composite scores following category labels in table above

Table 7.2: CCC-2 item categories and composite scores

240 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

Features Manual ENNI LTO
Baseline 0.330
Transcript 0.240
SALT-1 0.231 0.248 0.258
SALT-2 0.306 0.248 0.244
SALT-3 0.290 0.241 0.246
SALT-4 0.308 0.241 0.246
SALT-5 0.225 0.224 0.213

(a) Coherence sub-score; all correlations significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Features Manual ENNI LTO
Baseline 0.378
Transcript 0.268
SALT-1 0.301 0.336 0.315
SALT-2 0.391 0.317 0.297
SALT-3 0.383 0.324 0.302
SALT-4 0.378 0.324 0.302
SALT-5 0.313 0.300 0.239

(b) Semantics sub-score; all correlations significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Features Manual ENNI LTO
Baseline 0.345*
Transcript 0.093
SALT-1 0.071 0.124* 0.131*
SALT-2 0.257* 0.120 0.190*
SALT-3 0.240* 0.118 0.193*
SALT-4 0.240* 0.118 0.193*
SALT-5 0.201* 0.102 0.132*

(c) Speech sub-score; ⇤=correlation significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Features Manual ENNI LTO
Baseline 0.478
Transcript 0.247
SALT-1 0.248 0.313 0.263
SALT-2 0.381 0.342 0.261
SALT-3 0.378 0.329 0.264
SALT-4 0.366 0.329 0.264
SALT-5 0.331 0.308 0.219

(d) Syntax sub-score; all correlations significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Table 7.3: Correlation (Kendall’s ⌧) between observed and predicted CCC-2
sub-scores for all non-TD children in the CSLU data using manual, ENNI and
LTO default features

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 241

Features Manual ENNI LTO
Baseline 0.351
Transcript 0.362
SALT-1 0.351 0.326 0.334
SALT-2 0.362 0.311 0.322
SALT-3 0.349 0.300 0.318
SALT-4 0.340 0.291 0.313
SALT-5 0.266 0.270 0.269

(a) Coherence sub-score; all correlations significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Features Manual ENNI LTO
Baseline 0.340
Transcript 0.356
SALT-1 0.313 0.304 0.285
SALT-2 0.320 0.276 0.275
SALT-3 0.336 0.254 0.287
SALT-4 0.283 0.245 0.281
SALT-5 0.250 0.218 0.219

(b) Semantics sub-score; all correlations significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Features Manual ENNI LTO
Baseline 0.277*
Transcript 0.208*
SALT-1 0.145 0.173* 0.157
SALT-2 0.206* 0.155 0.219*
SALT-3 0.220* 0.137 0.201*
SALT-4 0.240* 0.127 0.190*
SALT-5 0.177* 0.108 0.128

(c) Speech sub-score; ⇤=correlation significant at ↵0.05/n level (adjusting for Bonferroni
correction)

Features Manual ENNI LTO
Baseline 0.474
Transcript 0.436
SALT-1 0.394 0.402 0.399
SALT-2 0.411 0.387 0.399
SALT-3 0.421 0.372 0.397
SALT-4 0.429 0.364 0.399
SALT-5 0.368 0.353 0.369

(d) Syntax sub-score; all correlations significant at ↵ = 0.05/n level (adjusting for
Bonferroni correction)

Table 7.4: Correlation (Kendall’s ⌧) between observed and predicted CCC-2
sub-scores for all non-TD children in the CSLU data using manual, ENNI and
LTO age-group percentile features

242 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

into one of the ten categories listed in Table 7.2a, and the administrator of the

test computes sub-scores for each of these categories simply by summing the

appropriate frequency ratings. Finally, various sets of sub-scores are combined to

produce the two composite scores in Table 7.2b. We note that all composite scores

in this study are US-scaled, which normalizes these sub-scores for different ages.

Normalization of scores for other countries follows different standards (Bishop

and Volkmar, 2003).

Some of the questions on the CCC-2 inquire about behaviors that should be

observable in SALT-annotated transcripts. Such behaviors include producing

mazes, making pronominal case errors (which would be marked with the [EW]

error code), and using the past tense properly. Many of the items on the CCC-2,

however, capture phenomena that cannot be derived from SALT-annotated

transcripts in a straightforward manner, if at all. These phenomena fall into

three broad categories. The first category is phenomena that SALT either

does not label explicitly, or ones that are not typically labeled. For example,

SALT annotators are instructed to transcribe all words with standard spelling,

thus making it impossible to recover mispronunciations. Similarly, although

particular research groups may annotate vague or stereotyped language, this is

not standard SALT practice. Neither stereotyped nor vague language can be

identified by looking at a single utterance without grounding knowledge, and as

a result, identifying either of these phenomena with the automated SALT error

code detection techniques described in Chapter 6 is beyond the scope of this

thesis. The second category of items on the the CCC-2 that are not captured in

SALT-annotated transcripts deal with behaviors that require interpreting spoken

language and behavior that the transcribed activity would not necessarily elicit.

For example, none of the tasks in the SALT corpora (narrative, conversational

or expository) necessarily provide much of an opportunity for a child to show

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 243

concern when others are upset. The final category of phenomena included in the

CCC-2 items, but excluded from SALT, are non-verbal aspects of communication,

such as smiling appropriately. Non-verbal behaviors are typically excluded from

transcripts entirely, whether SALT-annotated or not, and if such behaviors are

included, then it is typically only certain ones (e.g. clapping, which makes a

noise, but not blinking, which does not).

Predicting sub-scores from manual SALT annotations

We predict CCC-2 sub-scores for each child using the LTO procedure, in particular

ones that capture some of the same phenomena as certain SALT annotations:

coherence, semantics, speech, and syntax. We see in Tables 7.3 and 7.4 that

the Baseline feature set is able to predict all four CCC-2 sub-scores with a

statistically significant positive correlation between the true and predicted scores.

The Baseline feature set is the only feature set that includes VIQ, and it yields

the best predicted scores for the Coherence, Speech, and Syntax sub-scores.

Looking closer at the predictive performance on the various sub-scores in

Table 7.3, we see that the Semantics sub-score because this is the only sub-score

that the non-Baseline feature sets can predict competitively with the Baseline

feature set. Specifically, we see in Table 7.3b that the SALT-2 and -3 feature sets

both outperform the Baseline feature set for predicting the Semantics sub-score.

Nevertheless, the randomized paired-sample test does not suggest that there is

any difference in predictions yielded by either the SALT-2 or -3 features, and the

Baseline features (p 0.097 and p 0.578, respectively). On the other hand,

the results of the randomized paired-sample test do suggest that the SALT-2

and -3 feature sets may improve performance over the Transcript feature set

(p 0.002 and p 0.003, respectively, albeit before Bonferroni correction).

We observe somewhat different results using the age-group percentile features,

as shown in Table 7.4. Unlike the default features, some of the manual age-group

244 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

percentile features are able to predict CCC-2 sub-scores as well as the baseline

features (ex. the Transcript through SALT-4 features predicting the Coherence

sub-score). Still, all of the feature sets we consider, whether comprising default

or age-group percentile features, are weak predictors of the CCC-2 sub scores,

with none of the correlations rising above 0.478.

For all four of the CCC-2 sub-scores we consider, at least some of the SALT

feature sets improve prediction relative to the Transcript feature set, and typically,

the SALT-2, -3, and -4 feature sets tend to yield the best performance. The

NErrUtt feature, which is a count of the number of utterances with any

SALT error codes, and the only SALT-derived feature in the SALT-2 feature set,

appears to be particularly effective. When we look at the relative contribution of

predictors in the SALT-2 feature set, the NErrUtt feature is between the most

useful features from the SALT-1 and Transcript feature sets: NoMazeTkCt

(R2
= 0.046), and IncCt (R2

= 0.024). This demonstrates that the NerrUtt

feature does have some predictive power. Thus, even if the SALT-derived features

are not as effective as VIQ for predicting CCC-2 sub-scores, they do have some

predictive power beyond features extracted from an unannotated transcript.

We note that none of the feature sets is a particularly good predictor of the

CCC-2 Speech sub-score, as can be seen in Table 7.3c. As explained above, this is

to be expected: the CCC-2 Speech sub-score captures phonetic and phonological

issues, which are not necessarily captured in SALT-annotated transcripts, and

which are not explicitly captured by any of our features.

One potential issue with SALT-derived features is their consistency: are

the SALT feature sets highly sensitive to which utterances are analyzed? If

this is the case, then great care would be needed to select utterances that are

suitable for analysis, which somewhat defeats a purported advantage of language

sample analysis over structured instruments, namely analyzing organic samples

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 245

of language as opposed to linguistic competence on artificial tasks. Using 100

iterations of the split-half procedure (described in Section 7.1.3), we see that the

SALT features are quite consistent: the average value of r from 100 predictions of

the CCC-2 semantics score is 0.80 for the the SALT-2, -3, -4 and -5 features. This

indicates that the features derived from SALT annotations that we considered

are not sensitive to which utterances are analyzed. As a result, we expect that

two transcripts will yield comparable features so long as they are both sufficiently

long and are of a similar activity.

Predicting sub-scores from automatic SALT annotations

Table 7.3b shows the correlation between the true CCC-2 Semantics sub-scores

and ones predicted using the ENNI and LTO features. We see that the ENNI

features are less useful than the manual ones for predicting this metric, and

the LTO features are less useful still. It is possible that the ENNI features are

more effective than the LTO ones because the maze and error annotation models

are trained on more data. Alternatively, it may be that the ENNI corpus was

annotated slightly more consistently than the CSLU corpus, thus resulting in

better maze and error annotation models; given the wide variety in the quality

of SALT annotations we have found in Chapters 5 and 6, this would not be

surprising. Nevertheless, the differences in the correlations yielded by the manual

and automatic SALT features produced by the ENNI models are not statistically

significant in any case (↵ = 0.05/n level, including Bonferroni correction).

7.1.5 Predicting CELF-4 scores

The Clinical Evaluation of Language Fundamentals – fourth edition (CELF-4) is

a structured instrument designed to evaluate several components of language in

children ages 5 to 21 (Semel et al., 2003). In particular, the CELF-4 assesses

246 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

phonological awareness, morphology, syntax, semantics, and pragmatics. SALT

annotations capture many of these aspects of language to some degree, in

particular morphology and syntax, and to a lesser extent semantics, and even

potentially pragmatics (with non-standard annotations).

The CELF-4 contains the 13 core and five supplementary items presented

in Table 7.5. Each of these tests are scored individually. Additionally, subsets

of the CELF-4 tests are combined into the composite scores described in Table

7.6. Compared to the CCC-2, the CELF-4 has two major advantages from

our point of view: 1) the CELF-4 index scores are more similar to information

potentially captured by SALT annotations than are many CCC-2 sub-scores;

and 2) the relevant CELF-4 index scores may be more consistent across children

than the relevant CCC-2 sub-scores because the CELF-4 index scores come from

tests administered by a clinician, while the CCC-2 sub-scores are derived from

questionnaires filled out by parents reporting on their children.

We predict the following CELF-4 index scores for each child using the LTO

procedure: Language Structure Index, Core Language Score, Receptive Language

Index and Expressive Language Index. Results are presented in Tables 7.7 and

7.8, which contains results from the default features and the age-group percentile

features, respectively. We do not consider either the Language Memory Index or

Working Memory Index scores since these appear unlikely to relate to phenomena

captured by our SALT-derived features. Furthermore, some CELF-4 subtests

were not administered, and as a result, we do not have Language Content Index

scores for any of the children. Finally, we do not have CELF-4 scores for children

in the TD group, so we are only able to train and test models on children in the

ALI, ALN, and SLI groups.

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 247

Test Description
Concepts and following directions The child points to pictured objects

in response to oral directions
Word structure The child completes sentences using

the targeted structure(s)
Recalling sentences The child imitates sentences pre-

sented by the examiner
Formulated sentences The child formulates a sentence about

visual stimuli using a targeted word,
or phrase

Word classes The child chooses two related words
and describes their relationship

Sentence structure The child points to a picture that il-
lustrates the given sentence

Expressive vocabulary The child identifies a pictured object,
person, or activity

Word definitions The child defines a word that is pre-
sented and used in a sentence

Understanding spoken paragraphs The child responds to questions about
orally presented paragraphs; ques-
tions target main idea, details, se-
quence, inferential, and predictive in-
formation

Sentence assembly The child produces two semantically
and grammatically correct sentences
from visually and orally presented
words or groups of words

Semantic relationships The child listens to a sentence and
selects the two choices that answer a
target question

Number repetition The child repeats a series of numbers
forward, then backwards

Familiar sequences The child names days of the week,
counts backward, orders other infor-
mation while being timed

Rapid automatic naming The child names colors, shapes, and
color-shape combinations while being
timed

Word Associations The child names words in specific cat-
egories while being timed

Phonological awareness The child rhymes, segments, blends,
identifies sounds and syllables in
words and sentences

Pragmatics profile The examiner elicits information from
a parent or teacher about the child’s
social language skills

Observational Rating Scales Parent, teacher, and child each rate
the child’s classroom interaction and
communication skills

Table 7.5: Description of CELF-4 tasks taken from Pearson Education, Inc.
(2008)

248 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

Score Summary
Core language score Overall language performance. Used

to identify the presence of a language
impairment

Receptive language index Measures listening and reading com-
prehension

Expressive language index Measures child’s ability to express
themselves with language

Language content index Captures semantic development, in-
cluding vocabulary, relationships be-
tween words, interpretation of facts,
and ability to make meaningful, gram-
matical sentences

Language structure index Evaluates both receptive and expres-
sive language, but only used with chil-
dren ages 5-8

Language memory index Measures ability to recall spoken di-
rections, formulate sentences with
given words, and and identify seman-
tic relationships

Working memory index Measures attention, concentration,
and recall

Table 7.6: Description of CELF-4 index scores taken from Pearson Education,
Inc. (2008)

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 249

Features Manual ENNI LTO
Baseline 0.643*
Transcript 0.126*
SALT-1 0.156 0.422* 0.165
SALT-2 0.280* 0.453* 0.173
SALT-3 0.265* 0.458* 0.176
SALT-4 0.239 0.458* 0.176
SALT-5 0.306* 0.379* 0.163

