
Incremental Segmentation and

Annotation Strategies for Real-time

Natural Language Processing

Applications

Mahsa Yarmohammadi

Presented to the Center for Spoken Language Understanding

within the Oregon Health & Science University

School of Medicine

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

Computer Science & Engineering

September 2016

c⃝ Copyright 2016, Mahsa Yarmohammadi

Center for Spoken Language Understanding

School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Ph.D. dissertation of

Mahsa Yarmohammadi

has been approved.

Dr. Brian Roark,
Research Scientist, Google Inc.

Dr. Steven Bedrick
Assistant Professor, OHSU

Dr. Richard Sproat
Research Scientist, Google Inc.

Dr. Srinivas Bangalore
Lead Inventive Scientist, Interactions Labs

Dr. Peter Heeman
Associate Professor, OHSU

Dedication

I dedicate this dissertation to my family.

vii

Acknowledgments

I would like to express my special appreciation and thanks to my advisor, Brian Roark, for

guiding and supporting me over the years, and allowing me to grow as a researcher. I am

very grateful for his support, patience, motivation, and immense knowledge in Natural

Language Processing, that make him a great advisor. I have learned a lot from him,

both technically and personally, and without his guidance I could not have finished this

dissertation successfully.

Many thanks to the other members of my committee, Richard Sproat, Srinivas Bangalore,

Steven Bedrick, and Peter Heeman. Their invaluable discussions and collaborations during

my PhD study have provided me motivation and enlightened my educational pathway.

Their thoughtful comments have vastly improved the quality of this dissertation.

I would like to acknowledge the former and current CSLU faculty, in particular Jan van

Santen and Izhak Shafran. Thank you to my fellow graduate students at CSLU, espe-

cially Aaron Dunlop, Nate Bodenstab, Kristy Hollingshead, Emily Prud’hommeaux, Eric

Morley, Andrew Fowler, Russ Beckley, Maider Lehr, Joel Adams, Meg Mitchell, Ethan Sel-

fridge, Rebecca Lunsford, Brian Bush, Brian Snider, Shiran Dudy, Archana Machireddy,

Meysam Asgari, Alireza Bayesteh, Mahsa Elyasi, Hamidreza Mohammadi, and Golnar

Sheikhshab. Thanks to Patricia Dickerson for her great administrative support. I also

would like to appreciate my colleagues at industry, especially Vivek Kumar Rangarajan

Sridhar, for co-mentoring me during my summer internship at AT&T Research Labs, and

all my colleagues at Intel corporation, especially Michael Deisher, Sylvia Downing, and

Alberto Martinez, for being so flexible with me to finalize this dissertation.

This journey would not have been possible without the love, patience, and emotional

and technical support of my husband, Masoud Rouhizadeh, and endless support and

inspiration from my mom, my sisters Mahshid and Bita, and my brother Behrouz. I am

eternally grateful for you. I also thank Masoud’s family for their warm and continuos

encouragements.

viii

Contents

Dedication . vii

Acknowledgments . viii

Abstract .xvii

1 Introduction . 1

1.1 Problem Statement . 2

1.2 Thesis Contributions . 3

1.3 Organization of the Dissertation . 5

2 Preliminaries and Background . 7

2.1 Knowledge of Language . 8

2.1.1 The Chomsky Hierarchy . 8

2.1.2 Finite-state Machines . 9

2.1.3 Context-free Grammars . 11

2.2 Hidden Markov Models for Tagging . 15

2.2.1 Part-of-Speech Tagging . 15

2.2.2 Hidden Markov Models . 16

2.2.3 Viterbi Algorithm . 18

2.3 Discriminative Log-linear Models . 19

2.3.1 Perceptron Algorithm . 20

2.3.2 Incremental Structural Prediction 21

2.4 Phrase-structure Parsing . 22

2.4.1 CYK Parsing . 22

2.4.2 Shift-reduce Parsing . 24

2.4.3 Parsing Evaluation . 25

2.5 Fast/ Partial Syntactic Parsing . 26

2.5.1 Shallow Parsing (Chunking) . 27

2.5.2 Supertagging . 28

2.5.3 Dependency Parsing . 30

x

2.5.4 Vine Parsing . 32

2.5.5 Incremental Parsing Algorithms . 33

2.6 Statistical Machine Translation . 35

2.6.1 Phrase-based SMT . 35

2.6.2 Syntax-based SMT . 37

2.6.3 MT Evaluation . 40

2.7 Simultaneous Speech-to-Speech Translation 41

2.7.1 Input Segmentation Strategies . 43

3 Fast Syntactic Annotation and Segmentation using Hedge Parsing . . . 49

3.1 Introduction . 49

3.2 Finite-state vs Context-free Parsing . 53

3.3 CYK Pruning and Prioritization Methods 54

3.4 Hedge Tree Transform . 57

3.5 Hedge Parsing . 58

3.5.1 Hedgebank Grammar . 59

3.5.2 Hedge-constrained CYK Chart . 60

3.6 Hedge Segmentation . 60

3.6.1 Segmentation Model . 63

3.6.2 The Classifier and Feature Set . 64

3.7 Methods . 65

3.7.1 Data . 66

3.7.2 Experimental Setup . 67

3.8 Results . 67

3.8.1 Hedge Parsing Results . 68

3.8.2 Prioritization and Pruning Results 68

3.8.3 Hedge Segmentation and Parsing Results 70

3.8.4 Test Set Results . 71

3.9 Summary . 74

4 Real-time Hedge Annotation and Segmentation via Incremental Parsing 75

4.1 Introduction . 75

4.2 Latency . 78

4.3 Shift-reduce Parsing . 78

4.3.1 Classifier-based Parser . 78

4.3.2 Parsing Actions . 80

4.3.3 Beam-search Decoding . 80

4.4 Stable Partial Outputs . 83

xi

4.5 Buffering Algorithm for Stable Low-latency Hedge Segmentation 86

4.6 Data and Experiments . 91

4.7 Results . 91

4.8 Summary . 97

5 Evaluation of Annotation and Segmentation Strategies in Machine Trans-

lation . 98

5.1 Introduction . 98

5.2 Phrase-based and Syntax-based Machine Translation 101

5.2.1 Phrase-based MT . 101

5.2.2 Syntax-based MT . 102

5.2.3 Word Re-ordering . 105

5.2.4 Training Tree-based Models . 105

5.3 Methods . 108

5.3.1 MT Models . 109

5.3.2 Inputs . 109

5.3.3 Combining Inputs and MT Models 111

5.3.4 MT Performance Evaluation Measures 112

5.4 Experimental Setup . 114

5.4.1 Data . 114

5.4.2 Data Preparation and MT Toolkit 115

5.5 Results . 116

5.5.1 Impact of Target Syntactic Annotation on Translation 116

5.5.2 Impact of Source Syntactic Annotation on Translation 122

5.5.3 Impact of Input Segmentation on Simultaneous Translation 128

5.6 Summary . 136

6 Conclusion and Future Work .138

6.1 Summary . 138

6.2 Future Work . 139

Appendices .142

A English Penn Treebank Tagset .142

B English and Chinese Constituent Head Percolation Rules145

xii

List of Tables

3.1 Classifier features for tagging hedge segment boundaries. w is word form, t is

hedge-boundary tag, and p is POS tag. All lexical, orthographical, and POS

features also occur with ti−1. 64

3.2 Corpora statistics. 66

3.3 English hedge parsing results on section 24 for L=7. 68

3.4 English hedge parsing results for pruning and prioritization models on section 24

for L=7. 69

3.5 English hedge segmentation and parsing results on section 24 for L=7. 70

3.6 English hedge segmentation and parsing results on test data, section 23, for L=7. . 72

3.7 Chinese hedge segmentation and parsing results on test data, for L=7. 72

4.1 Average frequency and distribution of stable constituents in English development

set. 85

4.2 Average frequency and distribution of stable constituents in Chinese development

set. 85

4.3 English hedge parsing accuracy and latency results on section 24 for L=7. Beam

size for Shift-Reduce parsers is 16. Buffer parameter k for “Shift-Reduce + Buffer-

ing” is 3. 93

4.4 Chinese hedge parsing accuracy and latency results on dev set for L=7. Beam size

for Shift-Reduce parsers is 16. Buffer parameter k for “Shift-Reduce + Buffering”

is 3. 93

4.5 English hedge parsing accuracy and latency results on section 23 for L=7, B=16,

k=3. 94

4.6 Chinese hedge parsing accuracy and latency results on test set for L=7, B=16,

k=3. 96

5.1 Translation accuracy on development data for (a) Urdu to English, and (b) Japanese

to English (small data set). 118

5.2 Accuracy and efficiency of translating (a) Urdu to English and (b) Japanese to

English (small data set) test sets using phrase-based and syntax-based models. . . 121

xiii

5.3 Accuracy and efficiency of translating Japanese to English (large data set) test

sets using phrase-based and syntax-based models. 121

5.4 Translation accuracy on development data for English to Japanese (small data). . 124

5.5 Accuracy and efficiency of translating English to Japanese development set (large

data) using phrase-based and syntax-based models. 126

5.6 Accuracy and efficiency of translating English to Japanese test set (small data set)

using phrase-based and syntax-based models. 127

5.7 Accuracy and efficiency of translating English to Japanese test set (large data set)

using phrase-based and syntax-based models. 127

5.8 Accuracy and efficiency of translating segmented English to Japanese development

set (large data set). 130

5.9 Accuracy and segmentation latency of translating segmented English to Japanese

development set (large data set) in offline and real-time segmentation modes. . . . 134

5.10 Accuracy and efficiency of translating segmented English to Japanese test set (large

data set). 135

5.11 Accuracy and segmentation latency of translating segmented English to Japanese

test set (large data set) in offline and real-time segmentation modes. 135

A.1 English Penn Treebank POS tagset. 143

A.2 English Penn Treebank phrase tagset. 144

B.1 Head-finding Rules for English (from the ZPAR parser (Zhang and Clark, 2011)). . 146

B.2 Head-finding Rules for Chinese (from the ZPAR parser (Zhang and Clark, 2011)). 147

xiv

List of Figures

2.1 The Chomsky hierarchy. 9

2.2 An example of a finite-state automaton. 10

2.3 (a) A context-free grammar and (b) parse tree for example string aaabbb. 12

2.4 (a) Original tree; (b) Left-factoring binarization; (c) Right-factoring binarization . 14

2.5 (a) Original tree; (b) Binarized tree (with Markov order-0 smoothing) to use in

shift-reduce parser training. The lexical head of the A* nodes is the same as the

lexical head of node A. 15

2.6 The Viterbi algorithm. Notation adapted from Roark and Sproat (2007). 18

2.7 The perceptron algorithm. 20

2.8 A parse represented in a CYK chart. 23

2.9 The CYK parsing algorithm. Notation adapted from Roark and Sproat (2007). . . 24

2.10 Shift-reduce parsing steps. 25

2.11 (a) The full parse tree, (b) shallow parse tree, (c) flat bracketing notation and IOB

tagged notation of the chunks, for an example sentence. 28

2.12 phrase structure tree and obtained supertags for an example sentence. (from Ban-

galore and Joshi (1999)) . 29

2.13 (a) Phrase-structure tree and (b) dependency tree of an example sentence. 31

2.14 (a) A full dependency tree and (b) a vine dependency tree retaining only depen-

dencies of length ≤ 3. (from Eisner and Smith (2005)) 33

2.15 An example of two translationally equivalent sentences e and f and a possible word

alignment in graph and matrix representations. 37

2.16 (a) An example SCFG for English and French, and (b) SCFG derivations repre-

sented as a pair of trees. (from Chiang (2006)) 39

2.17 Simultaneous speech-to-speech translation pipeline. 42

2.18 Word alignment matrix for two parallel sentences. Monotonic phrase alignments

are shown with different line styles. 47

3.1 Full syntactic parse tree for an example sentence. 50

3.2 (a) Shallow parse tree and (b) flat bracketing notation of the chunks. 50

3.3 Hedge parse tree for the example sentence in Figure 3.1 with maximum constituent

span of 4 (L=4). 51

xv

3.4 (a) CYK chart with binarized non-terminals (b) left-binarized parse tree. 55

3.5 Percentage of constituents retained at various span length parameters L=3–20 for

English and Chinese training data. 57

3.6 (a) Example chart demonstrating cell closures when performing inference with a

span-4 hedgebank grammar. (b) Left-binarized hedge parse tree. 61

3.7 Size of the hedge segmentation dictionary at various span length parameters L=

3–20 for English and Chinese training data. 62

3.8 (a) English and (b) Chinese hedge parsing efficiency and accuracy results on test

data, for L=3–20. 73

4.1 Beam-search decoding example. 82

4.2 (a) Binary, and (b) n-ary trees for parse result of the example sentence in Figure 4.1. 83

4.3 The buffering algorithm for a deterministic parser. 89

4.4 Buffering algorithm run on the example in Figure 4.2 for L=3 and k=3. 90

4.5 Real-time hedge parsing accuracy vs latency (words) on section 24, for L=7 and

buffering parameters k=1, 2, 3. 92

4.6 English hedge segmentation latency and hedge parsing accuracy on test data, sec-

tion 23, for L=3–20, B=16, k=3. 95

4.7 Chinese hedge segmentation latency and hedge parsing accuracy on test data,

articles 271-300, for L=3–20, B=16, k=3. 95

5.1 An example of (a) a word alignment of two parallel sentences and (b) phrase pairs

consistent with this word alignment. 102

5.2 Phrase table. 102

5.3 Hierarchical phrase-based SCFG rules. 104

5.4 Basic syntax SCFG rules. 104

5.5 Left-factoring syntax SCFG rules. 107

5.6 SAMT syntax SCFG rules. 108

5.7 Urdu to English syntax-based translation accuracy versus L on development data. 117

5.8 Japanese to English (small data set) syntax-based translation accuracy versus L

on development data. 117

5.9 Urdu to English syntax-based translation accuracy versus speed on development

data. 119

5.10 Japanese to English (small data set) syntax-based translation accuracy versus

speed on development data. 119

5.11 English to Japanese (small data set) syntax-based translation accuracy versus L

on development data. 123

xvi

Abstract

Incremental Segmentation and Annotation Strategies for Real-time

Natural Language Processing Applications

Mahsa Yarmohammadi

Doctor of Philosophy

the Center for Spoken Language Understanding within

the Oregon Health & Science University

School of Medicine

September 2016

Thesis advisor: Dr. Brian Roark

The input data to a real-time natural language processing application, such as a simulta-

neous speech-to-speech translation system, is received as a continuous stream and there is

often no boundary between the units that are appropriate to process by the application.

To start real-time processing, the application requires pieces or segments of the stream

input that are separated at appropriate positions. In this thesis we propose hedge parsing,

a fast incremental syntactic parsing approach which enables syntax-aware stream input

segmentation. As opposed to full syntactic parsing of the input, hedge parsing is able

to parse incomplete data, which makes it suitable for real-time scenarios. In contrast to

shallow parsing of the input which only provides bracketing information, hedge parsing

annotates full hierarchical structure of the input up to a maximum constituent span. The

processing application may improve its performance by benefiting from such syntactic

xvii

annotation of the input segments. Using a state-of-the-art non-incremental full syntactic

parser, we could achieve an order of magnitude speed up in finding about 3
4 of the original

constituents of the input, with around 90% accuracy. We then improved the latency of

hedge parsing, with a slight accuracy degradation, using an incremental parsing frame-

work. To investigate the benefit of hedge parsing in real-time applications, we showcased

incorporating hedge parsing in machine translation. We demonstrated that hedge segmen-

tation and annotation may achieve an acceptable translation accuracy/latency trade-off

compared to alternative methods. In particular, it remarkably outperforms shallow pars-

ing, emphasizing the advantage of applying some degree of syntax, rather than just shallow

chunking structures, in real-time natural language processing applications that require fast

analysis of the input.

xviii

Chapter 1

Introduction

Simultaneous speech-to-speech translation (SST) is the challenging task of listening to

source language speech, and at the same time, producing target language speech. A human

interpreter starts to produce target language utterances with little delay, while the speaker

is still speaking. Of course, the human interpreter should avoid speaking translations that

cause mistakes and must be revised later. Similar to simultaneous translation, one of the

most identifying features of real-time systems is little delivery latency, that is the output

should be produced with little delay after receiving the input. Thus such systems should

work incrementally, which means they should process parts of the input, even before it

has been completed, and produce the output. The complete output is built gradually by

processing all parts of the input. Another important feature of real-time systems is that

the output should not be revised at a later time. Simply stated, incrementality means

that input data is not entirely known, but in a piece by piece fashion, and the processing

starts with the pieces, before input is completely known.

One of the biggest challenges in SST, and incremental processing in general, is input

segmentation. The input data to an SST system is received as a continuous audio stream

and there is often no boundary between utterances. The audio stream is then transcribed

to text in an automatic speech recognition module. To start real-time translation, the

translation module requires pieces or segments of the text input that are separated at

appropriate positions. (For more detail, refer to the schematic overview of an SST system

presented in Figure 2.17 of Chapter 2.) Since the system is not allowed to revise or

replace the output translation, the input units should be non-overlapping and should be

1

2

processed sequentially, one after the other. Segmentation is particularly important due

to the fact that the granularity of segments has a great impact on the trade-off between

latency and translation accuracy. Latency is the difference in time or number of words

between when the source utterance is spoken and when the translated target utterance is

produced. Shorter segments have lower latencies since they can be delivered more quickly

to the translation module, and also they can be more quickly translated, but they will

likely result in inferior translation accuracy. On the other hand, longer segments will yield

better translation quality at the expense of more delay in a real-time scenario.

1.1 Problem Statement

Most of the previous work on input segmentation for SST mainly focused on phrasing of the

input based on heuristics such as pauses in the speech (Fügen et al., 2007; Bangalore et al.,

2012), the location of comma or period in the transcribed text (Rangarajan Sridhar et al.,

2013; Matusov et al., 2007), or combined punctuation-based and length-based methods

(Cettolo and Federico, 2006). Studies on human interpreters show that they depend on

information of a structural nature before they can start translation. Units of meaning

upon which the interpreter can start translation is beyond lexical entities, and the input

segmentation follows mainly syntactical principles (Pöchhacker, 2002). Thus determining

segment boundaries based on syntactic structure of the language can be potentially helpful

in SST systems, and real-time NLP processing in general. However, syntax-based input

segmentation has been under explored in the current literature of SST and incremental

NLP processing.

In addition to determining segment boundaries, syntax could potentially improve the

performance of the SST task, or other incremental tasks, by incorporating syntactic an-

notations into the input segments. Several studies (Mi et al., 2008; Liu et al., 2011; Zhang

et al., 2011; Tamura et al., 2013) showed that incorporating syntactic annotations into

the input of a regular (non-incremental) translation system is helpful in translation per-

formance for many language pairs particularly those with different word orders. However,

3

applying syntactic information in SST has been less addressed in current literature. Prob-

ably the main challenge in incorporating syntax in SST, as well as other incremental tasks,

is that conventional phrase-structure parsing is not directly applicable to sub-sentential

segments, since parsing methods build fully connected structures over the entire string.

Current studies that address using syntax in SST use methods to predict future syntactic

constituents and then how to apply this syntactic prediction to machine translation (Oda

et al., 2015; Ryu et al., 2006).

In this thesis, we propose a novel partial parsing method for fast and incremental syntactic

analysis of the input sentence that 1) is less computationally demanding than a full parser

but more effective than a shallow parser in finding recursive syntactic structures, 2) allows

for syntax-based segmentation of the input, and 3) incorporates some degree of syntax

into the input segments without requiring the entire sentence.

1.2 Thesis Contributions

The contributions of this thesis include: introducing “hedge parsing” as a new partial

parsing method suitable for incremental segmentation and annotation of the input to real-

time NLP applications; providing a detailed framework for incremental hedge parsing; and

exploring hedge parsing in machine translation.

Hedge parsing

We introduce “hedge parsing” as an approach to recovering constituents of length up

to some maximum span. Hedge parsing provides local internal hierarchical structure of

phrases without requiring fully connected parses. Hedge parsing is helpful as an ap-

proximation to full parsing when fast, high-precision recovery of syntactic information is

needed. We follow the XML community (Brüggemann-Klein and Wood, 2004) in naming

structures of this type hedges (not to be confused with the rhetorical device of the same

name), due to the fact that they are like smaller versions of trees which occur in sequences.

A hedge parse tree is a constrained sequence of sub-trees that are connected to the top-

most node of the tree. This property of hedge parse trees is unique compared to the

4

original hierarchically embedded parse trees. Thus, instead of parsing the entire sentence

to recover the hedge constituents, we are able to chunk the sentence into segments that

correspond to hedges, and parse the segments independently (and in parallel). Similar

constraints have been used in dependency parsing (Eisner and Smith, 2005; Dreyer et al.,

2006), where the use of hard constraints on the distance between heads and dependents is

known as vine parsing. It is also reminiscent of so-called Semi-Markov models (Sarawagi

and Cohen, 2004), which allow finite-state models to reason about segments rather than

just tags by imposing segment length limits. A hedge parser can be used as a standalone

partial syntactic parser, or in full parsing for pruning the search space hence increasing

the efficiency of the parsing pipeline.

Real-time hedge parsing

To achieve low-latency real-time hedge parsing, we propose an incremental framework

based on an incremental parser to return hedge-parsed segments of the input stream si-

multaneously as the input is being parsed. Our method works by adding a simple and

effective algorithm to a commonly-used incremental shift-reduce parser with beam search

decoding, without changing the parser or its grammar. The algorithm incrementally ex-

tracts stable partial parse trees, which are available where all the beams agree on the

partial outputs, and sends them to the processing application while the sentence is still

being parsed. In a related work, Selfridge et al. (2011) investigated stability and accuracy

of partial phrases in word lattices of an incremental speech recognition task. Kato et al.

(2004) proposed a method to decide the stability of a partial parse tree using a proba-

bilistic incremental parser based on tree adjoining grammar. Similar ideas can be used

to produce syntactic segments of other types (such as shallow bracketing) for incremental

applications.

Hedge parsing in simultaneous translation

We then try to answer two research questions regarding the impact of hedge parsing in

machine translation (MT) performance: 1) How does augmenting a translation model with

5

such partial syntactic annotations affect a regular (non-incremental) translation perfor-

mance? Previous research showed better translation accuracy in models augmented with

full syntax compared to non-syntactic MT models for many language pairs (Galley et al.,

2006; Zollmann et al., 2008). Now we investigate augmenting hedge syntax in MT, and

compare translation accuracy/efficiency with non-syntactic and full-syntactic MT models.

2) How does hedge segmentation and annotation of the input affect the trade-off between

incremental translation latency and accuracy? We compare hedge-based segmentation

and annotation with several heuristic based segmentation methods, such as length-based

method, on various syntactic and non-syntactic MT models.

We perform hedge parsing with straight-forward changes to the CYK parsing algorithm

and grammar. We show that hedge parsing is orders of magnitude faster than full parsing

and it can find hedges with high accuracy. Then we show that our real-time hedge parsing

approach greatly decreases the delivery latency of hedge-parsed segments with a slight

loss in accuracy. Finally, we demonstrate that augmenting a translation model with hedge

syntax significantly outperforms translation performance compared to no or shallow syntax

in translation model. Also a hedge-syntax augmented translation model combined with

hedge parsed input segments, achieves a good accuracy/latency tradeoff in incremental

translation.

1.3 Organization of the Dissertation

In the next chapter, we provide an overview of the technical preliminaries of finite-

state methods, context-free methods, parsing, and statistical machine translation. We

also present some current approaches to fast partial analysis including shallow parsing,

Supertagging, and dependency parsing in applications such as simultaneous speech-to-

speech translation. We summarize current input segmentation strategies, which are mostly

heuristic-based, and our previously proposed segmentation strategy, which takes into ac-

count the translation model.

6

In the following chapters we present our contributions in this dissertation. Chapter 3 de-

scribes the hedge parsing approach and different inference (search or decoding) strategies

and examines their accuracy/efficiency tradeoffs. In Chapter 4 we introduce our incre-

mental hedge parsing framework and show how it improves hedge parsing latency. In

Chapter 5, we explore applying hedge syntax in machine translation and compare it with

heuristic-based methods for input segmentation and annotation. Finally, in Chapter 6, we

conclude with our contributions and summarize our findings. We outline future work, in-

cluding using our suggested approaches in a full pipeline of simultaneous speech-to-speech

translation.

Chapter 2

Preliminaries and Background

This chapter begins with technical preliminaries that discuss the models and algorithms

referenced throughout this dissertation. These sections will define automata and formal

grammars (specifically finite-state machines and context-free languages), part-of-speech

tagging, log-linear models, parsing, as well as defining algorithms such as the Viterbi,

CYK, shift-reduce, and perceptron algorithms.

Following these sections, we will present background information for current approaches

to fast partial (syntactic) analysis of the input. We describe shallow parsing (chunking),

which is of linear time complexity, and Supertagging, which extends part-of-speech tag-

ging to parsing by using rich-structure tags. We explain dependency parsing, a way of

annotating sentence structure using the functional dependencies between words, and a

variant of dependency parsing called vine parsing, which pursues a similar idea to hedge

parsing, but in dependency parsing rather than constituency parsing. We then summarize

research on incremental parsing algorithms, which are potentially suitable for real-time

applications, however most of the existing research only provide the algorithm and do not

evaluate their approach on an online task. Next, we provide an overview of statistical ma-

chine translation. In particular, we describe simultaneous speech-to-speech translation as

an example of a real-time NLP application, followed by a summary of current approaches

to input segmentation in this task.

7

8

2.1 Knowledge of Language

Language processing applications are distinguished from other data processing systems

due to their use of knowledge of language (Jurafsky and Martin, 2009). Phonetics and

Phonology, Morphology, and Syntax are kinds of knowledge that are required to answer

how words are pronounced, how words break down into component parts, and how words

are ordered and grouped. Moving beyond the structure of language requires Semantics,

Pragmatics, and Discourse knowledge to answer what the meaning of words and sentences

are, what kind of actions speakers intend by their use of sentences, and how the context

beyond the sentence affects the meaning of the sentence. Various kinds of knowledge can

be captured using a small number of formal models and theories. In this thesis, we focus

on NLP applications which benefit from the structure of language and do not involve

knowledge beyond that.

State machines (automata) and their equivalent languages and grammars are the main

models for representing phonology, morphology, and syntax. In the next section we ex-

plain formal languages and automata and their corresponding grammars. In this thesis

we use finite-state equivalent and context-free models as well as our main contribution,

hedge parsing, which is a model with expressiveness and complexity in between these two

models.

2.1.1 The Chomsky Hierarchy

The Chomsky hierarchy is a theoretical tool that allows us to compare the expressive

power or complexity of different formal mechanisms like finite automata, transducers, and

context-free grammars. The Chomsky hierarchy is a collection of four classes of formal

languages: regular, context-free, context-sensitive and recursively enumerable languages.

Figure 2.1 shows a Venn diagram of the four languages on the Chomsky hierarchy.

Each level corresponds to a generating grammar, which produces a language in the associ-

ated class, as well as a recognizing machine, which recognizes a language in the associated

class. For example, the class of regular languages corresponds to regular grammars and

9

!

!
!

!

Regular

Context-free

Context-sensitive

Recursively Enumerable

Figure 2.1: The Chomsky hierarchy.

finite-state automata, and the class of context-free grammars can be described by context-

free grammars and push-down automata. Each level of this hierarchy is a proper subset

of the classes above it, i.e., it has weaker generative power or complexity and the rules of

the generating grammar are more restrictive than the classes above it. So for example,

a context-free grammar can describe formal languages that cannot be described using a

finite-state automata.

2.1.2 Finite-state Machines

Finite-state machines define the class of regular languages which can describe a large

number of phenomena in natural language including morphological analysis and shallow

syntactic structures. Finite-state machines can identify a set of non-overlapping units in a

sentence. Sequence tagging problems such as part-of-speech tagging, NP chunking, shallow

parsing, Named Entity Recognition, and other related tagging models can be solved using

finite-state approaches. There are several dynamic programming algorithms, including

Viterbi and Forward-backward algorithms, for efficient inference with finite-state models.

In this thesis we mainly use finite-state machines for hedge segmentation in Chapter 3

and shallow parsing in Chapter 4. Phrase-based machine translation in Chapter 4 is also

finite-state equivalent.

10

A finite-state automaton (FSA) is defined by the quintuple M=(Q,Σ, δ, q0, F) where Q

is a finite set of internal states, Σ is a finite set of input alphabet, δ :Q × Σ→Q is the

transition function, q0∈Q is the initial state, and F⊆Q is a set of final states. The FSA

can recognize strings in the following manner. The acceptor starts in the initial state q0

and checks the first letter of the input string. If the letter matches a transition leaving

the state, then the acceptor moves to the next state and also advances one symbol in

the input. If the acceptor reaches a final state when it runs out of input, the FSA has

successfully recognized a string in the language of automata. If the acceptor never reaches

a final state, either due to running out of input or getting some input symbols that does

not match a transition, then it rejects the input.

The graph in Figure 2.2 represents the FSA M1=({q0, q1, q2}, {a, b}, δ, q0, q1) where δ is

given by δ(q0, a)=q0, δ(q0, b)=q1, δ(q1, a)=q2, δ(q1, b)=q2, δ(q2, a)=q2, δ(q2, b)=q2. This

FSA accepts the string ab. Starting in state q0 the symbol a is read and the automaton

remains in state q0, then b is read and the automaton goes into state q1. We are now at

the end of the string and in a final state, so the string ab is accepted.

Figure 2.2: An example of a finite-state automaton.

The associated language to a finite-state automaton is the set of all the strings on Σ

accepted by the automaton: L(M1)={w∈Σ∗ | δ∗(q0, w)∈F}. The family of languages

that is accepted by finite-state acceptors is called regular languages. The regular language

accepted by the automaton in Figure 2.2 is L1={anb | N≥0}.

Another equivalent method of characterizing the regular languages is regular grammar. A

regular grammar is one that is either right-linear or left-linear. A grammar G=(V, T, S, P),

where V is a set of non-terminal symbols (or variables), T is a set of terminal symbols

(disjoint from V), S is a designated start symbol, and P is a set of production rules,

11

is right-linear if all production rules are of the form A→xB, A→x, where A,B∈V and

x∈T ∗, and it is left-linear if all rules are of the form A→Bx, A→x. In other words, a

rule in a regular grammar has at most one non-terminal on the right-hand side, and that

non-terminal must be either the rightmost or leftmost symbol in the string. A right-linear

regular grammar for the language in our previous example is S→aS, S→b.

2.1.3 Context-free Grammars

Regular languages cannot fully define natural language, e.g. write a grammar for English.

We need a greater generative power or complexity than the finite-state methods have.

Context-free grammars are used to describe formal languages that cannot be described by

FSAs. A CFG consists of a set of production rules and a lexicon of words. Each production

rule expresses the ways that words of the language can be grouped together. A grammar

G=(V, T, S, P) is context-free if all productions in P are of the form A→α, where A∈V

and α∈(V ∪T)∗. The item on the left-hand side of each rule is a single non-terminal, and

the right-hand side is an ordered list of zero or more terminals and non-terminals. For

instance, the grammar G2=({S}, {a, b}, S, P) with productions S→aSb, S→ab is context-

free. This grammar generates the context-free language L(G2)={anbn | n≥1}. This is the

simplest grammar to pair up characters (or brackets in programming languages).

Context-free rules can be hierarchically embedded. The rules in a regular grammar are

a restricted form of the rules in a context-free grammar. Regular grammar rules cannot

express recursive center-embedding rules like A→αAβ where a non-terminal is rewritten

as itself, whereas context-free rules can be hierarchically embedded. The context-free

languages have a type of automaton that defines them. While this automaton, called a

“pushdown automaton”, is less commonly used than FSA, it is an extension of FSA with

addition of a stack.

The sequence of rule expansions for a given sentence is called a derivation of that sentence.

A typical derivation in grammar G2 above is S⇒aSb⇒aaSbb⇒aaabbb. It is common to

represent a derivation by a parse tree. Multiple derivations may result in the same parse

12

5

2.4 Context-free Grammars

Regular languages can not fully define natural language, e.g. write a grammar for English.

We need a greater generative power or complexity than the finite-state methods have.

Context-free grammars are used to describe formal languages that cannot be described by

FSAs. A CFG consists of a set of production rules and a lexicon of words. Each production

rule expresses the ways that words of the language can be grouped together. A grammar

G=(V, T, S, P) is context-free if all productions in P are of the form A→α, where A∈V

and α∈(V ∪ T)∗. The item on the left-hand side of each rule is a single non-terminal,

and the righ-hand side is an ordered list on one or more terminals and non-terminals.

Context-free rules can be hierarchically embedded. The rules in a regular grammar are

a restricted form of the rules in a context-free grammar. Regular grammar rules can not

express recursive center-embedding rules like A→αAβ where a non-terminal is rewritten

as itself.

The grammar G2=({S}, {a, b}, S, P) with productions S→aSb, S→ab is context-free.

This grammar generates the context-free language L(G2)={anbn | n≥1}. This is the

simplest grammar to pair up characters (or brackets in programming languages). The

context-free languages have a type of automaton that defines them. While this automaton,

called a “pushdown automaton”, is less important than FSA, it is an extension of FSA

with addition of a stack.

The sequence of rule expansions for a given sentence is called a derivation of that sentence.

A typical derivation in grammar G2 above is S⇒aSb⇒aaSbb⇒aaabbb. It is common to

represent a derivation by a parse tree. Figure 2.4 shows the parse tree for the string aaabbb

derivated from grammar G2.

G2=({S}, {a, b}, S, P)

P =






S →aSb

S →ab

6

5

2.4 Context-free Grammars

Regular languages can not fully define natural language, e.g. write a grammar for English.

We need a greater generative power or complexity than the finite-state methods have.

Context-free grammars are used to describe formal languages that cannot be described by

FSAs. A CFG consists of a set of production rules and a lexicon of words. Each production

rule expresses the ways that words of the language can be grouped together. A grammar

G=(V, T, S, P) is context-free if all productions in P are of the form A→α, where A∈V

and α∈(V ∪ T)∗. The item on the left-hand side of each rule is a single non-terminal,

and the righ-hand side is an ordered list on one or more terminals and non-terminals.

Context-free rules can be hierarchically embedded. The rules in a regular grammar are

a restricted form of the rules in a context-free grammar. Regular grammar rules can not

express recursive center-embedding rules like A→αAβ where a non-terminal is rewritten

as itself.

The grammar G2=({S}, {a, b}, S, P) with productions S→aSb, S→ab is context-free.

This grammar generates the context-free language L(G2)={anbn | n≥1}. This is the

simplest grammar to pair up characters (or brackets in programming languages). The

context-free languages have a type of automaton that defines them. While this automaton,

called a “pushdown automaton”, is less important than FSA, it is an extension of FSA

with addition of a stack.

The sequence of rule expansions for a given sentence is called a derivation of that sentence.

A typical derivation in grammar G2 above is S⇒aSb⇒aaSbb⇒aaabbb. It is common to

represent a derivation by a parse tree. Figure 2.4 shows the parse tree for the string aaabbb

derivated from grammar G2.

G2=({S}, {a, b}, S, P)

P =






S →aSb

S →ab

S

a S

a S

a b

b

b

Figure 2.3: (a) English and (b) Chinese hedge parsing efficiency and accuracy results on test
data, for L=3–20.

In this thesis, we use a common variant of CFG called probabilistic CFG, as explained in

the next section. The grammars for full parsing and hedge parsing with CYK algorithm,

and shallow parsing are instances of probabilistic CFGs.

2.3.1 Probabilistic Context-free Grammars

In practical applications, given a grammar G and string w of terminals, we want to know

if w is in L(G), and if so we may want to find a derivation of w. Parsing describes finding

a sequence of productions by which a w∈L(G) is derived. For any w∈L(G) a number of

different derivation trees may exist. This situation is referred to as ambiguity. Ambiguity

is a common feature of natural languages. One way to solve the problem of syntactic

disambiguation, is using a probabilistic CFG (PCFG) for parsing. A PCFG differs from

a standard CFG by augmenting each rule in P with a conditional probability: A→α [p],

where p is the probability that the given non-terminal A will be expanded to sequence α.

We can represent this probability as p(A→α) or as p(A→α|A). The sum of probabilities

of all the possible expansions of a non-terminal must be 1:
∑

α p(A→α)=1. A PCFG

assigns a probability to each parse tree (derivation) of a sentence. This probability is

defined as the product of probabilities of all the rules used to derive the parse tree.

Figure 2.3: (a) A context-free grammar and (b) parse tree for example string aaabbb.

tree, differing only in the order of rule expansion. Figure 2.3 shows the parse tree for the

string aaabbb derivated from grammar G2.

In this thesis, we use a common variant of CFG called probabilistic CFG, as explained in

the next section. The grammars for full parsing and hedge parsing with CYK algorithm,

and shallow parsing are instances of probabilistic CFGs.

Probabilistic Context-free Grammars

In practical applications, given a grammar G and string w of terminals, we want to know

if w is in L(G), and if so we may want to find a derivation of w. Parsing describes

finding a sequence of productions by which w∈L(G) is derived. For any w∈L(G) a

number of different parse trees may exist. This situation is referred to as ambiguity.

