
 

 

 

 

 

Implementation of the HotNet2 Network 

Diffusion-based Analysis Method in Java 

 

 

 

 

By 
 

Melissa Yan, B.S.  
 

 

 

Master’s Capstone Project 

 

 

 

 

 

 

 

Presented to the  

Division of Bioinformatics & Computational Biology 

Department of Medical Informatics & Clinical Epidemiology 

and the  

Oregon Health & Science University 

School of Medicine 

in partial fulfillment of the requirements of 

 

Master of Biomedical Informatics 

 

 
 

December 2016 

 



 

 

 

 

School of Medicine 

 

Oregon Health & Science University 

 

 

 

 

CERTIFICATE OF APPROVAL 

__________________________________ 

 

 

 

This is to certify that the Master’s Capstone Project of 

 

 

MELISSA Y. YAN 
 

 

“Implementation of the HotNet2 Network Diffusion-based Analysis Method in Java” 
 

 

Has been approved 

 

 

 

 

 

 

_________________________ 
 

Guanming Wu, Ph.D. 
Capstone Advisor 

Department of Medical Informatics and Clinical Epidemiology 

 

 

 

 

 

 

 



i 

 

Table of Contents 

 

Acknowledgement          ii  

Abstract           iii  

1. Introduction          1  

1.1. Sample Use Case        4  

1.2. HotNet          5  

1.3. HotNet2         8  

2. Aim of the Project         11 

3. Implementation         11  

3.1. Choosing Java Libraries for Matrix Operation    12 

3.2. Implementation of the HotNet2 Algorithm in Java    16  

3.3. Parameter Selection        17  

4. Application of Java HotNet2        23  

5. Future Work          27  

6. References          28  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

Acknowledgements 

 

I would like to thank God for the countless blessings He has given me and for providing 

me this opportunity to pursue and finish my master’s degree.  It has been a great privilege to 

work under the guidance of my advisor Dr. Guanming Wu.  I deeply appreciate his patient 

continuous support and encouragement.  I would also like to thank Dr. Shannon McWeeney and 

Dr. Beth Wilmot for providing me advice throughout my project.  I am also very grateful for the 

help I received from Ms. Diane Doctor.   Finally, I would like to extend my appreciation towards 

my friends and family for their love and for always believing in me.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract 
 

Network-based approaches are widely used for analyzing large-scale genomic data and searching 

for disease driver genes.  Diffusion-based approaches are one of the most popular approaches for 

detecting disease candidate genes by combining biological information with topological network 

information.  A particular diffusion-based algorithm used in The Cancer Genome Atlas data 

analysis called HotNet2 has been able to detect significant subnetworks of genes related to 

various cancer types.  The purpose of this capstone project is to port HotNet2 from Python to 

Java.  This will allow future integration into Java-based standalone projects that can provide 

users a more interactive user interface for the whole HotNet2 workflow.   
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1. Introduction 

 

High-throughput experiments are known for producing massive complex biological data 

sets.  Although most of these data sets are readily available to the public, they often only contain 

partial omics information and noisy data with false positives or negatives.
1
  Consequently, 

researchers are faced with the challenge of how to process, extract, and explain relevant 

biological information to gain a better understanding of diseases and many biological processes 

using these massive data sets.
2,3

 

One popular and powerful computational approach for performing data analysis is to 

combine omics data with networks to extract and explain patterns related to biology.  Networks 

have provided new insights and are moving the bioinformatics field forward.  They have been 

used to aid in predicting protein functions,
4
 comprehending chemical reactions in organisms,

5
 

understanding regulation of gene expression,
3,6–8

 and detecting relationships between diseases.
9,10

  

For instance, Figure 1 illustrates that using a network allows detection of relationships between 

different diseases through overlapping genes in a protein-protein interaction network.  To easily 

inspect relationships, it is possible to inspect a group of diseases by adding or removing certain 

diseases overlaid onto the network. 

Network-based approaches used to analyze omics data often use protein-protein 

interaction networks.
2,11,12

  Those interaction networks are comprised of nodes, which represent 

genes or proteins, and edges, which represent existing interactions between genes or proteins.  

Networks often are stored in the form of various matrices in software applications (Figure 2).  

