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ABSTRACT

Three-Dimensional Modeling of Coastal Flows Using Unstructured Grids

Andre Bustorff Fortunato

Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: Antonio M. Baptista

Although three-dimensional (3D) modeling of coastal and estuarine flows is

becoming common, several limitations remain related to our ability both to describe and to

numerically simulate the correct physics. Two key limitations concern vertical resolution:

the lack of flexibility of current methods for vertical discretization prevents the optimal

use of computational resources, and guidelines for vertical nodal placement are not avail-

able.

The major contribution of this thesis is the development, analysis and test of an

approach that allows for an unprecedented flexibility in the vertical refinement of the

domain. This approach, which we refer to as localized sigma coordinates (LSC), is the first

to allow the number of nodes per vertical to vary horizontally, and can therefore be consid-

ered a natural extension to the use of unstructured grids in the horizontal.

To take advantage of the LSC, we perform the first systematic study for the vertical

discretization in barotropic tidal flow simulations. The resulting optimal grid can reduce

the errors relative to a uniform grid by over an order magnitude and compares favorably

with non-uniform grids previously proposed. A criterion to guide the horizontal distribu-

tion of the total number of nodes is proposed and discussed in the context of simple one-

and two-dimensional models, and is then extended to three dimensions. Accounting for

xv
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advection in three dimensions forces modifications to the criterion, but the overall concept

proved to be useful: using a variable number of nodes per vertical reduces the maximum

velocity errors by a factor of two.

As part of our analysis of the LSC, we investigate the evaluation of the horizontal

gradients in sigma-coordinate shallow water models. We show that horizontal gradients

should be computed in sigma rather than z-coordinates, and that the so-called "hydrostatic

inconsistency" typically associated with sigma coordinates does not correspond to a

numerical inconsistency. The large errors associated with the evaluation of horizontal gra-

dients can be by-passed through appropriate horizontal resolution, and a procedure to

define this resolution is proposed based on results from a truncation error analysis.

An application to the Tagus estuary demonstrates the enhanced accuracy provided

by the LSC, and provides new insights into the estuary's 3D barotropic circulation. Strong

residual currents (depth-averaged eulerian residual velocities of up to 0.5 mIs) are gener-

ated by advective accelerations and have a major impact on the mixing characteristics at

the mouth of the estuary. The asymmetry between ebbing and flooding promotes

exchanges between marine and estuarine waters, while the interaction between tidal and

residual flows leads to strong chaotic stirring.

The good performance of the LSC in a complex application establishes this

method as an attractive alternative to the traditional sigma- and z-coordinates.
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CHAPTER 1

Introduction

1.1 Modeling Physical Processes in Estuaries and Coasts

Estuaries and coastal seas are areas of great economic and ecological importance,

given their potential for transportation, wastewater disposal, fishing and recreation. Due to

industrial and wastewater discharges, pesticides and fertilizers, and atmospheric deposi-

tion of nitrate, the coastal environment has deteriorated rapidly for several decades, a

trend that is seldom (and only slowly) being curbed. Major consequences ofthis deteriora-

tion include loss of habitat, invasions by exotic species, poisoning of commercially impor-

tant species and eutrophication (LMER Coordinating Committee, 1992). Simultaneously,

overpopulation in developing countries and over-consumption in developed countries call

for an increasing exploitation of marine resources. The conflict between resources destruc-

tion and increasing needs can often be minimized by a science-based management of these

resources. Numerical models have played an increasing role in this management, as tools

that can integrate our knowledge of the physical, chemical and biological processes occur-

ring in these areas (e.g., Dejak et a!., 1990, Salomon and Pommepuy, 1990, Aikman et al.,

1995).

Hydrodynamic models are an essential component of most computational struc-

tures to support estuarine management. Indeed, the simulation of velocity fields is usually

a prerequisite for detailed water quality studies because estuaries and coastal seas are very

dynamic areas, where transport is a very important process. Moreover, the velocity field

influences the spatial and temporal distributions of salinity and temperature. In turn, both

1
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salinity and temperature can play a major role in both chemical and biological processes.

For instance, salinity determines the ionic strength and microbial rates of survival depend

on salinity and temperature.

Early models of estuarine dynamics were primarily driven by barotropic tides, typ-

ically the major forcing mechanism in these areas. Since the barotropic pressure gradient

is uniform in the water column, depth-averaged models were extensively used, and water

levels were simulated with some success. However, as demands for accuracy grew, more

complex processes had to be simulated (e.g., Blumberg et a1., 1993). Forcings such as

wind stress and baroclinic pressure act unevenly along the water column, and therefore

cannot be properly simulated with depth-averaged models. Density effects in particular

can be very important in coastal systems: horizontal density gradients generate internal

pressure forces and vertical gradients often damp turbulent mixing significantly. Also, the

output from hydrodynamic models is used to force transport models, and the transported

quantities are often not well mixed in the water column. For instance, sediments have

higher concentrations near the bottom, and sewage water can spread in layers due to buoy-

ancy effects. Finally, long term transport is mainly driven by residual transport. Since

these residuals are extremely sensitive to non-linear effects, internal friction and baro-

clinic pressure, fully 3D simulations are recommended for long-term water quality stud-

ies. In this context, it is not surprising that a review of recent literature on coastal and

estuarine modeling (e.g., Heaps, 1987, Nihoul and Jamart, 1987, Spaulding et a1., 1992,

1994, Stevenson, 1995) shows that three-dimensional model applications are progres-

sively replacing traditional depth-averaged simulations.

In spite of this evolution, recent reviews pointed out that three-dimensional models

were still "in their infancy" (Cheng and Smith, 1990), or "in a development stage" (West-

erink and Gray, 1990). An objective evaluation of state-of-the-art three-dimensional mod-

els compared simulations from two models (Blumberg and Mellor, 1987, Stole-Hansen

and Slagstad, 1991) with field data from the Norwegian shelf (Hackett and R~ed, 1994,

Hackett et al., 1995). Figure 1.1 shows that both models were "unable to reproduce quan-
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titatively the detailed vertical and horizontal structure seen in the observations" (Hackett

et al., 1995), although some qualitative aspects were reproduced. This inability was attrib-

uted mainly to "the parameterization of subgrid scale turbulence, horizontal resolution and

the initial and boundary conditions."
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Figure 1.1 Horizontal distribution of velocity (a,b,c) and salinity (d,e,t) at a test area. (a,d)
correspond to objectively analysed data, (b,e) and (c,t) to results from the Blumberg and
Mellor (1987) and the Stole-Hansen and Slagstad (1991) models, respectively. Salinity
contours are at 0.2 psu intervals. [from Hackett et al., 1995].

These conclusions illustrate three of the major limitations in three-dimensional

simulations: insufficient data, insufficient grid resolution and insufficient understanding of
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some physical processes (in particular turbulence). In addition, we consider the incom-

plete understanding of the numerical methods properties to be another limitation.

The lack of quality data is often a major limitation to the accuracy of the simula-

tions. Bathymetric data is often outdated (due to sediment deposition and erosion), of

uneven quality (e.g., navigation channels are often better surveyed than shallower areas),

or have too coarse a resolution. Velocity data records are often too short for meaningful

harmonic analysis. Data needed to validate 3D models, such as detailed vertical profiles of

velocity, temperature and salinity, are usually scarce. Fortunately, quality data sets are

expected to become progressively more available, as measurement instruments become

cheaper and more sophisticated, and satellite data becomes more broadly available (e.g.,

Foreman et al., 1992).

Grid resolution remains an issue despite the rapid growth in computing power

(Lynch et al., 1995a). Unstructured grids and grid generation criteria provide the means

and the knowledge for an efficient use of computational resources and are therefore criti-

cal to the solution of this problem.

In structured grids, each node is connected to a fixed number of its neighbors. Due

to the rigidity in which each node is connected to its neighbors, these grids offer little or

no flexibility for local refinement. In unstructured grids the connectivities between nodes

can vary in space, enabling local refinement. While horizontally unstructured grids are

well established, the first unstructured grids in the vertical are introduced in this work.

Existing grid generation criteria in the horizontal direction that impose a minimum

dimensionless wavelength are based on simplistic assumptions (constant depth, linearity)

and are therefore inappropriate near strong bathymetric gradients (e.g., Westerink et al.,

1994). Convergence studies have provided useful insight (e.g., Westerink et al., 1992,

Hannah and Wright, 1995, Lynch et al., 1995b),but failed to produce easy-to-use criteria.

Grid refinement based on a posteriori error evaluation and adaptative grids have been
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used in other fields and appear as possible solutions (e.g., Carey, 1995, Hagen and Wester-

ink, 1995).

Due to the strong vertical gradients present even in the simplest geophysical flows,

the use of non-uniform grids in the vertical is probably even more important than in the

horizontal. And yet, there have been very few attempts to develop grid-generation criteria

for the vertical direction. Chapter 4 describes what is probably the first systematic study of

this type, examining the effects of the relevant dimensionless numbers on the optimal

placement of the nodes. This study only applies to barotropic tidal flows, though, and fur-

ther studies are needed, in particular for flows involving stratification and wind effects.

Turbulence plays a major role in three-dimensional simulations, and our ability to

model this phenomenon is still limited. Turbulence closure models are still not fully reli-

able because they depend heavily on the specification of too many empirical coefficients,

and they are generally poorly tested. This lack of reliability increases when stratification

plays an important role, as the number of empirical parameters and relationships

increases. Turbulence closure models are discussed in Section 1.2.4.

Finally, choosing and applying a numerical method is a difficult task. The major

difficulties include:

·Only marginal effort has been dedicated to systematic comparative research.l

Even when comparisons exist, they often focus on accuracy and neglect cost.

The cost issue is difficult to address because: a) comparisons are often made for

very simple test cases where cost is not very meaningful (e.g., Baptista et al.,

1995); b) the relative cost depends on the particular application (e.g., a fre-

quency-domain model can be cheaper than a time-domain model in a long-term

1. The Tidal Flow Forum (Werner, 1995) and the Metocean Modeling Project - MOMOP
(Hackett and R~ed, 1994, R~ed et al., 1995, Hackett et al., 1995) were two noteworthy
exceptions
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application, but more expensive in a short-term one); and, c) the relative cost can

depend strongly on the characteristics of the computer (e.g., some algorithms are

particularly appropriate to certain computer architectures).

·The properties of the numerical methods are sometimes insufficiently under-

stood, leading to errors in their application. For instance, it was believed for sev-

eral years that a-coordinates were only conditionally consistent. This belief,

which we showed was incorrect (see Chapter 3), may have turned some model-

ers away from a-coordinates. For instance, Casulli and Cheng (1994) justify

their use of z-coordinates based on the problems of the a-coordinates.

·There is a large number of issues on which modelers do not agree. For instance,

there seems to be no consensus on whether finer vertical resolution is needed in

shallow or in deep waters. Maybe for lack of guiding criteria, a constant grid

spacing is often used in the vertical even though most models allow for a vari-

able vertical resolution (e.g., Walters and Foreman, 1992). .In Chapter 4 we

present what is probably the first systematic study of the influence of relevant

dimensionless numbers on the optimal vertical discretization.

In this context, the study of the numerical properties of methods currently used and

the development of guidelines to apply those methods can greatly improve our ability to

perform three-dimensional simulations of shallow water flow.

Due to these sources of errors, three-dimensional shallow water numerical models

can be highly misleading if not used properly. Because errors can balance each other (e.g.,

peak values of the prognostic variable can be seriously reduced by numerical diffusion and

increased by mass errors), and data are usually scarce, these errors often go undetected.

Also, model results are easier to generate than to evaluate critically. As noted by Lynch

and Davies (1995), "a single simulation exercise is easily capable of generating gigabytes

of output in a matter of hours. Most of the data will necessarily go unexamined by its pro-
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genitors. Yet it is likely that disks full of simulation output will be used extensively [...]as

a basis for operational decision-making."

Hence, the reliability of three-dimensional shallow water numerical models must

be improved. The properties of the numerical methods (e.g., propagation factors), the

effect of data errors and poor resolution, the error propagation from one model to another

(e.g., the effect of flow errors on transport simulations), the limitation of empirical compo-

nents of the model and the range of validity of the simplifying assumptions have to be

understood and quantified. This knowledge can then conceivably be included into expert

systems, which may eventually allow us to treat parts of the models as fool-proof "black

boxes".

1.2 Three-Dimensional Shallow Water Models: a Brief Review

1.2.1 General Description

We concentrate here on models that solve the 3D form of the shallow water equa-

tions, which describe the conservation of mass and momentum under the assumptions of

hydrostatic pressure and incompressibility. In addition, the Boussinesq approximation is

generally invoked, given the small variations of density encountered in natural surface

water systems.

Three-dimensional models typically decouple the horizontal and vertical direc-

tions, in an explicit recognition of the different scales involved in each direction. This

decoupling is usually accomplished through the introduction of separate external and

internal modes (Figure 1.2). The external mode solves depth-averaged equations for ele-

vations (e.g., Lynch and Werner, 1991, Luettich et al., 1991), and, in most cases, depth-

averaged velocities (e.g., Sheng, 1983, Blumberg and Mellor, 1987). The internal mode

solves some form of the 3D momentum equations for the horizontal velocities, and, when

needed, the continuity equation is solved for the vertical velocity. The internal and exter-

nal modes constitute the flow module, which is the backbone of the model. 1\vo additional
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modules can be added (Figure 1.2): a turbulence module which determines the eddy vis-

cosity and diffusivity fields, and a density module which determines the density field by

solving transport equations for salinity and/or temperature.

Flow Module

friction, horizontal dispersion, [depth-averaged velocities]

elevations, [depth-averaged velocities]

Turbulence Module Densi,!y Module

eddy diffusivity

Figure 1.2 Information flow in a 3D shallow water model.

1.2.2 The External Mode

The external mode is akin to 2D depth-averaged models, and the solution proce-

dures are very similar. Comparisons (e.g., Foreman, 1988, Werner, 1995, Oliveira et aI.,

1995) and reviews (e.g., Navon, 1988)of this type of models can be found in the literature

so a detailed description will not be given here.
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The major difference between models is probably the discretization method: some

modelers resort to finite difference techniques, stressing their simplicity and low cost (on a

per-node basis), while others prefer finite element techniques due to their superior ability

for local refinement and shoreline description.

Within finite-element-based models, the Generalized Wave Continuity Equation

(GWCE) formulation is probably the most popular (Lynchand Werner, 1991, Luettich and

Westerink, 1991, Laible, 1992),2 mainly due to its ability to minimize spurious oscilla-

tions. In addition, the solutions for elevations and for velocities are naturally decoupled,

and the mass matrix for the wave equation is stationary. A drawback of GWCE models is

their excessive dependence on the non-physical parameter G (see equation (2.14) on page

31). This problem is further discussed in Chapters 2, 5 and 6.

1.2.3 The Internal Mode

The solution of the internal mode varies widely. The major differences between

existing models are probably the discretization procedure and the choice of the vertical

coordinate.

Three techniques have been used to discretize the vertical direction: finite differ-

ences (e.g., Davies and Jones, 1990, Blumberg and Mellor, 1987, Casulli and Cheng,

1992), finite elements (e.g., Koutitas and O'Connor, 1980, Lynch and Werner, 1987,

Luettich et al., 1994, Janin et al., 1994) and modal (or spectral) methods (e.g., Luettich

and Westerink, 1991, Aldridge and Davies, 1993).The first two methods lead to very sim-

ilar algorithms providing that the 3D problem can be transformed into a combination of a

2D (horizontal) and a set of ID problems. This transformation, highly desirable for com-

putational efficiency, is usually accomplished with a semi-implicit formulation: the verti-

cal diffusion term is treated implicitly to allow a fine grid spacing in the vertical, and the

terms involving horizontal gradients of depth-dependent quantities are treated explicitly

2. Other type of wave equation formulations are also used in frequency domain models (Lynch and Werner,
1987, Walters, 1992).
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(e.g., Blumberg and Mellor, 1987, Lynch and Werner, 1991) or with an Eulerian-Lagran-

gian technique (Casulli and Cheng, 1992, Janin et aI., 1994). In addition, models using

finite elements in the horizontal resort to lumping techniques (Lynch and Werner, 1991,

Luettich et aI., 1991, Li and Zhan, 1993) in order to remove horizontal connectivities

between nodes. Modal methods express the vertical variation of dependent variables as a

linear combination of shape functions. A review of this class of methods is given in

Davies (1987), and a comparison with finite difference methods is given in Davies (1991).

The choice of the vertical coordinate is probably both more significant and more

controversial. Several models (e.g., Leendertse and Liu, 1975, Casulli and Cheng, 1992)

deal with the vertical dimension directly in cartesian form, using time-independent grids.

This approach, known as the z-coordinate approach, has three important drawbacks: a)

unless a very fine discretization is used, the shallow areas are generally under-resolved; b)

the stepwise representation of the bottom topography can distort the bottom stress and

flow (Sheng, 1983); and (c) the free surface must be treated as a moving boundary. Phil-

lips (1957) proposed a domain-wide geometric mapping of the vertical coordinates,

known as the CJ-coordinatetransformation, that satisfactorily addresses each of the three

problems above. The CJ-coordinatetransformation introduces some additional terms in the

equations, but solving for these terms has generally been considered a good trade-off rela-

tively to the drawbacks of the z-coordinates. Sigma coordinates have therefore become

increasingly popular, and are adopted in most three-dimensional models of coastal flows

(e.g., see review by Cheng and Smith, 1990), and, in particular, in the Princeton Ocean

Model (Blumberg and Mellor, 1987),probably the most widely used surface water model.

Sigma coordinates are not, however, free of drawbacks. In particular, the computa-

tion of horizontal gradients has received considerable attention in recent years because it

can generate very large errors in presence of steep topography (see Chapter 3). Also, the

number of nodes per vertical must remain constant over the entire computational domain,

and the position of the vertical nodes in CJ-coordinatesmust be the same for all verticals,

Le.,the nodesmustbe locatedinplanesof constantCJ.Thislackof flexibilityleadsto local
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under- and/or over-discretization of the vertical, particularly in domains including both

deep and shallow regions. Attempts to overcome these problems include several complex

transformations (e.g., Beckers, 1991, Gerdes, 1993, Song and Haidvogel, 1994, Huang

and Spaulding, 1995) as well as the localized sigma coordinates (Fortunato and Baptista,

1994a) described in subsequent chapters.

An additional drawback of both (J- and z-coordinates is the potential for generation

of diapycnical mixing. When isopycnic and coordinate surfaces do not coincide, and large

horizontal diffusion is needed for numerical reasons (e.g., in deep ocean, coarse resolution

simulations,or whenadvectiveaccelerationsare strong),both(J- andz-coordinatemodels

generate numerical mixing across the isopycnic surfaces. Some models designed for deep

ocean applications avoid this problem by using density as the vertical coordinate (e.g.,

Bleck and Smith, 1990). However, this approach fails in unstratified conditions.

Two interesting recent developments in 3D models relate to the choice of the

unknowns in the momentum equation and to the solution of the continuity equation.

Luettich and Westerink (1991) solve the momentum equations for stresses rather than

velocities. Since stresses are known to vary almost linearly along the water column, this

method can arguably lead to important computational savings relative to traditional meth-

ods. Also, the solution of the 3D continuity equation can be problematic because it is a

first order equation with two boundary conditions (at the surface and at the bottom). To

avoid having to drop one of the boundary conditions, Lynch and Naimie (1993) suggest

solving the vertical derivative of the continuity equation (see also Fortunato and Baptista

(1993) and Janin et al. (1994) for comparable approaches), while Muccino et al. (1994)

use a least square approach, thereby enforcing both conditions in an approximate way.

1.2.4 Turbulence Closure Schemes

Turbulence closure schemes are generally classified according to the number of

differential equations solved. The most common schemes are zero-, one- and two-equation
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models (see detailed reviews in Rodi, 1987, ASCE, 1988a,b and Davies et al., 1995).

Alternatively, eddy viscosity can be directly specified based on local flow properties.

Two-equation models are the most complex currently used in geophysical flows.

Like the other models presented below, they are based on the eddy viscosity/diffusivity

concepts, Le., turbulent transport of mass and momentum is assumed proportional to the

mean velocity/concentration gradients. The proportionality coefficients are in turn

assumed to be proportional to a velocity and a length scales.

Two-equation models solve two differential transport equations for a velocity and

a length scale, or combinations of these scales. The traditional model (k-emodel) solves

for turbulent energy (k) and dissipation (e) (e.g., Nihoul et al., 1989). The k-e model owes

its popularity to the relatively simple form of the e equation (Rodi, 1984). However, its

critics claim that it is physically unrealistic because dissipation occurs at the smallest tur-

bulent scales, whereas most turbulent energy is present at the largest scales (Mellor and

Yamada, 1982). A very popular alternative in geophysical flows is the l-q2[ model, which

solves equations for l=2k and for l[, where [is the mixing length (Mellor and Yamada,

1982).3This approach is used in the Princeton Ocean Model and has also been adopted by

others (e.g., Lynch et al., 1995b). The relative success of the Princeton Ocean Model

model in the MOMOP exercise mentioned in the previous section helped establish the l-
q2[model as an unofficial reference in coastal ocean modeling.

One-equation models replace one of the transport equations by the direct specifica-

tion of the mixing length, for which several empirical formulas are available (e.g., Blacka-

dar, 1962, Vagar and Kagan, 1969, Johns, 1978). Applications of this approach can be

found in Johns and Oguz (1987) and Davies and Jones (1990). Zero-equation models

result from two-equation models by assuming local equilibrium, Le., production of turbu-

lent energy is locally compensated by dissipation. This approach is seldom used in surface

water applications.

3. A modification has later been introduced by Galperin et al. (1988).
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A common alternative to these models is the direct specification of the eddy vis-

cosity. For dimensional reasons, eddy viscosity is written as the product of a characteristic

velocity (depth-averaged velocity, bottom velocity or stress velocity), a characteristic

length scale (total depth, depth of the bottom boundary layer, roughness length) and an

empirical constant. This approach provides a time variation of eddy viscosity which is

very important as it makes the vertical diffusion term in the momentum equation non-lin-

ear, thus generating shallow water tidal constituents (Davies, 1990). Several vertical pro-

files have been tested by Davies and co-workers (e.g., Davies, 1993, Davies and Aldridge,

1993). The most commonly used profile varies linearly in the bottom 20% of the water

column and is constant in the upper 80%.

Comparison between the direct specification of eddy viscosity and a one-equation

model suggests that they yield comparable results for barotropic tidal flows when properly

calibrated (Davies and Jones, 1990). However, there is no solid evidence that the same

empirical constants are appropriate for all systems. There is therefore the risk that the

improvements achieved by going from a two-dimensional to a three-dimensional model

result mainly from the larger number of fittingparameters. Also, the direct specification of

eddy viscosity is overly case-dependent (e.g., presence versus absence of wind), and

unsatisfactory in the presence of buoyancy. Finally, this approach seems inadequate to

fully explain the generation of some non-linear constituents (Grenier et al., 1995).

The trend in the modeling community has been towards two-equation models

which are considered more accurate than one-equation models, and only slightly more

expensive (Rodi, 1987). However, the direct specification approach is still often used due

to its simplicity and low cost.

1.3 Objectives

Our ability to perform three-dimensional simulations of shallow water flow can be

greatly improved by a better understanding of the numerical properties of methods cur-
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rently used and by the development of guidelines to apply those methods. To accomplish

our overall goal of enhanced guided three-dimensional simulations of shallow water flow,

we examine two critical issues in detail: the computation of horizontal gradients of depth-

dependent quantities, and the vertical discretization.

Coastal flow models assume that the characteristic horizontal scales are much

larger than depth. Besides leading to the well-known hydrostatic approximation, this

assumption leads to horizontal and vertical resolutions orders of magnitude apart. These

different resolutions are needed and usually justified. However, when bottom slopes are

very large, the meaning of "horizontal" in this context is ambiguous: should it mean "par-

allel to the bottom"? "perpendicular to the vertical"? Clearly, to be consistent with the

assumption of different characteristic length scales, "horizontal" should mean "direction

along which gradients are smallest". Unfortunately, this direction varies in space and time,

and it is not possible to define a priori the right coordinate system to evaluate horizontal

gradients. As a result, in presence of steep slopes, very sharp gradients are partly resolved

with the horizontal grid, and very large errors develop. Understanding and avoiding the

generation of these errors was therefore the first goal of this study (Fortunato and

Baptista, 1994a, 1994b, 1995a).

The second goal of this study was to develop a flexible method to discretize the

vertical direction. Two radically different approaches are used to discretize a spatial

domain: structured and unstructured grids. The use of unstructured grids in the horizontal

direction is well established in estuarine and coastal modeling, due to their superior ability

to represent coastlines and areas of strong velocity gradients. Surprisingly, however, only

structured grids have been used until now to represent the vertical direction. The method

introduced here, the localized sigma coordinates -LSC (Fortunato and Baptista, 1994a),

gives the modeler, for the first time, the ability to discretize each vertical independently

from the other.
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Our third goal was to develop solid guidelines for the vertical discretization of

tidal models. Such guidelines were basically non-existent, and had to be developed to

take advantage of the LSC's flexibility and make them more than an interesting curiosity.

The case studied, a barotropic tidal flow (Fortunato and Baptista, 1995b), was chosen for

its relative simplicity and for its practical interest. The criteria developed, both for the ver-

tical placement of nodes in a single vertical and for the horizontal distribution of the total

number of nodes, showed the advantages of the LSC even for very simple flows and can

lead to important gains in accuracy even for structured grids. These criteria were then

applied with some modifications to a complex estuarine system with excellent results

(Fortunato et aI., 1995).

Finally, we are involved in an ongoing effort to understand the tidal dynamics in

the Tagus estuary, which should eventually lead to a prognostic water quality model for

management purposes. Previous work had addressed the tidal propagation in the estuary

using several depth-averaged models, and neglecting advective accelerations (Silva, 1994,

Silva and Oliveira, 1995, Oliveira et aI., 1995). Our goal was to extend this work to

include both advective accelerations and three-dimensional barotropic effects. Both

effects are particularly important in the lower estuary, and our work led to new insight into

the circulation in this area (Fortunato et aI., 1995).

1.4 Organization

This thesis includes six chapters and three appendices. Chapter 2 describes the

governing equations and the numerical implementation of RITA2v (Fortunato and Bap-

tista, 1993), a two-dimensional, laterally-averaged, hydrodynamic model used extensively

in subsequent chapters. In addition, the numerical properties of the GWCE and the LSC

are also discussed.
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Chapter 34 addresses the computation of horizontal gradients in surface water

models. Two alternative techniques are compared through both truncation error analysis

and numerical experimentation, and a method to define the horizontal resolution needed to

avoid large errors is proposed.

In Chapter 45 we develop a criterion for vertical discretization in tidal flow simula-

tions. This criterion addresses both the distribution of nodes within a single vertical and

the distribution of the total number of nodes among different verticals. A two-dimensional

application to a synthetic estuary illustrates the usefulness of the approach, and demon-

strates the advantages of the LSC.

Chapter 56 describes a fully three-dimensional application of the concepts and

methods developed in this study.This application, part of an on-going effort to understand

the tidal dynamics to the Tagus estuary (Silva, 1994, Silva and Oliveira, 1995, Oliveira et

aI., 1995), evaluates the performance of the LSC in a real system. The criterion proposed

in Chapter 4 for the distribution of the total number of nodes among verticals is shown to

lead only to marginal gains when advective accelerations are important. An alternative cri-

terion which leads to significant accuracy gains, even when advective accelerations are

important, is proposed.

Chapter 6 contains a summary and some suggestions for future work. Appendix 1

and Appendix 2 describe the inputs and outputs of RITA2v7 and ADCIRC, respectively.

Appendix 38 discusses the computation of advective acceleration in surface water models,

and is a complement to Chapter 3.

4. Fortunato and Baptista (1995a).
5. Fortunato and Baptista (1995b).
6. Fortunato et at. (1995).

7. a more detailed application ofRITA2v can be found in Pearson et at. (1994).
8. Fortunato and Baptista (1994b).
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CHAPTER 2

RITA2v:a Two-Dimensional Laterally-
Averaged Hydrodynamic Model

2.1 Introduction

This chapter describes the fonnulation and numerical properties of RlTA2v (Fortu-

nato and Baptista, 1993). RlTA2v (River and Tidal Analysis 2D vertical) is a two-dimen-

sional, vertical hydrodynamic model based on the shallow water equations. The main

characteristics of the model are as follows:

·fully non-linear;

·one- or two-dimensional modes available;

· the width is variable, although the cross-section is assumed to be rectangular;

·forcings include boundary elevations or flows, wind, bottom defonnation and
baroclinic pressure (treated diagnostically);

· time- and space-dependent vertical eddy viscosity;

· the external mode is solved with the Generalized Continuity Wave Equation with
linear finite elements;

· the internal mode can use either domain wide sigma coordinates (DWSC), or
localized sigma coordinates (LSC);

·the time step for the internal mode can be a multiple of the time step for the
external mode.

This chapter includes three sections besides this Introduction. Section 2.2

describes the basic equations used in the model, and the assumptions made in their deriva-
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tion. Section 2.3 describes the numerical procedures used to solve the equations. The final

section discusses the basic characteristics of the numerical methods used.

2.2 Mathematical Model

2.2.1 Basic Equations and Approximations

The Reynolds equations are obtained by averaging the Navier-Stokes equations

over the time scales of turbulence (e.g., see White, 1974). Assuming incompressibility, the

momentum and continuity equations are:

i,j = 1,2, 3 (2.1)

and:

(2.2)

where ui are the cartesian components of the Reynolds averaged velocities, Xj are the car-

tesian coordinates, t is time,p is pressure, p is density,v is the kinematic molecular viscos-

ity, 'tij are the Reynold stresses, and Fi are the body forces.

Two approximations are invoked to derive the shallow water equations: the hydro-

static and Boussinesq approximations. When the wavelength is much larger than depth,

vertical accelerations are negligible, and the vertical momentum equation collapses into

the hydrostatic condition, Le.:

!ap
paz +g =0

(2.3)

where g represents the gravitational acceleration. By integrating (2.3) from a generic posi-

tion z to the surface 11, pressure can be determined and eliminated in the horizontal

momentum equations:
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dp dpa dr) Tl
J
dP

- = - +gp-+g -dzdX. dX. dX. dX.
I I I Z I

i = 1,2 (2.4)

where Pa represents the pressure at the water surface.