Ambiguity is a common feature of natural languages. One way to solve the problem of

syntactic disambiguation, is using a probabilistic CFG (PCFG) for parsing. A PCFG

assigns a probability to each parse tree of a sentence. A PCFG differs from a standard

CFG by augmenting each rule in P with a conditional probability: A→α [p], where p is

the probability that the given non-terminal A will be expanded to sequence α. We can

represent this probability as p(A→α) or as p(A→α|A). The sum of probabilities of all

the possible expansions of a non-terminal must be 1:
∑

α p(A→α)=1. A PCFG assigns a

probability to each parse tree of a sentence. This probability is defined as the product of

probabilities of all the rules used to derive the parse tree.

13

Treebanks and PCFG Induction

A PCFG is generally induced from a treebank, a syntactically annotated corpus in which

every sentence has a parse tree. By using treebanks as a starting point we can induce

grammars with minimal human intervention, and the resulting grammars may have better

coverage than the hand-built grammars. One of the simplest ways to learn a PCFG from

a treebank is to read the production rules off all the parsed sentences, and assign the

probability to each rule by observing how many times it was used in the treebank. The

maximum likelihood (relative frequency) estimate for the probability of the rule A→α

is

p(A→α)= count(A→α)
count(A)

In scenarios such as hedge parsing we may transform the original treebank before inducing

a grammar, as described in the next section.

Treebank Transformation

There are scenarios where we benefit from changing the treebank or the resulting grammar

before parsing. These changes might be intended for using the treebank or the grammar

in a specific algorithm (such as binarization to use in the CYK algorithm, as described

in the next subsection, or left-corner transform to remove left recursion and use in top-

down parsing algorithms) or to improve parsing performance with respect to the parsing

efficiency or parsing accuracy.

Improvement in accuracy is achieved through splitting non-terminals into multiple new

non-terminals which define a better probability model. One popular treebank transform

is parent annotation (Johnson, 1998), which adds the parent label to each non-terminal.

Parent annotation refines the probabilities of production rules by adding extra amount

of context. More recently Matsuzaki et al. (2005), Petrov et al. (2006), and Petrov and

Klein (2007a) proposed latent variable grammars. Each non-terminal in this grammar

is annotated with a set of latent variables (e.g., VP 0, VP 1, VP 2), which can be fixed

14

A

B C D E

A

A:B-C-D

A:B-C

B C

D

E

A

B A:C-D-E

C A:D-E

D E

Figure 2.4: (a) Original tree; (b) Left-factoring binarization; (c) Right-factoring binarization

number of latent variables for all non-terminals (Matsuzaki et al., 2005), or determined

by a split-merge technique for each non-terminal (Petrov and Klein, 2007a). However,

creating new non-terminals, increases the size of production rules and grows the size of

the grammar which impacts negatively on parsing efficiency. Moreover, such grammars

are prone to the sparsity problem. To address efficiency and sparsity issues, some kind of

smoothing such as Markovization (Manning and Schütze, 1999; Roark and Sproat, 2007)

is used to merge multiple non-terminals into one. The CYK parser used in Chapter 3

of this thesis, uses the latent variable grammar of Petrov et al. that is learned from the

original or hedge-transformed treebank.

Binarization

Treebank or grammar binarization is often used to build an equivalent grammar that works

for a parsing algorithm such as CYK or shift-reduce. Two simple binarization are left- and

right- factoring methods. Left-factoring of a node n creates a new composite non-terminal

by factoring the leftmost children of n, and leaves the last child unchanged. The new

composite non-terminal is set as the left child of n, and then it is recursively left-factored

until there are no more composite non-terminals. Right-factoring is defined equivalently.

Figure 2.4 shows an example of a constituent and its left- and right-factoring transforms.

In this thesis, this type of binarization is used to convert PCFGs to their equivalent

Chomsky normal form (CNF) in order to use them in the CYK parser.

Sagae and Lavie (2005), Wang et al. (2006a), and Zhang and Clark (2011), used an

instance of the transformation/detransformation process described in (Johnson, 1998)

in shift-reduce incremental framework for phrase-structure or dependency parsing. The

15

A

B C D E

A

B A*

C A*

D E

Figure 2.5: (a) Original tree; (b) Binarized tree (with Markov order-0 smoothing) to use in shift-
reduce parser training. The lexical head of the A* nodes is the same as the lexical head of node
A.

transformation step converts each node with n (>2) child nodes into n− 1 binary nodes.

New non-terminals introduced in this process are marked with asterisks. The binarized

treebank is then used for training an incremental shift-reduce parser. Note that this tree-

bank contains also lexical head annotations and this information is used as features for

training the parser. The lexical head of each of the asterisked non-terminals is the same

as the head of the original non-terminal. Figure 2.5 shows an example of this binarization

method. This type of binarization is used in the shift-reduce parser in this thesis.

2.2 Hidden Markov Models for Tagging

In this section, we provide an overview of one of the most common approaches to tagging

with particular focus on part-of-speech (POS) tagging as a very clear and well-known

tagging task. We explain Hidden Markov Models (HMMs) method for tagging and the

Viterbi algorithm for efficient decoding of tag sequences. POS-tagging is frequently used

in early stages of NLP pipelines, e.g. as a prerequisite for parsing (Chapters 3, 4, and 5).

In addition, HHMs are used in other tagging tasks in NLP such as segmentation (Chapter

3), sentences boundary detection, shallow parsing or chunking (Chapter 5), named entity

recognition, textual entailment, and Supertagging.

2.2.1 Part-of-Speech Tagging

POS tagging is the process of assigning a POS tag to each word in a corpus. The input to

a POS tagger is a sequence of words and a specified tagset, and the output is the 1-best

16

(or n-best) tag sequence of the input. POS tagging distinguishes the word class between

main classes, such as noun, verb, pronoun, preposition, adverb, conjunction, participle,

and article (Jurafsky and Martin, 2009). For each main class, there are subclasses such

as different verb tenses, or whether a noun is singular or plural. The size of the tagset

depends on the language and the amount of distinction between tags. For example, the

English Penn Treebank corpus (Marcus et al., 1993) has a tagset of size 45 POS tags,

including 4 nominal classes for singular/plural and proper/common distinctions, and 7

verb classes for modal (MD), base form verb (VB), past tense (VBD), gerund/present

participle (VBG), past participle (VBN), 3rd-person singular present (VBZ), and non-

3rd-person singular present (VBP). A complete list of tags and tag descriptions in English

Penn Treebank can be found in Appendix A.

2.2.2 Hidden Markov Models

Several methods have been applied to POS tagging including rule-based methods and

stochastic methods. Rule-based methods generally involve a set of hand-written disam-

biguation rules to assign a single POS tag to each word. ENGTWOL is a sample rule-based

tagger based on the Constraint Grammar architecture of Karlsson et al. (1995). One of

the most common stochastic approaches to POS tagging is the Hidden Markov Model,

or HMM. In an HMM-based model, POS tagging is a sequence classification task which,

given the observation of a sequence of words, aims to assign it the most likely hidden state

sequence of POS tags. Given a word sequence w1..wk and a tagset T , the task of POS

tagging is to find t̂1..t̂k∈T k such that

17

t̂1..t̂k= argmax
t1..tk∈Tk

P (t1..tk|w1..wk)

= argmax
t1..tk∈Tk

P (w1..wk|t1..tk)P (t1..tk)

= argmax
t1..tk∈Tk

k∏
i=1

P (ti|t0..ti−1)P (wi|t0..ti, w1..wi−1)

≈ argmax
t1..tk∈Tk

k∏
i=1

P (ti|ti−n..ti−1)P (wi|ti)

(2.1)

This last approximation, limits the history of the tags to n tags by making a Markov order

n + 1 assumption. It also assumes that the probability of a word given its POS tag is

independent of the rest of the words or tags. If n=1, then the we will have a bigram HMM

tagger which contains a tag transition probability P (ti|ti−1) and observation probability

P (wi|ti)

t̂1..t̂k≈ argmax
t1..tk∈Tk

k∏
i=1

P (ti|ti−1)P (wi|ti) (2.2)

In the next section we describe the Viterbi algorithm, an efficient algorithm to find the

best tag sequence.

The HMM POS tagging model can be extended to a log-linear model, described in Sec-

tion 2.3, to allow a variety of features to be used in the model. Various information in

the context, including n-grams of surrounding words, n-grams of surrounding tags, and

additional orthographical features to tag rare and unknown words, can be captured in

a log-linear model through linear combination of weighted features. In this thesis we

use the HMM bigram POS taggers with a log-linear model implemented in Hollingshead

et al. (2005) and Yarmohammadi (2014) for sequence tagging tasks including POS tag-

ging, hedge segmentation, and shallow parsing. Training the model using large amount of

data can be cumbersome. In Yarmohammadi (2014) we investigated distributed training

strategies for the structured perceptron introduced by McDonald et al. (2010). They used

18

word sequence: W=w1...wn, size of tagset |T |=m for t=1..n
For t=1..n

For j=1..m
αi(t)=maxi(αj(t− 1)aij)bj(wt)
ζi(t)=argmaxi(αj(t− 1)aij)

ζ0(n+ 1)=argmaxi(αi(n)ai0)
ρ(n+ 1)=0
For t=n..1

ρ(t)=ζρ(t+1)(t+ 1)

τ̂(t)=τρ(t)

Figure 2.6: The Viterbi algorithm. Notation adapted from Roark and Sproat (2007).

distributed training to reduce training times in the two tasks of named entity recognition

and dependency parsing. We extended that work for another structure prediction task,

POS tagging.

2.2.3 Viterbi Algorithm

The Viterbi algorithm is the most common decoding algorithm for HMM models, which

is determining which sequence of hidden variables is the most likely underlying source

of some sequence of observations. The Viterbi algorithm is an application of dynamic

programming to find globally optimal solutions by solving a sequence of sub-problems.

For a word sequence w1..wn, a set of m tags T={τi : 1≤i≤m}, let aij be the transition

probability between hidden states (i.e., tags) defined as aij=P (τj |τi), and bj(wi) be the

observation likelihood of word wi given tag τj defined as bj(wi)=P (wi|τj). For simplicity,

let a0j=P (τj |<s>) and ai0=P (</s>|τi) where <s> and </s> are the special symbols

that only occur at the beginning and end of the sentences respectively.

Figure 2.6 shows pseudocode for the Viterbi algorithm. The algorithm builds a probability

matrix, with one column for each observation in time t and one row for each state (tag).

The matrix is initialized by 1 in the first cell: α0(0)=1. The algorithm moves column by

column, and for each tag at column t, it computes the value αj(t) by taking the maximum

over the extensions of all the paths that lead to the current cell. The three factors that

19

are multiplied in computing αj(t) are the previous Viterbi path probability from the

previous time step, the transition probability from previous state to current state, and the

observation probability of the symbol given the current state. ζj(t) is the backpointer to

keep track of where the max came from, and it will be used to reconstruct the maximum

likelihood path at the end. The Viterbi algorithm is able to determine the exact solution

in linear order of the input sequence length due of the Markov assumption.

2.3 Discriminative Log-linear Models

Collins (2002) introduced a discriminative training framework for the general structural

prediction problem of mapping an input structure x∈X onto an output structure y∈Y ,

where X is the set of possible inputs, and Y is the set of possible outputs. For example,

for the problem of POS tagging, X is the set of all input sentences and Y is the set of all

possible POS tag sequences. For the problem of parsing, X is the set of all sentences and

Y is the set of all possible parse trees.

We assume: a set of training examples (xi, yi) for i=1..n; a function GEN(x) that enu-

merates a set of possible outputs for an input x ; ᾱ∈Rd a parameter vector; and repre-

sentation Φ that maps each output structure y∈Y to a global feature vector Φ(y). There

is a mapping from an input x to an output F (x) defined by the formula:

F (x)= argmax
y∈GEN(x)

Score(y) (2.3)

where

Score(y)=Φ(y) · ᾱ (2.4)

The model learns the parameter values ᾱ during the training and the decoding algorithm

searches for the y that maximizes 2.3. There are various parameter estimation methods

that provide weights αi for each feature function Φi(y). The sequence tagging models

in Chapter 3 and the incremental shift-reduce parser in Chapter 4 of this thesis use the

20

Inputs: Training examples (xi, yi)
Output: Parameters ᾱ
Set ᾱ=0

For t=1..T
For i=1..n

Calculate zi=argmaxz∈GEN(xi)Φ(z).ᾱ

If (zi ̸=yi) then ᾱ=ᾱ+Φ(yi)− Φ(zi)

Figure 2.7: The perceptron algorithm.

perceptron algorithm, which is described in the next section, to estimate the model pa-

rameters. One problem with log-linear models is that the models overfit the training data

and are unable to generalize to unseen data. To avoid this problem, some additional tech-

niques are used while training. Averaged perceptron (Collins, 2002) is a standard way to

avoid overfitting in the perceptron algorithm.

2.3.1 Perceptron Algorithm

To estimate the parameter values ᾱ of the model we use the perceptron algorithm. Figure

2.7 shows the perceptron algorithm of Collins (2002). The algorithm initializes the param-

eter vector as all zeros. For each example, the best-scoring hypothesis zi is compared with

the true hypothesis yi. If they are different, the algorithm updates the parameter vector

ᾱ by subtracting the features values of zi to it and adding the feature values of yi from it.

Intuitively, this update is effectively forcing the decoder to produce the correct hypothesis

for each training example. The algorithm then moves to the next example. This proce-

dure is repeated for some number of iterations T over the training examples. T is usually

determined by choosing the number that gives the highest accuracy on a development

set. The regular perceptron algorithm suffers from over-fitting problem. One solution to

this problem is the averaged perceptron, which has been shown to generally give improved

accuracy over the regular perceptron. In the averaged perceptron, the averaged parameter

vector γ̄ is used instead of ᾱ as the model parameters. The averaged parameter vector is

defined as

γ̄=

∑
i=1..n,t=1..T ᾱi,t

nT
(2.5)

21

where ᾱi,t is the parameter vector immediately after the ith sentence in the tth iteration.

The perceptron algorithms used in this thesis apply the averaging technique.

2.3.2 Incremental Structural Prediction

Zhang and Clark (2011) extended the above framework to incremental processing sce-

narios. The same as the general discriminative log-linear model, they used the averaged

perceptron to train the model parameters, however, instead of a dynamic programming

decoding algorithm, they used beam-search decoding. The ZPAR shift-reduce parser in

Chapters 4 and 5 of this thesis uses the incremental structural prediction with beam-

search decoding and the perceptron algorithm described in this section. In a similar work,

Collins and Roark (2004) used a global discriminative model and incremental processing

for phrase-structure parsing. The major difference is that Collins and Roark, followed a

top-down parsing strategy, whereas Zhang and Clark followed a shift-reduce process. In

addition, Zhang and Clark’s framework did not include a generative baseline model in the

discriminative model, as did Collins and Roark.

In Zhang and Clark framework, the structural prediction task (e.g., phrase-structure pars-

ing, dependency parsing, segmentation, POS tagging) is broken into a sequence of deci-

sions. Thus, the output y is built through incremental steps. Suppose that k incremental

steps are taken to build y and the incremental change at the ith step (0<i≤k) is δ(y, i).

For shift-reduce parsing, δ(y, i) can be a shift or reduce action (see Section 2.4.2 for more

detail on shift-reduce parsing). The global feature vector at the ith incremental step

will be Φ(δ(y, i)), and the global feature vector Φ(y) changes to Φ(y)=
∑k

i=1Φ(δ(y, i)).

Therefore, Score(y) can be computed by Score(y)=
∑k

i=1Φ(δ(y, i)) · ᾱ.

At each step of incrementally building the final output, an incremental sub-structure is

added to the partially built output. Due to structural ambiguity, different sub-structures

can be built. At each step, beam-search decoding keeps a predetermined number of best

partial solutions as candidates. To do this, it generates all possible partial solutions and

22

orders them according to their scores and keeps only the top B of them for next expansions.

The greater the beam width, the fewer states are pruned.

2.4 Phrase-structure Parsing

We categorize syntactic phrase-structure (or constituency) parsing methods into two groups:

(a) exact inference based on dynamic programming and (b) greedy inference based on a

classifier. For the first category, we describe the CYK algorithm and for the second cate-

gory we explain shift-reduce parsing, which are the two main parsing algorithms we used

in this thesis.

2.4.1 CYK Parsing

The CYK algorithm (Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967) is one of

the most widely used methods of syntactic parsing. It employs bottom-up parsing and

dynamic programming. The dynamic programming class of algorithms (including the

Viterbi algorithm) apply a table-driven method to solve problems by combining solutions

to sub-problems. CYK uses a table, referred to as chart, to store intermediate parses as

it builds up the parse tree of the given sentence. The standard CYK algorithm operates

only on a context-free grammar in Chomsky normal form (CNF). Grammars in CNF are

restricted to rules of the form A→B C or A→w, i.e., the right-hand side of each rule

expands to either two non-terminals or one non-terminal. Any context-free grammar can

be converted into a weakly-equivalent (i.e., a grammar that generates the same set of

strings) CNF grammar. One of the main steps in CNF conversion is to binarize the rules,

which can be performed using the binarization techniques in Section 2.1.3.

By having the rules in CNF form, each non-terminal above the part-of-speech level in a

parse tree will have two children. A triangular chart of the upper-triangular portion of

a two dimensional n × n matrix can be used to encode the entire parse structure of an

input sentence of length n, as shown in Figure 2.8. The words w1, w2, ..., wn of the input

sentence form the base of the chart. Each cell in the chart represents a set of all possible

23

Figure 2.8: A parse represented in a CYK chart.

constituents covering a specific substring (or span). The y-axis of the chart encodes the

span of constituents, and the x-axis encodes the start position of constituents. Thus, the

cell identified with (s, x) will contain possible constituents covering s words with start

index x. In the figure, the cell (2, 3) contains a VP of span three at start position 2, which

covers the words “bit the postman” with indices 2, 3, and 4. Filling each cell depends on

the cells covering smaller spans within the same substring. The results of each cell are

saved so that they can be re-used in building higher cells (longer spans).

Figure 2.9 shows pseudocode of the CYK parsing algorithm. The algorithm begins by

initializing span-1 cells with constituents spanning a single word. It then iterates over the

rows from the bottom up, typically in a left-to-right manner. At each cell, the algorithm

iterates over all the midpoint places m where an input substring with start index x and

span s might be split in two. At each split, the algorithm checks if the contents of the

two cells can be combined to a new non-terminal as allowed by the grammar. For non-

terminals AiAjAk∈V , aijk=P (Ai→AjAk) is analogous to the transition probabilities in

the Viterbi algorithm in Figure 2.6, and bj(wt)=P (Aj→wt) is analogous to the observation

probabilities. Overall, the algorithm processes O(n2) cells, and checks O(n) midpoints

for each cell, so the complexity of the algorithm is O(n3|G|), where |G| is the size of the

grammar. For each non-terminal in each cell, the algorithm stores αi(x, s), the probability

for non-terminal i with start index x and span s, and ζi(x, s), a backpointer to the children

24

word sequence: w1...wn, CNF context-free grammar G=(V, T, S, P)
s=1
For t=1..n

x=t− 1
For j=1..|V |

αj(x, s)=bj(wt)
For s=2..n

For x=0..n− s
For i=1..|V |

ζi(x, s)=argmaxm,j,k aijkαj(x,m− x)ak(m, s−m+ x)

αi(x, s)=maxm,j,k aijkαj(x,m− x)ak(m, s−m+ x)

Figure 2.9: The CYK parsing algorithm. Notation adapted from Roark and Sproat (2007).

of the non-terminal. In Chapter 3 of this thesis, we slightly modify the chart structure

and the grammar of the CYK algorithm, and use it for hedge parsing.

2.4.2 Shift-reduce Parsing

Shift-reduce parsing is a bottom-up derivation strategy that can be used to efficiently

parse context-free languages in linear time. The main data structures are an input queue

of incoming words and a stack. The parser works by doing a series of shifting or reducing

operations. Shifting pushes the next word in the queue to the top of the stack and the

shifted word becomes a new single-node parse tree (constituent). Reducing pops the top

k parse trees from the stack, joins them as one new node, and pushes the new node to

the stack. These steps continue until the input queue is empty and the stack contains

only a single node which is the top-most non-terminal. Figure 2.10 shows the steps of a

shift-reduce parser on our example sentence.

Predicting which action to pursue at each step of parsing is traditionally accomplished with

the use of a grammar. If a prefix of the nodes on top of the stack matches the right-hand

side of a grammar rule which is the correct rule to use within the current context, the prefix

is reduced to the left-hand side of the rule, before the next word is shifted. The grammar

may allow more than one valid action at each step of parsing. Recently, classifier-based

parsing has been proposed, which makes the action decision by a classifier that chooses

25

Figure 2.10: Shift-reduce parsing steps.

Step Stack Input queue Action

0 the dog bit the postman

1 the dog bit the postman shift “the”

2 DT dog bit the postman reduce (DT→ the)

3 DT dog bit the postman shift “dog”

4 DT NN bit the postman reduce (NN→ dog)

5 NP bit the postman reduce (NP→ DT NN)

6 NP bit the postman shift “bit”

7 NP VBD the postman reduce (VBD→ bit)

8 NP VBD the postman shift “the”

9 NP VBD DT postman reduce (DT→ the)

10 NP VBD DT postman shift “postman”

11 NP VBD DT NN reduce (NN→ postman)

12 NP VBD NP reduce (NP→ DT NN)

13 NP VP reduce (VP→ VBD NP)

14 S reduce (S→ NP VP)

the action at every step, based on the local parser state with no explicit grammar. In

the greedy (or deterministic) variant of the classifier-based parsing only a unique action

is chosen at every step, thus only one path is pursued with no backtracking. While the

accuracy of a deterministic classifier-based parser is below that of dynamic programming

parsing, it is surprisingly good for a greedy parser that runs in linear time (Sagae and

Lavie, 2005), and it offers a good alternative for when fast parsing is needed.

The greedy classifier-based approach is sensitive to search errors and subsequent error

propagation. To alleviate the effect of search errors and error propagation, Zhang and

Clark (2008) proposed using beam search in combination with structured learning. They

also found that accuracy could be further improved by using the early-update strategy

(Collins and Roark, 2004) during training. The ZPAR incremental shift-reduce parser

used in this thesis is an advanced variant of a shift-reduce parser.

2.4.3 Parsing Evaluation

The most widely used parse evaluation metrics are labeled precision and labeled recall.

These are part of the PARSEVAL metrics proposed by Abney et al. (1991), along with

26

crossing bracket scores. The PARSEVAL metric measures how much the constituents in

the hypothesis parse tree look like the constituents in a reference parse which are typically

drawn from a treebank like the Penn Treebank.

A given constituent in the hypothesis parse of a sentence is “correct” if there is a con-

stituent in the reference parse with the same span and same non-terminal symbol. Labeled

precision (P) and recall (R) of parsing the sentence s is measured as:

P =
of correct constituents in hypothesis parse of s

of total constituents in hypothesis parse of s
(2.6)

R =
of correct constituents in hypothesis parse of s

of correct constituents in reference parse of s
(2.7)

As with other uses of precision and recall, we combine these scores into a composite score,

the F-measure. If precision and recall are equally balanced in the composite F-measure,

this is sometime called F1 :

F1=
2PR

P +R
(2.8)

In the next chapters of this thesis, we use precision, recall, and F1 metrics to evaluate the

accuracy of various hedge parsing methods in finding hedge parse trees compared to the

reference hedgebank.

2.5 Fast/ Partial Syntactic Parsing

In this section we review existing approaches for fast and/or partial (as opposed to full

phrase-structure) parsing with applications in real-time scenarios. These methods can

serve as alternatives to hedge parsing, which we proposed and implemented in this thesis.

We also review some of the current approaches to incremental parsing using context-free

grammars, dependency grammars, and tree-adjoining grammars.

27

2.5.1 Shallow Parsing (Chunking)

For many language processing tasks, a partial parse of the input may be sufficient. A

common style of partial parsing is known as shallow parsing, also known as chunking.

Shallow parsing is an analysis of a sentence which identifies the constituents, but does

not specify their internal structure or relation with other constituents in the sentence.

The set of identified constituents typically includes the phrases that correspond to the

content-bearing parts-of-speech such as noun phrases, verb phrases, adjective phrases,

and prepositional phrases.1 Figure 2.11 shows the difference between (a) the full parse

tree and (b) the shallow parse trees of an example sentence. Note that shallow parse trees

can be represented as bracketed and tagged notations, as shown in Figure 2.11(c). Some

applications focus on finding specific categories; such as finding all the base noun phrases

in a text, which is called NP-Chunking (Ramshaw and Marcus, 1995). Another common

shallow parsing task is the CoNLL-2000 Chunking task (Sang and Buchholz, 2000). This

task extends the NP-Chunking task to label eleven different base phrase constituents

annotated in the Penn Treebank, including: ADJP, ADVP, CONJP, INTJ, LST, NP, PP,

PRT, SBAR, UCP and VP.

Since chunked texts lack a hierarchical structure, a sequence tagging model is directly

applicable and sufficient to denote the location and the type of the chunks in a sentence.

A tag can be associated with beginning, inside, or outside positions in a chunk, and the

standard way to do this is known as IOB tagging, which identifies the beginning (B) and

internal (I) parts of each chunk, as well as those tokens that are outside (O) any chunk.

Refer to Figure 2.11(c) to see an example. With such an assumption, a shallow parser can

be viewed as a classifier that labels each token of a sentence with an IOB tag. Reference

shallow parses to train this classifier can be derived from a treebank. Chunking exploits

POS tags produced by previous processing steps.

Shallow parsing expressiveness power and complexity falls in the finite-state level in the

Chomsky hierarchy. Since shallow parsing can be performed accurately and efficiently

1A complete list of POS and phrase-level tags in English Penn Treebank can be found in Appendix A.

28

c) [NP Europe] [VP is] [PP in] [NP the same trends]
Europe/B is/B in/B the/B same/I trends/I ./O

Figure 2.11: (a) The full parse tree, (b) shallow parse tree, (c) flat bracketing notation and IOB
tagged notation of the chunks, for an example sentence.

in linear time, it can be used in a pipeline system to prune the more computationally

intensive downstream PCFG parsing. Making use of chunking constraints in a full parsing

pipeline have shown an efficiency and/or accuracy gain. Glaysher and Moldovan (2006)

achieved efficiency gains by modifying the CYK parsing algorithm to avoid combinations

that conflicted with the output of a chunker, i.e., they disallowed constituents in chart cells

that crossed chunk boundaries. Hollingshead and Roark (2007) demonstrated significant

accuracy improvements in Charniak and Johnson parsing pipeline by using base phrase

constraints derived from a shallow parser or from later stages of the same pipeline.

2.5.2 Supertagging

Supertagging extends the part-of-speech tagging to parsing by using very complex tags

that are in fact fragments of lexicalized parse trees. Supertagging was originally introduced

within the context of Lexicalized Tree-adjoining Grammars (Joshi and Srinivas, 1994),

but it has been used for other formalisms like Combinatory Categorial Grammar (CCG,

Clark, 2002; Clark and Curran, 2004), Constraint Dependency Grammars (Wang and

Harper, 2002; Wang et al., 2003), and Head-driven Phrase Structure Grammar (HPSG,

29
Computational Linguistics Volume 25, Number 2

(("S"
("NP-SBJ" ("NNP Mr.") ("NNP Vinken"))
("VP" ("VBZ is")
("NP-PRD"
("NP" ("NN chairman"))
("PP" ("IN of")
("NP"
("NP" ("NNP Elsevier") ("NNP N.V."))
(- ,,)

("NP" ("DT the") ("NNP Dutch") ("VBG"
"))))))

(,,.,,)))

"publishing") ("NN" "group

Mr.//NNP//B_Nn
Vinken//NNP//A_NXN
is//VBZ//B_Vvx
chairman//NN//A_nx0Nl
of//IN//B nxPnx
Elsevier//NNP//B_Nn
N.V.//NNP//A_NXN
,//,//B_nxPUnxpu
the//DT//B_Dnx
Dutch//NNP//B_Nn
publishing//VBG//B_Vn
group//NN//A_NXN
.//.//B_sPU

(noun modifier)
(head noun)
(auxiliary verb)
(predicative noun)
(noun-attached preposition)
(noun modifier)
(head noun)
(appositive comma)
(determiner)
(noun modifier)
(participle verb, nominal modifier)
(head noun)
(sentence punctuation)

Figure 5
The phrase structure tree and the supertags obtained from the phrase structure tree for the
WSJ sentence: Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

6.4 Unigram Model
Using structural information to filter out supertags that cannot be used in any parse
of the input string reduces the supertag ambiguity but obviously does not eliminate
it completely. One method of disambiguating the supertags assigned to each word
is to order the supertags by the lexical preference that the word has for them. The
frequency with which a certain supertag is associated with a word is a direct measure
of its lexical preference for that supertag. Associating frequencies with the supertags
and using them to associate a particular supertag with a word is clearly the simplest
means of disambiguating supertags. Therefore a unigram model is given by:

where

Supertag(wi) -- tk 9 argmaxtkPr(tk I wi). (1)

frequency(tk, wi)
Pr(tk l wi) = frequency(wi) (2)

Thus, the most frequent supertag that a word is associated with in a training
corpus is selected as the supertag for the word according to the unigram model. For
the words that do not appear in the training corpus we back off to the part of speech
of the word and use the most frequent supertag associated with that part of speech
as the supertag for the word.

248

Figure 2.12: phrase structure tree and obtained supertags for an example sentence. (from Ban-
galore and Joshi (1999))

Matsuzaki et al., 2007; Blunsom and Baldwin, 2006). Grammars in these frameworks

typically associate linguistically motivated rich descriptions (Supertags) with words. By

imposing complex constraints in a local context through Supertags, the computation of

linguistic structure can be localized. Even when a word has a unique part-of-speech,

there will usually be more than one Supertag for this word. Each Supertag corresponds

to a different syntactic context in which the lexical item can appear. Figure 2.12 shows

the phrase structure tree and obtained Supertags from the phrase structure tree for an

example sentence..

Similar to how POS-tagging constrains the down-stream parser, Supertagging is a pre-

processing step for (context-sensitive) parsing to filter out inappropriate elementary trees

given the context of the sentence. Supertagging has been used as a pruning method to

decrease the typical-case runtime of LTAG parsing (Bangalore and Joshi, 1999; Sarkar,

30

2007) and CCG parsing (Clark, 2002; Clark and Curran, 2004). Supertagging has also

been used to incorporate structural information into language modeling (Srinivas, 1996)

and showed that it serves as a better language model compared to part-of-speech based

language models, since supertag-based classes are more fine-grained than part-of-speech

based classes in a class-based language model.

2.5.3 Dependency Parsing

There has been an increase in the use of dependency representations in NLP tasks in re-

cent years due to its high speed and accuracy in full-parsing. In contrast to constituency

parsing which describes a sentence by breaking up it into constituents (phrases) which

are internally broken into smaller constituents, dependency parsing is a way of describing

sentence structure by drawing links connecting the words. Dependency parsing can be

performed in linear-time, hence it is much faster than polynomial phrase-structure pars-

ing and more appropriate for real-time NLP applications. Dependency parsing attaches

each word to its syntactic head or governor. In most cases, the main verb is the overall

head of the sentence. Figure 2.13 shows an example of the phrase-structure tree and the

dependency tree of a sentence.

We can create a dependency structure based on the constituent structure by recursively

deriving head categories via head percolation rules. Collins (1999) gives a practical set

of hand-written rules for Penn Treebank grammars. One notation for a head percolation

rule is in the form of “X (r A B C) (l D E F)”, which means that for category X, first

look for the rightmost A, B, or C, if found, that’s the head of X, otherwise look for the

leftmost D, E, F. This notation has been used in the ZPAR parser we used in Chapters

4 and 6. For a complete list of English and Chinese constituent head percolation rules

in this parser refer to Appendix B. ZPAR uses lexical head annotations as features for

training the dependency or phrase-structure parser.

Dependency trees are typically minimal compared to phrase-structure trees, thus a de-

pendency parse for a given sentence can be produced with much less complexity than

31

(a)

ROOT

S

NP

DT

the

NN

dog

VP

VBD

bit

NP

DT

the

NN

postman

(b)

! ! ! !"##$!
!
!
%&'!!!()*!!!!!!+,%!!!!!!%&'!!!!-).%/01!

Figure 2.13: (a) Phrase-structure tree and (b) dependency tree of an example sentence.

producing the phrase-structure tree for the same sentence. Although dependencies have

traditionally been extracted from constituent parses, there exist deterministic algorithms

for dependency parsing that can directly extract syntactic dependency structure very

quickly. These algorithms can be described as either graph-based, which perform pars-

ing by searching for the highest-scoring dependency graph among all possible outputs,

or transition-based, which perform parsing by greedily taking the highest-scoring transi-

tion based on the parser state. Eisner (1996); Covington (2001); McDonald et al. (2005);

Nivre (2003) presented approaches for dependency parsing with lower algorithmic time

complexity than constituency parsing. This speed comes with a drop in accuracy com-

pared to dependency structure extracted from context-free parses with PCFGs (Cer et al.,

2010). Cer et al. (2010) reported about 13% absolute difference in labeled attachment

F1-score, and about 9 seconds difference in speed, between the most accurate and the

fastest methods for generating dependencies. The most accurate parser was a reranking

phrase-structure parser with about 89% F1-score and 10 seconds speed on an Intel Xeon

E5520 for parsing the entire Penn Treebank development set, and the fastest one was a

parser with a linear classifier to make local parsing decisions with about 76% F1-score and

1 seconds parsing speed.

32

2.5.4 Vine Parsing

Our proposed idea of constraining span length in hedge parsing as a type of phrase-

structure parsing is reminiscent of constraining dependency length in vine parsing for

dependency parsing. A word’s dependents tend to fall near it in the string. Eisner and

Smith (2005) showed that using dependency length as a parsing feature can improve

parsing speed and accuracy. Their parser, called a vine parser, imposes a bound on the

string distance between every child, except the nodes attaching to the root of the tree, and

its parent. Such soft constraints can improve both speed and accuracy of a simple baseline

dependency parser. They reported similar improvements by imposing hard constraints on

dependency length. This type of constraint, completely prohibits long dependencies in the

parser. Such a partial parser does less work than a full parser in practice, and allows for

improved precision and speed with some loss in recall. Figure 2.14 shows an example of a

full dependency tree, and a vine dependency tree of a sentence retaining only dependencies

of length ≤ 3. Four child-to-parent dependencies are broken due to the length constraint,

and the root of the four resulting parse fragments are connected to the root of the tree.

As we will see in Chapter 3, the hedge transform similarly results in parse fragments that

are then connected to the top-most node of the tree as its sequence of children.

Dreyer et al. (2006) and Rush and Petrov (2012) used vine parsing in a coarse-to-fine

inference to improve efficiency of dependency parsing. Dreyer et al. (2006) designed a

dependency parser for fast training and decoding and for high precision. At the first pass,

a probabilistic vine parser produces an n-best list of the most likely parse trees. A dis-

criminative minimum risk reranker then chooses among trees in this list. Rush and Petrov

(2012) proposed a multi-pass coarse-to-fine approach for efficient dependency parsing.

They started with a linear-time vine pruning pass and build up to higher-order models.

To reduce pruning errors, the parameters of the vine parser were trained such that they

optimize for pruning efficiency, and not for 1-best prediction. While maintaining state-

of-the-art dependency parsing accuracy, this approach achieved two orders of magnitude

speed-up.

33

Figure 2.14: (a) A full dependency tree and (b) a vine dependency tree retaining only dependencies
of length ≤ 3. (from Eisner and Smith (2005))

2.5.5 Incremental Parsing Algorithms

Previous work on incrementality in NLP have mainly focused on incremental algorithms

such as incremental part-of-speech tagging, incremental syntactic parsing with probabilis-

tic context-free grammars (PCFG), dependency grammars, and tree-adjoining grammars

(TAG), or incremental semantic parsing, etc. Roark (2001) introduced an incremental

probabilistic top-down parsing approach and its application to the problem of language

modeling for speech recognition. Later Roark (2004) made the parser more robust by

modifying the standard PCFG to smooth the probabilities in such a way that unseen pro-

ductions are given some probability mass. Collins and Roark (2004) used a very similar

parser but they estimated the parameters of the parser using a variant of the perceptron

algorithm. They got competitive results on parsing the Penn treebank as that of the

generative model using the same feature set.

34

Shift-reduce parsing approach has been successfully used for phrase-based parsing (Briscoe

and Carroll, 1993) and dependency parsing (Sagae and Lavie, 2005; Wang et al., 2006a).

These parsers compute parse trees from bottom up in one pass, and use classifiers to

make shift-reduce decisions. Rather than making a single decision at each processing

step, some shift-reduce parsers use beam-search decoding to resolve structural ambiguity

(Zhang and Clark, 2008; Huang et al., 2009; Huang and Sagae, 2010; Zhang and Nivre,

2011; Goldberg et al., 2013). Zhang and Clark (2011) proposed a general framework

of a global linear model, trained by the perceptron algorithm and decoded with beam-

search, for incremental part-of-speech tagging, word segmentation, dependency parsing,

and phrase-structure parsing.

Some incremental parsing studies use tree-adjoining grammars (Joshi and Schabes, 1997).

Instead of production rules in CFGs, TAGs have two sets of elementary tree structures

(Supertags), and two operations, substitution and adjunction, can then combine trees.