Using matrices allows computational tools to perform matrix arithmetic for data analysis, pattern 

detection and integration of additional biological data. 
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Figure 1.  Mapping diseases onto a protein-protein interaction network.  (a) The human 

interactome network is the gray network and two disease gene groups or modules are 

represented in green and purple.  (b) Only the green disease module is integrated into the 

network.  (c) After mapping both disease associated gene modules onto a network, there are 2 

nodes with green and purple colors which indicate overlapping genes in both diseases and 

therefore the similarity of these two diseases.  *Note: The figure is a modification of Figure 3 iii 

from Barabási, Gulbahce, and Loscalzo 2011.
10
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Figure 2.  A network and various matrices related to it.  (a) A network with 6 nodes of A, B, C, D, 

E, F and 7 edges.  (b) An identity matrix is used to keep track of nodes within a network.  It 

forms a diagonal of 1s and assigns 0 to the rest of the matrix.  For instance, since node A exists 

in the network, a value of 1 is assigned to the matrix at row A and column A.  (c) An adjacency 

matrix stores information about edges within a network.  If an edge exists, then a value of 1 is 

assigned, otherwise the value is 0.  For node E, there are 3 edges formed by E-A, E-B, and E-F, 

so in row E the columns A, B, and F are assigned the value of 1 and the remaining columns are 

assigned 0.  (d) A degree matrix contains diagonal information about the number of edges a 

node has.  Node A has 5 edges, so the value of 5 is recorded in the matrix at row A and column A.  

(e) A normalized adjacency matrix is calculated by dividing the individual values of the 

adjacency matrix by the degree matrix’s diagonal row values.  Each value in the adjacency 

matrix for row E is divided by the degree matrix’s value of 3 in row E column E, so the results in 

the normalized adjacency matrix are ⅓ and 0. 

 

Interpreting biological data in the past frequently focused on individual components 

instead of integrating multiple components within and between complex systems of genes, 

proteins and other gene products, cells, organs, and organisms.
13–16

  For instance, prior disease 

studies only focused on an individual gene related to a single disease.  Now, studies are more 

focused on the holistic approach of inspecting multiple mutated genes within a disease and the 

relationship those mutated genes have.  To study multiple mutated genes and their relationships 

to diseases, network-based approaches often find modular structures, called modules, in 

biological networks.
1
  These modules are often used to find disease related genes or proteins, 

discover biomarkers, detect drug-targeted proteins and pathways, identify evolutionary 

conservation, and predict protein functions.
1,17

 

One of the goals in disease related studies is to use disease modules to identify novel 

disease gene candidates.  The diffusion-based method is one of best methods in predicting 

disease candidate genes because besides integrating biological data, it also incorporates 

information related to topological and functional modules within the whole network.
10,18–20

  This 

method is based on the concept of diffusion in a network setting using gene scores.  Gene scores 

measure the significance of how likely a gene will cause the disease to occur if mutated.  For 
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instance, gene scores can be mutation scores obtained from the frequency of gene mutations 

within tumors (refer to “sample use case” below for an example based on frequency of gene 

mutations).  Diffusion begins at each gene and each gene score slowly spreads out towards other 

genes in the protein-protein interaction network.
19–21

  When diffusion reaches to equilibrium, a 

network module detecting algorithm is used to find network modules having major distributions 

of the gene score.  Genes in these modules are assumed to be disease related, measured by 

statistical tests usually based on random permutation.
10,21,22

   

 

1.1 Sample Use Case  

 

Diffusion-based algorithms are widely used in cancer studies. Cancer is a genetic disease.  

Mutations in cancer driver genes cause tumor development.  A technique to detect cancer driver 

genes is to find significantly mutated genes within patient tumors.
23

  Although some cancer 

driver genes have a high frequency of mutation, most of them have much lower frequencies that 

are not deemed statistically significant, causing a long-tail distribution of infrequent mutations in 

cancer driver genes, known as the long-tail phenomenon.
23–26

  In Figure 3, highly significantly 

mutated genes such as TP53 and KRAS are shown in red on the left side of the distribution curve 

and insignificantly mutated genes are blue in the distribution tail.  Although BRCA1 is a known 

cancer driver gene in breast cancer, large-scale mutation screening performed by Van Allen et al 

showed that BRCA1 did not carry significantly frequent mutations and ended up on the tail of 

the distribution curve.
23

  By placing infrequently mutated genes together with frequently mutated 

genes in the network context, network-based approaches can increase the analysis power to 

detect cancer driver genes with lower frequent mutations.  HotNet2 is one of the network-based 

approaches used to detect cancer driver genes with low mutation frequencies by searching for 

significant cancer-related network modules.   
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Figure 3.  Frequency of mutated genes from patients in a study done by Van Allen et al., 

