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1.  Introduction 

1.1  Influenza 

Influenza is a disease that is estimated by the World Health Organization (WHO) to 

affect 5-10% of adults and 20-30% of children each year.1  Of these, there are an estimated 3-5 

million severe cases worldwide resulting in between 250-500 thousand deaths a year.  These 

infections are caused by the influenza virus, of which there are three types (A, B, and C).  The 

type A viruses are capable of infecting a wide range of hosts including humans, pigs, horses, and 

predominantly a wide range of birds2,3.  Additionally there is a wide range of antigenically 

distinct subtypes of the A viruses which are thought to arise in part due to the many types of 

hosts it can present in.  These subtypes are categorized by two viral proteins, hemagglutinin 

(HA) of which there are 15 recorded types and neuraminidase (NA) of which there are 9 types2,3.  

Currently the A(H1N1) and A(H3N2) subtypes are the most common among humans1.  The B 

type influenza viruses have historically been  responsible for some severe epidemics and 

continue to circulate among populations annually, the impact of these viruses overall appear to 

be much lower than type A influenza due to the lower rate at which antigenically different 

viruses appear in the population2,3.  This is thought to be potentially influenced by the much 

more restricted range of hosts as the type B viruses are limited to infecting primarily humans and 

occasionally seals3,4.  The type C virus does appear to also be wide spread in human populations, 

as the majority of adults appear to have antibodies to the virus, and type C influenza is typically 

known for causing more mild infection symptoms and appears to primarily cause illness in 

young children5,6. 

 

1.2  Symptoms 

Symptoms of an uncomplicated influenza infection typically include fever, cough, sore 

throat, muscle pain, and nasal congestion.1,7  For an influenza infection to be classified as severe, 



however, there are four possible criteria.  The first criterion is if a patient presents with:  clinical 

or radiological signs of lower respiratory tract disease (e.g. shortness of breath, tachypnea, 

hypoxia, pneumonia), central nervous system involvement (e.g. encephalopathy, encephalitis), 

secondary complications (e.g. renal failure, multiple organ failure, septic shock), and other 

complications (e.g. severe dehydration, rhabdomyoliysis, myocarditis).  The second criterion that 

will earn a severe classification is if the influenza infection exacerbates a preexisting chronic 

disease in the patient.  A patient who has any other condition requiring hospital admission 

alongside or because of influenza will have their infection classified as severe.  Lastly, a patient 

who initially presents with a mild influenza infection that progresses to meet any of the other 

criteria is considered to have a severe infection.7 

As these criteria would indicate, there is a significant amount of variation in the 

symptoms observed.8,9  Currently there seem to be a large number of factors contributing to this 

wide range of symptoms and severity.  The strain and quantity of virus a patient is exposed to 

seems, unsurprisingly, to play a major role in the severity of an influenza infection.10,11  

Environmental factors have also been found to contribute to the occurrences and severity of 

influenza.12  Additionally, there are many differences between patients that seem to exhibit a 

substantial influence on the severity of an infection.  Age is a major factor, with the very young 

and very old showing the highest rates and risk of hospitalization due to influenza.13,14  Chronic 

illnesses have also been understandably linked to severe infection rates.14  Responses to 

influenza infections have also been found to have a significant genetic component.15,16 

 

1.3  Collaborative Cross Mouse Model 

The complexity seen underlying influenza infection severity has made it difficult to 

understand the influence of each individual component.  The use of a more controllable model is 

therefore desirable to allow for identification and quantification of specific influences.  Inbred 

mouse strains have been a frequently used model in biological research, and for influenza 

specifically, due to both the ease of breeding and the high amount of reproducibility.11,17,18  

Examining these strains has allowed for identification of some genetic factors affecting influenza 
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infections, and examining effects between strains has reinforced the knowledge of host genetic 

variations contributing to infection severity.11  One of the largest disadvantages of the inbred 

mouse strains as models for human disease is the lack of genetic diversity.19  Even comparing 

between strains cannot accurately approximate human outbred genetic diversity.  In order to 

address this issue, the recently established collaborative cross takes 8 parental strains to outbreed 

in a controlled manner for use in studies.20  These mice much more accurately reflect observed 

human population variation, while maintaining much of the reproducibility that was the hallmark 

of the individual mouse strains. 

