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Abstract 

A Reflective Framework for Implementing Extended Transactions 

Roger S. Barga 

Supervising Professor: Calton Pu 

Databases are being deployed in more and more complex application domains t o  store and 

manipulate information tha t  stresses the limits of the performance as well as functionality 

of traditional transaction processing techniques. In the past decade the topic of extended 

transaction processing has emerged and enormous strides have been made in improving 

the performance of traditional ACID transactions; a t  the same time, advances have been 

made in addressing their inherent limitations. Suggested extensions of ACID transactions 

abound in the literature. However, few of these extensions have ever been implemented, 

not even as research prototypes, and today most remain mere theoretical constructs. 

In this dissertation we present the Reflective Transaction Framework t o  support the 

implementation of extended transactions on conventional TP monitor software. There are 

two key insights behind our work. The first is our observation that  in most cases, the 

base functionality provided by TP monitor software is "almost right" for implementing 

extended transactions. While certain functions and structures are missing, the existing 

services of TP monitor software provide a useful substrate for implementing extended 

transactions. The second insight is that the services we have identified as essential for 

extended transactions can be implemented as extensions t o  base functionality of a TP 

monitor. To validate this thesis, we present the design of the Reflective Transaction 



Framework, provide examples that  illustrate how it can be used t o  implement extended 

transactions, describe its implementation on a commercial TP monitor, and present an 

evaluation of both framework design and resulting implementation. 

This research is the first t o  demonstrate convincingly a method of extending con- 

ventional TP monitor software t o  support extended transactions, one that  can readily 

implement a wide range of extended transactions. This research addresses three main 

issues in the implementation of extended transactions on a conventional transaction sys- 

tem. First, it identifies key extended services required t o  implement extended transactions. 

Second, i t  defines an effective interface t o  these extended transaction services and t o  the 

existing functionality provided by the underlying TP monitor. And third, it shows how 

t o  integrate these extended services with an existing transaction system in an extensible 

and incremental way. 



Chapter 1 

Introduction 

Transactions have been used effectively in database systems t o  synchronize concurrent 

accesses to  a shared database and t o  provide reliable access in the face of failures. A 
transaction is an atomic unit of work against the database. The ACID properties of 

transactions (atomicity, consistency, isolation, and durability) guarantee correct concur- 

rent execution as well as reliability [HR83, BHG87, GR931. 

In recent years, databases have been deployed in increasingly complex applications t o  

store and manipulate information that  stresses the limits of the functionality as well as the 

performavzce of traditional transaction processing techniques. The list of such applications 

includes computer-aided design and manufacturing (CAD/CAM) environments, multime- 

dia, mobile computing, cooperative group software, and workflow management systems. 

This list is growing. Further, the ability of transactions to  hide the effects of concurrency 

and failure makes them appropriate building blocks for structuring advanced distributed 

systems. Industry is embracing transactions, with a near explosion occurring in usage, 

requirements and sophistication of transaction processing [Moh94, SSU961. Enormous 

strides have been made in improving the performance of traditional ACID transactions; a t  

the same time, advances have been made in addressing their inherent limitations. 

In the past decade the topic of extended transaction processing, also known as ad- 

vanced or relaxed transaction processing, has emerged in the database community, t o  

extend the  transaction concept beyond conventional da ta  processing and online trans- 

action processing (OLTP) applications. Broadly speaking, recent accomplishments in 

extended transaction processing can be classified into two areas: advanced transaction 

models and semantics-based concurrency control methods. Advanced transaction models, 

such as the Split/Join model [PKH88] and Cooperative Transaction Groups [MP92], asso- 

ciate "broader" interpretations with the ACID properties t o  provide enhanced transaction 

processing functionality. Semantics-based concurrency control (SBCC) methods, such as 

commutativity [Wei88], recoverability [BR91] and cooperative serializability [RC92], ex- 

ploit available semantic information to  synchronize transactions in an attempt to  obtain 



additional concurrency and hence improve transaction processing performance. Suggested 

extensions of traditional ACID transactions abound in the literature. However, few of these 

extensions have ever been implemented, not even as research prototypes, and today most 

remain mere theoretical constructs. 

This thesis rectifies this deficiency. Building on the functionality present in conven- 

tional transaction processing systems we focus on understanding the functionality required 

t o  implement extended transactions and define extended transaction services as modular 

extensions to conventional transaction processing structures and services. The software 

framework we present addresses three main issues in the implementation of extended trans- 

actions on a conventional transaction system. First, it identifies key extended transaction 

services required to  implement a wide range of extended transactions in the literature. 

Second, it defines an effective interface to these new extended services and t o  the existing 

functionality provided by conventional transaction processing system software. And third, 

it shows how to integrate these extended services with an existing transaction system in 

an extensible and incremental way. 

1.1 The Problem 

Because of the practical import of advanced transaction models and semantics-based con- 

currency control protocols, one would expect their implementation t o  proceed apace. How- 

ever, this has not happened. To date, the vast majority of the proposals for advanced 

transaction models and semantics-based concurrency control have remained just that  - 

proposals. As a result, there is no way t o  readily apply these ideas t o  emerging database 

applications. Given that for many advanced applications extended transactions have been 

shown, on paper, t o  have the potential t o  improve transaction processing performance and 

functionality, we feel that  the time has come t o  migrate these ideas into practice. Indeed, 

providing effective support for extended transactions has been identified as one of the key 

database research areas for the next century [SSU96]. 

Despite advances in advanced transaction models and semantics-based concurrency 

control over the past decade, the implementation of extended transactions remains difficult 

and expensive. Much of the effort and cost arises because researchers and application 

developers attempt to construct the extended transaction implementation from scratch 

rather than reusing conventional transaction processing software. This forces them to 

rediscover and reimplement core functions and components, which is time-consuming, 

error-prone, and expensive. However, to  date this has been considered the only reasonable 

approach, as extended transactions would seem t o  require the replacement of conventional 

transaction services with new techniques and mechanisms for transaction processing. 



Conventional transaction processing systems, in particular 'I'E' monitors, have accu- 

mulated large amounts of transaction implementation technology. We do not think it is 

particularly clever simply to throw this technology away and build an extended transac- 

tion facility from scratch. Indeed, TP monitors are mission critical - that  is, they are 

essential t o  day-to-day business operations and must remain in use. Replacement of ex- 

isting TP monitors is not an option for companies that  rely on ACID transactions t o  run 

mission-critical applications. Moreover, advanced transaction models and semantics-based 

concurrency control protocols have largely been designed to complement conventional 

transaction processing and address an entirely new range of transaction requirements that  

would make their combination suitable for building advanced database applications. Con- 

sequently, we view conventional TP monitor software as a natural basis on which t o  build 

implementation support for extended transactions. 

1.2 The Approach 

In this dissertation we present the Reflective Transaction Framework t o  support the im- 

plementation of advanced transaction models and semantics-based concurrency control 

protocols on conventional T P  monitor software. There are two key insights behind our 

work. The first is our observation that in most cases, the base functionality provided by 

a conventional TP monitor is "almost right" for implementing both advanced transaction 

models and semantics-based concurrency control protocols. While certain functions and 

da ta  structures are missing, the existing services and da ta  structures of the TP monitor 

software provide a useful substrate for implementing extended transactions. The second 

insight is tha t  each of the extended services that  we have identified as essential for im- 

plementing extended transactions can be implemented as an incremental extension to  the 

base services of a T P  monitor. This approach ensures that  transactional applications using 

ACID transactions keep running, and facilitates the development of a software framework 

for implementing extended transactions in a systematic rather than an ad hoc manner. 

We do not advocate that T P  rnonitors should simply include more features to  im- 

plement selected extended transactions. There is no consensus as t o  which extended 

transactions should be included for advanced application development: most likely, there 

never will be since each advanced transaction model and semantics-based concurrency 

control protocol has been optimized for a particular application. Furthermore, as appli- 

cation requirements continue to  evolve, transaction processing requirements will change 

and new transaction models and semantics-based concurrency protocols will be proposed. 

Instead, the Reflective Transaction Framework is designed to  expose selected aspects of 

the underlying transaction processing system and to enable a programmer t o  reach in and 



adjust system functionality and tailor new extended transaction services to the needs of 

their particular application. This approach is called open implementation [Kic92]. 

The Reflective Transaction Framework draws from a variety of techniques t o  achieve 

the open implementation of a TP monitor. The framework uses computational reflec- 

tion [Mae871 t o  offer principled, effective access t o  T P  monitor system internals. A met- 

alevel interface [KdRBSl] is introduced in the framework t o  provide explicit descriptions 

of extended transaction behaviors. Good software engineering practices are followed for 

abstraction and modularity of the software modules that  implement the framework. 

The implementation of the Reflective Transaction Framework introduces transaction 

adapters, which are reflective software modules built on top of the TP monitor software. A 

transaction adapter leverages existing transaction services of the underlying TP monitor 

as building blocks for constructing extended transaction functionality. Each transaction 

adapter contains a representation, or metalevel description, of selected TP monitor func- 

tions, and maintains a cause2 connection (Mae871 between this representation and the 

actual behavior of the system. The causal connection is two-way; not only are changes in 

the TP monitor reflected in equivalent changes in the representation, but changes in the 

representation will also cause changes in the behavior of the TP monitor. Each extended 

transaction has a representation that  is causiilly connected with a transaction running on 

the T P  monitor. This representation holds information about the extended transaction 

and how it is used; in essence, this representation defines control and policy. The causal 

connection between the Reflective Transaction Framework and the underlying TP monitor 

is built on the ability t o  intercept transaction events, together with the means t o  access 

T P  monitor functions through an available application programming interface (API). 

1.3 The Thesis 

The thesis is that  conventional TP monitor software can be used t o  support the implemen- 

tation of advanced transaction models and semantics based concurrency control protocols, 

through the provision of new extended services specifically designed for implementing ex- 

tended transactions. These extended transaction services can be implemented efficiently 

as extensions of the functionality of the underlying TP monitor, and used t o  implement 

a wide range of advanced transaction models and semantics-based concurrency control 

protocols. The thesis claims that  the ability t o  leverage, or reuse, the functionality of 

conventional TP monitor software more than makes up for the additional effort required 

in system design. To validate this thesis, we present the detailed design of the Reflective 

Transaction Framework, provide examples that illustrate how it can be used t o  implement 



a number of extended transactions from the literature, describe its concrete implementa. 

tion on a commercial T P  monitor, and present an evaluation of both framework design 

and the resulting implementation. 

1.4 Outline of the Dissertation 

This dissertation is organized into five chapters. Chapter 2 provides the technical back- 

ground for our work on the Reflective Transaction Framework. The chapter first sketches 

an overview of extended transaction processing and identifies functional extensions re- 

quired to  support the implementation of advanced transaction models and semantics- 

based concurrency control protocols. Following this, the chapter presents a review of 

related efforts t o  implement extended transactions, with particular emphasis on the range 

of extended transactions that  they support. Then, an overview of the conventional T P  

monitor architecture is presented, along with a brief discussion on extending it to  pro- 

vide implementation support for extended transactions. The chapter concludes with an 

overview of the Open Implementation approach and a discussion of the development of an 

open implementation of a conventional T P  monitor. 

Chapter 3 presents the design of the Relective Transaction Framework. The chap- 

ter begins with a discussion of our main design objectives, followed by an architectural 

overview of the Reflective Transaction Framework, and then presents a detailed description 

of the extended transaction services provided by the framework, specifically (1) dynamic 

transaction restructuring, (2) semantic transaction synchronization, and (3)  transaction 

execution control. Where appropriate, we describe how the extended transaction ser- 

vices provided by the framework can be used t o  implement extended transactions, and we 

explain the relevant mechanisms from a user's perspective. Chapter 4 presents several ex- 

amples of applying the Reflective Transaction Framework to  advanced transaction models 

and semantics-based concurrency control protocols from the literature, t o  give a clearer 

overall picture of the framework and its uses. 

Chapter 5 describes an implementation of the Reflective Transaction Framework on 

ENCINA, a commercial TP monitor, along with a performance evaluation of our Encina 

implementation. The evaluation measures the system resources consumed in supporting 

the extended transaction services and presents an evaluation of the framework design t o  

augment the quantitative data. Chapter 6 concludes the dissertation with a summary of 

the main contributions of this research, and identifies opportunities for future work. 



Chapter 2 

Technical Background 

In this chapter, we provide the technical background for our work on the Reflective Trans- 

action Framework. We divide this chapter into three sections: extended transaction pro- 

cessing, conventional TP monitors, and Open Implementation. 

In designing the Reflective Transaction Framework it was necessary t o  identify common 

services for advanced transaction models and semantics-based concurrency control that  

should be included in the framework. However, the lack of a general model of extended 

transactions hinders any meaningful discussion of the issues and approaches. Section 2.1 

provides a basis by examining extended transactions from the literature. In doing so, 

key extended services required t o  implement extended transactions are identified in a 

naturai way. We then present a brief review of related efforts t o  implement extended 

transactions and identify their main features, with particular emphasis on the range of 

extended services that  they support. Finally, having identified key extended transaction 

services and reviewed related implementation efforts, we close the section by presenting 

our strategy for developing the Reflective Transaction Framework. 

Following this, in Section. 2.2, we present an overview of the conventional TP monitor 

architecture. Conventional transaction processing systems, such as T P  monitors, have 

accumulated large amounts of transaction implementation technology that  we would like 

t o  leverage in our implementation of the Reflective Transaction Framework. Thus, we 

examine the TP monitor architecture with an eye towards how we can leverage existing 

functions and incrementally extend available services to  implement extended transactions. 

Finally, in Section 2.3, we draw on work in computational reflection and Open Imple- 

mentation t o  confront challenges that  arise in designing a framework that  builds on legacy 

TP monitor software and incrementally extend the existing functionality t o  implement 

extended transactions. 



2.1 Extended Transaction Processing 

In response t o  functionality and performance deficiencies of the traditional ACID trans- 

action model, several new extended transaction proposals have emerged. Such proposals 

often s tar t  from a specific application, analyze its dynamic behavior, specify a fault model, 

and then add as many features to  the classic ACID transaction model as necessary t o  sup- 

port that  application. Suggested extended transactions abound in the literature. In an 

informal literature survey, we identified over fifty distinct extended transaction types, with 

new proposals appearing in the database literature at an average rate of six per year. 

Because this is an area of active research, this section can do little more than give an 

overview of the current state of discussion. As pointed' out  in Gray and Reuter [GR93j, 
no Grand Unified Theory of Extended Transactions has yet been developed. To give a 

better impression of the differences between various advanced transaction models and 

semantics-based concurrency control protocols - beyond the fact that  they are meant t o  

support different types of applications - we present selected examples. These examples not 

only shaped our understanding of the functional requirements for implementing extended 

transactions, but are commonly identified in the literature as providing features useful for 

implementing advanced database applications. 

For our background discussion on extended transaction processing, we present selected 

advanced transaction models in Section 2.1.1 and selected semantics-based concurrency 

control protocols in Section 2.1.2. We have attempted t o  provide a bird's-eye view of the 

functionality required for the different proposals. To this end, in Section 2.1.3 we identify 

key extended transaction services and relate advanced transaction models and semantics- 

based concurrency control protocols t o  them. Following this, in Section 2.1.4, we present 

an overview of related efforts to  implement extended transactions. Finally, we put forth 

our strategy for developing the Reflective Transaction Framework in Section 2.1.5. 

2.1.1 Advanced Transaction Models 

Research on extended transactions was first motivated and necessitated by the function- 

ality and performance deficiencies of traditional ACID transactions. Today, the area has 

attained some maturity, and a large number of advanced transaction models have been 

formulated. Before looking a t  specific examples, let us consider an informal definition. An 

extended transaction consists of either a set of operations on da ta  objects that  execute 

atomically in a predefined order, or a set of extended transactions with an explicitly given 

control related to  the notions of atomicity, consistency, isolation, and durability [RC97]. 

This recursive formulation implies that  an extended transaction may exhibit a rich and 



complex internal structure; in contrast, traditional ACID transactions have a flat single- 

level structure. 

The manner in which component extended transactions are combined t o  form an ad- 

vanced transaction model typically reflects the semantics of the application for which it 

was originally designed. The application may allow the introduction of new, weaker no- 

tions of conflict among operations not possible with information available only on data  

objects and their types. For instance, operations invoked by two transactions can be in- 

terleaved as if they commuted, if the semantics of the application allow the dependencies 

between the transactions t o  be ignored. Such application-specific transaction synchro- 

nization might not achieve serializability, but still preserves consistency. Similarly, based 

on application semantics, in the event that an extended transaction fails, changes made 

by completed components of the transaction may be committed. The failed portions of 

the transaction can be retried, compensated, replaced by another (contingent) alternative 

transaction, or  even ignored. These relaxed but controlled transaction guarantees pro- 

vided by advanced transaction models potentially promise t o  cater t o  the functionality 

and performance needs of a wide range of emerging database applications. 

The Nested Transaction model [Mos85], for example, has been proposed in the context 

of distributed languages t o  handle partial failures. However, Nested Transactions support 

only hierarchical computations, similar t o  the ones that  result from procedure call invoca- 

tions. The Recoverable Communicating Actions model [VRS86] supports arbitrary compu- 

tation topologies, and proposed in the context of distributed operating systems, where in- 

teractions are more complex. In addition, Split and Join Transactions [PKH88], Compen- 

sating Transactions [KLSSO], Cooperative Transactions [MP92, NZ901, and Sagas [GMS87] 

have been proposed for capturing the interactions found in advanced applications. In the 

remainder of this section we will review some of these advanced transaction models. 

Possibly the best known advanced transaction model is the Nested Transaction model 

[Mos85]. In this model, extended transactions are composed of subtransactions or "child" 

transactions, which are designed to  localize application failures and t o  exploit transaction 

parallelism. Each subtransaction can be further decomposed into other subtransactions, 

and thus an extended transaction may expand in a hierarchical manner. A subtransaction 

executes atomically with respect t o  its siblings and t o  other, nonrelated transactions, and 

is atomic with respect to  its parent. A subtransaction can abort independently without 

causing the abort of the whole transaction: but if a parent transaction fails, then it will 

abort all active child subtransactions. 

A subtransaction can potentially access any da ta  object that  is currently accessed by 

one of its ancestor transactions. In addition, any da ta  object in the database is potentially 

accessible to  the subtransaction. When a subtransaction commits, the da ta  objects that 



it modified are made accessible t o  its parent transaction. However, the effects on the da ta  

objects are made permanent in the database only when the root transaction commits. 

There is an emerging trend in the use of databases in applications that  involve long- 

running activities that  possess transaction-like properties. These activities involve a num- 

ber of steps, where subsequent steps in the activity are executed depending on the dis- 

position of steps that  have already executed, and depending on the state of the data  

and environment. A number of transaction models have been proposed t o  organize and 

manage such activities; one of the more popular is the Split/Join Transaction model. 

In the Split/Join Transaction model [PKH88, KP921, i t  is possible for a transaction 

t, t o  split into two transactions, t ,  and tb, and for two transactions, t, and tb, t o  join 

into one joint transaction tb. For simplicity, we will discuss Split Transactions and Joint 

Transactions as two distinct advanced transaction models. 

Split transactions allow a user t o  split a (long) transaction dynamically into two or 

more smaller transactions in such a manner that  the two new transactions are serializable. 

This allows an application t o  release partial results to  other transactions by committing 

the transaction tha t  has been split off, even before the transaction from which it split 

is committed. Splitting also allows other short-duration transactions tha t  are waiting 

for data  objects t o  be released as a result of the partial commitment, t o  proceed. This 

approach has the potential for increasing concurrency, as short duration transactions would 

not be made t o  wait until the long transaction commits. Split transactions can further 

split, creating new split transactions. This leads t o  a type of hierarchically structured 

computation different from that  of nested transactions. Such possibilities are especially 

beneficial for CAD/CAM, VLSI design, and software development applications because of 

their long-running activities ERC92, CR941. 

In the Joint Transaction model, it is possible for a transaction, instead of committing or 

aborting, t o  join another transaction. The joining transaction releases i ts  da ta  objects t o  

the joirlt transaction. However, the effects of the joining transaction are made permanent 

in the database only when the joint transaction commits. If the joint transaction aborts, 

the joining transaction is aborted too. 

The Cooperative Transaction Group model was introduced to  support collaborative 

work [MP92, RC921, primarily in design and software engineering environments. In this 

model, extended transactions can create and join a cooperative transaction group. Each 

cooperative group consists of a set of member transactions, whose interactions are struc- 

tured t o  reflect the decomposition of the task they are working on. The execution of 

the member transactions in a cooperative group need not be serializable; rather, the 

transaction group defines the rules that  regulate the interactions among member transac- 

tions. This correctness criterion is referred to as cooperative scrializability [MP92, RC921. 



Because of the cooperative nature of the transaction group, it is not assumed that  the 

operations of a single member transaction necessarily leaves the database in a correct 

state. Instead, the effects of the member transactions are only made permanent in the 

database when the entire group commits. If the transaction that  created the group aborts, 

then all member transactions are forced t o  abort, while member transactions can abort 

independently without causing the abort of the cooperative group. 

2.1.2 Semantics-Based Concurrency Control Protocols 

Concurrency control is the activity of coordinating the actions of different transactions 

when they simultaneously access a shared database. When two transactions are allowed t o  

interleave their accesses to  the database arbitrarily, anomalies can occur and the database 

can be left in an inconsistent state. The traditional approach to  preventing such incon- 

sistencies has been to  provide a concurrency control mechanism that  guarantees serializ- 

ability [BHG87]: a concurrent execution is serializable if it is equivalent t o  some serial 

execution of the same transactions. Traditional concurrency control schemes, such as 

two-phase locking and timestamping, use a conflict-based serializability test in which the 

database is viewed as a set of records, operations read and write records, and two oper- 

ations conflict if one is a write. However, these conflict tests are overly conservative and 

can seriously degrade performance. 

Various techniques have been proposed t o  increase concurrency by effectively reducing 

the time a transaction must hold a lock. Examples are transaction splitting [PKH88, 

KP921, discussed in the previous section, and the altruistic locking protocol [SGMS94]. 
The altruistic locking protocol is an extension of two-phase locking that  accommodates 

long-lived transactions. Under two-phase locking, short transactions can encounter serious 

delays, since a long-lived transaction may tie up database resources for significant lengths 

of time. In altruistic locking, a transaction t; can donate a da ta  object that  it wilI no 

longer access, thus allowing other transactions t o  access it. Donating a da ta  object does 

not release the lock t; holds on the da ta  object, but simply allows other transactions t o  

acquire a conflicting lock on the da ta  object. Transaction ti  must still explicitly unlock 

data  items that  it has donated - thus, t; is free t o  continue locking da ta  items even 

after some have been donated. The basis for altruistic locking is the recognition that  a 

transaction t j  that  obtains a lock released earlier by a transaction ti must be serialized 

after t i .  This is ensured by ascertaining that  t j  executes in the "wake" of t i ;  that  is, all 

accesses t o  da ta  shared by t ;  and t j  occur in the order ti followed by t j .  

One advantage of altruistic locking is that  transactions need not advertise their access 

patterns beforehand. Also, although transactions are not two-phase, it is compatibIe with 

the two-phase locking approach, since a transaction is not required t o  release locks early. 



This protocol is especially beneficial when long-duration transactions coexist with short 

transactions, since the latter do not have t o  wait until the former are completed. 

The search for higher concurrency has been carried further by viewing the database as 

a collection of objects that are instances of abstract types manipulated through abstract 

operations with known semantics. Whereas with untyped data ,  all operations on a par- 

ticular da ta  item conflict unless both are reads, the semantics of the abstract operations 

can be used t o  detect operations that ,  for example, modify the value of an object and 

yet do not conflict. Serializability is still the goal of this approach, but the use of opera- 

tion semantics allows the notion of conflict t o  be narrowed and hence permits increased 

concurrency. One example of this approach is operation commutativity [Wei88]. 

Operation commutativity is the traditional semantic notion used t o  determine if two 

operations can be allowed to execute concurrently (for example, two reads commute). If 

two operations commute, then their effects on the state of a d a t a  object and their return 

values are the same irrespective of their execution order. For example, consider the incre- 

ment and decrement operations defined on a da ta  object, which do not return any value of 

the data  object. Both increment and decrement operations update the value of the data 

object, but the conflict between them can be ignored because these are commuting opera- 

tions. Moreover, if the concurrency control m-echanism allows only commuting operations 

t o  execute concurrently, then it prevents cascading aborts. 

Operation recoverability is another criterion used to define conflict among operations. 

An operation q is recoverable relative to  another operation p if q returns the same value 

whether or not p is executed immediately before q. For example, a successful Push oper- 

ation on a stack is recoverable relative t o  a preceding Push operation on the same stack. 

Even if the preceding Push operation is aborted and its pushed value is removed from 

the stack, the pushed value and the return value of the second Push operation are not 

affected. Transactions invoking operations p and q are required t o  commit in the order 

of the invocation of the two operations. When used with locking-based protocols, recov- 

erability, like commutativity, avoids cascading aborts while also avoiding the deIay in the 

processing of many noncommutative operations. 

Epsilon Serializability (ESR) is a generalization of classic serializability that  relaxes 

operation conflicts, t o  explicitly allow a bounded amount of inconsistency in transaction 

processing. The amount of inconsistency is given by some measure of the database opera- 

tions or distance function over the database state space [RP95]. In a commercial banking 

application, for example, inconsistency would be measured in dollars. ESR enhances con- 

currency by permitting query transactions t o  read uncommitted da ta  from a concurrent 

update transactior~ and by permitting update transactions to  write t o  data  items locked 

by a concurrent query transaction. For example, an epsilon transaction that  can tolerate 



a bounded amount of inconsistency, measured in dollars, can query the balance of bank 

accounts and execute in spite of ongoing concurrent updates t o  the database. 

Let us t ry  t o  consolidate the different concepts that  we have introduced in this section. 

Two operations conflict when their effect on the data  objects or the values they return are 

dependent on execution order. Nonconflicting operations are said t o  be compatible. One 

approach t o  reducing conflicts is to  simply reduce the amount of time a transaction holds 

a lock, as illustrated by transaction splitting and the altruistic locking protocol, Another 

approach is t o  use operation semantics t o  define semantic compatibility between operations. 

The simplest compatibility relationship is the one based on operation commutativity and 

is typically used t o  determine whether two operations can execute concurrently while 

updating the  objects in place. With recovembility, the conflicting operation is allowed 

t o  execute concurrently, provided that  the abort of the first operation does not lead t o  

the abort of the second operation executed later. Recoverability demands that  the two 

transactions commit in the order that they executed the  two operations. In addition, 

it is possible to  utilize transaction semantics to  define compatibility, as illustrated by 

epsilon-serializability and the proclamation method, both of which bound the amount 

of inconsistency of the result returned by a transaction. It is important t o  note that  

all of these semantics-based concurrency control protocols can be seen as extensions of 

conventional lock-based concurrency control, in which semantic information is used to  

grant semantically compatible lock requests, even though they canflict at the level of the 

implementation. 

2.1.3 Common Extended Transaction Functionality 

Many different extended transaction types have been proposed. In order t o  characterize 

the functional requirements of existing proposals, thereby shedding light on the simi- 

larities among and differences between them, we present Table 2.1. This table identifies 

three extended transaction services and relates specific extended transactions t o  these new 

services. Specifically, we identify the advanced transaction models and semantics-based 

concurrency control protocols that  require the extended services of transaction restruc- 

turing, semantic transaction synchronization, and execution control. For concreteness, we 

offer a brief description of each service and provide an example of an extended transaction 

that  requires this service, but defer the detailed description of these extended services 

until later in the dissertation. We can see that  even though these advanced transaction 

models and semantics-based concurrency control proposals were motivated by different 

applications, they share common extended functional requirements. And from an im- 

plementation perspective, we can see that  the functional requirements of a wide range of 

extended transactions can largely be satisfied by these three extended transaction services. 



Table 2.1: Functional characteristics of extended transactions. 

I Nested Trans. [Mos85] 11 static I transaction I commit, abort I 
I 
I Sagas [GMS87] /I static 
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advanced transaction model as either static or dynamic, depending on whether the struc- 

ture is determined in advance or whether restructuring can occur dynamically a t  runtime. 

The Saga model is an example of static restructuring, in which operations and resources 

are specified in advance for each component transaction, as is the execution order between 

these component transactions. The Split and Join transaction models are examples of dy- 

namic restructuring, in which the component transactions and resources are determined 

dynamically a t  runtime. Dynamic transaction restructuring can be further classified as 

global, in which a transaction releases all resources it holds, or partial, in which a transac- 

tion selectively releases resources t o  another transaction or the stable database. 

Semantic transaction synchronization permits a transaction processing system t o  ex- 

ploit semantic information t o  coordinate extended transactions. We can classify semantic 

synchronization requirements depending on whether the extended transaction model ex- 

ploits the semantics of the operations, the individual transactions, or the application itself 

to  determine semantic compatibility. 

Execution control is the  ability of a transaction processing system t o  control the  exe- 

cution order of transactions in an advanced transaction model. We can classify the exe- 

cution control requirements of an extended transaction by the nature of control required 

over its component transactions. The Nested-Transaction model, for example, allows child 

subtransactions t o  abort, but they cannot commit before the parent transaction commits; 

however, if the parent transaction aborts then all child subtransactions must abort as well. 

Transactions following the recoverability protocol can form abort dependencies when con- 

flicts are relaxed, while transactions following the altruistic locking protocol form serial 

order dependencies when they share access to  data  objects. 

It is not possible to  capture in a single table all the nuances of the advanced transaction 

models and semantics-based concurrency control protocols in the literature. Furthermore, 

given the many papers in these areas, it is not possible t o  be all-inclusive. We believe, 

however, this is a good starting point for understanding the functional requirements of 

extended transactions. Transaction restructuring, semantic transaction synchronization, 

and execution control can be viewed as a common set of services for implementing many 

advanced transaction models and semantics-based concurrency control protocols that  exist 

today, and if properly designed, these services can be tailored to  meet the needs of a range 

of advanced database applications. 

2.1.4 Related Extended Transaction Implementation Efforts 

This section presents four extended transaction implementations of various sorts - Asset 

[BDG+94], TSME [GHKM94], Apricots [Sch93], and Pern [Hei97]. These systems were 

chosen because they represent leading edge solutians t o  the problem of implementing and 



managing extended transactions. The implementations vary widely in both form and 

focus. In our discussion we shall present aspects of the structure and design of each, and 

identify what support, if any, they provide for the extended transaction services ident,ified 

in the previous section. 

ASSET 

Using a C++ programming interface, Asset [RDG+94] (A System for Supporting Extended 

Transactions) allows a programmer to  produce programs with extended transaction spec- 

ifications compiled into application code. Asset consists of a set of transaction primitives 

which are classified as basic or new primitives. The basic primitives i n i t i a t e ( f  , a r g s ) ,  

b e g i n ( t )  , commit ( t ) ,  wa i t  (t) and a b o r t  ( t ) ,  are similar t o  transaction control opera- 

tions found in most transaction processing systems. The new primitives, d e l e g a t e ( & ,  t j  , 
obj  ), permit  ( t i ,  t i )  and f orm-dependency ( type ,  t; , t j ) ,  are included in the system 

to  enable the construction of advanced transaction models. 

Briefly, the primitive i n i t i a t e ( f  , a r g s )  creates a new transaction that  executes the 

function f with the arguments args. 'I'he primitives b e g i n ( t ) ,  commit ( t )  and a b o r t  (t) 

respectively start ,  commit, and abort the transaction whose transaction identifier is t. 

Waiting for a transaction t t o  complete is accomplished by using the primitive w a i t ( t ) ,  

which returns the value 1 when transaction t commits and 0 when t aborts. The primitive 

d e l e g a t e ( & ,  t j  , obj  ) transfers the responsibility of operations performed on data object 

obj from transaction t; t o  t j .  Cooperation among transactions is achieved by using the 

permit  ( t i ,  ti) primitive, which permits transaction t j  t o  perform conflicting operations 

on da ta  objects held by ti, without creating a conflict edge in the serialization graph from 

t; t o  t j .  The permit operation can be used t o  implement semantic synchronization using 

transaction semantics. The last primitive f orm-dependency(type , t; , t j )  establishes 

a dependency of the specified type between ti and t j ,  where type includes transaction 

commit and abort dependencies. 

To illustrate how these primitives are used, consider the sample code fragment in 

Figure 2.1, taken from [BDG+94], that  executes a simple reservation workflow involving 

hotel, car, and flight reservations. The function t-conf e rence  attempts t o  complete all 

the necessary reservations for a particular conference. First, a ticket is booked on the 

first airline that  has available seats; Delta, United, and American Airlines are tried in 

order. This operation will require anywhere from one t o  three transactions. Next, the 

hotel reservation is attempted; on failure, the flight reservation is canceled through a 

compensatory transaction, t 5 ,  and 0 is returned. Finally, a car reservation is attempted 

for either National or Avis. If a t  least one succeeds, the  arrangements are complete. 



// the following tuo functions make (or cancel) the appropriate reservations; 
// The last tso functions in the example are compens4tions. 
void flight-reservation (Airline air. Date dl. Date d2); 
void hotel-reservation (Hotol h. Date dl. Date d2); 
void car-reservation (Carlent c .  Date dl. Date 62); 
void cancel-flight-reservation (Airline air. Date dl. Date d2): 
void cancel~hotel~reservation (Hotel h, Date dl. Date d2); 
// Using there functions, the desired sorkflow can be defined as follosr: 
void exclusiv~~car~reservation(CarRent car. Date dl, Date d2, tld t) f 

car-rerorvation(car. dl. d2) ; 
if (wait (self0)) abortct); 

> 
int t-conference(Dace dl. Date d2)( 

tid t1, t2. C3, t4, t5. t6: 
Airline *air; 
// Rake soma airline reservation 
ti - initiate(t1ighc-reservation. "Delta". dl, d2); 
begin(t1): 
if (!couitttl)) t 

t2 - initiate(f1ight~reservatlon. "United", dl, d2): 
begintC2) ; 
it (!coluittt2)) i 

c3 - inltiate(f1ight-reservacisn. "herican". dl. d2); 
begin(t3) : 
if (!couictc3)) return 0; I /  Activity failed 
else air = "American": 

) else air - "United"; 
> else air = "Delta"; 

// Plight reservation has been made at chis polnt 
t4 - iniciate(hote1-reservation. "Equator". dl. d2); 
beginttt); 
if (!corit(tl)) f 
do < tS - i n i t i a t e ( c a n c e l ~ f 1 i g h t ~ n r e r v a t i o n .  air. d l ,  d2); 

begin(t5); ? 
while (!couit(tS)) ; 
//wait for c o u i t m m c  before proceeding 
I /  Compensate for the flight reservation already made 
return 0; 

? 
/ I  At chis point, hotel and flight reservations have both bnen made 
t5 - iniciate(car-reservaclon. "national", dl. 42): 
begin(t5); 
t6 - in~tiate(exclusive~car~re8ervation. "Avir". dl, d2); 
begin(t6) ; 
if (wait(c5)) t //whichever completes first wins 

abort(c6); 
couit(t5) : 

? else co.aIt(t6); 
return 1; // Successful completion of all reservations 

Figure 2.1: Sample Asset workflow program. 

A shortcoming of the Asset approach is its low-level focus. Asset primitives allow for 

programming-in-the-small, but do little to  aid using an estended transaction processing 

system. Indeed, while care was most likely exercised throughout in the development of 

the Asset example (presented in Figure 2.1), taken from [BDG+94], to  guarantee that 

either all work was performed, or partial work was aborted or compensated for, this pro- 

cedure still has a flaw. If both car reservation transactions fail, the procedure will return 

a successful status indicator; there is no way t o  recover from failure of transactions t 5  and 

t6 .  This gives rise to  the argument that  embedding extended transaction extension code 

in application code is inappropriate for systems requiring complex transaction behavior, 

since it is hard to prevent bugs like these from happening. Moreover, requiring applica- 

tion programmers t o  "step down" from application code t o  specify extended transaction 



functionality is unreasonable; the task of correctly coding an application is hard enough, 

without also requiring the programmer to develop the necessary extended transaction sup- 

port. However, the primitives do capture useful extended transaction behaviors and could 

be generated from a higher-level specification, showing promise for the approach. 

TSME 

The Transaction Specification and Management Environment (TSME) [GHKM94] is a 

transaction processing toolkit, specifically designed to be used in combination with the 

DOMS architecture [MHG+92] of GTE Laboratories. The toolkit was developed for for- 

mulating advanced transaction models in a workflow application domain [GHS95a]. The 

three main components of TSME are a specification language, a Transaction Dependency 

Specification Facility (TDSF), and a corresponding programmable Transaction Manage- 

ment Mechanism (TMM) . 
Advanced transaction models are specified in TSME as transaction dependencies be- 

tween constituent ACID transactions. In TSME, transaction dependencies are described 

using 5-tuple elements of the form (ti, T ,  0, El P) where ti is the dependent transaction, 

T is the set of transactions that t; depends on, 0 is the set of data objects the dependency 

must consider, and E and P are logical predicates representing the enabling condition and 

postcondition, respectively. E denotes when the postcondition must be evaluated, while 

evaluation of the postcondition determines whether the dependency is satisfied or not. 

Transaction dependencies are classified into state dependencies and correctness dependen- 

cies. State dependencies express relationships between the states of transactions where a 

transaction can be in either the begin, prepare, commit or abort state. Three kinds of 

state dependencies are supported: backward, forward and strong. 

TSME supports static structuring of transactions through the definition of complex 

transactions. In TSME, a complex transaction is defined by a collection of ACID trans- 

actions and a set of dependencies defined between these component transactions. TSEM 

does not, however, provide implementation support for dynamic restructuring. The only 

semantic synchronization supported by TSME is trunsaction level, in which the compo- 

nents of a complex transaction can access a shared set of DOM objects. One of the 

strengths of TSME is its support for execution control. By defining backward, forward 

and strong dependencies over transaction state, it is possible to coordinate the execution 

of the components in a complex transaction, imposing commit, abort and serial orderings. 

Transactions dependencies are submitted to the TDSF which translates them into com- 

binations of event-condition-action (ECA) rule definitions and instructions to transaction 

schedulers that will serve to constrain the execution structure of the individual transac- 

tions. Once processed, the extended transaction specification is stored in a repository 



managed by the TDSF. The  final component of the architecture, the TMM, supports t h e  

implementation of the advanced transaction model by configuring a DOM-specific trans- 

action runtime environment to  ensure the preservation of the transaction dependencies. 

The TSME provides a promising framework for constructing simple workflows, sepa- 

rating workflow modelling from runtime implementation. The approach allows workflow 

modelers t o  reason about the correctness of a workflow based on the specified transac- 

tion dependencies and provides repository facilities for maintaining developed workflows. 

While a research prototype of the programmable TMM was implemented a t  G T E  on 

DOMS, the TSME was never fully implemented and the project was eventually termi- 

nated when commercial workflow products became available. 

A P R I C O T S  

The next system we examine is Apricots [Sch93] (A PRototypical Implementation of a 

COnTract System). Apricots is not a general-purpose extended transaction implementa- 

tion facility, but was developed t o  implement the ConTract model [WR92]. The  ConTract 

model was proposed t o  provide a basis for defining and controlling long-lived activities. 

Specifically, it is an advanced transaction model with a mechanism for grouping traditional 

ACID transactions into a multi-transaction-like activity. 

A ConTract, which is the basis for the model, consists of a set of predefined ACID 

transactions called steps and a separate explicitly specified execution plan called a script. 

In addition t o  the relaxed isolation that  results from the division of a ConTract into mul- 

tiple ACrD transactions, ConTracts provide relaxed atomicity, so that  a ConTract may be 

interrupted and reinstantiated. For a given ConTract it is guaranteed that  execution will 

either successfully complete within a finite amount of time, or a state logically equivalent 

to  the original s ta te  will be reconstructed via compensating steps. 

Steps are the basic atomic building blocks of ConTracts. They represent elementary 

units of work and are implemented by conventional ACID transactions. There is no inter- 

nal parallelism in a step (visible t o  the script level) and therefore the  transaction can be 

coded in any arbitrary sequential programming language. Control flow between the steps 

is specified by a scripting language that  includes the usual control elements, such as se- 

quence, branch, loop and some parallel constructors, thus providing a means for explicitly 

specifying control flow for operations on shared persistent da ta  objects. It is also possible 

t o  define dependencies between the steps (transactions implementing the steps). 

Because ConTracts are built out of traditional ACID transactions, the results of which 

are externalized before the entire ConTract is finished (or compensated), there is a need for 

mechanisms to synchronize ConTracts that are running in parallel. In the ConTract model 

this is accomplished by defining so called invariants. Through invariants it is possible t o  



protect shared da ta  from the concurrent access of other ConTract steps. These invariants 

do not need to  prevent concurrent access of shared da ta  items totally, but rather ensure 

that  the value of the da ta  items stay within the defined limits. 

ConTracts define static structure between the transactions that  make up the contract, 

but can not support dynamic restructuring of any kind. The ConTract model and Apricots 

architecture approach does not support any kind of cooperation between different users, 

and can only support transaction level synchronization between the components of a con- 

tract. Execution control of the transactions that  make up a ConTract is defined explicitly 

in the ConTract script. The ConTract manager is responsible (among other things) for 

the execution of the  script and the  failure tolerant control flow management. The Con- 

Tract manager communicates with the Apricots transaction manager t o  implement the 

transactional semantics of a ConTract. 

The Apricots implementation, described in [Sch93], is essentially a transaction pro- 

cessing monitor designed t o  support the  implementation and management of ConTracts. 

Apricots consists of the following components: a ConTract manager, step server, tmns- 

action manager and a resource manager. The ConTract manager is responsible for the 

execution of the script. It has to  guarantee the reliable execution of a started ConTract 

and is responsible for the forward recovery i'h the event of a crash. The step server man- 

ages the control flow. It decides which steps t o  activate and sends an asynchronous call to  

the transaction manager that  will execute each step as an ACID transaction. The Apricots 

resource manager manages da ta  collections and supports functions on da ta  objects. 

To illustrate, a user or application can start  a ConTract of a specific type with the 

command activate(contract-script-name). The ConTract is assigned a system unique 

identification (cid). The execution of a ConTract, addressed by its cid, can be suspended, 

resumed, migrated to  another machine in the network, or compensated. The textual de- 

scription of the ConTract script is transformed by the ConTract manager into a predicate 

transition net for reasons of efficiency. If the start  event of a step occurs, the ConTract 

manager gives an appropriate stepserver the order to  execute the step. The  execution 

of the step-code is done asynchronously with the execution of the script. If the execu- 

tion of the step is finished, a completion event is sent to  the ConTract manager. The 

ConTract manager provides a function stepFinished that  receives the return messages of 

steps and executes the script depending on the return values. The advantage of an event- 

driven script execution is tha t  the ConTract manager does not have t o  wait synchronously 

(blocking) for the end of a step execution. 



PERN 

Pern is an external transaction manager developed a t  Columbia University [Hei97]. Pern 

supports ACID transactions, and provides the option to  define application or project specific 

concurrency control using a coordination modeling language (CORD) [HK97]. 
Pern was designed t o  be incorporated into a software development environment, to 

provide transaction support for the process of developing software. Pern defines a basic 

transaction model that implements ACID transactions with a shared read and an exclusive 

write lock mode. Standard transaction operations such as tx-begin, tx-commit, txabor t ,  

tx lock and tx-unlock are provided. The architecture of the Pern transaction manager 

defines a number of events related to  the execution of a transaction, and allows users 

t o  define handlers that  are t o  be invoked before and after each event. By defining an 

appropriate set of handlers, a programmer can alter the execution of the transaction 

operations in various ways t o  satisfy the needs of a particular extended transaction. 

CORD includes tables for specifying the compatibility of application-specific locking 

modes. More significantly, it provides a rule-based (condition-action) notation for de- 

scribing special-purpose conflict resolution when transaction conflicts arise; the CORD 

notation builds on the conflict resolution language introduced by Barghouti [BK91]. To 

illustrate, the CORD rule presented below specifies that  when a lock conflict occurs on a 

M A N U A L  da ta  object, the handler will check whether the two conflicting transactions are 

running the "revise~manual" task and "addsection" task respectively, and whether the 

''revise~manua1" task is run by the owner of the manual and the "addsection" task is run 

by the co-author. If these conditions hold, then both transactions are allowed t o  access 

MANUAL.  This particular CORD rule also specifies that  the "revisemanual" transaction 

should receive a notification via the "EDIT-conflict" message. 

EDIT-conf lict [ MANUAL 1 
bindings : 

?ti = holds-lock() 
?t2 = requested-lock0 

body : 

if (and (?tl.rule = revise-manual) 
(?t2.rule = add-section) 

(?tl.user = ?ConflictObject.ouner) 

(?t2.user = ?~onflictObject.coauthor)) 

then< 

notify (?tl, "EDIT-conf lict") 

ignore( ) 

3 
end-body ; 



By coupling CORD mechanisms with the Pern event architecture, it should be pos- 

sible to  implement semantic transaction synchronization policies that  utilize operation, 

transaction and application level semantics. In addition, by defining the appropriate han- 

dlers i t  should also be possible t o  implement static transaction restructuring, though no 

evidence of this is presented in the literature. Pern, however, does not provide support for 

dynamic restructuring, nor does it provide explicit support for execution control. These 

extended services were simply outside the original design goal of Pern and CORD, which 

was support for cooperative transactions in a software design environment. 

Summary 

This quick tour through the related implementation efforts has revealed a host of mech- 

anisms and approaches t o  implement extended transactions. In addition, these imple- 

mentations use different mechanisms t o  allow their facilities to  be tailored, controlled or 

adapted to  the variety of extended transactions which they might support. As we pointed 

out earlier, these systems have largely implemented base transaction support from scratch, 

rather than building on conventional transaction processing software. We also note that  

few of the related implementation efforts address transaction restructuring and semantic 

synchronization, thereby limiting the range of extended transactions they can implement. 