2014.  The figure is a modification of Figure 3f by Van Allen et al.. 
23

 

 

 

1.2 HotNet 

 

To better understand HotNet2, a background on the previous version known as HotNet is 

provided here.  HotNet is based on the concept of heat diffusion, the process by which heat 

disperses from a source and warms up the surroundings.
27,28

  In HotNet, mutated genes are 

considered “hot” and their heat will spread through the network and impact other genes in the 

network.  Genes close to the hot genes have a higher chance of obtaining more heat from hot 

genes than genes further away (Figure 4a and 4b).  Also, genes near hot genes with few 

neighbors have a higher chance of obtaining more heat than genes near hot genes with many 

neighbors, as seen in Figure 4c and 4d.   
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Figure 4.  The diffusion process modeled with different scenarios with the heat scale of red as 

hot and white as cool.  (a) Heat from the hot left red node is diffusing to the neighboring node on 

the right.  (b) As the heat from the left node diffuses towards the right, the amount of heat 

transferred lessens.  Nodes further away from the source of heat receive less heat than those 

closer.  (c) Heat from the middle red node is shared between the 2 orange nodes on the side.  (d) 

The middle heat is distributed to the nearby 8 surrounding nodes.  The more neighbors a heat 

source node has the less heat each neighbor has because the heat is evenly shared with the 

surrounding nodes.  

 

There are 4 steps in HotNet.
27,28

  The first is to determine how all pairs of genes in a 

network influence or affect one another based on diffusing heat in the network.  Using heat 

diffusion, the amount of heat a gene in the network receives from a mutated gene after a certain 

time is obtained for the influence estimation.  In Figure 5a, after the first time of diffusion node 

B receives all the heat from mutated node A.  However, in Figure 5b, after the first time of 

diffusion node A receives only 1/5 of the heat from mutated node B.  This process is repeated 

until an equilibrium state is reached and recorded as the influence estimation of all genes within 

the network.  The second step places actual gene scores onto the network based on influence 

estimation obtained in the previous step.  Then the least amount of heat transferred between a 

pair of nodes is recorded as the heat transfer of both nodes (Figure 5a-c).  The same process is 

repeated for all pairs of nodes to estimate how genes will impact each other in a network.  Genes 

with greater significance will have higher scores that result in higher temperatures.  In the third 



 7  
 

step, all gene to gene relationships below a certain heat threshold are removed to enable 

formation and discovery of subnetworks.  In the final step, statistical tests are used to determine 

if subnetworks are significant.  For all possible subnetwork sizes p-values are obtained based on 

the numbers of subnetworks for a given size for the actual network and randomly formed 

networks.  From the p-values, HotNet calculates the false discovery rates (FDRs) of subnetworks 

and finds significant subnetworks. 

 

 
 

Figure 5.  Illustration of HotNet.  In HotNet, to determine influence between gene pairs, all the 

heat is transferred to neighbor(s) using heat diffusion.  (a) Node A only has 1 neighbor, so all the 

heat from A is diffused into B.  (b) Node B has 5 neighbors, which all receive equal portions of 

the heat from B.  Node A receives ⅕ of the heat from Node B.  (c) In HotNet, the heat transferred 

between nodes A to B and B to A is ⅕ of the total heat.  The amount of influence between gene 

pairs is solely based on the smallest amount of heat transferred between the pair.  It disregards 

the direction heat travels from. 

 

Although HotNet was able to find subnetworks in actual TCGA Pan-Cancer mutation 

data, there is a high likelihood that many of those subnetworks are false positives, because many 

of these subnetworks were biased towards star shaped clusters that also frequently showed up in 

the random permutations.
29

  These star shaped clusters have a hot central node surrounded by 
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many cold nodes (Figure 4d).  The bias occurs because HotNet does not consider the direction of 

heat from the mutated genes.  To address this issue, the HotNet2 algorithm was developed.   

 

1.3 HotNet2 
 

Instead of using heat diffusion without considering heat directionality, HotNet2 uses a 

different type of diffusion and incorporates the impact of heat directionality.  The first step of 

HotNet2 uses insulated heat diffusion, allowing nodes to retain some of their own heat in the 

process of transferring heat to neighboring nodes (Figure 6a, b).
29

  In the second step, to 

determine how genes influence each other, instead of recording the least amount of heat 

transferred for both genes as done in HotNet (Figure 5c), HotNet2 incorporates information 

about the direction of heat traveling between nodes for the two genes separately (Figure 6c).  