(a) Core Language Score
Features Manual ENNI LTO
Baseline 0.640*
Transcript 0.162
SALT-1 0.213* 0.436* 0.167
SALT-2 0.378* 0.476* 0.228*
SALT-3 0.381* 0.481* 0.228*
SALT-4 0.345* 0.481* 0.228*
SALT-5 0.363* 0.428* 0.169

(b) Expressive Language Index
Features Manual ENNI LTO
Baseline 0.584*
Transcript 0.182*
SALT-1 0.140 0.442* 0.133
SALT-2 0.224* 0.458* 0.141
SALT-3 0.235* 0.465* 0.149
SALT-4 0.206* 0.465* 0.149
SALT-5 0.288* 0.429* 0.047

(c) Language Structure Index
Features Manual ENNI LTO
Baseline 0.449*
Transcript 0.025
SALT-1 0.018 0.256* 0.046
SALT-2 -0.009 0.212* 0.060
SALT-3 -0.013 0.214* 0.060
SALT-4 0.021 0.214* 0.060
SALT-5 0.199* 0.151 0.087

(d) Receptive Language Index

Table 7.7: Correlation (Kendall’s ⌧) between observed and predicted CELF-4
index scores for all non-TD children in the CSLU data using manual, ENNI and
LTO features
⇤=correlation significant at ↵ = 0.05/n level (adjusting for Bonferroni correction)

250 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

Features Manual ENNI LTO
Baseline 0.619*
Transcript 0.156
SALT-1 0.128 0.220 0.074
SALT-2 0.340* 0.220 0.128
SALT-3 0.326* 0.222 0.090
SALT-4 0.258* 0.207 0.083
SALT-5 0.220 0.069 0.064

(a) Core Language Score
Features Manual ENNI LTO
Baseline 0.624*
Transcript 0.217
SALT-1 0.227 0.330* 0.219
SALT-2 0.443* 0.341* 0.268*
SALT-3 0.417* 0.314* 0.232
SALT-4 0.383* 0.307* 0.220
SALT-5 0.296* 0.208 0.167

(b) Expressive Language Index
Features Manual ENNI LTO
Baseline 0.618*
Transcript 0.217
SALT-1 0.159 0.348* 0.175
SALT-2 0.272* 0.311* 0.178
SALT-3 0.262* 0.310* 0.136
SALT-4 0.168 0.309* 0.122
SALT-5 0.149 0.198 0.160

(c) Language Structure Index
Features Manual ENNI LTO
Baseline 0.425*
Transcript 0.002
SALT-1 -0.042 -0.002 -0.132
SALT-2 -0.029 -0.033 -0.097
SALT-3 -0.015 -0.059 -0.094
SALT-4 0.009 -0.070 0.100
SALT-5 0.053 -0.083 -0.012

(d) Receptive Language Index

Table 7.8: Correlation (Kendall’s ⌧) between observed and predicted CELF-4
index scores for all non-TD children in the CSLU data using manual, ENNI and
LTO age-group percentile features
⇤=correlation significant at ↵ = 0.05/n level (adjusting for Bonferroni correction)

7.1. PREDICTING SCORES ON STRUCTURED INSTRUMENTS 251

Predicting sub-scores from manual SALT annotations

Looking at Tables 7.7 and 7.8, we see that the Baseline feature set is able to

predict the four CELF-4 index scores far more effectively than the Transcript

feature set or any of the SALT feature sets. This is the case for both the default

and age-group percentile features.

We see in Table 7.7 that for three of the four CELF-4 index (excepting the

Receptive Language Index), the predictions yielded by the Transcript and SALT

(default) feature sets correlate significantly with the true scores. These features

are not effective at predicting Receptive Language Index scores: aside from

the Baseline, the only feature set that is able to predict scores that correlate

significantly with the true scores is SALT-5, which does so poorly compared to the

Baseline feature set (⌧ = 0.199, p 0.034 as opposed to ⌧ = 0.449, p 0.001).

The randomized paired-sample test shows indicates that the distributions of

CELF-4 Receptive Language Index score predictions yielded by the Baseline and

SALT-5 feature sets are significantly different (p 0.001).

Continuing further with the default feature set, the SALT-2 through -5 feature

sets yield predictions that correlate significantly with the true scores for the Core

Language Score, Expressive Language Index, and Language Structure Index. In

all three cases, the SALT-5 feature set yields the best predictions of the SALT

feature sets. Nevertheless, even predictions from the SALT-5 feature set appear to

be worse than ones yielded by the Baseline features. For example, as can be seen

in Table 7.7b, the SALT-5 feature set is able to predict the Expressive Language

Index with ⌧ = 0.363. Using the randomized paired sample test, we see that

these predictions are drawn from a significantly different distribution (p 0.001)

compared to the Baseline predictions (⌧ = 0.640). This strongly suggests that

the SALT-5 predictions are worse than the Baseline ones. Similarly, the SALT-5

feature set predicts the Core Language Score with ⌧ = 0.306 compared to the

252 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

Baseline ⌧ of 0.663 (again, the randomized paired sample test yields p 0.001).

Predicting sub-scores from automatic SALT annotations

We now predict the four CELF-4 index scores using SALT features extracted

from automatic annotations. Comparing Tables 7.7 and 7.8, we find that the

default features are more useful than the age-group percentile features. The

latter of these are able to predict Expressive Language Index and the Language

Structure Index scores that correlate significantly with the true scores, but this

is not the case for either the Core Language Score or the Receptive Language

Index score. The default LTO features are not effective predictors of these two

index scores either, as can be seen in Table 7.7. The randomized paired-sample

test suggests that the predictions of the Expressive Language and Language

Structure Index scores using the ENNI and manual features are more faithful to

the true scores than those yielded by the LTO features.

Overall, the default ENNI feature sets appear to be more effective at predicting

CELF-4 index scores than either the manual or LTO feature sets, as can be

seen throughout Table 7.7. In all but one case (SALT-5 for the Receptive

Language Index), the ENNI features predict the CELF-4 index scores with higher

correlations to the true index scores than the manual features. Nevertheless,

the differences in performance yielded by the manual and ENNI features are

not significant at the ↵ = 0.05 level for any feature set/index score combination.

Finally, as was the case with the CCC-2 sub-scores, the SALT-2 through -4

default feature sets appear to be the most effective for predicting CELF-4 index

scores, excluding the Baseline feature set, which includes VIQ.

7.2. USING SALT TO DISCRIMINATE BETWEEN DIAGNOSTIC PAIRS253

Group 1 Group 2
N N Matched on

ALI 22 ALN 23 Age, SCQ total score, ADOS CSS
ALI 24 SLI 17 Age, VIQ, PIQ
ALN 21 TD 37 Age, VIQ, PIQ
SLI 14 TD 38 Age, SCQ total score, ADOS CSS

Table 7.9: Details of matched diagnostic groups
ADOS CSS=Autism Diagnostic Observation Schedule Calibrated Severity Score;
PIQ=Performance IQ; SCQ=Social Communication Questionnaire; VIQ=Verbal
IQ

7.2 Using SALT to discriminate between diagnos-

tic pairs

We now turn to a slightly different question: how useful are features derived from

SALT-annotated transcripts for predicting the presence of either autism or a

language impairment? We address this question using a ‘leave pair out’ classifica-

tion procedure, described in Section 7.2.1, which we first introduced for this task

in our workshop publication ‘The utility of manual and automatic linguistic error

codes for identifying neurodevelopmental disorders’ (Morley et al., 2013). We

perform these experiments using the matched groups shown in Table 7.9. These

matched pairs were generously provided by Kyle Gorman, and were created

with a pre-release version of the ldamatch package for R, which ‘performs group

matching by backward elimination using linear discriminant analysis’ (Gorman,

2015). We also compare the effectiveness of features extracted from manual

SALT annotations to ones extracted from automatic SALT annotations.

254 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

7.2.1 Leave-pair-out prediction and evaluation

Due to the small number of children in all of the matched groups, we use a cross-

validation procedure to evaluate the utility of various features. In particular,

we use a leave-pair-out (LPO) classification schema (Cortes et al., 2007), which

is quite similar to the LTO procedure we use to predict scores on structured

instruments. Let C1 be the set of all children with the first diagnosis d1 in the

matched group, and C2 be the set of all children with the second diagnosis d2 in

the matched group. For LPO classification, we iterate over all pairs of children

from different diagnostic groups: c1 2 C1 and c2 2 C2. We train a model to

predict the diagnoses of c1 and c2 on all of the other children in C1 and C2. Then,

we predict the probabilities of each child having either diagnosis. In practice,

we use the logistic regression classifier in Scikit-learn (Pedregosa et al., 2012) to

compute these probabilities.

We evaluate the LPO procedure by computing the area under the receiver

operating curve (AUC). We count each iteration as a success if p(d1|c1) > p(d1|c2)

or in other words, if the classifier says that c1 is more likely to have diagnosis

d1 than is c2. We report the number of successes divided by the number of

pairs, which provides an unbiased estimate of AUC (Airola et al., 2011). AUC is

simply the probability that the classifier will assign a higher score to a randomly

chosen “positive” example than to a randomly chosen “negative” example. AUC

effectively ranges from 0.5—chance performance—to 1.0—a perfect classifier. If

AUC is less than 0.5, then we simply count “positive” predictions as “negative”,

which redefines AUC as 1�AUC, thus guaranteeing that it is at least 0.5.

We use the randomized paired-sample test described in Section 4.7.1 to

compare how effectively different feature sets allow us to perform this diag-

nostic discrimination task. In particular, we compare the performance yielded

by different feature levels, and features of the same level extracted from three

7.2. USING SALT TO DISCRIMINATE BETWEEN DIAGNOSTIC PAIRS255

different sources: manual SALT annotations (‘manual features’) and the two

different automatic SALT annotations (‘automatic features’), namely ones pro-

duced using a model trained on the ENNI data set, and another trained using a

leave-transcript-out procedure.

When comparing manual and automatic features, at the onset of each of the

iterations of the randomized paired-sample test we randomly select whether to

use the manual or automatic variant of each feature. We use the same version of

each feature across all children, so we do not train or test on data that includes

both manual and automatic versions of the same feature. To compare different

feature levels (ex. Baseline vs SALT-3), we select one of the levels at random at

each iteration of the LPO procedure, i.e. each time we train and test a model.

Whether comparing automatic and manual features, or different feature levels,

we perform 1,000 iterations of the randomized paired-sample test, each time

producing an estimate of AUC that we then compare to the baseline in order to

determine whether the trial is a success.

7.2.2 Results

Table 7.10 contains the AUC on the diagnostic discrimination task for all feature

levels extracted from both manual and automatic SALT annotations. First, we

see that manual and automatic features are equally effective for this task. In only

one case does the randomized paired-sample test indicate that there are any cases

where results yielded by manual features differ significantly from those yielded

by automatic features. The sole exception is the SALT-1 features derived from

LTO annotations, which yield significantly different predictions from the manual

features (p < 0.001) when discriminating between the TD and SLI groups. The

LTO SALT-1 features do not, however, yield significantly different results than

the ENNI SALT-1 features (p < 0.931). Moreover, the LTO SALT-1 features

256 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

Group 1 Group 2 Feature Manual ENNI LTO
Set AUC AUC AUC

ALI ALN Baseline 0.834
Transcript 0.646
SALT-1:5 0.650 0.666 0.658
SALT-1:5 + VIQ 0.826† 0.824† 0.824†

ALI SLI Baseline 0.586
Transcript 0.588
SALT-1 0.581 0.569 0.578
SALT-2 0.600 0.571 0.578
SALT-3 0.605 0.571 0.578
SALT-3+VIQ 0.583 0.569 0.561
SALT-4 0.605 0.571 0.578
SALT-4+VIQ 0.581 0.569 0.561
SALT-5 0.588 0.571 0.578

ALN TD Baseline 0.544
Transcript 0.668
SALT-1 0.655 0.694 0.655
SALT-2 0.655 0.694 0.655
SALT-3 0.656 0.694 0.655
SALT-3+VIQ 0.672 0.669 0.663†
SALT-4 0.655 0.694 0.655
SALT-5 0.655 0.694 0.655

SLI TD Baseline 0.966
Transcript 0.769
SALT-1 0.791 0.793 0.801*
SALT-2 0.799 0.793 0.801
SALT-3 0.806 0.793 0.801
SALT-3+VIQ 0.806 0.793 0.801
SALT-4 0.806 0.793 0.801
SALT-4+VIQ 0.927† 0.923† 0.923†
SALT-5 0.799 0.793 0.801

Table 7.10: AUC on diagnostic discrimination task using baseline features, as
well as ones extracted from manual and automatic SALT annotations.
*: results are significantly different at the ↵ = 0.05 level from those yielded by
the manual features at the same level; significance determined using randomized
paired sample test
†: results are significantly different at the ↵ = 0.05 level from those yielded by
the same feature set without VIQ; significance determined using randomized
paired sample test

7.2. USING SALT TO DISCRIMINATE BETWEEN DIAGNOSTIC PAIRS257

do not yield substantially better performance than the manual SALT-1 features

discriminating between the TD and SLI groups (AUC=0.801 vs 0.791).

Pairs that are not matched on VIQ (ALI/ALN and SLI/TD) differ only in

the presence of a language impairment. For these pairs, the Baseline feature

set, which contains VIQ, far outperforms any of the other feature sets. This

is not surprising, as low VIQ is a very strong cue of a language impairment.

The SALT-derived feature sets significantly improve discrimination between

the SLI and TD groups, relative to the ‘Transcript’ features (ex. p 0.001

for manual SALT-3 features vs Transcript). For this pair, the SALT-3 and 4

feature sets, which perform identically, significantly outperform the SALT-1

(p 0.008 for manual features), but not the SALT-2 and -5 ones (p 0.066 for

both with manual features). On the other hand, the SALT-derived features do

not significantly improve discrimination between the ALI/ALN groups over the

Transcript features, whether they are manual (p 0.412), or automatic (ENNI

p 0.066, LTO p 0.196). When we add the VIQ feature to the best-performing

SALT feature set we see a dramatic improvement in discriminative performance

relative to the original SALT feature set, but performance is still worse than

using the Baseline features. Performance likely degrades with the additional

features because the logistic regression classifier is not trained to maximize AUC

over all iterations, but rather using maximum likelihood estimation at each

iteration. SALT features are not ignored completely because they have some

discriminatory value, even if it is substantially less than VIQ.