2.1.5 Reflective Transaction Framework Implementation Strategy 

With an improved understanding of the functional requirements of extended transactions 

and the related implementation efforts, we turn our attention t o  choosing an implementa- 

tion strategy. There are two options. First, we could s tar t  anew by building an extended 

transaction facility from scratch, similar to  the TSME and PERN. Such an effort removes 

the burden of preexisting decisions and tradeoffs in an existing transaction processing sys- 

tem, and allows the use of knowledge of extended transaction requirements t o  guide the 

development of a new extended transaction facility. The danger, however, is of making 

new, more grievous design mistakes. In addition, so much time can be spent building up 

base transaction support and re-inventing wheels, that  little innovation takes place. 

Alternatively, an existing transaction processing system may be adopted as a platform 

upon which incremental development may take place. Extending an existing transaction 

system lirnits the scope of the work, but ensures that  one is never far from a functioning 

system that  can be tested to guide development, and secures a base of users upon comple- 

tion. Moreover, if an irrcremental extension fails, only the failed step rnust be repeated, 

not the entire project. If the extensions are relatively modest in scope, such incremental 

steps do not need to  promise dramatic new functions t o  get immediate results. On the 



down side, such an approach may necessarily limit the amount of innovation and creativ-. 

ity brought t o  the process and possibly carry along any preexisting biases built in by the 

originators of the  transaction system, reducing the impact the research might have on 

providing broad-ranging support for implementing extended transactions. 

We have chosen the second direction, deciding t o  provide implementation support for 

extended transactions by extending the base services of a conventional transaction pro- 

cessing system. The  key insight that  shaped this decision was the understanding that  

each of the extended services essential for implementing extended transactions can be re- 

alized as an incremental extension of base transaction processing services. Indeed, it is a 

claim of this thesis that  conventional transaction mechanisms can be used successfully to  

support the implementation of extended transactions. A second, more pragmatic, consid- 

eration is the recognition tha t  conventional transaction processing systems, in particular 

TP monitors, have accumulated large amounts of transaction implementation technology. 

We don't think t h a t  it would be particularly clever simply t o  throw this technology away 

and build an extended transaction facility from scratch. Thus, we will leverage existing 

functionality, t o  the extent possible, and incrementally add functionality required t o  im- 

plement extended transactions. Moreover, we shall endeavor to  do  so  in a manner that  

ensures that  the TP monitor continues t o  finction as before, so that  applications built 

using ACID transactions do not have t o  be modified. 

In the next section, we consider issues that  arise when we attempt t o  apply our incre- 

mental extension strategy directly to  a conventional TP monitor. Later, in Section 2.3, we 

introduce Open Implementation as a design approach t o  meet the challenges that  arise, 

such as providing effective access to  legacy interfaces, structures and functions; the main- 

tenance of shared representations; and the treatment of unavoidable problems (e.g., scope 

control and the conceptual separation of various transaction extensions). 

2.2 Conventional TP Monitor Architecture 

For the last 20 years TP monitors have provided a general framework for transaction 

processing, supplying the "glue" t o  bind together the components of a transaction sys- 

tem through services such as multithreaded processes, interprocess communication, queue 

management, and system administration [BerSO]. For our background discussion, we use 

a simplified description of an OTLP monitor consisting of five components: I )  transac- 

tional application program, 2) transaction manager, 3) lock manager, 4) log manager, 

and 5) resource manager. The structure of these components is shown in Figure 2.2. In 

a commercial setting, we might find an TI' monitor such as Transarc's Encina providing 

access to  a resource manager such as Microsoft's SQL Server. 
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Figure 2.2: Modular Functional Components of an TP Monitor. 

The architecture of commercial T P  monitors varies widely on a spectrum from un- 

structured (i.e., a single monolithic software module, not decomposable into its compo- 

nent parts) t o  well-structured (i.e., modular, hence decomposable). These architectural 

differences reflect the history of TP monitor development. When early TP monitors, such 

as IBM's CICS, were first developed, they were not as complex as today's TP moni- 

tors. Not only was functional decomposition unnecessary for implementing the TP mon- 

itor, it was not even conceived. As function_al requirements increased (such as three-tier 

client server), and new architectural forms (like distribution and heterogeneity) were intro- 

duced, implementation required more functional decomposition, thus prompting methods 

such as structured design, which resulted in the TP monitor software being "architected" 

into functional components or modules. Today, modern TP monitors, such as Transarc's 

Encina, DEC's ACMSxp, and IBM's CICS/6000, are modular and constructed from open 

transaction processing middleware [Ber96]. Each of these middleware modules provides a 

specific transaction service, such as transaction management, lock management, and log 

management, and exports its transaction processing services through a relatively simple 

and uniform "application programming interface" (API). 

In the remainder of this section we will describe the services provided by the  TRANS- 

ACTION M A N A G E R  and the LOCK MANAGER.  The descriptions are high-level, but serve 

to advance our claim that  these base services provide useful functionality for implement- 

ing extended transactions, and that  design decisions have limited their applicability by 

committing to  a particular approach to  transaction support. 

2.2.1 Transaction Manager 

The Transaction Manager processes the basic transaction control operations for transac- 

tional applications, such as Begin, Commit, and Abort. An application calls Begin to  

start  executing a new transaction. It calls Commit to ask the Transaction Manager t o  



commit the transaction. It calls Abort to request the Transaction Manager to  abort the- 

transaction. All operations within the scope of a transaction in an application go through 

the Transaction Manager, whereas operations outside the scope of a transaction may be 

issued t o  the Resource Manager directly. 

The Transaction Manager is primarily a bookkeeper that  keeps track of all active trans- 

actions and available Resource Managers, and maintains information on the transaction 

accesses to  Resource Managers - the status of each transaction; for example, active, pre- 

pared, aborted, committed - and the resollrces held by a transaction. This requires some 

cooperation with the transactional application and the Resource Managers. 

When an application calls Begin, the Transaction Manager creates a unique identifier 

for the transaction called a trartsaction identifier (TID) and allocates a descriptor for the 

transaction. The transaction descriptor is used t o  hold all information used in processing 

the transaction. Subsequent calls submitted by the application have the transaction's TID 

attached. The descriptor is the focal point during a transaction's execution. Depending 

on the scheduler implemented in the TP monitor, the descriptor may also be used t o  

maintain a list of the locks held and requested by a transaction, and a list of data  objects 

read and written by a transaction. These lists are often referred t o  as locks held, locks 

requested, read set and write set, respectively.- 

A Transaction Manager may perform a number of other functions depending on the 

specific concurrency control and recovery algorithms implemented by the Resource Man- 

ager. For example, if two-phase locking is used for the concurrency control algorithm, 

then the Transaction Manager will participate in enforcing the protocol, and may be in- 

volved in detecting and resolving lock deadlocks. A deadlock between two transactions 

occurs when each transaction holds a lock on a da ta  object which the other transaction 

is attempting t o  acquire. The Transaction Manager can detect deadlocks by examining 

the locks held and locks requested lists in the transaction descriptor of active transactions, 

and constructing a wait-for graph [BHG87]. A cycle in the wait-for graph indicates that  

a transaction deadlock exists. 

When a transactional application finishes execution and issues the commit operation, 

the commit operation goes to  the Transaction Manager, which processes the operation by 

executing a twephase commit protocol. Similarly, if the Transaction Manager receives 

a message t o  issue the abort operation, it tells the Resource Manager t o  undo all the 

transaction's updates; that  is, to  abort the transaction a t  each database system. 

Recall from our discussion on extended transactions in Section 2.1 that  many advanced 

transaction models and semantics-based concurrency control protocols require explicit 

control over the execution of member transactions. However, the set of services provided 

by the Transaction Manager does not provide this level of support. There are two major 



shortcomings. First, while an application can control the execution of the transaction it is 

currently running, it can not influence other transactions running on the TP monitor. This 

is because an T P  monitor provides each transaction with the illusion that it is executing 

in isolation, and thus the Transaction Manager does not export the necessary services for 

an application to view other concurrently executing transactions or to explicitly control 

their execution. Second, the Transaction Manager does not allow applications access 

to the state information on active transactions, such as the transaction descriptor, nor 

does it allow applications to update or store additional information in these structures. 

However, if an application is going to execute a cooperative transaction group, it will 

require all of these services to designate a transaction ,as the group coordinator, identify 

other active transactions that are members of the group, and control their execution in 

order to implement group commit and abort dependencies. 

2.2.2 Lock Manager 

Conventional T P  monitors typically use a locking protocol to synchronize transactions. 

The protocol allocates locks to requesting transactions, and detects conflict and deadlock 

among the requesters. Traditional protocols support just two basic lock types, Read 

(Share) and Write (Exclusive), and every data access is automatically cast as one or the 

other, regardless of the operation, the type of data, or the application context. 

The Lock Manager is a major component in synchronizing transactions. However, a 

Lock Manager does not enforce the locking protocol. Enforcing the locking protocol is the 

responsibility of the resource manager1. In fact, the Lock Manager is essentially a black 

box that manages locks in the manner prescribed by the software modules that invoke 

the Lock Manager. Conceptually, the scheduler invokes the Lock Manager to determine 

whether there are conflicts that prevent the granting of the locks and ensuing actions from 

being scheduled or executed immediately. A Lock Manager may delay granting some locks 

and thus delay the corresponding actions when conflicts occur. In addition, it manages 

the data structures necessary to handle deadlock detection. 

The interface to a typical Lock Manager exports the following functions: 

I. lock: Executes a lock request for a single transaction; 

2. unlock: Removes a previously granted lock on a data object for a transaction; 

3. unlock-all: Releases all previously granted locks for a transaction. 

'It is difficult to isolate a single module that implements the scheduler. For performance reasons, a 
scheduler's functionality is typically distributed among different pieces of the TP monitor software such 
as the Trarisaction Manager, access method routines, and Lock Manager. 



A lock request for a specific transaction involves specifying values for the identifier of 

the requesting transaction (tid), the identifier for the lock being requested (lid), and the 

mode in which the  lock is requested (mode). The Lock Manager will grant transaction 

tid a lock on lid in mode mode if no other transaction currently holds a lock on lid, or 

the mode of the  request does not conflict with the lock mode(s) currently granted on the 

lock. Transactions record all the locks they own in a bookkeeping structure referred t o  as 

a lockset. Once a transaction tid has acquired a lock lid, it adds it t o  its lockset. 

If a lock conflict exists and a lock request is blocked, then the lock request must wait 

for all previously blocked lock requests to  be granted. The only exception to  this rule 

occurs when a transaction makes a lock request on a lock that  it already holds. In this 

situation, the Lock Manager converts the requested lock mode to  the weakest lock mode 

that  is greater than or equal in strength t o  both the granted lock mode and the requested 

lock mode, and tests if the new request is compatible with all lock holders. 

Figure 2.3 illustrates the implementation structures of a Lock Manager as commonly 

described in the  literature [GR93], where each flag represents a latch. 

Lock Control Block (LCB) 

I& G r w d  pending Next 

Nme Mode 
R q u e t  R q u a ~ r  

Il& Table 
of locks 

Lock Request Block (LRB) 

Figure 2.3: Conventional Lock Manager implementation structures. 

A lock is implemented by a Lock Control Block (LCB) which contains information 

such as it.s name, its current mode (read or write), a latch, and links. A fixed-size hash 

table is used t o  store and retrieve LCB's using their name. The LCB is also the head of 

two doubly-linked lists of Lock Request Blocks (LRBs). One list implements the granted 

requests. The  other list holds pending requests, and corresponds t o  blocked transactions. 

Each LRB relates to one transaction, and contains information such as the  transaction's 

identity, the requested locking mode, and the links t o  its lockset. 



To set a lock on a resource (e.g., a page or an object), the Lock Manager first selects 

a hash chain using the resource's name as the hashing key. If there is no LCB for the 

resource, it initializes a new one and appends it to the hash chain. Otherwise, it scans the 

LCB's LRB chain to see if the requester already has a LRB. If there is no LRB for the 

requester, it allocates a new LRB, chains it to the requester's lockset, and chains it to the 

right LCB chain according to the conflict detection result. Conflict detection is performed 

when the LRB chain is traversed to look up the LRB of the requester. 

Looking back at our discussion in Section 2.1, we note that the basis for many extended 

transactions is the ability to use a synchronization algorithm that exploits the semantics 

of the operations, data and application to increase the number of transactions that can 

execute concurrently. However, the current Lock Manager services do not provide the 

necessary support for semantic transaction synchronization or for dynamic transaction 

restructuring. There are three main shortcomings. First, the interface to the Lock Man- 

ager does not allow an application to specify the conditions under which it should relax 

the definition of lock conflict. That is, an application cannot identify update operations 

that are compatible or declare that two transactions are members of a cooperative group 

and that the application will coordinate data access. The interface is closed in that the 

only information the Lock Manager will consider is the transaction identifier, the identifier 

for the lock being requested, and the mode in which the lock is being requested. More- 

over, the only information the Lock Manager provides in response to a lock request is an 

acknowledgment that the lock has been granted or a message indicating that a conflict 

exists. There is no way for the application to identify the operation or transaction that is 

holding the lock, and thus it cannot determine the consequence of relaxing the conflict. 

Second, the Lock Manager does not export its base interface, which typically consists 

of requests to lock, unlock and unEocLaEl data objects, outside of the T P  monitor. Thus it 

is not possible for an application to access these operations and participate in managing 

lock resources on its own behalf. The lock services are presented to the application as a 

black box and are effectively hidden from the application. 

Third, even if the application could access the interface of the Lock Manager in an 

attempt to manage data  resources, the visible aspects of the underlying implementation 

are not sufficient to  gain control over the abstractions. Consider an application that 

wishes to transfer ownership of a data object from a transaction ti to  another transaction 

t j  using the available commands in the interface. The application might first unlock the 

data object from transaction t i  and then lock it for transaction tS.  I-Iowever, if there were 

another unrelated transaction t k  already waiting for a lock on the object, then as soon a s  

the application unlocked the data object from t ,  the Lock Manager would proceed to pass 

the lock to t k .  Clearly, the implenlentation corlstrains the way in which the lock service 



abstraction behaves, and the original design decisions limit the Lock Manager applicability 

by committing t o  a particular approach to  transaction support. 

2.2.3 Building on Existing TP Monitor Functionality 

One seemingly straightforward way t o  implement extended transactions would be to  use 

the services provided by the functional components of an TP monitor directly. Two 

major impediments complicate this proposition. The first is the lack of an interface 

for customization of the TP monitor. The application interface to  an TP monitor is 

fixed, as are the services provided by commands in this interface. Application program- 

mers access transaction services through ACID transaction control operations, such as 

Begin-Transaction, Commit-Transaction, and Abort-Transaction. Ideally, application 

programmers would be able to  define and then use similar transaction control operations 

for extended transactions, such as Sp l i t -Transac t ion  or Join-Transaction introduced 

in the splitljoin transaction model. However, the single, fixed application interface does 

not provide access t o  the underlying transaction services of the T P  monitor and does 

not permit extensions. Though the individual functional components of the TP moni- 

tor provide a rich set of transaction services, the application programmer would have to  

learn intricate details of the component-level API and run-time system. The size and 

complexity of the API alone presents a formidable barrier t o  even the most accomplished 

application programmer. The second impediment is the level of custornization. TP moni- 

tor system-level code functions "underneath" the code of a transactional application, and 

is not subject t o  the same programming abstractions. This requires the TP monitor to  

be customized outside of the application, rather than wathin it ,  making i t  impossible for 

an application t o  specify its requirements for extended transaction behaviors a t  runtime. 

At best, a transaction system programmer could adjust TP monitor functionality through 

the API to  implement a selected extended transaction model a priori. Unfortunately, such 

a customization t o  the run-time system could alter the entire system and, consequently, 

come at  the expense of reusability; i.e., it is hard t o  localize the customization. 

These issues, among others, combine t o  give users no convenient way t o  use T P  moni- 

tor software directly to define new application interfaces and leverage existing transaction 

services to  implement extended transaction functionality. It is for exactly these reasons 

that  efforts to  provide implementation support for extended transactions have gravitated 

towards the construction of entirely new transaction facilities. These efforts have proven 

t o  be expensive, and have limited practicality. What is required, from our perspective, is 

a framework that  will carefully expose T P  monitor functionality and provide the means 

t o  define new extended transaction services and application interfaces. The new services 



defined by the framework must be separate from the TP monitor runtime, so that  ex7 

isting transactional applications will function properly, and be presented to  application 

programmers through familiar transaction control operations so they do not have to  "step 

down" t o  an operational description of extended transactions. 

2.3 Reflection and Open Implementation 

In this section, we discuss the problem of extending the functionality of software with 

reference to  very general notions of abstraction in software design, and the Open Im- 

plementation approach. Open Implementations reveal aspects of system structure and 

behavior, providing applications (clients of the abstractions) with a principled means for 

examining and manipulating the internal operation of the abstractions. As a result, clients 

can become involved in how the infrastructure supports their operation, and can tailor 

the behavior of system abstractions t o  their own particular needs. Along with the Open 

Implementation approach, we shall also review the design principle on which it is based 

(computational reflection). 

2.3.1 The Myth of "Abstraction" - 

Abstraction is one of the fundamental tools of computer science and system design. It is 

the means by which we can break down large problems into small ones and, conversely, 

combine small solutions t o  create large systems. Abstraction allows us t o  isolate one 

part of a system from another and consider the two separately. It is the key to  analysis, 

modularity, and reuse; it is also, potentially, the source of a range of problems throughout 

systems design practice [CFN96]. 

The traditional form of abstraction in systems design relies on three basic components 

- black boxes, clients, and the abstraction barrier, as illustrated in Figure 2.4. The black 

box implements some abstraction which is offered to  clients a t  an abstraction barrier. 

The abstraction barrier is a point of separation between client and implementation; the 

concepts, terms and structr~res in which the abstraction is phrased a t  the barrier are 

the only ones that  clients can use t o  manipulate and control the abstraction. In an T P  

monitor, the abstraction barrier is typically presented as an application programming 

interface. The term "barrier" refers to  the way in which the abstraction hides aspects of 

the transaction system implementation from the client. Behind the abstraction barrier, 

the internal details of ACID transaction processing functionality are not revealed t o  the 

client application. 

There are two important features of abstraction being employed here. First, separation 

divorces the use of the abstraction from the details of its implementation, allowing a client 
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Figure 2.4: -4 traditional black box abstraction locks implementation details away behind an 
abstraction barrier. 

t o  use an abstraction without understanding all the details that  lie behind it. Second, 

generalization divorces the abstraction itself from any particular implementation, so the 

implementation may be changed without changing the abstraction (and hence, without 

forcing changes in its clients). By using separation and generalization in this way, systems 

can be modularized and their components reused. This model of abstraction runs through- 

out system design. The most basic elements of software systems, such as programming 

languages and instruction sets, are built upon it. 

This notion of abstraction, as used in software development, is derived from the math- 

ematical use of abstraction [I<ru92]. However, software entities differ from mathematical 

entities. In software, the abstractions are not truly "abstract." Instead, they are the visi- 

ble aspects of underlying implementations, and the implementation constrains the way in 

which the abstraction behaves. While any (correct) implementation of the abstraction will 

agree with the abstraction's specification, and hence operate in the  "same" way, differ- 

ent implementation strategies will result in different performance characteristics, memory 

usage patterns, and so on. 1 shall use the term "behavior" t o  refer t o  the manifestation 

of these properties - that  is, not just the semantics of the implementation, but also the 

details of its acceptable patterns of operation and performance. 

Lists and arrays, for instance, are different implementations of a collection abstraction. 

Although they might share an interface, they exhibit different performance characteristics 

(different behavior). These particular examples happen t o  be so endemic to  the problems 

we solve that  we think of them as different abstractions; but the differences in their be- 

havior are not expressed in the abstraction. This variability is something we often depend 

upon in implementation; for instance, caching in memory systems and memoization in pro- 

gramming language implementation are both techniques which change the performance 

characteristics while maintaining the original abstraction. 



The  same variability, though, can also introduce significant problems. To illustrate 

these problems, consider a situation opposite to  that  described above. Rather than one 

client and multiple possible implementations, consider a single implementation and mul- 

tiple clients. This is a common arrangement: an operating system supports a text editor; 

an email reader and a database system; a window system supports a word processor, a 

spreadsheet and a game; the Lock Manager of an TP monitor supporting ACID transactions 

and extended transactions. The clients all make use of the same implementation, accessed 

through the same abstraction, in service of whatever functionality they themselves provide 

to  their own clients. However, the clients have different needs. Consider the challenges 

that  arise when we attempt to  use the existing services of the Lock Manager for different 

transaction models. Some applications will need conventional read-write conflict behav- 

ior; some will require a relaxed definition of conflict using operation semantics; some will 

redefine conflict based on transaction or application semantics; others might require the 

ability t o  give up ownership of locks t o  restructure dynamically. In fact, the  more clients 

there are, the more likely it is that  there are going t o  be conflicts with their requirements 

for the behavior of the implementation. However, as observed above, the abstraction does 

not express the difference in behavior. In fact, those aspects of the  implementation that  

would cause a programmer to choose one over another are systematically hidden by the 

abstraction barrier. 

In this case, it's not the abstraction that  is a t  fault. The simple specification of the 

abstraction (the transaction synchronization abstraction, defined in terms of the acquisi- 

tion of locks and conflict detection) can be used effectively by all the clients. The problem 

lies, first, in the fact that  the "abstraction" is not abstract a t  all, but is the interface t o  

an implementation; and second, in the way in which a single implementation must serve 

multiple purposes. But this isn't some unusual special case; it's simply everyday reuse. 

2.3.2 Mapping Dilemmas 

The root of these problems can be explained in terms of mapping decisions, mapping con- 

flicts and mapping dilemmas [KPng]. A mapping decision occurs when the implementor of 

an abstraction must choose between a number of possible strategies for implementing some 

internal mechanism. A mapping conflict occurs when some implementor makes the deci- 

sion one way, but the needs of a client would be better met if the decision had been made 

another way. A mapping dilemma occurs when two clients of the same implementation 

require different mapping choices: whatever choice is made, a conflict results. 

Mapping decisions arise not from the structure of the abstraction itself, but from 

the way in which it is implemented. Thus, since mapping decisions are not part of the 

abstraction, they are not visible t.hrough the abstraction barrier. ,While it is clear that  



the incidence of mapping conflicts can be exacerbated by poor mapping decisions, it is 

important to recognize mapping dilemmas are not the result of particular implementations 

or abstractions, but are inherent in the model of abstraction itself. As such, software 

developers encounter them every day, and must employ some strategy t o  deal with them. 

2.3.3 Gaining Control over Abstractions 

As systems have become larger and more complex, and as hardware has improved and 

exposed more performance problems in software, strategies for overcoming these abstrac- 

tion problems have become more common. One solution is t o  offer a number of different 

implementations t o  choose from (compiler optimization strategies often operate this way). 

Another is to  provide switches that  allow the application t o  select a particular strategy. 

For instance, the U N I X  system call madvise allows application programmers to  specify 

the style of memory access particular memory regions will experience, so that  an effective 

paging strategy can be employed. 

Recently, more radical solutions have been adopted, in various areas of system design. 

For example, the Mach operating system provides facilities for virtual memory behavior t o  

be controlled directly by application programs - "external pagers" [RJY+88]. Scheduler 

activations [ABLLSl] allow application control over thread facilities, addressing the design 

trade-offs involved i n  locating thread information and control in user space or kernel space. 

More generally, flexible object-oriented operating systems such' as Spring [HK93] have 

allowed applications (or user-space code) a great deal of control over the implementation 

details of "lower-level" operating system abstractions [KN93, NKM931. 

2.3.4 Open Implementation 

Open Implementation (01) is an approach to  system architecture that  "opens up" ab- 

stractions and provides clients with principled access to  examine and control aspects of 

the implementation. The most important foundational principle behind Open Implemen- 

tation is computational reflection [Smi82]. The reflection principle states that  a system 

can embody a causally-connected representation of its own behavior, amenable t o  exam- 

ination and change from within the system itself. The causal connection is a two-way 

relationship between the representation and the behavior it describes; this representation 

is maintained in correspondence with the system's behavior, and the behavior itself is 

controlled through manipulation of the representation. So, a reflective system can use the 

model to  reason about its own behavior (introspection); and it can make changes to  the 

model t o  effect changes in its behavior (explicit control). This causally connected self- 

representation creates a link between two c'levels" of processing - the "base" level, which 



is the traditional domain of computation for the given system, and the "metalevel" where 

the domain of computation is the system itself. 

At the same time these new capabilities are introduced into a system, it is important 

to  retain useful properties of the existing notion of abstraction. principally the concep- 

tual simplification that  it provides. There are two ways in which this is achieved in an 

Open Implementation, illustrated in Figure 2.5. First, a standard or default interface is 

available t o  access base services of the system, and a new metalevel interface is provided 

to  access the causally-connected representation: the interface t o  the metalevel augments 

the traditional abstraction barrier, rather than replacing it. Second, the view into the 

implementation reveals its inherent structure and function, rather than the details of the 

specific implementation. It does not simply provide a set of "hooks" directly into the im- 

plementation; that  would both constrain the implementor of the abstraction and require 

too much of the implementor of a client. Instead, i t  provides a rationalized model of the 

inherent behavior of the system offering its particular functionality. 

"meta-level" 
interface 

Figure 2.5: Black box abstraction contrasted with open implementation. . 

2.3.5 Designing an Open Implementation for an TP Monitor 

We now consider how t o  apply the Open Implementation approach t o  design a framework 

for implementing extended transactions on a conventional TP monitor. To date, there have 

been few systems designed following the Open Implement,ation approach, and no one has 

applied it to  extend an existing software system. There are, however, examples of Open 

Implementation-style concepts in otherwise traditional systems, such as operating sys- 

tems [Yok92, ABLL91, PA4B+95], composable microprotocols [BS95, BD95, EPT951, and 

external paging facilities [RJY+88]. On the basis of these experiences, what has emerged 

is not so much a process for Open Iniplementation design, but more a set of design princi- 

ples. Emerging work on Open Implementation Analysis and Design (OIA/D) [KDLM95] 

represents an early attempt t o  draw out these principles. 



In what follows, I shall describe a number of these principles, drawn from the Open 

Implementation literature, that  shaped the design of the Reflective Transaction Frame- 

work. While each design principle is presented separately, it will become clear that  they 

are strongly related to  each other. First, however, a digression regarding reflective self- 

representations will provide some context. 

Reflection and Self-Representation 

When thinking about self-representations in reflective systems, it's important to  bear in 

mind that  they are just that  - representations. The causal connection, in particular the 

computational effectiveness it supports, can lead t o  confusion between the representation 

and the mechanism that is represented. Similarly, the metaphorical relationship drawn 

between reflective systems and mechanical ones - in which mechanism is "exposed t o  

view," and users can "reach in" to  effect changes - can also contribute to  this confusion. 

When thinking of the design of a reflective system, there are two important aspects of the 

representation qua representation to  be considered: maintenance and partiality. 

Maintenance refers to the way in which the representation is actively maintained by 

the reflective system. Elements of the representation can be created as needed, and/or 

maintained in correspondence with elements of the system itself, rather than being con- 

tinually present. The lazily-created reflective interpreter layers of the 3-Lisp implemen- 

tation [dRS84] illustrates this. While the 3-Lisp model guarantees the representation is 

available when requested, it may not actually exist until requested. At the point it is cre- 

ated, the elements of the representation (or rather, an instance of the representation) are 

a rationalization of the system's state according t o  an idealized model. So, when designing 

the Reflective Transaction Framework and considering the terms in which the metalevel 

interface is cast, it is important to  remember the distinction between "exposed structure" 

and actual implementation mechanisms, a distinction the system must actively maintain. 

Another design principle that  follows from the maintenance of the representation is 

its inherent partiality. The purpose of the representation is not to  provide an absolute, 

decontextualized or impartial description of the system's activity. Rather, the representa- 

tion describes selected aspects of the system's behavior for the purposes of some domain 

of expected behavior [Kic92]. It reveals certain aspects of behavior, and hides others; 

similarly, it supports certain forms of tailoring and modification, but not others. The r e p  

resentation is a designed artifact; and, in line with perceived needs and expectations, we, 

as the designers, set the bounds on the flexibility it embodies. The representation, then, 

is guided more by expectations of use than it is by the structure of the implementation. 



Scope Control 

A critical design property is scope control, the ability t o  restrict attention (and changes) 

to  a particular set of objects. The ability to  maintain and manipulate different scopes 

not only sets up protection boundaries, but also allows for different behaviors to  be mixed 

together in a single system [Yok92]. 

In CLOS, the Common Lisp Object System [BGW93], scope control is achieved through 

the class/metaclass mechanism. Since class behaviors are encapsulated by metaclasses, 

new behaviors are introduced into only those classes that  specify a modified metaclass. 

Introducing a change to  slot access or method dispatch in CLOS will not affect every class 

in the system. The metaclass mechanism bounds the effect of the change, restricting its 

scope. At the same time, it allows multiple behaviors t o  coexist. While a change in the 

slot access mechanism can be introduced for a new metaclass. the default behavior exists 

alongside it, associated with the original metaclass. Indeed, any number of new behav- 

iors might be introduced, and the scope control introduced by the metaclass namespace 

allows them t o  co-exist without interference. A similar approach is used in Silica [Raogl], 

through the use of specific "contracts" between types of windows and their subwindows. 

The ability to  name and distinguish between sets of alternative behaviors is an impor- 

tant  factor in maintaining scope control. It is also critical that  the groupings and categories 

t o  which these behaviors can be applied are a t  an appropriate level of granularity. For 

example, in CLOS, it would be unwieldy to  have t o  discuss metaclass-level behaviors in- 

dividually for each object, or to  have to  talk about all classes a t  once. CLOS associates 

these behaviors with classes, which are a convenient unit of scope for the flexibility that 

CLOS provides. In the design of the Reflective Transaction Framework, the convenient 

unit of scope is likely to be individual t ransxt ions  within an application. Scope control 

would then establish boundaries between different extensions t o  transaction services, and 

would also provide a mechanism for bounding the effects of changes applied t o  specific 

extended transactions within an application. 

Conceptual Separation 

Another design property is the separation of conceptual concerns expressed by the 

metalevel interface. Again, this is essentially a scoping issue, but of a different sort: scope 

control addresses which cipplicntion objects will be affected by a particular change, while 

conceptual separation is concerned with the extent of the behaviors that  are affected. 

A metalevel interface can express a range of different behaviors and present many 

aspects of the system's internals; the principle of conceptual separation states that  the 

separation between different aspects of internal behavior should be expressed in a similar 



separation between those aspects of the interface used t o  control them. So, i t  should be 

possible t o  introduce a change in one aspect of the system's behavior, relatively indepen- 

dent of the  other aspects that  the metalevel interface may control. Similarly, i t  should be 

possible t o  d o  this using only specific aspects of the metalevel interface relevant for that  

concern, without having t o  bring in (or even understand) the other areas. Simple changes 

or extensions t o  the base transaction system should be simple t o  introduce. 

Conceptual separation, perhaps more than the other design principles, highlights the 

fact that  the metalevel interface is designed to  support a particular range of behaviors, 

based on the designer's expectations. The separation of concerns in the metalevel inter- 

face provided by the Reflective Transaction Framework will reflect our assumptions and 

expectations about the transaction behaviors that  will be tailored independently. 

Incrementality 

Another design property often discussed in the Open Implementation literature is incre- 

mentality, which deals with the ways in which changes introduced into the system relate 

to, and build upon, existing or default behaviors. The provision of a metalevel interface, 

and thereby a means t o  change the system and adapt it t o  particular needs and circum- 

stances, does not relieve the system designer of the burden of designing a good base-level 

system. Open Implementations are intended t o  be usable; the metalevel interface is an 

added facility tha t  many clients will not use. 

The  default behavior serves two ends. First, it provides the standard functionality of 

the system. I t  should be usable in a normal range of circumstances, without any appeal to  

the metalevel interface. Second, when the metalevel interface is used t o  introduce changes, 

the default behavior should be the basis for reuse. Incrementality concerns this second 

use of default behaviors. It states that it should be possible t o  introduce new behaviors 

by incrementally extending old ones, specifying what is new and different relative to  the 

original behavior. Thus a programmer using the Reflective Transaction Framework should 

not have t o  recraft transaction behavior from scratch, but rather use the  default ACID 

transaction behavior a s  a baseline. So, default transaction behavior is provided not only 

as a usable system in its own right, but also as the basis for redefinition and extension 

t o  implement extended transactions; that  is, ACID transactions are both the default and 

basis for changes made a t  the metalevel. 



2.4 Summary 

This chapter presented the technical background for our work on the Reflective Trans- 

action Framework. First, t o  understand the functional requirements of implementing 

extended transactions, a number of advanced transaction models and semantics-based 

concurrency control protocols were presented, and we identified three common extended 

services. Following this, we reviewed related implementation efforts and identified how 

they incorporated these extended services into their designs. We concluded the first sec- 

tion of the chapter with a discussion outlining our strategy for building the Reflective 

Transaction Framework on top of transaction services provided by conventional TP mon- 

itor software. Our approach is aimed a t  keeping the conventional TP monitor and ACID 

transactions running while incrementally adding extended transaction functionality. 

In the second part of the chapter we presented an overview of the  TP monitor ar- 

chitecture, along with a brief discussion of extending existing functionality t o  implement 

extended transactions. We argued that T P  monitor software provides a useful substrate 

for implementing extended transactions, but gives programmers only limited control over 

the ways in which the transaction mechanisms will support their applications (and hence, 

limiting the range of transaction services that  the system can support). In making a set of 

structures, behaviors, and mechanisms available t o  application programmers, TP monitor 

implementations also make a set of commitments t o  particular styles of application and 

interaction. So the traditional model of abstraction in modern TP monitor system design, 

which is meant t o  support the reuse of implementations, is actually getting in the way of 

reuse for implementing extended transactions. 

Finally, in the  third part of the chapter, we drew on ongoing work in the use of 

computational reflection and Open Implementation for guidance in designing the Reflec- 

tive Transaction Framework. The Open Implementation approach provides a new way of 

thinking about the  relationships between a client, the abstraction the client is using, and 

the implementation that  realizes the abstraction. Drawing on computational reflection as 

a way of relating the  abstraction and the implementation, Open Implementations provide 

clients not only with abstractions that  they can use, but also with the means t o  exam- 

ine and manipulate those abstractions. Using these facilities, applications can become 

involved in how the  infrastructure supports their operation, and so can tailor the services 

of transaction system abstractions t o  their own particular needs. 



Chapter 3 

Reflective Transaction Framework 

In this chapter we present the Reflective Transaction Framework. In Section 3.1 we first 

outline our design objectives and put forth the specific extensions provided by the Re- 

flective Transaction Framework to  implement extended transactions. In Section 3.2 we 

present the framework architecture, which constructs extended transaction services as  a 

collection of transparent extensions t o  an existing TP monitor, and we discuss the compu- 

tational model of the framework, which provides an open implementation of the underlying 

TP monitor. Finally, in Section 3.3 we present the detailed design of extended transaction 

services supported by the Reflective TransaEtion Framework. 

3.1 Framework Design 

We commence our design description of the Reflective Transaction Framework with a 
brief discussion of the main objectives. We present these objectives before describing 

the Reflective Transaction Framework because this discussion clarifies key rationales and 

justifies important design features. 

3.1.1 Objectives 

The primary objectives of this research were t o  define a software framework t o  support 

extended transactions and develop a practical implementation of the framework. Practi- 

cality was an overriding constraint in the definition of the framework, and it translated 

into the following specific design objectives: support for key extended transaction services, 

ease of implementation, compatibility with legacy transactional applications, ease of use, 

and acceptable overall performance. We elaborate on each of these as follows. 



Key Transaction Functionality The ultimate goal of the Reflective Transaction Frame- 

work is t o  support the implementation of extended transactions. Therefore, the frame- 

work must provide extended transaction services sufficient to  implement a wide range of 

advanced transaction models and semantics-based concurrency control protocols from the 

literature. 

Ease of Implementation An important goal is tha t  the Reflective Transaction Frame- 

work be designed for ease of implementation. We recognize that  conventional transaction 

processing systems, in particular TP monitors, have already accumulated large amounts 

of implementation technology. We don't think that  is clever t o  throw it away and at- 

tempt t o  build an extended transaction facility from scratch. TP monitors provide basic 

mechanisms such as lock-based concurrency control, logging and recovery services, and 

transaction management services. Therefore, we decided t o  leverage existing transaction 

processing functionality and structures in constructing the  extended transaction services. 

This not only eliminates unnecessary infrastructure development but provides efficient, 

robust base processing for extended transactions. 

Compatibility with Legacy Applications Maintaining compatibility with ACID transac- 

tions is a major priority. Legacy applications are here t o  stay; we must ensure that  the 

behavior of ACID transactional applications remain unchanged when the services of the Re- 

flective Transaction Framework are not involved. In addition, existing ACID applications 

should be able t o  exploit the Reflective Transaction Framework services with little change. 

Ease of Use For programmers, we pursue two complementary goals of conceptual sim- 

plicity and access flexibility. The framework functionality must be presented t o  both 

transaction system programmers and application programmers through a simple abstrac- 

tion that  is easily understood and fully compatible with the traditional ACID application 

paradigm; programmers should not have t o  bend over backwards to  achieve desired effects. 

Moreover, the mechanisms through which the framework services are accessed must be 

flexible and easy t o  use. 

Acceptable Overall Performance Finally, i t  is widely recognized that  good performance 

is an intrinsic aspect- of system usability. Excessive application performance degradation 

would seriously undermine the usability of the Reflective Transaction Framework. While 

we accept that  the extended transaction services and mechanisms will incur a certain 

amount of overhead, it is imperative that  we seek good overall system performance in our 

design and implementation. 



3.1.2 Focus on Specific Extensions 

We limit the scope of this research by focusi:rg on three specific extensions for imple 

menting extended transactions: dynamic transaction restructuring, semantic transaction 

synchronization, and transaction execution control. The detailed design of each extended 

service is presented later in this chapter, in Section 3.3. There are two reasons for this 

narrowing of focus. The first is purely practical - any effort must s tar t  somewhere. These 

extensions provide a starting point to  illustrate the application of the  Open Implemen- 

tation approach t o  a conventional TP monitor and demonstrate the gains tha t  result, 

without having t o  open up absolutely everything in the T P  monitor. The  second reason is 

that  these extensions offer the greatest leverage. As we saw in our background discussion 

on extended transactions in Chapter 2, these extensions are the common dimensions of 

change found in most extended transactions in the literature. Addressing the require- 

ments of dynamic transaction restructuring, semantic transaction synchronization, and 

execution control, provides a base for implementing most extended transaction behaviors. 

While it may be tempting to  design a facility- that  is richer in functionality, we feel such 

sophistication would come a t  the cost of runtime efficiency, ease of use, and more onerous 

programming constraints. Thus, one can view this decision as an exercise in minimalism. 

Instead of conjuring up all the ext.ended transaction features we wouid like t o  include in the 

framework, we have determined what can be omitted while still being able to  implement 

a number of extended transactions. 

3.1.3 Design Summary 

In this section we have presented the main considerations for the framework design. As 

subsequent design and implementation trade-off analysis will demonstrate, the specific 

objectives of extended transaction services, ease of implementation, ACID compatibility, 

ease of use, and reasonable overall performance often create competing demands a t  both 

design and implementation levels. Our approach is t o  balance these concerns and make 

the necessary compromises that  best serve the ultimate purpose of practical usability. 



3.2 Architecture 

This section presents the architecture of the Reflective Transaction Framework. We first 

discuss the system architecture, which is decomposed into a collection of software modules 

called transaction adapters. These adapters expose selected functions and da ta  structures 

of the underlying TP monitor and implement specific extended transaction services. We 
then describe the  computational model, which builds extended transaction services as an 

extensible collection of transparent extensions t o  existing TP monitor functionality. In 

particular, we describe the role transaction adapters play in constructing an effective Open 

Implementation for the underlying T P  monitor, and explain how framework extensions are - 

coupled t o  the  underlying TP monitor through tmnsaction significant events. Throughout --. 
this section we identify framework interfaces that  enable programmers both t o  implement 

extended transactions and develop applications using extended transactions, and we try 

t o  explain relevant mechanisms from the user's perspective as much as possible. 

3.2.1 System Components 

Figure 3.1 illustrates the major components and interfaces defined by the Reflective Trans- 

action Framework. The framework is a layered architecture, designed to  be implemented 

over an existing TP monitor. Reflective software modules, called transaction adapters, 

correspond t o  a particular functional aspect of the  TP monitor, .such as  transaction exe- 

cution, lock management and transaction conflict. Transaction adapters invoke services of 

the underlying TP monitor through "down" calls using the TP monitor service API, while 

functional components of the TP monitor pass state information and request extended 

transaction services from the  transaction adapter layer through "up" calls or callbacks. 

A transactional application program is linked t o  one or more libraries, labelled RTF 
Library in Figure 3.1, which provide a collection of extended transaction functions. Each 

function in this library is model-specific, implemented by a transaction system programmer 

familiar with the semantics of the advanced transaction model. Applications invoke func- 

tions in this library t o  access extended transaction functionality provided by the  Reflective 

Transaction Framework in an T P  monitor-independent manner. As we shall describe later 

in this section, the  Reflective Transaction Framework manages communication between a 
transactional application and these RTF Libraries both t o  simplify the calling of functions 

and t o  guard against improper usage. 

The layered architecture in Figure 3.1 does not specify how the transaction adapters 

in the framework should be connected t o  the underlying TP monitor t o  produce a work- 

ing system. If the  software modules that  implement the transaction adapters were each 

in their own operating system process, then the inter-layer calls might require an RPC 
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Figure 3.1: Major components and interfaces of Reflective Transaction Framework. 
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(Remote Procedure Call) mechanism, or perhaps a specially designed IPC (Inter-Process 

Communication) layer. If the transaction adapters that  make up the framework were 

each built into the same operating system executable as the application program, then 

the inter-layer function calls between an application program and the framework services 

would be more efficient. Alternatively, the transaction adapters in the  Reflective Trans- 

action Framework could be integrated with the operating system process tha t  executes 

the T P  monitor. We shall revisit these options later in Chapter 5, when we present the 

Encina implementation of the Reflective Transaction Framework. 

Transaction adapters are designed t o  provide principled access t o  selected functions 

and data  structures of a particular functional component of the underlying T P  monitor, 

and augment the basic bransaction services it provides with a set of extended transaction 

services. Table 3.1 summarizes the Reflective Transaction Framework's initial set of trans- 

action adapters, identifying s ta te  and extended transaction services that  each provides. 

Other transaction adapters for extended transaction recovery, workflow management, and 

distributed extended transaction management are possible in the future. 

Transaction 
Services 



Table 3.1: Mapping extended transaction services to transaction adapters. 
11 ADAPTER EXPOSES I EXTENDED SERVICES 

I I 

( TRANSACTION ADAPTER ( 1  '&ansaction State I Extended Transaction State 

I 1) Execution control 1 Transaction Significant Events 1 

LOCK ADAPTER 1 

I 11 Lock Conflicts I Explicit Cooperation I 
CONFLICT ADAPTER 

Three major arguments justify the functional partitioning of the Reflective Transac- 

tion Framework into separate transaction adapters. The first argument is scope control. 

Each adapter encapsulates a set of extended transaction services that  augment the base 

services of a particular functional component in the TP monitor. By factoring extended 

transaction functionality into separate transaction adapters, we can isolate these func- 

tional extensions of the T P  monitor. The second argument is conceptual separation. This 

is a scoping issue, but of a different sort. Conceptual separation is concerned with the 

extent of the behaviors that  are affected. Each adapter implements a specific extended 

transaction service and provides an interface that  expresses the range of different behav- 

iors that  i t  can support. By selecting particular adapters and invoking their interfaces to  

customize their behavior, adapters can be used in combination t o  create a different Re- 

flective Transaction Framework configuration. The third argument is incrementality. It is 

essential t o  design the Reflective Transaction Framework for incremental extension. One 

aspect of extended transaction semantics can be modified in transaction adapter without 

affecting other services (transaction adapters) in the framework. For example, we could 

extend the TRANSACTION MANAGEMENT ADAPTER t o  support a richer set of transaction 

dependencies without having t o  modify the code of other adapters in the framework. 

Explicit Lock Control 

3.2.2 A Separation of Programming Interfaces 

Intra-Transaction Dependencies 

Lock Sharing 
Lock Table Information 

Lock Table State 

The Reflective Transaction Framework defines two new interfaces (sets of APIs) corre- 

sponding t o  two levels of understanding of transaction management. The purpose is t o  

support two categories of programmers: transaction system programmers with skills in 

transaction model specification who implement primitives for new extended transactions, 

and application developers who program transactional applications using the available 

extended transaction primitives. 

Application developers prograrrl transactional applications using a set of transaction 

model-specific verbs, or transaction control operations. For example, ACID transactions 

Lock Delegation 

Semantic Conflict Definition 



are typically initiated by the operation Begin-Transaction and terminated by either a 

Commit-Transaction or  Abort-Transaction operation. Extended transactions often in- 

troduce additional operations to  control their execution, such as the operations Split and 

Join introduced in the split/join transaction model, or the operation Join-Group intro- 

duced in the cooperative group model. A transaction model defines not only the control 

operations available to  a transaction, but the semantics of these operations. For example, 

whereas the Commit-Transaction operation of the atomic transaction model implies that  

the  transaction is terminating successfully and that  i ts  effects on da ta  objects should be 

made permanent in the database, the Commit-Transaction operation for a member trans- 

action in a cooperative transaction group merely implies tha t  its effects on data  objects 

be made persistent and visible t o  transactions that  belong t o  the same cooperative group. 

To accommodate this diversity of interface and operation semantics between differ- 

ent advanced transaction models, we introduce a separation of programming interfaces, 

presented figuratively in Figure 3.2.  Both the base interface and extended transaction in- 

terface are used for application-level programming, subdivided for clarity only, while the 

metalevel interface is used t o  introduce new extended transaction control operations and 

t o  define their semantics (implementation). 

Base Integace: provides ACID Extended Transaction Interface: provides 
transaction functionality ... an integace for extended transaction models. -.. ... ... ... .. .. 