The Boussinesq approximation statesthat density variations in spaceand time are

negligible, except in terms multiplied by gravity. With this set of assumptions, the Rey-

nolds equations are transformed into the shallow water equations:

Du 1 dpa dr) g Tl
J

dP 1 d'tjl 2
-=fv--- -g--- -dz+-- +uV u
Dt POdX dX Po dX POdXjz

Dv 1 dPa dr) g Tl
J

dP 1 d'tj2 2

Dt =- fu - POdY - gdY - Po dydZ + POdXj + uV Vz

(2.5)

where Po is the reference density andfis the Coriolis parameter.

2.2.2 Laterally Averaged Equations

The momentum and continuity equations are now laterally averaged, assuming a

rectangular cross-section. Integrating each term of the continuity equation (2.2) over

width using the Leibnitz rulel and the kinematic boundary conditions,2 we get (Figure

2.1):

2. _udY +v_wdY
I

= 0
ax az i

i = 1,2
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(2.6)

where B represents the width of the channel and the tildes represent lateral averages.

x

Figure 2.1 Channel geometry.

Likewise, the x-momentum equation becomes:

au -au -au 1 apa g T1
J
ap ail a au 1 a au- +u-+w-+-- +- -dz+g- --(A -) ---(BAh-) = 0at ax az Poax Po ax ax az vaz Bax axz

(2.7)

where once more the variables are laterally averaged, and Ah and Av are the horizontal and

vertical dispersion coefficients, respectively. The dispersion terms include the molecular

viscosity, the eddy dispersion and the lateral dispersion effects. To derive (2.7) the pres-

sure gradient in the Y direction was neglected. This approximation is valid if the curvature
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of the river and the lateral salinity gradients are small. Also, the lateral stresses at the walls

were neglected, a reasonable assumption if the width is significantly larger than depth.

The validity of the laterally averaged equations depends on two fundamental quan-

tities (Ianniello, 1977): the Kelvin number,

IB

Ke = Jih
(2.8)

and the horizontal aspect ratio,

B

0= TJih
(2.9)

where I is the Coriolis parameter and T the tidal period. These two dimensionless num-

bers, Ke and 0, are measures of the importance of, respectively, the Coriolis terms and the

cross-channel velocities in the momentum equation. Equations (2.6) and (2.7) are valid

when both Ke and 0 are much smaller than unity.

For clarity, the tildes will be dropped from now on.

2.2.3 lAterally and Depth Averaged Equations

The one dimensional equations can now be obtained by integrating (2.6) and (2.7)

from the bottom to the free surface. The kinematic boundary conditions at the bottom and

free surface are, respectively:

(2.10)

and

_drt drt
at - uSax + Ws = 0 (2.11)

Using Equations (2.10) and (2.11), as well as the Leibnitz rule, the continuity

equation becomes:
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(2.12)

where H=h+T1is the total depth and an overbar indicates a depth average. The width, B,

was assumed to be depth-independent. The momentum equation becomes, in conservative

form:

a - a - ~ gB Tl
J (

Tl

J
ap

)
B'tb B'tw a au

M =-HBu+-HBuu+gBH-+- -dz dz H-(BAh-) = 0
c at ax ax Po ax Po Po ax ax-h z

(2.13)

where 'tb and 'twrepresent the friction and wind stresses, respectively.

2.3 Numerical Model

2.3.1 External Mode

The elevation solution

The Generalized Wave Continuity Equation, GWCE, (Kinnmark, 1985) is

obtained by combining Equations (2.12) and (2.13) as:

aL aMcw=- -- +GL =0at ax

whereG [s-J] is an arbitrary constant. The result is:

(2.14)

Following the approach of Kolar and Gray (1990), the continuity equation is used

to transform the diffusion term as:
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a aii a d11 a - a - a 2 aHaiiH-
a (BAh-a ) = ~ a (AhB-a )-- a (AhU)-a (HB)-AhU- 2 (HB)-AhB- a _a (2.16)

x x x t x x ax x x

The bottom stress can be parametrized as a linear function of the depth-averaged

velocity:

't _
...!!..= -A.Hu
Po

(2.17)

where A.is the linear friction coefficient, or the more conventional quadratic formulation

can be used:

'tb = -C)iil iiPo
(2.18)

When the model is run in ID mode, a Manning-type formulation is used for Cf

2
n g

Cf = HI/3

where n is the Manning coefficient ([m-II3s]).

(2.19)

When the full 2Dvmodelis beingapplied,'tb is parametrizeddirectlyin terms of

the bottom velocity. The bottom stress is computed in the internal mode and kept constant

while solving the external steps. Friction is then computed as:

(2.20)

where CD is a friction coefficient, and ub the bottom velocity.

The wind stress is assumed to be constant in time and space. It is computed as:

(2.21 )

where Pa is the air density, W is the wind velocity 10meters above the water surface (m/s)

and Cd is a drag coefficient given by (Amorocho and DeVries, 1980):



33

12.5- W -1

Cd=0.0015(I+exp( 1U » +0.00104 (2.22)

Baroclinic pressure is treated diagnostically and linearized:

(2.23)

A Galerkin finite element (FE) technique with linear elements is used for the space

discretization. The weighted residual statement (weak formulation) is:

(2.24)

where L is the length of the domain, and <> represents an integration over the horizontal

domain. The momentum equation was used to simplify the boundary terms, displaying the

hydrodynamic transport HBu as a natural boundary condition.

The term uu is written as:

uu = u.u+ I (2.25)

where I is defined as:

1 Tl

1= HJ(u') 2dz
-Ii

(2.26)
, -u =u-u

When the full 2D model is running, the value of I is computed in the internal mode

and held constant until the next internal step. When only the external mode is being used,

the horizontal dispersion is parametrized as:
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;X(lBH) =-A BaHauII axax (2.27)

In order to obtain a stationary matrix while treating part of the gravitic term

implicitly, this term is split in two. The linear part is treated implicitly, and the non-linear

part is treated explicitly.

Applying the Galerkin method to the weighted residual statement (2.24):

(2.28)

where the N is the total number of horizontal nodes in the domain. Space dependent vari-

ables are assumed linear within each element, except the longitudinal dispersion that uses

an element based formulation. The integrals are evaluated either analytically or with a

three point Gauss Quadrature. A three time level semi-implicit scheme is used for the time

discretization. All the terms are centered at n, while solving for n+1:

(2.29)

where R represents the non-linear and boundary terms, and eE [0, I] is a time-discretiza-

tion coefficient.

The depth-averaged velocity solution

The depth-averaged velocity is obtained from the horizontal momentum equation,

with known gravitic forcing at time n+1. The equation reads:
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(2.30)

Equation (2.30) is discretized in space with a Galerkin FE method, with a weak

formulation applied to the diffusion term. The weighted residual statement reads:

(2.31)

where Q, R, Sand r are defined as:

au
Q =-BA ,

-
lax

Cht 'tw
R=-g-+-

ax Hpo
o 0

(
-au aI I a 't b g J(J

ap
) )

S=- u-+-+--HB--+- -dz dz
ax ax HBax Hpo Hpo ax-Ii z

aU
I

L

r=Ahax 0

(2.32)

A semi-implicit scheme is used for the time discretization. All terms are centered

at n+l12, except Q and S which are lagged behind at n. When friction is linearized, the

bottom stress term is also centered at n+112.The time-discretized equation reads:

un+ I _ un Rn+ I + Rn rn + rn + I
= Qn+ _ +Sn+ (2.33)

2.3.2 Boundary conditions

Three types of boundary conditions are available in the model: specified elevation,

specified flux or transmissive boundary. In the first two cases the conditions can be speci-

fied either as a time series or as a sum of sinusoidal functions.
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When elevation is specified, the corresponding row in the GWCE matrix is set to

zero, except for the diagonal term which is replaced by a constant. The corresponding

term in the vector is set to the specified elevation multiplied by this constant. This con-

stant, used to ensure the good conditioning of the matrix, is such that the absolute value of

the diagonal term in the matrix is at least as large as the non-diagonal terms in the same

row and column. The depth-averaged velocity is determined by solving the GCWE (rather

than the momentum equation) for the flux. Theoretical and numerical studies (Lynch,

1985, Kolar et al., 1992) suggest that using some form of the continuity equation at the

boundary improves mass preservation.

When the total flux is specified, it is enforced as a natural boundary condition in

the GCWE (see equation (2.28)), and as an essential boundary for the momentum equa-

tion.

Finally, when transmissive boundaries are specified, the elevation is computed

with a form of the Sommerfeld radiation boundary condition (Sommerfeld, 1949):

drl+caTl = 0at - ax (2.34)

wherec = .jgH is the celerity. The time derivative is centered at n+1/2 while celerity term

is taken at n. The velocity is then computed with the GCWE, as before.

2.3.3 Internal Mode

Coordinate transfonnation

One of the problems associated with 3D and 2Dv models is the fact that the free

surface constitutes a moving boundary, and therefore the physical domain changes in time.

The most common approach is to map the vertical domain Z E [-h, 11]into a fixed interval

0'E [a,b] . Several types of transformations have been used (see Davies, 1991), the linear

being the most common (e.g. Blumberg and Mellor, 1987).
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Sigma is defined as:

z-..,
cr= ~ (2.35)

where crE [-}, 0] , .., is the free surface elevation, and H the total depth. The derivatives in

the coordinate systems (x,z,t) and (s,cr,'t) are related by:

a _ a craH 1a.., a
ax=as - (Has + Has)acr (2.36)

a_I a
az=Hacr

a_a cr+la..,a
at = a't -IT" a't acr

(2.37)

(2.38)

For depth-independent quantities,

(2.39)

Evaluation 01 terms involving horizontal gradients

Neglecting gradients of atmospheric pressure, the horizontal Reynolds equation

(2.7) can be rewritten as:

_ 0a , au a.., g
J
ap a a, .-u +- +Ad+g-+- -dz--(A -u) -Dill = 0

at at ax Poax az vazz
(2.40)

or, in sigma coordinates:

o
a , au cr+ 1a.., a, a.., gh

J
ap 1 a a, .-u +-+Ad u +g-+- -dcr---(BA _a u) -Dill = 0

a't a't H a'tacr ax Po ax BH2acr v cr
(J

(2.41 )

where the horizontal velocity u was split as the sum of a depth-averaged part, ii, and a

deviation from this mean, u'. Consistent with the external mode, we assume ..,«h in the
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baroclinic pressure term. Ad and Diff represent the advective acceleration and the horizon-

tal diffusion, respectively.

Several formulations have been implemented to deal with terms involving hori-

zontal gradients of depth-dependent quantities. Formulation 1 assumes the horizontal gra-

dient of u' is much smaller than that of u. Ad and Diff thus become:

d -au ,au
(

a aH 1<h1
) a , w a ,A =u-+u--u --+-- -u +--uax ax Hax Hax aa Haa

. 1 a auDill=--(BAh-)Bax ax

(2.42)

In formulation 2, the velocity is written as the product of the depth-averaged veloc-

ity and a shape function. The shape function is then assumed to change slowly in space

compared with the depth-averaged velocity. This shape function is defined as:

u' (x, z)

U(x)
(2.43)

The advective terms become:

-au ,au uu' au a aH 1<h1 a , w a ,Ad=u-+u -+ ---u(-- +--)-u +--uax ax u ax Hax Hax aa Haa (2.44)

where U is defined as:

-
u

U = {+_u[
(2.45)

and u[ is a limit value taken as 0.01 mls. The use of U rather than uin (2.44) is needed to

avoid a division by zero. For simplicity, the horizontal diffusion term keeps the same form

as in formulation 1 (Equation (2.42».

Formulation 3 corresponds to the traditional sigma transformation. Ad and Diff are

defined as:
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d -au ,au a, u
(

aH Or) a , w a ,A =u-+u-+u-u -- 0'-+- -u +--uax ax as H ax ax aO' HaO'

. 1 a- au
Di!!= --(BHAh-)BHas as

(2.46)

The diffusion term was simplified, following Blumberg and Mellor (1985). The

necessary values of u' at neighboring verticals can either be taken at specific nodes, if

DWSC are used, or obtained by interpolation when LSC are used.

Finally, formulation 4 follows Laible (1992), and computes the horizontal gradi-

ents directly in the cartesian coordinate system. Ad and Diff are thus given by:

Ad ( -au ,au a ') w a ,= u-+u -+u-u +--u
ax ax ax HaO'

. 1 a au
Di!!= --(BA1-)Bax 'ax

(2.47)
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Figure 2.2 Interpolation of u' and p at neighboring verticals for the evaluation of gradients
in cartesian coordinates.
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The necessary values of u' at neighboring verticals are obtained by interpolation

(Figure 2.2). When only two values of u' are available at the bottom node, horizontal dif-

fusion is neglected at that point.

The baroclinic pressure term can be computed using formulations 3 or 4.

The horizontal velocity solution

The momentum equation is discretized in space with ID linear finite elements,

leading to a tridiagonal matrix which is solved with the Thomas algorithm. A weak formu-

lation is used for the vertical diffusion to allow the representation of second derivatives.

The terms known from the external mode (e.g., gravitic forcing, mean advection)

are centered in time. The term u,au is treated with an alpha method. The vertical diffusionax
term is treated implicitly, since a semi-implicit formulation led to 2.1toscillations in some

cases. All other terms are fully explicit.

Once the solution for u' is found, the closure error (the integral of u' from the bot-

tom to the free surface) is evaluated and subtracted from u'. This procedure aims at avoid-

ing imbalances between the external and internal mode solutions (Blumberg and Mellor,

1987).

Initial and boundary conditions

In order to minimize the initial transients when the internal mode is activated, the

internal mode velocities are initialized with an analytical solution for permanent flow (see

below).

Bottom and surface stresses are enforced as natural boundary conditions:

(2.48)

A quadratic formulation is used for the bottom stress:
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(2.49)

where CD is a dimensionless coefficient. The time discretization is particularly important

to avoid 2M oscillations when the grid is very refined (Davies and Aldridge, 1992). In our

experience, the following semi-implicit formulation appears to have good stability proper-

ties:

I

I

I

I
I _n+2 n+-

AV..Q..U'
I

"+2 =CDu + (U')" (u 2 + (U')"+I)
H2acr Ib n+-

H 2

(2.50)

The Vertical Velocity Solution

The vertical velocity is obtained, for formulations 1 through 4, by integrating the

continuity equation (2.6) from the bottom up. The velocity at the bottom is first deter-

mined from the kinematic boundary condition:

(2.51)

The velocities at the others nodes are then computed as:

· formulation 1:

(2.52)

·formulation 2:

, ,
au 1as _ U i + I + U i

Wi+l=wi-Htlcri(ax+Bax(u+ '" »+

;:)...,. a cr. + cr. u' . + u' . a-
(u'. -u'.) (~+J! 1+1 ') _H (1+1 ')tlcr.~I+ I I ax ax 2 U 2 'ax· formulation 3:

(2.53)
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(2.54)

·formulation 4:

(2.55)

As with the computation of u', a closure error Eis computed in the end:

all ~
E=Ws-at-USax (2.56)

The vertical velocity is then corrected to obey the boundary conditions both at the

bottom and at the surface:

We (cr) = W (cr) - (cr+ 1) E (2.57)

This method is similar to the method of Lynch and Naimie (1993) which solves the

vertical derivative of the continuity equation.

Analytical solutionfor internal mode initialization

For simplicity, the solution is derived for the velocity shape Xv (2.43). For an uni-

form flow, and assuming a constant eddy viscosity coefficient, the 2D horizontal momen-

tum equation reduces to:

(2.58)

Xv is therefore a quadratic function of sigma:

(2.59)
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where b and c are determined by the boundary conditions. We consider here a quadratic

slip boundary condition at the bottom, and no stress at the surface. The equations are:

a '
1

=0-u
acr a =0

a '
1

=d-u
acr a=-l

(2.60)

Using also the fact that the integral of Xv from the bottom to the free surface is

zero, we get:

(2.61)

where:

d = _H2gall
A)i ax

Using the boundary condition at the bottom, d can be expressed as a function of u

(2.62)

alone:

Solving for d, we get:

(2.64)

where:

(2.65)

Recovering u' from the definition of Xv>we get:
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(2.66)

2.4 Numerical Properties

2.4.1 The Generalized Wave-Continuity Equation

Early hydrodynamic finite element models, based on the primitive equations, were

plagued by severe spurious oscillations. Damping these oscillations, with either unrealistic

values of the diffusion coefficient or dissipative numerical schemes, also damped the

physical waves, thus compromising the accuracy of the solution. It was the introduction of

the Continuity Wave equation (Lynch, 1978), and later the Generalized Continuity Wave

Equation (Kinnmark, 1985), that established the use of finite element models as reliable

alternatives to their finite difference counterparts. Formal analysis shows that this method

propagates and damps the 2& waves while being highly accurate for the longer waves

(e.g., Kinmark, 1985).From a computational perspective, the GCWE also has three major

advantages relative to the primitive equations. First, the solutions of the elevation and the

velocities are naturally uncoupled, thus the equations can be solved sequentially. Second,

the GCWE mass matrix is time-independent, and therefore only needs to be inverted once.

Finally, when nodal quadrature is used, the momentum equation mass matrix is diagonal

and its inversion is trivial. The GCWE formulation is therefore accurate, stable and effi-

cient as compared to other methods to solve the shallow water equations.

However, the GCWE formulation also has two major problems. First, the solutions

can be very sensitive to the choice of GCWE parameter - G (e.g., Myers and Baptista,

1995). This parameter has no physical meaning and there is no consensus on how to define

its optimal value, other than it should be loosely related to the linear friction coefficient. In

general, increasing the weight of the continuity equation in the GCWE makes the equa-

tions more primitive, thus improving mass conservation but also increasing 2& oscilla-

tions. Finding the right balance between a pure wave equation and the primitive continuity

equation has proved a difficult task although both theoretical (Kinnmark, 1985) and
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numerical (e.g., Remedio, 1992, Myers and Baptista, 1995) studies have been done. A

commonly used rule of thumb (e.g., Luettich et al., 1991) is to set G similar to the largest

equivalent linear friction coefficient across the domain. Kolar et al. (1994) proposed using

dispersion analysis to define the largest value of G that, for given values of depth and hor-

izontal resolution, will not lead to the aliasing of tidal frequencies. This approach will be

further discussed in Chapter 5.

The second problem of the GCWE is its potential for mass conservation problems.

Consider the 2D versions of the GCWE (2.14) and the non-conservative momentum equa-

tion (2.30):

(2.67)

M= Mc-uL
H = 0 (2.68)

Kinnmark (1985) showed that combining (2.68) and (2.67) gives:

s

L(s) =L(Slt=o)exp(-f(G-VU)dS)o
(2.69)

where S is a trajectory, given by:

dx
dt (s) = -u (x (s) ,y (s), s)

t (s) = -v (x (s), y (s), s)

(2.70)

Equation (2.70) shows that mass errors introduced in the solution at some point in

space and time will propagate and dissipate as the simulation progresses, as long as:

G-Vu>O (2.71)
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Neglecting the velocity gradient, the mass error will tend to zero in a time scale of

lIG. Since G is typically of the order of 10-3_10-4s-l, this time scale is large compared to

the time step, and errors can accumulate.

Approaches to improve mass conservation can therefore be classified in two cate-

gories: reduction of the error generation, and improvement of the error dissipation. Error

generation can have different sources, thus requiring different treatments. Two local

sources of errors have been identified. Lynch (1985) observed localized mass unbalances

at boundaries where the elevations are imposed, and found that this was due to the conti-

nuity wave equation being discarded at these nodes. He proposed discarding the normal

component of the momentum equation instead, thus enforcing continuity at the boundary.

His work was confirmed later by Kolar et al. (1992) who further increased the weight of

the continuity equation at the boundary. We also found that errors in the imposition of ini-

tial conditions could seriously compromise the accuracy of the solution in tsunami simula-

tions. This problem can be avoided either by imposing tsunami initial conditions at both

initial time steps, or by including a bottom deformation term in the equations (e.g., Myers

and Baptista, 1995).

However, mass errors are not always generated at precise points in space or time.

As an example, Figure 2.3 illustrates the presence of mass errors in a permanent flow over

a schematic continental slope. The errors develop all along the continental slope, and are

clearly not related to the initial or boundary conditions. For errors such as this one, the

only available option is to improve error dissipation. Kolar et al. (1994) proposed casting

the advective terms in the GCWE in their non-conservative form. This is equivalent to

redefining the GCWE as:

aL
w=- -V (HM) +GL = 0at (2.72)

Combining (2.72) with (2.68) now leads to:

L (x, y, t) = L (x, y, 0) exp (-Gt) (2.73)
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Figure 2.3 Example of masserrors generation inside the domain. a) Bathymetry; b) flux
per unit width. The flow is forced by a constant setupof 0.1 m at the ocean boundary. At
steady state,the flux should be constant for mass to be conserved. Friction was linearized
and we set G=A=0.00025 s-l.
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-2.00 10000 20000 30000 40000 50000

distance fromopen end [m]

Figure2.4 Illustrationof the differentstabilitypropertiesof the twoGCWEformulations.
Elevations along the channel at t =521640 s are shown for the original formulation
(equation (2.67) - dotted line), and the modified formulation (equation (2.72) - solid line).
The parameters are given in the text.

When velocity gradients are non-negligible compared to G, this new formulation

should therefore dissipate mass errors faster than the standard form of the GCWE. Unfor-

tunately our experience indicates that (2.72) is less stable than (2.67), which may be due to

part of the advective term in the new formulation not being centered in time. To illustrate

the different behavior of the two approaches we ran a simple case of a one-dimensional

wavepropagatingin a flatchannel.Theparametersare:

·channel length:

·channeldepth:

·eddyviscosity:

50,000 m;

-0.5

......
E........
c:
0

-1.0
>
Q)
Q)

-1.5
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·time step:

·grid spacing:

·boundaryconditions:

74.52 s;

2,000 m;

h(O,t)=sin(21tt/12.42h) m;

u(50,QOO,t) =0 m/s;

cold start;

A.=0.OOOls-1 (linear);

G=A..

· initial conditions:

· bottom friction:

· GCWE parameter:

The model based on the original fonnulation (equation (2.67» ran for 24 tidal

cycles without any signs of instabilities, while the model based on (2.72) became unstable

after about 12 tidal cycles (Figure 2.4). RITA2vis therefore based on (2.67).

2.4.2 The Localized Sigma Coordinates

The development of the Localized Sigma Coordinates (LSC) was motivated by the

rigidity of the traditional, domain-wide, sigma coordinates (DWSC). In DWSC models

nodes are defined at the intersection between constant sigma planes and vertical lines

defined by the position of horizontal nodes. As a result, all verticals must have the same

number of nodes, and with the same distribution. This rigidity is clearly undesirable. As an

example, consider a wind-driven flow in a domain including both shallow and deep areas.

In the deep regions, the flow will be restricted to the surface layer, where sharp vertical

gradients of velocity will occur; in shallow regions, the surface boundary layer will

occupy the whole water column, and gradients will be smeared by higher levels of turbu-

lence. Optimal discretizations will therefore vary strongly with the horizontal position: in

deep waters a very fine resolution will be needed near the surface, whereas in shallow

waters a more unifonn grid will be appropriate. Clearly, LSC will be at an advantage to

simulate this type of flow.Also, LSC can improve accuracy relative the to DWSC for sim-

ple density driven flows (Fortunato and Baptista, 1994a) and for tidal flows (Fortunato and

Baptista, 1995).
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Unfortunately, LSC also have their drawbacks: they increase the CPU time and

memory requirements for the simulation (on a node per node basis) and are only condi-

tionally consistent. The conditional consistency arises from the truncation errors intro-

duced by the interpolation needed to compute horizontal gradients (Fortunato and

Baptista, 1994a). Referring to the stencil in Figure 2.5 and assuming a rigid lid approxima-

tion, the truncation error for (2.36) reads:

(2.74)

where:

~1 =~cr3~cr4 -~cr1~cr2

~2 =~cr3~cr4 + ~cr1~cr2

~3 =~cr3~cr4 (~cr3 -~cr4) -~cr1~cr2 (~cr1-~cr2)

(2.75)

6al I I //.............

1 I

. node
6a2 I J lineof constanta

Figure 2.5 Stencil for the evaluation of horizontal gradients in LSC.
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Figure 2.6 Bathymetry and density field to illustrate the LSC conditional consistency.

The truncation error shows that the method will only converge if /J.(J2goes to zero

faster than ~. To illustrate the effect of the conditional consistency of the method, we

examine the variation of velocity errors with ~ for the bathymetry and density field

shown in Figure 2.6. No-flow and zero elevations are imposed at the landward and sea-

ward boundaries, respectively, and a no-slip condition is used at the bottom. The number

of horizontal nodes is varied between 11and 641. The number of nodes per vertical nv is

given by:

nv =n-int«n-1)/3) + 19 (2.76)

where n is the horizontal node index and int represents the integer part. Figure 2.7 shows

that the error can indeed increase when .6x is reduced.

x
10+ 2 1000

m

h(x) = 50+lOx00 m

100 + 20x OOO m 25000 =::;x =::;50000
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Overall, we consider this conditional consistency an acceptable payoff for the

advantages of the LSC. However, the user should keep this potential problem in mind

when refining his grid.

10-3
10 100 1000

~x [m]

10000

Figure 2.7 Conditional consistency of the LSC (circles). Maximum error (thick lines) and
standard deviation of the errors (thin lines) are shown as a function of the horizontal
resolution. Results for sigma coordinates with 21 nodes per vertical are shown for
comparison (triangles).
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CHAPTER 31

Evaluation of HorizontalGradientsin
Sigma-CoordinateShallow WaterModels

Abstract

Eva!uating horizontal gradients in three-dimensional shallow water models that

use bottom-following sigma coordinates can lead to large errors near steep bathymetry. A

technique that has been proposed to minimize this problem involves computing horizontal

gradients in cartesian coordinates, while treating all other terms in a sigma coordinate

framework. We study this technique through both truncation error analysis and numerical

experimentation, and compare it to the direct application of sigma coordinates. While the

cartesian coordinate method has better convergence properties and generally smaller trun-

cation errors when horizontal gradients are zero, the sigma coordinate method can be more

accurate in other physically relevant situations. Also, the cartesian coordinate method

introduces significant numerical diffusion of variable sign near the bottom (where physical

diffusion is particularly small), thus potentially leading to instabilities. Overall, we con-

sider the sigma coordinates to be the best approach.

3.1 Introduction

Three-dimensional numerical models of shallow water flow and transport have

become common tools in coastal and estuarine studies, largely due to the rapid increase in

1. submittedto Atmosphere-Ocean.
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computer performance and to the development of efficient computational techniques.

These models generally decouple the horizontal and vertical dimensions, in an explicit

recognition of the different space and time scales involved. The decoupling is usually

accomplished by the introduction of a global solution for elevation and depth-averaged

velocity, and a local solution for the vertical structure of velocity.

The representation of the vertical direction still introduces a number of numerical

difficulties. Models using cartesian grids in the vertical (e.g., Casulli and Cheng, 1992)

have three major problems: shallow areas are in general poorly resolved; the stepwise rep-

resentation of the bottom topography can distort the near bottom flow and transport; and

the treatment of the surface boundary is complex. Models based on the bottom-following

sigma coordinates avoid these problems, and are therefore generally preferred (see review

by Cheng and Smith, 1990).

Unfortunately, sigma coordinate models have their own drawbacks, associated

with the evaluation of horizontal gradients of depth-dependent quantities (Leendertse,

1989; Johnson et al., 1990; Haney, 1991; Paul, 1994). In particular, the evaluation of the

baroc1inic pressure gradient has received considerable attention in recent years. Even

though atmospheric modelers have long known the potential for very large errors in the

evaluation of horizontal gradients in sigma coordinates (e.g., Rousseau and Pham, 1971;

Janjic, 1977), only recently did ocean modelers recognize this issue as a major problem. In

the presence of steep slopes and strong stratification, the evaluation of baroc1inicpressure

can lead to very large truncation errors (Haney, 1991). These errors are particularly trou-

bling because they can generate moderate currents in systems that should otherwise be at

rest (Walters and Foreman, 1992).

The source of these large truncation errors can be understood qualitatively by

examining the expression for the horizontal gradients in sigma coordinates. The sigma

coordinate system (sj.s2>CJ)is defined as:
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i =

{

Si = xi

Z-l1

a = h+l1

1,2

(3.1)

where (x/>x2.Z)is the cartesian coordinate system, h is the depth relative to mean sea level,

and 11is the elevation of the water surface. The horizontal derivatives in the two coordi-

nate systems are related by:

a a 1 aH d11 a-=-- - (a-+-)-ax.- as. H as. as. aaI I I I

i = 1,2 (3.2)

where H=h+l1.

If the left-hand side is small compared to the two terms on the right hand side,

using (3.2) corresponds to evaluating a small term as the subtraction of two large ones,

which can lead to large errors (Haney, 1991). On the other hand, if the derivative along si

is small relative to the other terms, evaluating horizontal gradients in a-coordinates should

lead to the best accuracy, since the vertical grid spacing is typically much finer than the

horizontal (Fortunato and Baptista, 1994a).

In general, one expects salinity and temperature to fit the first situation described

above, and velocity to fit the second. The sigma coordinate system would then be the "nat-

ural" system to evaluate velocity gradients (as argued by Mellor and Blumberg, 1985),

whereas the cartesian system would be more appropriate for density gradients. However,

the density field can also exhibit small derivatives along si (e.g., density fields determined

by near-bottom suspended sediments, upwelling in continental slopes), in which case

sigma coordinates would also be the most appropriate to evaluate baroclinic pressure gra-

dients.

