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Abstract

Measurement, Analysis, and Detection of Nasalization in Speech

Xiaochuan Niu, B.S., M.S.

Ph.D., OGI School of Science & Engineering

at Oregon Health & Science University

March 2008

Supervising Professor: Jan P.H. van Santen

Nasalization refers to the process of speech production in which signi�cant amounts of

air�ow and sound energy are transmitted through the nasal tract. In phonetics, nasaliza-

tion is necessary for certain phonemes to be produced in normal speech; and it can also

be a normal consequence of coarticulation. In disordered speech, however, inappropriate

nasalization can be one of the causes that reduces the intelligibility of speech. Instrumental

measurement and analysis techniques are needed for better understanding the relationship

between the physiological status and the aerodynamic and acoustic e�ects of nasalization

during speech. The main aim of the research work presented in this dissertation is to

investigate the aerodynamic and acoustic e�ects of nasalization, and to develop objective

approaches to measure, analyze, and detect the nasalized segments in speech. Based on

an extensive survey of existing literature on the measurements of velopharyngeal func-

tion, the acoustic production models of speech, the analysis methods and results of normal

nasalization, and the analysis methods of resonance disorders, it is understood that the

xii



�nal acoustic representation of nasalization is a complex outcome that is a�ected by the

degree of velopharyngeal opening, the variation of vocal tract con�gurations, the mixture

of multiple acoustic channels and speaker di�erences. It is proposed to incorporate more

available information besides single channel acoustic signals during the analysis of nasaliza-

tion. In our research work, a parallel study of acoustic and aerodynamic signals reveals the

complimentary information within the signals. In addition, dual-channel acoustic studies

help to understand the acoustic relationship between the oral and nasal cavities, and show

inherent advantages over the single-channel analysis. Based on the derivation and analysis

of the dual-channel acoustic properties, automatic detectors of nasalization are developed

and successfully tested. The techniques developed in these explorations provide novel in-

strumental and analysis approaches to possible applications such as phonetic studies of the

normal nasalization process, clinical assessment of disordered nasal resonance, and special

feature extraction for speech recognition.

xiii



Chapter 1

Introduction

1.1 Background

1.1.1 Nasalization in speech

Speech is a complex phenomenon involving voluntary movements of human vocal appara-

tus producing vibrations of air that can be perceived by human auditory systems. In order

to understand this complex phenomenon, researchers sometimes regard the speech pro-

cess as �ve separate but coordinating components (or subsystems), including respiration,

phonation, resonance, articulation, and prosody (Du�y, 1995). The respiration process

provides steady subglottal air pressure and air�ow as the initial source of sound waves.

The phonation process involves the adjustment or sustaining of a proper tension of vocal

folds for vibration, producing a fundamental frequency perceived as pitch. The resonance

process refers to the way in which the oral and nasal cavities are connected or separated to

construct various acoustic resonators that result in di�erent nasal qualities of the sound.

The articulation process refers to the control of the shapes and movements of articula-

tors including the tongue, lips and teeth, so as to modify the sound waves produced by

the respiration, phonation and resonance processes. The prosody process is a higher level

mechanism than other processes, which conveys information about syntactic factors such

as lexical stress, phrase breaks and sentence structures, and para-linguistic factors such as

attitudes and emotions of the speaker, by manipulating patterns of fundamental frequency,

segmental duration, intensity, pauses, and speaking rate of speech.

Among these components, the resonance process is speci�cally achieved through the

control of the velopharyngeal (VP) port inside the vocal tract. In physiology, the VP port

1
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Figure 1.1: Schematic drawing of the vocal tract (adopted from Denes and Pinson, 1993).
The section in the circle that connects the pharyngeal tract, the nasal tract, and the oral
tract is called the velopharyngeal (VP) port.

refers to the section in the vocal tract that connects the nasal tract with the oral-pharyngeal

tract (see Figure 1.1). The VP port usually stays open when one is not speaking, but can

be either closed or opened voluntarily during speech. Physiological studies have shown

that the VP movement is a complex combination of the movements of the velum, the rear

pharyngeal wall and the lateral pharyngeal walls (Skolnick et al., 1975). It is known that

several muscles coordinate in controlling VP movements; and some of these muscles are

also involved in the movements of other articulators, such as the tongue and the larynx. It

is a natural capability of normal speakers to control their VP port during speech. However,

the resonance process can be disturbed due to various reasons such as physiological defects,

lack of auditory feedback, or motor control disorders.

Before moving on to further discussions, we would like to explicitly clarify the meanings

of the following related terms that will be used in the context of this thesis.
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Nasalization refers to the process of speech production in which the velopharyngeal port

is opened and the nasal cavity is connected with the pharyngeal-oral tract. As a

consequence of nasalization, signi�cant amounts of air�ows and acoustic vibrations

propagate through the nasal tract during speech.

Nasal resonance refers to the voiced vibrations of sound pressure transmitted out of the

nasal cavity through the nose during speech.

Nasal turbulence refers to the fricative noise sounds caused by the air�ow passing

through the nasal tract.

Nasal emission refers to the leakage of the nasal air�ow during the production of phono-

logically �oral� phonemes.

Nasality is the perceptual quality of nasal resonance.

Hypernasality is the perceptual quality of excessive nasal resonance.

Hyponasality is the perceptual quality of insu�cient nasal resonance.

In summary, nasalization is a general concept of speech production related to the VP

opening; nasal resonance and nasal turbulence are acoustic descriptions of certain char-

acteristics of nasalization; nasal emission is the aerodynamic description of an undesired

event during speech production; nasality, hypernasality, and hyponasality are perceptual

attributes of sounds.

This thesis will discuss measurement, analysis and detection techniques for studying

the nasalization process. In the context of this thesis,measurement refers to any method

that converts certain physical properties of the nasalization process into quantitative repre-

sentations, e.g. electrical signals; analysis refers to a procedure or algorithm that extracts

useful information of the nasalization process from raw signals; detection refers to an

arti�cial approach through which di�erent phases of the dynamic nasalization process can

be automatically inferred.
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1.1.2 Studies of nasalization

Nasalization can be a natural process of speech production. In the phonetic systems of

languages in the world, [+/-nasal] is one of the discriminative features that groups speech

sounds into di�erent categories of phonemes (Ladefoged, 1993). Nasal consonants are

achieved by opening the VP port and simultaneously closing the oral tract at a certain

point, so that air�ows and acoustic vibrations from the vocal fold propagate only through

the nasal tract. On the other hand, the closure of the VP port is a prerequisite for oral

�pressure� phonemes, such as plosives, a�ricates and fricatives, because su�cient intra-oral

air pressure is needed to produce these phonemes. In addition, while vowel production

generally requires an open passage through the oral tract, there are nasal vowels that are

phonemically contrastive to oral vowels in some languages such as French and Portuguese,

in which the VP port is open at the same time as the oral tract. Though there are no

phonemic nasal vowels in languages such as American English, vowels and consonants can

be nasalized in the context of nasal consonants due to coarticulation e�ects.

Appropriate manipulation of the VP port is important for normal speech production.

However, any defects in accomplishing the right degree of openness or timing of the VP

opening and closure may degrade the intelligibility of speech, thereby reducing the com-

municative ability of a speaker. Several groups of speech disorders are characterized by

inappropriate nasalization (Baken and Orliko�, 2000, Chapter 11). For example, a cleft

palate or other anatomical defect that changes the normal physiological structure of the

VP port or the nasal tract may cause excessive or insu�cient nasalization in speech. Deaf

speakers may exhibit excessive nasalization due to the lack of auditory feedback. Inappro-

priate nasalization is also a prevalent characteristic of several groups of dysarthric speech,

due to the motor control impairments of some neurologically a�ected individuals.

A basic scienti�c question concerning the VP function (or behavior) is how the VP

port works appropriately during normal speech. A thorough answer to this question is one

of the basic goals of phonetic and phonological studies. It is also of interest to understand

the relationship between VP movements and the corresponding characteristics of speech

sounds. A deep understanding of the aerodynamic, acoustic and perceptual consequences
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of nasalization may bene�t engineering applications such as automatic speech recognition

and speech synthesis, when such knowledge can be properly applied. In addition, the

understanding would help the diagnosis, assessment, and treatment of disordered speakers

with nasalization problems. The research work presented in this thesis may not answer the

ultimate question about the control mechanism of the nasalization process; however, we are

trying to develop practical techniques that may help to analyze the relationship between

the physiological condition and the aerodynamic or acoustic consequences of nasalization.

1.2 Research motivations

A long term research goal at the Center for Spoken Language Understanding (CSLU) has

been to develop assistive techniques that can enhance the intelligibility of a certain group

of disordered speech, dysarthria, in an analysis-transform-synthesis framework (Hosom

et al., 2003; Kain et al., 2004, 2007). Dysarthria results from disturbances in muscular

control over the speech mechanism due to damage to the central or peripheral nervous

system (Darley et al., 1969). It has been observed that inappropriate nasalization is one

of the reasons that causes reduced intelligibility of dysarthric speech. For example, when

voiced sounds are contaminated by inappropriate acoustic coupling of the nasal tract,

the spectral patterns of these sounds are �blurred� and the intelligibility is reduced (e.g.

Weismer and Martin, 1992; Forrest and Weismer, 1997); when signi�cant nasal emission

occurs during oral �pressure� phonemes, such as plosives, a�ricates and fricatives, the

distinguishing features of these sounds are weakened, thus reducing the intelligibility. It

is reasonable to attribute the nasalization problems in dysarthric speech to inappropriate

degree and timing of VP movements.1 However, informative and objective approaches to

analyze the nasalization process over time are still lacking, mainly due to measurement

and analysis di�culties. Therefore, we focus on developing feasible objective measurement

and analysis approaches to extract the information of the nasalization process, so that the

resulting techniques may be used in, but not limited to, the applications of disordered

1It is to be noted that the speech of hearing-impaired speakers can exhibit similar nasalization problems
due to lack of auditory feedback.
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speech enhancement.

There are some special challenges in studying the nasalization process. First, the

position of the VP port is �hidden�, which makes any direct measurements of VP movements

di�cult. Though some measurement techniques have been developed to study the VP

function (see a review in Section 2.1), none of them can provide the whole spectrum of

information under investigation. Second, the VP port is not just a two-state valve that

opens for nasals and closes for non-nasals instantaneously; it varies continuously due to

either anticipatory or carry-over movements of the velum and the pharyngeal walls. These

coarticulation e�ects complicate the timing pattern of VP movements (Moll and Danilo�,

1971; Kent et al., 1974) in both normal and disordered speech. Third, the aerodynamic

and acoustic consequences of nasalization are not independent of other features of speech.

For example, the di�erent degree of oral opening for various vowels highly in�uences the

amount of air�ow and acoustic energy emitted through the nasal tract (Curtis, 1970; Laine

et al., 1988). Complex aerodynamic and acoustic techniques are needed to reduce the

adverse e�ects resulting from these dependencies. Fourth, speech components other than

the resonance process, such as phonation (Imatomi et al., 1999; Imatomi and Arai, 2002)

and articulation (Maeda, 1993), may compensate for the perceptual resonance e�ects. This

may undermine the reliability of perceptual measurements of nasalization.

From the speech analysis point of view, the speci�c objectives of the research work pre-

sented in this thesis are 1) to choose and/or develop instrumental measurement techniques

for nasalization analysis, 2) to better understand the aerodynamic and acoustic conse-

quences of VP movements, and 3) to develop reliable approaches for automatic extraction

of nasalization information and detection of the speech segments that are nasalized. Ex-

plorations and solutions leading to these aims should be bene�cial to both understanding

the normal nasalization process and assessing disordered nasalization.
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1.3 Proposed approaches

In general, the existing techniques for the measurement of the VP function can be grouped

as perceptual, physiological, and indirect approaches. Perceptual approaches include de-

signing and conducting perceptual evaluations of nasality. Audio-perceptual rating proce-

dures have been used extensively in clinical assessments, but they often su�er from reli-

ability problems and cannot provide a detailed description of nasalization over time (e.g.

Kent, 1994, 1996). Physiological approaches include measurements of muscle electrical

activities, and imaging and tracking of VP movements. These approaches have been used

in both phonetic studies and clinical practices. Indirect approaches include measurements

of air�ows and acoustic vibrations. Due to the accessibility of the instrumental resources

and the inherent invasiveness, physiological approaches are not so appropriate for practical

engineering applications such as assistive devices. In our research, we are mainly inter-

ested in developing indirect approaches for nasalization analysis, and more of the research

emphasis is on acoustic approaches.

It is hypothesized that multiple-channel measurements can overcome some inherent

limitations of conventional single-channel acoustic measurement in studying the nasaliza-

tion process. In the thesis, we �rst investigate, develop and choose appropriate indirect

measurement techniques, either aerodynamic or acoustic, that aim at revealing as much

information about nasalization as possible. We then explore and analyze possible advan-

tages and limitations of using certain multiple-channel techniques. It is also hypothesized

that an acoustic model concerning the e�ects of multiple channels can explain the inherent

ambiguities in conventional single-channel acoustic signals. Based on a simulation anal-

ysis of the process of nasal resonance, we aim to develop a quantitative acoustic model

that describes the relationship between nasal and oral acoustic signals. It is then hypothe-

sized that the acoustic properties of nasal resonance presented in the dual-channel acoustic

model can be used as distinguishing features for automatic detection of nasalization con-

ditions. We further investigate the problem of automatic detection of nasalized segments

in running speech, developing a feature extraction algorithm based on the dual-channel

analysis approach for a practical nasalization detection system.
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It is to be noted that the analysis techniques in our studies are initially developed from

the model of normal speech production and validated with normal speech. Considering

the possible applications to disordered speech, we have made one assumption about the

targeting group of disordered speakers, which is that their physiological speech apparatuses

remain unimpaired and the nasalization problems are not caused by physiological defects.

This assumption will hold for most dysarthric and hearing-impaired speakers, but not

for speakers with cleft palate. The assumption allows normal and dysarthric speech to

be analyzed on the same physiological basis of speech production. When the resulting

methods are to be generalized to the nasalization problems caused by physiological defects,

speaker-dependent factors must be taken into account.

1.4 Thesis organization

The research concerning the measurement, analysis, and detection of nasalization in speech

will be presented in the following �ve chapters in rest of this thesis.

Chapter 2 provides an extensive summary of a wide range of relevant background in-

formation about the research on the VP function in speech. First, instrumental techniques

for the measurement of the VP function are reviewed. Then, di�erent methodologies of

nasalization analysis are summarized and compared from a variety of viewpoints. The

discussion will consequently lead to our original methodology of nasalization measurement

and analysis.

In Chapter 3, some schemes of multi-channel measurements are investigated and ana-

lyzed. From the data acquisition point of view, a new aerodynamic device is designed and

evaluated as one possible channel of measurement. Both advantages and limitations of the

new device are discussed. Then a simple dual-channel acoustic device is evaluated. The

aerodynamic-acoustic and the dual-channel acoustic schemes are compared to each other.

In Chapter 4, a dual-channel acoustic model is investigated theoretically. Then sim-

ulation experiments are conducted to test the derived properties of the model. A novel

dual-channel analysis approach is presented and validated by simulated speech signals.

In Chapter 5, based on the analysis approach developed in Chapter 4, a dual-channel
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acoustic feature for nasalization detection is presented; a practical algorithm is designed

to extract this feature from dual-channel acoustic speech signals; a nasalization detector

is then built and its performance is evaluated and reported.

Chapter 6 summarizes the contributions of the thesis work and discusses future work

and possible applications.



Chapter 2

Related work on nasalization measurement

and analysis

2.1 Measurement techniques

Many instrumental techniques have been developed to investigate the VP function in

speech. Krakow and Hu�man (1993) have presented a summary of most methods for

the purpose of phonetic and phonological research. From the speech production point of

view, they categorized these methods into three groups, including those for studying 1)

the sources of VP movements, 2) the patterns of VP movements, and 3) the e�ects of VP

movements. With an emphasis on clinical purposes, Baken and Orliko� (2000) also had a

thorough review of existing instrumental techniques for the assessment of the VP function.

In this section, we will brie�y examine these measurement techniques according to Krakow

and Hu�man's categorization in order to choose appropriate ones for our research goals.

Typical examples will be elicited to highlight certain characteristics of each technique.

1. The sources of VP movements refer to muscle activities involved in the control of

the VP port. Electromyography (EMG) is the technique that measures electrical

activities associated with muscle contraction. EMG signals are picked up by pairs of

electrodes that are either glued on the surface over muscles or inserted into muscles.

Due to the complex layout of VP muscles, inserted electrodes are usually needed.

EMG data are useful for studying the relationship between muscle activities and

movements (e.g. Bell-Berti, 1976). However, because of the inherent invasiveness,

this technique is not widely used for engineering and clinical purposes.

10
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2. The patterns of VP movements can be studied with the help of imaging or tracking

techniques. Through these techniques, researchers are able to observe the �hidden�

structures and movements directly. The following techniques belong to this category.

(a) The imaging techniques include �beroptic endoscopy, radiography (X-ray), mag-

netic resonance imaging (MRI), and ultrasound.

i. The most direct but relatively invasive way to record the VP port images

is to insert a �beroptic endoscope into the nasal cavity (e.g. Karnell et al.,

1988). A tiny video camera is often mounted at the probing end of the

endoscope, so that the motion images of the VP port can be captured.

The endoscopic technique is widely used by clinicians to study the physi-

ological structure in the nasal cavity and to make qualitative diagnoses of

VP movements during speech. However, it is di�cult to make quantitative

measurements, because the images obtained in this way may be unstable

and distorted.

ii. The radiographic technique has been used in di�erent ways. It can pro-

vide detailed static two-dimensional images of the vocal tract (e.g. Fant,

1960). It can also be used in computed tomography (CT) scans, from

which a three-dimensional structure of the vocal tract is constructed. In

order to record the dynamic movement, the X-ray images can be projected

onto a �uoroscope and then �lmed (cine�uorography) or video-taped (vide-

o�uorography). By comparing velum positions in a sequence of frames, the

time-varying movement can be studied (e.g. Moll and Danilo�, 1971). Non-

invasive as it is, the radiographic technique has a potential health risk to

subjects. This risk prevents it from being widely used in both recent and

future speech research.

iii. The MRI technique is another non-invasive way to obtain multi-dimensional

images of structures inside the vocal tract. It does not cause the hazardous

ionizing radiation that the radiographic technique does, while providing

excellent discrimination of soft tissues. It has been used to measure the



12

shapes of pharyngeal and oral tracts during sustained vowels (e.g. Baer

et al., 1991; Moore, 1992), and the structure of the nasal and para-nasal

cavities during sustained nasal consonants (e.g. Dang and Honda, 1994b).

