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Abstract 

Resting state functional connectivity Magnetic Resonance Imaging (rs-fcMRI) is a non-

invasive technique that can be used to investigate the brain’s functional network organization in 

both healthy individuals and patients with psychiatric disorders. A crucial discovery that has 

emerged from the past decade of cognitive neuroscience is that using a network characterization 

of synchronized functional activity with rs-fcMRI can be leveraged to identify complex and 

reproducible topological systems-level organization of the brain. We have also begun to identify 

how this organization is altered in psychiatric and neurological disease. However, despite these 

advances, our understanding of what drives this organization in both health and disease has seen 

limited progress. This reality is, in part, because the molecular substrates that shape functional 

network organization remain poorly understood and require the integration of data across various 

scales of investigation (i.e. data at the cellular and molecular level). Another reason for our lack 

of progress is that the measurements used in clinical investigation of psychiatric disorders (e.g. 

non-invasive measures such as fMRI) are often distinct from measurements used in preclinical 

animal models (e.g. single-unit electrophysiology, histology/histochemistry, etc), which are 

uniquely helpful in elucidating the causal mechanisms and biological underpinnings associated 

with various mental health issues. In order to progress on these fronts, the current work is 

separated into two projects which, 1) validate the use of rs-fcMRI in preclinical models and 

investigate how functional connectivity (FC) is shaped by its cellular and molecular substrates, 

and 2) apply these validated techniques to a preclinical animal model that can be then be 

compared to humans using the same non-invasive rs-fcMRI measurements.  

Accordingly, project 1 presents a novel linear model to explain functional connectivity in 

the mouse brain by integrating systematically obtained measurements on axonal connectivity, 
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gene expression, and rs-fcMRI. The model suggests that functional connectivity emerges from 

additive and interactive combinations of white matter connectivity and inter-areal similarities in 

gene expression. By estimating these contributions, anatomical modules are identified in which 

correlated gene expression and anatomical connectivity cooperatively, versus distinctly, support 

functional connectivity. We also provide evidence that not all genes contribute equally to 

functional connectivity and highlight candidate gene clusters, which may contribute most to the 

signal. This project validates functional connectivity as a viable method that can be applied to 

preclinical animal models, and establishes new insights on the biological underpinnings of 

synchronized brain activity. 

The second project applies rs-fcMRI to a preclinical animal model characterizing the 

effects of prenatal exposure to chronic inflammation, an important risk factor for developmental 

disorders. Gestational inflammation is characterized by elevated levels of pro-inflammatory 

cytokines, including interleukin 6 (IL-6). IL-6 has been shown to contribute to developmental 

disorders, and has been associated with various risk factors for mental health issues including 

prenatal exposure to stress, high fat diet, and viral infection. To investigate the role of elevated 

prenatal IL-6 on offspring brain and behavioral development, dams were administered chronic 

increases in systemic IL-6 though an osmotic mini pump throughout their gestational period.  

Offspring were then longitudinally tracked on component behaviors associated with 

developmental mental health disorders. Rs-fcMRI network structure in IL-6 exposed offspring is 

assessed in early (PND 30) and late (PND 55) development. Relative to controls, offspring from 

IL-6 administered dams show subtle differences in social behavior and locomotion, but exhibit 

more persistent anxiety-like behavior into early adulthood. IL-6 offspring also show an altered 

developmental trajectory of functional connectivity in the amygdala as well as the subcortical 
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network, and parietal and frontal cortex networks more broadly. This altered developmental 

trajectory was characterized by relative under-connectivity during early development, but over-

connectivity late in development. Further, amygdala connectivity also relates to anxiety-like 

behavior such that increased anxiety is related to increased amygdala connectivity to cortical and 

subcortical structures. Overall, this study highlights the association between behavioral and 

functional connectivity alterations resulting from the prenatal exposure to IL-6. Importantly, 

these methods also enable us to compare these causal IL-6-induced changes to correlational 

studies done in infants and children who underwent gestational exposure to elevated 

inflammatory cytokines, as well as children and adolescents with developmental disorders. 

Through the use of non-invasive rs-fcMRI measurements in preclinical animal models, we can 

progress in our understanding of how functional connectivity relates to the underlying biology, 

and how that relationship may unfold in human disease. Insights obtained from such efforts will 

undoubtedly be crucial in the development of more targeted treatments and interventions for 

neuropsychiatric disorders.  
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Chapter 1: Introduction 

Section 1: Bridging the gap between human and animal models using functional 

connectivity across species 

 

In the United States alone, an estimated 44 million adults suffer from 

mental illness and 55 million people suffer from neurological conditions 

(Alzheimer’s Association, 2014; WHO, 2014). Despite decades of effort, progress 

with regard to treatment has been limited. This is in part because the field of 

neuroscience is extremely broad, and complex, spanning multiple spatial scales of 

inquiry. Churchland and Senjnowski’s famous diagram provides an illustration of 

these levels (Churchland & Sejnowski, 1992) (see Figure 1 for a modified version 

of this figure). To date, a great deal of research has been conducted to characterize 

brain functioning at the lowest, i.e. the cellular and molecular level. This level 

includes the study of ion-channels, receptors, and transmitter dynamics, as well as 

the influence of gene expression on protein production critical for cellular 

function. Insights at this lower level are critical to our understanding of the brain, 

but alone cannot explain complex behavioral and cognitive phenomena.  

At the next level, neuroscience examines the structure and function of 

cellular subunits such as axons, synapses, and dendritic spines. The formation and 

modification of synaptic connections, cellular proliferation, and cell death all 

contribute to the patterning of the nervous system. We also know that neurons are 

organized into local circuits, columns, and topographic maps underlying 

sensorimotor and perceptual functions. Understanding these intermediary levels is 

critical, but likely still inadequate to explain fully complex cognitive and behavioral processes.  

Figure 1.1. Modified from 

Churchland & Sejnowski’s 

(1992) diagram of the levels of 

organization across the central 

nervous system. The nervous 

system is organized on multiple 

spatial scales. These scales 

range from the molecular and 

cellular level, to intermediate 

levels dealing with local 

circuits, to the level of 

functional network 

organization between regions. 

An understanding of how these 

levels of inquiry relate to one 

another, and are impacted in 

disease states, is a critical for 

progress in neuroscience and 

medicine. 
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Technologies such as Magnetic Resonance Imaging (MRI) have allowed us to study 

regional patterns of brain activity, interactions between regions and functional systems, as well 

as large scale network organization across the brain at the highest level (Figure 1.1). These 

technologies have allowed us to gain insights into the ways in which large brain organization 

relate to complex behaviors, and critically, how these measures are affected in human disease. 

That being said, alone, none of these scales of inquiry is sufficient to explain the complexities of 

the brain. We are only beginning to understand the inter-relationships among these scales of 

inquiry and the way in which each affects behavior in health and disease. 

Accordingly, part of the reason for our relative lack of progress in treating brain related 

disease is due to an incomplete understanding of the convergence between these levels of 

inquiry. For instance, neuroscientific investigations at the top, systems level, of brain function, 

are typically done with non-invasive brain imaging techniques such as functional MRI (fMRI). 

Traditionally, this level of inquiry has been reserved for studying human brain function. 

Conversely, the cellular and molecular level has generally been investigated using animal 

models. In the following thesis, we begin to highlight how using non-invasive imaging such as 

MRI in preclinical animal models can begin to fill this gap between research done in humans and 

basic science research that is often done in preclinical animal models. Using these 

measurements, we identify relationships between levels of inquiry and further our knowledge of 

the biological bases of non-invasive measures, in particular fMRI. Next, we apply these 

measurements to preclinical animal models to both test the causal mechanisms underlying 

changes to network topology (measured with fMRI), and importantly, could be used to compare 

between these measurements obtained in both human and animal models of disease.  

Preclinical models of disease are essential for neuroscience 
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Preclinical translational animal models provide a powerful way to understand the 

pathobiological mechanisms underlying disease states, and for testing therapeutic interventions 

in a controlled environment. However, one problem with these models is that their relevance and 

overlap with human disease is often unknown. This is, in part, because we typically use a 

separate set of measurements in animal models vs. humans. This fact leads to a major gap 

between basic and translational science. This gap results in a lack of understanding in how brain 

function relates between humans and animal models, and how cellular and molecular 

mechanisms influence the measurements we use in humans.  

Focusing on measurements that can be collected in both humans and animal models 

allows us to work towards the following goals. First, the use of these non-invasive measurements 

in animal models allow us to understand their biology by linking these measurements to their 

cellular and molecular underpinnings. Further, as stated earlier, the degree to which the animal 

model is representative of the disorder being studied is often unclear. By understanding how 

atypical brain function in human disease overlaps with the same measurements in animal models 

of the disorders, we can gain a sense of their shared and distinct biological presentations. Finally, 

the use of animal models allows for causal manipulation to evaluate and describe risk factors for 

human developmental neuropsychiatric disorders and assess whether they are indeed a source of 

atypical brain function seen in human studies that typically assess correlational relationships. 

Resting state functional connectivity as a bridge measurement between species 

An ideal measurement to bridge this gap between human and animal research is resting state 

functional connectivity MRI (rs-fcMRI). Rs-fcMRI is a powerful tool for investigating functional 

brain organization across diseases states including developmental disorders. The technique relies 

on the temporal correlation of spontaneous blood oxygen level dependent (BOLD) signals 
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between spatially distributed brain regions when a subject is not performing an explicit task. The 

BOLD signal is used to estimate brain activity. However, BOLD measurements are indirect, and 

rely on the ability to measure the magnetic properties of hemoglobin and the fact that blood flow 

increases more than the rate of oxygen metabolism when local neuronal activity increases (Scott 

A. Huettel; Allen W. Song; Gregory McCarthy et al., 2004). More specifically, when 

hemoglobin loses an oxygen to become deoxyhemoglobin, its iron becomes paramagnetic, and 

influences the magnetic field experienced by protons in surrounding water molecules (Attwell & 

Iadecola, 2002; Ogawa, Lee, Kay, & Tank, 1990). T2*-sensitive MRI sequences, the sequences 

used to measure the BOLD signal, take advantage the fact that quicker signal loss (transverse 

magnetization decay) occurs in the presence of deoxyhemoglobin (Chavhan, Babyn, Thomas, 

Shroff, & Haacke, 2009). During neuronal activity, an increase of oxygen usage is followed 

within a few seconds by a larger fractional increase in blood flow and an increase in blood 

volume, resulting in a net decrease of the amount of deoxygenated hemoglobin present (Malonek 

et al., 1997). 

Local field potentials (LFP) are an electrophysiological signal that measures neuronal 

activity by summing the electric potentials recorded in the extracellular space in brain tissue. 

LFPs are an invasive method for studying brain activity so are only performed while under open 

brain surgery in humans or in preclinical animal models. Simultaneous fMRI/LFP studies have 

shown that fMRI responses are tightly linked to neural activity, and particularly synaptic activity 

thought to be reflected in the gamma band of the LFP signal (Logothetis, Pauls, Augath, Trinath, 

& Oeltermann, 2001; Scholvinck, Maier, Ye, Duyn, & Leopold, 2010). Together, mounting 

evidence using new techniques for studying and controlling neuronal activation, including 
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simultaneous fMRI and optogenetics studies (Lee et al., 2010; Palmer, 2010), further conclude 

that the BOLD signal is driven by changes in neuronal signaling.  

A measure derived from the BOLD signal is functional connectivity (FC), which 

describes the relationship between BOLD activation patterns of anatomically separated brain 

regions and reflects the level of functional communication between regions. More detail on these 

methods are provided in the sections below and figure 1.2 provides an overview of this 

technique.  

FC is an ideal measure to compare human and animal physiology for a number of 

reasons. The first reason is that it is a non-invasive measure that can be reliably and easily 

assessed in both humans and animals. Further, FC evaluates regional interactions that 

spontaneously occur in the absence of a task. This makes FC an ideal measurement for 

populations who have difficulty performing tasks, such as developmentally delayed or 

cognitively impaired populations, and for animal models, in which task related brain measures 

can be difficult to administer.  Finally, FC is an ideal measure because it has been widely used to 

elucidate abnormal connectivity patterns in a variety of neurological and psychiatric conditions 

(M. Greicius, 2008), and has been shown to relate to clinically meaningful outcomes, cognition, 

and behavior (Craddock, Hu, Mayberg, & Holtzheimer, 2009; M. Greicius, 2008; Raichle, 2015).  

Section 2: Using resting state functional connectivity in rodents 

Rodent models allow the assessment of the cellular and molecular mechanisms that 

underlie non-invasive imaging measures (i.e. rs-fcMRI), which are used to assess human disease. 

They also allow us to probe causal mechanisms of disease related phenotypes observed with non-

invasive imaging. They offer advantages in terms of experimental and environmental control, 

two critical foundations of the scientific method. Multiple groups have taken initial steps towards 
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using resting state connectivity as a bridge between humans and preclinical animal models. The 

ways in which these studies are performed will be briefly outlined in the following section. 

Defining regions of interest  

Prior to examining connectivity patterns, first, one must be able to define meaningfully 

delineated brain regions. These delineations can be derived from anatomical or physiological 

observations. However, regions used for analyses, particularly in preclinical animal models, are 

generally derived by parcellating cortical and subcortical gray matter regions according to areal 

borders (Markov et al., 2014; Oh et al., 2014). One advantage of rodent models is that these 

delineations have been well studied and histologically validated in rats and mice (Paxinos & 

Franklin, 2007; Schwarz et al., 2006). Once areal definitions have been defined, structural or 

functional relationships between regions can be estimated, either through histological techniques 

(e.g. anatomical tracing, gene expression, or MRI imaging).  

Seed-based connectivity and connectivity matrices 

Seed-based connectivity is a method for assessing a regions FC (i.e. temporal correlation 

in BOLD activity) to other regions in a given areal atlas. Pairwise relationships between all 

nodes (i.e. multiple regions/seeds) can also calculated to obtain connection matrices that describe 

connectivity patterns between all regions in the brain. Connection matrices can then be averaged 

across multiple scans or subjects. These matrices are often thresholded to remove inconsistent or 

weak connections (Sporns, 2013).  FC between individual connections or between larger 

anatomical divisions (frontal cortex, subcortical, limbic, sensory cortex, etc.) can then be 

compared between subject groups or as they change through development. The functional 
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connectome refers to the organization of FC between all region pairs, and has been the focus of a 

great deal of research in recent years (Sporns, 2011).  