 

1.4  Ontologies 

In order to compare the wealth of information the collaborative cross can provide with 

other species, it is necessary to have computational tools and methods for accessing and 

understanding the data obtained.  This often involves making use of ontologies, which are 

structured and controlled vocabularies that describe and annotate knowledge.21  These ontologies 

work by defining the vocabulary and structure to be recorded, and by defining the relationships 

between those objects.  These databases are often very specific in scope.  Current ontologies tend 

to be divided by species, and often further by category of information.  Thus the Human 

Phenotype ontology and the Mouse Phenotype ontology are two completely separate entities 

curated independently.   There are also further divisions depending on field, such as the mouse 

anatomy project and Edinburgh Mouse Anatomy Project which detail mouse anatomical 

structures in adult and developing mice respectively.22 

While these ontologies predominantly use their controlled vocabularies to establish terms 

and relationships that are consistent within a given ontology, there are often much greater 

differences between these collections.  Such differences have drastically limited the ability to 

integrate data and findings between species, and have compounded the difficulties already 

arising from different conceptualizations of phenotypes in different species as well as species-

specific anatomies.23  There has been some progress in the last few years on mapping out related 

terms between species ontologies.22  The Monarch Initiative, for instance, has been establishing 



tools for allowing computation comparisons between species.24  Such mappings will be 

necessary to fully integrate the human and mouse influenza infection data 

 

1.5  Research Question and Specific Aims 

Using this collaborative cross and available human data, this project sought to answer the 

following question: what genes and pathways are differentially expressed during mild and severe 

influenza infections in the collaborative cross mouse model, and do these mirror the differential 

expression seen in existing human influenza severity data?  To guide the examination of this 

question, three specific aims were used to focus the investigation: 

 

1. Specific Aim 1:  Identify public human datasets for contrasting infection responses 

and calculate gene and pathway expression differences.  

2. Specific Aim 2:  Identify genetic and gene pathway expression differences related to 

changes in infection phenotype in the Collaborative Cross 

3. Specific Aim 3:  Integrate the expression variations to assess similarities and allow 

for greater context in current and ongoing studies.  



 

15 

 

2.  Materials and Methods 

 To set up for and analyze the gene expression differences associated with severe 

influenza infection in mice and humans, a workflow was established that would allow the results 

for both species to be compared on both a gene and pathway level (Figure 2.1).  The human 

dataset, as the first available, was analyzed first through this process.  The mouse expression and 

plethysmography data was then assessed using the same steps once the data was collected. 

 

 

Figure 2.1.  Schematic overview of analytical workflow for cross-species comparisons and 

prioritization 

 



 

2.1 Human Differential Expression 

In order to begin examining genetic differences between hosts experiencing normal 

verses severe influenza infections, public datasets of humans experiencing differing influenza 

infection severities were explored and aggregated.  The criteria for these datasets were that they 

contain: influenza infection severity annotation with severity definitions equivalent to the WHO 

guidelines, raw microarray data available for use and access, and influenza virus data rather than 

(or in addition to) influenza vaccine data (Table 2.1).  The genes identified as significantly 

differentially expressed in the publications associated with each dataset, once collected and 

translated to their NCBI Gene IDs, were loaded into R to check for overlap between the genes of 

each dataset.  The Reactome pathways associated with the genes of each dataset were then 

determined using the reactome.db package to map between the gene IDs and pathway IDs. 

 

 

2.2 Severe Influenza Infection Phenotyping 

 To be able to accurately assess the similarities between the results from the human 

datasets and the mouse models, establishing the criteria to declare an influenza infection as 

severe was necessary.  The main authority on defining a severe infection in humans is the WHO, 

and the guidelines presented there are very useful and comprehensive.  Those guidelines are also 

framed around clinical presentations, as these are the most commonly available when a human 

patient is examined (Table 2.2).   
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Table 2.1.  Table of human influenza infection GEO datasets 

GEO PMID Platform Samples Details 

GSE61821 25365328 Illumina HumanHT-

12 V4.0 expression 

beadchip 

402 (83 mild, 40 

moderate, 11 severe, 73 

febrile by unknown 

pathogen) 

Examined 

whole blood 

GSE20346 21408152 Illumina HumanHT-

12 V3.0 expression 

beadchip 

81 (6 pneumonia patients, 

4 severe influenza 

patients, 18 vaccine 

patients) 

Examined 

whole blood 

over 4-5 days 

in 4 

individuals 

GSE27131 21781987 Affymetrix Human 

Gene 1.0 ST Array 

21 (7 controls samples 

and 14 paired samples at 

day 0 and 6) 

Examined 

peripheral 

blood at two 

time points 

 

Table 2.2.  Clinical symptoms of normal and severe influenza infection. 

