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Abstract  

Shotgun proteomics is the most common mass spectrometry-based proteomics method for identifying and 

quantifying proteins present within a sample. Despite improvements in mass spectrometry tools, the issue 

dealing with inferring proteins and quantifying them from peptides still persists. The choice of protein 

sequence databases and the underlying genomic complexities of organisms are often considered sources of 

peptide degeneracy that lead to varying protein identifications and quantifications. In this thesis, the 

differences between four protein sequence database sources (Uniprot, NCBI, Ensembl, and IPI) were 

compared using redundant and non-redundant protein counts and shared and unique peptide counts for two 

higher eukaryotic organisms (human and mouse) and a representative lower eukaryotic organism (yeast). It 

was also demonstrated that basic parsimony logic in the protein inference process yields protein and peptide 

identifications in real biological samples of higher eukaryotic organisms that are dependent on the protein 

sequence database of choice. To address parsimony logic shortcomings, two versions of extended parsimony 

clustering algorithms (Proteomic Analysis Workflow (PAW) clustering and Scaffold-like clustering) that 

group proteins with highly significant shared peptide evidence but low unique peptide evidence were 

implemented and tested. For human samples, these extended parsimony clustering algorithms have 

significantly reduced both mean shared peptide proportions across databases compared to that of basic 

parsimony logic, and produced protein identification numbers that are largely independent of protein 

sequence database choice. Few differences in protein and peptide characteristics were observed for yeast 

samples before or after implementing PAW or Scaffold-like clustering algorithms. Silhouette scores and gene 

enrichment analysis on the clusters of the extended parsimony clustering algorithms demonstrated that they 

are biologically and functionally coherent. From a quantitative perspective, there was a significant increase 

in mean quantitative information content (QIC) in human samples after PAW or Scaffold-like clustering 

compared to QIC computed after basic parsimony logic. The variation in the QIC values of human samples 

significantly decreased across databases after implementation of PAW or Scaffold-like algorithms. 

KEYWORDS: Shotgun Proteomics, Protein Sequence Databases, Redundant, Unique, Shared, Proteomics 

Analysis Workflow Clustering, Scaffold-like Clustering, Quantitative Information Content
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Introduction 

1.1. Shotgun Proteomics 

The proteome is the entire set of proteins produced or modified by an organism or a system, and 

proteomics is the large-scale study of those proteins (Anderson and Anderson 1996; Graves and Haystead 

2002; Pandey and Mann 2000). In less than two decades, proteomics has matured into a powerful arsenal 

of tools capable of identifying and quantifying thousands of proteins in biological samples (Gygi and 

Aebersold 2000; Hebert et al. 2014; Keshishian et al. 2015; Pandey and Mann 2000). Proteomic experiments 

are driven by continual advances in biological mass spectrometry, computational biology, and 

bioinformatics (Aebersold and Mann 2003; Gygi et al. 2000; Makarov et al. 2006; Mann et al. 2001; Senko 

et al. 2013; Yates 2000).  

Most proteomic experiments do not perform mass spectrometry directly on intact proteins (known 

as top-down proteomics (Kelleher 2004; Yates and Kelleher 2013)), but instead perform analyses of 

peptides produced by proteolytic digestions of proteins to characterize the biological samples. This bottom-

up methodology is also known as shotgun proteomics (McDonald and Yates 2002; Yates et al. 2009; Zhang 

et al. 2013). In a typical shotgun proteomics experiment, enzymatic digestion of a protein mixture, usually 

with trypsin, generates an extremely complex peptide mixture.  

Elaborate separation techniques are used in conjunction with electrospray tandem mass 

spectrometry (MS/MS) to identify individual peptide sequences. Peptide spectral matches (PSMs) are 

obtained from MS/MS spectra by comparison to peptide sequences generated from in silico digestions of 

protein databases available from several sources. The scoring algorithms that assign the most likely peptides 

to the spectra are known as search engines (Baldwin 2004; Domon and Aebersold 2006; Matthiesen 2007). 

Overall, the goal of shotgun proteomics is to utilize the peptide information obtained from MS/MS to infer 

the proteins present within the sample (Huang et al. 2012; Nesvizhskii et al. 2003; Nesvizhskii and 

Aebersold 2005; Ma et al. 2012).  

Shotgun proteomics methods are widely used because peptide mixtures are easier to process 

chemically (typically by liquid chromatography) and to sequence using MS/MS than intact proteins. 

Advances in mass spectrometry instrumentation have dramatically improved the accuracy of peptides mass 
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measurements, increased sensitivities for detecting low-abundance peptides by several orders of 

magnitudes, and sped up the sequencing of peptides such that complete proteomes can be measured in only 

hours (Hebert et al. 2014; Makarov et al. 2006; Senko et al. 2013). 

However, a major challenge associated with shotgun proteomics has not improved; namely, the 

difficulty in inferring proteins from their constituent peptides (Nesvizhskii and Aebersold 2005). Upon the 

digestion of the sample into peptides, it is hard to associate peptides to its parent proteins. Peptides liberated 

during digestion that can arise from multiple proteins are called degenerate or shared peptides. In contrast 

to unique peptides that provide immediate and direct information about their parent proteins, shared peptides 

create ambiguities in determining their respective parent proteins (Nesvizhskii and Aebersold 2005; 

Nesvizhskii 2007; Duncan et al. 2010). 

1.2. Protein Inference 

Determining the likely proteins present in a complex biological sample from a collection of 

partially accurate peptide sequences is challenging. Advances in instrumentation have improved the quality 

of mass spectrometry data and increased the numbers of sequence assignments. Data analysis advances have 

allowed more precise estimates of peptide sequences errors and the development of methods for reducing 

those errors to manageable levels (Elias and Gygi 2007; Keller et al. 2002; Nesvizhskii 2010).  

The general logic for protein inference is well described in Nesvizhskii and Aerbersold 2005 and 

can take many algorithmic forms (Huang et al. 2012; Nesvizhskii et al. 2003; Serang et al. 2010; Zhang et 

al. 2007). Each peptide sequence assigned to a tandem mass spectrum by a search engine will have one or 

more associated proteins (typically labeled with the protein database accessions). Peptides associated with 

single protein labels are called unique (here with respect to the protein database used in the search) peptides. 

The peptides that have multi-protein labels (potentially coming from more than one protein) are known as 

shared peptides. Figure 1.1 illustrates how proteins can be either distinguishable or indistinguishable 

depending on unique and shared peptide evidence.  

The assignment of protein labels to peptide sequences by search engines allows the set of assigned 

peptides to be determined for each protein in the protein database. Protein inference is basically a set cover 
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problem (https://en.wikipedia.org/wiki/Set_cover_problem) where the goal is to determine the minimal 

number of peptide sets (the proteins) that can explain all observed peptides (the confidently identified 

PSMs). This minimal list is commonly referred to as a parsimonious protein list (a common method to 

generate a parsimonious list is to remove proteins that are subsets of other proteins based on peptide 

evidence) and has been a de facto proteomics reporting standard since 2005 (Bradshaw et al. 2006). It is 

important to recognize that parsimonious protein lists are most often accompanied by a redefinition of 

unique and shared peptides. Before protein inference, shared and unique peptide status are defined with 

respect to the protein sequence database. Typically, after protein inference, shared and unique peptide status 

are then defined with respect to the parsimonious protein list (see Fig. 1.1).  

While instrument and analysis advances have improved many aspects of protein inference, some 

factors are beyond the experimental data. In higher eukaryotic organisms such as humans and mice, single-

nucleotide polymorphisms, RNA editing, alternate splicing, and post-translational modifications can yield 

similar protein products (Rappsilber and Mann 2002) making protein inference more difficult. The majority 

of genes in higher organisms have multiple introns in contrast to lower genomes like yeast where introns 

are rare. Advances in genomic sequencing technologies have dramatically increased the number of available 

protein sequence databases for a wide variety of organisms. There are now several large repositories of 

genomic and protein sequences, and they can vary considerably in the completeness and complexity of their 

available sequences. 

1.3. Protein Databases 

The majority of proteomics experiments are shotgun proteomics and nearly all bottom-up 

proteomics analyses use search engines, such as MASCOT (Perkins et al. 1999), X!Tandem (Craig and 

Beavis 2004), and SEQUEST (Eng et al. 1994), in conjunction with protein databases to characterize 

biological samples. Despite the central role that protein databases play in proteomics, there is little consensus 

on database choices, particularly for important research organisms such as human and mouse. There are 

several organizations that produce protein sequence databases suitable for proteomics use such as the 

National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov), the Universal 

Protein Resource (Uniprot, http://www.uniprot.org), the European Bioinformatics Institute and Wellcome 

https://en.wikipedia.org/wiki/Set_cover_problem
http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
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Trust Sanger Institute joint project (Ensembl, www.ensembl.org), and the International Protein Index that 

was maintained by the European Bioinformatics Institute (EBI) and Ensembl (IPI, www.ebi.ac.uk/ipi). 

The NCBI database is an extremely large sequence repository with translations of nucleotide 

sequences from DNA Data Bank of Japan (DDBJ), EMBL Data Library, and GenBank databases. To 

manage the large number of sequences and facilitate biological research, protein sequences are processed 

to create a smaller set of Reference Sequences (Pruit et al. 2005) (RefSeq, 

http://www.ncbi.nlm.nih.gov/refseq/about/). RefSeq database records are curated, non-redundant, and 

explicitly link genomic, transcript, and protein sequences. Due to a good balance of completeness, 

redundancy, and high quality of sequence annotations, RefSeq protein databases are often used for 

protein/peptide identification in shotgun proteomic studies.  

UniProt (Bairoch et al. 2005) is a consortium between the Swiss Institute of Bioinformatics (SIB), 

the European Bioinformatics Institute (EBI), and the Protein Information Resource (PIR). Uniprot is 

primarily focused on maintaining high-quality protein sequence databases. The UniProt Knowledgebase is 

composed of two protein database sections: Swiss-Prot and TrEMBL. The Swiss-Prot database is a manually 

curated, non-redundant database that includes rich annotations for all of its sequences. The curator selects 

one canonical protein sequence to represent each gene and any alternative protein forms (isoforms) are 

annotated as differences with respect to the canonical sequence. Protein sequences from UniProt may have 

large numbers of annotated isoforms for some species (for Swiss-Prot entries only), and protein databases 

can contain just the canonical Swiss-Prot sequences, or contain both canonical and isoform sequences. 

The available protein annotations for Swiss-Prot include properties such as functions of proteins, 

Gene Ontology (GO) terms, post-translational modifications, domains, secondary and quaternary structures, 

similarities to other proteins, pathways of proteins, sequence conflicts, and cross-references to many other 

biological databases. Because of its high quality protein annotations, Swiss-Prot databases are not only used 

widely in proteomic studies, but also for understanding the functional and biological properties of proteins 

(Boeckmann et al. 2005).  

http://www.ensembl.org/
http://www.ebi.ac.uk/ipi
http://www.ncbi.nlm.nih.gov/refseq/about/
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Because such a highly curated database is labor-intensive and time consuming to generate, the 

TrEMBL (Translation to EMBL) database was created to automatically annotate proteins and incorporate 

new protein sequences more quickly (Apweiler et al. 2004; Boeckmann et al. 2003). Proteins in this database 

don’t have the rich annotations found in Swiss-Prot, but (in combination with Swiss-Prot) they help ensure 

completeness and maintain low levels of redundancy by merging records that contain identical full-length 

protein sequences for the same gene.  