After these two initial steps, the remaining steps in HotNet2 are similar to HotNet.  Examples of 

the first three steps of HotNet2 are shown in Figure 7, 8, and 9.  
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Figure 6.  Illustration of HotNet2.  In HotNet2, to determine influence between gene pairs, the 

heat is transferred to neighbor(s) and some heat is retained by each node using insulated heat 

diffusion.  The amount of heat retained by each node is dependent on insulating parameter β, 

which provides the fraction of heat each node retains.  Here β is 0.5, so half the heat from each 

node is retained and the remaining half is shared evenly among the node’s neighbor(s).  (a) 

Node A only has 1 neighbor, so half the heat is kept in A and the remaining half is diffused into B.  

(b) Node B has 5 neighbors, so half the heat is kept in B and the remaining half is distributed in 

equal portions among B’s neighbors.  (c) HotNet2 does not disregard the direction of heat 

transfer and treats the cases (a) and (b) separately because the direction of heat can result in 

discovery of subnetworks less biased towards star shaped and cooler subnetworks.  (d) The 

insulated heat diffusion process can be described with a matrix-based equation, which contains 

parameter, β, for amount of heat retained by each node, an identity matrix, and a normalized 

adjacency matrix.  Descriptions of matrices can be found in Figure 2. 

 

 
 

Figure 7. The first step of HotNet2 described with a matrix based equation and example.  From 

an interaction network with 6 nodes, by modeling it as a normalized adjacency matrix and 

performing the steps in the equation using the provided heat retention beta parameter, an 

insulated heat diffusion matrix is generated.   
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Figure 8. The second step of HotNet2 enables the network to incorporate gene score information.  

The gray heat score matrix (𝐷
ℎ  ) places gene scores onto the network by multiplying with the 

diffusion matrix from step 1 (Figure 7). 

 

 

 
 

Figure 9. The third step of HotNet2 enables the formation of hot subnetworks.  Using the 

exchanged heat matrix from the second step (Figure 8), the minimum edge weight parameter δ is 

used to remove values and obtain subnetworks.  As seen in the red matrices, the values in the left 

matrix below a minimum edge weight of 0.01 are removed to generate the matrix on the right.  

The empty elements in the right matrix have the value of 0.  
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2. Aim of the Project 

 

The main goal of this project is to port HotNet2 from Python to Java.  In the process of 

doing so, it will require understanding the two programming languages and the biological aspect 

of the algorithm.  For Python, it will be essential to recognize the data structures and libraries 

used to ensure the Java implementation yields the same results.  While using Java, it will be vital 

to use powerful enterprise-quality development and profiling tools to optimize code and address 

performance issues.  This project will provide insight on how algorithms can be used in 

bioinformatics to assist in detecting subnetworks of genes related to diseases. 

 

3. Implementation 
 

The Java implementation was written based on Java 7 and the code is available at 

https://github.com/melissayan.  There were two different networks used to test the HotNet2 

implementation, a prototype network and the Reactome functional interaction (FI) network.  The 

prototype network is a randomly generated small network which consists of 1000 nodes and 

10,000 edges.  Since the prototype network is randomly generated, the genes scores used to test 

the prototype were also randomly generated.  To ensure that the Java implementation is capable 

of handling a real network, the 2015 version of the Reactome FI network was chosen.  The 

Reactome FI is a highly reliable protein/gene network based on human curated Reactome 

pathways and covers close to 60% of total human genes.
11

  The Reactome FI network was 

downloaded from the Reactome web site (http://www.reactome.org/download) and the gene 

scores used were from the original HotNet2 study (http://compbio-

research.cs.brown.edu/pancancer/hotnet2/public/data/scores/mutation_frequency_expr_filtered.t

xt).
29

  Running time results for the prototype network were performed by a laptop with 
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configurations from Table 1 and results for the Reactome FI network were performed by the 

Oregon Health & Science University ExaCloud server. 