Pairs that are matched on VIQ (ALI/SLI and ALN/TD) differ only with

respect to the presence of autism, but not the presence of a language impairment.

As shown in Table 7.10, none of the feature sets we consider is particularly effective

for discriminating between these pairs. Even in cases where the SALT-derived

features outperform the Transcript features, the results are not significantly

258 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

different (ex. p 0.999 comparing SALT-4 to Transcript for ALI/SLI). Similarly,

the Transcript features do not yield significantly different results from the

Baseline features for discriminating between the ALN/TD groups (p 0.997).

Unsurprisingly, adding VIQ to the best performing feature set for discriminating

between the ALI and ALN groups—SALT-3—degrades performance relative to

that feature set without VIQ. Finally, adding VIQ to the LTO SALT-3 feature

set yields significantly different results compared to the original LTO SALT-3

feature set (p 0.015), but the increase in AUC is not substantial (0.655 to

0.663).

7.3 Conclusions

Throughout these experiments we have seen that VIQ is a highly effective

predictor of scores on other structured instruments that capture a child’s ability

to use language, specifically the CCC-2 and CELF-4. Features derived from

transcripts with varying degrees of SALT annotations can can typically predict

these scores to some degree, albeit not as effectively as when VIQ is used for

prediction. Promisingly, we find that features extracted from automatic SALT

annotations are as reliable as ones extracted from manual SALT annotations for

predicting the CCC-2 sub-scores and CELF-4 index scores that we considered.

In particular, we find that ENNI features—ones extracted from automatic

annotations produced by models trained on an external data set—are able to

predict CCC-2 sub-scores and CELF-4 index scores at least as well as LTO

features, and in some cases even better. Taken together, these findings suggest

that whatever utility manual SALT annotations may have is present in automatic

annotations as well. The discrepancies in the quality of the predictions yielded

by the ENNI and LTO findings underscore the importance of the quality and

thoroughness of annotations in model training data. In Chapters 5 and 6 we

7.3. CONCLUSIONS 259

demonstrate that the maze and error-code annotations in the ENNI corpus

are more consistent than the other SALT corpora. Although we have not

evaluated the CSLU ADOS corpus in the same way, it is possible that it is less

consistently annotated than the ENNI corpus, and that this inconsistency is in

turn responsible for the ENNI-trained models yielding slightly better performance

than the LTO models. We note that any differences in performance are unlikely

to have been caused by corpus size: the ENNI corpus contains 56,108 utterances,

while the CSLU ADOS corpus contains 61,949 utterances.

We have also investigated whether features derived from transcripts of spoken

language can be used to discriminate between different diagnostic groups. In

particular, we have explored whether increasingly detailed SALT-annotations

improve performance on this task. We find that SALT-derived features can

be used to discriminate between the SLI/TD pair, which is the only pair in

which one group has typical language (TD), and the other has impaired language

(SLI)1. As with predicting CCC-2 and CELF-4 scores, features derived from

manual and automatic SALT annotations are as effective as one another for this

task.

SALT-derived features are not useful for discriminating between groups that

are matched on the presence of a language impairment (ALI/SLI and ALN/TD),

or perhaps more narrowly, between groups that are matched on VIQ. Adding

VIQ to the SALT feature sets does not improve discrimination performance

for these two diagnostic pairs. This suggests that features derived from SALT

annotated transcripts are not effective indicators of autism. Combined with our

findings that SALT feature sets are not as effective as VIQ for predicting scores

on structured instruments (Chapter 7), we conclude that at best, the SALT

features we consider capture essentially the same information as VIQ, albeit
1As discussed in Sections 2.3.2, 7.1.4, and 7.1.5 the ALN group has deficits in communication

compared to the TD group, even though none of the children in it has a language impairment.

260 CHAPTER 7. THE CLINICAL UTILITY OF SALT ANNOTATIONS

noisily.

This brings us to a larger question, namely whether features derived from

SALT annotated transcripts provide information that is complementary to

VIQ, or whether at best they essentially capture VIQ with added noise. The

experiments in this chapter suggest that the latter is more likely to be the case.

First, the CCC-2 sub-scores and CELF-4 index scores that we considered capture

many aspects of language, but we have not found any cases where features

derived from SALT transcripts yielded substantially better predictions than the

VIQ-including Baseline feature set. Furthermore, we have found that VIQ is

a far more powerful feature for discriminating between groups that differ in

the presence of a language impairment (ALI/ALN or SLI/TD) than features

derived from a SALT-annotated transcript. In no case did adding VIQ to a

SALT feature set improve performance on the diagnostic discrimination task

over the Baseline feature set, which does include VIQ. This suggests that the

SALT-derived features we evaluated capture largely the same information as

VIQ, albeit less effectively. If the SALT features do in fact capture information

complementary to VIQ, then this information appears not to be captured by

any of the CCC-2 or CELF-4 sub-/index scores we evaluated, nor does it appear

to be predictive of the presence of either a language impairment or autism.

Chapter 8

Conclusions

The primary focus of this thesis has been to automate two key annotations used

in the Systematic Analysis of Language Transcripts (SALT) conventions for

language sample analysis. In Chapter 5, we show that an existing detector for the

closely related task of disfluency detection (Qian and Liu, 2013) can be adapted

to maze detection. In Chapter 6 we explore several methods for automating

SALT error code annotations, which indicate grammatical errors. Specifically,

we evaluate methods to identify grammatical errors that could be identified by

observing a single utterance in isolation, thus excluding, for example, pronominal

gender errors and pragmatic errors. Our investigation includes a variety of

techniques to identify grammatical errors, including utterance-level classifiers,

taggers, a method based on dependency parsing, and a random-walk-based

method. The methods based on tagging and dependency parsing perform better

than the others, but no single method performs best across all corpora. Crucially,

these methods, along with the others that we proposed, are both trainable and

tunable. Since these methods are trainable, they can be used with novel error

sets, as the standards used to apply error code annotations appear to be variable

261

262 CHAPTER 8. CONCLUSIONS

across corpora. By tunable, we mean that the user can set the operating point of

the system in terms of precision and recall. This permits the error detectors to

be used for a wide variety of downstream objectives, including identifying a small

sample of ungrammatical utterances (high precision), or annotating utterances

that are then to be corrected by hand (high recall).

During our investigations into automating maze and error code detection

we have found that annotation standards are highly variable across SALT-

annotated corpora. Some of these differences are obvious, while others are

relatively subtle. For example, the GillamNT corpus annotates asides, which

are typically delimited with double parentheses, as mazes. On the other hand,

we find that corpus-specific models for maze detection tend to outperform

various models trained on multiple corpora, which suggests that there may be

other, more subtle differences in maze annotation across corpora. In the case of

error codes, we find that the different SALT corpora use different sets of error

codes, and the same error code may be used differently in different corpora:

the [EO] (overgeneralization) code is used throughout the ENNI corpus, but

hardly at all in the Conv corpus, where overgeneralization errors are captured

by [EW]. Furthermore, we find that annotation quality varies widely across

SALT-annotated corpora by manually relabeling whether 1,000 utterances in

certain corpora contained an error: we disagree with the annotators’ decisions

on 20 utterances in the ENNI corpus (all of which could be true errors when

considered in context), but 104 in the NarSR corpus.

The variable quality and standards of annotations in the SALT corpora calls

into question their value as “reference databases”. As described throughout the

SALT manual (Miller et al., 2011), these corpora are included with the SALT

software as references against which one can compare statistics computed from

a transcript of interest. If each of the SALT corpora is annotated following

263

idiosyncratic standards, as appears to be the case, and a transcript of interest

is annotated following yet another set of standards, it is unclear what value

is to be found in this comparison. To illustrate, asides are always excluded

from utterance length statistics for the GillamNT corpus, because they are

annotated as mazes. If the transcript of interest annotates asides in the standard

manner and includes them computations of utterance length, any comparisons

of utterance length with the GillamNT corpus will be spurious. Similarly, it is

unclear what meaning one can attach to the frequency of grammatical errors

found in some SALT corpora if one in ten of these annotations is wrong. We

recommend that the SALT corpora either come with more thorough descriptions

of the annotation standards used, and that some annotations (for example the

error codes in NarSR) be redone completely. The automated techniques that we

proposed for both maze detection and SALT error code detection could perhaps

be used to expedite this process.

We have also explored the clinical and diagnostic utility of SALT annotations.

In Chapter 7, we consider whether features derived from SALT-annotated

transcripts can be used to predict scores on the CCC-2 and CELF-4—two

structured instruments that assess language. We found that in most cases,

features derived from SALT annotations provide predictive power beyond ones

derived from an unannotated transcript, but they rarely are as useful as VIQ.

We also evaluate whether these same features are useful for identifying the

presence of either autism or a language impairment. We find that SALT-derived

features cannot be used to identify autism reliably, but can be used to identify

a language impairment. As with predicting scores on structured instruments,

the SALT-derived features are useful, but not as effective as VIQ for this task.

One likely possibility is that the set of SALT annotations used on the CSLU

corpus, which we note is a slightly expanded set compared to the one described

264 CHAPTER 8. CONCLUSIONS

in the SALT manual, do not capture any more information than verbal IQ.

Interestingly and encouragingly, however, we found that features derived from

automatic SALT annotations are essentially as effective as ones derived from

manual SALT annotations.

We see several fruitful directions for future work, including building on the

techniques in natural language processing that are proposed here, both for maze

and error code detection. We believe, however, that carrying out such work

successfully is contingent upon better quality data. The SALT corpora, with the

possible exception of the ENNI corpus (which we believe to be well annotated),

should be re-annotated following more rigorous standards. In doing so, it may

be useful to have separate codes to indicate whether the error is always visible

(ex. ‘goed’), or whether it is only visible in context (ex. ‘she left’ instead of ‘he

left’). Without better quality data, it is difficult to be confident that particular

methods perform well across corpora and domains such as conversation and

narrative tasks. Better quality data will also allow us to test whether a single

error detection or maze model can be used across corpora, or whether there is

truly a justification for task- or corpus-specific models.

The work we presented in Chapter 7, in which we predict scores on structured

instruments and the presence of autism or a language impairment, should

be repeated, but using different data, specifically transcripts of narrative or

expository tasks. The ADOS data that we have used consists of transcripts

of conversations, but conversational data tends to elicit utterances that are

short and relatively simple syntactically. On the other hand, expository and

narrative tasks elicit longer, more complex utterances, and these are better

able to identify the presence of a language impairment (Hadley, 1998). In fact,

Nippold et al. (2008) found no group differences between children with and

without a language impairment when performing a conversational task, but

265

clear ones during an expository task. We expect that simply repeating these

experiments using narrative or expository data will not improve performance in

identifying autism; for that, we expect that the SALT annotations would need

to be expanded to include richer pragmatic codes than the rarely used [EC]

‘inappropriate utterance’. Nevertheless, it is possible that features derived from

SALT annotated transcripts of expository or narrative tasks would have more

diagnostic utility than the ADOS transcripts we have explored here.

266 CHAPTER 8. CONCLUSIONS

Appendix A

Maze detection experiments

A.1 Cross-corpus maze detection experiments

This section contains the complete results of the cross-corpus maze detection

experiments described in Section 5.4.1. Briefly, in these experiments, we train

a single model on the training set of one corpus. We tune the maze detector

so that precision and recall are roughly balanced on the development set of

the training corpus. We then evaluate the performance of this model on the

development set of each of the other SALT corpora.

267

268 APPENDIX A. MAZE DETECTION EXPERIMENTS

Corpus Tag Bracket
P R F1 P R F1

Conv 0.806 0.785 0.795 0.711 0.690 0.700
ENNI 0.826 0.755 0.789 0.699 0.688 0.694
Expository 0.700 0.633 0.665 0.636 0.669 0.652
GillamNT 0.802 0.622 0.701 0.652 0.593 0.621
NarSSS 0.826 0.781 0.803 0.693 0.661 0.677
NarSR 0.796 0.765 0.780 0.638 0.642 0.640
NZConv 0.846 0.859 0.852 0.767 0.800 0.783
NZPerNar 0.863 0.867 0.865 0.753 0.779 0.766
NZSR 0.951 0.806 0.872 0.708 0.676 0.691

Table A.1: Model trained on Conv, tested on SALT development sets

Corpus Tag Bracket
P R F1 P R F1

Conv 0.680 0.753 0.715 0.576 0.638 0.605
ENNI 0.898 0.832 0.864 0.791 0.791 0.791
Expository 0.601 0.614 0.608 0.552 0.635 0.591
GillamNT 0.752 0.639 0.691 0.614 0.605 0.610
NarSSS 0.776 0.772 0.774 0.635 0.664 0.649
NarSR 0.777 0.777 0.777 0.609 0.642 0.625
NZConv 0.743 0.824 0.781 0.618 0.728 0.668
NZPerNar 0.814 0.856 0.834 0.694 0.737 0.715
NZSR 0.927 0.821 0.871 0.704 0.685 0.694

Table A.2: Model trained on ENNI, tested on SALT development sets

Corpus Tag Bracket
P R F1 P R F1

Conv 0.611 0.750 0.674 0.502 0.602 0.547
ENNI 0.744 0.727 0.735 0.608 0.639 0.623
Expository 0.670 0.671 0.670 0.597 0.647 0.621
GillamNT 0.702 0.613 0.654 0.537 0.548 0.542
NarSSS 0.696 0.747 0.720 0.549 0.567 0.558
NarSR 0.725 0.737 0.731 0.553 0.578 0.565
NZConv 0.674 0.825 0.742 0.574 0.727 0.641
NZPerNar 0.705 0.841 0.767 0.546 0.701 0.614
NZSR 0.832 0.772 0.801 0.575 0.586 0.580

Table A.3: Model trained on Expository, tested on SALT development sets

A.1. CROSS-CORPUS MAZE DETECTION EXPERIMENTS 269

Corpus Tag Bracket
P R F1 P R F1

Conv 0.290 0.815 0.427 0.238 0.486 0.319
ENNI 0.653 0.784 0.712 0.608 0.665 0.635
Expository 0.363 0.762 0.492 0.370 0.496 0.424
GillamNT 0.892 0.881 0.886 0.795 0.803 0.799
NarSSS 0.601 0.798 0.686 0.503 0.595 0.545
NarSR 0.578 0.783 0.665 0.522 0.589 0.554
NZConv 0.393 0.874 0.542 0.343 0.610 0.439
NZPerNar 0.428 0.891 0.579 0.362 0.613 0.455
NZSR 0.730 0.814 0.770 0.570 0.658 0.611