Ensembl (Aken et al. 2016; Flicek et al. 2012) is a genomic oriented database that strives for 

accurate translations of DNA sequences to protein sequences to produce species-specific reference 

proteomes. Ensembl provides a large number of reference genomes for higher eukaryotes, and their genome 

assemblies are frequently used as references in alignments of next generation sequencing data. There are 

excellent resources for comparative genomics (Herrero et al. 2016) and the BioMart tool offers many options 

for additional annotations. In investigations where both transcriptomics and proteomics are being studied, 

databases from the same source, such as Ensembl, can facilitate results comparisons. 

IPI (Kersey et al. 2004), in use from 2001 to 2011, was a widely used protein sequence database 

resource for mass-spectrometry studies. Although IPI only had protein sequences of seven model organisms 

(human, mouse, rat, cow, chicken, zebrafish, and Arabidopsis), they were considered as having a good 

balance between completeness and degree of redundancy. The final release is still available for download; 

however, Reference Proteomes from UniProt are the recommended replacement protein databases (Griss et 

al. 2011). While protein annotations were somewhat minimal, it did maintain many cross-references with 

other protein databases such as RefSeq, Ensembl, and Uniprot (which could be out-of-date in many cases). 

1.4. Quantitative Proteomics 

In addition to protein identification, shotgun proteomics is also widely used for protein expression 

studies using methods such as label-free quantification, metabolic labeling, and chemical labeling where 

relative protein expression levels are inferred from relative peptide expression levels (Bantscheff et al. 2007; 

Bantscheff et al. 2012; Gygi et al. 2000; Ong and Mann 2005; Zhang et al. 2013). The ambiguity of shared 

peptides for protein inference also leads to ambiguity in their quantitative information content.  
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One common solution to shared peptides in quantitative proteomics is to completely discard them 

and use only the unique peptides for quantification. Figure 7 in Nesvizhskii and Aerbersold 2005 suggests 

that tryptic peptide degeneracy may vary considerably between different protein database choices and 

generally increases with larger, more complete databases. Higher eukaryotic organisms have genomic 

structure that may result in multiple distinct proteins that contain many shared tryptic peptides. Database 

sources described above have different goals. Some strive for completeness; others, such as Swiss-Prot, use 

manual curation to reduce sequence complexity and provide more precise biological contexts. It is likely 

that peptide degeneracy will vary depending on protein database choice and this may influence the number 

of usable (unique) peptides available for quantitation.  

Figure 1.1 shows how definitions of shared and unique peptides can be context dependent and that 

they change during protein inference. Thus, the quantitative information content (QIC) (basically the 

fraction of unique peptides) may likely change depending on the context in which shared and unique 

peptides are defined. Parsimonious, or a minimal protein results that represent all the observed peptides, 

have become the accepted way to report proteomics results for publication, but no studies exploring how 

this process affects quantitative proteomics have been published. 

The quality of sequencing data and the performance of mass spectrometers has improved 

dramatically since the original guidelines for parsimonious protein lists were laid out a decade ago 

(Bradshaw et al. 2006). Modern proteomics experiments are capable of producing millions of MS/MS 

spectra in a single study. It is possible that the basic parsimony logic may be overwhelmed by current large-

scale proteomics datasets. Recent work (Koskinen et al. 2011) suggests that additional processing of 

parsimonious protein lists may be necessary to achieve a truly parsimonious set of identified proteins. 

Additional processing may add another context that changes definitions of shared and unique peptides and 

add another factor to consider in quantitative proteomic studies. 
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Methods and Datasets 

2.1. Protein Databases 

 Protein sequences of human (taxon 9606), mouse (taxon 10090), and yeast (taxon 559292) were 

obtained in FASTA format (https://en.wikipedia.org/wiki/FASTA_format) from Uniprot, NCBI, Ensembl, 

and IPI sources using download options listed in Table 2.1. UniProt offers many options for protein 

sequence database downloads. As mentioned in the introduction, there are two mutually exclusive sections 

to UniProt, namely, Swiss-Prot (manually curated) and TrEMBL (computer annotated). Swiss-Prot has what 

could be considered as reasonably complete protein databases for only a small number of species, including 

human, mouse, and yeast. TrEMBL can best be thought of as a buffer of protein sequences that have not yet 

been added to Swiss-Prot. TrEMBL sequences should never be used without their companion Swiss-Prot 

sequences for a given organism. Since the retirement of IPI, UniProt has implemented Reference Proteomes. 

These are combinations of Swiss-Prot and a more curated set of TrEMBL sequences for a large number of 

species. Sequences in TrEMBL that lack experimental evidence for existence and that are fragments of other 

sequences seem to be filtered out, although processing details are difficult to ascertain.  

 Human and mouse are among the species for which large numbers of isoforms are annotated and 

available. Since UniProt approaches isoforms from an annotation perspective, isoforms are associated with 

Swiss-Prot sequences. Thus Swiss-Prot sequences are available as canonical sequences only or canonical 

sequences with known isoforms. This effectively doubles the number of protein database choices for each 

species of interest. Isoforms are represented in TrEMBL as distinct entries until they get removed and 

combined into single Swiss-Prot records by curators. It is not clear if databases for species like human or 

mouse, where large numbers of isoforms have been removed from TrEMBL, can be considered complete 

without inclusion of Swiss-Prot isoforms.  

  NCBI offers two options for species-specific protein databases: all available sequences or 

Reference Sequences (RefSeq). The former are not appropriate choices for proteomics use due to size and 

redundancy; only the RefSeq databases should be used for database searching. IPI offered only a single 

database choice for each available organism. Ensembl offers two FASTA files for each of its supported 

https://en.wikipedia.org/wiki/FASTA_format
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species. The “all” databases contain validated coding regions, whereas the “abinitio” files have predicted 

coding regions and should be avoided.  

2.2. Protein Database Processing  

  Python scripts were used to extract redundant and non-redundant protein counts for each protein 

sequence database. Some scripts were available from www.ProteomicAnalysisWorkbench.com and others 

were written for this project. Redundant proteins were counted by comparing full-length protein sequences 

for string identities. Non-redundant protein databases were obtained by removing duplicated protein 

sequences (if any). In silico tryptic digestions were computed using regular expressions to cleaved proteins 

at arginine (R) and lysine (K) residues except when a proline (P) followed either one of the residues. The 

regular expression used (r".(?:(?<![KR](?!P)).)*") correctly includes the protein N-terminal and 

C-terminal peptides. Additional processing of the tryptic peptides allowed for missed cleavages (up to a 

maximum of two) and required tryptic peptides to be at least seven amino acids in length. Unique and shared 

peptide counts were computed by tallying the number of protein sequences associated with each tryptic 

peptide.  

2.3. Biological Proteomic Datasets 

  We used publicly available datasets of human peripheral plasma samples (Keshishian et al. 2015), 

TMT-labeled mouse c-Kit expressing cultured cells (Huan et al. 2015), and yeast BY4741 whole cell lysates 

(Hebert et al. 2014). Sample and mass spectrometry details can be found in the cited publications. The 

human sample RAW data (roughly 250 GB) was downloaded from the link in the publication and converted 

to MS2 format (McDonald et al. 2004) using MSConvert from the Proteowizard toolkit (Kessner et al. 2008) 

and in-house Python scripts that are part of the PAW pipeline (Wilmarth et al. 2009) used in the OHSU 

Proteomics Core. The dataset produced a total of 4,338,818 MS/MS spectra, which were centroided before 

database searches. The mouse data was used by permission of the authors and consisted of 272,221 MS/MS 

spectra. Instrument files for the yeast samples were downloaded via links in the publication and converted 

in a similar fashion to the human samples. The four LC runs performed under similar conditions were used 

for the analysis and represented a total of 318,069 MS/MS spectra. 

 

http://www.proteomicanalysisworkbench.com/
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2.4. Standardized Data Analysis 

  The PAW pipeline (Wilmarth et al. 2009) was used to provide a standard processing framework 

for the biological samples. This pipeline performs post processing of database search results and employs a 

best practices philosophy toward data analysis. An open source version of SEQUEST (Eng et al. 1994), 

called Comet (Eng et al. 2013) was used to perform the database searching. The protein databases listed in 

Table 2.1 were used in the searches. A wide parent ion monoisotopic mass tolerance of 1.25 Da was used 

with accurate mass post filtering to increase sensitivity (Hsieh et al. 2009). Fragment ion monoisotopic mass 

tolerances were 1.0005 Da. The human samples were iTRAQ (Ross et al. 2004) labeled and the mouse 

samples were TMT (Thompson et al. 2003) labeled. The isobaric reagent masses were specified as static 

(fixed) modifications as was alkylation of cysteine. Oxidized methionine was specified as a variable 

modification. Tryptic cleavage was specified with a maximum of two missed cleavages. Scoring used y- 

and b-ions in addition to neutral loss ions. 

  The target/decoy strategy (Elias and Gygi 2007) was used to estimate PSM error rates and set score 

filtering thresholds. Reversed protein sequences and common laboratory contaminants were added to each 

protein database before searches were performed. Optimum separation between correct and incorrect PSM 

score distributions was achieved by using Comet score transformations similar to those used in Keller et al. 

2002. False discovery rate analysis was performed independently across subclasses of peptides along the 

lines of Ma et al. 2009 to ensure accurate overall FDR control. Parsimonious protein inference was 

performed using Python set operations and in-house scripts. An additional extended parsimony clustering 

module is described below. 

2.5. Results Processing 

  There were detailed protein identification and peptide identification reports produced by the PAW 

pipeline after basic parsimony analysis and also after extended parsimony clustering. Scripts were written 

to parse the protein reports, remove any matches to common contaminants or decoys, count the total number 

of proteins in the report (redundant protein count), and count the net number of proteins/protein groups 

(non-redundant protein count). 
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  The companion peptide reports were parsed and, in conjunction with the protein reports, the shared 

and unique status of peptides determined for three contexts: with respect to the original protein sequence 

database, with respect to the basic parsimonious protein list, and with respect to the final protein list after 

extended parsimony clustering (described below). Total numbers of identified peptides, total numbers of 

unique peptides, and total numbers of shared peptides were tabulated. 

2.6. PAW Clustering Algorithm 

The Proteomic Analysis Workflow (PAW) clustering algorithm was originally developed in 2010 

when it was recognized that many common housekeeping genes did not have reliable unique spectral counts 

assigned to them after the basic parsimony analysis. Proteins in those well-known families such as actins, 

tubulins, keratins, heat-shock proteins, histones, etc. often had very large numbers of common peptides 

shared between family members with few formally defined unique peptides. In many cases, individual 

family members, while having sufficient evidence for identification, did not have sufficient unique peptide 

evidence for reliable spectral counting (counting the total number of fragmentation spectra that map to 

peptides of a specific protein) quantification (Liu et al. 2004; Lundgren et al. 2010).  However, the family 

as a whole could be quantified if the family members were clustered together, and shared and unique 

peptides were subsequently redefined.  

After the basic protein inference process, the Python algorithm performs pairwise comparisons of 

peptide sets associated with proteins that share peptides to decide if they should be combined into a single 

cluster. Pairs of proteins are clustered together based on shared and unique peptide spectral counts by one 

of the three tests: if the peptide sets are pseudo-redundant, if one set is a pseudo-subset of the other, or when 

overall relative shared peptide evidence dominates.  

The test to cluster proteins as pseudo-redundant is to identify those proteins that have just enough 

unique peptide evidence to escape the peptide set equality test employed by the basic parsimony logic during 

the protein inference process. Two proteins are clustered as pseudo-redundant if they have a very low unique 

peptide spectral count (maximum of 2.0) but have a significant shared peptide spectral count (at least 10 

times unique peptide spectral count of either protein). The idea behind this test is that if the marginal unique 
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peptide evidence hadn’t existed, then both the proteins would have been identified as truly redundant during 

the protein inference process.  