Table 1. Laptop Hardware Configuration 

 

Model Lenovo IdeaPad Yoga 13 

Operating System Windows 10  

System Type 64-bit Operating System 

Processor Intel® Core™ i7-3537U CPU @ 2.00GHz 2.50 GHz 

RAM (memory) 8.00GB 

Hard drive 256GB SSD 

 

 

3.1 Choosing Java Libraries for Matrix Operation  
 

The interaction network used in HotNet2 is modeled by an adjacency matrix and the 

majority of computation in HotNet2 is related to matrix operations (equations from Figure 7, 8, 

and 9).  The generation of diffusion matrix was implemented in Java using the Apache Commons 

Math library, 
30

 one of Java‟s most popular math libraries currently available for matrix related 

computation.  However, it still took 40 minutes to generate a 12037 by 12037 diffusion matrix 

for the Reactome FI network‟s largest component of 12037 genes.   

Since the generation of diffusion matrix requires scalar multiplication, subtraction, and 

inversion, the performance of these three operations was gauged to find a more suitable library.  

Based on “Java Matrix Benchmark” results,
31

 ojAlgo was the most suitable library because it is 

capable of handling large matrices, is the fastest for performing the inverse operation, and is also 

one of the fastest libraries for scalar multiplication and subtraction (Figure 10).
32

  To ensure 

performance times would improve as expected, the time required to perform each operation in 

the diffusion matrix was then compared for the Apache Commons Math and ojAlgo 

implementations.  As seen in Figure 11, the most time is spent on inversion.  And the inverse 

operation step in creating a diffusion matrix takes the Apache Commons Math library four times 
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as long as the ojAlgo library.  By using ojAlgo, the time required to generate a diffusion matrix 

is reduced from 40 minutes to 10 minutes for the Reactome FI network (Figure 12).  Hence, the 

ojAlgo library was used to generate the diffusion matrix. 

 

 
 

Figure 10.  Java Matrix Benchmark results for different Java libraries for scalar multiplication, 

subtraction, and inverse of a matrix.  Since the results presented are by relative performance, 

Java libraries with higher speeds are near the top of the graphs.  Overall, the ojAlgo library has 

the fastest performance time for scalar multiplication, addition, and taking the inverse of large 

matrices of size 10,000.  This figure is modified from “Java: Basic Operation Results” from 

http://lessthanoptimal.github.io/Java-Matrix-Benchmark/runtime/2015_07_XeonQuad/. 

 

 
Figure 11. Average diffusion operation performance times based on the 2015 version of the 

Reactome FI network.  Scalar multiplication and subtraction performance times took less than 2 

seconds.  The most time was spent on inversion and Apache Commons Math is 1864.6 seconds 

slower than ojAlgo.  It should be noted that although normalizing a matrix and creating an 

identity matrix are not operations, they were still measured to ensure generating the matrices 

required for the diffusion matrix did not take the most time. 
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Figure 12. Comparison of time needed to generate a diffusion matrix using Apache Commons 

Math versus ojAlgo over 10 different trials.  On average, it takes Apache Commons Math 40 

minutes to generate a diffusion matrix and it takes 10 mins for ojAlgo.  It should be noted the 

matrices here have a dimension of 12037 x 12037 and were generated from the 2015 Reactome 

FI network.   

 

Since Apache Commons Math library was originally used to generate the diffusion 

matrix before switching to ojAlgo, it was still considered an option when generating the 

exchanged heat matrix and extracting hot subnetworks.  Three different implementations were 

tested to determine which was most suitable for use based on performance time: OOO, OOA, 

and OAA (Table 2). O indicates ojAlgo was used and A indicates Apache Commons Math was 

used.  Thus, OOO indicates the diffusion matrix, exchanged heat matrix, and matrix used for 

extraction all used ojAlgo.  OOA specifies ojAlgo was used for the diffusion matrix and 

exchanged heat matrix, then converted into a matrix for use by Apache Commons Math.  And 

OAA represents only the diffusion matrix used ojAlgo and the other steps used Apache 

Commons Math.  Using Java VisualVM, the Java profiling tool in the Oracle JDK distribution,
33

 

the performance results in Figure 13 were obtained for a single trial of OOO vs OOA vs OAA.  

This was repeated for a total of 10 times to generate Figures 14.  Based on Figure 14, OOO and 
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OOA have similar times and are better than OAA, so it is better to solely use the ojAlgo library 

instead of combining it with another library. 

 

Table 2. Combination of Different Matrix Libraries for HotNet2  

 

 
Diffusion Matrix 

Exchanged Heat 

Matrix 

Subnetwork 

Identification 

Abbreviation ojAlgo 

Apache 

Commons 

Math 

ojAlgo 

Apache 

Commons 

Math 

ojAlgo 

Apache 

Commons 

Math 

OOO x   x   x   

OOA x   x     x 

OAA x     x   x 

 

 

 

Figure 13. VisualVM performance results from running 3 separate possible implementations of 

the matrices used in HotNet2 algorithm on a prototype network of 1000 nodes and 5000 edges.   