Recently, MRI data were also used to construct a three-dimensional articu-

latory model of the velum (Serrurier and Badin, 2005). Due to its safety and

non-invasiveness, the MRI technique is expected to be used more in future

speech research. However, MRI units currently used in medicine are expen-

sive (million-dollar per unit with several hundred thousand dollars per year

for maintenance). The lying position of subjects may cause some gravity

e�ects on the soft tissues. Loud noises and vibrations during the scan have

to be canceled out when acoustic data are needed in parallel studies. The

conventional MRI scan is not fast enough to obtain dynamic information

of speech. These limitations are to be overcome before the MRI technique

can be used widely in speech research. Recent improvements have increased

the acquisition rate to 8-9 images per second (Narayanan et al., 2004). It

is expected that the research on the VP function will bene�t more from

further development of the MRI technique.

iv. The ultrasound imaging technique is another non-invasive way to observe

the hidden body tissues. It has been used to study the tongue shapes during

speech (e.g. Stone et al., 1988). Because the ultrasound waves cannot pass

through a tissue-air boundary, it is hard to obtain images of the velum.

Therefore, there are few studies using ultrasound images to observe VP

movements.

(b) The tracking techniques include point tracking and aperture tracking. Point

tracking techniques are designed to monitor the positions of one or more points

on articulators, such as the lips, the tongue, and the velum. Aperture tracking

techniques are designed to measure the relative opening of the VP port. These

tracking techniques usually need less processing e�ort than imaging techniques.

They are often used to extract dynamic information of the VP port. Vari-

ous principles have been adopted in the design of these techniques. Examples
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include the following,

i. The velotrace is a mechanical point tracking device (e.g. Horiguchi and Bell-

Berti, 1987). A lever is inserted through the nasal cavity and placed on the

upper surface of the velum. The movement of the velum is transmitted

by a set of levers that are connected with the internal one. Stain gauges

were used in another mechanical method (e.g. Moller et al., 1971). The

movement of the velum is transduced by a spring that is attached to the

lower surface of the velum inside the oral tract. The placements of these

specially designed mechanical sensors are all too invasive for them to be

widely used in engineering applications.

ii. Less invasive techniques of point tracking make use of X-ray microbeams (e.g.

Fujimura et al., 1977) or magnetometry (e.g. Perkell et al., 1992). Pellets or

transducer coils are attached to the velum to track its movements. Besides

the possible health risk, the X-ray microbeam systems are costly and only a

few research sites have them. On the other hand, there is no known health

risk to use the magnetometry technique; it is currently a promising one to

study the dynamics and coordination of most articulators. The magnetom-

etry system is also costly and bulky. It is better for research purposes than

for daily applications. Also, there are usually some di�culties in gluing a

transducer coil on the velum when studying VP movements.

iii. The photodetection technique can be used in aperture tracking systems.

For example, a device called the nasograph has been used to measure the

intensity of light transmitted through the VP port during speech (Ohala,

1971). It was made of a light source and a light detector that are placed at

di�erent sides of the VP port. The relative opening of the VP port is mea-

sured from the intensity of light passing through it. Due to its invasiveness,

this technique is also rarely used nowadays.

3. VP movements result in both aerodynamic and acoustic e�ects. In studies of pho-

netic science, the aerodynamic e�ect usually refers to the static or slowly varying air
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pressure or velocity of the air�ow that goes through the vocal tract during speech;

the acoustic e�ect refers to the rapid vibrations of air pressure as waves that prop-

agate from the sound source to a receiver through the medium of air. Aerodynamic

and acoustic measurements are both indirect methods when studying the VP func-

tion. They are important measurements because air is the most common medium for

speech communication. Moreover, the devices for such measurements are relatively

inexpensive to construct and easy to obtain, and the usage of these devices does not

cause any health risks nor too much discomfort to subjects. They are ideal for studies

that need large-scale data collection and portable applications. However, because the

measurements are indirect, it is important to understand the relationship between

�hidden� movements and physical observations of the aerodynamic or acoustic sig-

nals. Theories or models are usually needed to make such connections. The following

brie�y introduces instruments that have been built to make these measurements.

(a) Aerodynamic signals are usually acquired by pressure or air�ow sensors. Both

static structure and dynamic changes of the VP port can be re�ected in aerody-

namic measurements. Under a static condition, the area of the VP opening can

be estimated by simultaneously measuring the nasal air�ow and the intra-oral

pressure (Warren, 1964b,a), in which the physical relationship between pressure

and �ow is adopted to calculate the resistance of the ori�ce and then to esti-

mate its dimensions. In order to study the dynamic changes of the air�ow from

the nostrils, a pair of di�erential pressure transducers (e.g. Warren, 1967) or

a hot-wire anemometer (e.g. Hutters and Brrndsted, 1992) can be built into a

mask that covers the nose. Then the average amount of air or the velocity of the

air�ow can be measured. The mask conducts all the air�ow from the nose to

a passage with sensors inside, but it may sometimes interfere with articulation

during speech.
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(b) Acoustic signals are acquired by microphones. Conventional microphones trans-

duce vibrations of air pressure into electrical signals. Some special type of mi-

crophones, such as contact microphones (or accelerometers), that pick up vibra-

tions of solid surfaces instead, can be used to measure tissue vibrations. Since

microphones are the most developed devices that can accurately and reliably

measure the fast changes of sound pressure, they have been used extensively in

speech research and daily applications. However, because the acoustic signal

acquired by a microphone is a mixing e�ect of all the sources and articulators,

speci�c analysis techniques are needed for extracting nasalization information

from acoustic signals.

Among all these available techniques, each single measurement may answer a certain as-

pect of the research questions concerning the VP function. Due to the accessibility of

resources and our targeted applications (e.g. assistive devices), we are mainly interested

in the indirect approaches to nasalization measurement. The acoustic analysis is the key

focus of our research, because any modi�cations of speech have to be applied to acoustic

signals and the �nal natural communicative medium also has to be acoustic. In addi-

tion, aerodynamic techniques are also explored in our studies as supplemental information

sources to acoustic analysis. The following sections will present a detailed review of the

methodologies of acoustic analysis of nasalization in both normal and disordered speech.

2.2 Analysis of nasalization in normal speech

Research on the acoustic characteristics of nasalization in normal speech spreads in di�erent

areas of speech science. In the area of speech synthesis or simulation, researchers have

presented production models for nasal consonants and nasalized vowels. In the area of

speech signal analysis, various models and algorithms have been developed to estimate

nasal tract parameters from acoustic signals. In the area of automatic speech recognition,

the search for acoustic correlates of nasalization is one of the important aspects for building

an automatic system that imitates the recognition process of humans. This section is

organized according to these three related areas.
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2.2.1 Production models

The acoustic models of speech production can be either parametric or articulatory by

nature. Most parametric models stem from the source-�lter theory (Fant, 1960), in which

the sound pressure at the lips is the result of one or more excitation signals (sources)

modulated by the vocal resonator (�lter). For example, the source of a vowel sound is

modeled as a quasi-periodic volume velocity signal passing through the vocal folds at a

certain fundamental frequency; the relatively stable vocal tract for the vowel serves as

a short-time invariant linear �lter; and the radiation characteristic is modeled as another

linear �lter. Therefore, the frequency-domain representation of the sound pressure, S(f), is

the product of a source function, G(f), a vocal tract �lter, T (f), and a radiation function,

R(f), that is

S(f) = G(f) · T (f) ·R(f). (2.1)

The con�guration of the vocal tract determines the transfer function of the vocal tract �lter,

T (f). The vocal tract con�guration of a vowel can be simpli�ed as a non-branched acoustic

tube (assuming the nasal tract is completely isolated by the velum), whose property is

characterized by a series of resonators. Each resonator can be parametrized by a second-

order band-pass �lter, whose natural frequency is called the formant frequency and the

energy-loss property is characterized by the formant bandwidth. Thus, the transfer function

of the vocal tract �lter is fully parametrized by a series of complex poles corresponding

to the formants. When the source-�lter model is applied to nasal sounds, the pharyngeal

and nasal tracts are considered as a tube, and the oral cavity is modeled as a close-

ended tube branch. The vocal tract �lter of this type of con�guration has not only poles

(or formants) but also zeros (or anti-formants) that are modeled as band-stop �lters.

The source-�lter model of a nasalized vowel is even more complex, not only because the

output sound pressure is a mixture of outputs from both the mouth and the nose, but

also because the oral and nasal cavities work as an open-ended branched tract to each

other. In a parametric synthesis system, the pole-zero pattern of a certain phoneme can

be empirically found through the trial-and-error approach (e.g. Allen et al., 1987). Using a

parametric synthesizer whose pole-zero patterns can be speci�ed, researchers have tried to
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explore the acoustic and perceptual correlates of nasalization (e.g. Hawkins and Stevens,

1985).

Articulatory models of speech production are derived from the equations that govern

acoustic waves propagating in a tube (Flanagan, 1972; Rabiner and Shafer, 1978). When

the acoustic wave in the vocal tract is assumed to be a linear plane wave (for frequencies

below 4 kHz), and the energy loss is neglected, the physical properties of the wave can be

approximately represented by the following equations,

−∂U (x, t)
∂x

=
1
ρc2

∂ (P (x, t) A (x, t))
∂t

+
∂A (x, t)

∂t

−∂P (x, t)
∂x

= ρ
∂ (U (x, t) /A (x, t))

∂t
, (2.2)

where P (x, t) is the sound pressure at position x in the vocal tract at time t, U (x, t) is the

volume velocity function, A (x, t) is the area function of cross sections of the vocal tract,

ρ is the density of air, and c is the velocity of the sound wave. When the area function is

considered stable, i.e. ∂A(x,t)
∂t = 0, within a short period of time, the wave equations are

simpli�ed as the following,

−∂U (x, t)
∂x

=
A (x)
ρc2

∂P (x, t)
∂t

−∂P (x, t)
∂x

=
ρ

A (x)
∂U (x, t)

∂t
. (2.3)

One approach to solve these equations is through the Kelly-Lochbaum (K-L) method

(Kelly and Lochbaum, 1962; Rabiner and Shafer, 1978). When the vocal tract is further

simpli�ed to be a series of short lossless uniform sections of equal-length tubes, A (x)

becomes a piecewise step function. For the i-th section of tubes with a constant area of

Ai, there is an analytical solution to the wave equations (2.3),

Ui (x, t) = U+
i

(
t− x

c

)
− U−

i

(
t+

x

c

)
Pi (x, t) =
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Ai
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(
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c

)
+ U−

i

(
t+

x

c

)]
, (2.4)

where U+
i

(
t− x

c

)
and U−

i

(
t+ x

c

)
denote forward (transmitted) and backward (re�ected)

traveling wave functions, respectively. At the junction of two sections with di�erent cross-

sectional areas, the volume velocity and the sound pressure must be continuous in both
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Figure 2.1: Transmission line model of a lossy cylindrical acoustic tube.

time and space. The special form of the forward and backward functions indicates that

a traveling distance of the transmitted or re�ected wave in space is equivalent to a delay

in time. Therefore, the traveling wave in a series of uniform lossless tubes can be repre-

sented by a discrete time system that is characterized by a set of re�ection coe�cients and

propagation delays. To simulate the nasal tract, a branch of tubes can be added at the

junction of the pharyngeal, oral, and nasal tracts (i.e. the VP port). A special continuity

condition of the sound pressure and the volume velocity at the junction can be modeled

as a three-port-adaptor (Lim and Lee, 1993, 1996; Liu and Lacroix, 1996), which enables

us to calculate the transfer function of the linear discrete system.

Another approach to simulate the acoustic wave propagating in short uniform tubes is

the transmission-line method (Flanagan, 1972). The acoustic wave equations (2.3) have

the same structure as the equations of an electrical wave that travels through a lossless

transmission line, in which the sound pressure and the volume velocity are analogous to

voltage and current, and the parameters A(x)
ρc2

and ρ
A(x) are analogous to the capacitance

(C) and the inductance (L) per unit length of the transmission line, respectively. When

the vocal tract is modeled as a series of short uniform tubes that are connected together,

the transmission properties of each section of the tubes can be represented by a circuit

unit (see Figure 2.1). The additional resistance (R) and conductance (G) in Figure 2.1 are

analogous to the viscous friction loss and the heat loss, respectively. The shunt impedance

(Rw, Lw, and Cw) in the �gure represents the yielding wall e�ect of the tube (Childers,

2000). These extra parameters extend the model capacity to represent lossy tubes. All the
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Figure 2.2: Circuit network representation of the production of nasalized voiced sounds.

parameters in such a unit are determined by the dimensions of the vocal tract sections,

the physical properties of air, and the physical properties of the vocal tract walls. Given

an area function of the vocal tract, along with a proper model of the excitation signal

and the radiation resistance, a serial connection of such units can simulate the production

of a certain vowel (Maeda, 1982a). To simulate nasal consonants or nasal vowels, the

transmission-line model can be extended by adding a branched circuit network that repre-

sents the nasal tract (see Figure 2.2). Due to the complicated structure of the nasal cavity

(e.g. asymmetric branches, irregular internal surfaces, and various sinuses), it is di�cult to

directly convert the physiological data into this representation. An empirically simpli�ed

area function can be speci�ed, and the sinuses can be modeled as shunt resonators (Maeda,

1982b).

Since the articulatory production models tend to set up a relatively explicit relation

between the articulatory con�guration and the acoustic signal, such a simulation system is

a very useful tool to test hypotheses of the relation between the production and perception

of nasalized sounds (e.g. Maeda, 1993; Pruthi and Espy-Wilson, 2005). The methodology

of using either a parametric or an articulatory synthesizer to study the acoustic properties

of nasalization belongs to analysis-by-synthesis approaches.
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2.2.2 Analysis of acoustic signals

The �eld of acoustic speech signal analysis has been developing for decades. The key

purpose of analysis is to extract useful information from acoustic speech signals. What

types of information are extracted depends on applications, such as coding, modi�cation,

enhancement, and speaker/speech/language recognition (Quatieri, 2002). Some of the

analysis methods are closely related to speech production models, while others emphasize

more on certain mathematical merits for easy manipulations. Among these methods, we

are interested in those that are potentially related to the nasalization process.

The linear prediction (LP) analysis technique has been prevalent in the �eld of speech

analysis, based on the source-�lter theory of speech production (Fant, 1960). In LP analy-

sis, the spectral e�ects of the source volume velocity, the vocal tract, and the radiation are

combined and represented by an all-pole (or autoregression, AR) �lter, and the excitation

is either a sequence of impulses (for voiced phones), a single impulse (for plosives), white

noise (for unvoiced fricatives), or a combination of them. The LP model can be represented

in the z-domain as follows,

S (z) = E (z)
1

A (z)

= E (z)
1

1−
∑N

i=1 ai z
−i
, (2.5)

where E (z) is the z-transform of an impulse sequence or a zero-mean white noise, and

A (z), a polynomial of order N , is called the inverse �lter. In the discrete time domain,

the model is equivalent to

e [n] = s [n]−
N∑
i=1

ai s [n− 1]

= s [n]− ŝ [n] , (2.6)

where s [n] and e [n] are the speech signal and the excitation signal, respectively, and

ŝ [n] is de�ned as the predicted value of s [n] using the previous N samples. Thus, e [n]

can also be interpreted as the error between the signal and the predicted value. The

importance of LP analysis is that the coe�cients of the all-pole �lter can be estimated

e�ciently from a short segment of the speech signal by applying a least-squares criterion
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to the error. These AR coe�cients can be computed in a variety of ways (Markel and

Gray, 1976). Among them, the partial-autocorrelation-re�ection-coe�cient (PARCOR)

formulation (Itakura and Saito, 1971) reveals a lattice structure of the inverse �lter. This

lattice structure is related to the lossless uniform tube (K-L) model of speech production.

When the e�ect of the glottal source and the lip radiation is canceled out by a pre-emphasis

�ltering process, the area function of the vocal tract can be approximately estimated

by Levinson-Durbin's recursive solution to the Yule-Walker function (e.g. Wakita, 1972,

1973b,a) or by Burg's method (Gray et al., 1977). Another approach to estimate the

tube parameters is to extend the lattice structure by incorporating the glottal model and

lip load, and then to optimize the re�ection coe�cients iteratively (Schnell and Lacroix,

2001a). Since the relationship between the articulatory con�guration and the acoustic

signal can be a many-to-one mapping, the resulting lattice parameters do not necessarily

correspond to the real vocal tract structure.

The all-pole model is widely used in speech analysis because 1) the poles in a �lter are

appropriate to represent the spectral prominences in di�erent groups of phonemes including

vowels, plosives, and fricatives; 2) the spectral tilt caused by the glottal source and the lip

radiation can be approximately canceled out by pre-emphasis; 3) each zero in the �lter can

be approximated by a series of poles; 4) the solution to parameter estimation is linear and

mathematically tractable. Therefore, with a su�cient order, an all-pole model is a practical

approximation of speech signals. However, since zeros exist in speech signals under most

conditions, such as nasals, nasalized vowels, liquids with a branched oral tract, fricatives

or plosives with a back cavity before their noise sources, it is intuitively more plausible to

model speech signals with a pole-zero (or autoregression moving average, ARMA) model,

S (z) = E (z)
B (z)
A (z)

= E (z)

∑M
j=0 bj z

−j

1−
∑N

i=1 ai z
−i
, (2.7)

in which zeros are explicitly modeled by the numerator polynomial, B (z).

Unlike the multitude of methods available for AR estimation, no comparable general

algorithms exist for ARMA estimation currently. Directly applying the least-squares cri-

terion to the error between the model and the signal leads to a set of non-linear functions.
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Iterative searching approaches to the solution of these non-linear functions are computa-

tionally complex (Kay, 1988). Some solutions are based on the linearization of the problem.

For example, one group of approaches is to estimate the denominator parameters �rst with

the covariance LP analysis by assuming the impulse response of the ARMA �lter is known,

then the numerator parameters are estimated by solving another set of linear equations.

The estimation procedure can be performed in either a two-stage or an iterative way (e.g.

Kopec et al., 1977; Steiglitz, 1978). This group of approaches require a preliminary de-

convolution of the speech signal. Possible methods include pitch-synchronous processing

only on the glottal closure portions of speech signals, or the homomorphic deconvolution

processing. Another method of linearization is to convert the problem into a system identi-

�cation problem by assuming that the excitation signal of the ARMA �lter can be modeled

and estimated, then all the parameters are estimated by solving the linear equations de-

rived from S (z)A (z) − E (z)B (z) = 0 (e.g. Konvalinka and Matausek, 1979; Fujisaki

and Ljungqvist, 1987). A third method of linearization is to estimate a high-order all-

pole model �rst, then to decompose the resulting model into a pole predictor and a zero

predictor (Song and Un, 1983).

Most of the ARMA algorithms above are �signal-based�, that is, they are designed to

accomplish a better spectral match to the speech signal than the AR model can achieve.

However, there are no explicit constraints that connect these acoustic parameters with the

physiological con�gurations of the vocal tract. On the other hand, there have been a few

�model-based� approaches that focused on estimating the ARMA transfer function from

the branched tube model of nasals or nasalized sounds either from single-channel acoustic

data (Lim and Lee, 1993, 1996; Liu and Lacroix, 1996; Schnell and Lacroix, 2002) or from

dual-channel acoustic data (Schnell and Lacroix, 2001b). The validity of each �model-

based� approach was usually examined by the merit of spectral match as well, because it

is di�cult to obtain the real vocal tract con�guration data.