Uncomplicated Influenza Severe Influenza 

fever shortness of breath 

cough tachypnea 

sore throat hypoxia 

nasal congestion pneumonia 

headache encephalopathy 

muscle pain encephalitis 

malaise organ failure 

Gastrointestinal illness severe dehydration 

 

http://www.ncbi.nlm.nih.gov/pubmed/25365328
http://www.ncbi.nlm.nih.gov/pubmed/21408152
http://www.ncbi.nlm.nih.gov/pubmed/21781987


  

2.3 Ontologies 

 In order to make computational use the WHO clinical presentations, the terms associated 

with the severe infection symptoms were identified from the Human Phenotype Ontology (Table 

2.3).  The data used to stratify mouse subjects, however, is overwhelmingly comprised of 

quantitative measurements that do not always directly relate to the WHO guidelines.  To bridge 

the gap between these, the ontology mappings established by the Monarch Initiative were 

employed to gather the equivalent terms from the Mammalian Phenotype Ontology (Table 2.3).  

For each individual phenotype identified and employed, the Monarch Initiative had also 

collected a list of genes associated with that phenotype for several mammals that were available.  

The mouse genes associated with the mammalian phenotypes selected were mined from the 

Monarch Initiative, and used to establish the initial framework for comparing results between 

species.  In the scope of this investigation each ontology term was collected and utilized on its 

own, rather than including data from their child terms as well.  The mouse genes were converted 

to their human equivalents as annotated by Ensembl through the use of the BioMart package, 

which allowed the gene identifiers to be translated into their human homologs.25,26  In instances 

where no homologs were available, the data was dropped.  These now entirely human gene IDs 

were examined for overlap, then the pathways associated with the human and mammalian 

ontology datasets were gathered from the reactome.db package to examine for similarities. 
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Table 2.3.  Human and Mammalian Phenotype Ontology terms associated with severe influenza 

infection.  

Human Ontology Term Human ID Mammalian ID Mammalian 

Ontology term 

Tachypnea HP:0002789 MP_0005426 Tachpnea 

Pneumonia HP:0002090 MP_0001861 Lung inflamation 

Encephalopathy HP:0001298 MP:0013806 Encephalopathy 

Encephalitis HP:0002383 MP_0001847 Brain inflamation 

Dehydration HP:0001944 MP_0001429 Dehydration 

myocarditis HP:0012819 MP:0001856 Myocarditis 

Renal insufficiency (kidney 

failure) 

HP:0000083 MP:0003606 Kidney failure 

Sepsis HP:0100806 MP:0005044 Sepsis 

Respiratory insufficiency HP:0002093 MP:0001953 Respiratory failure 

Respiratory distress HP_0002098 MP:0001954 Respiratory distress 

 

 

2.4 Integration 

 Once the mouse datasets were available, the phenotypes identified as associated with 

severe influenza infection were compared to the quantitative measurements gathered from the 

mice to establish criteria for stratifying the subjects.  From the data available from the 

plethysmography measurements, the frequency of breathing and enhanced pause (Penh) were the 

most strongly related to these clinical presentations.  As the normal breathing rate of mice 

appears to be between 85-230 breaths per minute, subjects with breath frequencies exceeding this 



were considered tachypneic.  Additionally, a 1.25-fold change in Penh between infected and 

controlled mice was used as additional support of the conclusion for severe infection. 

To determine the genes differentially expressed in the severe infections, the expression 

results were examined in R with the use of the packages Affy, Limma, and Oligo.  The 

expression data were processed with RMA normalization and used to create a linear model that 

was subjected to Empirical Bayes correction to determine the differential expression. Genes were 

considered significantly differentially expressed if their adjusted p-value was less than or equal 

to 0.05, while also showing a fold change of at least 1.5.  The pathways associated with the 

differentially expressed genes were then identified in a similar manner to the human genes 

previously.  The mouse genes were first converted to their human homologs in the same manner 

that the mouse genes obtained from the Mammalian Phenotype Ontology were.  The homology 

data established by Ensembl was applied via the BioMart package to allow for the conversion of 

the mouse-specific identifiers to their human counterparts.25,26  If a gene did not have a human 

homolog, the gene was omitted from the dataset.  The homologous genes were then utilized with 

the same reactome.db package to collect the pathways linked to the mouse differential expression 

associated with severe influenza infection.  The lists of human and mouse results were then 

compared for overlap on both the gene and pathway level.  
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3.  Results 

 

3.1 Human Differential Expression 

 The human influenza datasets were first gathered and analyzed.  The genes identified as 

differentially expressed in these datasets were collected and compared to identify similarities.  

