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Exposition: Setting the stage 

In behavioral neuroscience, questions of development and function are often pursued 
using either genetic or imaging approaches. The genetics of behavior has been studied in order to 
shed light on the processes that guide human psychological development. The underlying genetic 
basis for behavior has long been the subject of debate, but it has been accepted that genes play a 
role in both behavioral tendencies and susceptibility to disorders of the brain. Although 
heritability for certain brain-related disorders has been estimated at around 80-90%, as with other 
common traits this heritability is as yet mostly “missing”, unexplained by single genetic 
variations.1 Likewise, imaging has become an invaluable tool to researchers investigating the 
structure and function of the brain at the physiological level.2,3 Detailed maps of the brain now 
describe the locations where particular functions are performed.4 In this way, genetic and 
imaging data have complementary roles in guiding researchers closer to the biological 
mechanisms of behavior. 

If known, the biological mechanisms underpinning mental and behavioral disorders could 
facilitate more precise treatment. However, modeling, predicting, or categorizing of human 
thoughts and decisions has limitations.5,6 Any attempt that uses classical behaviorism or 
cognitive psychology results in subjective diagnoses.7 Even modern understanding of behavior is 
based on clustered observations, with treatment options often dependent on guesswork.8 As more 
empirical approaches, both genetics and brain imaging have been used to get closer to the 
underlying biology of psychiatric disorders and support the movement toward process-based, 
rather than symptom-based, classification.9–12 While both fields have made progress 
independently, linking data from imaging and genetic studies can have even more power to 
reveal hidden biological mechanisms; for example, the differences in function observed in 
relation to variants in the COMT gene.13,14 This approach can increase the potential for discovery 
while simultaneously presenting new computational challenges and amplifying existing issues of 
reliability for each of these data types.15,16 

A challenge for behavioral geneticists lies with the heterogeneity of the traits in question 
confounded by the massive amounts of data being generated. While the study of genetics has 
undertaken dramatic advances including exponential increases in sample size due to the 
decreased cost of genotyping, the contributions of specific genes in such complex traits have not 
been adequately described.17 At the same time, imaging has also proven useful in elucidating 
some biological mechanisms (for example, in cognition and memory),12 but this field is likewise 
hampered by complexity. For example, some brain processes occur automatically at rest, while 
others are more active during a task; some involve the whole brain, while others are localized.18 
Also, the brain is intrinsically not stationary. Each neuron contains multiple types of channels in 
its membrane, exponentially increasing the pathways for signals to travel. In spite of these 
challenges, imaging and genetics both promise much insight into the biology of behavior. 

Researchers in the emerging field of imaging genetics seek genes that are associated with 
both brain activity and behavioral traits. Combining imaging and genetics provides new 
challenges and opportunities. The traditional challenges of big data are amplified by the inherent 
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intricacy of both genetic and neural architecture.19 Additionally, when modeling the relationships 
between genes, brain, and behavior, each step of the process is layered with unknowns and 
uncertainty. The inclusion of brain imaging data in genetic studies, on the other hand, is one way 
to reduce their complexity. This integration promises to lead to the demystification of behavior 
by placing its biological mechanisms in an anatomical context. This “endophenotype” approach, 
in which imaging is an intermediary between the genome and the mental state, provides an 
opportunity to probe the sometimes-indirect pathways involving genes, environment, and 
disrupted development.20–22 Using the brain as an endophenotype may challenge the conceptual 
models of behavior, but actually increases the usefulness of the research.23,24 Linking genetic and 
imaging data can model how genetic variables influence neural development, brain function, and 
ultimately behavior.25 Understanding these risk factors for psychopathology is critical for 
intervention and prevention efforts.26 

Though several consortia are actively working to collect large samples and develop the 
necessary methodological rigor for imaging genetics studies (Table 1), the existing literature 
shows a varied set of approaches with regard to study design, granularity of research questions, 
power enhancement approaches (Table 2), and analysis plans/methodological approaches. Also 
important to note is that when studies were not replicated, it was often due to lack of an 
appropriate sample. With this in mind, it seems apparent that replication is a more common 
practice in the more recent studies than the older ones, since more samples have become readily 
available (Table 3). In this paper, I will address issues of reliability facing the field of imaging 
genetics. Reliability (measurements and metrics of consistency or accuracy), in this context, is a 
time-sensitive matter requiring both excellent communication and sensitivity. I will examine the 
current approaches used to address these issues in each field separately, with examples from the 
large consortia that demonstrate both best practices and the computational expertise required. 
Specifically, I will attempt to delineate how appropriate strategies could be employed to produce 
more reliable imaging genetics research: research that is reproducible, replicable, rigorous, and 
robust.27 

Foreshadowing: Importance of reliability 

 Science relies heavily on funding from public agencies and therefore the taxpayers, 
which in turn depend on and expect accurate results that can inform public policy and lead to 
scientific advances. Recent concerns about the lack of reliability across the sciences has damaged 
the perception of value and raised concern about scientific integrity. While the contributions of 
imaging genetics to behavioral neuroscience hold much promise, progress can only be made if a 
foundation is established for reliability. As these two high dimensional and complex data types 
(imaging and genetics) are integrated, it is critical to avoid the pitfalls researchers in each field 
have worked so diligently to overcome, and tackle novel problems that arise from the integration 
itself. 

To avoid confusion, I will refer to the definitions put forth by statistician Jeff Leek when 
discussing measures of reliability (Box 1). In particular, Leek differentiated between 

https://paperpile.com/c/jxIDVo/kmBg6
https://paperpile.com/c/jxIDVo/rNgZ+PXIh+WC3N
https://paperpile.com/c/jxIDVo/DQ9f+gRpr
https://paperpile.com/c/jxIDVo/EIiW
https://paperpile.com/c/jxIDVo/YFDCc%22https:/paperpile.com/c/yNKmXi/1Dkg
https://paperpile.com/c/jxIDVo/YFDCc%22https:/paperpile.com/c/yNKmXi/1Dkg
https://paperpile.com/c/jxIDVo/K8rMx%22https:/paperpile.com/c/yNKmXi/nqT
https://paperpile.com/c/jxIDVo/K8rMx%22https:/paperpile.com/c/yNKmXi/nqT
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reproducibility and replicability, which have often been confounded in the literature but refer to 
specific procedures. Reproducibility improves confidence and demonstrates a lack of bias in the 
study, key for secondary analysis, while the key feature of a replicable study includes consistent 
results in independent studies. Without a replication step, there is no way to reliably make a 
claim about whether the results apply to the whole population. Each subsequent replication 
increases confidence in the reliability of the results. Consistent results from independent 
investigators are essential benchmarks for these procedures.28,29 

 

Furthermore, I will borrow from esteemed professor and spinal cord regeneration 
specialist Oswald Steward,30 who elaborates on the above two principles in application to 
neurobiological research and further discusses the concepts of robustness and rigor (Box 2).27 
When reviewing study results, one considers how broadly the claims can be applied. Decisions 
are made from the experimental design stage all the way through analysis that affect the 
interpretability and dependability of results. As a practical example of what it takes to achieve a 
high level of reliability, the Reproducibility Project used several sets of guidelines for evaluating 
rigor before choosing studies for full replication attempts.31,32 These guidelines include Glenn 
Begley’s “six red flags,”33 Jason McDermott’s two additional red flags,34 Nature’s reporting 
checklist for incoming submissions, and ARRIVE guidelines for reporting animal studies.35 Most 
of these could be distilled into specific details at the experimental and analysis stages. The 
entirety of these criteria may be found in the Reproducibility Project: Cancer Biology.31,36 

 

 

 

 

Reproducibility. To reproduce a study is to arrive at exactly the same results using 
the same data, analysis plan, and code. 