Several solutions have been proposed to avoid the large truncation errors in sigma

coordinates. Expressing the density field as a deviation from a reference density profile,

independent of time and horizontal position, can reduce the errors (Phillips, 1973; Blum-

berg and Mellor, 1987; Signell et aI., 1994). This approach, however, is cumbersome and
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ineffective in estuaries, where the position of the pycnoclines varies strongly in time and

space. Spall and Robinson (1990) proposed a hybrid coordinate system that uses z-coordi-

nates in the surface layer, where the stratification occurs, and sigma coordinates below a

certain depth. Beckers (1991) uses a similar approach, but discretizes both layers indepen-

dently with sigma coordinates. Both these approaches are attractive for large scale ocean

modeling, but may lead to a coarse refinement in shallow areas. A fourth-order approxi-

mation of the horizontal gradients (McCalpin, 1994) produces good results, but is practi-

cal only for horizontally structured grids.

The cartesian coordinate method (CCM) investigated in this paper has potential

appeal due to its simplicity and general applicability. This method keeps the general

framework of the sigma coordinates, but computes the horizontal gradients in cartesian

coordinates by interpolating the necessary values at neighboring verticals (Laible, 1992;

Beckmann and Haidvogel, 1993;Fortunato and Baptista, 1994b).While shown to be more

accurate than the direct application of the sigma coordinates in some particular situations

(Beckmann and Haidvogel, 1993;Fortunato and Baptista, 1994b), the CCM has not been

systematically analyzed.

The purpose of this paper is to examine the evaluation of horizontal gradients in

shallow water models. We compare the evaluation of horizontal gradients in cartesian

(CCM) and sigma coordinates (SCM, standing for sigma coordinate method). The numer-

ical properties of the two methods are first examined using truncation error analysis, and

then illustrated with numerical examples for both density and velocity gradients. While

the analysis is performed for finite element shallow-water models, the main conclusions

should extend both to other numerical techniques (e.g., finite-differences) and to other

types of models (e.g., transport models).

While none of the two methods emerges as clearly optimal, the drawbacks of the

CCM appear to outweigh its advantages. In general, the CCM is more accurate than the

SCM when the dependent variable (e.g., velocity, density) depends only on the vertical



59

cartesian coordinate. However, the reverse happens when the isolines of the dependent

variable tend to follow the bottom. Also, when used to evaluate advective accelerations or

transport, the CCM introduces significant (positive or negative) numerical diffusion near

the bottom, which can lead to significant errors and potentially to instabilities.

3.2 Formulations

The shallow-water equations express the conservation of mass and momentum

assuming incompressibility, hydrostatic pressure and the Boussinesq approximation:

aUj = 0
ax.

J
j = 1,2,3 (3.3)

au; au; drt g l1
J
ap a

(
aUj

)
- +u.- = F.-g--- -dz+- A.-at Jax. I ax. Po ax. ax. Jax.

J I Z I J J

i = 1,2; j = 1,2,3 (3.4)

where t is time, Uis the velocity vector, F is the Coriolis term, g is gravity, P is density, Po

is a reference density, and A is the eddy viscosity vector. In addition, if density is treated as

a prognostic variable, one or two transport equations must also be solved for salinity

and/or temperature.

The formulations presented below are restricted to the treatment of horizontal gra-

dients. They can be applied to most three-dimensional hydrodynamic finite element mod-

els based on linear triangular elements (e.g., Lynch and Werner, 1991; Luettich et aI.,

1991; Walters, 1992;Laible, 1992; Janin et aI., 1994).

In a finite element framework using linear triangular elements, the gradients along

si for a generic variable e can be approximated as:



60

nel(n) 3 a<l>

~ ~ A kee
ae

I

::::: e~l k~l e~ ke
as. nel(n)I .

n,} L Ae
e = I

i = 1,2 (3.5)

where nel(n) represents the number of horizontal elements containing node n, Ae are their

area, <l>keare the corresponding shape functions andj is the vertical index of the node. The

nodal values eke are taken in a constant sigma plane (Figure 3.1).

Figure 3.1 Evaluation of horizontal gradients of a generic variable e, at node n, for the
SCM and CCM.
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In the CCM, the governing equations are still written in sigma coordinates, except

for the terms involving horizontal gradients, which remain in their cartesian form. Since

the nodes are not defined in horizontal planes, the values needed to evaluate the gradients

at neighboring verticals are interpolated between adjacent vertical nodes. Consistent with

the use of linear .finite elements, a linear interpolation is used. Horizontal gradients are

evaluated as:

nel (n) 3 acp'
~ ~ A' kee'

ae

I

= e~l k~l ea:X; ke
ax. nel (n), .

n,} L Ii'e
e=l

i = 1,2 (3.6)

where the valuese I ke are defined in a fixed horizontal plane (Figure 3.1). While in most

of the water column the areas Ii I e and the shape functions cpI ke coincide with the elemen-

tal areas and shape functions, near the bottom the evaluation of (3.6) requires special treat-

ment. Two alternatives were considered. The first alternative, loosely based on Beckmann

and Haidvogel (1993), uses an extrapolation along the vertical (Figure 3.2a), while the

second (Fortunato and Baptista, 1994b) uses an interpolation along the bottom (Figure

3.2b). The first alternative is computationally simpler and may be more stable for deep

ocean applications, but the second formulation appears to be more stable for coastal appli-

cations (see Appendix A). The second formulation is retained in the remaining of this

paper, leading to, in (3.6):

(3.7)

(3.8)

where the subscript b refers to bottom values (Figure 3.2b), element e is defined by nodes

n, i and k, and,

Hn + Zn,j

(J.njk = Hn - Hk
(3.9)
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where k andj are the horizontal and vertical node indexes, respectively.

surface / /" a)

Figure 3.2 Evaluation of near-bottom horizontal gradients of a generic variable e, at node
n, for the CCM. a) extrapolation; b) interpolation. The subscript b indicates a bottom node.
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3.3 Truncation errors

Truncation errors for CCM and SCM are compared in this section. For simplicity,

we restrict the analysis to 2D and assume a rigid-lid approximation. Finite difference ana-

logs for both methods (Table 3.1) and associated truncation errors (Table 3.2) are used

below to discuss consistency, convergence, and stability. Truncation errors were devel-

oped by expansion in Taylor series of the finite difference analogs. In addition, truncation

errors for the SCM were written in cartesian coordinates using the relations developed in

Appendix B.

3.3.1 Consistency

Both methods are unconditionally consistent. Simple examination of Table 3.2

shows that this is true for the SCM. However, for the CCM, tu appears in the denominator

of truncation terms introduced by interpolation errors, and a closer examination is needed

to demonstrate unconditional consistency.

Table 3.1 Finite difference analogs (see stencils in Figure 3.3).

We examine, for illustration, the limits of the two leading terms that have tu in the

denominator (Table 3.2), when tu and Llcrapproach zero. While three cases (tu approach-

ing zero faster, slower, and at the same rate as Llcr)had to be analyzed, the second and third

cases are relatively straightforward, and we discuss here only the first and least intuitive
case.

Method Finite differences analog

SCM as_as crahas_ Si+l,k-Si-l,k crahSi,k+l-Si,k-l
ax = as - liasacr - 2Llx - lias 2Llcr

as (Si+l,k'_ILlcr3+Si+1,k,Llcr4) - (Si_l,k_1Llcrl +Si_l,kLlcr2)
CCM ax- 2LlxLlcr
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k+l

k
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t

I dO",
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X center of derivative

. node used in the finite
difference analog

Figure 3.3 Stencil for: a) SCM; b) CCM.
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For the first term:

(3.10)

Figure 3.4 Evaluation of ~crb ~cr2'~cr3and ~cr4(see Table 3.2) for a small &.

Using geometric arguments (Figure 3.4) ~1 can, for a constant slope, be related to

~cr and & as:

(3.11)

with

lim ~h = 0
Ax-+O

(3.12)

and, therefore:
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Table 3.2 Truncation errors.

Method Truncation Error

SCM (
cria3e

)
2 2

6" aZ3 [( cri~x) - (h~cr) ] +

(~)2

[

la3e a3e a3e

]2 33 + cri. y- + (cri)2 '2 + higher order termsax ax az axaz

CCM ~h2a7e + (~)2a3e + ~2h2~+~h3 a3e+
4~ ai 6 ax3 4 axai 12~ az3

higher order terms

CCM
(near bottom

~ 1- aa7e 1- aa7e i2a~ 1- aa7e
---+ai~ +
2 1+aax2 1+aaxaz 2 1+aai

(~)2a3e ia(dx)21-aa3e Pa(~)2 (I-a)2a3e--- +
6 ax3 2 1+aax2az 2 1+a axai

;3a(~)2 (I-a) (I-2a)a3e .
- 6 1 3 + higher order terms+a az

ah
i = ax

crh
a = i~

~I

[

2~hcr

l

ah
l (

2hldhlcr

)]
lim (-) = lim _ ~cr+ = 0 (3.13)

(~ x, ~ (1) -. 0 ~ (~ x,~ (1)-.0 h2 _ dh2 ax h2 _ ~h2

Hence, the limit in (3.10) is zero.



67

Similarly,

~ 3 0
~ = «-2~hCJ)/(h2-~h2) )I~ x [~CJh(h2+3~h2) (2~CJh+31~hICJ)-

(3h2 + ~h2) (~CJ2 (h2 + ~h2) + 3~CJhl~hICJ+ 2~h2 ~CJ2) ]

(3.14)

and,

(3.15)

3.3.2 Convergence

The SCM has higher order accuracy than the CCM (Table 3.2). However, the con-

vergence of the two methods has a particular behavior in two special situations (Table

3.3): zero horizontal gradients, and zero gradients along planes of constant sigma. Both

situations are important from a physical viewpoint: the first represents a state of equilib-

rium for density, and the second closely mimics the case of a long-wave velocity field.

When the horizontal gradients are zero, the CCM truncation error in the water col-

umn converges to zero with ~CJalone, since ~1~cr2/4 and ~3<L\cr3/1O.This is not surpris-

ing since only vertical gradients are being resolved. However, near the bottom, the

truncation errors depend on~. The truncation error for the SCM depends on both ~CJand

&, and unless the "hydrostatic consistency" condition (Haney, 1991) is observed:

I

~Oh
I

Llx< ~CJ
hox

(3.16)

the error in & is dominant, and further vertical refinement will not improve accuracy. In

presence of steep slopes (3.16) can be a very stringent condition, making horizontal refine-

ment the primary mechanism to reduce errors in the SCM. In this case, the CCM becomes

more attractive than the SCM. Conversely, if the gradient along s is zero, the error for the

SCM depends on ~CJalone, while for the CCM it also depends on & (Table 3.3). In this

case, the SCM is a more suitable choice.
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Table 3.3 Truncation errors in special cases. Symbols are defined in Table 3.2

The particular form of the SCM truncation error has led to some confusion. When

horizontal gradients are zero, decreasing dx while keeping ~cr fixed reduces the truncation

error until the factor associated with the third derivative vanishes. Further reducing dx

increases the truncation error asymptotically because this error involves the subtraction of

two positive quantities. This growth has led to the erroneous idea that sigma coordinate

models would be non-convergent unless (3.16) was verified (e.g. Haney, 1991). The term

"hydrostatic inconsistency", introduced by Janjic (1977) for atmospheric models, is mis-

leading and may have fuelled this misconception about sigma coordinate models: it indi-

cates the sequential use of two different approximations of the hydrostatic equation, rather

than a numerical inconsistency. In the context of shallow-water models, different approxi-

mations of the density field may be used in the vertical integration of the density field and

in the evaluation of the baroclinic pressure gradient. The use of two different approxima-

case method truncation error

SCM
(a; a'e) 2 26"' az3 [(crix) - (hcr) ] + higher order terms

ae = 0ax
I 2a7e 3 3 a3 .CCM

4h 2+ 12h +hlgher order termsaz az

SCM

(a; 2 a'e)ae - 6h (cr) . acr3 + higher order terms
- = 0as

2 i 3ae I 2 2 2 i 3 a7e
-cr() (-) -+ (---i-cr (x) (-) )-

h acr 4 2h h acr2
CCM

(.1., (lI.x)2 a;' .1.2 -)a'e .12 - 6 (h) - 4hcrl acr3+ hIgher order terms
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tions corresponds to hydrostatic inconsistency, but the truncation error for the evaluation

of horizontal derivatives shows the consistency of the scheme and explains the error

growth (Mellor et al., 1994, Fortunato and Baptista, 1994b). The truncation error for the

baroclinic pressure gradient term (third term on the right-hand side in (3.4), involving both

the vertical integral and the horizontal gradient), is qualitatively similar (Appendix C). A

similar effect in (3.11) can also lead to a non-monotonic convergence for the CCM.

3.3.3 Numerical diffusion

Unlike for the SCM, the CCM truncation error includes a second vertical deriva-

tive. Therefore, when this formulation is used to compute advective accelerations or trans-

port (in the transport equation), it will introduce vertical numerical diffusion. Since

horizontal gradients are multiplied by velocity in the advective terms, the numerical diffu-

sion coefficient is proportional to velocity and can be either positive or negative. In

regions where eddy viscosity is small (e.g., highly stratified regions), numerical diffusion

can therefore lead to instabilities. The worst problems should occur near the bottom,

where numerical vertical diffusion can be very large (Table 3.2), while physical eddy vis-

cosity decreases sharply.

3.4 Numerical tests

Three tests are presented next to illustrate the properties discussed above. Tests 1

and 2 demonstrate that the convergence of CCM and SCM depends largely on the prevail-

ing horizontal gradients: CCM performs better in Test 1, which represents an equilibrium

state, with zero horizontal gradients of density; both methods perform similarly, and rather

poorly, in Test 2, which represents a case of upwelling forced by wind and baroclinic pres-

sure. Test 3 simulates a tidal wave propagating over a step, and illustrates the role of

numerical diffusion.

The tests were conducted with RITA2v (River and Tidal Analysis 2D vertical), a

two-dimensional, width-averaged hydrodynamic model (Fortunato and Baptista, 1993).
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The tests are therefore non-rotating and strictly two-dimensional, with one of the horizon-

tal velocity components neglected RITA2v uses a mode splitting technique in time: the

depth-averaged equations are solved first for the elevations and depth-averaged velocities,

and then the 2D momentum and continuity equations are solved for the horizontal and ver-

tical velocities. The depth-averaged solution is based on the Generalized Continuity Wave

Equation (Kinmark, 1985), and the domain is discretized with linear finite elements both

in the horizontal and vertical directions. Baroclinic pressure is treated diagnostically.

3.4.1 Free baroclinic flow

Test 1, adapted from Walters and Foreman (1992), consists of an idealized conti-

nental shelf, shelf break and continental slope (Figure 3.5a). No-flow and zero elevations

are imposed at the landward and seaward boundaries, respectively. A no-slip condition is

used at the bottom, and the vertical eddy viscosity is set to H/24oo[m2/s]. Since there are

no boundary forcings and the density field is only a function of z (Figure3.5a), the fluid

should be at rest. In the numerical model, the flow is forced by the truncation errors in the

evaluation of the baroclinic pressure. To focus our attention on these truncation errors, as

well as for stability reasons, advection is neglected. Furthermore, the depth-averaged solu-

tion is replaced by the analytical solution to avoid error feedbacks.

The behavior of the velocity errors with dx and dCJ(Figure 3.6) confirms the con-

clusions from the truncation error analysis: CCM converge rapidly with dCJ,while SCM

convergence requires decreasing both dx and dCJ,and horizontal resolution appears as the

primary error reduction mechanism.

The location of the largest errors further confirms the formal analysis. For the

SCM, and for small dx, the hydrostatic consistency condition is verified and the truncation

error is dominated by dCJ.Maximum errors occur therefore in the deepest region at the

surface, where vertical discretization (hdCJ)is coarsest. For (dx,dCJ)-(1500,0.05) (Figure

3.6a) and (dx,dCJ)- (2500,0.08)(Figure3.6b),truncationerrorsdue to dx and dCJcancel

in this area, and the error curves reach a minimum. For larger ratios of dxldCJ, the maxi-
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mum error occurs over the shelf break near the bottom, suggesting that the curvature of the

bathymetry, neglected in the truncation error (Appendix B), may have an important effect

in some cases. For the CCM, the largest errors occur generally in the deep areas near the

surface,againwhereverticaldiscretizationis coarsest.However,for dx =2500 m and I1cr

smaller than 0.025, the largest errors occur over the shelf break and close to the bottom,

and simultaneously the convergence in I1crstops (Figure 3.6b). This behavior reflects the

truncation error in the second vertical derivative near the bottom (Table 3.2), which is only

a function of dx. In this particular test, this error only affects the continental shelf and

shelf break, since the near bottom density is constant on the continental slope.

For this test, and within the restrictions of uniform grids, an appropriate spatial dis-

cretization may consist of 60 nodes in the vertical (l1cr=O.017)and 11 nodes in the hori-

zontal (l1x=5OOOm).The vertical resolution allows 10nodes within the pycnocline, which

extends for half the wavelength of the density field and occupies one sixth of the water

column in the deepest region of the domain. The horizontal resolution corresponds to a

dimensionless wavelength between 30 and 200, for a sixth-diurnal wave, and therefore

can be considered acceptable for tidal simulations. For this level of discretization, Figure

3.6 suggests that the CCM represents a considerable gain in accuracy relative to the SCM.

Indeed:

· for (&,l1cr)=(5ooo,0.05), the standard deviations of the errors are ten times smaller for

the CCM than for the SCM (Figure 3.6a), and reducing I1crwould further increase the
difference (Figure 3.6b);

· for (&,l1cr)=(25oo,0.017), the maximum error for the CCM is more than an order of

magnitude smaller than for the SCM (Figure 3.6b), and increasing & would again
increase the difference (Figure 3.6a).

This test confirms that, for the particular situation where the density field is a func-

tion of z alone, the SCM can lead to very large errors for typical horizontal resolutions.

The CCM avoids these large errors, and converges rapidly with I1cr.
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Figu'f 3.5 Bathymetry (h) and density fields (p) for: a) Test 1 (contour interval 0.375
kglm ); b) Test 2 (contour interval 0.5kglm ).
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I1x [m]
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0.01 0.10
~cr [-]

Figure3.6 Test 1. Comparison between the SCM (circles) and the CCM (triangles). a)
Convergence in dx (~O'= 0.05); b) convergence in ~O' (dx = 2500 m). Maximum errors
are shown in thick lines and standard deviations in thin lines.
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Direct extrapolation of the actual magnitude of the errors to real simulations is dis-

couraged, since the solution of this test is very sensitive to the friction parameterization

and to the vertical and horizontal diffusion coefficients. Also, we are neglecting the feed-

back loop between errors in the calculation of the velocity and density fields, which may

attenuate both errors as time progresses (Mellor et al., 1994).

3.4.2 Forced baroclinic flow

As shown by the truncation error analysis and confirmed by numerical tests (not

shown), when the density field is a function of cralone, the performance of the two meth-

ods is the reverse of that observed in Test 1. Test 2 illustrates a case of upwelling where

the density field is a function of both zand cr(Figure 3.5b). The bathymetry and boundary

conditions are the same as in Test 1. A surface stress of 1 N/m2 in the positive x direction

1.0 m/s
~

Figure 3.7 Analytical solution used in Test 2.
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Figure 3.8 Test 2. Comparison between the SCM (circles) and the CCM (triangles). a)
Convergence in Llx (~(j = 0.05); b) convergencein ~(j (Llx = 2500 m). Maximum errors
are shown in thick lines and standard deviations in thin lines.
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is imposed, corresponding to a wind speed of about 20 mIs. To define the vertical eddy

viscosity coefficient, we set the surface velocity to 3% of the wind speed in the absence of

baroclinic forcing, obtaining Av=H124oom2/s. Numerical results are compared with a

semi-analytical solution (Figure 3.7) derived in Appendix D. The depth-averaged solution

is again replaced by the exact solution and advection is neglected.

Test I grids are again used to examine the convergence both in At and in ~cr (Fig-

ure 3.8). Results show that significant errors can now occur for both formulations. While

Test 1 suggested that the CCM reduces the large errors introduced by the SCM, Test 2

shows that this conclusion is not general. When the density field is a function of both z and

cr,either formulation can be more accurate, depending on the relative strength of each part

of the density field. Relying on the good accuracy of the CCM based on simple tests like

Test 1 can therefore be misleading.

3.4.3 Barotropic flow over a step

Test 3 examines the performance of the two methods to evaluate advective acceler-

ations, by simulating a tidal wave propagating over a bottom step. The bathymetry is

given by:

5 + (3x) /5000 .

h [m] =
{

30 + (3x) /5000 - 25cos ( (1t(x -7000)) /5000)

55 + (3x) /5000

o $;x < 7000

7000 $;x < 120~H7)

12000 $;x < 15000

The wave has a period of 12hours (S2) and an amplitude of 1 m at the open bound-

ary. The horizontal domain was discretized with 31 evenly spaced nodes. In the vertical,

the nodes were distributed as (Fortunato and Baptista, 1995):

1 . 4-I
cr. = (-)-1

I I-n (3.18)

with n=20 nodes per vertical.
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Two eddy viscosity parameterizations proposed by Davies (1993a) were used.

Eddy viscosity profile A is depth independent and defined as:

with (3.19)

where K is a dimensionless coefficient taken as 0.0025, itis the depth averaged velocity,!1

is the depth of the bottom boundary layer and 'tb is the bottom stress.

Eddy viscosity profile B is given by (3.19) in the upper 80% of the water column,

then decreases linearly to:

(3.20)

at the bottom. Here 1Cis the von Karman constant (0.4) and Zo is the roughness length

taken as 0.01 m. A quadratic bottom stress with a friction coefficient of 0.0 I was imposed.

The time step was set to 10s. The horizontal diffusion coefficient was set to I m2/s

in the depth-averaged solution (to avoid spurious oscillations) and was neglected in the

vertical solution. The model was run for six tidal cycles in ID mode, plus four cycles in

2D mode. At the last tidal cycle, velocities at x =9500 m were harmonically analyzed for

S2 and its major harmonics (Zo. S4 and S6), and the results were compared with those

obtained with a very finely discretized grid (30I horizontal nodes, 60 nodes per vertical

distributed according to (3.18), and a time step of I s). The reference solution 'was com-

puted with the SCM.

For profile A, the eddy viscosity (3.19) is of the same order of magnitude as the

numerical diffusion introduced by the CCM near the bottom (Table 3.2). Numerical prob-

lems can therefore be masked by the large viscosity, and the S2results compare reasonably

well with the reference solution (Figure 3.9a). Still, the CCM fails to reproduce the non-

linear components satisfactorily (Figure 3.9b). For the more realistic profile B, the near-

bottom eddy viscosity (3.20) can be two orders of magnitude smaller than the numerical
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diffusion, leading to visible errors even in the main tidal constituent (Figure 3.9c). The

introduction of numerical diffusion is therefore a major drawback of the CCM.

0.05

0.0010

-0.6
- referenc
~SCM
G-E>CCM

~

-1.8.01- -01>2' 1>.03 0.04 0.05
velocity [m/s]

-0.8

Figure 3.9 Vertical profiles of velocity amplitudes at x =9500 m. a) 82>eddy viscosity
profile A; b) 84, eddy viscosity profile A; c) 82, eddy viscosity profile B.
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3.5 Final considerations

Two methods to evaluate horizontal gradients in shallow water models were com-

pared. Both methods use finite-element sigma-coordinate grids, but the SCM evaluates the

horizontal gradients in a sigma-coordinate system (the traditional approach), while the

CCM evaluates the gradients directly in cartesian coordinates, interpolating the necessary

values at neighboring verticals. The comparison was performed through truncation error

analysis and illustrated with simple numerical examples (2D, diagnostic) for both density

and velocity gradients.

As shown earlier by Beckmann and Haidvogel (1993) and Fortunato and Baptista

(1994b), the CCM is more accurate than the SCM when the horizontal gradients are zero.

However, relying on such a simple test to assess the relative accuracy of CCM and SCM is

misleading, because either method can be more accurate than the other depending on the

direction of the smaller gradients. Furthermore, when advective accelerations are com-

puted with the CCM, positive or negative numerical diffusion is introduced near the bot-

tom, which can lead to distortions of the bottom flow and potentially to instabilities.

Similarly, if the CCM was used to compute advective transport, numerical diffusion would

also be introduced with analogous consequences.

Overall, the drawbacks of the CCM outweigh its advantages, and we recommend

the evaluation of horizontal derivatives in sigma coordinates. For velocity gradients, the

SCM represents a better approach regardless of horizontal grid discretization (Fortunato

and Baptista 1994a).For density gradients, the use of SCM will require keeping truncation

errors under control, either with a fine horizontal grid spacing near steep slopes or through

one of the methods described in Section 3.1.

For finite element-based models, which have capability for flexible local refine-

ment, the use of a fine horizontal grid spacing near steep slopes is particularly attractive.

The difficulty is choosing the appropriate horizontal resolution for a given system. Based

on a lose truncation error analysis, Deleersnijder and Beckers (1992) proposed:
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(3.21)

Our results suggest that the following alternative approach is feasible:

Step 1: Choose the horizontal resolution needed to resolve barotropic processes

(e.g., using dimensionless wavelength criteria, or a posteriori truncation error estimation

as proposed by Hagen and Westerink, 1995);

Step 2: Choose the vertical resolution that is needed to represent properly the den-

sity field, as in Test 1;

Step 3: Choose the local horizontal resolution by forcing truncation errors in &

and ~cr to be similar, i.e.:

(3.22)

where crshould be characteristic of the position of the pycnocline.

Step 4: Adjust the vertical resolution to account for expected vertical gradients in

the velocity field, from tides (Fortunato and Baptista, 1995),wind (Davies, 1985), or verti-

cal stratification (Davies, 1993b).

We note that if & is larger than in (3.22), horizontal truncation errors will domi-

nate, and vertical resolution will be ineffective. Following the three steps outlined above

rather than applying the hydrostatic consistency condition will in general allow for less

refined horizontal grids because the definition of the horizontal resolution will not be

affected by the extra vertical resolution potentially required by vertical gradients in the

velocity field (e.g., as needed to resolve surface or bottom boundary layers). Our approach

is also more rigorous than (3.21) since it takes into account the vertical resolution. How-

ever, the two approaches should be comparable for typical vertical resolutions (~cr-O.O1-

0.1).
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The horizontal grid refinements will not necessarily be a major burden on the com-

putations. Near strong topographic changes, barotropic tidal models already require finer

grids than those based on wavelength criteria (Westerink et al., 1992, 1994a and 1994b).

In many cases, the horizontal resolution required to simulate barotropic waves may there-

fore be sufficient to lead to an acceptable accuracy in the evaluation of baroclinic pressure.

Appendix A: Evaluation of Near-Bottom Gradients in the CCM

We compare two alternative approaches to evaluate near-bottom horizontal deriva-

tives in cartesian coordinates. A fictitious value can be obtained below the bottom by

extrapolation (Figure 3.lOa), or a value can be interpolated at the bottom (Figure 3.lOb).

The first alternative is apparently the most attractive: it is simpler from a computational

viewpoint, and it is centered in space, thus avoiding truncation errors in the second hori-

zontal derivative. However, the combined findings of Beckmann and Haidvogel (1993)

and Fortunato and Baptista (1994a) suggest that the extrapolation method can lead to

instabilities in the evaluation of gradients of both density and velocity. To investigate this

possibility, we look at the error amplification for the two formulations. The goal is to esti-

mate the effect of a small error in a nodal value on the evaluation of the derivative. If this

effect is small, the method will be robust; if the effect is large, errors can grow rapidly and

instabilities can occur.

Consider the 2D finite difference analogs of (3.6), assuming a rigid lid approxima-

tion. Referring to the stencils in Figure 3.10, we have for the extrapolation:

a' _ L\z+ Llx(1 - a) ia + Llx(1- a) iaaa
l

_ n+ l,j L\z n-l,b L\z n-l,b+ 1

ax n,j - 2Llx (3.23)

and for the interpolation:

aa
l

= a'n+l,j-(1-a)an,b-aan_l,b
axn,j Llx (1 + a)

(3.24)



82

a)

o node used in the finite
differenceanalog .

. extrapolation point

8n-J.b+J

8n.j l 8 I n+Jj..............................

b)

~.~~!............................................

o node used in the finite
difference analog

. interpolation point

Figure 3.10 Stencil for: a) extrapolation; b) interpolation.

We then assume that each nodal variable, at a given time step, can be written:

-
8x=8x+Ex (3.25)
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where Sxis the exact value. Exis the error. and the tilde indicates a numerical value. Sub-

stituting (3.25) into (3.23) and (3.24). and taking the derivative of the resulting expression

relative to the error at each node. we obtain:

as I

aEn+ I,j - 2Ax
as = _( ~ + i (1 - a) )
aEn _ I, b 2Ax 2dz

as _ i (I - ~J.26a-C)- ')A..
n-I,b-I

as I
aE + 1 . - Ax(1 + a)n ,J

I-a
Ax(I +a)

a

Ax(I + a) (3.27a-c)

for the extrapolation and interpolation. respectively.

In coastal and estuarine applications. where friction is often an important process,

the near-bottom vertical grid spacing must be very small to resolve the bottom boundary

layer (Fortunato and Baptista. I994c). Error amplifications (3.26b-c) then become very

large, potentially leading to instabilities. Also. the extrapolation introduces slightly more

vertical numerical diffusion than the interpolation (Fortunato and Baptista. 1994a). Inter-

polation is therefore the best option for coastal applications. For deep ocean applications.

however, friction is unimportant and the near-bottom vertical resolution is usually coarse.

Moreover. the horizontal resolution is also relatively coarse. increasing the truncation

error in the second horizontal derivative for the interpolation formulation (Table 3.2). In

this case. the extrapolation may be the most appropriate choice.