Because of the introduction of the adjunction operation, the TAG formalism is provably

stronger than CFG. TAG is a member of the family of mildly context-sensitive languages,

which is a proper superset of the context-free languages. Shen and Joshi (2005) use a vari-

ant of the incremental shift-reduce with beam-search parsing to dynamically incorporate

a Supertagger, which attempts to assign the correct elementary trees to each word, and

a Lightweight Dependency Analyzer (Bangalore, 2000), which composes the whole parse

tree with these elementary trees. Demberg and Keller (2008) and Demberg et al. (2013)

proposed a psycholinguistically motivated version of TAG which is designed to model

key properties of human sentence processing, namely incrementality, connectedness, and

prediction. Hefny et al. (2011) introduced incremental combinatory categorial grammar

(CCG) (Steedman, 1986), another lexicalized grammar closely related to TAG, to enable

fully incremental left-to-right parsing.

35

2.6 Statistical Machine Translation

Machine translation is the automatic translation from one natural language into another.

Statistical machine translation (SMT) treats translation as a machine learning problem.

SMT algorithms automatically learn translation model parameters from the analysis of

previously translated text, known as a parallel corpus or bitext. The learned model then

can be used to translate new sentences. Generally, SMT algorithms are not tailored to

any specific language pair, and an SMT model can be learned for an arbitrary language

pair using an SMT toolkit and enough parallel text for that language pair. However, in

some types of SMT systems, specific linguistic resources of the language may be needed,

such as a high-quality syntactic parser for a syntax-based SMT system.

Two major SMT formalisms have been developed in the SMT literature: phrase-based

and syntax-based. The main difference between these two formalisms is that transla-

tion rules in phrase-based SMT are bilingual phrases extracted from a parallel corpus

of the source and target languages, whereas a syntax-based SMT uses some form of a

synchronous context-free grammar (SCFG) to generate hierarchical mapping between the

two languages. In Chapter 5, we use phrase-based as well as syntax-based SMT systems

provided in the Moses SMT toolkit (Koehn et al., 2007).

2.6.1 Phrase-based SMT

Decoding

The fundamental equation of SMT is based on the source-channel approach in which the

translation of a source sentence f into a target sentence e is modeled as (Jurafsky and

Martin, 2009):

ê(f)=argmax
e

(P (e)P (f |e)) (2.9)

36

P (e) is the language model of the target language and P (f |e) is the translation model.

In a source-channel model of translation, we have to think of ‘source’ and ‘target’ back-

wards. To translate the source sentence, three stochastic channel operations are employed:

first, the target string is segmented into phrases, second, these phrases are translated to

source phrases, and finally, the translated phrases are re-ordered according to a distortion

model.

Decoding in phrase-based methods is equivalent to finite-state transducers (Lopez, 2008).

The core algorithm typically employs a general framework described by Wang and Waibel

(1997) and Koehn (2004). The target string is built from left to right. To extend the

translation hypotheses at each step, a subsequence in the source string which matches a

source-side phrase in the phrase table is selected, and its target-side phrase is added to

the target string. Each partial hypothesis is scored based on the translation model, the

distortion model, and the target language model. To handle the huge search space, a

beam-search is used to keep only the n-best partial hypotheses at each step.

Phrase Extraction

Phrases are typically extracted from a parallel corpus of the source and target sentences

that are aligned at the word level. Word alignment identifies translation relationship

among the words in a bitext, and represents the result in a bipartite graph or two-

dimensional matrix between the two sentences. The most commonly used word alignment

techniques in large-scale SMT systems are unsupervised techniques of the IBM models

(Brown et al., 1993) and HMM models (Vogel et al., 1996). We refer the reader to

Prud’hommeaux (2012) for further details about word alignment methods. Figure 2.15

shows an example word alignment. The basic idea in alignment-based phrase extraction

is to enumerate all possible phrases in one language and check whether the aligned words

in the other language are consecutive, with the possible exception of words that are not

aligned (Och and Ney, 2004; Vogel et al., 2000; Venugopal et al., 2003). The Moses toolkit

uses alignment-based phrase extraction techniques. There are also phrase extraction meth-

ods that work without the need of building an initial word alignment, such as integrated

37

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!"# !$# !%# !&# !'#
!
!
("# ($# (%# (&# ('# ()#

! !!! !!! !!! !!! !!!
!!! "! ! ! ! !
!!! ! ! ! "! !
!!! ! ! "! ! !
!!! ! "! ! ! !
!!! ! ! ! ! "!
!!! ! ! ! ! "!
!
!
!
!
!
!
!

! ! ! ! !

!
!
!

! ! ! ! !

!
!
!
!
!
!

! ! ! ! !

Figure 2.15: An example of two translationally equivalent sentences e and f and a possible word
alignment in graph and matrix representations.

phrase segmentation/alignment algorithm in Zhang et al. (2003), or joint phrase alignment

and extraction from a parallel corpus that is not word-aligned (Neubig et al., 2011). In

contrast to the conditional alignment-based models, Marcu and Wong (2002) introduced a

joint probability model that assumes that lexical correspondences can be established not

only at the word level, but at the phrase level as well.

2.6.2 Syntax-based SMT

Decoding

Syntax-base SMT systems often use a log-linear modeling approach which is a general-

ization of the source-channel approach. This model was first introduced by Och and Ney

(2002) for SMT. While the basic operations of phrase segmentation, phrase reordering,

and phrase translation remain the same as in the source-channel model, a log-linear model

allows for easier extension by adding new features and discriminative training of the model

parameters. In contrast to the source-channel model, a log-linear approach directly models

the posterior probability:

ê(f)=argmax
e

P (e|f) (2.10)

The Moses toolkit uses CYK+ algorithm (Chappelier and Rajman, 1998), an improved

CYK algorithm adopted to decode non-Chomsky Normal Form translation rules. CYK+

uses a two-dimensional chart to record both completed and partial results. Each cell

38

of the chart contains two lists of items: (1) a list of non-terminals that can parse the

corresponding substring, and (2) a list of incomplete hypothesis (dotted rule) of the form

α�, with α a string of non-terminals that can derive the corresponding substring, and

for which there are rules in the grammar whose right-hand side starts with the string

α. The procedure for filling the chart follows the same pattern as the standard CYK

parsing.

Rule Extraction

Instead of phrases in a phrase-based model, a syntax-based model extracts SCFG rules.

An SCFG is a generalization of a CFG to the case of two output strings. An SCFG is a way

to simultaneously generate source and target sentences and the correspondence between

them. Chiang (2006) provides an overview of SCFGs and several variants. As shown in

Section 2.1.3, a CFG consists of a set of terminal and non-terminal symbols, and a set of

production rules. An SCFG uses a source terminal set Ts, a target terminal set Tt, and

a shared non-terminal set V , and the production rules of the form X→<γ, α,∼> where

X∈V is a non-terminal, γ∈(N ∪ Ts)
∗ is a list of zero or more non-terminals and source

terminals, α∈(V ∪Tt)
∗ is a list of zero or more non-terminals and target terminals, and ∼

is a one-to-one mapping from non-terminal occurrences in γ to non-terminal occurrences in

α (Venugopal et al., 2007). The mapping ∼ can be implicitly defined by co-indexing non-

terminals in γ and their corresponding non-terminals in α. Figure 2.16 shows a fragment

of an SCFG and the parse tree pair it generates in the two languages.

An SCFG can be automatically extracted from a bitext, with or without syntactic anno-

tations, on top of the output of a phrase-based model. Hierarchical phrase-based mod-

els introduced by Chiang (2005, 2007) induce SCFGs without relying on any linguistic

annotations. Hierarchical phrase-based models are commonly used and they typically

improve translation accuracy significantly compared to a phrase-based system. A single

non-terminal X is used in the production rules, and a maximum of two non-terminals are

allowed in the right-hand side of any rule.

39

(a)
S→<NP1 misses NP2,NP2 manque à NP1>
NP→<John,John>
NP→<Mary,Mary>

(b)

can be binarized into

A→ 〈A′ 4 D 3 ,D 3 A′ 4 〉
A′ → 〈B 1 C 2 ,B 1 C 2 〉

Note that we did not sever any links in doing so. But there are synchronous CFGs of rank four that can’t be
binarized—namely, any synchronous CFG containing a production similar to the following:

(19) A→ 〈B 1 C 2 D 3 E 4 ,D 3 B 1 E 4 C 2 〉

Try to binarize it—no matter how you do it, you will always have to sever a link, which is not allowed. In
general, let r-SCFG stand for the set of string relations generated by synchronous CFGs of rank r; then:

(20) 1-SCFG ! 2-SCFG = 3-SCFG ! 4-SCFG ! . . .

despite the fact that non-synchronous CFGs of rank 2 and higher are all weakly equivalent [1]. There is an
efficient algorithm for minimizing the rank of a synchronous CFG [6].

No raising or lowering. The properties above considered synchronous CFGs as defining relations on
strings. If you think of a synchronous CFG as defining a relation on trees, then all synchronous CFGs can
do is relabel nodes and reorder sisters. So if you want to write a synchronous CFG that can swap subjects
and objects, as in the following English and French trees:




S

NP

John

VP

V

misses

NP

Mary

,

S

NP

Mary

VP

V

manque

PP

P

à

NP

John




then you’re out of luck, because [NP John] and [NPMary] aren’t sister nodes, and therefore can’t be swapped.
However, if you’re willing to mangle the trees, then there is an easy solution:

S→ 〈NP 1 misses NP 2 ,NP 2 manque à NP 1 〉(21)
NP→ 〈John, John〉(22)
NP→ 〈Mary,Mary〉(23)

which will generate the tree pair



S

NP

John

misses NP

Mary

,

S

NP

Mary

manque à NP

John




By flattening the trees, we made [NP John] and [NP Mary] sister nodes so that they could be swapped. (We
also integrated the verb misses/manque à into the rule to make sure that this swapping doesn’t occur with
just any verb.)

Synchronous tree-substitution grammar (Section 5.1) would be able to do this without flattening.

4

Figure 2.16: (a) An example SCFG for English and French, and (b) SCFG derivations represented
as a pair of trees. (from Chiang (2006))

An SCFG can be induced from a bitext whose source, or target, or both languages are

informed by the linguistic syntax of the language. Often only one language, which is

usually the target side, has meaningful linguistic annotation, and the SCFG rules mirror

the known syntax to the other language. Many of the studies in the literature are designed

to translate into well-structured language, such as English, for which there are high-quality

syntactic parsers available (Lopez, 2008). In general, we call these models tree-based in

this thesis. If only the target language of a tree-based model has linguistic syntax, the

model is called string-to-tree, if only the source language has linguistic syntax, the model

is called tree-to-string, and if both languages have linguistic syntax, the model is called

tree-to-tree. Several studies have shown improvements of string-to-tree models (Zollmann

and Venugopal, 2006; Marcu et al., 2006; DeNeefe et al., 2007), tree-to-string models

(Huang et al., 2006; Liu et al., 2006; Zhang et al., 2007a), and tree-to-tree models (Nesson

et al., 2006; Zhang et al., 2007b) over phrase-based approaches. In this thesis we train and

decode hierarchical phrase-based and tree-based models using syntax-based tools provided

in the Moses toolkit.

40

2.6.3 MT Evaluation

BLEU (Papineni et al., 2002) is the most popular automated method for evaluation of

machine translation. BLEU automatically scores a machine-generated candidate transla-

tion by measuring a weighted average of the number of overlapping n-grams of different

length between the candidate and one or more human-generated references.

To deal with comparing the candidate translation against multiple references, BLEU ex-

tends the familiar precision metric to a modified n-gram precision. It first counts the

maximum number of times each word in the candidate (unigram) is used in any single

reference. The count of each candidate word is then clipped by (attached to) this max-

imum reference count. The modified precision is similarly computed for higher order

N-grams, often up to 4-grams, as well. The sentence-level modified n-gram precision is

then extended over the entire test set. BLEU adds the clipped n-gram counts over all

the candidate sentences (referred to as candidates in the following formula), and divides

by the total number of candidate n-grams in the test set. The modified precision score is

thus:

pn =

∑
c∈{candidates}

∑
n-gram∈c

Countclip(n-gram)∑
c′∈{candidates}

∑
n-gram′∈c′

Count(n-gram′)
(2.11)

In addition, BLEU adds a penalty to penalize candidates that are too short. Normally,

precision is combined with recall to deal with these problems. However, recall over multiple

references is not a good measure, because a good candidate translation only recalls one

of the references, not all. Instead, BLEU includes a multiplicative factor called brevity

penalty over the entire corpus.

BP =


1 c>r

e(1−r/c) c≤r
(2.12)

41

where c is the total length of the candidate translation corpus, and r is the effective

reference length computed by summing the lengths of the best matches for each candidate.

Finally, the BLEU score is calculated as the geometric mean of the modified n-gram

precisions, multiplied by the brevity penalty:

BLEU=BP × exp(
1

N

N∑
n=1

logpn) (2.13)

While BLEU score is the most commonly used metric in MT evaluation, it has some

drawbacks. It is based on n-gram precision overlap that might not be suitable for free

word-order languages. It also assigns equal weight to any n-gram sequences no matter

how informative they are. Some BLEU alternatives such as NIST (Doddington, 2002),

assign higher weights to more informative n-grams by taking their relative frequency into

account. That is, the more infrequent an n-gram, the more informative it is. Another

drawback of BLEU is that it only considers exact word and n-gram matching. METEOR

(Metric for Evaluation of Translation with Explicit ORdering) (Banerjee and Lavie, 2005)

is another BLEU alternative that is based on the harmonic mean of unigram precision and

recall and performs stemming and synonymy matching. METEOR is then less sensitive

to n-gram matches and exact word repeats.

In Chapter 5, we use the multi-bleu perl script available in the Moses toolkit to measure

MT BLEU scores. This script takes tokenized and sentence-aligned reference file and MT

output file. It also accepts multiple reference translations.

2.7 Simultaneous Speech-to-Speech Translation

Some previous work has focused on how incremental NLP algorithms are utilized in real-

time applications. Schlangen and Skantze (2009) and Skantze and Hjalmarsson (2010)

described a general model and conceptual framework for incremental processing in dia-

logue systems. They presented the topology of the network of modules, how information

flows in this network, and how incremental units of information are processed. Schuler

42

Figure 2.17: Simultaneous speech-to-speech translation pipeline.

et al. (2009) described a framework for incremental interpretation during speech decoding.

They incorporate referential semantic information into the probabilistic language model

of the system. Hassan et al. (2009) incorporates dependency parsing to statistical machine

translation by adding CCG-based incremental dependency parser features to the phrase-

based translation model. Atterer and Schlangen (2009) presented an incremental semantic

segmentation method that performs incremental slot filing as it receives a stream of words

in a dialogue system. Chunks correspond to sense units and segmentation is based on a

notion of semantic/pragmatic completeness. An example usage of incremental NLP algo-

rithms is Speech-to-Speech Translation (SST) that involves incremental processing of the

input stream and simultaneously generating the output translation.

SST technology enables speakers of different languages to communicate real-time without

knowing each others’ languages. In recent years, SST has achieved acceptable quality

through combining three key pieces of technology (Bangalore et al., 2012): automatic

speech recognition (ASR), statistical machine translation, and, text-to-speech synthesis

(TTS). Typically a segmentation component is required for preparing the ASR’s output

for the MT system in order to achieve high translation quality. Figure 2.17 presents

a schematic overview of the simultaneous translation pipeline. Given the input audio

stream, the ASR component produces a continuous stream of partial transcripts, which is

segmented by the Segmentation component into appropriate chunks for the MT compo-

nent. The MT component translates each of these chunks into the target language, and

the translation output speech is delivered by the TTS component. The focus of this thesis

is on segmentation and MT components. The goal of the segmentation component is to

43

provide segments that balance translation accuracy and latency. In the next section, we

discuss some of the current input segmentation strategies in SST.

2.7.1 Input Segmentation Strategies

Some related work investigated input segmentation strategies in simultaneous speech

translation. Appropriate segmentation of the source audio stream and the ASR out-

put that is fed into machine translation is critical for a low-latency real-time translation

while maximizing the overall translation quality. One category of segmentation methods

is to use linguistic or non-linguistic heuristics, such as length of segments, time of audios,

or predicted punctuations in the ASR output. Another category, directly considers the

impact of the segmentation strategy on translation performance, thus tries to jointly op-

timize segmentation and translation. In this section, we summarize some of the studies in

these two categories.

Heuristics, Non-linguistic, and Linguistic Approaches

Fügen et al. (2007) compared several segmentation strategies. As a baseline, they automat-

ically segmented ASR hypotheses as well as reference transcripts at sentence boundaries.

Sentence boundaries are automatically predicted using a log-linear model that combines

language model and prosodic features. They obtained 36.6% BLEU score by translating

ASR reference transcripts and 33.4% by translating ASR hypotheses for Spanish-English

translation. In spite of relatively good translation quality, the average sentence lengths

(30 words) are too high to be applicable to simultaneous translation. By taking all auto-

matically predicted punctuation marks as split points, they reduced the average segment

length to an acceptable 9 words with almost no decrease in the BLEU score. An alterna-

tive approach of simply cutting the merged utterances every n words can destroy semantic

context, hence the translation scores are affected significantly. For example for n=7 they

obtained 30.1% BLEU score for ASR reference transcripts and 27.5% for ASR hypotheses

translations.

44

By defining segment boundaries based on non-speech regions in the ASR hypotheses,

including recognized silences and nonhuman noises, Fügen et al. (2007) achieved better

results than those obtained with length-based methods. For example, the non-speech

duration thresholds of 0.3 seconds achieved 32.6% BLEU score for ASR hypotheses trans-

lation. Finally, adding lexical features provided by a language model to acoustic features

outperforms all chunking strategies using acoustic features only (32.9% BLEU score). This

semantic approach, which incorporates some context information, achieved the acceptable

average segment length of 9 (and a small standard deviation of 6).

Bangalore et al. (2012) defined the segments by silence frames with a threshold of 8-10

frames (100 ms) in the ASR output. They did not use any lexical features for segmenting

the utterances. Later, Rangarajan Sridhar et al. (2013) compared several linguistic and

non-linguistic segmentation strategies for speech translation, with the goal of achieving a

system that balances translation accuracy and latency. For non-linguistic segmentation,

segmenting the text after every n words performs well, particularly for the larger n val-

ues, however, longer segments increase the latency and fixed length segmenting typically

destroys the semantic context. Another approach, which they call hold-output model,

segments the input sentence into minimally sized chunks such that crossing links in a

optimal word alignment occurs only within individual chunks. To develop this model, a

kernel-based SVM is applied at each word position. This strategy yields poor translation

performance due to short segments (2-4 words) generated by the model, which do not

provide sufficient context for translation.

For linguistic segmentation, Rangarajan Sridhar et al. (2013) tried segmenting the source

text into sentences, or comma-separated segments which are predicted using a kernel-based

SVM classifier, or conjunction-word based segments in which the segments are separated

at either conjunction (e.g. “and”, “or”) or sentence ending boundaries. These linguistic

methods work the best. Interestingly the use of gold-standard segments as input to MT

versus the use of predicted segments does not make a great difference in MT accuracies

in spite of errors in the set of predicted segments. In another linguistic method, they

performed chunking within each sentence to segment the sentence into four chunk types

45

of noun, verb, particle, and adverbial. This type of segmentation yielded quite poor

translation performance, mainly due to short chunk sizes. Although in general, the kind

of error it makes is different from that in the hold-output method which also generates

short segments.

To assess latency, Rangarajan Sridhar et al. (2013) compared two scenarios: one time-

based segmentation in which the partial ASR hypotheses after a pre-defined timeout are

sent directly to MT, and another where the best segmentation strategy (comma-separated

chunks) is used to segment the partial ASR hypotheses before sending it to MT. The latter

scenario shows a better translation accuracy particularly for timeout values less than five

or six seconds, however, addition of the segmenter into the pipeline introduces a significant

delay of about 1 second.

Several other similar studies address input segmentation strategies based on non-linguistic,

linguistic, and combined criteria, for text or speech translation. Among these stud-

ies, Matusov et al. (2007) investigated the impact of automatic sentence boundary and

sub-sentence punctuation prediction on translation of automatically recognized speech.

The best translation results they achieved were when boundary detection algorithms

were directly optimized for translation quality. Cettolo and Federico (2006) investigated

punctuation-based, length-based, and combined text segmentation criteria and verified

their impact on a Chinese-English statistical phrase-based translation system. They found

that the best performance can be achieved by combining both linguistic and input length

constraints. Wolfel et al. (2008) described five particular research challenges, including

input segmentation, in simultaneous translation of German lectures to English. Baumann

et al. (2014) investigated the timing aspects of incremental translation and speech synthe-

sis by taking into account speech delivery timings for both input and output. They found

that overall latency resulted from both the source utterance timing, its translation, and

the target utterance delivery.

46

Joint Segmentation and Translation Optimization

Another important aspect of SST translation that has been less addressed in previous

studies is joint segmentation and optimization of translation performance. Ideally any

segmentation method should also take into account the way the specific system uses these

segments works. However, segmentation strategies are mainly on the basis of heuristics and

the impact of segmentation on translation performance is not directly considered.

In a recent work, Fujita et al. (2013) proposed a source segmentation method that con-

siders the relationship between the source and target languages. To decide segmenting

points, they use lexicalized information from the phrase table and reordering probabilities

available in phrase-based translation systems. In another study, Oda et al. (2014) pro-

posed algorithms for learning segmentation strategies for simultaneous speech translation

that optimizes translation performance according to an evaluation measure calculated by

a greedy search and dynamic programming. Shavarani et al. (2015) later extended this

work by proposing a new algorithm that improves latency by up to 12% without BLEU

score degradation for the same average segment length.

Along the lines of joint segmentation and translation optimization, in Yarmohammadi

et al. (2013)2 we proposed a novel approach for segmenting the incoming stream by ex-

ploiting the alignment structure between words (phrases) across a language pair. We

explored an optimal segmentation such that segments could be translated to the target

language monotonically. In other words, our goal was to split the sentence into segments

such that phrase reordering would occur inside each segment and not across segments.

Figure 2.18 shows an example of a word alignment matrix and all possible monotonic

phrase alignments (4 alignments) for two parallel sentences, shown with different line

styles.

We compared three incremental decoding and two different input segmentation strategies

for simultaneous translation in terms of accuracy and latency. The three decoding strate-

gies we used are: 1) phrase-based SMT using the Moses toolkit, 2) an FST implementation

2http://www.aclweb.org/anthology/I13-1141

47

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
! !!! !!! !!! !!! !!!

!!! "! ! ! ! !
!!! ! ! ! "! !
!!! ! ! "! ! !
!!! ! "! ! ! !
!!! ! ! ! ! "!
!!! ! ! ! ! "!
!
!
!
!
!
!
!

! ! ! ! !

!
!
!

! ! ! ! !

!
!
!
!
!
!
!

! ! ! ! !

Figure 2.18: Word alignment matrix for two parallel sentences. Monotonic phrase alignments are
shown with different line styles.

of the translation model, equivalent to the phrase-based translation in the Moses toolkit

without reordering, and 3) an incremental beam search decoder introduced by Sankaran

et al. (2010), which modifies the beam-search decoding algorithm for phrase-based MT

aiming at efficient computation of future costs and avoiding search errors. The two seg-

mentation strategies we tried for these three decoders were silence-based and monotonic

phrase-based. To decide segmenting points, we applied a perceptron classifier, which used

word form and length features, at each word position. Our segmentation model was trained

on the same parallel data we used for machine translation.

Our experiments on English-French translation of TED talks released as part of the IWSLT

evaluation (Federico et al., 2011) showed that incremental translation of monotone-based

segments could get higher accuracy than the silence-based segments for all the three

decoders. This accuracy improvement would cost a slight increase in latency in the first

and third decoders, but interestingly the FST decoder showed reduction in latency, in

spite of lacking the reordering knowledge—available in the first decoder uses—as well as

history of translation—available in both other decoders use.

In a recent study, Siahbani et al. (2014) extended this work by integrating our proposed

monotone-based segmentation with an incremental MT decoder. They used a variant

of left-to-right decoding for a hierarchical phrase-based MT model (LR-Hiero) (Siahbani

et al., 2013), which is suitable for incremental scenarios. A hierarchical phrase-based

model typically uses the CYK decoding algorithm which requires the entire input before

decoding begins, whereas LR-Hiero uses a beam-search decoder generating the translation

48

incrementally in a left-to-right manner. They also improved monotone-based segmentation

compared to our work by using a richer feature set, including decoder feedback features.

Overall, they achieved a very fast simultaneous translation system (23 times faster than

non-incremental translation system) with reasonable translation quality (only 1.24 BLEU

score loss). These results imply that even though the monotone-based segmentation is

trying to optimize a phrase-based translation system, it could perform very well in a

syntax-based system as well.

Chapter 3

Fast Syntactic Annotation and

Segmentation using Hedge Parsing

3.1 Introduction

As we described in Chapter 2, there is a trade-off between efficiency and complexity of

inference (search) using finite-state and context-free algorithms. Finite-state models are

very fast and efficient for inference, but they are not powerful enough to define recursive

syntactic structures. In contrast, context-free mechanisms have greater expressive power

of the syntax and allow for recursive phrase construction, but they are generally com-

putationally expensive. Finding a less computationally demanding syntactic parser than

a full parser but more expressive than a shallow parser is potentially very useful for use

in real-time applications for fast syntactic analysis of the input. Finding such a partial

parser is the focus of this chapter.

Full hierarchical analysis of a sentence gives a complex complete parse tree of that sentence,

as shown in Figure 3.1. This parse tree represents hierarchically embedded structures

consisting of leaves of the tree or terminal symbols (i.e., words) and non-terminals labeling

constituents (i.e., phrases such as NP, VP, PP), connected to the top-most non-terminal

S.1 To assign full parse trees to sentences, typically a parsing algorithm (e.g., CYK)

employs a full context-free grammar (CFG) to produce trees (see Section 2.4 in Chapter

1See Section 2.1.3 of Chapter 2 for more details on syntactic trees. Note that for simplicity we do not
represent the ROOT symbol in our examples.

49

50

Figure 3.1: Full syntactic parse tree for an example sentence.

2). Shallow parsing (also known as chunking) identifies flat, non-overlapping constituents

of the sentence, as shown in Figure 3.2. Shallow constituents typically correspond to major

parts-of-speech, including noun phrases, verb phrases, propositional phrases, and adjective

phrases. Since chunked segments lack hierarchical structures, a flat bracketing notation,

shown in Figure 3.2(b), is sufficient to represent them. Chunking can be characterized by

finite-state models and the chunking task can be viewed as a sequence tagging problem.

For more detail about shallow parsing refer to Section 2.5.1 in Chapter 2.

a)

b)

Chapter 1

Fast Syntactic Annotation and

Segmentation using Hedge Parsing

1.1 Introduction

Parsing full hierarchical syntactic structures is costly, and some NLP applications that

could benefit from parses instead substitute shallow proxies such as NP chunks. Full hi-

erarchical analysis of a sentence gives a complex complete parse tree of that sentence, as

shown in Figure ??. This parse tree represents hierarchically embedded structures consist-

ing of terminal symbols (e.g., NNP, VBD, DT) and non-terminals (e.g., NP, VP, PP). To

assign full parse trees to sentences, typically a parsing algorithm (e.g., CYK) employs a full

context-free grammar (CFG) to produce trees (see Section ? in Chapter 2). Shallow pars-

ing (also known as chunking) of the sentence identifies flat, non-overlapping constituents

of the sentence, as shown in Figure ??. Shallow constituents typically correspond to major

parts-of-speech, including noun phrases, verb phrases, propositional phrases, and adjec-

tive phrases. Since chunked segments lack hierarchical structures, a bracketing notation

is sufficient to represent them. Chunking can be characterized by finite-state models and

the chunking task can be viewed as a sequence tagging problem. For more detail about

partial parsing and chunking refer to Section ? in Chapter 2.

And [NP there] [VP were] [NP Senate hearings] [PP on] [NP the questions] [PP in] [NP July 1972] .

1

Figure 3.2: (a) Shallow parse tree and (b) flat bracketing notation of the chunks.

51

Figure 3.3: Hedge parse tree for the example sentence in Figure 3.1 with maximum constituent
span of 4 (L=4).

A partial parser beyond a shallow parser could provide portions of recursive syntactic

structures, such as the parts that are limited to a local context. Local recursive structure—

beyond basic syntactic segmentation in shallow parsing—could be of utility even in the

absence of fully connected structures. For example, in incremental/simultaneous machine

translation (Bangalore et al., 2012; Yarmohammadi et al., 2013; Oda et al., 2014; Siah-

bani et al., 2014), sub-sentential segments are translated independently and sequentially,

hence the fully-connected syntactic structure is not generally available. Even so, locally-

connected source language parse structures can inform both segmentation and translation

of each segment in such a translation scenario.

One way to provide local hierarchical syntactic structures without fully connected trees is

to focus on providing full hierarchical annotations for structures within a local window,

ignoring global constituents outside that window. We can obtain hedges via tree trans-

formation, whereby non-terminals labeling constituents of span >L in the tree, i.e., the

nodes that cover more than L words, are recursively elided and their children promoted to

attach to their parent. In such a way, hedges are sequentially connected to the top-most

non-terminal in the tree, as demonstrated in Figure 3.3. After applying such a transform

to a treebank, we can induce grammars and modify parsing to search as needed to re-

cover just these constituents. We call this approach hedge parsing, i.e., discovering every

constituent of length up to some span L.

52

Hedge parsing, as a type of partial syntactic parsing, may be of utility to various parsing

tasks, as well as within a full parsing pipeline to prune the search space and increase the

efficiency of full CFG parsing. As we saw in Chapter 2, similar methods have been used

in a full parsing pipeline to quickly constrain subsequent inference, such as Supertagging

(Bangalore and Joshi, 1999) which assigns a rich tag to each word of a sentence and can

be used to prune the (context-sensitive) parser (see Section 2.5.2 of Chapter 2), or finite-

state constraints which are used to constrain portions of the dynamic programming parsing

chart (Glaysher and Moldovan, 2006; Roark and Hollingshead, 2008; Roark et al., 2012).

Similar constraints have been used in vine parsing to constrain the distance between heads

and dependents in dependency parsing (see Section 2.5.4 of Chapter 2). To the best of our

knowledge, our 2014 paper (Yarmohammadi et al., 2014) was the first work to consider

this type of partial constituency parsing approach for natural language.

The most basic parsing algorithm for probabilistic context-free grammars, nevertheless

widely used, is the dynamic programming CYK algorithm. We explained this algorithm in

detail in Section 2.4.1 of Chapter 2. The CYK algorithm builds longer-span constituents by

combining smaller-span constituents as allowed in a probabilistic CFG (PCFG). The idea

is applicable to the hedge transform which works by constraining the span of constituents.

In this chapter, we explain hedge parsing using the CYK algorithm and constraining

the chart cells. We propose several methods to parse hedge constituents and examine

their accuracy/efficiency tradeoffs. First, we review finite-state and context-free parsing

complexity, which we described in Chapter 2, and briefly describe some of the pruning

and prioritization methods for the CYK algorithm to improve efficiency of PCFG parsing.

Then, we discuss modifications to inference and the resulting computational complexity

gains for hedge parsing, and how such hedge parsing behaves when combined with CYK

pruning and prioritization methods. Finally, we investigate pre-segmenting the sentences

with a finite-state model prior to hedge parsing, and achieve large speedups relative to

hedge parsing the whole string, though at a loss in accuracy due to cascading segmentation

errors.

We demonstrate that:

53

1. Hedge parsing is a partial syntactic parsing approach that has a complexity and

expressive power between shallow and full parsing.

2. With straight-forward modifications to the CYK parser and the grammar we can

perform high-accuracy hedge parsing with orders of magnitude faster speed than the

traditional parsing. For example, we can find constituents with the maximum span

of 7 words at the parsing speed of about 26 words per second and accuracy of 87% for

our English data set using the BUBS parser (see Section 3.7.2). Traditional parsing

which finds every constituent of the sentence takes about 3 words per second, on

average, at the state-of-the-art accuracy of about 90%.

3. Hedge parsing can find hedges of a sentence without requiring the entire sentence,

instead the segments of the sentence which correspond to complete hedges can be

parsed. This will generally result in more efficient parsing due to processing smaller

segments, and also will increase incrementality due to being able to syntactically

analyze the incomplete input. Using the BUBS parser, we can hedge parse sentences

with over 200 words per seconds speed and about 83% accuracy by pre-segmenting

the sentences prior to parsing.

4. The ideas and algorithms in this chapter establish the baseline results for hedge

parsing. Leveraging non-incremental dynamic programming CYK parsing does not

really address our ultimate goal of applying partial hedge parsing to incremental NLP

applications. The idea of pre-segmenting the sentence prior to parsing as an attempt

to increase incrementality has the disadvantage of cascading segmentation errors. We

notice significant potential in the greedy incremental parsers with linear complexity,

which has been recently widely used for both constituency and dependency parsing

with great success. Results for this approach will be provided in chapter 4.

3.2 Finite-state vs Context-free Parsing

Finite-state parsing (also called shallow parsing or chunking) is equivalent to parsing with

a regular right-linear (or left-linear) grammar of the form A → w∗ or A → w∗B. (See

54

Section 2.1.2 of Chapter 2 for more details about regular grammars.) Shallow parsing

cannot express recursive center-embedding rules like A ⇒∗ αAβ where a non-terminal A

is written to itself, surrounded by non-empty strings α and β. Finite-state inference is

O(n). In fact, finite-state inference can be viewed as a sequence classification problem and

the standard approaches to training classifiers apply to this problem. The standard way

to do shallow parsing is IOB tagging, which represents the beginning and internal words

of a chunk by B and I tags and the words outside any chunk by O tag (see Section 2.5.1

of Chapter 2). In Section 3.6 of this chapter, we use a type of sequence tagging model to

hedge segment the input sentence as a pre-processing step of hedge parsing.

The CYK algorithm for CFG parsing combines bottom-up parsing with dynamic pro-

gramming to perform exact inference of the input’s syntactic structure based on a CFG.

In Chapter 2 we saw how dynamic programming solves a problem by dividing it into

sub-problems and combining solutions to sub-problems. In the case of parsing, dynamic

programming uses a table, referred to as the chart, of partial parses to solve the repeated

parsing of subtrees problems. Figure 3.4(a) shows the CYK chart for our example sentence.

Each cell in this chart contains a set of non-terminals that represent the constituents cov-

ering a particular substring (or span) of the input. The first row, contains the constituents

with a span of 1, and higher levels represent larger spans. The result of parsing with such

binary grammar is shown in Figure 3.4(b). Non-terminals starting with the symbol ‘*’

are temporary non-terminals created through Chomsky normal form (CNF) binarization.

Complexity of parsing with a full CFG is O(n3|G|) where n is the length of input and

|G| is the grammar size constant.In Section 3.5.2 we modify the CYK chart to match the

hedge constraint, and describe how this will decrease the complexity of hedge parsing. For

more detail about the CYK algorithm refer to Chapter 2.

3.3 CYK Pruning and Prioritization Methods

Several methods for increasing efficiency of CYK parsing have been proposed recently.

The CYK algorithm is an exact inference which finds the globally optimal solution given

55

a)

!
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! !
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

""! #$!
%&! '()!!!!!!!!!##$!!!!!!!!!##*!!!!!!!!!!!!+#!!!!!!!!!!!!),!!!!!!!!!!!##*!!!!!!!!!!!!+#!!!!!!!!!!!##$!!!!!!!!!!!")!!!!!!!!!!!!!!!-!

-!

.*! #$! #$! #$!
$$!$$!

#$!
.'$!

'$!

.*!
*!

/01!!!!!!!!!23454!!!!!!!!6454!!!!!!!*40724!!3475809:!!!!!!!;0!!!!!!!!!!!!234!!!!!!<=4:28;0:!!!!!!!80!!!!!!!!!!!!>=?@!!!!!!!!!ABCD!!!!!!!!!!!!!-!

!

b)

Figure 3.4: (a) CYK chart with binarized non-terminals (b) left-binarized parse tree.

56

a grammar. To improve efficiency, approximate inference methods have been used which

make hard decisions typically based on local information to constrain the search space.

One of the widely used approximate inference methods is pruning. Pruning methods ex-

clude portions of the search space by directly eliminating paths of the search space as they

are expanded (i.e., beam-search), or constraining the final search space via earlier stages of

a pipeline (i.e., coarse-to-fine parsing or POS tagging) (Bodenstab, 2012). In addition to

pruning there is another class of methods for efficient parsing called prioritization. Such

methods prioritize the order of search so that promising candidates are pursued first. Pri-

oritization does not make hard decisions to restrict the search space, so the inference may

be exact instead of approximate.

The CYK parser we use in this chapter (Bodenstab et al., 2011) makes use of several

recent pruning and prioritization approaches in learning and inference. These approaches

are introduced in (Bodenstab et al., 2011, 2010; Bodenstab, 2012; Dunlop, 2014). We ex-

amine the effect of some of these approaches on hedge parsing performance. The pruning

approaches we apply are: 1) beam-search, which limits the number of candidates explored

at each step, and 2) complete closure, a type of chart cell constrain which individually

classifies each chart cell as being open or closed to all constituents. In the case of beam-

search, a prioritization function (also called figure-of-merit or FOM) sorts all candidate

non-terminals based on some heuristic and only the k-best non-terminals are retained

in the chart cells at each iteration. The FOMs we apply here are based on inside and

outside probabilities in the inside-outside algorithm that computes the posterior proba-

bilities of constituents in a chart. The FOMS are: 1) inside FOM, which is the simple

inside probability of each non-terminal, and 2) lexical boundary FOM, which improves

the inside probability by combining it with a heuristic estimate of the outside probability.