Replication. Drawing from the same population, using the same experimental design 
and analysis plan, but otherwise recreating the experiment and code, and arriving at 
consistent results. 

 

Box 1. Leek’s statistical definitions: reproducibility, replication8 

https://paperpile.com/c/jxIDVo/xrvmk+kxpFn%22https:/paperpile.com/c/yNKmXi/q8wWV+Hdsa%22https:/paperpile.com/c/yNKmXi/q8wWV+Hdsa
https://paperpile.com/c/jxIDVo/xrvmk+kxpFn%22https:/paperpile.com/c/yNKmXi/q8wWV+Hdsa%22https:/paperpile.com/c/yNKmXi/q8wWV+Hdsa
https://paperpile.com/c/jxIDVo/92FND
https://paperpile.com/c/jxIDVo/K8rMx
https://paperpile.com/c/jxIDVo/3jFvx+q33ae
https://paperpile.com/c/jxIDVo/HOmPt
https://paperpile.com/c/jxIDVo/q4LEv
https://paperpile.com/c/jxIDVo/LNRAC
https://paperpile.com/c/jxIDVo/GN5Sm+3jFvx%22https:/paperpile.com/c/yNKmXi/Wv70+uqM
https://paperpile.com/c/jxIDVo/GN5Sm+3jFvx%22https:/paperpile.com/c/yNKmXi/Wv70+uqM
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In a climate in which public confidence in science seems tenuous, reliability has become 

one of the most urgent areas of concern for many in the scientific community.142-144 The need for 
investigators to be trained in best practices has motivated the creation of many Massive Online 
Open Courses (MOOCs), such as the Data Science Specialization sponsored by Johns Hopkins 
University.28,29 The proponents of these  data science educational outreach  efforts attempt to 
lead the way to greater reliability by focusing on open data, data stewardship and transparency in 
research. 

Rising Action: History of both fields independently 

Both the study of genetics and techniques for brain imaging have come a long way in a 
relatively short time. The search for genetic links to disease, for example, evolved rapidly during 
the decades between the discovery of the structure of DNA and the successful completion of the 
Human Genome Project.37 Since the advent of DNA sequencing, geneticists have sought to link 
particular variants to human traits and diseases by creating maps relative to known genetic 
markers.37 Genetic mapping has advanced from genotyping whole families at large intervals to 

 

 

Robustness. Robust studies have far-reaching implications. This area also 
overlaps with scientific communication and affects the public opinion of how 
reliable — and valuable — the research appears. 

Rigor. Rigorous research follows protocols that have governed the scientific 
method since the middle ages: proper blinding, using appropriate controls, and 
supplying enough detail that an outside source would be easily able to reproduce 
or replicate its findings. 

Steward’s “6 gold stars”: 

 Check submissions for “Begley’s 6 red flags”, and if present, require 
consideration of resulting caveats in Discussion sections. 

 Require that papers report statistical power. 
 Require statements about whether studies were done as “rolling 

experiments” and require information on timing of data collection. 
 Require that all analyses be reported. 

 Require a caveats/scientific rigor section in Discussions. 
 Require specific indication of studies performed at the request of 

reviewers. 

Box 2. Steward’s definitions of robustness and rigor17 

https://paperpile.com/c/jxIDVo/xrvmk+kxpFn
https://paperpile.com/c/jxIDVo/QcGKu
https://paperpile.com/c/jxIDVo/QcGKu
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extrapolate genetic distance,38 to physical mapping using assembled whole genome sequences.39 
Likewise, even before the advent of brain imaging, a functional map of the brain was 
meticulously created by studying the effects of lesions on different regions of the brain.40 
Eventually, more detailed functional maps emerged from modern imaging technology and the 
ability to observe common areas of activation and deactivation.41 With imaging genetics, 
integrating these functional brain maps with genetic maps creates a more informative model: a 
comprehensive map of the pathways from genetic factors and brain function to behavior.26,42 

Imaging 

To isolate these pathways from brain to behavior, a variety of imaging modalities have 
been employed. The choice of modality depends on the desired aspect of brain physiology. 
Cross-sectional X-ray views of the brain can be obtained by computerized tomography (CT) 
scans, often the modality used in an emergency to assess physical signs of trauma. Magnetic 
resonance imaging (MRI) uses a magnetic field and radio-frequency pulsation to produce high 
resolution three-dimensional data that can be used to measure structural components (e.g., brain 
size, feature size, relative dimensions within the organ). Brain structure is usually evaluated one 
dependent variable at a time by univariate analysis.15 Complexity increases, however, with the 
study of function. Diffusion tensor imaging (DTI) allows observation of fiber tracts connecting 
the brain’s regions. This more closely monitors the biochemical states of the brain by mapping 
the water diffusion properties of the tissues using MRI.42 The structural information from DTI 
can be combined with functional data from another modality.43 

Function, then, can be inferred from imaging blood flow during tasks with biologically 
active radioactive tracers using positron emission tomography (PET).44 Similarly, the increase in 
blood oxygen level after a neuron fires, represented by the hemodynamic response function, is 
imaged by functional MRI (fMRI).45 This is the ideal modality for recording brain activity when 
spatial resolution is desired and non-invasiveness preferred. If temporal resolution is a priority, 
electroencephalography (EEG), which records electrical activity on the scalp, can be used to 
augment the imaging data. The choice of imaging modality also depends on the level of 
granularity desired. The smallest unit of the MRI image is the voxel, a numerical representation 
of the signal at one location within the three-dimensional space of the brain. Therefore, one way 
to analyze MRI is to examine images voxel-by-voxel, using multivariate methods or employing 
dimension reduction strategies to increase statistical power. One simple such dimension 
reduction method is to examine relationships between multi-voxel regions of interest (ROIs), 
usually corresponding to brain structure. On a more global scale, graphical or network models 
are used to model whole brain connectivity. These methods apply to both structural (sMRI) and 
functional (fMRI) data, and can model the brain either at rest or during tasks. The signal from 
fMRI is noisy, and therefore the methods for statistically extrapolating activity from fMRI data 
include correcting for the hemodynamic response function as well as for movement and other 
technical artifacts.46,47 

https://paperpile.com/c/jxIDVo/Cvcl
https://paperpile.com/c/jxIDVo/YQ17
https://paperpile.com/c/jxIDVo/6M4o
https://paperpile.com/c/jxIDVo/nzVW
https://paperpile.com/c/jxIDVo/YFDCc+WOnQY
https://paperpile.com/c/jxIDVo/xrCsZ
https://paperpile.com/c/jxIDVo/WOnQY
https://paperpile.com/c/jxIDVo/D0JNs%22https:/paperpile.com/c/yNKmXi/VgoW
https://paperpile.com/c/jxIDVo/D0JNs%22https:/paperpile.com/c/yNKmXi/VgoW
https://paperpile.com/c/jxIDVo/1V0aG
https://paperpile.com/c/jxIDVo/uxNIV
https://paperpile.com/c/jxIDVo/Mj4vF+XjzdV%22https:/paperpile.com/c/yNKmXi/4pN8d+6aCH
https://paperpile.com/c/jxIDVo/Mj4vF+XjzdV%22https:/paperpile.com/c/yNKmXi/4pN8d+6aCH
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Genetics 