Appendix B: Derivatives in a-Coordinates

In order to compare the evaluation of horizontal gradients in sigma and in cartesian

coordinates, it is convenient to convert the truncation errors in a-coordinates to the carte-

sian coordinate system. For this conversion. we need to relate derivatives in the two coor-

dinate systems. First derivatives in the sigma and cartesian coordinate systems, using a

rigid-lid approximation. are related as:

as as zias- = -+--as ax h az (3.28)
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where i =ah/ax. Applying expressions (3.28) successively, and assuming a constant bot-

tom slope, we can relate higher order derivatives in the two systems:

a1e a1e 2zia1e zi 2a1e

ai = ai +Taxaz + (Ii) ai

a3s = a3s + 3zi~+ 3 (zi) 2~+ (zi) 3a3s
as3 ax3 h aiaz h axai h az3

(3.29)

(3.30)

a1e a1e a1e ae
~ = h~+zi- 2 +i,:\
osocr oXoZ az oZ

(3.31)

(3.32)

(3.33)

Appendix C: Truncation Error for the Evaluation of Baroclinic
Pressure

We want to evaluate:

where we used a rigid-lid approximation. The two of the terms that cannot be evaluated

exactly are:

cr. I

J+ apx. = J -dcr
} as

cr.
J

(35)
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and:

(Jj+ 1

Yj = J pdcr
(J.

J

(36)

The truncation error for the integral of a generic function a is obtained by expand-

ing the integral in Taylor series:

(x+.:\x) a' {~x)2 a" {~x)3 alii {~)4
J adx = 0 + a~ + _ + , + _ , + ... (37)
x

The integral is approximated as:

a (x) +a (x+~x) _ ~x
(

,a" {~x)2 alii (~x)3
)

_
~x-T a+a+a~x+ 2 + 6 +...-

2 3 4
a' (~x) a" (~x) alii (~)

a~ + _ + . + _ _ + ...

(38)

The truncation error is therefore:

II

(
A _ 3

TEl = _ a _~) _ alii {~x)4. +... (39)

The truncation errors will be evaluated assuming zero horizontal derivatives for

simplicity (as in Mellor et aI, 1994).The numerical approximation of Xj is:

(40)

where the brackets indicate a numerical value in general, and int indicates a numerical

integration. Calling TEr the truncation error in the evaluation of the derivative, (40) can be

written:

(41)



or, using (39):

The truncation error for the derivative along s is:

The truncation error for Xj is therefore:

or, in cartesian coordinates:

(
craha3p ah 2 craha3p ah 2

1 )

.1cr

TEr =. --- (cr-Ax) + --- (cr-.1x) - +
J 6axaz3 ax . 6axaz3 ax . 2J J+I

_ hah (.1cr)3a2p_ 2 ah (.1cr)3a3p_ 2ah3 (.1cr)4a3p _
a 6 2 h cra 12 3 h a 24 3 + ... -x az x az x az

(
craha 3p ah 2 craha 3p ah 2

1 )
.1cr

6axaz3(crax.1x) j+6aXaz3(craX.1X) j+1 2+

h
ah (.1cr)3a2p 2ah (.1cr)3a3p 3.1cr

- ax 6 ai-hax 12 ::i_3(cr+T)+...

The truncation error for 1J is simply:

(.1cr)3 2a2p (.1cr)4 3a3p
TE Yj = - 1? h 2 - 24 h 3 + ...az az

Adding TEXjand TEYjmultiplied by ~~::
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(42)

(43)

(44)

(45)

(46)
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(47)

The difficulty now is to make the summation of the TEj from a generic position to

the surface. We concentrate here on the third derivative terms (for which the truncation

error depends both on ~ and ~cr), and we note that crj+~cr=crj+1.

(48)

Clearly, the method is unconditionally consistent. The error is proportional to I:1cr,

which should mean that it would converge with ~cr alone. However, when we sum over

depth, the sum of ~cr becomes cr.
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Appendix D: Semi-Analytical Solution for Steady-State, Baro-
clinic, Wind-Driven Flow

In order to compute errors in Section 3.4.2, a semi-analytical solution for a forced

baroclinic flow is derived here. Neglecting advective accelerations, horizontal diffusion

and rotation, the steady state one-dimensional momentum equation (3.4) reduces to:

(3.49)

Equation (3.49) is solved with the boundary conditions:

ula=-1 = 0 (3.50)

where 'twis the wind stress. The density field is fixed in time as:

(3.51)

where a cubic dependency on 0" was chosen to give non-zero truncation errors for both the

SCM and the CCM. Integrating (3.49) twice in the vertical and using the boundary condi-

tions (3.50), we get:

gH2 (1dt1 2 1dt1Po 5 1aHPo 6

)
u(O") =- --(0" -1)+---(0" +1)+---(0" -1) +

Av 2ax 20ax PI 40ax PI

H't

A w (0"+ 1)vPo

(3.52)

If one of the lateral boundaries is closed, continuity forces the depth-averaged

velocity to be zero in the whole domain. Integrating (3.52) over depth and equating the

result with zero, we can solve for the surface gradient:

aTl =
ax

't ah
1260gB - 54axPI

840Po-51P1
(3.53)
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Replacing (3.53) in (3.52), the velocity can be written:

H'tw 1 630

[
~ PI 6 5

]u(<r)=y{-(<r+1)+840 -51 (cr-l)+W-(<r +2CJ+l) }+v Po Po PI Po
2

gpIH dh 27

[
~ PI 6 ~

]
1 6

-;r-{840 -51 (cr-l)+W-(<r +2CJ+l) +4i)(<r -I)}v x Po PI Po Po
(3.54)

The model used in this paper treats baroclinic pressure diagnostically, Le., this

force is computed in the beginning of the run assuming 11=0and held constant in time.

With this simplification, (3.53) and (3.54) become:

Cht_ 3tw 9 dhPI
ax - 2gHpo - 140dXPO

(3.55)

and,

2
Htw ~ gplH dh 6 ~

u(<r)'" ... (3cr+4<r+ 1) + 280 A a (7<r -9cr+2) (3.56)vPo Po v x

Equation (3.55) is solved for 11numerically, starting from the boundary where ele-

vation is known. The total depth is then computed at each point, and (3.56) is solved for

velocity.
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CHAPTER 41

VerticalDiscretization in Tidal Flow
Simulations

Abstract

We propose an empirical law for vertical nodal placement in tidal simulations that

depends on a single parameter, p. The influence of dimensionless numbers on the optimal

value of p is analysed through a series of numerical experiments for an individual vertical,

and a single value of p is found to be adequate for all cases. The proposed law can lead to

gains in accuracy of over two orders of magnitude relative to a uniform grid, and com-

pares favorably with non-uniform grids previously used in the literature. In practical appli-

cations, the most effective use of this law may require each vertical to have a different

number of nodes. Criteria for the distribution of the total number of nodes among different

verticals are also proposed, based on the concept of equalizing errors across the domain.

The usefulness of the overall approach is demonstrated through a two-dimensional later-

ally-averaged application to a synthetic estuary.

4.1 Introduction

Two general approaches have been used for the horizontal discretization of the

flow and transport equations in estuarine and coastal models: unstructured (typically finite

elements) and structured (primarily finite differences) grids. While finite elements allow

1. Accepted for publication in the International Journal for Numerical Methods in Fluids.
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for far superior flexibility in the description of irregular boundaries and in the placement

of local refinements, finite difference grids lead to simpler and arguably more efficient (in

a node per node basis) algorithms.

By contrast, structured grids have been the norm for vertical discretization. Meth-

ods using both orthogonal (z-coordinate, Leendertse and Liu, 1975, Casulli and Cheng,

1992) and curvilinear (sigma coordinate, Blumberg and Mellor, 1987, Lynch and Werner,

1991, Walters, 1992) grids have been extensively used. Sigma coordinates are probably

the most popular (see review by Cheng and Smith, 1990), offering three main advantages

relative to the z-coordinates: a) a better resolution of shallow areas; b) a smooth represen-

tation of the bottom topography; and, c) a simpler treatment of the free surface. The major

disadvantage associated with the sigma coordinates is the potential for generation of large

errors in the evaluation of horizontal gradients near steep slopes (e.g., Gary, 1973, Haney,

1991, Deleersnijder and J.M. Beckers, 1992). However, several techniques can be used to

reduce these errors considerably (Signell et al., 1994, McCalpin, 1994, Stelling, G.S. and

J.A.TH.M. Van Kester, 1994).Moreover, z-coordinate models can also suffer from similar

problems (Fortunato and Baptista, 1994a, 1995).

Recently, we proposed what can be seen as the loose vertical equivalent to hori-

zontal unstructured grids (Fortunato and Baptista, 1994b). Denoted localized sigma coor-

dinates (LSC), this approach combines the main advantages, as well as disadvantages, of

the traditional domain-wide sigma coordinates (DWSC) with a higher flexibility to dis-

cretize the vertical direction: the nodal placement is independent for each vertical, thus

local refinements do not carry over to the rest of the domain.

The concept behind LSC is simple. As in DWSC, the height of the water column is

linearly mapped into a fixed interval. However, LSC recognize the solution of the internal

mode as an essentially one-dimensional, localized problem, rather than divide the domain

in levels. Therefore, each vertical is discretized independently from the others. Horizontal

gradients of depth dependent quantities, which constitute the only direct link between
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nodes in adjacent verticals, can be computed either in cartesian or in sigma coordinates, by

interpolating the necessary quantities at neighboring verticals (Laible, 1992, Fortunato

and Baptista, 1994a, 1994b, 1995). Interpolations increase slightly the computational

costs (Fortunato and Baptista, 1994b), and may make LSC more awkward to implement

on some computer architectures. In the examples presented in this paper, these interpola-

tions are avoided by considering only barotropic flows and neglecting advection and hori-

zontal diffusion.

The use of unstructured grids in the vertical direction can lead to important compu-

tational savings relative to the methods currently used. For instance, stratified areas

require a fine local discretization (Davies, 1993a), which cannot be achieved efficiently

using unstructured grids. Also, one of the trends in ocean modeling is to simulate increas-

ingly larger domains, including simultaneously both deep ocean areas and shallow coastal

seas (Westerink et al., 1994a).Clearly, different areas will typically require a different ver-

tical resolution. In deep areas, friction is unimportant, and a coarse resolution is sufficient

near the bottom as long as a slip bottom boundary condition is used; in contrast, a good

representation of the bottom boundary layer is needed in shallow areas.

Still, one cannot take full advantage of the flexibility of the LSC without appropri-

ate criteria to discretize the vertical dimension. The primary purpose of this paper is to

develop a criterion for vertical nodal placement. Because a very large number of parame-

ters can potentially influence an optimal discretization, this study is restricted to unstrati-

fied tidal flows. In spite of the relative simplicity of these flows, the criterion proposed

herein can greatly reduce the errors in tidal simulations relative to vertically uniform grids,

and provide useful guidelines for the simulation of more complex flows.

The criterion developed here addresses both the nodal distribution in a single verti-

cal and the horizontal distribution of the total number of nodes among different verticals.

This criterion can be applied on three different levels of complexity. While the two more
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complex forms lead to a varying number of nodes per vertical (thus requiring the use of

LSC), the simplest form can also be applied to DWSC models.

Previous work on vertical discretization strategies is surprisingly scarce. Noye

(1984) proposed the use of a "kappa grid", which allows a higher resolution near the bot-

tom. Errors relative to a uniform grid are significantly reduced, while maintaining second-

order accuracy in /).(J(Noye and Stevens, 1987). However, optimal kappa grids vary

strongly with frictional parameters, making the method difficult to use in practice. Davies

(1991) compared four approaches to discretize the vertical (a kappa grid, logarithmic and

log-linear grids, and a spectral method), and found the spectral method and the log-linear

grid to provide the fastest convergence. However, either one or two parameters need to be

specified in all these four methods, and no criteria for their specification were proposed.

The method presented herein compares favorably with the logarithmic and log-linear

grids.

This paper includes five sections in addition to the introduction. Numerical For-

mulation and Dimensionless Numbers describes the model used in the numerical tests,

and introduces the relevant dimensionless numbers. Nodal Distribution in a Single Verti-

cal introduces two types of grids, and establishes the optimal distribution of the nodes in a

single vertical based on the effect of the dimensionless numbers. Horizontal Nodal Distri-

bution addresses the distribution of the total number of nodes among the different verti-

cals. Application presents an application to a two-dimensional laterally-averaged

synthetic estuary, to illustrate the gains in accuracy achieved with the optimized grids. The

final section presents a summary and some concluding remarks.

4.2 Numerical Formulation and Dimensionless Numbers

The propagation of tides is generally modeled with the shallow water equations,

which describe the conservation of mass and momentum under the conventional hydro-

static pressure and Boussinesq approximations. Here we further neglect advective acceler-
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ations and rotation effects, in order to decouple the two horizontal momentum equations.

Advective accelerations can be neglected because they are usually small compared to the

gravity term, and rotation was shown to have little effect on the convergence of several

numerical methods to solve the vertical structure of tidal flows (Davies, 1991). With these

simplifications, each momentum equation can be written:

au Ch1 a au- =-g-+-(A-)at ax az vaz (4.1)

where:

x,z are the cartesian coordinates;

t is time;

u is the horizontal velocity;

11is the elevation of the water surface;

g is the gravitic acceleration; and,

Av is the vertical eddy viscosity.

Most three-dimensional shallow water numerical models decouple the treatment of

the horizontal and vertical dimensions, in an explicit recognition of the different space and

time scales involved. The decoupling is usually accomplished by the introduction of exter-

nal and internal modes. Loosely stated, the external mode determines the elevations (and,

in some case, the depth-averaged velocities), while the internal mode resolves the vertical

structure of the flow.

Consistent with the objectives of this paper, we will concentrate here on the inter-

nal mode. To isolate this mode, we assume an elevation field of the form:

27[t

11 =Acos (T +cp) (4.2)
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where A, T and cI>are the wave amplitude, period and phase, respectively. The gravity forc-

ing can then be written as:

(4.3)

or, after re-arrangement:

<h1 21tU 21tt
gax = -T cos(T + cI>+ cI>')

(4.4)

where we introduce a free stream velocity U and a phase cI>'defined as:

(4.5)

and:

(4.6)

Physically, the free stream velocity represents the velocity amplitude in the

absence of friction. In deep waters, where the effect of dissipation is restricted to the bot-

tom layer, U represents closely the actual velocity amplitude near the surface.

Equation (4.1) is solved assuming a zero stress at the surface, and using a quadratic

bottom slip condition:

au
l

= 0
azz=0

(4.7)

Here cd is a dimensionless friction coefficient, h is depth and the subscript b repre-

sents values at the bottom. A rigid-lid approximation is used for simplicity.

In order to reduce the number of physical parameters involved, (4.1) and (4.7) are

written in dimensionless form. Dimensionless quantities are defined as:
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v = ulU 't = tiT cr = zlh

E = Avl(hU) r = (UT)lh
(4.8)

The momentum equation becomes:

(4.9)

and the boundary conditions:

aV

I

= 0
acr 0=0

(4.10)

Examination of the above equations suggests that three dimensionless numbers

determine the behavior of the solution: r, cd and E. While r and cd are relatively simple to

determine, E can vary both in time and along the vertical. For simplicity, E is assumed to

be time-independent, an assumption that will be relaxed later. Furthermore, a simple (yet

realistic) vertical profile is used to keep the number of parameters to a minimum:

(4.11)

where Eb and Ee represent the dimensionless eddy viscosity at the bottom and in the bulk

of the water column, respectively. This form of eddy viscosity profile is supported by

observations (Bowden and Fergussen, 1980) and has been used by a number of modelers

(Walters, 1992, Davies, 1993b).

The numerical solution of (4.9) and (4.10) forms the basis of our vertical model.

The momentum equation is discretized in space with linear finite elements. All terms are

centered in time except the viscosity term which is treated implicitly for stability.
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4.3 Nodal Distribution in a Single Vertical

The optimization of the nodal distribution for a single vertical is accomplished in

four steps. First, we define physically relevant ranges for the dimensionless numbers intro-

duced in the previous Section (r, cd, Eb and Ec ).Then, we select a general expression for

nodal placement, controlled by a single parameter (P) for simplicity. Next, several experi-

ments are carried out to study the effect of each dimensionless number on the optimal

value of p. Finally, the results from the optimal grid are compared against those obtained

with previously proposed vertical discretizations (Davies, 1991).

4.3.1 Dimensionless Numbers

The free stream velocity scales as U-AJglh (Equation (4.5», and r can be scaled

as r-ATJglh3. Assuming ranges of T,h and A of 104_105s,l-l000m and O.I-lOm respec-

tively, r varies between 10-1and 105. (The combination A=lOm, h=lm was not consid-

ered realistic.) Values of the friction coefficient cd used in the literature vary between

0.0025 (minimum recommended by Blumberg and Mellor, 1987) and 0.05 (as an extreme

case, Walters (1992) uses up to 0.07 in Delaware Bay). The dimensionless bottom eddy

viscosity scales as Eb- (ICtoJI1:bllp)I (hU) - (ICZo.fr,)Ih, whereK is the vonKarmanconstant,

Zois the roughness length, 'tb is the bottom friction and cfis a dimensionless friction coef-

ficient for depth-averaged models. Using values of Zobetween 0.00 1 and 0.1 m, and values

of cf between 10-3 and 5xlO-3 suggests a range of Eb between 10-8 and 10-3. Finally,

Davies and Aldridge (1993) suggest Ec= 0.0025 (iiIU), where u represents the depth-aver-

aged velocity. We will therefore take Ec between 10-3and 10-2.

One should distinguish between the physically meaningful parameters, rand Eb,

and those that arise from numerical considerations. r represents the dimensionless forcing

period, while Eb is related to the dimensionless bottom roughness. The friction coefficient

cd arises from the non-consideration of the high-shear near-bottom layer in many numeri-

cal models. If a no-slip bottom boundary condition is used, cd is set to infinity and thus

eliminated as a controlling number. Finally, Ec is physically determined by the other num-
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bers. However, in a numerical model it can be set independently, and therefore it was kept

here for completeness. An additional parameter governing wave properties in channels

relates to the rate of variation of the cross-sectional area (Prandle and Rahman, 1980, Jay,

1991). This parameter is not considered here because it does not affect the vertical struc-

ture of the flow.

4.3.2 Vertical Grids

Two expressions for nodal placement which allow a finer grid spacing near the bot-

tom are studied. The first expression ("grid a") was originally proposed for baroclinic

flows (Haney, 1991):

cr.=_(i-n p
I I-n) i = 1, n (4.12)

where n is the number of nodes, andp determines the degree of near-bottom resolution. A

uniform grid in the crdomain corresponds to p=1, and decreasing (increasing) values of p

lead to increasingly finer grids near the bottom (surface). The second expression ("grid W')

is given by:

cr. = (
1- i lip

I - )I-n -1 i = 1,n (4.13)

Grid Prepresents an adjustment introduced in this work to better reflect the phys-

ics of tidal flows. The variation of vertical profiles of velocity in tidal flows is very rapid

near the bottom, and decreases upward. In order to obtain accurate results efficiently, the

vertical grid spacing should vary in a similar manner. As a first order approximation, the

vertical grid spacing is given by the derivatives of the continuous forms of (4.12) and

(4.13), for a and p, respectively:

a' (x) = ---E-(x-n p-ln-l I-n) (4.14)
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where XE[1,n] and pE ]0,1[. Function b' is parabolic and can therefore represent a typical

velocity profile much better than a' which is hyperbolic.

0.0

-2.0

-8.0

-10.0
a. log log-linear

Figure 4.1 Examples of lO-nodea (p=O.03)and ~ (p=0.25) grids, for 10 m depth.
Logarithmic and log-linear grids (Davies, 1991)are also included for comparison.

The difference between grids a and ~is illustrated in Figure 4.1. In grid a, the

reductionof spatialresolutionnear the bottomis slowerthan the correspondingincrease

of resolution near the surface, while the reverse occurs with formulation ~.As a result,
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properly resolving the bottom layer with grid a can lead to too coarse a resolution near the

surface, a problem that grid ~avoids. Relative to the logarithmic and log-linear grids pro-

posed by Davies (1991), both the a and ~grids have two convenient advantages: they

include the uniform grid as a particular case, and the first node (i=l) is naturally placed at

the bottom.Althoughthe log-linearand~gridsappearvery similarat the scale shownin

Figure 4.1, the ~grid is fairly coarser near the bottom.

The performance of grids a and~is compared using the default values of the

dimensionless numbers (Table 4.1). A dimensionless time step of 10-3is used in all simu-

lations. The model is run for ten tidal cycles and the time series of velocity at each node

from the last cycle are harmonically analyzed to extract the amplitudes and phases of the

two relevant dimensionless frequencies, FJ (the forcing frequency) and F3 (the third har-

monic, generated by non-linear friction). Results are compared with those obtained using

a very fine reference grid, with 104 nodes and a time step of 10-4. We chose a ~grid with

p=O.6as reference, because uniform grids did not provide enough resolution near the bot-

tom, even for as many as 104nodes. The accuracy of the reference grid was verified by

runn'ing one of the tests with a 105 nodes grid and comparing the results. L2-norms of

amplitudes and phases are computed for each frequency as:

o 2

L2 (9r) = ./J(9r - 9r) dcr
-I

(4.15)

where 9 represents a generic variable, the subscript r represents either amplitudes or

phases, and the tilde stands for the reference solution. Note that only relative amplitude

errors can be computed since U is not known.

Amplitude and phase errors for Test 1 are shown in Figure 4.2 as a function of p

for both grid types. Grid ~is much better than grid a: not only is the optimal value of p,

Popt, only weakly dependent on the number of nodes, but errors are much smaller. The

weak dependence of Popton the number of nodes will prove very convenient to establish

criteria for node placement. Because of the need to resolve properly the bottom layer,Popt
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for the a grids tends to be very small, resulting in grids much too coarse in most of the

watercolumn(e.g.,n=30andp=O.05leadsto ~CJ=O.845at the surface).This is similarto

the behaviorreportedby Davies(1991)for the kappagrid, and explainsthe pooreraccu-

racy relative to grids ~. Grid a is therefore abandoned hereafter.

Test I illustrates the importance of using non-uniform grids. Not only are the

errors with regular grids very large (p=1 in Figure 4.2), but the convergence of the solu-

tions is slow relative to an optimized ~grid. In particular, insufficient resolution near the

bottom can lead to a serious underprediction of velocities in the entire water column (Fig-

ure 4.3).

The results for the ~grid (Figure 4.2) also suggest that Poptis the same for both FJ

and F3, and for both amplitudes and phases. We will take advantage of these two proper-

ties in the discussion of remaining 1D tests, where we will only show results for the ampli-

tudes of the primary constituents.

Table4.1 Parameters used in Tests1-5.Defaultvaluesare shownin bold.

Test r cd Eb Ec

1 104 0.005 10.5 0.0025

2 10-1,10°, 101, 0.005 10-5 0.0025

102, 103,104,
105

3 104 0.0025, 0.005, 10.5 0.0025

om, 0.05

4 104 0.005 10-8,10-7,10-6, 0.0025

10.5, 10-4,10-3

5 104 0.005 10.5 0.00 1,0.0025,
0.01
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thin lines:phases[rad].
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Figure 4.3 Test 1. Profiles of FJ velocity amplitude obtained with different 30 node grids.
The a and ~grids are the optimal for this test (p equals 0.05 and 0.25, respectively).

We note, however, that the independence of Poptfrom the frequency does not nec-

essarily extend to more complex conditions, including higher dimensions. Indeed, we

believe that this independence results, in our ID tests,from two reasons. First, F3 is gener-

ated by FJ' thus errors in the primary constituent will be reflected in the overtides. Sec-

ondly, profiles for both FJ and F3 have very large gradients near the bottom, although for

different reasons: the primary constituent decreases sharply near this boundary due to fric-

tion, while the non-linear constituent is generated at the bottom, and diffuses slowly

upward. In more realistic simulations, F 3 may have smaller gradients near the bottom,

both because it can be forced directly by gravity, and because it is also generated in the

-0.4.....
I.-
as
E
C)

.en

-0.6



- --- -.. .... . ... ... .. -.. ... ... --

108

water column by the interaction between velocity and the time-dependent eddy viscosity

(Davies, 1990). Under these circumstances,Poptmay depend more strongly on the specific

constituent than implied by our tests.

4.3.3 Optimization

Tests 2-5 examine the effect of the dimensionless numbers r, cd, Eb' and Ec on

Popt. In each test, a number is varied while the others are held constant (Table 4.1). The

vertical profiles of the FJ amplitude (Figure 4.4) suggest that the various dimensionless

numbers have very different effects on Popt:

· As r increases, the bottom boundary layer includes a growing portion of the water col-

umn, which should increase Popt.Still, significant shear remains near the bottom even
for the larger values of r, thus Poptshould remain small.

· The friction coefficient cd controls the magnitude of the velocities but has very little

effect on the shape of the velocity profile, and therefore should not affect Poptsignifi-
cantly.

· Increasing Eb has two effects. First, it reduces velocities just like decreasing cd does
(see Equation (4.10»; secondly, it reduces shear at the bottom by making eddy viscos-

ity more uniform over depth. This second effect will make Popt increase with Eb' as
fewer nodes will be needed to resolve the bottom layer.

· Reducing Ec also leads to a more uniform eddy viscosity, thus to a larger Popt.

This qualitative analysis is supported by the results of numerical experimentation.

Indeed, concentrating on the variation of the L2-norms of velocity amplitudes with P, we

observe that:

· When r increases, Poptrises very mildly (Figure 4.5). Still, the error curves are almost
flat in a large region around Popt(around 0.15-0.3), thus the effect of r on Popt is sec-
ondary. The major consequence of increasing r is the error growth: the minimum L2-
norm grows by about two orders of magnitude when r goes from 10-1 to 104. For
r=105 the errors decrease, possibly because the friction becomes a dominant process
and the dimensionless velocities decrease by almost an order of magnitude (Figure 4.4).

· The effect of cd on the errors is very mild (Figure 4.6). The L2-norms decrease slightly

with cd due to the reduction of the velocity, but Poptremains unchanged.
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· The bottom dimensionless eddy viscosity has a dramatic impact on the L2-norm behav-

ior (Figure 4.7), just as it had on the velocity profiles. The value of Popt tends to
increase with Eb due to a reduction of shear. However, the main effect of the loss of
vertical structure of the flow is the flattening of the L2-norm curves. As an example,

for Eb=IO-3and n=30, the difference between the maximum and minimum L2-norms is
less than 20%. Therefore, using a small value of P for large Eb will not affect the errors
significantly.

· Ec has only a minor effect on the error curves, perhaps due to the small range of varia-
tion of this number (Figure 4.8). Again, these curves tend to flatten as Ec approaches

Eb' but Poptremains mostly unchanged.

In general, Tests 2-5 suggest that a single value of Popt (around 0.2-0.3) may be

retained. Even though it seems possible to determine a relationship between Poptand the

four dimensionless numbers using some kind of optimization technique, eventual gains in

accuracy should be marginal. Furthermore, in practical applications with complex turbu-

lence models, the determination of Eb and Ee is difficult, if at all possible. Last but not

least, DWSC models require a constant Popt. Therefore, we suggest 0.25 as an appropriate

value for Popt.This value will be used from here on.

While Popt.is fairly independent from the controlling dimensionless numbers, one

must realize that actual errors are not. Indeed, the L2-norms in tests 2-5 show a significant

dependency on r (Figure 4.5) and, to a lesser extent, on Eb (Figure 4.7); only the depen-

dence on cd (Figure 4.6) and Ee (Figure 4.8) is weak.

The strong dependence of the errors with r is consistent with previous analysis.

Ianniello(1977)showsthatvelocityprofilesdependmost stronglyon do =hi (J (2Av)Iw) .
Scaling Av as Uh, r=l/dl. Similarly,Luettich et al. (1994) show that velocity profiles and

bottom stress depend mainly on Q=h(w:tj)IU*/J>wherefis the Coriolis parameter and U*b

is the bottom friction velocity. This suggests that our analysis can easily be extended to

include rotation effects.



n=10

logr:

0--0 -1
0--00
<>---<>1
/:r-A 2
+--+ 3
)f--t( 4

5

10-50.1 1.0 0.1

p [-]

Figure 4.5 Test 2. Influence of r on Popt for three different numbers of nodes n.

111

:J: 10-4
E
o 10-1c:
I

I n=30

n=60C\I
..J

10-2



n=10

Cd:

0-00.0025
D--O 0.005
<>--00.01
1r-t:.0.05

10-3
0.1 1.00.1

p [-]

Figure 4.6 Test 3. Influence of cd on Poptfor three different numbers of nodes n.

112

1.0

:I: 10-2
E'-
0

10-1c:
I

C\I n=30 J(Q t- n=60...J



n=10

113

logEb

0-0 -8
0--0-7
0--<>-6
1:r-t1-5
+-+ -4
~-3

1.00.1

pH

1.0

Figure 4.7 Test 4. Influence of Eb on Poptfor three different numbers of nodes n.

:z: 10-4
E....
0

10°c:I
C\I

! n=30

n=60...J

10-1



n=10

:!: 10-3E
~

o
Ii= 10-1
~ [ n=30

10-30.1 1.00.1

114

E.c-

0-00.001
0---00.0025
~0.01

n=60

1.0

p [-]

Figure 4.8 Test 5. Influence of Ec on Poptfor three different numbers of nodes n.



115

4.3.4 Verification

In Test 6, we repeat a ID experiment reported by Davies (1991). Our purpose is

twofold. First, the optimized ~grid (p=O.25)is compared against previously available

grids. Secondly, its performance is assessed for conditions different from the ones for

which it was derived. Namely, a no-slip condition is used at the bottom and the eddy vis-

cosity varies in time:

(

ec - eb
eb+ (1 +cr) 0 - -1 ~cr~-0.8e (cr) = .

eb -0.8 ~ cr~ 0

where (eb,ec>e)=(0.OOOI,0.1,0.09001)and u is the depth averaged velocity. The free

stream velocity is Im/s, and the wave period 12hours (S2 tide).

Av = 0.2e (~) Iie
(4.16)

Velocity amplitudes and phases at selected points in the vertical were compared

with results from the reference grid (Table 4.2). Grid ~with 30 nodes and the logarithmic

and log-linear grids with 60 nodes have a similar accuracy.For the same number of nodes,

the results from grid ~are clearly better than those from both the logarithmic and log-lin-

ear grids. Grid ~therefore represents an improvement over other available discretization

approaches.