2.2.3 Spectral features of vowel nasalization

Because the vocal tract is an inter-dependent acoustic system, it is di�cult to �nd an

invariant acoustic feature of nasalization that is independent of other parts of the vocal



23

tract. Moreover, because of individual variations in vocal tract anatomy, the spectral

representation of nasalization may also di�er from one speaker to another. However, since

nasalization is a perceivable event in speech, researchers have always been expecting to �nd

acoustic correlates to it. These correlates may be useful to improve the performance of an

automatic speech recognition system, for example. Below is a summary of some acoustic

features that have been found to be associated with nasalization.

Compared with its non-nasalized counterparts, a nasalized vowel usually has a reduced

amplitude (or increased bandwidth) of the �rst formant, and the frequency of its �rst

formant shifts upward (House and Stevens, 1956; Fant, 1960). The introduction of a pole-

zero pair in the region of the �rst formant (700-2000Hz) may result in a secondary spectral

peak, which can be another feature of nasalized vowels (House and Stevens, 1956; Hawkins

and Stevens, 1985). Due to the paranasal sinuses, an extra nasal resonance or pole-zero

pair may occur between 200 and 500Hz during vowel nasalization (Lindqvist-Gau�n and

Sundberg, 1976; Maeda, 1982b). There are other spectral features observed by di�erent

researchers, including changes in the amplitude of the second and/or third formant and

shifts in their frequencies, an extra pole-zero pair in the third formant region, and the

reduction in overall amplitude of the vowel, although these higher frequency e�ects are

considered not very stable across observations.

While these spectral observations are qualitative in nature, researchers have also tried

to formulate some quantitative features to measure or detect nasalization. Hu�man (1990)

proposed to use the amplitude di�erence between the �rst formant (A1) and the �rst

harmonic (H1) as a correlate to the perception of nasality. The idea was to capture the

relative amplitude decrease of the �rst formant. Maeda (1993) introduced another measure

of the spectral ��atness� in the low frequency region as a feature related to the perception

of nasalized vowels. Two spectral peaks in the low frequency range of the spectrum were

chosen, and the amplitude di�erence between them was calculated. They both found the

degree of spectral �atness is highly correlated to the perception of nasality. However, a

drawback of both measures is that the spectral peaks have to be manually chosen by visual

inspection of the spectrum. Chen (1995; 1997) proposed to use two amplitude di�erences,

A1−P1 and A1−P0, for quantifying nasalization, where A1 was the amplitude of the �rst
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formant in dB, P1 was the amplitude of the spectral peak between the �rst two formants,

and P0 was the amplitude of the spectral peak below the �rst formant. The �rst parameter

was to capture the amplitude decrease or the bandwidth increase of the �rst formant; the

second parameter was to capture the low frequency peak due to sinuses. In practice, the

values of P1 and P0 were estimated at peak harmonics around 950Hz and within low

frequencies, respectively.

These spectral features of nasalization may be used in an automatic speech recognition

system, not only because there are nasal vowels in some languages, but also because an

accurate detection of nasalized vowels may improve the recognition rate of their neighbor-

ing nasals. Glass and Zue (1985) developed a set of acoustic parameters for automatic

distinction of non-nasal and nasal vowels. The parameters include 1) the center of gravity

in the 0-1000Hz region, 2) the standard deviation of the center of gravity, 3) the maximum

and minimum percentage of time there is an extra resonance in the low frequency region,

4) the maximum value of the average dip between the �rst and the extra resonance, and

5) the minimum value of the average di�erence between the �rst and the extra resonance.

They obtained a 74% classi�cation accuracy rate on their test set. In Chen's work (2000),

the two amplitude distance features of nasalization (A1 − P1 and A1 − P0) described

above (Chen, 1997) were adopted to improve the recognition of nasals in a knowledge-

based speech recognition system. In their experiment, when nasal murmurs were missing

or the nasals were syllabic, the recognition of nasals was improved by the detection of

vowel nasalization. In the report of a JHU workshop (Hasegawa-Johnson et al., 2005), a

combination of features were used to build two versions of nasalization detectors. One of

them was vowel independent, and the other was vowel dependent. The features included

Mel-Frequency Cepstral Coe�cients (MFCCs), phonological distinctive features, rate-scale

auditory cortical parameters and formant parameters. Support vector machines (SVMs)

were trained as the classi�ers. In their test, vowels in the nasal context was regarded as

nasalized. The vowel-dependent classi�er achieved the following accuracy rates on four

vowels: /ey/ (81% accuracy, in a test set with 50% nasalized vowels), /iy/ (76%), /ae/
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(75%), and /ao/ (73%) 1.

2.3 Analysis approaches to resonance disorders

�Resonance disorder� refers to either excessive or insu�cient nasal resonance when pro-

ducing vowels, voiced consonants or both, therefore resulting in speech that is perceived

as hypernasalized or hyponasalized. Because resonance disorder could be a symptom of

many groups of speech disorders (e.g. cleft palate speech, motor speech disorders, hearing-

impaired speech, and so on), the assessment of nasality is an important aspect during the

diagnosis of these speech disorders. Due to the poor reliability of perceptual judgments,

it is of great interest to develop objective measures as an informative supplement in the

diagnostic process. The existing approaches to the objective measurement of nasality can

be grouped into two categories according to their methodologies. In one category, like in

the majority of normal speech analysis, the relevant information is extracted only from the

acoustic signal picked up by a conventional microphone; while in the other category, more

complicated instrumental techniques are used in order to acquire more reliable information.

2.3.1 Single acoustic channel analysis

Kataoka (1988) originally proposed a one-third-octave measure to quantify hypernasality

by analyzing acoustic signals directly. This measure was obtained by �ltering the acoustic

signal of a sustained vowel /iy/ with a set of band-pass �lters whose central frequencies

are located at one-third-octave intervals. The amplitude of each band was calculated and

averaged across the steady portion of the vowel to obtain an averaged one-third-octave

spectrum. In their later studies, Kataoka et al. (1996, 2001) adopted this measure in the

analysis of speech from adults and children with cleft palate or velopharyngeal incom-

petence. It was found that the spectral characteristics of vowel segments perceived as

hypernasalized were consistent with the spectral features of vowel nasalization (see Sec-

tion 2.2.3). The multiple regression analysis in their experiments showed a high correlation

between the amplitudes of certain one-third-octave bands and the perceptual rating scores

1In this thesis, all phonemes are denoted in OGIbet (see Appendix A)
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of nasality. The resulting equation could be used to predict hypernasality scores from the

acoustic parameters in a clinical setting, for the purpose of speech evaluation of patients

with resonance disorders resulting from physiological de�cits such as cleft palate. The

one-third-octave measure is very similar to other frequency-band-energy analysis such as

the MFCC feature that is widely used in speech recognition applications. The choice of a

single sustained vowel (/iy/) in the evaluation procedure helps to limit the variations of

the feature as a correlate to the perception of nasality. There was still no evidence about

whether this analysis could be extended to the sentence level, where other sonorants might

be nasalized as well.

Cairns et al. (1994; 1996a; 1996b) proposed a method of using the Teager Energy op-

erator (TEO) to detect hypernasality from the acoustic signals. The TEO was introduced

by Kaiser (1990) based on a special de�nition of energy developed by the Teagers (1985;

1990), in which the total energy needed for a system to generate oscillating motions was

calculated from the signal. It has been shown that the Teager energy required to generate a

harmonic motion is proportional to the product of the squared amplitude and the squared

frequency of the oscillation. Thus, the TEO can be used to separate the time-varying

amplitude envelope and the instantaneous frequency of a signal with a single narrow-band

frequency component (Maragos et al., 1993). It has also been observed that the Teager

Energy pro�le of a multi-component signal is composed of not only the Teager Energy of

each component but also the cross-correlated terms between components. The assumption

behind the hypernasality detection approach is that the spectrum of a nasalized speech

segment is composed of not only oral formants but also nasal formants and antiformants

in the low frequency region, whereas a normal vowel only has the �rst formant in this re-

gion. Therefore, when a low-pass �lter with a cuto� frequency just above the �rst formant

is applied, the �ltered signal of a nasalized vowel is a multi-frequency-component signal,

while that of a normal vowel has only one component. However, a band-pass �lter that

is centered at the �rst formant will only retain the �rst formant component in the signal

no matter whether it is nasalized or not. Since the TEO is sensitive to multi-component

signals, the shape of the Teager Energy pro�le of a multi-component signal is very di�erent

from that of a single component one. Therefore, the correlation coe�cient between the
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Teager Energy pro�les of low-pass �ltered and band-pass �ltered signals may be used to

discriminate the nasalized and normal vowels. In their research, a likelihood ratio detector

based on the correlation coe�cient was built to make the decisions. Automatic as it is, the

approach has some drawbacks. First, the algorithm relies on a formant tracker to locate

the �rst formant, and a pitch detector to avoid instability of the TEO. These two tasks are

both di�cult problems in the �eld of speech analysis. The robustness of the approach may

be undermined due to the inaccuracy of either task. Second, it has been observed that

the glottal �ow excitation signal contains a resonance-like peak, called the glottal formant,

in the low frequency region. This spectral in�uence of the glottal �ow may be �ltered

out by the band-pass �lter of the TEO, but retained in the low-pass �ltered signal, which

possibly results in di�erent Teager Energy pro�les even for normal vowels. Third, the back

vowels were not tested in the reported experiments because their �rst and second formants

are close to each other and it is di�cult to �lter out the e�ect of the second formant on

the Teager Energy pro�les. This also raises a question about its application across all the

sonorants in a sentence.

In a recent study, Vijayalakshmi and Reddy (2005a; 2005b) adopted a modi�ed group-

delay method to extract the nasal formant from the acoustic signal, when it exists close

to the �rst formant. The modi�ed group-delay function (Murthy and Gadde, 2003) has

a better frequency resolution property than conventional formant extraction techniques.

It was used to distinguish the extra formant adjacent to the �rst formant, which may be

introduced due to nasalization. The signals were low-pass �ltered with a cuto� frequency

of 800Hz to improve the resolution of the group-delay function. They proposed to use

three parameters, including the frequencies of the �rst two highest peaks in the modi�ed

group delay spectrum and the ratio of the group delay of these frequencies, as a feature

vector for hypernasality detection. They trained two classi�ers with the feature vectors

extracted from the speech of cleft palate and normal speakers. The classi�er achieved a

correct rate of 85% for hypernasal/normal decision of the phonemes /aa/, /iy/ and /uw/.
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2.3.2 Multi-channel measurements

It has been acknowledged that separate measurements of oral and nasal sound pressures

could have advantages over a single channel of acoustic measurement for the nasalization

analysis, because the mixing of nasal and oral acoustic waves may conceal the information

that is conveyed by either one separately. More sources of information may help to resolve

the inevitable ambiguities in the single-channel acoustic analysis.

Fletcher (1970) �rst introduced an electronic system named TONAR (The Oral Nasal

Acoustic Ratio). It is the ancestor of the Nasometer (by KayPENTAX, Lincoln Park,

NJ), which has been used extensively by speech clinicians to measure nasalance scores.

The term nasalance refers to the ratio of the nasal acoustic energy to the total acoustic

energy radiated from the nose and the mouth in total. In the Nasometer system, the oral

and nasal sound pressures are transduced by two microphones mounted on the two sides

of a sound-separating plate. The two signals are individually ampli�ed and �ltered with

band-pass �lters (350-650Hz). The �ltered signals are then converted into nasal and oral

energy signals, EN (t) and EO (t), and fed into a computer. Then the nasalance score is

calculated as EN (t)
EN (t)+EO(t) . In clinical settings, the average nasalance score over certain

standard passages, which is called Nasalance Index, has often been used as a quantitative

measure of nasality for the purposes of patient assessment and management (Dalston et al.,

1991; Daltson et al., 1991; Karnell, 1995, etc.). The time course of the nasalance score may

provide useful information about velopharyngeal timing and coarticulation (Seaver III and

Dalston, 1990).

One drawback of the Nasometer system is that it does not record the original nasal

and oral signals for further analysis. This undermines its value as a research tool. Another

drawback is the relatively high cost due to its hardware implementation. Recently, an

alternate lower-cost system (Awan, 1996), called the NasalView (by Tiger Electronics Inc.,

Seattle, WA), has become commercially available. The microphones, sound-separating

plate, and headset of the NasalView are similar to those of the Nasometer, but the nasal

and oral signals are directly fed to a computer after being ampli�ed. Unlike the Nasometer,

it does not band-pass �lter the acoustic signals, and the nasalance score is calculated from
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the root-mean-square energy of the two signals. Since the hardware only takes care of

the data acquisition task, and all the computations are done by the software, it is more

�exible and inexpensive. One can simulate the nasalance calculation of the Nasometer by

manipulating the raw signals, and can also design and test other sophisticated analyses

from them.

Multi-channel measurements may also include measurements other than acoustics in

air. For example, another measure of the nasal coupling e�ect, called the Horii Oral

Nasal Coupling (HONC) index (Horii, 1983), is derived from two channels of signals, one

measured by an accelerometer attached to the outside of a nostril, another measured by

a microphone positioned in front of the mouth. A high correlation of the HONC index

with the perceived nasality was found. The advantage of the accelerometer measurement

is that it picks up vibrations through tissues instead of airborne pressure waves; while the

disadvantage is that the position sensitivity and speaker variations may hinder it from

being used in more detailed analyses. Other multi-channel studies include photodetection

and aerodynamic measurements that were usually conducted with parallel recordings of

acoustic data, so that the information is supplementary across channels.



Chapter 3

Dual-channel measurements of nasalization

The acoustic signal resulting from nasalization is complicated because 1) the resonant cav-

ities (pharyngeal, nasal and oral) are inter-dependent on one another, 2) the anatomic

structures of the nasal tract and the paranasal sinuses are irregular and vary among speak-

ers, and are therefore di�cult to model, 3) the sound pressure measurement is actually a

mixture of radiation from the lips, nostrils and soft tissues, and 4) the inverse mapping

from the acoustical signal to the articulatory con�guration is one-to-many. When reliable

information about the VP status is the goal of the analysis, more sources of measurement

are often helpful. The studies presented in this chapter investigate the feasibility of extra

channels of non-invasive measurements in addition to conventional acoustic signals. The

following sections will �rst present the studies of an additional aerodynamic channel, then

an additional acoustic channel. The advantages and limitations will be discussed at the

end.

3.1 Additional aerodynamic channel1

Aerodynamics in speech refers to the study of the moving airstream during speech produc-

tion. Though acoustics in the air is actually a branch of aerodynamics in this sense, people

usually prefer to call the non-acoustic part of the study �aerodynamics� in the speech �eld.

We will also follow this convention in the context of this thesis.

While acoustic studies mainly concern the propagation of sound waves, in which the

1Parts of the research in this section have been published in a conference paper (Niu
et al., 2006).

30
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air is assumed to be steady but compressible, aerodynamic studies in speech mainly con-

cern the generation of sounds from the airstream. Aerodynamic measurements include the

measures of air pressures and air�ow velocities; and aerodynamic analyses study the rela-

tionships between these measurements and the physical structures of sound sources (Shade,

1999). The idea of parallel studies of the aerodynamic and acoustic signals of speech is not

new. Most of the studies emphasized the extraction and analysis of aerodynamic proper-

ties, and used the acoustic signals as a reference (e.g. Warren, 1964b,a, 1967; Hutters and

Brrndsted, 1992). Due to the complexity of the devices needed for accurate aerodynamic

measurements from speech (see Section 2.1), the corresponding acoustic signals may be

distorted, or even worse, the devices for aerodynamic measurement can be intrusive or

directly interfere with acoustic signals. The distortion may undermine the analysis and

further processing of the acoustic signal itself. Our studies explore an opposite direction

that emphasizes the analysis of acoustic signals and using the aerodynamic measurement

as an extra information source for nasalization. We �rst need a way to simultaneously

record both nasal air�ow and acoustic signals without interference with articulation and

degradation of the acoustic signal; then we can investigate their relationships. In this sec-

tion, the design of such a device will be �rst described; then the speci�c signal processing

algorithms will be presented; and at last, the usage of such a device in nasalization analysis

will be discussed with sample data from the experiments.

3.1.1 Device design

3.1.1.1 Measurement principles

The purpose of designing such a device is to monitor the nasal air�ow while simultaneously

recording the acoustic speech signal. In order to avoid interference with articulation and

distortion of the acoustic signal, we choose not to use nasal masks that were often used by

other researchers to hold the transducer and seal the air�ow from the nose. Instead, the

velocity of the open air�ow out of a nostril will be picked up during speech.

Air�ow velocity can be measured indirectly according to the principle of the Bernoulli

e�ect. Given a tube that is open at one end and closed at another, the air pressure at the

closing end, Pt, is related to the velocity of the air�ow in which the open end is placed and
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Figure 3.1: Principle of the air�ow velocity measurement. Bernoulli's equations are applied
under three conditions with respect to di�erent orientations of the open end of the tube
related to the air�ow direction.

its relative orientation to the direction of the �ow (see Figure 3.1). Assuming that air is

compressible, when the open end of the tube is perpendicular to the �ow direction, Pt is

equal to the static pressure of the air, Ps; when the open end faces the oncoming air�ow,

Pt is the summation of the static pressure Ps and the dynamic pressure Pd; when the air

�ows in the opposite direction of the opening, Pt is the di�erence between Ps and Pd. The

dynamic pressure Pd is proportional to the square of the absolute velocity of the air, so the

later two conditions of the tube above can be used in the measurement of air�ow velocity

according to Bernoulli's equations,

Pt = Ps ± Pd = Ps ±
1
2
ρV 2, (3.1)

where ρ is the density of air, and V is its velocity.

In our design, a small segment of an L-shaped glass tube is to be placed 5mm under

a nostril of the speaker, with one open end pointing up to the nostril. The other end

of the tube is connected to one of the two air-intakes of a di�erential pressure sensor

through a 25-cm-long surgical tube. The di�erential pressure sensor can transduce the

pressure di�erences between its two air-intakes into voltage signals. With its one air-

intake connected to the tube and the other open to the static air, it is used to measure

the pressure di�erence, Pt − Ps. According to Equation 3.1, the sign of this measure

represents the direction of the air�ow, and its absolute value is the dynamic pressure that

is proportional to the square of the velocity of the air�ow from the nostril.
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Figure 3.2: Structural design of the measuring device. The sensor has two air intakes to
measure di�erential pressures. Arrows indicate the �ow of signals between modules.