Just as the challenge of imaging is to reduce complexity while capturing as much of the 
meaningful information in the data as possible, a variety of tools and approaches have been 
developed to address the same problem for genetic investigations. When it became cost effective 
to do so, genome-wide association studies (GWAS) were performed. GWASs scan the whole 
genome for statistically significant associations between each of thousands of single nucleotide 
polymorphisms (SNPs) and the trait in question.48 This is challenging given the genome-wide 
search, as each statistical test increases the probability that a false positive will arise. Correcting 
for this bias eliminates all but the strongest associations, and leading to few significant and 
replicable SNP that emerge (note: this does not address causality).  

In fact, most highly heritable traits have been shown to be associated with multiple small-
effect variants. Added together, these only account for a fraction of the overall heritability of 
these traits. This is possibly due to limitations of the technology used in GWAS and the 
statistical challenges of high dimensional data. It appears likely that much of the heritability 
could be hidden in small-to moderate-effect variants that are somewhat common.49 Larger 
sample sizes and full genetic sequencing may, in the future, reveal this to be the case.50 Complex 
traits may also be passed on by inheritance through genetic architecture such as copy number 
variants, or by epistatic relationships in which two or more genes create a synergistic effect.51 
Other explanations for “missing heritability” include environment and epigenetics — alterations 
to the genome that result in changes in gene expression and functionality.1,52 Finally, there may 
be more than one pathway to what is seen as a single common disease. No matter what is 
actually behind the heritability, genetic factors related to brain disorders have, in large part, 
continued to elude us.1 

As the cost of whole-genome sequencing decreases, the ability to detect statistically 
significant associations in a case-control GWAS theoretically increases (as more individuals can 
be sequenced). In an attempt to increase both statistical power and interpretive meaning, 
candidate gene studies isolate sets of genes that have previously demonstrated a relationship to 
the trait or to a similar trait. However, candidate genes have accounted for only 15% of autism 
cases.25 

In a landmark study, it was shown that for complex traits, testing for association of one 
million SNPs population-wide was more powerful than smaller scans of related individuals 
(noting this is highly dependent on phenotyping quality, among other variables).53 Within five 
years of the first major GWAS, clinically relevant discoveries had been made, although concerns 
were also raised about the meaning of the sparse associations that were revealed.54 As much of 
these issues were postulated to be due to study design, new strategies for dealing with replication 
issues in GWAS were developed and employed.55  Over 100 biologically relevant genetic loci 
have been associated with schizophrenia (leveraging the Psychiatric Genomics Consortium and 
over 150,000 subjects).56 

Whole-genome studies employ a variety of strategies to deal with the computational 
challenges of multiple testing. Many analysis plans include computing a polygenic risk score, or 

https://paperpile.com/c/jxIDVo/xcglL
https://paperpile.com/c/jxIDVo/Xlzg
https://paperpile.com/c/jxIDVo/pyjX
https://paperpile.com/c/jxIDVo/m5yy
https://paperpile.com/c/jxIDVo/qXYxn+G6NE
https://paperpile.com/c/jxIDVo/qXYxn%22https:/paperpile.com/c/yNKmXi/lKZx
https://paperpile.com/c/jxIDVo/qXYxn%22https:/paperpile.com/c/yNKmXi/lKZx
https://paperpile.com/c/jxIDVo/EIiW%22https:/paperpile.com/c/yNKmXi/1Dkg
https://paperpile.com/c/jxIDVo/EIiW%22https:/paperpile.com/c/yNKmXi/1Dkg
https://paperpile.com/c/jxIDVo/J2DdC
https://paperpile.com/c/jxIDVo/6UlRe
https://paperpile.com/c/jxIDVo/G3i2F
https://paperpile.com/c/jxIDVo/IX0Eg%22https:/paperpile.com/c/yNKmXi/9k5Q
https://paperpile.com/c/jxIDVo/IX0Eg%22https:/paperpile.com/c/yNKmXi/9k5Q
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weighted sum of associated SNPs, for individuals with and without the trait.57 Another strategy 
for enhancing the power of these investigations is to utilize aggregate information (using a unit 
of analysis such as pathway or network).  Gene-environment interactions may help explain the 
hierarchical and continuous nature of psychopathology. Finally, integrating imaging into a 
GWAS has the potential to resolve the overlapping, or comorbidity, of phenotypes that often 
appears through observational diagnosis.58 

Imaging genetics 

The first techniques for combining genetic and imaging data emerged around the year 
2000.15 In their simplest form, these studies chose a specific gene and predicted its effect in the 
brain based on its known biological function.59 The next step in the evolution of imaging 
genetics was relating either multiple genes to a single measure of brain physiology, or a single 
genetic variant to multiple aspects of brain structure.60,61 For example, one could look at a 
structural measurement in the brain, such as gray matter volume, and ask whether a particular 
gene or set of candidate genes is associated with this physical trait.62–64 Genetic features range 
from a single gene to GWAS, and imaging features range from single generalized measure to 
whole-brain studies. Various such combinations of genetic features and imaging features have 
been used to analyze data from imaging genetics consortia (Table 3). 65,66 

Alternatively, one could ask how the entire genome is related to the whole brain by 
selecting features are the most highly differentiated between cases and controls using a 
multimodal fusion method.67 Most of the studies in imaging genetics fit somewhere between two 
extremes, either on the many genes to few brain features end of the spectrum,68,69 or the few 
genes to many brain features end. Integration strategies for imaging genetics can be primarily 
data driven or strongly hypothesis based, and all studies use at least one of several power 
enhancement approaches, each with its own unique benefits and drawbacks (Table 2). It is not 
uncommon to use more than one approach; however, a hypothesis-driven analysis would be 
more likely to use an a priori data reduction approach, whereas a hypothesis-free study would 
use a data-driven method. Within this research space, the goal is to capture as much of the 
complexity of psychiatric genetics as possible without losing the statistical power to see 
meaningful connections or being drowned out by technological noise and individual variability.70 