Results also suggest that ~grids and the optimization criterion derived in the pre-

vious section are robust (or at least lead to accurate numerical solutions), beyond the orig-

inal conditions of friction parameterization. Experiments were repeated with p=O.2and

p=O.3.The results were very similar, further suggesting that 0.25 is an appropriate value

for Popt'even for time dependent eddy viscosity profiles.
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We now address the issue of distributing among verticals the total number of nodes
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Table 4.2 Test 6. Results from the reference grid and differences between the results from the various
test grids and the reference grid. Velocity amplitudes are in mis, (phases) are in degrees. Results from
the logarithmic and log-linear grids are from Davies (1991).

sigma reference log-linear logarithmic J3 J3 J3

(104 nodes) (60 nodes) (60 nodes) (10 nodes) (30 nodes) (60 nodes)

.h=IOm

-0.995 0.215 (211) -0.019 (-2) O.OOS(0) -0.040 (-2) -0.007 (-I) -0.004 (0)

-0.99 0.259 (211) -o.OIS (-2) 0.009 (0) -0.038 (-2) -0.007 (0) -0.004 (0)

-0.9 0.402 (213) -0.012 (-I) 0.015 (0) -0.030 (-2) -0.009 (0) -0.006 (0)

-0.75 0.453 (214) -0.010 (-I) 0.016 (0) -0.029 (-2) -0.009 (0) -0.007 (0)
-0.5 0.502 (215) -O.OOS(-I) 0.015 (0) -0.026 (-I) -0.009 (0) -O.OOS(0)

h=10m

-0.995 0.026 (121) -0.002 (-S) 0.000 (0) -0.003 (-11) 0.000 (-3) 0.001 (-2)

-0.99 0.031 (124) -0.001 (-S) 0.001 (0) -0.002 (-10) 0.001 (-3) 0.001 (-2)

-0.9 0.049 (136) 0.001 (-7) 0.002 (0) -0.001 (-S) 0.000 (-2) 0.000 (-I)

-0.75 0.055 (143) 0.003 (-7) 0.004 (-I) -0.001 (-7) 0.001 (-3) 0.001 (-2)
-0.5 0.062 (150) 0.004 (-S) 0.005 (-2) 0.000 (-6) 0.000 (-2) 0.000 (-2)

. h.=I00m
-0.995 0.554 (244) -0.007 (-I) -0.011 (0) -0.065 (-4) -O.OOS(0) -0.002 (0)
-0.99 0.654 (246) -0.006 (0) -0.011 (0) -0.048 (-3) -0.005 (0) -0.001 (0)
-0.9 0.928 (256) -0.003 (0) -0.005 (1) -0.013 (-I) -0.004 (0) -0.002 (1)
-0.75 0.991 (261) -0.002 (0) -0.002 (1) -0.009 (-I) -0.003 (0) -0.002 (0)
-0.5 1.023 (267) -0.002 (-I) -0.001 (0) -0.004 (-I) -0.003 (-I) -0.003 (0)

. h=l00m
-0.995 0.070 (21S) 0.001 (0) 0.000 (-9) 0.003 (-4) 0.001 (0) 0.001 (1)
-0.99 0.069 (226) 0.001 (-I) -0.001 (-S) 0.004 (-3) 0.001 (0) 0.001 (1)
-0.9 0.036 (27S) 0.000 (-I) -0.003 (-6) 0.005 (-2) 0.000 (1) -0.001 (1)
-0.75 0.023 (319) -0.001 (0) -0.003 (0) 0.004 (-3) 0.000 (1) -0.001 (1)
-0.5 0.013 (13) 0.001 (5) 0.000 (32) 0.004 (1) 0.001 (3) 0.000 (3)
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available for the domain. Within DWSC formulations, this problem is inexistent, as all

verticals must have the same number of nodes. However, LSC formulations allow more

nodes to be placed in the verticals where finer resolution is necessary for accuracy reasons.

We have shown earlier that L2(v) depends very significantly on r, and less signifi-

cantly on the other controlling dimensionless numbers. r is also fairly straightforward to

evaluate. It is therefore both reasonable and convenient to argue that criteria to guide the

distribution of the number of nodes among verticals should account for the spacial distri-

bution of r. The difficulty is to define a relationship between n and r that leads to optimal

accuracy, within a chosen constraint (e.g., a certain total number of nodes in the entire

domain, or a certain maximum error).

A possible approach, which we will explore below, is to assume that errors are

exclusively a function of n and r, and look for a distribution of nodes that keeps errors

constant with regard to these two parameters, i.e:

(4.17)

where e denotes an error measure. Only error measures that display the functional depen-

dence identified above for Llv) should be retained. An example that will be used in the

next section is:

(4.18)

From (4.17) we can now derive the desired relationship between nand r:

dlogn _
dlogr -

~oge()log1

a loge
CJlogn

(4.19)

For this relationship to be of any practical significance, however, we need to be

able to quantify the RHS. This is non-trivial. While it can be argued that dloge/dlogn is

approximately a constant (e.g., see Figure 4.9 for E>=L2(v),linked to the order of accuracy
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of the numerical solution method, the behavior of dloge/dlogr is unknown a priori, is

likely very sensitive to the choice of e, and may be impossible to characterize even exper-

imentally.

It is however reasonable to assume a functional form for the RHS of (4.19), based

on "best available information", construct the grid, and evaluate errors a posteriori to

assess how well (4.17) is observed. We will experiment with this concept in the next sec-

tion, making the simple assumption that the right hand side is a constant (based on Figure

4.9, for E>=L2(v),and re-writing (4.19) as:

(4.20)

where nmin and nmaxare user-specified maximum and minimum numbers of nodes per

vertical,and r maxand r minare maximum and minimum values of r in the domain. The

choice of nminand nmaxdictates the value of dloge/dlogr, which is convenient from the

user viewpoint, but does not necessarily represent the true behavior of this term.

The use of (4.20) requires that r, which is not known a priori, be estimated. Three

levels of decreasing complexity are considered here for the estimation of r, all based on

the combination of (4.5) and (4.8). If the amplitudes and phases of the main tidal constitu-

ent are known (say, from a depth-averaged simulation), r can be evaluated as (level 3):

(4.21)

The gradient operator is used here because we are interested in the maximum value

of r in each vertical.

A simpler alternative (level 2), which does not require a preliminary run, is to

neglect amplitude variations in the domain, and estimate r as:
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(4.22)
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Figure 4.9 Variation of L2(vA) with n and r. Default values of cd. Eb and Ec were used
(Table 4.1).
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In this case, only depth effects are considered in the variation of r. While these

effects are generally dominant in deep waters, they can be secondary in estuarine condi-

tions (e.g., relative to lateral constraints).

Finally (level 1),we can ignore the variations of r altogether, leading to a constant

number of nodes per vertical. This level is the only one that can be applied with DWSC

models.

The performance of each level is illustrated in the next section.

4.5 Application

The criteria and concepts developed in Sections 4.3 and 4.4 are now applied in the

context of a synthetic but relatively complex estuary. Our primary objective is to evaluate

whether the overall approach is useful beyond the very narrow limits of the adopted sim-

plifying assumptions. For this purpose, we choose a case where the rigid-lid approxima-

tion does not apply, we use a time-dependent eddy viscosity, and we solve both the

internal and external modes.

The application consists of a tidal wave propagating from deep into shallow

waters. The domain (Figure 4.10) schematically represents a shallow embayment con-

nected by a narrow mouth to a continental shelf and continental slope. A two-dimensional

laterally averaged model, R1TA2v(Fortunato and Baptista, 1993), is used, to make r vary

due to both topographic and geometric effects. RITA2vsolves the external mode with the

Generalized Wave Continuity Equation (Kinmark, 1986), using linear finite elements. The

internal mode equations are discretized as described in Section 4.2.
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Figure 4.10 Domain for the synthetic application
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A time-dependent eddy viscosity parameterization proposed by Davies and

Lawrence (1994) is used. In the upper 80% of the water column, the eddy viscosity coeffi-

cient is given by:

(4.23)

where 'it is the depth averaged velocity, K is a dimensionless coefficient t~en as 0.0025,

and the depth of the bottom boundary layer, L\, is computed as:

(4.24)

In the bottom 20% of the water column, Av decreases linearly to:

(4.25)

where Jl is the molecular viscosity of water (10-6m2/s).The friction coefficient cd is set to

0.01.

Four grids were built (Figure 4.11), all using the same horizontal nodal spacing

(~I000m), but each having different vertical discretizations: GOis uniform, while G1

through G3 are ~grids and correspond respectively to levels 1 through 3 of the criterion

discussed in the previous section. The total number of nodes is roughly the same for all

grids, but their distribution varies: GOand G1 have 10nodes per vertical, while in G2 and

G3 n varies according to (4.20), with r computed with (4.22) and (4.21), respectively

(Figure 4.12). For the last two grids we set nmin=5,which lead to nmax=15 for G2 and

nmax=24 for G3. To build G3, a preliminary depth-averaged simulation was performed for

a single constituent (S2), and the resulting amplitudes and phases were used to evaluate r

(Figure 4.13).

The comparison between the four grids implicitly assumes similar costs, i.e., a

CPU time for the internal mode directly related to the total number of nodes. This assump-

tion is valid since the internal mode matrices are tridiagonal, requiring only D(n) opera-

tions to invert (Press et al., 1988).
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123

GO

G1

G2

G3



124

25

G3

20
a;
(.)

t
Q)
> I G2
03 15a.
en
Q)

\J
o
c:

10
GO,G1

5
o 20000 40000 60000

distance from closed end [m]

Figure 4.12 Number of nodes per vertical. The total number of nodes is 710 for GOand
Gl, 711 for G2, and 703 for G3.

The model is forced at the ocean boundary with S2 (T=12 hours) and S] (T=24

hours) waves with amplitudes of 1 and 0.5 meters, respectively. All non-linear terms are

included, except advective accelerations. The model is run for ten S] tidal cycles in depth-

averaged mode, plus five cycles in 2D mode. The time step is 60s. Results from the last

cycle are harmonically analyzed at regularly spaced verticals, where the L2-norms of the

velocity amplitudes, L2(uA),are evaluated. The reference grid has the same horizontal res-

olution as the test grids, and a ~grid with 60 nodes per vertical. The time step of the refer-

ence simulation is 30s.

Figure 4.14 shows L2(uA)along the channel, for representative constituents (So.Sb

S2 and S6). Results for other constituents (S3, S4 and Ss) show similar trends, and are not

shown here.
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Figure 4.13 S2characteristics: r and elevation amplitudes and phases (lD simulation).

For GO,errors typically present a maximum in the channel (e.g., 0.1 rnIs for the

S2)' and are smallest in deep water (2xlO-5rnIs for the same constituent). The error peak

should be attributed both to larger velocities and to a rapid change in the waves amplitudes

and phases (Figure 4.13). This change in wave characteristics corresponds to a maximum

in the value of r, which, as shown in the ID tests, leads to the largest errors.

The use of grid G1 dramatically improves the results, with L2-norms decreasing

almost uniformly for all frequencies by a factor of ten (Figure 4.14). Still, the difference

between maximum and minimum errors persists, indicating a relative over-refinement in

deep water. This difference suggests that the LSC can further improve the overall accu-

racy.
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The errors for grid 02 decrease in the estuary and increase in the continental slope,

because this grid concentrates more nodes in shallow water. As a result, the errors are
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more uniform than those obtained with G1. However, not enough resolution is provided in

the channel because G2 ignores geometry effects on r, and the already small errors

observed with G1 near the closed boundary are further decreased. As discussed in the pre-

vious section, level 2 of the criterion is not well suited for estuarine applications because

lateral constraints are not accounted for.

Grid G3leads to the best results. Relative to Gl, it typically reduces the maximum,

mean and standard deviation of the L2-norms by a factor of 3 to 6. Inside the estuary, the

errors are similar to G2's, even though G2 has more nodes in this area; in the channel, G3

leads to better results than G2. As a result, the L2-norms for G3 are the smallest and the

most uniform.

We note (Figure 4.15) that log(L2(u)) varies approximately linearly with 10g(I), as

assumed in our discussion of (4.19). However, the value of the slope inherently assumed

in (4.20) with nmin=5and nmax=24is 0.13, against an observed slope of 0.61 (Figure

4.15). Our interpretation is that we could make L2(u) further uniform in G3 by adjusting

nminin order to obtain a larger imposed slope.

It is also interesting to observe the variation of log(L2(v)) with log(I) - Figure

4.15. For this error measure, the assumption of a linear variation breaks down. Coinciden-

tally (results not shown), mean L2(v) are not significantly better for grids G2 and G3 than

for grid Gl. Our interpretation is that to optimize the distribution of L2(v) in the domain,

we would need to use in (4.20) an higher order function to describe the dependency of

log(L2(v)) on 10g(I).

The choice of the error norm that we want to equalize over the domain is some-

what ambiguous and will impact the outcome. Norms based on absolute errors can lead to

large erroneous fluxes in deep waters, which can be amplified in shallow waters. Norms

based on relative errors can be overly stringent in deep waters, leading to errors far below

the detection limits of current instruments. Our choices in this paper were pragmatic: in
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the ID tests,onlyrelativeerrors(L2(v)) could be computed; in the 2D application, abso-

lute errors (L2(u)) led to overall best results.

-
E
oc:
N -4..J-
C)
.Q

-5

-6
-1

. L2(V). L2(u)
linear re

o 4 51 2 3

log(r)

Figure 4.15 Linear regression for log(L2(vA))(slope 0.09, correlation coefficient 0.62) and
log(L2(uA)) (slope 0.61, correlation coefficient0.97) versus 10g(I) for grid Gl.

4.6 Final Considerations

This paper addressed the vertical discretization in barotropic tidal models. Criteria

for both the nodal distribution within a given vertical and for the horizontal distribution of

the total number of nodes were developed and showed promising results in a synthetic

application.
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Our analysis demonstrated the strong dependency of errors on local flow proper-

ties. An efficient vertical discretization should take those properties into account, which is

not possible with either DWSC or z-coordinates. Thanks to their flexibility, LSC appear

therefore to be a strong alternative to the previous methods.

The usefulness of LSC should extend well beyond the cases explored in this paper.

For instance, a method recently developed, in which the momentum equations are solved

for Reynold stresses rather than velocities (Luettich and Westerink, 1991) can also highly

benefit from the LSC. Numerical experiments with a barotropic tidal model showed that

the number of nodes per vertical needed to achieve a 1% error in the bottom friction varied

from 2 to 52, depending on the physical parameters (Luettich et al., 1994). Clearly, using

the same number of vertical nodes throughout the domain will lead to large errors and/or

over-refinements.

The degree of refinement adequate for a given vertical was shown to depend on a

dimensionless number r which characterizes the local changes in wave properties. This

number may also prove useful to derive criteria for the horizontal discretization of tidal

models. Indeed, the usual criterion for horizontal discretization based on the dimension-

less wavelength is inadequate in areas of rapid change of the wave properties, due to its

inability to take into account the two-dimensional structure of the flow and the rate of

change in wavelength (Westerinket al., 1992, 1994b).The number r, based on horizontal

gradients of the wave amplitude and phase, may provide a good indication as to where

horizontal resolution is most needed.

This paper constitutes only a first step towards the development of solid guidelines

to discretize the vertical dimension in surface water models, and certainly leaves many

questions unanswered. Out of necessity, several simplifying assumptions were made that

may eventually have to be revisited. Important open questions include:

· the dependency of Popton the chosen turbulence closure scheme;

· the extension of the proposed criteria to other types of vertical grids;
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· the validity of the proposed criteria in 3D barotropic flows;

· the implications of stratification on the choice of the grid type and on the development
of optimization criteria.

The extension of the proposed criteria to fully 3D barotropic is described in Chap-

ter 5.
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CHAPTER 5

Tidal Dynamics in the Mouth of the Tagus
Estuary (Portugal)

Abstract

Three-dimensional simulations of barotropic tides are used to investigate the com-

plex circulation at the mouth of the Tagus estuary. Comparison with field data shows that

elevations are well represented in the main area of interest, but velocities are slightly over-

predicted due to a simplified treatment of intertidal fiats. Model results show the existence

of st,rongvelocity phase lags (up to 1.75 hours for the semi-diurnal constituents) between

the shallow areas and the deep channel. These phase lags are partially responsible for the

generation by advective accelerations of a strong residual velocity field (velocities reach

0.5 mIs) with well defined eddies. The interaction between the residual and tidal velocity

fields in turn generates strong chaotic stirring.

Localized sigma coordinates (LSC), a recently proposed method which allows the

number of nodes per vertical to vary horizontally, are used for the first time in a three-

dimensional application. A previously proposed criterion for the horizontal distribution of

the total number of vertical nodes is shown to be inadequate when advective accelerations

are important. However, with an alternative criterion, the use of LSC reduces maximum

errors by a factor of two relative to traditional sigma coordinates.
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5.1 Introduction

This paper is part of an ongoing effort to understand the tidal dynamics in the

Tagus estuary and ultimately build a prognostic water quality model to support manage-

ment decisions. Important water quality is~uesin the Tagus estuary include contamination

by heavy metals (e.g., Andreae et al., 1983, Lima et at, 1986) and fecal material, and

problems arising from dredging and engineering modifications of the estuary (e.g., Vieira,

1988, Silva and Oliveira, 1995). Our general strategy is to use models of increasing com-

plexity to improve the description of the physics and progressively enhance our under-

standing of the system. In this paper we extend previous investigations of tidal

propagation in the estuary using depth-averaged models (Oliveira et al. (1995), hereafter

OFB95) by including both advective accelerations and three-dimensional barotropic

effects. At the mouth of the estuary, large velocities and a complex coastline and topogra-

phy make both effects particularly important in the generation of strong residual currents.

These residual currents are in turn responsible for strong mixing by chaotic advection and

"tidal pumping", and therefore can not be ignored in water quality studies.

Grids that are unstructured both horizontally and vertically are used because they

enhance computational efficiency. Triangular finite elements are used in the horizontal,

allowing for the representation of some small-scale geometric features and eddies. In the

vertical direction, localized sigma coordinates (Fortunato and Baptista, 1994) allow the

number of nodes per vertical to vary horizontally. Hence, areas requiring a finer vertical

resolution can be refined efficiently.

The Tagus estuary on the west coast of Portugal has two very distinct regions (Fig-

ure 5.1). The upper estuary, from Vila Franca de Xira to Cacilhas, is wide (over 10 Ian in

some places) and shallow (maximum depths of 15m). It is characterized by extensive tidal

flats, small islands, and a web of narrow channels, sometimes only tens of meters wide.

Intense sediment deposition and erosion in this area is changing the bathymetry (Castan-

heiro, 1986) and strongly damping and retarding the tides (OFB95). The lower estuary is a

channel about 30 m deep, 2 Ian wide and 12 Ian long that opens into a large bay, limited
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by the Cabo Raso to the North, and the Cabo Espiche1to the South. The mouth is charac-

terized by two small scale features: the island of Bugio and the cape of S. JuWio.The mor-

phology of the bay is deeply marked by the historically strong discharge from the Tagus

river. The channel is prolonged by a canyon about 20 m deep, limited on both sides by

sand banks with depths of the order of 5 m: the Bugio Bank to the South, and the Bico do

Pato to the North. The morphology of the mouth has been changing over recent years

(Oliveira, 1993):between 1929and 1985, the Bugio Bank has extended 700 m to the north

and the Bico do Pato has shifted 850 m south-east.

Tides are primarily semi-diurnal. The tidal form number, defined as the ratio

between amplitudes of the main diurnal (K1+01) and the main semidiurnal (M2+S2)con-

stituents (Defant, 1960), is 0.10 at Cascais, below the limit for mixed tides. This number

decreases upstream (e.g, 0.08 at Pta. da Erva) due to a resonant mode that increases the

amplitudes of semi-diurnal waves by roughly 40% in the upper estuary, leaving the diurnal

waves mostly unchanged (OFB95). The phase lag of semi-diurnal constituents between

the outermost station (Cascais) and Vila Franca de Xira is 1 hour and 20 minutes (Table

5.1).

The water column is generally well mixed during spring tides but it is partially

stratified during neap tides where residual currents were observed to be landward near the

bottom and seaward near the surface (Valeand Sundby, 1987). In addition, strong stratifi-

cation can occur in the upper estuary under large river flow and low tidal range conditions.

Bottom-to-surface salinity differences over 20 ppt were observed in the upper estuary on

neap tides for a river flow of 900 m3ts (Martins et al., 1983). The same differences near

the mouth and under the same conditions varied between 5 and 10 ppt. The importance of

baroc1inic effects is therefore expected to grow landward, and then decrease as one

approaches the limit of salinity intrusion (around V.F.Xira). For lack of quality data, and

because our focus is on the flow near the mouth of the estuary, we will neglect baroc1inic

effects.
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Figure 5.1 The Tagus estuary: location, place names and bathymetry (isolines (in meters)
relative to the mean sea level; islands are represented in gray).

Comprehensive bathymetric data are available from a 1964/67 survey, but only

localized updates were conducted since. Thirteen tidal gauges were in operation in 1972,

providing an excellent coverage of the estuary (Figure 5.2). Three of the stations (Cascais,

Lisboa and VF Xira) are still in operations. Velocity data are available for seven current

meters (Figure 5.2) deployed near the mouth of the estuary in October and November
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1987, where velocities were measured 70% below the water surface (Vieira, 1988). Statis-

tics of the Tagus river flow are also available (e.g., DGRAH, 1986). Other inflows to the

estuary are small compared to the Tagus (OFB95) and were not considered. A detailed

description of the data used in this study is given in OFB95 and will not be repeated here.

o tidal gauge

.A. currentmeter

.A.C6

.A.C10

L_
o

)
10 km

Figure 5.2 The Tagus estuary: tide gauges and current meter stations.

Unstructured grids are an attractive way to combine long-term simulations (over

one month) with a fine grid resolution at an acceptable computational cost. The model

used in this study uses a finite element technique in the horizontal and localized sigma
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coordinates (LSC) in the vertical. LSC, applied here for the first time in a complex three-

dimensional situation, combine the main advantages of the traditional a-coordinates (Phil-

lips, 1957) with a higher flexibility to discretize the vertical direction: the nodal placement

is independent for each vertical, thus local refinements do not carry over to the rest of the

domain. To take advantage of the flexibility of this method, we proposed a criterion to dis-

tribute the total number of nodes among verticals, based on simple one-dimensional

experiments (Fortunato and Baptista, 1995a). Although this criterion led to significant

accuracy improvements in a two-dimensional (in the vertical) simulation, it has not been

validated in a fully 3D simulation. Two secondary goals of this paper are therefore to test

the criterion and to illustrate the advantages of the LSC in a complex, fully three-dimen-

sional situation.

5.2 Numerical Model

The model used in this study, a modified version of ADCIRC (Luettich et al.,

1991, Westerink et al., 1992), is based on the shallow waters equations which express the

conservation of mass and momentum assuming incompressibility and hydrostatic pres-

sure. In this version, density variations are neglected and nodes are not allowed to dry. The

general procedure consists of a global solution for elevations and a local solution for

velocities. The Generalized Wave Continuity equation (GWCE, Kinmark, 1986, Kolar et

al., 1994a) is solved first for elevations using linear triangular finite elements. The three-

dimensional momentum and continuity equations are then solved for velocities using

localized sigma coordinates (LSC).

The depth-averaged continuity and non-conservative momentum equations are

written, respectively:

(5.1)

and,
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11 11

Mx=~~ + U~~ + ~~ +tX(~ J (u- U)2dz)+ty(~ J (u- U) (v- V)dZ)+-h -h

dT1 'tbx Ah a2 a2
g-+--fV--(-UH+-UH) =0
ax Po H aX2 al

11 1 11

My=~~ +U~~ +~~ +tX(~J (u-U) (V-V)dz)+tY(HJ (V-V)2dZ)+-h -h

dT1 'tb Ah a2 a2
g-+-2+fU--(-VH+-VH) =0

ay Po H aX2 al

(5.2)

where: x, y are the horizontal cartesian coordinates;

t is time;

u, v are the horizontal velocities;

U, V are the depth-averaged horizontal velocities;

11is the elevation;

g is gravity;

H is the total depth;

'tbx, 'thy are the bottom stresses;

Po is the reference density;

f is the Coriolis parameter; and,

Ah is the horizontal diffusion coefficient.

The GWCE (Kinmark, 1986, Kolar et aI., 1994a) is defined as:

aL a aW=- --HM --HM +GL = 0
at ax x ay Y

where G [s-l] is an arbitrary constant.

(5.3)

The GWCE is solved with a semi-implicit, three-time-step method where linear

terms are treated implicitly, and non-linear terms are taken at the middle time step. The
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mass matrix is stationary and only needs to be inverted once. A weak fonnulation is used

at flow-imposed boundaries, displaying flux as a natural boundary condition. At elevation-

imposed boundaries, the GWCE is discarded, and elevations are imposed as essential

boundary conditions. Further details of the solution procedure can be found in Luettich et

al. (1991) and Kolar et al. (1994b).

The GWCE fonnulation has three major advantages for finite element models rela-

tive to most primitive equation fonnulations. First, in the absence of advective accelera-

tions, it propagates and damps the 2dx waves while being very accurate for longer waves

(e.g., Lynch, 1978, Kinmark, 1985). Second, the solutions of the elevation and the veloci-

ties are naturally uncoupled, thus the equations can be solved sequentially. Third, the

GWCE mass matrix is time-independent, and therefore only needs to be inverted once.

The GWCE fonnulation is therefore stable and efficient relative to other eulerian finite

element methods to solve the shallow water equations.

The major drawback of the GWCE fonnulation is its sensitivity to the GWCE

parameter - G (e.g., Myers and Baptista, 1995): values that are "too small" disrupt mass

conservation, while values that are "too large" are unable to prevent 2dx oscillations. The

approach of Kolar et al' (l994a) to guide the choice of G is used in section 5.3.2.

Once elevation is known from the solution of (5.3), the 3D momentum equations

are solved for the horizontal velocities. The vertical direction is represented in a a-coordi-

nate system (r,s,a,'t), defined as:

r=x

S=Y
z-ll

a ="7I
't=t

(5.4)

where z is the vertical cartesian coordinate and aE [-1,0]. In complex notation, the

momentumequationscan be written:



142

dy. 1 a dy
-+ify---(A -) = F-Adat HaCJ vaCJ (5.5)

where i=(-1;112,'Y= u+iv is the horizontal velocity and Av is the vertical eddy viscosity

coefficient. Depth-independent terms are grouped in F =Fx+iF}" where:

(5.6)

We view horizontal diffusion only as a way to smooth results and improve stabil-

ity. Consistent with this approach, we use a simple parameterization of horizontal diffu-

sion: cross-terms are not included and velocities are depth-averaged.

The advective terms in (5.5) are represented by Ad =Adx+iAdy:

au au au
Adx = uar+ vas + eaCJ

av av av
Ady = uar + vas + eaCJ

(5.7)

where e is related to the vertical velocity w as:

1 en, en, aH en, aH
e = - (w - (CJ+ 1) - - u (- + CJ- ) - v (- + CJ- ) )H at ax ax ay ay (5.8)

Equation (5.5) is solved with the boundary conditions:

dy
l

= 0
aCJ a =0

(5.9)

where cd is a dimensionless friction coefficient.

In addition, the vertical derivative of the continuity equation is solved for e (Lynch

and Naimie, 1993):
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d1e d d dH- = -(-uH+-vH)
da2 da dr ds

(5.10)

The solution of (5.10) rather than the continuity equation allows the enforcement

of kinematic boundary conditions both at th.esurface and at the bottom:

81 = 81 = 0o -I (5.11)

Equations (5.5) and (5.10) are discretized in space with linear finite elements. The

Galerkin weighted residual statement is applied to (5.5) at each individual vertical:

where <l>nare linear functions. A weak formulation is used for the stress term, which

involves a second derivative, so the bottom and surface stresses are treated as natural

boundary conditions. Depth-dependent quantities (y,Av and Ad) are then written as piece-

wise linear functions. For instance:

(5.13)

Replacing (5.13) into (5.12) leads to a tridiagonal system of equations for each

vertical. Horizontal advective accelerations at each node N are computed as, for instance:

nel (N) 3

L L AeYeix('Vke)Yke
e=l k=l

nel (N)

L Ae
e = I

(5.14)

where nel(N) represents the number of horizontal elements containing node N, Ae and Ye

their area and average velocity, respectively, and 'Vkethe corresponding horizontal shape

function. The evaluation ofYke in (5.14) will depend on the type of grid. In a-coordinates
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grids, nodes are defined at planes of constant sigma, while in LSC each vertical is dis-

cretized independently. Therefore, the values 'Ykeat neighboring verticals are either taken

at specific nodes (for a-coordinates) or linearly interpolated (for LSC). Note that, for LSC,

the horizontal gradients of velocity can easily be computed in cartesian, rather than sigma,

coordinates. However, we showed previously that computing these gradients in sigma-

coordinates is more accurate (Fortunato and Baptista, 1995b).

Three different integrals must be computed to solve (5.12):

a

(5.15)

The first two integrals are time-independent and only need to be computed once. In

addition, for a-coordinate grids, they are independent of the horizontal position. This rep-

resents an advantage of the a-coordinates over the LSC. The use of LSC will involve

either more memory requirements (if IJ and 12are computed only once) or CPU time (if IJ

and 12are computed at each time step). In the runs presented below, the first approach was

followed since memory was not a concern.

Friction is often a dominant process in shallow regions so 13must be evaluated

accurately, even for coarse grids. Different grids are thus used for the velocity and the ver-

tical eddy viscosity. In particular, for the eddy viscosity parameterization used in this

study, the eddy viscosity grid has only three nodes per vertical, defining a linear variation

in the bottom 20% of the water column and a constant value in the upper 80%. The bottom

and surface values are, respectively:

(5.16)

where 1(=0.41is the von Karnuln constant, U*=(T.t!Po)1I2is the friction velocity, and Zois

the roughness length. The direct specification of eddy viscosity is commonly used in baro-

tropic tidal simulations (e.g., Davies and Jones, 1990, Davies and Aldridge, 1993, Fore-

man et aI., 1995). However, it is probably not as physically realistic as higher order
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turbulence closure models, and it may not represent the correct non-linear generation

mechanisms (Grenier et al., 1995).