 

Figure 1.2 Overview of resting state functional connectivity. FC measures the temporal 

correlation of brain activity between brain regions.  A) Brain activity, measured by the BOLD 

signal (y axis) is measured for a particular brain region across time (x axis). The temporal 

correlation between two regions is then assessed. Regions with highly similar patterns of FC, in 

this example the left and right motor cortex, and correspondingly high correlation (r) is shown in 

the top panel of section A. The bottom panel shows regions with dissimilar patterns of 

connectivity, in this example between the motor and visual cortex, and low correlation (Figure 

adapted from (Van Dijk et al., 2010)). B) These comparisons can be done between multiple 

regions, as in this hypothetical example using three regions. Here one can compare timeseries 

between region pairs to construct a C) correlation matrix, which quantifies this similarity in 
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BOLD signal activity across time. Note that some pairs of regions (i.e. connections) will show 

higher correlation than others, but that the diagonal represents correlations between the same 

regions (and are not used for analyses). D) By comparing these relationships across the brain, 

maps can indicate regions with similar connectivity.  For instance, correlations between the 

posterior cingulate (PCC) seed region and all other brain regions reveals areas with both highly 

similar functional connectivity patterns (in red), for instance the medial prefrontal cortex (MPF). 

In blue are regions that negatively correlated patterns of connectivity to the PCC (Fox et al., 

2005). Understanding the organization of these relationships in health and disease is a major goal 

in neuroscience.  

Functional Connectivity in rodents 

As in humans (Cohen et al., 2008; Cole, Pathak, & Schneider, 2010; Gordon et al., 2014), 

resting state networks in preclinical animal models generally reflect anatomical divisions and 

functional modules, in both the rat (Becerra, Pendse, Chang, Bishop, & Borsook, 2011; B. B. 

Biswal & Kannurpatti, 2009; Hutchison, Mirsattari, Jones, Gati, & Leung, 2010; Jonckers, Van 

Audekerke, De Visscher, Van der Linden, & Verhoye, 2011; Majeed et al., 2011; Pawela et al., 

2008; Zhao, Zhao, Zhou, Wu, & Hu, 2008) and mouse (Mills et al., 2016; Sforazzini, Schwarz, 

Galbusera, Bifone, & Gozzi, 2014; Stafford et al., 2014). These connectivity patterns often 

follow a symmetric structure (i.e., similar FC patterns on left and right hemispheres), including 

strong bilateral connectivity between somatosensory, motor, and visual cortex, hippocampus and 

subcortical areas, such as the caudate putamen, thalamus, superior colliculus, and hypothalamus 

(Chuang & Nasrallah, 2017).  

Rodents also display large scale-cross modular connectivity patterns. An example of a 

large scale FC network is the default mode network (DMN). The DMN is comprised of a set of 
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regions that consistently show strong FC between the constituent nodes in the resting state. One 

way to identify the DMN is by using the retrosplenial or medial prefrontal cortex as the seed 

region and generating a timeseries correlation-based FC map between that seed region and the 

rest of the brain. Multiple groups have identified DMN-like connectivity patterns in rats (Chuang 

& Nasrallah, 2017; Lu et al., 2012) and mice (Stafford et al., 2014). Similarities between the 

rodent and human DMN is particularly robust between more well-conserved regions between 

species, such as the anterior cingulate, and retrosplenial, parietal, prelimbic, and 

auditory/temporal association cortical areas, and dorsal hippocampus (Lu et al., 2012; Upadhyay 

et al., 2011). A more detailed discussion on how the DMN and other networks compare between 

humans and animal models is presented in Chapter 4 section 3.   

In short, comparative studies suggest that aspects of the functional connectome are shared 

between preclinical animal models and humans. Given the wide use of FC for characterizing 

human disease (Di Martino et al., 2014; M. Greicius, 2008), resting state networks may be able 

to serve as a translatable method for examining relationships between preclinical animal models 

and the human disorders they are meant to elucidate. However, the use of preclinical animal 

research requires one to consider additional factors compared to human research; for instance the 

use of anesthesia during scanning.   

Additional considerations: Anesthesia 

Rodent models often require anesthesia, while humans do not. Although it is possible to 

acclimate rodents to restraints while inside the MRI without anesthesia (Henckens et al., 2015), 

this presents significant complications. For instance, constantly receiving strong sensory inputs 

from the MRI environment and the increased motion artifact during the awake condition often 

results in poor data quality compared to the sedated state.  Given the increased stress, potential 
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reaction to the loud environment, significant motion, and the requirement for habituation to the 

MRI, it is difficult to ascertain whether the awake condition is truly advantageous over the well 

documented effects of the low anesthesia state.  

Although anesthesia is known to elicit complicated effects on neural, metabolic and 

hemodynamic responses (Gao et al., 2017; Masamoto & Kanno, 2012), studies have 

demonstrated that resting state networks are highly reproducible and consistent across different 

anesthesia regimens at optimal dose (Chuang & Nasrallah, 2017). That being said, the choice of 

anesthesia should be carefully considered. The following section will briefly discuss two 

anesthetic agents commonly used in preclinical animal FC research and discuss their limitations 

and advantages. 

Isoflurane has been used extensively in rodents (Chuang & Nasrallah, 2017; Guilfoyle et 

al., 2013). As isoflurane is a quick, easy, and safe way to anesthetize animals and ensure good 

recovery post scan, it has been an attractive and commonly used choice in preclinical research. 

At a low dose, such as 1–1.5%, a strong focal and distributed network connectivity patterns can 

be obtained (Hutchison et al., 2010; Nasrallah, Tay, & Chuang, 2014; Stafford et al., 2014). 

Isoflurane is also an attractive choice because its gaseous nature allows for the maintenance of 

anesthesia levels to adjust for changes in respiration. This is not the case for injected anesthetic 

agents such as medetomidine. 

Low level of isoflurane (<0.5%) together with a low dose of medetomidine infusion is 

also a robust anesthesia protocol for detecting strong bilateral FC and human-like FC networks 

such as the DMN (Grandjean, Schroeter, Batata, & Rudin, 2014; Lu et al., 2012). A problem 

with medetomidine is the restrictive sedative duration and complications due to the critical 

nature of the route and timing of delivery (Hutchison et al., 2010; Liang, King, & Zhang, 2011). 

http://www.sciencedirect.com/topics/medicine-and-dentistry/hemodynamics
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For example, using a single bolus injection rather than continuous delivery of medotomindine 

could lead to a variable depth of anesthesia, physiological state, and could result in variable FC 

throughout the scan. For these reasons, the current report opted to use low dose isoflurane. Other 

anesthesia regimes or awake imaging protocols could be potentially beneficial for future 

research.   

Conclusion to rodent imaging section 

In summary, there is an emerging body of literature investigating the organization of the 

rodent functional connectome. The literature described shows that rodent FC organization 

follows known anatomical and functional networks (e.g. somato-motor and default networks), is 

often bilateral in organization, and has identified specific functional networks (the default and 

motor networks for example), which are similar to those seen in humans (Lu et al., 2012; 

Stafford et al., 2014).  

A major advantage of animal models is the ability to gain additional insights into the 

cellular and molecular mechanisms of the brain. Although our understanding of how biology 

influences FC is still in its infancy, advancement on these aims can be obtained through 

integrating these preclinical FC studies with data from detailed histological tracing studies and 

post mortem markers of genetic expression. Through this level of detailed investigation, we can 

further validate and expand understanding of the FC signal in a way that remains elusive in 

humans. 

Section 3. Goals of project 1 (validation) and project 2 (applications) 

The use of animal models allows investigation of questions we would not be able to 

probe in humans. This gives us the capability to contribute to our understanding of the 

mechanisms behind measurements we use in humans and to answer questions about the 

http://www.sciencedirect.com/topics/medicine-and-dentistry/physiological-state
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underlying influences on FC patterns related to human disease. This document is separated into 

two projects. The first project validates and explores the underpinnings of rs-fcMRI and the 

second applies FC methods to a translational model of human disease.  

The aim of the first project is to use rodent imaging to validate rs-fcMRI and to further 

understand the FC signal via integration with detailed molecular and cellular information. As 

such, project 1 explores the following open questions about the nature of FC. 1) It has been 

demonstrated that FC is to some degree guided by the underlying anatomical wiring. However, 

the details of these anatomical influences are unclear. Here we assess the degree that FC overlaps 

with direct (monosynaptic) and indirect (polysynaptic) anatomical pathways. 2) Recent evidence 

has suggested that FC is also influenced by the similarity in genetic expression between regions. 

To investigate this influence, we assess the overlap between FC and genetic similarity between 

regions, also referred to as correlated gene expression between region pairs. We then employ a 

novel method to identify which genes are most likely to relate to the emergence of FC between 

regions. 3) Finally, we assess the degree that gene expression and mono and polysynaptic axonal 

connectivity interact with one another and are spatially distributed in their influence on FC. 

Overall, project 1 helps to validate rodent FC, further our understanding of their mechanisms 

underlying FC, and identify potential genetic targets to later investigate as potential causal 

influences that give rise to FC.  

Using animal models, we can investigate more causal changes to FC in ways we could 

not in humans. For example, correlational studies in humans have identified prenatal exposure to 

inflammatory cytokines, namely IL-6. IL-6 may be a key mediator for risk factors including 

prenatal stress, high fat diet, and increased risk for developmental disorders (Ashwood et al., 

2011b; Wei, Alberts, & Li, 2013; Wu, Hsiao, Yan, Mazmanian, & Patterson, 2017). Although 
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these domains have been explored using FC in humans, and it has been theorized that IL-6 is a 

key factor mediating FC changes, the causal influence of FC change resulting from exposure to 

IL-6 is unknown.   

Under this context, project 2 aimed to understand how exposure to IL-6 affects offspring 

FC development and alters component behaviors associated with developmental disorders. To 

accomplish these goals dams were exposed to chronic elevations in IL-6 throughout gestation 

through the use of a surgically implanted osmotic mini-pump. Offspring were then longitudinally 

tracked on both behavior and FC network change during early and late development. We 

hypothesized that FC would change both within targeted networks and more broadly across the 

brain. Specifically, we hypothesized that prenatal IL-6 would alter amygdala FC, a key structure 

implicated in developmental disorders, stress, and anxiety (Monk, 2008; Roy et al., 2009). A 

targeted analyses of the amygdala also offers the benefit of allowing for comparison to similar 

studies done in humans prenatally exposed to IL-6 (Graham et al., 2017), infants exposed to 

stress (Graham et al., 2015; Qiu et al., 2015; Scheinost et al., 2016), and the wide literature 

implicating the amygdala in autism (Nordahl et al., 2012; Verhoeven, De Cock, Lagae, & 

Sunaert, 2010). In addition to focusing on the amygdala, this project examined large scale 

network reorganization to discover brain wide changes which may result from prenatal IL-6 

exposure. Finally, associations between FC and behavior were examined, with the hope of 

identifying critical circuits supporting component behaviors associated with developmental 

disorders.  

Overall, this project highlights behavioral and functional connectivity alterations 

resulting from prenatal exposure to IL-6. This project offers the ability to compare changes in 

preclinical animal models to what is observed in infants and children who were prenatally 
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exposed to inflammatory cytokines, as well as to children and adolescents with developmental 

disorders, for whom maternal cytokine exposure may also play a role. Accumulated insights 

from the current study and others like it will further our understanding of the causal influences 

on FC patterns associated with these disorders, and ultimately increase our ability to develop 

better ways of treating them.  

  



18 

 

Chapter 2: Project 1. Correlated gene expression and anatomical communication support 

synchronized brain activity in the mouse functional connectome 

 

Introduction 

The brain is organized into a network of synchronized activity that has a complex and 

reproducible topological structure (Bullmore & Sporns, 2009; D. Wang et al., 2015). Resting 

state functional connectivity (FC) MRI, a technique which measures inter-areal correlations in 

spontaneous brain activity, has been particularly useful for studying functional network 

organization in both health and disease. Local and global features of this functional network are 

carefully calibrated to support healthy cognition (Petersen & Sporns, 2015) and network 

dysfunction is seen in numerous neurodevelopmental (Grayson & Fair, 2017; Vértes & 

Bullmore, 2015) and neurodegenerative diseases (Fornito, Zalesky, & Breakspear, 2015; Seeley, 

Crawford, Zhou, Miller, & Greicius, 2009). Therefore, identifying the substrates that shape 

functional network organization is critical in linking molecular (e.g. gene transcription) and 

behavioral (e.g. psychometric) markers of disease to brain function.  

Despite an abundance of prior work examining the correspondence of large-scale 

functional and anatomical connectivity, the precise substrates that shape functional network 

organization remain unknown. Modeling approaches to predict FC networks based on macro- or 

meso-scale anatomical connectivity networks commonly simulate mass neuronal activity by 

optimizing parameters that describe local population dynamics as well as the contribution of 

inter-areal connectivity (Honey et al., 2009; Messé, Rudrauf, Benali, Marrelec, & Honey, 2014; 

Sanz-Leon, Knock, Spiegler, & Jirsa, 2015). These approaches allow for detailed theoretical 

exploration regarding the relative contributions of local dynamics vs global coupling, but are 

limited by a lack of empirical data regarding true areal differences in function. Furthermore, 
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analytic measures of anatomical communication appear to predict FC at comparable values 

(Abdelnour, Voss, & Raj, 2014; Goñi et al., 2014), suggesting an upper limit to the predictive 

validity of models based on anatomical connectivity alone.  

The integration of diverse data from different scales of investigation in such models may 

enhance our understanding of how functional networks are shaped. Although the idea is intuitive 

to most that FC may be guided by a combination of factors above and beyond anatomical wiring, 

studies investigating how the molecular properties of a given tissue influence these functional 

dynamics have historically been difficult to study and remain incompletely understood.  There is 

work emerging suggesting that gene expression and areal chemoarchitecture influence 

spontaneous functional brain activity. For instance, associations have been found between areal 

densities of excitatory receptors and strength of functional connections (Turk, Scholtens, & van 

den Heuvel, 2016; van den Heuvel et al., 2016). Others have found that correlated gene 

expression, a measure of transcriptional similarity between regions, is greater within than 

between functional networks, and that the genes driving these relationships are involved in ion 

channel activity and synaptic function (Richiardi et al., 2015). With that said, questions remain 

regarding the degree to which these relationships can be explained and might interact. Previous 

studies in this realm have been limited in their sparsity of regions and networks investigated and 

a detailed understanding of the brain’s complex network structure requires that gene expression 

data be comprehensively mapped onto corresponding whole-brain parcellations of structural and 

functional data. Furthermore, it remains unknown whether transcriptional similarities and 

anatomical connectivity modulate FC cooperatively, competitively, or overlap with FC uniquely 

depending on the connection.  
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Here we present a model of inter-regional FC in the mouse brain by integrating 

comprehensively and systematically obtained measurements of axonal connectivity (Oh et al., 

2014) and gene expression data (Lein et al., 2007) from the Allen Institute for Brain Health. We 

investigated whether anatomical communication capacity and correlated gene expression (CGE) 

contribute uniquely or cooperatively to functional network architecture. We also examined 

whether these relationships are homogeneously expressed across the brain or whether these 

dependencies change according to cortical or subcortical subdivisions. Finally, in order to 

examine the molecular bases of the FC signal, we examined if specific clusters of genes 

disproportionately support these FC patterns. 