A protein is clustered as a pseudo-subset of another protein if that protein has low unique peptide 

evidence (maximum of 2.0) and both proteins have considerable shared peptide evidence (at least 10 times 

the unique spectral counts of the tested protein). This test, like the pseudo-redundant test, is designed to 

catch cases where subsets evade the parsimony logic used during the protein inference process by having 

some, but not a sufficient amount, of unique evidence.  

Finally, the third test is to cluster proteins based on total shared peptide evidence. In this test, a pair 

of proteins are clustered together if one protein has low mean unique spectral count per experiment 

(maximum of 2.5) and a mean shared spectral count per experiment greater than a threshold value (shared 

threshold of 20.0) or if the protein’s shared-to-unique total spectral count ratio is greater than a threshold 

value (shared to unique threshold of 40.0). This test is more general than the previous two, which address 

situations where random incorrect PSMs may interfere with the basic parsimony analysis, and looks for 

cases where the shared evidence overwhelms the unique evidence. Whenever a pair of proteins form a 

cluster, they are combined into a single entry and the unique and shared peptide counts are re-computed. 

The clustering iteration continues until a stable number of clusters are generated.  

2.7. Scaffold-like Clustering Algorithm  

Scaffold (Searle 2010) (Proteome Software, Inc., Portland, OR) is a commercial package that 

provides users with an all-in-one application implementing PeptideProphet (Keller et al. 2002) and 

ProteinProphet (Nesvizhskii et al. 2003) algorithms to identify the most likely proteins present in proteomics 

experiments. The Scaffold protein clustering algorithm is an extension to its protein inference process. The 

clustering algorithm assembles proteins into clusters based on shared peptide evidence. Similar to the PAW 

algorithm, Scaffold clustering performs pairwise comparisons of peptide sets and decides whether to cluster 

or not based on shared peptide evidence.  

The Scaffold algorithm clusters a pair of proteins if two criteria are satisfied: Firstly, the sum of 

the probabilities of the shared peptides of both the proteins must be at least 95%. The probabilities of the 
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peptides, generated using PeptideProphet, are Bayesian estimates of the probable confidence of identified 

PSMs from the database search. Secondly, the proteins must share at least 50% of their peptide evidence. 

The probabilities of shared peptides are summed and compared with the total summed probability of all the 

peptides for each protein. If the sum of the probability of the shared peptides is greater than or equal to half 

the sum of the total peptide probability of all peptides for either protein, then the two proteins are clustered 

together. Every additional protein is then iteratively added to an existing cluster if that protein passes the 

above-mentioned criteria with any of the proteins present within a cluster. 

In order to compare the two clustering algorithms, it is important to have both start with the same 

input data. There are many steps in proteomics pipelines and it is generally difficult to compare them (Yates 

et al. 2012) without careful controls. With this in mind, we altered the Scaffold algorithm from its described 

guidelines (https://proteome-software.wikispaces.com/file/view/scaffold_protein_grouping_clustering.pdf) 

to fit into the existing PAW pipeline to make both the algorithms comparable. The PAW processing does 

not assign Bayesian PSM identification probabilities; however, confidently identified peptides (FDR < 0.01) 

generally have greater than 0.95 probabilities in Scaffold. We assigned the confident peptides from the PAW 

processing to have probabilities of 1.0 in the calculations. 

2.8. Internal Cluster Evaluation 

 Global pairwise alignments of proteins within clusters generated by PAW or Scaffold-like algorithms 

were performed and the sequence similarity score with BLOSUM62 substitution matrix was computed using 

Biostrings (v2.40.2) (Pages et al. 2008) software package from R Bioconductor (Release 3.3). Pairwise 

dissimilarity scores were computed from the sequence similarity score of each pairwise alignment. Python 

scripts were generated to compute the mean silhouette score using the dissimilarity score as the distance 

metric. 

2.9. Functional Relatedness of Clusters 

 The Gene Ontology (GO) Consortium has produced a structured, well-defined, controlled vocabulary 

(ontologies) for describing the roles of genes and gene products in any organism (Ashburner et al. 2000; 

Gene Ontology Consortium 2004). GO ontologies are represented as a hierarchical graph, where nodes in 

the higher levels refer to GO terms that have a broader meaning such as ‘signal transduction’ or ‘enzyme’ 

https://proteome-software.wikispaces.com/file/view/scaffold_protein_grouping_clustering.pdf
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and nodes in the lower levels refer to GO terms that are more specific such as ‘pyrimidine metabolism’ or 

‘adenylate cyclase’. Due to the vagueness of the term “function” when applied to genes or proteins 

(descriptions can range from biological activities to cellular structures), the GO Consortium has developed 

three different ontology structures: Biological Process (BP), Molecular Function (MF), and Cellular 

Component (CC).  

  Molecular Function is defined as biochemical activities of genes or gene products. Ontologies of 

MF describe activities that perform the biochemical actions such as catalytic or binding activities. An 

example of a broad level MF ontology is ‘kinase activity’ or ‘transporter’ while a lower levels includes 

activities such as ‘Toll receptor ligand’ or ‘6-phosphofructose kinase activity’. Biological Processes refer to 

the biological objectives accomplished by gene or gene products. A broader example of BP ontologies 

include ‘apoptosis’ or ‘cell growth and maintenance’ while a lower level BP ontologies include ‘cAMP 

synthesis’ or ‘apoptotic chromosome condensation’. Cellular Component refers to the place in the cell where 

the gene or gene product is active. Higher level nodes of CC include terms such as ‘ribosome’ or 

‘proteasome’, while lower level nodes include more specific regions such as ‘ubiquitin ligase complex’. GO 

ontologies are often used for functional or biological enrichment (also known as gene enrichment analyses), 

where the analyses finds which GO terms are over- or under-represented in a given gene or protein set 

compared to a background set.  

  Functional relatedness of the biological clusters generated from PAW or Scaffold-like algorithms 

were tested using gene enrichment analysis. Gene enrichment analysis was performed using the 

GOATOOLS (v0.6.5) Python package (https://github.com/tanghaibao/goatools). GOATOOLS requires GO 

ontologies and their associations with a gene for a given species. GO ontologies for human, mouse, and 

yeast were downloaded (http://geneontology.org/ontology/go-basic.obo). GO annotations were retrieved 

from NCBI gene2GO ftp link (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz). NCBI gene2GO 

annotations list GO terms assigned to genes based on their Entrez Gene IDs. Protein accessions were 

converted to Entrez Gene IDs using biomaRT (v2.28.0) software package (Durinck et al. 2005; Durinck et 

al. 2009) from R Bioconductor (Release 3.3). Uncorrected p-values are computed for each GO term 

corresponding to BP and MF ontologies within the protein clusters using the Fisher exact test. These p-

https://github.com/tanghaibao/goatools
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
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values are further corrected for multiple testing using the Benjamini-Hochberg FDR method (Benjamini 

and Hochberg 1995) with a restriction of 0.05. A cluster is considered to have an enriched GO term if that 

term is associated with all the members of the cluster and has a corrected p-value of less than 0.05. 

2.10. Statistical Testing 

  Two-sided paired t-tests were performed to test for significant effects of clustering on numbers of 

protein and peptide identifications. Other statistical tests such as two-sided F-test for equal variance was 

also performed to test if clustering has any effect in the variability of the numbers of protein and peptide 

identifications across protein sequence databases. The null hypotheses were rejected when the significance 

was less than 0.05. 
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Results and Discussion 

3.1. Protein Sequence Database Analyses 

Protein sequences were obtained from four frequently used protein sequence database sources 

(UniProt, NCBI, IPI, and Ensembl) for both higher eukaryotic (human and mouse) and lower eukaryotic 

organisms (yeast) (see Table 2.1). The Uniprot database consists of two sections: manually reviewed Swiss-

Prot and automatically annotated TrEMBL. The relationship between Swiss-Prot and TrEMBL is 

complicated and is different for different species. For some organisms, such as human and mouse, Swiss-

Prot databases are reasonably complete and can be used in proteomics studies. For most organisms, Swiss-

Prot can be incomplete and should be augmented with TrEMBL sequences. Since the retirement of IPI 

databases in 2011 (Griss et al. 2011), UniProt has offered more filtered combinations of Swiss-Prot plus 

TrEMBL databases known as Reference Proteomes. Lower quality TrEMBL sequences and protein 

fragment sequence are filtered out. Protein isoforms are represented differently in Swiss-Prot and TrEMBL. 

In TrEMBL, isoforms are represented explicitly as different protein sequences. Isoforms are annotated as 

sequence differences to a canonical sequence selected for each gene in Swiss-Prot. FASTA format protein 

databases for reviewed sequences (Swiss-Prot) can consist of just canonical sequences or a combination of 

canonical sequences and their isoforms. For species like human and mouse with more complete Swiss-Prot 

databases, large numbers of protein isoforms are no longer present in TrEMBL and only available in FASTA 

files if the correct download options are selected. Because of the complicated structure of UniProt, six 

database variants were used for human and mouse, and four for yeast. For Ensembl, NCBI, and IPI we used 

species-specific reference proteomes as sequence databases in our analyses.       

Redundant and Non-Redundant Protein Analysis 

The databases were processed to understand the differences between these sources. The total 

sequence counts for each database were computed for both higher and lower eukaryotic organisms and are 

shown in Table 3.1. The databases were also checked for duplicated, identical sequences. The only databases 

that were truly non-redundant (no duplicated protein sequences) were IPI for human and mouse. According 

to documentation from UniProt, TrEMBL database should include only a single record for an identical, full-

length protein sequence from an organism, and Swiss-Prot should contain only one record per gene in one 
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species. Swiss-Prot databases had small numbers of duplicates, the human and yeast Reference Proteomes 

had small numbers of duplicates, the mouse Reference Proteome had about 4% duplicated sequences, and 

that full TrEMBL databases result in larger numbers of duplicates for human and mouse but not yeast. NCBI 

RefSeq and Ensembl for human and mouse had large numbers of duplicate protein sequences perhaps 

reflecting their genomic focus where a variety of genomic and transcriptomic events can result in identical 

protein sequences. Yeast had a low proportion (about 1%) of duplicate copies of protein sequences for all 

databases.  

There was a greater variability in non-redundant protein counts across all databases for higher 

eukaryotic organisms compared to lower eukaryotic organisms as shown in Figure 3.1. For example, non-

redundant protein counts for humans ranged from 20,146 to 132,398 proteins (mean: 84,521, SD: 41,350, 

CV: 48.9%) while for yeast, the range was only between 5,844 to 6,665 proteins (mean: 6,510, SD: 327, 

CV: 5.0%). Larger human protein databases such as Swiss-Prot + TrEMBL + isoforms have over twice as 

many proteins as the Uniprot Reference Proteome, while smaller protein databases such as Swiss-Prot are 

only about 30% as big as the Uniprot Reference Proteome. However, little variation was observed in yeast, 

suggesting that the variations could be due to the inherent genomic complexity between higher eukaryotic 

organism (humans and mice) and lower eukaryotic organisms (as represented by yeast).  

Redundant and Non-Redundant Tryptic Peptide Analysis 

It is also important to consider protein databases from a peptide-centric view given the wide spread 

use of shotgun proteomics. In silico tryptic digestions were performed on the non-redundant protein 

databases (after removing duplicate proteins) for higher and lower eukaryotic organisms. Simulated tryptic 

digestions cleaved all protein sequences at arginine (R) and lysine (K) residues if they were not followed by 

proline (P), and allowed up to two missed cleavages. Tryptic peptides with fewer than seven amino acids 

were ignored. The total numbers of distinct peptide sequences (the digested peptide set size) were tabulated. 