Metalevel Interface: provides 
control over implementation ... I 

Transaction ProceSsing Monitor 

Figure 3.2: Separation of interfaces to Reflective Transaction Framework. 

The extended transaction interface provides application programmers with a functional 

view of extended transaction management. It is intended for programmers who under- 

stand how t o  use the control operations of the extended transaction model(s) best suited 

for their application. They are responsible for the implementation of the transaction-aware 

portion of the application, which should account for only a small portion of the applica- 

tion code. This extended transaction-aware code will typically identify transactions that  

require extended services, select a specific model for the transaction, and then invoke 

control operations specific to  the extended transaction model(s) selected (e.g., split and 



join for the split/join transaction model). Similarly, the  base interface provides conven- 

tional transaction control operations for ACID transactions that  do not require extended 

services. These default control operations are implemented by the underlying T P  moni- 

tor and typically ir~clude the operations: Begin-Transact ion, Commit-Transact ion and 

Abort-Transaction. Hence, with the exception of identifying transactions that  require 

extended services and selecting the  appropriate model, there is no discernible difference 

from ordinary transactional application development. 

The  metalevel interface provides an implementation view of extended transaction man- 

agement. This interface concerns the transaction system programmer who wishes to  aug- 

ment the  set of available transaction models to  satisfy new application requirements. The 

metalevel interface consists of building blocks that  may be used t o  implement a specializa- 

tion of an existing control operation, such as Commit-Transaction operation for a member 

transaction in a cooperative group, or to  introduce new extended control operations, such 

as split and join. The building blocks for implementing extended control operations 

are the extended transaction services provided by transaction adapters and functionality 

of the underlying TP monitor that  the adapters expose. 

When the need arises, new extended transaction behaviors can be defined using the 

metalevel interface and made available to  application developers through the introduc- 

tion of control operations in the extended transaction interface; the  extended transaction 

interface augments the default transaction interface. This separation of programming in- 

terfaces provides the means of both introducing new extended transaction behaviors and 

interfaces, and developing transactional applications using these new extended transaction 

operations in a manner that  does not deviate significantly from "normal" transactional 

application programming. 

3.2.3 Open Implementation of an TP Monitor 

From the Open Implementation perspective, transaction adapters present three kinds of 

opening t o  the underlying T P  monitor on which t o  build extended transaction function- 

ality. Each opening serves a different purpose and has its own set of operations. In this 

section we describe the purpose for each opening, how it  is realized, and the operations 

that  each provides. 

Introspection 

The first opening of the underlying T P  monitor is through introspection. It involves the 

reification of selected aspects of an executing transaction's internal information, such as 

execution state, transaction dependencies, lock conflict, and transaction relationships into 



a structure called an extended transaction descriptor. Every extended transaction has 

an extended transaction descriptor, which applications can use to  examine reified state 

information. Table 3.2 lists attributes of the extended transaction descriptor. 

Table 3.2: Attributes present in the descriptor for an extended transaction. 

I NAME Unique name for the extended transaction, assigned by the application. I 

Attribute 

ETRID 

TFLID 

STATE 

TRANEVENTS 

Description 

Unique extended transaction identifier, assigned by the RTF. 

Unique transaction identifier, assigned by the TP monitor. 

Extended transaction state: one of'Initiated, Active, Pending, Commit- 

ted, Aborted, or Terminated. 

Extended transaction management events. Represented as a list of 

event descriptor structures. 

TYPE 

INTERNALSTATE 

PROPERTYLIST 

EVENTHISTORY 

DELEGATEXNABLED 

ACQUIRE-ENABLED 

DELEGATESETLIST 

Ordered list of management events that have been executed, recorded 

as a tuple in the form <event descriptor, timestamp>. 

Transaction type (optional), assigned by application program. I 
Internal transaction state (optional), assigned by application program. I 
Transaction properties-(optional), assigned by application program. 

Indicates whether the transaction can delegate locks. 

Indicates whether the transaction can acquire delegated locks. I 
List of delegate sets owned by this transaction. I 

I ZBCCSNABLED I Indicates whether the transaction can relax n/w confiicts. I I S B C C ~ O L I C S  I Specifies the order in which to apply semantic compatibility definitions. I I COMPATIBLITYTABLES List of semantic compatibility tables loaded by the application. I I 
COOPTRANSET 

DEPENDENCY-EN ABLED 

To register a transaction with the Reflective Transaction Framework and create an 

extended transaction descriptor for the transaction, an application uses the instantiate 

command. When instantiated, a descriptor is created and the transaction is assigned an 

extended transaction identifier (etrid) that  uniquely identifies the extended transaction 

and can be used to  access its corresponding descriptor. 

There is an external state attached t o  each extended transaction. Typically, an ex- 

tended transaction is in one of the states INITIATED, ACTIVE, PENDING, COMMITTED, 

ABORTED, or TERMINATED. The external state of an extended transaction is set t o  INI-  

TIATED when its descriptor is created. An extended transaction is ACTIVE if it has been 

initiated by an initiation event, such as a Begin-Transaction, and has not yet executed 

Table of active ignore-conflict relationships. 

Indicates whether the transaction is permitted to form dependencies. 

DEPENDSET Table of active transaction dependencies. 



one of the termination events associated with it. Eventually, the extended transaction will 

either abort and move to  the ABORTED state, or move to  the PENDING state by issuing a 

prepare operation. From the P E N D I N G  state, an extended transaction can either commit 

(i.e., make the COMMITTED transition), or abort (i.e., make the ABORTED transition). If 

the application wishes t o  express the fact that  a transaction is no longer active, irrespective 

of whether it aborted or committed, we refer to  the state as TERMINATED.  

The descriptors for all active extended transactions are stored in an extended trans- 

action table, complementary t o  the transaction table managed by the T P  monitor. The 

transaction manager of the TP monitor creates an entry in the transaction table t o  record 

the TRID of an executing transaction along with other pertinent information, and to  track 

the transaction through its execution. However, while every active transaction in the TP 
monitor will have an entry in the transaction table, only extended transactions have an 

entry in the extended transaction table. Data stored in both the transaction table entry 

and the extended transaction table entry permit bidirectional access t o  the information 

stored in these tables. 

Operation Definition 3.1 (instantiate) The operation instantiate (tranname , TRIDtl) 

creates an extended transaction descriptor and a unique extended transaction identifier 

(etrid) for t l  . Both the transaction identifier (TRIDt l )  and transaction name (tran-name) 

are stored in the descriptor, along with the etrid. The state of the extended transaction 

is set to INITIATED and the descriptor is entered into the extended transaction table. The 

instantiate operation returns either the etrid value indicating success or an error code. 

The reification of state information for an active extended transaction is implemented 

using callbacks. Callbacks support efficient cross-layer communications and enable the TP 
monitor t o  pass state information t o  the adapters in the Reflective Transaction Framework. 

Callbacks are associated with significant events, such as a transaction attempting t o  change 

state (e.g., the transaction begins, aborts or commits) or a transaction requesting a service 

from the TP monitor. For each transaction event there is an associated callback tha t  can 

be called before and after the event. If a function is registered with a callback and the event 

is raised during transaction processing, execution control is passed t o  the function, along 

with all information relating t o  the event. For example, when a transaction attempts 

t o  commit, an event is raised and control passed t o  the TRANSACTION MANAGEMENT 

ADAPTER. The adapter can perform commit pre-processing functions, such as checking 

for termination dependencies tha t  might exist with other extended transactions, then 

update the extended transaction descriptor. Once the extended transaction descriptor 

has been updated and processing for the event is complete, the adapter will then return 

execution control to  the TP monitor for normal processing. 



The most important decisions made in designing the  introspective capability involve 

selecting aspects of the  underlying T P  monitor component that  should be reified. We 

systematically identified the aspects required t o  implement extended transactions, by first 

identifying the state required for each extended transaction service and then defining a 

callback t o  pass this information on t o  the appropriate transaction adapter. 

Introspection provides programmers with a principled way of examining selected im- 

plementation state. The interface is principled in the sense that  it allows access t o  this 

state information without forcing the transaction processing system implementation t o  

expose the internal da ta  structures they actually use t o  represent it. An application can 

use this representation to reason about the transaction,system and t o  implement utilities 

such as an application monitor or browser, a trigger facility, or t o  compile program statis- 

tics. However, a programmer cannot yet change how the underlying TP monitor behaves. 

The next opening begins t o  provide that  additional power. 

Table 3.3: Commands to inspect and modify an extended transaction descriptor. 

I I both name and trid in the structure. I 

Command 

instantiate(name, trid) 

Description 

Generate an exteflded transaction identifier (etrid) and create 

an extended transaction descriptor for the transaction, storing 

getetrid-using-name(name) Returns the etrid value of the extended transaction descriptor 

identified by the string name. 

getetrid-using-trid(trid) 

I gettrid-using-name(name) I Returns the trid of extended transaction identified by narne. I 

Returns the etrid value of the extended transaction descriptor 

identified by the value trid assigned by the TP monitor. 

getname-using-etrid(etrid) 

getname-using-trid(trid) 

I gettrid-using-etrid(etrid) I Returns the trid of extended transaction identified by etrid. I 

Returns the name of the extended transaction descriptor iden- 

tified by etrid. 

Returns the name of extended transaction identified by trid. 

get-type(name) 

setstate(name, val) 

Returns the extended transaction state - initiated, active, pend- 

ing, committed, aborted, or terminated. 

Sets the (optional) type of the extended transaction identified 

by name to the assigned value. 

Returns the type of the extended transaction identified by name. 

Sets the (optional) state value of the extended transaction iden- 

tified by the input argument name to the value supplied as input. 

continued on next page 



Explicit Invocation 

continued from previous page 

A transaction system hides not just the state that  would be useful for an application t o  have 

access to, but also pieces of functionality inherently present in every transaction system 

tha t  would be useful if exposed. For example, the ability for an  application t o  explicitly 

acquire a lock on a dataobject or t o  release a lock held by a transaction. The second kind of 

opening that  transaction adapters provide is called explicit invocation, which is the ability 

of an application t o  invoke existing functions of the underlying transaction processing 

system directly, without going through the ordinary transaction system interface. 

Explicit invocation is implemented by linking transaction adapters t o  the functional 

components of the underlying TP monitor. Applications can directly invoke T P  monitor 

functions through the API presented by transaction adapters. For example, an application 

can query the LOCK ADAPTER for the list of locks held by an extended transaction, then 

release locks on selected da ta  objects. The most challenging issue in implementing explicit 

invocation is t o  identify the appropriate interface t o  expose these new capabilities. Extra 

care may be required to avoid introducing new failure modes, but runtime usage checking 

can be performed t o  avoid such failures. Ideally, this task of identifying the appropriate 

API calls and linking the transaction adapters t o  the T P  monitor is performed only once 

during the implementation of the  framework, by someone familiar with the underlying 

TP monitor. Once complete, each transaction adapter in the framework not only reifies 

selected aspects of the underlying transaction system, enabling introspection, but now 

provides the means t o  affect the state and control behavior of active transactions. 

Command 

getstate(name) 

set-etranprop(etrid, key, val) 

get-etranprop(etrid, key) 

setp(etrid, switch, val) 

getp(etrid, switch) 

record-event(etrid, desc, tstamp) 

find-event(etrid, desc, tstarnp) 

Description 

Returns the state of extended transaction identified by name. 

Sets the value of the property list identified by key for extended 

transaction etrid to the supplied value val. 

Returns the value of key for the extended transaction etrid. 

Sets the value of switch for extended transaction etrtd to the 

supplied value val. 

Returns the value of switch for extended transaction etrid. 

Record that a transaction management event has been exe- 

cuted by appending the entry (description,timestarnp) to the 
field eventHistory. 

Search the eventHistory field for an entry matching the input 

descriptor, beginning with the first entry after tstamp. If found, 

then return the value of the timestamp (found) or the value 0 

(not found). 



So far, the cost t o  transaction system implementors has been modest. They have 

been asked only t o  expose information and functionality that  is inherently part of any 

transaction processing system. In a sense, the new functionality that  introspection and 

explicit invocation offer has "been there all along." We now consider a new challenge, 

in which application programmers want more than enhanced access t o  what is already 

there. Instead, they require some additional or extended transaction functionality for their 

application. For example, an application may wish t o  use SPLIT or JOIN t o  restructure 

transactions dynamically, or t o  redefine the notion of operation conflict. This is where 

the decision t o  represent each extended transaction as a metalevel object, an extended 

transaction descriptor, will come into its own. An extended transaction descriptor makes 

it possible t o  ensure that  when a programmer changes or extends a transaction's behavior, 

it will have an appropriately localized effect - they provide scope control. 

Intercession - customizing transaction behavior 

The third opening that  transaction adapters provide is called intercession, and i t  allows 

programmers t o  introduce extensions into a transaction processing system. Intercession 

is qualitatively different from the two previous openings. Intercession builds on the intro- 

spection and explicit invocation capabilities of the framework t o  extend the  processing of 

transaction significant events in a controlled manner. 

Intercession is implemented, in part, through transaction events, which are "hooks" 

onto which applications can attach their extensions. Events are generally recognized as 

an effective technique for implementing loosely-coupled, flexible systems where relation- 

ships between code components can be dynamically established [SN92]. In the Reflective 

Transaction Framework, a transaction event can be passed t o  an event handler, which is 

code that  is executed in response to a specific event. In the framework, every transaction 

management primitive, such as BEGIN,  SPLIT, JOIN,  COMMIT, ABORT, etc., represents an 

event, as does a transaction changing state ( to ACTIVE, ABORTED, COMMITTED, etc.) or 

requesting a service (e.g., lock request) from the TP monitor. Consequently, all relation- 

ships between a transaction and TP monitor are subject to  change simply by changing 

the handler associated with a given transaction event. The binding between a transaction 

event and corresponding handler is captured in an event descriptor, depicted in Figure 

3.3. The event descriptor identifies the  name of a transaction event, provides a function 

pointer t o  the  handler that  is t o  be invoked when the event is raised, and records other 

information, such as guards (predicates) that  are t o  be evaluated prior t o  invoking the 

handler and properties for event execution control. 

An extended transaction can own multiple event descriptors - there is a descriptor 

for each event tha t  has been extended. Event descriptors for an extended transaction are 



TYPE 

event-type: STRUCT; 

EVENTNAME: char*; 

GUARDS: list of char*; 

HANDLER: ptrfHandler; 

ATTRIBUTE: enumerated type, one of ' 'normal' ', ' 'inevitable' ' or ' ' immediate' '; 
TRIGGERABLE: boolean; 

end; (* event-type *I 

Figure 3.3: Basic structure for representing a transaction event. 

stored in the tranEvents field of the associated extended transaction descriptor (refer t o  

Table 3.2). Event descriptors enable the framework t o  bind an extension t o  an extended 

transaction seamlessly, so that  applications see the original (or expected) behavior and 

interface, unless the handler requires the application t o  be informed about some exception 

(for example, an error message returned for lack of access rights). The  actual invocation 

of the handler is hidden. This is accomplished by linking the application program t o  

the transaction adapters in the framework, which will t r ap  all control operations, such 

as BEGIN, COMMIT, SPLIT, etc., and transaction system events, such as lock requests, 

lock conflicts, transaction initiations and terminations, etc. After detecting an event, the 

framework first locates the corresponding event descriptor in the extended transaction 

descriptor, then passes the arguments t o  the specified event handler. In the next section 

we describe how transaction adapters actually bind a transaction significant event t o  the 

function tha t  implements the handler, but first we identify measures that  can be taken to  

ensure that  these extensions do not corrupt the transaction processing system. 

What  we have implied throughout our discussion is tha t  when applications use transac- 

tion adapters, their behavior must be moderated by "rules of behavior," as is customary 

for software engineering in general. The capabilities available t o  programmers through 

introspection, explicit invocation, and intercession potentially allow private transaction 

information t o  be accessed and system behavior t o  be altered inappropriately. To control 

the set of operations that  an application can invoke through the metalevel interface, the 

Reflective Transaction Framework uses guards. Guards encode the rules of behavior for 

accessing metalevel interface operations and processing transaction events. 

Each event in the Reflective Transaction Framework can have an associated guard that  

identifies a predicate t o  evaluate prior t o  invoking the handler. If the predicate is true 

when the event is raised, the handler is invoked; otherwise, the event will be delayed or 



rejected. For example, when an application calls COMMIT for an extended transaction, an. 

event is raised and the framework evaluates any guards that  are in place before calling the 

handler assigned for commit processing. If, for example, the transaction had established a 

dynamic commit-dependency during execution, a guard could be written to  verify that  the 

dependent transaction has been committed and, if not, block the execution of the handler 

until the dependency is eliminated. In this manner, transaction adapters can guard events 

on a per-transaction basis, separating the specification of what should happen from when it 

should happen for each extended transaction. Thus, while the extensions in the Reflective 

Transaction Framework define the function that  is to  occur in response t o  a transaction 

event, guards ensure that this function is executed only at the proper time. 

3.2.4 Binding Extensions to Transaction Significant Events 

The current design of the Reflective Transaction Framework makes only one aspect of 

the underlying TP monitor reflective, namely transaction significant event processing. 

The basic idea is that  transaction event invocation can be intercepted by the framework 

and passed t o  a corresponding handler. In this way, transaction systems programmers 

can make significant events behave according to  a particular extended transaction model 

through the implementation of a model-specific handler. The extended transaction de- 

scriptor, specifically the event descriptor field, describes how t o  deal with the invocation 

- i t  identifies the event and handler that  is t o  be invoked when the event is raised. 

Handlers for significant events are implemented as functions in an RTF Library (refer t o  

Figure 3.1). Each function is specific t o  an extended transaction model; for example, there 

might be a handler for the control operation jo in  of a member transaction in a cooperative 

group, as well as handlers for the control operations split and jo in  of a Split/Join 

transaction. This immediately raises a technical difficulty: how can an application call 

the same function for different extended transactions but have it execute different code? 

Any developer knows that  if an application defines a function twice, the linker will generate 

an error saying something like, "Duplicate symbol defined: function name." 

The framework could solve this problem by simply supplying the handlers in RTF 

Libraries t o  application programmers, but consider what would happen if an application 

attempted t o  call the handlers (functions) in an RTF Library directly. Unless the appli- 

cation was linked directly to  a particular RTF Library, it would have to  build a table of 

pointers t o  the handlers in that  RTF Library and call those handlers by pointer. Using 

the same code for more than one RTF Library at a time would add yet another level of 

complexity. The application would first have t o  set a function pointer t o  point t o  the cor- 

rect handler in the correct RTF Library, and then call the handler through that  pointer. 

Exposing RTF Libraries clearly introduces new complexities for application development. 



It forces application programmers to  be aware of the contents and organization of the 

RTF Libraries, and to  understand the functionality and differences of available handlers, 

as well as creating and managing function pointers t o  the required handlers. 

The Reflective Transaction Framework solves this problem by providing a single place 

for an application t o  call each transaction control operation - the extended transaction 

interface. The  application is linked t o  the transaction adapters in the framework and calls 

extended transaction control functions exported by the extended transaction interface, not 

the functions implemented in the RTF Library. The application identifies the extended 

transaction for which it is making the call, either explicitly by passing the name of the 

extended transaction with the call or implicitly by virtue of a call attribute. For example, 

the framework can identify the extended transaction using a common TP monitor function 

that  performs a thread-to-trid mapping; and using the trid, the framework can retrieve the 

extended transaction identifier. The framework can use the extended transaction identifier 

to  retrieve the associated extended transaction descriptor, then locate the address of the 

function for the event handler and, finallx call that  function by address. For the most 

part, the framework just passes function calls from the application t o  the correct handler 

(function) in an RTF Library, but it can also evaluate any guards placed on the event and 

perform basic error checking. Thus, the application program calls extended transaction 

control operations by name in the extended transaction interface, rather than by pointer 

in an RTF Library. 

Relieving application developers from the burden of invoking the appropriate handler 

when a transaction significant event is raised is only one role that  adapters play in the 

framework. Anot.her is t o  bind the set of events an extended transaction can invoke, 

hence defining the interface to  extended services available to  an application. The Reflec- 

tive Transaction Framework does not a priori assume a specific transaction model for an 

extended transaction. Instead, it provides the means for an application programmer to  se- 

lect a model for each extended transaction using the select  command from the extended 

transaction interface. 

O p e r a t i o n  Definit ion 3.2 (select)  - select (transactionname, modelname) binds 

a set of transaction significant events associated with the spec$ed transaction model to the 

extended transaction descriptor for transactionxame. 

The select command fixes the interface of an extended transaction. The framework, 

however, does not assume a fixed set of events for a given t.ransaction model, nor does it 

associate a handler with each event. Instead, the framework provides the means t o  specify 

the transaction significant events for a named transaction model, and bind a handler and 

guards to each event using the following commands from the metalevel interface. 



Operation Definition 3.3 (register-event) - register-event ( e t r id ,  eventname). 

creates an event descriptor structure (see Figure 3.3) for the named event eventmame and 

initializes all fields in the structure. The event descriptor is stored in the TRANEVENTS 

entry of the extended transaction descriptor for the transaction identified by etrid. 

To bind a transaction significant event t o  a handler function in an RTF Library, the 

transaction system programmer calls bindhandler, providing both the name of the trans- 

action event and the name of the function that will act as the  handler. Normally, binding 

occurs only when an extended transaction is initialized, but i t  can also be used when 

runtime conditions are altered and an alternate handler is required t o  process the event. 

Operation Definition 3.4 (bind-handler) - bindhandler ( e t r i d  , event name, 

handler3 unctionname) sets the handler for an event to the named handler function by 

storing a pointer to handler-function-name in the HANDLER field of the event descriptor. 

When the application raises the event an indirect function call will be made by referencing 

a pointer to the HANDLER field. 

Each event can be associated with one or more guards tha t  identify a predicate to  

evaluate prior t o  invoking the handler. Guards are implemented as  functions in an RTF 
Library. If all predicates (guards) evaluate t o  TRUE when the event is raised, the handler 

is invoked. Otherwise, the event may be delayed or rejected, depending on scheduling 

properties of the event. 

Operation Definition 3.5 (assign-guard) - assign_guard(etridtl, eventname, 

guardname) appends the string guard-name to the GUARDS field of the event descriptor for 

event-name. If the keyword NULL is supplied as input for guard-name, all values recorded 

in the GUARDS field are removed and the field is set to null. 

Each event is associated with properties that  specify what actions the  framework can 

take in scheduling the execution of the associated handler. The possible actions include 

variously allowing, delaying or rejecting the execution of the handler, or possibly triggering 

another event t o  satisfy a dependency or runtime correctness constraint. We describe the 

use of event properties later in Section 3.3.3, but note here tha t  event properties are 

recorded in two fields: the ATTRIBUTE field and the TRIGGERABLE field. 

When an event descriptor is created, the ATTRIBUTE field is initialized to  "normal", 

indicating that ,  if necessary, the execution of the handler can be delayed or rejected. The 

ATTRIBUTE field can be redefined using the command event-property. 

Operation Definition 3.6 (event-property) - event-property(etrid, 'eventname, 

event-type) sets the attribute field of the event descriptor for event-name to the value 

event-type, where event-type is either ' 'normal ' ' , ' ' inevi table '  ' or ' ' immediate' ' . 



The triggerable field of the event descriptor indicates whether the framework can ini- 

tiate the event, a property orthogonal to  the event properties "normal", "inevitable" or 

"immediate". When an event descriptor is created, the triggerable field is initialized t o  

FALSE, indicating that  event event-name cannot be triggered. The field can be reset using 

can-trigger, providing the name of the event and boolean value as input. 

Operation Definition 3.7 (can-trigger) - can-trigger (etrid , eventname, bool) 

sets the triggerable field of the event descriptor for eventdame to the boolean value. 

To summarize, when a transactional application needs t o  run an extended transaction, 

it first creates an  extended transaction descriptor, then selects a specific extended trans- 

action model. In response, the framework creates and initializes an extended transaction 

descriptor, along with an event descriptor for each transaction significant event the  model 

supports, storing the address of the event handler function in the event descriptor. To 

invoke a control operation in an RTF Library, an application calls that  function in the 

extended transaction interface and passes the identifier of the extended transaction. The 

framework retrieves the extended transaction descriptor, then calls the handler function 

using the address stored in the event descriptor. 

We close our discussion on the architecture of the Reflective Transaction Framework 

with a summary of commands in the metalevel interface, presented in Table 3.4. These 

commands are made possible via various openings presented by the open implementation 

of the TP monitor - introspection, which enables an application t o  reify selected state 

for a transaction in an extended transaction descriptor; explicit invocation, which enables 

an application t o  directly invoke existing functions provided by functional components of 

the T P  monitor; and, intercession, which builds on introspective and explicit invocation 

capabilities t o  define new extended transaction control operations and link these operations 

with a specific extended transaction. Some of the commands listed in Table 3.2 have 

already been introduced; the balance of the metalevel interface will be presented in Section 

3.3 as we describe the extended transaction services provided by the framework. 



Table 3.4: Summary of the commands in the metalevel interface. 

Transactzon Adapter Command 

i n s t a n t i a t e  

register-event  

bindhandler 

ass ignguard  

event p r o p e r t y  

event - tr igger 

g e t e t r i d v s  ingname 

g e t e t r i d v s i n g - t r i d  

getnamevsing-etrid 

getnameusing-trid 

g e t t r i d v s i n g n a m e  

g e t t r i d v s i n g - e t r i d  

t r a n s t a t e  

set- type 

g e t  -type 

set s t a t e  

g e t s t a t e  

s e t  s tranprop 

get-etranprop 

record-event 

f ind-event 

s e t p  

ge tp  
begin-tran 

commit-tran 

abort -tran 

thread-to-trid 

def inedependency 

co~ltinued on next page 

Interface Exported B y  

TRANSACTION 

MANAGEMENT 

ADAPTER 

I 

Responszbzlzty 

Initialization 

Extended 

Transaction 

Descriptor 

Transaction 

Management 

Execution 



Transaction Adapter Command 

f ormdependency 

deletedependency 

enabledependency 

disabledependency 

l i s t  dependency 

lock 

unlock 

unlock-all 

l ockshe ld  

l o c k s s a i t f  or 

l o c k l i s t  

create 

de l e t e  

insert  

remove 

delegate 

acquire 

load-t able 

remove-table 

ignore-conflict 

removeicrecord 

c lear- icset  

s e l e c t  -table 

clear-policy 

continued from previous 

Interface Exported By 

LOCK 

ADAPTER 

CONFLICT 

ADAPTER 

page 

Responsibility 

Control 

Lock 

Management 

Transaction 

Restructuring 

Semantic 

Conflict 



3.3 Extended Transaction Services 

This section presents the detailed design of the extended transaction services provided 

by the Reflective Transaction Framework. Specifically, we present the  design of dynamic 

transaction restructuring, semantic transaction synchronization and transaction execution 

control. These extensions were selected because they provide a base for expressing a wide 

range of extended transaction behaviors and, consequently, provide the greatest lever- 

age t o  implement advanced transaction models and semantics-based concurrency control 

protocols. In this section we consider each extended transaction service in turn, first pre- 

senting an overview of the extension as supported by our design, then considering the 

implications of adding this extension and identifying assurances that  must be made to  

guarantee transaction correctness and, finally, listing commands provided to  utilize this 

new extended transaction service. 

It should be emphasized that  we do not intend that  an application programmer use 

these extended transaction services directly. Rather, we expect these services and associ- 

ated commands t o  be used by systems programmers t o  implement higher-level primitives 

for extended transactions. In terms of our separation of programming interfaces, described 

in Section 3.2.2, commands for these extended transaction services make up the metalevel 
interface that  transaction system programmers will use t o  implement extended transaction 

control operations in the extended transaction interface. 

3.3.1 Dynamic Transaction Restructuring 

An essential requirement of many advanced transaction models is the ability for mem- 

ber transactions t o  dynamicaZly restructure. From a transaction execution point of view, 

dynamic restructuring is the ability of an extended transaction t o  transfer ownership of 

da ta  objects to  another extended transaction explicitly. Dynamic restructuring allows an 

extended transaction to selectively make tentative and partial results, as well as give hints, 

such as coordination information, accessible t o  other extended transactions. Dynamic re- 

structuring also makes it possible to decouple the fate of updates t o  data objects from 

that  of the extended transaction that  performed the operation(s); for instance, an extended 

transaction can transfer selected data  objects that  will remain uncommitted but alive af- 

ter i t  aborts. Examples of advanced transaction models tha t  can be synthesized using 

transaction restructuring by resource delegation include Reporting Transactions [CRgla], 

Chained Transactions [Chrgl], SAGAS [GMS87, CR921, Nested Transactions [Mos85], and 

both Split and Join Transaction models fPKII88, KP921. 



In our design, dynamic transaction restructuring is realized through the delegation of 

locks held on da ta  objects from one extended transaction t o  another. After the delegation 

of a lock is complete, the scope and fate of the da ta  object that  it protects, i.e., its visibility 

and conflicts with the operations of other transactions, are dictated by the scope and fate 

of the delegatee transaction. 

Definition 3.1 (Delegation) The operation Delegate(tl, tn ,  obName) transfers owner- 

ship of the lock extended transaction tl holds on obName to extended transaction t2 .  More 

generally, Delegate(t1, t2,  DelegateSet) delegates the lock held by  tl on  each data object in 

DelegateSet to t2 .  

To perform dynamic restructuring operations, an extended transaction must have the 

appropriate permissions set. Specifically, to  delegate a lock, the property Delegate-Enabled 

must be set t o  TRUE for the delegator; and similarly, t o  acquire a lock the property 

Acquire-Enabled must be set t o  TRUE for the delegatee. These properties, recorded in 

the descriptor for an extended transaction, are set using the command setp. Thus, in 

preparation for extended transaction tl t o  delegate locks on data objects to  extended 

transaction t2 ,  the application must first set permissions setp ( t  , delegate-enabled , 
TRUE) and setp (t , acquire-enabled, TRUE), respectively. 

In what we have discussed so far, a transaction delegates the lock for a single da ta  

object with each invocation of deiegate. Delegation of a set of locks in a single invocation 

can be regarded as the atomic invoc,d,ion of multiple delegations, one for each lock in the 

set. We speak of global delegation when a transaction transfers the responsibility for all 

its locks a t  once, and partial delegation when a transaction transfers the responsibility for 

only a subset of its locks. Global delegation is best suited for transaction models where 

the set of da ta  objects that  will be delegated a t  the termination of the transaction is 

known in advance. The Nested Transaction model [Mos85] is a well-known example of 

global delegation: upon commit, a sub-transaction does a global delegation of all locks 

that  it holds on da ta  objects to its parent transaction. Other advanced transaction mod- 

els that  use global delegation include the Chained Transaction model [Chrgl], the Join 

transaction model [KP92] and SAGAS [GMS87, CR921. Partial delegation is best suited 

for transaction models that  make partial results, such as hints and coordination informa- 

tion, accessible t o  other extended transactions, and for transaction models that  support 

open-ended activities where processing is unpredictable and the set of data  objects that  

must be transferred is only known a t  the time restructuring actually occurs. The Split 

transaction model [PI<H88] is a straightforward example of the use of partial delegation: 

an application can select a set of objects that  an extended trarlsaction holds and delegate 



locks on these objects to another extended transaction. Other advanced transaction mod-. 

els that use partial delegation include the Co-Transaction model [CRSlb] and Reporting 

Transactions [CRSla]. 

To perform a delegate operation, an extended transaction must provide the name of 

a structure that lists the data objects to be delegated. This structure is referred to as the 

delegate set. 

Definition 3.2 (Delegate Set) A delegate set is a named container of logical lock names, 

where each name is associated with a data object that an extended transaction wishes to 

delegate. T o  create a delegate set the transaction must provide a unique name for the 

delegate set and identify which transaction (delegator or delegatee) is responsible for the 

delegate set (the purpose of declaring responsibility wild be described later i n  this section). 

After creating a delegate set, an extended transaction can then insert and remove data 

objects for which it holds a lock. 

The LOCK ADAPTER provides a command to create a named (empty) delegate set, 

along with commands to insert  and remove the names of data objects that it wishes 

to delegate. Thus, to perform partial delegation, an extended transaction first creates a 

named delegate set, then inserts the names of selected data objects. Similarly, to perform 

global delegation, an extended transaction first creates a named delegate set and then 

issues the insert command, using the keyword ALL to insert the names of all data objects 

that it currently has locked at that point in time. 

Operation Definition 3.8 (Delegate) de legate( t l ,  t a  , DelegateSet, dtype) 

directs the LOCK ADAPTER to transfer ownership of the lock o n  each data object specified 

i n  the named DelegateSet from extended transaction t l  to extended transaction tn .  The 
parameter dtype specifies when the transfer of locks is t o  take place - the keyword IMME- 

DIATE indicates that the transfer is to take place at once, while the keyword DEFERRED 

specifies that the transfer will be deferred until the delegatee requests the locks. 

Requirements for performing delegation are that the transaction have permission set 

to delegate and that it hold a lock on each data object it is attempting to delegate. 

Requirements for receiving the delegated locks are that the transaction have permission 

set to acquire delegated data objects. In addition, both delegator and delegatee must 

currently be active (i.e., initiated but not terminated). Thus, we have the following guard 

for well-formed delegation. 



Guard 3.1 ( Well-Formed Delegation) For the delegate(t1 , t 2 ,  DelegateSet) operation: 

Preconditions 

State(t l ,  Active) = True AND 

State(tz, Active) = True AND 

Delegate-Enabled(tl) = True AND 

AcquireEnabled(t2) = True AND 

For each obname in  the DelegateSet, Holds-Lock(tl,obname) = True 

Postconditions 

For each obname in the DelegateSet, folds-Loct(tl ,  obname) = False AND 

For each obname in the DelegateSet, Holds-Lock(t2,0bname) = True 

The transfer of locks from the delegator to the delegatee occurs immediately after the 

delegator issues the delegate command. An alternative is to defer the transfer of the 

locks on the delegated data objects until the delegatee indicates it is ready to acquire the 

locks. This is referred to as deferred delegation. To perform a deferred delegation the 

delegator must specify which transaction, the delegator or delegatee, is responsible for the 

delegate set. This value is set when the delegate set is created. IntuitiveIy, the responsible 

transaction is obligated to eventually acquire the locks on the data objects in the delegate 

set. A brief example is presented to clarify this. 

create(tl, mydelset , DTEE) 

insert (tl , mydelset , account003) 
insert (tl , mydelset , account007) 
delegate (t tz , mydelset , DEFERRED) 

In Line 1 extended transaction t l  creates a named delegate set and identifies the del- 

egatee as the responsible transaction. In Line 2 and Line 3, t l  inserts named data objects 

into the delegate set. Finally, in Line 4, t l  delegates the locks on the data objects in the 

named delegate set to t2,  specifying that the actual transfer is to  be deferred until t2 is 

prepared to acquire the delegate set. After the delegate operation has successfully com- 

pleted, t l  will no longer hold locks on the data objects specified in delegateset. However, 

since the actual transfer was deferred, t 2  does not yet own the locks. Until t 2  requests 

the locks, they will be held by a intermediary transaction managed by the TRANSACTION 

MANAGEMENT ADAPTER. 

To realize the deferred delegation of data objects we introduce the operation acquire. 

This operation indicates that the intended recipient of a deferred delegation (e.g., the 

delegatee) is prepared to receive the locks on the delegated data objects and directs the 

LOCK ADAPTER to complete the transfer. 



Operation Definition 3.9 (Acquire) The operation acquire (t2,  delSet  ) indicates 

that extended transaction t2 is prepared to acquire and directs the LOCK ADAPTER to 

perform the transfer. 

For a transaction t o  acquire a delegate set, it must be permitted t o  acquire delegated 

da ta  objects and be the intended recipient of the named delegate set. Thus, we have the 

following guard for well-formed acquire. 

Guard 3.2 (Well-Formed Acquire) For the acquire operation: 

Preconditions: 

State(t2,Active) = True AND 

AcquireEnabled(t2) = True A N D  

DeEegatee(DelegateSet) = t 2  

Postconditions: 

For each obname in  the Delegateset, Holds-Lock(tz,obname) = True 

Adding Dynamic Transaction Restructuring 

We now discuss the issues that  arise from adding the capability for extended transactions 

t o  restructure dynamically through delegation, and discuss how these issues are handled. 

Specifically, we first identify properties that the Reflective Transaction Framework must 

preserve during transaction restructuring for key transaction correctness requirements to  

be satisfied. Next, we present the application programming interface commands the LOCK 

ADAPTER provides t o  support dynamic transaction restructuring. Finally, we identify 

transaction services required from the lock management services the TP monitor provides, 

and any underlying assumptions in our design. 

Bypassing the Lock Scheduler The delegation of data  objects involves explicitly 

passing ownership of the lock on delegated data  objects from one transaction t o  another. 

However, the lock service of the underlying T P  monitor is responsible for servicing lock 

requests, typically in a first come first served manner, queuing lock requests that  cannot 

be immediately granted following a FIFO queuing policy. If the delegator were t o  release 

its lock on a da ta  object that it wished t o  delegate, the lock service of the underlying TP 

monitor would grant the lock t o  the first transaction in the lock queue - not necessarily 

the delegatee transaction. Thus, to  realize lock delegation, the LOCK ADAPTER must 

effectively bypass the lock request scheduler of the underlying TP monitor. 

To accomplish this, the LOCK ADAPTER utilizes the services of the CONFLICT ADAPTER, 

t o  lock and unlock da ta  objects explicitly, and to  relax conflicts between incompatible 



lock requests. For each data  object being delegated, the LOCK ADAPTER first notifies the 

CONFLICT ADAPTER that a single instance of a lock conflict between the delegator and 

delegatee transaction on this data object should be relaxed. The LOCI< ADAPTER then 

issues a lock command to obtain a lock on the data object on behalf of the delegatee. 

The lock service of the T P  monitor will detect a lock request conflict, due to the fact 

that a lock on the data object is already held by the delegator, raising a conflict event 

to the CONFLICT ADAPTER. The CONFLICT ADAPTER relaxes the lock conflict, allowing 

the delegatee transaction to obtain the lock on the data object (see the semantic conflict 

discussion in Section 3.3.2 for more details). At this point, both delegator and delegatee 

hold a lock on the data object. Finally, the lock adapter issues an unlock command to 

release the lock on the data  object on behalf of the delegator. 

Preventing Transaction Deadlock One consequence of the fact that delegation by- 

passes the lock request scheduler is the potential for transaction deadlock; namely, the 

potential for deadlock between the delegatee and another transaction waiting for a lock 

on one of the data  objects being delegated. There are two approaches to dealing with 

deadlocks: detection and avoidance. The first approach, detection, assumes deadlocks are 

rare and allows delegation to proceed unchecked, then relies on the TP monitor to  detect 

deadlocks. The second approach, avoidance, explicitly checks whether the call to delegate 

a lock would result in a deadlock, returning a status code to disallow the delegation. 

The latter mechanism was chosen to prevent transaction deadlocks from occurring af- 

ter delegation for two reasons. First, while deadlocks might be rare in correctly written 

application code, the added flexibility of transaction restructuring can introduce program- 

ming errors, increasing the chance for deadlocks to occur. Second, we do not want the 

underlying transaction system to  resolve deadlocks, as it would likely terminate the waiting 

transaction, which in all likelihood would be a conventional ACID transaction. Instead, the 

computational cost (e.g., CPU cycles) and risk of blocking or possible termination should 

be the responsibility of the extended transaction attempting to perform the delegation. 

The current LOCK ADAPTER design uses a simple procedure for detecting deadlocks during 

delegation. For the delegatee transaction, the implementation simply examines the list of 

locks that it is waiting for. If lock waits are rare, which is common in most application 

environments, the procedure can immediately conclude that no deadlocks exist. Other- 

wise, for each transaction holding the lock, the list of locks that transaction is waiting for 

is examined and so on, until a cycle is detected or all locks are examined. 



Guard 3.3 (Deadlock Prevention) If the delegation of any data object would result in- 

deadlock the delegate operation wall not proceed and an  error will be reported. 

Preventing Orphaned Data Objects When performing a deferred delegation it is 

necessary to protect against orphaned data objects. This can occur if both delegator 

and delegatee transactions were to terminate before the delegatee executes the acquire 

command, leaving the locks on the data objects "unclaimed". To prevent this, the LOCK 

ADAPTER requires the transaction performing a deferred delegation to indicate which 

transaction is responsible for the delegate set, the delegator (itself) or the intended del- 

egatee. The transaction responsible for the delegate set will not be allowed to commit 

until it has acquired the delegate set; if the responsible transaction is preparing to abort, 

the locks on the data objects in the delegate set must first be acquired. Thus, the fate 

of the data objects in the delegate set lie with the responsible transaction, in the sense 

of visibility and committing or aborting the updates that have been made to the data 

objects. 

To accomplish this, the LOCK ADAPTER notifies the TRANSACTION MANAGER ADAPTER 

to record a termination dependency between the responsible transaction and the named 

delegate set. If the dependency cannot be created, the deferred delegation is not allowed 

to  succeed. This dependency is removed only when the intended delegatee issues the 

acquire operation, or the responsible transaction terminates. Therefore, the termination 

of the responsible transaction dictates the fate of the locks on the data objects in the 

delegate set, eliminating the possibility of orphaned data objects due t o  delegation. 

Guard 3.4 (Preventing Orphaned Resources) The transaction responsible for a de- 

ferred delegation is  not allowed to commit or abort until it has acquired the delegate set. 

Preserving Transaction Dependencies Delegating data objects not only means trans- 

ferring ownership of the delegated locks, but also transferring the transaction dependencies 

that were created by acquiring these locks. To illustrate, if transaction tl delegates an 

exclusive write lock on a data object ob to transaction t2,  t l  is no longer able to access ob 

after the delegation until t2 either releases its lock on ob or delegates the lock back to tl. 

kloreover, if tl acquired the lock on ob by ignoring a conflict with transaction t3, forming a 

dependency between tl and tJ, then ti's dependency on transaction ts is also transferred, 

such that after delegation, ta now depends on t3. 

A prerequisite for the successful delegation of data objects, then, is the successful 

delegation of the dependencies associated with these data objects. This implies that the 

transfer of the dependency does not introduce a cycle in the dependency graph of the 

delegatee transaction. This gives rise to the following guard: 



Guard 3.5 (Preserving Transaction Dependencies) If the transfer of a dependency 

associated with a data object being delegated would introduce a cycle in the dependency 

graph of the delegatee transaction then the delegate operation will fail. 

To support the specification and implementation of dynamic transaction restructuring, 

the LOCK ADAPTER provides the following operations that permit an extended transac- 

tion to  create and manipulate named delegate sets during transaction execution. Where 

appropriate, selected status codes for each operation are provided. . c r e a t e ( t l  : e t r i d ,  d e l e g a t e s e t  : s t r i n g ,  resp:  s t r i n g )  : creates a named (empty) con- 
tainer for transferring access to and responsibility for data object resources from one trans- 
action to another, referred to as the delegate set. The owner of the named delegate set is set 
to the identifier (etrid) of extended transaction t l .  The parameter resp identifies the trans- 
action responsible for the delegate set (dtor = delegator and d t e e  = delegatee). Return 
codes for this command include: 

- success 

- delegate se t  name not unique 

- responsible transaction not specified 

d e l e t e ( t l  : e t r i d ,  d e l e g a t e s e t  : s t r i n g )  : deletes the named delegate set. Transaction t l  
must be the owner of the delegate set. The set does not have to be empty (it can contain 
lock names), but it must not have already been delegated in a deferred delegation. Return 
codes for this command include: 

- success 

- delegate se t  not found 

- not owner of delegate se t  

- deferred delegat ion in progress 

i n s e r t  ( t l  : e t r i d ,  d e l e g a t e s e t  : s t r i n g ,  dataobject :  s t r i n g ) :  inserts the name of the 
data object into the specified delegate set. If the keyword ALL is specified, in place of a data 
object name, the name of all locks that t l  currently holds will be inserted into the specified 
delegate set. Return codes for this command include: 

- success 

- delegate se t  not found 

- not owner of delegate se t  

r remove(t : e t r i d ,  d e l e g a t e s e t  : s t r i n g  ,dataObj ect : s t r i n g )  : removes the name of the 
data object from the specified deiegate set. If the keyword A L L  is specified in place of data 
object name, the names of all locks currently in the specified delegate set will be removed. 
Return codes for this command include: 

- success 

- delegate set  not found 

- not owner of delegate set  

- deferred delegat ion in progress 

- data object not found 



delegate(dtor : e t r i d ,  dtee  : e t r i d ,  delegateset  : s t r ing ,  dtype: s t r ing )  : transfers . 
locks on the data object specified in the named delegate set from extended transaction t l .  
If the parameter dtype is set to immediate, the transfer of locks is attempted immediately. 
However, if the parameter dtype is set to deferred, the locks are transferred to an inter- 
mediary transaction managed by the TRANSACTION MANAGEMENT ADAPTER. Return codes 
for this command include: 

- success 

- delegation not enabled for  delegator 

- delegatee is not act ive  
- acquire not enabled for  delegatee 

- transaction deadlock detected 

- transaction dependency cycle detected 

acquire(ta:  e t r i d ,  de legateset  : s tr ing) :  transfers locks on data objects specified in the 
named delegate set to transaction t 2 .  Extended transaction t a  must be the intended recipient 
of the delegate set and must have the property acquire-enabled set to true. Return codes 
for this command include: 

- success 

- delegate s e t  not found 

- not spec i f i ed  delegatee 

- acquire not enabled 

- dependency cycle detected 

- transact ion deadlock detected 

Finally, we identify the support that  the LOCK. ADAPTER requires from the transaction 

services of the underlying TP monitor, primarily from the Lock Manager, t o  implement 

dynamic transaction restructuring. 

To interface with the Lock Manager of the underlying T P  monitor, the LOCK ADAPTER 

requires access t o  the d a t a  type for lock names (lockname-t). This type will be 

used in constructing the delegate set, and for explicitly locking and unlocking da ta  

objects during lock delegation. 

To implement the  delegate and acquire operations, the LOCK ADAPTER requires 

that  the Lock Manager export lock service interface functions t o  lock and unlock 

individual d a t a  objects explicitly on behalf of an extended transaction. 