The outside probability in this case is learned from words surrounding the left and right

boundaries of the non-terminal.

57

3.4 Hedge Tree Transform

The hedge tree transform converts the original parse tree into a hedge parse tree. In

the resulting hedge parse tree, every child of the top-most node spans at most L words.

To transform an original tree to a hedge tree, we remove every non-terminal with span

larger than L and attach its children to its parent. First, in a bottom-up pass over the

nodes, We label span length on each node by recursively summing the span lengths of each

node’s children, with terminal items by definition having span 1. A second top-down pass

evaluates each node before evaluating its children, and removes nodes spanning >L words.

For example, assuming L=4, the node VP and its child NP in the original parse tree in

Figure 3.1 have spans >L words. The spans of these two nodes are 9 and 5 respectively.

Thus they are removed in the hedge transform, resulting in the hedge parse tree in Figure

3.3.

0 5 10 15 20

50
60

70
80

90
10
0

Maximum span limit (L)

P
er

ce
nt

ag
e

of
 c

on
st

itu
en

ts
 re

ta
in

ed

Chinese
English

Figure 3.5: Percentage of constituents retained at various span length parameters L=3–20 for
English and Chinese training data.

58

If we apply this transform to an entire treebank, we can use the transformed trees to

induce a PCFG for parsing as described in Section 2.1.3 of Chapter 2. In Section 3.5.1

we introduce such a grammar which we call a hedgebank grammar. Figure 3.5 plots

the percentage of constituents from the original English and Chinese Penn treebanks

(training sections) retained in the transformed version, as we vary the maximum span

length parameter L. For English, over half of constituents have span 3 or less (which

includes frequent base noun phrases); L=7 covers approximately three quarters of the

original constituents, and L=15 over 90%. Most experiments in this paper will focus on

L=7, which is short enough to provide a large speedup yet still cover a large fraction

of constituents. For Chinese, more constituents are retained at various Ls compared

to English. The reason is smaller average span length of constituents in Chinese (4.4

words) compared to English (6.5 words) as we will show in Table 3.2 (see §3.7.1). Another

justification is the lower branching factor in the Chinese treebank compared to the English

(Levy and Manning, 2003), while the average height of the trees and average number of

words per sentence are similar in both treebanks. The average height of the trees is 9.5 in

Chinese and 10.0 in English, and the average number of words per sentence is about 27 in

Chinese and about 24 in English. This causes less pruning of the constituents in Chinese

hedge transform compared to English.

3.5 Hedge Parsing

Hedge parsing is the approach of finding the hedge parse tree of a given sentence. Since

hedge structures can be recursive structures, finite-state approaches such as sequence

tagging generally cannot find hedges efficiently, thus context-free approaches to syntactic

parsing seems more appropriate for hedge parsing. In Section 2.1.3 of Chapter 2 we

described PCFGs, PCFG induction, and treebank transform. We saw that by starting with

a treebank, PCFG rules can be read off from the parse trees in the treebank. To either

improve parsing performance or use the grammar in a specific algorithm such as CYK

parsing or hedge parsing, we transform the treebank to the desired form before extracting

the grammar rules. The hedge tree transform introduced in the previous section is an

59

instance of treebank transform before PCFG induction. We will describe the resulting

grammar later in this section.

In Chapter 2, we categorized syntactic parsing methods into two groups of exact inference

based on dynamic programming and greedy inference based on a classifier. In this chapter,

we focus on dynamic programming and in particular its most popular algorithm, the

CYK, which allows us to straightforwardly apply the hedge condition on parsing. In this

section, we explain hedgebank grammars and then modifying the CYK chart according

to the hedge condition. Hedge parsing with a classifier-based parser will be the focus of

the next chapter. Such a parser will alleviate some of the issues we face in CYK hedge

parsing.

3.5.1 Hedgebank Grammar

After applying the hedge transform to an entire treebank, we can learn a PCFG from the

transformed treebank which we call a hedgebank grammar. A hedgebank grammar is a

fully functional PCFG and can be used with any standard parsing algorithm, i.e., these

are not generally finite-state equivalent models. However, using the Berkeley grammar

learner (see Section 3.7.2), we find that hedgebank grammars are typically smaller than

treebank grammars, reducing the grammar constant and contributing to faster inference.

Complexity of parsing with a hedgebank grammar and a hedge-constrained CYK chart is

in between the complexity of shallow parsing and full CYK parsing.

Recall from Section 2.1.3 of Chapter 2 that for use by a CYK parsing algorithm, trees are

binarized prior to grammar induction, resulting in temporary non-terminals created by

binarization. Figure 3.6(b) shows an example of a binarized hedge tree. These temporary

non-terminal are marked with asterisk, such as ∗S in the figure. Other than the symbol at

the root of the tree, the only constituents with span length greater than L in the binarized

hedge tree will be labeled with these special binarization non-terminals. Further, in the

systematic binarization through left- or right- factoring (see Section 2.1.3), the constituents

with span greater than L will either begin at the first word (leftmost grouping) or end at

60

the last word (rightmost). These properties enables constraining the number of cells in

the CYK chart requiring work. In the next subsection we show how a hedge-constrained

CYK chart works.

3.5.2 Hedge-constrained CYK Chart

Since we limit the span of non-terminal labels in a hedgebank grammar, we can constrain

the search performed by the parser, and thus greatly reduce the CYK processing time.

In essence, we perform no work in chart cells spanning more than L words, except for

the cells along the periphery of the chart, which are just used to connect the hedges to

the root. In fact, these cells contain the temporary non-terminals created by binarization

prior to grammar induction. Figure 3.6(a) shows an example of a hedge constrained CYK

chart. Chart cells spanning more than L words are in dark gray, meaning that they are

closed to all constituents, and the periphery cells are in light gray, meaning that they can

only contain special non-terminals created by binarization.

As we saw earlier in this chapter, complexity of parsing with a full CYK parser is O(n3|G|)

where n is the length of input and |G| is the grammar size constant. In contrast, complexity

of parsing with a hedge constrained CYK is reduced to O((nL2+n2)|G|). To see that this

is the case, consider that there are O(nL) cells of span L or less, and each has a maximum

of L midpoints, which accounts for the first term. Beyond these, there are O(n) remaining

active cells with O(n) possible midpoints, which accounts for the second term. Note also

that these latter cells (spanning >L words) may be less expensive, as the set of possible

non-terminals is reduced to only those introduced by binarization.

3.6 Hedge Segmentation

A unique property of hedge constituents compared to constituents in the original parse

trees is that they are sequentially connected to the top-most node. To clarify, in the

example of hedge parse tree in Figure 3.3, the hedge constituents CC, NP, VBD, NP,

PP, PP, and “.” do not share any sub-tree, but they share the same parent S, which is

61

a)

!
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! !
!

""! #$!
%&! '()!!!!!!!!!##$!!!!!!!!!##*!!!!!!!!!!!!+#!!!!!!!!!!!!),!!!!!!!!!!!##*!!!!!!!!!!!!+#!!!!!!!!!!!##$!!!!!!!!!!!")!!!!!!!!!!!!!!!-!

-!

.*! #$! #$! #$!

*!

/01!!!!!!!!!23454!!!!!!!!6454!!!!!!!*40724!!3475809:!!!!!!!;0!!!!!!!!!!!!234!!!!!!<=4:28;0:!!!!!!!80!!!!!!!!!!!>=?@!!!!!!!!!!ABCD!!!!!!!!!!!!!-!

!

.*!

.*!

.*!

A!

!

D!

E!

F!

G!

H!

C!

B!

I!

AJ!

AA!

AD!

!

*K70L!

.*! $$!$$!

b)

Figure 3.6: (a) Example chart demonstrating cell closures when performing inference with a
span-4 hedgebank grammar. (b) Left-binarized hedge parse tree.

62

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

0 5 10 15 20

Maximum span size (L)

S
iz

e
of

 th
e

he
dg

e
se

gm
en

ta
tio

n
di

ct
io

na
ry

English
Chinese

Figure 3.7: Size of the hedge segmentation dictionary at various span length parameters L=3–20
for English and Chinese training data.

the top-most node in tree. This property enables us to chunk the sentence into segments

that correspond to complete hedges, and parse the segments independently (and simul-

taneously) instead of parsing the entire sentence. To realize the frequency of the hedge

segments that are directly connected to the top-most node, we counted the number of

unique hedge segment structures – which we refer to as the hedge segmentation dictionary

– in the entire hedgebank. In the example hedge parse tree in Figure 3.3, the unique

hedge segment structures are “(CC)”, “(NP (EX))”, “(VBD)”, “(NP (NNP) (NNS))”,

“(PP (IN) (NP (DT) (NNS)))”, “(PP (IN) (NP (NNP) (CD))”, and “(.)”, so the size of

the hedge segmentation dictionary is 7. Figure 3.7 plots the size of the hedge segmenta-

tion dictionary for the English and Chinese hedgebanks (training sections) as a function

of the maximum span parameter L. The size of the dictionary remarkably increases as L

increases, although the size is roughly consistent between L=10 to L=15, and is slightly

decreasing between L=15 to L=20. This is due to the larger hedge structures in larger L

values and thus the lower chance of similarity between the structures.

63

In the next subsections we present our segmentation model which takes the input sentence

and chunks it into appropriate segments for hedge parsing. We treat this as a binary clas-

sification task which decides if a word can begin a new hedge. We use hedge segmentation

as a finite-state pre-processing step for hedge parsing.

3.6.1 Segmentation Model

Our task is to learn which words can begin (B) a hedge constituent. This task is a form of

sequence tagging model such as chunking described in Section 2.5.1 of Chapter 2. Given

a set of labeled pairs (S,H) where S is a sentence of n words w1 . . . wn and H is its hedge

parse tree, word wb belongs to B if there is a hedge constituent in H spanning wb . . . we

for some e≥b and wb belongs to B̄ otherwise. Many of the hedge segments are unary

constituents, or POS tags whose parents are removed due to the hedge transform. To

predict the hedge boundaries more accurately, we grouped consecutive unary or POS-tag

hedges together under a new parent non-terminal labeled G. For example, the POS-tag

hedge “(CC AND)”, the unary hedge “(NP (EX there))”, and the POS-tag hedge “(VBD

were)” are grouped under a parent G to form the hedge “(G (CC AND) (EX there) (VBD

were))”. Unlabeled segmentation tags for the words in the example sentence in Figure 3.3

are:

“And/B there/B̄ were/B̄ Senate/B hearings/B̄ on/B the/B̄ questions/B̄ in/B

July/B̄ 1972/B̄ ./B”

In addition to the simple unlabeled segmentation with B and B̄ tags as the above, we

tried a labeled segmentation with BC and B̄C tags where C is hedge constituent type. For

English, we restrict the types to the most important types – following the 11 chunk types

annotated in the CoNLL-2000 chunking task (Sang and Buchholz, 2000) – by replacing

all other types with a new type OUT. Labeled segmentation tags for the words in the

example sentence in Figure 3.3 are:

“And/BG there/B̄G were/B̄G Senate/BNP hearings/B̄NP on/BPP the/B̄PP

questions/B̄PP in/BPP July/B̄PP 1972/B̄PP ./BG”

64

3.6.2 The Classifier and Feature Set

To automatically predict the class of each word position, we train a multi-class classifier

from labeled training data using a discriminative linear model, learning the model param-

eters with the averaged perceptron algorithm (Collins, 2002). For more details about this

general framework refer to Section 2.3 of Chapter 2. We follow Roark et al. (2012) in

the features they used to label words as beginning or ending constituents. Table 3.1 sum-

marizes the feature set. The segmenter extracts features from word and POS-tag input

sequences and hedge-boundary tag output sequences. The feature set includes trigrams

of surrounding words, trigrams of surrounding POS tags, and hedge-boundary tags of the

previous words. An additional orthographical feature set is used to tag rare2 and unknown

words. This feature set includes prefixes and suffixes of the words (up to 4 characters),

and presence of a hyphen, digit, or an upper-case character. Reported results are for a

Markov order-2 segmenter, which includes features with the output classes of the previous

two words.

Lexical Orthographical POS

ti ti, wi ti, wi[0] ti, pi
ti−1, ti ti, wi−1 ti, wi[0..1] ti, pi−1

ti−2, ti ti, wi+1 ti, wi[0..2] ti, pi−1, pi
ti−2, ti−1, ti ti, wi−2 ti, wi[0..3] ti, pi+1

ti, wi+2 ti, wi[n] ti, pi, pi+1

ti, wi−1, wi ti, wi[n− 1..n] ti, pi−1, pi, pi+1

ti, wi, wi+1 ti, wi[n− 2..n] ti, pi−2

ti, wi[n− 3..n] ti, pi−2, pi−1

ti, wi has digit ti, pi−2, pi−1, pi
ti, wi has upper-case ti, pi+2

ti, wi has hyphen ti, pi+1, pi+2

ti, pi, pi+1, pi+2

Table 3.1: Classifier features for tagging hedge segment boundaries. w is word form, t is hedge-
boundary tag, and p is POS tag. All lexical, orthographical, and POS features also occur with
ti−1.

2Rare words occur less than 5 times in the training data.

65

3.7 Methods

So far, we have introduced the hedge transform, hedgebank grammars, and the hedge-

constrained CYK parser. In the next sections, we will use these techniques to parse

hedges. The brute-force baseline approach is to parse the sentence using a full PCFG

and then hedge-transform the result. This method should yield a ceiling on hedge-parsing

accuracy, as it has access to rich contextual information (as compared to grammars trained

on transformed trees). Naturally, inference will be slower; we aim to improve efficiency

upon this baseline while minimizing accuracy loss.

Improving the efficiency of the baseline method is achieved at the expense of accuracy

in all the approaches we present in this chapter. We propose three hedge parsing ap-

proaches:

1. Using hedge-constrained CYK parser with a hedgebank grammar. First, the tree-

bank is hedge transformed and a hedgebank grammar is induced from it. Then, the

CYK parser whose cells above the span L are closed for efficiency uses this grammar

to parse the input sentence. We see the results of this case in Section 3.8.1;

2. Applying CYK prioritization and pruning methods on the baseline as well as the

approach 1. We try combinations of the prioritization and pruning methods available

in our parser to restrict the search space of a full or constrained CYK chart. The

results are presented in Section 3.8.2;

3. Segmenting the sentences using the hedge segmentation model presented in Section

3.6, and then parse the segments using a hedgebank grammar. In this case, the

input sentence is segmented into smaller chunks using a classifier which is trained

on the hedge segment boundaries of the training hedgebank. Since hedge parsing

complexity is correlated with input length, parsing smaller inputs could be more

efficient than parsing the entire sentence. The chunks are then parsed using a hedge-

constrained parser and a hedgebank grammar. This case is described in Section

3.8.3.

66

Treebank Partitions Sentences Words
Avg

Sent Len
Avg

Span Len

English
train Sections 2-21 39,832 950,028 23.8 6.5
dev Section 24 1,346 32,853 24.4 6.7
test Section 23 2,416 56,684 23.5 6.5

Chinese
train

Articles 1-270,
Articles 400-1151

18,086 493,708 27.3 4.4

dev Articles 301-325 350 6,801 19.4 5.1
test Articles 271-300 348 8,008 23.0 4.0

Table 3.2: Corpora statistics.

3.7.1 Data

We run experiments on English and Chinese. For English we use the WSJ Penn Treebank

corpus (Marcus et al., 1999) consisting of approximately one million words from the Wall

Street Journal. We use section 2-21 for training, section 24 for development, and section

23 for testing. For Chinese we use the Penn Chinese Treebank (Xue et al., 2005) consisting

of about 540k words of Chinese newswire text. Our data set is articles 1-270 and 400-1151

for training, articles 301-325 for development, and articles 271-300 for testing. Treebank

trees are pre-processed to remove empty nodes, node indices, and function tags. We use

these data sets for English and Chinese experiments throughout this dissertation. In this

Chapter, as well as Chapters 4 and 5, we first present the results on the development set,

and then we report the results of the best configurations on the test set.

Table 3.2 shows the statistics of each corpus, including total number of words, total number

of sentences, the average span length of all constituents in the trees (excluding the root and

its immediate child), and the average length of sentences for training, development, and

testing divisions. The Chinese training set is approximately half of the size of the English

training set in terms of the number of sentences and word count. Chinese development and

test sets are also quite small, thus accuracy results on Chinese treebank are likely to be

noisy. The average sentence length, i.e., number of words per sentence, is slightly larger in

Chinese training data, although the average span length of constituents in the parse trees

is remarkably smaller in Chinese. That is the reason why the majority of constituents are

retained in Chinese hedge transform.

67

3.7.2 Experimental Setup

For all experiments in this chapter, we performed CYK parsing using the BUBS parser3

with Berkeley SM6 latent-variable grammars (Petrov and Klein, 2007b) learned by the

Berkeley grammar trainer with default settings. Except for the prioritization and pruning

models in section 3.8.2, we performed exhaustive parsing in all experiments. We compute

accuracy from the 1-best Viterbi tree extracted from the chart using the standard EVALB

script (see Section 2.4.3 of Chapter 2 for parsing evaluation). Accuracy results are reported

as precision, recall and F1-score, the harmonic mean between the two. In contrast to

traditional parsing accuracy evaluation which evaluates finding every constituent of the

sentence, here we focus on finding the hedge constituents. Thus, instead of comparing the

results against the original reference treebank, we evaluate accuracy with respect to the

hedge transformed reference treebank, i.e., we do not penalize the parser for not discovering

constituents longer than the maximum length. Segmentation accuracy is reported as

an F1-score of unlabeled segment bracketing. The gold standard segmentation tags are

unlabeled or labeled B/B̄ tags from the hedge transformed original treebank.

We ran timing tests on an Intel 2.66GHz processor with 3MB of cache and 2GB of memory.

Note that segmentation time is negligible compared to the parsing time, hence is omitted

in reported time. Efficiency results are reported as number of words parsed per second

(w/s).

3.8 Results

In Sections 3.8.1, 3.8.2, and 3.8.3 we present hedge parsing results on the development

set, and in Section 3.8.4 we present the results on the test set.

3https://code.google.com/p/bubs-parser

68

Hedge Parsing Acc/Eff
Parser P R F1 w/s

Full w/full CYK 88.8 89.2 89.0 2.4

Hedgebank 87.6 84.4 86.0 25.7

Table 3.3: English hedge parsing results on section 24 for L=7.

3.8.1 Hedge Parsing Results

Table 3.3 presents hedge parsing accuracy on the English development set for the full

parsing baseline, where the output of the regular PCFG parsing is transformed to hedges

and evaluated, versus parsing with a hedgebank grammar, with no segmentation of the

strings. We find an order of magnitude speedup of parsing, but at the cost of 3 percent

F-measure absolute. Note that most of that loss is in recall, indicating that on average, the

constituents predicted in that condition are nearly as reliable as in full parsing. Further

comparison of the full parser and hedgebank parser results reveals that the majority of

differences are due to under-predicting the constituents by the hedgebank parser. On

average, 1.9 (out of 13.8) of the constituents in the hedge parse tree of a sentence found

by the full parser are not predicted in the hedgebank parser. The latter also over-predicts

1.2 constituents in a sentence and mis-predicts the label of 0.3 constituents on average,

compared to the former.

3.8.2 Prioritization and Pruning Results

For efficient decoding, BUBS parser allows for approximate inference using some prioriti-

zation and pruning methods. The parser implements a beam-search variant of the CYK

algorithm which at each chart cell, all possible non-terminals are sorted by a prioritiza-

tion function (FOM). BUBS also provides complete closure pruning technique to predict

whether a chart cell participates in a correct parse, and closes the cell if it does not. For

each cell, a binary classifier decides to open or close the cell using lexical and syntactic

features of the input sentence. Complete closure technique, prunes 56% of all chart cells

in full parsing of the development set, as reported in Bodenstab et al. (2011).

69

Hedge Parsing Acc/Eff
Parser P R F1 w/s

Full w/full CYK 88.8 89.2 89.0 2.4

Inside FOM 87.7 88.2 87.9 285.8

Inside FOM + Complete Closure 88.0 88.3 88.1 716.2

Boundary FOM 88.6 89.0 88.8 204.7

Boundary FOM + Complete Closure 88.9 89.1 89.0 544.7

Hedgebank 87.6 84.4 86.0 25.7

Inside FOM 86.7 83.8 85.2 1083

Inside FOM + Complete Closure 86.7 83.8 85.2 1405

Boundary FOM 87.1 84.0 85.5 871.2

Boundary FOM + Complete Closure 87.0 83.9 85.5 1281

Table 3.4: English hedge parsing results for pruning and prioritization models on section 24 for
L=7.

In order to allow for FOM and complete closure in decoding, we should limit the beam-

width of the chart cells to a fraction of the total possible constituents. We use the default

beam limit in the parser, which is the maximum beam-width of 30 for cells of span >1,

and 60 for cells of span 1 plus 20 for unary rules (those with only a single child). Complete

closure pruning model and lexical boundary FOM should be trained for a specific grammar.

This grammar is a full PCFG or a hedgebank grammar depending on the grammar we

use to parse the data. To train the models, we use BUBS’ default parameter values and

WSJ section 22 as the development data.

Table 3.4 shows the results of combining hedge parsing with prioritization and pruning

models in full parsing and hedge transforming the results, and also hedge parsing using a

hedgebank grammar. In both cases, we present the accuracy and efficiency of exhaustive

parsing, beam-search parsing with Inside and Lexical boundary FOMs, and beam-search

parsing with the complete closure pruning. As expected, beam-search parsing is much

faster than the exhaustive parsing but accuracy slightly decreases. This accuracy loss

is more in Inside FOM, which is a trivial prioritization function compared to the lexical

boundary FOM. Combining both prioritization models with the complete closure prun-

ing model improves parsing both accuracy-wise and speed-wise. The prioritization and

pruning methods we investigated here, show similar patterns when they are applied to (a)

70

the full chart in parsing with a full PCFG, and (b) the hedge-constrained CYK chart in

parsing with a hedgebank grammar. However, we see more accuracy degradation in the

pruned parsing compared to the exhaustive parsing in condition b. In both conditions a

and b, the best-performing prioritization and pruning method (i.e, “Boundary FOM +

Complete Closure”) results in huge speedups compared to exhaustive parsing: 544.7 w/s

as opposed to 2.4 w/s in condition a, and 1281 w/s compared to 25.7 w/s in condition b.

These speedups come with no cost in accuracy in condition a (89.0% F1-score), but with

slight accuracy loss (85.5% F1-score compared to 86.0% F1-score) in condition b.

3.8.3 Hedge Segmentation and Parsing Results

Table 3.5 shows the results on the English development set when segmenting prior to

hedge parsing. The first row shows the result with no segmentation, the same as the

last row in Table 3.3 for ease of reference. The next row shows behavior with perfect

segmentation. The final two rows show performance with automatic segmentation, using

a model that includes either unlabeled or labeled segmentation tags, as described in Section

3.6.1. Segmentation accuracy is better for the model with labels, although overall that

accuracy is rather low. We achieve nearly another order of magnitude speedup over hedge

parsing without segmentation, but again at the cost of nearly 5 percent F1-score.

In addition to combining the pruning and prioritization approaches with hedge parsing

in no segmentation scenario, which the results were presented in Section 3.8.2, we looked

into combining these approaches with hedge segmentation. Our primary investigation

shows that in contrast to no segmentation scenario, hedge segmentation does not combine

Segmentation Seg F1 Hedge Parsing Acc/Eff
P R F1 w/s

None n/a 87.6 84.4 86.0 25.7

Oracle 100 91.3 88.9 90.1 188.6

Unlabeled 80.6 77.2 75.3 76.2 159.1

Labeled 83.8 83.1 79.5 81.3 195.8

Table 3.5: English hedge segmentation and parsing results on section 24 for L=7.

71

well with the pruning and prioritization approaches introduced in Section 3.3. Although

up to an order of magnitude speedups are achieved compared to the exhaustive case, we

noticed more than 10% absolute accuracy degradation. More investigation on this topic

is of interest as future work.

In all scenarios where the chart is constrained to search for hedges, we should learn a

matched grammar. In the no-segmentation scenario, we learn a hedgebank grammar,

which is matched to the maximum length allowed by the parser. In the pre-segmentation

scenario, we first decompose the hedge transformed treebank into its hedge segments

and then learn a hedgebank grammar from the new corpus. We noticed severe hedge

parsing accuracy degradation in unmatched conditions: we observed about 15% accuracy

reduction where a full CFG is used with a hedge-constrained chart compared to the case

where a full CFG is used with a full CYK chart. Another case is about 15% accuracy

reduction in the pre-segmentation scenario, where the hedgebank grammar is trained from

a non-decomposed hedge transformed treebank.

3.8.4 Test Set Results

We present results of our best configurations on the English test set, section 23, in Table

3.6, and the Chinese test set, articles 271-300, in Table 3.7. The results show the same

patterns as on the development set. With no segmentation of the input, parsing with

hedgebank grammar is significantly faster, but less accurate, than the baseline full parsing

and then hedge-transform the result. With pre-segmentation of the input, more speedups

at the expense of accuracy are achieved. The general behaviors are similar in Chinese and

English, however, accuracy reduction in moving from no-segmenting to pre-segmenting

the input is more noticeable in Chinese (for L=7), presumably due to our lower hedge

segmentation accuracy for this language.

Finally, Figure 3.8 shows the speed of inference, labeled precision, labeled recall, and

F-measure of annotating hedge constituents on the English and Chinese test sets as a

function of the maximum span parameter L, versus the baseline parser. Overall, English

72

Segmentation Grammar
Segmentation Acc Hedge Parsing Acc/Eff
P R F1 P R F1 w/s

None Full w/full CYK n/a 90.3 90.3 90.3 2.7
None Hedgebank n/a 88.3 85.3 86.8 26.2

Labeled Hedgebank 84.0 86.6 85.3 85.1 81.1 83.0 203.0

Table 3.6: English hedge segmentation and parsing results on test data, section 23, for L=7.

Segmentation Grammar
Segmentation Acc Hedge Parsing Acc/Eff
P R F1 P R F1 w/s

None Full w/full CYK n/a 82.1 82.6 82.3 0.7
None Hedgebank n/a 80.8 80.3 80.6 14.0

Labeled Hedgebank 78.9 80.6 79.8 76.2 77.7 76.9 95.5

Table 3.7: Chinese hedge segmentation and parsing results on test data, for L=7.

hedge parsing is faster and the speedups are larger compared to Chinese. Likewise, English

hedge parsing is generally more accurate than Chinese. This is consistent with the previous

findings in the literature that PCFG parsing is typically more accurate for English than

Chinese. Keep in mind that the number of reference constituents increases as L increases,

hence both precision and recall can decrease as the parameter grows.

For both English and Chinese, using a hedgebank grammar achieves speedups, at the

cost of accuracy, over using a full grammar, and segmentation achieves large speedups

for smaller L values. In the pre-segmentation scenario, we observe consistent accuracy

degradation in English, pointing to the need for improved segmentation. Similarly, we

observe accuracy reduction for Chinese, but the curve is flatter than that for English.

The reason could be the difference in hedge segmentation accuracy range for various L

values in these languages. For Chinese, hedge segmentation accuracy varies only about

6% absolute F-measure from 86% F-measure at L=3 to 80% F-measure at L=20, whereas

hedge segmentation accuracy variation is 11% absolute F-measure in English, from 94%

at L=3 to 83% at L=20. This pattern again emphasizes the impact of segmentation

performance on hedge parsing performance. An online joint parsing and segmentation

approach through an incremental parser with linear complexity is the focus of the next

chapter. That approach segments and parses hedges simultaneously as the input is being

parsed, preventing the cascading segmentation errors problem.

73

0
20
0

40
0

60
0

80
0

5 10 15 20

Maximum span size (L)

W
or

ds
 p

er
 s

ec
on

d

Full Parsing
Hedge No Seg
Hedge With Seg

0
20
0

40
0

60
0

80
0

5 10 15 20

Maximum span size (L)
W

or
ds

 p
er

 s
ec

on
d

Full Parsing
Hedge No Seg
Hedge With Seg

75
80

85
90

95

5 10 15 20

H
ed

ge
 P

re
ci

si
on

75
80

85
90

95

5 10 15 20

H
ed

ge
 R

ec
al

l

75
80

85
90

95

5 10 15 20

Maximum span size (L)

H
ed

ge
 F

1-
sc

or
e

(a)

75
80

85
90

95

5 10 15 20

H
ed

ge
 P

re
ci

si
on

75
80

85
90

95

5 10 15 20

H
ed

ge
 R

ec
al

l

75
80

85
90

95

5 10 15 20

Maximum span size (L)

H
ed

ge
 F

1-
sc

or
e

(b)

Figure 3.8: (a) English and (b) Chinese hedge parsing efficiency and accuracy results on test
data, for L=3–20.

74

3.9 Summary

We proposed hedge parsing approach for applications that require a fast syntactic analysis

of the input beyond shallow bracketing. We introduced the approach and some initial ex-

periments on different inference strategies. Hedge parsing combines well with the pruning

and prioritization approaches for efficient CYK parsing. We found that hedge parsing can

achieve a significant speedup by pre-segmenting the string, although with the problem of

cascading segmentation errors to parsing step, particularly for English. In Chapter 4, we

improve hedge parsing by employing a classifier-based shift-reduce parser. Although accu-

racy is generally lower with classifier-based parsers as opposed to dynamic programming,

the framework allows for very efficient O(N) performance. More importantly, such a parser

allows for highly-accurate real-time hedge parsing, without requiring pre-segmentation of

the sentence offline or knowing the entire sentence in advance.

Chapter 4

Real-time Hedge Annotation and

Segmentation via Incremental Parsing

4.1 Introduction

In some NLP applications, language processing is performed incrementally based on the

generation of partial outputs (segments) from a parser. To achieve low-latency real-time

processing, these partial segments must be returned during parsing. Latency is the differ-

ence in time or number of tokens, between the point that an output is produced and the

point that it is released to the processing application.

In the previous chapter, we introduced shallow syntactic annotations, called hedges, as

local hierarchical structure of phrases within a limited span L. Hedges are independent

and sequential segments that could be retrieved even without knowing the entire sentence.

To produce hedges in Chapter 3, we parsed the sentence using a transformed context-

free grammar (CFG) and also constrained the parser. We learned the grammar from a

hedge-transformed treebank, and constrained the search performed by the CYK parser

to further improve efficiency/accuracy. We also demonstrated that pre-segmenting the

sentences prior to hedge parsing yields large speedups, though at a substantial loss in

accuracy due to cascading segmentation errors.

In this chapter, we propose a method for joint hedge annotation and segmentation, in-

crementally as the sentence is being parsed, without requiring any grammar or treebank

75

76

transform or constraining the parser. We demonstrate that our approach has the follow-

ing advantages over the previous findings: a) since we do not transform the treebank,

we benefit from the extra structure built by a full CFG parsing which results in more

accurate hedges; b) as a result of simultaneous hedge annotation and segmentation, we

avoid the pre-segmentation errors that cascade to the parsing; and c) the latency of pro-

ducing hedges greatly decreases, because the hedges are returned incrementally during the

parse.

We use a shift-reduce parsing approach with beam search decoding which builds up the

parse tree incrementally. The parser is trained on the original treebank and performs a

full CFG parsing. To return low-latency hedges, we augment the parser with a simple and

novel buffering algorithm which returns the hedges incrementally as the sentence is being

parsed. The buffering algorithm stores partial constituents of parsing in a buffer, and

gradually releases the constituents that it assumes are most likely hedges. Note that the

hedges are returned in the left-to-right order as they appear in the full parse tree.

Recall that one of the main characteristics of a real-time system is that no revision of the

output is allowed. We should make sure that the released segments are not changed later

during the decoding. In an incremental beam-search decoding, there is uncertainty in the

partial output due to different structures in the beam. However, there are certain points

during decoding where all the beams agree on the same intermediate output. At these

points, we have stable parse results, which are the constituents that will be unchanged by

any subsequent decoding. After the stable results are recognized, the buffering algorithm

receives them as the input. This ensures that the released hedges from the buffering algo-

rithm are stable, even if they are not fully correct compared to the true hedges. We show

that using an incremental parser augmented with the buffering algorithm is very effective

in producing low-latency hedge segments. For example, for L=7, we achieve about 36%

improvement in latency with less than 1% absolute accuracy loss in returning 100% stable

hedges compared to offline production of hedges, in both English end Chinese.

In a related work, Kato et al. (2004) proposed a method to delay the decision of which

partial parse tree should be returned, until the validity of the partial parse tree becomes

77

greater than a threshold. They used a probabilistic incremental parser based on tree ad-

joining grammar (TAG) to parse the input, and incrementally calculated the validity for

each partial parse tree on a word-by-word basis. They demonstrated a trade-off between

the delay and the percentage of valid partial parse trees in the output. To recognize

stable parses, they used TAG formalism, which is more complex than context-free. For

more detail about TAG formalism refer to Section 2.5.5 of Chapter 2. Instead, we will

use context-free parsing and recognize stable parses only based on beam agreement which

requires minor extra computation. In another study, Selfridge et al. (2011) investigated

stability and accuracy of partial phrases in word lattices of an incremental speech recog-

nition task. They compared the stability/accuracy trade-off between three incremental

speech recognition methods. In other related work, Saraclar et al. (2002) improved the la-

tency of a real-time broadcast news transcription system by improving the front end and

the acoustic model of their baseline speech recognition system. These studies focus on

automatic speech recognition finite-state lattices and do not address the task of stability

in context-free syntactic parsing.

We leverage partial syntactic parsing stability for real-time syntax-based input segmenta-

tion. Current segmentation methods we discussed in detail in Section 2.7.1 of Chapter 2

segment the input stream offline and as a pre-processing step for decoding (Cettolo and

Federico, 2006; Matusov et al., 2007; Fügen et al., 2007; Rangarajan Sridhar et al., 2013;

Oda et al., 2014). Some of these methods could be applied real-time using a classifier to

decide segments boundaries, such as classifying punctuation marks in Rangarajan Sridhar

et al. (2013), however the classifier may be a significant overhead on segmentation. More-

over, these methods produce raw word sequences of the input, whereas we use syntactic

knowledge in segmentation as well as annotation of the input, which we demonstrate to

be useful for simultaneous translation in the next chapter.

78

4.2 Latency

In a real-time incremental processing system, it is important to assess latency. A segment

(particularly defined as hedges in this chapter) might not be released immediately after its

last word is parsed, instead it might be released after several following words are parsed.

We use a word-based measure to define segment latency in this chapter. Latency for each

word is the word (token) difference between the positions of the sentence where (1) the

word is parsed, and (2) the segment containing the word is returned from the parser.

The ideal scenario, which yields minimum delay, is when each segment is returned right

after its last word is parsed. The largest delay is when the sentence is completely parsed

and then the segments are returned. In the case of hedge segments, this is performed by

returning the hedge segments after the entire sentence is hedge parsed either by using a

hedgebank grammar or using a full grammar followed by hedge transforming the result.

In the next section, we explain the framework and algorithms to reduce the average hedge

annotation and segmentation latency, while minimizing hedge parsing accuracy loss.

4.3 Shift-reduce Parsing

In this chapter, we use ZPAR (Zhang and Clark, 2011), a classifier-based shift-reduce

parsing framework for incremental phrase-structure parsing. ZPAR combines a global

discriminative model for incremental structured prediction, with a beam-search algorithm

for decoding. In this section, we explain the training and decoding procedure of the parser,

and how the parser incorporates beam-search decoding to handle the structured ambiguity

in natural language parsing.

4.3.1 Classifier-based Parser

A basic shift-reduce parser works by doing a series of shifting or reducing actions, as de-

scribed in Section 2.4.2 of Chapter 2. The decision whether to shift or reduce at each

79

parsing step, is traditionally made using a context-free grammar. In state-of-the-art sta-

tistical parsers, this decision is made by a classifier that chooses an action based on a set

of features derived from the local parser state, with no explicit grammar (Sagae and Lavie,

2005; Wang et al., 2006b). The decoding and training framework for the classifier-based

parser in this chapter is the global incremental structured prediction model we described

previously in Chapter 2. In this model, the output y corresponding to an input x (x

is an input sentence and y is its parse result in this case) is built through a number of

incremental steps. After the last step, the global feature vector of each possible output

is calculated by summing up the local feature vectors at each incremental step, and then

the score of that possible output is calculated by the inner product of its global feature

vector and the parameter vector of the model.

The parameter vector is trained using the averaged perceptron algorithm (described in

Section 2.3.1 of Chapter 2). The perceptron algorithm initializes the parameter vector

to zero, and updates it after decoding the training examples. The output parse for each

input example is produced by the decoder, which is a beam-search decoder in the parser

we use, and works in the way we explain in section 4.3.3. If the decoder output is different

from the correct parse, then the parameter vector is updated by adding the global feature

vector of the correct output, and subtracting the global feature vector of the decoder

output. During training, ZPAR uses the early-update method (Collins and Roark, 2004):

at any incremental step, if there is no possibility of the correct parse being in the agenda,

decoding is stopped and the best decoder partial output and the correct partial output

are passed for parameter estimation. Early-update improves the accuracy and efficiency

of the original perceptron for beam-search decoding. Feature templates in a classifier-

based parser typically include n-grams of word-forms, POS tags, and lexical heads of top

nodes in the parser stack and queue. More details about the feature templates used for

phrase-structure parsing in ZPAR are provided in Zhang and Clark (2011).