Peptides originating from a single protein sequence were classified as unique and peptides that came from 

multiple proteins (leucine and isoleucine were considered indistinguishable) were classified as shared. The 

data from the analyses are presented in Table 3.2.  
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The sizes of the in silico digestions for human and mouse were considerably larger than yeast and 

varied more database to database. For example, the variability in digestion sizes across human databases 

(CV: 9.5%) was greater than for yeast databases (CV: 1.1%). In contrast to the considerable variation in 

non-redundant protein counts across human databases, the peptide counts are more similar, as can be seen 

in Figure 3.2. For instance, the Swiss-Prot + TrEMBL + isoforms database had 2.2 times as many non-

redundant proteins as the Uniprot Reference Proteome, but had only 18% more distinct peptides.  

It is also apparent from Figure 3.2 that higher eukaryotic organisms have greater proportions of 

shared peptides compared to lower eukaryotic organisms. Human protein databases revealed that, on 

average, 53% of all peptides originated from multiple proteins, while shared peptides were only 1.9%, on 

average, across yeast protein databases. The variability in shared peptide proportions across human 

sequence databases was large (CV: 37.9%), although smaller than for protein sequence counts. The Swiss-

Prot databases for human and mouse illustrate quite clearly the effects of manual curation where related 

proteins are grouped together and replaced with single canonical sequences. The 2-3% shared peptide levels 

in Swiss-Prot databases (Figure 3.2) are dramatically smaller than that of any of the other human or mouse 

databases. Yeast databases exhibited less variation in shared peptide proportions (CV: 13.8%), probably an 

indication of the reduced genomic complexity of this lower eukaryotic organism.  

3.2 Analyses of Biological Samples 

Biological samples seldom contain all the proteins present within sequence databases. It is possible 

that proteins identifiable in biological samples may have protein characteristics that differ from those 

computed from all proteins present in protein sequence databases. We selected three representative 

biological studies with datasets available for analysis: human peripheral plasma samples, TMT-labeled 

mouse c-Kit expressing cultured cells, and yeast BY4741 whole cell lysates. The studies were performed 

on state-of-the-art instrumentation and have large datasets capable of challenging processing algorithms. 

Two of the experiments (human and mouse) used isobaric labeling for quantification and represent the two 

most commonly studied higher eukaryotic organisms in biomedical research. Yeast is a widely used system 

in proteomics for method development and a good choice for a representative lower eukaryote lacking the 

genomic complexity of human and mouse. 
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Comparing alternative proteomic data processing results turns out to be surprisingly difficult 

(Yates et al. 2012) due to the large number of processing steps, each of which often have several adjustable 

parameters. In light of these realities, a single processing pipeline, namely, the PAW processing (Wilmarth 

et al. 2009) was used to provide standardized data analyses for the three biological samples. The same 

processing steps with controlled parameter choices (details are given in Section 2.4) could be applied to all 

analyses. Separate PAW analyses were done using each of the protein databases listed in Table 2.1.  

The PAW pipeline produces parsimonious protein reports that detail all identified proteins and 

protein groups meeting basic protein identification criteria. The protein identification criteria was the 

widely-used two peptide rule (Gupta and Pevzner 2009) where proteins were required to have two distinct, 

confidently identified peptides present for each reported protein in each biological sample in an experiment. 

Note that any proteins associated with peptide subsets that are removed during protein inference are not 

included in the PAW reports. The human and yeast experiments each had four biological samples per 

experiment; the mouse experiment was a single sample that was a mixture of eight TMT-labeled biological 

samples. Due to the peptide centric approach of shotgun proteomics, the protein inference process results in 

redundant (indistinguishable) and non-redundant (distinguishable) proteins. Note that the definitions of 

redundant and non-redundant in this (historical) proteomics context is not the same as redundant and non-

redundant proteins in terms of protein sequence databases used in Section 3.1. Redundant protein groups, 

in this context, are groups of proteins that have been identified from the same set of peptides, whereas non-

redundant proteins are identified from a distinct (not necessarily exclusively unique) set of peptides.  

Protein Characteristics of Biological Samples 

For each species-specific protein sequence database, the PAW protein inference pipeline generated 

a final list of proteins (redundant groups and non-redundant proteins) that have been identified from peptide 

evidences from the biological samples. Prior to computing redundant and non-redundant protein counts, all 

redundant protein groups that contained either contaminant or decoy proteins and all contaminant or decoy 

non-redundant proteins were discarded. The PAW result file analyses are tabulated in Table 3.3. 

Not surprisingly, the numbers of identified proteins differed between the three samples. On 

average, there were 6,249 total proteins identified in human plasma samples across all databases compared 
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to an average of only 3,815 total proteins identified in yeast whole cell lysates. More importantly, there was 

also higher variability in total proteins counts in real samples of higher eukaryotic organisms across 

sequence databases than yeast whole cell lysates (CV Human total: 28.5%, CV Mouse total: 24.8%, CV 

Yeast total: 0.2%). From inspection of Table 3.3, it is clear that protein database choice is not too critical 

for yeast. This organism has been thoroughly studied and the major database sources actively communicate 

with each other. Thus, it is likely that the yeast protein databases are very similar from the various sources.  

The protein databases for human and mouse have greater size differences than those for yeast. The 

total numbers of identified proteins (redundant counts) are correlated with database size, as shown in Figure 

3.3(A). The non-redundant proteins also have dependence upon the protein database size, but to a much 

lower degree (Figure 3.3(B)), as judged by the differences in slopes of the trend lines. The situation for 

mouse is quite surprising where the non-redundant protein counts are nearly constant despite large 

differences in redundant counts. This could indicate that alternative protein forms for mouse are more 

similar after tryptic digestion than for human and, therefore, more difficult to distinguish in shotgun 

proteomic studies.  

Along these lines, the canonical Swiss-Prot databases for human and mouse resulted in 

dramatically fewer redundant protein groups than the other protein databases suggesting that the canonical 

sequences are, for the most part, distinct. It is also notable that the gain in non-redundant protein 

identifications is very minor when comparing Swiss-Prot to Swiss-Prot + Isoforms (the bottom two rows) 

in Table 3.3. There are 22,000 additional isoforms being searched for human and 8,000 for mouse. The 

human plasma dataset is, literally, enormous with over 4 million MS/MS spectra, yet the data supports 

barely more than 100 protein isoforms out of over 3000 identified proteins. This suggests that identifying 

distinguishing peptides from protein isoforms in typical shotgun proteomics experiments is extremely 

difficult. 

The PAW pipeline is designed to be very transparent and its detailed log files allow tracing of all 

steps in the protein inference processing. It is not well understood, nor appreciated, just how challenging 

large datasets and large protein databases are on proteomics data processing. Table 3.4 details protein 

inference for the human samples across the nine protein databases. The PSMs are strictly filtered at a 1% 



 
 

20 

false discovery rate prior to protein inference in all cases. For this large dataset with a very wide dynamic 

range sample (plasma), the numbers are striking. More than half of the initial proteins are detected by single 

peptides. PSM errors directly produce protein identification errors for this protein class, and are the major 

reason that they are routinely excluded from results lists. Indistinguishable peptides sets account for nearly 

another factor of two reductions in protein count, except for the more curated databases without isoforms. 

There is a dramatic reduction in protein numbers after subset removal for all databases except Swiss-Prot. 

This is a major reason that the Paris Guidelines for Proteomics Results (Bradshaw et al. 2006) were created. 

It is all too easy to inflate the number of identified proteins with proteins lacking any true experimental 

evidence. 

3.3. Extended Parsimony Clustering 

The number of non-redundant protein/protein groups reported by the PAW pipeline should 

represent a parsimonious list of identified proteins. For each sample, the same data was used and the 

dependence of the protein identifications on the choice of protein database was explored in the preceding 

section. Given that these three organisms are so well studied, it is reasonable to assume that the majority of 

proteins present in the sample would have representation in the protein databases. Thus, the truly 

parsimonious number of identified proteins should be (more or less) dependent on the sample only and be 

relatively independent of protein database choice. The difference between the largest non-redundant protein 

count and the smallest was 1560 for human, 358 for mouse, and 5 for yeast. This suggests that the larger 

protein databases for human or mouse, their more complicated gene structures, or the all-or-nothing equality 

testing used in basic parsimony logic might play roles in the variable numbers of protein identifications. 

The dataset size for the human samples is much larger than for mouse or yeast. All datasets are 

filtered at the same relative error content, namely, a 1% PSM false discovery rate. The average number of 

MS/MS scans associated with decoy proteins for human was roughly 8,800 per analysis in contrast to an 

average of just 900 for mouse. Dataset size is another important factor to consider. 

The variable numbers of identified proteins for the same samples, particularly human, suggests that 

the factors mentioned above may be “breaking” the basic parsimony logic consistent with recent work by 

Koskinen et al. 2011 where hierarchical clustering was used to provide an additional round of protein 
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grouping beyond the basic parsimony logic. Use of traditional geometric clustering algorithms requires 

definition of an appropriate distance metric. The Mascot (Perkins et al. 1999) ion score for unique peptides 

was used in Koskinen et al. 2011. This has some limitations and more work in this area is needed to 

determine the best distance metrics. A popular commercial proteomics analysis package (Scaffold, 

Proteome Software, Inc., Portland, OR) developed an alternative algorithm based on comparisons of 

identified peptide sets that is described in this document: (https://proteome-

software.wikispaces.com/file/view/scaffold_protein_grouping_clustering.pdf). That algorithm is similar to 

an independently developed algorithm available in the PAW pipeline. These later two algorithms, which 

make use of peptide set comparisons to perform extended parsimony clustering, could be implemented 

within the same processing framework and were compared to basic parsimony results and to each other. 

The non-redundant protein identification numbers before and after running the two clustering algorithms 

are listed in Table 3.5.  

PAW Extended Parsimony Clustering 

The PAW clustering algorithm parsed the protein inference reports generated from the PAW 

pipeline and clustered proteins based on relative shared and unique peptide evidence. We ran the PAW 

clustering algorithm on the protein inference reports for each sequence database and Table 3.6 shows the 

cluster summary statistics from human plasma samples and yeast whole cell lysates. We have observed that 

the PAW clustering algorithm generated significantly more clusters on human samples than yeast samples 

(Two-sided p-value = 0.0012). Human plasma samples, on average, generated 231 clusters across multiple 

protein databases, while yeast whole cell lysates, on average, generated only 14.5 clusters. As observed with 

non-redundant protein counts, there appeared to be a greater variability in protein clusters in human samples 

(CV: 55.2%) compared to yeast samples (CV: 3.7%).  

There appeared to be a strong association between non-redundant protein counts detected in human 

plasma samples prior to PAW clustering and the cluster counts after implementing PAW clustering (R2 = 

0.94, F-test p-value < 0.001) (Figure 3.4). Human plasma sample protein lists from larger protein databases 

generated more clusters than those generated from smaller databases. Figure 3.5 shows that this positive 

association compensates for the effects of sequence database sizes on final non-redundant protein counts. 

https://proteome-software.wikispaces.com/file/view/scaffold_protein_grouping_clustering.pdf
https://proteome-software.wikispaces.com/file/view/scaffold_protein_grouping_clustering.pdf
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There is a reduction in the variations in non-redundant protein counts in human plasma samples after PAW 

clustering: pre-clustering CV: 16.0%, post-clustering CV: 5.2%, and two-sided F-test for equal variance 

P-value = 0.002. PAW clustering had little effect on the numbers of identified proteins observed for yeast 

whole cell lysates. The largest effects of PAW clustering on human non-redundant protein counts were 

observed in the largest databases: Swiss-Prot + TrEMBL with and without isoforms. 

Scaffold-like Extended Parsimony Clustering 

We also implemented a Scaffold-like clustering algorithm (see Methods section 2.7) and post-

processed all of the results files for the three biological samples searched against the different protein 

sequence databases. The trends observed with Scaffold-like clustering on protein and peptide characteristics 

were similar to those observed with PAW clustering. We observed significantly more clusters generated on 

human plasma samples compared to yeast whole cell lysates (Two tailed paired t-test P-value < 0.001). 