Materials and Methods: 

Subjects 

In total, 23 C57BL/6J adult male mice ranging from 18-22g in body weight were used in 

the experiments. Mice were maintained on a 12-h light/dark cycle (lights on at 0600 h) at room 

temperature of 21 °C ± 1 °C and allowed food and water ad libitum. All experiments were 

performed during the animal’s light cycle. Protocols were approved by Institutional Animal Use 

and Care Committees of the Oregon Health & Science University and the VA Portland HCS and 

conducted in accordance with National Institutes of Health Principles of Laboratory Animal 

Care. 

Animal Preparation 

Imaging in rodents generally requires the use of anesthesia to limit movement of the 

animals in the scanner. Here, anesthesia was induced by 3–4% isoflurane and maintained with 1–

1.5% isoflurane. The selection of anesthesia may influence FC (Grandjean et al., 2014). Of 
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various anesthetic regimens, we selected low dose isoflurane for the present study based on the 

following previous findings: 1) Functional connectivity following 1% isoflurane is preserved and 

comparable to that of awake mice and rats (Jonckers et al., 2014; Mills et al., 2016; Shah et al., 

2013; Stafford et al., 2014; K. Wang et al., 2011).  2) c-Fos activation (an immediate early gene) 

can be observed in isoflurane-anesthetized mice and rats (Kufahl, Peartree, Heintzelman, Chung, 

& Neisewander, 2015; Kufahl, Pentkowski, Heintzelman, & Neisewander, 2009; M. Smith, Li, 

Cote, & Ryabinin, 2016). That being said, acclimated awake animals or other anesthesia 

regimens, such as a combination of dexmedetomidine and lower dose isoflurane (.5-.75%) (Ash 

et al., 2016; Brynildsen et al., 2017), may be an alternative.   

During scanning the head set stationary in a custom-built head holder designed to fit in 

the radiofrequency (RF) coil, as well as restrict any motion during the scan. Respiration (80–100 

bpm) and animal temperature (maintained at 37 °C) were monitored and controlled by a small 

animal monitoring system (Model 1030 Monitoring and Gating System; SA Instruments). 

Imaging acquisition  

The imaging protocol is as described in our previous publication with slight 

modifications (Stafford et al., 2014). Imaging was performed during a single session for each 

animal on an 11.75T Bruker BioSpec scanner equipped with a Resonance Research, Inc. high-

bandwidth shim power supply. A 20 mm ID RF quadrature volume coil (M2M, Cleveland, OH) 

was used for all studies. All scans were performed with Paravision 5. Using MAPSHIM, a 3D 

Fieldmap phase image was acquired; TR = 20 ms, TE1 = 2 ms, inter echo time = 4.003 ms, FA= 

20◦, FOV= 40 mm × 18 mm × 25 mm, matrix = 80 × 90 × 125 (voxel size of 0.5 × 0.2 × 0.2 

mm3, matching the EPI voxel size). This was followed by a T2-weighted structural image 

(RARE, TR = 4590 ms, effective TE = 32 ms, RARE factor = 8, 30 contiguous slices (0.5 mm 
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thick) with interleaved acquisition, FOV= 18 × 18 mm, matrix = 150 × 150, voxel size 0.12 × 

0.12 × 0.5 mm3, 2 repetitions). Global (volume) and local (brain voxel) shimming with 

MAPSHIM were performed to calculate first and second order shims prior to the functional MRI 

scan. The resting state fMRI consisted of a single shot gradient echo-planar imaging (EPI) 

sequence with the following parameters: 360 repetitions (total scan time = 15 min), TR = 2500 

ms, TE = 10 ms, FA= 60◦, 30 contiguous slices (0.5 mm thick) with interleaved acquisition, 

FOV= 25.6 × 16 mm, matrix = 128 × 80, voxel size 0.2 × 0.2 × 0.5 mm3. An identical EPI 

sequence with 20 repetitions was acquired in the reverse phase encoding direction for topup 

distortion correction.   

General fMRI BOLD preprocessing 

Functional images were pre-processed to reduce artifact. These steps include: the removal 

of a central spike caused by MR signal offset by discarding the first 10 EPI frames, slice timing 

correction using FSL’s slicetimer tool, correction of field inhomogeneities by applying topup 

field map correction. This required that data was collected with reversed phase-encode blips, 

resulting in pairs of images with distortions going in opposite directions. From these pairs the 

susceptibility-induced off-resonance field was estimated using a method similar to that described 

in (Andersson, Skare, & Ashburner, 2003) as implemented in FSL (S. M. Smith et al., 2004) and 

the two images were combined into a single corrected one, and within run intensity 

normalization to a whole brain mode value of 1000. Via the T2 scan, each scans functional data 

was transformed to an anatomical rodent atlas supplied by the caret software (map 015 atlas) (D 

C Van Essen et al., 2001; David C. Van Essen, 2012). We chose to map data to the caret atlas, 

because it is MRI-based, free of the distortion from histological preparation, and allows for 3D 

surface based visualization (Caret, map_015; available at sumsdb.wustl.edu/sums/ 
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mousemore.do). Each run then was resampled in atlas space on an isotropic 0.2 mm grid 

combining atlas transformation in one interpolation (Lancaster et al., 1995). 

Rs-fcMRI pre-processing  

FC pre-processed was performed as previously described with the exception of small 

modifications (Stafford et al., 2014). Several additional preprocessing steps were used to reduce 

spurious variance unlikely to reflect neuronal activity (e.g. heart rate and respiration). These 

steps included the regression of the whole brain signal and the first order derivative of the whole 

brain signal, followed by a temporal band-pass filter (f < 0.1 Hz).  

Regions of interest (ROIs)  

One hundred-sixty cortical predefined areas based on the connectional and architectonic 

subdivisions in the mouse were used. These areas were obtained from the atlas as provided by 

the Allen Mouse Brain Connectivity Atlas at the Allen Institute for Brain Health (Oh et al., 

2014). Regions are freely available online (Allen Brain Atlas Data Portal; connectivity.brain-

map.org). To directly compare the Allen data with the functional MRI data, the Allen ROIs were 

registered to the caret, map_015 atlas using a six-parameter rigid body transformation. ROIs 

within the cerebrum were used which comprise both cerebral cortical areas and cerebral nuclei. 

Areas defined as brain stem and cerebellum by the allen brain institute and olfactory bulb regions 

were not included in this analyses due to potential differences in EPI data quality. All regions 

included in these analyses and their anatomical module assignments (Oh et al., 2014) can be 

found in supplementary table 2.1. Their anatomical projections can be visualized via the Allen 

Mouse Brain Connectivity Atlas at the Allen Brain atlas data portal.  

Extraction and computation of regionwise resting state correlations 
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For each animal, 15 min of resting state BOLD time series data was collected. For each 

ROI, a resting time series was extracted post-processing and pearsons correlations were 

calculated for every region pair for each animal. Finally, ROI-ROI correlation, Fisher Z 

transformed r-values, were averaged across all subjects and used for analysis. 

Allen anatomical projection acquisition methods 

Structural data were obtained from the Allen Institute for Brain Science (Oh et al., 2014). 

Briefly, structural data on 400 adult male C57Bl/6J mice were obtained by performing 

stereotaxic tracer injection (recombinant adeno-associated virus expressing EGFP anterograde 

tracer mapping of axonal projections), image acquisition of tracer migration (serial two-photon 

tomography), and data processing to make structural connection matrices. Mutual connections 

among 426 regions (213 ipsilateral and 213 contralateral regions) were calculated, and of these 

426 regions, 160 cortical regions were used for comparison with the functional data (80 

ipsilateral/right hemisphere regions and 80 contralateral/left hemisphere regions). The best fit 

model for connections resulted from a bounded optimization followed by a linear regression to 

determine connection coefficients, which assigned statistical confidence (P value) to each 

connection in the matrix. Structural connectivity matrices were obtained by calculating the ratio 

of connection density to connection strength for each ROI-ROI pair and then normalizing the 

ratio by the volume of the target region (ROI). More specifically, as described in full in Oh et. al. 

2014, a signal detection approach was used to separate GFP signal (from the viral tracer) from 

the backgrounds null signal.  After segmentation and registration, quantitative values from 

segmented signals in each voxels contained within each brain were obtained. The projection 

signal strength between each source (injection region) and target was defined as the total volume 

of segmented pixels in the target (summed across all voxels within each target), normalized by 
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the injection site volume (total segmented pixels within the manually drawn injection area). The 

segmented projection volume in an area was computed by integrating the per-voxel projection 

density PD (fraction of segmented pixels) across all voxels. The normalized connection strength 

described the amount of segmented signal activated in the target region by infecting one voxel in 

the source region. In this sense, it can be thought of as proportional to the average out-degree of 

neurons projecting from the source to the target. An extrinsic notion of connection strength can 

be obtained by multiplying the normalized connection strength value by the size of the source 

population; we call this the connection strength, and can be interpreted as proportional to the 

total number of axonal fibers projecting from one area to the other. Conversely, an intrinsic 

notion of connection density can be obtained through division by the size of the target 

population, approximating the fraction of pixels in a voxel of the target region segmented 

resulting from infection of all neurons in a single voxel of the source region (and thus less than 1; 

normalized connection density). Combining these two operations results in a quantity analogous 

to the fan-in of the source region to the target region, termed connection density; this can be 

interpreted as the fraction of pixels segmented in a target voxel resulting from infecting the entire 

source region (Oh et al., 2014).  

Unlike the functional data that were undirected, the structural data contain directionality 

(e.g., efferent vs. afferent pathways between two nodes/ROIs). We found that this directed 

matrix required a very lenient threshold (P < 0.75) in order for the matrix to maintain 

connectedness (the ability to traverse from one node to any other node via one or more network 

links; a key property for making inferences regarding functional connectivity of each ROI pair). 

To minimize the possibility of including spurious connections, an undirected matrix was 

obtained, allowing us to reduce the threshold to P < 0.05. This threshold was applied first on the 
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directional matrix (i.e. each directional edge was thresholded based on its p-value). Then, 

symmetry was imposed by taking the average of the directed matrix and its transpose. Using this 

same procedure for generating undirected matrices, higher thresholds were also tested (P < 0.25) 

and did not alter any variance estimates by more than 1%. Relationships between FC and 

anatomical connectivity were assessed using both monosynaptic connectivity strength and using 

a metric called communicability (G), which describes the ease of communication between 

regions via mono- and polysynaptic connections. For instance, communicability between two 

nodes will be stronger if there are multiple, or strong alternate paths connecting the two regions. 

For communicability (Crofts & Higham, 2009) in a weighted matrix W, we begin by normalizing 

each connection weight and defining a new matrix W’, such that 𝑊′𝑖𝑗 = 𝑊𝑖𝑗 √𝑆𝑖 ∙ 𝑆𝑗⁄ , where Si 

and Sj are the strengths of node i and j. Communicability between i and j is defined as: 

𝐺𝑖𝑗 = ∑
(𝑊′𝑘)𝑖𝑗

𝑘!

∞

𝑘=0

= (𝑒𝑊′)𝑖𝑗 

G is based on the notion of total communication capacity via parallel pathways, and is 

computed by assigning exponentially decaying coefficients to the weight of pathways as the 

walk length increases. Our previous work in macaques suggested that these coefficients may be 

roughly optimal for predicting FC, resulting in superior results relative to other communication-

based models including SC weight or path length (Grayson et al., 2016). Therefore, we also 

chose to examine the matching index (Hilgetag, Burns, O’Neill, Scannell, & Young, 2000), 

which captures a conceptually different way in which functional connectivity could arise. Rather 

than relying predominantly on the strength of communication paths, the matching index captures 

the similarity of the connectivity patterns between two nodes. This accounts for third-party 
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contributors that may simultaneously influence activity patterns of both nodes through emergent 

network effects but may not necessarily mediate communication (Adachi et al., 2012). 

For weighted undirected networks, the matching index quantifies the similarity of 

connections between two nodes excluding their mutual connection, as follows where Θ(Wik) = 1 

if Wik > 0 and 0 otherwise. A simplified depiction of these metrics are visualized in figure 2.1. 

𝑀𝑖𝑗 =
∑ (𝑊𝑖𝑘 + 𝑊𝑗𝑘)Θ(𝑊𝑖𝑘)Θ(𝑊𝑗𝑘)𝑘≠𝑖,𝑗

∑ 𝑊𝑖𝑘𝑘≠𝑗 + ∑ 𝑊𝑗𝑘𝑘≠𝑖
, 

 

Figure 2.1. Structural connectivity metrics. Derived from the Allen mouse brain connectivity 

viral tracing studies, structural connectivity can be computed to reflect either mono or 

polysynaptic connectivity between regions pairs. Monosynaptic connectivity is based on direct 

connectivity strength between regions. Polysynaptic connectivity metrics used are 

communicability (G) and the matching index (M). Communicablity (G) takes the weighted sum 

of all the paths between two regions, giving highest weights to shortest paths between regions. 

Matching index (M) takes into account parallel communication via their common projections; 

quantifying the similarity of the connectivity patterns between two nodes. 

Allen gene expression data 
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Gene expression data measured using in situ hybridization (ISH) from the adult 

C57BL/6J male mouse at age P56 were obtained from the Allen Mouse Brain Atlas (Lein et al., 

2007). Expression levels of mouse in situ hybridization data from the Allen Mouse Brain Atlas 

were quantified using “expression energy” (fraction of stained volume * average intensity of 

stain), as described previously (Lein et al., 2007). Because ISH data was only available for one 

hemisphere, we retrieved expression energies for the same set of 80 functional ROIs used in our 

analyses. Because of potential differences in data quality between coronal and sagittal methods 

of ISH data collection (Fulcher & Fornito, 2016) we used only the higher quality coronal data. 

To obtain this list we queried the Allen API (api.brain-map.org/api/v2/data) to obtain gene 

expression energy for each region in the coronal plane called using the following API query: 

api.brain-

map.org/api/v2/data/query.json?criteria=model::StructureUnionize,rma::criteria,section_data_set

[id$eqXXX],structure[id$eqYYY]. This resulted in 3318 genes, of these a final set of 3079 genes 

had expression energy data available for each of the 80 ROIs, which was the set used for the 

analyses. Gene expression energies were then normalized (z-scored) across brain regions, and 

pearsons correlations were computed between brain regions to assess transcriptional similarity 

between ROIs.  

Statistical methods 

Visualization of functional networks 

Modular partitions of the network were obtained using the “Louvain” community 

detection algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) adapted for full, 

unthresholded networks with positive and negative weights (Rubinov & Sporns, 2011). This 
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algorithm identifies groups of nodes (communities, or modules) through optimization of the 

modularity index, or the fraction of edge weights within module partitions. 