 This kind of multimodal integration comes with certain requirements. The following 
sections discuss the crisis of reliability in science and how it manifests at the intersection of the 
imaging and genetics fields. Finally, I will address the issues of robustness, reproducibility, 
replication, and rigor, using examples from the field.27 

Crisis: Reliability in science 

The problem of replication and reproducibility is a well-documented and constant 
presence in the era of big data, and one the scientific community at large can hardly afford to 
ignore.71,72 According to one survey, most scientists have experienced replication failure first 

https://paperpile.com/c/jxIDVo/ehejt
https://paperpile.com/c/jxIDVo/NcJMu%22https:/paperpile.com/c/yNKmXi/0MNZ
https://paperpile.com/c/jxIDVo/NcJMu%22https:/paperpile.com/c/yNKmXi/0MNZ
https://paperpile.com/c/jxIDVo/xrCsZ
https://paperpile.com/c/jxIDVo/brXwA
https://paperpile.com/c/jxIDVo/NTrjl+cCILw
https://paperpile.com/c/jxIDVo/raII6+EPyVA+oZOsK
https://paperpile.com/c/jxIDVo/0MTpS+sfC9j
https://paperpile.com/c/jxIDVo/nNSk3
https://paperpile.com/c/jxIDVo/rHfET+xs8dp
https://paperpile.com/c/jxIDVo/kLsDi%22https:/paperpile.com/c/yNKmXi/aTUJ
https://paperpile.com/c/jxIDVo/kLsDi%22https:/paperpile.com/c/yNKmXi/aTUJ
https://paperpile.com/c/jxIDVo/K8rMx%22https:/paperpile.com/c/yNKmXi/QC3g
https://paperpile.com/c/jxIDVo/K8rMx%22https:/paperpile.com/c/yNKmXi/QC3g
https://paperpile.com/c/jxIDVo/6gfa+pMuS
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hand.71 Concerns about reliability could spell disaster for public and governmental support of 
scientific progress. Therefore, across disciplines it is important to address these issues 
preemptively, before money is spent on unreliable science and the collective reputation of 
biomedical research is compromised. 

After selecting 100 promising papers, the Reproducibility Project: Psychology performed 
replications on each one and compared the results to the original studies. They reported 
“reproducibility” (they meant replicability) by assessing the statistical significance of the results, 
and reported effect sizes of the replication study compared to the original. They reported that 
replications reduced the number of significant findings by almost a third, particularly where there 
was weaker evidence in the original study. These findings show the importance of performing 
replication studies, as most of the replications returned smaller effect size estimates than the 
originals did in spite of adequate power.31,32 

Reliability in genetics 

The field of genetics has addressed reliability head-on with a number of initiatives, in 
response to the many reasons GWASs may fail to replicate. DbGAP addresses reliability by 
providing a platform for open data, addressing privacy issues, and providing guidelines for data 
sharing. Particularly important for reproducibility has been its emphasis on sharing analysis 
plans, documenting primary and secondary analyses and keeping a provenance of data types.73 
By using a diverse sample from multiple geographic areas and combining case-control analysis 
of seven disease states, The Wellcome Trust Case Control Consortium and Gene Environment 
Association Studies (GENEVA) multi-site GWAS consortium established many of the standards 
used in GWAS data analysis, underlining several important steps critical for reliability in 
subsequent genetic studies.48,74,75 Namely, these studies described and accounted for the 
heterogeneity of its samples, justified and documented their data cleaning procedures, and 
demonstrated that replication of previous GWAS results in numerous cases can be obtained with 
sufficient statistical power.48 Additionally, GWAS replication should always include testing the 
same markers and using the same analysis methods. With association studies of a complex trait, 
the definition and measurement, or “harmonization,” of the phenotype must also remain 
consistent for the replication.74,76 

Reliability in imaging 

The reliability crisis in neuroscience, on the other hand, is just beginning.77,78 
Neuroinformatics, as a field, appears to lag behind its counterparts in bioinformatics. It 
encompasses a broad multi-disciplinary range of activities related to organizing data for studying 
structure-function relationships in the brain. The International Neuroinformatics Coordinating 
Facility (INCF), which oversees the development of community standards, has identified three 
areas of concern: computational methods, databases and sharing, and analysis tools.79 Expertise 
is needed in each area, and reliability depends on efficient communication and up-to-date 
education on the latest developments. 
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Neuroimaging has gradually moved toward standardizing and storing data in an effort to 
improve reliability, but functional imaging has presented new statistical challenges which are 
being actively discussed.78,80–82 As many methods require further validation, empirical studies to 
determine the most reliable methods for neuroimaging are needed. This methodological vetting, 
along with education efforts in the realm of data science, has been cited as the key to improving 
robustness.28,29 

In terms of rigor, it has been pointed out that many neuroimaging papers report only the 
statistical values of their findings.82 Accepted guidelines for reporting fMRI studies require 
inclusion of estimated effect size along with statistical tests and claims, descriptions of subjects 
and tasks, quality control, multiple testing correction steps, and more.80 Replication efforts 
appear to be hindered by the continuously evolving requirements for statistical rigor. For 
example, cluster-wise inference, a common method used in fMRI analysis to increase statistical 
power over the more accurate voxel-wise approach,83 has been criticized for making assumptions 
about the smoothness of the underlying signals.81 

On top of all this, neuroscience studies have been severely underpowered. Just as is has 
in GWAS, this lack of power directly affects the reliability of the results.78 It also indirectly 
affects the perceived reliability of the field because these underpowered studies tend to be 
affected by publication bias. There must be awareness of the need for increased sample size as 
the neuroimaging field continues to pursue smaller effect targets. It is often argued that small 
imaging studies should only be for the low-hanging fruit that they are powered to detect.78,80–82 
Though sample size and power have been the subjects of much discussion,84–87 one thing is clear: 
reliability is dependent on the appropriateness of the sample size to detect the expected effect 
size.78 In general, pursuit of higher standards for reliability is critical across all branches of 
science, with direct effects on public perception and support of innovation and progress.84 

Escalation: Reliability in imaging and genetics 

 More recent still are the problems faced when combining signals from neuroimaging and 
GWAS; studies in imaging genetics have been plagued with the same issues as those focused on 
its separate parts, (e.g., spurious signals, heterogeneity, small sample sizes).17 Combining 
imaging with genetics compounds almost every statistical and methodological problem presented 
above.88,89 Additionally, both fields acknowledge a large amount of individual variation, the 
effects of which are not yet fully known.51,90 Additionally, experts in the fields of data 
management and processing pipelines have scrambled to keep up with the needs brought about 
by the integration of genetic and neuroimaging data.91 Awareness of these issues is important, 
but action is essential. For the field to move forward, it must address the crisis with an 
appropriate level of urgency. Individuals with computational expertise can minimize its impact 
through education and collaboration, sharing of tools and pipelines, and communicating the 
results of experiments along with their caveats in a clear, precise, accessible voice. 