VisualVM is a profiling tool with the ability to track application performance by providing a 

method’s execution time.  The three different tested combinations are: OOO, OOA, and OAA.  (a) 

OOO indicates that the diffusion matrix and exchanged heat matrix were both created using 

ojAlgo and delta selection was made using an ojAlgo exchanged heat matrix; (b) OOA indicates 

ojAlgo was used to create the diffusion matrix and exchanged heat matrix, then converted into an 

Apache Commons Math matrix for delta selection; (c) OAA indicates ojAlgo generated a 

diffusion matrix which was converted into an Apache Commons Math  matrix for creating a 

exchanged heat matrix and delta selection.  It should be noted that the figure is a combination of 

the three parts which were tested separately. 
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Figure 14. Average performance time for a combination of different matrix libraries used in the 

HotNet2 algorithm on a prototype network of 1000 nodes and 5000 edges based on 10 trials.  

For the three different tested combinations, O indicates ojAlgo was used and A indicates Apache 

Commons Math was used (a detailed description can be found in Table 2).  The execution time 

required to generate a diffusion matrix and obtain subnetworks was similar for the two libraries.  

However, when generating an exchanged matrix, it took the Apache Commons Math library 

much longer than 660 ms. 

 

 

3.2 Implementation of the HotNet2 Algorithm in Java 
 

An overview of steps required to run the HotNet2 algorithm is shown in Figure 15.   
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Figure 15. Flowchart of the HotNet2 algorithm.  Details on beta and delta selection can be 

found in Figure 16 and 19, respectively. 

 

After the diffusion matrix, an exchanged heat matrix is created for extraction of hot 

subnetworks (Figure 8 and 9).  The pseudocode for generating an exchanged heat matrix is 

provided below:  

 

 Input: Diffusion matrix F, set of genes G, and heat scores S 

 Output: Exchanged heat matrix  

1. M  Map(key: null, value: null) 

2. For each gene in G do 

3.     If gene has S then M (key: gene, value: S) else M(key: gene, value: 0.0) 

4. 𝐷
ℎ    DiagonalMatrixWithHeatScores 

5. For each gene in F do 

6.     s  get gene‟s value from M 

7.     𝐷
ℎ   (𝑖 ,𝑖)  (s) 

8. Multiply  F by 𝐷
ℎ   

 

To generate a directed weighted graph, elements in the exchanged heat matrix at or above the 

minimum edge weight δ threshold are used to generate a new graph.  From the newly generated 

graph, only strongly connected components are extracted and identified as subnetworks of 

potential interest.   

 

3.3 Parameter Selection  

 

There are two parameters required for the HotNet2 algorithm, beta and delta.
29

  Beta 

determines the amount of heat a node will retain during diffusion and delta is a threshold used to 

obtain subnetworks at or below a certain size.   
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The process required to select beta is illustrated in Figure 16.  In order to select beta, the 

betweenness centrality of all proteins was calculated to determine five “source proteins” to 

assess the influence these proteins have on all other proteins in the network.
18,29

  These five 

“source proteins” were selected based on the following five betweenness centrality scores: 

minimum, 25% quantile, median, 75% quantile, and maximum.  In addition to these five proteins, 

TP53 was also used as a source protein for comparing with reported results from the original 

Python implementation.  During the process of selecting beta, 20 different diffusion matrices 

were generated using beta values from 0.05 to 1.00 (ex. β = 0.05, 0.10, 0.15 … 1).  For each 

diffusion matrix, how the heat within the “source proteins” spread to direct neighboring proteins, 

secondary neighboring proteins, and all other proteins was observed.  For instance, for each 

protein, influence values (ex. 0.001, 0.002, 0.003 … 0.1) were used as a threshold to determine 

how many of those proteins in the diffusion matrix had a value greater than the given influence 

value.  From the observed values, a beta value graph similar to Figure 17a was plotted for each 

protein and the given beta value.  Then, for each of the six proteins an inflection point diagram 

was compiled based on the inflection point for direct neighboring proteins from the different beta 

graphs and the initial maximum inflection point was selected as the beta parameter (Figure 17b).   