3.1.1.2 Data acquisition

The usage of personal computers (PC) has made it inexpensive and easy to acquire acoustic

signals of speech through sound cards. A generic sound card in a computer usually uses AC

coupling for the input signal, thus �ltering out DC and low-frequency information of the

signal. However, the DC and low-frequency components in air�ow signals are important,

so a sound card can not be used directly for the acquisition of air�ow signals. Due to the

high cost of using a special data acquisition card, we design a pre-processing module in

the device, by which the air�ow signal from the di�erential pressure sensor is frequency

modulated (FM) with a carrier frequency within the audio frequency range. Then the FM

signal can be recorded through one input channel of the sound card, while the acoustic

signal is recorded through another input channel simultaneously. The recorded FM signal,

once captured, can be demodulated to recover the original air�ow signal.

Figure 3.2 shows the modular structure of the measuring device, and the detailed

schematic plot of the design is shown in Figure 3.3. A low pressure sensor (1-MBAR-

D-4V, All Sensors, CA) is encapsulated in a small plastic box that can be attached to a

microphone headset. The operating pressure range of the sensor is ±1mbar. The sensor

is connected to a processing box that contains the power supply, o�set and gain control,

and frequency modulation modules. The power supply module includes batteries and

regulators. It supplies stable voltage for the sensor and other components. The module
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(a) Probe tube (b) Sensor box

(c) Processing box with circuit in it (d) Usage during recording

Figure 3.4: Assembly and usage of the device as an additional measuring channel to the
acoustic channel. Sub-�gures include the probe tube, the sensor that is encapsulated in a
plastic box attached on a headset microphone, and the signal processing box with circuits
in it. A speaker is showing the usage of the device in a recording booth.

for o�set and gain control simply includes op-amps and potentiometers. They are tuned

to convert the output signal of the sensor within the operating range of the frequency

modulation module. A waveform generator chip (NTE-864, NTE Electronics, INC., NJ)

is used as a voltage-controlled oscillator (VCO). Several resistors and one capacitor are

chosen and tuned in order to set the highest frequency of the VCO to about 5 kHz. The

sine wave output of the VCO is then ampli�ed to standard audio device line levels. This

signal is sent to the line input of the sound card of a PC. As a last step, the o�set of the

VCO input is tuned when zero di�erential pressure is applied to the sensor (i.e. when the

sensor is inert), so that the frequency of corresponding output signal is about 3 kHz.
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Photos in Figure 3.4 show how the sensor is attached to the headset of a microphone,

and how a subject can make multi-channel recordings with the whole setup. It can be

seen that the extra sensor only occupies slightly more space, and the processing circuits

are contained in a small box that is simply connected between the sensor and the sound

card of the computer.

3.1.2 Signal processing algorithms

3.1.2.1 Demodulation

The demodulation algorithm of FM signals is based on the property of analytical sig-

nals (Oberg, 2001). An FM signal can be represented in the following form,

y(t) = K cos [2πfct+ φ(t)] , (3.2)

where fc is the carrier frequency, and K is a constant. The relationships among the phase

signal φ(t), the instantaneous frequency ω(t), and the original input signal x(t) can be

represented by the following equations,

ω(t) = 2πfc +
d

dt
φ(t) = 2π[fc + fdx(t)], (3.3)

where fd is a frequency deviation. When x(t) is a narrow-band signal, the Hilbert transform

of y(t) is

ŷ(t) = K sin [2πfct+ φ(t)] . (3.4)

Then an analytical signal of y(t) can be constructed as

ya(t) = y(t) + jŷ(t) = Kej[2πfct+φ(t)]. (3.5)

Equation 3.3 and 3.5 indicate that x(t) can be calculated from the derivative of the phase

signal of ya(t). Since all signals collected from the sound card of a computer are sampled,

the following will introduce the corresponding demodulation algorithm for discrete signals.

Suppose the FM signal y(t) is sampled at a frequency of Fs (Fs � fc), and the resulting

discrete signal is y[n]. First, its corresponding analytical signal ya[n] is obtained through

the discrete Hilbert transform (DHT),

ya[n] = y[n] + j ·DHT {y[n]} , (3.6)
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Second, given the carrier frequency fc, an auxiliary signal yx[n] is obtained by

yx[n] = ya[n] · e−j2πfcn/Fs = Kejφ[n]. (3.7)

Third, the phase signal φ[n] is obtained from the unwrapped angle of the signal yx[n].

Fourth, the derivative of the phase is approximated by di�erencing operations, which is

proportional to the input signal x[n]. Because we are only interested in the relative changes

of x[n], the constant factor fd can be ignored. It is to be noted that a similar algorithm

has been implemented in the Matlab signal processing toolbox (function �dmod�).

3.1.2.2 Zero calibration

Though the carrier frequency, fc, has been tuned to about 3 kHz during the construction

of the device, it can drift due to temperature changes and other environmental conditions.

An accurate value of fc is needed in the demodulation algorithm. It can be calculated

from a section of the FM signal, y0[n], that is recorded under the zero-air�ow condition,

that is when no air�ow applies to the sensor. The frequency of y0[n] is the actual carrier

frequency fc. The demodulated signal of y0[n] must be zero when the carrier frequency is

exactly the same as the device setting, so we can search an optimal fc by calculating how

the demodulated signal is close to zero. The calibration algorithm is as follows.

First, the demodulation procedure described above can be represented as a transform

from the signal y0[n] to the signal x0[n], given the parameter fc,

x0[n] = D {y0[n]; fc} . (3.8)

Then the optimal value f∗c can be de�ned as the fc that minimizes the root mean square

(RMS) of x0[n],

f∗c = arg min
fc

RMS {D {y0[n]; fc}} . (3.9)

A simple line-search algorithm can be used to �nd f∗c , starting from an initial guess of

3 kHz. The resulting optimal carrier frequency is then used in the demodulation operations

of other signals recorded during the same session.
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3.1.3 Preliminary data and discussions

3.1.3.1 System validation

The �rst usage of the device we made is to examine some sample recordings under certain

controlled conditions so as to verify the feasibility of the acoustic-aerodynamic setup and

the signal processing algorithms. Recordings were made by a male adult speaker, uttering a

sample sentence, �Say /d ae n/ please,� repeated three times in an acoustically dampened

booth. A head-mounted AKG HSC-200 condenser microphone was used to record the

acoustic signal. The microphone was placed o�-axis, 5 cm away from the edge of the

speaker's mouth. The sensor box was attached to the frame of the headset. The open end

of the L-shape glass tube was placed under the opening of one nostril of the speaker. The

FM air�ow signal from the processing box and the acoustic signal from the microphone

were recorded simultaneously through two channels of an MAudio Delta-1010 sound card

in a computer, and they were stored digitally on the hard drive. The two waveforms

were both sampled at 44.1 kHz and quantized in 16-bit PCM format. This sampling rate

is far greater than the carrier frequency of the FM signal. A 20-second of zero-air�ow

signal was recorded in the booth after the sentences were recorded. A zero-phase low-pass

�lter was applied to each FM signal. The cuto� frequency was set to 5 kHz in order to

�lter out higher-order harmonics. The accurate carrier frequency is calculated from the

�ltered zero-air�ow signal using the search algorithm presented in Section 3.1.2.2. The

resulting f∗c was used to demodulate all other �ltered FM signals, using the demodulation

algorithm described in Section 3.1.2.1. Besides the signal processing, phoneme boundaries

in all sentences were manually labeled by examining the waveforms of the acoustic signals.

Figure 3.5 shows the acoustic and nasal air�ow waveforms of one sample sentence

in parallel. In the top and middle panels of the �gure are the acoustic signal and the

demodulated air�ow signal, respectively. It can be noticed that the demodulated air�ow

signal contains strong harmonic components within the sections of voiced speech sounds.

These components are caused by acoustic vibrations of the air that propagate from the

nostril. This information is redundant since the acoustic signal has been picked up by the

other channel. To eliminate these harmonic components, the demodulated air�ow signals
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Figure 3.5: Acoustic and nasal air�ow signals of the sentence �Say /d ae n/ please�. The
acoustic signal is plotted in the top panel; the demodulated air�ow signal in the middle; and
the static air�ow in the bottom panel. The vertical bars represent phoneme boundaries.

were convolved with a 30ms normalized Hamming window. This operation is equivalent

to a weighted average of the signal within the window length, e�ectively low-pass �ltering

the signal with a cuto� frequency of about 20Hz. The DC and low-frequency components

in each demodulated air�ow signal are left, representing the static air�ow as it moves in

and out of the nostril during speech. In the bottom panel of the �gure is the resulting

static air�ow signal that contains the aerodynamic information.

It is informative to compare the acoustic signal and the static air�ow signal in the

�gure. The nonsense word /d ae n/ in the sentence was designed to trigger a VP opening

and then closing movement during the utterance. This event can be clearly identi�ed

from the prominent peak at about 1.8 seconds in the static air�ow signal. According to

the phoneme boundaries obtained from the acoustic signal, this nasal air�ow peak occurs

in the middle of the nasal segment /n/. Slight amounts of out-going nasal air�ow start
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before and end after the boundaries of the nasal segment, which indicate a mild degree of

coarticulation e�ect. Similar nasal air�ow peaks corresponding to nasal phonemes can be

consistently observed in all the sample sentences. It is implied that the device we built

has successfully picked up the information of certain aerodynamic events caused by VP

movements during speech.

It is to be noted that two other prominent peaks can also be seen in the static air�ow

signal. One is located just before the beginning of the sentence, and the other is located

right after the end of the sentence. Similar peaks are observed in all the static air�ow

signals of all the recorded sentences. Since all the sentences begin with a consonant /s/,

whose target VP status is closure, the velum has to move from its rest position to close the

VP port while the oral pressure increases at the beginning of an utterance. This action

may rapidly push a certain amount of air out of the nose at the beginning of each utterance,

thus causing the former peak. At the end of each utterance, the velum always returns to

its rest position. When the sentence ends with a pressure consonant (such as /z/ in the

recordings) that requires a closing VP port, extra air may be suddenly released from the

nose after the utterance, thus causing the latter air�ow peak. In the acoustic channel,

there are no noticeable signals corresponding to these two peaks.

In addition, a slow nasal inhalation can be observed as a negative section of signal

before the sample sentence in the �gure, and a slow nasal exhalation is observed after

the sentence. The negative nasal inhalation signal before an utterance may or may not

be observed in other samples, because the speaker sometimes inhaled through the mouth

instead of the nose. The nasal exhalation after an utterance is always observed in each

sample, but varies in both scale and slope of change among di�erent sentences. This

variation indicates the speaker could control the release of breath at the end of a sentence

in di�erent ways. It can also be seen that no acoustic signals correspond to the nasal

inhalation and exhalation process. Because some aerodynamic events do not necessarily

cause acoustic sounds during speech, these events can not be detect from acoustic signals.
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CVN NVC NVN CVC

/d ae n/ /n ae d/ /n ae n/ /d ae d/
/s aa n/ /n aa s/ /n aa n/ /s aa s/
/t iy n/ /n iy t/ /n iy n/ /t iy d/
/z uw n/ /n uw z/ /n uw n/ /z uw z/

Table 3.1: Four groups of words in carrier sentences to study the patterns of nasal reso-
nance.

3.1.3.2 Air�ow patterns of nasal resonance

With the aid of the above two-channel setup, we can study the relationship between the

nasal air�ow and the acoustic signal when the nasal resonance is achieved during normal

speech. For the purpose of systematic comparisons, four groups of monosyllable nonsense

words were designed in the forms of CVN, NVC, NVN, and CVC. In these groups, C

is a plosive of fricative chosen from /t/, /d/, /s/, /z/, V is a vowel chosen from /iy/,

/ae/, /aa/, /uw/, and N is the alveolar nasal /n/. These groups of words are supposed to

represent the opening process, the closing process, the complete opening, and the complete

closing of the VP port within a monosyllable, respectively. Table 3.1 lists the set of 16

words that were used in data collection. During the recording procedure, each word was

inserted in the carrier sentence, �Say please.� The recordings were made by a male

speaker. The system setup was the same as that in the previous section. The four groups

of sentences made up one recording session. Three sessions of recording were made by the

same speaker with a 5-minute rest between consequent sessions. At the end of each session,

a 20-second portion of zero-air�ow signal was recorded for the calculation of an accurate

carrier frequency of that session. Then all FM air�ow signals were processed in the same

way as in the previous section, obtaining the static air�ow signals. Phoneme boundaries

were also labeled manually for each sentence according to the acoustic signals.

In order to study the detailed air�ow patterns during the production of di�erent words,

we compared the static nasal air�ow signal corresponding to the phoneme sequence of each

word and its adjacent phoneme contexts. Figure 3.6 displays one session of the static nasal

air�ow signals. Each panel in the �gure represents the word in the corresponding cell of

Table 3.1. Each column of the panels belongs to one group of the words. It can been seen
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Figure 3.6: Static nasal air�ow signals of recorded words. Each section of the signal is cut
from the carrier sentence. Only the phonemes that are adjacent to the word on both sides
are shown. The phoneme boundaries are marked manually according to the simultaneously
recorded acoustic signals.

that the patterns of the static nasal air�ow signals within each column are similar to each

other. Without any exceptions, air�ow peaks occur during all nasal segments, while the

static air�ow signals are almost zero during the CVC segments.

In the CVN group, the positive rise of the air�ow can start early in the vowel segment

due to anticipatory coarticulation. In the NVC group, the positive air�ow drops after the

nasal but can extend into the following vowel, presenting the e�ect of carry-on coarticu-

lation. In the NVN group, the positive static air�ow signals can extend into the vowels

from both directions. However, in all of these three groups, it can be observed that the

extension of the positive static nasal air�ow is more prominent for the high vowels (/iy/

and /uw/) than for the low vowels (/ae/ and /aa/). This di�erence can be explained by

the fact that the oral cavity of a high vowel has greater air�ow resistance than that of a

low vowel. When the oral cavity is widely opened, like in cases of low vowels, less static

air�ow passes through the nasal tract. It can be con�rmed perceptually that the recorded

vowels in the NVN condition were all nasalized, though few static air�ow signals were

measurable for some low vowels. This observation indicates that the air�ow measure of
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Figure 3.7: Three recording sessions of static nasal air�ow signals of the sentence �Say /n
aa n/ please�, produced by the same speaker.

nasal resonance is highly dependent on oral con�gurations, which is consistent with the

�ndings of other researchers (Moll and Danilo�, 1971; Dang and Honda, 1994a).

In some panels of Figure 3.6, a slight amount of nasal air�ow emissions can be observed

between /n/ and /p/ segments of the signals, which can also be explained as coarticulation

e�ects. In addition, it is to be noted that there are two adjacent air�ow peaks during the

/p/ segment after the last word /z uw z/ in the �gure, which does not happen in every

session. It can be explained that the speaker may have added a pause before the word

�please� during the recording of this particular sentence. The two peaks indicate the end

and then the beginning of two adjacent utterances.

3.1.3.3 Variability of the measurement

By repeating the recording sessions, we studied the intra-speaker variability of the mea-

surement with the new device. Figure 3.7 shows three renditions of the static air�ow signals
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of the same sentence, �Say /n aa n/ please�, produced in di�erent recording sessions. Air-

�ow peaks corresponding to nasal phonemes and nasal exhalations can be identi�ed in all

samples. It can be seen that the nasal exhalation curves at the end of sentences are quite

di�erent from one to another, which exhibits the speaker's �exibility of exhaling inaudible

air�ow. The air�ow curves during nasal phonemes also vary in both amplitude and shape.

It is to be noted that the value scales of the three sessions in the �gure are di�erent, possi-

bly due to the measurement sensibility to the change of the prob-tube position in di�erent

sessions. This variation sometimes caused the signals to run out of the range of the device

during data collection.

3.1.3.4 Discussions

In the experiments presented in this section, we �rst successfully tested the functionality

of a new device that serves as an additional channel to the conventional microphone setup

for nasalization analysis. Then we designed controlled speech materials and collected

preliminary data with the proposed aerodynamic-acoustic setup. Nasal emission and nasal

resonance e�ects were investigated by comparison studies of the two-channel signals. At

last, the variability of the air�ow measurement was examined.

The �rst experiment (3.1.3.1) shows that certain nasal air�ow events, such as nasal

phonemes, nasal emissions, and nasal exhalation and inhalation can be detected from

the aerodynamic signal, even though sometimes there may be little information in the

corresponding acoustic signal. Negative nasal air (inhalation) signals are often observed

before an utterance, and positive nasal exhalation signals usually appear after an utterance.

The observed nasal inhalation and exhalation signals vary in both scale and slope of change.

The variation indicates that though the buildup of air pressure for an utterance and the

release of the extra air after it are necessary, a normal speaker can freely do this in various

ways. These observations indicate that, for the purpose of speech production, while some of

the nasal air�ow events are accompanied with proper sounds with nasal resonance, others

may be controlled within an inaudible range (i.e. very low level of acoustic radiations).

It has been observed that in disordered speech there are sometimes nasal air�ow leakages

that may weaken the acoustic energy of non-nasal sounds. The complementary information
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of nasal air�ow events detected from the aerodynamic signal can be especially useful in

detecting or diagnosing nasal emission problems in disordered speech.

The aerodynamic data collected in the second experiment (3.1.3.2) reveal relatively

complex patterns of nasal resonance. It turns out that the nasalized vowel segments are

not necessarily marked by signi�cant amounts of static air�ow velocity released through

the nasal tract, especially for low vowels. There can be measurable acoustic vibrations

radiated out of the nasal tract, even though the net nasal air�ow velocity is almost zero.

So it may be unreliable to determine the nasal resonance status only from the aerodynamic

signal.

The multiple recording sessions of data in the third experiment (3.1.3.3) reveal some

practical issues of the new device. First, the measurement turns out to be sensitive to

the position of the probe-tube. Second, the variations of the air�ow signals corresponding

to the same acoustic event may make this aerodynamic measurement a more qualitative

representation.

3.2 Additional acoustic channel

The key motivation of introducing an additional acoustic channel for nasalization analysis

is to reduce the mixing e�ects of acoustic radiations from the nasal and the oral tracts.

Consequently, the inherent information ambiguity in the mixed acoustic signal may be

alleviated, so that it may be easier to extract the information about the VP status during

speech. However, it is di�cult to separate acoustic radiations perfectly. There has to

be a trade-o� between acoustic separation and the ease of data collection. This section

introduces existing techniques of multi-channel acoustic measurements. A simple device

is chosen for further investigations. Preliminary data are collected to examine the extra

information captured by the additional channel.

3.2.1 Measuring devices

Multi-channel acoustic measurements have only been used in a few studies that aim at

understanding detailed acoustic characteristics of nasalization. In these studies, a huge
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amount of e�ort was spent to obtain separate acoustic signals from the mouth and the nose.