From the data presented in Table 3.6, Scaffold-like clustering, on average, generated 299 clusters in human 

plasma samples across human sequence databases, while only 61 clusters, on average, were generated in 

yeast whole cell lysates. We noticed a greater variability in the protein cluster counts for human samples 

compared to yeast samples. Scaffold-like clustering, similar to PAW clustering, significantly reduced the 

variability in the non-redundant protein counts for human samples, as shown in Figure 3.6. Post-clustering, 

the variation in non-redundant protein counts decreased from 16.0% to 0.9% (Two-sided F-test for equal 

variance P-value < 0.001), demonstrating the stabilizing effect of extended parsimony clustering on protein 

identification numbers. 

Scaffold-like clustering was, in general, more aggressive than PAW clustering. At its default 

settings, Scaffold algorithm generated, on average, 34.5% more clusters with human plasma samples across 

all human sequence databases than the PAW clustering algorithm at its default settings. This could perhaps 

be due to the Scaffold-like algorithm’s more relaxed criteria for clustering. Due to this, the Scaffold-like 

clustering generated significantly more clusters than PAW clustering for both human and yeast samples 

(Two sided paired t-test P-value < 0.001), as can be seen in Figure 3.7. Not only does Scaffold-like 

clustering generate more clusters (singletons excluded), but also the mean cluster sizes are greater for human 

samples than for PAW clusters (Mean cluster size (PAW): 2.6, Mean cluster size (Scaffold-like): 3.4). 
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Interestingly, the mean cluster sizes are lower for yeast samples with Scaffold-like clustering than for PAW 

clustering. Another interesting observation, shown in Figure 3.8, is that Scaffold-like cluster sizes varied 

more widely than cluster sizes from PAW clustering. For instance, we observed several clusters sizes 

ranging from two to over ten proteins with Scaffold-like clustering in human samples for the Uniprot 

reference proteome (canonical) database, but PAW clustering only generated cluster sizes of two, three, 

four, five, and eight. It is interesting to note that the Scaffold-like algorithm, at an 80% shared peptide 

threshold, appeared to have generated a similar number of clusters for human plasma samples across all 

databases as PAW clustering algorithm at its default settings (Figure 3.9). 

Cluster Evaluation 

A true evaluation of the two clustering methods would be to compare their outputs to those from a 

truly accepted clustering algorithm. However, such a truth clustering set doesn’t exist for clusters based on 

mass spectrometric information. Alternatively, the two cluster methods could be evaluated based on valid 

internal cluster metrics such as Silhouette score and external attributes of clustered proteins such as 

enrichment analysis of functional annotations.  

Internal Evaluation of PAW and Scaffold-like Clustering 

Internal evaluation of the clustering algorithms was performed by computing the mean silhouette 

scores of clusters generated for human and yeast samples from multiple species-specific protein sequence 

databases. The mean silhouette score computes a measure of how similar a protein is to its own cluster 

compared to its neighboring cluster (Rousseeuw 1987). It ranges from -1 to 1 with higher mean silhouette 

score suggesting that the proteins are more tightly grouped to their respective clusters. The dissimilarity 

scores from global pairwise alignments of all pairs of clustered proteins identified in PAW or Scaffold-like 

algorithms was chosen as the distance metric for computing silhouette score. The internal evaluation 

procedure is illustrated in Figure 3.10.  

The mean silhouette scores were high for clusters generated by either algorithm for human or yeast 

samples and are shown in Figure 3.11. The mean silhouette score was 0.48 for the PAW algorithm for 

human samples across all sequence databases, while Scaffold-like clustering generated a mean silhouette 

score of 0.59 for the same samples across all databases. There appears to be a lower variability in mean 
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silhouette scores for human samples with Scaffold-like clustering (CV: 10.9%) compared to that with PAW 

clustering (CV: 37.7%). Interestingly, the biggest discrepancy in mean silhouette scores between PAW and 

Scaffold-like clustering appeared to be in the extremes of database sizes such as Swiss-Prot + TrEMBL or 

Swiss-Prot (see Figure 3.11). Mean silhouette scores between PAW and Scaffold-like methods had a 

noticeable difference in yeast samples. The mean silhouette score was 0.44 with the PAW algorithm in yeast 

whole cell lysates, whereas the Scaffold-like algorithm generated a higher mean silhouette score of 0.75 

across all yeast sequence databases.  

External Evaluation of PAW and Scaffold-like Clustering 

Another likely feature of a good clustering method would be that proteins grouped together in the 

same clusters would have similar biological functions. One way to check for this is to use gene enrichment 

analysis to test if the clusters generated from each algorithm shared any significant gene ontology (GO) 

terms for biological process (BP) and molecular function (MF) ontologies.  

Entrez Gene IDs were determined for all proteins within a cluster generated from PAW or Scaffold-

like algorithms for human and yeast samples (see Methods section 2.9). Using their respective Entrez Gene 

IDs, the GO terms for BP and MF ontologies within each cluster could be compiled by GOATOOLS. All 

the proteins generated with a species-specific sequence database in the protein inference report were 

considered as the background set for the Fisher Exact test. Uncorrected p-values were computed for each 

GO term in a cluster and further corrected for multiple testing using the Benjamini-Hochberg FDR method 

with a FDR restriction of 0.05. Clusters were considered eligible for gene enrichment analysis only if the 

cluster had at least two proteins with unique Entrez Gene IDs. A cluster could contain GO terms that are 

either enriched (protein cluster has significantly higher concentration of a GO term compared to the 

background) or depleted (protein cluster has a significantly lower concentration of a GO term compared to 

the background). A cluster was considered to have a significant GO term only if all the proteins of that 

cluster have an enrichment of that GO term (all the proteins of the cluster are annotated with that GO term 

and have a corrected p-value of less than 0.05). 

Only a small proportion of clusters met the criteria for GO enrichment analysis despite a large 

number of clusters generated by the clustering algorithms. Of all the clusters generated for human samples 
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listed in Table 3.7 across all sequence databases by the PAW algorithm, we computed that, on average, only 

23.9% of them were eligible for gene enrichment analysis. A similar low eligible fraction (36.3%) was also 

observed for human protein clusters generated using the Scaffold-like algorithm (Table 3.7). However, a 

surprisingly large proportion of the eligible clusters had significantly enriched GO terms for BP or MF 

ontologies (Figure 3.12) for both PAW and Scaffold-like clustering. About 73.2% of the eligible clusters 

contained at least one significantly enriched GO term for BP or MF ontologies with PAW clustering, while 

76.9% of the eligible clusters contained at least one significantly enriched GO term for BP or MF ontologies 

with Scaffold-like clustering. This suggests that the clustering algorithms produce clusters that have a 

biological relatedness; however, annotation limitations severely reduced the numbers of clusters eligible for 

the gene enrichment analysis. 

3.4. Quantitative Information Content 

The quantitative information content (QIC) of a proteomics experiment will be defined here as the 

fraction of total unique peptide PSMs out of the total number of confidently identified PSMs. However, 

protein inference and parsimony logic changes the context in which unique and shared peptides are defined. 

The extended parsimony clustering algorithms create a third context within which shared and unique 

peptides can be defined. As was mentioned in the introduction, shared peptides are ambiguous, and the most 

common treatment of shared peptides in quantitative proteomics is to discard them. Thus, QIC will depend 

on protein context and may depend on protein database choice. The PAW pipeline, including the extended 

parsimony clustering step, generated reports of all the peptides identified from mass spectrometry and could 

be used to compute the numbers of shared and unique peptides in these different contexts. 

Peptide Properties in Biological Samples 

Interestingly (and by chance), the human plasma samples and yeast whole cell lysates generated 

similar total mean numbers of identified peptides with a very low variance across their respective species-

specific sequence databases (Human peptides: mean: 46,815, CV: 0.8%; Yeast peptides: mean: 46,492, 

CV: 0.004%). The peptide reports produced by the PAW pipeline, without employing the extended 

parsimony clustering step, list peptides with shared and unique status defined with respect to the 

parsimonious protein list. Human samples appeared to have a significantly greater percentage of shared 
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peptides compared to those of yeast samples as can be seen in Figure 3.13. Human samples, on average, had 

about 13.5% of shared peptides compared to yeast samples, which, on average, only have about 2.8% shared 

peptides (two sample t-test: p-value < 0.001). Yeast whole cell lysates produced similar shared peptide 

proportions to those observed from in silico digestions of yeast sequence databases (mean shared peptide 

proportion from in silico digestions: 2.2%); however, in silico digestions of human sequence databases had 

a higher average of 54% shared peptides.  

Peptide Properties due to Extended Parsimony Clustering 

We have observed a significant decrease in shared peptide proportions upon implementing PAW 

clustering, particularly on human plasma samples. The mean shared peptide proportions across databases 

for human samples reduced from 13.5% pre-clustering to 4.3% post-clustering (Two-sided paired t-test p-

value < 0.001). Also, as seen in Figure 3.14, PAW clustering has reduced the variability in shared peptide 

proportions across databases (Two-sided F-test for equal variance p-value < 0.001). Scaffold-like 

clustering appeared to have a similar effect as PAW clustering on shared peptide proportions. The effects 

of Scaffold-like clustering on shared peptide proportions appeared to be more drastic as the mean shared 

peptide proportion across databases reduced from 13.5% pre-clustering to a mere 1.1% post-clustering as 

can be seen in Figure 3.15 (Two-sided paired t-test p-value < 0.001). Similar to PAW clustering, Scaffold-

like clustering significantly reduced the variability in shared peptide proportions across databases (Two-

sided F-test for equal variance p-value < 0.001). However, no effects of extended parsimony clustering 

on peptide characteristics were observed for yeast whole cell lysates.  

QIC in Changing Protein Contexts 

All confidently identified PSM numbers and the numbers of unique PSMs in the three different 

contexts are summarized in Table 3.8 for all combinations of datasets and protein databases. PSMs unique 

to the protein database are those PSMs that map to a single protein entry in the protein sequence database. 

PSMs unique after basic parsimony are PSMs that map uniquely to a single distinguishable protein or 

indistinguishable protein group within the set of reported protein identifications. The final two columns are 

PSMs that are unique to distinguishable proteins, indistinguishable protein groups, or extended parsimony 

protein clusters from either the PAW clustering or the Scaffold-like clustering. 
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Several observations can be made from Table 3.8. The total PSM counts are relatively independent 

of protein database choice for each biological sample. That is not too surprising since the same starting data 

is used for each database search. All numbers for yeast are essentially independent of protein database choice 

again suggesting that yeast protein databases from different source may be very similar. For human and 

mouse, the Swiss-Prot and Swiss-Prot + isomers databases resulted in total confident PSM numbers that 

were a little smaller that for the other databases. This suggests that there may be some classes of proteins 

missing from Swiss-Prot that are present in the other databases. The numbers of PSMs that were unique to 

the protein database, as expected, varied considerably for human and mouse, with the larger protein 

databases having fewer unique PSMs. While these numbers are low in many cases, the associated PSMs 

have no ambiguity about what protein they represent. 

Unique and shared PSM definitions with respect to the protein database are not how proteomics 

data are typically reported. Definitions with respect to the list of identified proteins are more common. There 

are significant increases in the number of PSMs that are unique to the basic parsimonious lists of identified 

proteins for human and mouse compared to the protein database context. Interestingly, the mouse numbers 

are very stable with respect to protein database choice, whereas the human sample still has considerable 

protein database dependence. Both extended parsimony clustering algorithms further reduce protein 

database effects, particularly for the human plasma sample. The effect of extended parsimony clustering 

was much smaller for mouse than human, perhaps due to the much smaller dataset for mouse, or the nature 

of the mouse sample. The stabilizing effects of the extended parsimony clustering can be seen in Figure 

3.16 where the human QIC data are shown.  
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Conclusions 

Proteomic studies are very important in modern biology research. The majority of studies use 

bottom-up or shotgun proteomics where peptides rather than proteins are detected using mass spectrometry. 