The Java implementation for beta selection was then validated with the Supplementary 

Figure 24 results from Leiserson et al.,
29

 using the TP53 gene from the iRefIndex network 

because no source code for obtaining the beta parameter is available.  In Figure 18, it shows the 

Java implementation yielded the same results as the results seen in Supplementary Figure 24.  

However, it should be noted that after the HotNet2 paper was published new source code was 

released on May 31, 2016 with a bug fix in generating the diffusion matrix.  Accordingly, the 

Java code for generating diffusion matrices was updated.  However, results and Python code for 
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beta selection are not available in the updated Python HotNet2 code to enable verification of the 

current Java implementation.  But based on this comparison result (Figure 18), we believe our 

Java implementation should be correct.  

 

Figure 16. Flowchart for beta selection.  Using the largest component in a network, betweenness 

centrality scores are calculated to get 5 “source proteins”.  Then a range of β values from 0.05 

to 1.00 are used to obtain results for each source protein based on the number of direct 

neighbors, secondary neighbors, and number of all other proteins in the network.  The results 

are then saved in a file to be converted into a graph as seen in Figure 18 (see below).  
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Figure 17. An example illustrating how to create an inflection point diagram using beta value 

graphs.  (a) A beta value graph for a source protein was generated using β=0.05.  And 

additional similar beta value graphs will be generated based on different beta values.  The 

purple circle indicates where the inflection point for the direct neighboring protein is.  (b) By 

using the inflection point detected in each of the beta value graphs, an inflection point diagram 

can be generated.  For instance, in the beta value graph for β=0.05 the purple circled inflection 

point was 0.009, so in the inflection point diagram that point is plotted over. 

 

 

 

Figure 18. Comparison of Java and Python results on beta selection using the TP53 gene in the 

iRefIndex network.  The Java implementation on the left matches the Python results on the right.  

The black dotted line represents all genes within the network, the blue dotted line represents 

secondary neighbor nodes that are 2 interactions away from the TP53 gene, and the yellow 

dotted line represents direct neighbor nodes.  Figure b is adapted from Supplementary Figure 24 

from Leiserson et al..
29

 

 

 

The delta parameter is chosen to ensure that large subnetworks found in the actual 

network are not likely to be found in random networks.  To obtain delta, 100 random networks 

are generated using the switch algorithm from Python‟s NetworkX package.
34

  Using the switch 

algorithm ensures that the graph is still a single connected component, containing the same 
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number of nodes that have the same degrees as in the original network.  From each random 

network, four minimum deltas are chosen when all the strongly connected component sizes 

obtained are less than or equal to a given subnetwork size of 5, 10, 15, and 20, as seen in Figure 

19.  For each of the given subnetwork sizes, there will be a total of 100 minimum deltas and the 

median delta value from the 100 minimum deltas will be chosen as the delta for that subnetwork 

size.  So subnetworks of size 5, 10, 15, and 20 will each have their own individual selected delta 

value.  Each of the four selected delta values is used to find p-values of significant subnetworks 

sizes from two to ten, then the delta value with the most significant p-values less than 0.05 is 

chosen as the delta (an example is shown in Table 3) .   The Java implementation was then 

validated with the Python implementation to ensure correctness.  As seen in Figure 20, the Java 

results for selecting delta values correspond very closely with the Python results.   

 

Table 3. iRefIndex Delta Selection using MutSigCV –log10 q-value Heat Scores.   

 

  

Delta 

  
0.016167 0.016871 0.020113 0.02973 

Subnetwork 

Size 

2 0.363 0.339 0.08 0.111 

3 0.15 0.122 0.155 0.004 

4 0.294 0.278 0.024 0.001 

5 0.407 0.362 0.043 0 

6 0.242 0.194 0.007 0 

7 0.139 0.113 0.004 0 

8 0.077 0.067 0.002 0.001 

9 0.049 0.045 0 0 

10 0.026 0.024 0 0 

*Note: The delta value in green is the selected value used for analysis because it has the 

most significant p-values (p-value < 0.05; highlighted in yellow) for the subnetwork sizes. 