For example, Suzuki et al. (1990) have designed a sound proof box with two vertical isolated

chambers to achieve the mouth-nose separation. The speaker can place the face against

a sealed mask that that is attached to one side of the box. Two microphones mounted

in the upper and lower chambers can pick up nasal and oral signals separately. From

the data collected with this device, they have found the cross-velar vibration phenomena

during the production of vowels and voiced plosives when the VP port is closed. This

�nding indicates that sound waves can transmit from the oral to the nasal cavity through

vibrations of the closed velum. So, strictly speaking, there are rarely �pure� oral voiced

phonemes in natural speech. In Schell and Lacroix's (2003) studies, they built a special

recording booth that was divided into two parts with a large horizontal sound-separating

plate. A hole was opened on the plate, through which a speaker could place their head. The

acoustic signals from the nose and the mouth were then recorded by two microphones in

the two separate parts of the booth. These dual-channel acoustic data were used to jointly

estimate the parameters of a branched tube model of the oral and nasal tracts. Recently,

Feng and Kotenko� (2006) made a device similar to what has been used by Suzuki et al.,

and they collected dual-channel acoustic data to test a special acoustic model on spectral

patterns of nasal vowels in French (Feng and Castelli, 1996). In the model, a nasal vowel

is supposed to be in a transition status from an oral-only con�guration to a pharyngeal-

nasal con�guration, and its spectrum is modeled as an intermediate representation of the

spectra of the two extreme con�gurations. All the above special designs for acquiring

almost �perfectly� separated multi-channel acoustic signals may not be widely used due to

the inconvenience of data collection. This di�culty may hinder deep investigations into

detailed acoustic characteristics of nasalization.

In the last chapter, we introduced some simple multi-channel acoustic devices that

have been used in studies of resonance disorders (see Section 2.3.2). Those clinical studies

mainly focused on the correlation between the instrumental measurement and the percep-

tual assessment of nasality. So the purpose of using multi-channel acoustic devices, such

as those in the Nasometer or the NasalView systems, was to �nd empirical �index� scores

of nasality. These devices are relatively easy to make and convenient to use, though they
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(a) Calibrating the channel balance. (b) Recording.

Figure 3.8: The NasalView device in use. The sub-�gure on the left shows how the two
channels are calibrated with a mono tone generator. The sub-�gure on the right shows
a speaker wearing the headset to make recordings, with the sound-isolation plate placed
between the nose and the mouth.

may not achieve perfect separation of nasal and oral acoustic signals as the more com-

plex devices do. There still lack enough theories and corresponding analysis approaches

that may help to extract more detailed information about nasalization with these simple

devices. We expect to extract more spectral and temporal information with such devices

by introducing new signal processing techniques. Before that, in the following section, we

will �rst study some dual-channel acoustic data collected with the simple device that is

used in the NasalView system, and then study the basic information that can be directly

extracted from the data.

As shown in Figure 3.8, the hardware of the NasalView system is composed of a headset,

a sound-isolation plate, and two microphones. The speaker wears the headset during data

collection. The position of the sound-isolation plate is adjusted so that the nose and the

mouth are separated horizontally from the upper lip. Signals picked up by the microphones

are �rst fed to a circuit unit that pre-ampli�es them with appropriate gains, then they

are sampled by the sound card of a computer through the stereo channel. The circuit

unit also contains a tone-generator and a speaker that are used to calibrate the balance

between the nasal and oral channels. At the beginning of each recording session, the plate

can be mounted above the circuit unit, with the microphones to the same distance from
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/aa/ /iy/ /m/ /n/

unblocked -6.14 3.62 22.00 23.86

blocked -16.75 -12.23 22.57 25.59

Table 3.2: Magnitude di�erence of RMS energy energies (in dB) between the nasal and
oral signals of sustained phoneme under two conditions.

the speaker. The tone-generator generates a mono tone, while a calibration program is

sampling signals from the sound card and displaying short-time RMS energies of the two

signals. The two energy gains are tuned to be approximately equal to each other. For the

�exibility of signal analysis, we only use the NasalView device to collect the raw acoustic

data. Since the raw data can be directly acquired through two channels of a sound card,

it is convenient to design our own programs independently for various purposes such as

channel calibration, data recording and visualization, and other sophisticated analyses.

3.2.2 Preliminary data and discussions

3.2.2.1 Acoustic leakage test

Our �rst experiment with the NasalView device was to test its acoustic leakage character-

istics. A male speaker wore the NasalView device to make recordings in the same booth

as in the previous experiments (Section 3.1.3). Signals were sampled through two channels

of the MAudio Delta-1010 sound card and stored in 22,050Hz, 16-bit PCM format. The

channel balance was tuned to be less than 0.01 dB of the di�erence in RMS energy with

the calibration signal before the recording session. A simple experiment was designed to

record four sustained phonemes, /aa/, /iy/, /m/, /n/, under two conditions. One was the

�unblocked� condition in which the speaker produced each phoneme with the regular setup;

the other was the �blocked� condition in which the speaker's nose was covered with a piece

of foam when /aa/ and /iy/ were produced, and then the mouth was covered when /m/

and /n/ were produced. Each phoneme was produced continuously for about 3 seconds.

After recording, the central 1 second portion of each phoneme was analyzed. The magni-

tude di�erence of RMS energies (10 log
(
Ēn/Ēm

)
) between the nasal and oral signals was

calculated from the central section.

Table 3.2 lists the magnitude di�erence of each phoneme under each condition. It
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can be seen that the di�erence is always greater than 22 dB during the production of the

nasal phonemes, /m/ and /n/. This order of acoustic attenuation is consistent with the

sound-separation characteristic (20 dB) described in the manual of the NasalView device.

Since a nasal sound is mainly radiated from the nasal tract, the signal captured by the oral

microphone must be a mixture of the acoustic leakage across the sound-separation plate

and some radiation from the tissue of the closing mouth. Under the blocked condition

of nasal phonemes, less radiation from the mouth was captured, so the energy di�erences

become greater for /m/ and /n/.

Because vowels are presumably oral-only sounds, it was expected that the energy dif-

ferences of vowels would be close to those of nasals except the opposite sign. However, the

absolute values of the energy di�erences of vowels are far less than those of nasals under

both conditions. The unblocked vowel /iy/ even caused more energies in the nasal channel

than in the oral channel. This amount of acoustic energies in the nasal channel for vowels

can not be explained only by the acoustic leakage cross the sound-separation plate of the

NasalView device. It can be better explained by acknowledging the cross-velum trans-

mission of acoustic vibrations during vowel production. These vibrations can propagate

through the unblocked nasal tract and be picked up by the nasal microphone. When the

nose is blocked, this portion of energies are mainly attenuated, which reduces the value of

Ēn/Ēm, and therefore the magnitude di�erences. It can be inferred from the unblocked

vowel data that there is a greater proportion of total acoustic energies transmitted through

the nasal tract during /iy/ than during /aa/. This di�erence may account for the higher

acoustic resistance of the oral tract for the high vowel than that for the low vowel.

3.2.2.2 Nasalance patterns of nasalization

The NasalView system has been conventionally used to measure the nasalance score that

is the ratio of the energy from the nasal channel to the total energy from both channels. In

our implementation of nasalance calculation, nasal and oral signals were �rst �ltered with a

pass-band of 350-650Hz, then the short-time RMS energy of each signal was calculated and

the ratio between the nasal energy and the total energy was obtained. The window length

and frame shift for the calculation were set to 20ms and 5ms, respectively. The resulting
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Figure 3.9: Dual-channel acoustic signals of an isolated word �dean�. From the top panel
to the bottom panel are the nasal acoustic signal, oral acoustic signal and the smoothed
nasalance signal, respectively. The vertical bars represent phoneme boundaries.

nasalance signal was then optionally smoothed with a median �lter. In this experiment,

we looked for patterns of nasalance scores during normal speech.

In the experiment, several samples of isolated words were �rst recorded and processed

to test the system setup. These words were uttered by a male adult speaker. The channel

calibration and recording procedure were the same as those in the previous experiment.

Nasalance signals were then calculated from the recorded data.

Figure 3.9 shows one typical example of the nasalization process when an isolated

word �dean� is produced. In the top panel, the nasal and oral waveforms are displayed in

parallel: the upper one is the nasal signal and the lower one is the oral signal. A detailed

phonetic transcription is labeled under the waveforms, and the corresponding segments are

manually marked. It is easy to identify the nasal phoneme /n/ by comparing the signal

energy between the two channels. It is clear that the vowel switches from non-nasalized

(/iy/) to nasalized status (/iy-n/) within the utterance. Note that not all nasalized vowels

in the samples had such a distinct switch of nasalization status, in stead, the coarticulation

e�ect of nasalization often presented across the whole phoneme. These status changes can

be re�ected in the smoothed nasalance curve in the bottom panel. As a general trend, the
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nasalance scores tend to be low in non-nasalized vowel sections, higher in nasalized vowel

sections, and the highest in nasal sections. It can also be seen that the nasalance scores are

relatively noisy during the pauses (/.pau/ and /.br/), the voiced bar of the stop closure

(/dcl/), and the short release (/ax-n/) of the nasal phoneme, though the curve has been

smoothed. The noisy nasalance signals usually happens when the acoustic signals of two

channels are both weak.

In order to study the patterns of nasalance curves in di�erent contexts, we reused

the speech materials in the air�ow experiment described in Section 3.1.3.2. The four

groups of words in Table 3.1 were recorded in the same carrier sentence by the same

speaker as in the experiment in Section 3.1.3.2. The di�erence was that the air�ow and

microphone setup was replaced by the NasalView device. The channel calibration and

recording procedure were the same as in the previous experiment. After recording, all

the sentences were manually transcribed with phonetic labels by examining the waveforms

of the dual-channel signals. Then nasalance curves were calculated for all the sentences

with the same parameter settings as above. No smoothing operations were applied to the

nasalance curves.

Figure 3.10 shows the nasalance curve of each word within its adjacent phoneme neigh-

bours. The four columns of panels correspond to the four word groups, CVN, NVC, NVN,

and CVC, respectively. In all panels, the nasalance curves are relatively smoother in sono-

rant segments than in non-sonorant segments, such as plosives and fricatives. All the nasal

phonemes in the �rst three columns represent a continuous high level of nasalance scores

that are very closed to one. The nasalance scores of a vowel within the non-nasalized

context (CVC) are always lower than those of its counterpart within the nasalized context

(NVN). In the CVC context, the nasalance scores of vowels /iy/ and /uw/ are higher than

those of vowels /aa/ and /ae/. This contrast can also be easily identi�ed between /iy/

and /aa/ in the NVN, NVC, and CVN contexts.

3.2.2.3 Variability of nasalance

We have found that the NasalView system is robust enough to collect separated channels

of acoustic signals. In this experiment, we wanted to study both intra- and inter-speaker
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Figure 3.10: Nasalance curves of recorded words. Each section of the signal is cut from
the carrier sentence. Only the phonemes that are adjacent to the word on both sides are
shown. The phoneme boundaries are marked manually by examining the acoustic signals
of both channels.

variability of nasalance during the production of nasal resonance.

In the experiment, six normal adult speakers (three male and three female) were asked

to make recordings of the sentences in previous experiment. Each speaker made three

sessions of recordings. The channels were calibrated before each recording session and the

recording procedures were the same as those in the previous experiment. All waveforms

were manually segmented. Nasalance signals were then calculated from the recorded data.

In order to study the variability, we plotted di�erent renditions of the nasalance signals

of each word in the carrier sentences. Figure 3.11 shows an example sentence, �Say /n aa

n/ please�, in which the vowel /aa/ is supposed to be nasalized due to the context e�ect.

In the �gure, the nasalance trajectories are time-warped within each segment according to

the average segmental durations of each speaker. It is easy to identify the similarity of the

nasalance trajectories of the nasalized vowel among the recording sessions of each speaker;

while di�erent speakers tend to produce trajectories with di�erent stylized shapes.
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(a) Speaker 1 (b) Speaker 2

(c) Speaker 3 (d) Speaker 4

(e) Speaker 5 (f) Speaker 6

Figure 3.11: Intra- and inter-speaker comparison of nasalance trajectories. The same
sentence, �Say /n aa n/ please�, is recorded by six speakers. Each speaker has three
recording sessions.



54

3.2.2.4 Discussions

In the three experiments presented in this section, we �rst tested the NasalView device that

serves as a simple dual-channel acoustic setup for nasalization analysis. Then we collected

recording with controlled speech materials in order to study the basic functionality of

the NasalView device. Finally we had a qualitative study of the intra- and inter-speaker

variability of the nasalance trajectories during nasalization.

The �rst experiment evaluated the cross-channel acoustic leakage e�ects of the NasalView

device. During vowel production, the excessive amount of acoustic energy in the nasal chan-

nel can be explained as a cross-velum e�ect, which con�rms previous observations by other

researchers. The attenuation of average RMS energy across the sound-separation plate is

about 20 dB. This degree of leakage due to imperfect sound-separation can be regarded

as acceptable for further analyzing the relationship between the two channels of signals.

Visual examination of the signals con�rmed that the energy changes in two channels are

much more easily detected than those in convectional signal-channel signals, and detailed

information about the VP status is also more easily identi�ed by examining two signals

together.

The second experiment was designed to observe the patterns of nasal resonance in dif-

ferent contexts by displaying the nasalance curves of controlled materials. It is shown that

the nasalance curves can re�ect the change of the nasal resonance status. Nasalance scores

have been used in many clinical applications as an objective measure of nasality in speech.

As a simple measure of oral-nasal energy-balance, the nasalance score provides much in-

formation about the VP function that may be di�cult to extract from a single-channel

acoustic signal. The nasalance index, as a global measure, is usually obtained by averaging

the nasalance scores of a normative passage read by the speaker. However, considering the

segment-level information, as can be seen in the speech samples we recorded, the instan-

taneous nasalance scores within non-sonorant segments are not as stable as those within

sonorant segments. The instantaneous nasalance scores within the segments of nasalized

vowels also present a dependency on the degree of oral opening. For the purpose of detailed

analysis and/or modi�cation of the acoustic signals, more knowledge about the relationship
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between the two channels of signals may be needed.

The third experiment showed that the intra-speaker variability of nasalance trajectories

during nasal resonance is much less than the intra-speaker variability of the air�ow signals.

The experiment also showed a greater inter-speaker variability of nasalance trajectories

than intra-speaker variability. We expect a more detailed analysis of the dual-channel

acoustic signal may reduce this variation.

3.3 Summary

In this chapter, we studied two possible ways to introducing an extra instrumental channel

in addition to the conventional single-channel acoustic measurement, so as to obtain more

information about the nasalization process. One way was to add an aerodynamic channel,

another was to add an additional acoustic channel.

For the additional aerodynamic channel, we designed and made a noninvasive device

that can be used to measure the velocity of the nasal air�ow out of a nostril during speech.

A small, low-cost di�erential pressure sensor is used to pick up the dynamic pressure of the

air�ow. The air�ow signal is frequency modulated so that it can be recorded by a generic

sound card. The air�ow signal is recovered by a demodulation operation. A �ltering

process extracts the static nasal air�ow from the demodulated signal. The sensor is light

enough to be attached to a headset. The usage of this device neither interferes with the

articulatory process during speech, nor causes degradation of the simultaneously recorded

acoustic signal, which is critical to the further analysis and enhancement of acoustic signals

of disordered speech.

The static air�ow signal obtained with the new device provides additional information

that is not present in the acoustic signal. The information includes the breathing patterns

during speech and the nasal emission events. We have observed that the air�ow patterns of

breathing during speech can be freely varied. Besides nasal exhalations, the positive peaks

in the air�ow signals are also associated with major nasal emission events, including the

production of a nasal phoneme and the preparation of a oral pressure sound from the velar

release state. The new device turns out to be more sensitive to nasal emissions than to
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nasal resonance. A potential application of the air�ow device is to detect the unnecessary

nasal emissions that may weaken the oral acoustic signals during non-sonorant speech

segments.

A trade-o� we made during the design of the air�ow device is that the probe-tube picks

up the air�ow in an open space in stead of a sealed mask, so that the acoustic signals will

not be distorted. A drawback of this design is that the air�ow signal can be sensitive to

the relative position of the probe-tube in the nasal air�ow, which makes the measurement

more qualitative in essence. For the purpose of a large scale of data collection and detailed

qualitative analysis, the robustness of the current device may still need to be improved.

For the additional acoustic channel, we adopted the simplest existing device (NasalView)

and examined its potentials for nasalization analysis. The di�erence between the two

channels of the signals from the NasalView device provides information about the nasal

resonance that may be not distinguishable in the mixed signal-channel signals. Compared

to the multitude of studies on nasalization using single-channel acoustic data, there have

been surprisingly few studies to understand the acoustic characteristics of nasalization us-

ing dual-channel acoustic data. Although the major usage of the similar devices is limited

to obtaining the index of nasality, it is expected that more detailed information about the

oral-nasal articulatory process can be extracted from the dual-channel acoustic signal by

introducing more sophisticate analysis techniques.

Although both additional aerodynamic and acoustic signals provide extra articulatory

information of nasalization, the focus of our studies in the rest of this thesis will be narrowed

down to the dual-channel acoustic analysis only. One practical reason is that the acoustic

signals we can currently collect are more reliable in quantity than the air�ow signals. Since

the air�ow device we developed is in the preliminary stage, it still needs to be improved

for a wider usage. A more stable placement of the probe tube is necessary for consistent

measurements. The processing circuit may also need to be updated to allow a larger range

of air�ow velocities to be measured. Another practical reason for focusing on acoustic

studies is that our knowledge of aerodynamics in speech is still limited (Shade, 1999),

compared to that of acoustics. Most of the aerodynamic theories on speech production are

still in the state of qualitative descriptions.
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However, it is to be noted that acoustic measurements are incapable of providing

complete nasal emission information, because air�ow is not necessarily accompanied by

detectable sounds, and microphones are designed to be insensitive to air�ow; thus our

remaining studies are essentially limited to nasal resonance problems. Note that nasal

emission information is important for determining the weakness of plosive or fricative pro-

duction in disordered speech, thus we are ignoring some interesting information for the

sake of convenience.



Chapter 4

Dual-channel acoustic analysis for

nasalization

In this chapter, a dual-channel acoustic model for nasalization is investigated through

theoretical derivation and computational simulation.1 Detailed studies of this model may

enable us 1) to understand the inherent relationship between the nasal and oral acoustic

signals during the nasalization process under certain assumptions, 2) to explain certain

characteristics of the acoustic signals during the nasalization process, and 3) to derive

informative acoustic features of nasalization for practical dual-channel acoustic analyses.

4.1 Transmission-line model

As reviewed in Chapter 2 (see Section 2.2.1), the acoustic system of the vocal tract can

be approximately described by a one-dimensional wave equation under certain conditions

(for frequencies below 4 kHz). The mathematical description of acoustic waves in the vocal

tract is identical to that of electrical waves, so acoustic signals of speech can be modeled in

terms of electrical signals propagating in certain circuits. When the nasal and oral tracts

are simpli�ed as connected tubes, the transmission-line model can be used to represent

how acoustic waves propagate through the tracts. In such a model, the sound pressure

and volume velocity of acoustic waves transmitted in a small section of the vocal tract

are represented as the voltage and current of electrical waves transmitted in a lumped

two-port circuit unit (see Figure 2.1). A series of such circuit units can be connected to

1Some materials in this chapter have been published in a conference paper (Niu et al., 2005).
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Figure 4.1: Circuit network representation of the production of nasalized voiced sounds
(duplication of Figure 2.2).

build an electrical transmission-line network that represents the acoustic process of certain

sounds. Acoustic properties of a vocal tract con�guration can be derived by analyzing the

corresponding circuit network. Acoustic signals can also be synthesized by simulating such

a circuit network (Childers, 2000).