Sequences are assigned to the detected peptides using search engines and protein sequence databases. Search 

engines have received extensive study, but only minimal work has been published on the role of protein 

sequence databases. Protein databases for human, mouse, and yeast were obtained from the major sources 

of protein sequence information, and, along with recent available proteomic datasets for each species, are 

used to understand the role of protein database on protein identification and quantification methods. 

The sources for protein sequence databases were UniProt, NCBI, Ensembl, and IPI (excluding 

yeast) for these eukaryotic organisms. Protein databases for other organisms may include these sources or 

other sources. NCBI, Ensembl, and IPI have single database choices. UniProt is considerably more 

complicated. There are manually curated sequences (Swiss-Prot), computer annotated sequences 

(TrEMBL), and optional sequences for manually annotated protein isoforms. For human and mouse, there 

were six choices for UniProt databases, and four for yeast. The databases used are listed in Table 2.1 and 

described in the Methods and Datasets section. 

The analysis of these different databases started with counting the number of protein sequences 

and checking for repeated, identical (redundant) sequences. The number of sequences and the fraction of 

redundant sequences was quite variable for human and mouse, and less so for yeast. Database sources that 

are more focused on proteins (UniProt and IPI) had fewer redundant proteins. Sources more focused on 

genomics (NCBI and Ensembl) had more protein redundancy. For higher eukaryotes like human and mouse, 

single-nucleotide polymorphisms, RNA editing, alternate splicing, gene duplications, and post-translational 

modifications can yield similar protein products from genes. There are two choices: one protein associated 

with multiple genes, or one gene associated with multiple proteins. This choice differed depending on 

database source. All of the duplicate counts in Swiss-Prot belonged to different genes that yielded identical 

protein sequences. Ensembl incorporates genomic, transcriptomics and proteomic data with separate 

database accessions for each branch of the central dogma. The redundant proteins in Ensembl were due to 

the presence of either different genes that produced a similar protein sequence or due to a gene having 
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different transcript IDs or chromosomal locations that yielded the same protein sequence. Redundant protein 

sequences were removed from the protein databases so that subsequent analyses would not be biased. 

Larger databases such as Swiss-Prot + TrEMBL had several times as many non-redundant proteins 

as SwissProt (canonical) for human and mouse; however, after in silico tryptic digestions of these non-

redundant proteins, the largest protein database (Swiss-Prot + TrEMBL + isoforms) is only 33.6% larger in 

total peptide content than the smallest protein database (Swiss-Prot canonical). Given the peptide-centric 

nature of shotgun proteomics, it is important to also consider protein sequence databases from a peptide-

centric point of view. There was great variability in the shared peptide proportions across human sequence 

databases in sharp contrast to the yeast databases. This could reflect the genomic complexity differences 

between higher and lower eukaryotic organisms, where additional post-transcriptional and post-translational 

processes can yield similar protein products in higher eukaryotic organisms. Interestingly, the Swiss-Prot 

human database had only 3.1% shared peptide proportion, while the Swiss-Prot + isoforms had 53.9% 

shared peptide proportions. A likely explanation of the higher shared peptide proportions in higher 

eukaryotic sequence databases could be due to the presence of large numbers of protein isoforms. 

Proteomics datasets from three recent publications (Hebert et al. 2014; Huan et al. 2015; 

Keshishian et al. 2015) were used in searches against the different protein databases to see how they 

influenced protein inference. All datasets were from current mass spectrometry platforms and large enough 

to expose any weaknesses in standard proteomics data analyses. Standardized, best practices data processing 

used decoy databases (Elias and Gygi 2007), the Comet search engine (Eng et al. 2013), and the PAW 

pipeline (Wilmarth et al. 2009). The total protein counts after basic parsimony logic varied greatly across 

databases for human samples while remaining relatively stable across databases for yeast samples. The 

trends observed in the shared peptide proportions in these samples were very similar to those observed from 

in silico digestions of protein sequence databases.   

Basic parsimony analysis was incapable of generating consistent protein identification numbers 

independent of protein database choice for the given samples, particularly the human plasma samples. It 

was possible that basic parsimony logic with simple equality-based testing could be failing when dataset 

sizes are too large and/or the protein databases have too much peptide degeneracy. Two available clustering 
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algorithms that are basically extensions of parsimony logic were tested. The extended parsimony algorithms 

were applied after the protein inference step (that included basic parsimony logic) to cluster proteins with 

significant shared peptide evidence and relatively small unique peptide evidence. Basic parsimony 

principles are routinely used to report the minimum set of proteins that account for all the observable 

peptides to meet publication guidelines (Bradshaw et al. 2006). The clustering algorithms are extensions of 

the parsimony principles in that they cluster largely homologous proteins such as immunoglobins, MHC 

proteins, or housekeeping gene products (actins, tubulins, etc.) that are common in many samples.  

The PAW clustering algorithm has three steps to test if there is insufficient unique peptide evidence 

to support distinguishing proteins. We coded an independent version of the Scaffold clustering algorithm 

(developed by Proteome Software, Inc., Portland OR) and compared it to PAW clustering. The Scaffold-

like algorithm tests whether proteins have enough shared peptide evidence to be clustered together. Both 

algorithms make use of only experimentally measured information (peptide sequences, peptide scores, and 

peptide counts) in their tests and are computationally efficient. 

The two clustering algorithms were evaluated for outcome quality by computing mean silhouette 

score of the clusters as an internal metric (using whole protein sequence alignments to derive distance 

measures), and by performing gene enrichment analysis to see that there is biological (function) relatedness 

among protein cluster members. Mean silhouette scores for each protein database were higher for both 

human and yeast samples with the Scaffold-like clustering algorithm, suggesting that the clusters from the 

Scaffold-like processing were more tightly packed than those from the PAW algorithm. The disparity in the 

mean silhouette scores was greatest in larger databases such as Swiss-Prot + TrEMBL for human samples. 

An explanation could be that the PAW algorithm generated multiple smaller clusters from similar protein 

classes (for instance MHC class I proteins) when they had some differences in their peptide sets. This would 

create situations where proteins within a cluster could match closely with both its own cluster and also a 

neighboring cluster. The Scaffold-like algorithm, on the other hand, is more likely to produce a single cluster 

consisting of all the proteins that belonged to the same class. In these cases, the neighboring clusters would 

belong to entirely different classes of proteins so there would be a lower possibility that a protein from a 

Scaffold-like cluster would be a better fit in its neighboring cluster.  
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Gene enrichment analysis was used to test if the clusters generated by either PAW or Scaffold-like 

algorithms had similar biological or molecular functions. Unfortunately, the gene enrichment analysis was 

limited because the majority of proteins within a cluster either belonged to either the same Entrez Gene ID 

(multiple proteins are translated from same genes) or did not have an Entrez Gene ID (no information). For 

example, the PAW clustering of human plasma samples from the Swiss-Prot + TrEMBL + isoforms database 

had only 19.5% (321 of 1646) of the proteins within a cluster (of size 2 or more) that had an Entrez Gene 

ID. There were 16% (51 of 321) of those proteins that had duplicate Entrez Gene IDs. The gene enrichment 

analysis could only be done on those clusters that had proteins yielding at least two unique Entrez Gene IDs, 

and a significant proportion of clusters had to be discarded (see Table 3.10). Despite the smaller number of 

testable proteins, most clusters did indeed have significant gene enrichment. 

Shotgun proteomics experiments are widely used for quantitative studies. When protein expression 

is the goal, it is important to know unambiguously which protein that each peptide maps to. Peptides that 

can arise from multiple proteins potentially have expression measures that are a mixture of the respective 

protein expression levels and are difficult to interpret. Typically only unique peptides are used for 

quantification in shotgun studies. This raises the question of unique in what context. The answer really 

depends on the experimental goals. We studied here three different contexts within which unique peptide 

can be defined. The unique to the protein database context has the greatest quantitative resolution (the largest 

number of different protein forms that can be probed), but a reduced sensitivity. The loss of sensitivity 

depends quite strongly on the nature of the protein database and is worse for higher eukaryotic organisms 

with more complicated gene structure. 

Another protein context is unique to the list of reported proteins (typically produced using basic 

parsimony logic). This is probably the most commonly used context in shotgun proteomics. It is important 

to realize that many peptides called unique in this context are not unique with respect to the protein database. 

Although this context results in many more usable PSM for quantitation (a higher QIC), as can be seen in 

Table 3.8, it comes at the cost of reduced protein resolution. For some samples and some choices of protein 

databases, extended parsimony clustering can further improve QIC (sometimes significantly, see Figure 
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3.16). Once again, this comes at the price of reduced protein resolution and the competing factors of a high 

QIC and high protein resolution have to be weighed against each other.  

Finally, the obvious question of what is the best protein database to use needs to be addressed. The 

answer is easy for yeast since the protein database choice really did not matter much by any metric. For 

human and mouse, the answer depends on several factors. A common misconception might be that larger 

protein databases are better as they may be more complete and possibly yield more protein identifications. 

Since shotgun proteomics is peptide-centric, from analyses of in silico tryptic digests, both smaller and 

larger protein databases shared a significant proportion of peptides, which was a similar finding to what was 

also observed by Deutsch et al. 2016. For example, 96.5% (45,689) of the peptides detected in human plasma 

samples using the Swiss-Prot + TrEMBL + isoforms database were also present with Swiss-Prot canonical 

database. This suggests that only approximately 3.5% of the peptides were found exclusively in the larger 

Swiss-Prot + TrEMBL + isoforms database. Figures 3.5 and 3.6 demonstrate that non-redundant protein 

identification numbers, particularly after extended parsimony clustering, are pretty constant. This suggests 

that the experimental information content in most bottom-up studies may not yield larger protein 

identification numbers from larger databases. The sequence coverage for the majority of proteins detected 

in shotgun proteomics experiments is low and the chance to detect peptides that might distinguish protein 

variants is very small. Table 3.4 illustrates just how demanding large protein databases can be on the protein 

inference algorithms. The risk of using these large databases does not seem in line with the potential gains 

for most studies. 

Proteomics experiments are very diverse and few generalizations are possible. There can be many 

experimental goals, even for the same experiment. There is no rule that only one protein database has to be 

used, or one single analysis has to be done for proteomics experiments. Different experimental goals may 

need use of more than one protein database. Ensembl databases have advantages when transcriptomics 

studies are being done in parallel with proteomics studies. Their larger sizes and protein redundancy; 

however, require proper protein inference and parsimony analysis steps. IPI database are out of date so 

should not be used; the recommended replacement databases are from UniProt. For human and mouse, 

Swiss-Prot databases are very good choices in most cases. For many (maybe most) other organisms, Swiss-
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Prot sequences are seldom complete enough to use by themselves and have to be augmented with TrEMBL 

entries. It is pretty obvious from most of the data presented here that Swiss-Prot plus TrEMBL entries are 

poorer choices. Reference proteomes were introduced in late 2011 and are the better choices because of 

their filtered TrEMBL content. The way in which UniProt deals with protein isoforms is an important issue. 

For less well annotated organisms, isoform are likely present in TrEMBL. For well-annotated organisms 

like human, mouse, and yeast, isoforms are no longer present in TrEMBL and have to be (optionally) 

included in protein databases if they are of biological interest. 