80

4.3.2 Parsing Actions

The parsing algorithm in ZPAR, considers only trees with unary and binary branching.

It uses an instance of the binarization process described in Chapter 2 Section 2.1.3. This

binarization converts each node with n (>2) into n − 1 binary nodes, and new tempo-

rary non-terminals introduced in this process are marked with asterisks. The binarized

treebank is then used for training the parser. This treebank contains also lexical head

annotations and uses them as features for training the parser. The lexical head of each

of the asterisked non-terminals is the same as the head of the original non-terminal. In

Appendix B, we present the English and Chinese constituent head-finding rules we used to

annotate the lexical heads. For more details about how these rules work, refer to Section

2.5.3 of Chapter 2.

According to this binary transformation, the parser extends the actions of a basic shift-

reduce parser to the following types:

– SHIFT, which pushes the next node in the queue onto the stack.

– REDUCE-unary-X, which makes a new unary node with label X by popping the top

node of the stack, making it the child of the new node, and pushing the new node

onto the stack.

– REDUCE-binary-{L/R}-X, which makes a new binary node with label X by popping

the two top nodes of the stack, making them the left and right children of the new

node, and pushing the new node onto the stack. The left (L) and right (R) indicate

the dependency direction of the head of the new node.

Label X is the constituent type, e.g., NP, VP, PP, etc. The parser’s output is a binary

parse tree which is de-binarized to the original n-ary format at the end of parsing.

4.3.3 Beam-search Decoding

The basic shift-reduce parser can be extended to enable handling of structural ambiguity

in natural language parsing. A common approach is to explore multiple derivations in

81

parallel. To make the amount of memory tractable to store multiple derivations as they

are constructed, usually a fixed beam of derivations is maintained and the others are not

pursued. Incremental beam search strategies have been successfully used for constituency

or dependency parsing (Roark, 2001; Collins and Roark, 2004; Zhang and Clark, 2008;

Huang et al., 2009; Huang and Sagae, 2010; Zhang and Nivre, 2011; Goldberg et al.,

2013).

Beam-search is used for decoding in the incremental structured prediction model of the

parser, and it is one of the two major components of this model besides the averaged

perceptron. At each incremental step of parsing, the parser keeps the B -best partial parse

results in an agenda. The partially built structures are represented as a set of state items.

At each incremental step, every state item from the agenda is extended in all possible ways

(actions), generating new state items. The new state items are ranked by their scores and

the B -best are put back to the agenda. Note that the score of a partial output is computed

using the parameter vector trained by the averaged perceptron algorithm, as described in

section 4.3.1. This process iterates until the stopping criteria is met, and then the 1-best

item from the last agenda is the final output.

Figure 4.1 presents an example, in form of a graph, of beam-search decoding for B=4

for a sentence in the development set. Nodes in this graph indicate state items and arcs

indicate actions. Each level of this graph corresponds to an incremental step of parsing,

which is indexed by numbers. It takes 23 steps (idx=0–22) to fully parse this example

sentence. At the first step, the only possible action is SHIFT. At the other steps, every

state item is extended by all possible actions, but only top B (4 in this case) of those are

kept in the agenda and could possibly be extended later on. To save space, in the figure we

only show these 4 actions. Action S word means that the word and its POS tag are shifted

to the stack, and R X means a unary or binary reduction to constituent X. Double-circle

nodes represent stable partial outputs, which we explain in the next section.

By following the actions in the path that starts from the first step and continues to the final

step, the final parse result of the sentence is built, as shown in Figure 4.2(a). Figure 4.2(a)

also shows the non-temporary constituent numbers in the order they are built, starting

82

!"
#

#

#

#
#

$"
#

#
[S

 [S
_8

 [N
P_

2
[D

T_
1

Th
at

]][
VP

_7
 [V

BZ
_3

 's
] [

N
P_

6
[D

T_
4

th
e]

 [N
N

_5
 p

ro
bl

em
]]]

]
[*S

 [,
_9

 ,]
 [*

S
[*S

 [V
P_

14
 [*

VP
 [V

BZ
_1

0
is

] [
RB

_1
1

n'
t]]

 [N
P_

13
 [P

RP
_1

2
it]

]]
[._

15
 ?

]]
["_

16
 "]

]]]

==
==

>
[S

 [S
 [N

P
[D

T
Th

at
]][

VP
 [V

BZ
 's

] [
N

P
[D

T
th

e]
 [N

N
 p

ro
bl

em
]]

[,
,]

[V
P

[V
BZ

 is
] [

RB

n'
t]

[N
P

[P
RP

 it
]]

[.
?]

 ["
 "]

]]#

%&
'(
)#

%&
'(
*#

%&
'(
+#

%&
'(
,#

%&
'(
-#

%&
'(
,+
#

%&
'(
,.
#

%&
'(
/,
#0# 1#

F
ig
u
re

4.
1:

B
ea
m
-s
ea
rc
h
d
ec
o
d
in
g
ex
am

p
le
.

83

(a) (b)

Figure 4.2: (a) Binary, and (b) n-ary trees for parse result of the example sentence in Figure 4.1.

from 1 for the left-corner of the tree, to 16 for the right-most constituent excluding TOP.

This binary tree is then transformed to the original n-ary format and the temporary nodes

are removed, shown in Figure 4.2(b). Note that the constituent numbers are equivalent

to in-order traversal of this tree. The parenthetic representation of this tree is “(S (S (NP

(DT That)) (VP (VBZ ’s) (NP (DT the) (NN problem)))) (, ,) (VP (VBZ is) (RB n’t)

(NP (PRP it))) (. ?) (” ”))”.

In the next section, we analyze the stability of partial parse trees produced by the ZPAR

shift-reduce phrase-structure parser which uses a full CFG.

4.4 Stable Partial Outputs

The parser’s output structure is built incrementally. At each step of parsing, an incre-

mental structure is added to the partially built parse tree. A partial output is stable if it

remains unchanged by any subsequent decoding. In a deterministic parser, every parsing

step produces a stable partial. In a non-deterministic parser, which keeps different deriva-

tions in a beam, the most probable partial at any step may not be the best scoring at the

end of the derivation. The reason for this is that as more input words are received and

the states are extended, a different path may become the most probable. For example, in

84

Figure 4.1, at idx=6, the partial result “(NP (DT That)) (VBZ ’s) (INTJ (DT the) (NN

problem))” at the first beam has the highest score, but the partial “(NP (DT That)) (VBZ

’s) (NP (DT the) (NN problem))” at the third beam remains at the final output.

A stable partial output in a shift-reduce parser with beam search decoding becomes avail-

able where all the B-best beams agree on the same partial output. Figure 4.1, marks the

incremental steps (indices) where a stable partial output is built. At the marked indices,

all top 4 beams agree on the entire or a sub-part of the partial parse results. If all the

beams are extended from a single node at a marked index—indices 1, 3, 4, 5, 6, 21—then

the entire partial parse up to that index is stable. Otherwise, the stable sub-part is built

at the closest common-branching index in the past—indices 11 and 16 for indices 13 and

18 respectively. The double-circle nodes, indicate the state items where the stable result

is built. In total, after parsing 8 constituents out of the total 16 constituents in the final

parse result (excluding TOP), the partial parse result is stable and could be released. We

call such constituents “stable constituents”. The stable constituents in our example are

constituent numbers 1, 3, 4, 5, 6, 7, 11, 15, according to the constituent numbers in Figure

4.2(a). Alternatively, stable constituent numbers can be interpreted as the total number

of constituents (including POS tags) in the stable partial parses at that point. These

stable partial parses are:

(DT That)

(NP (DT That)) (VBZ ’s)

(NP (DT That)) (VBZ ’s) (DT the)

(NP (DT That)) (VBZ ’s) (DT the) (NN problem)

(NP (DT That)) (VBZ ’s) (NP (DT the) (NN problem))

(NP (DT That)) (VP (VBZ ’s) (NP (DT the) (NN problem)))

(S (NP (DT That)) (VP (VBZ ’s) (NP (DT the) (NN problem))))) (, ,) (VBZ is) (RB n’t)

(S (NP (DT That)) (VP (VBZ ’s) (NP (DT the) (NN problem))))) (, ,) (VP (VBZ is) (RB n’t) (NP (PRP it))) (. ?)

Tables 4.1 and 4.2 present frequency and distribution of stable constituents compared

to total constituents in the full CFG parse trees of sentences for various beam sizes (B)

for English and Chinese development data. The “Total”, “Stable”, and “Pct Stable”

columns show the average number of total constituents, average number and percentage

85

Table 4.1: Average frequency and distribution of stable constituents in English development set.

Beam Total Stable Pct Stable
Pct Stable
in First Half

Pct Stable
in Second Half

1 42.5 42.5 100% 100% 100%

2 42.4 25.2 59.6% 70% 55%

4 42.3 16.2 38.3% 57% 30%

8 42.3 13.3 31.4% 52% 22%

16 42.3 11.7 27.6% 48% 17%

Table 4.2: Average frequency and distribution of stable constituents in Chinese development set.

Beam Total Stable Pct Stable
Pct Stable
in First Half

Pct Stable
in Second Half

1 39.0 39.0 100% 100% 100%

2 39.3 19.3 49.0% 62% 52%

4 39.2 11.3 28.8% 47% 31%

8 39.2 8.4 21.4% 42% 23%

16 39.2 7.6 19.3% 39% 19%

of stable constituents in the parse trees respectively. Frequency of total constituents is

similar in all beam sizes, but frequency of stable constituents decreases remarkably for

larger beam sizes. As the beam size exponentially increases, the percentage of stable

constituents exponentially decreases. This means that as the beam size increases, it is less

likely to achieve a beam agreement during parsing. The last two columns of the tables

demonstrate the distribution of stable constituents in in-order traversal of the parse trees,

which is the order of parsing the constituents. The “Pct Stable in First Half” column

shows what percentage of the total constituents in the first half of the in-order list are

stable constituents. The next column, shows this percentage in the second half of the

list. For a deterministic parse (which is the case of B=1) the stable constituents are

distributed evenly across the halves. This is due to the fact that every constituent in a

deterministic parse is stable as soon as it is available. As the beam size increases, the

stable constituents are more often among the constituents in the first half rather than

the second half, particularly for larger beam sizes. This means that it is more likely to

achieve a beam agreement during the first steps of incremental parsing compared to the

last steps, particularly for larger beam size values. Frequency and distribution patterns

86

are quite similar in English and Chinese, although the percentage of stable constituents

during parsing of Chinese is about 10 percent absolute less than that in English.

The general trends we find in studying the stable partial parser’s outputs are as follows:

(a) In incremental shift-reduce parsing with beam-search decoding using different beam

sizes, after parsing some of the constituents of the syntactic structure of a sentence—which

we call them stable constituents—the partial parse structure up to that point becomes

stable.

(b) Stable constituents are more frequent in parsing with smaller beam sizes.

(c) Stable constituents are distributed mostly in the first half of the final constituents

rather than the second half. This difference is more noticeable in larger beam sizes.

(d) The patterns are the same in English and Chinese, however Chinese parsing has gen-

erally fewer number of stable constitutes.

By knowing the stable partial results, we could release intermediate segments to the real-

time application, without requiring future revisions, before parsing the entire input is

finished. In particular, these stable partial results may contain hedge segments, which can

be release intermediately. It may seem that such hedge segments can be released by hedge

transforming every stable partial parse tree. However, this will release a lot of constituents

before building complete hedges, as we will explain in section 4.7. In the following section,

we introduce an algorithm that solves this problem.

4.5 Buffering Algorithm for Stable Low-latency Hedge Seg-

mentation

Considering that hedges are disjoint subtrees, it is possible to recognize and return these

subtrees as the sentence is being parsed using an incremental parser. To recognize these

subtrees it is not enough to find the stable partial results, since they do not necessarily

match or contain the hedge subtrees. Thus, we need a complement method for bookkeeping

the hedges and releasing them as soon as they are recognized. In this section, we present

87

a simple and low-overhead bookkeeping method to identify hedge subtrees in the stable

parse results with a high degree of confidence. This method, which we refer to as the

buffering algorithm, works by adding a new queue structure to the parser framework and

using some simple rules to check if the buffer contains any hedges.

An alternative method to our rule-based procedure is to use statistical models to identify

hedges, such as applying a classifier at each stable partial parse to predict hedge bound-

aries. A classifier can be trained on the partial subtrees of the full parse trees in the

original treebank, as well as the gold-standard hedges available in these partial subtrees.

However, using such a classifier requires training a separate statistical model in addition

to the parser. As opposed to the simple rule-based buffering algorithm, applying the clas-

sifier could be a significant overhead to the incremental framework, modulo the errors the

classifier may make.

A possible modification to our proposed approach could be a risky buffering strategy. In

this strategy, we keep the buffering algorithm unchanged. However, instead of sending

the stable partial parse results to the buffering algorithm, we send the partial results

that are not necessarily stable and may change during later full parsing. These partial

results could, for example, be the outputs that the majority of beams agree on, or the

outputs on the top-most beam with high score margin. A risky buffering strategy could

improve latency of segmentation compared to the stable buffering method we present in

this chapter. However, there is risk of future revisions in the released segments from the

buffering algorithm, due to mismatches between the current partial parse result and the

future results. These mismatches might be the result of ‘extra shift’ action(s), ‘extra

reduce’ action(s), and/or ‘different reduce’ action(s) in the current parse compared to the

future parse. Thus, the entire or part of the released segments maybe parsed differently

in future. Moreover, the released segments might contain extra input tokens compared

to the segments that can be released in future, due to ‘extra shift’ actions in the current

partial output, or they might be missing some of the input tokens due to ‘extra reduce’

actions. The risky buffering strategy should have a recovery method in case revisions are

required.

88

In this section we introduce the buffering algorithm. As described earlier in Section 4.3,

the shift-reduce parser builds the output parse tree by performing an action at each step,

and storing the resulting node in the parser’s stack. The buffering algorithm replicates the

same procedure in a limited-span buffer: the action at each step and the resulting node are

duplicated in the buffer. Every constituent in a hedge tree has a limited span, i.e., it spans

at most L words. We apply the same constraint to the buffer: sum of the spans of the

items in the buffer must not exceed L. When the buffer reaches the limit L, the algorithm

releases all or part of the buffer that are most likely hedges. Note that since the buffer

is constrained, the released segments will meet the hedge criterion of spanning at most

L words. Figure 4.3 shows our proposed algorithm in detail, for a deterministic parser.

This algorithm is straightforwardly extendable to a non-deterministic parser with beam

search. To guarantee releasing of stable hedges in such a parser, buffering and releasing

of the constituents is delayed until the parser reaches a stable constituent.

The BufferAndRelease function is called every time an action A is performed in

the stack and a new constituent N is built. If N is the top-most non-terminal in the

tree, the buffering process ends by completely emptying the buffer BF (lines 4-6 of the

BufferAndRelease function in Figure 4.3). Otherwise, if BF spans more than L words

before inserting N, it is released partially and then N is inserted (lines 7-9). If BF has

not reached its limit, N is buffered without partially releasing the buffer (line 9).

The EmptyBuffer function releases buffer items according to the parameter k. Every

item from the beginning of B to the last item spanning more than k words is released

and the other items are saved in BF. Note that if there is no item to release (for example,

if k=1 and all items are unary constituents or POS tags) then the first item is released

and all others are saved (lines 7-8 of the EmptyBuffer function). A larger value for k

results in more conservative buffer releasing, hence better accuracy and more latency in

producing segments.

The DoAction function inserts N into the buffer. If the action A is SHIFT then N (which

is a POS tag in this case) is inserted into the buffer (lines 2-3 of the DoAction function).

If A is any type of unary or binary REDUCE, then N is a parent node which its children

89

1: function BufferAndRelease(L,k)
2: N ←stack.top() ◃ node
3: A ←getAction(N) ◃ action
4: if N == TOP then
5: EmptyBuffer(0) ◃ empty all in buffer
6: return
7: else if buffer span == L+ 1 then
8: EmptyBuffer(k) ◃ empty buffer according to k

9: DoAction(N ,A)

1: function EmptyBuffer(k)
2: nb ← number of nodes in buffer BF ◃ nb: position of the last item with span < k
3: nb span ← span of BF [nb] ◃ span of the item in nb
4: while nb ≥ 0 and nb span ≤ k do ◃ find nb
5: nb ← nb− 1
6: nb span ← span of BF [nb]

7: if nb == 0 then ◃ if no item to release
8: release only 1st node in BF
9: else

10: release BF from beginning to nb

1: function DoAction(N ,A)
2: if A == SHIFT then
3: shift N into buffer
4: else if A == REDUCE then
5: if N span ≤ buffer span then ◃ reduce is possible
6: reduce N into buffer
7: else
8: EmptyBuffer(0) ◃ empty all in buffer

Figure 4.3: The buffering algorithm for a deterministic parser.

have been already parsed. If the children are still in BF, the children are replaced with

N (lines 5-6). Otherwise, either N spans more than L words or the hedge constituent has

been over-segmented in error at an earlier stage; in either case, BF is completely emptied

and N is not buffered (lines 7-8).

Figure 4.4 shows an example of running the buffering algorithm during deterministic

parsing of the example sentence in Figure 4.2 for the span limit L=3 and the buffer

parameter k=3. At the initial step, the algorithm receives the node N = DT1 which is

produced by the action A = SHIFT in the parser. The buffer is initially empty. Since N

is not the TOP node and the buffer span has not exceeded the limit L, DoAction runs

90

! "#$%!&'(!)*+,#"!&-(! ./00%1!23)"! ./00%1!&45(! 6%7%)2%!
89! :;8! <=,0+! >! ! !
?9! '@?! 6%$/*%! 8! :;8! !
A9! B4CA! <=,0+! 8! '@?! !
D9! :;D! <=,0+! ?! '@?!B4CA! !
E9! ''E! <=,0+! A! '@?!B4CA!:;D! !
F9! '@F! 6%$/*%! D! '@?!B4CA!:;D!''E! !
G9! B@G! 6%$/*%! A! B4CA!'@F! '@?!
H9! <H! 6%$/*%! A! B@G! !
I9! JI! <=,0+! >! ! B@G!
8>9! B4C8>! <=,0+! 8! JI! !
889! 6488! <=,0+! ?! JI!B4C8>! !
8?9! @6@8?! <=,0+! A! JI!B4C8>!6488! !
8A9! '@8A! 6%$/*%! D! JI!B4C8>!6488!@6@8?! !
8D9! B@8D! 6%$/*%! A! B4C8>!6488!'@8A! JI!
8E9! K8E! <=,0+! A! B@8D! !
8F9! L8F! <=,0+! D! B@8DK8E! !
8G9! <! 6%$/*%! ?! K8EL8F! B@8D!
8H9! ;M@! ! ! ! K8EL8F!

!
Figure 4.4: Buffering algorithm run on the example in Figure 4.2 for L=3 and k=3.

without releasing the buffer and shifts DT1 into the buffer. At step 2, the buffer span is 1

and the node N = NP2 resulting from a reduce action in the parser is received. Since the

span of N is equal to the buffer span, reduction is possible, hence NP2 replaces DT1 in the

buffer. The algorithm continues buffering the inputs coming from the parser at steps 3, 4,

and 5. At step 6, the buffer span becomes greater than the allowed limit L after the node

NN5 is inserted to the buffer at the end of step 5, so part of the buffer should be released

by the EmptyBuffer function before reducing N = NP6 into the buffer. The value of

nb which is the number of nodes in the buffer is 4, and nb span which is the span of the

last item in the buffer (NN5) is 1. The while loop in line 4, iterates over the buffer items

from the end to the beginning of the buffer until it finds an item with span greater than

k=3. At step 6, the while loop reaches the beginning of the buffer and nb becomes zero,

meaning that there is no item spanning more than k=3 words, so all items have the chance

to contribute in complete hedges later on. Thus the algorithm keeps all the items in the

buffer and releases only the first item so that the buffer meets the criterion of spanning

91

up to L words. The next release occurs at step 8 where N = S8 and A = REDUCE is

received. Since the span of N (4) is greater than the span of the buffer (3), reduction is

not possible. Thus the buffer is completely released and S8, which has a span greater than

the allowed limit, is not inserted into the buffer. The process continues until the TOP

node is received and the algorithm terminates by releasing the buffer items.

4.6 Data and Experiments

We run the experiments on the English WSJ Penn Treebank corpus (Marcus et al., 1999)

using section 2-21 for training, section 24 for development, and section 23 for testing. For

Chinese we use the Penn Chinese Treebank (Xue et al., 2005), articles 1-270 and 400-1151

for training, articles 301-325 for development, and articles 271-300 for testing. We perform

shift-reduce parsing using the ZPAR parser version 0.6 with 15 training iterations for all

beam sizes. Hedge parsing accuracy results are measured with precision, recall, and F1-

score using the standard EVALB script. We evaluate accuracy with respect to the hedge

transformed reference treebank. Latency results are hedge segmentation latency, measured

as the averaged word-based latency across all the words in the data set. The latency for

each word is the delay, in terms of number of words (tokens), between the position in the

sentence that the word is parsed and the position the hedge segment containing the word

is released.

4.7 Results

Figure 4.5 presents accuracy versus latency of real-time hedge production on the English

development set for L=7, the buffer parameter k=1, 2, 3, and parser beam sizes B=

1, 2, 4, 8, 16. We choose L=7 for experiments, for comparability with Chapter 3. Keep in

mind that hedges are only released at stable states, so they are of 100% stability. As the

beam size increases from 1 to 16 at a certain k, hedge accuracies increase—due to better

overall performance of parsing with a larger beam—although at the cost of latency. The

92

4 5 6 7 8 9

84
86

88
90

92

Latency

H
ed

ge
 P

ar
si

ng
 P

re
ci

si
on

B=1

B=2

B=4

B=8 B=16

B=1

B=2

B=4
B=8 B=16

B=1

B=2

B=4

B=8 B=16

k=3
k=2
k=1

4 5 6 7 8 9

84
86

88
90

92

Latency

H
ed

ge
 P

ar
si

ng
 R

ec
al

l

B=1
B=2

B=4 B=8
B=16

B=1

B=2

B=4 B=8 B=16

B=1

B=2

B=4 B=8 B=16

4 5 6 7 8 9

84
86

88
90

92

Latency

H
ed

ge
 P

ar
si

ng
 F

1-
sc

or
e

B=1

B=2

B=4
B=8 B=16

B=1

B=2

B=4
B=8 B=16

B=1

B=2

B=4
B=8 B=16

Figure 4.5: Real-time hedge parsing accuracy vs latency (words) on section 24, for L=7 and
buffering parameters k=1, 2, 3.

reason for latency loss, as we analyzed in Section 4.4, is that when the beam size increases,

number of stable partial constituents decreases and they tend to appear in the initial

constituents. This figure also shows that with a more conservative buffer (k=3), hedges

are more accurate, in terms of F1-score, but they are available with a greater latency.

Changes of precision and recall for various k values at a certain beam, show that a more

aggressive buffer, releases more precise hedges at a high cost of recall of correct hedges.

The reason for this is that a more aggressive buffer releases flatter constituents.

Tables 4.3 and 4.4 show hedge parsing accuracy and latency of incremental shift-reduce

parsing (B=16 and L=7) and its combination with on-line hedge segmentation methods,

along with non-incremental CYK parsing with offline hedge segmentation, for English and

Chinese development data. The first two rows are the results of using the CYK parser,

first with a full CFG, and second with a hedgebank CFG. For details about parsing with a

hedgebank grammar refer to Chapter 3 Section 3.5.1. The last four rows are the results of

93

Table 4.3: English hedge parsing accuracy and latency results on section 24 for L=7. Beam size
for Shift-Reduce parsers is 16. Buffer parameter k for “Shift-Reduce + Buffering” is 3.

Hedge Hedge Parsing Acc Latency
Parser Release P R F1 w

Full CYK Offline 88.8 89.2 89.0 14.7

Hedgebank CYK Offline 87.6 84.4 86.0 14.7

Shift-Reduce Offline 91.6 90.2 90.9 14.7

Shift-Reduce + Oracle release Real-time 91.6 90.2 90.9 5.9

Shift-Reduce + Every-stable release Real-time 93.3 52.8 67.5 4.3

Shift-Reduce + Buffering Real-time 91.7 88.6 90.2 8.9

Table 4.4: Chinese hedge parsing accuracy and latency results on dev set for L=7. Beam size for
Shift-Reduce parsers is 16. Buffer parameter k for “Shift-Reduce + Buffering” is 3.

Hedge Hedge Parsing Acc Latency
Parser Release P R F1 w

Full CYK Offline 83.0 84.8 83.9 14.0

Hedgebank CYK Offline 76.9 79.3 78.1 14.0

Shift-Reduce Offline 85.3 86.5 85.9 14.1

Shift-Reduce + Oracle release Real-time 85.3 86.5 85.9 8.3

Shift-Reduce + Every-stable release Real-time 86.6 57.1 68.8 6.0

Shift-Reduce + Buffering Real-time 85.4 83.7 84.6 10.0

using the shift-reduce parser in this chapter, first in the offline mode, and then in the real-

time mode using three hedge release methods: “Shift-Reduce+Buffering” proposed in this

chapter (k=3), “Shift-Reduce+Oracle release”, which performs a perfect release of hedges

once they become stable, and “Shift-Reduce+Every-stable release”, which releases hedges

by performing a hedge transform on the partial parse tree at every stable step. Offline

release methods do not release hedges until the end of parsing, so they provide a ceiling on

latency. Note that the latency results for offline CYK and shift-reduce parsers (the first

three rows) are by definition similar. However, they are not identical, since the outputs of

the parsers are not necessarily the same. In the oracle release method there is no hedge

parsing accuracy degradation by definition compared to the offline mode, while latency is

improved significantly. The every-stable method could be imagined as the extreme case

of an aggressive buffer. Although it improves latency compared to offline as well as oracle

release modes, it significantly decreases recall of correct hedges. About 48% of the correct

hedges in English and 43% in Chinese are not recalled if we release hedges at every stable

94

Table 4.5: English hedge parsing accuracy and latency results on section 23 for L=7, B=16,
k=3.

Hedge Hedge Parsing Acc Latency
Parser Release P R F1 w

Full CYK Offline 90.3 90.3 90.3 14.0

Hedgebank CYK Offline 88.3 85.3 86.8 14.0

Shift-Reduce Offline 92.5 91.0 91.7 14.1

Shift-Reduce + Buffering Real-time 92.7 89.3 91.0 9.0

step without buffering. Combining the shift-reduce parser with buffering, increases the

recall at the cost of some latency. This combination achieves a very close hedge parsing

F1-score compared to the offline hedge segmentation (90.2% versus 90.9% for English and

84.6% versus 85.9% for Chinese) with a latency in between the offline and oracle hedge

segmentation methods.

Table 4.5 presents results of our best configuration (B=16 and k=3) on English evaluation

set, section 23, along with the best hedge parsing results reported in Chapter 3. Table 4.6

presents the same information for Chinese evaluation set. We find about 36% improvement

in latency—at the cost of only less than 1% hedge parsing F-measure absolute—when using

the buffering algorithm to produce low-latency hedges in shift-reduce parsing. The same

pattern holds for Chinese, although accuracy/latency improvement in Chinese is slightly

weaker than that in English. The reason is probably the fact that Chinese has fewer

percentage of stable constituents, as we saw in section 4.4. Even though the shift-reduce

and CYK parsers are not directly comparable due to different statistical models, our results

suggest that using an incremental parser could be of utility for real-time applications. The

two parsers have a close difference in their standard performance on full parsing than their

performance on hedge parsing. Full parsing F-measure for the ZPAR shift-reduce parser

is 90.4% and for BUBS CYK parser is 88.7%.

Figures 4.6 and 4.7 show the best configuration (B=16 and k=3) on English and Chinese

evaluation sets for various L values. Again the behaviors are comparable in both languages.

By increasing L, the latency in real-time parsing increases logarithmically towards the

latency in offline parsing. Note that the latency in offline parsing is the same for all L

95

6
8

10
12

14
16

5 10 15 20
Maximum span size (L)

La
te

nc
y

(w
or

d)

Real-time Shift-Red.
Shift-Red.

86
90

94

5 10 15 20

H
ed

ge
 P

re
ci

si
on

86
90

94

5 10 15 20

H
ed

ge
 R

ec
al

l
86

90
94

5 10 15 20
Maximum span size (L)

H
ed

ge
 F

1

Figure 4.6: English hedge segmentation latency and hedge parsing accuracy on test data, section
23, for L=3–20, B=16, k=3.

10
12

14
16

18

5 10 15 20
Maximum span size (L)

La
te

nc
y

(w
or

d)

Real-time Shift-Red.
Shift-Red.

80
83

86

5 10 15 20

H
ed

ge
 P

re
ci

si
on

80
83

86

5 10 15 20

H
ed

ge
 R

ec
al

l
80

83
86

5 10 15 20
Maximum span size (L)

H
ed

ge
 F

1

Figure 4.7: Chinese hedge segmentation latency and hedge parsing accuracy on test data, articles
271-300, for L=3–20, B=16, k=3.

96

Table 4.6: Chinese hedge parsing accuracy and latency results on test set for L=7, B=16, k=3.

Hedge Hedge Parsing Acc Latency
Parser Release P R F1 w

Full CYK Offline 82.7 82.8 82.7 18.4

Hedgebank CYK Offline 77.2 78.4 77.8 18.4

Shift-Reduce Offline 83.8 84.3 84.0 18.4

Shift-Reduce + Buffering Real-time 84.3 81.9 83.1 11.7

values. The reason is that all of the hedges are returned after the full parsing is finished.

Since the buffering algorithm might over-segment hedges for all Ls, some of the true hedges

are not recalled in the real-time scenario, although the released hedges are more precise.

The mean of precision and recall, F1-score, indicates that the accuracy in the real-time

parsing scenario is very close to that in the offline parsing for every L value.

Our general observations of incremental shift-reduce parsing for low-latency hedge seg-

mentation are as the following:

(a) In contrast to non-incremental CYK parsing, incremental shift-reduce parsing could be

more suitable for real-time processing such as input stream segmentation and particularly

hedge segmentation.

(b) Releasing hedge segments at every stable state decreases hedge parsing accuracy sig-

nificantly in spite of decreasing the latency compared to offline segmentation.

(c) Our proposed solution to improve accuracy is to augment the parser with a buffering

procedure to buffer the stable constituents until they probably form a complete hedge.

Shift-reduce parsing plus buffering achieves a slightly worse accuracy than offline segmen-

tation accuracy for all L values in English and Chinese while latency is significantly lower

in real-time scenario, particularly for smaller L values.

(d) A more conservative buffer releases more accurate hedges with slightly higher latency

compared to a more aggressive buffer.

97

4.8 Summary

In this chapter, we proposed a method to simultaneously parse sentences and produce

hedge segments. Our method could incrementally extract 100% stable hedges and send

them to the processing application while the sentence is still being parsed. Similar ideas

can be used to produce syntactic segments of other types (such as shallow bracketing) for

incremental applications. The proposed approach also replaces pre-segmenting the input

prior to hedge parsing, which causes cascading errors, as we saw in Chapter 3. We showed

that our approach greatly decreases the latency of producing segments with a slight loss in

accuracy for English and Chinese. In Chapter 5, we will combine some of the techniques

in this chapter and Chapter 3 to incorporate hedge segmentation and annotation, in the

input as well as the engine of the online task of simultaneous translation.

Chapter 5

Evaluation of Annotation and

Segmentation Strategies in Machine

Translation

5.1 Introduction

In Chapter 3, we introduced hedge parsing that parses the input sentence in non-overlapping

segments each of which have rich internal syntactic analyses. Then in Chapter 4 we pro-

posed an incremental framework to return hedge segments from the parser incrementally

and with low latency, without requiring the entire sentence to begin the parse. These

properties make hedge parsing potentially useful for real-time NLP applications such as

simultaneous speech-to-speech translation. In this chapter, we investigate the impact of

hedge annotation and segmentation in the on-line task of translation. We focus on the

MT component of the speech-to-speech translation system, which receives text input and

produces text output. We consider two main aspects of applying hedge syntax into MT:

first, how such partial syntactic annotations, on either the target or the source side, affect

a regular (non-incremental) machine translation task, and second, how such segmentation

of the input affects accuracy/latency trade-off of a simultaneous (incremental) machine

translation.

98

99

Input segmentation strategies in simultaneous translation are mainly studied in FST- or

phrase-based translation systems that do not use syntactic information in either the trans-

lation model or the input. Bangalore et al. (2012) framed the speech-to-speech translation

as first segmenting the input stream, and then applying the conventional MT approaches

to translate the segments. They defined segment boundaries as the long pauses in the out-

put of an automatic speech recognition (ASR) system. Recent studies have evaluated other

segmentation strategies based on linguistic, non-linguistic, or joint-optimization criteria

(Cettolo and Federico, 2006; Matusov et al., 2007; Fügen et al., 2007; Rangarajan Sridhar

et al., 2013; Oda et al., 2014; Wolfel et al., 2008; Kolss et al., 2008), as described in detail

in Chapter 2 Section 2.7.1. All of the above segmentation methods produce raw word

sequences of the input which do not contain structural annotation of the source language.

Likewise, the translation model does not contain such information. Instead, in this chap-

ter, we leverage the syntactic knowledge of the source language to both segment the input,

and improve the translation quality.

Applying syntactic information in MT can improve translation quality compared to phrase-

based translation (Zollmann et al., 2008). However, incorporating syntax into the input

segments to a simultaneous translation system is challenging. The reason is that tradi-

tional syntactic parsing is not directly applicable to sub-sentential segments, since parsing

methods typically require the entire sentence. Current studies that address the use of

syntax in simultaneous translation (Ryu et al., 2006; Oda et al., 2015) use methods to

predict future syntactic constituents which form a complete syntactic phrase, when pars-

ing sub-sentential segments. The standard CFG grammar is not particularly defined for

incomplete sentences, so the parser may generate an incorrect parse. Moreover, applying

this syntactic prediction in translation models is not trivial and requires addressing the

problems such as reordering and language model probabilities. In contrast, the gram-

mar we use in our approach is appropriate for sub-sentential segments. In addition, our

approach is straightforwardly applicable to conventional MT systems.

100

Hedge parsing allows for syntax-based segmentation of the input, and incorporating local

hierarchical syntax into the input segments without requiring the entire sentence. Par-

tial hedge syntactic annotation could straightforwardly replace full syntactic annotation,

either in the source or target language, in a conventional MT system. First, we com-

pare the translation performance of a regular (non-incremental) translation model that

incorporates hedge syntax with translation models that either do not use any syntactic

information (so called phrase-based models), or incorporate non-linguistic syntax, or shal-

low linguistic syntax in the form of chunking, to the source or target side of a translation

model. Second, we examine the translation performance and segmentation latency of an

incremental translation system that incorporates hedge syntax in input segmentation and

annotation as well as in the translation model. We compare this system with segmen-

tation methods that produce raw segments and do not use syntactic information in the

translation model, as well as segmentation and translation systems that use non-linguistic,

or shallow syntactic information.

We demonstrate that:

1. Adding knowledge of local hierarchical syntactic structures within a local context to

the target side of a translation model, significantly improves translation quality at

the cost of some speed compared to the translation models without syntactic knowl-

edge, with non-linguistic syntactic annotation, or non-hierarchical shallow syntactic

annotation.

2. Hedge-syntactically informed MT on the target side, achieves a close quality com-

pared to that in a full-syntactically informed MT for the language pairs we tried.

3. When incorporating syntactic knowledge to the source side of a translation model,

MT performance is highly influenced by the richness level of syntactic annotations

of the model and the input. Full syntactic information is considerably effective in

translation quality, while hedge syntactic information falls behind that particularly

for smaller span limits.

101

4. Incremental translation in a system that combines hedge segmentation and annota-

tion of the input segments with a hedge-syntax MT model, achieves a good accu-

racy/latency trade-off compared to other segmentation strategies. More importantly,

this system is significantly superior to the shallow-syntax segmentation and transla-

tion system, in terms of translation performance as well as latency of segmentation.

This emphasizes the advantage of using some degree of syntactic hierarchy, as op-

posed to non-hierarchical shallow chunking structures, in real-time NLP applications

that require fast analysis of the input.

5.2 Phrase-based and Syntax-based Machine Translation

Two major statistical MT formalisms developed in the literature are phrase-based and

syntax-based models. In Section 2.6 of Chapter 2 we defined the fundamentals of these

formalisms from a theoretical perspective. The main difference between the two is that

translation rules in phrase-based MT are bilingual phrases extracted from a parallel corpus

of the source and target languages, whereas a syntax-based MT uses some form of a syn-

chronous context-free grammar (SCFG) to generate hierarchical mapping between the two

languages. In this chapter, we use phrase-based and variations of syntax-based models in

practice. We first show the differences of these MT models and how they are learned from

a parallel training data, from a more practical perspective by providing examples.