We found that the resulting partitions were stable for the current dataset at the default 

resolution parameter (gamma = 1). Across 1000 iterations of the algorithm with the default 

settings, 96.0% returned exactly 3 modules and only 4.0% returned 2 modules, and the Variation 

of Information (Meila, 2007; Rubinov & Sporns, 2011) from one iteration to the next was on 

average only 0.049 (SD: 0.055). Therefore we selected the result of one iteration at random, 

which was representative nonetheless. 

The Q score for this partitioning was 0.36. Across different iterations of the Louvain 

algorithm, the mean was 0.36 (SD: 0.0014). This was significantly greater than comparable null 

models that were rewired to preserve weight and strength distributions (Rubinov & Sporns, 

2011) (p < 0.001, 1000 null permutations), which had a mean Q score of 0.244 (SD: 0.21). 

Across the 1000 null networks, 64.3% resulted in 2 modules, 34.3% had 3 modules, and 1.4% 

had 4 modules. 

We also tested the agreement between the Louvain decomposition and another 

conceptually very different partitioning approach known as Infomap (Rosvall & Bergstrom, 

2008). Infomap is another widely used algorithm for functional connectivity data, which requires 

thresholding (setting weights below a certain value to 0). We used a previously described 

approach for generating a consensus partition across thresholds (Eggebrecht et al., 2017; Power 

et al., 2011), and apply it here on network sparsities of 10-50%. We again obtained a 3-network 

partition that was qualitatively not discernibly different from the Louvain results. Likewise, we 

found extremely low Variation of Information between the Infomap partition and the Louvain 
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results (mean VoI = 0.057). These data suggest that the modules ultimately displayed (see Figure 

4) are quite robust with well-vetted approaches such as Louvain and Infomap. 

The network was visualized using a force-directed graph layout where connections serve 

as attractive forces between nodes such that well connected groups of nodes are pulled closer 

together (Fruchterman & Reingold, 1991). Although no thresholding of the FC matrix was used 

in generating modular partitions, these types of spring-embedded diagrams require that some 

threshold is used to illustrate graphically the strongest links in the network. When this threshold 

is set too low, it is difficult to stably embed the low-degree nodes as they disconnect from the 

rest of the graph. When it is too high, nodes become ‘latticized’ and the edges are so densely 

populated that they become imperceptible. Again, this threshold affects none of the quantitative 

analyses or number of modules identified, and is purely for visualization purposes. We chose a 

threshold corresponding to a 20% network density (the top 20% of network edges are 

illustrated), as it provided a very reasonable tradeoff, although reasonable results could be 

obtained within a range of densities from 10-30%.  

Modeling structure-function across both hemispheres 

For making FC predictions across both hemispheres, only the structural network was 

used since the ABI gene expression data for each region is only available as an average of both 

hemispheres. We employed a general linear model of FC using communicability and the 

matching index as the two sole predictors. FC was then plotted as a function of the predicted 

values from the dual-variable model. ROI pairs were plotted as separate colors depending on 

ipsilateral, heterotopic, or homotopic, and the presence of a monosynaptic connection. 

Modeling the transcriptional and anatomical contributions to the FC signal  
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Because the ABI gene expression data was only available as an average across 

hemispheres, the following analyses were conducted after averaging the FC networks across 

hemispheres as well. A series of linear regression models were assessed in order to examine the 

relationship between FC and transcriptional similarity, metrics derived from anatomical 

connectivity, and anatomical distance (computed as the log transformed Euclidian distance 

between the center of each ROI). See figure 2.2 for the full equation for each linear model. 

As identified by previous work (Fulcher & Fornito, 2016), as well as our own (figure 3), 

Euclidian distance follows not only a distance dependent relationship but a logarithmic 

relationship with CGE. That is connectivity is better explained by the exponential than linear fit 

of distance on functional connectivity (Fulcher & Fornito, 2016). Spatial adjacency, a binary 

measure indicating whether two regions are touching, was also included in distance dependent 

models. Together log transformed Euclidian distance and spatial adjacency are referred to as 

spatial topography. 

For the sake of brevity, we also refer to ‘structure’ as a predictor signifying the weighted 

combination of the two metrics derived from anatomical connectivity (i.e. G and M). 

Anatomical, CGE, and FC matrices were converted to z-scores before being fit in each 

linear model. For these analysis all matrices (distance, anatomy, CGE, and FC) were 

unthresholded. Variance in FC explained was assessed after the inclusion of each term, as well as 

after the inclusion of the anatomy by CGE interaction (see all models in Figure 2.2). All linear 

models were calculated using the ‘fitlm’ function in Matlab (version 2014a). Goodness of fit for 

each model was assessed via Akaike information criterion (AIC). To compare model fits, the 

difference between models AIC were used to generate a chi-squared statistic and a Bonferroni 

adjusted p-value to account for multiple comparisons (based on five models comparisons 
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described next). Model AICs were compared to assess independent effects (did structure and 

CGE explain more variance than spatial topology), additive effects (did the combination of CGE 

+ Structure explain more variance than either factor alone), and interactive effects (did the 

interaction between CGE and structure explain more variance then their additive effects).  

𝐴) 𝐹𝐶 = 𝛽0 +  𝛽1 𝐺 +  𝜀 

𝐵) 𝐹𝐶 = 𝛽0 +  𝛽1 𝐺 + 𝛽2 𝑀 +  𝜀 

𝐶) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐶𝐺𝐸 +  𝜀 
𝐷) 𝐹𝐶 = 𝛽0 +  𝛽1 𝐺 + 𝛽2 𝑀 + 𝛽3 𝐶𝐺𝐸 +  𝜀 
𝐸) 𝐹𝐶 = 𝛽0 +  𝛽1 𝐺 + 𝛽2 𝑀 + 𝛽3 𝐶𝐺𝐸 + 𝛽4 𝐺 𝑥 𝐶𝐺𝐸 +  𝜀 

𝐹) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝜀 

𝐺) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐺 + 𝛽4 𝑀 + 𝜀 

𝐻) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐶𝐺𝐸 + 𝜀 

𝐼) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐶𝐺𝐸 + 𝛽4 𝐺 + 𝛽5 𝑀 + 𝜀 

𝐽) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐶𝐺𝐸 + 𝛽4 𝐺 + 𝛽5 𝑀       
+ 𝛽6 𝐶𝐺𝐸 ∗ 𝐺 + 𝜀 

Figure 2.2. Models used to assess the relationships between functional connectivity (FC), and 

measures of anatomical structure, communicability (G) and matching index (M), correlated gene 

expression (CGE), Euclidian distance between region pairs, and spatial adjacency, a binary 

measure of whether two regions are touching. Models A-J correspond to models used in scatters 

plots on Figure 2.2 and models described in Table 2.1.  
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Figure 2.3. The relationship between Euclidian distance and correlated gene expression (CGE) is 

exponential, therefore, Euclidian distance was –log transformed before applied to all models 

throughout the manuscript. A) CGE by Euclidian distance (without transforming the distance 

matrix) shows an exponential relationship. B) The –log of Euclidean distance better fits the 

relationship between distance and CGE.  

Shared connection patterns with FC 

In order to assess the overlap between each connection type the following analyses were 

conducted. First, the FC, G, and CGE matrices (z-scored matrices) were thresholded and 

binarized in 1% increments from 10%-30% connection densities. Next, connections which 

survived a given threshold for all three matrices were given a value of 1. Similarly, connections 

which survived a threshold for FC and CGE, and FC and G, were given a value of 1. For each 

category, 1) overlap between all three matrices, 2) overlap between FC and G, and 3) overlap 

between FC and CGE, binary matrices were averaged across each connection density. Resulting 

matrices for each category were then binarized if their average value was greater than .5, 

indicating an overlap for that category across at least 50% of connection densities. Finally, in 
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order to assess the significance of these overlapping patterns we took a network level approach 

to see if particular anatomical clusters (defined anatomically by the ABI) were overrepresented 

for each category. This was implemented with a χ2 approach. Briefly, the χ2 test compares the 

observed number of binary connections within a network pair with what would be expected if the 

overall number of connections were evenly distributed across all network pairs. The resulting 

statistic is large when there are more connections than expected by chance. An empirical p-value 

is calculated by a permutation test, which is non-parametric and does not make assumptions 

about the population distribution (Backes et al., 2014; Eggebrecht et al., 2017). Here, 10,000 

permutations were performed, each time randomly shuffling the binary values for each 

overlapping category (see above) and the reported p-values for each network reflect the observed 

chi-square statistic compared to the permuted chi-square statistics obtained from the given 

network-network pair. Significant networks for each category (p<.05, FDR corrected) are 

highlighted in figure 2.6. In order to examine whether overlapping effects were driven by spatial 

topology, an identical analyses was performed on residual matrices after each variable (FC, 

CGE, and G) were adjusted for spatial topology. 

Peak Analyses 

In order to examine which genes were most critical for supporting the relationship 

between FC and CGE the following analyses were performed. First, we computed the FC-CGE 

relationship (i.e., with the inclusion of the full set of 3079 genes in the CGE matrix). We then 

incrementally removed one gene before calculating the CGE matrix, and re-computed the FC-

CGE relationship. Then, we subtracted the FC-CGE relationship from the FC-CGE relationship 

with one gene removed. Next, we rank ordered each gene according to how much the 

relationship dropped after the removal of the gene. Finally, after rank ordering each gene we 
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incrementally re-introduced each gene (in rank order) into the CGE matrix and re-fit of the 

statistical models testing the relationship between FC and each predictor. We then identified the 

number of genes included in the CGE matrix that resulted in the highest amount of variance 

explained. Two analyses were performed, one which assessed the FC-CGE relationship in a 

linear model correcting for distance, an identical analyses was performed without correcting for 

Euclidian distance between region pairs.   

Over-representation analysis 

ErmineJ software, version 3.0.2 (Gillis, Mistry, & Pavlidis, 2010) was used to for over-

representation analyses (ORA) comparing our target gene set corresponding to genes most 

related to FC (Peaks with and without covarying Euclidian distance in the gene rank list) to the 

background list of all coronal genes (3079 genes). Gene annotations were assigned from GO 

(Ashburner et al., 2000) using an annotation file from GEMMA (Zoubarev et al., 2012): 

Generic_mouse_ ncbiIds_noParents.an was downloaded from 

http://www.chibi.ubc.ca/microannots/ on December 6, 2016. From the 3079 genes in our set the 

annotations matched 3076 genes, the final list of genes included in our ORA analyses. Over-

represented biological processes, molecular processes, and cellular components were tested. We 

used a maximum and minimum gene set size of 100 and 20 genes, respectively, used the best 

scoring replicate, and for scoring we weighted each gene within the peak as 1 and the remaining 

background genes as -1.  

Results 

Resting state functional connectivity of the mouse connectome 
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C57BL/6J mice (n = 23) were maintained under light anesthesia (1-1.5% isoflurane) and 

scanned in an 11.75T MRI. We computed FC (z-transformed correlations) between 160 bilateral 

regions of interest (ROIs) defined by Allen Mouse Brain Connectivity Atlas (AMBCA) (Oh et 

al., 2014) and detailed in previous work (Stafford et al., 2014). ROIs excluding regions labeled 

as brain stem and cerebellum by the AMBCA were chosen (see methods and supplementary 

table S2.1 for a complete list of regions). Figure 2.4 shows qualitative clustering of the mouse 

functional connectome, where brain regions (nodes) are pulled together if they share strong 

functional connections (edges) and weak functional connections are further apart in graphical 

distance. Regions are colored by functional module (figure 2.4A) as well as anatomical 

assignment based on the ABI region set (figure 2.4B). The mouse functional connectome appears 

to cluster by both functional as well anatomical subdivisions; the degree to which anatomical and 

transcriptional similarly between regions guides this organization is a major goal of this work.  

Relationships between structural and functional connectivity 

Measurements of anatomical connectivity, as assessed by viral tracing, were derived from 

the from the AMBCA (Oh et al., 2014). Anatomical communication capacity between the 160 

ROIs used in the functional analyses was then computed on the weighted structural connectivity 

measurements. This communication capacity metric is termed, communicability (denoted G), 

and is a weighted measure which describes the ease of communication between two regions 

(Crofts & Higham, 2009; Estrada & Hatano, 2008). It takes into account all possible routes 

between nodes (both mono and polysynaptic), but weights shorter pathways (those with fewer 

steps) exponentially higher. We chose this measurement of structural connectivity due to our 

recent work which highlights its improved capacity to model functional connectivity over simple 

mono-synaptic connectivity (Grayson et al., 2016). We also use the matching index (denoted M) 



37 

 

(Hilgetag et al., 2000), an index which quantifies the similarity of connections between two 

nodes excluding their mutual connection. Matching index captures additional small contributions 

to FC driven by interregional similarities in connectivity patterns, as demonstrated previously 

(Adachi et al., 2012).  

Assessing the relationship between FC (unthresholded FC matrix using the bilateral 

160x160 ROI set), the linear combination of G and M explained 22.1% of the variance in FC 

(Figure 2.4C) and was driven mostly by G (β=0.504 vs β=0.154 for M). Ipsilateral and 

heterotopic region pairs conformed closely to the overall regression line. However, homotopic 

region pairs showed consistently higher FC than expected by the overall regression line. This 

suggests an effect of functional areal similarity that is not explainable by network effects of 

anatomical connectivity alone. 

 

Figure 2.4. Clustering of the mouse functional connectome. Each brain region (node) shares a 

functional connectivity (FC) value (edge) with other nodes. Regions with strong FC are pulled 

more closely together and regions pairs with weak FC are moved further apart. Nodes are 

colored by functional (A) modularity assignment and (B) anatomical assignment. Nodes are 
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sized by their connectivity strength (i.e., the sum of all connectivity weights to that region). C) 

Empirical FC values across all region pairs, illustrated as a function of anatomical connectivity 

network-based (i.e. structure-based) predictions of FC. Each dot represents a unique region pair, 

colored according to whether it is heterotopic, ipsilateral, or homotopic, and whether the region 

pair possesses a direct anatomical link or not. Homotopic region pairs exhibit markedly higher 

FC than what is predicted by structure.  

Inter-regional CGE, anatomical communication capacity, and spatial topology explain 

functional connectivity 

In order to explain additional factors that contribute to the mouse functional connectome, 

we investigated the contribution of inter-regional CGE on resting state FC. For CGE we obtained 

measurements from the ABI mouse brain in-situ hybridization (ISH) data (Lein et al., 2007), 

which offers finely sampled whole-genome expression data within each of the allen ROIs. Due 

to potential differences in data quality between coronally and saggitally collected ISH data 

(Fulcher & Fornito, 2016), we used coronally obtained genes in order to ensure the highest data 

quality and to avoid mixing measures from both data sets. Genetic expression of all 3188 

coronally obtained ISH probes were obtained for each ROI and for each gene. Expression 

intensities for all genes were z-scored within each ROI and fishers z-transformed pearson 

correlations were computed between each anatomical region pair across genes, yielding an 

80x80 matrix of inter-regional CGE. The ABI gene expression data is provided as an average of 

both hemispheres, thus, for all subsequent measurements G and FC were averaged across left and 

right hemispheres yielding comparable 80x80 matrices.  