To perform global delegation? the LOCK ADAPTER requires that  the Lock Manager 

export a function that  returns a list of all locks held by a transaction, referred t o  as 

the transaction lock list. 

To perform efficient deadlock detection, the LOCK ADAPTER also requires an access 

function tha t  returns a list of the transactions waiting for a lock on a specific data  

object, referred to  as  the lock request list. 



Finally, the LOCK ADAPTER requires that  the Lock Manager allow multiple transacT 

tions t o  possess a lock on a data  object in the same mode simultaneously. A typical 

Iock manager already allows multiple transactions to  hold Read (Shared) locks on a 

d a t a  object, so tha t  multiple possession is common. However, the LOCK ADAPTER 

requires the ability for multiple transactions to  hold Write (Exclusive) locks as well. 

Specifically, the  d a t a  structure used in the lock table to  count the number of times 

a lock is held in a particular mode, referred t o  as a possession vector, must permit 

multiple transactions to  hold the lock in exclusive mode. 

3.3.2 Semantic Transaction Synchronization 

The purpose of transaction synchronization, or concurrency control, is t o  mediate access 

to data  objects so  tha t  the consistency of the data  is not compromised when accessed by 

concurrently executing transactions. Fundamental to  all transaction synchronization is 

the notion of conflict - incompatibility between operations or transactions. Traditional 

concurrency control used in most commercial database systems and transaction processing 

systems defines conflict in terms of read and write operations [BHG87] (abbreviated as 

R/W)  - two operations conflict if one is a write operation. 

Definit ion 3.3 (R/W Confl ic t )  A n  operation P in transaction tl is i n  conflict with an- 

other operation Q i n  transaction t2 ,  if both operations access the same data object 0 and 

at least one of them is a write operation. Operations P and Q are said to  be conflicting 

operations and, similarly, transactions t l  and t 2  are said to be conflicting transactions. 

The Lock Manager component of a TP monitor detects R / W  conflicts when a trans- 

action requests a lock in order to perform an operation on a d a t a  object. In our de- 

sign, the lock acquisition mechanism of the Lock Manager must also raise a conflict 

event when a R / W  conflict is detected. To perform semantic transaction synchroniza- 

tion, an application must first set the property sbcc-enabled to TRUE using the command 

setptl  (sbcc-enabled, TRUE). This registers the CONFLICT ADAPTER t o  receive a con- 

flict event when the Lock Manager detects a R / W  conflict involving extended transaction 

t l .  It is this conflict event tha t  enables the CONFLICT ADAPTER to  participate in resolving 

R / W  conflicts. 

Def ini t ion 3.4 (Conflict  E v e n t )  The Lock Manager raises a conflict event when a R / W  

conflict is detected for an extended transaction lock request. Each conflict event returns 

the fo!lowing information: holdTRrD - zdentzfier of the trnnsactzon holdang the jock, hold, - 

operatzon currently actzve, holdmod, - rnode the lock 2s bezng held, lockName - logzcal lock name, 



r e q u e s t ~ ~ ~ ~  - identifier of the transaction requesting the lock, requestop - operation pending, and 

requestmod, - mode the lock is being requested. 

The basis for transaction synchronization in semantics-based concurrency control and 

many advanced transaction models is the introduction of their own notion of conflict 

that  uses available semantic information t o  relax R / W  conflicts, referred t o  as semantic 

compatibility. Two operations are semantic compatible if their relative order of execution is 

insignificant from the point of view of the application. Semantic compatibility is typically 

weaker than traditional R / W  compatibility and permits a higher degree of transaction 

concurrency [GM83, F089, BR91, RC92). 

There are several sources of information available to  an application t o  define seman- 

tic compatibility. One source is operation level semantics, where da ta  access semantics 

beyond read and write are considered. For example, in the case of credit and debit on 

a bank account da ta  object - the commutativity property of Deposit and Withdraw 

operations allows the transaction system t o  achieve higher concurrency by allowing these 

operations to  run concurrently, where read and write operations could not. Another 

source is transaction level semantics, where information on structured interactions between 

transactions can be used to  specify semantic compatibility. For example, cooperative se- 

rializability [MP92, RC92J uses semantic information to  permit conflicting operations to  

run concurrently, as long as the transactions that issued the conflicting operations are 

in the same cooperative transaction group. This supports collaborative and cooperative 

work, where the exchange of intermediate information is desirable and necessary. A bank 

customer waiting for an account balance or activity summary a t  an automatic teller ma- 

chine would not be delayed if the request were issued as a cooperative transaction t o  other 

transactions posting interest or auditing accounts. Yet another source of information is 

application level semantics, where information on the application that  issued the trans- 

action can be used to  define semantic compatibility. For example, if the application can 

tolerate a limited amount of inconsistency in a query result, this information can be used 

t o  allow conflicting operations t o  execute concurrently as long as the total inconsistency 

is below the specified limit. A bank officer requiring branch balance information accurate 

t o  within f $10,000 could issue such a transaction during times of peak customer activity. 

Generally speaking, the more semantic information available for transaction synchro- 

nization, the greater the degree of concurrency that can be achieved. However, represent- 

ing and using these various forms of semantic information can be problematic. Because 

an overriding goal of our design is practical usability, we must strike a balance between 

efficiency and the ability t o  represent semantic information. 

The CONFLICT ADAPTER provides a semantic transaction synchronization service that  

allows an application to  define and select semantic compatibility for individual extended 



transactions. The  only restriction it imposes is tha t  semantic compatibility be expressible 

in terms of either a compatibility relation or  an explicit cooperation relation between ex- 

tended transactions. These representations have the advantage of being simple to  create. 

They can be efficiently tested a t  runtime and, as we shall demonstrate, they facilitate the 

implementation of a wide range of semantic transaction synchronization methods. 

Compatibility Relation 

A number of semantic t,ransaction synchronization methods in the literature can be ex- 

pressed as a compatibility relation between pairs of semantically rich operations. The 

compatibility relation specifies whether two conflicting operations can be allowed t o  ex- 

ecute concurrently, or indicates actions that  may be taken t o  guide the resolution of the 

conflict. 

Typically, a compatibility relation reflects the general (i.e., state-independent) commu- 

tativity of operations and considers only operation name or transaction type [Kor83, SS841. 

In addition, state-dependent commutativity can be exploited, for example, by considering 

the return values of the operations [O'N86, Wei881, and this can be further refined by con- 

sidering one-sided commutativity [BR91]. In all of these cases, the allowable interleaving 

of transactions can be expressed by a compatibility relation as commutative pairs of oper- 

ations that  can be freely reordered. However, depending on the semantics of an operation 

and its relationship t o  other active operations, this reordering may produce transaction 

dependencies or serialization orderings. In the recoverability protocol [BR91], for example, 

if a conflicting lock request is granted because the  operation is recoverable with respect 

to  all uncommitted operations, a commit-dependency ti + t, must be created for each 

transaction tj that  owns a lock in a mode incompatible but recoverable to  ti. 

One may even go one step further by declaring two non-commutative operations se- 

mantically compatible if the different effects of the two possible execution orders are con- 

sidered negligible from an application point of view (e.g., a pair of deposit and withdraw 

operations on bank account without overdraft protection, but with a penalty of, say, 

$10.00 charged a t  the end of the business day if a withdraw operation results in a neg- 

ative balance). A compatibility relation may also be derived from a specification of the 

precondition of the operations [AAS93]. Further, one can define semantic compatibility 

relations that  enforce an upper limit on the number of semantically compatible but non- 

commutative operations that  are out of order with respect to  the serialization order of 

the transactions. This latter t,ype of "bounded inconsistency" guarantee was introduced 

in epsilon-serializability [RP95], and used in the proclamation [JS92] method as well. 

Representing semantic information as a compatibility relation between pairs of seman- 

tically rich operations can support a wide range of transaction synchronization methods 



from the literature. Moreover, it lends itself to a practical implementation, as it is essen- 

tially context-free - the method considers only pairs of operations or pairs of transac- 

tions, rather than operation sequences, combinations of interleaving transactions, future 

database states, etc. As such, these various compatibility relations can be represented 

using simple semantic compatibility tables to guide the resolution of conflicts. 

Definition 3.5 (Semantic Compatibility Table) The semantic compatibility of oper- 

ations performed on a data object is defined by a two dimensional compatibility table: one 

dimension corresponds to the operation type currently active and holding a lock on the 

data object, the other corresponds to the operation requesting a lock. Each entry in a 

compatibility table is of the form [Action, Dependency], where Action is one of: SOK - 

the operations are semantically compatible and the conflict can be relaxed, NOK - the 

operations conflict, or event - a named event (predicate) that is evaluated to determine 

semantic compatibility, and where Dependency is a named transaction dependency that is 

to be recorded between the two corresponding transactions if the conflict is relaxed. 

A semantic compatibility table specifies the name of the data object t o  which it applies, 

using the keyword ALL if the table can be used for any data object. Each table also specifies 

how its entries are indexed. In our current design, the options for indexing entries in the 

table are OPNAME - entries are accessed using the name of the active operation and the 

name of the operation requesting a lock, and LOCKMODE - entries are accessed using the 

mode in which the lock is currently being held and the mode in which the lock is being 

requested. Both OPNAME and LOCKMODE are supplied in the conflict event. This design 

can be easily extended to include other values for indexing semantic compatibility tables; 

for example, the transaction identifiers (TRIDs) provided by the conflict event could be 

used t o  look up information in the corresponding extended transaction identifiers, such as 

such as transaction type or transaction name. 

To illustrate, consider the semantic compatibility table for an Account data object 

based on operation commutativity [Wei88]. Semantic compatibility between the opera- 

tions Deposit, Withdraw, and Balance is reflected in the entries of the table, in which 

columns represent operations currently holding a lock, and rows represent operations re- 

questing a lock. Entries marked SOK indicate that the requested operation is semantically 

compatible (commutes) with the concurrently executing operation, while an entry marked 

NOK indicates the requested operation conflicts. Reordering commutative operations 

does not produce a transaction dependency, so no dependency (ND)  is recorded. 



To perform an operation on the Account data  object, an extended transaction would 

first request a lock. If the Lock Manager detects a R / W  conflict, it raises a conflict event 

that  the CONFLICT ADAPTER attempts to resolve using the semantic compatibility table. 
In  this case, a simple table lookup indexed by the name of the operation currently active - 

and the name of the operation requesting the lock determine if the conflict can be relaxed. 

As another example, consider epsilon serializability (ESR). In ESR, a precondition for 

allowing semantically compatible but non-commuting operations is that  a predicate, ESR, 

must first be evaluated t o  determine if a "bounded inconsistency" guarantee still holds. 

Example 3.1 (Compatibility relation based on commutativity) 
ACCOUNT:OPNAME 

Balance 

Deposit 

Withdraw 

As in our previous example, when the Lock Manager detects a R/W conflict, it raises a 

conflict event and passes the event to  the CONFLICT ADAPTER. The CONFLICT ADAPTER 

performs a table lookup using the mode the lock is held and mode the lock is being 

requested. If the lookup returns ESR, the CONFLICT ADAPTER evaluates the predicate 

ESR using the conflict event da ta  - if the predicate returns TRUE, the conflict is relaxed. 

Later, in Chapter 4 we shall revisit these examples and present their implementation. 

To use a compatibility relation for semantic transaction synchronization, an application 

must first load the  semantic compatibility table using the command load-table. This 

command directs the CONFLICT ADAPTER to load the table from the specified pathname, 

and assigns a name and class type to  the compatibility table. 

Balance Deposit Withdraw 

S 0 K ; N D  N 0 K ; N D  N 0 K ; N D  

N 0 K ; N D  S 0 K ; N D  N 0 K ; N D  

N 0 K : N D  S 0 K ; N D  N 0 K ; N D  

Example 3.2 (Compatibility relation based on epsilon serializability) 

Operation Definition 3.10 (load-table) - load-table ( t  pathname, name, class) 

directs the CONFLICT ADAPTER to load a compatibility table from the pathname, and assign 

this table the specified name and class name. 

ALL:LOCKMODE 

Share(s) 

Using load-table, an application can load multiple semantic compatibility tables. 

These tables are stored in a compatibility table set, referred t o  as CompTblSet. An 

application can specify which semantic compatibility table(s) should be used for seman- 

tic transaction synchronization for an extended transaction using the select-table(tl,  

Share ( s )  Exclusive(x)  

S 0 K ; N D  E S R ; N D  



class) command. This command appends the class name t o  the  sbcc-policy field of the 

extended transaction descriptor. 

Operat ion Definition 3.11 (select-table) The command s e l e c t - t a b l e ( t l ,  c l a s s )  

appends the class name to the sbcc-policy field of t17s extended transaction descriptor. 

At runtime, in an attempt to  relax a R / W  conflict for an extended transaction, the 

CONFLICT ADAPTER will use the semantic compatibility table(s) found in the CompTblSet 

that  match the  class names listed in the sbcc-policy field. 

Explicit Cooperat ion 

The CONFLICT ADAPTER provides support for explicit transaction cooperation by enabling 

an application t o  establish ignore-conflict relationships between extended transactions. An 

ignore-conflict relationship specifies conditions under which a transaction will allow other 

transactions access t o  da ta  objects on which it currently holds a lock. The ignore-conflict 

relationship is an essential component in constructing extended transactions that  require 

explicit cooperation, such as cooperative transaction groups [NZ90, MP92, RKT+9.5], 

nested transactions [Mos85], as well as semantics-based concurrency control based on 

structured cooperation [GM83, BK91, F089,  SGMS941. 

Definition 3.6 (ignore-conflict relationship) An ignore-conflict relationship specifies 

that an extended transaction wishes to ignore conflicting lock requests from a specific ex- 

tended transaction. For example, if an application declares an ignore-conflict relationship 

on extended transaction tl with transaction t2, then subsequent lock requests from t2 that 

conflict with locks held by t1 will be permitted. The ignore-conflict relationship is not 

commutative. 

The ignore-conflict relationships established for an extended transaction t l  are recorded 

in a table, referred t o  as the cooperating transaction set for t l .  

Definition 3.7 (Cooperating Transaction S e t )  The cooperating transaction set for 

an extended transaction t17 denoted CoopTr-Sehl, specifies all ignore-conflict relationships 

established by t l  at that point in time. Each element of CoopTr-SeGl is a unique ignore- 

conflict relationship. Thus, if no explicit cooperation occurs between t l  and any other 

extended transaction, the cooperating transaction set C o ~ p T r S e & ~  is empty. 

An application can qualify ignore-conflict relationships for an extended transaction by 

specifying da ta  objects and operations, thereby restricting the set of conflicts that  are to  be 

relaxed. In addition, the application can specify a named event (predicate) that must be 



evaluated t o  determine if the conflict can be relaxed, and a transaction dependency that  is 

to  be recorded if the conflict is relaxed. Thus, each ignore-conflict record in CoopTrSettl  

for extended transaction t l  is of the form: [CoopTran, Obj Name (optional), OperName 

(optional), Event (optional), DepName (optional) , Handle (optional)] , where coop- 

Tran is the name of the extended transaction that  t l  will allow conflicting lock requests, 

ObjName is an optional parameter specifying the da ta  object that  t l  will allow CoopTran 

t o  access, OperName is an optional parameter specifying the operation t l  will allow C o o p  

Tran t o  perform on ObjName, Event is an optional parameter specifying a predicate that  

is to  be evaluated t o  determine semantic compatibility, DepName is an optional parameter 

specifying a named transaction dependency t o  be recorded if the conflict is relaxed, and 

Handle is an optional parameter specifying a unique name for the ignore-conflict record. 

Operation Definition 3.12 (ignore-conflict ) When extended transaction t l  issues the 

operation ignore-conf l i c t  ( t l ,  t 2 ,  objlame , operName , event ,  deplame, handle), 

an ignore-conflict record is created and placed in CoopTrSehl. This operation establishes 

an ignore-conflict relationship between extended transactions t l  and t 2 .  

To illustrate, consider altruistic locking [SGMS94], an extension t o  two-phase locking 

(2PL) that  accommodates long-lived transactions. Under 'LPL, short transactions can 

encounter serious delays, since a long-lived transaction ties up database resources for sig- 

nificant lengths of time. In altruistic locking, an application can donate a data  object held 

by extended transaction tl  that  it will no longer access, thus allowing other transactions to  

access it (certain constraints apply, but will be omitted from this discussion for brevity). 

Donating a d a t a  object does not release the lock that  t l  holds on the da ta  object, but 

simply allows other extended transactions to  acquire a conflicting lock on the da ta  object. 

Transaction t l  must still explicitly unlock data items that  it has donated - thus, t l  is free 

to  continue locking da ta  items even after some have been donated. 

ignore-conf lict (tl, ALL, obName, NULL, NULL, AD, DONATE) (1) 

To realize lock donation, the application would simply create an ignore-conflict record 

for extended transaction t l ,  as illustrated above in Line 1, specifying that  any extended 

transaction can obtain a conflicting lock on the da ta  object obName. The application has 

effectively donated the data  object obName held by t l  t o  any other extended transaction 

that  requires access t o  it. 

Another brief but illustrative example of the ignore-conflict operation is the formation 

of cooperative groups [NZ90, MP92, RI<T+95]. In a cooperative group the m'ember trans- 

actions collaborate over shared data objects while maintaining the consistency of the data 

objects. Consistency of the data objects can be maintained if other transactions that  do 



not belong to  the group are serialized with respect t o  all the transactions in the group. 

Thus, conflicting operations are permitted as long as the conflicting transactions are in 

the same cooperative group: 

ignore-conflict( t l ,  t a ,  ALL, NULL, NULL, ND, NULL) (2) 
ignore-conflict( tz,  tl, ALL,  NULL, NULL, N D ,  NULL) (3) 

In the example above, extended transactions tl and t2 are members of a cooperative group. 

In Line 2, tl creates an ignore conflict record, specifying that  t2 can obtain a conflicting 

lock on any da ta  object that  tl holds. Similarly, in Line 3, t2  creates an ignore-conflict 

record, specifying that  t l  can obtain a conflicting lock, on any data  object that  t2 holds. 

If other extended transactions, not members of this cooperative group, attempt t o  access 

a da ta  object held by either t l  or t 2 ,  they will receive a lock conflict. 

An application can then specify that  it wishes t o  use explicit cooperation for semantic 

transaction synchronization for an extended transaction using the command se lec t - t ab le t l  

( ignoreconf l i c t )  . The command will append the keyword string "IGNORECONFLICT" 

to  the sbcc-policy field of t 1's extended transaction descriptor. At runtime, the CONFLICT 

ADAPTER will use the ignore conflict records in CoopTrSettl t o  relax any R / W  conflict 

for t l .  

Adding Semantic Transaction Synchronization 

In our design, the CONFLICT ADAPTER extends the fixed transaction synchronization mech- 

anism of the underlying TP monitor to  support semantic transaction synchronization. 

Operationally, the Lock Manager of the TP monitor and the CONFLICT ADAPTER of the 

Reflective Transaction Framework combine t o  form a two-step semantic conflict test. Step 

one, executed by the lock acquisition mechanism of the Lock Manager, performs the stan- 

dard conflict test based on the type of the operation (e.g. read or write). If the Lock 

Manager detects a R / W  conflict for an extended transaction, it will raise a conflict event 

to the CONFLICT ADAPTER. Step two, then, is executed by the CONFLICT ADAPTER, which 

will perform semantic compatibility testing using a semantic conflict rule t o  determine if 

the conflict can be relaxed. 

The semantic conflict rule states that  an extended transaction ti may acquire a lock 

if R / W  CONFLICTS with all other transactions owning the lock in a mode incompatible 

with t; are relaxed by either a selected compatibility table(s) or an explicit cooperation 

agreement between the conflicting transactions. The generality of this relaxed conflict rule 

allows the CONFLICT ADAPTER to present and change the definition of conflict for one or 

more underlying da ta  objects or  transactions selectively. 



Definition 3.8 (Semantic Conflict Rule) A R / W  conflict detected by the lock acqui- 

sition mechanism of the underlying TP monitor can be relaxed (i-e., is semantically com- 

patible) if either of the following conditions are true: 

1. The semantics of the data object indicate that the operation for which the lock is 

being requested is compatible with the uncommitted operation holding the lock in  an 

incompatible mode. 

2. The transaction holding the lock on the data object has explicitly indicated that the 
transaction requesting the lock has permission to perform the operation, regardless 

of the basic conflict. 

When operations conflict, the order of access to the d a t a  object may imply a dynamic 

dependency between the extended transactions that  must be recorded and tracked. If a 

named transaction dependency is specified in either the  semantic compatibility table or 

ignore-conflict record, this dependency r?lill be recorded using the services of the TRANSAC- 

TION MANAGEMENT ADAPTER. Finally, if an event name is specified in either the semantic 

compatibility table or ignore-conflict record, the event will be raised to  determine if the 

conflict can be relaxed. 

In summary, an application that  wishes t o  use semantic transaction synchronization 

must first registerwith the CONFLICT ADAPTER using the command se tp( t l ,  sbcc-enabled, 

TRUE) .  Next, the application will either load specified compatibility tables using the 

load-table command or establish ignore-conflict relationships between extended trans- 

actions using the ignore-conf l i c t  command. Finally, the application will select the 

semantic specifications for an extended transaction using the se lect  command. During 

execution, if a R / W  conflict is detected by the Lock Manager the transaction processing 

system will raise a conffict event to  the  CONFLICT ADAPTER which will then perform 

semantic conflict testing using the selected semantic specification. 

To enable an application to define and select semantic compatibility definitions for in- 

dividual extended transactions, the CONFLICT ADAPTER provides the following operations. 

Where appropriate, selected status codes for each operation are provided. 

load-table(tt :etrid, pathname: string, name: string, class: string): Loads the named 
compatibility table from the supplied pathname, assigns the unique name to the table and 
stores the class name. 

- Could not load speci f ied compatibility tab le .  
- Table name is not unique. 

- Object name not speci f ied in  table .  

- Index field not speci f ied in  table.  



remove-table(tl : etrid , name : string) : Removes the named compatibility table. 

- Table not found. 

ignore-conflict(tl:etrid, t2:etrid, objName:string, opName:string, 
event :string, depName: string, handle : string) : Creates an ignore conflict record for 
extended transaction t l  and places it in CoopTrSettl. The result of this operation is that an 
ignore-conflict relationship is formed between t l  and t2. The parameters objName, opName, 
event, depName and handle are optional. 

- Duplicate ignore conflict record. 

removeicrecord (t : etrid , handle : string) : Removes the specified ignore-conflict record 
from the CoopTrSet for extended transaction t l .  

- Could not find specified entry 

clearicset (t 1 : etrid) : Removes all ignore-conflict records from the CoopTrSet for ex- 
tended transaction tl. 

select-table(tl : etrid, name : string) : Appends the name to the sbcc-policy field in 
the extended transaction ti's extended transaction descriptor. The sbcc-policy field lists 
the sources to be checked by the CONFLICT ADAPTER to relax a conflict. The keyword 
"ignoreconflict" indicates the ignore conflict records in CoopTrSettl to use, otherwise the 
name specifies the class name of semantic compatibility table(s). 

clearpolicy(tl : etrid) : Clears the sbcc-policy field for extended transaction t l ,  setting 
it to null. 

The CONFLICT ADAPTER places two requirements on a TP monitor, in particular the 

Lock Manager, t o  support semantic transaction synchronization. First, the Lock Manager 

must generate a conflict event when R / W  conflicts are detected, so the CONFLICT ADAPTER 

can perform semantic conflict testing. Second, the Lock Manager must allow the CONFLICT 

ADAPTER t o  affect the decision to ignore the R/W conflict raised by the conflict event. It  is 

our observation, however, tha t  these requirements are reasonable for modern transaction 

processing systems. 

A conventional Lock Manager detects R / W  conflicts by comparing the overall lock 

status and the mode in which the lock has been requested. When the lock acquisition 

mechanism detects a R/W conflict, it typically passes the conflicting request on for further 

analysis, to determine if the conflict is real or whether the Iock request should be granted 

- a R / W  conflict may be not be a real conflict if, for example, the requesting transaction 

already has a lock on the da ta  item or is part of a nested transaction tha t  is holding the 

lock. In these cases, the function informs the lock acquisition mechanism t o  grant the 

lock request. In a sense, then, the Lock Manager already generates a conflict event in an 

attempt to  relax R / W  conflicts, and we are simply generalizing the processing of this event 



for semantic compatibility testing. In fact, commercial TP monitors, such as Transarc's 

Encina [Tra94a] and BEA's Tuxedo [Lab93], as well as  research database systems, such as 

the Exodus extensible database system [CDG+9O] and the Open OODB Project [WBT92], 

already allow application programs to  register functions to  relax detected R / W  conflicts. 

For these systems the implementation of semantic transaction synchronization is rather 

straightforward. 

3.3.3 Transaction Execution Control 

Fundamental t o  many advanced transaction models is the ability t o  place constraints 

on the execution of individual transactions. Transaction dependency rules? expressed in 

terms of transaction significant events, provide a convenient way t o  control the execution 

of concurrent extended transactions. Simply put, dependency rules are constraints on the 

execution of the significant even t s  associated with an extended transaction. We begin 

our discussion of the services the TRANSACTION MANAGEMENT ADAPTER provides for 

transaction execution control with a description of dependency rules. 

Dependency Rules 

The dependencg rules used in the TRANSACTION MANAGEMENT ADAPTER are based on the 

work of Johannes Klein [KIe91] and the formalism introduced in the ACTA model [CRgla, 

CR941. Following [Klegl] and [CR92], we specify dependencies as constraints on the 

occurrence and temporal order of certain transaction significant events. However, unlike 

ACTA, the TRANSACTION M A N A G E M E N T  ADAPTER does not use dependency rules merely 

t o  specify the interactions between the transactions in an advanced transaction model, 

but as the basis for synchronizing and coordinating extended transactions a t  runtime. We 

build on the following two dependency primitives proposed by Klein [Klegl]: 

1. el -+ e2: If el occurs, then e2 must also occur. There is no implied ordering on the 

occurrences of el and ea. We refer t o  this as a causal dependency. 

2. es 4 e4: If es and e4 both occur, then es must precede e4. We refer t o  this as an 

ordering dependency. 

The first primitive defines a causal dependency between two events el and e2 - if event 

el occurs, then e;! must also occur. -4 causal dependency does not imply that  event e2 

must have already occurred a t  the time el occurs. Rather, it is sufficient to permit event 

el to  occur if there is reliable knowledge that  e2 will eventually occur, or if event ea can be 

forced to occur. The second primitive defines an ordering dependency between two events 

- event es must occur before e,!, otherwise the dependency rule would be violated. To 



demonstrate the  use of Klein's primitives in the context of transaction execution, consider 

the  two following well-known transaction dependency rules: 

Abort Dependency [CR92]: If transaction t 1  is abort-dependent on transaction t 2 ,  then if t 2  

aborts then t must also abort. Let the significant events are denoted as aborttl and abortt2. 
Then the abort dependency between t l  and t2  can be expressed as abortt2 4 aborttl. 

Commit Dependency [CR92]: If transaction tl is commit-dependent on transaction t 2 ,  then if 

both transactions commit, t l  must commit before t 2  commits. Let the relevant significant 

events be denoted as committl and committ2. Then the commit dependency between t l  
and t 2  can be expressed as committl 4 committ2. 

Klein's primitives can capture most of the  important semantic constraints encountered 

in practice. To illustrate, below is a list of transaction dependencies t ha t  have been defined 

by various advanced transaction model descriptions in the  literature, taken from [CR92]. 

We have presented each as a dependency rule using the  appropriate Klein primitive. 

Begin Dependency: If transaction t 2  is begin-dependent on transaction t l ,  then t 2  cannot begin 

executing until t l  has begun. Let the relevant significant events be denoted as begintl and 

begintz. Then the begin dependency between t l  and t 2  can be expressed as begintl 4 begintz. 

Begin-on-Abort Dependency: If transaction t 2  is begin-on-abort dependent on t 1 ,  then t 2 cannot 

begin executing until t l  has aborted. A begin on abort dependency between t 2  and t l  can be 

expressed as abortt2 4 begintl. 

Begin-on-Commit Dependency: If transaction t 2  is begin-on-commit dependent on t l ,  then t 2  
cannot begin executing until t l  has committed. The begin on commit dependency between 

t 2  and t l  can be expressed as committ2 4 begintl. 

Weak-Abort Dependency: If transaction t 2  is weak-abort dependent on t l l  then if t l  aborts and 

t 2  has not yet committed, then t 2  aborts. Let the relevant significant events be denoted 

as aborttll activet2 and aborttz. The weak abort dependency between t l  and t 2  can be 

expressed as (aborttl AND activeta) 4 abortt2. 

Strong Commit Dependency: If transaction t 2  is strong commit dependent on t 1 ,  then if t l  
commits then t 2  must also commit. The strong commit dependency between t l  and t 2  can 

be expressed as committl + committ2. 

Termination Dependency: If transaction t 2  is termination dependent on transaction t l ,  then t 2  
cannot commit or abort until t 1  either commits or aborts. The termination dependency 

between t l  and t 2  can be expressed as (committl OR aborttl) 4 (committz OR a b o r t t ~ ) .  

Exclusion Dependency: if t l  commits and t 2  has begun executing, then t 2  aborts. The exclusion 

dependency between t l  and t? can be expressed as (committl A N D  activeta) -+ abortt2. 

Serial Dependency: If transaction t 2  is serially dependent on transaction t l l  then t2 cannot begin 
executing until t l  has terminated ( I I  either commits or aborts). The serial dependency 

between t l  and t:! can be expressed as (committl OR aborttl)  4 begint2. 



Force Commit on Abort Dependency: If transaction t z  is force-commit-on-abort dependent on 
transaction t l ,  then t2 must commit if t l  has aborted. The force commit on abort dependency 
between t 1  and t z  can be expressed as aborttl + committ2. 

While this list includes most of the transaction dependencies found in advanced trans- 

action model proposals in the literature, it is not exhaustive. Other dependencies that  

involve transaction significant events besides the B E G I N ,  COMMIT and ABORT events can be 

defined. Thus, the  TRANSACTION MANAGEMENT ADAPTER provides a command to define 

new transaction dependencies, based on the constituent events and the KIein primitive 

that  characterizes the type of the dependency. 

Operation Definition 3.13 (Define-Dependency) The command def ine-dependency 

(dependencyname, eventname,, eventnameb , dtype) defines a named dependency 

between event, and eventb. The dependency type, dtype! is specified by the Klein primitive: 

causal or order. 

Thus, as new significant events are associated with extended transactions, the TRANS- 

ACTION MANAGEMENT ADAPTER can support the definition of the new transaction depen- 

dencies based on these events. First, we describe the command form-dependency that  is 

used t o  form transaction dependencies and discuss sources of transaction dependencies. 

Then we discuss how the TRANSACTION MANAGEMENT ADAPTER determines whether the 

newly defined dependency can actually be enforced a t  runtime. 

Operation Definition 3.14 (form-dependency) When extended transaction tl issues 

the command form-dependency(tl, dependencyname, ta, l a b e l ) ,  a dependency of 

type dependencyname is formed between tl and extended transaction t2, and tagged with 

the assigned label. The label field is simply a handle that can be used to  reference the 

dependency, and typically is used to record the name of the data object that induced a 

dynamic dependency. 

For an extended transaction to  form a dependency, we must first verify that  the com- 

mand is well-formed. Specifically, both extended transactions must have dependency 

permissions appropriately set and the specified dependency must have been defined using 

the def ine-dependency command. 



Guard 3.6 (Well-Formed Dependency) For a dependency operation of the form 

f orm-dependency (t dependencyname , t 2 ,  l a b e l )  we have the following guard: 

dependency-table(dependency-name) # error A N D  

dependency-enabled(tl) = True A N D  

dependency-enabled(t2) = True 

After the  guard has verified that the dependency operation is well-formed, the depen- 

dency is recorded in a dependency set managed by t l .  

Definition 3.9 (Dependency Set) The dependency set for an extended transaction t l ,  

denoted by DepSettl, is the set of inter-transaction dependencies formed during the exe- 

cution of tl . 

Understanding the Sources of Dependencies 

Dependencies between extended transactions may be a direct result of the structural prop- 

erties of a particular advanced transaction model, referred t o  as a structural dependency, 

or may indirectly develop a s  a result of the-interactions between extended transactions 

over shared da ta  objects, referred t o  as  a dynamic dependency. 

Structural Dependency The structure of an advanced transaction model defines its 

component transactions and the relationships between them. Transaction dependencies 

can express these relationships, and thus specify the links in the  structure. For example, 

in the Nested Transaction model the parentlchild relationship is established at the time 

the child transaction is spawned. This can be expressed by the child transaction, say t,, 

establishing a weak-abort dependency on its parent, say t p :  f om-dependency(t,, WA , 
t p ,  no labe l ) ;  and, the parent establishing a commit dependency on its child: 

f orm-dependency (tp, CD , t ,  , nolabel ) .  The weak-abort dependency (WA) guarantees 

the abort of an  uncommitted child if its parent aborts, while the commit dependency (CD) 

guarantees tha t  an orphan, i.e., a child transaction whose parent has terminated, will not 

commit. These structural dependencies would be formed when the child transaction is 

first created, in the processing of the Spawn event. 

Similarly, transaction dependencies can be used to  define structural relationships be- 

tween the member transactions of a number of other advanced transaction models. For 

example, in the Structured Task model [BHMCSO, GMGK+ 911 and Nested Sagas model 

[GMGKS91], a parent can commit only if its vital children commit; tha t  is, a parent trans- 
action forms an abort dependency on each vital child transaction. Cooperative Group 

Transaction models [NZ90, MP92, R,KT+95] define similar dependencies between the 



transaction coordinating the group and individual member transactions. Individual trans- 

actions may also form structural dependencies with other extended transactions if the ad- 

vanced transaction model supports coupling modes. For example, component transactions 

of a Saga [GMS87] can be paired according t o  a compensate-for/compensating relation- 

ship [KLSSO], Relationships between a compensated-for and a compensating transaction, 

as well as those between them and the saga itself, can be specified via begin-on-commit 

dependency, begin-on-abort dependency, force-commit-on-abort dependency, and strong- 

commit dependency [CR92]. In a similar fashion, dependencies that  occur in the presence 

of alternative transactions and contingency transactions can also be specified [BHMCSO]. 

Dynamic Dependency Transaction dependencies can also be formed at runtime by the 

interaction of extended transactions over a shared data  object. However, unlike structural 

dependencies which are determined by the semantics of the particular advanced transac- 

tion model, dynamic dependencies are determined by the data  object's synchronization 

properties. As discussed in Section 3.3.2, two operations conflict if the order of their 

execution matters. Depending on the semantics of the operation and its relationship t o  

other active operations, this conflict can be relaxed, but the reordering may produce a 

transaction dependency. That  is, if a conflicting lock request is granted t o  an extended 

transaction t; because of a relaxed conflict, then a dependency must be formed between 

ti and each transaction that  owns a lock in a mode incompatible with t;.  For example, 

the recoverability protocol [BR91] defines a compatibility relation in which two operations 

can be freely reordered, but the reordering produces a commit dependency between the 

two transactions. Thus, if t l  invokes an operation p and later a t2 invokes an operation q 

on the same d a t a  object obName, then t2 can perform q but is commit-dependent on t l .  
Using the recoverability relation, the CONFLICT ADAPTER can relax the conflict, but will 

first record the commit dependency using the command form-dependency(t2, C D ,  tl , 
obname 1. 

Adding Transaction Execution Control 

We now discuss issues in the design of extended transaction execution control. Specifi- 

cally, we shall identify what actions the TRANSACTION MANAGEMENT ADAPTER can take 

t o  enforce transaction dependencies, and then discuss how to  ensure that  a dependency 

rule can be enforced a t  runtime. We then conclude with application programming in- 

terface commands that  the TRANSACTION M A N A G E M E N T  ADAPTER provides t o  support 

transaction execution control. 



Enforcing Transac t ion  Dependenc ies  The TRANSACTION MANAGEMENT ADAPTER.  

acts as a passive scheduler that  coordinates and synchronizes the execution of transac- 

tion significant events such that  no transaction dependency is violated. The scheduling 

is passive in the sense that  the TRANSACTION MANAGEMENT ADAPTER does not raise 

transaction significant events or perform the state changes of an extended transaction 

by itself. Rather, a transactional application raises a significant event and the TRANS- 

ACTION MANAGEMENT ADAPTER decides whether the requested event can be permitted 

and at what point in time. When a transaction significant event is raised, the TRANSAC- 

TION MANAGEMENT ADAPTER can only take the following actions t o  enforce a transaction 

dependency: 

ALLOW - the event does not violate any dependencies and is permitted to  execute. 

DELAY - the event is dependent on some other event so it is delayed until the depen- 

dency is resolved. 

REJECT - execution of the event would violate a dependency rule, so the event is 

rejected and an error returned t o  the issuing transaction. 

RAISE - there is a dependency such thaJ another event is raised (triggered) prior t o  

allowing the event execution t o  proceed. 

Thus, the TRANSACTION MANAGEMENT ADAPTER can enforce transaction dependency 

rules by variously allowing, delaying, rejecting or triggering events to  occur, so that  the 

resulting extended transaction computation satisfies the given dependencies. 

The enforceability of a transaction dependency rule depends crucially on the attributes 

of the transaction significant events that  occur in it. We now show how event attributes 

can be naturally incorporated into our approach. The following event attributes were 

introduced in [ASSR93]: (a) forcible: events that  the system can initiate; (b) rejectable: 

events that  the system can prevent; and, (c) delayable: events that  the system can delay. 

We note, however, that  in an implementation of the Reflective Transaction Framework 

a nondelayable event would also be nonrejectable, because it happens before the TRANS- 

ACTION MANAGEMENT ADAPTER learns of it. Intuitively, such a transaction significant 

event is not attempted, but rather the TRANSACTION MANAGEMENT ADAPTER is notified 

of its occurrence after the fact. Further, i t  is possible t o  have nonrejectable but delayable 

events in the execution of a transaction; for example, the begin of a compensating trans- 

action, or the abort of a member transaction in a cooperative group. To capture the 

above restrictions and to  reason more easily about the attributes of transaction significant 

events, we find it useful t o  introduce the attributes immediate and inevitable as combina- 

tions of the above. We also believe that  triggerable is a more appropriate name for forcible 



events, because of their actual effect during execution - the TRANSACTION MANAGEMENT 

ADAPTER can merely trigger an event, not force it t o  complete. Thus our attributes for 

transaction significant events are as follows. (Triggerability is orthogonal t o  the other 

attributes, which are easily seen t o  be mutually exclusive.) 

Normal: events that  are delayable and rejectable; 

Inevitable: events that  are delayable and nonrejectable; 

a Immediate: events that  are  onde delay able and nonrejectable; and 

Triggerable: events that  are forcible. 

To illustrate, in Example 3.3 we present an attribute table for the transaction signifi- 

cant events of an ACID transaction. 

Example 3.3 (Event Attributes) The TRANSACTION MANAGEMENT ADAPTER may 

trigger a transaction begin, but not a commit. It can reject and delay a commit, but 

can neither delay nor reject an abort. In  other words, commit is normal; begin is both 

triggerable and normal. 

EVENT Normal Inevitable Immediate Triggerable 

COMMIT X - - - 

ABORT - - X X 

PREPARE X - - - 

BEGIN X - - X 

As described in Section 3.2.4. an event attribute is set using the metalevel command 

event-property, while the triggerable attribute of a transaction event is specified using 

the metalevel command can-trigger. 

Some dependency rules, however, cannot be enforced a t  all. For example, consider the 

following ordering dependency: nbort(tl) 4 aborf(t2). This dependency rule specifies an 

ordering between the abort of two transactions. But this dependency cannot be enforced 

because i t  specifies an ordering between two im.mecliate eventrs that  can be triggered a t  

any time, e.g. by a crash of the database or transactional application. The TRANSACTION 

MANAGEMENT ADAPTER has no control over the decision or the triggering of this event, 

and hence it cannot guarantee this dependency rule. The TRANSACTION M A N A G E M E N T  

ADAPTER can only enforce ordering dependencies if the event on the right side of the 



dependency rule is a normal event, such that  the TRANSACTION MANAGEMENT ADAPTER. 

can delay or even reject the corresponding state transition of an extended transaction. 

Enforceability is also an issue for causal dependency rules, such as  abort(t2) + commit(tl). 

This dependency rule is also not enforceable a t  runtime, since on abort of t2, in general, 

it cannot be guaranteed that  t l  will eventually commit. Such a dependency rule can only 

be enforced by the TRANSACTION MANAGEMENT ADAPTER if the event on the right side 

is triggerable, or is an event that  is somehow guaranteed t o  succeed eventually. For ex- 

ample, the TRANSACTION MANAGEMENT ADAPTER could decide that  a transaction must 

eventually be aborted by rejecting its commit. The dependency rule above could also be 

enforced, e.g., if tl is a compensation transaction for which the  system guarantees that it 

will finally commit, even in the case of failures. In general, however, if a t  least one term 

of each clause of a causal dependency rule (in conjunctive normal form) is triggerable, 

then the TRANSACTION MANAGEMENT ADAPTER can enforce the dependency rule. To 

illustrate, although the ordering dependency in the previous example is not semantically 

correct, it can be part of a more complex dependency, such as: (abort(tz) 4 commit(tl)) 

V abort(t3). In this dependency rule, the term abort(ts) is triggerable, therefore, the de- 

pendency rule can be enforced by the TRANSACTION MANAGEMENT ADAPTER. Note that 

this is not a necessary condition for the enforceability of a dependency rule, however it is 

sufficient and can be checked efficiently a t  runtime. 

Guard 3.7 (Enforceable Dependencies) When a transaction dependency is defined 

using the command def ine-dependency (dependencyname , eventname,, eventnameb, 

dtype) ,  the TRANSACTION MANAGEMENT ADAPTER will attempt to determine i f  the de- 

pendency can be enforced at runtime, based on the dependency type and the attributes of 

the associated events. If it cannot determine whether the dependency is enforceable at run- 

time, it will create the dependency but return a status code warning that the dependency 

may not be runtime enforceable. 

Operations for Dependency Management 

To support the specification and management of transaction dependencies for execution 

control, the TRANSACTION MANAGEMENT ADAPTER provides the following operations in 

its metalevel interface. Where appropriate, selected status codes are provided. 

definedependency(dependencyname:string, eventname,:string,  eventnameb: 
s t r i n g ,  dtype: s tr ing) :  Installs a new transaction dependency type for applications to 
use in controlling the execution of extended transactions. The dependency-name is a string 
that applications will refer to when forming the dependency, event-name, and eventnameb 
are strings identifying the constituent events, and dtype is a string specifying the type of 
the dependency (causal or order). 



- Success 

- Dependency name is not unique 

- Transaction significant event (s) not defined 

- Dependency type not provided or invalid 

- Success with error:  dependency not runtime enforceable 

f omdependency ( t i :  e t r i d ,  dependency: s t r i n g ,  t j  : e t r i d ,  l a b e l :  s t r i n g ) :  Attempts 
to form a transaction dependency of the specified type between between ti and t j .  If the 
dependency is permitted, it assigns the label to the dependency and installs it in the depen- 
dency set. 

- Success 
- Transaction not allowed t o  form dependencies 

- Dependency not defined 

de le tedependency( t i :  e t r i d ,  dependency: s t r i n g ,  t j  : e t r i d ,  l a b e l :  s t r i n g ) :  

Rernoves the named dependency between ti and t j  from the dependency set. If the keyword 
ALL is used for the name of the dependency, then the Dependency Set of ti is emptied. 

- Success 

- Dependency not found 

enabledependency ( t i : e t r i d ) :  Sets a boolean flag indicating that ti can form and partic- 
ipate in transaction dependencies. 

disabledependency ( t i  : e t r i d ,  DependencyType : s t r i n g )  : Specifies that extended trans- 
action ti cannot form the named dependency. 

- Success 
- Dependency of t h i s  type i s  already recorded in dependency se t  

l i s t dependency  ( t i :  e t r i d ,  buf fer :  s t r i n g ) :  Returns a list of the transaction dependen- 
cies in the Dependency Set of extended transaction t;. Each dependency is represented in 
the form: (dependency-name:string, transaction:etrid, 1abel:string). 

- Success 

- Invalid transaction name 

These operations provided by the TRANSACTION M A N A G E M E N T  ADAPTER enable an 

application t o  define, record and manage both structural and dynamic transaction depen- 

dencies for t he  execution control of extended transactions. 

3.4 Closing Remarks 

This chapter presented the Reflect.ive Transaction Framework. First,  our  design objectives 

were s tated,  followed by an  overview of the framework architecture and description of the 

Open Implementation tha t  the framework provides t o  an underlying TP monitor. Three 

kinds of implementation opening were discussed, introspcction, explicit invocation and 

intercession, each serving a different purpose. Introspection allows the programmer t o  



look into selected aspects of the TP monitor and active extended transactions, through 

an appropriate abstraction layer. Explicit invocation makes available selected transaction 

processing functionality that  was previously hidden. Intercession lets the programmer 

add transaction extensions to  the substrate and make modifications t o  the conventional 

transaction processing, all within boundaries defined by the metalevel interface. 

The balance of the chapter utilized the  Open Implementation provided by the  Reflec- 

tive Transaction Framework t o  introduce three new extended transaction services - trans- 

action restructuring through resource delegation, transaction synchronization through 

application-defined conflict, and execution control through the management of trans- 

action dependencies. These extensions are encapsulated in reflective software modules 

called transaction adapters, which are implemented over TP monitor software. Trans- 

action adapters do not duplicate existing functionality t o  implement these transaction 

extensions, but instead extend the functionality provided by the TP monitor - that  is, the 

framework augments  existing transaction behaviors. This not only eliminates unnecessary 

infrastructure development by building on existing services, but is designed to  provide 

efficient, robust base processing for extended transactions. Another way of looking a t  

this is that  we have taken a divide-and-conquer approach of first identifying services for 

extended transactions and then incrementally implementing functional extensions in indi- 

vidual transaction adapters. This is in sharp contrast t o  related research efforts that  have 

attempted t o  define and construct an extended transaction facility from scratch. 