From these public datasets, 76 genes were identified as significant but there was no overlap 

between the genes that were significant.  The pathways associated with the identified genes were 

then calculated to allow for greater overlap and applicability to the later steps.  There were 151 

unique Reactome pathways identified, seven of which were identical.  To further help provide 

insight into differences affecting respiratory distress, two Severe Acute respiratory syndrome 

(SARS) datasets were compared and assessed for overlap on the gene level.  There were 94 

genes identified as significant, and similar to the influenza datasets there was no overlap between 

the genes.  The pathways were then calculated as well for use later.  263 unique pathways were 

found, with 77 of these overlapping.  In comparing the 151 influenza pathways and 263 SARS 

pathways, 96 of these pathways were in common between the two datasets. 

 

3.2  Mammalian Phenotype Ontology 

 Due to the frequent updates and changes to the Monarch Initiative, the data associated 

with the Mammalian Phenotype Ontology terms in the Monarch Initiative database were 

collected on several occasions, with the final being utilized on  July 12, 2016.  At that time, each 

of the 10 phenotype terms (Table 2.3) were queried for genes associated with that phenotype.  

626 unique genes were found across the datasets linked to the phenotypes, with 256 genes 

(40.9%) occurring in the gene lists obtained from multiple phenotypes.  The pathways associated 

with the genes in each phenotype’s dataset were calculated as well.  2224 pathways were found 



across the groups, with 865 pathways being unique.  Only 212 (24.5%) of the pathways were 

exclusively found in the data for a single phenotype term.  Due to the high amount of overlap 

and similarity in these results, the gene lists obtained as associated with each ontology term were 

combined into a single dataset to be compared with the human and mouse expression data. 

  

3.3  Collaborative Cross Differential Expression 

 In the collaborative cross mouse data, the influenza infection phenotypes showed by far 

the strongest differences in breath rate and penh values, lending the analysis to focus on the 

expression differences between the control and severe influenza infected subjects.  The 

differential expression associated with severe influenza infection was calculated, where 3073 

unique genes were found to be differentially expressed with 951 of those genes being repeated 

between the mouse subjects analyzed.  From these the pathways associated with severe influenza 

infection in infected mice was gathered.  These pathways showed 1082 pathways with 771 of 

these pathways in common.  These pathways focused showed, among others, a large number of 

members that were a part of pathways centered on immune system, cell cycle, signaling, and 

metabolism. 

 

3.4  Integration 

 Once the genes and pathways for each dataset were known, they were analyzed for 

similarities.  The genes associated with each pathway were identified and examined to see what 

overlap existed on both the gene and pathway level.  7495 unique genes were identified with a 

total of 5373 showing up in multiple places among the human influenza, human SARS, Monarch 

gene associations, and collaborative cross differential expression results.  On the pathway level, 

1242 pathways were identified as significantly associated with the respiratory distress in one or 

more datasets.  Of these, only 279 (22.5%) of the pathways were found in only one dataset.  

Similar to the mouse differential results, the majority of differentially expressed genes were 
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members of pathways involving the immune system, signaling, metabolism, disease, and cell 

cycle.  Including these different sources of data certainly provided greater coverage in the genes 

identified within each pathway, with the average number of novel genes found within a pathway 

across the different datasets being 10.37. 

  



4.  Discussion 

 The ultimate goal of this investigation was to examine the genes and pathways 

differentially expressed in severe influenza infection in both collaborative cross mice and 

humans in order to examine their potential similarities.  More specifically the desired outcome 

was to establish a computational framework for comparing between these species that could be 

used to both place previous work into a broader context incorporating both models and clinical 

data, as well as guiding the focus of ongoing and future studies into host differences associated 

with and potentially leading to severe influenza infections.  This prioritization framework clearly 

benefited from the inclusion of the different datasets.  Each dataset alone averaged between 1.68 

to 7.71 differentially expressed genes in each pathway identified as associated with respiratory 

distress, while combined the integrated datasets averaged 10.37 genes per pathway with 4.33 

genes identified from multiple datasets on average per pathway.  In looking at the coverage of 

the pathways identified, there is some significant variation.  On average each pathway identified 

had 25.4% of their genes show significant differential expression (IQR: 13.6 – 33.3%).  There 

were also 76 pathways that had over half of their member genes identified as significantly 

associated with severe infections. 