Among ipsilateral region pairs connected via monosynaptic projections, we found FC to 

be significantly correlated with the weighted measure of monosynaptic anatomical connectivity 
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(r=0.33, p=10-6), but more so with communicability among monosynaptically connected ROI 

pairs (G; r=0.40, p=10-6), in accordance with previous work (Grayson et al., 2016). FC and G 

were also correlated among region pairs with no monosynaptic connectivity (r=0.35, p=10-6), 

which is also in line with our previous work (Grayson et al., 2016). FC and G were most strongly 

related when considering all connections (G; r=.48, p=10-6).  

Scatter plots shown in figure 2.5 correspond to models and their corresponding letters 

detailed in Figure 2.2. We found a strong relationship between G and FC among all region pairs 

(FC is unthresholded in all models, Figure 5A, R2=.227, β=.479). CGE was also strongly 

correlated with FC (Figure 5C, R2=.412, β=0.642). Models including the linear combination of 

both CGE and communicability (Figure 2.5D, R2=.452) and the addition of the interaction 

between CGE and G increased the variance in FC explained (Figure 2.5E; R2=.488, all individual 

terms except for M, are significant at p<10-6).  

Importantly, FC, CGE, and G all are distance dependent in real and biological meaningful 

ways. For instance, gene expression is more similar between similar structures which are also 

closer in proximity, white matter connectivity is stronger between regions which are closer from 

their source area, and FC is stronger between similar regions which are closer in proximity. That 

being said, Euclidian distance may also be partially driven by artefact, for instance, from virus 

spreading to nearby areas in anatomical viral tracing studies, and in FC where various artefacts 

can induce higher correlations between neighboring voxels. This has led to some controversy 

regarding the nature the overlap between CGE and FC (Pantazatos & Li, 2017; Richiardi, 

Altmann, & Greicius, 2017). For these reasons all analyses were analyzed including both 

Euclidian distance and spatial adjacency, a binary measure of whether two connections are 

touching, included as regressors in each linear model.  
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As expected, spatial topology explain a large amount of variance in the FC signal (Figure 

2.5F, R2=.549). Critically, the addition of each variable explains more variance than spatial 

topology alone, with the addition of structure (Figure 2.5G, R2=.584), CGE (Figure 2.5H, 

R2=.601), their linear combination (Figure 2.5I, R2=.601), and interaction (Figure 2.2J, R2=.624) 

explaining a total amount of variance of 62.4% of the FC matrix.  

We also computed distance adjusted relationships between FC and G, and FC and CGE. 

Here, residuals for each matrix (FC, G, and CGE) were computed after the effects of spatial 

topology (spatial adjacency + Euclidean distance) were accounted for in a linear model. 

Residuals were then correlated. Scatter plots for FC and G (Figure 5K, r = .269, p < 10-6) and 

FC and CGE (Figure 5L, r = .337, p < 10-6) can be seen in figure 2.5.  

Direct Model Comparisons 

Importantly, direct comparisons of model fits based on their AIC and resulting chi-

squared distributions, confirmed the independent, additive, and interactive effects (see Table 2.1 

section 3). Independent effects were demonstrated by model comparisons showing that both 

structure (χ2(2) = 379.96, p = 7.27-54) and CGE (χ2(1) = 247.93, p = 6.33-84) explain more 

variance than spatial topology alone. The linear effects combination of CGE, structure, and 

spatial topology explained more variance than structure and spatial topology (χ2(1) = 240.66, p = 

1.41-53) or CGE and spatial topology (χ2(2) = 108.63, p = 1.29-23). Finally, the interactive effect 

of CGE and structure explained more variance the linear combination of structure and CGE 

alone (all models including spatial topology, χ2(1) = 80.19, p = 9.76-25). Overall, we show that 

transcriptional similarity and network effects of axonal connectivity cooperatively, but also 

uniquely, support FC beyond what can be explained by Euclidian distance and spatial adjacency 

between regions pairs. 



41 

 

 

Figure 2.5. Relationships between functional connectivity (FC), anatomical connectivity 

measures communicability (G) and matching index (M), and correlated gene expression (CGE). 

Blue points indicate region pairs which share a direct monosynaptic anatomical connection and 

red points are region pairs which are anatomically unconnected. FC is illustrated as a function of 

A) Anatomical structure defined by only G, B) Anatomical structure defined by the linear 

regression of FC on G and M. C) The relationship between FC and CGE. D) FC predicted by a 

linear combination of structure (G+M) and CGE E) FC relationship after the inclusion the 

interaction between G and CGE. Next we starting with a null model predicting FC as a function 

of spatial topography (Euclidean distance + spatial adjacency), and show that each variable adds 

to the variance explained above and beyond spatial topography (G-I), ending with a final J) 

omnibus model including all variables and the interaction between structure and CGE, which 

explains the most variance in FC. Full equations for models depicted in A-J can be found in 
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figure 2.1 and beta weights and significance for each parameter are shown in Table 2.1. K-L) 

Partial correlations analyses. Relationships between G and FC, and CGE and F were computed 

after adjusting each metric (FC, G, and CGE) for distance and spatial adjacency (i.e., correlation 

between residuals after spatial topology adjustment). 

 

Table 2.1. Multivariate models of functional connectivity. The top panels show each statistical 

model (A-E) of functional connectivity using combinations of explanatory variables including 

anatomical structure, correlated gene expression, and spatial topology. Structure indicates a 

combination of (G) Communicability and (M) match index; two polysynaptic anatomical 

connectivity metrics. Correlated gene expression (CGE) measures similarity in gene expression 

between regions and G*CGE denotes the interaction term. Spatial topology is the combination of 
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Euclidean distance between ROI centroids and spatial adjacency (SA), a dichotomous variable 

indicating whether or not two regions share a border. 1) Models are assembled without and 2) 

with the inclusion of spatial topology. Betas represent standardized coefficients and the variance 

explained for each model is represented by the R2. AIC values denote each models goodness of 

fit, with lower values indicating better model fit. 3) The bottom panel takes a model comparison 

approach to compare models goodness of fit.  Null models are shown as column headers (e.g. F) 

spatial topology only), and models which are compared are shown on the rows. Highlighted are 

the significant independent effects of structure and CGE above spatial topology, the additive 

effect of CGE and structure above each of their independent effects, and the interactive effect of 

CGE and structure above their linear combination.  P-values for each model comparisons (based 

on a chi-square statistic based on the difference in model AICs) are Bonferroni corrected for 

multiple comparisons.  

Distinct anatomical modules are responsible for the contribution of correlated gene 

expression and anatomical communicability on functional connectivity 

We found that both CGE and G, independent of spatial topology, help shape/explain 

functional connectivity networks. As such, we then explored whether this relationship is 

heterogeneous or homogenous across the brain. That is, are there anatomical subdivisions in 

which there are distinct or overlapping relationships between FC, anatomy, and gene expression? 

Specifically, we examined which functional connections may be supported uniquely by CGE, G, 

or by a combination of CGE and G. First, in order to explore these patterns we binarized each 

matrix in 1% increments from the top 10%-30% connection densities. For each matrix (FC, 

CGE, and G) connections were considered if they survived at over half of these connection 

densities. In order to examine overlapping profiles, a matrix was derived indicating whether 
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there was overlap between FC and CGE, FC and G, or between all three matrices. We then 

calculated the statistical significance of this overlap by computing a FDR corrected chi-squared 

statistic for each anatomical module, which tests whether each overlap metric was more 

prevalent within an anatomical module than expected by chance, see methods for more details on 

the chi-squared approach.  

Overlap between FC, G and CGE was non-uniform across the brain and depended on 

partial correlation adjustment based on distance. As can be seen in figure 2.6, we found that 

overlap between the strongest FC and CGE within and between cortical, motor, cortical to motor, 

striatal, and pallidal networks. After adjustment for spatial topology (adjusting metrics to correct 

for distance and spatial adjacency), cortical and sensory networks increase in overlap between 

FC and CGE, where subcortical overlap is partially dependent on distance. In regards to overlap 

between FC and G, with and without distance adjustment we found that overlap within 

hippocampal and olfactory areas. However, distance adjustment influenced the degree to with FC 

and G overlapped between hippocampal and olfactory to subcortical networks. With and without 

spatial topology adjustment), overlap between all three metrics was most robust within motor 

and visual networks. Distance adjustment decreased the amount of overlap between all three 

metrics. This was unsurprising as we know that distance dependence is real and prominent driver 

of all three metrics. Although these patterns are observed at the level of gross anatomical 

modules, a more granular view may also be informative. For instance, G, rather than CGE, may 

drive a subset of longer range cortical to subcortical connections. Overall this analyses suggest 

that FC may be both independently and cooperatively shaped by G and CGE, and that this 

relationship is non-uniform across the brain but depend on anatomical module. 
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Figure 2.6.  Regional distribution overlap between FC, G, and CGE. Overlap between the 

strongest functional connections (FC), correlated gene expression (CGE), and anatomical 

communicability (G) matrices was compared. Connections with shared overlap, either shared 

between FC and G (aqua), FC and CGE (yellow), or between all three metrics (purple) are 

shown. Anatomical modules that show significant overrepresentation of one category are 

outlined (based on an FDR corrected chi-squared test). Overlap between matrices was calculated 

as the consensus across 10-30% connection densities. Spatial topology adjustment indicates that 

metrics (FC, G, and CGE) were adjusted for distance and spatial adjacency. 

A subset of genes support the relationship between correlated gene expression and 

functional connectivity 

It is likely that not all genes contribute equally to the variations in the FC signal. Next, 

we asked whether all genes equally contribute to the relationship between CGE and FC, and how 

many genes drive this relationship. To examine this we computed the FC-CGE relationship (with 

and without co-varying distance). Next we removed one gene and recalculated a new CGE 

matrix. Then, we subtracted the variance explained in the model with all genes included in the 
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CGE matrix from the model, which was calculated on the leave one out CGE matrix, and rank 

ordered each gene according to the magnitude of the difference in variance explained between 

the full and leave one out CGE matrix.  Next, after rank ordering each gene by most to least 

related to FC, we incrementally re-introduced each gene into the CGE matrix (i.e., each time 

adding back one gene before computing the CGE matrix) and re-fit each model. Figure 2.7 

shows the variance in FC explained with each model, as a function of how many genes were 

reintroduced into CGE matrix. The maximum amount of variance emerged after 568 genes were 

included in the CGE matrix (model peak without distance R2 = .613, with distance in model R2 = 

.726), see figure 2.7. Similar results were found when rank ordering genes without considering 

distance, with a max variance at 445 genes (model peak without distance, R2 = .671 and with 

distance in model, R2 = .702), see figure S2.1. Note the marked decline in explanatory power of 

the CGE after the inclusion of additional genes beyond the peak, suggesting that a subset of 

genes contribute disproportionately to the observed CGE-FC relationship. 

 

Figure 2.7. A subset of genes support the relationship between CGE and functional 

connectivity. Genes were rank ordered (x-axis) based on their contribution to the CGE-FC 
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correlation (correcting for distance). Then, each model predicting FC was refit after 

incrementally adding each gene to the CGE matrix. The max variance was observed after the 

inclusion of 568 of the most explanatory genes to the CGE matrix, r2 = .6131). Each red line 

indicates a different permutation for gene expression only, where gene rankings were 

randomized on each permutation. 100 random permutations are shown. 

These results suggest that a limited number of genes contributed to the relationship 

between FC and CGE. In order to examine the functions of genes that most strongly contributed 

to the FC signal we performed an over-representation analyses (ORA) using the software 

ErmineJ. Top ranked genes within the max variance peak in figure 2.7 (Max variance 568 genes) 

were selected and compared to the background set of genes (3079 genes). This procedure 

identifies clusters of genes that are overrepresented within this peak, their biological and 

molecular processes, and cellular components. Interestingly, as opposed to some earlier work in 

humans (Fulcher & Fornito, 2016; Richiardi et al., 2015), no clusters passed statistical 

significance after FDR correction, potentially suggesting that these strongest related genes are 

equally related to several molecular and biological processes (see discussion). With that said, 

Table 2.2 shows the uncorrected results of all significant gene clusters (p<.05; peaks identified 

with and without covarying for Euclidian distance), which do show interesting trends that lay 

fodder for future study and empirical manipulation. Most notably with these findings was the 

over-representation of molecular processes related to voltage-gated cation channel activity, a 

gene cluster that was consistently over-represented regardless of distance correction. 



48 

 

 

Table 2.2. Functions of genes that support the relationship between CGE and FC. Genes 

that most strongly supported the CGE-FC relationship was (top genes identified in figure 2.7) 

compared to the background set of all genes. Results are shown for gene rankings produced (A) 

with and (B) without correction for Euclidian distance between region pairs. Results are ordered 

by multifunctionality and were produced using the over-representation analyses in the ErmineJ 

software package. 

Discussion 

Modeling the influence of correlated gene expression and anatomical communicability 

across the functional connectome 

This report investigates the white matter anatomy and regional similarity in gene 

expression influence synchronous large-scale brain activity. We found that functional 

connectivity is related to distinct aspects of structural communication (measured via 

communicability) and inter-areal similarities in gene expression. Our model accounts for a 

significant amount of variance in the resting state functional connectivity (FC) signal (R2=.624) 

at its peak without considering improvement related to spatial proximity. The present report 

extends key findings from Richiardi et al., who showed in humans that correlated gene 
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expression (CGE) is enriched within key functional brain networks relative to between these 

networks (Richiardi et al., 2015). Here we show that these principles hold in rodents and that 

CGE predicts functional connectivity (FC) across the brain. Interestingly, CGE explains more 

variance in the FC signal than anatomical communication capacity (G), suggesting that 

transcriptional similarity, and presumably similarities in protein expression, may be a crucial 

foundation of the FC signal in addition to anatomical wiring. We also found a significant 

interaction between CGE and G, suggesting that a region’s transcriptional profile and anatomical 

wiring may work in coordination to modulate functional synchrony with other regions. The 

addition of CGE to models of FC is significant given the abundance of literature that has been 

aimed at identifying the substrates that support functional connectivity via structural network 

analysis (reviewed in (Bassett & Sporns, 2017)). The present findings suggest that a more 

accurate modeling strategy requires the integration of structural connectivity with empirical 

measurements of areal molecular properties. 

Relationships between physical proximity, functional and structural connectivity, and 

correlated gene expression 

One area of caution, and interest, is the role of spatial proximity to the relationships 

across the three modalities. Areas that are close in spatial proximity are more likely to share 

more similar gene transcription profiles, have stronger anatomical connections, and share 

stronger functional connections. These distance relationships represent biologically meaningful 

information; however, there is nonetheless a concern that the spatial smoothness of the fMRI 

signal might artifactually inflate estimates of structure-function correspondences. All fMRI data 

were processed without any spatial blurring in order to mitigate this possibility. Further, given 

the relationship between CGE and Euclidian distance, with exponentially higher CGE between 
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regions pairs close in spatial proximity (Pantazatos & Li, 2017), it is important that these type of 

studies also take into account how these variables relate above and beyond spatial proximity. 