Table A.4: Model trained on GillamNT, tested on SALT development sets

Corpus Tag Bracket
P R F1 P R F1

Conv 0.714 0.767 0.740 0.623 0.655 0.638
ENNI 0.742 0.781 0.761 0.607 0.657 0.631
Expository 0.614 0.638 0.626 0.548 0.620 0.582
GillamNT 0.716 0.643 0.678 0.572 0.569 0.570
NarSSS 0.796 0.794 0.795 0.648 0.651 0.649
NarSR 0.759 0.788 0.773 0.590 0.631 0.610
NZConv 0.761 0.837 0.797 0.685 0.739 0.711
NZPerNar 0.798 0.858 0.827 0.698 0.749 0.723
NZSR 0.902 0.802 0.849 0.636 0.613 0.624

Table A.5: Model trained on NarSSS, tested on SALT development sets

Corpus Tag Bracket
P R F1 P R F1

Conv 0.635 0.785 0.702 0.557 0.627 0.590
ENNI 0.718 0.792 0.753 0.604 0.671 0.636
Expository 0.575 0.660 0.614 0.539 0.643 0.587
GillamNT 0.691 0.660 0.675 0.571 0.580 0.576
NarSSS 0.745 0.805 0.774 0.616 0.643 0.629
NarSR 0.795 0.797 0.796 0.631 0.662 0.646
NZConv 0.726 0.855 0.785 0.655 0.734 0.692
NZPerNar 0.774 0.867 0.818 0.679 0.748 0.712
NZSR 0.893 0.821 0.855 0.661 0.649 0.655

Table A.6: Model trained on NarSR, tested on SALT development sets

270 APPENDIX A. MAZE DETECTION EXPERIMENTS

Corpus Tag Bracket
P R F1 P R F1

Conv 0.776 0.728 0.751 0.660 0.641 0.650
ENNI 0.793 0.711 0.750 0.640 0.608 0.624
Expository 0.677 0.563 0.615 0.525 0.519 0.522
GillamNT 0.773 0.581 0.664 0.601 0.544 0.571
NarSSS 0.817 0.743 0.778 0.667 0.642 0.654
NarSR 0.802 0.742 0.771 0.619 0.626 0.622
NZConv 0.831 0.833 0.832 0.719 0.757 0.737
NZPerNar 0.870 0.838 0.854 0.737 0.755 0.746
NZSR 0.958 0.779 0.860 0.709 0.658 0.682

Table A.7: Model trained on NZConv, tested on SALT development sets

Corpus Tag Bracket
P R F1 P R F1

Conv 0.811 0.701 0.752 0.713 0.622 0.665
ENNI 0.804 0.705 0.751 0.677 0.592 0.632
Expository 0.671 0.528 0.591 0.600 0.508 0.550
GillamNT 0.782 0.574 0.662 0.648 0.532 0.584
NarSSS 0.818 0.726 0.769 0.687 0.609 0.646
NarSR 0.806 0.723 0.762 0.658 0.600 0.628
NZConv 0.862 0.815 0.838 0.761 0.755 0.758
NZPerNar 0.882 0.840 0.861 0.778 0.759 0.768
NZSR 0.944 0.776 0.852 0.710 0.640 0.673

Table A.8: Model trained on NZPerNar, tested on SALT development sets

Corpus Tag Bracket
P R F1 P R F1

Conv 0.441 0.789 0.566 0.375 0.518 0.435
ENNI 0.468 0.809 0.593 0.361 0.530 0.430
Expository 0.328 0.658 0.438 0.260 0.398 0.315
GillamNT 0.454 0.656 0.536 0.333 0.444 0.381
NarSSS 0.557 0.816 0.662 0.432 0.541 0.480
NarSR 0.508 0.820 0.628 0.365 0.491 0.419
NZConv 0.564 0.854 0.680 0.496 0.663 0.567
NZPerNar 0.611 0.879 0.721 0.505 0.665 0.574
NZSR 0.836 0.875 0.855 0.661 0.703 0.681

Table A.9: Model trained on NZSR, tested on SALT development sets

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 271

A.2 Extrinsic evaluation of maze detection

These tables capture the complete results of our experiments using the simulated

transcripts procedure (described in Section 5.5) to compare the four summary

statistics (tokens per utterance (ie MLU), types per utterance, mazes per ut-

terance, and maze length) derived from manual annotations to those derived

from various maze detection models’ predictions. As in Section 5.4, we do not

evaluate multi-corpus models on the development folds of corpora that they

were not trained on. Statistical significance is determined using the Wilcoxon

signed-rank test (↵ = 0.1), as was the case in Section 5.5.

272 APPENDIX A. MAZE DETECTION EXPERIMENTS

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 273

A.2.1 Baseline models

Corpus �µ p r ⇢ ⌧

NarSSS 0.04 0.001 0.211 0.982 0.884
ENNI 0.06 0.001 0.743 0.974 0.863
NarSSS 0.07 0.018 0.075 0.974 0.860
GillamNT 0.05 0.001 0.250 0.983 0.886
NarSSS 0.06 0.103 0.052 0.970 0.848
NarSR 0.05 0.095 0.053 0.976 0.868
NZConv 0.04 0.014 0.078 0.979 0.875
NZPerNar 0.04 0.001 0.590 0.981 0.882
NZSR 0.05 0.001 0.837 0.969 0.853

(a) Token count
Corpus �µ p r ⇢ ⌧

NarSSS 0.03 0.233 0.038 0.991 0.918
ENNI 0.04 0.001 0.777 0.990 0.916
NarSSS 0.06 0.001 0.544 0.978 0.871
GillamNT 0.04 0.514 0.021 0.987 0.902
NarSSS 0.04 0.001 0.591 0.985 0.895
NarSR 0.04 0.001 0.438 0.986 0.900
NZConv 0.03 0.001 0.481 0.990 0.915
NZPerNar 0.04 0.001 0.800 0.991 0.919
NZSR 0.05 0.001 0.864 0.980 0.887

(b) Type count
Corpus �µ p r ⇢ ⌧

NarSSS 0.02 0.001 0.374 0.841 0.653
ENNI 0.02 0.001 0.377 0.863 0.689
NarSSS 0.09 0.001 0.866 0.736 0.537
GillamNT 0.02 0.001 0.698 0.866 0.688
NarSSS 0.03 0.001 0.546 0.794 0.598
NarSR 0.04 0.001 0.818 0.791 0.609
NZConv 0.03 0.001 0.797 0.844 0.670
NZPerNar 0.01 0.002 0.097 0.861 0.689
NZSR 0.03 0.001 0.861 0.741 0.572

(c) Maze count
Corpus �µ p r ⇢ ⌧

NarSSS 0.14 0.001 0.267 0.595 0.422
ENNI 0.18 0.001 0.796 0.686 0.490
NarSSS 0.37 0.001 0.865 0.169 0.100
GillamNT 0.10 0.001 0.464 0.855 0.661
NarSSS 0.11 0.001 0.237 0.589 0.409
NarSR 0.14 0.001 0.680 0.649 0.439
NZConv 0.15 0.001 0.534 0.688 0.492
NZPerNar 0.12 0.001 0.429 0.800 0.581
NZSR 0.13 0.001 0.819 0.696 0.490

(d) Maze length

Table A.10: Reference statistic prediction accuracy using baseline maze detection
models; all values of ⇢ and ⌧ significant at p 0.001 level

274 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.1: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of Conv corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 275

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.2: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of Expository corpus

276 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.3: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of ENNI corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 277

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.4: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of GillamNT corpus

278 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.5: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of NarSSS corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 279

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.6: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of NarSR corpus

280 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.7: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of NZConv corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 281

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.8: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of NZPerNar corpus

282 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.9: Relationship between summary statistics computed from manual
transcripts and baseline model; development fold of NZSR corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 283

284 APPENDIX A. MAZE DETECTION EXPERIMENTS

A.2.2 FEDA All model

Corpus �µ p r ⇢ ⌧

NarSSS 0.04 0.001 0.291 0.984 0.891
ENNI 0.06 0.001 0.751 0.975 0.865
NarSSS 0.07 0.586 0.017 0.974 0.855
GillamNT 0.05 0.001 0.198 0.981 0.880
NarSSS 0.06 0.421 0.025 0.968 0.842
NarSR 0.05 0.674 0.013 0.975 0.863
NZConv 0.04 0.006 0.087 0.980 0.882
NZPerNar 0.04 0.001 0.573 0.981 0.882
NZSR 0.05 0.001 0.825 0.964 0.838

(a) Token count
Corpus �µ p r ⇢ ⌧

NarSSS 0.03 0.457 0.023 0.991 0.922
ENNI 0.04 0.001 0.788 0.990 0.916
NarSSS 0.06 0.001 0.562 0.978 0.870
GillamNT 0.04 0.721 0.011 0.985 0.895
NarSSS 0.04 0.001 0.573 0.986 0.896
NarSR 0.04 0.001 0.445 0.985 0.891
NZConv 0.03 0.001 0.471 0.990 0.920
NZPerNar 0.04 0.001 0.791 0.991 0.919
NZSR 0.05 0.001 0.858 0.975 0.870

(b) Type count
Corpus �µ p r ⇢ ⌧

NarSSS 0.02 0.001 0.368 0.826 0.638
ENNI 0.02 0.001 0.358 0.858 0.679
NarSSS 0.09 0.001 0.866 0.740 0.549
GillamNT 0.03 0.001 0.713 0.857 0.678
NarSSS 0.03 0.001 0.584 0.813 0.626
NarSR 0.04 0.001 0.829 0.778 0.586
NZConv 0.02 0.001 0.784 0.846 0.664
NZPerNar 0.02 0.001 0.128 0.854 0.675
NZSR 0.03 0.001 0.856 0.766 0.595

(c) Maze count
Corpus �µ p r ⇢ ⌧

NarSSS 0.14 0.001 0.354 0.601 0.419
ENNI 0.18 0.001 0.784 0.712 0.503
NarSSS 0.38 0.001 0.865 0.223 0.136
GillamNT 0.10 0.001 0.392 0.838 0.642
NarSSS 0.11 0.001 0.210 0.602 0.415
NarSR 0.15 0.001 0.732 0.629 0.431
NZConv 0.14 0.001 0.492 0.656 0.457
NZPerNar 0.11 0.001 0.375 0.793 0.587
NZSR 0.13 0.001 0.804 0.691 0.484

(d) Maze length

Table A.11: Reference statistic prediction accuracy using FEDA All maze
detection model; all values of ⇢ and ⌧ significant at p 0.001 level

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 285

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.10: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of Conv corpus

286 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.11: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of Expository corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 287

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.12: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of ENNI corpus

288 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.13: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of GillamNT corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 289

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.14: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of NarSSS corpus

290 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.15: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of NarSR corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 291

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.16: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of NZConv corpus

292 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.17: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of NZPerNar corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 293

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.18: Relationship between summary statistics computed from manual
transcripts and FEDA All model; development fold of NZSR corpus

294 APPENDIX A. MAZE DETECTION EXPERIMENTS

A.2.3 Age model

Corpus �µ p r ⇢ ⌧

ENNI 0.06 0.001 0.742 0.975 0.865
GillamNT 0.05 0.001 0.213 0.983 0.883
NarSSS 0.05 0.534 0.020 0.970 0.845
NarSR 0.05 0.008 0.084 0.976 0.864

(a) Token count
Corpus �µ p r ⇢ ⌧

ENNI 0.04 0.001 0.797 0.990 0.917
GillamNT 0.04 0.801 0.008 0.986 0.898
NarSSS 0.04 0.001 0.560 0.986 0.895
NarSR 0.04 0.001 0.381 0.984 0.893

(b) Type count
Corpus �µ p r ⇢ ⌧

ENNI 0.02 0.001 0.375 0.856 0.675
GillamNT 0.02 0.001 0.707 0.867 0.693
NarSSS 0.03 0.001 0.555 0.796 0.612
NarSR 0.04 0.001 0.818 0.780 0.591

(c) Maze count
Corpus �µ p r ⇢ ⌧

ENNI 0.18 0.001 0.799 0.720 0.516
GillamNT 0.10 0.001 0.409 0.843 0.645
NarSSS 0.11 0.001 0.192 0.594 0.415
NarSR 0.14 0.001 0.711 0.642 0.451

(d) Maze length

Table A.12: Reference statistic prediction accuracy using Age maze detection
model; all values of ⇢ and ⌧ significant at p 0.001 level

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 295

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.19: Relationship between summary statistics computed from manual
transcripts and FEDA Age model; development fold of ENNI corpus

296 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.20: Relationship between summary statistics computed from manual
transcripts and FEDA Age model; development fold of GillamNT corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 297

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.21: Relationship between summary statistics computed from manual
transcripts and FEDA Age model; development fold of NarSSS corpus

298 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.22: Relationship between summary statistics computed from manual
transcripts and FEDA Age model; development fold of NarSR corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 299

A.2.4 Conversational model

Corpus �µ p r ⇢ ⌧

Conv 0.04 0.001 0.276 0.983 0.888
NZConv 0.04 0.106 0.051 0.978 0.872

(a) Token count
Corpus �µ p r ⇢ ⌧

Conv 0.03 0.895 0.004 0.991 0.919
NZConv 0.03 0.001 0.498 0.989 0.913

(b) Type count
Corpus �µ p r ⇢ ⌧

Conv 0.02 0.001 0.369 0.845 0.662
NZConv 0.03 0.001 0.783 0.842 0.660

(c) Maze count
Corpus �µ p r ⇢ ⌧

Conv 0.15 0.001 0.332 0.593 0.415
NZConv 0.15 0.001 0.525 0.632 0.442

(d) Maze length

Table A.13: Reference statistic prediction accuracy using Conversational
maze detection model; all values of ⇢ and ⌧ significant at p 0.001 level

300 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.23: Relationship between summary statistics computed from manual
transcripts and FEDA Conversational model; development fold of Conv
corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 301