One early success in imaging genetics was the association of a variant in the ZNF804A 
gene with psychosis schizophrenia and bipolar disorder. This imaging GWAS was aimed at the 
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connectivity endophenotype, which is quantifiably “disturbed” in subjects with psychosis.92,93 
Early imaging GWAS studies sparked a number of investigations into ZNF804A, including fine 
mapping of the gene,94 association studies of other variants in the gene,95 examination of 
structural and cognitive effects,96, 97 and a successful replication.98  

Imaging genetics consortia capitalize on the successes of GWAS; for example, the 
genetic risk of Alzheimer’s disease was linked to variants in the APOE gene.99 One of the largest 
consortia with both imaging and genetic data is Enhancing NeuroImaging Genetics through 
Meta-Analysis (ENIGMA), a worldwide effort of more than 70 institutions.100 ENIGMA 
combines structural MRI and DTI, and arose from the broad availability of these technologies in 
the 1990’s. The rapid pace of image collection required an organized effort to standardize data 
across the globe. Both structural and functional imaging required the community to develop 
“average” images on which to map results. Additionally, ENIGMA collaborators assert that 
imaging (particularly structural imaging) has generally reproduced well, especially as many 
analysis tools have become automated.100 Combining genetics and imaging data from multiple 
sites to increase sample size has opened up the promising new frontier of using imaging as an 
endophenotype for brain disorders.13 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) sought to develop a better 
understanding of the course and disease model of Alzheimer’s disease (AD) pathology and 
progression. The study included subjects with mild cognitive impairment (MCI) due to its 
overlap with, and sometimes progression into, AD in the general population at a rate of 
approximately 10-15%. This allowed them to look into risk factors and early biomarkers. Early 
results confirming the importance of APOE variants and candidate regions of interest were 
valuable in moving the field forward and providing directions for future research.101 The 
consortium spawned publication of 200 papers in 6 years.65 

The following two cases represent major attempts at maximizing the extent of both 
imaging and genetic data from ADNI: 

Case 1. Stein et. al., 2010102 

In 2010, the most exhaustive imaging genetic analysis to date was published: a voxelwise 
GWAS around 500,000 SNPs. As the MRI images each contained over 30,000 voxels, some sort 
of data reduction step was unavoidable due to the number of statistical tests that would be 
required. In this case, only the top voxel for each SNP was selected at the risk of losing 
information from less prominent associations. Yet even with this liberal a measure, when the 
total number of tests was corrected for, no SNP passed the significance threshold. The 
investigators didn’t even try to replicate their study, but asserted that a comparatively small 
sample size would be required for replication. However, the most significant findings did map to 
genes with known biological functions, an encouraging revelation for imaging geneticists.102 

Case 2. Hibar et. al., 2011103 

A similar study added a gene-level data reduction step. Based on the fact that the gene is 
the ultimate unit of biological function (by way of its protein product), a multi-locus analysis was 
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performed. This statistical approach for high-dimensional data simply tests each group of SNPs 
in a gene as a unit. The hope is to increase the probability of locating a single gene with multiple 
weak-effect SNPs. This study still misses out on genes that are not top hits, due to an additional 
data reduction step of only selecting the top hit for each imaging measure. Nothing statistically 
significant was found using this approach, but again the results were deemed biologically 
reasonable.103 

The landscape of ADNI-based studies includes imaging genetic methods of integration 
for both structural and functional imaging. The investigators pursued a range of genetic 
approaches from gene-based to genome-wide; from binary (case-control) studies to quantitative 
trait analysis (which increases statistical power, allowing for smaller sample size). The results 
from ADNI studies have confirmed a list of about 10 genes with verifiable associations with AD 
phenotypes, it is claimed. These promising results have potential to be used in treatment 
prediction within personalized medicine paradigms.104 As an overall multi-site coordinated 
effort, ADNI focuses on the following issues central to reliability: making the process for data 
sharing easy, developing automated de-identification, and sustaining quality control.65 

The additional requirements of functional imaging were addressed by the Function 
Biomedical Informatics Research Network (fBIRN), a case-control schizophrenia study across 
multiple sites. The initial analysis attempted to differentiate between activity during retrieval of 
memory as opposed to encoding of memory, two different neural processes.62 Other participating 
studies found differences in connectivity in subjects with different clinical features, such as 
hallucinations.105 Another examined auditory processing during task-based fMRI.106 A 
conceptual meta-analysis of these studies indicates strong justification for continuing to probe 
these imaging indicators for associations with genetic factors.107 Six genes out of a genome-wide 
scan were significant for efficiency in the dorsolateral prefrontal cortex network, measured as a 
quantitative trait. Interestingly, these genes are known to be involved in cortical development, 
supporting the hypothesis that schizophrenia is a developmental disorder.62 The contributions of 
the fBIRN meta-analysis to the pursuit of robust research will be discussed below. 

While there are many benefits to consortia, it is important to note their challenges. 
Namely, the differences in populations, geography, medical conditions and environmental 
exposures must all be accounted for. Most consortia do not collect longitudinal data on subjects, 
which would allow for the study of development and changes across the lifespan. The notable 
exception to this is the Avon Longitudinal Study of Parents and Children (ALSPAC), which 
began in the early 1990s and is still following subjects. ADNI also follows up longitudinally with 
subjects. Both Case 1 and Case 2, above, were affiliated with ADNI and considered moderately 
successful given that they generated sets of candidate genes for further study.65 

The INCF, as stated previously, organizes its efforts in neuroimaging research around the 
areas of computational methods, databases and sharing, and analysis tools.79 In the following 
sections, I will discuss some of the ways the imaging genetics community is addressing these 
concerns. Standardized formats for and increased access to data, along with development of 

https://paperpile.com/c/jxIDVo/JajMN%22https:/paperpile.com/c/yNKmXi/HVdZ
https://paperpile.com/c/jxIDVo/JajMN%22https:/paperpile.com/c/yNKmXi/HVdZ
https://paperpile.com/c/jxIDVo/FKHNH
https://paperpile.com/c/jxIDVo/0MTpS%22https:/paperpile.com/c/yNKmXi/HVdZ
https://paperpile.com/c/jxIDVo/0MTpS%22https:/paperpile.com/c/yNKmXi/HVdZ
https://paperpile.com/c/jxIDVo/raII6
https://paperpile.com/c/jxIDVo/JRz22
https://paperpile.com/c/jxIDVo/hT5Bc
https://paperpile.com/c/jxIDVo/k0pdG
https://paperpile.com/c/jxIDVo/raII6
https://paperpile.com/c/jxIDVo/0MTpS
https://paperpile.com/c/jxIDVo/26Vo2


Reliability Issues in Imaging Genetics 

16 
 

advanced methods and tools, are the rallying cries of the reliability movement. These endeavors 
work together to serve the interest of robustness, reproducibility, replication, and rigor.27 

Resolution: Robustness 

The scientific community needs robust methods to handle the size of genetic and imaging 
datasets and the inherent variability within. The foundation of imaging analysis is to make sense 
of noisy signals picked up by highly sensitive instruments; thus, true signal can be obscured by 
processing noise or by batch effects unwittingly created by elements of experimental design. 
Extracting interesting features from complex multi-dimensional data often relies on decomposing 
the data into its most important sources of variation using latent variable methods. Principle 
Component Analysis (PCA), Independent Component Analysis (ICA), and Canonical 
Correlation Analysis (CCA) are all variations on this theme. Between- and within-group 
component analysis can call attention to potential batch effects and sources of extraneous noise. 
In a hypothesis-free analysis, these methods can be used for discovering unanticipated sources of 
signal with biological meaning. Such techniques are routinely used to reduce the computational 
burden posed by large amounts of data. 