The expression levels of proteins are often of much greater biological importance than the longest 

list of identified proteins. For quantitative studies, the low peptide degeneracy of the canonical Swiss-Prot 

databases for human and mouse offer many advantages. They are more complete than might be guessed 

from their protein sequence counts. Most tryptic peptides have one-to-one relationships with the protein 

database entries and protein inference is greatly simplified. The proteins have rich annotations (protein 

functions, biological pathways, cross-references to other databases) that can greatly facilitate biological 

interpretations of results. 
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Figures 

 

Figure 1.1. Illustration of distinguishable/indistinguishable proteins. Definitions of shared and unique 

peptides for distinguishable (A) and indistinguishable proteins (B). Before protein inference, shared peptides 

are those that map to multiple proteins in the protein database, and unique peptides map to only single protein 

database entries. Both proteins X and Y in (A) are inferred to be present in the sample due to the unique 

peptide evidence. In (B) there is no evidence to distinguish protein W from protein Z, so a redundant protein 

group containing both proteins is inferred to be present in the sample. There is ambiguity associated with 

proteins W and Z. After protein inference, definitions of shared and unique are redefined with respect to the 

list of inferred proteins instead of the original protein database. The shared peptides associated with proteins 

W and Z are redefined as unique to the protein group (if they are not associated with any other protein/protein 

groups). 
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Figure 3.1. Relative non-redundant protein sequence counts. Relative non-redundant protein counts for 

human, mouse, and yeast as a function of protein database. Protein database sizes are relative to the UniProt 

Reference proteome for each organism. The UniProt reference proteomes are indicated with asterisks (*). 

 

 

Figure 3.2. In silico trypsin digestions of sequence databases. Comparison of in silico digestion sizes 

between protein databases. Dark grey columns indicate total peptide counts generated from in silico tryptic 

digestions of non-redundant proteins from human sequence databases. Black circles represent the percentage 

of shared peptides in human protein sequence databases. Light grey columns indicate total peptide counts 

generated from in silico tryptic digestions of non-redundant proteins from yeast sequence databases. White 

circles represent the percentage of shared peptides in yeast protein sequence databases. 
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Figure 3.3. Dependence of identified proteins on database size. Dependence of the number of identified 

proteins for human and mouse on the size of the protein database. The trend lines for total protein 

identifications (redundant counts) in (A) have much larger slopes do the trend lines for non-redundant protein 

identifications (B) indicating a greater dependence on database size. 
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Figure 3.4. Correlation between non-redundant proteins and cluster counts. Correlation between non-

redundant protein counts (prior to clustering) and the cluster sizes after processing the human plasma sample 

results with the PAW clustering algorithm. 

 

 

Figure 3.5. PAW clustering effects. The effects of PAW clustering on non-redundant protein counts in 

human plasma samples. Dark circles represent non-redundant protein counts before and white circles 

represent non-redundant protein counts after implementing PAW clustering. 
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Figure 3.6. Scaffold-like clustering effects. The results of Scaffold-like clustering on non-redundant protein 

counts in human plasma samples. Dark circles represent non-redundant protein counts before and white 

circles represent non-redundant protein counts after implementing Scaffold-like clustering. 

 

 

Figure 3.7. Cluster differences between PAW and Scaffold-like algorithms. The differences in numbers 

of clusters between PAW and Scaffold-like clustering algorithms for human and yeast biological samples. 

Dark grey columns represent average cluster counts from all databases in human and yeast biological samples 

using the PAW clustering algorithm. Light grey columns represent average cluster counts from all protein 

databases in human and yeast biological samples using the Scaffold-like clustering algorithm. Scaffold-like 

clustering had a significantly greater number of clusters than PAW clustering for both human and yeast. Two-

sided paired t-test was performed to determine significance. 
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Figure 3.8. Frequency of cluster sizes. Histograms of cluster sizes identified in human plasma samples 

searched against the UniProt Reference canonical proteome for PAW (top) and Scaffold-like (bottom) 

clustering algorithms. Scaffold-like clustering resulted in more clusters and a greater variety of cluster sizes 

than did the PAW clustering. 
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Figure 3.9. Testing of parameters for Scaffold-like algorithm. Changes in the number of clusters 

generated with different shared peptide proportion thresholds (20%, 50%, 70%, and 80%) in Scaffold-like 

clustering. Black columns represent the clusters generated by PAW clustering algorithm at its default setting 

(Pseudo spectral count of 2.0, Shared spectral threshold of 20.0, Fraction of shared to unique spectral count 

threshold of 40.0). An 80% shared peptide threshold for Scaffold-like clustering (indicated by ‘*’) produced 

similar numbers of clusters as the PAW clustering algorithm. 

 

 

Figure 3.10. Illustration of silhouette score computation. Internal cluster evaluation procedure for 

computing the silhouette scores for clusters generated from human and yeast samples using either PAW 

or Scaffold-like algorithms. 
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Figure 3.11. Comparison of silhouette scores between PAW and Scaffold-like algorithms. Mean 

silhouette scores using PAW and Scaffold-like algorithms on human samples across all sequence databases. 

Black circles indicate the mean silhouette scores from Scaffold-like clustering. White circles indicate the 

mean silhouette scores from PAW clustering. 

 

 

Figure 3.12. Cluster validation using gene enrichment analyses. Percentages of eligible clusters generated 

from PAW and Scaffold-like algorithms in human plasma samples with significant BP or MF GO terms. 

Black circles indicate the proportion of PAW eligible clusters that have either significant BP or MF GO 

terms. White circles indicate the proportion of eligible Scaffold-like clusters that have either significant BP 

or MF GO terms. 
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Figure 3.13. Peptide characteristics in real biological samples. The proportion of shared peptides in human 

plasma samples and yeast whole cell lysates are shown. Shared and unique peptides were defined in the 

context of the basic parsimonious protein list.  

 

 

Figure 3.14. PAW clustering effects on peptide characteristics. The results of PAW clustering on peptide 

counts in human plasma samples. Dark circles represent shared peptide proportions before and white circles 

represent shared peptide proportions after implementing PAW clustering. 



 
 

52 

 

Figure 3.15. Scaffold-like clustering effects on peptide characteristics. The results of Scaffold-like 

clustering on peptide counts in human plasma samples. Dark circles represent shared peptide proportions 

before and white circles represent shared peptide proportions after implementing Scaffold-like clustering. 

 

 

Figure 3.16. Change in QIC with changing protein context. Data searched against the nine protein 

sequence database are shown. QIC was calculated in three different protein contexts (protein database, basic 

parsimony, and extended parsimony). Both PAW clustering and Scaffold-like clustering results are shown. 
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Tables 

Table 2.1. Sources of protein sequence databases. 

Databases denoted by Swiss-Prot indicate canonical sequences only unless “isoforms” is explicitly stated. All databases were downloaded 

from the Internet on February 2016. The download procedure varied depending on the database source and there can be more than one 

way to retrieve protein databases. Ensembl and IPI maintain FTP sites for FASTA file. NCBI and Uniprot have both FTP mechanisms 

and direct download options; direct download were used when possible. Uniprot uses URL syntax to specify download options, NCBI 

does not. 

Database Version Download Link1 

Swiss-Prot + TrEMBL 2016.01 http://www.uniprot.org/uniprot/?sort=&desc=&compress=yes&query=taxonomy:960

6&format=fasta&include=no 

Swiss-Prot + TrEMBL 

+ Isoforms 

2016.01 http://www.uniprot.org/uniprot/?sort=&desc=&compress=yes&query=taxonomy:960

6&format=fasta&include=yes 

IPI2 3.87 ftp://ftp.ebi.ac.uk/pub/databases/IPI/last_release/current/ipi.HUMAN.fasta.gz 

Ensembl 83 ftp:://ftp.ensembl.org/pub/release-83/pep/Homo_sapiens.GRCh38.pep.all.fa.gz 

NCBI RefSeq 75 http://www.ncbi.nlm.nih.gov/protein {txid9606[Organism:noexp] AND refseq[filter] 

& Send to File in FASTA format}3 

UniProt Reference 2016.01 http://www.uniprot.org/uniprot/?sort=&desc=&compress=yes&query=proteome:up00

0005640&format=fasta&include=no 

UniProt Reference + 

Isoforms 

2016.01 http://www.uniprot.org/uniprot/?sort=&desc=&compress=yes&query=proteome:up00

0005640&format=fasta&include=yes 

Swiss-Prot2 2016.01 http://www.uniprot.org/uniprot/?sort=&desc=&compress=yes&query=taxonomy:960

6&fil=reviewed:yes&format=fasta&include=no 

Swiss-Prot + 

Isoforms2 

2016.01 http://www.uniprot.org/uniprot/?sort=&desc=&compress=yes&query=taxonomy:960

6&fil=reviewed:yes&format=fasta&include=yes 
1Link examples are for human (taxon=9606); mouse and yeast would be similar except for taxon number (10090 and 559292). 
2These databases were not used for yeast. There is no IPI database for yeast and there were so few TrEMBL sequences for yeast that Swiss-

Prot + TrEMBL is essentially redundant with Swiss-Prot. 
3The NCBI database selection and download process is interactive so a download link is not possible.
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Table 3.1. Total human, mouse, and yeast protein sequence counts from sequence databases. 

Multiple copies of 100% identical sequences for a protein in a species are considered duplicate sequences. 

Non-redundant protein databases generated after removal of duplicate sequences were used for theoretical 

digests and in the database searches. 

 Human Mouse Yeast 

Database 

Total 

Sequence 

Count 

Duplicate Total 

Sequence 

Count 

Duplicate Total 

Sequence 

Count 

Duplicate 

Sequence 

Count 

Sequence 

Count 

Sequence 

Count 

Swiss-Prot + 

TrEMBL 
150,227 17,829 79,950 3,111 6,729 84 

Swiss-Prot + 

TrEMBL + 

Isoforms 

172,164 18,699 88,002 3,519 6,751 86 

IPI1 91,464 0 59,534 0   

Ensembl 102,450 18,456 56,999 6,963 6,692 82 

NCBI RefSeq 100,408 26,955 78,310 20,371 5,907 63 

UniProt 

Reference 
69,986 124 50,189 2,260 6,721 84 

UniProt 

Reference + 

Isoforms 

91,923 185 58,239 2,289 6,743 86 

Swiss-Prot1 20,187 41 16,761 5   

Swiss-Prot + 

Isoforms1 
42,124 43 24,813 5   

1These databases were not used for yeast. 

 

 

 

 

 

 

 

 

 

 

 



 
 

55 

Table 3.2. Tryptic peptide counts in human, mouse, and yeast databases. 

In silico tryptic digestions of the protein databases were performed and the total number of distinct peptide 

sequences (digestion size) are shown in the first columns for each species. Peptide sequences liberated from 

a single protein database entry were classified as unique, and peptides originating from multiple proteins 

were classified as shared (degenerate). 

  Human Mouse Yeast 

Database 

Total 

Distinct 

Peptide 

Count 

Total 

Shared 

Peptide 

Count 

Total 

Distinct 

Peptide 

Count 

Total 

Shared 

Peptide 

Count 

Total 

Distinct 

Peptide 

Count 

Total 

Shared 

Peptide 

Count 

Swiss-Prot + 

TrEMBL 
3,029,415 1,771,254 2,742,886 1,583,750 647,816 11,293 

Swiss-Prot + 

TrEMBL + 

Isoforms 

3,116,511 2,057,760 2,774,249 1,777,097 647,852 13,769 

IPI1 2,940,847 1,746,490 2,694,266 1,381,986   

Ensembl 2,665,253 1,585,695 2,492,844 1,067,312 646,533 11,048 

NCBI RefSeq 2,636,739 1,836,420 2,586,741 1,607,850 630,314 10,835 

UniProt 

Reference 
2,629,090 1,188,164 2,498,296 1,042,427 647,667 11,288 

UniProt 

Reference + 

Isoforms 

2,730,931 1,738,326 2,533,469 1,327,175 647,703 13,764 

Swiss-Prot1 2,315,554 63,673 1,965,275 35,427   

Swiss-Prot + 

Isoforms1 
2,452,596 1,312,783 2,012,492 647,201   

1These databases were not used for yeast. 
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Table 3.3. Protein characteristics of human, mouse, and yeast samples after basic parsimony logic. 