Chapter 4 

Demonst ration 

The previous chapter introduced the main abstractions and interfaces which the Reflective 

Transaction Framework provides for implementing extended transactions, as well as the 

means by which these can be tailored to  meet the needs of specific situations. Small 

examples were used to  illustrate how these were embodied in the framework and used in 

practice. The purpose of this chapter is to  pull together the various ideas encountered 

earlier by presenting longer, more detailed examples which also serve to  illustrate the range 

of extended transaction behaviors the Reflective Transaction Framework can support. 

4.1 Application Structure 

While applications are free t o  select and use framework features in whichever ways are 

appropriate, there is a general schema which characterizes most transactional applications. 

The scheme, illustrated in Figure 4.1, has two sections - initialization and general running. 

The initialization phase sets up and initializes the various structures that  will be used 

when an application is running. The objective of this initialization phase is to  augment 

the set of available handlers for extended transaction control operations in order t o  satisfy 

new application requirements, starting most likely from a published description of an ad- 

vanced transaction model. There are three principal steps in this process. The first step is 

t o  identify the set of transaction significant events associated with the advanced transac- 

tion model. This establishes the set of transaction control operations that  an application 

can invoke t o  control the execution of an extended transaction based on this advanced 

transaction model. The second step is to  define the actions (handler implementation) 

for these transaction significant events, characterized first in terms of the different types 

of transaction dependencies (for example, commit dependency and abort dependency), 

and second, in terms of transactions' effects on da ta  objects (their state and concurrency 

status, that  is, synchronization stat,e). Through the former, one can specify relationships 

between significant (transaction management) events, such as begin,  commit, s p l i t ,  and 



join, pertaining t o  different transactions. Also, conditions under which such events can. 

occur can then be specified precisely as structural dependency rules. The third step is 

t o  consider available semantic information which may be used to  relax conflicts between 

extended transactions, beginning with any ignore-conflict relationships between extended 

transactions, identifying those operations with respect t o  which R / W  conflicts do not need 

to  be considered, and conflicts that  can be relaxed by specifying the semantics of data  

accesses performed by an extended transaction. Once handlers for the extended transac- 

tion significant events have been defined, the new control operations can be added t o  the 

extended transaction interface where they will be available for application programmers 

t o  use. 

Init Run 
Link RTF library 

/ Link TPM library 
Identify Transaction Events 
splil join, etc. 

Define Event Semantics Select Extended Transaction Model(s) 

Structural Dependencies 

Transacfion Synchronization 

I 
Code Transactional Application 

Restruchvrhvrng 
xmeentimt. 

..lect 

beein, split, join, mtc. 

Available Semantics I 
Compatibiliry Tables 

Run begin Application / '[[r 
split  

Add to RTF Library Call TP Monitor 

extended transaction operationr 
split, join, etc. Update RTF structures 

Figure 4.1: Schematic structure of developing transactional applications using the RTF. 

Once these initialization tasks have been completed, the extended transaction inter- 

face is ready for general use in transactional application programs. In general, application 

development proceeds as follows. First, an application programmer links their program 

to  the transactional constructs provided by the TP monitor and t o  the RTF library con- 

taining the extended transaction control operations. The available advanced transaction 

model control operations may be organized into libraries in a number of ways - one library 

containing the extended transaction control operations for all available extended trans- 

action models, one library for each particular class of application program, or possibly 

a library for each particular class of advanced transaction model (cooperative, controlled 



execution, long-lived, etc.). The application programmer will then code the transactional 

application, in the 'C' programming language, using the commands instantiate to  in- 

dicate the  transactions that  require extended transaction services and se lect  t o  select a 

particular advanced transaction model (i.e., the set of control operations the transaction 

can invoke a t  runtime) for each extended transaction. The  programmer will then finish 

coding the  application, using commands from both the base transaction interface and 

commands from the extended transaction interface. 

At runtime, the Reflective Transaction Framework will initialize an extended trans- 

action descriptor with event descriptors for each extended transaction. At some point, 

triggered either by an extended transaction control operation or a transaction processing 

event such as a lock conflict, base transaction processing halts and computation will shift 

from the transactional application to  a transaction adapter in the framework for extended 

transaction processing. The various actions defined for the extended t,ransaction during 

the initialization phase will be performed, which may involve making function calls to the 

underlying TP monitor on behalf of the extended transaction. Once extended transaction 

processing is complete, the da ta  structures managed by the framework will be updated to  

reflect the  newly established state of the extended transaction and control is returned to  

the transactional application for default transaction processing. 

4.1.1 Configuring or Extending the Base Level 

Before going on t o  review commands in the Reflective Transaction Framework's metalevel 

interface, there is one particular feature pertaining t o  the use of the baselmeta distinc- 

tion in the framework that is worth exploring. This aspect of the Reflective Transaction 

Framework's design represents a departure from earlier Open Implementation designs. 

In Open Implementations, the separation of base and meta interfaces is normally orga- 

nized around the distinction between what the  client application requires of the abstraction, 

and how the abstraction should go about providing (aspects of) that  functionality. One 

way of thinking about this is that  the base level sets the terms of the abstraction, while 

the meta level configures that  abstraction appropriately for the needs of the client. The 

meta interface typically deals in terms of different sorts of objects - those used (on some 

level) to realize (implement) the abstraction. In this way, Open Implementation "opens 

up" the implementation of the underlying abstractions through the meta interface. 

The Reflective Transaction Framework uses Open Implementation to  the same end - 

that  is, t o  allow applications to specialize transaction facilities to  their own needs. How- 

ever, the metalevel objects in the Reflective Transaction Framework - extended transaction 

descriptors, lock conflicts, delegate sets, semantic compatibility specifications, transaction 

dependencies, etc.- are abstract. They are quite distant from the implementation level 



objects managed by the underlying TP monitor - locks, latches, log records - and much. 

closer to  application level semantics. This in turn affects the way in which the metalevel 

works. Activity at the metalevel in the Reflective Transaction Framework largely special- 

izes base level transaction processing with semantic features of the application domain 

(such as application-defined conflict, dynamic transaction restructuring or execution con- 

trol). Once this specialization has been done, those semantic features become available for 

application programmers to  use in base-level (application) programming. In other words, 

we can think of this not so much as configuring the base level, but more as extending it. 

So it is not simply that  the framework specializes the structures of the underlying TP 
monitor and the implementation which lies behind it,  but it specializes and extends the 

base level T P  monitor services t o  the needs of the application. 

4.1.2 Metalevel Interface Commands 

The basic purpose of the metalevel interface is t o  facilitate the implementation of extended 

transactions. The metalevel interface provides an implementation view of extended trans- 

actions, intended for expert transaction system programmers with skills in transaction 

model specification t o  implement primitives for new extended transactions. The  individ- 

ual commands in the metalevel interface generalize extended transaction behaviors and 

allow transaction system programmers to  master one set of interfaces tha t  can be used to  

develop a variet.y of advanced transaction models and semantics-based concurrency control 

protocols. The commands in the metalevel interface are summarized below in Table 4.1. 

Table 4.1: Summary of Transaction Adapter Command Set (TRACS). 

in s tan t ia t e  

register-event 

continued on next page 

Generates an extended transaction identifier (ETRID) and creates 
an extended transaction descriptor for the transaction. 

Creates a descriptor for a named transaction event and stores the 
structure in the extended transaction descriptor. 

bind-handler 

assignguard 

Binds a handler to the specified event, recording a pointer to the 
handler function in the HANDLER field of the event descriptor. 

Records the name of the guard (predicate) in the GUARDS field of 
the event descriptor. 



continued from previous 

Command 

event property  

event-tr igger 
' 

g e t e t r i d a s i n g n a m e  

g e t e t r i d a s i n g - t r i d  

getnamewsing-etrid 

getnameasing-trid 

ge t tr idws ingname 

g e t t r i d w s i n g - e t r i d  

t r a n s t a t e  

set -type 

get-type 

s e t s t a t e  

g e t s t a t e  

set-etranprop 

get-etranprop 

s e t p  

getP  

record-event 

f ind-event 

begin-tran 

commit -tran 

abort -tran 

page 

Description 

Sets the ATTRIBUTE field of the event descriptor to one of the 

values: normal, inevitable, or immediate. 

Sets the TRIGGERABLE field of the event descriptor to a boolean 

value, indicating whether the event can be triggered. 

Returns the ETRID of the named transaction. 

Returns the ETRID of the extended transaction identified by TRID. 

Returns the name of the extended transaction identified by ETRID. 

Returns the name of the extended transaction identified by TRID. 

Returns the TRID of the named extended transaction. 

Returns the TRID of the extended transaction identified by ETRID. 

Returns the extended transaction state, which is one of: initiated, 
active, pending, committed, aborted, or terminated. 

Sets the optional type of the named extended transaction. 

Returns the optional type of the named extended transaction. 

Sets the optional application state of the named extended 
transact ion. 

Returns the optional application st ate of the named extended 
transaction. 

Sets the value of the property list identified by key to the supplied 
value; if the key is not found, a new property list entry is created. 

Searches the property list for key and returns the associated value. 

Sets the value of the selected field to the supplied value. 

Returns the value of the specified field. 

Records that a transaction significant event has occurred by 
appending the entry (event descriptor, timestamp) to the field 

EVENTHISTORY. 

Searches the EVENTHISTORY field of the extended transaction de- 
scriptor for the specified event starting from a specified point in 

the event history. Returns either the value of the timestamp (event 
found), or the value 0 (event not found). 

Begin normal application processing for a specified transaction. 

Calls TP Monitor commit command for a specified transaction. 

Calls TP Monitor abort command for a specified transaction. 

continued on next page 
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continued from previous 

Command 

thread-to-trid 

def inedependency 

f ormdependency 

deletedependency 

enabledependency 

disable-dependency 

l i s tdependency 

unlock 

lock 

un1ock;ill 

l o c k s b e l d  

l o c k s a a i t f  o r  

l o c k l i s t  

create 

d e l e t e  

insert  

remove 

delegate 

page 

Description 

Returns the TRID of the transaction associated with the applica- 

tion thread, or an error indicating the thread is not running in 

the context of an active transaction. 

Installs a new transaction dependency type for applications to use 

in controlling the execution of extended transactions. 

Attempts to form a transaction dependency of the specified type 

between two extended transactions. 

Removes the specified dependency between two extended 

transactions. 

Sets a boolean flag indicating that the extended transaction can 

form and participate in transaction dependencies. 

Specifies that the extended transaction cannot form or participate 
in the named transaction dependency. 

Returns a list of the dependencies currently active for the spec- 
ified extended transaction. Each entry in the list is of the form: 
dependency-name, etrid, label. 

Directs the LOCK ADAPTER to release the lock that the transaction 

holds on the specified data object. 

Directs the LOCK ADAPTER to attempt to acquire a lock on the 
specified data object for the transaction. 

Directs the LOCK ADAPTER to release all locks currently held by 

the transaction. 

Returns a list of all locks currently held by the transaction. 

Returns a list of all locks the transaction is waiting to acquire. 

Returns a list of all transactions that hold a lock on the specified 

data object. 

Creates a named (empty) container for transferring access to and 
responsibility for data objects from one transaction to another, 

referred to as a delegate set. 

Deletes a named delegate set. 

Inserts the name of a data object into a specified delegate set. 

Removes the name of a data object from a specified delegate set. 

Directs the LOCK ADAPTER to transfer ownership of and respon- 

sibility for the data objects listed in a specified delegate set from 

one extended transaction to another extended transaction. 

continued on next page 



Most of the metalevel commands outlined here have been seen, in one form or another, 

in the discussion and examples laid out  in the previous chapter. 

continued from previous 

Command 

acquire 

load-table 

remove-table 

ignore-conf l i c t  

removeicrecord 

c l e a r i c s e t  

select-table 

c l earqo l i cy  

4.2 Implementing Extended Transactions 

page 

Descrzptaon 

Directs the LOCK ADAPTER to complete the transfer of a deferred 

delegation, moving the data objects from an intermediary trans- 
action to the delegatee transaction. 

Loads the name compatibility table from the specified pathname. 

Assigns a unique name to the table and records the class name. 

Removes the name compatibility table. 

Creates an ignore-conflict record for an extended transaction and 
places the record in the cooperative transaction set. 

Removes the specified ignore-conflict record from the cooperative 
transaction set of the specified extended transaction. 

Removes all ignore-conflict records from the cooperative transac- 
tion set of the specified extended transaction. 

Appends the specified name to the SBCCPOLICY field in the ex- 
tended transaction descriptor. The SBCCPOLICY field identifies 
sources that are to be checked by the CONFLICT ADAPTER in at- 
tempting to relax a R/W CONFLICT. 

Clears the s ~ c c s o ~ r c ?  field for an extended transaction. 

In this section we demonstrate the application of the Reflective Transaction Framework 

to implement a number of important extended transactions from the literature. These ex- 

amples serve t o  demonstrate the various facilities and principles put forth in the previous 

chapter, putting them together in larger, more detailed examples which demonstrate both 

the range of the Reflective Transaction Framework and the style of programming it sup- 

ports. The first set of examples illustrates the implementation of selected advanced trans- 

action models, while the second set illustrates the implementation of selected semantics- 

based concurrency control protocols. Specifically, we present the implementation of the 

following advanced transaction models: 

a Split and Join Transactions [PKH88]; 

a Chain Transactions [CR94]; 

a Reporting Transactions [CR94]; 

a Cooperative Transaction Groups [RC92, NZ901. 



And, the following methods for semantics-based concurrency control: 

Commutativity [Wei88]; 

Recoverability [BR91] ; 

Epsilon-Serializabili ty [RP95] ; 

Altruistic Locking [SGMS94]. 

4.2.1 The SplitIJoin Advanced Transaction Model 

In the Split/Join Transaction model [PKH88, KP921 it is possible for an application to 

split an extended transaction tl  into two transactions, t l  and t2, and to join two extended 

transactions tl and tz into one joint transaction t2. For simplicity, we will discuss Split 

Transactions and Joint Transactions as two distinct advanced transaction models. 

Split Transactions Split transactions allow an application to dynamically split the 

database resources held by a (long) transaction into two or more smaller transactions. An 

application can use split transactions to release partial results, by committing the trans- 

action that has been split off before the splitting transaction is committed. This makes 

selected changes visible to the other transactions, even though the transaction that made 

the changes is still in progress. Splitting also allows other short-duration transactions, 

that are waiting for the data objects released as a result of the partial commitment to 

proceed. This has the potential for increasing concurrency, as short duration transactions 

would not be made to wait until the long transaction commits. Such possibilities are 

especially beneficial for CAD/CAM, VLSI design, and software development applications 

because of their long-running activities [RC92, CR941. 

Extended transactions in the split transaction model are associated with four transac- 

tion control operations, namely begin, s p l i t ,  commit, and abort. The begin, commit, 

and abort operations have the same semantics as the corresponding operations of the 

default ACID transaction model. In our implementation of split transactions, an applica- 

tion splits an extended transaction, say t l ,  by executing the transaction control operation 

s p l i t  (nametl, namet:!, objSet).  Arguments to the s p l i t  command include the name of 

the split transaction, which must already exist and have an extended transaction descrip- 

tor, and the names of data objects that are to be split off, referred to in the literature as 

the object set fPKH88, KP921. At the time of the split, tl will transfer to t2 the locks on 

data objects listed in objSet. In practice, applications define the object set by selecting 

the data objects to split from the re-structured transaction. Once the split operation is 

complete, tl and t2 can commit or abort independently. In addition, the transactions can 

further split, creating new split transactions. The following code segment outlines how 



the s p l i t  transaction control operation handler is synthesized using commands from the  

metalevel interface: 

split,procedure(tranfrom, t ranto,  l ock l i s t )  C 
splitFrom = getetrid-using-name(tranfrom); 
splitTo = getetrid-using-name (tranto) ; 
i f  active ( t ranstate  (splitTo) ) < 

/* create a delegate s e t  f o r  the lock t ransfer  */ 
status-create ( sp l i t  From, s p l i t  Set ,  DTOR) ; 
i f  (s ta tus  ! = success) e r ror  (spl itFrom, s ta tus )  ; 
/* inser t  locks from lockList into delegate s e t  */ 
fo r  each lockname in  lockList do C 

status=insert  (splitFrom, s p l i t s e t ,  lockname) ;, 
if ( s ta tus  != success) error(splitFrom, s t a tu s ) ;  1 

/*  delegate locks */ 
s ta tus  = delegate(splitFrom, spl i tTo,  s p l i t s e t ,  immediate); 
i f  (s ta tus  != success) error(sp1itFrom. s ta tus )  ; 
/* create and record event descriptor with timestamp */ 
stime = timestamp0 ; 
eventd = s t r ca t  ( '  ' s p l i t :  ' ' , t ran to)  ; 
recordEvent (splitFrom, eventd, st ime) ; 
/* delete the delegate s e t  */  
s ta tus  = delete(sp1itFrom. s p l i t s e t )  
/* return execution control t o  sp l i t t i ng  transaction */ 
return(success) ; 1 

1 

Figure 4.2: Definition of the split transaction control operation. 

Joint Transactions Extended transactions in the joint transaction model are asso- 

ciated with four transaction control operations, namely, begin,  jo in ,  commit and a b o r t .  

The begin,  commit and a b o r t  operations have the same semantics as the corresponding 

operations of the default ACID transaction model. The transaction control operation j o i n  

is a termination event, in addition t o  the standard commit and a b o r t  events. That is, it 

is possible for an extended transaction, instead of committing or aborting, to  join another 

extended transaction. The joining transaction transfers its da ta  objects bo the joint trans- 

action and then terminates. The effects of the joining transaction are made permanent 

in the database only when the joint transaction commits; otherwise, they are discarded. 

Thus, if the joint transaction aborts, the joining transaction is effectively aborted. 



In our implementation, an application can join an extended transaction, say t l ,  with 

another extended transaction ta  by executing the transaction management operation 

joint l  (nametl ,namet2). The argument to the jo in  command simply identifies the name of 

the joint transaction, which must already exist and have an extended transaction descrip 

tor. The join procedure transfers all locks held by tl to  t2, then terminates the execution 

of t l .  This is accomplished by first creating a delegate set, inserting the names of all data 

objects tl  holds into the set, and delegates the locks. Since the join operation transfers 

all locks an extended transaction holds, the transaction system programmer will use the 

argument ALL for the insert command. After the delegation is complete, t2  can freely 

access the data objects tl delegated and is responsible for committing or aborting the 

effects of t l .  Thus, we synthesize the jo in  operation using commands from the metalevel 

interface as follows: 

join-procedure(fromtran, totran) C 
joinFrom = getetrid-using-name(fromtran) ; 
joinTo = getetrid-using-name (totran) : 
trid- joinFrom = gettrid-using-name (f romtran) ; 
if active (transtate(joinT0) I 

/* create a delegate set for the lock transfer */ 
statuszcreate (joinFrom, joinDelSet , dtorl ; 
if (status != success) error(joinFrom, status); 
/* insert the locks currently held */ 
status=insert(joinFrom, joinDelSet, all); 
if (status ! = success) error (joinFrom, status) ; 
/* delegate locks */ 
status = delegate(joinFrom, joinTo, joinDelSet, immediate); 
if (status != success) error (joinFrom, status) ; 
/* create and record event descriptor with timestamp */ 
stime = timestamp0 ; 
eventd = strcat("join:", fromtran); 
recordEvent (joinFrom, eventd, st ime) ; 
/* delete the delegate set */ 
status = delete(joinFrom, joinDelSet); 
/* commit transaction */ 
commit,tran(trid-joinFrom); 
/* return control to invoking application */ 
return(snccess) ; 1 

3 

Figure 4.3: Definition of the join transaction control operation. 

Once these handlers for the split and jo in  control operations have been defined using 

the rnetalevel interface, the operations can be added to the extended transaction interface 

where they will be available for transactional application programmers to use. 



4.2.2 The Chain Transaction Model 

A special case of the joint transaction model is one that restricts the structure of joint 

transactions to a linear chain of transactions, which are calIed Chain Transactions [CR94I1. 

As with joint transactions, extended transactions in the chain transaction model are asso- 

ciated with four transaction control operations, namely, begin, join, commit, and abort. 

A chain transaction is formed initially by a transaction joining another extended transac- 

tion and subsequently by the joint transaction joining another extended transaction. We 

implement chain transactions by introducing a test in the jo in  operation that restricts 

the invocation such that only linear structures result, as illustrated in Figure 4.4. 

chain- join-procedure (fromtran, totran) C 
joinFrom = getetrid-using-name (f romtran) ; 
joinTo = getetrid-using-name(totran) ; 
trid- joinFrom = gettrid-using-name (f romtran) ; 
if active (transtate( joinTo) 
if f irstsplit (joinFrom) 4 

/* create a delegate set for the lock transfer */  
status=create(joinFrom, joinDelSet, dtor); 
if (status != success) error( joinFrom, status) ; 
/* insert the locks currently held */ - 
statuszinsert (joinFrom, joinDelSet , all) ; 
if (status != success) error(joinFrom, status); 
/* delegate locks */ 
status = delegate (joinFrom, joinTo , joinDelSet , immediate) ; 
if (status != success) error (joinFrom, status) ; 
/* create and record event descriptor with timestanp */ 
stime = timestamp(); 
eventd = strcat ( '  'join: ' ' ,totran) ; 
recordEvent(joinFrom, eventd, stime); 
/* delete the delegate set */ 
status = delete(joinFrom, joinDelSet); 
/*  commit transaction */ 
comnit,tran(trid-joinFrom) ; 

/* return control to invoking application */ 
return(success) ; 

1 
3 

Figure 4.4: Definition of join for the Chain Transaction Model. 

Chain transactions can more appropriately capture a reliable computation consisting of 

a varying sequence of tasks, each of which can execute in the context of a transaction. That 

is, each task in the computation is structured as a transaction. The beginning of the first 

extended transaction initiates the computation. The computation expands dynamically 

'Chain transactions were designed as a more general form of IBM's Chain transactions. 



when an extended transaction completes its execution by joining another transaction and- 

hence extending the sequence of transactions. The commitment of any transaction in the 

sequence successfully completes the computation. The abort of any transaction terminates 

the computation, and its effects, together with those of all previous transactions in the 

sequence, are obliterated. 

4.2.3 The Reporting Transaction Model 

A variation of the joint transaction model is an advanced transaction model in which 

join is not a termination event. That is, a joining transaction continues its execution and 

periodically reports its results to the joint transaction by transferring more data objects 

to the joint transaction. These transactions are called Reporting Transactions [CR94]. 

As with joint transactions, extended transactions in the reporting transaction model are 

associated with four transaction control operations - begin, join, commit and abort. 

With the exception of join, the definitions of the other control operations are the same as 

in the joint transaction model. Our implementation of the join operation for Reporting 

Transactions is presented in Figure 4.5. 

Following the semantics of the reporting-transaction model [CR94], we prevent a re- 

porting transaction from joining more than one transaction and prevent the joint trans- 

action from joining back. Furthermore, to maintain the termination semantics of joining 

transactions in the joint transaction model we establish an abort-dependency that guar- 

antees the abort of the joining transaction if the joint transaction aborts. Since join is 

no longer a termination event, the reporting transaction must call either conunit or abort 

to complete their computation. 

Reporting transactions provide a more flexible control structure than the joint transac- 

tion model for structuring data-driven computations. For example, consider a computation 

that requires remote access to a database over an expensive communication link, such as 

in a mobile computing environment [IB94]. This computation can be split across the two 

sites, using reporting transactions where the joining transaction executes on the remote 

site. The joining transaction accesses the database and performs the initial processing 

on the data, delegating data objects to the joint transaction only when they need further 

processing at the remote site. 

Variations on the reporting transaction model are possible - for example, reporting 

transactions can be restricted to a linear form in a manner similar to chain transactions, 

in which case they would support pip \line-like computations, or allowed to form more 

complex control structures by permittli~g a reporting transaction to join more than one 

transaction. 



report-join-procedure(fromtran, totran, reportset){ 
reportFrom = getetrid-using-name(fromtran); 
reportTo = getetrid-using-name(totran) ; 
if active(transtate(reportTo)) 
if (f irstreport (joinFrom) I l repeatreport (reportTo) { 

/* create a delegate set for the lock transfer */ 
status=create(reportFrom, joinDelSet, dtor); 
if (status ! = success) error (reportFrom, status) ; 
/* insert locks from reportset into delegate set */ 
for each lockname in reportset do { 
status=insert(reportFrom, joinDelSet, lockname); 
if (status != success) error(reportFror, status); 

1 
/* delegate locks */ 
status = delegate (reportFrom, reportTo , joinDelSet , immediate) ; 
if (status ! = success) error (reportFrom, status) ; 
/* create and record event descriptor with timestamp */ 
stfme = timestamp0 ; 
eventd = strcat ( '  'join: ' ' . totran) ; 
recordEvent(reportFrom, eventd, stime); 
/* delete the delegate set */ 
status = delete(reportFrom, joinDelSet) ; 
/* form an abort dependency with the reporting transaction */ 
status = form-dependency(reportFrom, AD, reportTo, report); 
/* return control to invoking application */ 
return(success) ; 

1 
1 

Figure 4.5: Definition of join for the Reporting Transaction Model. 

4.2.4 The Cooperative Transaction Group Model 

The Cooperative Transaction Group model was designed t o  support applications that  wish 

to  perform collaborative work [MP92, RC921. Using this transaction model an application 

is able to  create a cooperative group that  individual transactions can join t o  share access 

to data objects. These member transactions cooperate to  accomplish a single task, and 

their interactions are structured t o  reflect the decomposition of the task they are working 

on together. Because of the cooperative nature of the transaction group, the operations of 

a single member transaction may not necessarily leave the database in a consistent state. 

Thus, the effects of member transactions are only made permanent in the database when 

the entire group commits. If the transaction managing the cooperative group aborts, then 

all member transactions are forced to  abort. Member transactions, however, are allowed 

to  abort independently without forcing the abort of the cooperative group. 



Our implementation of cooperative transaction groups defines two types of extended. 

transactions, namely group and member transactions, each having its own set of transaction 

control operations. The group transaction can create a named cooperative group and is 

responsible for committing the results of the member transactions that  have joined the 

group. A member transaction can join a single named cooperative transaction group and 

share cooperative access to  data  objects held by member transactions, while executing 

atomically with respect to  the group. Below, we present our implementation of transaction 

control operations for group and member transactions. 

A group transaction is associated with four transaction control operations: begin, 

commit, abort, and creategroup. By recording transaction commit and abort dependen- 

cies when a member transaction joins a group, our implementation of group transactions 

can use the default ACID transaction commit and abort control operations; the TRANS- 

ACTION MANAGEMENT ADAPTER enforces transaction group termination dependencies. 

However, the transaction control operation creategroup is new and requires a special 

handler function. 

boolean-t creategroup~rocedure(groupname) 
/* IN groupname: name of the extended transaction that serves as group tran; */ 
/* OUT boolean: indicates success of group creatien. */ 
{ 
/* Initialize the extended transaction descriptor of the named transaction, setting 
the group transaction attribute to indicate this transaction is group coordinator, and 
initialize the members list. */ 

/* get extended transaction identifier for transaction group-name */ 
group-etrid = getetrid-us ing-name (group-name) ; 
/* set the group transaction attribute, noting this is a group tran */ 
set-et ranprop(group-etrid, groupt ran, IS-GROUP) ; 
/* set the list of member transactions to null, waiting for members */ 
set,etranprop(group-etrid, members, NULL-STR) ; 
return (TRUE) ; 
3 

3 

Figure 4.6: Implementation of the create_group operation. 

A cooperative group grows through member transactions joining the transaction group. 

Member transactions may join and leave the cooperative group a t  any time as the over- 

all task progresses. Since it is not possible t o  determine the members of a transaction 

group a priori, our implementation of the cooperative transaction group model provides 

support functions that relate a member transaction t o  a cooperative group dynamically. 

These functions can be loosely grouped into two classes. The first class is used to  gather 

information on a cooperative group, such as the function getgroupid,  which returns the 



identifier of the cooperative group that  a member transaction belongs to, and the function 

getmembers, which returns a List of identifiers of the members of a cooperative group. 

We synthesize these support functions using commands from the metalevel interface in 

Figures 4.7 and 4.8. 

etrid-t get-groupid(member_etrid) 
/* IN memberxtrid: extended transaction identifier of the member transaction; */ 
/* OUT group-etrid: extended transaction identifier of the group. */ 
{ 
/* Returns the identifier (etrid) of the cooperative transaction group in 
which the transaction member-etrid is a member. If a group is not found, 
then the constant NOTTOUND (value 0) is returned. */ 

str-groupid = get-etranprop(member-etrid, groupid) ; 
if (str-groupid != NULL) ( 
group-etrid = at01 (str-groupid) ; 
return(group-etrid) ; 
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else return(N0T-FOUND); 

) /* End of get-groupid */  

Figure 4.7: Implementation of the get-groupid function. 

etrid-list-t getmembers(group-etrid) 
/*  IN group-etrid: extended transaction identifier of the group transaction; */ 
/* OUT *group-etrid: list of extended transaction identifiers. */ 
{ 
/* Returns a list of identifiers (etrids) of the member transactions that 
belong to the cooperative transaction group group-etrid. */ 
member-list = NULL; 
str-member-list = get-etranprop(group-etrid, members); 
if (str-member-list != NULL) 
while (str-member-list != NULL) 

str-member-etrid = first(str,member,list); 
member-etrid = at01 (str-member-etrid) ; 
append(8Raember-list, member-etrid) ; 
remove(&str-member-list, str-member-etrid); 

1 
return(member-list ; 

) /* End of get-members */  

Figure 4.8: Implementation of the getmembers function. 



The second clam, of functions is used t o  modify a cooperative transaction group, such. 

as the function addmember that  adds a transaction t o  a cooperative group, establishes the 

necessary commit and abort dependencies, and registers the appropriate ignore-conflict 

records, and the function dropmember that  removes a transaction from a cooperative 

group and deletes the associated ignore-conflict records and transaction dependencies. 

We synthesize these support functions using commands from the metalevel interface in 

Figures 4.9 and 4.10. 

booleanf add-member(member_etrid, group-etrid) 
/* IN member-etrid: extended transaction identifier of the member transaction; */ 
/* IN group-etrid: extended transaction identifier of the group; */ 
/* OUT boolean: indicates success or failure for the operation. */ 

/* Adds the extended transaction identzfied by member-etrid to  the 
cooperative transaction group identified by group-etrid. */ 
sprintf (str-member-etrid , "%d", member-etrid) ; 
sprintf(str-group-etrid, "%d", group-etrid); 
/* First verify group-etrid is in fact a cooperative group transaction. */ 
if (strcmp(get-etranprop(group-etrid, grouptran), IS-GROUP) != 0) 

return(FALSE); 
/* Next verify member-etrid does not alGeady belong to a trans group. */ 
if (get-et ranprop(member-etrid, groupid) == NULL) 

set-etranprop(member-etrid , groupid, str-group-etrid) ; 
else return(FALSE1; 
status = form-dependency(group-etrid, AD, member-etrid, str-group-etrid); 
status = form,dependency(member_etrid, CD, group-etrid, str-group-etrid); 
str-member-list = get-etranprop(group-etrid, members); 
list-bu = str-member-list; 
while (str,member,list != NULL) ( 
str-member-etrid = first(str-member-list); 
other-etrid = atol(str-member-etrid); 
status=ignore~conflict(member~etrid, other-etrid, all, all, na, nd, "group"); 
status=ignore~conflict(other~etrid, member-etrid, all, all, na, nd, "group"); 
remove(&str-member-list, str-member-etrid); 

1 
str-member-list = list-bu; 
strcat (str-member-list , "; ") ; 
strcat (str-member-list , str-member-etrid) ; 
set-etranprop(group-etrid, members, str-member-list) ; 
/* member-etrid was successfully added to the cooperative group */ 
return(TRUE) ; 

) /* End of group-addnaember */ 

Figure 4.9: Implementation of the groupaddmember function. 



boolean-t group-dropmember(group_etrid, member-etrid) 
/* IN memberxtrid: extended transaction identifier of the member transaction; */ 
/* IN group-etrid: extended transaction identifier of the group; */  
/* OUT boolean: indicates success or failure for the operation. */ 
{ 
/* Removes the extended transaction identified by the identifier (etrid) fmm 
the cooperative transaction group identified by group-etrid. */ 

/* drop group identifier from member transaction */ 
set-etranprop(member,etrid, groupid, NULL) ; 
/* remove member identifier from group transaction */ 
sprintf (str-member-etrid, "%dt', member-etrid); 
str-group-members = get-etranprop(group-etrid, members); 
remove (&str-group-members, str-member-etrid) ; 
set-etranprop(group-etrid, members, str-group-members) ; 
/* remove commit and abort dependencies to prevent group termination deadlock */  
status = delete-dependency(group-etrid, AD, member-etrid, str-group-etrid); 
status = delete-dependency(member-etrid, CD, group-etrid, str-group-etrid); 
/*  removal is complete */ 
return(TRUE1; 

) /*  End of group-dropmember */ 

Figure 4.10: Implementation of the groupdropmember function. 

A member transaction in the cooperative group model is associated with four transac- 

tion control operations: begin ,  j o i n ,  commit, and a b o r t .  Both begin  and a b o r t  opera- 

tions are the same as  the ACID transaction model, while the j o i n  and commit operations 

require additional functionality. Individual member transactions can join a named c o o p  

erative group when they wish t o  share da ta  objects with other transactions in tha t  group. 

Cooperation between the member transactions is specified using ignore-conflict records. 

Since member transactions executing concurrently may interact with each other in unde- 

sirable ways, an application may need t o  specify that  member transactions are adequately 

isolated from each other. This can be accomplished by specifying a restricted set of d a t a  

objects and operations over which conflicts can be relaxed in the ignore-conflict record. 

Conflicts specify how the members' operations cannot be ordered t o  prevent unwanted 

side-effects. The CONFLICT ADAPTER ensures that  the members interact only in the ways 

allowable by the active set of ignore-conflict records, and in that  way guarantees that  the 

operations by the member transactions as a group leave the database in a correct state. 

Thus, the ignore-conflict specifications as a whole identify the allowable interleaving of o p  

erations in the transaction group's history. Intuitively, a history for a cooperative group 

is correct when it only contains conflicts that  conform to  the ignore-conflict specifications. 

Once a member transaction joins s cooperative group, its eventual commit is deter- 

rnined by the commit of the group transaction. When a member transaction executes the 



commit operation, all locks on data  objects acquired by the transaction are transferred t o  

the group transaction, as is the responsibility to  make the effects on da ta  objects perma- 

nent in the database. In this sense, a member transaction only pseudo-commits its results 

when it commits. When a member transaction a b o r t s ,  i t  simply releases all locks that it 

acquired on da ta  objects and the effects of the transaction on those da ta  objects are dis- 

carded. Aborting a member transaction may mean tha t  other member transactions need 

t o  be aborted as well, either because they read the  effects of the  aborted transaction, or 

because the abort caused the history to  become incorrect in some way. This requirement 

is application-dependent and can be easily met by specifying an abort dependency in the 

ignore-conflict record. We synthesize the new j o i n  and commit transaction control oper- 

ations for a member transaction using commands from the metalevel interface in Figures 

4.11 and 4.12. 

boolean-t join-group-procedure(member-name, group-name)< 
member-etrid = getetrid-using-name(member-name); 
group-etrid = getetrid-using-name(group-name); 
set-etranprop(member-etrid, grouptran, IS-MEMBER); 
if (add-member(member-etrid, group-etrid)) 

return(TRUE) 
else 

return(FALSE1; 
3 

Figure 4.11: Implementation of the member transaction join function. 

boolean-t commit-member-procedure(member-name)( 
member-etrid = getetrid-using-name(member-name); 
group-etrid = get,etranprop(member-etrid, groupid); 
member-trid = gettrid-using-namebember-name); 
/* create delegate set, insert all locks being held, then delegate */ 
status = create(member-etrid, commitset, dtor) ; 
status = insert (member-etrid, commitset, all) ; 
status = delegate(member-etrid, group-etrid, commitSet, immediate); 
if (status != success) error(member,etrid, status) ; 
status = delete(member-etrid, commitset) ; 
/* drop the member transaction from the group */ 
set-etranprop(member-etrid , grouptran , NULL) ; 
if group-dropmember(group-etrid, member-etrid) 

commit-tran(member-trid) ; 
return(TRCIE) ; 3 

else 
return(FALSE1; 

1 

Figure 4.12: Implementation of the member transaction commit function. 



4.2.5 Operation Commutativity 

Operation commutativity is the traditional semantic notion used to  determine if two op- 

erations can be allowed to  execute concurrently [Wei88]. When two operations commute, 

their effects on the state of a da ta  object and their return values are the same, irrespec- 

tive of their execution order (for example, two read  operations commute). When using 

operation commutativity for transaction synchronization, a R /W conflicting operation in- 

voked by a transaction is allowed to  execute if it commutes with every other uncommitted 

operation tha t  holds a lock on the da ta  object. Further, if the transaction processing sys- 

tem allows only commuting operations to  execute concurrently, then it prevents cascading 

aborts. 

To implement commutativity we utilize semantic compatibility tables, as described in 

Section 3.3.2, t o  identify which operations on a da ta  object are semantically compatible. 

A semantic compatibility table is typically constructed in advance by the database ad- 

ministrator or  TP systems programmer based on the semantics of the operations. Each 

entry of the table is of the form: [Action, Dependency], where Action is one of: SOK - the 

operations are semantically compatible and the conflict can be relaxed, NOK - the opera- 

tions conflict, or  event - a named event (predicate) that  must be evaluated to  determine 

semantic compatibility, and Dependency is a named transaction dependency that  is t o  be 

recorded between the two corresponding transactions if the  conflict is relaxed. 

As a simple example, consider operations on a bank account d a t a  object for commercial 

banking applications. For this da ta  type we have the operations Deposit ,  Withdraw, 

and Balance. The  Deposit  operation adds a specified amount t o  the account balance, 

Withdraw subtracts a specified amount from the account balance, and Balance returns 

the current value of the account. From the semantics of these operations the TP systems 

programmer can construct an operation compatibility table based on commutativity, as 

illustrated in Table 4.2. Columns in the compatibility table represent operations currently 

holding a lock, while rows represent operations requesting a lock. 

Table 4.2: Operation commutativity for the ACCOUNT data type. 
1 ACCOUNT:OPNAME 

Balance 
Deposit 
Withdraw 

Balance Deposit Withdraw 

S 0 K ; N D  N 0 K ; N D  N 0 K ; N D  

N 0 K ; N D  S 0 K ; N D  N 0 K ; N D  

N 0 K ; N D  S 0 K ; N D  N 0 K ; N D  



4.2.6 Operation Recoverability 

Operation recoverability is another semantic notion proposed to relax conflicts among 

operations, weaker than operation commutativity [BR91]. An operation q is recoverable, 

relative t o  another operation p, if q returns the same value whether or  not p is executed 

immediately before q. For example, a successful push operation on a stack is recoverable 

relative t o  a preceding push operation on the same stack. Even if the preceding push 

operation is aborted and its pushed value is removed from the stack, the pushed value 

and the return value of the second push operation are not affected. Recoverability de- 

mands that  transactions involving p and q commit in the order of invocation of the  two 

operations. When used with lock-based transaction synchronization, recoverability, like 

commutativity, avoids cascading aborts while also avoiding the delay in the processing of 

many noncommutative operations [BR91]. 

As with commutativity, we implement operation recoverability using semantic com- 

patibility tables. This is illustrated in Table 4.3 for an ACCOUNT da ta  object, in which 

the commit dependencies that  arise due t o  recoverability are specified as CD. When the 

CONFLICT ADAPTER is evaluating a R / W  conflict between two extended transactions and 

relaxes the conflict using recoverability semantics, the commit dependency between the 

two transactions will be recorded and tracked through the execution of the transactions 

and used t o  sequence transaction completion. 

Table 4.3: Operation recoverability for the ACCOUNT data type. 
ACC0UNT:OPNAME 11 Balance Deposit Withdraw 

Balance 
Deposit 
Withdraw 

4.2.7 Epsilon Serializability 

Epsilon Serializability (ESR) is a generalization of classic serializability that  relaxes n/w 
conflicts, t o  explicitly allow a bounded amount of inconsistency in transaction processing. 

The amount of inconsistency is given by some measure of the database operations or a 

distance function over the database state space [RP95]. In a commercial banking applica- 

tion, for example, inconsistency would be measured in dollars. ESR enhances concurrency 

by permitting query transactions to  read uncommitted da ta  from a concurrent update 

transaction and by permitting update transactions t o  write to  da ta  items locked by a 

concurrent query transaction. For example, an epsilon transaction (ET) that  can tolerate 



a bounded amount of inconsistency, measured in dollars, can query the balance of bank 

account da ta   object,^ and execute in spite of ongoing concurrent updates t o  the database. 

In the rest of our discussion, we will use the term ET t o  refer t o  both kinds of epsilon 

transactions: query ETs denoted by Q ~ ~ ,  and update ETs denoted by uET. A query 

E T  imports some inconsistency when it reads a da ta  item while uncommitted updates 

on that  da ta  item exist. Conversely, an update E T  exports some inconsistency when it 

updates a da ta  item while query transactions are in progress. Each E T  is associated with 

an inconsiste~icy specification, referred t o  as an €spec, which is divided into two parts 
ET - an import inconsistency limit denoted by EspecimPlim;,, and an export inconsistency 

limit denoted by For ~s~ecf,'$~,,~ > 0 and ~ s ~ e e ~ ' , ~ , ~ ~  = 0, query ETs 

may import inconsistency up t o  ~ . s p e ~ ~ l i , i , .  For  spec^^,^^^, = 0 and rspecE~,imit > 
0, update ETs may export inconsistency up t o  s s p e c ~ ~ l i m i t .  If, however, an E T  both 

imports and exports inconsistency, it may introduce new and unbounded inconsistency 

into the database. Such ETs are the subject of active research and beyond the scope of 

our implementation work. Our focus is on the situation where query ETs run concurrently 

with consistent update transactions. That  is, update transactions are not allowed t o  view 

uncommitted da ta  and hence will produce consistent database states. 

Under ESR, a R / W  conflicting lock request can be relaxed for an extended transaction if 

the resulting inconsistency is within the bounds of both import and export limits. Conflict 

in ESR is formally defined as: 

Definition 4.1 (Epsilon Serializability (ESR) and Conflict) For two extended tmns- 

actions ti  and t j ,  we say that ti epsilon-conflicts with t j  if t i 's lock request for the data 

object R / W  conflicts with the lock held by t j  and 1 S a  f e ( t ; ) .  The safety precondition of an  

extended transaction with respect to performing the operation Oper on data object O b j  is 

defined as follows [RP95]: 

i m p o r t t ,  + Import~inconsistencY~~PerPobj~ 5 ~ ~ ~ e c f ; ~ ~ ~ ~ ~  
S a f e ( t i )  = 

e x p o r t t ,  + e ~ ~ o r t ~ i n c o n s i s t e n c ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~  < f ~ ~ e ~ & , ~ ~ ~  

Importti and exportt; are accumulators which record the amount of inconsistency that has 

already been imported and exported by t i .  And, the value of im~~ort~inconsistency~OPer,o~~~ 

is the maximum amount of inconsistency that ti can import with respect to performing 

operation Oper o n  data object Obj, while e ~ p o r t ~ i n c o n s i s t e n c y ~ ~ ~ ~ ~ , ~ ~ ~ ~  is the maximum 

amount of inconsistency exported by ti performing Oper on data object Obj. 

In our implementation, two inconsistency accumulators are associated with an ex- 

tended transaction that  utilizes ESR for semantic synchronization: import-accum and 

exportnccum, which record the total amount of inconsistency the ET has imported and 



exported. These accumulators are stored in the extended transaction descriptor using 

the metalevel command set-etranprop ( e t r i d ,  key ,value) ,  and retrieved using the met- 

alevel command get-etranprop ( e t r i d  , key).  Similarly, we store the inconsistency spec- 

ification €spec associated with the extended transaction: implimit and explimit,  where 

implimit records the r spec~~ , imi , I ; , ,  and explimit records the r ~ ~ e c ~ ~ , ~ , ~ , .  Since we are 

only concerned with Q~~ (implimit > 0 and explimit = 0) and uET (implimit = 0 and 

explimit > 0), we maintain only importaccum for a query E T  and only export-accum 

for an update ET. To bound inconsistency, then, our implementation must ensure for each 

ET that  import-accurn 5 implimit and exportaccum 5 explimit.  

Our implementation of ESR follows a two-step methodology: detection and relaxation. 

In the first stage, detection, we construct asemantic compatibility table that  identifies R / W  

conflicts detected by the Lock Manager that  potentially may be relaxed under ESR. In 

this semantic compatibility table, presented in Table 4.4, columns represent locks held and 

row locks requested. Under ESR, two concurrent query ETs are always compatible, while 

two concurrent update ETs are incompatible. Accordingly, the semantic compatibility 

table entry SOK indicates that two read LOCK requests are compatible, while the entry 

NOK indicates that  two WRITE lock requests conflict. In both of these cases the CONFLICT 

ADAPTER can immediately determine whether or not t o  relax the conflict and return. 

However, entries marked ESR require further processing. 

Table 4.4: Compatibility relation based on epsilon-serializability (ESR). 
[ ALL:LOCKMODE 11  read(^)  write(^) I 

As described in Section 3.3.2, a lookup in a semantic compatibility table must return one 

of SOK, NOK, or the name of a predicate t o  evaluate t o  determine semantic compatibility. 

Two entries in our compatibility table hold the value ESR, which is the name of the 

predicate we will implement to determine if the conflict can be relaxed - if the predicate 

returns TRUE the conflict will be relaxed. 