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.24: Relationship between summary statistics computed from manual
transcripts and FEDA Conversational model; development fold of NZConv
corpus

302 APPENDIX A. MAZE DETECTION EXPERIMENTS

A.2.5 Narrative model

Corpus �µ p r ⇢ ⌧

ENNI 0.06 0.001 0.716 0.973 0.860
GillamNT 0.05 0.001 0.238 0.981 0.880
NarSSS 0.06 0.050 0.062 0.970 0.845
NarSR 0.05 0.071 0.057 0.973 0.860
NZPerNar 0.04 0.001 0.563 0.978 0.874
NZSR 0.05 0.001 0.841 0.969 0.853

(a) Token count
Corpus �µ p r ⇢ ⌧

ENNI 0.04 0.001 0.765 0.990 0.916
GillamNT 0.04 0.366 0.029 0.986 0.897
NarSSS 0.04 0.001 0.598 0.986 0.895
NarSR 0.04 0.001 0.397 0.982 0.887
NZPerNar 0.04 0.001 0.800 0.989 0.915
NZSR 0.05 0.001 0.863 0.978 0.879

(b) Type count
Corpus �µ p r ⇢ ⌧

ENNI 0.02 0.001 0.423 0.872 0.695
GillamNT 0.03 0.001 0.711 0.868 0.696
NarSSS 0.02 0.001 0.583 0.819 0.630
NarSR 0.04 0.001 0.826 0.818 0.643
NZPerNar 0.01 0.001 0.138 0.862 0.689
NZSR 0.03 0.001 0.861 0.762 0.586

(c) Maze count
Corpus �µ p r ⇢ ⌧

ENNI 0.18 0.001 0.781 0.677 0.472
GillamNT 0.10 0.001 0.436 0.848 0.645
NarSSS 0.11 0.001 0.238 0.626 0.431
NarSR 0.15 0.001 0.703 0.621 0.430
NZPerNar 0.12 0.001 0.391 0.778 0.570
NZSR 0.13 0.001 0.814 0.707 0.491

(d) Maze length

Table A.14: Reference statistic prediction accuracy using Narrative maze
detection model; all values of ⇢ and ⌧ significant at p 0.001 level

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 303

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.25: Relationship between summary statistics computed from manual
transcripts and FEDA Narrative model; development fold of ENNI corpus

304 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.26: Relationship between summary statistics computed from manual
transcripts and FEDA Narrative model; development fold of GillamNT
corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 305

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.27: Relationship between summary statistics computed from manual
transcripts and FEDA Narrative model; development fold of NarSSS corpus

306 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.28: Relationship between summary statistics computed from manual
transcripts and FEDA Narrative model; development fold of NarSR corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 307

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.29: Relationship between summary statistics computed from manual
transcripts and FEDA Narrative model; development fold of NZPerNar
corpus

308 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.30: Relationship between summary statistics computed from manual
transcripts and FEDA Narrative model; development fold of NZSR corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 309

A.2.6 NZ model

Corpus �µ p r ⇢ ⌧

NZConv 0.04 0.466 0.023 0.977 0.872
NZPerNar 0.04 0.001 0.600 0.981 0.884
NZSR 0.05 0.001 0.833 0.966 0.844

(a) Token count
Corpus �µ p r ⇢ ⌧

NZConv 0.03 0.001 0.520 0.990 0.916
NZPerNar 0.04 0.001 0.803 0.990 0.920
NZSR 0.05 0.001 0.861 0.976 0.875

(b) Type count
Corpus �µ p r ⇢ ⌧

NZConv 0.03 0.001 0.792 0.839 0.654
NZPerNar 0.02 0.001 0.103 0.855 0.678
NZSR 0.03 0.001 0.860 0.772 0.601

(c) Maze count
Corpus �µ p r ⇢ ⌧

NZConv 0.15 0.001 0.546 0.649 0.466
NZPerNar 0.11 0.001 0.441 0.804 0.608
NZSR 0.13 0.001 0.816 0.722 0.501

(d) Maze length

Table A.15: Reference statistic prediction accuracy using NZ maze detection
model; all values of ⇢ and ⌧ significant at p 0.001 level

310 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.31: Relationship between summary statistics computed from manual
transcripts and FEDA NZ model; development fold of NZConv corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 311

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.32: Relationship between summary statistics computed from manual
transcripts and FEDA NZ model; development fold of NZPerNar corpus

312 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.33: Relationship between summary statistics computed from manual
transcripts and FEDA NZ model; development fold of NZSR corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 313

A.2.7 WI model

Corpus �µ p r ⇢ ⌧

Conv 0.05 0.001 0.266 0.982 0.882
Expository 0.08 0.152 0.045 0.974 0.858
NarSSS 0.06 0.122 0.049 0.971 0.849
NarSR 0.05 0.011 0.080 0.974 0.860

(a) Token count
Corpus �µ p r ⇢ ⌧

Conv 0.03 0.792 0.008 0.990 0.914
Expository 0.07 0.001 0.586 0.978 0.868
NarSSS 0.04 0.001 0.568 0.986 0.897
NarSR 0.04 0.001 0.391 0.984 0.892

(b) Type count
Corpus �µ p r ⇢ ⌧

Conv 0.02 0.001 0.400 0.829 0.642
Expository 0.09 0.001 0.866 0.770 0.578
NarSSS 0.02 0.001 0.585 0.822 0.627
NarSR 0.04 0.001 0.821 0.780 0.596

(c) Maze count
Corpus �µ p r ⇢ ⌧

Conv 0.15 0.001 0.354 0.596 0.417
Expository 0.39 0.001 0.866 0.171 0.113
NarSSS 0.11 0.001 0.235 0.611 0.415
NarSR 0.15 0.001 0.674 0.599 0.412

(d) Maze length

Table A.16: Reference statistic prediction accuracy using WI maze detection
model; all values of ⇢ and ⌧ significant at p 0.001 level

314 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.34: Relationship between summary statistics computed from manual
transcripts and FEDA WI model; development fold of Conv corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 315

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.35: Relationship between summary statistics computed from manual
transcripts and FEDA WI model; development fold of Expository corpus

316 APPENDIX A. MAZE DETECTION EXPERIMENTS

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.36: Relationship between summary statistics computed from manual
transcripts and FEDA WI model; development fold of NarSSS corpus

A.2. EXTRINSIC EVALUATION OF MAZE DETECTION 317

(a) Token count

(b) Type count

(c) Maze count

(d) Maze length

Figure A.37: Relationship between summary statistics computed from manual
transcripts and FEDA WI model; development fold of NarSR corpus

318 APPENDIX A. MAZE DETECTION EXPERIMENTS

Appendix A

Plots of features by age

These plots illustrate the distribution of the Baseline, Transcript, and SALT-1

features used in Chapter 7 for predicting scores on structured instruments and

for the diagnostic discrimination task. We present each feature in turn. For each

feature, we show eight plots: each of the individual diagnostic groups, along with

the four composite groups. For reference, the four individual diagnostic groups

are: autism with language impairment (ALI), autism no language impairment

(ALI), specific language impairment (SLI), and typically developing (TD). The

four composite groups are: autism (ASD, comprising ALI and ALN), no autism

(nASD, comprising SLI and TD), unimpaired language (LN, comprising ALN

and TD) and impaired language (LI, comprising ALI and SLI). Aside from the

UmUhRat feature (ratio of ‘um’ to ‘uh’), all features are normalized by the

number of utterances spoken by the child.

319

320 APPENDIX A. PLOTS OF FEATURES BY AGE

A.1 Baseline features

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.1: TkCt — token count, individual diagnostic groups

A.1. BASELINE FEATURES 321

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.2: TkCt — token count, composite diagnostic groups

322 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.3: TpCt — type count, individual diagnostic groups

A.1. BASELINE FEATURES 323

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.4: TpCt — type count, composite diagnostic groups

324 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.5: VIQ — Concatenated WPPSI3 & WISC4 VIQ standard scores,
individual diagnostic groups

A.1. BASELINE FEATURES 325

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.6: VIQ — Concatenated WPPSI3 & WISC4 VIQ standard scores,
composite diagnostic groups

326 APPENDIX A. PLOTS OF FEATURES BY AGE

A.2 Transcript features

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.7: CEOlp — # of times examiner speaks while child is talking,
individual diagnostic groups

A.2. TRANSCRIPT FEATURES 327

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.8: CEOlp — # of times examiner speaks while child is talking,
composite diagnostic groups

328 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.9: ECOlp — # of times child speaks while examiner is talking,
individual diagnostic groups

A.2. TRANSCRIPT FEATURES 329

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.10: ECOlp — # of times child speaks while examiner is talking,
composite diagnostic groups

330 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.11: IncCt — Incomplete word count, individual diagnostic groups

A.2. TRANSCRIPT FEATURES 331

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.12: IncCt — Incomplete word count, composite diagnostic groups

332 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.13: UmUhRat — Ratio of ‘um’ to ‘uh’, individual diagnostic groups

A.2. TRANSCRIPT FEATURES 333

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.14: UmUhRat — Ratio of ‘um’ to ‘uh’, composite diagnostic groups

334 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.15: UnintCt — Unintelligible word count, individual diagnostic groups

A.2. TRANSCRIPT FEATURES 335

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.16: UnintCt — Unintelligible word count, composite diagnostic groups

336 APPENDIX A. PLOTS OF FEATURES BY AGE

A.3 SALT-1 features

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.17: MpCt — Morpheme count, individual diagnostic groups

A.3. SALT-1 FEATURES 337

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.18: MpCt — Morpheme count, composite diagnostic groups

338 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.19: MazeCt — Maze count, individual diagnostic groups

A.3. SALT-1 FEATURES 339

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.20: MazeCt — Maze count, composite diagnostic groups

340 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.21: MazeTkCt — Token count within mazes, individual diagnostic
groups

A.3. SALT-1 FEATURES 341

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.22: MazeTkCt – Token count within mazes, composite diagnostic
groups

342 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.23: MazeTpCt — Type count within mazes, individual diagnostic
groups

A.3. SALT-1 FEATURES 343

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.24: MazeTpCt – Type count within mazes, composite diagnostic
groups

344 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.25: NoMazeTkCt — Token count outside of mazes, individual
diagnostic groups

A.3. SALT-1 FEATURES 345

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.26: NoMazeTkCt – Token count outside of mazes, composite diag-
nostic groups

346 APPENDIX A. PLOTS OF FEATURES BY AGE

(a) ALI (b) ALN

(c) SLI (d) TD

Figure A.27: NoMazeTpCt — Type count outside of mazes, individual diag-
nostic groups

A.3. SALT-1 FEATURES 347

(a) ASD (b) nASD

(c) LI (d) LN

Figure A.28: NoMazeTpCt – Type count outside of mazes, composite diagnostic
groups

348 APPENDIX A. PLOTS OF FEATURES BY AGE

Bibliography

Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, Proceedings of the Conference,

Portland, Oregon, USA, June 2011. The Association for Computational Lin-

guistics. ISBN 978-1-932432-88-6.

Antti Airola, Tapio Pahikkala, Willem Waegeman, Bernard De Baets, and Tapio

Salakoski. An experimental comparison of cross-validation techniques for

estimating the area under the ROC curve. Computational Statistics & Data

Analysis, 55(4):1828–1844, 2011.

American Psychiatric Association. DSM-IV: Diagnostic and Statistical Manual

of Mental Disorders. American Psychiatric Publishing, Washington, DC, 4th

edition, 2000.

American Psychiatric Association. DSM-V Diagnostic and Statistical Manual

of Mental Disorders. American Psychiatric Publishing, Washington, DC, 5th

edition, 2013.

American Speech-Language-Hearing Association. Asha’s recommended

revisions to the dsm-5. http://www.asha.org/uploadedFiles/

DSM-5-Final-Comments.pdf, 2012. "[Online; accessed 13-August-2015]".

349

http://www.asha.org/uploadedFiles/DSM-5-Final-Comments.pdf
http://www.asha.org/uploadedFiles/DSM-5-Final-Comments.pdf

350 BIBLIOGRAPHY

Yigal Attali and Jill Burstein. Automated essay scoring with e-rater R� v. 2.0.

ETS Research Report Series, 2004(2):i–21, 2004.

Miguel Ballesteros and Joakim Nivre. Going to the roots of dependency parsing.

Computational Linguistics, 39(1):5–13, 2013.

Richard Beaufort, Sophie Roekhaut, Louise-Amélie Cougnon, and Cédrick Fairon.

A hybrid rule/model-based finite-state framework for normalizing sms messages.

In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 770–779, Uppsala, Sweden, July 2010. Association for Com-

putational Linguistics. URL http://www.aclweb.org/anthology/P10-1079.

Dorothy VM Bishop and Courtenay Frazier Norbury. Exploring the borderlands

of autistic disorder and specific language impairment: a study using standard-

ised diagnostic instruments. Journal of Child Psychology and Psychiatry, 43

(7):917–929, 2002.

Dorothy VM Bishop and F Volkmar. The Children’s Communication Checklist:

CCC-2. ASHA, 2003.

Heather Bortfeld, Silvia D Leon, Jonathan E Bloom, Michael F Schober, and

Susan E Brennan. Disfluency rates in conversation: Effects of age, relationship,

topic, role, and gender. Language and speech, 44(2):123–147, 2001.

Mari I Bowden and Richard K Fox. A diagnostic approach to the detection of

syntactic errors in english for non-native speakers. The University of Texas–

Pan American Department of Computer Science Technical Report, 2002.

Ulrik Brandes. A faster algorithm for betweenness centrality*. Journal of

mathematical sociology, 25(2):163–177, 2001.

Ronald L Breiger, Scott A Boorman, and Phipps Arabie. An algorithm for

clustering relational data with applications to social network analysis and

http://www.aclweb.org/anthology/P10-1079

BIBLIOGRAPHY 351

comparison with multidimensional scaling. Journal of mathematical psychology,

12(3):328–383, 1975.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. In COMPUTER NETWORKS AND ISDN SYSTEMS, pages

107–117. Elsevier Science Publishers B. V., 1998.

Noel Burton-Roberts. Analysing sentences. Routledge, 2013.

Andrew Caines and Paula Buttery. You talking to me?: A predictive model for

zero auxiliary constructions. In Proceedings of the 2010 Workshop on NLP

and Linguistics: Finding the Common Ground, pages 43–51, 2010.