5.3 Methodology

5.3.1 Boundary conditions

Eleven tidal constituents were selected for the simulations (Table 5.1). The largest

constituent that we neglected is K2, which has a maximum amplitude of 14 em. Keeping

both K2 and the larger S2 frequencies simultaneously would require over 182 days of sim-

ulations for hannonic analysis, which would stress our computer resources. By neglecting

K2' 36-day long simulations (including a 4-day warm-up period) were sufficient. With the

three-dimensional grid used in this study, these simulations require on average 4 days of

CPU and 5MB of memory on a non-dedicated 23 Mflops workstation.

Harmonic constituents from the station closest to each boundary (Cascais and Y.F.

Xira for the ocean and river boundaries, respectively) were used as boundary conditions

for all frequencies except Zo (Table 5.1). Because available tidal data is not relative to the

same vertical datum, the amplitudes of Zo extracted from the harmonic analysis are not

reliable. To circumvent this problem, Zo elevations were imposed as zero at the ocean

boundary and as an empirical function of the river flow at the upstream boundary

(OFB95):

11zo(em) = 8.2 x 10-3x QR+ 2.82 (5.17)

where QR (m3/s) represents the river flow. Except where otherwise noted, the average

river flow of 400 m3/s is used, leading to 11zo=6 em. Our numerical simulations are per-

formed for the first 36 days of 1972, where extensive tidal data is available for compari-

son.
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Table 5.1 Boundary conditions. Amplitudes are in meters and phases are in degrees.

5.3.2 The choice of G

As mentioned in Section 5.2, GWCE models are very sensitive to the choice of the

parameter G. We estimate this parameter using the method proposed by Kolar et al.

(1994a) based on dispersion analysis. We first solve:

[~(4+a) J003+ [~(G+'t) (4+a) Jco2- [ ~G't(4+a) + ihg 2 (2-a) ]
co-

(tlx) (5.18)

[
hg't 2 (2 - a) + hg 2 ('t - G) ~2

]
= 0

(tlx) (2tlx)

where i=(_1)1I2, cois the frequency, 't [s-l] is the linear friction coefficient, & is the grid

spacing,

ikilx -ikilx
a=e +e A ikilx -ikilxI-' = e -e (5.19)

and k E [O,1t/tlx]is the wave number. To derive (5.18) the linearized one-dimensional

GWCE and momentum equations are written in harmonic and matrix form. A non-trivial

frequency ocean boundary river boundary
name Amp. Phase Amp. Phase

Zo 0.000 --- 0.060 ---

Msf 0.008 225.4 0.116 50.5

OJ 0.062 332.3 0.070 1.4

KJ 0.072 54.7 0.070 77.7

N2 0.218 138.0 0.227 187.7

M2 0.954 85.7 1.177 124.5

S2 0.331 121.9 0.371 169.9

M4 0.012 217.5 0.037 230.5

MS4 0.009 323.8 0.033 228.5

M6 0.002 196.8 0.036 37.0

2MS6 0.000 --- 0.035 81.7
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solution of these equations exists only when the determinant (5.18) is zero. For our simu-

lations, since the major oscillations appeared near Bugio and S. lumio, we used ~ =300

m and h =5 m. The linear friction coefficient 't was estimated using a Manning coefficient

of 0.02 m-l/3s and a reference velocity of 1 mls.
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Figure 5.3 Dispersion curve for the Tagus estuary for various values of G (h =3 m; ~ =
300 m).

The dispersion curve is obtained by plotting the frequency versus the wave num-

ber. A folded curve (i.e., in which the first derivative changes sign) indicates a potential

for aliasing, which leads to 2~ oscillations. Figure 5.3 shows one of the roots of (5.18)

(the curves for the other two roots do not fold). Based on these results, we selected G =
0.0025 s-I. The runs were generally unstable with G = 0.005 s-I, which validates this

approach. However, this approach must be used with caution. The parameters used in

(5.18) must correspond to the areas most susceptible to spurious oscillations. If different

critical areas lead to very different values of G, the simulations will likely suffer from

mass imbalances or severe spurious oscillations.
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o
I
10 km

Figure 5.4 Horizontal finite element grid used in the simulations, with 1784 nodes and
3077 elements.

5.3.3 Horizontal grid

The domain extends from v.F. Xira, where elevation data exist, downstream to

about 25 kIn seaward of the mouth, away from the influence of the tidal jet. The horizontal

grid was built using the semi-automatic grid generator of Turner and Baptista (1991). In
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general, the grid is a compromise between the following criteria: (a) good representation

of the geometry and bathymetry; (b) minimum number of nodes; (c) slow change in ele-

ment size; (d) small element skewness; and, (e) enhanced refinement with the complexity

of the flow. Restricting the skewness of the elements (the ratio between the largest side

and the equivalent radius of the element) to a maximum of 4.3 proved to be invaluable in

reducing spurious oscillations and achieving stability. Since the version of the model used

in this study does not allow for inundation, the flow in the upstream reaches of the domain

could not be properly represented. We decided therefore to use a coarse resolution in that

area. The resulting grid has 1784nodes, and 3077 elements with areas between 7x103 and

6x106 m2 (Figure 5.4). Convergence studies using other models show that refining the grid

leads to some accuracy gains in the tidal flat areas, but not in the mouth of the estuary

(OFB95). The time step was set to 12 s to keep the Courant number below unity through-

out the domain. The minimum depth was set to 2.5 m below mean sea level, correspond-

ing to a minimum total depth of about 0.5 m on spring low water tides.

5.3.4 Vertical grid

The vertical grid was defined in a series of preliminary runs using only M2 and its

major harmonics (Zo, M4 and M6). Friction parameters were set as Zo=0.01 m (as recom-

mended by Blumberg and Mellor, 1987)and cd=0.05. The use of this relatively large fric-

tion coefficient is justified by the reduced near-bottom eddy viscosity. The horizontal

diffusion coefficient was set to 10 m2/s to avoid excessive 2~ oscillations. For all runs,

the nodes are distributed within each vertical as (Fortunato and Baptista, 1995a):

1 . 4-I
a. = ( ) - 1I l-I\!

v
(5.20)

where Nv is the number of nodes at each vertical.

Three LSC grids with the same total number of vertical nodes (an average of 10

nodes per vertical) were defined, and a a-coordinate grid with 10 nodes per vertical (grid

G1) was used for comparison.
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Grids G2 and G3 use the criterion proposed by Fortunato and Baptista (1995a)

where the number of nodes per vertical is given by:

(5.21)

The parameter r is defined at each horizontal location as:

(5.22)

where Ucis a characteristic velocity .andT is the tidal period of the major constituent (M2).

The characteristic velocity was taken as the amplitude of the M2 depth-averaged velocity

for G2 and (following Fortunato and Baptista, 1995a)as the free stream velocity U for G3:

(5.23)

where A and <I>are the amplitude and phase of the main tidal constituent, respectively. The

characteristic velocities were determined with results from the run with G1. The average

number of nodes per vertical was set to 10 by varying the minimum number of nodes

Nvminbetween 3 and 5.,and determining Nvmaxby trial and error. The sensitivity to the

choice of Nvminwas minimal, and (Nvmin;Nvmax)equal to (3,15) and (4,16) were retained

for G2 (Figure 5.5a) and G3 (Figure 5.5b), respectively.

Grid G4 (Figure 5.5c) is based on an alternative criterion introduced in this study,

and was motivated by the observation that the largest errors for G1 generally coincided

with the areas where depth-averaged velocities were largest (Figure 5.6). The number of

nodes per vertical is defined as:

~-~ .mm

Nv = Nvmin+ 4~ _~. (Nvmax-Nvmin)max mm
(5.24)

where ~ is the sum of the depth-averaged velocity amplitudes for all the tidal constituents

(computed with Gl), and ~min and ~max are the minimum and maximum of~, respec-
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tively. ThenumbersNvmin and Nvmaxare taken as4 and 27, respectively. Again, the lower

number was fixed and the upper number varied to force the averagenumber of nodes per

vertical to be 10. The consideration of all frequencies constitutes an important advantage

of (5.24) over (5.21): when more than one important frequency have very different spatial

patterns, (5.21) may fail to recognize some areasas critical. For instance, in the present

simulations both M2 and Zo velocities can be large, and in areasthat do not always coin-

cide.
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Figure 5.5a Number of nodes per vertical in localized sigma coordinates grid G2.
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Figure 5.5h Number of nodes per vertical in localized sigma coordinate grid G3.

The performance of the grids was compared by harmonically analyzing the depth-

averaged velocities at each horizontal node, and computing the root mean square error for

a period of one year as:

(5.25)
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where Nt is the number of time steps (taken as 17520), the time step was set to 1800 s, and

the tilde represents reference results obtained with a a-coordinate grid with 30 nodes per

vertical.
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Figure 5.5c Number of nodes per vertical in localized sigma coordinate grid G4.
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0.3

Figure 5.6 Velocity en-orsfor grid G1 increase with velocity amplitude.

Although results from 2D vertical tests indicate that grids based on (5.21) can lead

to significant gains. in accuracy relative to O"-coordinategrids (Fortunato and Baptista,

1995a), G2 and G3 do not appear significantly more accurate than Gl (Figure 5.7). The

criterion used to build G2 and G3 identifies some of the areas where en-ors are largest in

G1 (e.g., the Bugio Bank), but fails to identify others (mainly the tidal jet). In the tidal jet

there are large residual velocities generated by advective accelerations, suggesting that the

use of (5.21) is only appropriate when all important frequencies have similar spatial distri-

butions. This hypothesis was verified by repeating the runs without the advective terms. In

this case, residual velocities were negligible in the lower estuary and G2 and G3 led to a

significant accuracy improvement relative to G1.

Maximum global en-orsfor G4 are twice as small as those for the other grids (Fig-

ure 5.7). Grid G4 is more accurate than GI because, for barotropic tidal flows, three-

dimensional effects are mostly caused by friction, which grows with the square of veloc-
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ity. Areas with larger velocities should therefore exhibit stronger shear, hence requiring a

finer resolution.

-G1
G2

-G3
-G4

10 20 300 2

RMSv [em/s]

4

a) . b)

d)

6 8

c)

Figure 5.7 Comparison of RMS errors for different vertical grids. a) All frequencies; b)
Zo; c) M2; d) M4' The vertical axis represents the fraction of horizontal nodes where the
error equals or exceeds the value given by the curve.

5.4 Results and Discussion

5.4.1 Model Validation

Friction parameters were set as Zo=0.01 m, cd =0.05 and Ah =10 m2/s, as in the

previous Section. Results were harmonically analyzed at each node using the eleven fre-
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quencies imposed at the boundaries (Table 5.1). Root mean square errors were computed

at each current meter using (5.25), and at tidal stations using:

(5.26)

where Nt is again taken as 17520 and the tilde now represents synthesized data. Velocities

were taken at cr=-0.7, where data were collected. For the reasons stated in Section 5.3.1,

Zo was not inCludedin the evaluation of elevation errors.

Elevations are well represented in the lower estuary (RMSe < 0.1 m - Figure 5.8a).

Sixth-diurnal constituents, however, are largely over-predicted (Table 5.2). Grenier et al.

(1995) observed a similar over-prediction in the Bight of Abaco using the same eddy vis-

cosity parameterization, and suggested that this result could be due to the presence of a

background velocity or a residual turbulence field.

Table S.2 Comparison of elevation data and model results. Amplitudes are in meters and phases are in
degrees. Friction parameters are zo=O.Olm and clEO.OS.

Observed 3D model

M2 KJ M6 M2 KJ M6-
Station amp. phase amp. phase amp. phase amp. phase amp. phase amp. phase

Cascais 0.954 85.7 0.072 54.7 0.002 196.8 0.957 86.2 0.072 55.1 0.001 179.4
P.de Arcos 0.998 92.0 0.071 54.6 0.006 277.5 0.973 92.6 0.072 58.0 0.004 147.1
Trafaria 1.038 95.5 0.069 58.2 0.007 321.1 1.010 94.9 0.072 58.6 0.008 114.2
Pedrouos 1.061 92.6 0.072 53.6 0.008 308.6 1.091 102.4 0.072 61.6 0.027 116.3
Cacilhas 1.128 96.0 0.072 56.5 0.011 309.6 1.010 94.9 0.072 58.6 0.008 114.2
Lisboa 1.138 97.1 0.071 57.2 0.011 328.3 1.082 100.5 0.072 60.8 0.020 114.0
Seixal 1.141 99.4 0.071 58.8 0.011 282.2 1.134 105.6 0.074 64.9 0.031 136.9
Montijo 1.183 98.8 0.074 59.0 0.011 269.6 1.142 106.9 0.074 65.4 0.026 130.5
Cabo Ruivo 1.207 99.5 0.072 59.4 0.013 296.4 1.136 112.0 0.073 68.3 0.030 126.1
AIcochete 1.248 104.2 0.073 62.4 0.041 283.6 1.147 119.3 0.073 76.1 0.041 121.6
Sta. lria 1.245 109.1 0.078 62.8 0.029 328.3 1.162 124.0 0.073 78.4 0.049 127.4
Pta. da Erva 1.278 107.7 0.074 65.7 0.031 318.9 1.148 123.1 0.073 78.8 0.051 126.1
V.F.Xira 1.177 124.5 0.070 77.7 0.036 37.0 1.177 124.5 0.070 77.7 0.035 37.1
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In the upper estuary the agreement between modeled and observed elevations is

not as good (0.2 m < RMSe < 0.3 m - Figure 5.8a). Comparison of our results with those of

OFB95, which use finer grids, suggests that part of the error in this area is due to insuffi-

cient resolution. However, most of the error in the upper estuary is probably due to the

simplified treatment of the tidal flats. As mentioned previously, the Tagus estuary has a

resonance mode for a period of about eight to nine hours. Deepening the tidal flats will

affect the resonance period since it is proportional to the ratio between the characteristic

length and the characteristic celerity of the estuary. By deepening parts of the domain, we

are increasing the characteristic celerity, thereby reducing the resonance period. This

reduction will decrease the resonance effects on the semi-diurnal constituents (since the

resonance period is smaller than 12 hours), thereby reducing their amplitudes. However,

diurnal constituents will not be significantly affected because their period is.too far from

the resonance mode. This explanation is consistent with the results in Table 5.2.

RMS errors for velocities, which range from 0.1 to 0.35 mls (Figure 5.8b), can be

attributed to two major causes. First, in regions of strong velocity gradients, both the lack

of precision in the position of the station or morphological changes between the time the

bathymetry was surveyed (1964/67) and the time velocities were measured (1987) can

lead to large errors. In particular, at station C04, where the errors are largest, the main axis

of the observed M2 ellipse is rotated by about 10 degrees relative to the data (Figure 5.9).

However, computing the ellipse 200 m south of the reported position of the station (i.e., an

estimate of the distance that the Bugio Bank extended northward between 1964 and 1987)

reduces this difference to 1 degree. Either an error in the position of the station or the

northward extension of the Bugio Bank could therefore explain part of the errors at this

station. Second, the artificial deepening of the tidal flats, and the consequent increase of

volume, can explain the general over-prediction of the velocities (Table 5.3 and Figure

5.9). The volume of the upper estuary (upstream of the cross-section CacilhaslLisboa) at

mean sea level, computed with the grid shown in Figure 5.4, is 9.4x108 m3 or 12.2x108m3

depending on whether a minimum depth of zero or 2.5 m is specified. This 30% increase
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in the volume of the estuary should lead to larger flows, specially in the stations inside the

tidal jet (CO1 through C06), and therefore to the over-prediction of velocities.

Table 5.3 Comparison of velocitydata and model results. Amplitudes are in mls and phases are in
degrees.

Observed 3lfimodel 3D model
(dept -average) (at 0'=-0.7)

M2

Current amp. phase amp. phase amp. phase
meter

COI U
0.803 11 1.007 31 0.927 30

v 0.159 9 0.209 31 0.199 32

C02 U 0.941 17 0.836 28 0.770 26
v 0.544 39 0.238 30 0.230 31

C03 U
0.560 0 0.658 13 0.622 14

v 0.047 157 0.052 105 0.054 113

C04 U 0.647 14 0.869 30 0.810 30
v 0.686 14 0.645 30 0.605 30

C06 U 0.368 26 0.451 58 0.411 57
v 0.111 358 0.139 41 0.126 42

C09 U
0.169 3 0.204 24 0.189 22

v 0.064 147 0.049 258 0.038 255
U 0.186 14 0.140 49 0.126 47

CIO v 0.137 5 0.232 25 0.214 24

Kl

Current amp. phase amp. phase amp. phasemeter
U 0.020 328 0.035 354 0.033 356

COI v 0.005 348 0.008 353 0.007 353
U 0.029 319 0.024 2 0.022 0CO2

0.003 280 0.007 1 0.007 2v

C03 U 0.017 296 0.025 338 0.025 339
v 0.003 73 0.005 85 0.005 87

U 0.033 337 0.028 350 0.027 350C04
v 0.035 337 0.019 0 0.018 359

C06 U 0.021 315 0.029 6 0.026 5
v 0.008 271 0.011 0 0.010 0

C09 U
0.004 313 0.004 317 0.004 318

v 0.005 207 0.002 72 0.002 68
U 0.012 304 0.007 350 0.006 351

CIO v 0.006 255 0.008 309 0.007 309
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Finally, residual velocities agree well with data only in the coastal stations (C06,

C09 and ClO - Figure 5.9). Possible reasons for the disagreement in the estuarine stations

include unresolved eddies (e.g., at stations CO1 and C02 due to large bridge columns, at

station C04 due to the island of Bugio), incorrect bathymetry (station C04), neglected

density effects, and measurement errors due to wave action.

5.4.2 Tidal dynamics

This section describes the circulation patterns and their generation in the mouth of

the Tagus estuary, and discusses the implications from a water quality perspective.

Flow patterns at the mouth are very different on ebb and flood. On ebb, a tidal jet

forms along the canyon prolonging the channel, with two large eddies on each side (Figure

5. lOa). The eddies form near the coast, and move outward as ebb progresses. The eddies

are strongestand movefurtherawayfromthe coaston springtides (Figure5.11).As the

eddies move away, the currents invert near the coast. In particular, strong flood currents

can be observed over the Bugio Bank while the channel currents are still ebbing. On flood,

the currents over the sandbanks are large (e.g., over 2.5 rnIs over the Bugio Bank), while

the currents in the canyon are relatively small. As the two coastal eddies dissipate, a clock-

wise eddy forms inside the channel, between Pa~ode Arcos and Pedrou~os (Figure 5.10b).

This eddy forms near the southern margin of the channel and moves north until it dissi-

pates at the end of flood.

M2 tidal ellipses are almost rectilinear in the channel and mouth due to geometric

constraints, but weak rotation effects can be observed in the bay. The largest M2 depth-

averaged velocities occur over the Bugio Bank (about 1.5rnIs) and along the main channel

(up to 1.2rnIs). The phase lag between high or low water and these largest M2 velocities is

about 3 hours and 30 minutes in the Bugio Bank, and 4 hours and 25 minutes in the chan-

nel. There is therefore a strong phase lag between velocities in the channel and in the shal-

low areas. This phase lag, about 1 hour and 45 minutes between the channel and the

northern margin and 1 hour between the channel and the Bugio Bank (Figure 5.12), is due
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to the difference in depths. As depths decrease, friction increases and so does the phase

difference between elevation and velocities.

u ]5km

Figure 5.10a Surface currents during ebb (2:56 P.M. on January 9th). Entrainment eddies
form on both sides of the tidal jet.

The eulerian residual velocities are quite large (up to 0.5 mfs over the Bugio

Bank), with three well defined eddies (Figure 5.13a). An eddy develops in the mouth,

between P. Arcos and Pedrou90s, and two other develop on both sides of the tidal jet, the

one to the north rotating clockwise, and the one to the south rotating counterclockwise.

The development of two eddies downstream of inlets has been observed (e.g., Onishi,

1986) and modeled (e.g., Ridderinkhof and Zimmerman, 1990) in other systems. Residual

currents point typically upstream in shallow areas, and downstream in deep areas. The

other low frequency included in the model, Msf, has a pattern similar to 2.0, with two
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eddies forming on each side of the tidal jet. These currents reinforce residual velocities on

spring tides and counteract them on neap tides, and thus explain the stronger eddies on

spring tides.

u J5km

Figure 5.10b Surface currents during flood (8:32 P.M. on January 9th). An eddy forms
inside the channel.
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Figure 5.11 Progressive vector diagrams for the point shown in gray on Figure 5.4 for a) a,
neap tide, and b) a spring tide. Each curve is defined as x (t) = Ju (xo- Yo-t) dt and

'0

y (t) =Jv (xo'YO't)dt. On a neap tide the point is inside the eddy and currents rotate always
'0

clockwise; on a spring tide, the eddy moves away from the coast, and the currents can
rotate counter-clockwise on ebb.
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depth (thin line).
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u JSkm

Figure 5.l3a Depth-averaged eulerian residual velocities.
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Figure 5.l3b Depth-averaged eulerian residual velocities in the absence of advection.
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Figure 5.13c Depth-averaged eu1erian residual velocities for the maximum monthly
average river flow between 1971and 1984 (4000 m3/s).

u ]5km

Figure 5.13d Depth-averaged eulerian residual velocities for a quasi two-dimensional
simulation (see text).
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The low frequency velocity field is mainly generated by advective accelerations:

the fully non-linear run shows maximum depth-averaged residual velocities of 0.5 mIs

(Figure 5.13a), while in a run without advection these velocities are an order of magnitude

smaller and the eddies disappear (Figure 5.13b). The eddies are only mildly affected by

the Coriolis force, and even a very large river flow only has a visible effect on the inside

eddy (Figure 5.13c). The importance of the advective accelerations could be expected,

because the velocity phase and amplitude differences between the shallow banks and the

deep channel lead to large horizontal velocity gradients. To verify the importance of three-

dimensional effects on the generation of residual velocities, the model was run without the

momentum dispersion in the GWCE, and with the advective terms computed with the

depth-averaged velocities. With these modifications, the model is equivalent to a depth-

averaged model, except for the friction parameterization which remained the same as in

the three-dimensional model. Results are generally similar (Figure 5.13d). The major dif-

ferences occur in the tidal jet and the two associated eddies, where velocities are slightly

smaller.

To further understand the importance of three-dimensional effects, we examine the

spatial and temporal distribution of:

o

J (uj - Vj) (uj - V) dcr

Dij = -I V.V. + 1
I }

i,j = 1,2 (5.27)

The term Dij multiplies the advective fluxes ViVj in the conservative depth-aver-

aged momentum equations. In depth-averaged models, Dij is usually assumed equal to

one, although this is strictly true only for a uniform vertical profile of velocity (ui =Vi)'

Deviations of Dij from unity are therefore a measure of the vertical variability of veloci-

ties. Values of Dij were computed for i=j=r,where r is the direction of the local velocity,
Le.:

D D 4 D . 4 2D 2. 2
rr = IIcOS a+ 22sm a+ 12cOSasm a (5.28)



v ~ ~. . . .
~NO():lC'l+-NO
N

169

o
(:)
"
3

Figure 5.14 Importance of 3D effects for an average tide measured by Drr (see text) at: a)
high tide (9:12:24 A.M. on January 5th); b) ebb slack (12:18:48 P.M. on Janu~ 5th); c)
low tide (15:25:12 P.M. on January 5th); d) flood slack (18:31:36 on January 5t ). In the
areas not shown Drr is between 1 and 1.2.
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where a. is the angle between the x axis and the velocity vector, measured counterclock-

wise. To avoid divisions by very small numbers, Drr was set to 1 for velocities smaller

than 0.1 mls. Although Dij can be large at slack, its effect is negligible since it is multiply-

ing a very small number (UiUj).

Values of Drr computed at four instants during a tidal cycle suggest that three-

dimensional effects are small in most of the domain (Figure 5.14). However, in the chan-

nel and in the tidal jet, Drr can enhance the effect of advective accelerations by over

100%. Since advection is a major process in this area, three-dimensional effects cannot be

neglected. The large values of Drr in the channel and tidal jet also justify qualitatively the

finer vertical resolution used in those areas.

Two characteristics of the flow at the mouth of the Tagus estuary promote strong

mixing in the system. First, the flood-ebb asymmetries lead to exchanges between marine

and estuarine waters, as the estuarine waters leaving the estuary through the canyon are

partially replaced with marine water flowing in near the margins. This process, known as

"tidal pumping" is common to many estuaries (e.g., Fisher et aI., 1979). Second, chaotic

stirring is generated in the system by the interaction between tidal and residual flows. Cha-

otic stirring occurs in a tidal system when the ratio of the tidal excursion over the charac-

teristic length scale of the residual eddies is larger than D(1) (Ridderinkhof and

Zimmerman, 1990, Ridderinkhof and Loder, 1994). Under these circumstances, a particle

samples very different parts of the eddy (or eddies) during a tidal cycle, making the trajec-

tory very sensitive to the initial position. Furthermore, this stirring increases with the ratio

between the residual and tidal velocities (Ridderinkhof and Zimmerman, 1990). Chaotic

stirring can therefore be expected at the mouth of the Tagus, where the tidal excursion is

larger than the three main eddies, and residual currents are relatively strong.



..

171

\
i
I,

j
i .
\ .oJ

V

Figure 5.15a Mixing in the mouth of the Tagus estuary. 2771 particles initially located
along the gray line were released at high tide (3:45 A.M. on January 1st, 1972) and
followed for one M2 tidal cycle. The dots represent their final position and illustrate the
chaotic stirring and the mass exchanges between estuarine and coastal waters.
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Figure 5.15b Same as Figure 5.15a, but the particles were released at mid-ebb (9:45 A.M.
on January 1st, 1972). The effect of chaotic stirring is particularly clear.
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The two processes are illustrated by the behavior of a large number of particles

carried by the depth-averaged flow. The particles were initially distributed across the

mouth of the estuary, at intervals of about 2 m from each other. They were released during

a spring tide at high water (Figure 5.15a) and mid-ebb (Figure 5.15b) and were followed

for one M2 tidal cycle using a very accurate particle tracking model (Oliveira and Bap-

tista, 1995). The model uses an accuracy-controlled fourth-order Runge-Kutta tracking

algorithm and a very small closure error (10-7m) to prevent error accumulation.

After one M2 cycle the particles released at high tide were spread out over 25 Ian

(Figure 5.15a). The particles initially located on the main channel moved seaward, while

those initially close to the coast or over the sandbank moved deep inside the estuary. This

behavior shows that marine waters enter the estuary close to the coast, thus enhancing the

flushing of the estuarine waters and reducing residence times. However, these results must

be interpreted with caution, since depth is not considered in particle tracking. Residual

fluxes into the estuary occur typically in shallow areas whereas outward residual fluxes

occur over the canyon. Even though residual velocities into the estuary can be quite large

(Figure 5.13a), outward fluxes predominate (Figure 5.16). Fluxes of marine waters into

the estuary are therefore less important than suggested by the particle tracking.

Two clear indications of chaotic nature of the trajectories are the strong depen-

dence of lagrangian velocities on the release time (as suggested by the different final posi-

tions of the particles in the two figures) and the stretching and folding of the initially

straight lines. This stretching and folding was accentuated for the particles released at

mid-ebb (Figure 5.15b). In particular, the particles initially over the Bugio Bank were

trapped in the flood eddy (Figure 5.lOb) and rotated several times until the eddy dissipated

and they were flushed out. Clearly, chaotic stirring constitutes a very efficient mixing pro-

cess in this area.
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Figure 5.16 Residual fluxes, obtained through harmonic analysis of (UH,VR).

5.5 Summary

The application of a three-dimensional hydrodynamic model provided new

insights into the complex barotropic circulation at the mouth of the Tejo estuary. Of partic-

ular interest are the generation of residual currents by advective accelerations and the

importance of three-dimensional effects. In turn, these residual currents generate intense

mixing by tidal pumping and chaotic advection. Both advective and three-dimensional

effects should therefore be included in any hydrodynamic model used as a basis for a

water quality model for this area.

A recently proposed method for the vertical discretization of shallow water mod-

els, the localized sigma coordinates, was applied for the first time in a fully three-dimen-

sional situation. To take advantage of the flexibility of this method, two criteria for the

horizontal distribution of the total number of nodes were evaluated. One criterion, previ-

ously proposed by Fortunato and Baptista (1995a), led to results similar to those obtained
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with an equivalent sigma coordinate grid, and was shown to be inappropriate when advec-

tive accelerations are important. However, with an alternative criterion introduced in this

study, the maximum errors with the LSC grid were only half those obtained with the

equivalent sigma coordinate grid. This study establishes therefore the LSC as an attractive

alternative to the traditional sigma coordinates commonly used in shallow water models.

This study encourages new developments. From a water quality perspective, we

are now investigating the effects of tidal pumping and chaotic advection on residence

times in the Tagus estuary. From a hydrodynamics perspective, some aspects of our simu-

lations should be improved. The major limitation of this study was the simplified treat-

ment of the tidal flats which increased the volume of the estuary, leading to the over-

prediction of velocities and the under-prediction of semi-diurnal tides in the upper estuary.

We are currently applying two inundation models which will hopefully improve accuracy.

Another significant limitation of this study, which we will address in the future, is the

neglect ofbaroc1inic effects. While arguably these effects are small during spring tides and

during low river flow, they will be important at times and will affect residual currents.
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CHAPTER 6

Conclusions

6.1 Major Contributions.

Over the past few years, the large errors generated in the evaluation of baroclinic

pressure gradients in presence of steep slopes have led to severe misunderstandings. In

particular, Haney (1991) claimed that sigma coordinate ocean models were only condi-

tionally consistent due to a problem of "hydrostatic consistency". Our work (Chapter 3)

and others (Deleersnijder and Beckers, 1992, Mellor et aI., 1994) shows that hydro-

static inconsistency does not correspond to a numerical inconsistency and explains

the source of the misunderstandings. The apparent inconsistency results from the cance-

lation, under certain conditions, of the truncation errors in dx and in ~(J. When this can-

cellation occurs, refining either dx or tJ.(Jalone leads to the asymptotic increase of the

overall error. More importantly, the large errors result from coarse horizontal resolutions.