The definition of the predicate ESR is the second stage of our implementation, re- 

laxation, in which we attempt t o  relax R / W  conflicts for an ET using its inconsistency 

specification and current import-accum and export-accurn values. There are two interest- 

ing cases in the implementation of the predicate ESR: first, when a QET attempts to  read 

an uncommitted da ta  object that  a uET has modified and, second, when a uET attempts 

t o  update a da ta  object that  a QET has read. Each of these R /W conflicts, identified 

in Table 4.4, can be relaxed as long a s  the resulting inconsistency is within the bounds 

of both import and export limits of the ETs. Figure 4.13 presents our implementation 

of the predicate ESR. For simplicity of presentation, we have used the number of R /W 

conflicts as the inconsistency measure t o  describe our implementation. Below, we discuss 

our implementation of the two special cases: 

Conflict between QET and uET 
A QET has requested a read (R) lock and an active uET holds the lock in write 

mode (w). The QET will export a certain amount of inconsistency to  the transac- 

tion holding the lock, so the predicate tests the import-accum of the Q~~ and the 

export-accum of the conflicting uET t o  see if the inconsistency increment is accept- 

able. If so, the incrementaccum function is invoked t o  increment the appropriate 

€spec values for the interfering transactions and the  conflict is ignored. If either the 

uET's export-accum exceeds its explimit or the import-accum exceeds its 

implimit, then we must prevent the lock from being granted. 

Conflict between uET and QET 

A uET requests a write (w) lock and an active QET holds a conflicting R lock. We 

first check t o  see if the inconsistency introduced by the .VET requesting the lock 

will invalidate the query by the Q~~ holding the lock. If the inconsistency can 

be tolerated, the increment-accum function is invoked to  update the inconsistency 

accumulators and the conflict is ignored; otherwise, we prevent the lock from being 

granted. 



boolean-t esr(tridhold, modehold, lockname, tridreq, modereq) 
/* IN tridhold: identifier of transaction holding lock; */ 
/* IN modeheld: mode lock is being held; */ 
/* IN lockname: logical lock name; */ 
/* IN tridreq: identifier of transaction requesting lock; */ 
/* I N  modereq: mode lock is being requested; */ 
/*  OUT boolean: relax conflict (true) or not (false). */ 

/*  Measure inconsistency by number of conflicts */ 
#define inconsistency 1 

{ 
etridreq = getetrid-using-trid(tidreq); 
etridhold = getetrid-using-trid(tidho1d); 

/* conflict between a query transaction requesting a read lock and an update transaction 
holding a write lock. Verify the resulting zncrease in inconsistency will be tolemted. */ 
if ((modereq == LOCK-MODE-READ) &% (modeheld == LOCK-MODE-WRITE)) 

if valid-tolerance(etridhold, etridreq, inconsistency) ( 
increment~accum(inconsistency, etridhold, etridreq); 
return TRUE; 

1 
else return FALSE; 

/* conflict between an update tmnsaction requesting a write lock and a query transaction 
holding a read lock. Verify the resulting increase in inconsistency will be tolemted. */  
if ((modereq == LOCK-MODE-WRITE) && (modeheld == LOCK-MODE-BEAD)) 

if valid-tolerance(etridreq, etridhold, inconsistency) < 
increment,accum(inconsistency, etridreq, etridhold); 
return TRUE; 

1 
else return FALSE; 

return FALSE; /* Unable to relax conflict. */ 
) /* End o f E S R  */ 

Figure 4.13: Implementation of the predicate ESR. 



boolean-t valid-tolerance(update-etrid, query-etrid, amount) 
/* IN update-etrid: etrid of update ET; */ 
/* IN query-etrid: etrid of query ET; */ 
/* I N  amount: amount of inconsistency being introduced; */ 
/* OUT boolean: within epspec limits (true) or exceed limits (false). */ 

{ 
/* Get current import inconsistency and import limit using 
get-etmnprop, then convert return string(s) to long integer */  
str-import = get-etranprop(query-etrid, importaccum); 
current-import = atol(strimport); 
str-limit = get-etranprop(query-etrid, implimit); 
importlimit = atol(str1imit); 
/*  Now get current export inconsistency and export limit * / .  
str-export = get-etranprop(update-etrid, export-accum) ; 
current-export = atol(str-export); 
str-limit = get-etranprop(update-etrid, explimit); 
export-limit = atol(str1imit); 

/* Perform epsec verzji'cation */ 
if ((current-import + amount) > importlimit) return FALSE; 
if ((current-export + amount) > exportlimit) return FALSE; 
/* Passed espec tests, so return true to indicate valid tolerance */ 
return TRUE; 
) /* End of valid-tolerance */  

Figure 4.14: Implementation of valid-tolerance function. 

Summing up our implementation of ESR, we store three new pieces of information 

(import-accum, export-accumu and either impl imi t  or e x p l i m i t )  with each extended 

transaction. This is accomplished by using the metalevel commands se t -e t ranprop  and 

get -e t ranprop.  The implementation itself is carried out  in two steps: In the first step, 

we constructed a semantic compatibility table, presented in Table 4.4, tha t  identifies R / W  

conflicts that  may potentially be relaxed under ESR. This step is similar to  our imple- 

mentations of commutativity and recoverability, except tha t  the semantic compatibility 

table identifies a predicate to  evaluate t o  determine semantic compatibility. The sec- 

ond step of our implementation was to  define the predicate ESR, presented in 4.13, tha t  

determines if the  conflict can be relaxed using the ET7s inconsistency specification and 

current import-accum and export-accurn values. If the resulting inconsistency is within 

the bounds of both import and export limits of the ET, the inconsistency accumulators 

are incremented and the conflict is allowed. 



void incrementaccum(amount, update-etrid, query-etrid) 
/* IN amount: amount of inconsistency being introduced; */ 
/* IN update-etrid: etrid of update ET; */ 
/* IN query-etrid: etrid of query ET; */ 

{ 
/* Get current import inconsistency value using get-etranprop, 
then convert string to long integer */ 
/* Get current import inconsistency value */  
str-import = get-etranprop(query-etrid, importaccum); 
current-import = atol(strimport); 
/*  Get current export inconsistency value using get-etranprop, 
then convert string to long integer */ 
str-export = get-etranprop(update-etrid, export-accum); 
current-export = atol(str-export); 

/*  Calculate new import inconsistency level and store using get-etranprop */ 
newimport = current-import + amount; 
sprintf(str-import, "%d" , new-import); 
set-etranprop(query-etrid, importaccum, str-import); 
/*  Calculate new export inconsistency level and store using get-etranprop */ 
new-export = current-export + amount; 
sprintf(str-export, "%d" , new-export); 
set-etranprop(update-etrid, export-accum, str-export); 
) /* End of increment-accum */ 

Figure 4.15: Implementation of incrementaccum function. 

There are a number of strategies for measuring the amount of inconsistency tha t  a con- 

flict will introduce, more detailed than the one presented here [WYP92, RP95, LHP941. 
The selection of an appropriate inconsistency measure is dependent on both the appli- 

cation and database [WYP92]. However, once an inconsistency measure has been se- 

lected, the  implementation can be accomplished by simply replacing t he constant value 

inconsistency in the implementation presented here with a function tha t  computes the 

inconsistency measurement. 



4.2.8 Altruistic Locking 

Altruistic locking [SGMS94] is an extension t o  two-phase locking that  is designed to  ac- 

commodate long-lived transactions. Under two-phase locking, short transactions may 

encounter serious delays when a long trarisaction ties up database resources for a signifi- 

cant length of time. In altruistic locking, several transactions can hold conflicting locks on 

a data  object if constraints A L ~  and A L ~  in Table 4.5 are satisfied. In two-phase locking 

a well-formed transaction always locks da ta  objects before accessing them, and does not 

lock any new da ta  objects once it has unlocked a da ta  object. Under altruistic locking an 

application can use the  donate operation, a new extended transaction control operation, 

to  announce that  it will no longer access a given da ta  item, thus allowing other extended 

transactions t o  access it. The donate operation is not an unlock, so the transaction re- 

tains its lock on da ta  objects that  it has donated and is free t o  continue locking other da ta  

objects. Donate operations are optional and are used to  permit extended transactions t o  

lock a donated da ta  object before the original extended transaction unlocks it. 

An extended transaction t j  enters the wake of another extended transaction t; when 

t j  locks a da ta  object that  has been donated, but not yet unlocked, by ti. An extended 

transaction t j  is completely in the wake o f t ;  if all the objects it locks are donated by t;. If 

t j  locks a data  object that  has been donated by ti, then tJ is indebted t o  ti if and only if 

the locks conflict or an intervening lock by a third transaction t k  conflicts with both. For 

example, even though two read locks are compatible the second read becomes indebted t o  

the first when an intervening write occurs between the two reads. The altruistic locking 

protocol presented in [SGMS94] upgrades ail read locks t o  write locks solely t o  preserve 

the indebted relationship between transactions. Instead of altering the locks held by an 

extended transaction, our implementation will maintain several sets for each database 

object obname and transaction t,;, as identified in Table 4.5. 

Table 4.5: Altruistic locking requirements. 

AI, 1 Two extended transactions may not simultaneously hold conficting locks on 
the same data object unless one first donates the data object. 

A L ~  If extended transaction ti is andebted to extended transaction tj ,  then 
t i  must be completely in the wake of t j  until t j  terminates. 

D(OBNAME) Set of transactions that have donated, but not released their lock on obname. 
I N ( O B N A M E )  Set of transactions that readers of obname must be in the wake of. 

W(TI) Set of transactions whose wake that ti is completely within. 

J (Ti) The set of transactions whose wakes ti should be completely within (based on 
A L ~  and A L ~ ) .  



We introduce IN(OBNAME) in our implementation t o  replace both RL(OBNAME) and 

WL(OBNAME) specified in the original model definition [SGMS94]. The framework main- 

tains information on the wake of a transaction (i.e., w (T) and J (T) for each extended trans- 

action) and enforces the indebted constraint A L ~ .  Initially, for all data  objects obname 

and any extended transaction t;, ~ ( t ~ )  = D(OBNAME) = IN(OBNAME) = NULL. By de- 

fault, when an extended transaction begins, it enters the wake of all active transactions; 

transactions are removed and inserted into ~ ( t ; )  based upon the behavior of ti. 

Under altruistic locking a transaction is associated with the usual control operations, 

namely begin, commit, and abort ,  along with a new operation donate. The handler 

for donate is defined in Figure 4.16 - the function simply records that  a transaction has 

donated its lock on a specified da ta  object. 

void donate-procedure(tran-name, lock-name) 
/* IN tran-name: name of the extended transaction donating the lock. */ 
/* IN lock-name: name of the lock being donated. */ 
C 

/* log that the extended transaction donated its lock on lock-name */ 
tran-etrid = getetrid-using-name(tran-name); 
add-member (D [lock-name] , tran-etrid) ; 

1 

Figure 4.16: Implementation of the altruistic locking donate function. 

The framework initializes the structure w(t;) by tracking the set of active extended 

transactions. To register an extended transaction a call t o  the procedure begin-al-tran 

is placed in the handler for the begin control operation. 

void begin-al-tran(tran-name) 
/* IN tran-name: name of the extended transaction. */ 
C 

tran-etrid = getetrid-using-name(tran-name) ; 
/* initialize the wake list W to all active transactions */  
copy-list (copy-active, %active-set ) ; 
while (f irst(copy-active) != null-etrid) ( 
active = first(copy-active); 
add- member(^ [tran-etrid] , active) 
remove (&copy-active, active) ; 

1 
/* initialize J to NULL */  
J [tran-etrid] = NULL 
/* add this transaction to the list of active transactions */  
insert(&active-set, tran-etrid); 

Figure 4.17: Implementation of the begin~l-tran function 



When an extended transaction terminates, it calls complete-tran to update the list 

of active transactions. 

void complete-tran(term-etrid) 
/* IN term-etrid: etrid of the extended transaction that is terminating */  
/*  OUT no values returned */ 
/* Transaction termstrid can no longer have any impact on other extended */  
/* transactions, so update the appropriate W(term-etrid) sets */  
{ 

/* f i r s t  remove t ransact ion from the  ac t ive  t ransact ion l ist  */ 
remove(&active,set, term-etrid);  
/* copy the  ac t ive  t ransact ion list f o r  processing */ 
copy,l ist(copy~active,  &act ive-se t ) ;  
while (f irst(copy-active) != nul l -e t r id)  C 

t r a n e t r i d  = f i r s t  (copy-active) ; 
/* update the  wake list W */ 
i f  member(W [ t ranet r id l  , term-etrid) 

remove(W [ t ranet r id l  , term-etrid) ; 
remove(&copy,active, t r a n e t r i d )  ; 

1 
1 

Figure 4.18: Implementation of the complete-tran function. 

To manage the lists J ( T )  and w(T), a callback to the function lock-after is made 

after a lock is granted; these sets cannot be updated beforehand, as a locking conflict that 

failed to set a lock would incorrectly update this information. In addition, a callback is 

also attached to the unlock function to manage the donate set D(OBJNAME).  

void Iockafter(trantrid, objectname) 
/* IN trantrid: etrid of extended transaction that acquired the lock; */ 
/* IN objectname: name of the data object that was locked; */  
{ 

/* Update the  wake l i s t  J[ tran-etr id]  */ 
t ran-e t r id  = getetrid-using-trid(trantrid) ; 
l i s t - u n i o n ( ~  [tran-etrid] , IN[objectname] , &temp-list ) ; 
J [tran-etrid] = temp-list ; 
/* Update the  wake l i s t  Wctran-etrid] */ 
l i s t - i n t e r s e c t  (W [tran-etr id]  , D Cobjectnamel , &temp-list) ; 
~ [ t r a n - e t r i d ]  = temp-list ; 

1 

Figure 4.19: Implementation of the l o c k d t e r  function. 



void after-unlock(trantrid, objectname) 
/*  IN trantrid: etrid of extended transaction that acquired the lock; */ 
/*  IN objectname: name of the data object that was locked; */ 
{ 

/* Removes downstream transactions from the wake of trantrid */ 
/* and maintains ~N[objnamel and DCobjnamel . * / 
tran-etrid = getetrid-using-trid(trantrid1; 
remove(D Cob jname] , tran-etrid) ; 
remove(IPICobjname1, tran-etrid) ; 
copy-list (copy-act ive, active-set ) ; 
while(f irst(copy,active) != null-etrid) 

worketrid = first (copy-active) ; 
if member(J Cworketrid] , tran-etrid) 

remove (J [worketrid] , tran-etrid) ; 

Figure 4.20: Implementation of the after-unlock function. 

Our implementation of altruistic locking is not complete, however, without some way of 

specifying the  conflicts that  can be relaxed. Entries in the altruistic locking compatibility 

table, presented in Table 4.6, hold the values A L ~  and A L ~ ,  which are the names of the 

predicates we implement t o  determine if a conflict can be relaxed. 

The A L ~  predicate is invoked for all R / W  conflicts on any da ta  object. The predicate 

allows an extended transaction t o  obtain a read or write lock on a da ta  object that  was 

donated, and maintains the indebted relationship. The A L ~  predicate allows multiple 

writers if the conflicting object was donated first. In both cases, predicates A L ~  and A L ~ ,  

an abort dependency is established between the  two extended transactions to  prevent the 

abnormal termination of the donating transaction from introducing inconsistency into the 

database system. 

Table 4.6: Compatibility relation based on altruistic locking. 
ALL:LOCKMODE 

 read(^) 
W r i t e ( W )  

 read(^) Write (w) 
S 0 K ; N D  A L ~ ; A D  

A L ~ ; A D  A L ~ ; A D  



boolean-t all(tridhold, modehold, lockname, tridreq, modereq) 
/* IN tridhold: identifier of transaction holding lock */ 
/* IN modeheld: mode lock is being held */ 
/* IN lockname: logical lock name * /  
/* IN tridreq: identifier of the transaction requesting lock */ 
/* I N  modeheld: mode lock is being requested (not used) */ 
/* OUT boolean: relax conflict (true) or not (false) */ 

etridreq = getetrid-using-trid(tridreq); 
etridhold = getetrid-using-trid(tridho1d); 
/*  check if the lock has been donated by etridhold */ 
if (is-donated(1ockname , etridhold) ) 

/* enter etrid into front of the wake */ 
update-in-set(lockname, etridhold, modehold); . 
return TRUE: 

3 
return FALSE; 
3 

Figure 4.21: Implementation of the predicate A L ~ .  

boolean-t all(tridhold, modehold, lockname, tridreq, modereq) 
/* IN tridhold: identifier of transaction holding lock*/ 
/* IN modeheld: mode lock is being held */ 
/ *  IN lockname: logical lock name */ 
/ *  IN tridreq: identifier of the transaction requesting lock */ 
/* IN modeheld: mode lock is being requested (not used) */ 
/* OUT boolean: relax conflict (true) or not (false) */ 

etridreq = getetrid-using-trid(tridreq); 
etridhold = getetrid-using-trid(tridho1d); 
if (is-donated(lockname, etridhold, modehold)) return TRUE; 
else return FALSE; 
3 

Figure 4.22: Implementation of the predicate A L ~ .  



The  implementation of the support function wake-test, is-donated, and update-inset 

for the  predicates A L ~  and A L ~  is outlined below. 

The function update-inset maintains the indebted relationship by recording which 

transactions access a donated da ta  object in a conflicting (write) mode. 

void updateinset(objectname, tranetrid, modeheld) 

{ 
/*  does this read request conflict with a write lock? */ 
if (modeheld == write-type) 
add-member(1Ncobject-name] , tranetrid) ; 

3 

Figure 4.23: Implementation of the updateinset operation. 

boolean-t wakefest(etrid, lockname, lockmode) 
{ /* Return TRUE if etrid is not completely in the wake of another */ 

/* transaction. Otherwise, return TRUE if etrid remains completely */ 
/* in the wake of JCetridI. * / 
list-intersect (Wcetrid] , D[objname] , &tamp-listi) ; 
list-union( J [etrid] , INCobjname] , &temp_list2) ; 
if subset(temp-listi, temp-list21 
return TRUE; 

else 
return FALSE; 

3 

Figure 4.24: Implementation of the predicate WAKETEST. 

The function is-donated searches the list of transactions that  have donated their lock 

on a da ta  object and returns TRUE if the specified extended transaction is found. 

booleanf is-donated(objectname, tranetrid) 
{ 

/* Check whether the transaction donated this data object */  
if member (D [obj ect-name] . tranetrid) 
return(TRUE) 

else 
return(FALSE); 

Figure 4.25: Implementation of the isdonated operation. 



4.3 Application Development Using Extended Transact ions 

In this section we demonstrate how an application programmer can use the extended 

transaction interface to  implement a transactional application using extended transactions. 

These are not intended as examples of real-world applications, but rather serve t o  illustrate 

the use of the extended transaction interface and the style of application programming 

that  it supports. The first example outlines the implementation of an application using 

an advanced transaction model. The second example outlines the implementation of an 

application using semantics- based concurrency control protocols. 

4.3.1 Programming Using an Advanced Transaction Model 

To motivate the application of an advanced transaction model, consider the requirements 

of CAD support for a team of engineers designing a computer chip. Since the design 

process may take an arbitrarily long time and involve multiple engineers, a t  some point 

in the project the principal engineer might like to  split off responsibility for the design of 

specific subsystems to  component engineers. These component engineers can either join 

their results back into the working chip design a t  a later time! or choose to  commit or abort 

their designs independently. Such requirements are not satisfied by traditional database 

transactions in a straightforward manner, but can be satisfied by the splitljoin transaction 

model easily. The  code fragment below outlines how an application programmer might use 

the split and join operations to  restructure a transaction dynamically t o  release subsystem 

da ta  objects t o  a separate extended transaction, and later join with another transaction 

that  performs quality assurance on the design. 

Begin-Transaction PE-Tran 
begin 

instantiate(PE-Tran, trid) 
select(PE-Tran, splitjoin) 

. . . { data manzpulation ) 

split(PE-Tran, CE-Tran. Subsystem) 

. . . { data manipulation ) 

join(PE-'Ikan, $A-Tran, A L L )  

end 
Commit-Transaction {CAD-design) 



Line 1 declares the  beginning of the principal engineer's transaction, denoted as PE-Tran, 

using the Begin-Transaction command found in the base transaction interface. This is 

significant, because it notifies the transaction management system that  the operations 

between this point and the Commit-Transaction command in line 6 are t o  be executed 

atomically, according t o  the traditional transaction model. Thus, lines 1 and 6 bracket 

the transaction. The purpose of the i n s t a n t i a t e  metalevel interface command in line 

2 is to  notify the Reflective Transaction Framework of the programmer's intention t o  

"renegotiate" the base transaction model. The s e l e c t  command in line 3 details the 

terms of the  renegotiation, selecting the splitljoin model for the transaction. The im- 

portance of the  s e l e c t  command is twofold. First, i t  determines the control operations 

and semantics tha t  are available t o  the transaction. In this example, the  split/join model 

adds two new transaction control operations, namely s p l i t  and j o i n ,  while the begin,  

commit, and a b o r t  commands have the same semantics as the corresponding commands 

in the traditional database transaction model. Second, the s e l e c t  command informs the 

transaction adapters in the Reflective Transaction Framework how t o  process transaction 

events on behalf of this transaction, such as lock request conflicts, transaction dependen- 

cies that  might arise during execution, etc. In line 4 the application programmer uses 

the new extended transaction control operation s p l i t ,  where CE-Tran is the name of the 

transaction tha t  the  component engineer is running and Subsystem is the name of the 

subcomponent that  is t o  be delegated to  the component engineer's transaction. Finally, 

in line 5 the application programmer uses the new extended transaction control operation 

j o i n  t o  merge the  results and resources held by the transaction PE-Tran with an existing 

quality assurance transaction named QA-Tran. 

One can see from this example that  with the exception of the i n s t a n t i a t e  and s e l e c t  

operations, the application programmer simply uses familiar transaction control operations 

t o  code an application. There is no explicit delegation of the locks held on da ta  objects in 

Subsystem, no need t o  explicitly relax the lock conflict tha t  arises during the transfer, and 

no explicit delegation of data  objects held by PE-Tran when the transaction joins with 

the quality assurance transaction QA-Tran. 

Transaction Adapters Behind  the Scenes. Continuing with our CAD example, we 

now examine how transaction adapters work behind the scenes t o  support extended trans- 

action processing on a legacy TP monitor. We begin with the i n s t a n t i a t e  metalevel 

interface command in line 2. During execution, the instantiate command causes con- 

trol t o  be passed t o  the TRANSACTION MANAGEMENT ADAPTER, which first generates an 



extended transaction identifier and then creates and initializes a descriptor for the trans; 

action, reifying initial state for transaction PE-Tran, such as the transaction identifier 

(TRID) and current execution state of the transaction. When completed the TRANSAC- 

TION MANAGEMENT ADAPTER returns control back t o  the base transaction for processing. 

The s e l e c t  command in line 3 also causes control to  be passed to  the TRANSACTION 

MANAGEMENT ADAPTER, which updates the extended transaction descriptor to  contain 

the transaction control operations s p l i t  and jo in ,  specified by the splitljoin advanced 

transaction model. 

Processing resumes on the base TP monitor until the transaction control operation 

spl i t (PE-Tran,  CE-Tran, Subsystem) is processed in line 4. Split is a transaction con- 

trol operation defined in the extended transaction interface. When an application invokes a 

transaction management control operation, the actual code executed is determined by the 

transaction's extended transaction descriptor. Processing the s p l i t  operation, PE-Tran 

first verifies this control operation is permitted and then calls the handler function. As 

defined in Section 4.2.1, the split handler of TRANSACTION MANAGEMENT ADAPTER con- 

firms that  the extended transaction CE-Tran is active, creates a named delegate set, and 

inserts the  name of all da ta  objects in Subsystem. Once the handler is complete, the LOCK 

ADAPTER delegates locks on all da ta  objects in the delegate set from PE-Tran t o  CE-Tran. 

It then directs the CONFLICT ADAPTER to  create no-conflict records in order to  relax lock 

conflicts that  may arise during transfer, and calls the T P  monitor API commands lock  

and unlock t o  transfer the locks. Once the transaction restructuring is complete, the 

TRANSACTION MANAGEMENT ADAPTER returns control to  the TP monitor t o  continue 

base level transaction processing. 

4.3.2 Programming Using SBCC Protocols 

An application programmer can construct semantic compatibility tables for objects that  

are hot spots or concurrency bottlenecks in an application. Once created, applications 

can load these compatibility tables for semantics-based transaction synchronization. To 

illustrate we will continue with our CAD example introduced in the previous section, in 

which a team of engineers are working together to  design a computer chip. During the 

initial design several component engineers define new components for the chip, performing 

lookups on existing components, modifying existing specifications, and deleting outdated 

or unnecessary components. One possible concurrency bottleneck in this activity are 

da ta  objects of type ComponentLog - a container for specifications of the individual 

components in the chip, each identified by a component identifier (key). 

A d a t a  object of type ComponentLog supports five operations: i n s e r t ,  d e l e t e ,  

lookup, s o r t ,  and modify. The operation i n s e r t  adds a new entry of the form (key, 



item) i n t o  the C o m p o n e n t L o g  and r e t u r n s  s u c c e s s ;  if the k e y  already exists i n  the t a b l e  

it r e t u r n s  f a i l u r e .  The o p e r a t i o n  delete  removes the entry with t h e  g i v e n  k e y  f r o m  t h e  

C o m p o n e n t - L o g  a n d  r e t u r n  s u c c e s s ;  if the k e y  is n o t  f o u n d  i t  r e t u r n s  f a i l u r e .  The s o r t  

operation sorts the entries by k e y  v a l u e  in ascending order. T h e  operation lookup searches 

the C o m p o n e n t L o g  f o r  an entry that matches t h e  s p e c i f i e d  k e y  and, if f o u n d ,  r e t u r n s  the 

v a l u e  o f  the item; o t h e r w i s e  i t  r e t u r n s  f a i l u r e .  The operation modify r e p l a c e s  the c u r r e n t  

v a l u e  o f  the item w i t h  the new v a l u e  f o r  t h e  given k e y .  

T a b l e  4.7: Operation commutativity for the COMPONENT-LOG data type. 

I lookup I/ S 0 K ; N D  S0K;ND S 0 K ; N D  S 0 K ; N D  S 0 K ; N D  I 

L0G:OPNAME 1 
insert  
d e l e t e  

I sort  /I NOK;ND NOK;ND NOK;ND SOK;ND NOK;ND I 

insert  de l e t e  lookup sor t  modify 

S 0 K ; N D  S 0 K ; N D  S0K;ND N0K;ND S0K;ND 

S 0 K ; N D  S 0 K ; N D  S 0 K ; N D  N0K;ND S 0 K ; N D  

modify 

I d e l e t e  1 1  SOK;CD SOK;CD SOK;CD NOK;ND. SOK;CD I 

S 0 K ; N D  S 0 K ; N D  S0K;ND N 0 K ; N D  S0K;ND 

T a b l e  4.8: Operation recoverability for the COMPONENT-LOG data type. 
L0G:OPNAME 

insert  

T a b l e s  4.7 and 4.8 i l l u s t r a t e  the c o m m u t a t i v i t y  and r e c o v e r a b i l i t y  properties o f  the 

operations p e r f o r m e d  o n  data objects of type ComponentLog; f o r  simplicity, it i s  a s s u m e d  

that t r a n s a c t i o n s  operate c o n c u r r e n t l y  on d i f f e r e n t  parameters ( k e y s )  on the objects of type 

C o m p o n e n t - L o g .  These o p e r a t i o n  compatibility t a b l e s  are described in f i l e s ,  for e x a m p l e  

u s i n g  a text editor or a g r a p h i c a l  data entry t o o l .  The f o l l o w i n g  code f r a g m e n t  shows h o w  

an a p p l i c a t i o n  programmer c o u l d  l o a d  and activate the tables. 

insert  de l e t e  lookup sort  modify 

S 0 K ; C D  S 0 K ; C D  S0K;CD N 0 K ; N D  S 0 K ; C D  

lookup 
sort  
modify 

S 0 K ; C D  S0K;CD S 0 K ; C D  N 0 K ; N D  S 0 K ; C D  
S0K;CD N 0 K ; N D  S0K;CD S0K;CD N0K;ND 
S 0 K ; C D  S 0 K ; C D  S0K;CD NOK ;ND S 0 K ; C D  



Begin-Transaction CE-Tran 
begin 

instantiate(CE-Tran, trid) 
select (CE-Tran, SBCC) 

load-table(CE-Tran, logcornrn, logcornrntbi, cornrn) 
load-table(CE-Tran, logrecv, logrecvtbl, recv) 
select-table(CE-Tran, logcornrn) 
select-tabie(CE-Tran, logrecv) 
lookup(CID.237, compspec) 

. . . { data manipulation ) 

.,. 
rnodify(CIDB7, cornpspec) 
. . . { data manzpulataon ) 
insert(C1D-109, nullspec) 
... 
. . . { data manipulation ) 

rnodify(CID109, cornpspec) 
end 
Commit-Transaction {CE-Tran) 

The Begin-Transaction command in line 1 declares the beginning of the component 

engineer's transaction, and together with the Commit-Transaction in line 12 brackets 

the transaction. The command i n s t a n t i a t e  in Line 2 creates an extended transaction 

descriptor and registers the transaction with the Reflective Transaction Framework. The 

s e l e c t  meta interface command in line 3 indicates the application's intention t o  use 

semantic information t o  relax lock conflicts. The load-table command in lines 4 and 5 

directs the framework t o  load the specified compatibility tables, logcomm and logrecv (a  

full file pathname could be supplied), for the extended transaction and assigns a unique 

name to  each. The s e l e c t - t a b l e  command in lines 6 and 7 specifies the order in which 

these compatibility tables are to  be applied when attempting t o  relax lock conflicts. 

If a R / W  conflict is detected by the Lock Manager during transaction execution, the 

Lock Manager raises a conflict event and the CONFLICT ADAPTER is invoked for semantic 

compatibility testing. For example, if an uncommitted transaction performs a lookup 

operation (holds a read lock) on the da ta  object compspec and transaction CE-Tran calls 

the modify operation (a write lock request) in line 8, the Lock Manager detects a R / W  

conflict. Since the CONFLICT ADAPTER registered a handler for the event and CE-Tran 

selected a commutativity table t o  relax lock conflicts (Table $.i), the CONFLICT ADAPTER 

performs a table lookup to  determine if the operations are semantically compatible and 



can be executed concurrently. If the operations are semantically compatible (SOK) ,  the 

conflict adapter grants the lock, which enable both transactions t o  access the da ta  object. 

In summary, t o  use semantics-based concurrency control for transaction synchroniza- 

tion, the application programmer must first create compatibility tables for data objects 

that  have been identified as concurrency bottlenecks, and then registers transactions with 

the framework and selects from the available semantic compatibility tables. During a p  

plication execution, the framework permits transactions t o  perform operations on data 

objects without conflicting with other transactions that  hold locks on the object if the se- 

mantic specification relaxes the conflict. In certain cases, where the order of the access t o  

a da ta  object implies dynamic dependencies between transactions, the  framework records 

and tracks transaction dependencies throughout transaction execution. 

Transaction Adapters Behind the Scenes Continuing with our example, we now 

examine how transaction adapters work behind the scenes t o  support semantics-based 

concurrency control. The metalevel interface command instantiate in line 2 performs 

the same initialization as our previous advanced transaction model example. The select 

commands in lines 3 and 4 perform two functions. First, they inform the framework of 

the transaction's intension to  utilize semantic information t o  relax lock conflicts. The 

TRANSACTION MANAGEMENT ADAPTER responds by registering the CONFLICT ADAPTER 

as the  handler for lock conflict events. second, they instruct the CONFLICT ADAPTER t o  

load the specified compatibility tables for the transaction. If the file cannot be found or 

an error occurs loading the file, then the CONFLICT ADAPTER is unregistered and an error 

code is returned. During the execution of CE-Tran, all lock conflict events are handled by 

the CONFLICT ADAPTER. 

During transaction execution, the Lock function performs standard conflict testing for 

all lock requests. If a lock conflict is detected, a conflict event is raised. Information 

passed t o  the CONFLICT ADAPTER in the conflict event descriptor includes the identifier 

of the transaction requesting the lock, the mode in which the  lock is being requested, the 

operation being requested, and a list of the transactions currently holding a lock on the 

d a t a  object. The CONFLICT ADAPTER uses the function relaxconflict t o  implement 

semantic compatibility testing. 

Operationally, Lock and relaxconf lict combine t o  form a two-step semantic conflict 

test. Step one, executed by Lock, performs a standard syntactic conflict test based on the 

update type of the operation (e.g. read or write). Step two, which is performed only when 

a conflict is detected, is executed by the relaxconf lict function which performs semantic 

compatibility testing to  determine if the two operations are semantically compatible. 



The function relaxconflict uses compatibility table(s) that  define compatibility re- 

lations, and an ignore-conflict table that  records conflicts explicitly relazed between trans- 

actions, and will relax a R / W  conflict if either of the following conditions hold: 

1. the semantics of the da ta  object indicate the operation for which the lock is being 

requested is semantically compatible with all uncommitted operations holding a lock; 

2. the transaction holding the conflicting lock has explicitly indicated the transaction 

requesting the lock has permission to  perform the operation. 

This semantic conflict rule effectively states that  an extended transaction may acquire 

a lock if all other transactions owning the lock in an incompatible mode are relaxed by 

either operation semantics or explicit agreement between the transactions. This semantics 

based concurrency control is all performed through extensions of the underlying conflict 

detection and locking mechanism, demonstrating tha t  the use of a conventional locking 

mechanism does not preclude the use of semantics-based concurrency control protocols. 

4.4 Summary 

Building on the  concepts and mechanisms introduced in Chapter 2 and Chapter 3, this 

chapter presented the application of the Reflective Transaction Framework t o  implement 

a number of extended transaction types. These examples vary significantly in their scope, 

structure and style of interaction. The first set of examples consisted of advanced transac- 

tion models tha t  selectively relax the ACID properties in a controlled manner, while the 

second set consisted of semantics-based concurrency control protocols tha t  employ various 

forms of semantic information t o  relax the definition of conflict. Although the behaviors, 

and hence internal organization, of these extended transaction examples differ consider- 

ably, they are all supported within the framework tha t  the Reflective Transaction Frame- 

work defines and implements. Applica.tion and transaction systems programmers can use 

the extended transaction and metalevel interfaces t o  tailor the basic framework mecha- 

nisms t o  match the  needs of their particular applications or domains, while maintaining 

the overall structure of their code and effecting a simple separation between application 

code, framework use? and framework specialization. 



Chapter 5 

Implement at ion and Evaluation 

The previous two chapters presented the detailed design of the  Reflective Transaction 

Framework and demonstrated how it can be used t o  implement a number of extended 

transaction types. To complete the picture, this chapter presents ENCINA/ET, an im- 

plementation of the Reflective Transaction Framework on the commercial TP monitor 

Encina [Tra94a], and an evaluation of the Encina implementation. 

We begin in Section 5.1 with an implementation overview, addressing issues spe- 

cific t o  an Encina implementation, and in Section 5.2 we describe the implementation 

of ENCINA/ET. In Section 5.3 we present an evaluation of ENCINA/ET that  quantifies the 

cost of supporting the extended transaction services, along with a qualitative evaluation 

of the framework design. We conclude in Section 5.5 with a summary of the experience 

gained and lessons learned from the implementation and evaluation effort. 

5.1 Implementation Chapter Overview 

This section presents an overview of ENCINA/ET, an implementation of the Reflective 

Transaction Framework on the commercial TP monitor Encina [Tra94a]. We begin by 

describing the overall architecture and main components of the system. Because many 

of the basic mechanisms of the framework have already received in-depth coverage in 

Chapter 3, we focus on issues specific t o  the Encina implementation. These include internal 

extended transaction representation, connection with the underlying TP monitor, and the 

implementation of key extended transaction services. 

5.1.1 Design of the Encina TP Monitor 

Our implementation of ENCINA/ET is constructed on top of the Encina TP monitor, in 

particular the Encina Toolkit [Tra94b]. The Encina Toolkit, illustrated in Figure 5.1, con- 

sists of transaction middleware service modules that provide the core transaction services 

of the Encina TP monitor, which include: 



Transaction Service Module (TRAN), which provides transaction execution control 

and default transaction control operations (begin, commit, abort) 

Lock Service Module (LOCI<), which provides a logical locking package to  guarantee 

transaction isolation. 

Recovery Service Module (KEC), which provides undo/redo logic required t o  imple- 

ment roll-back after abort and roll-forward after system failure. 

Log Service Module (LOG), which provides write-ahead log support for transaction 

updates and crash recovery. 

Volume Service Module (VOL), which provides logic t o  view multiple physical and 

mirrored disks as a single virtual file. 

In addition, the Encina Toolkit includes the Transactional-C (TRAN-C) library, which 

consists of macros and routines that  enhance ANSI/Standard C for transactional appli- 

cation development. The toolkit also includes the Base Development Environment (BDE) 

library, which provides services such as POSIX threading, file 110, and memory allocation 

to  isolate the toolkit from operating system dependencies. With the exception of VOL and 

LOCK, these transaction services are the  basic building blocks present in most modern TP 
monitors [BerSO, GR93, BN961. 

Figure 5.1: Software modules in the Encina Toolkit. 

TRAN-C and Administration 

Each module in the Encina Toolkit provides access t o  its transaction services and be- 

haviors through a relatively simple and uniform application programming interface (API). 

In addition, each module provides a transaction event callback facility in which an appli- 

cation may arrange for a procedure t o  be called when a selected event occurs during the 

processing of a transaction. These events include transaction initialization, transaction 

preparation, transaction resolution, transaction commit, tra~lsaction abort, lock conflicts, 

and others. The procedure callback is made by an Encina library routine, in a thread 

managed by Encina, when the requested event occurs. From the point of view of the 

application process, the procedure call happens asynchronously. ENCINA/ET uses the 

callback facility extensively to coordinate the execution of a transaction running on the 

TRAN 

Basic Development Environment 

LOCK 
REC 

LOG VOL 



Encina TP monitor with various extended transaction services in ENCINA/ET. In addi-. 

tion, we use the API calls to leverage transaction services of the toolkit to  implement the 

extended transaction services in ENCIN A /ET. 

5.1.2 Design of ENCINA/ET 

ENCINA/ET is implemented as a user-level C library - a collection of functions and an 

associated header file - residing in the same address space as the transactional appli- 

cation. The ENCINA/ET library is modularly structured. Each module corresponds t o  

a specific transaction adapter, t o  allow one t o  experiment with different adapter imple 

mentations. The functions in the ENCINA /ET library implement the extended transaction 

services detailed in Chapter 3, and are linked t o  the  Encina Toolkit so they can invoke 

Encina transaction management functions. The relationship between ENCINA/ET and the 

transactional application is illustrated in Figure 5.2. Note that  ENCINA/ET is actually 

linked t o  modules in the Encina Toolkit, but from the application program point of view 

all communication is through the Encina TP monitor. 

Transactional ~ ~ ~ l i c a t i o n  
5 

f 

Encina/ET 
\ 

f \ 

Encina Transaction Processing Monitor 
\ / 

Figure 5.2: Relationship between applications, ENCINA/ET and Encina TP monitor. 

Figure 5.2 above shows that  the extended transaction library isolates the ENCINA/ET 
library from the application - programmers access extended services through available 

extended transaction control operations. The figure also shows that  both ENCINA/ET and 

the application itself can access the resources of the underlying Encina TP monitor. 



5.1.3 Design of the Metalevel Interface 

An underlying principle of our metalevel interface was tha t  it should be as small as possi- 

ble. Specifically, the number of operations in the metalevel interface was kept t o  a mini- 

mum. Each argument of an operation expresses some real information that  the extended 

transaction service needs from the programmer t o  perform its function. The programmer 

should never have t o  pass information if the extended transaction service can determine 

the value. For example, when an application invokes the ignoreconf l i c t  command, the 

only argument required is the name of t,he cooperative transaction - the identity of the 

extended transaction creating the  ignore-conflict record is simply the one invoking the 

corn m and. 

The "minimalist" principle outlined in the preceding paragraph advances our goal of 

ease of use and simplicity. Unfortunately, it conflicts with our internal use of metalevel 

operations. In our implementation of ENCINA/ET we make use of operations from the 

rnetalevel interface to  implement extended transactions services. In these cases it is not 

always possible t o  determine the default value(s) correctly. For example, when the LOCK 

ADAPTER is performing a lock delegation, it must establish an ignore-conflict relationship 

between the two transactions involved in the delegation. There is no way to  determine the 

callee, so t o  guarantee that  the values are set correctly, the  LOCK ADAPTER must provide 

the identity of both extended transactions to  the ignoreconf l i c t  command. 

Our approach in ENCINA/ET is to  provide two versions of metalevel operations for 

which we would like default argument values. The simple version always uses the de- 

f a u l t ( ~ ) .  The extended version h a s  the same name as the simple version followed by 

the characters "L?", and it allows the programmer t o  specify the argument's value in 

question. For example, the extended version of the i g n o r e c o n f l i c t  command, called 

ignoreconf l i c t 2 ,  requires the callee t o  specify both transactions in the ignore-conflict 

relationship. This approach increases the number of constructs in the library, but reduces 

the number of arguments in frequently used operations. The net result is that system 

programmers using the metalevel interface to implement new extended transactions gen- 

erally have fewer arguments t o  worry about and their code is much neater. Programmers 

using the metalevel interface t o  implement extended transaction services, such as delega- 

tion, semantic transaction synchronization, and transaction execution control, have the 

uecessary power t o  do so. 



5.2 Implementation of ENCINA/ET 

This section presents the implementation of ENCINA/ET, beginning with a description of 

the key da ta  structures. As our implementation discussion proceeds, we shall identify how 

these structures are used t o  implement specific extended transaction functions. Following, 

in subsections 5.2.2 - 5.2.4, we describe the implementation of key extended transaction 

services. This presentation parallels our framework design discussions presented in Section 

3.3. Throughout these discussions we identify the Encina API commands, callbacks, 

and functionality that  we build on in our implementation. In this sense, we stress the 

boundaries between ENCINA/ET and the Encina TP monitor, identifying the features 

that  are important for our implementation. 

5.2.1 Extended Transaction Data Structures 

The implementation of the internal representations of extended transaction structures is 

very important t o  overall system performance and resource consumption. In this section 

we describe the  main data  structures in ENCINA/ET, illustrated in Figure 5.3. 

adaptrep 

etrep 
I I 

delegate set 
name 
dtee 
dtor 

dtrpe 
inprogress 

rap  
count 

1 lockname Iwknarne lockname lockname u-w lock list 

Figure 5.3: Main data structures in the internal extended transaction representation. Each 
rectangular box corresponds to  a major data item and the shaded areas represent data  structures 
that are further explained in subsequent discussions. 



Main Data Structures 
To centralize data management, all information for the transaction adapters in ENCINA/ET 

is stored in a structure called adaptrep, while all important information for an extended 

transaction is stored in a structure called etrep.  

Extended Transaction Dependency Set 
The extended transaction dependency set, etranDepSet, records the dependency 

graphs used to support transaction execution control. Entries are created in the 

etranDepSet structure using the metalevel command define-dependency. Our 

current implementation of ENCINA/ET maintains two dependency graphs; one for 

commit dependencies (CD) and another for abo'rt dependencies (AD) between ex- 

tended transactions. Internally, etranDepSet is represented by an array in which 

each entry holds a distinct dependency graph. The internal representation of the 

individual dependency graphs is described further in Section 5.2.4 and illustrated in 

Figures 5.7 and 5.8. 

Semantic Compatibility Tables 
The semantic compatibility table set, CompTblSet, stores semantic compatibility 

tables loaded by an application. It is a key data  structure in the implementation 

of semantic transaction synchronization. The internal representation of the tables 

stored in CompTblSet is described in Section 5.2.3 and illustrated in Figure 5.5. 

Cooperative Transaction Set 
The cooperative transaction set, CoopTrSet, stores the active ignore conflict records 

created between extended transactions. It is a key da ta  structure in the implemen- 

tation of semantic transaction synchronization. The internal representation of the 

ignore conflict records recorded in CoopTrSet is described further in Section 5.2.3 

and illustrated in Figure 5.6. 

Miscellaneous Data 
There are miscellaneous da ta  items mainly used by internal ENCINA/ET operations. 

One example is the wait-for graph constructed for detecting transaction deadlock. 

Extended Transaction Table 
The most important adaptrep component is the table of extended transaction de- 

scriptors, etran-tbl .  Each etran-tbl  entry holds the internal representation of an 

extended transaction (etrep) .  In ENCINA/ET,  etran-tbl  is represented as an ar- 

ray of structures, each entry of which contains a pointer to an extended transaction 

descriptor etrep.  Each e trep  structure contains the following fields: 



- etrid: a unique extended transaction identifier, represented by an integer. 

that also serves as an index into etran-tbl. There are three support func- 

tions: new-etrid0 generates an etrid value by locating an available entry in 

etran-tbl; create-etrep(etrid1 allocates and initializes an etrep structure; 

and delete-etrep(etrid) frees the space allocated to an entry no longer in 

use. 

- tid: storage location for the underlying Encina transaction identifier of type 

tran-tid-t. The value is set using the Encina TRAN module call get- t id0 

when the application issues the metalevel command instantiate (name). 

- name: a string variable that records the name assigned to the extended trans- 

action by the application. Application programs use this name in performing 

extended transaction control operations, such as forming transaction depen- 

dencies, establishing ignore-conflict relationships, etc. The support function 

getetrid-usingname(name) searches the etrep entries in etran-tbl and re- 

turns the etrid (location) of the extended transaction matching the name, or 

indicates that it was not found. 

- state: an enumerated type consisting of the values {initiated, active, pending, 

committed, aborted) that records the transaction state. 

- type: an optional transaction type, internally represented a s  a character string. 

The support functions set-type(name , type) and get-type(name1 set and get 

this value, respectively. 

- internalstate: an optional application specific transaction state, internally 

represented as a character string. The support functions setstate(name, 

s tate)  and get -state (name) set and get this value, respectively. 

- eventlist: a collection of transaction management events associated with the 

extended transactions; essentially, this defines the interface applications can 

use to access extended transaction functionality. An eventlist is represented as 

a linked list of event descriptors. Each event descriptor contains a string that 

identifies the name of the event, a linked list of guards (predicates) that are 

represented as strings, a pointer to the function that serves as the handler for 

the event, an enumerated type variable that characterizes the event execution 

properties, and, finally, a boolean value that indicates whether the event is 

triggerable. 