Alexandra Canavan, David Graff, and George Zipperlen. Callhome american

english speech. Linguistic Data Consortium, 1997.

Monique J Charest and Laurence B Leonard. Predicting tense: Finite verb

morphology and subject pronouns in the speech of typically-developing children

and children with specific language impairment. Journal of child language, 31

(01):231–246, 2004.

Eugene Charniak and Mark Johnson. Edit detection and parsing for transcribed

speech. In NAACL, 2001.

J Clifford, J Reilly, and B Wulfeck. Narratives from children with specific

language impairment: An exploration in language and cognition. University

of California, San Diego: Center for Research in Language, 1995.

Michael Collins. Discriminative training methods for hidden markov models:

Theory and experiments with perceptron algorithms. In Proceedings of the

ACL-02 conference on Empirical methods in natural language processing-

Volume 10, pages 1–8. Association for Computational Linguistics, 2002.

352 BIBLIOGRAPHY

Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. An alternative ranking

problem for search engines. In Experimental Algorithms, pages 1–22. Springer,

2007.

Richard F Cromer. Developmental language disorders: Cognitive processes,

semantics, pragmatics, phonology, and syntax. Journal of Autism and Devel-

opmental Disorders, 11(1):57–74, 1981.

Hal Daumé III. Frustratingly easy domain adaptation. In Proceedings of the

45th Annual Meeting of the Association of Computational Linguistics, pages

256–263, Prague, Czech Republic, June 2007. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/P07-1033.

Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed

dependencies manual. Technical report, Technical report, Stanford University,

2008.

Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al.

Generating typed dependency parses from phrase structure parses. In Pro-

ceedings of LREC, volume 6, pages 449–454, 2006.

Neeraj Deshmukh, Aravind Ganapathiraju, Andi Gleeson, Jonathan Hamaker,

and Joseph Picone. Resegmentation of switchboard. In ICSLP. Syndey, 1998.

Patricia Ann Eadie, ME Fey, JM Douglas, and CL Parsons. Profiles of gram-

matical morphology and sentence imitation in children with specific language

impairment and down syndrome. Journal of Speech, Language, and Hearing

Research, 45(4):720–732, 2002.

Jay Earley. An efficient context-free parsing algorithm, 1970.

Sigmund Eldevik, Svein Eikeseth, Erik Jahr, and Tristram Smith. Effects of low-

http://www.aclweb.org/anthology/P07-1033

BIBLIOGRAPHY 353

intensity behavioral treatment for children with autism and mental retardation.

Journal of Autism and Developmental Disorders, 36(2):211–224, 2006.

Janice Ellsworth and Akiko Fuse. CELF-4: Potential for Bias Against Speakers

of African American English. Presented as the 2008 convention of American

Speech-Language-Hearing Association, Chicago, IL, 2008.

Paul E Engelhardt, Fernanda Ferreira, and Joel T Nigg. Language production

strategies and disfluencies in multi-clause network descriptions: a study of

adult attention-deficit/hyperactivity disorder. Neuropsychology, 25(4):442,

2011.

Paul E Engelhardt, Joel T Nigg, and Fernanda Ferreira. Is the fluency of language

outputs related to individual differences in intelligence and executive function?

Acta psychologica, 144(2):424–432, 2013.

Anton J Enright, Stijn Van Dongen, and Christos A Ouzounis. An efficient

algorithm for large-scale detection of protein families. Nucleic acids research,

30(7):1575–1584, 2002.

Günes Erkan and Dragomir R Radev. LexRank: Graph-based lexical centrality

as salience in text summarization. Journal of Artificial Intelligence Research,

pages 457–479, 2004.

Julia L Evans and Holly K Craig. Language sample collection and analysisinter-

view compared to freeplay assessment contexts. Journal of Speech, Language,

and Hearing Research, 35(2):343–353, 1992.

Shimon Even. Graph algorithms. Cambridge University Press, 2011.

James Ferguson, Greg Durrett, and Dan Klein. Disfluency detection with a

semi-markov model and prosodic features. In Proceedings of NAACL, Denver,

Colorado, USA, June 2015.

354 BIBLIOGRAPHY

Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-

walk computation of similarities between nodes of a graph with application

to collaborative recommendation. Knowledge and data engineering, ieee

transactions on, 19(3):355–369, 2007.

Yoav Freund and Robert E Schapire. Large margin classification using the

perceptron algorithm. Machine learning, 37(3):277–296, 1999.

Michael Gamon, Claudia Leacock, Chris Brockett, William B Dolan, Jianfeng

Gao, Dmitriy Belenko, and Alexandre Klementiev. Using statistical techniques

and web search to correct ESL errors. Calico Journal, 26(3):491–511, 2013.

William J Gavin and Lisa Giles. Sample size effects on temporal reliability of

language sample measures of preschool children. Journal of Speech, Language,

and Hearing Research, 39(6):1258–1262, 1996.

Kallirroi Georgila. Using integer linear programming for detecting speech disfluen-

cies. In Proceedings of Human Language Technologies: The 2009 Annual Con-

ference of the North American Chapter of the Association for Computational

Linguistics, Companion Volume: Short Papers, pages 109–112. Association for

Computational Linguistics, 2009.

Ronald Bradley Gillam and Nils A Pearson. Test of narrative language: Exam-

iner’s manual, 2004.

Gail T Gillon. The efficacy of phonological awareness intervention for children

with spoken language impairment. Language, Speech, and Hearing Services in

Schools, 31(2):126–141, 2000.

Gail T Gillon. Follow-up study investigating the benefits of phonological aware-

ness intervention for children with spoken language impairment. International

Journal of Language & Communication Disorders, 37(4):381–400, 2002.

BIBLIOGRAPHY 355

John J Godfrey, Edward C Holliman, and Jane McDaniel. Switchboard: Tele-

phone speech corpus for research and development. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, volume 1, pages

517–520, 1992.

Yoav Goldberg and Joakim Nivre. Training deterministic parsers with non-

deterministic oracles. Transactions of the Association for Computational

Linguistics, 1:403–414, 2013. ISSN 2307-387X. URL https://tacl2013.cs.

columbia.edu/ojs/index.php/tacl/article/view/145.

Andrew Golding. A bayesian hybrid method for context-sensitive spelling

correction. In Proceedings of the Third Workshop on Very Large Corpora.

Association for Computational Linguistics, 1995. URL http://www.aclweb.

org/anthology/D14-1001.

Sieneke M Goorhuis-Brouwer and Barbara J Wijnberg-Williams. Specificity of

specific language impairment. Folia Phoniatrica et Logopaedica, 48(6):269–274,

1996.

Kyle Gorman. ldamatch: Multivariate Condition Matching by Backwards

Elimination Using Linear Discriminant Analysis, 2015. URL http://CRAN.

R-project.org/package=ldamatch. R package version 0.6.3.

Kyle Gorman, Steven Bedrick, Geza Kiss, Eric Morley, Rosemary Ingham,

Metrah Mohammed, Katina Papadakis, and Jan van Santen. Automated

morphological analysis of clinical language samples. pages 108–116, June 5

2015. URL http://www.aclweb.org/anthology/W15-1213.

Katherine Gotham, Susan Risi, Andrew Pickles, and Catherine Lord. The autism

diagnostic observation schedule: revised algorithms for improved diagnostic

validity. Journal of autism and developmental disorders, 37(4):613–627, 2007.

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145
http://www.aclweb.org/anthology/D14-1001
http://www.aclweb.org/anthology/D14-1001
http://CRAN.R-project.org/package=ldamatch
http://CRAN.R-project.org/package=ldamatch
http://www.aclweb.org/anthology/W15-1213

356 BIBLIOGRAPHY

Bernard G Grela and Laurence B Leonard. The influence of argument-structure

complexity on the use of auxiliary verbs by children with sli. Journal of Speech,

Language, and Hearing Research, 43(5):1115–1125, 2000.

Ulrike Grömping et al. Relative importance for linear regression in r: the package

relaimpo. Journal of statistical software, 17(1):1–27, 2006.

Ling-yu Guo, J Bruce Tomblin, and Vicki Samelson. Speech disruptions in

the narratives of english-speaking children with specific language impairment.

Journal of Speech, Language, and Hearing Research, 51(3):722–738, 2008.

Louis Guttman. A basis for analyzing test-retest reliability. Psychometrika, 10

(4):255–282, 1945.

Pamela A Hadley. Language sampling protocols for eliciting text-level discourse.

Language, Speech, and Hearing Services in Schools, 29(3):132–147, 1998.

Khairun-nisa Hassanali and Yang Liu. Measuring language development in early

childhood education: a case study of grammar checking in child language

transcripts. In Proceedings of the 6th Workshop on Innovative Use of NLP for

Building Educational Applications, pages 87–95, 2011.

Peter A Heeman and James F Allen. The TRAINS spoken dialog corpus.

Linguistics Data Consortium, 1995.

George E. Heidorn, Karen Jensen, Lance A. Miller, Roy J. Byrd, and Martin S

Chodorow. The EPISTLE text-critiquing system. IBM Systems Journal, 21

(3):305–326, 1982.

John Heilmann, Jon F Miller, Aquiles Iglesias, Leah Fabiano-Smith, Ann Nock-

erts, and Karen Digney Andriacchi. Narrative transcription accuracy and

reliability in two languages. Topics in Language Disorders, 28(2):178–188,

2008.

BIBLIOGRAPHY 357

Antje Helfrich and Bradley Music. Design and evaluation of grammar checkers

in multiple languages. In COLING 2000 Volume 2: The 18th International

Conference on Computational Linguistics, 2000. URL http://aclweb.org/

anthology/C00-2153.

Charles T Hemphill, John J Godfrey, and George R Doddington. The atis

spoken language systems pilot corpus. In Proceedings of the DARPA speech

and natural language workshop, pages 96–101, 1990.

Alison Presmanes Hill, Jan van Santen, Kyle Gorman, Beth Hoover Langhorst,

and Eric Fombonne. Memory in language-impaired children with and without

autism. Journal of neurodevelopmental disorders, 7(1):19, 2015.

Matthew Honnibal and Mark Johnson. Joint incremental disfluency detection

and dependency parsing. TACL, 2:131–142, 2014.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson. A non-monotonic

arc-eager transition system for dependency parsing. In Proceedings of the

Seventeenth Conference on Computational Natural Language Learning, pages

163–172, Sofia, Bulgaria, August 2013. Association for Computational Linguis-

tics. URL http://www.aclweb.org/anthology/W13-3518.

Richard A Hudson. English word grammar, volume 108. Basil Blackwell Oxford,

1990.

Karen Jensen, George E. Heidorn, Lance A. Miller, and Yael Ravin. Parse fitting

and prose fixing: getting a hold on ill-formedness. Computational Linguistics,

9(3-4):147–160, 1983.

Zhongye Jia, Peilu Wang, and Hai Zhao. Grammatical error correction as

multiclass classification with single model. In Proceedings of the Seventeenth

Conference on Computational Natural Language Learning: Shared Task, pages

http://aclweb.org/anthology/C00-2153
http://aclweb.org/anthology/C00-2153
http://www.aclweb.org/anthology/W13-3518

358 BIBLIOGRAPHY

74–81, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/W13-3610.

Mark Johnson and Eugene Charniak. A TAG-based noisy-channel model of

speech repairs. In Donia Scott, Walter Daelemans, and Marilyn A. Walker,

editors, ACL, pages 33–39, Barcelona, Spain, July 2004. The Association for

Computational Linguistics.

Martin Kay. Guides and oracles for linear-time parsing. In Proceedings of the 6th

International Workshop on Parsing Technologies (IWPT), pages 6–9, 2000.

Susan Kemper, Donna Kynette, and Suzanne Norman. Age differences in spoken

language. In Everyday memory and aging, pages 138–152. Springer, 1992.

Margaret M Kjelgaard and Helen Tager-Flusberg. An investigation of language

impairment in autism: Implications for genetic subgroups. Language and

cognitive processes, 16(2-3):287–308, 2001.

Ami Klin, Jason Lang, Domenic V Cicchetti, and Fred R Volkmar. Brief

report: Interrater reliability of clinical diagnosis and dsm-iv criteria for autistic

disorder: Results of the dsm-iv autism field trial. Journal of autism and

developmental disorders, 30(2):163–167, 2000.

Cyndie Koning and Joyce Magill-Evans. Social and language skills in adolescent

boys with asperger syndrome. Autism, 5(1):23–36, 2001.

Jacqueline C Kowtko and Patti J Price. Data collection and analysis in the air

travel planning domain. In Proceedings of the workshop on Speech and Natural

Language, pages 119–125. Association for Computational Linguistics, 1989.

William Kruskal. Relative importance by averaging over orderings. The American

Statistician, 41(1):6–10, 1987.

http://www.aclweb.org/anthology/W13-3610

BIBLIOGRAPHY 359

Taku Kudo. CRF++: Yet another CRF toolkit. http://taku910.github.io/

crfpp/, 2005.

Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault. Auto-

mated grammatical error detection for language learners. 2014.

Matthew Lease, Mark Johnson, and Eugene Charniak. Recognizing disfluencies

in conversational speech. Audio, Speech, and Language Processing, IEEE

Transactions on, 14(5):1566–1573, 2006.

John Lee and Stephanie Seneff. Automatic grammar correction for second-

language learners. In INTERSPEECH, Pittsburgh, Pennsylvania, USA,

September 2006. ISCA.

John Lee and Stephanie Seneff. Correcting misuse of verb forms. In Proceedings

of ACL-08: HLT, pages 174–182, Columbus, Ohio, June 2008. Association

for Computational Linguistics. URL http://www.aclweb.org/anthology/

P/P08/P08-1021.

Li-Ching Lee, Angeline B David, Julie Rusyniak, Rebecca Landa, and Craig J

Newschaffer. Performance of the social communication questionnaire in children

receiving preschool special education services. Research in Autism Spectrum

Disorders, 1(2):126–138, 2007.

Laurence B Leonard. Language, Speech, and Communication : Children with

Specific Language Impairment (2nd Edition). A Bradford Book, Cambridge,

MA, USA, 2014.