Another way to combat the noise in large heterogenous cross-modality studies is by 
leveraging prior knowledge.108–110 A priori methods of data reduction can be used on the imaging 
or genetic side, or both. One IMAGEMEND study examined the relationship between functional 
imaging and a genetic score, which was based solely on 14 SNPs previously found significant to 
memory in a GWAS study.64 In this case, the genetic data was drastically reduced to a single 
measure, resulting in a univariate analysis. 

Data-driven methods performed on multimodal datasets have potential to detect disorder-
related signatures, provide evidence of unexpected relationships, and generate new hypotheses. 
Other solutions have included dimension reduction methods such as downsampling, which has 
the advantage of allowing cross-modality and cross-disorder analyses.111,112 An IMAGEMEND 
project demonstrated a data driven linked ICA method that related combinations of structural and 
functional imaging features to schizophrenia.113 This exact approach has not yet been applied in 
an imaging genetic study; although Vince Calhoun, with his background in electrical 
engineering, has developed another variation on ICA for functional imaging combined with 
GWAS data.112 

Systems-level analysis is advantageous if a robust solution is required. For example, a 
robust regression method outperforms the default mass univariate methods that result in a high 
level of false positives.114 In the ENIGMA dataset, basic measures of network organization have 
been proven heritable. Using data from multiple sites to increase power, analysis of preliminary 
data detected associations between genes and structural connections in the brain. This structural 
connectivity measurement is a power enhancement strategy that increases the range of the 
phenotype and may explain other traits shared by individuals, such as behavior or disease risk.115 

In addition, fBIRN reported on the variations caused by technical and individual 
differences in a small sample using multiple types of machines and locations. Phase I assessed 
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these differences by following a small cohort of subjects to ten different scanners across the 
country. Phase II and III centered on collecting data from schizophrenic subjects and healthy 
controls.116 It is important to be aware of the expected baseline variation before making 
assumptions about larger studies. A meta-analysis of many different studies must control for 
demographic and location based sources of variation. In this way, preliminary data gathered from 
imaging genetic consortia may provide a starting point for future robust pursuits. 

Resolution: Reproducibility 

The first step in verifying the reliability of experimental results is to reproduce the 
experiment, so as to check that the results of the analysis are not affected by who performs 
it.29,117,118 A large part of the pursuit of reproducibility is a need for increased data sharing. In a 
recent review, big data expert Martin Wiener asserted that open data is the key to overcoming the 
reproducibility challenge in neuroscience. His recommendations for improving data sharing may 
be summarized by incentives, discoverability, and sustainability (Box 3).119 

 
 
From a funding and publication standpoint, there is little external motivation for an 

investigator to reproduce another’s analysis, much less replicate an entire study. It seems much 
more rewarding to introduce a new hypothesis or develop a distinct approach to a slightly new 
problem, but this makes it all the more difficult to make direct comparisons between studies. 
Smaller studies that are deficient in statistical power are harder to reproduce, but perhaps 
preregistration at the experimental design stage would help reduce the waste of performing a 
non-reproducible study.78,80–82 

 

 

Incentives. Data-centric efforts should be just as rewarding as traditional research 
endeavors, with metrics to determine the success of sharing efforts, a data sharing 
index identifier (similar to publishing index identifiers). An infrastructure will 
need to be easy and streamline the incentives, otherwise many will be discouraged 
from sharing. 

Discoverability. Metadata needs to be useful. There has been much speculation 
about potential barriers to data sharing, and why it hasn’t caught on in the culture 
of neuroscience. 

Sustainability. Keeping pace with growth by safeguarding the existence of data 
management and sharing platforms. 

Box 3. Wiener’s reproducibility recommendations: data sharing81 
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Any improvement to open data access is a mechanism for success.120 Long-term 
strategies depend on maintaining distributed systems with interoperable queries, workflows, and 
pipelines.91 Russell Poldrack is the Director of the Stanford Center for Reproducible 
Neuroscience, which runs the OpenfMRI data repository and developed the Brain Imaging Data 
Structure (BIDS) for organizing and describing MRI datasets.121,122 Poldrack has personally 
demonstrated how difficult it is to ensure full reproducibility of even a simple experiment on a 
single subject (himself).123 His team has gone to great lengths to make their data and code 
available, even providing access to a computing platform where needed. 

Other collaborative imaging genetics repositories emphasize open data and 
reproducibility as well.124,125 fBIRN is committed to publicly sharing its data, which has yielded 
several important studies on schizophrenia.126 The project put all of its imaging data (structural 
and functional) in a standardized format, along with neurocognitive testing data, into the Human 
Imaging Database (HID), logging about 80 downloads per month.116 All the imaging data from 
fBIRN is available to the public for subsequent analyses,62 and one of the goals of the 
IMAGEMEND consortium is to benchmark and test new computational methods for 
reproducibility.127 

Resolution: Replication 

A true replication draws from the same population, using the same experimental design 
and analysis plan, but otherwise recreating the experiment and code, and arriving at consistent 
results. Replication is essential for identifying and reducing false positives, both in GWAS and in 
imaging studies. While determining a suitable significance threshold ensures detection of the 
smallest true signal possible, the replication is the gold standard in verifying the reliability of 
previous results. 

It has been reported that false positive rates in fMRI studies can be as high as 70%. Both 
meta-analyses and the rigorous validation of methods through permutation testing are needed to 
minimize false positives. Most methods for fMRI haven’t been validated with real data, and 
experts are still in the process of determining the nature of the effects of spatial autocorrelation, 
technical artifacts, and noise, and their effects on false positive rates.81 Recent imaging genetics 
studies divide their samples into independent “discovery” and “replication” datasets. One 
significant SNP was found, associated with connectivity between regions of interest, which in 
turn were associated with dementia. An exploratory analysis (in need of replication) showed 
promise for larger sample sizes able to make genetic discoveries.115 

The effective number of statistical tests on a genetic-by-imaging analysis is an ongoing 
problem.101 Imaging genetics presents an enhanced multiple comparison problem over either 
neuroimaging or genetic studies alone. Many strategies have been proposed for dealing with 
multiple comparisons.128 One of these is data reduction, which theoretically limits the amount of 
noise interfering with signal. Data reduction methods overcome the lack of power in studies less 
than 1000 subjects. Study designs and methods are constantly evolving to meet the demand for 
innovation.88 Lack of consistency in study design makes comparison difficult, and a thorough 
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analysis plan pooling data within consortia and across studies is even more statistically 
problematic when the methods are so diverse. 