4.1.1 Circuit representation

In the circuit representation of an acoustic system, current and voltage signals are sub-

stituted by volume velocity and sound pressure signals, respectively. Other electrical pa-

rameters, such as impedance and admittance, are also substituted by their acoustic coun-

terparts (Flanagan, 1972). To facilitate circuit analyses, the following notations are use

in this chapter. All volume velocity signals are denoted by u, sound pressure signals by

p, acoustic impedances by z, and acoustic admittances by y, with distinct subscripts at

di�erent parts of a circuit. Lower-case symbols of these variables denote time domain

signals or parameters, while higher-case symbols denote their corresponding frequency- or

z-domain transforms.

The circuit network in Figure 4.1 is duplicated from Figure 2.2, which represents a

simpli�ed model of nasalized voiced sounds. Both ideal vowels and nasals can be regarded

as special cases of this model. The whole network is composed of three main sub-nets,



60

Tp, Tm, and Tn that denote circuit models of the pharyngeal, oral, and nasal tracts,

respectively. In the network, Zsub, Zml, and Znl denote the acoustic impedance of the

subglottal system, the radiation load at the lips, and the radiation load at the nostrils,

respectively. Pg, Pv, Pml, and Pnl denote the sound pressures at the glottis, the VP port,

the lips, and the nostrils, respectively. Ug models the excitation source at the glottis, Usub

is the volume velocity out of the trachea, and Upi, Upo, Umi, Umo, Uni, and Uno denote

the volume velocity input and output of each sub-net, respectively. Each sub-net can be

regarded as a two-port circuit. According to electrical circuit theory, the transmission

property of a two-port circuit is fully characterized by a chain equation (also called the

ABCD matrix) in frequency- or z-domain (Balabanian et al., 1969). So the characteristics

of the three sub-nets can be described by the following chain equations, Pg

Upi

 =

 Ap Bp

Cp Dp

 Pv

Upo


 Pv

Umi

 =

 Am Bm

Cm Dm

 Pml

Umo

 (4.1)

 Pv

Uni

 =

 An Bn

Cn Dn

 Pnl

Uno

 .
Because each sub-net is a serial connection of small two-port units, the ABCD-parameters

in each chain equation are locally determined by the physical properties of the correspond-

ing section of the vocal tract. Coupling e�ects are introduced into the network at the

branching points by the following continuous conditions,

Usub = Ug + Upi, (4.2)

Upo = Umi + Uni. (4.3)

Equation 4.2 introduces the coupling e�ect of the subglottal tract to the output speech

spectrum. Equation 4.3 introduces the coupling e�ect of the nasal and oral cavities, which

accounts for the unique spectral characteristics of nasalized sounds.
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4.1.2 Transfer functions

In order to study the spectral properties of nasalized sounds, it is of interest to derive the

transfer functions from the glottal volume velocity (Ug) to the output volume velocity of

the nasal and oral channels (Uno and Umo), respectively. In the following, some useful

lemmata are �rst derived from basic circuit network theory.

1. Transmission characteristic of a two-port network with a shunt impedance

Figure 4.2: A two-port network with a shunt impedance.

Given a two-port network that has a shunt impedance Zs, as shown in Figure 4.2,

when Kirchho�'s Laws are applied, the following equations hold,

Pi = Po

Ui =
Po
Zs

+ Uo.

Therefore, the chain matrix of a two-port network with a shunt impedance Zs is 1 0
1
Zs

1

 (Lemma 1).

2. Input impedance of a two-port network with a load at the output port

Figure 4.3: A two-port circuit network with a load impedance.

Given a circuit network, as shown in Figure 4.3, in which the chain matrix (

 A B

C D

)
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of the two-port network and the impedance (ZL) of the load are known, when a con-

stant pressure Pi is applied at the input port, the following equations hold,

Pi = APL +BUL

Ui = CPL +DUL

PL = ZLUL.

Then Pi can be represented in terms of the input volume velocity Ui as

Pi =
AZL +B

CZL +D
Ui.

Therefore, the input impedance a two-port network with a load at the output port is

AZL+B
CZL+D (Lemma 2).

3. Transfer function of a two-port network with a source and a load

Figure 4.4: A two-port network with a source and a load.

Given a circuit network, as shown in Figure 4.4, in which a two-port network, char-

acterized by the chain matrix

 A B

C D

, is connected between a volume velocity

source Ui and an acoustic load ZL, and the source has an output impedance Zi. The

transfer function from the volume velocity of the source (Ui) to the volume velocity

at the load (UL) can be derived by applying Lemma 2. Seen from the input port

of the two-port network, the input impedance is Zo = AZL+B
CZL+D . This impedance can

be regarded as a load parallel to Zi, so the volume velocity input to the two-port

network is

U
′
i =

Zi
Zo + Zi

Ui.

U
′
i can also be represented with one of the chain matrix equations

U
′
i = (CZL +D)UL.
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So the two equations can be merged and the transfer function (UL
Ui
) is obtained as

H =
UL
Ui

=
Zi

Zo + Zi
· 1
CZL +D

.

Therefore, the transfer function from the volume velocity source to the volume velocity

at the load is Zi
Zo+Zi

· 1
CZL+D (Lemma 3).

In order to derive the transfer functions from the circuit network of nasalized voiced sounds,

as shown in Figure 4.1, we denote the input impedance of the oral tract with Zm, and the

input impedance of the nasal tract with Zn, both of which are seen downstream from the

junction point of the VP port. Zm and Zn can be calculated by applying Lemma 2,

Zm =
AmZml +Bm
CmZml +Dm

, (4.4)

Zn =
AnZnl +Bn
CnZnl +Dn

. (4.5)

Thus, the circuit network can be converted into an equivalent network as shown in Fig-

ure 4.5 (a). It can be seen that Zm and Zn are connected in parallel, so their equivalent

impedance is

Zmn =
ZmZn
Zm + Zn

, (4.6)

which can be regarded as the load of the pharyngeal sub-net, seen downstream from the

VP port. Then Lemma 2 can be applied again to obtain the input impedance of the whole

vocal tract, seen downstream from the glottis,

Zp =
ApZmn +Bp
CpZmn +Dp

=
ApZmZn +Bp (Zm + Zn)
CpZmZn +Dp (Zm + Zn)

. (4.7)

To calculate the transfer function from the glottal source Ug to the oral output Umo,

the output impedance of the nasal tract can be regarded as a shunt impedance, as shown

in Figure 4.5 (b). Then the network between the glottal source and the oral load can be

regarded as a serial concatenation of the pharyngeal sub-net, the shunt impedance of the

nasal tract, and the oral sub-net. Thus, by applying Lemma 1, the chain matrix of the

network is  Agm Bgm

Cgm Dgm

 =

 Ap Bp

Cp Dp

 1 0
1
Zn

1

 Am Bm

Cm Dm

 . (4.8)
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(a) The oral and nasal tracts are represented with their individual equiv-
alent impedance.

(b) The nasal tract is represented with its equivalent impedance.

(c) The oral tract is represented with its equivalent impedance.

Figure 4.5: Equivalent network representations of nasalized sound production. (a) Deriva-
tion of the input impedance of the whole vocal tract. (b) Derivation of the oral transfer
function. (c) Derivation of the nasal transfer function.
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Then Lemma 3 can be applied to obtain the oral transfer function Umo
Ug

,

Hm =
Zsub

Zp + Zsub
· 1
CgmZml +Dgm

=
Zsub

Zp + Zsub
· Zn

(CmZml +Dm) [CpZmZn +Dp (Zm + Zn)]

=
Zsub

Zp + Zsub
· AnZnl +Bn

(CmZml +Dm) (CnZnl +Dn) [CpZmZn +Dp (Zm + Zn)]
. (4.9)

Note that the oral and nasal tracts are symmetric in the circuit representation in Fig-

ure 4.5 (b and c), thus the nasal transfer function Uno
Ug

has a symmetric form to the oral

one, which is

Hn =
Zsub

Zp + Zsub
· Zm

(CmZml +Dm) [CpZmZn +Dp (Zm + Zn)]

=
Zsub

Zp + Zsub
· AmZml +Bm

(CmZml +Dm) (CnZnl +Dn) [CpZmZn +Dp (Zm + Zn)]
.(4.10)

Transfer functions of ideal vowels and nasals can also be derived from the circuit net-

work. In an ideal vowel con�guration, there is no nasal branch and thus Zn goes to in�nity.

The input impedance of the whole vocal tract turns into

Z
′
p =

ApZm +Bp
CpZm +Dp

, (4.11)

so that the transfer function from the glottal source to the oral output is

H
′
m =

U
′
mo

Ug
=

Zsub
Z ′
p + Zsub

· 1
(CmZml +Dm) (CpZm +Dp)

. (4.12)

Similarly, in an ideal nasal con�guration, the oral cavity is closed at a certain point and

thus Zml goes to in�nity and the oral sub-net turns into

 A
′
m B

′
m

C
′
m D

′
m

. The impedance
of the oral tract and the whole vocal tract are

Z
′
m =

A
′
m

C ′
m

, (4.13)

Z
′′
p =

ApZ
′
mZn +Bp

(
Z

′
m + Zn

)
CpZ

′
mZn +Dp (Z ′

m + Zn)
, (4.14)

respectively. Then the transfer function of the nasal output is

H
′
n =

U
′
no

Ug
=

Zsub
Z ′′
p + Zsub

· Z
′
m

(CnZnl +Dn) [CpZ
′
mZn +Dp (Z ′

m + Zn)]
. (4.15)

It can be seen that the transfer functions for ideal vowels and nasals are just special cases

of the two transfer functions for nasalized vowels.



66

4.2 Spectral properties

Spectral properties of voiced sounds can be inferred by analyzing the transfer functions (4.9,

4.10, 4.12, and 4.15) derived from the dual-channel acoustic model. For example, consider-

ing the transfer function of an ideal vowel, the e�ect of the subglottal tract can be assumed

to be negligible, since the glottal opening is very small during voiced sounds, and the sub-

glottal impedance Zsub is much greater than the impedance of the vocal tract Z
′
p. This

assumption makes the �rst factor in transfer function 4.12 approaches to one, so it can be

simpli�ed as

H
′
m ≈ 1

(CmZml +Dm) (CpZm +Dp)

=
1

Zml (CpAm +DpCm) + CpBm +DpDm
. (4.16)

When the pharyngeal and oral tracts are considered as a series of acoustic tubes, the above

function can be approximated by an all-pole �lter in frequency- or z-domain, The form of

this transfer function justi�es the all-pole model for vowel production that has been used

prevalently in speech analysis.

However, the numerators in the transfer functions of nasalized sounds (Equation 4.9

and 4.10) present obvious zero e�ects in their spectra. It can be seen that the oral-nasal

coupling not only introduces zeros into the transfer functions Hm and Hn, but also a�ects

the pattern of their poles. The same denominator in Hm and Hn indicates that the oral

and nasal signals share the same poles that are caused by the denominator. The factor,

AmZml + Bm, in Equation 4.10 indicates that the oral cavity introduces extra zeros to

the nasal signal, when the oral cavity is simply considered as a series of tubes; while the

factor, AnZnl + Bn, in Equation 4.9 indicates that the nasal cavity introduces not only

zeros but also extra poles to the oral signal, when the shunt e�ects of sinuses are taken

into consideration.

In conventional signal-channel acoustic analysis, signals are transduced with one micro-

phone during nasalization. A physical assumption behind this measurement is that when

two waves meet in the same medium, the instantaneous displacement of the medium is



67

given by the algebraic sum of the instantaneous displacements of individual waves. There-

fore, the volume velocity signals from the nose and the mouth are additive. It is often

assumed that the addition is equally weighted, so the overall transfer function of the vocal

tract, Hv, is equal to the sum of Hm and Hn, that is,

Hv =
Zsub

Zp + Zsub
· (AmZml +Bm) + (AnZnl +Bn)

(CmZml +Dm) (CnZnl +Dn) [CpZmZn +Dp (Zm + Zn)]
. (4.17)

This equation shows how the zero patterns are be mixed up by the summation operation.

However, the equal-weight assumption may not hold in real measurements, because the

weights are apparently a�ected by the di�erent radiation distances from the mouth and the

nose to the microphone that is used to pick up the sound pressure instead of the volume

velocity. The unknown weights make the zero pattern of Hv almost unpredictable. This

partially explains the inconsistent observations of the spectral characteristics of nasalized

vowels in the literature. Ideally, separate measurements of the two channels would preclude

the uncertainty caused by the mixing of two acoustic channels.

4.3 Dual-channel analysis

Considering the separated transfer functions of the oral and nasal channels in Equation 4.9

and 4.10, their denominators represent complicated inter-dependent coupling e�ects of the

pharyngeal, oral and nasal tracts. Separate analysis of the signal from each channel alone

has almost the same degree of complexity as that of the one channel signal.

We have proposed an analysis method (Niu et al., 2005) that makes use of the relation-

ship between the two signals of separated channels. The novel idea behind this method is

to cancel out the coupling e�ects by estimating a special transfer ratio function from the

volume velocity of the oral output (Umo) to the volume velocity of the nasal output (Uno).

This transfer ratio function (Tn/m) can be directly derived from Equation 4.9 and 4.10 as

follows

Tn/m =
Uno
Umo

=
Hn

Hm
=
AmZml +Bm
AnZnl +Bn

. (4.18)

In the original study, Tn/m was derived in a simpler way without explicitly calculating Hm

and Hn, since Tn/m can also be regarded as the ratio between the two transfer admittance
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Figure 4.6: System identi�cation method to estimate parameters in A (z) and B (z).

functions from the sound pressure at the VP port (Pv) to the volume velocity at the

nose (Uno) and at the mouth (Umo), respectively. The oral and nasal transfer admittance

functions, Ym/v and Yn/v, can be derived directly from the chain matrix equations 4.1 as

Ym/v =
Umo
Pv

=
1

AmZml +Bm
, (4.19)

Yn/v =
Uno
Pv

=
1

AnZnl +Bn
. (4.20)

Thus the ratio of Yn/v to Ym/v leads to the same result as in Equation 4.18.

The above Oral-Nasal Transfer RatIo Function (ONTRIF, Tn/m) has the following

properties. First, it does not contain any parameters of the pharyngeal tract, the glottal

source, and the subglottal con�guration, which implies that it is independent of the acoustic

system below the VP port. Second, the coupling e�ect of the oral and nasal tracts is

canceled out in Tn/m, in which all the poles stem from the transfer admittance of the nasal

cavity, the oral cavity only introduces zeros, and the e�ects of sinuses present as pole-zero

pairs. Third, there is a mathematically tractable way to estimate Tn/m, given volume

velocity signals from the two separate channels. Assuming Tn/m has an ARMA structure

in the z-domain, there is a linear solution to estimate the model parameters using a system

identi�cation method. The estimation approach is presented as follows.

Suppose we can obtain the volume velocity signals, uno (t) and umo (t), at the nose

and the mouth during the production of a nasalized sound. The signals are sampled at a

sampling frequency higher than the Nyquist frequency, so that we have the discrete signals,
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uno [n] and umo [n]. Assuming the ONTRIF in z-domain, Tn/m (z), has the following form,

Tn/m (z) =
Uno (z)
Umo (z)

=
B (z)
A (z)

=
b0 + b1z

−1 + b2z
−2 + · · ·+ bNz

−N

1 + a1z−1 + a2z−2 + · · ·+ aMz−M
, (4.21)

in which the order N and M are known, then uno [n] and umo [n] can be regarded as the

input signals of the system shown in Figure 4.6. The output signal e [n] of such a system

should approximates zero. When L samples from signals uno [n] and umo [n] are known,

the parameters in A (z) and B (z) can be estimated by minimizing the mean square of

e [n]. The solution to this problem is equivalent to the least mean square error solution of

the following set of linear equations. For convenience, writing uno [i] as uino, and umo [i] as

uimo,


ui+1
no

ui+2
no

...

ui+Lno

 =
[
A B

]



a1

...

aM

b0
...

bN


, (4.22)

in which

A =


−uino −ui−1

no . . . −ui+1−M
no

−ui+1
no −uino . . . −ui+2−M

no

...
...

...
...

−ui+L−1
no −ui+L−2

no . . . −ui+L−Mno

 , (4.23)

and

B =


ui+1
mo uimo . . . ui+1−N

mo

ui+2
mo ui+1

mo . . . ui+2−N
mo

...
...

...
...

ui+Lmo ui+L−1
mo . . . ui+L−Nmo

 . (4.24)

Poles and zeros can then be determined by calculating the roots of A (z) and B (z), re-

spectively.
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It is to be noted that volume velocities may not be measured easily. Instead, sound

pressures can be conveniently picked up with microphones. Another transfer function

is de�ned as the ratio of the sound pressure radiated from the nose (Pnr) to the sound

pressure radiated from the mouth (Pmr). This function involves radiation impedances Znr

and Zmr at the positions of measurement. It can be expressed as

T pn/m =
Pnr
Pmr

=
UnoZnr
UmoZmr

= Tn/m
Znr
Zmr

. (4.25)

Radiation impedances can be modeled as a derivative process with only a spectral zero at

zero Hz (Flanagan, 1972), so T pn/m has the same pole-zero pattern as Tn/m. The estimation

of T pn/m can be the same as that of Tn/m, after replacing the volume velocity signals with

sound pressure signals, pnr [n] and pmr [n].

The idea of the ONTRIF analysis described above is similar to that of LPC analysis.

They both assume a parametrized transfer function for the model, and adopt a linear

solution. One di�erence is that the ONTRIF is in ARMA form, and two separate channels

of signals are assumed to be available. The order of the transfer ratio function, M or

N , can be chosen in the same way as in LPC analysis. For example, when the sampling

frequency is 10 kHz, M and N can be set to 12. L is the window size for the analysis,

which can be either �xed or pitch synchronized in real applications.

4.4 Articulatory simulation

4.4.1 Articulatory synthesizer

In order to validate the ONTRIF analysis introduced in the previous section, an articu-

latory synthesizer was built to simulate the production of voiced sounds. The synthesizer

was implemented according to the transmission-line model in Figure 2.2, except that it as-

sumed the subglottal impedance to be in�nity for simplicity. The ONTRIF analysis were

applied to synthesized signals of nasal and oral volume velocities. Since the articulatory

con�guration is known before synthesis, the real ONTRIF can be directly calculated from

the circuit network. Thus the analysis method can be e�ectively evaluated by comparing

the estimated ONTRIF with the pre-calculated one.
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Figure 4.7: Functional modules and I/O �ows of the articulatory synthesizer.

Figure 4.7 shows the functional modules and I/O �ows among them in the synthesizer.