 Making use of these data, there are many possible next steps that can be imagined, 

depending on what a study’s goals are.  One direction lies with use for prioritization in mouse 

models.  Genes and pathways that were strongly represented in the human datasets would be 

potentially interesting candidates to focus on.  Likewise, a highly represented pathway could be a 

key component in identifying biomarkers to predict human severe influenza infection.  One such 

pathway would be the Translocation of ZAP-70 to Immunological Synapse (Figure 4.1), part of 

the immune system pathways.  This pathway had 87.5% coverage, with 14 of the 16 genes 

identified as associated with severe infection.  Of these, the CD4 gene was identified in all of the 

datasets, human influenza, human SARS, mouse, and the genes associated with the Mammalian 

Phenotype ontologies.  This pathway encompasses signaling that is critical in the formation and 

activation of T-cells in the immune system.27  The CD4 gene encodes a receptor protein for T-

cells that appears to mediate the recognition and binding of antigens.28  From simply the data 

collected here this pathway and its member genes would seem like a potentially valuable point of 
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focus in directing further research.  As a key pathway and gene associated with an immune 

response, the finding is even more compelling as a potential indicator or effector of infection 

severity.  To further approach this, there are many possible avenues.  Obtaining both human and 

mouse data concerning respiratory distress in the absence of an infection would help inform this 

specific example, as well as the findings as a whole, on whether the results of interest are linked 

to the infection itself or tied to the respiratory distress used to categorize the severity.  Due to the 

somewhat promiscuous nature of the CD4 gene, which was a member of 22 other pathways as 

well, it might also be more advantageous or informative to focus on some of the members that 

had less representation across the pathways.  Ensuring platforms that will measure all the genes 

of interest from this pathway could help either reinforce other members of this pathway as 

potentially key, or suggest that some may only be species-specific and of less importance to 

future studies. 

While the integration of these data into a prioritization framework was successful and 

allows for greater insight into the similarities and potential avenues for research going forward, 

there were certain limitations to this process as well.  The most overarching of these would be 

the restriction to the WHO severe influenza infection criteria which broadly establishes 

respiratory distress as the main phenotype for classifying a severe infection.  The translation of 

these phenotypes and their corresponding ontologies to the quantitative mouse measurements 

certainly affected how the mouse subjects were stratified and studied.  The WHO criteria also 

requires reliance on multiple clinicians to make the same diagnoses both within and across the 

different studies, and can broadly encompass a variety of symptoms.  These differences in 

phenotypes presented by the patients, in addition to potential differences in both the influenza 

infection as well as other possible exposures was unfortunately unavoidable.  Lastly, there were 

temporal differences between the datasets employed.  The human datasets were collected at a 

single time point, almost inevitably at varying times post infection.  The mouse data, however, 

was a time series that was much more rigorously controlled. 

  



 

 

Figure 4.1 Network Diagram of Genes from the Translocation of ZAP-70 to Immunological 

Synapse Pathway.  Genes colored with red were found in the human influenza datasets, those 

colored with orange were identified in the human SARS datasets, blue indicated genes found in 

the mouse expression datasets, and green indicates those found from the genes associated with the 

Mammalian Phenotype ontologies. 

 

 While the integration of these data into a prioritization framework was successful and 

allows for greater insight into the similarities and potential avenues for research going forward, 

there were certain limitations to this process as well.  The most overarching of these would be 

the restriction to the WHO severe influenza infection criteria which broadly establishes 

respiratory distress as the main phenotype for classifying a severe infection.  The translation of 

these phenotypes and their corresponding ontologies to the quantitative mouse measurements 

certainly affected how the mouse subjects were stratified and studied.  The WHO criteria also 

requires reliance on multiple clinicians to make the same diagnoses both within and across the 

different studies, and can broadly encompass a variety of symptoms.  These differences in 

phenotypes presented by the patients, in addition to potential differences in both the influenza 

infection as well as other possible exposures was unfortunately unavoidable.  Lastly, there were 
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temporal differences between the datasets employed.  The human datasets were collected at a 

single time point, almost inevitably at varying times post infection.  The mouse data, however, 

was a time series that was much more rigorously controlled. 

 Ultimately, this project has provided a robust framework for comparing expression 

differences associated with severe influenza infection in both mice and humans.  It’s also 

emphasized the need for improvements in relating measurements and methods between clinical 

presentations and model organism measurements.  Still, the combined and integrated results 

should allow for greater focus in both clinical and model research into drivers and predictors of 

severe infection in the ongoing effort to reduce the burden of influenza. 
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