The PAW pipeline, the two peptide rule, and basic parsimony principles were used for confident protein identifications. 

  Human Mouse Yeast 

Database 

Total 

Protein 

Count 

NR2 Number 

of 

Groups3 

Total 

Protein 

Count 

 NR2 Number 

of 

Groups3 

Total 

Protein 

Count 

NR2 
Number 

of 

Groups3 Protein 

Count 

Protein 

Count 

Protein 

Count 

Swiss-Prot + 

TrEMBL 
7,858 4,771 1,541 10,622 5,571 2,609 3,811 3,782 23 

Swiss-Prot + 

TrEMBL + 

Isoforms 

9,296 4,806 1,878 11,760 5,574 2,995 3,824 3,783 34 

IPI1 6,404 3,757 1,295 9,053 5,544 2,023   

Ensembl 5,811 3,494 1,181 7,966 5,472 1,509 3,807 3,779 22 

NCBI RefSeq 7,341 3,277 1,405 11,413 5,488 2,283 3,811 3,783 22 

UniProt 

Reference 
4,749 3,553 732 7,679 5,473 1,436 3,811 3,782 23 

UniProt 

Reference + 

Isoforms 

6,363 3,611 1,322 8,952 5,489 1,946 3,811 3,782 34 

Swiss-Prot1 3,314 3,251 40 5,261 5,216 30   

Swiss-Prot + 

Isoforms1 
5,089 3,376 978 6,604 5,253 923 

  
1These databases were not used for yeast. 
2Non-Redundant Protein Count. 
3Number of Groups = Number of Clusters + Number of Identified Redundant Groups. 
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Table 3.4 Step-by-step trace of the protein inference process in the PAW pipeline for human samples. 

The complete mapping of all identified peptides to respective proteins is followed by removing any peptide 

sets that do not have at least two members. Peptide sets are compared and combined if they are identical, or 

removed if entirely contained in another peptide set. The final culling is to remove proteins with insufficient 

evidence per experimental sample. 

Database 

All 

Mapped 

Proteins 

After 

Two 

Peptides 

per 

Protein 

After 

Identical 

Peptide 

Set 

Grouping 

After 

Peptide 

Subset 

Removal 

Non-

Redundant 

Proteins 

per 

Sample1 

Swiss-Prot + TrEMBL 55,282 31,975 15,816 5,839 5,087 

Swiss-Prot + TrEMBL 

+ Isoforms 
65,593 36,175 16,982 5,894 5,135 

IPI 35,881 15,947 10,175 4,792 4,087 

Ensembl 33,871 15,032 9,721 4,618 3,856 

NCBI RefSeq 40,568 16,686 7,276 4,380 3,625 

UniProt Reference 26,514 11,891 8,889 4,666 3,903 

UniProt Reference + 

Isoforms 
37,862 16,649 10,254 4,766 3,982 

Swiss-Prot 11,238 4,838 4,691 4,416 3,632 

Swiss-Prot + Isoforms 22,972 9,656 6,324 4,544 3,763 

1Includes contaminants and decoys. 
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Table 3.5. Effects of extended parsimony clustering on protein counts for human, mouse, and yeast samples.  
 

The basic parsimony, PAW clustering and Scaffold-like clustering non-redundant protein counts are shown for human, mouse, and 

yeast samples from the different species-specific databases. 

  Human Mouse Yeast 

Database 
Basic 

Parsimony 

PAW 

Clustering 

Scaffold-

like 

Clustering 

Basic 

Parsimony 

PAW 

Clustering 

Scaffold-

like 

Clustering 

Basic 

Parsimony 

PAW 

Clustering 

Scaffold-

like 

Clustering 

Swiss-Prot 

+ TrEMBL 
4,771 3,580 2,943 5,571 5,457 5,173 3,782 3,744 3,681 

Swiss-Prot 

+ TrEMBL 

+ Isoforms 

4,806 3,583 2,950 5,574 5,451 5,175 3,783 3,744 3,681 

IPI1 3,757 3,355 2,942 5,544 5,443 5,181   

Ensembl 3,494 3,238 2,964 5,472 5,400 5,176 3,779 3,742 3,678 

NCBI 

RefSeq 
3,277 3,074 2,892 5,488 5,403 5,180 3,783 3,744 3,681 

UniProt 

Reference 
3,553 3,293 2,981 5,473 5,409 5,185 3,782 3,744 3,681 

UniProt 

Reference 

+ Isoforms 

3,611 3,296 2,976 5,489 5,411 5,183 3,782 3,744 3,681 

Swiss-Prot1 3,251 3,170 2,970 5,216 5,193 5,020   

Swiss-Prot 

+ Isoforms1 
3,376 3,209 2,976 5,253 5,206 5,020   

        1These databases were not used for yeast. 
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Table 3.6. Summary statistics of clusters generated after extended parsimony clustering. 
 

Cluster characteristics for human plasma and yeast whole cell lysate samples are computed after implementing PAW clustering and 

Scaffold-like clustering algorithms. Singleton clusters were not included when calculating cluster mean sizes. Minimum size of 

clusters is always 2. 

 

    1These databases were not used for yeast. 

 

 

 

Database 

PAW Clustering Scaffold-like Clustering 

Human Yeast Human Yeast 

Cluster Mean 

Size 

Max 

Size 

Cluster Mean 

Size 

Max 

Size 

Cluster Mean 

Size 

Max  

Size 

Cluster Mean 

Size 

Max 

 Size Count Count Count Count 

Swiss-Prot + 

TrEMBL 
425 3.8 91 14 3.7 20 442 5 785 60 2.7 30 

Swiss-Prot + 

TrEMBL + 

Isoforms 

440 3.7 79 15 3.6 20 451 5 783 61 2.7 30 

IPI1 262 2.5 10   340 3.3 126   

Ensembl 187 2.3 6 15 3.5 20 295 2.7 31 61 2.7 29 

NCBI RefSeq 154 2.3 9 15 3.6 20 229 2.6 28 62 2.6 30 

UniProt Reference 195 2.3 6 14 3.7 20 287 2.9 58 60 2.7 30 

UniProt Reference 

+ Isoforms 
224 2.3 8 14 3.7 20 317 2.9 58 60 2.7 30 

Swiss-Prot1 63 2.2 5   126 3 54   

Swiss-Prot + 

Isoforms1 
129 2.2 7   207 2.8 54   
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Table 3.7. Summary statistics of clusters used in the GO enrichment external cluster validation. 

 

Large fractions of proteins within clusters generated by PAW and Scaffold-like clustering algorithms did not have unique Entrez gene 

IDs and could not be analyzed. Eligible clusters contain at least two unique Entrez Gene IDs. Uncorrected p-values were computed for 

each GO term present within a cluster using Fisher Exact Test and further corrected for multiple testing using Benjamini/Hochberg FDR 

method with a restriction at 0.05. Significantly enriched clusters are those clusters that have at least one GO term with an adjusted p-

value of less than 0.05 that is associated with all the members of the corresponding protein cluster. 

 

Database 

PAW Clustering Scaffold-like Clustering 

Cluster  

Count 

Proteins 

in 

Clusters 

Proteins 

with 

Entrez 

Gene ID 

Proteins 

with 

Unique 

Entrez 

Gene ID 

Eligible 

Cluster 

Count 

Significantly 

Enriched 

Clusters1 

Cluster  

Count 

Proteins 

in 

Clusters 

Proteins 

with 

Entrez 

Gene ID 

Proteins 

with 

Unique 

Entrez 

Gene ID 

Eligible 

Cluster 

Count 

Significantly 

Enriched 

Clusters1 

Swiss-Prot + 

TrEMBL 425 1601 234 234 15 13/13 442 2229 377 376 43 36/37 

Swiss-Prot + 

TrEMBL + 

Isoforms 440 1646 321 270 20 14/14 451 2264 492 418 47 36/37 

Ensembl 187 430 387 223 46 28/29 295 792 702 448 111 74/80 

NCBI 154 348 336 202 46 31/31 229 586 567 389 108 74/79 

Uniprot Reference  195 443 192 179 29 23/23 287 827 385 339 65 51/54 

Uniprot Reference 

+ Isoforms 224 526 296 217 30 21/21 317 919 521 383 71 51/55 

Swiss-Prot 63 136 117 101 42 33/34 126 380 331 276 109 85/92 

 Swiss-Prot + 

Isoforms 129 287 267 169 44 31/31 207 579 531 361 112 82/87 
1Biological Process/Molecular Function. 
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Table 3.8. Changes in QIC with respect to different protein contexts. 
 

The different contexts are: PSMs unique with respect to the protein sequence database, PSMs 

unique with respect to the parsimonious list of identified proteins, and PSMs unique with respect 

to the refined list of identified proteins after extended parsimony clustering (both PAW and 

Scaffold-like clustering are shown). 

Database 
Biological 

Sample 

Total 

PSMs 

Unique to 

Protein 

Database 

Unique 

After 

Basic 

Parsimony  

Unique 

After 

PAW 

Clustering 

Unique 

After 

Scaffold-

like 

Clustering 

Swiss-Prot + TrEMBL + 

Isoforms 
Human 826,483 351,380 489,520 732,145 797,403 

Swiss-Prot + TrEMBL Human 828,870 388,744 497,427 735,501 799,968 

IPI Human 816,653 434,003 603,387 744,720 789,577 

Ensembl Human 815,889 522,155 625,506 753,505 789,926 

NCBI RefSeq Human 795,896 416,099 553,354 754,683 778,682 

UniProt Reference + 

Isoforms 
Human 817,730 500,456 612,228 753,846 791,216 

UniProt Reference Human 817,222 576,659 636,288 756,462 791,039 

Swiss-Prot + Isoforms Human 807,899 629,048 708,937 763,311 791,066 

Swiss-Prot Human 806,264 761,626 762,634 768,142 789,719 

Swiss-Prot + TrEMBL + 

Isoforms 
Mouse 85,709 38,733 74,749 78,448 82,589 

Swiss-Prot + TrEMBL Mouse 85,662 42,424 75,345 78,380 82,565 

IPI Mouse 85,454 52,747 75,565 78,888 82,442 

Ensembl Mouse 85,200 60,868 76,667 79,079 82,203 

NCBI RefSeq Mouse 85,220 51,385 76,704 79,419 82,281 

UniProt Reference + 

Isoforms 
Mouse 85,530 56,127 76,824 79,335 82,487 

UniProt Reference Mouse 85,551 62,123 77,603 79,404 82,511 

Swiss-Prot + Isoforms Mouse 82,872 66,223 75,909 77,518 80,095 

Swiss-Prot Mouse 82,838 76,458 77,094 77,579 80,068 

Swiss-Prot + TrEMBL + 

Isoforms 
Yeast 184,050 172,448 174,291 175,202 180,505 

Swiss-Prot + TrEMBL Yeast 184,006 173,644 174,483 175,160 180,461 

Ensembl Yeast 183,923 173,512 174,351 175,084 180,391 

NCBI RefSeq Yeast 184,229 173,573 174,416 175,370 180,684 

UniProt Reference + 

Isoforms 
Yeast 184,025 172,660 174,502 175,179 180,482 

UniProt Reference Yeast 184,006 173,644 174,483 175,160 180,461 

 