5.2.1 Phrase-based MT

In a phrase-based system, translation rules are bilingual phrases extracted from raw (un-

annotated) parallel corpora. Possible phrases are extracted from word-aligned parallel

sentences. The phrase table is built by accumulating all of the phrases from the entire

corpus and calculating their probabilities using relative frequency. Figure 5.1(a) shows

an example of the word alignment of two Japanese-English parallel sentences from the

real data set we used. Figure 5.1(b) shows possible phrases consistent with that word

alignment, as extracted by the MT toolkit that we used (Moses, Koehn et al., 2007). The

102

!

ヨ
ー
ロ
ッ
パ
!

で
も
!

!
!

同
様
の
!

動
き
!

が
!

あ
る
!

"
!

"#$%&'! ! ! !! !! !! !! !! !!
()! !! !! !! !! !! ! !! !!
(*! !! ! !! !! !! !! !! !!
+,'! !! !! ! !! !! !! !! !!
)-.'! !! !! !! ! !! !! !! !!
+$'*/)! !! !! !! !! ! !! !! !!
0! !! !! !! !! !! !! ! !

ヨーロッパ でも ，同様の 動き が ある 。

Europe is in the same trends .

!

ヨ
ー
ロ
ッ
パ
!

で
も
!

!
!

同
様
の
!

動
き
!

が
!

あ
る
!

"
!

"#$%&'! ! ! !! !! !! !! !! !!
()! !! !! !! !! !! ! !! !!
(*! !! ! !! !! !! !! !! !!
+,'! !! !! ! !! !! !! !! !!
)-.'! !! !! !! ! !! !! !! !!
+$'*/)! !! !! !! !! ! !! !! !!
0! !! !! !! !! !! !! ! !

Figure 5.1: An example of (a) a word alignment of two parallel sentences and (b) phrase pairs
consistent with this word alignment.

Page 1 of 2/Users/masoudrouhizadeh/Documents/MTexpr/JaEnExamples
Saved: 9/21/15 11:48:35 PM Printed For: Mahsa Yarmohammadi

Figure 1.21
2
ヨーロッパ でも ， 同様の 動き が | Europe is in the same trends3
が | is4
， | the5
， 同様の | the same6
， 同様の 動き | the same trends7
同様の | same8
同様の 動き | same trends9
動き | trends10
ある 。 | .11

12
----------------------------13

14
Figure 1.315

16
が [X] | is [X] | 117
， [X] | the [X] | 118
同様の [X] | same [X] | 119
動き [X] | trends [X] | 120
ある 。 [X] | . [X] | 121
， 同様の [X] | the same [X] | 122
同様の 動き [X] | same trends [X] | 123
， 同様の 動き [X] | the same trends [X] | 0.33333324
[X][X] 動き [X] | [X][X] trends [X] | 0.33333325
， [X][X] [X] | the [X][X] [X] | 0.33333326
ヨーロッパ でも [X][X] 動き が [X] | Europe is in [X][X] trends [X] | 0.33333327
ヨーロッパ でも [X][X] が [X] | Europe is in [X][X] [X] | 0.33333328
ヨーロッパ でも ， [X][X] が [X] | Europe is in the [X][X] [X] | 0.33333329
[X][X] ある 。 [X] | [X][X] . [X] | 0.530
ヨーロッパ でも [X][X] が [X][X] [X] | Europe is in [X][X] [X][X] [X] | 0.531

32
------------------------------33

34
Figure 1.435

36
が [X] | is [VBZ] | 137
， [X] | the [DT] | 138
同様の [X] | same [JJ] | 139
動き [X] | trends [NNS] | 140
ある 。 [X] | . [.] | 141
， 同様の 動き [X] | the same trends [NP] | 142
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.543
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.544

45
------------------------------46

47
Figure 1.548

49

Figure 5.2: Phrase table.

phrase extraction procedure in the Moses toolkit follows alignment-based phrase extraction

heuristics proposed by Och et al. (1999) (for more detail about this method, refer to Section

2.6.1 of Chapter 2). The extracted phrases in the Moses phrase table format are presented

in Figure 5.2. Each entry consists of the source phrase and target phrase. For example,

the Japanese phrase 同様ᷥὗ動᷄, which covers three consecutive words, is translated to the

English phrase the same trends covering three consecutive words. Each entry also contains

the alignment points, but for simplicity we have not shown them in the figure.

5.2.2 Syntax-based MT

Instead of phrases in a phrase-based MT model, a syntax-based model extracts SCFG

rules. An SCFG can be automatically extracted from a parallel corpora, with or without

syntactic annotations, on top of the output of a phrase-based model.

103

Hierarchical Phrase-based Model

A variant of syntax-based MT, known as hierarchical phrase-based (Chiang, 2005, 2007),

is a natural hierarchical extension to phrase-based models. A hierarchical phrase-based

model extends the phrases by adding new rules in which the sub-phrases are replaced with

a non-terminal X. There is no independent syntactic parsing on either side of the parallel

data, instead, the hierarchical rules are inferred from the data, with no direct association

to linguistic syntax. The rules are in the form of SCFG, with a single non-terminal X.

Figure 5.3 shows the hierarchical phrase-based SCFG rules extracted from the phrase

pairs in Figure 5.2. For example, the phrase ‘the same trends’ contains the sub-phrase

‘the same’, and replacing this sub-phrase with X creates the new rule ‘X trends’. A simple

phrase-based model is not able to represent such phrase hierarchy.

Tree-based Models

Another type of syntax-based models, called tree-based models, use linguistic syntactic

annotations of the language in training data. Either the target side, source side, or both

sides of the training data could contain syntactic annotations, and syntactic translation

rules are inferred from aligned string-tree, tree-string, or tree-tree pairs respectively. Tree-

based models constrain the rules in the hierarchical phrase based models to those that

correspond to valid syntactic constituents in the parse trees. Figure 5.4 shows the parse

tree of the English sentence in our example and how the hierarchical phrase-based rules are

constrained to actual constituents instead of X. The sixth rule in the figure for instance,

shows that the phrase ‘the same trends’ corresponds to a noun phrase (NP). Here we see

fewer phrases compared to the hierarchical phrase-based – for instance ‘same trends’ which

does not correspond to any linguistic structure is removed from the rule set – although

the grammar is much richer. In Section 5.2.4 we explain corpus preparation and rule

extraction in tree-based models in more detail.

104

Page 1 of 2/Users/masoudrouhizadeh/Documents/MTexpr/JaEnExamples
Saved: 9/21/15 11:48:35 PM Printed For: Mahsa Yarmohammadi

Figure 1.21
2
ヨーロッパ でも ， 同様の 動き が | Europe is in the same trends3
が | is4
， | the5
， 同様の | the same6
， 同様の 動き | the same trends7
同様の | same8
同様の 動き | same trends9
動き | trends10
ある 。 | .11

12
----------------------------13

14
Figure 1.315

16
が [X] | is [X] | 117
， [X] | the [X] | 118
同様の [X] | same [X] | 119
動き [X] | trends [X] | 120
ある 。 [X] | . [X] | 121
， 同様の [X] | the same [X] | 122
同様の 動き [X] | same trends [X] | 123
， 同様の 動き [X] | the same trends [X] | 0.3324
[X][X] 動き [X] | [X][X] trends [X] | 0.3325
， [X][X] [X] | the [X][X] [X] | 0.3326
ヨーロッパ でも [X][X] 動き が [X] | Europe is in [X][X] trends [X] | 0.3327
ヨーロッパ でも [X][X] が [X] | Europe is in [X][X] [X] | 0.3328
ヨーロッパ でも ， [X][X] が [X] | Europe is in the [X][X] [X] | 0.3329
[X][X] ある 。 [X] | [X][X] . [X] | 0.530
ヨーロッパ でも [X][X] が [X][X] [X] | Europe is in [X][X] [X][X] [X] | 0.531

32
------------------------------33

34
Figure 1.435

36
が [X] | is [VBZ] | 137
， [X] | the [DT] | 138
同様の [X] | same [JJ] | 139
動き [X] | trends [NNS] | 140
ある 。 [X] | . [.] | 141
， 同様の 動き [X] | the same trends [NP] | 142
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.543
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.544

45
------------------------------46

47
Figure 1.548

49

Figure 5.3: Hierarchical phrase-based SCFG rules.

Page 1 of 2/Users/masoudrouhizadeh/Documents/MTexpr/JaEnExamples
Saved: 9/21/15 11:48:35 PM Printed For: Mahsa Yarmohammadi

Figure 1.21
2
ヨーロッパ でも ， 同様の 動き が | Europe is in the same trends3
が | is4
， | the5
， 同様の | the same6
， 同様の 動き | the same trends7
同様の | same8
同様の 動き | same trends9
動き | trends10
ある 。 | .11

12
----------------------------13

14
Figure 1.315

16
が [X] | is [X] | 117
， [X] | the [X] | 118
同様の [X] | same [X] | 119
動き [X] | trends [X] | 120
ある 。 [X] | . [X] | 121
， 同様の [X] | the same [X] | 122
同様の 動き [X] | same trends [X] | 123
， 同様の 動き [X] | the same trends [X] | 0.3324
[X][X] 動き [X] | [X][X] trends [X] | 0.3325
， [X][X] [X] | the [X][X] [X] | 0.3326
ヨーロッパ でも [X][X] 動き が [X] | Europe is in [X][X] trends [X] | 0.3327
ヨーロッパ でも [X][X] が [X] | Europe is in [X][X] [X] | 0.3328
ヨーロッパ でも ， [X][X] が [X] | Europe is in the [X][X] [X] | 0.3329
[X][X] ある 。 [X] | [X][X] . [X] | 0.530
ヨーロッパ でも [X][X] が [X][X] [X] | Europe is in [X][X] [X][X] [X] | 0.531

32
------------------------------33

34
Figure 1.435

36
が [X] | is [VBZ] | 137
， [X] | the [DT] | 138
同様の [X] | same [JJ] | 139
動き [X] | trends [NNS] | 140
ある 。 [X] | . [.] | 141
， 同様の 動き [X] | the same trends [NP] | 142
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.543
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.544

45
------------------------------46

47
Figure 1.548

49

Figure 5.4: Basic syntax SCFG rules.

105

5.2.3 Word Re-ordering

Words with equivalent meanings do not always appear in the same order in both sentences.

For example, verb ‘is’ appears immediately following subject ‘Europe’ in the English side

of our example, but its equivalent word in Japanese ‘᷂’ comes after the object of the

sentence. Therefore, some mechanism of word reordering is needed. In phrase-based

models, phrases can capture some local reordering, limited to the phrases seen in the

training data. Syntax-based models attempt to generalize reordering beyond the lexical

knowledge represented in phrase-based model. Reordering is encoded in SCFG rules and

long-distance reordering can be captured.

Zollmann et al. (2008) performed a systematic comparison of phrase-based and syntax-

based (hierarchical and string-to-tree) MT. They isolated the impact of several important

design decisions including training data size, language model size, and reordering methods

on translation quality. Their experiments show that syntax-based approaches can result in

significant improvement compared to phrase-based model for language pairs that are ade-

quately non-monotonic. In particular, they observe consistent improvements for language

pairs with long-distance reordering such as Urdu-to-English and Chinese-to-English.

5.2.4 Training Tree-based Models

Syntactic annotation in a tree-based model is provided by parsing the training data, either

on the source, target, or both sides, with a syntactic parser. Typically the English side, for

which there are high-quality syntactic parsers, is parsed and then the syntax is mirrored

onto the other side (Lopez, 2008). After parsing is done, basic SCFG rules for tree-based

models are automatically extracted from the annotated parallel text using the MT toolkit

we describe in Section 5.4.2. In the next subsection, we describe two types of SCFG rule

extraction methods supported by this MT toolkit that we used in our experiments.

106

Relaxing Parses

Each non-terminal in a basic SCFG has to correspond to an actual non-terminal in the

parse tree. If the target side of a phrase in a string-to-tree model (or the source side in a

tree-to-string model) matches a constituent span in the parse tree, then the constituent’s

label is assigned as the left-hand-side non-terminal of the SCFG rule, otherwise no rule is

extracted. This will severely constrain the number of rules that can be extracted. There

are a number of methods to relax this constraint and increase the number of extracted

rules. In this chapter, we use two kinds of parse relaxation supported by the MT toolkit

we use: left-factoring the parse trees; and using heuristics to combine neighboring nodes

into tags as described in syntax-augmented machine translation (SAMT) by Zollmann and

Venugopal (2006).

The idea of left-factoring is to add more internal non-terminals to the parse trees so that

additional rules can be extracted. Figure 5.5 shows the result of left-factoring our example

parse tree in Figure 5.4. After the transform, two new non-terminals “@S” and “@NP”

are added, which yield to adding six new translation rules, and modifying the probabilities

of some of the existing rules. These added nodes define new rules for their children nodes,

and are also combined with their siblings or parents to create new rules. This idea is

similar to left- or right- factoring binarization of a grammar to use it in a CYK parser

(see Section 2.1.3 of Chapter 2).

Figure 5.6 shows the SAMT transform of the example parse tree in Figure 5.4. In addition

to the word spans of the sentence that correspond to a POS tag, unary, or n-ary non-

terminals, all other pairs of neighboring nodes are labeled with composite tags, and they

can contribute in creating new translation rules. If nodes are siblings, they are combined

using the “+” operation. For example “IN” which covers span 2 is combined with its sibling

“NP” which covers spans 3 to 5 and create a new composite tag “IN+NP”. If the nodes are

not siblings but they are still neighbors, then the “++” operation is used. An instance is

the “VBZ” covering span 1 and “IN” covering span 2 and their combination “VBZ++IN”.

If applicable, the spans are combined using the division operation in categorial grammar.

107

Page 2 of 2/Users/masoudrouhizadeh/Documents/MTexpr/JaEnExamples
Saved: 9/21/15 11:48:35 PM Printed For: Mahsa Yarmohammadi

が [X] | is [VBZ] | 150
， [X] | the [DT] | 1 51
同様の [X] | same [JJ] | 152
動き [X] | trends [NNS] | 153
ある 。 [X] | . [.] | 154
， 同様の [X] | the same [@NP] | 155
， 同様の 動き [X] | the same trends [NP] | 0.556
[X][@NP] 動き [X] | [X][@NP] trends [NP] | 0.557
ヨーロッパ でも [X][@NP] 動き が [X] | Europe is in [X][@NP] trends [@S] | 0.558
ヨーロッパ でも [X][NP] が [X] | Europe is in [X][NP] [@S] | 0.559
[X][@S] ある 。 [X] | [X][@S] . [S] | 0.2560
[X][@S] ある 。 [X] | [X][@S] . [TOP] | 0.2561
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.2562
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.25 63

64
65

------------------------------66
67

Figure 1.668
69
70
が [X] | is [VBZ] | 171
， [X] | the [DT] | 172
同様の [X] | same [JJ] | 173
動き [X] | trends [NNS] | 174
ある 。 [X] | . [.] | 175
， 同様の [X] | the same [DT+JJ] | 176
同様の 動き [X] | same trends [JJ+NNS] | 177
， 同様の 動き [X] | the same trends [NP] | 0.278
[X][DT+JJ] 動き [X] | [X][DT+JJ] trends [NP] | 0.279
[X][NP/NNS] 動き [X] | [X][NP/NNS] trends [NP] | 0.280
， [X][JJ+NNS] [X] | the [X][JJ+NNS] [NP] | 0.281
， [X][NP\DT] [X] | the [X][NP\DT] [NP] | 0.282
ヨーロッパ でも [X][DT+JJ] 動き が [X] | Europe is in [X][DT+JJ] trends [NNP+VP] | 0.183
ヨーロッパ でも [X][DT+JJ] 動き が [X] | Europe is in [X][DT+JJ] trends [S/.] | 0.184
ヨーロッパ でも [X][NP/NNS] 動き が [X] | Europe is in [X][NP/NNS] trends [NNP+VP] | 0.185
ヨーロッパ でも [X][NP/NNS] 動き が [X] | Europe is in [X][NP/NNS] trends [S/.] | 0.186
ヨーロッパ でも [X][NP] が [X] | Europe is in [X][NP] [NNP+VP] | 0.187
ヨーロッパ でも [X][NP] が [X] | Europe is in [X][NP] [S/.] | 0.188
ヨーロッパ でも ， [X][JJ+NNS] が [X] | Europe is in the [X][JJ+NNS] [NNP+VP] | 0.189
ヨーロッパ でも ， [X][JJ+NNS] が [X] | Europe is in the [X][JJ+NNS] [S/.] | 0.190
ヨーロッパ でも ， [X][NP\DT] が [X] | Europe is in the [X][NP\DT] [NNP+VP] | 0.191
ヨーロッパ でも ， [X][NP\DT] が [X] | Europe is in the [X][NP\DT] [S/.] | 0.192
[X][NNP+VP] ある 。 [X] | [X][NNP+VP] . [S] | 0.16666793
[X][NNP+VP] ある 。 [X] | [X][NNP+VP] . [TOP] | 0.16666794
[X][S/.] ある 。 [X] | [X][S/.] . [S] | 0.16666795
[X][S/.] ある 。 [X] | [X][S/.] . [TOP] | 0.16666796
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.16666797
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.16666798

Figure 5.5: Left-factoring syntax SCFG rules.

For example, “NP/NNS” for span 3 to 4 indicates a partial NP missing an NNS to the

right.

108

Page 1 of 1untitled text 22

span:3-4 label="DT+JJ"! label="NP/NNS"1
span:4-5 label="JJ+NNS"!label="NP\DT"2
span:2-5 label="IN+NP"3
span"1-5 label="VBZ+PP"4
span:0-5 label="NNP+VP"!label="S/."5
span:1-6 label="VP+."!label="S\NNP"6
span:0-1 label="NNP++VBZ"7
span:1-2 label="VBZ++IN"8
span:2-3 label="IN++DT"9
span:5-6 label="NNS++."10
span:2-4 label="PP//NNS"11
span:1-4 label="VP//NNS"12
span:3-6 label="NP++."13
span:2-6 label="PP++."14

15
16
17
18

span:3-4 label="DT+JJ", "NP/NNS"! ! ! span:0-1 label="NNP++VBZ"19
span:4-5 label="JJ+NNS", "NP\DT"! ! ! span:1-2 label="VBZ++IN"20
span:2-5 label="IN+NP"! ! ! ! ! ! ! ! span:2-3 label="IN++DT"21
span"1-5 label="VBZ+PP"!! ! ! ! ! ! ! span:5-6 label="NNS++."22
span:0-5 label="NNP+VP", "S/."! ! ! ! span:2-4 label="PP//NNS"23
span:1-6 label="VP+.", "S\NNP"! ! ! ! span:1-4 label="VP//NNS"24
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! span:3-6 label="NP++."25
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! span:2-6 label="PP++."26

27
28
29
30
31
32
33
34
35

Page 2 of 2/Users/masoudrouhizadeh/Documents/MTexpr/JaEnExamples
Saved: 9/21/15 11:48:35 PM Printed For: Mahsa Yarmohammadi

が [X] | is [VBZ] | 150
， [X] | the [DT] | 1 51
同様の [X] | same [JJ] | 152
動き [X] | trends [NNS] | 153
ある 。 [X] | . [.] | 154
， 同様の [X] | the same [@NP] | 155
， 同様の 動き [X] | the same trends [NP] | 0.556
[X][@NP] 動き [X] | [X][@NP] trends [NP] | 0.557
ヨーロッパ でも [X][@NP] 動き が [X] | Europe is in [X][@NP] trends [@S] | 0.558
ヨーロッパ でも [X][NP] が [X] | Europe is in [X][NP] [@S] | 0.559
[X][@S] ある 。 [X] | [X][@S] . [S] | 0.2560
[X][@S] ある 。 [X] | [X][@S] . [TOP] | 0.2561
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.2562
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.25 63

64
65

------------------------------66
67

Figure 1.668
69
70
が [X] | is [VBZ] | 171
， [X] | the [DT] | 172
同様の [X] | same [JJ] | 173
動き [X] | trends [NNS] | 174
ある 。 [X] | . [.] | 175
， 同様の [X] | the same [DT+JJ] | 176
同様の 動き [X] | same trends [JJ+NNS] | 177
， 同様の 動き [X] | the same trends [NP] | 0.278
[X][DT+JJ] 動き [X] | [X][DT+JJ] trends [NP] | 0.279
[X][NP/NNS] 動き [X] | [X][NP/NNS] trends [NP] | 0.280
， [X][JJ+NNS] [X] | the [X][JJ+NNS] [NP] | 0.281
， [X][NP\DT] [X] | the [X][NP\DT] [NP] | 0.282
ヨーロッパ でも [X][DT+JJ] 動き が [X] | Europe is in [X][DT+JJ] trends [NNP+VP] | 0.183
ヨーロッパ でも [X][DT+JJ] 動き が [X] | Europe is in [X][DT+JJ] trends [S/.] | 0.184
ヨーロッパ でも [X][NP/NNS] 動き が [X] | Europe is in [X][NP/NNS] trends [NNP+VP] | 0.185
ヨーロッパ でも [X][NP/NNS] 動き が [X] | Europe is in [X][NP/NNS] trends [S/.] | 0.186
ヨーロッパ でも [X][NP] が [X] | Europe is in [X][NP] [NNP+VP] | 0.187
ヨーロッパ でも [X][NP] が [X] | Europe is in [X][NP] [S/.] | 0.188
ヨーロッパ でも ， [X][JJ+NNS] が [X] | Europe is in the [X][JJ+NNS] [NNP+VP] | 0.189
ヨーロッパ でも ， [X][JJ+NNS] が [X] | Europe is in the [X][JJ+NNS] [S/.] | 0.190
ヨーロッパ でも ， [X][NP\DT] が [X] | Europe is in the [X][NP\DT] [NNP+VP] | 0.191
ヨーロッパ でも ， [X][NP\DT] が [X] | Europe is in the [X][NP\DT] [S/.] | 0.192
[X][NNP+VP] ある 。 [X] | [X][NNP+VP] . [S] | 0.16666793
[X][NNP+VP] ある 。 [X] | [X][NNP+VP] . [TOP] | 0.16666794
[X][S/.] ある 。 [X] | [X][S/.] . [S] | 0.16666795
[X][S/.] ある 。 [X] | [X][S/.] . [TOP] | 0.16666796
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [S] | 0.16666797
ヨーロッパ でも [X][NP] が [X][.] [X] | Europe is in [X][NP] [X][.] [TOP] | 0.16666798

Figure 5.6: SAMT syntax SCFG rules.

5.3 Methods

In this section, we first explain the MT models we used, and then the types of the inputs

to the models in terms of segmentation and annotation, and finally we describe what com-

binations of the models and inputs we applied in different scenarios to measure the impact

of segmentation and annotation in regular and simultaneous MT performance.

109

5.3.1 MT Models

Our baseline translation model is a phrase-based model which we refer to as PBMT.

PBMT is trained from the raw parallel data without any syntactic information, hence

it supposedly provides a floor on translation accuracy. We build syntax-based models

that incorporate different levels of syntax into MT. We try a hierarchical phrase-based

model (HIERO) with no linguistic syntax, and tree-based models with full-syntax, shallow-

syntax, and hedge-syntax annotations, forming string-to-tree models S2T-full, S2T-hdge,

and S2T-shal, and tree-to-string models T2S-full, T2S-hdge, and T2S-shal.

For tree-based models we annotate one side of the training data with syntactic labels,

which is the English side in all of our experiments. We use two state-of-the-art phrase-

structure parsers: Berkeley parser (Petrov and Klein, 2007a), which is a variant of non-

incremental chart parsing, and the ZPAR incremental shift-reduce parser (Zhang and

Clark, 2011). ZPAR is also integrated with the real-time hedge segmentation framework

introduced in Chapter 4, to improve latency in simultaneous translation. Both parsers

perform full parsing. For hedge-syntax models, we hedge transform the full parse results,

as described in Section 3.4 of Chapter 3. For shallow-syntax models we transform the

full parse results into a sequence of shallow constituents via a well-known conversion

script known as chunklink1 used originally in the CoNLL-2000 chunking task (Sang and

Buchholz, 2000).

5.3.2 Inputs

We study inputs from two points of view: annotation type, and segmentation type. An-

notation type divides the inputs into two types of raw (un-annotated) or syntactically

annotated inputs. From the point of view of segmentation, inputs are either complete

non-segmented sentences or segments of a complete sentence.

1http://ilk.uvt.nl/team/sabine/homepage/software.html

110

Annotation Types

Annotation type of the input depends on the translation model. The input to the MT

system in a phrase-based, hierarchical phrase-based, or string-to-tree syntax-based model

is a conventional unannotated string. The input to a tree-to-string model is a parse tree,

not a string, since the MT model uses source-side parses to drive the translation process.

The input sentence can be parsed using the same parser that annotated the training data,

and it typically has the same syntactic richness level as that of the training data. To the

best of our knowledge, existing work on tree-based MT has mainly focused on full parsing

of the training data. In this work, we propose and evaluate the impact of partial parsing

of the training data on the performance of an MT system. Such partial parsing could be

produced by a parser which uses a grammar trained on a transformed treebank, or they

could be the transformed output of fully parsed data. In our methods, we first fully parse

the input sentence and then transform the result to partial (shallow or hedge) parse trees.

This is the same procedure we followed for annotating the training data.

Segmentation Types

In regular –non-incremental– translation, the input is a complete sentence, whereas in in-

cremental translation, the input is in the form of segments, one at a time. The translated

segments are then combined to form the translation of the original –prior to segmentation–

sentence. The number of segments, their lengths, and their types are identified according

to the segmentation methods. In this work, we apply four segmentation methods: (a)

according to length in number of tokens, (b) according to the punctuation, (c) shallow

parsing boundaries, and (d) hedge parsing boundaries. Methods (a) and (b) use ortho-

graphic features and can be applied on raw inputs, whereas methods (c) and (d) rely on

syntactic features which come from the parse tree of the input. To segment based on

methods (c) and (d), the input is fully parsed and then the shallow or hedge parses are

extracted. In addition, for method (d) we could extract the hedge parses simultaneously

as we fully parse the input, using the techniques we proposed in Chapter 4.

111

5.3.3 Combining Inputs and MT Models

In this study, the two aspects under discussion are, first, the impact of syntactic annotation

on regular MT performance, detached from input segmentation, and second, the impact

of input segmentation on incremental MT performance. To investigate these two aspects,

we define three experimental scenarios to examine (1) impact of target syntactic anno-

tation on translation, (2) impact of source syntactic annotation on translation, and (3)

impact of input segmentation on simultaneous translation. Scenarios (1) and (2) address

the first aspect under discussion and (3) centers on the second aspect. For each sce-

nario we integrate phrase-based and syntax-based MT models with complete/segmented

raw/syntactically-annotated input types in different ways.

For (1) we apply PBMT, HIERO, and all variants of string-to-tree models (S2T-full, S2T-

hdge, and S2T-shal) on complete raw input sentences. String-to-tree models are widely

used in standard syntax-based MT and they can result in translation quality improvement

compared to phrase-based model for language pairs with different word orders, such as

Urdu-English and Japanese-English (Zollmann et al., 2008). In Section 5.5.1 we evaluate

this configuration on accuracy and efficiency of Urdu to English and Japanese to English

translation.

For the scenario (2) we apply PBMT, HIERO, and all variants of tree-to-string models

(T2S-full, T2S-hdge, and T2S-shal) on complete input sentences which are raw for PBMT

and HIERO, but syntactically annotated for T2S models. T2S models are combined

with inputs that have the same syntactic richness of the model, as well as inputs with

unmatched richnesses with the model. For example, T2S-hdge model is combined with

hedge-syntax annotated inputs as well as shallow- and full-syntax annotated inputs. This

aims to examine the effect of matched input and MT model versus unmatched conditions

on translation performance. In Section 5.5.2 we demonstrate MT accuracy and efficiency

of this configuration on English to Japanese translation. T2S models are not as widely

used as S2T models in the literature, however, they are convenient for syntax-based input

segmentation, which will be the focus of the scenario (3).

112

After exploring phrase-based, hierarchical phrase-based, and source-syntax MT models on

complete (non-segmented) inputs in the scenario (2), in (3) we examine the MT accuracy

and efficiency of the same models on segmented inputs. The pattern of combining MT

models and inputs is the same as the previous scenario, i.e., the models receive either

their matched or unmatched inputs in term of syntactic richness. In particular, we are

interested in evaluating MT performance gain using syntax-based segmentation (methods

(c) and (d) above) with orthographic segmentation (methods (a) and (b)). In addition, we

explore real-time segmentation for method (d) to examine its effect on improving simulta-

neous translation latency. In Section 5.5.3 we compare and contrast translation accuracy,

efficiency, and latency for different input types for English to Japanese translation.

5.3.4 MT Performance Evaluation Measures

We evaluate our systems based on the performance of machine translation. The three

metrics we measure are accuracy, efficiency, and latency.

Accuracy

Accuracy is the quality of translation which is measured using BLEU scores. BLEU

intends to approximate human judgment of a machine-translated output. It works at the

corpus level: scores of individual sentences are calculated by comparing them against one

or more reference translations, and then these scores are averaged over the whole corpus.

In case of segmented inputs, all the translated segments of a sentence are concatenated

to form the complete translation before measuring the BLEU score. We conducted case-

insensitive BLEU in our experiments. For more detail about BLEU refer to Section 2.6.3

of Chapter 2.

Efficiency

Efficiency is the speed of translation and shows the average time taken to translate each

sentence. In case of non-segmented inputs, efficiency is measured as seconds per sentence

113

(sec/sen), which is the total time taken to translate a corpus divided by number of its

sentences. Sentence translation time includes the time required to read a sentence, ini-

tialize the search space, decode the best translation, and deliver the result to the output.

In case of segmented inputs, efficiency for each sentence is calculated by summing up the

time taken to translate all its segments. The speed reported for the entire corpus is then

calculated by taking the average of efficiencies of all sentences in the corpus.

Latency

Latency is an important measure in real-time translation. Generally, assuming the sen-

tence to be the unit of translation, latency is the delay between the point that a sentence

is available and the point its translation is delivered. In this chapter we measure latency

for variable-length sub-sentential units. Similar to Chapter 4, here we use a word-based

latency measure: seconds per word (sec/w), which is the average delay for translating

each word of the source text after the word is received. Latency for each word is the time

(or token) difference between the point that the word is received and the point that it is

translated.

In a full-fledged speech-to-speech translation pipeline, latency includes the delay of ASR,

MT, and TTS components. In the offline translation, which the system waits until the end

of sentence to start translation, latency is the aggregated time of these three components,

however, in the real-time scenario, the latency decreases because ASR, segmentation, MT,

and TTS modules start processing sub-sentential segments before the entire sentence is

received. Note that in this case, a segmentation component is added to the pipeline, thus

its performance could greatly influence accuracy/latency trade-off of real-time translation.

In this chapter, we take apart ASR and TTS components from the pipeline, and evaluate

translation latency focusing on segmentation and MT components. A full pipeline latency

evaluation could be a future research direction.

114

5.4 Experimental Setup

5.4.1 Data

We run our experiments on Urdu-English and Japanese-English language pairs. Sentences

in Urdu and Japanese have subject-object-verb (SOV) word order pattern, as opposed to

subject-verb-object (SVO) in English. Thus translating between these languages to/from

English has the potential to achieve higher accuracy for syntax-based MT against phrase-

based MT, compared to translating between English and languages with similar word

order such as European languages.

For Urdu we use manually constructed parallel corpora built by Post et al. (2012) for

machine translation between English and six Indian languages. There are four different

English translations for each source Urdu sentence of the corpus. To correctly pair source

and target sentences in training data, each source sentence is repeated four times. With

these repetitions, there are 33k sentence pairs (1198k words) for training. Translation

evaluation of the development and test sets, is performed with respect to four translations

as alternate references. Each reference for the development set has 736 sentence pairs,

and the four references have 67k words altogether. These number are 605 sentence pairs

and 42k words for the test set.

For Japanese, we use ASPEC2, Asian Scientific Paper Excerpt Corpus, provided by the

2nd Workshop on Asian Translation (WAT, Nakazawa et al., 2015). It consists of a

Japanese-English scientific paper abstracts corpus of 3M parallel sentence pairs (78M

words) for training, 1790 sentence pairs (44k words) for development, and 1812 sentence

pairs (44k words) for test. Following the guidelines provided by WAT for a robust baseline

system, we used the first part out of the three parts of the training data (1M sentences)

for training the translation models, and all of the three parts for training the language

models. For comparability with the Urdu translation task, we also consider a subset of

the Japanese-English data of the same size of the Urdu-English data, randomly selected

2http://lotus.kuee.kyoto-u.ac.jp/ASPEC

115

from the large corpus, which we refer to as small Japanese data set. In spite of their equal

number of sentences, these corpora differ significantly in average length of sentences (22.1

words in small Japanese data set as opposed to 14.4 words in Urdu). This will result

in larger parse trees in Japanese with higher number of constituents and we see about

40% higher number of original constituents in Japanese training data compared to Urdu

training data. Therefore, a lower percentage of the original constituents are retained after

hedge transform in Japanese (79%) as opposed to Urdu (86%).

To increase the number of rules that can be extracted in tree-based models, we apply parse

relaxing methods we described in Section 5.2.4. For the large data set of Japanese-English,

we left-binarize the parse trees before extracting the rules in tree-based models. For the

small data sets of Japanese-English and Urdu-English, we transform the parse trees to

SAMT format using the relax-parse script provided in the MT toolkit.

5.4.2 Data Preparation and MT Toolkit

We prepare data for MT training by tokenizing and lowercasing the sentences, and then

removing parallel sentences with length more than 50 tokens. For tree-based models,

sentences are tokenized in Penn Treebank tokenization style. To parse the data for tree-

based models, the Berkeley parser is trained on the WSJ corpus using Berkeley latent

variable grammar with 6 split-merge cycles (Petrov and Klein, 2007b), and ZPAR is trained

on the same data with 15 training iterations and beam size of 16.

We use the Moses SMT toolkit (Koehn et al., 2007) to train the models and decode the

test sets. Word alignment is performed using multi-threaded GIZA++, MGIZA (Gao and

Vogel, 2008), with “grow-diag-final-and” method. The language model is built from the

target side training data using the KenLM tool (Heafield, 2011) with order of 5 and mod-

ified Kneser-Ney smoothing method. For remaining settings we used the Moses defaults.

This includes the default reordering model of word-based extraction (“wbe”), which gives

a cost linear to the reordering distance. To find the optimal weights for the linear model of

translation we used minimum error rate training (MERT) tuning algorithm (Och, 2003).

116

For the large Japanese-English data, the phrase and rule tables become too large to fit

into memory, so we build binary phrase tables with on-demand loading using the “Cre-

ateOnDiskPt” command in the Moses toolkit. For decoding a sentence, only the part of the

phrase or rule table that is required to translate the sentence is loaded into memory.

5.5 Results

5.5.1 Impact of Target Syntactic Annotation on Translation

We first evaluate the overall performance of MT in Urdu to English and Japanese to

English translation when applying target syntax to the translation model. The inputs are

complete non-segmented sentences, since we intend to isolate the impact of syntax from

the impact of input granularity.

Translation Accuracy

Figures 5.7 and 5.8 show the impact of augmenting hedge-syntax information (S2T-hdge)

with various maximum span parameter L into machine translation accuracy compared to

S2T-full model, for Urdu and Japanese development sets, respectively. Note that we used

the small Japanese data set to make the evaluation comparable with Urdu. The S2T-

hdge model slightly outperforms S2T-full model for L≥8 in Urdu and L≥9 in Japanese.

Slight improvement of S2T-hdge over S2T-full in larger Ls suggests that, in our data set,

augmenting full hierarchical syntactic annotation into translation may not be more helpful

than augmenting such annotation for a limited span.

Table 5.1 shows the translation accuracy of phrase-based model and syntax-based models

at different levels of target syntactic annotation for translating from (a) Urdu and (b)

Japanese to English for development data. For hedge-syntax models, we choose L=8, as

the optimal comparable operating point for translation accuracy and original constituents

preservation in both languages. First, we observe better performance of all syntax-based

models compared to PBMT for both language pairs. Second, within the syntax-based

117

5 10 15 20

14
15

16
17

18

Maximum span size (L)

B
LE
U

S2T-hdge
S2T-full

Figure 5.7: Urdu to English syntax-based translation accuracy versus L on development data.

5 10 15 20

14
15

16
17

18

Maximum span size (L)

B
LE
U

S2T-hdge
S2T-full

Figure 5.8: Japanese to English (small data set) syntax-based translation accuracy versus L on
development data.

118

Translation Model Accuracy (BLEU) Translation Model Accuracy (BLEU)
PBMT 14.01 PBMT 11.33
HIERO 16.18 HIERO 13.68
S2T-shal 15.15 S2T-shal 12.91
S2T-hdge 17.65 S2T-hdge 15.71
S2T-full 17.41 S2T-full 15.80

(a) (b)

Table 5.1: Translation accuracy on development data for (a) Urdu to English, and (b) Japanese
to English (small data set).

models we observe better performance of tree-based models compared to HIERO except

for S2T-shal. This observation is consistent with our expectation that using some de-

gree of syntactic hierarchy is beneficial in MT as opposed to non-hierarchical shallow

structures. The differences between S2T-hdge and S2T-full systems in this table are not

statistically significant for both Urdu to English (p-value=0.2188) and Japanese to En-

glish (p-value=0.8515) translations. To estimate the significant difference, we used the

stratified approximate randomization test provided in MultEval (Clark et al., 2011).