- sbcc-enabled: a boolean variable t.hat indicates whether the application in- 

tends to use semantic transaction synchronization for the extended transaction. 



After sbcc-enabled is set to  TRUE, the CONFLICT ADAPTER is called when a 

lock coriflict is detected for the transaction. 

- delegate-enabled: a boolean variable tha t  indicates whether the extended 

transaction can delegate locks to other extended transactions. 

- acquire-enabled: a boolean variable that  when set t o  TRUE indicates that  

the extended transaction can acquire locks on delegated da ta  objects. 

- dependency-enabled: a boolean variable that  indicates whether the ex- 

tended transaction can form and participate in transaction dependencies. Af- 

ter dependency-enabled is set t~ TRUE, the  TRANSACTION MANAGEMENT 

ADAPTER scheduler is called when the transaction attempts t o  execute trans- 

action significant events. 

- sbcc-policy: sources t o  be checked by the CONFLICT ADAPTER in an attempt 

t o  relax a R / W  lock conflict for this extended transaction. Each source identifies 

a compatibility table class name, or the keyword "ignoreconflict" that indicates 

that  records in the CoopTrSet are to  be used. The internal representation of 

sbcc-policy is a linked list of strings. 

- delegate set: stores information pertaining t o  the active delegate sets created 

by the extended transaction. It is the main da ta  structure in the implemen- 

tation of transaction restructuring. Its internal representation is presented in 

Section 5.2.2 and illustrated in Figure 5.4. 

- proplist: a list for associating property d a t a  with an extended transaction, as 

illustrated in the implementation of ESR presented in Section 4.2. Property 

da ta  is a list of (key, value) pairs. Property values are assigned and retrieved us- 

ing set-etranprop(etrid, key, value) and get-etranprop(etrid, key), 

respectively. Internally, proplist is represented as  a linked list of structures 

that  contain a key and value field, both of which are string variables. 

5.2.2 Implementing Transaction Restructuring 

Initializing an Extended Transaction To use the services of E N C I N A ~ E T ,  an 

application must first register a transaction using instantiate (name). The TRANSAC- 

TION MANAGEMENT ADAPTER locates an open position in the extended transaction table 

etran-tbl using new-etrid0 and creates an extended transaction descriptor etrep us- 

ing create-etrid(etrid). The newly created etrep structure is initialized, the necessary 

transaction callbacks are registered, and the state of the extended transaction is set t o  

initialized. Specifically, the TRANsACTlON MANAGEMENT ADAPTER issues the following 

operations: 



create and initialize extended transaction descriptor. . . 
etrid = new-etrid() 
TID = getTID0 
etrepptr = create-etrep(name,TID) 

status = insert-etrep(etrid,etrepptr) 
status = tran-CallBeforeAbort(TID,etzvent) 
if (status == TRANSUCCESS) then continue else return(status ) 
status = tran-CallBeforeCommit(TID,etsvent) 
if (status == TRANSUCCESS) then continue else return(status) 
status = tranXallAfterFinished(T1D ,etsvent) 
if (status == TRANSUCCESS) then continue else return(status) 
setstate(etrid, initialized) 

return(success) 

In line 1 new-etrid0 is used t o  locate an available entry in the extended transaction 

table etran-tbl. In line 2 the current transaction's TID is obtained using the Encina 

getTid function. Then, in line 3 create-etrep0 allocates space for the extended trans- 

action descriptor, storing the name of the extended transaction and the TID in the newly 

created extended transaction descriptor.  he extended transaction descriptor is then in- 

serted into the  table etran-tbl using insert-etrep. 

Next, the Encina callbacks are registered for the extended transaction. Line 5 registers 

the TRANSACTION MANAGEMENT ADAPTER event handling function et-event as the call- 

back function t o  be executed before transactionTID is aborted. Similarly, line 7 registers 

et-event as the callback function to  be executed before transactionTxD commits, and line 

9 registers et-event as the function that  is to  be executed after  transaction^^^ has corn- 

pleted (i.e., Encina commit or abort processing is complete). Lines 6 ,  8 and 10 perform 

error checking using the Encina defined constant TRANSUCCESS. Finally, the extended 

transaction s ta te  is set to  initialized in line 11 using s e t s t a t e  and in line 12 the function 

instantiate returns. 

The tran-CallAfterFinished callback might appear redundant from the extended 

transaction processing point of view. However, there are callbacks in the Encina Recovery 

Service that  developers may wish to  utilize a t  a later date. The tran-CallAfterFinished 

event serves as notice that  transaction execution is truly complete, and a t  that  point 

the extended transaction descriptor can be removed from the extended transaction table 

etran-tbl. Together, these three callbacks effectively enable the TRANSACTION MAN- 

AGEMENT ADAPTER t o  track the execution of a transaction from the time an application 

issues the instantiate command until the time the transaction terminates and its ex- 

tended transaction descriptor is deleted. 



Transaction Restructuring As described in Section 3.3.1, the LOCK ADAPTER pro- 

vides extended transactions with the ability t o  restructure dynamically, by delegating 

ownership of some or all of the acquired locks on da ta  objects. To implement transaction 

restructuring, the  LOCK ADAPTER utilizes the services of the Encina LOCK service module. 

Specifically, ENCINA/ET includes the file lock/lock.h, which contains LOCK da ta  type and 

function interface declarations, and is linked t o  the library 1ibEncServer.a which contains 

LOCK service functions. The primary data  structure in the implementation of transaction 

restructuring is the delegate set, which is illustrated in Figure 5.4. 

TYPE 

delset-type: STRUCT; 

name: char*; 

dtee: etrid; 

dtor: etrid; 

dtype: enumerated type, one of ' 'immediate' ' or ' 'deferred' '; 
inprogress: boolean; 

resp: enumerated type, one of ' 'dtee'  ' or ' 'dtor' I; 

count: integer; 

locklist: list of lockname-t; (* Encina Lock Manager data type *) 
end; (* d e l s e t - t y p e  *) 

Figure 5.4: Basic data structure for a delegate set. 

The implementation of operations that  c r e a t e  and d e l e t e  a delegate set, along with 

operations t o  i n s e r t  and remove the names of data  objects from a delegate set is straight- 

forward. Of interest, however, is the implementation of the d e l e g a t e  operation and how 

it  interacts with the Lock Manager in the Encina Toolkit. In the paragraphs below we 

detail our implementation of d e l e g a t e  and its supporting guards. 

To perform a d e l e g a t e  operation, of the form de lega te l l  ( t 2 ,  d e l s e t ,  d e l t y p e ) ,  

the LOCK ADAPTER must first determine if the operation is well-formed. The first step 

is to  evaluate ( ( S t a t e ( t l ,  Active) == TRUE) AND ( S t a t e ( t 2 ,  Active) == TRUE)) ,  

which tests tha t  both extended transactions are running - otherwise, a call t o  the Encina 

Lock Manager would result in an application runtime error. The next step is t o  evaluate 

((Delegate_Enabled(tl) == TRUE) A N D  (AcquireEnabled(tz) == TRUE)), which verifies 

that  delegation has been appropriately enabled for both extended transactions. Next, we 

evaluate ( ( d e l t y p e  == immediate) OR (del type == defe r red) ) ,  t o  confirm the type of 

delegation has been correctly set. These tests are implemented using simple functions that  

either look-up information in the. extended transaction table or test local call variables. 



The final step to  determine if delegate  is well-formed is to verify that t l  holds a lock 

on each data object in de l se t .  Otherwise, a call to the Encina Lock Manager to release 

a lock not held by the transaction would result in an application runtime error. This test 

is facilitated by the Encina Lock Manager command lock-GetTranInfo(TIDfl), which 

returns a list of the locks held by a transaction, and for each lock its mode (lockmode), 

the space in which the lock resides (lockspace), and its duration (duration). The LOCK 

ADAPTER does not interpret these values, but uses them later in Lock Manager calls that 

carry out the actual lock transfer. It simply uses the list of its locks t o  verify that each 

lockname in the delegate set is present in the list. 

To avoid introducing transaction deadlock, the LOCK ADAPTER first verifies the lock 

delegation will not introduce a deadlock. Deadlock detection is implemented by the 

function cycleFree, which returns TRUE if no cycles are detected and FALSE if a cy- 

cle (deadlock) is detected. cycleFree effectively constructs the wait-for graph that will 

result after the delegation, "marking" transactions as visited by recording their identifier 

(TID) in the list visited. It uses the Lock Manager functions lock-GetTranInfo(TIDtl) 

and lock-GetLockInf o (lockmode, lockname, lockspace). The latter returns the list 

of transactions waiting for a lock on a specific data object. The cycleFree function is 

outlined below: 

cycleFree(t;:tran-tid-t, de1set:delset-type) 

Check whether transaction t; is waiting for any locks using l o c k ~ r a n - w a i t f o r ( ~ 1 ~ ~ ~ ) .  

Return TRUE if t; is not waiting for any locks. 

If firstpass then insert the name of each data object in the delegate set (delset) into 

the list holdlock and set firstpass to FALSE, else gather the list of locks t; holds using 

lock4etTranInf  o (TIDti) and insert them into holdlock. 

a If holdlock is empty then return TRUE,  else for each lockname in holdlock and each 

transaction t j  waiting for a lock on lockname do: 

- If the waiting transaction's identifier (TIDtj) is in the list visited then a cycle 

has been detected, so return FALSE. 

- Recursively call cycleFree(t j ,  n u l l l i s t )  for the waiting transaction entry. 

- If the recursive call returns FALSE then propagate the result by returning FALSE, 

else add the transaction identifier (TIDtj) to the list visited. 

Return TRUE. All waiting transactions have been checked, no cycles were found. 



Once the LOCK MANAGER has determined the delegate operation is well-formed and 

that  no transaction deadlocks will result, it can proceed with the actual transfer. For each 

lockname identified in locklist of the delegate set, the following operations are performed: 

1. Prepare for a lock conflict. The lock transfer will require two extended transactions 

t o  lock the  da ta  object concurrently, potentially resulting in a lock conflict. Thus, we 

first create an ignore-conflict record by issuing the CONFLICT ADAPTER COMMAND: 

ignoreconf lict2(tl, tz , lockname, null, null, null, lockname), where the 

name of the lock being transferred is used as the handle for the ignore-conflict record. 

2. Transfer lock ownership. First, ownership of the lock is granted t o  extended trans- 

action t2, by issuing the Encina Lock Manager command lockAcquire(TIDt2, 

lockmode, lockname, lockspace, duration). A R / W  conflict will be detected 

by the Lock Manager, but relaxed by the Conflict Adapter using the  ignore-conflict 

record created in step 1. Then, the lock is released from t l  by issuing the Encina Lock 

Manager command lockJtelease(TIDtl, lockmode, lockname, lockspace). 

3. Record for undo. Insert the lockname in a temporary da ta  structure called the 

undolist. If an error is encountered during subsequent lock transfers, this transfer 

can be rolled-back using undolist. 

4. Clean up. Remove the ignore-conflict record using the CONFLICT ADAPTER COM- 

MAND: removeIC2(tl, lockname). 

5. Update the  dependency graphs. Adjust the CDREL and ADREL graphs to  reflect 

the  delegation of the lock on lockname: Any (ti,  tk) edge tagged with lockname 

becomes a ( t j ,  t k )  edge tagged with lockname. Similarly, any (tk, ti) edge tagged 

with lockname becomes a (tk, t j )  edge tagged with lockname. 

5.2.3 Implementing Semantic Transaction Synchronization 

As described in Section 3.3.2, the CONFLICT ADAPTER provides a transaction synchro- 

nization service that  allows an application to  define and select semantic compatibility 

definitions for individual extended transactions. To implement semantic transaction syn- 

chronization, we utilize the services of the Encina LOCK service module. Specifically, the 

CONFLICT ADAPTER module of ENCINA/ET includes the file lock/lock.h during compila- 

tion, which contains the LOCK data  type and function interface declarations and is linked 

to  the library l ibEncServer.a,  which contains LOCK service functions. . 



Semantic transaction synchronization is implemented, in part, using the Encina Lock- 

Manager conflict callback facility. The conflict callback facility allows an application t o  

specify a function t o  call when a R / W  lock conflict occurs. When a lock conflict is detected, 

the Lock Manager invokes the registered function, passing it arguments pertaining t o  

the lock conflict. If the function returns (votes) TRUE, the Lock Manager will ignore 

the conflict and grant the lock request; otherwise the Lock Manager will let the conflict 

stand. Thus the conflict callback facility enables the CONFLICT ADAPTER to  participate 

in resolving R / W  conflicts. 

The function relaxConflict implements semantic transaction synchronization in 

E N C I N A ~ E T .  It is not, however, automatically registered as the  conflict callback function 

for an extended transaction. Instead, relaxconf l i c t  is registered only when an applica- 

tion calls se tp t l  (sbcc-enabled, TRUE) .  In response the  CONFLICT ADAPTER registers 

the relaxconf l i c t  for t l  using the command 1ockRegis terConf  l i c t c a l l b a c k ,  as il- 

lustrated below. 

sbcc-enabled has been set to true.. . 
s tatus  = 1ockRegisterConf lictCallback(TIDtl, TRUE, relaxconf l i c t )  (1) 
i f  ( s tatus  == LOCK-SUCCESS) then continue e l s e  return(status1 (2) 

Line 1 registers the CONFLICT ADAPTER function relaxConflict as the function to  call 

when the Lock Manager detects R / W  CONFLICTS involving t l .  The argument TIDtl is the 

transaction identifier of t l ,  and the argument TRUE indicates that  the registered function, 

relaxConflict, will vote on the decision t o  ignore the conflict. Line 2 performs error checking 

using the Encina defined constant L O C K ~ U C C E S S .  When rel~xConflict is invoked, it will 

applies available semantic information and returns either TRUE or FALSE to the Lock 

Manager, indicating whether t o  ignore the conflict or not. 

As stated in our design of semantic transaction synchronization, presented in Section 

3.3.2, the Lock Manager passes the following information t o  the CONFLICT ADAPTER when 

a conflict is detected: holdTID - identifier of the transaction holding the lock, hold,, - 

operation currently active, holdmod, - mode of the lock being held, lockNarne - logical 

name of the lock, r e q u e s t ~ r ~  - identifier of the transaction requesting the lock, request,, 
- operation pending, and requestmod, - mode of the lock being requested. The Encina 

Lock Manager does not store operation names in the lock table, nor does it pass operation 

names in lock requests. Thus, i t  cannot include operation name in the conflict callback t o  

relaxConflict. As a result, the relaxConflict can only apply semantic information pertaining 

t o  lock modes and transaction identifiers to  determine if the conflict can be relaxed. 



The implementation of relaxConftict is built around two main da ta  structures: a col- 

lection of semantic compatibility tables and a set of ignore-conflict records stored in a 

cooperative transaction set. As described in Section 3.3.2, a semantic compatibility table 

specifies for a specific d a t a  object objname whether an operation op; can be executed while 

operation opj is uncommitted. The value of each (op;,  opj)  entry is of the form: [Action, 

Dependency], where Action is one of: soK - the operations are semantically compatible 

and the conflict can be relaxed, NOK - the operations conflict, or event - a named event 

(predicate) that  is evaluated to  determine semantic compatibility, and where Dependency 

is a transaction dependency that  is t o  be recorded between the two corresponding trans- 

actions if the conflict is relaxed. 

In ENCINA/ET, compatibility tables are stored in a single table, referred t o  in Fig- 

ure 5.3 as CompTblSet. Each entry in CompTblSet stores a unique compatibility table, 

as illustrated in Figure 5.5. Semantic compatibility tables are loaded and deleted from 

the CompTblSet using loadTbl(pathname:string, name:string, c1ass:string) and 

removeTbl (name : string), respectively. 

TYPE 

comptbl-type: STRUCT; 

name' char*; (* name of this table *) 
class: char*; (* semantic class *) 
lockname: char*; (# keyword ALL means this table applies for all data objects #) 

entry: pointer to  entry-type; (* linked list of table entries *) 
end; (* comptb le - t ype  *) 

entry-type: STRUCT; 

hold: lock-mode-t; (* mode lock is being held *) 
request: lock-mode-t; (* mode lock is being requested *) 

action: enumerated type, one of SOK, NOK or ESR; 

depname: enumerated type, one of  N D ,  AD or CD; 

next: pointer to entry-type; 

end; (* e n t r y - t y p e  +) 

Figure 5.5: Basic data structures for semantic compatibility table. 

The second structure used to  store semantic information is the cooperating transaction 

set, referred t o  in Figure 5.3 as CoopTrSet. CoopTrSet is implemented as an array of 

ignore conflict records, illustrated i n  Figure 5.6. 



TYPE 

icrecord-t ype: STRUCT; 

creator: etrid; 
cooptran: etrid; 
lockname: char*; 
event: char*; 
depname: enumerated type, one of ND, AD or CD; 
handle: char*; 

end; (* acrecord-type *) 

Figure 5.6: Data Structure for an ignore-conflict record in the cooperative transaction set. 

The  field creator is the identifier of the transaction tha t  created the  ignore-conflict record, 

cooptran is the identifier of the transaction it will allow conflicting lock requests, lock- 

name(optiona1) specifyies the data object CoopTran can access, event (optional) speci- 

fyies the predicate to  evaluate t o  determine compatibility, depname (optional) specifies a 

dependency t o  record if the conflict is relaxed and, finally, handle (optional) specifies a 

unique name for the ignore-conflict record. 

On receiving a conflict event, relaxConj?ict will use these two da ta  structures t o  deter- 

mine if the R / W  conflict can be relaxed and the lock on the da ta  object can be granted t o  

the requesting transaction. In accordance with the Semantic Conflict Rule, described in 

Section 3.3.2, the conflict can be relaxed (i.e., is semantically compatible) if either a com- 

patibility table indicates the operation for which the lock is being requested is semantically 

compatible with the uncommitted operation holding the lock, or the transaction holding 

the lock has explicitly indicated that  the transaction requesting the lock has permission 

t o  perform the operation. The function relaxConftict returns TRUE as soon as it finds 

one source that relaxes the conflict or returns FALSE if no source relaxes the conflict. A 
high-level description of the relaxConflict function is outlined below. 

BEGIN relaxConflict 
I N  tidhold: identifier of transaction holding lock; 
I N  modehold: mode lock is being held; 

I N  lockname: logical lock name; 

I N  tidreq: identifier of transaction requesting lock; 

I N  modereq: mode lock is being requested; 

etridreq = getetridfrom-tid(tidreq); 

etridhold = getetrid-from-tid(tidho1d); 



namereq = getnamefrom-etrid(etridreq); 
namehold = getnamefrom-etrid(etridho1d); 

Get the list of policynames from the sbcc-policy field of the requesting transaction descriptor. For 

each policyname listed do: 

If (policy-name == ignoreconflict) then 

- Search the ignore-conflict records in CoopTrSet for a match, using etridhold, etridreq, 
and lockname. If a match is found then: 

1. Check the event field of the ignore conflict record to see if an event (predicate) 
name is specified. If no event is specified go on to the next step, otherwise eval- 

uate(event). If the predicate returns TRUE then go to the next step, otherwise 

continue search; 

2. Check the dependency name field of the ignore conflict record to see if a transac- 
tion dependency needs to be recorded. If not, then return(~RuE); 

3. Attempt to form the dependency using the command f ormdependency2(depname, 
namereq, namehold, lockname). If successful then return(~~u~), otherwise 
continue search; 

Else for each table in CompTblSet where ((policyname == tab1e.cla.s~) AND ((table.1ockname 
-- -- lockname) OR (table.lockname == ALL)) do 

- Search the entries in the compatibility table for a match, using modehold and modereq. 
If a match is found then: 

1. Check the event field of the compatibility table entry to see if an event (predicate) 
name is specified. If no event is specified then go on to the next step, otherwise 
evaluate(event). If the predicate returns TRUE then go to the next step, otherwise 

continue search; 

2. Check the dependency name field of the ignore conflict record to see if a transac- 
tion dependency needs to be recorded. If not, then return(T~u~); 

3. Attempt to form the dependency using the command f ormdependency2 (depname , 
namereq, namehold, lockname). If successful then return (TRUE), otherwise 

continue search; 

~ ~ ~ u ~ ~ ( F A L s E ) .  A11 sources checked, unable t o  relax conflict. 
END (* reloxConflict *) 



5.2.4 Implementing Transaction Execution Control 

To implement transaction execution control, the TRANSACTION MANAGEMENT ADAPTER 

utilizes the transaction service calls and callback facility of Encina T R A N  service module. 

During compilation, ENCINA/ET includes the file tran/tran.h, which contains TRAN data 

type and function interface declarations, and is linked t o  the library 1ibEncina.a which 

contains TRAN service functions. 
Transaction event scheduling is implemented by the function schedule-et. An applica- 

tion declares its intension t o  use event scheduling for an extended transaction by calling 

setpt l  (enabledependency , TRUE). Once transaction dependencies have been enabled, 

schedule-et is called each time an extended transaction 'raises an  event. Specifically, when 

the tran-CallBef oreAbort or tran-CallBef orecommit callback is raised, the function 

tran-event will first invoke schedule-et t o  determine if the event can be processed. 

To demonstrate the ability of schedule-et t o  coordinate the execution of extended 

transactions, we consider two well-known transaction dependencies, commit dependencies 

and abort dependencies. The main da ta  structures used t o  implement schedule-et are 

transaction dependency graphs. 

Commit Dependency Graph The graph, CDREL, keeps track of the commit depen- 
dencies between extended transactions. Its vertices correspond t o  extended transactions. 

An edge exists from t; t o  t j  if t j  is commit dependent on t;, and this edge is tagged with 

the name of the data  object that  caused the dependency. 

Abort Dependency Graph The graph, ADREL, keeps track of the abort dependencies 

between extended transactions. Similarly, its vertices correspond to  extended transac- 

tions, and an edge exists from t; t o  t j  if t j  is abort dependent on t;. Each edge is tagged 

with the name of the data  object that  caused the abort-dependency relation t o  form. 

In our current implementation, the dependency graphs used for transaction execu- 

tion control are stored in the structure etranDepSet. The internal representation of 

etranDepSet is an array of dependency graphs, the structure of which is illustrated in 

Figure 5.7. Each entry in etranDepSet records the unique name of the dependency, 

the type of the dependency (either CAUSAL or ORDER) the  transaction significant events 

(BEGIN, COMMIT or ABORT) and an array of structures that  records the edges of the 

dependency graph, detailed in Figure 5.8. 

A transaction dependency type is created using the TRANSACTION MANAGEMENT 

ADAPTER command def ine-dependency (dependencyname , eventname,, eventnameb , 
deptype). This command searches etranDepSet to  verify that  the dependency name is 



TYPE 

dependency-t ype: STRUCT; 
depname: char*; 
deptype: enumerated type, one of CAUSAL, ORDER; 

preevent: enumerated type, one of BEGIN, COMMIT, ABORT; 

postevent: enumerated type, one of BEGIN, COMMIT, ABORT; 

dependency: array of dependency-entry-type; (* indexed by etrid *) 
end; (* dependency - t ype  *) 

Figure 5.7: Data structure for an extended transaction dependency graph. 

unique, then creates a new entry and initializes the name, dependency type, and event 

fields. For example, a commit dependency graph is created with def ine-dependency (CD , 
COMMIT, COMMIT, ORDER).  

TYPE 

dependency-entry-type: STRUCT; 

disabled: boolean-t; 
count: integer; 

with: etrid-t; 
label: char*; 
next: pointer-t; 

end; (* dependency -en t ry - t ype  *) 

Figure 5.8: Data structure for recording individual dependencies. 

Once the graph has been defined (created), an  application can record and remove 

dependencies between extended transactions using f om-dependencytl (CD , tz , lockname) 

and delete-dependencytl ( C D  , t2, lockname), respectively. 

Processing Commit Events Recall from our discussion in Section 3.3.3, when an 

extended transaction attempts t o  commit, the event can be rejected and delayed. Commit, 

like begin and prepare, is a normal event. Since the  dependency type of the CDREL graph 

is ORDERING (dependency), schedule-et delays the  commit of an extended transaction ti 

t o  enforce the dependency rules. 



If there is an edge ( t j ,  ti) in cDREL, then ti is commit dependent on the uncommitted 

transaction t j  and cannot be committed. Delay, by calling s e t s t a t e ( p e n d i n g 1  t o  

put the commit request in event pending list, and retry later when t j  terminates. 

Otherwise, execute the remaining steps below. 

1. Remove all edges in CDREL and ADREL involving ti. For each successor, tj, of 

t; in CDREL that  is in the pending state, if (t;, t j )  was the only edge entering 

t j  in CDREL, perform commit(tj). 

2. Finally, call s e t s t a t e  (committed) t o  set the state of t; t o  committed. 

Processing Abort Events When an extended transaction aborts the event cannot be 

delayed or ignored - abort is an immediate event (see Section 3.3.3). Since the depen- 

dency type of the  ADREL graph is CAUSAL (dependency), the  only option is t o  accept 

the event and trigger the abort of other extended transactions t o  enforce the dependency 

rules. To abort a transaction, we use the Encina TRAN function abortNamedTran(TIDtj, 

ENFORCEABORTDEPENDENCY), where TIDtj is the TID of the transaction t o  be aborted 

and ENFORCEABORTDEPENDENCY is a string constant that  describes the reason for aborting 

the transaction. 

1. For each transaction tj such that  (ti, t j )  in ADREL, abort t j  using abortNamedTran(TIDtj, 

ENFORCEABORTDEPENDENCY). Remove the corresponding edge in ADREL and decre- 

ment the dependency counter. Continue this process until all transactions reachable 

from t; in ADREL have been aborted. 

2. For each successor, tj, of ti in CDREL that  is pending, perform commit(t;) - Recall, 

a commit dependency simply orders the occurrence of comnait events, but this depen- 

dency has been resolved by the abort of t; and can be removed. 

Remove all edges in ADREL and CDREL involving ti. 

3. Finally, call s e t s t a t e ( a b o r t e d 1  t o  set the state of extended transaction ti to  

aborted. 

5.3 ENCINA/ET Evaluation Overview 

In this section we evaluate the Reflective Transaction Framework design and the implemen- 

tation of ENCINA/ET. Recall our specific goals from Section 3.1: new extended transaction 

functionality; ease of use; ease of implementation; and, acceptable overall performance. 

Chapter 3 presented the motivation and detailed design of three new extended transac- 

tion services t o  implement advanced transaction models and semantics-based concurrency 



control protocols. Chapter 4 demonstrated the ease with which the framework could be 

used to  implement advanced transaction models and semantics-based concurrency control 

protocols. Section 5.2 of this chapter described how the extended transaction services 

defined in Chapter 3 can be implemented as extensions of the base transaction services 

of a commercial TP monitor. In this section we focus on the final goal: showing that  the 

performance and resource cost for supporting the extended transaction services defined 

by the Reflective Transaction Framework are indeed acceptable. 

Our evaluation approach consists of an analysis of ENCINA/ET source and framework 

design, along with controlled experiments. We consider two distinct perspectives - a 

software engineering perspective and a systems perspective. From a software engineering 

perspective, we first ask, in Section 5.3.1, whether ENCINA/ET'S code size and complexity 

are commensurate with its functionality. Next, in Section 5.3.2, we evaluate the per- 

formance of extended transaction services and resource costs of ENCINA/ET based on 

quantitative experimentaI results. Finally, in Section 5.4, we evaluate the usability of the 

framework and compare its flexibility with that  of related extended transaction systems, 

and ask how easy it is to  use the framework t o  construct new extended transactions; how- 

ever, because of its subjective nature, only a preliminary assessment of the usability of 

the framework is presented. 

5.3.1 System Size and Functionality 

In Section 5.2 we presented the implementation of ENCINA/ET. This realization of the 

Reflective Transaction Framework on a conventional TP monitor allows us t o  demon- 

strate the practicality and viability of our design. In this section, we present code size 

data  from the implementation t o  explore whether ENCINA/ET'S size and complexity are 

commensurate with its functionality. 

The ENCINA/ET source code lives in three modules, corresponding to  the three transac- 

tion adapters that  make up the framework - the TRANSACTION MANAGEMENT ADAPTER, 

LOCK ADAPTER, and CONFLICT ADAPTER. The TRANSACTION MANAGEMENT ADAPTER 

module contains approximately 700 lines of C code, which enables an application to  define 

and manage dependencies between extended transactions for explicit execution control, 

and reifies transaction-specific information in an extended transaction descriptor. The 

LOCK ADAPTER module contains approximately 400 lines of C code, which allows an 

application t o  control the locks held by an extended transaction explicitly and to restruc- 

ture an extended transaction dynamically by delegating da ta  objects. And, finally, the 

CONFLICT ADAPTER module contains roughly 450 lines of C code, which enables an ap- 

plication to  define semantic notions of conflict and select semantic synchronization for 

individual extended transactions. In addition, there are auxiliary files that  contain code, 



such as macro functions and header files, that  define key data  structures. In total, the 

ENCINA/ET source is on the order of 2000 lines of C code. 

Table 5.1: Breakdown of lines of code (loc) in ENCINA/ET software modules. 
ENCINA /ET Module I Total loc 1 Callback Handling I Encina API 11 

A breakdown of the ENCINA/ET implementation in terms of lines of code (loc) is 

presented in Table 5.1. This presentation of code size includes the total loc t o  implement 

each transaction adapter module and a breakdown of each module that  identifies the loc 

required t o  process Encina transaction event callbacks, and Eoc required t o  perform API 

calls t o  the Encina Toolkit. In contrast, the Encina Toolkit on which ENCINA/ET is 

built has a code size of over 100,000 lines of C. Of this the transaction service module 

(TRAN) has approximately 14,000 lines of C code, and the lock service module ( L O C K )  has 

approximately 4,000 lines of C code. 

The extended transaction services of ENCINA/ET use the services of TRAN and LOCK.  

The TRAN module provides services t o  manage the definition, execution, and termination 

of transactions. This includes the creation and management of the transaction table, trans- 

action initialization and termination, a thread-tc+TID mapping service, remote procedure 

call management, and an application interface. The LOCK module provides a logical lock- 

ing facility t o  manage the lock space. It records locks held by a transaction, transactions 

holding a lock, and transactions waiting for a lock on a da ta  object. It also provides effi- 

cient functions t o  acquire and release locks, detect transaction deadlocks, and detect R/W 

conflicts. These base transaction services serve as the cornerstones for our implementation 

of the extended transaction services in ENCINA/ET. 
By reusing the transaction services of the Encina Toolkit, we were able t o  implement 

ENCINA/ET in approximately one man-year. The value of the framework for ease of im- 

plementation, then, is the way it allows us t o  stand on the work of others so as t o  provide 

implementation support for extended transactions. At the same time, this architectural 

layering does not preclude access to  the underlying T P  monitor, so applications can con- 

tinue t o  use base transaction services. As a result, the amount of code to  be implemented, 

debugged and tuned for implementing the extended services defined by the Reflective 

Transaction Framework is significantly reduced, as demonstrated by our ENCINA/ET im- 

plementation. We believe these benefits will carry over when porting ENCINA/ET t o  

another TP monitor, but some details may differ, e.g. due to  the lack of a lock manager 

in the target T P  monitor. We leave this conjecture open for future validation. 

Transaction Management Adapter 
Lock Adapter 
Conflict Adavter 

5 0 
60 
25 

- 
700 
400 
450 

80 
0 

20 



We present this information on the source code size of ENCINA/ET t o  advance our 

claim that  the Reflective Transaction Framework can be efficiently implemented as a 

thin software layer over the transaction processing services of a conventional TP monitor, 

and does not require a system of excessive size or  complexity. Thus, the approach can 

be seen as a judicious blending of existing transaction system functionality and careful 

addition of extended transaction functionality, t o  yield a system which provides support 

for implementing extended transactions. Novelty is thus more manifest in the methodology 

adopted than in the individual components which have been implemented. 

5.3.2 Performance Overhead for Library Operat ions 

This section presents a series of experiments that  measure the performance of the extended 

transaction services provided by the ENCINA/ET library. This performance da ta  isolates 

the cost of various functions in the system and enables us t o  not only identify basic system 

functions that  are computationally expensive, but also to determine where future efforts 

should be concentrated t o  improve the performance of the implementation. These mea- 

surements also serve t o  define the bounds of system performance and provide users with 

a basis for understanding larger operations, such as implementing new extended control 

operations for an advanced transaction model that would make use of these services. 

Methodology 

Our goal was t o  measure the average cost for each extended transaction service. Perfor- 

mance numbers presented in the following experiments were obtained by measuring oper- 

ations over repeated trials. For each experiment we collected measurements and observed 

the results, and when the results converged the experiment was terminated. Outliers, 

resulting from transient system events, such as system interruptions, network activity, 

aborted transactions, etc., were discarded. 

Each experiment involves executing a test that  exercises a specific set of extended 

transaction functions. For testing purposes we have used a modified version of the TPC-B 

transaction processing benchmark [Sergl]. The TPC-B benchmark models a teller a t  a 

bank. There is one bank with one or more branches, and multiple tellers and multiple 

accounts per branch. The database represents the cash position of each entity (branch, 

teller, and account) and a history of recent transactions run by the bank. Each transaction 

is a deposit or withdrawal on an account by a teller in a branch. The transaction profile is 

presented below, where Aid ( AccountlD) , Tid (Teller-ID) , and Bid (Branch-ID) are keys 

to  the relevant records/rows. 



/* Given Aid, Bid, Delta by caller */ 
BEGIN TRANSACTION 

Update Account where AccountlD = Aid: 

Read AccountBalance from Account 

Set AccountBalance = AccountBalance + Delta 

Write AccountBalance t o  Account 

Write t o  History: 

Aid, Tid, Bid, Delta, Time-stamp 

Update Tel ler  where Te l le r lD = Tid: 

Set TellerBalance = TellerBalance + Delta 

Write TellerBalance t o  Teller  

Update Branch where BranchlD = Bid: 

Set BranchBalance + Delta 

Write BranchBalance t o  Branch 

COMMIT TRANSACTION 

Return AccountBalance t o  driver 

In our test program, the benchmark driverselects an account (Aid) and branch (Bid), 

generates a random amount (Delta) to  withdraw from or deposit to  the account, then 

calls the teller transaction. The teller first obtains a lock on the account and then updates 

the balance, followed by updates to  the branch, teller and account balances, and finally 

appends a history record t o  the audit trail. This simple debitlcredit transaction clearly 

does not require extended transaction support. However, using this benchmark we can 

compare the performance of conventional ACID transactions against transactions using 

extended services, and verify our extensions are functioning correctly. 

Our implementation of the benchmark differs from the TPC-B specification in three 

aspects. First, the specification requires that the database keep redundant logs on different 

devices. We only used a single log. Second, we ran all tests on a single, centralized system, 

so there were no remote accesses. Third, we added input parameters t o  the driver program 

tha t  allow us t o  specify the bank account (Aid), branch (Bid), teller (Tid) and transaction 

amount (Delta) directly, as well as  to  pause transactions during execution for running 

more controlled tests. We also ran different experiments than specified in TPC-3 t o  

measure specific extended transaction functions, since our goal is t o  evaluate the extended 

transaction services of ENCINA/ET,  and not t o  measure TP monitor performance. 

Our performance metric is elapsed time, abbreviated Elapsed. Elapsed time is needed t o  

determine if applications will meet response requirements and to  estimate the duration that  



locks will be held while operations are taking place. When processing a lock conflict call: 

back, for example, the Encina TP monitor must hold latches on the lock and transaction 

table entries until the registered callback function returns. Elapsed time measurements 

were made using the Encina (BDE) (Base Development Environment) bde-GetTime func- 

tion call, which uses the gettimeof day0 system call. The gett  imeof day0 call returns 

a timestamp expressed in elapsed seconds and microseconds since 00 :00 GMT, January 

1, 1970 (zero hour). Calls t o  bde-GetTime are made before and after the function being 

measured, the elapsed time is then accumulated over a number of trials and averaged t o  

provide the numbers reported in the following tables. 

The elapsed time metrics tha t  are reported were measured using the Encina TP mon- 

itor version 1.0.1 and SunOS version 4.1.3-U1. The hardware was a Sun SPARCstation 

10 Model 41 with a 40 MHz processor. The Sun workstation had 64 megabytes of main 

memory, 278 megabytes of swap space, a one-gigabyte internal disk drive, and two external 

Seagate Elite-:! two-gigabyte SCSI disks. The Encina TP monitor was configured t o  use a 

local (raw) logging partition on one of the external SCSI disks, with the Encina structured 

file server (SFS) running on a separate external SCSI disk acting as the da ta  store for the 

test application. Both the Encina TP monitor and our testing application reside on the 

internal SCSI disk. The numbers reported 'in the following tables are accurate t o  two 

significant digits. In all tests, performance measurements were conducted with the Sun 

workstation under light load with no contention on any resources Encina consumes (i.e., no 

other disk activity and, unless specifically mentioned, no other transactional applications 

being executed) . 

Performance Overhead for Managing an Extended Transaction Descriptor 

Prior to  using any extended transaction service, an application must first register a trans- 

action with ENCINA/ET, which in turn creates an extended transaction descriptor and 

registers the necessary Encina callbacks. This adds a certain amount of overhead. The  

question is, How much? More specifically, we want t o  know: What is the performance 

overhead for creating an extended transaction descriptor, registering the callbacks with 

Encina to track the execution of the underlying transaction, and removing the extended 

transaction descriptor once the transaction has finished? Our first experiment measures 

the costs t o  create an extended transaction descriptor for a teller transaction, to  register 

the necessary callbacks, and t o  remove the extended transaction descriptor. Table 5.2 

presents the performance measurements from this test. 



Table 5.2: Execution times for managing an extended transaction descriptor. 
1 Measurement I ENCINA/ET Librarq Primitive I Average Elapsed I ]  
L I  J 

n 1 A I Execute teller transaction (ACID) 1 113.63 milliseconds 11 
1B /IpP I Begin t i ler  transaction (ACID) 1 2.93 milliseconds 11 
1 C 

1 D 

Commit teller transaction (ACID) ] 1.08 milliseconds 

Execute extended teller transaction 1 115.32 milliseconds 

1 Total I Overhead for managing extended transaction descriptor 1 989 microseconds 

I 

1G 
1 H 
1 I 

To collect the measurements presented in Table 5.2, we used our TPC-B test program, 

modified t o  create an extended transaction descriptor for each teller transaction prior t o  

executing normal account updates. To create an extended transaction descriptor, a name 

is required for an extended transaction. This name is generated for each teller transaction 

by converting the randomly selected teller identifier to a string and storing i t  in the variable 

tellername. Each teller transaction then cregtes an  extended transaction descriptor using 

the command instantiate(tellername1 and performs the account update and logging 

operations. When the teller transaction terminates, the extended transaction descriptor 

is removed. Once the performance runs were complete, balances for account, teller and 

branch were examined, along with the sum of deltas for the history file, to  verify that  all 

the values were changed in accordance with the deltas of the teller transactions. 

As a baseline for our evaluation, we first measured the  performance of a default (ACID)  

teller transaction that  did not create an extended transaction descriptor. The timing 

for this default teller transaction is presented in Table 5.2 as measurement 1A. In ad- 

dition, we measured the performance overhead of Encina operations begin-transaction 

and commit-transaction (measurements 1B and lC ,  respectively). These timings are 

high, relative t o  published TPC-B results, so a few comments regarding our benchmark 

implementation and system configuration are in order. 

The remote procedure call, or RPC, and the transactional remote procedure call, or 

TRPC,  are among the more expensive mechanisms used by Encina; a T R P C  consists 

of an RPC with additional data  used t o  track the transaction state. Disk I/O can also 

be quite expensive. Our current test configuration uses the Encina structured file server 

(SFS) as the bank data  store. Most SF'S operations require an  RPC between the program 

requesting the operation and the SFS, even in both reside on the same machine. For our 

TPC-B test program, a teller transaction has the following operations: 

420 microseconds 
84 microseconds 

1 E 
1F 

J 

Create and initialize etrep structure 
Register CallBeforeAbort callback 
Register CallBeforeCommit callback 
Register CallAfterFinished callback 
Remove etrep structure upon completion 

85 microseconds 
84 microseconds 

309 microseconds 



add delta t o  account record 

add delta t o  branch record 

add delta to  teller record 

add record t o  history file 

Using s f  sReadByKey and sf sApdateByKey calls, each transaction requires a total of six 

RPCs for the SFS calls that  modify the account, branch, and teller files. Most commercial 

database systems, and more recent implementations of SFS, offer a batch update call - 
that  can replace these six RPCs with a single RPC. To further diagnose this performance 

problem, we examine system idle time. The Unix command i o s t a t  showed a significant 

amount of disk operations (idle time was consistently near zero), while the Unix command 

vmstat showed non-zero CPU idle time. Together, these indicate that  disk storage is a 

bottleneck; vmstat  also showed a high number of paging events, indicating additional 

memory would be beneficial. Better disk throughput could be obtained by allocating 

storage t o  SFS across multiple physical disks, each with its own SCSI controller. Since 

our goal is t o  measure the costs of the extended transaction services, not t o  optimize 

TPC-B throughput, we proceed with our cuirent benchmark implementation and system 

configuration. 

Next, we ran our modified TPC-B test program t o  measure the performance of an 

extended teller transaction, which creates an extended transaction descriptor and registers 

callbacks t o  report its execution state. The extended teller transaction's total execution 

time is presented in Table 5.2 as measurement ID. To identify the sources of the perfor- 

mance overhead, we instrumented the i n s t a n t i a t e  operation in the ENCINA/ET library 

t o  collect timings for the  individual operations that  manage an extended transaction de- 

scriptor. In Table 5.2 we see that  creating an extended transaction descriptor, presented 

as measurement lE, is much slower than other operations being measured. The  overhead 

comes from allocating memory t o  store the extended transaction descriptor e t r e p ,  initial- 

izing da ta  fields, and storing the descriptor in e t ran- tb l .  The operations tha t  register the 

TRANSACTION MANAGEMENT ADAPTER with the transaction callback facility for transac- 

tion abort, commit and finished events have roughly the same overhead (measurements 

IF, 1G and 1H) .  An explanation for this is that  the algorithm that  implements callback 

registration is common t o  all events - it must latch the transaction table entry for the 

transaction, add the  callback function and arguments t o  the list of callbacks maintained 

for that  event, and then release the latch and return a status code. Similar performance 

overheads for other callbacks, measured in experiments presented later in this section, 

support this conjecture. Finally, we measured the overhead for releasing the storage held 



by the extended transaction descriptor and to  set the extended transaction table entry 

to  N U L L  when the teller transaction is finished (measurement 1 I). Thus, the overhead for 

all operations tha t  manage an extended transaction descriptor totals 989 microseconds on 

average, less than one millisecond per extended transaction. 

A review of the measurements in Table 5.2 reveals tha t  approximately one-half of the 

total cost for managing an extended transaction descriptor comes from storage allocation 

and initialization of the e t r e p  structure. Another one-third of the  total cost comes from 

freeing e t r e p  storage when an extended transaction terminates. An optimized imple- 

mentation of ENCINA/ET could use pooling, in which a collection of e t r e p  structures are 

preallocated and reused, t o  reduce these overheads. 

Performance of Transaction Restructuring 

Next, we present the costs of the ENCINA/ET operations that  perform transaction restruc- 

turing. This experiment involves two teller transactions, where the first teller selects an 

account and performs a balance update, then delegates the account da ta  object t o  the 

second teller for further update. We use a modified version of our TPC-B test program, 

which initiates two concurrent teller transactions, then creates an extended transaction 

descriptor for each transaction. Each teller transaction is allowed t o  perform its individ- 

ual account update, then writes a history record containing the account number, branch 

identifier, teller number, and amount of the update. At the end of the first update run, 

each teller transaction delegates its account data  object t o  the other teller, then repeats 

the  account update loop with the new account object. Once the performance runs were 

complete, balances for account, teller and branch were examined, along with the sum of 

the deltas in the history file to verify that all values were changed in accordance with the 

deltas of the teller transactions. Table 5.3 presents the performance measurements of the 

operations that  perform transaction restructuring. 

1 1 2D I Get the list of locks held (10 locks) 1 66.39 milliseconds 11 

Table 5.3: Execution times for performing transaction restructuring. 

1 3D I Process lock conflict callback (one ignore-conflict record) 1 7.27 milliseconds 11 

Measurement 
2A 
2B 

2C 

2E 
2F 

3C 

ENCIN A/ET Library Primitive 

Create a named delegate set 
Delegate a data object (one lock) 

Get the list of locks held (one lock) 

A vemge Elapsed 
5 16 microseconds 

32.37 milliseconds 

9.41 milliseconds ( 

Lock a data object using 1ockAcquire (no contention) 
Unlock a data object using lock-Release 

Create an zqnore-conflict record and store zn CoopTrSet 

7.02 milliseconds 
1 1.83 milliseconds 

2.70 milliseconds 

' 



Timings were collected for the time required for a teller transaction to  first create 

a delegate set using create(accountlist, dtor), presented as measurement 2A. This 

cost is independent of the number of da ta  objects tha t  the  extended transaction will even- 

tually delegate - only one set is required t o  hold the lock names. Next we measured 

the overhead t o  perform the delegation of the account d a t a  object using the operation 

delegate(tellerid, accountlist, IMMEDIATE), presented as measurement 2B. Mea- 

surements for the insert and remove operations were not included, as they are imple- 

mented by simple C expressions. To better understand the cost of delegation, we measured 

the constituent primitives of the delegate operation. First,  we measured the Encina op- 

eration lock-GetTranInfo, which returns the list of locks held by a transaction. This 

Encina function is used both to  obtain the list of locks held by a transaction performing 

a global delegation, and t o  obtain the mode and lockspace of each lock being transferred. 

lock-GetTranInfo was first timed for a teller transaction holding the lock on one account 

(measurement 2C),  and again for a teller transaction holding the locks on 10 accounts 

(measurement 2D). Next, a single teller transaction was started, which simply locks a 

random account da ta  object to read the balance and then unlocks it using lockAcquire 

and lockllelease, respectively. Costs for the lock and unlock operations are presented as 

measurements 2E and 2F. Recall from Sectiori 3.3.1 tha t  transaction restructuring requires 

support from the semantic transaction synchronization service t o  relax the lock conflict 

that  results from the actual lock transfer. Thus, t o  complete the performance analysis, 

measurements for overheads required t o  create an ignore-conflict record and to  relax a lock 

conflict using the ignore-conflict record were obtained, and presented as measurements 3C 
and 3D,  respectively. These measurements are from our performance analysis of semantic 

transaction synchronization, presented in Table 5.4, discussed in the following section. 