Laurence B Leonard, Julia A Eyer, Lisa M Bedore, and Bernard G Grela. Three

accounts of the grammatical morpheme difficulties of english-speaking children

with specific language impairment. Journal of Speech, Language, and Hearing

Research, 40(4):741–753, 1997.

http://taku910.github.io/crfpp/
http://taku910.github.io/crfpp/
http://www.aclweb.org/anthology/P/P08/P08-1021
http://www.aclweb.org/anthology/P/P08/P08-1021

360 BIBLIOGRAPHY

Willem JM Levelt. Speaking: From intention to articulation, volume 1. MIT

press, Cambridge, MA, 1993.

Ovsanna T Leyfer, Helen Tager-Flusberg, Michael Dowd, J Bruce Tomblin, and

Susan E Folstein. Overlap between autism and specific language impairment:

Comparison of autism diagnostic interview and autism diagnostic observation

schedule scores. Autism Research, 1(5):284–296, 2008.

Fei Liu, Fuliang Weng, Bingqing Wang, and Yang Liu. Insertion, deletion,

or substitution? normalizing text messages without pre-categorization nor

supervision. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies, pages 71–76,

Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/P11-2013.

Fei Liu, Fuliang Weng, and Xiao Jiang. A broad-coverage normalization system

for social media language. In Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages

1035–1044, Jeju Island, Korea, July 2012a. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/P12-1109.

Xiaohua Liu, Ming Zhou, Xiangyang Zhou, Zhongyang Fu, and Furu Wei.

Joint inference of named entity recognition and normalization for tweets. In

Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 526–535, Jeju Island, Korea, July

2012b. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/P12-1055.

Walter Loban. Stages, velocity, and prediction of language development kinder-

garten through grade twelve. Final Report, Project, (7-0061), 1970.

http://www.aclweb.org/anthology/P11-2013
http://www.aclweb.org/anthology/P12-1109
http://www.aclweb.org/anthology/P12-1055
http://www.aclweb.org/anthology/P12-1055

BIBLIOGRAPHY 361

Walter Loban. Language development: Kindergarten through grade twelve,

volume 18. National Council of Teachers of English Urbana, IL, 1976.

Catherine Lord. Autism and the comprehension of language. In Communication

problems in autism, pages 257–281. Springer, 1985.

Catherine Lord, Susan Risi, Linda Lambrecht, Edwin H Cook Jr, Bennett L

Leventhal, Pamela C DiLavore, Andrew Pickles, and Michael Rutter. The

autism diagnostic observation scheduleâĂŤgeneric: A standard measure of

social and communication deficits associated with the spectrum of autism.

Journal of autism and developmental disorders, 30(3):205–223, 2000.

Catherine Lord, Michael Rutter, PC DiLavore, and Susan Risi. Autism diagnostic

observation schedule: ADOS. Western Psychological Services, 2002.

O Ivar Lovaas and Tristram Smith. Early and intensive behavioral intervention

in autism. 2003.

Barbara G MacLachlan and Robin S Chapman. Communication breakdowns in

normal and language learning-disabled children’s conversation and narration.

Journal of Speech and Hearing Disorders, 53(1):2, 1988.

Brian MacWhinney. The childes project: Tools for analyzing talk. Child Language

Teaching and Therapy, 8(2):217–218, 1992.

Brian MacWhinney. The CHILDES project tools for analyzing talk âĂŞ electronic

edition part 1: The CHATtranscription format. Technical report, Carnegie

Mellon University, Pittsburgh, PA, September 2015. URL http://childes.

psy.cmu.edu/manuals/CHAT.pdf.

Brian MacWhinney and Catherine Snow. The child language data exchange

system: An update. Journal of child language, 17(02):457–472, 1990.

http://childes.psy.cmu.edu/manuals/CHAT.pdf
http://childes.psy.cmu.edu/manuals/CHAT.pdf

362 BIBLIOGRAPHY

Andrew McCallum and Wei Li. Early results for named entity recognition

with conditional random fields, feature induction and web-enhanced lexicons.

In Proceedings of the seventh conference on Natural language learning at

HLT-NAACL 2003-Volume 4, pages 188–191. Association for Computational

Linguistics, 2003.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective

dependency parsing using spanning tree algorithms. In Proceedings of the

conference on Human Language Technology and Empirical Methods in Natural

Language Processing, pages 523–530. Association for Computational Linguis-

tics, 2005.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies

for the structured perceptron. In Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 456–464. Association for Computational

Linguistics, 2010. URL http://aclweb.org/anthology/N10-1069.

Marie W Meteer, Ann A Taylor, Robert MacIntyre, and Rukmini Iyer. Dysfluency

annotation stylebook for the switchboard corpus. University of Pennsylvania,

1995.

Microsoft. Select grammar and writing style options, 2015.

URL https://support.office.microsoft.com/en-us/article/

Select-grammar-and-writing-style-options-86dd1e89-cfb5-4405-94df-48c284af9dbd?

CorrelationId=5a7bbad2-6037-4ae1-84c2-2f56d5ff1957&ui=en-US&rs=

en-US&ad=US.

Rada Mihalcea. Unsupervised large-vocabulary word sense disambiguation

with graph-based algorithms for sequence data labeling. In Proceedings of

the conference on Human Language Technology and Empirical Methods in

http://aclweb.org/anthology/N10-1069
https://support.office.microsoft.com/en-us/article/Select-grammar-and-writing-style-options-86dd1e89-cfb5-4405-94df-48c284af9dbd?CorrelationId=5a7bbad2-6037-4ae1-84c2-2f56d5ff1957&ui=en-US&rs=en-US&ad=US
https://support.office.microsoft.com/en-us/article/Select-grammar-and-writing-style-options-86dd1e89-cfb5-4405-94df-48c284af9dbd?CorrelationId=5a7bbad2-6037-4ae1-84c2-2f56d5ff1957&ui=en-US&rs=en-US&ad=US
https://support.office.microsoft.com/en-us/article/Select-grammar-and-writing-style-options-86dd1e89-cfb5-4405-94df-48c284af9dbd?CorrelationId=5a7bbad2-6037-4ae1-84c2-2f56d5ff1957&ui=en-US&rs=en-US&ad=US
https://support.office.microsoft.com/en-us/article/Select-grammar-and-writing-style-options-86dd1e89-cfb5-4405-94df-48c284af9dbd?CorrelationId=5a7bbad2-6037-4ae1-84c2-2f56d5ff1957&ui=en-US&rs=en-US&ad=US

BIBLIOGRAPHY 363

Natural Language Processing, pages 411–418. Association for Computational

Linguistics, 2005.

Jon Miller and Robin Chapman. Systematic analysis of language transcripts.

Madison, WI: Language Analysis Laboratory, 1985.

Jon F Miller, Karen Andriacchi, and Ann Nockerts. Assessing language produc-

tion using SALT software: A clinician’s guide to language sample analysis.

SALT Software, LLC, 2011.

Tim Miller. Improved syntactic models for parsing speech with repairs. In

Proceedings of Human Language Technologies: The 2009 Annual Conference of

the North American Chapter of the Association for Computational Linguistics,

pages 656–664. Association for Computational Linguistics, 2009.

Tim Miller, Luan Nguyen, and William Schuler. Parsing speech repair without

specialized grammar symbols. In Proceedings of the ACL-IJCNLP 2009 Confer-

ence Short Papers, pages 277–280. Association for Computational Linguistics,

2009.

Eric Morley, Brian Roark, and Jan van Santen. The utility of manual and

automatic linguistic error codes for identifying neurodevelopmental disorders.

In Proceedings of the Eighth Workshop on Innovative Use of NLP for Building

Educational Applications, pages 1–10, Atlanta, Georgia, June 2013. Association

for Computational Linguistics. URL http://www.aclweb.org/anthology/

W13-1701.

Eric Morley, Anna Eva Hallin, and Brian Roark. Challenges in automating

maze detection. In Proceedings of the Workshop on Computational Linguistics

and Clinical Psychology: From Linguistic Signal to Clinical Reality, pages

69–77, Baltimore, Maryland, USA, June 2014. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W14-3209.

http://www.aclweb.org/anthology/W13-1701
http://www.aclweb.org/anthology/W13-1701
http://www.aclweb.org/anthology/W14-3209

364 BIBLIOGRAPHY

Linda Mortensen, Antje S Meyer, and Glyn W Humphreys. Age-related effects

on speech production: A review. Language and Cognitive Processes, 21(1-3):

238–290, 2006.

Christian Müller, Barbara Großmann-Hutter, Anthony Jameson, Ralf Rum-

mer, and Frank Wittig. Recognizing time pressure and cognitive load

on the basis of speech: An experimental study. In Proceedings of the

8th International Conference on User Modeling 2001, UM ’01, pages 24–

33, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42325-7. URL

http://dl.acm.org/citation.cfm?id=647664.733413.

Christine H. Nakatani and Julia Hirschberg. A speech-first model for repair

detection and correction. In Lenhart K. Schubert, editor, ACL, pages 46–

53, Columbus, Ohio, USA, June 1993. The Association for Computational

Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel

Tetreault. The conll-2013 shared task on grammatical error correction. In

Proceedings of the Seventeenth Conference on Computational Natural Language

Learning: Shared Task, pages 1–12, Sofia, Bulgaria, August 2013. Association

for Computational Linguistics. URL http://www.aclweb.org/anthology/

W13-3601.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy

Susanto, and Christopher Bryant. The CoNLL-2014 shared task on grammati-

cal error correction. In Proceedings of the Eighteenth Conference on Computa-

tional Natural Language Learning: Shared Task (CoNLL-2014 Shared Task),

pages 1–14, Baltimore, Maryland, June 2014. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W/W14/W14-1701.

Marilyn A Nippold, Tracy C Mansfield, Jesse L Billow, and J Bruce Tomblin.

http://dl.acm.org/citation.cfm?id=647664.733413
http://www.aclweb.org/anthology/W13-3601
http://www.aclweb.org/anthology/W13-3601
http://www.aclweb.org/anthology/W/W14/W14-1701

BIBLIOGRAPHY 365

Expository discourse in adolescents with language impairments: Examining

syntactic development. American Journal of Speech-Language Pathology, 17

(4):356–366, 2008.

Joakim Nivre. An efficient algorithm for projective dependency parsing. In

Proceedings of the 8th International Workshop on Parsing Technologies (IWPT.

Citeseer, 2003.

Joakim Nivre. Inductive dependency parsing. Springer, 2006.

Joakim Nivre. Algorithms for deterministic incremental dependency parsing.

Computational Linguistics, 2008.

Joakim Nivre. Non-projective dependency parsing in expected linear time. In

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL

and the 4th International Joint Conference on Natural Language Processing of

the AFNLP: Volume 1 - Volume 1, ACL ’09, pages 351–359, Stroudsburg, PA,

USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-

45-9. URL http://dl.acm.org/citation.cfm?id=1687878.1687929.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. An improved oracle for

dependency parsing with online reordering. In Proceedings of the 11th In-

ternational Conference on Parsing Technologies, IWPT ’09, pages 73–76,

Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. URL

http://dl.acm.org/citation.cfm?id=1697236.1697250.

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathe-

matics of computation, 35(151):773–782, 1980.

Eric W Noreen. Computer intensive methods for testing hypotheses. an intro-

duction. 1989. John Wiley & Sons, 2(5):33, 1989.

http://dl.acm.org/citation.cfm?id=1687878.1687929
http://dl.acm.org/citation.cfm?id=1697236.1697250

366 BIBLIOGRAPHY

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: bringing order to the web. 1999.

Jack L Paradise, Thomas F Campbell, Christine A Dollaghan, Heidi M Feldman,

Beverly S Bernard, D Kathleen Colborn, Howard E Rockette, Janine E Janosky,

Dayna L Pitcairn, Marcia Kurs-Lasky, et al. Developmental outcomes after

early or delayed insertion of tympanostomy tubes. New England Journal of

Medicine, 353(6):576–586, 2005.

Pearson Education, Inc. Clinical evaluation of language fundamentals fourth edi-

tion, 2008. URL http://images.pearsonassessments.com/images/tmrs/

tmrs_rg/CELF_4_Tech_Report.pdf.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-

peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-

learn: Machine learning in python. CoRR, abs/1201.0490, 2012.

Carole Peterson and Allyssa McCabe. Developmental psycholinguistics. Springer

Science & Business Media, 1983.

Albert Postma and Herman Kolk. The covert repair hypothesis: Prearticulatory

repair processes in normal and stuttered disfluencies. Journal of Speech and

Hearing Research, 36(3):472, 1993.

Emily T. Prud’hommeaux, Brian Roark, Lois M. Black, and Jan van Santen.

Classification of atypical language in autism. In Proceedings of the 2Nd

Workshop on Cognitive Modeling and Computational Linguistics, CMCL ’11,

pages 88–96, Stroudsburg, PA, USA, 2011. Association for Computational

Linguistics. ISBN 978-1-932432-95-4. URL http://dl.acm.org/citation.

cfm?id=2021096.2021106.

http://images.pearsonassessments.com/images/tmrs/tmrs_rg/CELF_4_Tech_Report.pdf
http://images.pearsonassessments.com/images/tmrs/tmrs_rg/CELF_4_Tech_Report.pdf
http://dl.acm.org/citation.cfm?id=2021096.2021106
http://dl.acm.org/citation.cfm?id=2021096.2021106

BIBLIOGRAPHY 367

Xian Qian and Yang Liu. Disfluency detection using multi-step stacked learning.

In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff, editors, HLT-

NAACL, pages 820–825, Atlanta, Georgia, USA, June 2013. The Association

for Computational Linguistics.

Scott B Ransom, Maulik Joshi, and David B Nash. The healthcare quality book:

vision, strategy, and tools. Health Administration Press, 2005.

Mohammad Sadegh Rasooli and Joel R. Tetreault. Joint parsing and disfluency

detection in linear time. In EMNLP, pages 124–129, Seattle, Washington,

USA, October 2013. The Association for Computational Linguistics. ISBN

978-1-937284-97-8.

Mohammad Sadegh Rasooli and Joel R. Tetreault. Non-monotonic parsing

of fluent umm i mean disfluent sentences. In Gosse Bouma and Yannick

Parmentier, editors, EACL, pages 48–53, Gothenburg, Sweden, April 2014.

The Association for Computational Linguistics. ISBN 978-1-937284-78-7.