Pycnoclines are often quasi-horizontal. In presence of steep topography, there can be a

strong difference between the inclinations of the pycnoclines and the planes of constant

sigma. In this situation, part the vertical gradients are resolved by the horizontal, rather

than the vertical, grid. Since the horizontal grid seldom takes into account the need to

evaluate horizontal gradients in the internal mode, the horizontal resolution can be too

coarse and lead to large errors. Similarly, evaluating horizontal velocity gradients in z-

coordinates can be highly inaccurate because streamlines tend to follow planes of constant

sigma (Appendix 3). The resolution of the horizontal grid should therefore reflect the pres-

ence of steep topography, which it usually does not. With the guidelines proposed in

180
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Chapter 3 to define the appropriate horizontal resolution, it is now possible to avoid

the large errors in the evaluation of baroclinic pressure. However, this approach is

practical only for models using unstructured grids in the horizontal, and other approaches

should be used for finite difference models.

In all their simplicity, the Localized Sigma Coordinates are probably the most

interesting and lasting concept introduced in this work. While the use of unstructured grids

in the horizontal direction has been gaining acceptance over the years, only structured

grids have been used in the vertical. The LSC approach is the first to allow the number

of nodes per vertical to vary from point to point, and can therefore be considered a nat-

ural extension to the use of unstructured grids in the horizontal. Together with the criteria

we developed to distribute horizontally the total number of nodes, this flexibility proved

highly attractive both in 2D (Chapter 4) and 3D (Chapter 5) simulations, leading to

substantial accuracy improvements relative to the traditional sigma coordinate

approach (for a similar number of nodes). As we simulate increasingly complex flows,

the vertical resolution will necessarily increase. With traditional structured grids, this finer

resolution will be strongly limited by computational costs. Because they allow the repre-

sentation of fine features of the flow while modeling large domains, the LSC should

become even more useful in the future.

Due to large computational costs and the lack of guidelines on the appropriate ver-

tical resolution, three-dimensional tidal simulations are often under-resolved in the verti-

cal direction. We presented the first systematic study for the vertical discretization in

tidal flow simulations, and the resulting optimal grid compared favorably with grids

previously proposed. While several nodal distribution laws have been available for sev-

eral years, none has been systematically tested like the ~grid introduced here. Also, while

the idea that vertical resolution should increase with shear is not new, there hadn't been

any attempt to quantify that increase, even if only in an approximate way. We demon-

strated the strong dependency of errors on local flow properties, and showed how to take

those properties into account to build more accurate grids (Chapter 4).
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6.2 Directions for Further Research

As pointed out in Chapter 1, much remains to be done in both the physical and the

numerical aspects of three-dimensional shallow water models. The physical description of

the processes is clearly the most complex issue to address. These processes are very diffi-

cult to study in a laboratory due to the space scales involved: on the one hand, the horizon-

tal scales are very large (e.g., the wavelength of a semi-diurnal tide in a depth of 10 m is

over 400 Ian), preventing the use of real scale models; on the other hand, the vertical

scales are relatively small, forcing scale models to use excessive distortion (Le., different

horizontal and vertical scales), thus preventing the correct representation of turbulent pro-

cesses. The only alternative is therefore to use field sites, with all the inherent difficulties

(lack of control on the experiments, combination of many different processes, cost of the

instrumentation). Fortunately, due to the periodic nature of tides, comprehensive data sets

can be obtained over the years, providing that atmospheric conditions (e.g., wind, solar

radiation) are not a key factor.

From a numerical perspective, there is also much to be done in three-dimensional

flow models. Our experience with the Generalized Continuity Wave Equation formulation

was somewhat disappointing. Although it is certainly more robust than eulerian primitive

equation formulations, its sensitivity to the non-physical parameter G (in terms of accu-

racy, stability and mass conservation) is a major drawback. This problem could be mini-

mized by making G space-dependent, because the value of this parameter is loosely

related to the equivalent linear friction coefficient A.Since Acan vary in space by several

orders of magnitude, it is reasonable to make G vary in space as well. A simple option

would be to make G inversely proportional to the local depth: the product IJz should have

a narrower range of variation than Aalone. Alternatively, a preliminary run could be used

to estimate Aas a function of space, and that function used to impose G. In any case, this

space dependence would have little effect on the computational performance since the

mass matrix would still be stationary.
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The use of LSC and the good results obtained with the simple criteria for barotro-

pic tidal flows developed in previous chapters encourages the development of new criteria

for vertical discretization. The methodology used in Chapter 3 could be applied to wind-

driven and baroclinic flows with some modifications. For instance, the presence of two

boundary layers in wind-driven flows would probably force us to use a nodal distribution

law with two, rather than one, parameter, and the Coriolis term would probably need to be

included due to its importance in the formation of the Ekman boundary layer. The lack of

consensus on the form of the eddy viscosity profile for these types of flows would also

introduce additional degrees of freedom.

As we try to simulate more and more complex systems, especially in cases where

stratification plays a major role, time-independent grids are not likely to be an acceptable

choice. Although very little work has been done on the vertical refinement needed across a

pycnocline, it is clear that the suppression of turbulence by buoyancy can lead to very high

shear and therefore require a very fine resolution. Since there is no way of knowing a pri-

ori where the pycnocline will be located, and its position may vary strongly in space and

time (e.g., at the tip of a salt wedge), using time-independent grids can easily lead to

unsustainable computational costs. Also, when modeling the passage of a storm surge over

a large domain, it would be very expensive to adequately refine the surface layer over the

whole path of the storm surge. The use of adaptive grids, a natural extension of LSC, may

therefore be the best way to obtain the necessary resolution at an affordable cost.

The use of adaptive grids in the vertical is, at least conceptually, straightforward.

Since it is essentially a one-dimensional problem, there is no need to triangulate each time

the grid is changed. Also, since the vertical diffusion term is treated implicitly, the time

step does not have to change with the resolution. Criteria to create and eliminate nodes

have been used in many fields, and can easily be adapted for our purposes. Nodes can be

added or removed when a given norm goes outside some user-specified bounds (h-meth-

ods). Alternatively, the number of nodes can be fixed in time at a given vertical, but their

position can adapt to flow conditions (r-methods). This approach was described by Lynch
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and Werner (1991) for a shallow water model. Possible norms include estimates of trunca-

tion errors (e.g., Berger, 1985), residuals (e.g., Carey, 1995) and differences between the

values of the prognostic variable at two consecutive nodes (e.g., Yeh et al" 1992).
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APPENDIX 1

Application of RITA2v

AI.I Introduction

This appendix describes the use of RITA2v,a two-dimensional, laterally-averaged

shallow water model. The input and output formats are described in the next two sections,

Input File Structure and Output. Choosing the Input Parameters is intended to help a

beginner running RITA2v,mainly by providing realistic ranges for the various parameters.

Finally, Examples of Application describes the inputs and outputs for two applications.

To run RITA2vtype:

rita2v file] file2 [-0 [nskip]] [-i [outini]]

The meaning of the parameters is as follows:

· file] ,file2 are the names ofthe input files (see Section A1.2).

· .-0 is the output option:

-e: elevations in ACE} format (Turner, 1991);

-v: depth averaged velocities in ACE} format;

-q: fluxes in ACE} format;

-uj: horizontal velocity profile at nodej in ACE} format;

-wj: vertical velocity profile at node j in ACE} format;

185
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-xj: velocity deviations (u') profile at nodej in ACE. format;

-f elevations and velocities at all the nodes in ACE/vis format (Baptista and

Turner, 1991).

· nskip is the number of time steps between outputs (the default is 1);

· -iis a flagto createan initialandboundaryconditionsfileeveryautinitime stepsand at
the end of the run. If autini is not specified, the file will only be created at the end.

Typing simply "rita2v" will write out information on how to run the model to the

screen.

An user friendly program (data) is available to create simple input files for RITA2v.

Al.2 Input Files Structure
~

At least three input files are needed to run RITA2v:

· filel.grd (grid file);

· file2.par (parameter file);

· file2.ibo (initial and boundary"conditionsfile).

Depending on the options defined in the parameter file, other input files may be

needed:

· file2.den (density field file);

· file2.tsu (bottom deformation file);

· boundary time histories of elevation or flow.

filel andfile2 are defined as CHARACTER*5.

A1.2.1 Grid File

· File identifier

· nhnodes, npel: nhnodes is the number of horizontal elements. npel is the number of
nodes per element; in the present version of RITA2\1'only linear elements are accepted,
so npel is assumed to be 2.
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· xl(i), yl(i), h(i), b(i); i=l, nhnodes: cartesian coordinates, depth and width at each hori-
zontal node.

· id: dimension (1- ID, 2 - 2D).

· sigma(i); i=l, total number of vertical nodes; if id=2: for each horizontal node, the ver-
tical position of the vertical nodes bellow, from the bottom (cr=-l) up (cr=O).

A1.2.2 Initial and Boundary Conditions File
· File identifier.

· ibtI, ibt2: type of boundary condition imposed on the left and right sides, respectively.
The options are:

I - imposed elevations with tidal frequencies;

2 - imposed fluxes with tidal frequencies;

3 - transmissiveboundary;

4 - imposed elevations with time series; and,

5 - imposed fluxes with time series.

· nfreql, nfreq2: number of frequencies on the left and right sides, respectively. If ibti >
2, the value is ignored.

· ampl(i), phasel(i),freql(i); i=l, nfreq1; if ibtl<3: amplitudes (m), phases (degrees)
and frequencies (Hz) for the left boundary.

· filebc; if ibt1>3: name of the left boundary file.

· amp2(i), phase2(i), freq2(i); i=l, nfreq2; if ibt2<3: amplitudes (m), phases (degrees)
and frequencies (Hz) for the right boundary.

· filebc; if ibt2>3: name of the right boundary file.

· ics: 0 - cold start;1 - warm start (velocities); 2 - warm start (flows); 3 - warm start
(velocities and u'); 4 -warm start (flows and u').

· itrans; if ics=O:number of time steps for transition. A linear ramp function is applied
to the boundary conditions for the first itrans time steps to ensure a smooth transition.

· etal(i), eta2(i), u2(i); i=l, nhnodes; if ics=l: initial conditions for the external mode.
Elevations at two time steps and depth-averaged velocities.

· etal(i), eta2(i), q(i); i=l, nhnodes; if ics=2: initial conditions for the external mode.
Elevations at two time steps and flows.

· u'(j,i); i = 1, nhnodes; j = 1, nvnodes(i); if ics = 3 or 4: initial conditions for the inter-
nal mode.
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A1.2.3 Parameter File

· File identifier.

· g: gravitational constant.

. nsteps, dt, theta: number of time steps, time step for the external mode, time discretiza-
tion factor for the GWCE.

· gg, ggb: wave equation coefficient in the domain, and at the boundaries.

· ifric: 1 - non-linear friction; 0 -linear friction (only for ID version).

· rhoO, rhoa, wind, iden, itsu: density of water (kglm3), density of air (kg/m3), wind
speed (mls); baroclinic switch (0 - constant density; 3 to 5: baroc1inic pressure com-
puted with different formulations); tsunami switch (itsu<O- off; itsu>O - the bottom
deformation occurs in itsu time steps).

· id, alpha, ise, iform, ifits: dimension (1 - ID, 2 - 2D) - note that id was previously
defined in the grid file; time discretization coefficient for the internal mode; number of
external steps per internal step; formulation for the advective terms (from -1 to 4); first
internal time step.

· avmn: minimumeddyviscosity.

· xlamO(i), visc(i); i=1, nhnodes; if ifric=O:linear friction coefficient, horizontal eddy
viscosity.

· cmann(i), visc(i); i=1, nhnodes; if ifric=1, id=1: Manning coefficient, horizontal eddy
viscosity.

· cmann(i), visc(i), cd(i); i=1, nhnodes; if id=2: Manning coefficient, horizontal eddy
viscosity, bottom stress coefficient for the internal mode.

A1.2.4 Density File
· File identifier.

· rhoU,i); i =1, nhnodes; j =1, nvnodes(i); ifiden =1 or 2: initial density field.

A1.2.S Bottom Deformation File
· File identifier.

· bdef(i); i = 1, nhnodes; if itsu > 0: bottom deformation(positivevalues represent
uplifts).

A1.2.6 Boundary Files

· time, bc; as many lines as needed: time and imposed value (elevation or flux); time is in
seconds and must start at zero.
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Al.3 Output

RITAZvallows three types of output:

· visualization output for ACE};

· visualization output for ACE/vis;

· global spacial output.

A1.3.1 Output for ACE]

All the output options (see Introduction), except -f have a binary format compati-

ble with ACE}. The output is written directly to the screen, but can be redirected to a file.

The format is:

· 17;

· number of nodes in the grid;

· position of the nodes (x or sigma);

for each time step:

· time;

· value of the variable at each node.

All the variables have four bytes.

A1.3.2 Output for ACE/vis

When the output option -f is selected, the binary filefile2.vis is created with the

following format:

· 14;

· number of time steps in the file: (nsteps-ifits)/nskip;

For each time step:

· time;

· elevations at all the vertical nodes;

· horizontal velocities at all the vertical nodes;
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· vertical velocities at all the vertical nodes.

All the variables have four bytes.

A1.3.3 Global Spacial Output

An initial and boundary conditions file namedfile2.iboN can be created with the

option -i. It has the same format as the initial and boundary conditions files, so that a new

run can be started where the previous one ended. Velocities, rather than flows, are written

out, regardless of the input file (i.e., ics takes the value of I for ID runs, and 3 for 2D

runs).

AI.3.4 Error Messages

At the beginning of each run, the input files are checked for basic inconsistencies.

When an error is detected, an error message is written to the screen and the run is inter-

rupted. If the model is being run from ACE}, Figure A1.1 pops up on the screen:

CS> Incorrect file t~pe for visualization

I~ Help I

Figure AI.I Error message in ACE}.

In this case the model should be rerun from the screen so that the message can be

read.

The possible error messages are as follows:

· Check your filefilename
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The input filefilename does not exist.

· Check your number of nodes:

nhnodes = [nhnodes]

MXNOD = [MXNOD]

The number of horizontal nodes (nhnodes) in filefilel.grd is larger than the corre-

sponding dimensions of the matrices (MXNOD). Change the parameter file, rita2v.cmn,

and compile the model again.

· Number of vertical nodes exceeds MXSI

The number of vertical nodes in at least one vertical in filefilel.grd is larger than

the corresponding dimensions of the matrices (MXSI). Change the parameter file,

rita2v.cmn, and compile the model again.

· You specified 2D in the PARAMETER file, but your grid is ID

There is an inconsistency between the parameter file, which specifies a 2D run and

the grid file, which specifies a ID grid. Change one of them.

· Problem with parameter file

The parameter file does not contain information for all the nodes.

· Problem with initial and boundary conditions file

The initial and boundary conditions file does not contain information for all the

nodes.

· Your boundary conditions file is not long enough

One of the time series boundary files does not contain enough information for the

whole run (this is checked during the time stepping, rather than in the beginning of the

run).

· Wave Equation matrix inversion: ind =[ind]

· ID momentum equation matrix inversion: ind =[ind]
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The inversion of the matrix for the GWCE or the ID momentum equation failed

because the equations were not linearly independent. This indicates that there is a serious

error in your inputs that was otherwise undetected.

Al.4 Choosing the Input Parameters

AI.4.1 Space and Time Discretization

The choice of the horizontal grid and external time step are determined by two

dimensionless numbers:

· the Courant number:

Cu = ./ihllt
llx (A.l)

· the dimensionless wave length:

A = ./ihT~ (A.2)

The Courant number should in general be kept slightly below 1, although larger

values can be used when the elevation is small relative to the total depth. Formal analysis

(e.g. Luettich et al., 1991) indicates that the dimensionless wavelength for the shortest

wave that one wants to resolve (period T) should not be less than 30 or 40. However, in

presence of strong bathymetric variations, larger values should be used (Luettich and Wes-

terink, 1994).

Two time discretization parameters have to be specified in the parameter file. theta

is the time discretization parameter for the wave equation, and should vary between 0 and

1. Kinnmark (1985) shows that it must be larger or equal to 0.5 for stability, and Westerink

et al. (1992) recommend the use of 0.7. The other time discretization parameter, alpha, is

used in the internal mode. A value of 0.5 (Crank-Nicholson) has been used with good

results.
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Guidelines for the vertical discretization are given in Fortunato and Baptista

(1995) and Davies (1991).

It is possible to set the internal mode time step larger than the external mode's by

setting ise larger than 1. Some authors use time steps in the internal mode one (e.g. Galp-

erin and Mellor, 1990)or even two (e.g., Blumberg and Mellor, 1987) orders of magnitude

larger than in the external mode. Limited tests with RITA2v suggest that ise should not

exceed 3; a value of 1 has been used in most applications.

A1.4.2 Physical and Numerical Parameters

1. The GWCEcoefficient(gg)

A good choice of the GWCE coefficient is of the utmost importance for the good

behavior of the model: too large, and the results will be plagued with spurious oscillations,

characteristic of models based on the primitive equations; too small and mass conserva-

tion will not be ensured. As a rule of thumb, gg should be taken as the maximum linear

friction coefficient (Westerink et. al., 1992). For a non-linear run,

==Cui or gg ==CDublJ. max 11

2. The GWCE coefficient at the boundary (ggb)

(A.3)

Theoretical and numerical studies suggest that better mass conservation is

achieved if the GWCE coefficient takes a larger value at the boundary than in the domain

(Kolar et. al., 1992). However we have generally used ggb=gg with good results. Note that

this only affects boundaries where the elevations are imposed.

3. The advection and baroc1inicpressure formulation (iform)

This input parameter may vary between -1 and 4, and it determines how the advec-

tive terms are treated:

iform =-1: advection is neglected both in the internal and external modes;

iform =0: advection is neglected in the internal mode only;
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ifonn =I: only the depth average component of the advective term is included in

the internal mode;

ifonn =2: for the purpose of computing advection in the internal mode, the veloc-

ity is assumed to be the product of the depth averaged velocity with a function that

depends only on depth and time;

ifonn =3: standard sigma formulation; note that in this case the number of nodes

has to be constant for every vertical;

ifonn =4: the horizontal gradients of depth dependent quantities are computed in a

cartesian coordinate system;

ifonn =5: the horizontal gradients of depth dependent quantities are computed in

sigma coordinates, but the number of nodes per vertical does not have to be constant as the

necessary values at neighboring verticals are interpolated;

The baroclinic pressure term is computed with formulation 3, 4 or 5, consistent

with the advection formulation. Note therefore that, if the baroclinic mode is selected,

ifonn has to be 3 or 4.

4. The first internal time step (ifits)

If the internal mode is warm started, this variable should equal I; otherwise, it

should be at least 2. For computational efficiency, it may be useful to do a warm up period

in ID before activating the internal mode.

5. The transition steps (itrans)

In order to allow a smooth start, it is possible to specify a number of transition time

steps (itrans). During this period, the forcing functions (wind and boundary conditions)

are multiplied by a linear ramp function. As a rule of thumb, the duration of the transition

period should be about the double of the time needed for a wave to propagate from one

end of the domain to the other, i.e.,
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(A4)

where L represents the length of the domain, and he a characteristic depth.

6. The minimum vertical eddy viscosity (avmn)

This value is generally used to ensure that eddy viscosity does not go below the

molecular viscosity of water (10-6m2/s). A larger value may be used for stability reasons.

7. The horizontal eddy viscosity (vise)

Physically, the horizontal eddy viscosity is negligible compared to the vertical

eddy viscosity in shallow waters conditions. However, this term was included in the model

since it is sometimes used for stability reasons. It must be noted though that large values of

this coefficient (larger than around 1 m2/s for typical coastal conditions) may also signifi-

cantly damp the solution.

8. The linear friction coefficient (xlamO)

Even though bed friction is better parametrized by a quadratic than a linear func-

tion, the former has better stability properties, and therefore may be useful in some cases.

The linear coefficient can be related to the Manning coefficientby:

xlamO= (emann)2g
h4/3 IUcl

(A5)

where h is the mean depth, and uea characteristic depth averaged velocity. For tidal appli-

cations,Dronkers(1964)proposes:

xlamO =8 (emann) 2g_
31thv?, urn

(A6)

where urnis the mean value of the maximum velocities in the tidal region.

9. The Manning coefficient (emann)
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The Manning coefficient varies with the type of bed. Table A1.1 gives a good indi-

cation for the choice of the coefficient.

Table A1.1 Typical values of the Manning coefficient (adapted from Quintela, 1981).

IO.The internal mode friction coefficient (cd)

The specification of cd is not as simple because it depends on the turbulence

parametrization,as well ason the distancebetweenthe bottomnodeand the true bottom.

A possible approach is to use the logarithmic law of the wall:

u (0) = u.ln (olzo)K: (A.7)

where 0 is the distance from the bottom, K:is the von Karman constant, Zois the roughness

length, and u* is the stress velocity given by:

(A.8)

where Obis the distance between the true bottom and the bottom node. An expression for

cd is obtained by combining (A.?) and (A.8):

2

Cd = [In(~b)]

(A.9)

Bottom type Manning coefficient

(m-1/3s)

regular soil 0.017

irregular soil 0.022

irregular soil with vegetation, rock beds 0.029

very irregular soil, stone beds 0.033

rivers with significant solid transport 0.05



197

This expression is very attractive because it is physically solid. However it leaves

the modeler with the difficult task of specifying Ob and z00 RITA2v takes a simpler

approach: cd is specified directly, so the number of parameters is reduced. Table A1.2

gives the range of values of cd found in the literature. It must be noted that the appropriate

value of cd depends on the turbulence closure model used.

Table A1.2 Values of Cd.

AI.S Examples of Application

Two small examples of application are presented below. The first consists of a typ-

ical test case for depth averaged models. A closed-end channel is forced with a tidal wave.

An analytical solution for the fully linear case is given by Lynch and Gray (1978) and

reviewed for the lD case by Remedio (1992). The second is a more realistic 2D applica-

tion to a reservoir in the Snake river (Washington). The input files are presented, along

with selected results.

A1.S.1 ID Linear Tidal Propagation

Definition of the Test

This test consists of aM 16tidal wave propagating in a shallow channel 80 km long

and with an inclined bottom (Figure A1.2). The depths vary linearly from 15 m at the

mouth to 5 m at the closed end. The amplitude of the wave, 1 cm, was chosen small com-

Reference Cd(-) Comments

Sternberg, 1972 0.004 Lab experiment (perm. flow)

Brown and Trask, 1980 0.035

Blumberg and Mellor, 1987 0.0025 Minimum value

Walters, 1992 0.0025 - 0.07 Delaware Bay (calibrated)

Aldridge and Davies, 1993 0.00187 - 0.00563 Irish Sea (sensitivity analysis)
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pared to the depth so that the finite amplitude term was negligible and a comparison with

the analytical solution was possible.

The run was cold started. The time step and grid spacing were chosen as 80s and

1000m, respectively, leading to a maximum Courant number of 0.97 and a minimum

dimensionless wave length of 39. A constant linear friction coefficient of 0.00025 s-l was

used, and both advection and diffusion were neglected.

Input files
I. Grid file

gridfile
812
0.000 0.000 5.000 1000.000
1000.000 0.000 5.125 1000.000
2000.000 0.000 5.250 1000.000
3000.000 0.000 5.375 1000.000
4000.000 0.000 5.500 1000.000
5000.000 0.000 5.625 1000.000
6000.000 0.000 5.750 1000.000
7000.000 0.000 5.875 1000.000
8000.000 0.000 6.000 1000.000
9000.000 0.000 6.125 1000.000
10000.00 0.000 6.250 1000.000
llooo.oo 0.000 6.375 1000.000
12000.00 0.000 6.500 1000.000
13000.00 0.000 6.625 1000.000
14000.00 0.000 6.7501000.000
15000.00 0.000 6.875 1000.000
16000.00 0.000 7.000 1000.000
17000.000.0007.1251000.000
18000.00 0.000 7.250 1000.000
19000.000.0007.3751000.000
20000.00 0.000 7.500 1000.000
21000.00 0.000 7.6251000.000
22000.000.0007.7501000.000
23000.00 0.000 7.875 1000.000
24000.00 0.000 8.000 1000.000
25000.00 0.000 8.125 1000.000
26000.00 0.000 8.2501000.000
27000.00 0.000 8.375 1000.000
28000.00 0.000 8.500 1000.000
29000.00 0.000 8.625 1000.000
30000.00 0.000 8.750 1000.000
31000.00 0.000 8.875 1000.000
32000.00 0.000 9.000 1000.000
33000.00 0.000 9.125 1000.000
34000.00 0.000 9.250 1000.000
35000.00 0.000 9.375 1000.000
36000.00 0.000 9.500 1000.000
37000.00 0.000 9.625 1000.000
38000.00 0.000 9.7501000.000

40000.00 0.000 10.000 1000.000
41000.000.000 10.1251000.000
42000.00 0.000 10.250 1000.000
43000.00 0.000 10.375 1000.000
44000.00 0.000 10.500 1000.000
45000.00 0.000 10.625 1000.000
46000.00 0.000 10.750 1000.000
47000.00 0.000 10.875 1000.000
48000.00 0.000 11.000 1000.000
49000.00 0.000 11.125 1000.000
50000.00 0.000 11.250 1000.000
51000.00 0.000 11.375 1000.000
52000.00 0.000 11.500 1000.000
53000.00 0.000 11.625 1000.000
54000.00 0.000 11.750 1000.000
55000.00 0.000 11.875 1000.000
56000.00 0.000 12.000 1000.000
57000.00 0.000 12.125 1000.000
58000.00 0.000 12.250 1000.000
59000.00 0.000 12.375 1000.000
60000.00 0.000 12.500 1000.000
61000.00 0.000 12.625 1000.000
62000.00 0.000 12.750 1000.000
63000.00 0.000 12.875 1000.000
64000.000.000 13.000 1000.000
65000.00 0.000 13.125 1000.000
66000.00 0.000 13.250 1000.000
67000.00 0.000 13.375 1000.000
68000.00 0.000 13.500 1000.000
69000.00 0.000 13.625 1000.000
70000.00 0.000 13.750 1000.000
71000.000.000 13.8751000.000
72000.00 0.000 14.000 1000.000
73000.00 0.000 14.125 1000.000
74000.00 0.000 14.250 1000.000
75000.00 0.000 14.375 1000.000
76000.00 0.000 14.500 1000.000
77000.00 0.000 14.625 1000.000
78000.00 0.000 14.750 1000.000
79000.00 0.000 14.875 1000.000
80000.00 0.000 15.000 1000.000
1
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2. Parameter file
Parameter file
9.81
558 80.0000 0.7000
0.2500E-030.l00E-0i
o
1000.000 1.000 O.OOOE+OO 0 0 -I
I 0.500 1 -I 0
0.IOOOE-02
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO

0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.OOOOE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.OOOOE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.OOOOE+OO

0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500&03 O.ooooE+OO

0.2500&03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500&03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO
0.2500E-03 O.ooooE+OO

3. Initial and boundary conditions file
Initial and boundary conditions file
21
I I
0.00000+00 O.OOOOOE+OOO.OOOOOOOE+OO
0.10000-01 0.90000E+020.l792II4E-03
o
o

Results

The model was run for 44640s (eight tidal cycles) in ACE}. The final elevations

and depth averaged velocities are shown in Figure A1.3, together with the analytical solu-

tions. The agreement between the analytical and numerical solutions is excellent.
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A1.5.2 2D Flow in a Reservoir

Definition of the Test

This test simulates the flow in a reservoir in the Snake river (Washington). The res-

ervoir is bounded by two dams, Lower Granite (upstream) and Little Goose (downstream).

It is about 55 kilometers long, with depths and widths ranging approximately from 8 to 36

meters, and 200 to 565 meters, respectively (Figure A1.4). The simulation covers the

month of March 1992, during which a drawdown operation was carried out.

Elevations were specified upstream and flows downstream, both from hourly field

records. The external mode solution was warm started with an approximate solution (con-

stant flow and elevations varying linearly between the two boundaries), and the internal

mode was cold started. It should be noted that it would be more appropriate to specify

flows at both boundaries. This wasn't done however, due to inconsistencies in the field

data.

One of the difficulties in applying RITA2vin a field study such as this one is to

specify the grid, since the real cross-sections are obviously not rectangular. The numerical

grid was specified by imposing that both the area and a "characteristic depth" should be

kept at each cross-section. The characteristic depth was defined as the maximum depth

after a nine point running average was used to filter each cross-section bathymetry.