A common manifestation of the data reduction approach is to pool information from local 
brain regions of interest (ROIs) in order to reduce the number of statistical tests. It is important to 
note that the strategy of constraining one’s study to specific brain regions does not lower the rate 
of false positives, according to Meyer-Lindenberg;129 however, ROI studies have other benefits 
which include being computationally less expensive than a voxelwise study. Another data 
reduction strategy, ranking imaging features by heritability, has been a successful form of 
prioritization.130,131 For data reduction, the advantage of multivariate methods is a proven 
increase in power; however, there is enhanced difficulty in interpreting results of multivariate 
methods due to their complexity.104 

Reproducibility metrics can be used as a benchmark for optimal processing pipelines in 
imaging data. Traditionally, imaging analysts focused on pipelines that resulted in biologically 
interesting results, or reasonable results. This method is prone to bias.132 Better to use metrics 
that don’t depend on results as much as the ability to reproduce the results in secondary analyses. 
Another metric traditionally used for benchmarking was the p-value, but it turns out this does not 
indicate degree of reproducibility at all, and also introduces bias to the preprocessing pipeline.89 

Resolution: Rigor 

Traditional barriers to science, which included access to technology, are disintegrating in 
the era of cloud based services. Anyone with a laptop is able to participate in science, and it is 
easier than ever for someone with computational or analytical skills to make a contribution. In 
this ecosystem, open data can thrive, and along with it an implicit understanding that results may 
be objectively double-checked.119 This growing emphasis on rigor can be seen in The Human 
Connectome Project, still in its data acquisition phase, making every effort to document its 
protocols as each phase of the project unrolls.133 

According to Wiener, lack of rigorous standards are one of the many challenges to 
fostering a data sharing ecosystem in neuroscience (Box 4). He paints the landscape his field 
with the broad strokes of cultural, technical and practical challenges.119 I propose that rigorous 
imaging genetic research also faces challenges in these three dimensions. 
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Open data is a fundamentally cultural principle that is part of today’s generation’s way of 
thinking.134 The Allen Institute for Brain Science is a prototype of social neuroscience that can 
be an example of science unperturbed by political tides, and captures the spirit of the team-based 
approach needed in these collaborative times.134 Advocates are needed for governance of 
incentives, database standards, and communicating the general importance of data sharing and 
the reliability of science. As a community grassroots movement, experts are needed on ethics, 
privacy, and security concerns.119 

Then there is communication with the non-scientist. Leveraging all of the technical data 
from various efforts against each other by making them available, compatible, and user 
friendly.135 

Rigorous analysis steps are needed to evaluate potential pitfalls at every step of an 
experiment. Errors and assumptions waste time and money, and can lead to retractions. For 

 

 

Cultural. Overcoming the reliability crisis is even more critical now as science 
as a whole is under attack by anti-intellectualism. Failure to replicate results 
threatens to discredit and reduce support for progress in science. The 
complexity of the problem by nature demands that tackling it must be a team 
effort. One investigator cannot find the solution alone. (This can be compared 
to particle physics and astronomy). People with internal motivation are 
contributing much in this team building approach. 

Technical. Numerous sub-communities have created various types of data and 
scales of analysis. This has led to a challenge for interoperability between labs 
and tools. Determining the statistical threshold for significance is not a simple 
task because not all tests are independent. Genetic markers are in linkage 
disequilibrium due to being inherited together, and there are varying degrees 
of this throughout the genome. Imaging measures have spatial correlations that 
are still not well understood, and functional imaging signals possess additional 
temporal autocorrelation along with spatial non-independence. 

Practical. The movement needs experimentalists, architects, app engineers, 
data scientists, scientific users and educators. The levels of involvement can 
be distilled into three or four essential roles existing at the levels of data, 
infrastructure, apps, and algorithms. 

 

Box 4. Wiener’s challenges to research: rigor edition81 
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example, an oversight recently led to statistical issues when a gene set analysis contained a SNP 
that was tagged in several genes.136 That this error was missed demonstrates the importance of 
rigor, particularly as this field is interdisciplinary and new. Another rigorous step to take if 
possible: use a separate dataset for analysis after selecting variables of interest to avoid bias.137 

Conclusion: A call to action 

The merging of GWAS with neuroimaging appears to be a natural pairing to explain the 
biological roots of complex disease. While genetics seeks explain the heritability of behavior, 
imaging illuminates its neural processes. The idea that linking genes and brain function might 
better describe mental processes provides hope for a frustratingly difficult-to-treat array of 
mental disorders. If the collaborative environment can continue to press forward with reliable 
science, great strides might be made in the areas of diagnosis, treatment, and prevention. 

 In preparing this paper, I reviewed the major publications related to the imaging genetics 
consortia in Table 1. All groups included in the table are GWAS studies that also have imaging 
data on some or all of their subjects, with two exceptions. In the Saguenay Youth Study, imaging 
was the focal point, with genetic conclusions drawn primarily from the close relatedness of the 
study participants: an isolated population with low genetic variation due to a strong founder 
effect.138 When genotyping was required, it was done one SNP at a time.139 The Human 
Connectome Project also does not currently have genetic data on its subjects, being a five-year 
project begun in 2012 with genotyping on the agenda for year five.133 

Ease of access to consortium data serves several purposes. Meta-analyses increase 
statistical power while simultaneously exposing issues with combining data from multiple 
sites.42,90 This has laid the foundation for harmonizing imaging genetics standards. In the case of 
ADNI in particular, it has inspired experimentation with multiple methods of integrating GWAS 
and imaging data that have yielded some interesting findings.15,66 As new phases of these 
projects are added, they will likely incorporate continued refinement of both imaging and genetic 
preprocessing pipelines. 

A crucial question for computational scientists is how to incorporate a whole genome 
analysis into a functional imaging study in order to detect (or to not rule out) a potential signal 
that has not been previously identified. Moving forward, researchers are looking at ever smaller 
effect sizes, and this requires larger samples.78 These studies are also less likely to replicate, and 
when they do, the resulting effect sizes are expected to be even smaller upon secondary 
analysis.32 This problem is not surprising, but being aware of the issues affecting reliability 
reveal several opportunities for improvement. 