Here, we show that although highly related to distance, as expected, relationships between FC, 

G, and CGE, are independent of Euclidian distance and spatial adjacency. When examining 

relationships between FC and CGE, others have similarly corrected for Euclidian distance (but 

not the additional parameter of spatial adjacency (Fulcher & Fornito, 2016) or have taken 

alternative approaches to examine these FC/CGE relationships between spatially distributed 

functional networks (Richiardi et al., 2015). Given that covariation between distance and FC, G, 

and CGE is partly biological, we suggest that when possible the results should be compared with 

and without these types of correction.  

The distribution of overlap between these three metrics was also of interest, as 

relationships with FC may be driven more prominently between some networks than others. 

Interestingly, we found that cortical, striatal, and sensory regions had a large degree of overlap 

between CGE and FC, where hippocampal and long range FC were more likely to be driven by 

overlap between G and FC.  However, distance correction partially influenced some of these 

results (hippocampal) but not others (cortical and sensory). More work will need to be done to 

understand exactly how and between which connections, CGE and G selectively influence FC. 

Just as importantly, in our view, will be future experiments with a more thorough 

characterization of these relationships through experimental manipulation of either anatomical 

wiring or gene expression profiles. 

Correlated expression of a subset of genes disproportionately influence functional 

connectivity  
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Given that transcriptional similarity between regions had a large effect on FC, our next 

aim was to understand the contributions of specific gene clusters. That is, is the regional 

similarity across the entire transcriptome predictive, or do some genes disproportionately 

influence this relationship? By ranking each gene’s contribution to the CGE-FC relationship, we 

found that a subset of genes (568 of 3079) disproportionally drive this relationship, suggesting 

that covariance in particular subsets of processes may be more influential in supporting the FC 

signal. In this report we used gene ontology over-representation analyses (ORA) to identify the 

processes associated with these genes. In this section we discuss these analyses, some potential 

gene clusters, which may support FC, common themes, and considerations.  

Although it is clear that a subset of genes disproportionately drive the relationship 

between CGE and FC, in contrast to previous results (Fulcher & Fornito, 2016; Richiardi et al., 

2015), ORA on genes which are most likely to contribute to FC did not yield robust results, and 

as noted above, no gene cluster reached FDR corrected statistical significance. Such 

discrepancies here, relative to prior reports, may be due to methodological differences or 

differences in gene selection used for ORA. Alternatively, this finding could suggest that across 

the brain a complex mixture of genes support FC and that the contribution of the genes spreads 

across multiple functions (at least enough such that no clusters passed correction). This finding 

could also mean that different gene clusters are critical between different anatomical 

connections, and that a unifying genetic function cannot describe the FC to CGE relationship 

across the brain. Both of these considerations deserve further investigation.  

That being said, when analyzing patterns at a relaxed threshold (p < .05, uncorrected), 

several interesting patterns emerged yielding somewhat convergent evidence to similar reports 

(Fulcher & Fornito, 2016; Richiardi et al., 2015). For instance, genes which were most related to 
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FC were more likely to be involved in molecular processes, which were specific to voltage-gated 

ion channel and potassium channel activity. This finding is in good accordance with Richiardi 

and colleagues (2014) who also found preferential enrichment for these processes within 

compared to between functional networks. This correspondence would suggest that similar 

mechanisms might underlie the FC signal across species. In our report we also identified several 

biological processes including glutamate receptor signaling, a putative candidate for neural bases 

for the functional signal (Attwell & Iadecola, 2002; Raichle, 2001), as well as cellular 

components related to synaptic membrane proteins and synaptic signaling.  

When examining these results, it is also important to note that some gene clusters may 

have multiple functions that are not perfectly circumscribed to a particular process. Some genes 

may have many more functions than others (Gillis et al., 2011) and this can be qualified by a 

multifunctionality score. Genes can have many diverse biological roles and highly 

multifunctional genes are not necessarily incorrectly assigned to a particular role, but should be 

interpreted with more caution (Gillis, Pavlidis, Benson, Bryant, & Canese, 2012). In our 

analyses, ion channels represent a gene cluster that supports FC with relatively low 

multifunctionality. However, we also identify additional overrepresented biological clusters with 

high multifunctionality scores including genes coding for homeostatic and developmental 

processes. These processes might be interpreted with caution as these genes also supply a rich 

diversity of alternative functions that, in turn, might also be related to the FC signal.  

There is a complex set of neuronal, vascular, and cellular influences on the FC signal. 

Any given region’s activity may be modulated by neurotransmitter signaling (Attwell & 

Iadecola, 2002; Magistretti & Allaman, 2015), the excitatory to inhibitory ratio (Turk et al., 

2016; van den Heuvel et al., 2016), local energy demands (Lu & Stein, 2014; Magistretti & 



53 

 

Allaman, 2015; Tomasi, Wang, & Volkow, 2013), and/or cytoarchitectural features such as 

synaptic density (Attwell & Iadecola, 2002; Magistretti & Allaman, 2015). Each of these 

contributions may be reflected in interregional variability in both gene expression and 

spontaneous activity. Along the same lines, molecular influences on regional activity might vary 

across different brain subdivisions. For example, we show that the distribution of high-CGE, 

high-FC links are non-uniform and occurs to a greater extent in particular types of connections 

(i.e. striato-pallidal). Future work should address whether the gene clusters which most 

contribute to the functional signal vary by connection. Overall, the specific relationships between 

gene transcription and FC is far from resolved and will require experimental manipulation. 

Applications and conclusions 

Models that explain functional brain organization are particularly useful in preclinical 

animal models, where genetic and pharmacological manipulation allow the exploration of both 

etiology and therapy in various neurological disorders. With this consideration in mind, one of 

the most straightforward applications of the current statistical model would be to determine the 

theoretical impact of experimental perturbation to specific regions, systems, or even gene 

clusters within specific systems. There is evidence from work in monkeys that simulated lesions 

can accurately predict many widespread neurophysiological changes in response to focal 

empirical inactivation (Grayson et al., 2016). Extending this approach to rodents, in combination 

with improved modeling techniques that account for transcriptional similarity, might be 

exceptionally useful given the time and cost associated with pharmacological screening and gene 

therapy testing. Recent rodent work highlights the usefulness of simulated lesions for predicting 

memory impairments (Vetere et al., 2017), but has yet to account for the influence of areal gene 

expression in the modeling framework. Our results here suggest that identifying both candidate 
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brain systems and candidate genes via simulated perturbation might be feasible for interrogating 

other cognitive deficits as well. Finally, experimental manipulation of activity and/or gene 

expression combined with simultaneous in vivo functional measurement might be used to assess 

what gene clusters (and what modeling framework) are best predictive of variation in typical or 

atypical brain function. 

Supplementary Information: 

 

Figure S2.1. Genes that support CGE and FC, without distance correction. Incremental 

inclusion of genes into CGE matrix without distance correction during rank ordering of gene 

importance. A subset of genes support the relationship between CGE and functional 

connectivity. Genes were rank ordered (x-axis) based on their contribution to the CGE-FC 

correlation (after covarying Euclidian distance). Then, each model predicting FC was refit after 

incrementally adding each gene to the CGE matrix. The max variance was observed after the 

inclusion of 445 of the most explanatory genes to the CGE matrix, r2 = .702). Each red line 
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indicates a different permutation for gene expression only, where gene rankings were 

randomized on each permutation. 1000 permutations are shown. 

ROI 

number ROI name 

ROI 

acroymn 

Oh et al. 2014 Anatomical 

Division 

Allen Anatomical 

Division 

1 'Frontal pole, cerebral cortex' 'FRP' 'Isocortex' Cerebral Cortex 

2 'Primary motor area' 'MOp' 'Isocortex' Cerebral Cortex 

3 'Secondary motor area' 'MOs' 'Isocortex' Cerebral Cortex 

4 'Primary somatosensory area, nose' 'SSp-n' 'Isocortex' Cerebral Cortex 

5 

'Primary somatosensory area, barrel 

field' 'SSp-bfd' 'Isocortex' Cerebral Cortex 

6 'Primary somatosensory area, lower limb' 'SSp-ll' 'Isocortex' Cerebral Cortex 

7 'Primary somatosensory area, mouth' 'SSp-m' 'Isocortex' Cerebral Cortex 

8 'Primary somatosensory area, upper limb' 'SSp-ul' 'Isocortex' Cerebral Cortex 

9 'Primary somatosensory area, trunk' 'SSp-tr' 'Isocortex' Cerebral Cortex 

10 'Supplemental somatosensory area' 'SSs' 'Isocortex' Cerebral Cortex 

11 'Infralimbic area' 'ILA' 'Isocortex' Cerebral Cortex 

12 'Gustatory areas' 'GU' 'Isocortex' Cerebral Cortex 

13 'Visceral area' 'VISC' 'Isocortex' Cerebral Cortex 

14 'Dorsal auditory area' 'AUDd' 'Isocortex' Cerebral Cortex 

15 'Primary auditory area' 'AUDp' 'Isocortex' Cerebral Cortex 

16 'Ventral auditory area' 'AUDv' 'Isocortex' Cerebral Cortex 

17 'Anterolateral visual area' 'VISal' 'Isocortex' Cerebral Cortex 

18 'Anteromedial visual area' 'VISam' 'Isocortex' Cerebral Cortex 

19 'Lateral visual area' 'VISl' 'Isocortex' Cerebral Cortex 

20 'Primary visual area' 'VISp' 'Isocortex' Cerebral Cortex 

21 'Posterolateral visual area' 'VISpl' 'Isocortex' Cerebral Cortex 

22 'posteromedial visual area' 'VISpm' 'Isocortex' Cerebral Cortex 

23 'Anterior cingulate area, dorsal part' 'ACAd' 'Isocortex' Cerebral Cortex 

24 'Anterior cingulate area, ventral part' 'ACAv' 'Isocortex' Cerebral Cortex 

25 'Prelimbic area' 'PL' 'Isocortex' Cerebral Cortex 

26 'Orbital area, lateral part' 'ORBl' 'Isocortex' Cerebral Cortex 

27 'Orbital area, medial part' 'ORBm' 'Isocortex' Cerebral Cortex 

28 'Orbital area, ventrolateral part' 'ORBvl' 'Isocortex' Cerebral Cortex 

29 'Agranular insular area, dorsal part' 'AId' 'Isocortex' Cerebral Cortex 

30 'Agranular insular area, posterior part' 'AIp' 'Isocortex' Cerebral Cortex 

31 'Agranular insular area, ventral part' 'AIv' 'Isocortex' Cerebral Cortex 

32 'Retrosplenial area, lateral agranular part' RSPagl' 'Isocortex' Cerebral Cortex 

33 'Retrosplenial area, dorsal part' 'RSPd' 'Isocortex' Cerebral Cortex 

34 'Retrosplenial area, ventral part' 'RSPv' 'Isocortex' Cerebral Cortex 

35 'Posterior parietal association areas' 'PTLp' 'Isocortex' Cerebral Cortex 

36 'Temporal association areas' 'TEa' 'Isocortex' Cerebral Cortex 



56 

 

37 'Perirhinal area' 'PERI' 'Isocortex' Cerebral Cortex 

38 'Ectorhinal area' 'ECT' 'Isocortex' Cerebral Cortex 

39 'Anterior olfactory nucleus' 'AON' 'Olfactory Areas' Cerebral Cortex 

40 'Taenia tecta' 'TT' 'Olfactory Areas' Cerebral Cortex 

41 'Piriform area' 'PIR' 'Olfactory Areas' Cerebral Cortex 

42 'Nucleus of the lateral olfactory tract' 'NLOT' 'Olfactory Areas' Cerebral Cortex 

43 'Cortical amygdalar area, anterior part' 'COAa' 'Olfactory Areas' Cerebral Cortex 

44 'Cortical amygdalar area, posterior part' 'COAp' 'Olfactory Areas' Cerebral Cortex 

45 'Field CA1' 'CA1' 'Hippocampal Formation' Cerebral Cortex 

46 'Field CA3' 'CA3' 'Hippocampal Formation' Cerebral Cortex 

47 'Dentate gyrus' 'DG' 'Hippocampal Formation' Cerebral Cortex 

48 'Entorhinal area, lateral part' 'ENTl' 'Hippocampal Formation' Cerebral Cortex 

49 

'Entorhinal area, medial part, dorsal 

zone' 'ENTm' 'Hippocampal Formation' Cerebral Cortex 

50 'Parasubiculum' 'PAR' 'Hippocampal Formation' Cerebral Cortex 

51 'Postsubiculum' 'POST' 'Hippocampal Formation' Cerebral Cortex 

52 'Presubiculum' 'PRE' 'Hippocampal Formation' Cerebral Cortex 

53 'Subiculum, dorsal part' 'SUBd' 'Hippocampal Formation' Cerebral Cortex 

54 'Subiculum, ventral part' 'SUBv' 'Hippocampal Formation' Cerebral Cortex 

55 'Claustrum' 'CLA' 'Cortical Subplate' Cerebral Cortex 

56 'Endopiriform nucleus, dorsal part' 'EPd' 'Cortical Subplate' Cerebral Cortex 

57 'Endopiriform nucleus, ventral part' 'EPv' 'Cortical Subplate' Cerebral Cortex 

58 'Lateral amygdalar nucleus' 'LA' 'Cortical Subplate' Cerebral Cortex 

59 'Basolateral amygdalar nucleus' 'BLA' 'Cortical Subplate' Cerebral Cortex 

60 'Basomedial amygdalar nucleus' 'BMA' 'Cortical Subplate' Cerebral Cortex 

61 'Posterior amygdalar nucleus' 'PA' 'Cortical Subplate' Cerebral Cortex 

62 'Caudoputamen' 'CP' 'Striatum' Cerebral nuclei 

63 'Nucleus accumbens' 'ACB' 'Striatum' Cerebral nuclei 

64 'Fundus of striatum' 'FS' 'Striatum' Cerebral nuclei 

65 'Olfactory tubercle' 'OT' 'Striatum' Cerebral nuclei 

66 

'Lateral septal nucleus, caudal 

(caudodorsal) part' 'LSc' 'Striatum' Cerebral nuclei 

67 

'Lateral septal nucleus, rostral 

(rostroventral) part' 'LSr' 'Striatum' Cerebral nuclei 

68 'Lateral septal nucleus, ventral part' 'LSv' 'Striatum' Cerebral nuclei 

69 'Anterior amygdalar area' 'AAA' 'Striatum' Cerebral nuclei 

70 'Central amygdalar nucleus' 'CEA' 'Striatum' Cerebral nuclei 

71 'Intercalated amygdalar nucleus' 'IA' 'Striatum' Cerebral nuclei 

72 'Medial amygdalar nucleus' 'MEA' 'Striatum' Cerebral nuclei 

73 'Globus pallidus, external segment' 'GPe' 'Pallidum' Cerebral nuclei 

74 'Globus pallidus, internal segment' 'GPi' 'Pallidum' Cerebral nuclei 

75 'Substantia innominata' 'SI' 'Pallidum' Cerebral nuclei 

76 'Magnocellular nucleus' 'MA' 'Pallidum' Cerebral nuclei 

77 'Medial septal nucleus' 'MS' 'Pallidum' Cerebral nuclei 
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78 'Diagonal band nucleus' 'NDB' 'Pallidum' Cerebral nuclei 