Input files

1. Grid file
LiuleGooseReservoir
502 II
421259.084538164781 5159466.52113786247 36.4269866666666857 411.386273149869680
422312.159126058046 5159908.75027604960 36.4242276700123639 393.607792555744936
423394.3410176137705160215.41633820627 34.4730569159057652 487.722453866155547
424531.402023177769 5160 173.46329783183 35.7672379334262160 459.738758392397358
425660.851200441655 5160074.40933102462 35.0855938945472232 432.765608082777874
426794.942744162166 5160209.94186877739 32.9780109603231324 558.824959029459365
427935.034411788161 5160197.68603342865 32.4451795107260352 559.136521705868745
429076.380408273893 5160 154.5349658411 0 32.2415506351578287 533.160447265480229
430213.458960549615 5160050.47471897304 32.4115397407572772 565.277448460554069
431234.3760494702735160199.67569409497 29.5915614685359358 540.126077314430745
431925.278815887286 5161109.17339375429 28.7762024936673484 549.430445767171932
432624.6399447166485162010.99906565156 28.0146368358680853 556.331565065753921
433462.623730199935 5162787.08918515779 28.1346806621361729 523.846244518043932
434300.607515683223 5163563.17930466402 28.2547244884042605 491.360923970333829
435296.254908168921 5163930.67719255015 27.6311710539746791 465.854239414575659
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436438.3529111 00 199 5163918.64182681032 26.3169048112740747 446.829871992933818
437580.4509140314775163906.60646107048 25.3006780374471738 447.554192476538219
438680.1724819844825163998.40118714329 24.9291092681785038 471.128286746093181
439487.694124796311 5164806.13969354145 26.2916549413650174472.621653158582490
440276.961873006134 5165630.79307539389 26.9372322820054109 470.382091633761263
441020.959611331171 5166497.39567387570 25.8047143608347191 458.884796989203949
441764.9573496561505167363.99827235751 24.6721964396640274447.387502344646634
442181.264684665832 5168398.00113969017 27.7120065290958983 419.912651934008863
442641.8696420953495169431.27640917152 26.1982169606231281398.013773664240716
443284.7117032707325170368.16686121468 23.4275821959062966 398.497961374841680
444049.574386219610 5171216.41079697944 24.6773962046090141 424.394856753520173
445056.558060273703 5171700.98598599713 23.3790971431139845 477.030472162303909

446134.199490442988 5172079.43234456237 21.3371865878531892 537.469202658688005
447252.926849136071 5172283.85282182880 20.3424585671569780 565.341167792369561
448387.230883578362 5172362.83186099119 20.1818512762892368 560.206917496474489
449524.870502989506 5172261.29962633550 21.3293086269705370 494.622904480723378
450632.927812627517 5172080.92202014383 22.0388953140560524438.907184687200470
451556.5860100862345171409.06769620534 20.0190480172662433 444.704731533666120
452429.156557880167 5170679.27981869038 19.13590 I 0111882988 417.252704826605338
453213.766120985849 5169850.11821168195 20.2261595742909250 333.269893643941430
454212.514484774088 5169296.01135902759 17.9526920222074615 450.394578249427184
455340.629656296805 5169368.55248213187 17.0821277875329507 396.801476249251436
456449.379695703974 5169605.91213487834 17.1809515865364979 352.621477526176136
457525.706480401801 5169988.0814047968018.3047615211351875332.387536785862494
458632.146228293248 5170195.93807515316 18.1179084033810938 353.155172950273652
459774.307132528978 5170197.01842855662 16.3762963100046548 422.560458274670509
460910.601292976702 5170291.16105094366 16.3989270450147870 399.602736239399803
461993.8645370668965170516.28850392625 17.2552331784381501 334.436742019145015
462817.779527980951 5171255.09297095053 12.4720919237015497420.788982381039261
463646.483169550833 5170840.95708264224 13.9632306466947860 259.171179605258544
463885.809382895008 5169768.06668316294 10.1172025673089507 381.383760617250516
464723.216589323420 5169076.21327179298 11.1528172073881215 257.449809747895472
465714.458670877269 5168508.78765192255 12.1692567271455392 202.715005999035782
466705.7007524312365167941.36203205306 10.9172143282203979214.019826021607855
467696.942833984911 5167373.93641218264 8.24653333333333016 304.585884552104858
2
-1.OOOOOOOOOOOOOOO

-0.975OOOOOOOOOOOOOOO

-0.95OOOOOOOOOOOOOOO

-0.9OOOOOOOOOOOOOOO

-0.8OOOOOOOOOOOOOOO

-0.7OOOOOOOOOOOOOOO

-0.6OOOOOOOOOOOOOO

-0.5OOOOOOOOOOOOOOO

-0.4OOOOOOOOOOOOOOO

-0.3OOOOOOOOOOOOOOO

-0.2OOOOOOOOOOOOOOO

-0.1OOOOOOOOOOOOOOO

0.OOOOOOOOOOOOOOO

-1.OOOOOOOOOOOOOOO

-0.975OOOOOOOOOOOOOOO

-0.95OOOOOOOOOOOOOOO

-0.9OOOOOOOOOOOOOOO

-0.8OOOOOOOOOOOOOOO

-0.7OOOOOOOOOOOOOOO

-0.6OOOOOOOOOOOOOO

-0.5OOOOOOOOOOOOOOO

-0.4OOOOOOOOOOOOOO

-0.3OOOOOOOOOOOOOOO

-0.2OOOOOOOOOOOOOOO

-0.1OOOOOOOOOOOOOOO

0.OOOOOOOOOOOOOOO

[no]

2. Parameter file
Little Goose Reservoir
9.81OOOOOOOOOOOOOOO

89160 30.OOOOOOOOOOOOOOO 0.5OOOOOOOOOOOOOOO

0.5OOOOOOOOOOOOOOO5&03 0.50000000000000002E-03
I
1000.OOOOOOOOOOOOOO 1.OOOOOOOOOOOOOOO O.OOOOOOOOOOOOOOOE+OO 0 -I
2 0.5OOOOOOOOOOOOOOO I 42
0.10000000000000002E-05

0.35OOOOOOOOOOOOOO14E-0 I 1.000000000000000E+OO 1.OOOOOOOOOOOOOOO I OE-OI
[...]
0.35OOOOOOOOOOOOOO14E-0 I 1.000000000000000E+OO 1.OOOOOOOOOOOOOOOI OE-O I
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3. Initial and boundary conditions file
Little Goose Reservoir
54
00
lig.flow
log.elv
2
-1.30454399999999993 -1.30454399999999993 -1141.OOOOOOOOOOOOOO
-1.30385975510204077 -1.30385975510204077 -1141.OOOOOOOOOOOOOO
-1.30317551020408162 -1.30317551020408162 -1141.OOOOOOOOOOOOOO
-1.30249126530612247 -1.30249126530612247 -1141.OOOOOOOOOOOOOO
-1.30180702040816310 -1.30180702040816310 -1141.OOOOOOOOOOOOOO
-1.30112277551020394 -1.30112277551020394 -1141.OOOOOOOOOOOOOO
-1.30043853061224479 -1.30043853061224479 -1141.OOOOOOOOOOOOOO

-1.29975428571428564 -1.29975428571428564 -1141.OOOOOOOOOOOOOO
-1.29907004081632649 -1.29907004081632649 -1141.OOOOOOOOOOOOOO
-1.29838579591836734 -1.29838579591836734 -1141.OOOOOOOOOOOOOO
-1.29770155102040818 -1.29770155102040818 -1141.OOOOOOOOOOOOOO
-1.29701730612244881 -1.29701730612244881 -1141.OOOOOOOOOOOOOO
-1.29633306122448966 -1.29633306122448966 -1141.OOOOOOOOOOOOOO
-1.29564881632653051 -1.29564881632653051 -1141.OOOOOOOOOOOOOO
-1.29496457142857135 -1.29496457142857135 -1141.OOOOOOOOOOOOOO
-1.29428032653061220 -1.29428032653061220 -1141.OOOOOOOOOOOOOO
-1.29359608163265305 -1.29359608163265305 -1141.OOOOOOOOOOOOOO
-1.29291183673469390 -1.29291183673469390 -1141.OOOOOOOOOOOOOO
-1.29222759183673452 -1.29222759183673452 -1141.OOOOOOOOOOOOOO
-1.29154334693877537 -1.29154334693877537 -1141.OOOOOOOOOOOOOO
-1.29085910204081622 -1.29085910204081622 -1141.OOOOOOOOOOOOOO
-1.29017485714285707 -1.29017485714285707 -1141.OOOOOOOOOOOOOO
-1.28949061224489792 -1.28949061224489792 -1141.OOOOOOOOOOOOOO
-1.28880636734693876 -1.28880636734693876 -1141.OOOOOOOOOOOOOO
-1.28812212244897961 -1.28812212244897961 -1141.OOOOOOOOOOOOOO

-1.28743787755102024 -1.28743787755102024 -1141.OOOOOOOOOOOOOO
-1.28675363265306109 -1.28675363265306109 -1141.OOOOOOOOOOOOOO
-1.28606938775510193 -1.28606938775510193 -1141.OOOOOOOOOOOOOO
-1.28538514285714278 -1.28538514285714278 -1141.OOOOOOOOOOOOOO
-1.28470089795918363 -1.28470089795918363 -1141.OOOOOOOOOOOOOO
-1.28401665306122448 -1.28401665306122448 -1141.OOOOOOOOOOOOOO
-1.28333240816326533 -1.28333240816326533 -1141.OOOOOOOOOOOOOO
-1.28264816326530595 -1.28264816326530595 -1141.OOOOOOOOOOOOOO
-1.28196391836734680 -1.28196391836734680 -1141.OOOOOOOOOOOOOO

-1.28127967346938765 -1.28127967346938765 -1141.OOOOOOOOOOOOOO
-1.28059542857142850 -1.28059542857142850 -1141.OOOOOOOOOOOOOO
-1.27991118367346934 -1.27991118367346934 -1141.OOOOOOOOOOOOOO
-1.279226938775510 19 -1.27922693877551019 -1141.OOOOOOOOOOOOOO
-1.27854269387755104 -1.27854269387755104 -1141.OOOOOOOOOOOOOO
-1.27785844897959167 -1.27785844897959167 -1141.OOOOOOOOOOOOOO
-1.27717420408163251 -1.27717420408163251 -1141.OOOOOOOOOOOOOO
-1.27648995918367336 -1.27648995918367336 -1141.OOOOOOOOOOOOOO
-1.27580571428571421 -1.27580571428571421 -1141.OOOOOOOOOOOOOO
-1.27512146938775506 -1.27512146938775506 -1141.OOOOOOOOOOOOOO
-1.27443722448979591 -1.27443722448979591 -1141.OOOOOOOOOOOOOO
-1.27375297959183675 -1.27375297959183675 -1141.OOOOOOOOOOOOOO
-1.27306873469387738 -1.27306873469387738 -1141.OOOOOOOOOOOOOO
-1.27238448979591823 -1.27238448979591823 -1141.OOOOOOOOOOOOOO
-1.27170024489795908 -1.27170024489795908 -1141.OOOOOOOOOOOOOO
-1.27101599999999992 -1.27101599999999992 -1141.OOOOOOOOOOOOOO

4. Boundary files

Due to the extent of these files only the first ten lines of the upstream file are given.

O.OOOOOOOOOOOOOOOE+OO -1144.00060223600008
3600.OOOOOOOOOOOOOO-1158.15902553100000
7200.OOOOOOOOOOOOOO-1234.61451132399998
10800.OOOOOOOOOOOOO-1319.565051094000 18
14400.OOOOOOOOOOOOO-1328.06010507099995
18000.OOOOOOOOOOOOO -1308.238312458000 11
21600.OOOOOOOOOOOOO -934.455937469999981
25200.OOOOOOOOOOOOO -764.554857930000026
28800.OOOOOOOOOOOOO -1421.505698818000 16
32400.OOOOOOOOOOOOO -1393.18885222800009
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Results

Results at the boundaries are shown in Figures A.5 and 6, together with the field

data. A vertical velocity profile is shown in Figure A1.7.
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A=O.01m,
T=1.55h

L=80km

Figure Al.2 Geometry of the test case.
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APPENDIX 2

Brief User's Manual for ADCIRC 3D

A2.1 Disclaimer

This Appendix is intended only as a complement to other publications describing

ADCIRC. The user is referred to Chapter 5 and references therein for the formulation, and

to Westerink et al. (1992) for the format of most files. The model and file formats were

developed by Drs. R.A. Luettich, Jr. and J.J. Westerink. The only modifications made by

the author were the introduction of the localized sigma coordinates, the evaluation of

advective terms in the internal mode and the solution of the 3D continuity equation. The

description of the files presented below was taken from the header of the fortran code,
with small modifications. This version of ADCIRC is based on version 26, release 7.

A2.2 Input Files

The version of ADCIRC described herein requires the specification of four files. In

addition, the reading of several supplemental files can be triggered by certain values in the
standard files.

The standard files are:

· the horizontal grid file (fort.I4);

·the external mode parameter file (fort.I5);

·the internal mode parameter file (fort.I 7); and,

· the vertical grid file (fort.I8).

The first two, as well as the supplemental files, are described in Westerink et al.

(1992). The others are described below.

212
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A2.2.1 Internal Mode Parameters (fort.I7)

The following input variables are required forfort.] 7. Free format is assumed.

·idiag: diagnostic and warning messages types:

0- no (nonfatal) diagnostic output printed to units 2 or 16;

1 - serious, nonfatal diagnostic output printed to unit 16;

2 - serious, nonfatal diagnostic output printed to unit 16; routine diagnostic
output printed to unit 2.

·islip, k: slip code (0 - no-slip, 1 - linear slip; 2 - quadratic slip) and slip coeffi-
cient;

·zos, zob: free surface and bottom roughness;

·alp I, alp3: internal mode time stepping coefficients (alp 1 weights the Coriolis
term,alp3weightstheverticaldiffusionterm);

·ievc, evcon: eddy viscosity code and constant. See code header for definitions.

·i3dss, to3dsss, to3dfss, nspo3dss, nso3dss, nhn3dss: station stresses output
switch (0 - no output; 1 - ASCII output; 2 -binary output); number of days after
which station stresses output begins; number of days after which station stresses
output stops; number of time steps between outputs; number of points over the
vertical to output station stresses; number of stations in the horizontal to output
stresses; output to fortAl;

·ssout(i): i=l, ns03dss: sigma values of station stress output points (from -1 to 1);

·sshout(i): i=l, nhn3dss: horizontal node numbers to be used as stress output sta-
tions;

· i3dsv, to3dssv, to3dfsv, nspo3dsv, nso3dsv, nhn3dsv: station velocity output
switch (0 - no output; I - ASCII output; 2 -binary output); number of days after
which station velocities output begins; number of days after which station veloc-
ities output stops; number of time steps between outputs; number of points over
the vertical to output station velocities; number of stations in the horizontal to
output velocities; output to fortA2;

·svout(i): i=l, ns03dsv: sigma values of station velocity output points (from -I to
1);

·svhout(i): i=l, nhn3dsv: horizontal node numbers to be used as velocity output
stations;
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·i3dgs, to3dsgs, to3dfgs, nspo3dgs, nso3dgs: global stresses output switch (0 - no
output; 1 - ASCII output; 2 - binary output); number of days after which global
stresses output begins; number of days after which global stresses output stops;
number of time steps between outputs; number of points over the vertical to out-
put global stresses; output to fort.43;

·gsout(i): i=l, ns03dgs: sigma values of global stress output points (from -1 to 1);

·i3dgv, to3dsgv, to3dfgv, nspo3dgv, nso3dgv: global velocities output switch (0 -
no output; 1 - ASCII output; 2 -binary output); number of days after which glo-
bal velocities output begins; number of days after which global velocities output
stops; number of time steps between outputs; number of points over the vertical
to output global velocities; output to fort.44;

·gvout(i): i=l, ns03dgs: sigma values of global stress output points (from -1 to 1);

·i3dan, to3dsan, to3dfan, nspo3dan: ancillary file (containing depth-averaged
velocity, bottom stress and dispersion terms at all external mode nodes) switch (0
- no output; 1 - ASCII output; 2 - binary output); number of days after which
ancillary file output begins; number of days after which ancillary file output
stops; number of time steps between outputs; output to fort.45.

A2.2.2 Vertical Grid (fort.IS)

·igc, lsc: vertical distribution code (0 -read from fort.18; 1 - uniform grid gener-
ated; 2 -log grid generated; 3 -log-linear grid generated; 4 - double-loggridgen-
erated; 5 - Pgrid generated); localized sigma coordinates switch (0 - domain-
wide sigma coordinates; 1 -localized sigma coordinates switch);

·nfen~(i): i=l, number of horizontal nodes: number of nodes per vertical;

·sigma~(ij): i=l (lsc=O) or i=l, number of horizontal nodes (lsc=l); j=l,
nfen~(i): nodal sigma coordinates, from the bottom (cr=-l) to the surface (cr=l).

A2.3 Output Files

The output files for the external mode are the same as those for ADCIRC-2DDI

(Westerink et a!., 1992). Internal mode output files are:

·station stresses (jort.4]);

· station velocities (jort.42);

·global stresses (jort.43);

·global velocities (jort.44);

·ancillary output (jort.45).
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The fonnats below are for binary files. Files in ASCII fonnat are self-explanatory.

A2.3.1 Station Stresses (fort.41)

·run description,runidentification,grididentification

·unit number (41);

·number of data sets;

· time interval between outputs;

· number of time steps between outputs;

·number of stations;

·number of vertical output points per station;

· for each vertical output point:

·vertical output grid (from -1 to 1);

· for each station:

·horizontal node number;

· for each output time step:

· time

· time step

· for each station:

· for each vertical output point:

· stress in X;

·stressin Y;

A2.3.2 Station Velocities (fort.42)

· run description, run identification, grid identification

· unit number (42);

· number of data sets;

· time interval between outputs;

·number of time steps between outputs;

·number of stations;

· number of vertical output points per station;

· for each vertical output point:
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·vertical output grid (from -1 to 1);

· for each station:

·horizontal node number;

· for each output time step:

· time

· time step

· for each station:

·for eachverticaloutputpoint:

·velocity in X;

· velocity in Y;

A2.3.3 Global Stresses (fort.43)

·run description, run identification, grid identification

· unit number (43);

· number of data sets;

· time interval between outputs;

·number of time steps between outputs;

·number of horizontal nodes;

·0;

· for each horizontal node:

· number of output nodes per vertical; 1

· for each horizontal node:

· for each vertical output point:

· sigma values of the output points;

· for each output time step:

· time;

· time step;

· for each horizontal node:

1. even though this number is the same for all verticals in the current version, it may
become variable in the future; the visualization software ACE/vis (Baptista and Turner,
1991) will allows this number to vary from one horizontal node to another.
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·elevation;

· for eachoutputpoint:

· stress in X;

·stress in Y;

·0

A2.3.4 Global Velocities (fort.44)

· run description, run identification, grid identification

· unit number (44);

· number of data sets;

· time interval between outputs;

·number of time steps between outputs;

·number of horizontal nodes;

·0;

· for each horizontal node:

·number of output nodes per vertical?

· for each horizontal node:

· for each vertical output point:

· sigma values of the output points;

· for each output time step:

· time;

· time step;

· for each horizontal node:

· elevation;

· for each output point:

· velocity in X;

· velocity in Y;

· velocity in Z (velocity in sigma coordinates);

2. see footnote 1.
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A2.3.S Ancillary Output (fort.45)

·run description, run identification, grid identification

· unit number (45);

· number of data sets;

· time interval between outputs;

· number of time steps between outputs;

·number of horizontal nodes;

·0;

· for each output time step:

· time;

· time step;

· for each horizontal node:

·depth-averaged velocity in X;

·depth-averaged velocity in Y;

·bottom stress in X;

·bottom stress in Y;

·dispersion term in X;

·dispersion term in XY;

·dispersion term in Y;
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APPENDIX 31

Modeling Near-Bottom Advective
Acceleration in SurfaceWaterModels

Abstract

This paper describes problems related to the evaluation of near-bottom horizontal

velocity gradients in cartesian coordinates. An analytical model and simple scaling argu-

ments show that computing advective accelerations in cartesian coordinates may require

extremely fine horizontal grids. Numerical tests are used to confirm this conclusion and to

exemplify the unrealistic velocity profiles that can be obtained due to large errors in the

evaluation of the advective acceleration. It is therefore recommended that horizontal gra-

dients of velocity be evaluated in sigma coordinates. This conclusion is in stark contrast

with similar studies for the baroclinic pressure gradient, and is due to the rapid variation of

the vertical gradient of horizontal velocities in the bottom boundary layer.

A3.1 Introduction

The use of sigma coordinates, wherein the height of the water column is mapped

into a fixed interval, has become widespread in three-dimensional hydrodynamic models

developed over the last decade (see review by Cheng and Smith 1990). The adoption of

the sigma, or stretched, coordinates is explained by three important advantages relative to

the older z-coordinates: (a) the resolution over depth is more uniform; (b) a smooth bot-

1. published in Proc. Int. Conf. on Computational Methods in WaterResources X, A. Peters, et al. (editors),
Kluwer Academic Publishers, 1045-1052.
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tom topography can be represented; and (c) the treatment of the free surface boundary

condition is straightforward.

However, there is currently some concern regarding the ability of the sigma coor-

dinates to deal with steep topographic features. Haney 1991 showed that, in the presence

of strong stratification and steep slopes, the use of sigma coordinates leads to very large

errors in the evaluation of baroclinic pressure gradients. These errors are particularly trou-

bling because they can generate moderate currents in a system that should otherwise be at

rest (Walters and Foreman 1992).

To avoid this problem, several modelers have proposed computing horizontal gra-

dients of density and/or and velocity directly in cartesian coordinates, by interpolating the

values needed in planes of constant z (Sheng et al. 1990, Laible 1992, Beckmann and

Haidvogel 1993). Indeed, truncation error analysis suggests that this approach may

decrease the errors in the evaluation of horizontal gradients by several orders of magni-

tude (Fortunato and Baptista 1994). However, even though numerical experiments support

this.conclusion for the baroclinic pressure gradient, it will be shown in this paper that,

under certain circumstances, it may be best to evaluate horizontal derivatives in sigma

coordinates.

In this paper we examine the evaluation of horizontal gradients of velocities in

hydrodynamic models that explicitly solve for the vertical structure of the flow.An analyt-

ical solution and scaling arguments suggest that this evaluation will be more accurate in

sigma than in cartesian coordinates. Numerical results are then used to exemplify the type

of errors obtained when advective accelerations are computed in cartesian coordinates.

Several formulations for the treatment of near bottom velocity gradients are presented,

then compared by examining velocity profiles for a wave passing over a step. The results

for all formulations present a similar unrealistic behavior, in sharp contrast with those

obtained from a standard sigma coordinate formulation, which are hardly distinguishable

from a reference simulation.
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A3.2 Analytical Solution

To isolate the errors that arise solely from evaluating horizontal gradients of

velocity in cartesian coordinates, we consider a case with analytical solution. To derive the

analytical solution, we write the linear mo~entum equation for an uniform flow in a chan-

nel:

(A3.1)

where g is the gravitational acceleration, H is the total water depth, e is the bottom slope.

Following Luettich and Westerink 1991, the vertical eddy viscosity Av is assumed to vary

linearly as Av=Avo(a+ 1+ao). AvOis scaled as Hu* (u*=J'thip is the friction velocity), or,

for a uniform flow, Avo-H./HgI91; C5o=zoIHis the dimensionless roughness height.

Integrating (A3.1) from a generic position a, to the free surface (a=O)where a no-

stress boundary condition is used, we get:

2
au _ gH e a
aa - AvOa + 1+ ao

(A3.2)

Equation (A3.2) is integrated from the bottom (a=-I) to a generic position to

yield:

(A3.3)

where uo is the bottom velocity. It can be verified a posteriori that the sum of the horizon-

tal and vertical advective accelerations is zero, so Equation (A3.3) is also the solution of

the momentum equation including advective acceleration, coupled with the continuity

equation.

The horizontal derivative can be computed as:
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au _ gHS2 a

ax - - Avo a+ I +ao
(A3.4 )

Numerical approximations were computed using centered differences and Equa-

tion (A3.3), and compared against the exact solution, Equation (A3.4). The physical

parameters and the velocity profile are shown in Figure A3.1.

The exact and numerical gradients of velocity are shown in Figure A3.2. Also

shown in Figure A3.2 is the error in the advective term scaled by the gravitic forcing. This

error was computed assuming a no-slip condition at the bottom (uo=0),and would further

increase if a more common slip condition was applied.

This figure shows that, unless the horizontal discretization is unreasonably fine (of

the order of 10m), the horizontal gradient will be over-predicted by a very large amount.

This error arises from the rapid variation of the second vertical derivative of the horizontal

velocity near the bottom, which in turn is triggered by the variation of the eddy viscosity.

If a constant eddy viscosity was selected in this simplified solution, the velocity gradient

in Figure A3.2 would be linear and the numerical and analytical solutions would coincide.

However, when a more realistic eddy viscosity is chosen, the second derivative of velocity

decreases sharply away from the bottom, -leadingto large numerical errors.

Another way to look at this problem is to recognize that we have, at the bottom:

aul aUI

aSau aU
Iax z=constant = ax cr=constant - Baa» axcr=constant

(A3.5)

In the analytical solution presented, this relation holds necessarily, since the deriv-

ative along a sigma plane is zero. In a more general case, it can be shown that this deriva-

tive is still zero at the bottom if the variations in the other horizontal direction can be

neglected. In general, Equation (A3.5) is expected to hold if the bottom slope is not too

small, and the bottom boundary layer is represented. When relation (A3.5) is valid, simple

scaling arguments show that the discretization needed to represent the gradient on the LHS
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of Equation (A3.5) is much finer than that needed to represent the RHS: Equation (A3.5)

can be scaled as:

u U
A ~ » - => Llr

A -
L,U, Llr » L,U,

(A3.6)

On the other hand, the term involving a vertical derivative in Equation (A3.5) is

evaluated in the vertical grid, typically much finer than the horizontal, and therefore

involves relatively small errors. Therefore, evaluating near-bottom horizontal gradients of

velocity in sigma coordinates should be more accurate than in cartesian coordinates.

A3.3 Numerical Tests

A3.3.1 Alternative formulations

To evaluate horizontal gradients in cartesian coordinates while writing the equa-

tions in sigma coordinates, the necessary values at neighboring verticals are interpolated

(e.g., see Fortunato and Baptista 1994). However, this is not possible near the bottom, and

a special formulation is needed. Four alternatives are presented, along with the second

order truncation errors E2. The notation used is shown in Figure A3.3. The velocity at

(i+l,j) is assumed to be exact, even though there are errors introduced by the interpola-

tion. These errors were studied elsewhere (Fortunato and Baptista 1994), and therefore are

ignored here for simplicity. In the numerical tests, a very fine vertical grid is used near the

bottom to minimize these errors.

In the first formulation (A), the velocity is interpolated along the bottom (Fortu-

nato and Baptista 1994). The horizontal gradient is computed as:

au_ ui+I,j- (1-a)ui,b-aui_I,b
ax- Llx(1+ a)

(A3.7)

(A3.8)
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where ex is definedin FigureA3.3.The main disadvantageof this formulationis that the

derivatives are not centered. In particular, it collapses into an upwind/downwind method

at the bottom node.

The second formulation (B) is similar to that proposed by Beckmann and Haidvo-

gel 1993. A fictitious value below the bottom is obtained by extrapolation of the vertical

profile. The finite difference analog and the truncation error are:

~z+~x(1-ex)e ~(1-ex)e
uo J o- u" Jb + uO JbJ

1 + ,J ~z 1- , ~z 1- , -
2~ (A3.9)

(A3.1O)

Formulation B does not introduce horizontal numerical diffusion. However,

because of the extrapolation, it is very sensitive to small errors in the nodal values when

the near-bottom vertical nodal spacing is small.

Formulation C avoids both extrapolation and horizontal numerical diffusion:

(A3.11)

(A3.12)

Finally, formulation D is similar to formulation C, but further eliminates the verti-

cal numerical diffusion. This may be very important when modeling bottom boundary lay-

ers where the vertical eddy viscosity is very small.

au _ ui+ J,j- ui-J,b (1- ex)e
ax- ?Ar - A.A7 (Ui,j+J-Ui,j-J)+

2 2e ~x (1 - ex) Ui,j+ J - 2Ui,j + Ui,j+ J

4 (~z) 2

(A3.13)
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a2u
E2D = (8Ax(I-a))axaZ

A3.3.2 Numerical results

(A3.14)

A 2D vertical hydrodynamic model, RITA2v (Fortunato and Baptista 1993) was

used to compare the four alternative formulations. RITA2v (River and Tidal Analysis 2D

vertical) is a two dimensional, laterally averaged, baroclinic, hydrodynamic model. The

external mode is solved with the Generalized Continuity Wave Equation on linear finite

elements, and the internal mode can accommodate either the traditional sigma coordinate

system or the more flexible localized sigma coordinates. A channel with a maximum slope

of 2% (Figure A304)was forced with a S2 tide. The vertical eddy viscosity is parametrized

as lCU*(Z+Zo)in the lower 20% of the water column, and as constant in the upper layer (lCis

the von Karman constant (004),u* the friction velocity, and Zoa roughness height taken as

0.005m). A quadratic friction law is used, the friction coefficient being defined as

[In((Zo+~b)/Zo)lKr2. The domain was discretized with 61 evenly spaced nodes in the hor-

izontal, and the time step was set to 5s. The vertical mesh is increasingly fine near the bot-

tom in order to represent the bottom boundary layer:

(j -i-
(i - n)p

(1 - n)
p = 0.5, i = l,...,n, n = 40 (A3.15)

The model was run for ten tidal cycles with only the external mode, then for one

more tidal cycle in 2Dv mode. The final velocity profiles at x=9.5km are shown in Figure

A3.5a. Profiles obtained with the traditional sigma coordinates for both the same grid, and

a finer grid (301 horizontal nodes, 80 vertical) are also shown for comparison (Figure

A3.5b). All four formulations in Figure A3.5a exhibit the same unrealistic behavior near

the bot~om,while the sigma coordinate results are hardly distinguishable from the refer-

ence results. Since the four approximations are very different, these results suggest that

their common characteristic, the evaluation of horizontal gradients in cartesian coordi-

nates, is responsible for the large errors. The test was repeated computing the horizontal

gradients in sigma coordinates near the bottom (a<l), and in cartesian coordinates in the
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rest of the water column (fonnulation E). In this case, the same type of behavior is only

weakly present (Figure A3.5b), supporting the idea that it is only near the bottom, where

the vertical profile exhibits large vertical gradients, that evaluating horizontal derivatives

in cartesian coordinates leads to large errors.

A3.4 Conclusions

This paper described problems related to the evaluation of near bottom horizontal

gradients of velocity directly in cartesian coordinates. Both analytical and numerical

results support the conclusion that this approach will lead to unrealistic results unless

extremely fine horizontal grids are used. It is therefore recommended that the horizontal

velocity gradients be computed in sigma coordinates.

This conclusion is in stark contrast with recent work on the evaluation of the baro-

clinic pressure tenn (Fortunato and Baptista 1994), for which the opposite recommenda-

tion was made. A tentative interpretation is that the gradients should be computed as much

as possible in the direction along which they are smaller. This direction will clearly

depend on the physical process and on the specific conditions of the problem. Typically,

the direction of the"near bottom flow is determined by the bathymetry, whereas the density

field is basically influenced by gravity. Therefore, the gradients should be computed pref-

erentially in sigma planes for velocity, and in horizontal planes for density. However, in

some particular cases the density may exhibit a behavior similar to that discussed for

velocity (e.g., density gradients determined by near bottom suspended sediments), and the

flow may not follow the bottom (e.g., at the tip of a salt wedge).
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