Next frontiers 

A new dimension of complexity emerges with the study of time-varying connectivity, 
capturing information from the constantly changing brain while more accurately representing its 
function than static measurements.140 Methods and standards will be needed to handle dynamic 
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paradigm. Other data modalities (epigenetic, proteomic, copy number variations, etc.) will also 
be important in the coming years.67 Consideration must be given to the issues each data type 
brings to the table, and experts must learn to share their skills and knowledge to avoid costly 
assumptions. In addition, the methods that have been evolving for integrating imaging and 
genetics will be valuable in the movement toward multimodality studies.15 

The process of science today, in which complex concepts are described with data and 
teased apart by statistical methods, then stretched out into associations to create publishable 
claims, has created a tangle of challenging opportunities. The robustness of these claims and 
their interpretation must be addressed.141 Individuals must demand accountability from each 
other for open sharing of data and code to reproduce results;142 they must give incentives for 
replication and encourage a culture of rigorous standards in both practice and reporting.143 From 
the experimental design phase, to analysis and development of methods, to interpretation and 
communication of results to the press and the public, experts are needed. They are especially 
needed to address issues of reliability at each phase. Government regulatory agencies must 
understand the implications of reliability in research as they decide on important matters such as 
approving tests, treatments, and other products. The field of behavioral neuroscience and that of 
imaging genetics in particular have a critical need for this kind of computational expertise at 
every level. 

I have not discussed such practices as p-hacking, the garden of forking paths, or the file 
drawer problem. These all have a role in reliability problems in science,29 but in spite of their 
obvious contribution, I chose not to include fraud in my analysis. Instead, I propose that the 
scientific community should encourage secondary analysis. Improving overall reliability will 
prevent errors from propagating, regardless of their source. The next frontier is to create an 
ongoing system of checks, like the criteria used by the Reproducibility Project,32 but global and 
proactive. Focusing the collective energies of imaging genetics on robustness, reproducibility, 
replication, and rigor will help us to avoid the pitfalls other fields have already met and 
overcome. 
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Tables 
Table 1. Major collaborative projects that include both brain imaging and genome wide genotype data. Publications in italics are 
review papers describing the consortium. 

Imaging Genetics Consortia 
(expanded from Medland 201488) 

 

Consortium 
Imaging 

Type 
Sample Size Composition Population Select Publications 

Avon Longitudinal Study of 
Parents and Children 

(ALSPC) 
sMRI 14,000 women 

+ families 

subjects were 
pregnant when 

enrolled 
Bristol, UK Eicher 2013,*61 Niarchou 

2015144 

IMAging GEnetics for 
MENtal Disorders 
(IMAGEMEND) 

DTI, sMRI, 
fMRI  

12,667 
+relatives 

SCZ, BPD, ADHD, 
healthy controls Europe Luksys 2015,64 Frangou 

2016127 

Enhancing NeuroImaging 
Genetics through Meta-
Analysis (ENIGMA)* 

DTI, sMRI 12000+ various worldwide 
Stein 2010,*102 Hibar 
2011,*103 Jahanshad 

2013,*145 Thompson 2014 

Cohorts for Heart and Aging 
Research in Genomic 

Epidemiology (CHARGE)* 
DTI, sMRI 12000+ cohort United States and 

Europe 
Psaty 200990, Debette 

2010*63 

IMAGEN sMRI, fMRI 2000+ healthy teenagers Europe 
Schumann 2010,146 

Nymberg 2012,147 Whelan 
201260 

Brain Genomics Superstruct 
Project (GSP) sMRI, fMRI 1,570 healthy adults Massachusetts Holmes 2015148 

Pediatric Imaging, 
Neurocognition, and 

Genetics (PING) 

DTI, sMRI, 
fMRI  ~1400 healthy children 

and teenagers United States Bakken 2012,*149 
Jernigan 2016150 

Human Connectome Project 
(HCP) 

sMRI, fMRI, 
DTI, MEG 

1,200 
+twins 

+siblings 
healthy adults United States Van Essen 2012 

Saguenay Youth Study 
(SYS)* sMRI 1,000 French- Canadian 

teenagers Quebec Pausova 2016151 

Alzheimer's Disease 
Neuroimaging Initiative 

(ADNI)  

DTI, fMRI, 
PET ~822 

Alzheimer’s 
disease, MCI, 
normal adults 

United States and 
Canada 

Shen 2010,*101 Meda 
2012,*66 Ramanan 

2012,152 Weiner 2014,153 
Shen 2014104 

Function Biomedical 
Informatics Research 

Network (fBIRN) 
fMRI  350+ SCZ, healthy 

controls United States Potkin 2009154, Keator 
2016116 

MIND Clinical Imaging 
Consortium (MCIC) 

DTI, sMRI, 
fMRI  331 SCZ and controls 

New Mexico, 
Minnesota, 

Massachusetts, Iowa 

Gollub 2013,155 Cao 
2014156 

*= structural imaging only 
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Table 2. Strengths and weaknesses of common power enhancement approaches. Most imaging genetic studies use data reduction 
approaches (shaded). 

Power enhancement approaches 
(Adapted from Thompson 2014100) 

Power 
enhancement 

approach 

Examples Strengths Weaknesses 

Enhance the dataset ● Increase sample size 
● Increase genomic coverage 
● Increase range of phenotype 
● Meta-analysis 

detects smaller 
effect sizes 

can be expensive 

Data reduction (a 
priori) 

● By classical genetics (heritability) 
● By relevance to disease/trait 
● By prioritization 

reduces noise may miss unanticipated hits 

Data reduction 
(data-driven) 

● Multivariate statistics 
● Hierarchical clustering 
● Latent variable methods 

fewer 
assumptions 

difficult to interpret 
directionality and effect size 
of individual variables 

Multimodality 
approaches 

● Parallel ICA 
● Joint ICA 

exploits joint 
information 

computationally expensive, 
interpretation unclear 

 
 
Table 3. A snapshot of 12 major publications from imaging genetics consortia, showing a diverse range of scope and 
methodology. Those that did attempt replication (shaded) were mostly successful, with one exception. 

*= structural imaging only 

Scope and Methodology of Imaging Genetic Studies 
Study Genetic 

features 
Imaging features Primary power enhancement 

approach 
Extent of replication 

Potkin 2009154 GWAS activation in single 
region 

enhance dataset by increasing 
range of phenotype 

recommended 

Debette 2010*63 GWAS presence of infarcts enhance dataset by meta-analysis single-SNP replication failed, repeat 
recommended 

Shen 2010*101 GWAS ROIs and grey 
matter volume 

data reduction by 
multivariate statistics 

recommended 

Stein 2010*102 GWAS all voxels data reduction by prioritization estimate of sample size needed 
Hibar 2011*103 gene-based 

GWAS 
all voxels data reduction by 

multivariate statistics 
recommended 

Bakken 2012,*149 GWAS visual cortical 
surface areas 

data reduction with multivariate 
statistics 

replicated in two independent 
cohorts 

Meda 2012*66 GWAS ROIs multimodality approach recommended 
Whelan 201260 select SNPs ROIs data reduction by relevance to 

disease/trait 
estimate of replicability 

Eicher 2013*61 single gene language-related 
fiber tracts 

data reduction by relevance to 
disease/trait 

replicated in PING dataset 

Jahanshad 2013*145 GWAS ROI connectivity data reduction by classical 
genetics (heritability) 

discovery and replication 
subsamples 

Cao 2014156 GWAS all voxels multimodality approach not mentioned 
Luksys 201564 GWAS select voxels data reduction by relevance to 

disease/trait 
discovery and replication 

subsamples 
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