Translation Accuracy/Efficiency Trade-off with Beam Setting

One of the most important considerations in decoding is accuracy/efficiency trade-off.

SCFG decoding has several parameters that impact this trade-off. In this section we

examine the effect of beam setting in the CYK algorithm implemented in the Moses chart

decoder. The beam setting parameter in the Moses toolkit is called cube-pruning-pop-

limit (or cbp), that restricts the number of hypotheses generated for each cell. Higher cbp

numbers slow down the decoder, but may result in better accuracy. Other settings in the

Moses toolkit that effect decoding speed are reordering limit, handling of unknown words,

and some additional technical settings.

Figures 5.9 and 5.10 show accuracy, in terms of BLEU, and decoding speed, in terms

of seconds per sentence (sec/sen), for syntax-based translations using a variety of beam

settings, on the development sets. We investigate exponentially increasing cbp values of

{10, 20, 30, 45, 70, 100, 150, 230, 400}. The speed is measured as the total time in seconds

taken to translate all sentences, divided by the total number of sentences. Same as the

119

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

15
.5

16
.0

16
.5

17
.0

17
.5

18
.0

Time (sec/sen)

B
LE
U

S2T-hdge (L=8)
S2T-full
HIERO

Figure 5.9: Urdu to English syntax-based translation accuracy versus speed on development data.

0 2 4 6 8 10 12

13
.0

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

Time (sec/sen)

B
LE
U

S2T-hdge (L=8)
S2T-full
HIERO

Figure 5.10: Japanese to English (small data set) syntax-based translation accuracy versus speed
on development data.

120

above, we choose L=8 for hedge-syntax models. The results show that in all models,

for polynomial increment of cbp by 1.5×, the BLEU score increases logarithmically such

that for cbp values greater than 230, BLEU is almost fixed. As expected, speed decreases

when cbp increases, with a few exceptions for small cbps. S2T-hdge consistently outper-

forms S2T-full in terms of translation accuracy and efficiency, in all cbp values for both

languages. Compared to HIERO, in both languages, tree-based models provide higher

translation accuracy in all cbps at the expense of lower efficiency. This difference is no-

ticeably significant in Japanese, possibly due to the larger parse trees with higher number

of constituents in Japanese (see Section 5.4.1). As we have seen in Section 5.2.2, HIERO

utilizes hierarchical phrases inferred from unannotated data, with no direct association to

syntactic information from parse-trees.

Test Set Results

Table 5.2 presents results of our best configurations—as determined by results on the

development set—on the test set, choosing the optimal operating points for syntax-based

models: cbp=230, L=8 for S2T-hdge. We observe the same pattern in accuracy as we

saw in the development set of both languages (see Table 5.1). In terms of efficiency the

general pattern is that efficiency has a trade-off with accuracy; the more efficient model

used the lower accuracy achieved. The only observed exception is that we gain the best

accuracy and efficiency at the same time using S2T-hdge in Urdu. Post et al. (2012)

reported the accuracy of 19.53 and 20.99 BLEU scores for HIERO and SAMT test set

baseline translations. We observe around 2.8 BLEU score improvement in each model

compared to this baseline.

We performed the same evaluation on the large Japanese-English data, including all train-

ing and test sets (see Section 5.4.1). Results are presented in Table 5.3 for the default

cbp=1000. We see the same pattern as we observed in the small development set and the

small test set in terms of accuracy (Tables 5.1 and 5.2-b), and efficiency (Table 5.2-b).

However, as expected, we see overall higher BLEU and lower efficiency, due to using larger

phrase/rule tables extracted from more training data. Table 5.3 also demonstrates that

121

Translation
Model

Accuracy
(BLEU)

Efficiency
(sec/sen)

Translation
Model

Accuracy
(BLEU)

Efficiency
(sec/sen)

PBMT 19.28 0.23 PBMT 13.16 0.52
HIERO 22.46 0.23 HIERO 14.61 0.77
S2T-hdge 24.00 0.22 S2T-hdge 15.98 2.64
S2T-full 23.73 0.24 S2T-full 16.72 5.56

(a) (b)

Table 5.2: Accuracy and efficiency of translating (a) Urdu to English and (b) Japanese to English
(small data set) test sets using phrase-based and syntax-based models.

translation performance is only slightly different when using the incremental shift-reduce

ZPAR parser instead of Berkeley parser to annotate our data. Nakazawa et al. (2015)

reported the accuracy of 18.45, 18.72, and 20.36 case-sensitive BLEU scores for PBMT,

HIERO and S2T test set baseline translations. Their PBMT uses a superior reorder-

ing model to the Moses default reordering model we used. Under the same condition

of reordering model for PBMT and case-insensitive evaluation, we observe BLEU score

improvements in our models, with about the same pattern in differences.

The overall directions we find in incorporating syntactic annotation on target language

for Urdu to English and Japanese to English translation are as follows:

(a) Syntax-based models outperform phrase-based model in translation accuracy at the

cost of translation efficiency.

(b) Within the syntax-based models, those who use linguistically informed syntactic an-

notation at a higher level than shallow chunking, i.e. full or hedge parsing, outperform

Translation Model Accuracy (BLEU) Efficiency (sec/sen)

PBMT 18.22 1.02

HIERO 20.35 4.85

S2T-hdge (Berkeley) 20.98 7.77

S2T-full (Berkeley) 21.25 10.15

S2T-hdge (ZPAR) 20.98 7.62

S2T-full (ZPAR) 21.23 11.84

Table 5.3: Accuracy and efficiency of translating Japanese to English (large data set) test sets
using phrase-based and syntax-based models.

122

non-linguistically informed hierarchical phrase-based model in terms of translation accu-

racy at the expense of translation efficiency.

(c) For both languages we could achieve an optimal operating point at maximum span

limit L, where target-side hedge-syntax MT performs just as accurate or even slightly

better than full-syntax MT.

5.5.2 Impact of Source Syntactic Annotation on Translation

So far we have evaluated the impact of syntactic annotation of the target side of an

MT model on translation performance in Urdu to English and Japanese to English. In

this section we explore the impact of incorporating syntactic annotation of the source

side on translation accuracy and efficiency and the trade-off between the two in different

syntactic richness levels. Same as Section 5.5.1, the inputs are complete non-segmented

sentences, since we still focus on separating the impact of syntax from the impact of input

granularity. Note that inputs are raw, unannotated senesces for PBMT and HIERO, but

they are syntactically annotated for tree-based T2S-shal, T2S-hdge, and T2S-full models.

In the following section (Section 5.5.3), we will use the same MT models on segmented

inputs to evaluate the effect of input segmentation on simultaneous translation.

In the current section as well as Section 5.5.3, we consider English to Japanese translation

and we do not report Urdu translation. The Urdu-English data set is originally collected

for translation into English. For each Urdu document, four reference translations are

collected. Generally by increasing the number of references BLEU is improved, particularly

for short sentence in the Urdu-English data set, since the opportunities to match the

reference increases. If we change the direction of translation, we should choose one of

the references as the source sentence and there will be only one target sentence as the

reference for the source, and as a result, BLEU significantly decreases. Therefore we

disregard providing the results on Urdu, although the ideas are general and applicable to

arbitrary language pairs.

123

5 10 15 20

14
16

18
20

22

Maximum span size (L)

B
LE
U

T2S-hdge
T2S-full
PBMT

Figure 5.11: English to Japanese (small data set) syntax-based translation accuracy versus L on
development data.

Translation Accuracy

Figure 5.11 demonstrates the effect of incorporating source-side hedge-syntax information

(T2S-hdge) at different maximum span parameter L on MT accuracy against full-syntax

model and phrase-bases model, on the development set. As opposed to target side syntactic

annotation, we observe better performance of T2S-full compared to T2S-hdge, regardless

of L value. Although as we increase L value, T2S-hdge accuracy becomes closer to T2S-

full. T2S-hdge consistently outperforms the PBMT baseline.

Table 5.4 reveals MT accuracy of PBMT and syntax-based models at various degrees of

source syntactic annotation, on development set. For consistent comparison with presented

results in previous section, we choose maximum span limit L=8. Here we notice significant

impact of syntactic annotation richness on translation accuracy. This is due to the fact that

124

Table 5.4: Translation accuracy on development data for English to Japanese (small data).

Translation Model Accuracy (BLEU)

PBMT 15.05

HIERO 19.45

T2S-shal 14.58

T2S-hdge 19.14

T2S-full 21.35

T2S models rely remarkably on source side annotation to derive translation. Lower levels of

syntactic richness may actually hurt the translation accuracy as we see that T2S-shal falls

behind HIERO and even PBMT, and T2S-hdge falls behind HIERO. We achieve the best

performance by incorporating full parse trees into MT model and input. We performed

an analysis on the kind of errors often occur in a T2S-hdge model compared to a T2S-full

model. We found that translation accuracy is noticeably lower in a T2S-hdge system when

translating compound/complex sentences. These sentences include coordinating sentences

(connected with coordinating conjunctions such as ‘and and ‘but), or subordinate clauses

(connected with subordinating conjunctions such as ‘which, ‘that, and ‘while). The reason

is that the annotations distinguishing the coordinating or embedded sentences (e.g., non-

terminals S or SBAR) are removed from the input due to the hedge transform. Thus

the whole input appears as a single sentence to the translation model, although they are

actually separate (embedded) sentences.

Translation Acc/Eff Trade-off with Syntactic Richness of Input Annotation

As explained before, a critical aspect of decoding is the trade-off between translation

accuracy/efficiency. In Section 5.5.1 we explored this trade-off at different beam settings.

Tree-to-string models are huge and the system runs out of memory during decoding.

Therefore, we binarize the rule table to help on-demand memory usage so that only the

part of the rule table that is required to translate a sentence is loaded into memory. We

noticed that beam setting does not impact efficiency of translation using the binarized

models, i.e., efficiencies are similar when beam changes. Therefore, instead of changing

125

beam size to examine translation accuracy/efficiency, in this section, we modified syntactic

richness of input annotation to various tree-to-string models.

Table 5.5 presents translation performance of various MT models for English to Japanese

translation of the development set in large data set. To study the impact of syntac-

tic richness of input annotation in tree-based models, we tried each model with inputs

with matched or unmatched annotation levels. For example, the hedge-syntax model is

combined with its matched hedge-annotated input as well as unmatched shallow- and

full-annotated inputs. Note that in all conditions, inputs are entire sentences. Also the

results for parsing the training and input data with Berkeley and ZPAR parsers are pro-

vided.

Regarding accuracy, the best performance in tree-based systems is when a translation

model is combined with its matched input: T2S-shal model has by far higher BLEU when it

receives shallow-annotated inputs as opposed to hedge- or full-annotated inputs; Likewise,

T2S-full model has its best accuracy if it receives fully syntactically annotated inputs.

However, a T2S-hdge model performs best with a fully syntactic input, about one BLEU

score higher than combining this model with hedge-syntactic input. We observe the same

trend using both parsers, i.e., relative accuracy changes in comparing different model/input

combinations is independent of the parser type. The impact of model/input combination

in translation efficiency is although visible but not significant. This is partially due to

using binarized models in decoding.

The phrase-based model shows the worst performance accuracy- and efficiency-wise. HI-

ERO outperforms T2S-shal and T2S-hdge models in terms of accuracy at the cost of

efficiency, and performs close to T2S-full model, as it was the case in the small develop-

ment set. Within best-performing tree-based systems, the type of parser makes a differ-

ence in translation performance. In general, Berkeley-parsed data provide rather better

efficiency whereas ZPAR-parsed data have slightly higher accuracy. The best overall ac-

curacy/efficiency trade-off is when a T2S-full model is combined with a fully annotated

input.

126

Table 5.5: Accuracy and efficiency of translating English to Japanese development set (large data)
using phrase-based and syntax-based models.

Translation Model Input Annotation
Accuracy
(BLEU)

Efficiency
(sec/sen)

Acc-ZPAR
(BLEU)

Eff-ZPAR
(sec/sen)

PBMT raw 24.84 2.03 24.84 2.03

HIERO raw 29.14 1.77 29.14 1.77

shallow 26.91 1.41 27.18 1.46
hedge 16.32 1.27 16.74 1.27T2S-shal
full 16.32 1.32 16.80 1.28

shallow 18.59 1.97 18.32 1.78
hedge 28.58 1.71 28.53 2.01T2S-hdge
full 29.48 1.85 29.37 1.98

shallow 17.99 1.97 18.73 1.85
hedge 26.71 1.88 27.05 2.06T2S-full
full 29.98 1.70 30.02 2.08

Test Set Results

Same as what we did for Japanese to English translation in Section 5.5.1, in Table 5.6

we report the translation performance on the English to Japanese test set using the best

configuration on the development set. We see the same pattern in accuracy as we saw in the

development set (see Table 5.4). In terms of efficiency, PBMT has the best efficiency, next

is T2S-hdge with good improvement compared to HIERO at the cost of slight accuracy

loss. T2S-full has similar efficiency to HIERO with the best accuracy than all other

models.

Results for MT performance evaluation on large English-Japanese are presented in Ta-

ble 5.7. The same pattern in the small development set in terms of accuracy and effi-

ciency (Table 5.5) holds for the large test set. Translation accuracy is slightly higher, at

the expense of lower efficiency, when the Berkeley parser is used to annotate the data as

opposed to the ZPAR parser.

The general trends we find in incorporating syntactic annotation on source language for

English to Japanese translation are as follows:

(a) In tree-to-string MT systems, syntactic richness of the input and the model has a

significant impact on MT performance. Partial syntactic annotated T2S systems, which

127

Translation Model Accuracy (BLEU) Efficiency (sec/sen)

PBMT 14.70 0.40

HIERO 19.05 1.40

T2S-hdge 18.97 0.91

T2S-full 21.22 1.39

Table 5.6: Accuracy and efficiency of translating English to Japanese test set (small data set)
using phrase-based and syntax-based models.

include shallow and hedge syntax, fall behind full syntactic T2S systems and also hierar-

chical phrase-based systems. In some cases, shallow (chunking) syntactic annotation T2S

model performs even worse than a simple phrase-based model.

(b) Source-side hedge-syntax MT is consistently less accurate than source-side full-syntax

MT for all maximum span limits L=3− 20. For the trials of L=8, efficiency of a hedge-

syntax model is often slightly better than the efficiency of a full-syntax model.

(c) In tree-to-string MT systems, the best-performing configuration is when the MT model

and the input sentence are consistent on the level of syntactic richness. (Although a hedge-

syntax model performs slightly better when it receives fully annotated inputs.) This trend

was independent of the type of parser in our experiments.

(d) In contrast to string-to-tree models, the type of parser could noticeably impact the

MT performance in tree-to-string models.

Translation Model Accuracy (BLEU) Efficiency (sec/sen)

PBMT 24.40 2.28

HIERO 29.15 2.09

T2S-hdge (Berkeley) 28.98 1.89

T2S-full (Berkeley) 30.73 1.84

T2S-hdge (ZPAR) 28.65 1.55

T2S-full (ZPAR) 30.58 1.66

Table 5.7: Accuracy and efficiency of translating English to Japanese test set (large data set)
using phrase-based and syntax-based models.

128

5.5.3 Impact of Input Segmentation on Simultaneous Translation

In simultaneous translation, the unit of translation is usually smaller than a full sentence.

Full sentences can be relatively long and this can cause a significant delay between present-

ing the translation results and the speaker’s utterance. Thus, the input is segmented into

sub-sentential units before submission to the MT module. Latency and quality of real-time

translation is a function of the segmentation strategy. An optimal segmentation minimizes

the segment length while maximizing the speed and quality of translation. Hypothetically

an optimal method should consider linguistic syntax or semantics of the language. We

evaluate and compare accuracy/latency trade-off of several syntax-based and orthographic

segmentation methods for both offline and real-time segmentation scenarios.

We combine all the translation models from the previous section with the segmented inputs

produced by four segmentation strategies. The translation models include PBMT, HIERO,

and T2S. Note that the same as the previous section, S2T is not considered since we apply

syntax on the input (source) side. Our input segmentation strategies are: (a) trivial every

n token segments (n-token), (b) punctuation-based segments where a punctuation mark

is any of [. , : ; ? ! -], (c) shallow segments in which segment boundaries are determined

by shallow chunks, and (d) hedge segments in which segment boundaries are defined by

hedges. Punctuation and n-token segments in (a) and (b) are raw, whereas shallow and

hedge segments in (c) and (d) are syntactically annotated with shallow-syntax and hedge-

syntax respectively. Note that methods (a) and (b) are not applicable to T2S models,

since these models require source-side parse tree to guide the translation. Syntactically

motivated segments (c) and (d) however, are applicable to PBMT and HIERO models

after the annotation are removed.

In the following subsections, we explore two scenarios of input segmentation and trans-

lation. In the first scenario we assume that the segmentation is performed offline, i.e.,

after receiving the complete sentence output from ASR. Hence, we use non-incremental

Berkeley parser for input annotation and segmentation. In this condition, we neglect

segmentation time and only consider translation time. In the second scenario, we report

129

real-time hedge segmentation using the incremental framework we proposed in Chapter 4.

Here, hedge segmentation process starts as soon as the first input word is received. Once

a hedge segment is confidently determined, it is provided to the MT module. We use the

incremental ZPAR parser for real-time input annotation and segmentation. In contrast

to the first scenario, we ignore translation time to be able to study hedge segmentation

time. The reason is that translation is order of magnitude slower than parsing, hence

hedge segmentation time is negligible compared to the translation.

Offline Segmentation

Table 5.8 presents the MT accuracy, efficiency, and latency of different combinations

of input segmentation and MT models on the development set. (The performance of

the same MT models on non-segmented inputs were previously reported in Table 5.7.)

The table also shows the average number of tokens per segment (Len) for each method.

For n-token segmentation with n=8, Len is 6.98 token. Note that Len is not 8 since

there might be segments shorter than 8 tokens at the end of the sentences. Punctuation-

based segmentation has the longest segments hence smallest number of segments, while

shallow-based segmentation has the shortest, but largest number of segments. Hedge-based

segments with L=8 are about 1 token longer than shallow-based segments on average, and

they are around 1.5 tokens shorter than hedge-based segments with L=16. Recall from

Section 3.4 of Chapter 3 that the average span length in English parse trees in 6.5 tokens.

This means that with L=∞ and perfect hedge segmentation, the average segment length

would be 6.5 tokens.

To report efficiency and latency results, we define two conditions. First condition is

“sequential translation”, which assumes that translation of each segment is started after

the translation of its previous segment is finished. If efficiency were defined as sum of the

time taken to translate all the segments, this condition favors segmentation methods that

produce longer (hence fewer) segments. The reason is that MT has search initialization

and I/O overhead for translating each input unit. This overhead is lower with longer

units (hence smaller number of units) such as a full sentence or entire paragraph, but

130

S
eq
u
en
ti
a
l
T
ra
n
sl
a
ti
o
n

P
a
ra
ll
el

T
ra
n
sl
a
ti
o
n

In
p
u
t
S
eg
m
en
ta
ti
on

T
ra
n
sl
at
io
n
M
o
d
el

L
en

(t
o
k
)

A
cc
u
ra
cy

(B
L
E
U
)

E
ffi
ci
en
cy

(s
ec
/
se
n
)

L
a
te
n
cy

(s
ec
/
w
)

E
ffi
ci
en
cy

(s
ec
/
se
n
)

L
a
te
n
cy

(s
ec
/
w
)

8-
to
ke
n

ra
w

P
B
M
T

6.
98

2
1
.2
3

5
.8

4
.1

1
.7

1
.7

ra
w

H
IE

R
O

6.
98

2
1
.7
1

5
.3

3
.7

1
.6

1
.5

P
u
n
ct

ra
w

P
B
M
T

11
.7
5

2
3
.7
2

3
.3

3
.3

1
.7

1
.8

ra
w

H
IE

R
O

11
.7
5

2
7
.7
4

3
.8

4
.1

2
.2

2
.4

S
h
al
lo
w

ra
w

P
B
M
T

2.
25

1
4
.7
4

2
2
.4

9
.4

4
.6

2
.2

ra
w

H
IE

R
O

2.
25

1
4
.8
6

1
2
.3

7
.9

1
.3

1
.2

an
n
ot
.

T
2S

-s
h
al

2.
25

1
4
.8
0

1
2
.2

7
.8

1
.2

1
.1

an
n
ot
.

T
2S

-h
d
ge

(L
=
8)

2.
25

1
5
.0
6

1
2
.8

8
.2

1
.3

1
.2

an
n
ot
.

T
2S

-h
d
ge

(L
=
16
)

2.
25

1
5
.0
8

1
2
.3

7
.9

1
.2

1
.1

an
n
ot
.

T
2S

-f
u
ll

2.
25

1
5
.1
0

1
2
.4

8
.0

1
.2

1
.1

H
ed
ge

ra
w

P
B
M
T

3.
28

1
9
.2
4

1
0
.1

7
.0

1
.9

1
.5

ra
w

H
IE

R
O

3.
28

2
1
.1
9

8
.7

5
.8

1
.3

1
.2

an
n
ot
.

T
2S

-s
h
al

3.
28

1
5
.0
5

8
.0

5
.3

1
.1

1
.1

(L
=
8)

an
n
ot
.

T
2S

-h
d
ge

(L
=
8)

3.
28

2
1
.4
5

8
.1

5
.4

1
.2

1
.1

an
n
ot
.

T
2S

-f
u
ll

3.
28

2
1
.5
7

8
.3

5
.5

1
.2

1
.1

H
ed
ge

ra
w

P
B
M
T

4.
76

2
0
.8
1

6
.6

4
.6

1
.6

1
.5

ra
w

H
IE

R
O

4.
76

2
3
.8
4

6
.6

4
.6

1
.6

1
.5

an
n
ot
.

T
2S

-s
h
al

4.
76

1
5
.6
1

5
.5

3
.7

1
.1

1
.1

(L
=
16
)

an
n
ot

T
2S

-h
d
ge

(L
=
16
)

4.
76

2
5
.3
1

6
.1

4
.2

1
.3

1
.3

an
n
ot
.

T
2S

-f
u
ll

4.
76

2
5
.5
1

6
.0

4
.1

1
.3

1
.3

T
ab

le
5.
8:

A
cc
u
ra
cy

an
d
effi

ci
en
cy

of
tr
an

sl
at
in
g
se
gm

en
te
d
E
n
gl
is
h
to

J
ap

an
es
e
d
ev
el
op

m
en
t
se
t
(l
ar
ge

d
at
a
se
t)
.

131

the overhead increases for shorter units such as sub-sentential segments, as the number of

segments increases and translation overheads of the segments are aggregated. As can be

seen in the table, accuracy as well as efficiency and latency results are generally determined

by length of segments in this condition.

A more fair condition could be “parallel translation” that starts translating the sentence

segments at the same time. It is a valid assumption since we are doing offline segmen-

tation and we have the entire sentence beforehand. In this condition, efficiency will be

the maximum (as opposed to sum in sequential translation) time taken to translate the

segments of a sentence, averaged over all the sentences in the source text. Latency is the

time taken to finish translating a word (i.e., the segment which contains the word) after

it’s been received, averaged over all the words in the source text. Note that in parallel

translation, translating a segment will not be delayed by translating its previous segments,

thus latency improves as opposed to sequential translation.

With “parallel translation”, the best performance in terms of accuracy, at the cost of hav-

ing the lowest efficiency and highest latency, is achieved by Punct segmentation combined

with the HIERO model (27.74 BLEU, 2.2 sec/sen, 2.4 sec/w). This is because of long

segments which results in a very accurate, though slow, translation due to having more

context at each unit of translation. Accuracy/efficiency, and similarly accuracy/latency,

trade-off of hedge segmentation combined with the hedge-syntax MT is acceptable for L=8

(21.45 BLEU, 1.2 sec/sen, 1.1 sec/w) and quite good for L=16 (25.31 BLEU, 1.3 sec/sen,

1.3 sec/w). Although the length of hedge segments is around half of that in 8-token

segmentation, accuracy of translating hedge segments is very similar to the accuracy of

8-token translation for L=8 (21.45 BLEU), and much higher than 8-token translation for

L=16 (25.31 BLEU). In fact, hedge-based segmentation model combined with T2S-hdge

for L=16 is the second best-performing combination among all. Compared to the best-

performing configuration – Punct segmentation with HIERO – the length of segments in

hedge segmentation with T2S-hdge L=16 is about 60% (7 tokens) shorter, however, trans-

lation of such hedge segments is about 38% faster and only about 9% less accurate. These

132

results suggest that hedge segmentation and annotation could be an informative decision

and the segments appear to have appropriate semantic content for translation.

While punctuation-based segmentation yields to high quality translation, it relies on a

fully punctuated input string. The output of ASR has no punctuation mark and it is often

punctuated using a classifier which decides punctuation boundaries after observing each

token. In our experiments we assumed perfect punctuation of the input, but the classifier

could have a tedious overhead on segmentation. Rangarajan Sridhar et al. (2013) reported

the processing time of about 1 second per token for punctuation-based segmentation to the

ASR output. Our syntax-based segmentation methods also assume punctuated inputs, but

the parser can be trained on a non-punctuated text. Nevertheless the possible disadvantage

of parsing without punctuations should be taken into account. Jones (1994) studied the

role of punctuation in parsing. He stated that for simple sentences use of punctuation

has little or no advantage over not using them, but for longer sentences it has significant

advantage.

Shallow-based segmentation combined with every MT model shows quite poor perfor-

mance in terms of accuracy. The main reason is that such segments are very short and

contain only 2.25 tokens on average. Moreover, the non-recursive shallow annotation of

these segments does not seem to be helpful in improving translation quality. This result

is consistent with chunk segmentation strategy combined with phrase-based MT models

reported in Rangarajan Sridhar et al. (2013). To alleviate the problem of shallow seg-

ments being too short, they concatenated neighboring chunks to form longer segments

and provide enough context for translation. They achieved remarkable accuracy improve-

ment with increasingly larger chunk sizes. Similar to their procedure, we concatenated

neighboring chunks of types NP, VP, and PP. As a result, the average length of segments

increased to 2.6 tokens per segment. The translation accuracy for shallow-based input

segmentation combined with T2S-shal for L=8 improved to 15.45 BLEU score, which is a

statically significant improvement compared to 14.80 BLEU score reported for the simple

shallow-based segmentation in Table 5.8. The efficiency and latency were improved to

133

10.0 sec/sen and 6.4 sec/w respectively in “sequential translation”, and 1.1 sec/sen and

1.0 sec/w in “parallel translation”.

Real-time Hedge Segmentation

In this section, we only focus on hedge segmentation method which is the main contribu-

tion of this thesis, and we examine the effect of hedge segmentation on real-time translation

latency. In practice, parsing the input in order to syntactically annotate it, is significantly

faster than the translation module such that parsing time is negligible compared to MT.

Thus, here we assume perfect MT efficiency (0 sec/sen) so that the simultaneous transla-

tion latency is limited to the segmentation latency. We use the incremental ZPAR parser

as opposed to Berkeley parser in the previous section. Consistent with the previous sec-

tion, we report a word-based latency, which for each word is defined as the token (or time)

difference between the word position in the sentence and the position where the partial

parse containing the word is returned from the parser. We report latency in terms of

tokens (w/w) as well as seconds (msec/w).

Table 5.9 presents MT accuracy and latency for offline and real-time hedge segmentation

with L=8 on the development data. Note that the input segments are raw for PBMT and

HIERO models, but they are annotated with the matched syntax for tree-based models.

The first half of the table, shows offline segmentation results where hedge segmentation is

performed after fully parsing the sentence via hedge transforming the result. This max-

imizes hedge parsing accuracy while also maximizing segmentation latency. The second

half of the table presents real-time segmentation results where the parser is combined

with the buffering algorithm from Chapter 4 to reduce segmentation latency. Buffering

parameter k is set to 3 so the buffer is conservative in releasing the segments. In this

scenario, hedge segmentation is performed simultaneously as the sentence is being fully

parsed. The buffering algorithm gradually releases hedge segments at each stable partial

parse result. This decreases segmentation latency at the cost of hedge parsing accuracy

loss.

134

Table 5.9: Accuracy and segmentation latency of translating segmented English to Japanese
development set (large data set) in offline and real-time segmentation modes.

Input Segmentation Translation Model
Accuracy
(BLEU)

Latency
(w/w) (msec/w)

Hedge

raw PBMT 19.41 12.4 91.5
Offline raw HIERO 21.28 12.4 91.5

annot. T2S-shal 15.26 12.4 91.5
(L=8) annot. T2S-hdge (L=8) 21.17 12.4 91.5

annot. T2S-full 21.51 12.4 91.5

Hedge

raw PBMT 19.15 8.2 49.4
Real-time raw HIERO 20.83 8.2 49.4

annot. T2S-shal 15.20 8.2 49.4
(L=8) annot. T2S-hdge (L=8) 20.90 8.2 49.4

annot. T2S-full 21.10 8.2 49.4

We observe the same pattern of accuracy compared to the previous section for offline

segmentation and Berkeley parser. The best performing model is T2S-full. T2S-hdge

slightly falls behind HIERO in offline segmentation, but it performs better than HIERO

in real-time segmentation. Latency remarkably improves moving from offline to real-time

segmentation, although translation accuracy slightly drops presumably due to higher seg-

mentation accuracy in the offline mode. At the expense of about 1-2% accuracy loss (0.27-

0.40 BLEU), we see 30% (3.5 tok) improvement in latency in terms of tokens and 40% (2.5

msec) improvement in latency in terms of seconds. The proposed segmentation strategy

performs considerably fast compared to punctuation boundary classification reported in

Rangarajan Sridhar et al. (2013), in spite of higher BLEU score in punctuation-based

segmentation.

Test Set Results

Table 5.10 shows the results of our best development set configuration for offline segmenta-

tion on the test set. We observe the same pattern in MT accuracy, efficiency, and latency

as we saw in the development set. In the parallel translation scenario, punctuation-based

segmentation combined with HIERO model has the best accuracy, lowest efficiency, and

highest latency, while hedge-based segmentation combined with T2S-hdge model (L=16)

135

Table 5.10: Accuracy and efficiency of translating segmented English to Japanese test set (large
data set).

Input
Segmentation

Trans.
Model

Accuracy
(BLEU)

Sequential Trans. Parallel Trans.
Eff.

(sec/sen)
Lat.

(sec/w)
Eff.

(sec/sen)
Lat.

(sec/w)

8-token raw HIERO 21.87 4.5 3.1 1.3 1.3

Punct raw HIERO 28.15 3.6 3.4 2.2 2.3

Hedge
(L=8)

annot.
Hedge
(L=8)

21.64 8.2 5.5 1.2 1.1

Hedge
(L=16)

annot.
Hedge
(L=16)

25.79 5.9 4.1 1.3 1.3

has noticeably better efficiency/latency at the cost of accuracy. Hedge-based segmenta-

tion combined with T2S-hdge model (L=8) performs similarly to 8-token segmentation

combined with HIERO, while Hedge-based segmentation is slightly more efficient, it is

slightly less accurate.

Table 5.11 demonstrates the best configuration for real-time hedge segmentation on the

test set. The same as in the development set, assuming a perfect MT efficiency, real-

time hedge segmentation can improve translation latency significantly at the cost of some

accuracy. On our test set, linguistic syntax models perform better than HIERO, the

non-linguistic syntax model.

The general trends we observe in segmenting the input to simultaneous translation using

syntax-based and non-syntax-based methods we investigated are as the following:

(a) In non-syntax or shallow-syntax segmentation methods, longer segments yield better

Input Segmentation Translation Model
Accuracy
(BLEU)

Latency
(w/w) (msec/w)

Offline raw HIERO 21.30 12.2 82.2
Hedge annot. T2S-hdge (L=8) 21.58 12.2 82.2
(L=8) annot. T2S-full 21.78 12.2 82.2

Real-time raw HIERO 20.98 8.0 43.2
Hedge annot. T2S-hdge (L=8) 21.19 8.0 43.2
(L=8) annot. T2S-full 21.34 8.0 43.2

Table 5.11: Accuracy and segmentation latency of translating segmented English to Japanese test
set (large data set) in offline and real-time segmentation modes.

136

translation accuracy, however, hedge-syntax method (combined with a hedge-syntax MT

model) shows pretty high accuracy in spite of producing relatively short segments. This

suggests that hedge segmentation could be effective in producing syntactically and seman-

tically informative segments of the input.

(b) Shallow-syntax segmentation performs quite poor in every configuration although we

expect significant improvement if we concatenate neighboring segments to form longer

segments.

(c) Since translating each segment regardless of its length has MT overhead, sequential

translation of the segments biasedly results in high efficiency for segmentation methods

producing longer segments. To alleviate this issue we present parallel translation results

in addition to sequential translation.

(d) Punctuation-based segmentation combined with hierarchical phrase-based MT model

shows the best translation accuracy, while the worst translation efficiency assuming paral-

lel segment translation, among all input and model combinations. Punctuation does not

exist in speech and detecting it could be a non-negligible overhead on the speech-to-speech

translation pipeline, whereas our hedge-based segmentation using the incremental parser

shows quite efficient performance.

(e) Real-time hedge segmentation, yields to comparable translation accuracy as opposed

to offline hedge segmentation while segmentation latency is remarkably reduced. Assum-

ing an optimistic translation time, real-time hedge segmentation could improve overall

accuracy/latency trade-off of simultaneous translation.

5.6 Summary

In this chapter, we investigated the impact of incorporating hedge parsing, as a partial

parsing approach, to machine translation. We compared hedge-syntax MT system with

MT systems which use other types of syntax or do not use syntactic information. We also

examined the incremental hedge parsing approach we proposed in Chapter 4 in simultane-

ous translation. We demonstrated that for non-monotonic language pairs we studied, the

knowledge of local hierarchical structures in the MT system could significantly improve

137

regular or simultaneous translation performance compared to the MT systems with non-

hierarchical shallow syntax. Our results suggest that hedge syntax could be as effective

as full syntax when they are applied to the target side of an MT system.

Chapter 6

Conclusion and Future Work

6.1 Summary

The primary goal of this research was developing a fast incremental syntactic parsing

approach that enables incorporating partial syntactic knowledge of language in real-time

language processing applications. To accomplish this goal, we proposed ‘hedge parsing’,

real-time hedge parsing, and its application in simultaneous machine translation.

We first introduced a novel partial parsing method for real-time NLP applications that

require a fast syntactic analysis of the input beyond shallow syntactic annotation. Hedge

parsing provides local internal hierarchical structure of phrases covering up to some max-

imum span, without requiring fully connected parses. The idea of constraining the span

of constituents in hedge parsing is similar to constraining the dependency length in Vine

parsing. The maximum span parameter allows tuning the annotation of internal structure

as appropriate for the application domain, trading off annotation complexity against in-

ference time. These properties make hedge parsing potentially very useful for incremental

text or speech processing, such as streaming text analysis or simultaneous translation.

One interesting characteristic of these annotations is that they allow for string segmen-

tation prior to inference, provided that the segment boundaries do not cross any hedge

boundaries. We found that baseline segmentation models did provide a significant speedup

in parsing, but that cascading errors remain a problem.

138

139

We then suggested a real-time hedge parsing framework relying on incremental shift-reduce

parsing algorithm for joint low-latency hedge parsing and segmentation. The major ad-

vantage of classifier-based shift-reduce parsing over CYK parsing is its incremental nature

as well as its linear-time complexity, which makes it suitable for real-time applications. To

ensure that the returned hedges will not change in the next stages of parsing we detected

stable intermediate parse results in the full parsing beam search lattice. To the best of

our knowledge, stability in parsing beam search space has not been studied before. Once

we recognized such stable partial parse trees, we released their complete hedges and we

delayed releasing yet-to-complete hedges until receiving next stable results. We demon-

strated that this framework is very effective in producing fast low-latency hedges.

Finally we explored the impact of hedge parsing on the performance of machine transla-

tion. We showed that we can achieve a significant improvement in translation quality by

integrating the knowledge of hedge syntax on the target language side of the translation

model compared to shallow- or no-syntax integration. This improvement is comparable to

the performance of a full-syntactically informed MT model. We also found that applying

hedge syntax of the source language side of the translation model falls behind full syntax

although again outperforms shallow syntax. Hedge segmentation and annotation of the

inputs resulted in an acceptable accuracy/latency trade-off in simultaneous translation

as opposed to alternative segmentation methods. In particular, it notably outperforms

shallow syntax segmentation and annotation.

6.2 Future Work

There are many directions of future work to pursue here. Improvements to the hedge

transform in Chapter 3, such as grouping consecutive unary nodes or POS tags under

non-terminals, could improve accuracy without greatly reducing efficiency. Combining

hedge transform with other tree transforms not discussed in this thesis, particularly those

that change the topology of the tree such as left-corner transform or regular approxima-

tion, could positively affect accuracy or efficiency. Depending on the application, hedge

140

transform could be relaxed by some conditions, for example we may want to save all NP

constituents in the transformed tree, regardless of their span lengths.

Improvements to the segmentation model in Chapter 3 could greatly improve accuracy as

well as efficiency of hedge parsing in pre-segmenting scenarios. This improvement could be

achieved through a better classifier (e.g., by feature engineering or using a neural model), or

through an improved hedge transform which allows for more accurate hedge segmentation.