As the input of the synthesizer, parameters of the glottal source and two area functions

of the vocal tract are speci�ed. The glottal source signal ug [n] is generated from the

LF model (Fant, 1986). The area functions of the pharyngeal-oral tract are based on

existing X-ray data of vowels (Fant, 1960), which speci�es the cross-section areas at 0.5 cm

intervals from the glottis to the lips. Inside the pharyngeal-oral tract, the VP port is

at the 8.5 cm distance from the glottis. The velum can be set open or closed for the

simulation of nasalized or non-nasalized vowels. For the nasal tract, an empirical model

is adopted (Maeda, 1982b), which assumes the nasal tract to be 11 cm long and sampled

at 1 cm intervals. In the nasal tract, The cross-section area of the �rst three sections from

the velum can be changed to simulate di�erent velar positions, while the areas of other

sections are constant. When the area of the �rst section from the velum is speci�ed, the

areas of the next two sections are calculated by linear interpolation between the �rst and

fourth sections. One sinus is simulated for simplicity. The sinus cavity is connected with

the nasal tract at the 7 cm distance from the velum. It is modeled as a Helmholtz resonator

that has a cavity of 20.8 cm3 in volume and connected to the nasal cavity through a 0.5 cm

long tube with the cross area of 0.1 cm2. The acoustic characteristic frequency of such a

resonator is about 550Hz.

During synthesis, the area functions and the dimension of the sinus are converted into

equivalent circuit parameters of tube units in the transmission-line model by the �RLC

conversion� module (RLC stands for acoustic resistance, inductance and capacitance).
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Figure 4.8: Cross-section area functions of vocal tract for synthesizing a pure vowel /aa/
and its nasalized counterpart /aa-n/. The area function of the pharyngeal-oral tract is
plotted downward. The nasal tract starts from the VP opening and its area function is
plotted upward.

Then the chain matrix of each sub-net is constructed from the units, and the oral and

nasal transfer functions (Uno/Ug and Umo/Ug) are calculated in frequency-domain. The

impulse responses of the two transfer functions, hm [n] and hn [n], are obtained by Inverse

Discrete Fourier Transform (IDFT), and they are convolved with the glottal source signal,

ug [n]. The resulting two signals, umo [n] and uno [n], are the volume velocity signals out

of the mouth and the nose. The �nal output of volume velocity is umo [n] for an ideal

vowel, umo [n] for an ideal nasal, and the sum of umo [n] and uno [n] for a nasalized vowel.

The radiated sound pressures signal is obtained by applying a derivative �lter to the �nal

volume velocity output.

4.4.2 Experiments and results

4.4.2.1 Evaluation of synthesized speech

In the �rst experiment, sample waveforms were synthesized to validate the basic function-

ality of the articulatory synthesizer. An ideal vowel /aa/ and its nasalized counterpart

/aa-n/ were synthesized with the synthesizer. The cross-section area function for /aa/, as
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Figure 4.9: Power spectra of the oral transfer functions (Umo/Ug) for synthesizing a pure
vowel /aa/ and its nasalized counterpart /aa-n/.

shown in Figure 4.8, was converted from X-ray data (Fant, 1960). There were no available

X-ray data of the same speaker to specify the cross-section area function of the pharyngeal-

oral tract for /aa-n/, so the same area function for /aa/ was re-used by assuming that the

velar movement has relatively little in�uence on the cross-section of the pharyngeal-oral

tract. It is noted that this assumption holds better in a low vowel case than in a high vowel

case. The opening area of the VP port were set to 0.5 cm2 for /aa-n/, and the correspond-

ing area function of the nasal tract is also shown in Figure 4.8. The LF parameters for

ug [n] were set to typical modal voice values. The pitch of the impulse was set to 120Hz,

and the sampling frequency of the signal was 10 kHz.

In the above two samples, oral transfer functions (Umo/Ug) can be calculated directly by

the synthesizer from the pre-set vocal tract con�gurations of the two phonemes. Figure 4.9

shows the log-magnitude spectra of Umo/Ug in the two cases, in which the solid curve

represents /aa/ and the dashed curve represents /aa-n/. The formant pattern of the pure

vowel /aa/ can be easily identi�ed from solid curve, with F1 around 700Hz and F2 around

1,100Hz. It can be seen on the nasalized spectrum that the �rst three formants shift
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higher from their positions on the non-nasalized spectrum. In addition, extra pole-zero

pairs appear at about 500Hz, 1,000Hz, and 3,100Hz on the nasalized spectrum. It can be

shown by calculating the transfer admittance function of the nasal tract that the pole-zero

pair around 500Hz is caused by the sinus cavity, and the other two pairs of pole-zeros

result from the �rst and second resonances of the nasal tract, respectively. The �gure

also shows signi�cant amplitude decreases in the low formant range of the nasalized vowel

comparing to the non-nasalized one. These spectral characteristics con�rm most of the

observations of nasalization e�ects in real speech (Chen, 1997). The samples indicate that

our synthesiser is capable of simulating major acoustic e�ects of nasalization.

4.4.2.2 ONTRIF analysis

In the second experiment, the nasal-oral transfer ratio function (ONTRIF, Uno/Umo) was

estimated from the synthesized signals (Uno and Umo) of the nasalized sample /aa-n/ in

the previous experiment. It was then compared with the pre-set one that was directly

calculated from the articulatory con�guration. During the calculation, the transfer admit-

tance functions of the nasal cavity (Uno/Pv) and of the oral cavity (Umo/Pv) were �rst

obtained from the chain matrices of the nasal and oral tracts; then the ratio between them

was calculated.

Figure 4.10 shows the power spectra of the two transfer admittance functions. The

solid curve (Uno/Pv) in the �gure represents the properties of the nasal tract without any

in�uence of other parts of the vocal tract. Each peak on the solid curve is a pole of the

nasal admittance, which consequently results in a pole-zero pair on the power spectrum of

the oral transfer function of the nasalized vowel (dashed curve in Figure 4.9). The dashed

curve (Umo/Pv) in Figure 4.10 represents the spectral properties of the oral tract (from the

VP port to the lips). It has spectral peaks higher than F2 of the corresponding vowel due

to the short length of the oral tract. The pole pattern in the ONTRIF mainly re�ects the

property of the nasal tract, while the relatively simple in�uence of the oral tract presents

as the zero pattern in relatively high frequency range.

According to the derivation in Section 4.3, the power spectrum of the ONTRIF is the

di�erence between the spectra of nasal and oral admittances, as shown in Figure 4.11 (in
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Figure 4.10: Power spectra of the transfer admittance functions of the nasal tract (Uno/Pv)
and the oral tract (Umo/Pv) during the production of the nasalized vowel /aa-n/.

Figure 4.11: Power spectra of the pre-calculated and estimated oral-nasal transfer ratio
functions of the nasalized vowel /aa-n/.



76

Figure 4.12: The estimated spectra of the ONTRIFs for three nasal con�gurations. The
area of the VP opening increases from the lowest curve up. A shift of 0, 20 and 40 dB has
been added to the curves respectively for a better display.

solid curve). Therefore, the spectral peaks of the ONTRIF are the same as those of the

nasal admittance. After applying the ONTRIF analysis at the center of the synthesized

outputs of umo [n] and uno [n] for the nasalized sample, the power spectrum of the estimated

ONTRIF is also drawn in Figure 4.11 (in dashed curve) for the purpose of comparison.

It can be seen that this estimated spectrum matches the pre-calculated one quite well

especially in the low frequency range and their peak-valley locations are almost the same.

4.4.2.3 Degree of VP opening

In the third experiment, three di�erent con�gurations of the velum positions are studied.

During synthesis, the area of the VP opening was set to 0.5 cm2, 1.5 cm2, and 2.5 cm2,

while the area function of the pharyngeal-oral tract was kept the same as that for /aa/.

The output signals of each con�guration were then analyzed to estimate their ONTRIFs.

The estimated ONTRIF spectra of the three con�gurations are shown in Figure 4.12. It

can be seen that the pole caused by the sinus (Fsin) remains at the same position in the

three spectral curves, and the �rst frequency peak caused by the whole nasal cavity (Fn1)
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increases as the area of the VP opening increases. This result implies that the estimated

value of Fn1 could be a possible correlate to the degree of the VP opening.

4.5 Summary

This chapter provides a theoretical base for the dual-channel acoustic analysis of nasaliza-

tion. The studies were based on an electrical circuit analogue to the acoustic process of

speech production. Similar analog approach has been developed by the pioneers in speech

sciences (Fant, 1960; Flanagan, 1972). We adopted the circuit model to gain insight into

the acoustic process of nasalization. The transmission-line model introduced in this chap-

ter not only helps us to understand the intrinsic complexity of nasalized sounds, but also

provides a way to simulate and test the acoustic properties of them.

In order to avoid the ambiguities stemming from the mixture of dual-channel acoustic

waves, and to reduce the coupling e�ects among di�erent parts in the vocal tract, we pro-

posed a novel method to analyze the spectral properties of the nasal cavity by estimating

the oral-nasal transfer ratio function (ONTRIF) from the volume velocity output of the

oral channel to that of the nasal channel. Theoretical derivation showed that the ON-

TRIF spectra re�ect the characteristics of the nasal tract in a simpler form. A practical

algorithm was presented to perform ONTRIF analysis on dual-channel signals. Simula-

tion experiments validated the algorithm and also indicated that the presented method

might be used to extract detailed information about the VP opening during speech. This

method provides a novel way to perform detailed analysis of nasalization on short-time

dual-channel acoustic signals. It paves the way for our further research on applying the

analysis method to real dual-channel data and extracting acoustic features of nasalization.

It is to be noted that the real nasal tract is more complicated than what is represented

by the model. For example, both the asymmetry of the two passages in the nose and the

existence of other sinuses can introduce more pole-zero pairs into the transfer admittance

function of the nasal cavity. The trans-velum acoustic vibrations are not modeled, either.

In addition, VP movements can change the dimension of the oral cavity. All these e�ects

will be re�ected in the ONTRIF spectra. Moreover, because of the di�culty in picking up
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volume velocity signals directly, the ONTRIF analysis is more likely to be performed on

sound pressure signals in practical usage. As mentioned in Section 4.3, the validity of the

same analysis method involves certain assumptions about radiation impedances. Finally,

the sound pressure signals radiated from the nose and the mouth may not be perfectly

separable from each other by the device to pick up them. Therefore, the pattern of the

ONTRIF spectrum estimated from real speech signals may not be as distinct as those

obtained from the synthesized signals.

It is to be answered whether the theoretical advantages of dual-channel acoustic analysis

presented in this chapter will provide gains over conventional single-channel analysis of

nasalization, which is the topic of the following chapter.



Chapter 5

Dual-channel acoustic features for

nasalization detection

Based on the theoretical analysis of the dual-channel acoustic model in the last chapter,

this chapter presents an algorithm to extract a nasalization feature from real dual-channel

acoustic signals that are picked up by a simple two-microphone setup. The feature is

then used to build a nasalization detector that automatically classi�es sounds into broad

categories that re�ect di�erent oral-nasal coupling conditions. The performance of the

feature is studied by comparing the nasalization detector in parallel with a reference one

that adopts the conventional single-channel spectral-based feature.1

5.1 Introduction

Di�erent oral-nasal articulatory con�gurations result in di�erent categories of sounds.

Vowel-like sounds have an open oral tract and a closed nasal tract, while nasals are oppo-

site. Nasal vowels or nasalized vowels have both tracts opened. It is desirable to develop

indirect analysis techniques that can capture the information about these oral-nasal cou-

pling conditions, since it is di�cult to monitor the VP port directly. This information

can be used to analyze, assess or enhance certain disordered speech with nasal resonance

problems, or to improve the discriminating capacity of recognition systems.

1Some materials in this chapter have been published in a conference paper (Niu and van Santen, 2007).

79
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The convectional acoustic features used in current state-of-art automatic speech recog-

nition (ASR) systems are Mel-Frequency Cepstral Coe�cients (MFCC) or Perceptual Lin-

ear Prediction (PLP) parameters. They are both discrete representations of smooth spec-

tral envelopes of short-time acoustic signals, which take advantage of certain knowledge

about human perception mechanisms. These convectional acoustic features do not explic-

itly characterize speci�c cues about speech production, but their general discriminating

capacities among normal phonetic units in a language are best known for many ASR tasks

nowadays. In these systems, statistical models, such as the Hidden Markov Model (HMM),

are trained with huge amounts of acoustic data of each phonetic unit in order to capture

the accurate distribution of the feature and the temporal dependency.

Some groups of researchers have developed �knowledge-based� speech recognition sys-

tems, in which nasalization can be one of the phonological features. Some quantitative

nasalization features based on the knowledge of spectral characteristics of nasalization

have been tried either as stand-alone features (Glass and Zue, 1985; Chen, 2000; Pruthi

and Espy-Wilson, 2006), or as additional features combined with conventional features

such as MFCC (Hasegawa-Johnson et al., 2005). However, as reviewed in Chapter 2, be-

cause those spectral characteristics of nasalization observed from the acoustic signals of

nasalized vowels turn out to be inconsistent and variant, the corresponding features have

not exhibited considerable advantages over conventional features in ASR systems. One

possible reason for the di�culty, as analyzed in Chapter 4, may be the inherent limitation

of single-channel acoustic analysis. However, articulatory-speci�c features may still be

very useful for analyzing disordered speech, because the primary interest is in identifying

physiological con�gurations instead of the average recognition rate of phoneme sequences.

Based on the experimental results and analyses of multi-channel measurement in the

previous chapters, our e�orts in this chapter are devoted to develop novel analysis ap-

proaches for the purpose of automatic detection of nasalization conditions by using infor-

mation from an extra acoustic channel. Although the dual-microphone setup is rarely used

in the current speech recognition community, it has been used in many clinical research

works and applications.
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5.2 Proposed features

5.2.1 Generalized ONTRIF analysis

In the last chapter, we derived the frequency response of a special transfer function from

the volume velocity of the oral output (Umo) to the volume velocity of the nasal output

(Uno), and called it the Oral-Nasal Transfer RatIo Function (ONTRIF) of volume velocity.

We also developed an approach to estimate the ONTRIF with two separate signals of nasal

and oral volume velocities. It was also shown that the ONTRIF of sound pressure can be

estimated in the same way when the available signals are the separate sound pressures

radiated from the nose and the mouth, and the spectral properties of the transfer ratio

function approximately remain the same. Since sound pressure can be measured easily

in practice, the ONTRIF analysis in this chapter only deals with real dual-channel sound

pressure signals that are picked up by a pair of microphones.

The ONTRIF was originally derived under the condition of nasalized vowels when

there are output signals from both nasal and oral channels in the model. It is unde�ned

when there is no output in any channel under ideal conditions of oral-only or nasal-only

sounds. However, it has been observed consistently in real dual-channel data that a sub-

stantial amount of sound pressure signal can be captured by the nasal microphone during

the production of �pure� vowels, even when the two channels are well separated. One of

our experiments (in Section 3.2) with the NasalView device has con�rmed these obser-

vations. A reasonable explanation of this phenomenon is the assumption of cross-velum

vibrations (Suzuki et al., 1990). This fact indicates that a modi�cation of the dual-channel

transmission-line model is needed for �pure� vowel production, in which a special two-port

circuit can be adopted to model the transmission characteristics of the closing velum.

Therefore, the ONTRIF analysis can still be applied to the dual-channel signals of vow-

els. The resulting transfer function will be in�uenced by the front oral tract, the nasal

tract closed at the velum end, and the physical property of the velum. Similarly, real

oral-channel signals are also measurable during the production of �pure� nasal phonemes.

This e�ect can be represented as a radiation load at the oral-channel output, so that the

ONTRIF analysis can also be applied in the �pure� nasal condition. The corresponding
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ONTRIF spectrum is determined by the opened nasal tract and the closed oral cavity with

the radiation load.

The above argument paves a way for generalizing the ONTRIF analysis method to the

dual-channel acoustic data of all di�erent oral-nasal coupling conditions. It is hypothesized

that the ONTRIF spectrum discriminably characterizes each category of these conditions,

so that nasalization features may be e�ciently extracted from the short-time ONTRIF

spectrogram of speech.

5.2.2 Preliminary studies

In order to study the property of ONTRIF spectra in di�erent nasalization conditions, we

analyzed some real dual-channel sound pressure samples recorded by Feng and Kotenko� (2006),

who used microphones in a double-chamber sound proof box to achieve separate recordings

of nasal and oral signals.2 The acoustic attenuation across the two channels was reported

as at least 20 dB for all frequencies below 8 kHz.

When applying the ONTRIF analysis to these samples, the transfer ratio functions were

obtained through a frame-based processing. The dual channel signals were segmented into

frames with a �xed length of 20ms and a frame shift rate of 10ms. For each frame of

oral and nasal signals, the parameters of a ARMA �lter was estimated. The order of the

�lter was set to 18 for both numerator and denominator polynomials while the signals were

down-sampled to 16 kHz.

Figure 5.1 shows the log-magnitude frequency responses of the ONTRIFs estimated

from the stable sections of a vowel /ao/, a French nasal vowel /aa-n/, and a nasal /ng/. For

each phoneme, the transfer ratio functions of 40 successive frames are overlappingly plotted.

In each of the sub-�gures, the log-magnitude curves vary little among frames within the

low frequency range (about 0-4000Hz). The variances among frames are relatively larger

within the high frequency range, especially for the nasal phoneme. A pole-zero pair in the

range of 300-700Hz exists in each sub-�gure, which may be introduced by the shunt e�ect

of sinuses to the admittance of the nasal cavity. The zero pattern of the nasal phoneme

2Thanks to the authors for sharing their data samples with us.
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(a) Vowel: /ao/

(b) Nasal vowel: /aa-n/

(c) Nasal: /ng/

Figure 5.1: The transfer ratio functions from the oral sound pressure to the nasal sound
pressure.
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Figure 5.2: ONTRIF spectrogram of a word, �dean�. From top to bottom: Nasal signal,
oral signal, power spectrogram of the ONTRIF, power spectrogram in Mel-scale. Vertical
lines represent manual segmentation.

is quite di�erent from that of the vowel and the nasal vowel because of the closure of the

mouth. It can be seen in sub-�gures (a) and (b) that the admittance of the vowel cavity

causes zeros at about 1000, 3200, 4900 and 6000Hz, while the opening of the VP port

mainly cancels the zero at 1000Hz. It seems that a feature that represents the shape of

the transfer ratio function may be used to discriminate these three di�erent categories of

oral-nasal con�gurations; and the lower frequency range of the frequency response contains

more detailed information about nasalization.

There is a question to be answered concerning the practical usage of dual-channel

analysis of nasalization. It is whether a simpler device, like the NasalView, that acquires

not-perfectly-separated dual-channel data can be used to perform a similar analysis based

on the above transfer ratio function approach. We propose to answer this question in an

empirical way. That is, we will design a nasalization detector using features extracted

from the not-perfectly-separated dual-channel speech signals as input and test how well it

performs.