79 'Triangular nucleus of septum' 'TRS' 'Pallidum' Cerebral nuclei 

80 'Bed nuclei of the stria terminalis' 'BST' 'Pallidum' Cerebral nuclei 

Table S2.1. List of regions of interest, mouse connectome. These areas were obtained from the 

atlas as provided by the Allen Mouse Brain Connectivity Atlas at the Allen Institute for Brain 

Health (Oh et al., 2014). Regions are freely available online (Allen Brain Atlas Data Portal; 

connectivity.brain-map.org).
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Chapter 3: Project 2. Chronic gestational inflammation through interleukin-6 (IL-6) inflicts 

persistent changes in behavior and functional connectivity network topology in rodent offspring 

Introduction 

The role of prenatal exposure to immune activation and prenatal inflammation has 

increasingly been recognized as a critical influence on brain development. An expanding body of 

epidemiological work has linked these exposures to the development of various disorders such as 

ASD (Mitchell & Goldstein, 2014; Onore, Careaga, & Ashwood, 2012; Parker-Athill & Tan, 

2011; Patterson, 2011). Further, prenatal exposure to maternal stress (Ronald, Pennell, & 

Whitehouse, 2010) and prenatal exposure to a high fat diet (Kang, Kurti, Fair, & Fryer, 2014; 

Sullivan, Nousen, & Chamlou, 2014) also result in a chronic inflammatory state that is thought to 

mediate atypical neuronal development and increase risk for developmental disorders. 

While other inflammatory cytokines undoubtedly play a role in CNS maturation, 

interleukin-6 (IL-6) has been identified as a key cytokine mediating the link between immune 

dysfunction, inflammation, and altered brain development (Estes & McAllister, 2016; Hunter & 

Jones, 2015; Parker-Athill & Tan, 2011; S. Smith, Li, Garbett, Mirnics, & Patterson, 2007; Wei 

et al., 2013; Wu et al., 2017). Elevations in IL-6 results in the activation of Th17 cells, which 

increases downstream IL-17. This results in an inflammatory response (Estes & McAllister, 

2016) and the activation of the hypothalamic-pituitary-adrenal (HPA) axis (Lenczowski et al., 

1999). IL-6 is readily capable of crossing the placental barrier, whereas other inflammatory 

mediators such as IL-1β and TNF-α display only minimal transplacental transfer (Zaretsky, 

Alexander, Byrd, & Bawdon, 2004). IL-6 affects early developmental processes including 

regulating cell survival, proliferation, differentiation, and axonal guidance (Deverman & 
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Patterson, 2009; Nakanishi et al., 2007) making its regulated expression a key constituent in the 

brain building process.  

 

Prenatal IL-6 exposure may also mediate risk for developmental disorders (Estes & 

McAllister, 2016; Onore et al., 2012; Wei et al., 2013). For example, mothers with elevated mid-

gestational levels of inflammatory cytokines, such as IL-6, are more likely to have children with 

autism spectrum disorder (ASD) and ASD with comorbid intellectual disability (Jones et al., 

2016; Wei et al., 2013). Numerous studies have shown ASD subjects have increased IL-6 in 

blood plasma (Ashwood et al., 2011a, 2011b; Emanuele et al., 2010; Wei et al., 2013) and brain 

tissue (Li et al., 2009; Onore et al., 2012), suggesting that maternal immune status can be 

transferred to the offspring.   

Furthermore, translational research has shown that prenatal exposure to maternal immune 

activation (MIA) increases systemic IL-6 and results in offspring behavioral abnormalities often 

mirroring those of developmental disorders (Estes & McAllister, 2016), such as anxiety, social 

behavior, learning and memory deficits, and repetitive behaviors (Meyer, 2014; Schwartzer et 

al., 2013). Importantly, IL-6 has been identified as key mediator in many of these effects. The 

administration of recombinant IL-6 at particular periods of gestation is sufficient to induce the 

MIA phenotype (S. Smith et al., 2007; Wu et al., 2017), MIA challenged dams who are given the 

anti-IL-6 antibodies no longer show behavioral impairment (S. Smith et al., 2007), and MIA-

induced behavioral impairments are prevented in placental IL-6 knockout mice (Wu et al., 2017). 

Taken together this suggests that a shift in the immune balance during pregnancy may lead to 

alterations in the neurodevelopment trajectory of affected offspring, and that IL-6 may be a key 

mediator in this process.  
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To date, the majority of research in this domain has either been focused on MIA models, 

which are non-specific to IL-6, or have focused on acute rather than chronic exposure to IL-6. It 

is important to consider the chronic inflammatory state because it is thought to mediate risk 

associated with chronic stress (Glaser and Kiecolt-Glaser 2005) and obesity (Monteiro & 

Azevedo, 2010). For these reasons the current work focuses on prenatal exposure to chronically 

elevated IL-6.  

Although cellular abnormalities have been well-characterized in MIA models (Lin, Lin, 

& Wang, 2012; Lin & Wang, 2014; Meyer, 2014; Meyer, Nyffeler, Yee, Knuesel, & Feldon, 

2008) and models of prenatal exposure to IL-6 specifically (S. Smith et al., 2007; Wu et al., 

2017), non-invasive measurements are key to understanding how outcomes in animal studies 

relate to outcomes in humans. Resting state functional connectivity MRI (FC) is a powerful non-

invasive in vivo imaging method, which measures temporal correlation of spontaneous blood 

oxygen level dependent (BOLD) signals among spatially distributed brain regions in the absence 

of an explicit task. FC is an ideal measurement for comparing physiology between humans and 

animal models because of its non-invasive and task-free nature and because of its wide use of 

characterizing brain network structure in developmental disorders. 

The amygdala is a key limbic structure involved in mood regulation and anxiety. 

Amygdala structure and function are altered in patients with anxiety and depression (Etkin & 

Wager, 2007; Hamilton et al., 2012), and amygdala volume is increased in children of mothers 

with anxiety during pregnancy (Buss et al., 2012). Recently, studies have been relating prenatal 

stress to amygdala functional connectivity during infancy (Graham et al., 2015; Scheinost et al., 

2016). More specifically, amygdala connectivity during infancy has been related to gestational 

IL-6 levels (Graham et al., 2017). Further, children with ASD show atypical patterns of FC and 
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abnormal amygdala growth trajectories (Nordahl et al., 2012; Shaw, Gogtay, & Rapoport, 2010; 

Uddin, Supekar, & Menon, 2010; Verhoeven et al., 2010). Together these studies point to a 

potential role for prenatal IL-6 in altering FC during infancy and highlight the amygdala as an 

important target for these FC impairments.  

That being said, these prior studies in humans are correlational in nature and only in 

animal models can we test the direct effects resulting from manipulations to prenatal IL-6 levels, 

specifically, on offspring FC. Previously, animal models of MIA (which results in prenatal 

exposure to inflammation), have used non-invasive measures to show differences in ventricle 

size (Li et al., 2009), white and grey matter size (Short et al., 2010), and differences in white 

matter microstructure in frontal, striatal, and limbic regions (Li et al., 2010). One preclinical 

study of prenatal exposure to stress found differences in offspring FC in regions including the 

amygdala and caudate nucleus, and a right-lateralization of FC (Goelman, Ilinca, Zohar, & 

Weinstock, 2014). To our knowledge, no preclinical FC study has examined the effect of 

prenatal exposure to inflammation or IL-6 more specially. It is important to know how IL-6 

induced FC changes relate to changes observed in humans exposed to IL-6, and to 

developmental disorders more generally.  

The current study examines FC development and behavioral alterations in rats prenatally 

exposed to chronically elevated IL-6. Rat offspring were assessed during early (~PND 25) and 

late development (~PND 45). These ages represent periods of substantial developmental change, 

which correspond to a roughly 4 and 17 year old human (Semple, Blomgren, Gimlin, Ferriero, & 

Noble-Haeusslein, 2013). At each both early and late developmental waves, this longitudinal 

study examined anxiety-like, locomotor, and social behaviors as well as functional connectivity 

network organization. The amygdala was of particular interest due to its role in stress, anxiety, 
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and social behavior and due to its importance in psychiatric disorders (e.g., autism) linked to 

maternal inflammation during pregnancy (Meyer, Feldon, & Dammann, 2011; Nordahl et al., 

2012). We hypothesized that prenatal IL-6 exposure would induce deficits in component 

behaviors associated with developmental disorders, cause changes in amygdala FC and its 

longitudinal development, and cause changes in the developmental trajectory of FC network 

organization across the brain.   

Methods 

Dam characteristics 

Adult female and male Sprague-Dawley rats were obtained from Charles River 

Laboratory (males 350g, females 250g). Five dams were implanted with IL-6 infused osmotic 

mini pumps and six dams were implanted with 1% phosphate-buffered saline (PBS) infused 

mini-pumps. Due to practical constraints on behavioral and MRI scanning, one control and one 

IL-6 dam were bred in parallel.  

Surgery, breeding, and weaning 

Female dams were anesthetized with 3% isoflurane, then implanted with subcutaneous 

osmotic mini-pumps as detailed by the manufacturer (Alzet). All dams were given 5mg/kg 

meloxicam for pain post-surgery. Dams were allowed to recover from surgery for three days, 

after which they were paired with an adult male. Osmotic mini pumps (Alzet mini-pumps, model 

2004, .28 ul/hr, 231.7ul, infusion duration 32.8 days) infused recombinant IL-6 (R&D systems, 

Recombinant Rat IL-6 protein, carrier free, Cat. No. 506-RL/CF) throughout the duration of 

breeding and gestation. Three dams were infused with 4.96 ug/kg IL-6 per day and two dams 

received 9.92 ug/kg IL-6 per day. These doses were chosen to be similar, across 24-hours, to 

previous research injecting IL-6 at various points in gestation (S. Smith et al., 2007). After 18 



63 

 

days male and female rats were separated and cages were checked daily for births. Saline and IL-

6 rats were weaned 21 days after birth into same sex and condition cages, 2-3 animals per cage. 

Offspring characteristics 

All offspring were assessed for behavior at two ages. Once during early development, 

starting at PND 22 (wave 1), and again in late development, starting at PND 45 (wave 2). 

Offspring from each cohort were tested on the same day and test session if possible (i.e. when 

birth dates overlapped between groups within one day). Four of the 11 cohorts were behaviorally 

tested on the same day and the remaining cohorts were tested with a lag of 1-3 days between 

tests to match for age between groups. 

Study design 

As outlined in Figure 1, each set of behavioral assessments were followed by MRI scan 

acquisition. The behavioral tests started on PND 22 with the locomotor task, followed by the 

social behavior task, then the light-dark test for anxiety, with 1-2 days between tasks. After 

behavioral testing, the first MRI was administered, followed by an identical set of behavioral 

tests starting at PND 45, and a final MRI at PND 50. Groups were carefully matched on age at 

each behavioral and MRI assessment. Behavior and imaging dates were consistent with this 

timeline +/- 2 days. On locomotor and anxiety tests, roughly 45 offspring were included at each 

group and each developmental wave.  

All rats were maintained on a 12-h light/dark cycle (lights on at 0600 h) at a room 

temperature of 21 °C ± 1 °C and allowed food and water ad libitum. All experiments were 

performed during the animal’s light cycle.  

This study was conducted in strict accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals. The protocol was approved by the 
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Institutional Animal Use and Care Committee of the Oregon Health & Science University 

(Protocol Number: 00319). All efforts were made to minimize the number of animals used and 

their suffering. 

 

Figure 3.1. Study design. Dams were implanted with osmotic mini-pumps (32.8 day infusion 

duration) before breeding. Offspring were prenatally exposed to PBS (control) or IL-6 

throughout gestation, and were weaned at PND 21. Behavioral testing started one day after 

weaning. Behavioral tests were performed over the course of the first week, with at least 24 

hours between tasks, starting with locomotor behavior, the three choice social behavior task, and 

followed by the light-dark box task for anxiety-like behavior. MRI scans were then performed on 

a subset of animals. Beginning on PND 45 the same animals were then placed through the 

identical set of behavioral experiments and MRI procedure.  

Maternal IL-6 blood plasma 

To confirm that IL-6 was elevated after osmotic mini-pump implantation, dams were 

tested for systemic IL-6 blood plasma levels. One IL-6 and one saline dam was selected in order 

to minimize stress on remaining dams. Blood serum was collected from the tail vein (while under 

2% isoflurane) 6, 14, and 27 days after osmotic pump implantation, then transferred to vials 

containing 0.5M ethylenediaminetetraacetic acid (EDTA). Blood was centrifuged at 8000 rpm 

for 10 minutes and 200 uL of blood plasma was aliquoted and frozen at -80. Blood plasma from 
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each sample was analyzed with a Rat IL-6 Picokine enzyme-linked immunsorbent assay 

(ELISA) kit (catalogue no. EK0978; Wuhan Boster Biological Technology, Ltd., Wuhan, China, 

IL-6 sensitivity < 5pg/ml) according to the manufacture’s protocol.  

Behavioral Methods 

Locomotor activity was measured in automated Accuscan activity monitors (40 cm2; 

AccuScan Instruments, Inc., Columbus, OH, USA), with tests performed between 1600-1800h, 

during the light phase of the 12:12 h L:D cycle. Monitors were encased by sound-attenuating 

external chambers that were illuminated (3.3 W incandescent light bulb) and ventilated. 

Accuscan software translated patterns of photocell beam breaks for beams and sensors located 

2 cm above the chamber floor into distance traveled in centimeters. Measurements were 

automatically generated by Acuvision. Total distance traveled (cm) was assessed. Duration spent 

in the center of the chamber was also calculated as an additional measure for anxiety, because 

anxious rodents generally display thigmotactic (wall-hugging) behavior (Bourin, 2015).  

Our primary measure of anxiety-like behavior was assessed through the light-dark box 

test. This test is based on the innate aversion of rodents to the brightly illuminated and open areas 

(Bourin, 2015; Hascoët & Bourin, 2009). All tests were performed in the locomotor chambers 

allowing for automated measurements of time spent in each chamber. For this test, a custom 

built, infrared resistant, black opaque plastic box was used (15.75’’x8’’x8’’). The box took up ½ 

of the chamber. The door to the dark box was 4’’ wide and 2.5’’ tall. For the experiment, after 

cleaning the chamber with 70% ethanol, the dark box was placed into the locomotor chamber. 