Christina Reuterskiöld Wagner, Ulrika Nettelbladt, Birgitta Sahlén, and Claes

Nilholm. Conversation versus narration in pre-school children with language

impairment. International Journal of Language & Communication Disorders,

35(1):83–93, 2000.

Mabel L Rice, Filip Smolik, Denise Perpich, Travis Thompson, Nathan Rytting,

and Megan Blossom. Mean length of utterance levels in 6-month intervals

for children 3 to 9 years with and without language impairments. Journal of

Speech, Language, and Hearing Research, 53(2):333–349, 2010.

Matthew Rispoli, Pamela Hadley, and Janet Holt. Stalls and revisions: A devel-

opmental perspective on sentence production. Journal of Speech, Language,

and Hearing Research, 51(4):953–966, 2008.

368 BIBLIOGRAPHY

Brian Roark and Richard Sproat. Hippocratic abbreviation expansion. In

Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 364–369, Baltimore, Maryland,

June 2014. Association for Computational Linguistics. URL http://www.

aclweb.org/anthology/P14-2060.

Brian Roark and Richard William Sproat. Computational approaches to mor-

phology and syntax. Oxford University Press Oxford, 2007.

Jenny A Roberts, Mabel L Rice, and Helen Tager-Flusberg. Tense marking in

children with autism. Applied Psycholinguistics, 25(03):429–448, 2004.

Sally J Rogers. Empirically supported comprehensive treatments for young

children with autism. Journal of clinical child psychology, 27(2):168–179, 1998.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, and Dan Roth. The university

of illinois system in the conll-2013 shared task. In Proceedings of the Seventeenth

Conference on Computational Natural Language Learning: Shared Task, pages

13–19, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/W13-3602.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan Roth, and Nizar Habash.

The Illinois-Columbia system in the CoNLL-2014 shared task. In Proceedings

of the Eighteenth Conference on Computational Natural Language Learning:

Shared Task, pages 34–42, Baltimore, Maryland, June 2014. Association

for Computational Linguistics. URL http://www.aclweb.org/anthology/

W14-1704.

http://www.aclweb.org/anthology/P14-2060
http://www.aclweb.org/anthology/P14-2060
http://www.aclweb.org/anthology/W13-3602
http://www.aclweb.org/anthology/W14-1704
http://www.aclweb.org/anthology/W14-1704

BIBLIOGRAPHY 369

Michael Rutter, Anthony Bailey, and Cathrine Lord. The Social Communication

Questionnaire: Manual. Western Psychological Services, 2003.

LLC SALT Software. Course 1306: Transcription - Conventions Part 3. http://

saltclasses.saltsoftware.com/course/view.php?id=11, 2014a. [Online;

accessed 29-December-2014].

LLC SALT Software. Course 1304: Transcription - Conventions Part 1. http://

saltclasses.saltsoftware.com/course/view.php?id=9, 2014b. [Online;

accessed 29-December-2014].

LLC SALT Software. Conversation Reference Database. http://saltsoftware.

com/media/wysiwyg/reference_database/ConRDBDoc.pdf, 2014c. [Online;

accessed 12-December-2014].

LLC SALT Software. SALT software. http://saltclasses.saltsoftware.

com/, 2014d. [Online; accessed 4-August-2015].

Hollis Scarborough, Janet Wyckoff, and Robin Davidson. A reconsideration

of the relation between age and mean utterance length. Journal of Speech,

Language, and Hearing Research, 29(3):394–399, 1986.

Phyliss Schneider, Rita Vis Dubé, and Denyse Hayward. The Ed-

monton Narrative Norms Instrument: Description of the Norma-

tive Study. http://www.rehabresearch.ualberta.ca/enni/manual/

description-of-the-normative-study, 2014. [Online; accessed 1-

December-2014].

Phyllis Schneider, Denyse Hayward, and Rita Vis Dubé. Storytelling from

pictures using the edmonton narrative norms instrument. Journal of Speech

Language Pathology and Audiology, 30(4):224, 2006.

http://saltclasses.saltsoftware.com/course/view.php?id=11
http://saltclasses.saltsoftware.com/course/view.php?id=11
http://saltclasses.saltsoftware.com/course/view.php?id=9
http://saltclasses.saltsoftware.com/course/view.php?id=9
http://saltsoftware.com/media/wysiwyg/reference_database/ConRDBDoc.pdf
http://saltsoftware.com/media/wysiwyg/reference_database/ConRDBDoc.pdf
http://saltclasses.saltsoftware.com/
http://saltclasses.saltsoftware.com/
http://www.rehabresearch.ualberta.ca/enni/manual/description-of-the-normative-study
http://www.rehabresearch.ualberta.ca/enni/manual/description-of-the-normative-study

370 BIBLIOGRAPHY

Cheryl M Scott and Jennifer Windsor. General language performance measures

in spoken and written narrative and expository discourse of school-age children

with language learning disabilities. Journal of Speech, Language & Hearing

Research, 43(2), 2000.

Eleanor Messing Semel, Elisabeth Hemmersam Wiig, and Wayne Secord. Clinical

evaluation of language fundamentals. The Psychological Corporation, San

Antonio, TX, fourth edition, 2003.

Eleanor Messing Semel, Elisabeth Hemmersam Wiig, and Wayne Secord. Clinical

evaluation of language fundamentals Preschool. The Psychological Corporation,

San Antonio, TX, second edition, 2004.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields.

In Proceedings of the 2003 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language Technology-

Volume 1, pages 134–141. Association for Computational Linguistics, 2003.

Mark D Shermis and Jill Burstein. Handbook of automated essay evaluation:

Current applications and new directions. Routledge, 2013.

Elizabeth Ellen Shriberg. Preliminaries to a theory of speech disfluencies. PhD

thesis, University of California, Berkeley, 1994.

Lawrence D Shriberg, Rhea Paul, Jane L McSweeny, Ami Klin, Donald J Cohen,

and Fred R Volkmar. Speech and prosody characteristics of adolescents and

adults with high-functioning autism and asperger syndrome. Journal of Speech,

Language, and Hearing Research, 44(5):1097–1115, 2001.

Daniel D. Sleator and Davy Temperley. Parsing english with a link grammar,

1991.

BIBLIOGRAPHY 371

Robert L Spitzer and Bryna Siegel. The dsm-iii-r field trial of pervasive develop-

mental disorders. Journal of the American Academy of Child & Adolescent

Psychiatry, 29(6):855–862, 1990.

Drahomíra “johanka” Spoustová, Jan Hajič, Jan Raab, and Miroslav Spousta.

Semi-supervised training for the averaged perceptron POS tagger. In Proceed-

ings of the 12th Conference of the European Chapter of the ACL (EACL 2009),

pages 763–771, Athens, Greece, March 2009. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/E09-1087.

Richard Sproat, Alan W Black, Stanley Chen, Shankar Kumar, Mari Ostendorf,

and Christopher Richards. Normalization of non-standard words. Computer

Speech & Language, 15(3):287–333, 2001.

Charles Sutton and Andrew McCallum. An introduction to conditional random

fields for relational learning. Introduction to statistical relational learning,

pages 93–128, 2006.

E Swan. Ko au na galo (ana gets lost). Wellington, NZ: Learning Media, Ministry

of Education, 1992.

Helen Tager-Flusberg. On the nature of linguistic functioning in early infantile

autism. Journal of Autism and Developmental Disorders, 11(1):45–56, 1981.

Helen Tager-Flusberg. Psycholinguistic approaches to language and communica-

tion in autism. In Communication problems in autism, pages 69–87. Springer,

1985.

Helen Tager-Flusberg, Rhea Paul, Catherine Lord, et al. Language and commu-

nication in autism. Handbook of autism and pervasive developmental disorders,

1:335–364, 2005.

http://www.aclweb.org/anthology/E09-1087

372 BIBLIOGRAPHY

Helen Tager-Flusberg, Sally Rogers, Judith Cooper, Rebecca Landa, Catherine

Lord, Rhea Paul, Mabel Rice, Carol Stoel-Gammon, Amy Wetherby, and

Paul Yoder. Defining spoken language benchmarks and selecting measures

of expressive language development for young children with autism spectrum

disorders. Journal of Speech, Language and Hearing Research, 52(3):643, 2009.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Maximum-margin markov

networks. In Neural Information Processing Systems (NIPS), 2003.

Lucien Tesnière. Eléments de syntaxe structurale. Librairie C. Klincksieck, 1959.

Elin T Thordardottir and Susan Ellis Weismer. Content mazes and filled pauses

in narrative language samples of children with specific language impairment.

Brain and cognition, 48(2-3):587–592, 2001.

J Bruce Tomblin, Nancy L Records, Paula Buckwalter, Xuyang Zhang, Elaine

Smith, and Marlea O’Brien. Prevalence of specific language impairment in

kindergarten children. Journal of Speech, Language, and Hearing Research, 40

(6):1245–1260, 1997.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer.

Feature-rich part-of-speech tagging with a cyclic dependency network. In

Proceedings of the 2003 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language Technology,

volume 1, pages 173–180. Association for Computational Linguistics, 2003.

Antal van den Bosch and Peter Berck. Memory-based grammatical er-

ror correction. In Proceedings of the Seventeenth Conference on Compu-

tational Natural Language Learning: Shared Task, pages 102–108, Sofia,

Bulgaria, August 2013. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/W13-3614.

http://www.aclweb.org/anthology/W13-3614

BIBLIOGRAPHY 373

Joanne Volden and Catherine Lord. Neologisms and idiosyncratic language

in autistic speakers. Journal of autism and developmental disorders, 21(2):

109–130, 1991.

Wolfgang Wahlster. Verbmobil: foundations of speech-to-speech translation.

Springer Science & Business Media, 2000.

David Wechsler. The wechsler primary and preschool scale of intelligenceâĂŤ,

2002.

David Wechsler. Wechsler Intelligence Scale for Children: WISC-IV. Psycholog-

ical Corporation, 2003.

Danielle Wetherell, Nicola Botting, and Gina Conti-Ramsden. Narrative in

adolescent specific language impairment (sli): A comparison with peers across

two different narrative genres. International Journal of Language & Commu-

nication Disorders, 42(5):583–605, 2007.

B Wheatley, G Doddington, C Hemphill, J Godfrey, EC Holliman, J McDaniel,

and D Fisher. Switchboard: A userâĂŹs manual, 1995.

Alexander S. Yeh. More accurate tests for the statistical significance of result

differences. In COLING, pages 947–953, Saarbrücken, Germany, July 2000.

The Association for Computational Linguistics.

Daniel H Younger. Recognition and parsing of context-free languages in time n

3. Information and control, 10(2):189–208, 1967.

F Benjamin Zhan and Charles E Noon. Shortest path algorithms: an evaluation

using real road networks. Transportation Science, 32(1):65–73, 1998.

Yue Zhang and Stephen Clark. Syntactic processing using the generalized

perceptron and beam search. Computational Linguistics, 37(1):105–151, 2011.

374 BIBLIOGRAPHY

Yue Zhang and Joakim Nivre. Transition-based dependency parsing with rich

non-local features. In ACL (Short Papers) DBL (2011), pages 188–193. ISBN

978-1-932432-88-6.

Simon Zwarts and Mark Johnson. The impact of language models and loss

functions on repair disfluency detection. In ACL DBL (2011), pages 703–711.

ISBN 978-1-932432-88-6.

Arnold M Zwicky. Heads. Journal of linguistics, 21(01):1–29, 1985.

	Introduction
	Clinical Background
	Assessment of language
	SALT
	Elicitation
	Transcription
	Annotations
	Analysis and comparison

	Neurodevelopmental disorders
	Language disorder and specific language impairment
	Autism spectrum disorders

	Conclusions

	Data
	SALT Corpora
	Conv Corpus
	ENNI Corpus
	Expository Corpus
	GillamNT Corpus
	NarSSS Corpus
	NarSR Corpus
	NZConv Corpus
	NZPerNar Corpus
	NZSR Corpus

	CLSU ADOS Corpus
	ADOS
	Participants

	Preprocessing of SALT Annotated Corpora
	Desaltification
	Normalization
	Partitioning into sets

	Conclusions

	Technical Background
	Perceptron algorithm
	Example

	Graphs
	Supervised structured prediction: tagging
	Structured perceptron
	Linear chain conditional random fields
	Max margin Markov networks

	Parsing
	Constituency parsing
	Dependencies and dependency parsing
	Parsers

	Disfluencies and disfluency detection
	Switchboard disfluency annotations
	Automated disfluency detection

	Grammar checking
	Spoken language
	Trainability
	Tunability

	Evaluation
	Randomized paired-sample test

	Conclusions

	Maze Detection
	Background
	Annotation guidelines
	Utility of maze annotations
	Inter-annotator agreement

	Automating maze detection
	Input and output
	Evaluation

	Maze Detector
	Corpus-specific and generic models
	Baseline performance
	More general models
	Discussion

	Extrinsic evaluation
	Corpus-specific models
	Generic models
	Discussion

	Comparison of SALT corpora
	Tokens and types
	Maze counts and counts of words in mazes
	Frequency of N-Grams in Mazes

	Conclusions

	SALT Error Code Detection
	Introduction
	Scope of error detection

	Evaluation
	Metrics
	Confidence Scores
	Interpretation of evaluation
	Corpora
	Setting operating points by manipulating the proportion of errors in training data

	Baseline systems
	Microsoft Word
	ETS e-rater

	Classifier-based error detection
	Methods
	Results and conclusions

	Tagging-based error detection
	Methods
	Results and Conclusions

	Dependency-based error detection
	Methods
	Results
	Conclusions

	System combination: tagging- and dependency-based error detectors
	Methods
	Results and Conclusions

	Random Walk-Based Error Detection
	Methods
	Results
	Conclusions

	Error Analysis
	Other corpora

	Conclusions

	The clinical utility of SALT annotations
	Predicting scores on structured instruments
	Prediction
	Features
	Evaluation
	Predicting CCC-2 scores
	Predicting CELF-4 scores

	Using SALT to discriminate between diagnostic pairs
	Leave-pair-out prediction and evaluation
	Results

	Conclusions

	Conclusions
	Maze detection experiments
	Cross-corpus maze detection experiments
	Extrinsic evaluation of maze detection
	Baseline models
	FEDA All model
	Age model
	Conversational model
	Narrative model
	NZ model
	WI model

	Plots of features by age
	Baseline features
	Transcript features
	SALT-1 features