To reduce the negative impact of segmentation errors to the parsing performance we could

choose fewer number of segments and those which are most likely the correct segments.

To do this, we can change the segmentation model such that it makes precision-oriented

decision (i.e., increases precision at the expense of recall) in classifying segment boundaries.

Although our preliminary results of this approach on current hedge transform does not

improve hedge parsing accuracy/efficiency trade-off, more investigation on this area is of

interest. Finally, hedgebank grammar could be used as an efficient coarse grammar to

prune the subsequent search in a full coarse-to-fine pruning model, for example in the

pipeline systems of the sort discussed in Hollingshead (2010).

Similar ideas in Chapter 4 can be used to produce syntactic segments of other types (such

as shallow bracketing) for incremental applications. Our method guarantees 100% stability

of the released segments and we expect even further improvements in latency at the cost

of reduced stability. It might be the case that if the majority of the beams, above some

specific threshold, in beam search decoding agree on the intermediate parse result, the

released segments at these points will be stable or slightly changed later during parsing.

Finding such threshold would be of interest. In addition to measuring stability—likelihood

of a partial parse remaining unchanged compared to the final parse—we could also measure

confidence—likelihood of partial correctness compared to the true parse—similarly to the

study of incremental speech recognition presented in Selfridge et al. (2011). An alternative

method to the buffering procedure is to apply a classifier at each stable partial parse to

predict hedge boundaries. This classifier can be trained using a rich feature set including

the features that are used for full parsing of the sentence.

141

Pursuing hedge segmentation and annotation in a full speech-to-speech translation pipeline,

including machine translation preceded by speech recognition and followed by text-to-

speech synthesis, is another avenue for future work. In Chapter 5 we evaluated the machine

translation component in isolation. In other words, we assumed that our system receives

the transcribed speech, translates it to the target language text, and does not convert the

target text to the target speech. Evaluating a full SST pipeline enables measuring the

latency of the other two components as well as the impact of cascading speech-recognition

errors on translation accuracy. We would like to examine the scalability of our results to

translating several languages with different morphological and syntactic properties such as

German, which has an interesting noun and verb compounding system, or Persian, which

its normal declarative sentences are of subject-object-verb structure and is a pro-drop

language, meaning that the subject of a sentence often appears at the end of the verb and

thus the end of the sentence. Such properties may also affect the speech synthesizer.

Appendix A

English Penn Treebank Tagset

142

143

Table A.1: English Penn Treebank POS tagset.

POS Tag Description POS Tag Description
Pound sign NNS Noun, plural
$ Dollar sign PDT Predeterminer
“ Opening quotation mark POS Possessive ending
” Closing quotation mark PRP Personal pronoun
, Comma PRP$ Possessive pronoun
(Opening parenthesis RB Adverb
) Closing parenthesis RBR Adverb, comparative
. Sentence terminator RBS Adverb, superlative
: Colon or ellipsis RP Particle
CC Coordinating conjunction SYM Symbol
CD Cardinal number TO “to”
DT Determiner UH Interjection
EX Existential ‘there’ VB Verb, base form
FW Foreign word VBD Verb, past tense

IN
Preposition or
subordinating conjunction

VBG
Verb, gerund or
present participle

JJ Adjective VBN Verb, past participle
JJR Adjective, comparative VBP Verb, non-3rd person singular present
JJS Adjective, superlative VBZ Verb, 3rd person singular present
LS List item marker WDT Wh-determiner
MD Modal WP Wh-pronoun
NN Noun, singular or mass WP$ Possessive wh-pronoun
NNP Proper noun, singular WRB Wh-adverb
NNPS Proper noun, plural

144

Table A.2: English Penn Treebank phrase tagset.

Phrase Tag Description

ADJP Adjective Phrase

ADVP Adverb Phrase

CONJP Conjunction Phrase

FRAG Fragment

INTJ Interjection

LST List marker

NAC Not a Constituent

NP Noun Phrase

NX Used within certain complex NPs to mark the head of the NP

PP Prepositional Phrase

PRN Parenthetical

PRT Particle

QP Quantifier Phrase

RRC Reduced Relative Clause

S Simple declarative clause

SBAR Clause introduced by a subordinating conjunction

SBARQ Direct question introduced by a wh-word or a wh-phrase

SINV Inverted declarative sentence

SQ Inverted yes/no question, or main clause of a wh-question,
following the wh-phrase in SBARQ

UCP Unlike Coordinated Phrase

VP Vereb Phrase

WHADJP Wh-adjective Phrase

WHAVP Wh-adverb Phrase

WHNP Wh-noun Phrase

WHPP Wh-prepositional Phrase

X Unknown, uncertain, or unbracketable

Appendix B

English and Chinese Constituent Head

Percolation Rules

145

146

Table B.1: Head-finding Rules for English (from the ZPAR parser (Zhang and Clark, 2011)).

Constituent Rule

ADJP
l NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS
DT FW RBR RBS SBAR RB

ADVP r RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN

CONJP r CC RB IN

FRAG r

INTJ l

LST r LS :

NAC
l NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG
JJ JJS JJR ADJP FW

NP
rd NN NNP NNPS NNS NX POS JJR; l NP; rd $ ADJP PRN; r CD;
rd JJ JJS RB QP

NX l

PP r IN TO VBG VBN RP FW

PRN l

PRT r RP

QP l $ IN NNS NN JJ RB DT CD NCD QP JJR JJS

RRC r VP NP ADVP ADJP PP

S l TO IN VP S SBAR ADJP UCP NP

SBAR
l WHNP WHPP WHADVP WHADJP IN DT S SQ SINV
SBAR FRAG

SBARQ l SQ S SINV SBARQ FRAG

SINV l VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ l VBZ VBD VBP VB MD VP SQ

UCP r

VP
l TO VBD VBN MD VBZ VB VBG VBP AUX AUXG VP
ADJP NN NNS NP

WHADJP l CC WRB JJ ADJP

WHADVP r CC WRB

WHNP l WDT WP WP$ WHADJP WHPP WHNP

WHPP r IN TO FW

X r

147

Table B.2: Head-finding Rules for Chinese (from the ZPAR parser (Zhang and Clark, 2011)).

Constituent Rule

ADJP r ADJP JJ AD; r

ADVP l CS; r ADVP AD JJ NP PP P VA VV; r

CLP r CLP M NN NP; r

CP r DEC CP ADVP IP VP; r

DNP r DEG DNP DEC QP; r

DP r QP M CLP; l DP DT OD; l

DVP r DEV AD VP; r

IP r VP IP NP; r

LCP r LCP LC; r

LST r CD NP QP; r

NP r NP NN IP NR NT; r

NN r NP NN IP NR NT; r

PP l P PP; l

PRN l PU; l

QP r M QP CLP CD OD; r

UCP r IP NP VP; r

VCD r VV VA VE; r

VP l VE VC VV VNV VPT VRD VSB VCD VP IP; l

VPT l VA VV; l

VRD l VV VA; l

VSB r VV VE; r

FRAG r VP VV NP NR NN NT; r

Bibliography

Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D., Ingria,

R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B. and

Strzalkowski, T. 1991. A procedure for quantitatively comparing the syntactic coverage

of English grammars. In E. Black (ed.), Proceedings of a workshop on Speech and natural

language, pages 306–311, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Atterer, M. and Schlangen, D. 2009. RUBISC: a robust unification-based incremental

semantic chunker. In Proceedings of the 2nd Workshop on Semantic Representation of

Spoken Language, pages 66–73.

Banerjee, S. and Lavie, A. 2005. METEOR: An automatic metric for MT evaluation with

improved correlation with human judgments. In Proceedings of the acl workshop on

intrinsic and extrinsic evaluation measures for machine translation and/or summariza-

tion, volume 29, pages 65–72.

Bangalore, S. 2000. Performance evaluation of supertagging for partial parsing. In Ad-

vances in probabilistic and other parsing technologies, pages 203–220.

Bangalore, S. and Joshi, A. K. 1999. Supertagging: An Approach to Almost Parsing.

Computational Linguistics 25(2), 237–265.

Bangalore, S., Rangarajan Sridhar, V. K., Kolan, P., Golipour, L. and Jimenez, A. 2012.

Real-time incremental speech-to-speech translation of dialogs. In Proceedings of the 2012

Conference of the NAACL:HLT , pages 437–445.

Baumann, T., Bangalore, S. and Hirschberg, J. 2014. Towards Simultaneous Interpret-

ing: The Timing of Incremental Machine Translation and Speech Synthesis. In 11th

International Workshop on Spoken Language Translation (IWSLT 2014).

Blunsom, P. and Baldwin, T. 2006. Multilingual deep lexical acquisition for HPSGs via

supertagging. In Proceedings of the 2006 conference on empirical methods in natural

language processing , pages 164–171, Association for Computational Linguistics.

148

149

Bodenstab, N., Dunlop, A., Hall, K. and Roark, B. 2011. Beam-width prediction for

efficient context-free parsing. In Proceedings of the 49th Annual Meeting of the Associ-

ation for Computational Linguistics: Human Language Technologies-Volume 1 , pages

440–449.

Bodenstab, N., Dunlop, A., Roark, B. and Hall, K. 2010. Exponential Decay Pruning

for Bottom-Up Beam-Search Parsing. In Pacific Northwest Regional NLP Workshop

(NW-NLP).

Bodenstab, N. M. 2012. Prioritization and pruning: efficient inference with weighted

context-free grammars. Ph.D.thesis, Oregon Health & Science University.

Briscoe, T. and Carroll, J. 1993. Generalized probabilistic LR parsing of natural language

(corpora) with unification-based grammars. Computational linguistics 19(1), 25–59.

Brown, P., Della Pietra, V., Della Pietra, S. and Mercer, R. 1993. The Mathematics

of Statistical Machine Translation: Parameter Estimation. Computational Linguistics

19(2), 263–311.

Brüggemann-Klein, A. and Wood, D. 2004. Balanced Context-Free Grammars, Hedge

Grammars and Pushdown Caterpillar Automata. In Extreme Markup Languages.

Cer, D. M., de Marneffe, M.-C., Jurafsky, D. and Manning, C. D. 2010. Parsing to Stanford

Dependencies: Trade-offs between Speed and Accuracy. In Nicoletta Calzolari, Khalid

Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner

and Daniel Tapias (eds.), LREC , European Language Resources Association.

Cettolo, M. and Federico, M. 2006. Text segmentation criteria for statistical machine

translation. In Proceedings of the 5th international conference on Advances in Natural

Language Processing , pages 664–673.

Chappelier, J.-C. and Rajman, M. 1998. A Generalized CYK Algorithm for Parsing

Stochastic CFG. In Proceedings of the First Workshop on Tabulation in Parsing and

Deduction, pages 133–137.

Chiang, D. 2005. A Hierarchical Phrase-based Model for Statistical Machine Translation.

In Proceedings of the 43rd Annual Meeting on Association for Computational Linguis-

tics, ACL ’05, pages 263–270, Stroudsburg, PA, USA: Association for Computational

Linguistics.

Chiang, D. 2006. An introduction to synchronous grammars. In Tutorial given at ACL

2006 .

150

Chiang, D. 2007. Hierarchical phrase-based translation. computational linguistics 33(2),

201–228.

Clark, J. H., Dyer, C., Lavie, A. and Smith, N. A. 2011. Better hypothesis testing for

statistical machine translation: Controlling for optimizer instability. In Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies: short papers-Volume 2 , pages 176–181, Association for Com-

putational Linguistics.

Clark, S. 2002. Supertagging for Combinatory Categorial Grammar. In Proceedings of the

International Workshop on Tree Adjoining Grammars, pages 19–24, Venice, Italy.

Clark, S. and Curran, J. R. 2004. Parsing the WSJ using CCG and log-linear models. In

Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics,

page 103, Association for Computational Linguistics.

Cocke, J. and Schwartz, J. 1970. Programming Languages and Their Compilers: Prelimi-

nary Notes. Courant Institute of Mathematical Sciences, New York University.

Collins, M. 1999. Head-driven Statistical Models for Natural Language Parsing .

Ph.D.thesis, University of Pennsylvania.

Collins, M. 2002. Discriminative training methods for hidden Markov models: theory and

experiments with perceptron algorithms. In Proceedings of the conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1–8.

Collins, M. and Roark, B. 2004. Incremental parsing with the perceptron algorithm. In

Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics,

page 111, Association for Computational Linguistics.

Covington, M. A. 2001. A fundamental algorithm for dependency parsing. In In Proceed-

ings of the 39th Annual ACM Southeast Conference, pages 95–102.

Demberg, V. and Keller, F. 2008. A psycholinguistically motivated version of TAG. In

Proceedings of the ninth international workshop on tree adjoining grammars and related

formalisms, Tbingen.

Demberg, V., Keller, F. and Koller, A. 2013. Incremental, predictive parsing with psy-

cholinguistically motivated tree-adjoining grammar. Computational Linguistics 39(4),

1025–1066.

151

DeNeefe, S., Knight, K., Wang, W. and Marcu, D. 2007. What Can Syntax-Based MT

Learn from Phrase-Based MT? In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL), pages 755–763.

Doddington, G. 2002. Automatic evaluation of machine translation quality using n-gram

co-occurrence statistics. In Proceedings of the second international conference on Human

Language Technology Research, pages 138–145, Morgan Kaufmann Publishers Inc.

Dreyer, M., Smith, D. A. and Smith, N. A. 2006. Vine parsing and minimum risk rerank-

ing for speed and precision. In Proceedings of the Tenth Conference on Computational

Natural Language Learning , pages 201–205.

Dunlop, A. J. 2014. Efficient Latent-Variable Grammars: Learning and Inference.

Ph.D.thesis, Oregon Health & Science University.

Eisner, J. and Smith, N. A. 2005. Parsing with soft and hard constraints on dependency

length. In Proceedings of the Ninth International Workshop on Parsing Technology ,

pages 30–41.

Eisner, J. M. 1996. Three new probabilistic models for dependency parsing: An explo-

ration. In Proceedings of the 16th conference on Computational linguistics-Volume 1 ,

pages 340–345, Association for Computational Linguistics.

Federico, M., Bentivogli, L., Paul, M. and Stüker, S. 2011. Overview of the IWSLT 2011

Evaluation Campaign. In Proceedings of International Workshop on Spoken Language

Translation.

Fügen, C., Waibel, A. and Kolss, M. 2007. Simultaneous translation of lectures and

speeches. Machine Translation 21(4), 209–252.

Fujita, T., Neubig, G., Sakti, S., Toda, T. and Nakamura, S. 2013. Simple, lexicalized

choice of translation timing for simultaneous speech translation. In Proceedings of In-

terspeech, pages 3487–3491.

Galley, M., Graehl, J., Knight, K., Marcu, D., DeNeefe, S., Wang, W. and Thayer, I.

2006. Scalable inference and training of context-rich syntactic translation models. In

Proceedings of the 21st International Conference on Computational Linguistics and the

44th annual meeting of the Association for Computational Linguistics, pages 961–968,

Association for Computational Linguistics.

152

Gao, Q. and Vogel, S. 2008. Parallel implementations of word alignment tool. In Software

Engineering, Testing, and Quality Assurance for Natural Language Processing , pages

49–57, Association for Computational Linguistics.

Glaysher, E. and Moldovan, D. 2006. Speeding up full syntactic parsing by leveraging

partial parsing decisions. In Proceedings of the COLING/ACL on Main conference poster

sessions, pages 295–300, Association for Computational Linguistics.

Goldberg, Y., Zhao, K. and Huang, L. 2013. Efficient Implementation of Beam-Search

Incremental Parsers. In Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics., pages 628–633, Association for Computational Linguistics.

Hassan, H., Sima’an, K. and Way, A. 2009. A syntactified direct translation model with

linear-time decoding. In Proceedings of the 2009 Conference on EMNLP , pages 1182–

1191.

Heafield, K. 2011. KenLM: Faster and Smaller Language Model Queries. In Proceedings of

the EMNLP 2011 Sixth Workshop on Statistical Machine Translation, pages 187–197,

Edinburgh, Scotland, United Kingdom.

Hefny, A., Hassan, H. and Bahgat, M. 2011. Incremental combinatory categorial grammar

and its derivations. In Computational Linguistics and Intelligent Text Processing , pages

96–108.

Hollingshead, K. 2010. Formalizing the use and characteristics of constraints in pipeline

systems. Ph.D.thesis, Oregon Health & Science University.

Hollingshead, K., Fisher, S. and Roark, B. 2005. Comparing and combining finite-state and

context-free parsers. In Proceedings of the conference on Human Language Technology

and Empirical Methods in Natural Language Processing , pages 787–794, Association for

Computational Linguistics.

Hollingshead, K. and Roark, B. 2007. Pipeline Iteration. In Proceedings of the 45st Annual

Meeting on Association for Computational Linguistics, pages 952–959, Prague, Czech

Republic.

Huang, L., Jiang, W. and Liu, Q. 2009. Bilingually-constrained (monolingual) shift-reduce

parsing. In Proceedings of the 2009 Conference on Empirical Methods in Natural Lan-

guage Processing: Volume 3-Volume 3 , pages 1222–1231, Association for Computational

Linguistics.

153

Huang, L., Knight, K. and Joshi, A. 2006. A Syntax-Directed Translator with Extended

Domain of Locality. In Proceedings of the Workshop on Computationally Hard Problems

and Joint Inference in Speech and Language Processing , pages 1–8, New York City, New

York: Association for Computational Linguistics.

Huang, L. and Sagae, K. 2010. Dynamic programming for linear-time incremental pars-

ing. In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 1077–1086, Association for Computational Linguistics.

Johnson, M. 1998. PCFG models of linguistic tree representations. Computational Lin-

guistics 24(4), 613–632.

Jones, B. E. 1994. Exploring the role of punctuation in parsing natural text. In Pro-

ceedings of the 15th conference on Computational linguistics-Volume 1 , pages 421–425,

Association for Computational Linguistics.

Joshi, A. K. and Schabes, Y. 1997. Tree-adjoining grammars. In Handbook of formal

languages, pages 69–123, Springer.

Joshi, A. K. and Srinivas, B. 1994. Disambiguation of super parts of speech (or supertags):

Almost parsing. In Proceedings of the 15th Conference on Computational Linguistics-

Volume 1 , pages 154–160.

Jurafsky, D. and Martin, J. H. 2009. Speech and Language Processing (2nd Edition). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc.

Karlsson, F., Voutilainen, A., Heikkilae, J. and Anttila, A. 1995. Constraint Grammar: a

language-independent system for parsing unrestricted text , volume 4. Walter de Gruyter.

Kasami, T. 1965. An efficient recognition and syntax analysis algorithm for context-free

languages. Technical Report AFCRL-65-758, Air Force Cambridge Research Laboratory,

Bedford, MA.

Kato, Y., Matsubara, S. and Inagaki, Y. 2004. Stochastically evaluating the validity of

partial parse trees in incremental parsing. In Proceedings of the Workshop on Incremen-

tal Parsing: Bringing Engineering and Cognition Together , pages 9–15, Association for

Computational Linguistics.

Koehn, P. 2004. Pharaoh: a beam search decoder for phrase-based statistical machine

translation models. In Machine translation: From real users to research, pages 115–124,

Springer.

154

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,

B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A. and Herbsts, E.

2007. Moses: Open source toolkit for statistical machine translation. In Proceedings of

the 45th Annual Meeting of the ACL Interactive Poster and Demonstration Sessions,

pages 177–180.

Kolss, M., Vogel, S. and Waibel, A. 2008. Stream decoding for simultaneous spoken lan-

guage translation. In Interspeech, pages 2735–2738, ISCA.

Levy, R. and Manning, C. 2003. Is it harder to parse Chinese, or the Chinese Treebank? In

Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-

Volume 1 , pages 439–446, Association for Computational Linguistics.

Liu, Y., Liu, Q. and Lin, S. 2006. Tree-to-string alignment template for statistical machine

translation. In Proceedings of the 21st International Conference on Computational Lin-

guistics and the 44th annual meeting of the Association for Computational Linguistics,

pages 609–616, Association for Computational Linguistics.

Liu, Y., Liu, Q. and Lü, Y. 2011. Adjoining tree-to-string translation. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies-Volume 1 , pages 1278–1287, Association for Computational Lin-

guistics.

Lopez, A. 2008. Statistical Machine Translation. ACM Computing Surveys 40(3), 1–49.

Manning, C. D. and Schütze, H. 1999. Foundations of statistical natural language process-

ing , volume 999. MIT Press.

Marcu, D., Wang, W., Echihabi, A. and Knight, K. 2006. SPMT: Statistical Machine

Translation with Syntactified Target Language Phrases. In Proceedings of the 2006 Con-

ference on Empirical Methods in Natural Language Processing , pages 44–52, Sydney,

Australia: Association for Computational Linguistics.

Marcu, D. and Wong, W. 2002. A phrase-based, joint probability model for statistical

machine translation. In Proceedings of the ACL-02 conference on Empirical methods in

natural language processing-Volume 10 , pages 133–139, Association for Computational

Linguistics.

Marcus, M. P., Marcinkiewicz, M. A. and Santorini, B. 1993. Building a large annotated

corpus of English: The Penn Treebank. Computational linguistics 19(2), 313–330.

155

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A. and Taylor, A. 1999. Treebank-3.

Linguistic Data Consortium, Philadelphia.

Matsuzaki, T., Miyao, Y. and Tsujii, J. 2007. Efficient HPSG Parsing with Supertagging

and CFG-filtering. In Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence (IJCAI-07), pages 1671–1676.

Matsuzaki, T., Miyao, Y. and Tsujii, J. 2005. Probabilistic CFG with latent annotations.

In Proceedings of the 43rd Annual Meeting on Association for Computational Linguis-

tics, pages 75–82, Association for Computational Linguistics.

Matusov, E., Hillard, D., Magimai-Doss, M., Hakkani-Tür, D., Ostendorf, M. and Ney, H.

2007. Improving speech translation with automatic boundary prediction. In Proceedings

of Interspeech.

McDonald, R., Hall, K. and Mann, G. 2010. Distributed training strategies for the struc-

tured perceptron. In Human Language Technologies: The 2010 Annual Conference of

the North American Chapter of the Association for Computational Linguistics, pages

456–464, Association for Computational Linguistics.

McDonald, R., Pereira, F., Ribarov, K. and Hajič, J. 2005. Non-projective dependency

parsing using spanning tree algorithms. In Proceedings of the conference on Human

Language Technology and Empirical Methods in Natural Language Processing , pages

523–530, Association for Computational Linguistics.

Mi, H., Huang, L. and Liu, Q. 2008. Forest-Based Translation. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics, pages 192–199.

Nakazawa, T., Mino, H., Goto, I., Neubig, G., Kurohashi, S. and Sumita, E. 2015.

Overview of the 2nd Workshop on Asian Translation. In Proceedings of the 2nd Work-

shop on Asian Translation (WAT2015), pages 1–28, Kyoto, Japan.

Nesson, R., Shieber, S. M. and Rush, A. 2006. Induction of Probabilistic Synchronous Tree-

Insertion Grammars for Machine Translation. In 5th Conference of the Association for

Machine Translation in the Americas (AMTA), Boston, Massachusetts.

Neubig, G., Watanabe, T., Sumita, E., Mori, S. and Kawahara, T. 2011. An unsupervised

model for joint phrase alignment and extraction. In Proceedings of the 49th Annual Meet-

ing of the Association for Computational Linguistics: Human Language Technologies-

Volume 1 , pages 632–641, Association for Computational Linguistics.

156

Nivre, J. 2003. An Efficient Algorithm for Projective Dependency Parsing. In Proceedings

of the 8th International Workshop on Parsing Technologies (IWPT), pages 149–160.

Och, F. J., Tillmann, C. and Ney, H. 1999. Improved Alignment models for Statistical Ma-

chine Translation. In Proc. of the Joint SIGDAT Conf. on Empirical Methods in Natural

Language Processing and Very Large Corpora (EMNLP99), pages 20–28, University of

Maryland, College Park, MD, USA.

Och, F. J. 2003. Minimum error rate training in statistical machine translation. In Proceed-

ings of the 41st Annual Meeting on Association for Computational Linguistics-Volume

1 , pages 160–167, Association for Computational Linguistics.

Och, F. J. and Ney, H. 2002. Discriminative training and maximum entropy models for

statistical machine translation. In Proceedings of the 40th Annual Meeting on Asso-

ciation for Computational Linguistics, pages 295–302, Association for Computational

Linguistics.

Och, F. J. and Ney, H. 2004. The alignment template approach to statistical machine

translation. Computational linguistics 30(4), 417–449.

Oda, Y., Neubig, G., Sakti, S., Toda, T. and Nakamura, S. 2014. Optimizing Segmenta-

tion Strategies for Simultaneous Speech Translation. In Proceedings of the 52nd Annual

Meeting of the ACL, pages 551–556.

Oda, Y., Neubig, G., Sakti, S., Toda, T. and Nakamura, S. 2015. Syntax-based Simultane-

ous Translation through Prediction of Unseen Syntactic Constituents. In The 53rd An-

nual Meeting of the Association for Computational Linguistics (ACL), Beijing, China.

Papineni, K., Roukos, S., Ward, T. and jing Zhu, W. 2002. BLEU: a method for automatic

evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics, pages 311–318.

Petrov, S., Barrett, L., Thibaux, R. and Klein, D. 2006. Learning accurate, compact, and

interpretable tree annotation. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for Compu-

tational Linguistics, pages 433–440, Association for Computational Linguistics.

Petrov, S. and Klein, D. 2007a. Improved Inference for Unlexicalized Parsing. In Human

Language Technologies 2007: The Conference of the North American Chapter of the

Association for Computational Linguistics, Proceedings of the Main Conference, pages

404–411.

157

Petrov, S. and Klein, D. 2007b. Learning and inference for hierarchically split PCFGs.

In Proceedings of the 22nd national conference on Artificial intelligence - Volume 2 ,

AAAI’07, pages 1663–1666.

Pöchhacker, F. 2002. The Interpreting Studies Reader . New York: Routledge (Taylor and

Francis).

Post, M., Callison-Burch, C. and Osborne, M. 2012. Constructing parallel corpora for six

indian languages via crowdsourcing. In Proceedings of the Seventh Workshop on Statis-

tical Machine Translation, pages 401–409, Association for Computational Linguistics.

Prud’hommeaux, E. T. 2012. Alignment of narrative retellings for automated neuropsy-

chological assessment . Ph.D.thesis, Oregon Health & Science University.

Ramshaw, L. and Marcus, M. 1995. Text Chunking Using Transformation-Based Learning.

In Proceedings of the Third ACL Workshop on Very Large Corpora.

Rangarajan Sridhar, K. V., Chen, J., Bangalore, S., Ljolje, A. and Chengalvarayan, R.

2013. Segmentation Strategies for Streaming Speech Translation. In Proceedings of the

2013 Conference of the NAACL:HLT , pages 230–238.

Roark, B. and Sproat, R. 2007. Computational Approaches to Morphology and Syntax .

Oxford Surveys in Syntax & Morphology, OUP Oxford.

Roark, B. 2001. Probabilistic top-down parsing and language modeling. Computational

linguistics 27(2), 249–276.

Roark, B. 2004. Robust garden path parsing. Natural language engineering 10(01), 1–24.

Roark, B. and Hollingshead, K. 2008. Classifying chart cells for quadratic complexity

context-free inference. In Proceedings of the 22nd International Conference on Compu-

tational Linguistics-Volume 1 , pages 745–751, Association for Computational Linguis-

tics.

Roark, B., Hollingshead, K. and Bodenstab, N. 2012. Finite-State Chart Constraints for

Reduced Complexity Context-Free Parsing Pipelines. Computational Linguistics 38(4),

719–753.

Rush, A. M. and Petrov, S. 2012. Vine pruning for efficient multi-pass dependency parsing.

In Proceedings of the 2012 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, pages 498–507,

Association for Computational Linguistics.

158

Ryu, K., Matsubara, S. and Inagaki, Y. 2006. Simultaneous English-Japanese spoken lan-

guage translation based on incremental dependency parsing and transfer. In Proceedings

of the COLING/ACL on Main conference poster sessions, pages 683–690, Association

for Computational Linguistics.

Sagae, K. and Lavie, A. 2005. A classifier-based parser with linear run-time complexity. In

Proceedings of the Ninth International Workshop on Parsing Technology , pages 125–132,

Association for Computational Linguistics.

Sang, E. F. T. K. and Buchholz, S. 2000. Introduction to the CoNLL-2000 Shared Task:

Chunking. In Proceedings of Conference on Computational Natural Language Learning

(CoNLL), pages 127–132.

Sankaran, B., Grewal, A. and Sarkar, A. 2010. Incremental decoding for phrase-based

statistical machine translation. In Proceedings of the Joint Fifth Workshop on Statistical

Machine Translation and MetricsMATR, WMT ’10, pages 216–223, Stroudsburg, PA,

USA: Association for Computational Linguistics.

Saraclar, M., Riley, M., Bocchieri, E. and Goffin, V. 2002. Towards automatic closed

captioning: low latency real time broadcast news transcription. In Proceedings of Inter-

speech.

Sarawagi, S. and Cohen, W. W. 2004. Semi-Markov Conditional Random Fields for Infor-

mation Extraction. In NIPS , volume 17, pages 1185–1192.

Sarkar, A. 2007. Combining supertagging and lexicalized tree-adjoining grammar parsing.

Complexity of Lexical Descriptions and its Relevance to Natural Language Processing:

A Supertagging Approach .

Schlangen, D. and Skantze, G. 2009. A general, abstract model of incremental dialogue

processing. In Proceedings of the 12th Conference of EACL, pages 710–718.

Schuler, W., Wu, S. and Schwartz, L. 2009. A framework for fast incremental interpretation

during speech decoding. Computational Linguistics 35(3), 313–343.

Selfridge, E. O., Arizmendi, I., Heeman, P. A. and Williams, J. D. 2011. Stability and

accuracy in incremental speech recognition. In Proceedings of the SIGDIAL 2011 Con-

ference, pages 110–119, Association for Computational Linguistics.

Shavarani, H. S., Siahbani, M., Seraj, R. M. and Sarkar, A. 2015. Learning Segmentations

that Balance Latency versus Quality in Spoken Language Translation. In 12th Interna-

tional Workshop on Spoken Language Translation (IWSLT 2015), pages 217–224, Da

Nang, Vietnam.

159

Shen, L. and Joshi, A. K. 2005. Incremental LTAG parsing. In Proceedings of the Confer-

ence on HLT:EMNLP , pages 811–818.

Siahbani, M., Sankaran, B. and Sarkar, A. 2013. Efficient Left-to-Right Hierarchical

Phrase-Based Translation with Improved Reordering. In Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Processing, EMNLP, Seattle, Wash-

ington, USA, pages 1089–1099.

Siahbani, M., Seraj, R. M., Sankaran, B. and Sarkar, A. 2014. Incremental translation us-

ing hierarchical phrase-based translation system. In Spoken Language Technology Work-

shop (SLT), 2014 IEEE , pages 71–76, IEEE.

Skantze, G. and Hjalmarsson, A. 2010. Towards incremental speech generation in dialogue

systems. In Proceedings of the 11th Annual Meeting of the Special Interest Group on

Discourse and Dialogue, pages 1–8.

Srinivas, B. 1996. ”almost parsing” technique for language modeling. In The 4th Inter-

national Conference on Spoken Language Processing, Philadelphia, PA, USA, October

3-6, 1996 .

Steedman, M. 1986. Combinators and grammars. R. Oehrle, E. Bach, D. Wheeler (Eds.),

Categorial Grammars and Natural Language Structures, Foris, Dordrecht.

Tamura, A., Watanabe, T., Sumita, E., Takamura, H. and Okumura, M. 2013. Part-of-

Speech Induction in Dependency Trees for Statistical Machine Translation. In Proceed-

ings of the 51st Annual Meeting of the Association for Computational Linguistics, pages

841–851, Association for Computational Linguistics.

Venugopal, A., Vogel, S. and Waibel, A. 2003. Effective phrase translation extraction

from alignment models. In Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics-Volume 1 , pages 319–326, Association for Computational

Linguistics.

Venugopal, A., Zollmann, A. and Vogel, S. 2007. An Efficient Two-Pass Approach to

Synchronous-CFG Driven Statistical MT. In Proceedings of NAACL HLT , pages 500–

507.

Vogel, S., Ney, H. and Tillmann, C. 1996. HMM-based word alignment in statistical

translation. In Proceedings of the 16th conference on Computational linguistics-Volume

2 , pages 836–841.

160

Vogel, S., Och, F. J., Tillmann, C., Nießen, S., Sawaf, H. and Ney, H. 2000. Statisti-

cal methods for machine translation. In Verbmobil: Foundations of Speech-to-Speech

Translation, pages 377–393, Springer.

Wang, M., Sagae, K. and Mitamura, T. 2006a. A fast, accurate deterministic parser for

Chinese. In Proceedings of the 21st International Conference on Computational Lin-

guistics and the 44th annual meeting of the Association for Computational Linguistics,

pages 425–432, Association for Computational Linguistics.

Wang, W. and Harper, M. P. 2002. The SuperARV language model: Investigating the

effectiveness of tightly integrating multiple knowledge sources. In Proceedings of the

ACL-02 conference on Empirical methods in natural language processing-Volume 10 ,

pages 238–247, Association for Computational Linguistics.

Wang, W., Harper, M. P. and Stolcke, A. 2003. The robustness of an almost-parsing

language model given errorful training data. In Acoustics, Speech, and Signal Processing,

2003. Proceedings.(ICASSP’03)., volume 1, pages I–240, IEEE.

Wang, X., Lin, X., Yu, D., Tian, H. and Wu, X. 2006b. Chinese Word Segmentation with

Maximum Entropy and N-gram Language Model. In Proceedings of the Fifth SIGHAN

Workshop on Chinese Language Processing , pages 138–141, Sydney, Australia: Associ-

ation for Computational Linguistics.

Wang, Y.-Y. and Waibel, A. 1997. Decoding algorithm in statistical machine transla-

tion. In Proceedings of the eighth conference on European chapter of the Association for

Computational Linguistics, pages 366–372, Association for Computational Linguistics.

Wolfel, M., Kolss, M., Kraft, F., Niehues, J., Paulik, M. andWaibel, A. 2008. Simultaneous

machine translation of German lectures into English: Investigating research challenges

for the future. In Spoken Language Technology Workshop, 2008., pages 233–236, IEEE.

Xue, N., Xia, F., Chiou, F.-D. and Palmer, M. 2005. The Penn Chinese TreeBank: Phrase

structure annotation of a large corpus. Natural language engineering 11(02), 207–238.

Yarmohammadi, M. 2014. Discriminative training with perceptron algorithm for pos tag-

ging task. Technical Report CSLU-2014-001.

Yarmohammadi, M., Dunlop, A. and Roark, B. 2014. Transforming trees into hedges and

parsing with ”hedgebank” grammars. In Proceedings of the 52nd Annual Meeting of the

ACL, pages 797–802, Baltimore, Maryland: Association for Computational Linguistics.

161

Yarmohammadi, M., Sridhar, V. K. R., Bangalore, S. and Sankaran, B. 2013. Incremental

Segmentation and Decoding Strategies for Simultaneous Translation. In Proceedings

of the 6th International Joint Conference on Natural Language Processing (IJCNLP),

pages 1032–1036.

Younger, D. H. 1967. Recognition and parsing of context-free languages in time n 3.

Information and control 10(2), 189–208.

Zhang, D., Li, M., Li, C.-H. and Zhou, M. 2007a. Phrase Reordering Model Integrating

Syntactic Knowledge for SMT. In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL), pages 533–540.

Zhang, H., Fang, L., Xu, P. and Wu, X. 2011. Binarized forest to string translation. In Pro-

ceedings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies-Volume 1 , pages 835–845, Association for Computa-

tional Linguistics.

Zhang, M., Jiang, H., Aw, A., Sun, J., Li, S. and Tan, C. L. 2007b. A Tree-to-Tree

Alignment-based Model for Statistical Machine Translation. In Proceedings of the MT

Summit XI .

Zhang, Y., Vogel, S. and Waibel, A. 2003. Integrated phrase segmentation and align-

ment algorithm for statistical machine translation. In Natural Language Processing and

Knowledge Engineering, 2003., pages 567–573, IEEE.

Zhang, Y. and Clark, S. 2008. A tale of two parsers: investigating and combining graph-

based and transition-based dependency parsing using beam-search. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing , pages 562–571,

Association for Computational Linguistics.

Zhang, Y. and Clark, S. 2011. Syntactic processing using the generalized perceptron and

beam search. Computational Linguistics 37(1), 105–151.

Zhang, Y. and Nivre, J. 2011. Transition-based dependency parsing with rich non-local fea-

tures. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies: short papers-Volume 2 , pages 188–193,

Association for Computational Linguistics.

Zollmann, A. and Venugopal, A. 2006. Syntax augmented machine translation via chart

parsing. In Proceedings of the Workshop on Statistical Machine Translation, pages 138–

141, Association for Computational Linguistics.

162

Zollmann, A., Venugopal, A., Och, F. and Ponte, J. 2008. A systematic comparison of

phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings of the

22nd International Conference on Computational Linguistics-Volume 1 , pages 1145–

1152, Association for Computational Linguistics.