The p-values are obtained from the HotNet2 pan-cancer analysis website from Leiserson 

et al.,
29

 at http://compbio-

research.cs.brown.edu/pancancer/hotnet2/public/data/runs/mutsigcv/iref/. 
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Figure 19. Flowchart for delta selection.  For each of the 100 random networks generated, an 

exchanged heat matrix is generated and a sorted list of all unique edge weight values is 

extracted from the matrix.  Using binary search, the minimum delta is obtained from the list for 

each of the maximum subnetwork sizes of 5, 10, 15, and 20. Then the minimum deltas are 

collected from 100 random networks, sorted from largest to smallest and the median value for 

each size is returned.   
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Figure 20. Comparison of the select delta Java and Python results in the Reactome FI network 

using β=0.25.  Results from the Java implementation match with ones from the Python 

implementation.  (a-b) For the maximum component size of 5, the scatterplot generated by the 

minimum edge weight values follows a similar trend and the median minimum edge weight is 

close for both.  (c-d) A similar trend line also exists when the max component size is 10 and the 

median minimum edge weight for both is 1.12 x 10
-4

.  

 

 

4. Application of Java HotNet2 
 

The Reactome FI network was chosen to provide users a real example for the HotNet2 

algorithm process shown in Figure 15.  When using a network for the first time, the preferred 

method is to run beta selection instead of randomly choosing a beta parameter.  From the beta 

selection text file output, the graphs from Figure 22a – 22e can be generated for a range of 

possible beta parameters.  Through combining the inflection point results for each beta parameter 
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from 0.05 to 1.00, a comprehensive diagram (Figure 22f) is obtained and the suggested beta 

parameter is obtained by selecting the beta where the highest inflection point is first reached.  In 

Figure 22, the results were only for TP53, but the actual results from beta selection will also 

include the results to obtain the graphs for 5 “source proteins” as seen in Figure 23.  Since 0.25 

was the inflection point for the 75% quantile and maximum betweenness centrality of proteins 

and it is also close to TP53‟s beta parameter of 0.20, the beta parameter of 0.25 was determined 

to be most suitable for the Reactome FI network.  Using the beta parameter of 0.25, four 

different delta parameters were selected for subnetwork sizes less than or equal to 5, 10, 15, and 

20.  Figure 24 depicts graphs the delta selection output and the red dot is the median minimum 

selected delta parameter.  A combination of the recommended beta parameter and the selected 

delta parameter will then be used to identify subnetworks when executing the HotNet2 algorithm.  
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Figure 22. Beta selection results using the Reactome FI network and the TP53 gene.  The results 

obtained from a range of beta values (a-e) were used to find inflection points.  Then an inflection 

point diagram (f) was compiled by combining the inflection points for each beta into one graph.  

It shows 0.20 as the suggested beta, because that is the point before heat from a protein starts 

diffusing more to a direct neighbor’s neighbor instead of the protein’s direct neighbor.  
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Figure 23.  Beta selection inflection point diagram results using the Reactome FI network.  The 

5 “source proteins” chosen based on the minimum, 25% quantile, median, 75% quantile, and 

maximum betweenness centrality scores are as follows: VARS2, MRPL33, PREX1, RPL27A, and 

UBC.  
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Figure 24.  Delta selection results using the Reactome FI network and β=0.25.  The median 

minimum delta for maximum component sizes of 5, 10, 15, and 20 are as follows: 1.87 x 10
-4

, 

1.12 x 10
-4

, 0.95 x 10
-4

, and 0.91 x 10
-4

. 

 

 

5. Future Work 
 

The current Java implementation of HotNet2 uses pure Java libraries.  It is possible to 

improve the performance time of matrix operations even further by using native libraries via 

JNI.
35

  An alternative to using the pure Java ojAlgo library is using the Matrix-Toolkits-Java 

library (MTJ-N).
36

  Based on the results in “Java Matrix Benchmark”, using MTJ-N would 

improve the performance time for the inversion and multiplication operations.
31

  Although MTJ-

N is slower than ojAlgo for subtraction and scalar multiplication, the actual latency time will 

vary little and most time will be spent on inversion (as seen in Figure 12).    

Since the HotNet2 algorithm has been ported from Python to HotNet2, it can be 

integrated into Java-based standalone applications.  In particular, it would be possible to 

implement HotNet2 into ReactomeFIViz,
37

 a Cytoscape app,
38

 to allow researchers and 

clinicians to use this powerful diffusion-based algorithm alongside pre-existing network and 

pathway analysis features in a graphical user interface (GUI) setting for the entire workflow for 

the first time.  Furthermore, integration into the open source software tool Cytoscape ensures that 

this tool will be accessible to a large user base because it is widely used in the research 

community and has 10,000 downloads per year.
38
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