As an example, Figure 5.2 shows the ONTRIF spectrogram of a sample word (�dean�)
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recorded with the NasalView device. The oral and nasal signals are both down sampled

to 16 kHz and segmented into frames of 20ms length with a frame shift of 10ms. The

ONTRIF of each frame was estimated in the same way as the previous experiment, and

the resulting frequency response composes the spectrogram. It can be seen that detailed

spectral di�erences of di�erent oral-nasal articulatory con�gurations (vowel /iy/, nasalized

vowel /iy-n/, and nasal /n/) are visible in the low frequency range, which is more distinct

when the spectra are converted into Mel-scale. Visual examination of the spectrograms of

other sample signals also indicates that the ONTRIF obtained from the NasalView device

contains information that can discriminate di�erent oral-nasal con�gurations. Therefore,

it is expected that robust nasalization features can be extracted from the ONTRIF analysis

of the NasalView signals.

5.3 Nasalization detector

5.3.1 Feature extraction algorithm

According to the above observations and analyses of the real dual-channel speech samples,

the magnitude responses of ONTRIFs characterize di�erent oral-nasal coupling conditions.

In order to build an automatic detector of these nasalization conditions, we propose the

following algorithm to extract nasalization features from the signals.

First, the digital sound pressure signals recorded from the oral and nasal channels

are high-pass �ltered (Fc = 50Hz) simultaneously to eliminate any possible DC and low-

frequency noise that may be captured during data acquisition. Next, the signals are seg-

mented into equal-length short-time frames with a �xed frame shift. For each pair of

oral and nasal frames, a set of parameters of the ONTRIF, T pn/m (z), is estimated using

the method introduced in Section 4.3. Then the frequency response of the ONTRIF is

evaluated at frequencies evenly located from 0Hz to the half of the sampling frequency,

resulting in a discrete version of the magnitude response,
∣∣∣T pn/m [k]

∣∣∣2, in which k is the

index of sampling frequencies. The logarithm of the discrete magnitude response is cal-

culated, and processed with a bank of triangle �lters. These �lters are generated with

Skowronski and Harris' algorithm (2003), as shown in Figure 5.3. The centers of the �lters
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Figure 5.3: Mel-scale ERB �lter bank. In this example, there are 91 triangle �lters covering
the frequency range from 0 to 8,000Hz.

are evenly spaced along the Mel-scale, and the band of the each �lter is determined by

the equivalent rectangular bandwidth (ERB) function (Moore and Glasberg, 1983) at its

central frequency. The amplitudes of the �lters are normalized by scaling them to a con-

stant energy. A set of Mel-scaled featuresM [i], are obtained by adding the log-magnitude

values weighted by each triangle �lter, in which i is the index of the Mel-bins. Then the

type-II discrete cosine transform (DCT-II) is applied to M [i], obtaining a set of cepstral

coe�cients, C [j], in which j is the index of the j-th component. The procedure iterates

until the cepstral coe�cients of all framed are obtained. These coe�cients are used as

nasalization features of each frame.

The idea behind the above algorithm is to use a small set of coe�cients to represent the

shape of the magnitude response of the ONTRIF. The procedure is similar to the algorithm

for MFCC extraction. The sampling operation discretized the magnitude response. The

Mel-scaling operation reduces the frequency resolution unevenly, with higher resolution

in the low-frequency range than that in the high-frequency range. The DCT operation

compresses the Mel-scaled features to a lower dimensional range, and obtain a set of

approximately uncorrelated components.
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5.3.2 Nasalization detector

In order to make usage of the above nasalization features, a nasalization detector is designed

to discriminate three di�erent oral-nasal coupling conditions during speech, namely vowel-

like (Vo), nasal (Ns), and nasalized vowel (Nv) conditions. A simple design is to adopt a

Bayesian classi�er, in which the conditional probability distribution of nasalization features

given each class, p (x/s), is modeled by a Gaussian PDF or a Gaussian mixture model

(GMM). The prior of each nasalization condition is assumed to be the same, so that the

Bayesian decision rule is simpli�ed as

S∗ = arg max
sj

[p (x/sj)] , sj ∈ {V o,Ns,Nv} , (5.1)

in which x is a vector of nasalization features of a frame, and sj is one of the nasalization

condition to be decided. When the detector is used to determine the class of a segment of

speech, the feature vectors of all the frames in the segment can be simply assumed to be

independent of each other, thus the class conditional probability of the whole segment (or

token) is the multiplication of each frame's class conditional probability.

The classi�er can be trained with labeled vectors of nasalization features. Given the

training data, the mean vector and covariance matrix of a Gaussian PDF can be estimated

directly, or the parameters of a GMM can be estimated iteratively with the expectation-

maximization (EM) algorithm (Dempster et al., 1977).

5.4 Experiments

5.4.1 Speech materials

In order to explicitly distinguish the three nasalization conditions during speech, we design

a group of special words in the forms of NVN and CVC. In these words, N is a nasal chosen

from /m/, /n/ and /ng/; V is a vowel chosen from /iy/, /ae/, /aa/ and /uw/; and C is

a plosive chosen from /t/, /d/, /p/, /b/, /k/ and /g/. Since there are no phonemically

contrastive nasal vowels in American English, and nasalized vowels result from context

e�ects, we assume that the vowels in the NVN group are fully nasalized. While in the

CVC group, we deliberately insert vowels between plosives, so it is reasonable to assume



88

that they are not nasalized by typical speakers. There are 48 words in total for a session

of recording, which contains 24 vowels and 24 nasalized vowels. During the recording

procedure, each word is inserted in the carrier sentence, �Say _ please�.

The data were recorded by 3 male and 3 female native American adult speakers. Each

speaker made 3 repetitions of the recording sessions. The NasalView device was used to

collect the dual-channel acoustic signals. The signals were ampli�ed and recorded simul-

taneously to the hard drive of a computer through two channels of a M-Audio Duo USB

Audio Interface. Waveforms were sampled at 16 kHz and stored in 16-bit PCM format.

All recordings were made in a quiet room. At the beginning of each recording session,

the gains of two channels were calibrated to the same level. After recording, phoneme

boundaries of the words in the sentences were manually marked. The boundaries were

decided by visual inspection of energy changes and spectral discontinuities of the signals

in both channels.

In order to compare the dual-channel features with conventional single-channel features,

we generated a pseudo-single-channel corpus by arithmetically adding up the recorded

dual-channel data. Auditory examination of the resulting signals showed no perceptual

di�erence from the acoustic signals recorded with a single microphone.

Nasalization features were extracted from the dual-channel data according to the algo-

rithm presented in Section 5.3.1. The frame length for feature extraction was 20milliseconds,

and the frame shift was 10 milliseconds. For each frame of the signals, a 25-dimensional vec-

tor of coe�cients was calculated. For the purpose of comparison, a 25-dimensional MFCC

vector was also calculated from the corresponding frame of the pseudo-single-channel sig-

nal. Both dual-channel and single-channel feature vectors were grouped for each vowel,

nasal and nasalized vowel tokens according to manual segmentation labels.

5.4.2 Experimental design

The main purpose of the experiments is to examine whether the proposed feature, ex-

tracted from the dual-channel data, can reliably discriminate the three di�erent oral-nasal

coupling conditions during speech. Both dual-channel features and single-channel features

were used in parallel to train classi�ers and to test recognition rates for the purpose of
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Classi�er B
Correct Wrong

Classi�er Correct (+A, +B) (+A, -B)
A Wrong (-A, +B) (-A, -B)

Table 5.1: Classi�cation results of two classi�ers. There are four combinations of the
results that two classi�ers can make decisions about one data sample.

comparison. Two recognition tasks were designed: one is speaker-dependent, the other is

speaker-independent.

In the speaker-dependent (SD) task, two sessions of each speaker's data were used to

train a classi�er and the unused session was left for testing. There were 3 combinations for

each speaker, adding up to 18 sub-tasks. Due to the amount of training data of each sub-

task, the conditional distribution of each class was simply modeled with a single Gaussian

PDF.

In the speaker-independent (SI) task, one speaker's data were left out for testing, while

the data of other �ve speakers were used to train the classi�er. The speakers were tested

successively in 6 sub-tasks. In each sub-task, a GMM was trained for each oral-nasal con-

dition of the classi�er. Preliminary validation experiments within training sets suggested 4

components of the GMM performed best on average, given the existing amount of training

data, so the number of mixtures of each GMM was �xed to 4.

5.4.3 Results and discussion

In both tasks, the frame classi�cation rate (FCR) and token classi�cation rate (TCR)

were calculated by comparing decisions made by the classi�ers with manual labels. The

classi�cation rate serves as an indicator of how well the feature can discriminate nasal-

ization conditions. McNemar's test, suggested for benchmark tests of speech recognition

systems (Gillick and Cox, 1989), was applied to evaluate the signi�cance of the di�er-

ence between classi�cation results of the classi�ers using dual-channel features and single-

channel features, respectively. Assuming the classi�er using dual-channel features is A

and the classi�er using single-channel features is B, for each sample of testing data, the

classi�cation result will be one of the pairs which is represented in Table 5.1. Essentially,
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Dual Single Number

Vo Nv Ns Vo Nv Ns of samples

Vo 97.38 1.32 1.30 96.37 2.10 1.53 8104

FCR (%) Nv 1.06 92.54 6.41 5.53 85.73 8.74 10610

Ns 0.17 1.06 98.77 1.92 3.14 94.94 11044

Avg. FRA (%) 96.23* 92.35 total: 29758

Vo 98.84 0.93 0.23 97.77 0.23 0.00 432

TCR (%) Nv 0.00 96.75 3.25 2.32 96.98 0.70 431

Ns 0.00 0.23 99.77 0.93 0.93 97.20 858

Avg. TRA (%) 98.45 97.99 total: 1721

Table 5.2: Speaker-dependent (SD) task. Confusion matrices of frame and token classi�-
cation rates are obtained from SD classi�ers trained with dual-channel and single-channel
features, respectively. The total numbers of testing samples are also listed. A star (*)
means the di�erence is signi�cant.

McNemar's Test is a Sign-Test. All (+A, +B) and (-B, -B) pairs are ignored and it is

tested whether (+A, -B) is as likely as (-B, +A) by labelling the former as + and the

latter as - and performing a Sign-Test on the number of + and - labels.

Table 5.2 shows the classi�cation results obtained in the SD task. The testing data

samples from all the speakers are presented together. Confusion matrices of FCRs and

TCRs are compared between dual-channel features and single-channel features. In the

table, the row symbols (Vo/Nv/Ns) are the manually labeled oral-nasal conditions, while

the column symbols are classi�cation results decided by the classi�ers. The total numbers

of frame and token samples for testing are listed for each class. The diagonal element in

each confusion matrix is the correct classi�cation rate of a certain oral-nasal condition.

Comparing the correct FCRs or TCRs between dual-channel features and single-channel

features, the higher one is represented in bold in the table.

The recognition accuracy is calculated as the average of the correct classi�cation rates.

For dual-channel features, the average frame recognition accuracy (FRA) is 96.23%, and the

average token recognition accuracy (TRA) is 98.45%; while for single-channel features, the

average frame recognition accuracy is 92.35%, and the average token recognition accuracy is

97.99%. McNemar's tests show that the di�erence of frame recognition accuracies between

dual and single features is signi�cant at the 0.001 level, while the di�erence of token

classi�cation accuracy is not signi�cant (p = 0.028) at the same level.
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Dual Single

Vo Nv Ns Vo Nv Ns

Vo 92.97 6.40 0.63 78.88 15.12 6.01

FCR (%) Nv 5.74 71.81 22.45 48.24 43.28 8.48

Ns 0.55 8.29 91.16 28.91 13.57 57.52

Avg. FRA (%) 85.31* 59.89

Vo 95.83 3.94 0.23 78.47 13.43 8.10

TCR (%) Nv 6.96 84.69 8.35 42.92 42.00 15.08

Ns 0.70 24.13 75.17 17.25 11.42 71.33

Avg. TRA (%) 85.23* 63.93

Table 5.3: Speaker-independent (SI) task. Confusion matrices are comparable with those
in Table 5.2. The total numbers of testing samples are the same to those in Table 5.2. A
star (*) means the di�erence is signi�cant.

Table 5.3 shows the classi�cation results of the SI task. It can be seen that all the

correct classi�cation rates of dual-channel features are higher than those of single-channel

features. For dual-channel features, the average frame recognition accuracy is 85.31%, and

the average token recognition accuracy is 85.23%; while for single-channel features, the

average frame recognition accuracy is 59.89%, and the average token recognition accuracy

is 63.93%. McNemar's tests show that the di�erences of both frame and token recognition

accuracies between dual and single features are signi�cant at the 0.001 level.

The classi�cation results of the SD task show a moderate advantage of the dual-channel

features over the conventional single-channel MFCC features. In the SI task, the perfor-

mances of both features degrade, but the drop in performance is much larger in the single-

channel tests than in the dual-channel tests, indicating the dual-channel features are more

robust.

To reduce the speaker dependency of the classi�cation results, we also report the testing

results of each individual speaker in Table 5.4 to 5.9, respectively. It can be seen that,

in the SD task, dual-channel features of almost all speakers (except Speaker #4) perform

better than corresponding single channel features; and in the SI task, dual-channel features

perform uniformly better. McNemar's tests are performed on each speaker's data. A star

mark in the tables indicates the di�erence is signi�cant at the 0.001 level. The frame

classi�cation di�erences of all speakers except #4 (p = 0.407) in the SD task are signi�cant.
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The token classi�cation di�erences in the SD task are all not signi�cant. In the SI task,

all frame classi�cation di�erences are signi�cant; the token classi�cation di�erences of

three speakers (#1, #3 and #6) are signi�cant. These results further con�rm that the

dual-channel features are more robust to speaker variations.

5.5 Summary

In this chapter, we developed an algorithm of feature extraction for detecting di�erent

nasalization conditions from dual-channel acoustic signals. The algorithm is based on

the analysis method of the ONTRIF. We presented a simple way to build an automatic

nasalization detector based on the ONTRIF features. A special dual-channel corpus was

designed and collected in order to test the performance of the proposed features. The

proposed features perform better than the conventional single-channel MFCC features in

both speaker-dependent and speaker-independent experiments. These experimental results

demonstrate the advantage of ONTRIF analysis for such a speci�c task.

The results lead to a novel approach to automatically detect nasalization conditions

using speech signals that are acquired with a simple dual-channel setup. It is also demon-

strated that the extracted nasalization features are informative and robust to speaker

variations for practical nasalization analysis and detection systems.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have investigated non-invasive dual-channel measurement techniques for

capturing the nasalization information during speech production, and we have proposed

analysis techniques for extracting the nasal resonance features and applied the techniques

to automatic detection of nasal resonance conditions during speech.

Though the nasalization process is simply achieved by velopharyngeal (VP) movements

during speech, the aerodynamic and acoustic consequences are complicated because of 1)

the variations of VP controlling strategies among speakers, 2) the coupling e�ects of among

di�erent cavity of the vocal tract, and 3) the ambiguities caused by the mixing of signals.

Since the techniques for direct observations of the VP port are not easily accessible, it is

desirable to develop instrumental devices and analysis techniques that capture and extract

the VP information from aerodynamic or acoustic signals. The spectral characteristics

of nasalization that were extracted from single-channel acoustic signals with conventional

spectral analysis methods are either inconsistent or variant. For the purpose of more

informative and reliable measurement and analysis, we explored the possibility of using

multi-channel signals during the analysis.

The following contributions were made in this thesis:

• Two methods of multi-channel measurement were investigated. One was the combi-

nation of an aerodynamic and an acoustic channel, and the other was a dual-channel

acoustic device. A novel aerodynamic device was designed and made to collect nasal
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air�ow signals. The advantages of the multi-channel measurement over the conven-

tional single-channel measurement were justi�ed: the additional aerodynamic signal

did capture nasal emission information; the dual-channel acoustic signals may cap-

ture more detailed and accurate information about nasal resonance.

• A dual-channel transmission-line acoustic model was analyzed. The coupling e�ects

were shown by the transfer function of each channel's output. The spectral ambi-

guity caused by mixing two signals was also shown. A special oral-nasal transfer

ratio function (ONTRIF) was derived from the dual-channel model. The derivation

revealed nice spectral properties of the ONTRIF.

• An analysis method was presented to estimate the parameters of the ONTRIF, given

two output signals of the dual-channel model. An articulatory synthesizer was built

to simulate the nasalization process, and the analysis method was validated by the

simulated signals.

• The ONTRIF analysis method was generalized and applied to naturally recorded

dual-channel acoustic signals that were collected by separated nasal and oral micro-

phones. An automatic Bayesian detector of di�erent nasal resonance statuses was

trained and successfully tested.

6.2 Future work

The initial motivation of our studies on nasalization problems was to enhance the intelli-

gibility of disordered speech in an analysis-modi�cation-synthesis framework. One of the

obstacles in the way is that the conventional speech analysis techniques are not capable

of extracting enough articulatory information that may be used to guide the method of

modi�cation. The studies in this thesis focus on the nasalization aspect that occurs in

both normal and disordered speech. The techniques developed in this thesis provide novel

instrumental and analysis tools to possible applications including clinical assessment and

enhancement of disordered nasal resonance, phonetic studies of the nasalization process,

and special feature extraction for speech recognition.
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As a direct usage of the current research results, it is possible to develop an automatic

and objective procedure for the assessment of nasal resonance function based on the tech-

nique of the dual-channel ONTRIF analysis. The nasalization detection technique can be

combined with the existing measurement of nasalance scores to de�ne more robust mea-

sures of nasality. With the information of di�erent nasal resonance conditions in speech,

not only a more meaningful �energy-balance� based index but also a �temporal� based in-

dex can be automatically obtained. One direction of the future research can be to study

the correlation of the new measures with the perceptual assessment of nasal resonance.

The results from our studies on the aerodynamic measurement of nasalization indicate

that the nasal emission problems would be better analyzed separately from the resonance

problems. Though we did not investigate in this direction more deeply, we expect that an

aerodynamic measurement of nasal air�ow that is more robust to position of the sensor

may help us to detect the weakened segments in the acoustic signals in some disordered

speech. Future work in this direction is to improve the robustness of the air�ow device we

have designed.

From the phonetic study point of view, some �ndings in our research have shown com-

plex nasal channel e�ects during regular vowel production. There still lacks a satisfactory

model for the velum-transmission phenomena in speech. More dual-channel acoustic data

and analysis may provide extra knowledge about the process of vowel production. This

knowledge may eventually bene�t both synthesis and recognition applications.

From the speech recognition point view, the nasalization feature has been regarded

as a useful cue but is di�cult to be extracted with conventional signal precessing front-

ends. The dual-channel analysis approach implies a new way of feature extraction for a

speech recognition system. Though used rarely nowadays, multi-channel acoustic front-

end for recognition may be used in some adverse environments, such as in the helmet of a

pilot. It is worthy to try similar features that are extracted from multiple channels for the

recognition purpose.
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