Performance of Semantic Transaction Synchronization 

Next, we measured the performance costs for the ENCINA/ET operations that  implement 

semantic transaction synchronization. This experiment involves two concurrent teller 

transactions that  attempt to  update the same account da ta  object. The lock conflict 

that  results from concurrent transactions attempting t o  access the same account is re- 

laxed using semantic transaction synchronization, and the  operation costs are measured. 

Table 5.4 presents performance measurements of the  operations that  perform semantic 

transaction synchronization. 

The driver for the original TPC-B test program selects an account a t  random from 

the 10000 bank accounts in the Encina SF'S (structured file server) database for each 

teller transaction. Given that the maximum number of tellers is 10, conflicts between 

teller transactions on an account da ta  object are rare. To force a lock conflict to  occur 



Table 5.4: Execution times for performing semantic transaction synchronization. 

on each account update, we modified our TPC-B test program. In the new version, the 

driver module executes two concurrent teller transactions with fixed teller numbers (teller 

1 and teller 2), and fixed the account numbers so that  both tellers at tempt to  access the 

same account. Each transaction creates an extended transaction descriptor and selects an 

update amount (delta) a t  random. In the first run, teller 1 creates an  ignore-conflict record 

specifying that  teller 2 can access the account. Teller 2 is then delayed for one second using 

the BDE command bde-~hreadSleep(delay,tv), t o  ensure teller 1 completes its update 

operation. Teller 1 performs its account update and logging operations, then blocks until 

teller 2 completes processing. Upon waking up, teller 2 can perform the account update. 

The  conflict tha t  results from attempting t o  update the account held by teller 1 is relaxed 

by the relaxConflictfunction and the processing time was measured. Once the performance 

runs were complete, balances for account, teller and branch were examined, along with 

the sum of the deltas from the history file, to  verify tha t  all the values were changed in 

accordance with the deltas of the two teller transactions. 

As a baseline for measuring the performance of relaxConflict, we first measured the 

cost for Encina t o  perform a lock conflict call. Tha t  is, the elapsed time from the point 

the Lock Manager first detects a lock conflict to  the point that  the registered callback 

function returns a vote on the conflict. This effectively measures the amount of time it 

takes Encina t o  construct a conflict event, place a latch on the transaction table entry for 

the conflicting transaction, and then call the registered callback function. For this baseline 

measurement we were only interested in the Encina overhead, not the  performance of our 

relaxConflict function. Thus, we registered a constant function tha t  simply returned 

FALSE, thereby consuming minimal clock cycles; later in our evaluation, we shall register 

relaxConflict in place of this constant function. The time required for the  Lock Manager 

t o  register the conflict callback function is presented in Table 5.4 as measurement 3A. 
To carry out  this evaluation, we then modify the Encina Lock Manager source t o  capture 

timing information. Specifically, calls t o  bde-GetTime are placed in the  Encina source 

3E 
3F 
3G 
3H 

Average Elapsed ] 
83 microseconds 

39.44 milliseconds 

47.82 milliseconds 
2.70 milliseconds 

Measurement 

3 A 
3B 

t 
3C 
3D 

ENCIN A /ET Library Primitive 

Register relaxconf l i c t  as conflict callback function 
Perform lock conflict callback call (no processing) 

Relax R/W conflict with ignore-conflict record 
Create ignore-conflict record and store in CoopTrSet 
Process lock conflict callback (single IC record) 
Search CoopTrSet (10 IC records) 
Process lock conflict callback (single SC table) 
Search CompTblSet (10 semantic compatibility tables) 

7.27 milliseconds 
19.08 milliseconds 
9.54 milliseconds 

18.86 milliseconds 



file 1ockConflict.c a t  the point that a lock conflict is detected and at the point that  the 

registered callback function returns. The result of this evaluation is presented in Table 

5.4 as measurement 3B. 
Once this baseline evaluation was complete we returned t o  using the original Encina 

library and the  modified TPC-B test program. Since both teiler transactions attempt t o  

access the same account, each trial results in a lock conflict. The function relaxConflict is 

invoked in response t o  this conflict event, and the conflict relaxed using the ignore-conflict 

record, We measured the time required t o  relax this R / W  conflict using the available 

ignore-conflict record, presented in Table 5.4 as measurement 3C; note, this measurment 

includes the 39.44 milliseconds required by Encina t o  perform a lock conflict call t o  re- -- 

ZaxConflict. To better understand the overhead involved in relaxing lock conflicts, we 

instrumented the  support functions for semantic transaction synchronization. We first 

measured the time required to  create and store an ignore-conflict record in the CoopTrSet 

(measurement 3D). Next, we measured the time relaxConfiict actually required to  destruc- 

ture the conflict event and search CoopTrSet t o  relax the conflict (measurement 3E). In 

our initial test, CoopTrSet held only one ignore-conflict record, yet in actual applications 

we would expect there t o  be several ignore-conflict records - especially for cooperative 

applications consisting of a number of active transactions. Thus, we placed 10 ignore- 

conflict records in the CoopTrSet and measured the time t o  search through the records 

for a match (measurement 3F). Finally, we measured the time required for the function 

reEaxConflict t o  search through the semantic compatibility table, first containing only one 

table (measurement 3G) and again containing 10 compatibility tables (measurement 3H). 
Regardless of the semantic synchronization algorithm being used by the transactional 

application, for example altruistic locking, cooperative serializability, commutativity, re- 

coverability, etc., these microbenchmarks measure the basic mechanisms that  would be 

used in their implementation. 

Performance of Transaction Execution Control 

In our final performance evaluation, we measure the performance costs for ENCINA/ET 
operations tha t  perform transaction execution control. In this experiment we establish 
transaction dependencies between multiple concurrently executing teller transactions, then 

measure the operation costs for execution control. Specifically, we measure the overhead 

t o  define (create) a new transaction dependency type, t o  form a dependency between ex- 

tended transactions, and to  enforce transaction commit and abort dependencies. Table 5.5 

presents the  performance measurements from this experiment. 



Table 5.5: Execution times for performing transaction execution control. 
f i  Measurement 1 ENCINA/ET Library Primitive I Average Elapsed 11 

I L 

U 4D I Evaluate transaction abort dependency I 2.61 milliseconds 1 

4A 
4B 
4C 

We first measured the overhead for creating a dependency type. This was accomplished 

by first instrumenting calls to the operation def ine-dependency, then issuing commands 

t o  create a commit dependency (cD),  an abort dependency (AD),  and a begin dependency 

(BD). Essentially this test measures the time required for the TRANSACTION MANAGEMENT 

ADAPTER t o  allocate and intialize a dependency graph structure for each dependency type. 

The result of this test is presented in Table 5.5 as measurement 4A. Much of this overhead 

is memory allocation costs. If the dependency types are known in advance, preallocation 

and caching would reduce this cost. 

To measure the cost for forming and enforcing transaction dependencies, we pre- 

pared a modified version of our test program. The modified test program uses three 

teller transactions, with fixed teller numbers (1 through 3). Each teller transaction has a 

name, tellername, whose value is the corresponsing teller number converted t o  a string. 

Each teller transaction creates an extended transaction descriptor using the command 

instantiateCtellername) , and then forms the following commit and abort dependen- 

cies with other teller transactions: 

84 mzcroseconds 
85 microseconds 

1 I? 
1 G 

Essentially, each teller transaction will commit only if all three teller transactions in the 

group commit, and all will abort if any one transaction in the group aborts. This modi- 

fied test program was then used t o  colIect measurements for the formation of transaction 

dependencies (measurement 4B) and t o  verify the function schedule-et works correctly for 

Register CaElBeforeAbort callback 
Register CallBeforeCornrnit callback 
Create dependency graph structure in etranDepSet 

Form a transaction dependency 
Evaluate transaction commit dependency 

1.22 milliseconds 
870 microseconds 
3.09 milliseconds 



both commit and abort dependencies. The cost for this operation is relatively inexpen- 

sive, which is expected since i t  simply creates a dependency record and records it in the 

appropriate structure (dependency type). 

During the first series of runs, each teller transaction selects an account, branch and 

delta a t  random, and then performs the account update operation and log updates. As 

the  transactions complete, the function schedule-et enforces the commit dependencies by 

delaying their commit until they all raise a commit event (i.e., the tran-CallBef orecommit 

callback is raised). We measure the overhead for the framework t o  detect and evaluate 

the commit dependency for each extended transaction (measurement 4C). Included in this 

measurement, and the following abort dependency measurement (4D), is the time required 

for Encina t o  process the commit (abort) callback and invoke schedule-et. Unfortunately, 

we do not have access to  source for the library l ibEncina.a,  which contains TRAN service 

functions, and, thus, cannot instrument commit (abort) callback processing. Based on 

measurements for processing lock conflict callbacks (measurement 3B), we know these 

costs can be quite high. A series of tests on schedule-et, performed after this experiment 

was complete, showed that  searching the dependency graphs (both commit and abort) is 

performed in less than 800 microseconds; an optimized graph implementation based on 

hashing could further reduce this cost. 

A second series of test runs was performed in the same fashion, except that each trans- 

action executes a conditional statement that  randomly aborts the transaction. Again, we 

measure the time required for the framework to  detect and evaluate the abort dependency 

(measurement 4D). In this case, the function schedule-et enforces the abort dependency 

by issuing the Encina command abortMamedTran t o  abort the active or  pending trans- 

actions. The cost for enforcing an abort dependency is less than a commit dependency, 

as less time is spent evaluating an abort dependency - schedule-et simply aborts any 

dependent transactions. 

Once these performance runs were complete, balances for account, teller and branch 

were examined, along with the sum of deltas for the history file, t o  verify that  all the 

values were changed in accordance with the deltas of the  committed teller transactions. 

5.4 Reflective Transact ion Framework Evaluation 

The Reflective Transaction Framework was designed for flexibility, to  implement a wide 

range of extended transactions readily. In Chapter 4 we demonstrated the use of the frame- 

work t o  implement selected advanced transaction models and semantics-based concurrency 

control protocols. So, having seen these extended transaction examples separately, it is 

worth stepping back t o  discuss the wa.ys in which the framework meets this challenge. 



First, we briefly compare the extended transaction implementations in terms of their 

different requirements and transaction control operations. Next, we discuss how the flex- 

i bility in the  Reflective Transaction Framework that  these extended transactions exploit 

compares t o  the facilities in other extended transaction implementations discussed earlier. 

Finally, we discuss how computational reflection and Open Implementation techniques 

make this possible. 

5.4.1 Comparing the Extended Transaction Implementations 

The advanced transaction models and semantics-based concurrency control protocols pre- 

sented in Chapter 4 differ considerably in their intended domains. More importantly, they 

also differ considerably in their structures and styles. Consider the various differences: 

Split transactions use transaction restructuring t o  release partial results selectively 

and continue executing; joint transactions use transaction restructuring t o  transfer 

all database resources held and then terminate. 

Chain transactions, a special case of joint transactions, restrict the execution struc- 

ture t o  a linear chain of extended transactions; joint transactions have no restriction 

on their execution structure. 

Reporting transactions use transaction restructuring to  report results t o  another 

extended transaction periodically, without terminating execution; joint transactions 

terminate execution after performing transaction restructuring. 

Cooperative Transaction Groups utilize semantic transaction synchronization to  fa- 

cilitate cooperation between the individual extended transactions in a cooperative 

group. 

Commutativity can relax R/W conflicts based on operation semantics, without form- 

ing a transaction dependency; Recoverability also relaxes R / W  conflicts based on 

operation semantics, but places a commit ordering restriction on the  transactions. 

Epsilon Serializability relaxes R / W  conflicts using application semantics, t o  explicitly 

allow a bounded amount of inconsistency in transaction processing; Commutativ- 

ity and Recoverability both restrict extended transaction execution t o  consistent 

(serializable) schedules. 

I t  is certainly not the case that  the approach adopted by one advanced transaction 

model is right, and that  adopted by the other is wrong. Nor is it the case that  one 

rnodel subsumes the other, or even that  a particular transaction control operation in 



an advanced transaction model is more correct or more general. Rather, an advanced 

transaction model reflects the transaction processing requirements of a particular advanced 

application domain, and design decisions embodied in the individual control operations 

can only be resolved in the context of a particular application or scenario. Consequently, 

each advanced transaction model has been optimized for a particular behavior desirable 

for only a particular advanced application domain. What's more, new advanced database 

applications will not simply require different sets of options for these various decisions, 

but will likely introduce entirely new extended transaction control operations, as well 

as opening up new areas for extended transaction services. In other words, supporting 

these extended transactions means supporting the different extended behaviors which they 

might use, mapping the infrastructure supplied by the Reflective Transaction Framework 

onto the needs of the  application, rather than the other way around. 

5.4.2 Comparing the Reflective Transaction Framework 

In Chapter 2, related systems for implementing extended transaction were presented, 

with particular focus on the range of extended transaction behaviors they could support. 

Having now seen the core elements of the Reflective Transaction Framework design and 

examples that  demonstrate the extended transaction services it offers, it seems appropri- 

ate to  return t o  those systems and contrast the flexibility in the Reflective Transaction 

Framework with that  offered in the other systems. Could they be used t o  implement the 

extended transactions presented in Chapter 4, and if not, why not? 

There are two sets of reasons why this would be difficult or impossible. One set is 

fairly simple; the second is more significant. 

Application Interface Flexibility 

The first set of reasons arises from the inability of some of the systems t o  provide a p  

piications with the ability t o  specify the extended transaction services they require. For 

instance, APRICOTS and TSME do not support interface variability, so an application 

cannot select model-specific definitions for a transaction control operation such as commit 

and abort; APRICOTS operates in terms of predefined contracts which do not include 

arbitrary transaction control operations, while TSME forces an application t o  select a 

specific extended transaction model that  will be used for all transactions. While both 

APRICOTS and TSME support highly structured transaction models, such as the chained 

transaction model or sagas, neither supports the dynamic transaction interactions found 

in the split-join or cooperative group models. This is a more significant issue for APRI- 

COTS, since it is intended t o  support end-user variability without further programming. 



Since TSME is organized as a toolkit for use within other application programs, it may 

be possible t o  build support for transaction restructuring, although no such applications 

have been described in the TSME literature. Simply put, APRICOTS and TSME provide 

their extended transaction support on an "all-or-nothingr basis. 

Similarly, PERN does not allow an application t o  restructure a transaction, as is re- 

quired to  implement the Split-Join model. Moreover, neither PERN nor APRICOTS 

support the free-for-all access illustrated in the cooperative group model. While PERN 

provides flexible concurrency control, its control is in terms of rules based on predefined 

conditions and facilities, not in terms of application-specific needs. As a result, PERN, 

APRICOTS, and TSME cannot implement advanced transaction models such as the co- 

operative transaction group, in which arbitrary transactions can join a group and freely 

access selected objects. This level of control is simply outside of their design requirements. 

System Architecture Flexibility 

The second set of reasons, however, is more relevant t o  the basic design of these related 

systems, and to  the use of the Open Implementation approach in the Reflective Transaction 

Framework. 

Some of the systems described in Chapter 2 have no support for the forms of architec- 

tural variability seen in the range of extended transaction examples presented in Chapter 4. 

The cooperative group model requires execution control between member transactions, 

can utilize transaction restructuring t o  delegate locks from member transactions t o  the 

group transaction upon commit, with automatic relaxation of conflicts between member 

transactions. The chained transaction model utilizes execution control to sequence indi- 

vidual transactions and does not perform delegations, but can selectively relax conflict 

between individual transactions. However, among the systems, only TSME, APRICOTS 

and ASSET support execution control. PERN emphasizes concurrency control. While 

TSME and APRICOTS provide opportunities for semantic transaction synchronization, 

these do not extend to  the more dynamic interactions illustrated by cooperative transac- 

tion groups and the altruistic locking protocol; thus, extended transactions cannot create 

delegate sets or  transfer database resources. PERN, similarly, assumes highly structured 

extended transactions, while execution control and dynamic restructuring are simply not 

issues in its design. 

Critically, where mechanisms exist for defining extended transaction functionality in 

the related systems presented in Chapter 2, their use of traditional abstraction techniques 

requires that  the programmer "drop clown" t o  the implementation level to  gain control. 

For instance, ASSET'S separation of mechanism and policy means the functionality of 



the extended transaction services must be implemented within the transactional applicaT 

tion, requiring application programmers t o  deal with a new level of abstraction. These 

two levels are inextricably mixed in ASSET. APRICOTS' contract approach constrains 

this slightly by dealing in terms of a specific contract for managing, say, execution con- 

trol between individual extended transactions (contracts), but still requires a complete 

specification of extended transaction services; there is no provision for the incremental 

definition of new mechanisms or the optional reuse of existing facilities, since a contract 

must be completely defined for a transactional application in advance. To extend the 

concurrency control services of PERN t o  support application-specific concurrency control 

requirements, a transaction systems programmer would have t o  write a series of rules 

that  re-implemented its concurrency control mechanisms. In other words, while the Open 

Implementation approach is designed to allow programmers t o  become involved in aspects 

of the infrastructure which support their applications, these other approaches require pro- 

grammers t o  take responsibility for them. 

5.4.3 0 1  and Reflection in the Reflective Transaction Framework 

The value of the Reflective Transaction Framework lies in the provision of a framework 

within which new extended transaction behaviors and structures can be defined. Each 

of the extended transaction implementations presented in Chapter 4 has taken elements 

from the Reflective Transaction Framework and tailored them t o  its specific needs: to  

redefine the notion of conflict t o  implement semantic concurrency control or  facilitate 

transaction cooperation; to  control the execution of individual transactions for structur- 

ing cooperative groups or t o  chain transaction computations together; t o  utilize dynamic 

transaction restructuring t o  pass partial results between transactions; or t o  relax atomic- 

ity for open-ended activities. These specializations were performed simply and concisely, 

and fit naturally into the general structure for developing extended transactions which the 

framework sets up and implements. Furthermore, the  code that  implements the various 

control operations employed by these extended transaction examples is similarly straight- 

forward. The implementation of the split and join operations, for example, required 

less than 50 lines of code; and the addition of application-specific concurrency control was 

on the order of a dozen lines of code or simply required the definition of compatibility 

tables. 

The use of Open Implementation techniques, and the metalevel interface in particular, 

is critical t o  the way in which this flexibility is achieved. 

First, it provides the structures for programmers t o  gain control over selected aspects 

of transaction processing. This means not only the opportunity t o  create new extended 



transaction behaviors and transaction control operations that  are usable within the framer 

work, but also modifications that  are seamlessiy integrated into the framework's internal 

mechanisms (such as changes t o  the definition of conflict, which then take immediate effect 

on a per-transaction basis). 

Second, it provides the means t o  do this more extensively than a parameterized ap- 

proach. Tha t  is, extensions are made not only through the structural aspects of the 

extended transaction encoding, but also through the use of the metalevel interface, rather 

than simply "switches. " The difference between the metalevel interface approach and pure 

parameterization is best seen in comparisons with TSME. 
Third, the available metalevel interface retains the use of high-level specifications that  

"dropping down" to  the implementation level would preclude. The components that  met- 

alevel commands address are just those that  a transactional application uses, such as 

delegate sets, transaction dependencies, conflict relations, compatibility tables, etc. Trans- 

action system programmers implement extended transactions in terms of application re- 

quirements on these rnetaobjects, while other, implementation-specific details which lie 

underneath remain hidden. The same metalevel interface commands can be maintained 

across various implementations of the Reflective Transaction Framework, since the met- 

alevel interface is written in terms of the revealed structure of the underlying TP monitor, 

rather than the details of its implementation. This, in turn, encourages transaction system 

programmers t o  develop extended transaction implementations in terms of the specific re- 

quirements of the application, rather than the specifics of the framework implementation. 

So, for instance, the use of semantics-based concurrency control represents the expression 

of application-specific requirements, rather than the re-implementation of concurrency 

control in the framework (as would be required by, say, A S S E T  c-r PERN). 
Each of these elements - application-specific control over aspects of the underlying 

transaction system's behavior, through programmatic access t o  a revealed model of its 

inherent structure - derives directly from computational reflection and the metalevel in- 

terface as elements of the Open Implementation design approach. 

5.5 Discussion 

In this chapter we presented the implementation of ENCINA/ET, which extends the Encina 

TP monitor t o  support the implementation of extended transactions. In addition, we pre- 

sented an evaluation of ENCINA/ET and Reflective Transaction Framework. Our experi- 

ence in designing the framework and implementing and evaluating ENCINA/ET has taught 

us a number of important lessons. Here we review the experience gained and lessons 

learned from the implementation and evaluation effort. 



The basis of the  Reflective Transaction Framework is to  define extended transaction 

behaviors as careful extensions of existing transaction services. Instead of reimplementing 

base transaction services, our approach is t o  redefine and leverage available functional- 

ity in a conventional transaction processing facility to  the extent possible. Implementing 

extensions t o  an existing transaction processing system is a significant departure from 

previous attempts,  which implement extended transactions from scratch. It allowed us t o  

ignore implementation aspects not specific t o  extended transaction functionality, and t o  

focus on extended transaction implementation issues. The implementation of ENCINA/ET 
was carried out by the incremental addition of new extended transaction services, imple- 

mented as separate software modules called transaction adapters. On top  of this structure 

we introduced the notion of separation of interfaces, providing a metalevel interface for 

transaction system programmers t o  define extended transaction control operations and 

an extended transaction interface for application programmers t o  develop transactional 

applications. 

Our design of the Reflective Transaction Framework and implementation of ENCINA/ET 
poses the question, How simple can a facility for implementing extended transactions be, 

while still supporting clas.sic ACID transactions? Our answer, as presented in this chapter, 

is an application-level library with minimal pfogramming constraints, implemented in 2000 

lines of mainline C code, and no more intrusive than a typical transaction library, such 

as Encina's TRAN-C. Transactional application programmers simply use calls from the 

extended transaction interface, such as Split and Join, to employ extended transaction 

functionality in their advanced applications. 

Our implementation of ENCINA/ET demonstrates that  new requirements for transac- 

tion processing d o  not necessarily imply a need for radically new transaction processing 

technology. ENCINA/ET also demonstrates that  existing T P  monitor functional compo- 

nents are applicable t o  extended transaction processing; however, their functionality has 

t o  be repackaged. The  implementation of ENCINA/ET did not require the invention of any 

radically new approaches, merely the judicious selection, adaptation, and extension of the 

most suitable techniques. 

The implementation of ENCINA/ET was facilitated by the transaction event callback 

mechanism and open API t o  the transaction services of the Encina Toolkit. A valid 

question is whether the additional work of exposing an API to  the underlying transaction 

services and adding a transaction event callback mechanism t o  other transaction processing 

systems would be worthwhile. In our opinion, the answer to  this is in part economic. 

There are only a handful of commercially significant TP monitors in circulation, which 

offer conventional ACID transaction support. This compares t o  thousands of transactional 

applications written on top of them, and possibly thousands more that  could be developed 



using extended transactions. It is our opinion that  any additional work invested in TF! 
monitor systems software t o  enable extensions, such as those introduced by Reflective 

Transaction Framework, to  widen their application reach and make advanced application 

development easier should yield a large payoff. 

Although our implementation was carried out in the  context of the Encina transaction 

processing monitor, its results are not limited t o  Encina. The components of the Encina 

Toolkit are fairly representative of the core transaction facilities found in modern TP 
monitors. Thus, we are confident the approach taken and the lessons learned can be 

applied t o  other transaction processing systems. In particular, since the Encina toolkit 

has been used to  implement IBM's CICS/6000, DEC's ACMS/xp, and Transarc's Encina 

TP monitors, so it is likely ENCINA/ET will run on all of these systems. Confirmation of 

this conjecture, however, awaits future portability experiments. 

There are clearly performance costs t o  be paid for applications to  use extended trans- 

action services defined by the Reflective Transaction Framework. In our evaluation of 

ENCINA/ET we explored whether the Reflective Transaction Framework could be im- 

plemented efficiently on top of a conventional TP monitor, and what the performance 

overhead was for each extended transaction service. We presented a set of controlled 

experiments that  cover the range of extended transaction services defined by the frame- 

work and that  are implemented in ENCINA/ET. The observed performance overhead for 

the extended transaction services was modest across all the experiments. The measured 

operations were also in agreement with our relative evaluation to ACID transactions. In 

summary, the performance evaluation results presented in this chapter confirm our belief 

that  the overhead imposed by the framework services is not unduly expensive. Since the 

current implementation has not been fully tuned for performance, more careful tuning 

could lead t o  further reduction in the performance overhead. 



Chapter 6 

Summary and Conclusion 

In this chapter, we briefly summarize our work, identify our contributions, and outline 

opportunities for future research. 

6.1 Recapitulation 

We began in Chapter 1 by describing the problem, tha t  is, the lack of practical extended 

transaction implementations and the inability of existing transaction processing systems 

t o  directly support the range of behaviors required t o  implement extended transactions. 

As a result, the vast majority of advanced transaction models and semantics-based con- 

currency control protocols have remained, a t  least thus far, mere theoretical constructs 

with no practical implementations. This problem has two aspects: one design and one 

implementation. The design aspect is the lack of extended transaction functional build- 

ing blocks and accompanying application programming interfaces required t o  implement 

extended transactions. The implementation aspect is that  traditional approaches to  the 

design of transaction processing systems have required developers t o  make implementation 

decisions that  subsequently restrict how those transaction processing systems can be used, 

and hence the range and form of the transactional applications that  can be built using 

them. 

These two aspects are related. In Chapter 2, we drew on recent work on Open Imple- 

mentation t o  analyze these problems in terms of the  use of abstraction, in both systems 

and applications. This analysis suggests a particular form of solution - the use of Open 

Implementation techniques to construct a framework that  "opens up" transaction process- 

ing system functionality, resulting in a system in which the components and mechanisms 

that  the framework offers can be manipulated, controlled and specialized by application 

developers to match the needs of particular applications and usage situations. 

The main body of the dissertation (Chapters 3 - 5) presented our solution. In Chapter 

3 we first described the basic form and design principles behind the Reflective Transaction 



Framework, an extended transaction facility designed t o  be built on top of a conventional 

TP monitor. We then presented three novel extended transaction services that  the frame- 

work provides for realizing extended transaction behaviors. The design of each service is 

focused on extending the underlying TP monitor and mapping framework structures onto 

transactional application needs, rather than the other way around. 

The first extended transaction service is dynamic transaction restructuring, which al- 

lows an application t o  manage the database resources that  i t  holds explicitly. This al- 

lows an application t o  help determine when an extended transaction will obtain and re- 

lease database resources. This extended service is designed t o  support the  ways in which 

database resources, that  is specific data objects, are processed in a structured and collab- 

orative manner. Specifically, transaction restructuring provides support for applications 

t o  selectively make tentative and partial results, as well as hints such as coordination in- 

formation, accessible t o  other extended transactions, and t o  decouple the fate of updates 

from tha t  of the  transaction that  performed the operations. As such, dynamic transac- 

tion restructuring offers direct support for implementing extended transactions used in 

collaborative and structured transactional applications. 

The second extended transaction service is semantic transaction synchronization, which 

allows an application t o  define and select semantic compatibility for individual extended 

transactions. Semantic compatibility not only provides direct support for collaborative 

activity between extended transactions (unlike, for example, simple read/write locking 

protocols used in a conventional Lock Manager), but is also a means for application pro- 

grammers t o  express the semantics of application operations. Application semantics pro- 

vide a richer basis for decisions about transaction concurrency than would be available if 

all transaction operations were simply mapped t o  the  most general read/write-semantics 

model. As a result, transactional applications developed using the Reflective Transaction 

Framework have increased potential for concurrency and direct support for transaction co- 

operation as appropriate for the particular application (rather than allowable concurrency 

embedded within the TP monitor's Lock Manager design). 

The third extended transaction service is transaction execution contml, which allows 

an application t o  control the execution of complex activities reliably. This extended ser- 

vice is designed t o  allow an application t o  place constraints on the execution of individual 

extended transactions. These constraints are expressed in terms of dependencies between 

the significant events of the extended transactions in an application. Applications can 

define new dependencies appropriate for the advanced transaction model they are using, 

and then form dependencies between extended transactions a t  runtime to determine exe- 

cution order. As such, transaction execution control offers direct support for structuring 

an application as a sequence of activities, in which each activity is executed by an extended 



transaction, and for controlling the  interactions of extended transactions operating over a 

set of shared d a t a  objects. 

Access t o  the extended transaction behaviors provided by the Reflective Transaction 

Framework and the exposed functionality of the underlying TP monitor is carefully orga- 

nized through a well-documented metalevel interface. Transactional applications can use 

commands from the metalevel interface t o  "become involved" in tailoring the extended 

transaction infrastructure that  supports them. The extended transaction services that  the 

Reflective Transaction Framework provides (namely, transaction restructuring, semantic 

transaction synchronization, and transaction execution control) are designed not just to  

support specific extended transactions, but also to  provide a basis for extension and spe- 

cialization of the  Reflective Transaction Framework's internal mechanisms. 

Critically, the Reflective Transaction Framework does not simply provide a parame- 

terized implementation in which users simply select from a set of extended transactions. 

Rather, it provides a framework within which new extended transaction behaviors and 

mechanisms can be crafted through the programmatic extension and specialization of re- 

vealed aspects of the T P  monitor's internals. The view that  the Reflective Transaction 

Framework provides into aspects of the underlying transaction processing systems struc- 

ture, and the opportunities that  i t  offers for applications t o  tailor and specialize this 

structure according t o  their particular needs, are the essence of the Open Implementa- 

tions approach, and also the means by which the Reflective Transaction Framework offers 

considerable flexibility and control in the implementation of extended transactions. 

To supplement the smaller examples which Chapter 3 used t o  illustrate technical 

points, Chapter 4 presented two sets of examples - the implementation of selected ad- 

vanced transaction models, and the implementation of selected semantics-based concur- 

rency control protocols. Individually, these examples illustrate how the  Reflective Trans- 

action Framework can be used t o  define and implement a number of important extended 

transactions, and how the relationship between framework facilities and application pro- 

gramming is managed. More importantly, when taken together, these examples illustrate 

the flexibility which the Reflective Transaction Framework embodies, Indeed, t o  the best 

of our knowledge, no system has been reported that  can implement such a wide range of ad- 

vanced transaction models and semantics-based concurrency control protocols. Together, 

these examples demonstrate how a single framework can embody radically different trans- 

action extensions, and how applications can revise and adapt the framework mechanisms 

to  leverage underlying TP monitor facilities for their own needs. 

Finally, Chapter 5 presented ENCINAIET, an implementation of the  Reflective Trans- 

action Framework on the commercial T P  monitor Encina, and an accompanying evaluation 

of the Encina implementation and framework design. This chapter shows how simple a 



facility for implementing extended transactions can be, while still supporting classic ACID. 

transactions: an application-level library with minimal programming constraints, imple- 

mented in 2000 lines of mainline C code and no more intrusive than a typical transaction 

library. Our implementation of ENCINA/ET did not require the invention of any radi- 

cally new transaction processing approaches, merely the judicious selection and careful 

extension of existing T P  monitor functional components. This demonstrates both the 

practicality of the Reflective Transaction Framework design, and that  new requirements 

for transaction processing need not require radically new transaction processing technol- 

ogy- 
Our evaluation of the ENCINA/ET implementation demonstrated that the extended 

transaction services do not impose significant overhead. In addition, we explained how 

other extended transaction implementations, introduced in Chapter 2, would either fail 

altogether t o  support these different extended transactions, or would require the pro- 

grammer to  "step down" into the code of the  implementation (if this were available) and 

provide implementation-specific extensions and modifications. In contrast, the design of 

the Reflective Transaction Framework allows customization a t  a high-level through the 

available metalevel interface. 

In summary, our research shows that  i t  is possible t o  extend a conventional TP monitor 

in a practical and modular manner t o  implement extended transactions. In doing so, we 

have presented not only the design of the Reflective Transaction Framework and extended 

transaction services i t  offers, but have also identified mechanisms for integrating these 

new services with the functionality provided by a conventional TP monitor. To demon- 

strate the practicality of these ideas and mechanisms, we have also presented a concrete 

implementation on a commercial TP monitor. 

6.2 Contributions 

This research is the first t o  demonstrate convincingly a practical method of extending a 

conventional transaction processing facility with mechanisms to  support extended trans- 

actions, one that  can readily implement a wide range of advanced transaction models and 

semantics-based concurrency control protocols. In this dissertation, we have presented a 

demonstration of our thesis, via design, application, implementation and evaluation of a 

working system. The specific technical contributions of each of the three main chapters 

are enumerated below. 

1. Reflective Transaction Framework Design In Chapter 3 we presented the design of 

a software framework, the Reflective Transaction Framework, that  balances several 



design goals: new extended transaction functionality, ease of implementation, com- 

patibility with legacy transaction systems, ease of use, and modest performance and 

resource costs. We highlighted the key design issues involved in the definition of new 

extended transaction services, specifically dynamic transaction restructuring, seman- 

tic transaction synchronization and transaction execution control. We presented a 

design in which these extensions could be smoothly integrated into a conventional T P  

monitor, advancing our goal for ease of implementation while maintaining compati- 

bility with legacy transaction processing. Moreover, the design supports incremental 

extension - if only certain advanced transaction models or semantics-based concur- 

rency control protocols are required, only those extended transaction services need 

be provided; other extended transaction behaviors can be incrementally added t o  

the framework over time. 

In addition, the framework offers principled access t o  extended transaction services 

and underlying TP monitor structures and mechanisms for examination and manip  

ulation. This access is principled in the sense that  the framework does not expose 

the functionality of the entire TP monitor, but only selected aspects of it. In addi- 

tion, the metalevel interface encapsulates state so the TP monitor need not expose 

the internal da ta  structures and functions that  are actually used. 

2. Demonstrataon In Chapter 4 we presented the implementation of several advanced 

transaction models and semantics-based concurrency control protocols, t o  demon- 

strate the flexibility of the Reflective Transaction Framework. The selected examples 

vary across a number of dimensions, differing not only in their intended application 

domains but also in the nature and structure of their implementation. These imple- 

mentation variations - dynamically restructuring transactions versus strict atomic 

execution, controlled cooperation between transactions versus strict isolation, and 

execution control through both structural and dynamic dependencies - cut across 

the barriers that  traditional transaction processing implementations erect. 

3. Encina/ET Implementation and Evaluation In Chapter 5 we presented ENCINA/ET, 
an implementation of the Reflective Transaction Framework on the commercial TP 
monitor Encina. The implementation is based on transaction adapters, software 

modules built on top of the Encina Toolkit functional components. Each adapter 

uses transaction significant events t o  reify extended transaction state, and uses ex- 

isting application programming interface calls t o  reflect changes t o  the computa- 

tional state of the TP monitor. The extensions implemented by each transaction 

adapter builds on the available functionality of the underlying functional compo- 

nent of the TP monitor, t o  the extent possible, and provides the programmer with a 



clean metalevel interface through which he or she can customize and extend system. 

functionality. This allows new extensions and model improvements to  be quickly 

incorporated, and as a result, the implementation can remain up to  date with ap- 

plication requirements. 

Our presentation illustrates the implementation of the extended transaction services 

defined by the  Reflective Transaction Framework as  extensions of base transaction 

services provided by the Encina Toolkit. As set forth in our design objectives, the 

implementation did not require the invention of any radically new approaches, merely 

the  judicious selection, adaptation and extension of available transaction services. 

We also presented empirical measurements based on controlled experiments that  

confirmed ENCINA/ET'S modest performance and resource costs. 

6.3 Future Work and Opportunities 

The  analysis, design and implementation of the Reflective Transaction Framework is a 

practical approach t o  implement extended transactions on conventional TP monitors. It 

is a research area of great practical interest and one in which concerns of openness and ex- 

tensibility are paramount. Building on this! there are  a number of topics for further inves- 

tigation which can be classified roughly into four areas: enhancements of the ENCINA/ET 

implementation to  make the extended transaction services more complete; further eval- 

uation of both the Reflective Transaction Framework and ENCINA/ET implementation 

through the  application of extended transactions t o  real-world problems; research to  de- 

velop further the  Reflective Transaction Framework itself; and,  research on the design and 

implementation of systems software using ideas from Open Implementations. 

1. ENCINA/ET Implementation Extensions 

For implementation expediency, a few minor features logically belonging t o  the cur- 

rent Reflective Transaction Framework design have not yet been fully supported. 

Implementation enhancements, such as support for deferred delegation, could be 

added t o  make the extended transaction services of ENCINA/ET more complete. 

Another is the addition of persistence for key ENCINA/ET da ta  structures. 

Persistent Data Structures Because a transactional application using ENCINA/ET 

can crash for various reasons, such as fatal runtime errors and machine shutdown, 

t'he system needs to  maintain critical information in persistent storage to  resume 

normal operations after system restart. One way this could be accomplished is by 

using RVM [SMK+94], a lightweight transaction facility for maintaining persistent 

d a t a  structures. RVM exports the abstraction of recoverable virtual memory to  its 



host application (ENCINA/ET) which can map regions of RVM's recoverable segments 

onto portions of its virtual address space. Accesses t o  mapped da ta  are performed 

using normal memory read and write operations. If such accesses are bracketed with 

RVM's begin and end-transaction statements, failure atomicity is automatically pro- 

vided. RVM asynchronously flushes updates t o  recoverable memory to  the backing 

disk and allows the application t o  control the frequency of such flushes. Almost all 

the important information included in the ENCINA/ET d a t a  structures, described 

previously in Section 5.2, could be stored in RVM. Because RVM space is a scarce 

resource, the efficient design of ENCINA /ET data  structures minimizes the portion 

tha t  must remain persistent. Data items, such as operation compatibility tables 

that  could be reloaded from the disk, would not need t o  be kept in persistent da ta  

structures. 

2 .  Further Evaluation and Application 

So far, we have evaluated the performance overhead, resource cost, and some usabil- 

ity issues of the Reflective Transaction Framework and ENCINA/ET implementation 

based on controlled experiments and selected extended transaction implementations. 

Many other system usability issues arestill unaddressed, pending further accumula- 

tion of usage experience. Moreover, the previous quantitative measurement results 

could be further strengthened or adjusted with more usage data.  Issues such as these 

cannot be addressed until there is substantial system usage from a user community 

on an actual application. Thus another area for further investigation is t o  identify an 

area or  a killer application that  requires extended transaction support. This would 

enable a comprehensive usability study of the Reflective Transaction Framework and 

further performance evaluations of the ENCINA/ET implementation. 

One of the  major areas positioned to  exploit extended transaction capabilities is 

workflow management [SSU96]. In recent years, workflow management has emerged 

a s  a powerful tool t o  improve productivity of organizations [HC93]. Adopting a 

process-centric approach, industry has been promoting work.%ow management as a 

technique for modeling, executing, and monitoring such applications. A procedural 

description of how and what is to be performed to  achieve work is termed a workflow. 

The individual steps that  compromise a workflow are termed activities. Activities 

may involve humans as well as programs. Aided by advances in client-server com- 

puting and distributed database techniques, early office-automation systems have 

evolved into workflow management systems [MNBf 941. 



There are several prototype and commercial workflow management systems avail-. 

able [GHS95b], and many have features that  address the needs of real working en- 

vironments that  advanced transaction models fail t o  consider. However, current 

workflow management systems do not have adequate support t o  satisfy the model- 

ing and correctness requirements of advanced database applications. The deficiencies 

include no clear transaction concept, lack of support t o  keep track of da ta  depen- 

dencies among different workflows, lack of support for cooperative activities, and 

insufficient support for recovery. Since these issues have been investigated exten- 

sively in the area of advanced transaction management, it would be valuable to  

cross-fertilize the two areas to  develop a model and an architecture that  provides 

flexibility in defining tasks and specifying the correctness and consistency require- 

ments of advanced database applications. In particular, there is a need t o  support 

coordinated and cooperative tasks and t o  handle heterogeneity and interoperability. 

One recent work that  addresses these requirements is the Transaction Activity Com- 

position Model (TAM) introduced by Ling Liu and Calton Pu [LP98a]. TAM pro- 

vides a family of transaction activity restructuring operations in a unified frame- 

work for declarative specification and dynamic restructuring of workflows [LP98bj. 

The TAM framework is designed usingconcepts from computational reflection and 

Open Implementation, inspired by the design of the Reflective Transaction Frame- 

work. Reflection is employed in TAM to provide a specification interface for flexible 

workflow customization and t o  provide both application-level and system-level cus- 

tomization. As a result, TAM allows activity designers t o  incrementally specify the 

behavioral composition of complex activities and a wide variety of activity interac- 

tion dependencies through a declarative metalevel interface. 

3. Further Development of the Reflective Transaction Framework. 
Another area for future work is extensions t o  the Reflective Transaction Framework. 

For instance, relaxed consistency guarantees, support for transaction compensation 

and application-specific correctness criteria are areas which our initial design does 

not address. These areas were omitted from the initial design and implementation so 

as t o  concentrate on core elements for implementing extended transactions, but are 

candidates for the same sort of development as dynamic transaction restructuring, 

semantic transaction synchronization, and transaction execution control. 

Beyond these enhancements, two major extensions worth exploring immediately are 

crash recovery and support for distributed execution of extended transactions. Work 

is, in fact, already underway in each of these areas by other members of our research 

group. The rest of this discussion describes that work in slightly more detail. 



Extended Transaction Recovery Shu-Wie Chen has introduced a Modular Archi- 

tecture for Recovery Systems (MARS) t o  construct flexible and efficient recovery 

systems t o  support extended transactions [Che98]. The MARS architecture is based 

on the observation that  any recovery algorithm that  implements transaction-oriented 

recovery must perform three tasks: identify the transactions t o  be aborted and com- 

mitted, identify the operations associated with each transaction, and recover indi- 

vidual transactions by removing the effects of aborted transactions and inserting 

the effects of committed transactions. These tasks correspond t o  the three MARS 

recovery modules: transaction state analysis, transaction operation analysis, and 

transaction recovery. In keeping with traditional recovery systems, these recovery 

modules are organized so that  the two analysis modules generate a recovery plan 

that  can be executed by the  recovery module. In this manner, MARS maintains 

backward-compatibility with existing recovery systems on TP monitors. 

Associated with each MARS recovery module is a set of efficient, crash-aware al- 

gorit hms that  have been further decomposed into recovery microprotocols. These 

recovery microprotocols can be combined in various ways t o  implement different re- 

covery functionality. This work includes an examination of various extended trans- 

action models t o  identify the different recovery properties. In particular, Chen's 

work has considered the effects of dynamic transaction restructuring on transaction 

operation analysis, as well as the effects of semantic transaction synchronization and 

transaction execution control on transaction states analysis. 

Distributed Extended Transactions Tong Zhou has recently introduced the Open 

Coordination Protocol (OCP) t o  support distributed extended transactions [ZPL96]. 

OCP is a coordination facility for constructing optimized coordination protocols for 

distributed extended transactions [ZPL96]. The main idea behind OCP is the de- 

composition of existing coordination protocols (e.g., two-phase commit protocol and 

its variants) into fine-grain microprotocols, which are then composed and special- 

ized with respect t o  particular situations for flexibility, reliability, and performance. 

By applying OCP, both existing coordination protocols and new protocols can be 

developed; for example, the presumed-abort (PA) variant of the two-phase com- 

mit protocol [ML83, ML0861, the open commit protocol [RP90], optimistic commit 

protocol [LI<S91], or unilateral commit [HS91]. Existing optimizations or new o p  

timizations can be incorporated into these protocols as well, much as read-only, 

last-agent, voting reliable, etc. [SBCM93, SBCM951. A key component of OCP, 



with respect t o  the Reflective Transaction Framework, is the development of new. 

coordination protocols for a variety of distributed extended transaction management 

control primitives, such as de lega te ,  s p l i t ,  and joingroup. 

4. Open Implementation 
A number of areas open for further work focus on the development of Open Imple- 

mentation techniques and, in particular, their application t o  the design and imple- 

mentation of transaction processing and database systems. 

First, open implementation is a t  an early stage of development, and general tech- 

niques building on the experiences of developers are only slowly being developed (e.g. 

recent work on OIA/D [KDLMSS]). Each new experience, and each application to  a 

new domain, brings refinements and insights into the model. As described in C h a p  

ter 4, one interesting aspect of the Open Implementation approach in the Reflective 

Transaction Framework design is the way in which programmers extend and enrich, 

rather than configure, the underlying transaction services. The ways in which this 

happens, its consequences, and its applicability t o  new domains, all remain avenues 

for fruitful investigation in the development of the Open Implementation approach. 

Second, as the focus of Open Implemenfation approach has broadened from its orig- 

inal grounding in programming language semantics and applications, researchers 

from other areas have begun to adopt aspects of the approach and apply them to 

their own work. This has included a number of investigations in distributed sys- 

tems and operating systems of the value of reflective and metalevel techniques (e.g. 

[CM93, EPT95, Yok92, Str93, SW951). These investigations aim principally a t  dy- 

namic control and configuration of distributed systems, along with augmentation of 

programming languages in support of distributed programming, so they typically 

focus a t  a lower level than the work presented here; their focus is infrastructure 

( that  is, "be~od' the application). However, they point towards an opportunity to  

use reflective techniques to integrate system and application issues by using met- 

alevel information t o  coordinate the needs of both, and as such, share some of the 

motivations which have driven this work. 

6.4 Parting Shot 

The above list of possible extensions t o  the research described in this dissertation is not 

intended t o  be complete. We hope that  the reader has found enough inspiration in this 

work t o  suggest further additions t o  the list. Supporting the next generation of advanced 



database applications means we have to rethink how we slice up and present the function- 

ality of transaction processing systems, in addition to broadening and narrowing specific 

functions. We believe that this dissertation is a step in this direction, and hope it leads 

to the further migration of extended transaction research results into practice. 
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