Next, the test rat was placed into the light side at which time the duration spent in the light and 

dark chambers was assessed. An increased duration of time spent in the light side of the chamber 

was interpreted as less anxiety-like behavior.  
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To measure sociability, the three choice social behavior task was employed with minor 

modifications (Moy et al., 2004). The apparatus consisted of a rectangular, custom built three-

chambered box (30”x13.5”). This box was separated into three equal sized chambers separated 

by opaque black plexiglass, and a 4’’ wide door allowing access to the social and non-social 

chambers. 24-hours prior to social behavior testing, all animals were separated from their cage 

mates and individually housed to increase sociability before testing. Social isolation prior to 

testing was performed because social isolation has been shown to increased motivated sociability 

in juvenile rodents (Ikemoto & Panksepp, 1992). Prior to each test, a subset of animals were 

selected as stimulus rats or test rats. First, the test mouse was placed in the middle chamber and 

allowed to explore for five minutes. After the habituation period, a rat of the same treatment 

group and sex was placed in one of the side chambers underneath a weighted circular cup with 

wire mesh (5”x4.2”). An identical empty circular cup was placed on the non-social side. The 

location of the stimulus rat (i.e., left vs. right side chamber) was alternated between trials. Next, 

both doors were unblocked allowing the test rat to explore either the social side (with the 

stimulus rat) and non-social chamber (empty cup). At the end of the 10 minutes, all animals were 

returned to their home cage.  

All videos were recorded and a trained observer scored the amount of time spent in each 

chamber, defined as the test rat’s head passing into one chamber or another, as well as time spent 

in direct proximity to the stimulus rat (either actively investigating or in immediate contact with 

the stimulus rat). Dependent measurements included the proportion of time spent in social 

proximity during the 10 minute test, the duration of time spent on the social side versus the total 

duration of the test, and the proportion of time spent on the social side vs. non-social side. Inter-
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rater reliability was greater than 90% when results were compared between two trained observers 

scoring the same subjects.  

MRI methods 

This longitudinal study consisted of 86 MRI scans. W1, during early development, 

consisted of 41 MRIs (18 IL-6 and 23 control). W2, during late development, consisted of 45 

scans (23 IL and 22 control). Across waves, there was a total of 41 IL-6 scans and 45 saline 

control scans. Of these scans 29 subjects retained quality MRI data between scan 1 and scan 2 

(13 IL-6 and 16 controls). For the brain behavior analyses 78 scans had both imaging and 

behavioral data for a given wave. 38 IL-6 and 40 control scans had both MRI and behavioral 

data.  

Animal Preparation 

Imaging in rodents generally requires the use of anesthesia to limit movement of the 

animals in the scanner. Here, anesthesia was induced by 3% isoflurane and maintained with 1–

1.5% isoflurane. The selection of anesthesia may influence FC (Grandjean et al., 2014). Of 

various anesthetic regimens, we selected low dose isoflurane for the present study based on the 

following previous findings: 1) Functional connectivity following 1% isoflurane is preserved and 

comparable to that of awake mice and rats (Jonckers et al., 2014; Mills et al., 2016; Shah et al., 

2013; Stafford et al., 2014; K. Wang et al., 2011).  2) c-Fos activation (an immediate early gene) 

can be observed in isoflurane-anesthetized mice and rats (Kufahl et al., 2015, 2009; M. Smith et 

al., 2016). That being said, acclimated awake animals or other anesthesia regimens, such as a 

combination of dexmedetomidine and lower dose isoflurane (.5-.75%) (Ash et al., 2016; 

Brynildsen et al., 2017), may be an alternative for future studies.   
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During scanning, the head was kept stationary using a custom-built head holder equipped 

with ear bars (to limit motion) and designed with a nose cone for administration of isoflurane and 

for fitting the Bruker radiofrequency (RF) surface coil. Respiration (80–100 bpm) and animal 

temperature was monitored and controlled by a small animal monitoring system (Model 1030 

Monitoring and Gating System; SA Instruments). Circulating warm air in the bore maintained 

animal temperature at 37 °C throughout the scan.  

Imaging acquisition  

The MRI was performed at 11.75 T (Bruker Corporation, Billerica MA, USA) using a 

system equipped with a Resonance Research, Inc. high-bandwidth shim power supply, at the 

Advanced Imaging Research Center. A Bruker volume coil was used for transmitting and a 

Bruker surface coil for receiving. All scans were performed with Paravision 5. Using 

MAPSHIM, a 3D Fieldmap phase image was acquired; TR = 20 ms, TE1 = 2 ms, inter echo time 

= 4.003 ms, FA= 20◦, FOV= 40 mm × 18 mm × 25 mm, matrix = 80 × 90 × 125 (voxel size of 

0.5 × 0.2 × 0.2 mm3, matching the EPI voxel size). This was followed by a T2-weighted 

structural image (RARE, TR = 4590 ms, effective TE = 32 ms, RARE factor = 8, 50 contiguous 

slices (0.5 mm thick) with interleaved acquisition, FOV= 18 × 18 mm, matrix = 150 × 150, voxel 

size 0.12 × 0.12 × 0.5 mm3, 1 repetition). Global (volume) and local (brain voxel) shimming with 

MAPSHIM were performed to calculate first and second order shims prior to the functional MRI 

scan. The resting state fMRI consisted of a single shot gradient echo-planar imaging (EPI) 

sequence with the following parameters: two runs with 360 repetitions (total scan time = 30 

min), TR = 2500 ms, TE = 10 ms, FA= 60◦, 50 contiguous slices (0.5 mm thick) with interleaved 

acquisition, FOV= 25.6 × 16 mm, matrix = 128 × 80, voxel size 0.2 × 0.2 × 0.5 mm3. An 
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identical EPI sequence with 20 repetitions was acquired in the reverse phase encoding direction 

for topup distortion correction.  

General fMRI BOLD preprocessing 

Functional images were first processed to reduce artifacts. These steps include: (1) 

removal of a central spike caused by MR signal offset; (2) correction of odd vs. even slice 

intensity differences attributable to interleaved acquisition without gaps; (3) correction of field 

inhomogeneities by applying topup field map correction. This required that data was collected 

with reversed phase-encode blips, resulting in pairs of images with distortions going in opposite 

directions. From these pairs the susceptibility-induced off-resonance field was estimated using a 

method similar to that described in (Andersson et al., 2003) as implemented in FSL (S. M. Smith 

et al., 2004) and the two images were combined into a single corrected one. (4) movement 

correction; (5) within run intensity normalization to a whole brain mode value of 1000. 

Processed functional data was registered to an anatomical atlas for each individual via the T2 

scan. Each EPI run was then resampled in atlas space on an isotropic 0.2 mm grid combining 

movement correction and atlas transformation in one interpolation (Lancaster et al., 1995). 

Rs-fcMRI pre-processing  

Additional preprocessing steps were used to reduce spurious variance unlikely to reflect 

neuronal activity (e.g. heart rate and respiration). These steps included the regression of the 

whole brain signal and the first order derivative of the whole brain signal, followed by a 

temporal high and low band-pass filter (.008 Hz < f < 0.1 Hz). 

Regions of interest (ROIs)  

For ROI based analyses a rat MRI atlas developed for functional connectivity studies and 

available in Analyze format (easily converted to NIfTI format) was used (Schwarz et al., 2006; 
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Schwarz, Gozzi, Reese, & Bifone, 2007). These ROIs correspond to brain areas are given in the 

Paxinos&Watson space (Nie et al., 2013; Paxinos & Franklin, 2007). 38 bilateral ROIs were 

used for these analyses (76 total). 10 regions were not used including those in white matter, or 

those that were located on the extreme anterior (i.e. olfactory bulb, as opposed to olfactory 

nuclei) or posterior sections of the brain (i.e. Pons). For network analyses, regions were manually 

assigned an anatomical community corresponding to frontal, limbic, subcortical, motor, 

olfactory, hippocampal, auditory/temporal, parietal, or visual cortex. A full list of ROIs used and 

their network definitions can be seen in supplementary Table S3.1.  

Connectivity matrices between these regions were constructed as follows. For each scan, 

BOLD time series data was extracted post-processing for each ROI and pearsons correlations 

were calculated for every region pair. Finally, ROI-ROI correlation, Fisher Z transformed r-

values were used for analysis. 

Statistical Methods 

Behavioral analyses 

Due to the longitudinal nature of the data, linear mixed effects models were used, which 

are able to model within subject, between subject variation, and is robust to missing data. These 

models examined whether behavior was related to wave (early and late development), group (IL-

6 vs. control), and their interactions. Statistical models were fit using the fitlme function using 

Matlab (version 16a). Post hoc analyses were performed where appropriate using t-tests. In order 

to examine the prenatal dose of IL-6 influenced our results, linear mixed effects models 

examined if adding the main effect of dose significantly increased the variance explained. Here, 
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the model including dose, was compared to the linear model without dose using the ‘compare’ 

function in Matlab.   

Functional connectivity analyses 

For the main analyses, again, we used a linear mixed effects model to assess the 

relationship between the connectivity between two regions, and their relationship to group status, 

wave (i.e. scan was during early or late development), and their interactions (i.e. was the 

connectivity differences larger for one wave than the other?). The following equation describes 

this model: 

Connectivity = β0 + β1 Group + β2 Wave + β3 Group ∗ Wave +  ε 

This model was fit for each connection. When appropriate, models were compared to find 

the best fit. For example, for the interaction term, the omnibus model shown above was 

compared to a model including only the main effects of group and wave but no interaction. 

Model fits for each connection were then compared using the ‘compare’ function in Matlab.  For 

significant models, post hoc analyses determined the direction of each t-scores for significant 

parameter (e.g. IL-6 has decreased connectivity compared to controls).  

Targeted and Network-wide analyses 

The main analyses focused exclusively on connectivity differences from the left and right 

amygdala. Amygdala connectivity significance was assessed at both a p < .05, uncorrected and 

FDR corrected thresholds. Next, in an exploratory approach, we examined brain-wide network 

connectivity patterns in regions which showed altered developmental trajectories. To assess these 

network changes, a chi-squared (χ2) analyses was used to determined statistical significance of 

each network or pairs of networks. This analyses essentially asks the following: “are group by 
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wave effects concentrated between particular networks more than expected by chance?” A 

benefit of this analyses is that this simplifies the interpretability of analyses, as we examine 

which “networks” rather than individual connections are most affected by each effect main effect 

or interaction of interest.  

In brief, the χ2 approach (see Eggebrecht et al. 2017a for full details) compares the 

observed number of significant effects within a given network, with what would be expected if 

by chance if these effects were evenly distributed across network. The resulting statistic is large 

when there are more effects within a network than expected by chance. An empirical p-value are 

calculated by a permutation test, which is non-parametric and does not make assumptions about 

the population distribution (Backes et al., 2014; Eggebrecht et al., 2017). 10,000 permutations 

were performed, each time randomly shuffling the binary values (i.e. our statistic of interest) into 

other valid calls (in our case, into other cells which were not a significant negative group by 

wave coefficient). The reported p-values for each network reflect the observed chi-square 

statistic compared to the permuted chi-square statistics obtained from the given network-network 

pair. Significant networks for each category (p<.05) are reported in a bold red highlight around 

the network pair. Positive group by time coefficients were examined separately from negative 

group by time effects in order to examine whether trajectory differences (i.e. IL-6 has early 

decreased vs increased connectivity) were uniquely distributed across the brain.   

Brain behavior analyses 

For the brain behavior analyses, no missing data was included, that is, only scans who 

had both MRI data as well as behavioral data for the same wave were included. Linear mixed 

effects models controlled for within subject variation and fit the relationship between a given 

connection and behavioral performance on light dark anxiety behavior. Main analyses separately 
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fit each amygdala connection to anxiety behavior. Effects passing an FDR corrected p < .05 are 

shown. Post hoc analyses tested whether network effects were related to behavior by averaging 

each scans connectivity within a given networks significant effects and relating these measures 

to behavior in one linear mixed effects model.   

Results 

Osmotic mini-pumps increase dams IL-6 blood plasma 

As can be seen in figure 3.2, IL-6 is elevated in dams 6, 14, and 27 days after osmotic 

mini-pump surgery. IL-6 levels appear to decrease with time but remain elevated throughout 

gestation.   

Figure 3.2. Osmotic minipumps increase maternal blood 

plasma levels of IL-6. Each bar represents maternal IL-6 

blood plasma levels, 6, 14, and 27 days after pump 

implantation. Saline (control) dams do not show increases 

in IL-6 throughout pregnancy. However, IL-6 dams show 

elevated levels throughout pregnancy. These levels show 

some decrease with pregnancy duration. IL-6 levels were 

quantified using ELISA.  

Behavioral results 

Linear mixed effects models tested whether each behavior changed as a function of group 

status, wave (i.e., developmental wave), and their interaction, indicating that these behavioral 

deficits were more prominent at one wave or the other.  

On the light dark task, IL-6 animals spent significantly less time in the light (main effect, 

t(221) = -3.003, p =.003) across both waves (group by wave interaction, t(221) = 1.34, p =.181). 



74 

 

Both groups spent more time in the light on wave 2 (W2) compared to wave 1 (W1) (main effect 

of wave, t(221) = 5.64, p < .0001).  See figure 3.3A.  

On the locomotor behavior task, IL-6 animals had significantly reduced time in the center 

at both W1 and W2 (main effect of group status (t(241) = -3.23, p =.001). Across groups, center 

time increased from W1 to W2 (main effect of wave, t(241) = 4.94, p < .0001), however the 

group effect was similar for both waves (no group by wave interaction p = .71). See figure 3B. 

Together, the light dark and center time measures indicates that IL-6 animals have persistent 

anxiety-like behavior in early and late development. 

IL-6 animals had reduced total distance traveled compared to control animals (main 

effect of group, t(241) = -3.43, p = .0006), however, in this case, the effect was driven by a 

decrease in early development (W1), rather than the W2 (group by wave interaction, t(241) = 

2.73, p = .006). Across groups, W1 animal traveled less distance compared to W2 (main effect of 

wave, t(241) = 3.93, p < .0001). See figure 3.3C.  

 

Figure 3.3. IL-6 exposure results in behavioral deficits reflecting increased anxiety. IL-6 

animals spend less time in the light on the A) light dark box, B) less time in the center of during 

the locomotor behavior test, and C) travel less distance compared to control animals. The anxiety 

phenotype persists into late development as measured by A) the light dark test and B) center 
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time. Total distance was only impaired during early development. *p<.05. W1 = early 

developmental wave 1 (~PND 35), W2 = late developmental wave 2 (~PND 50). Roughly 45 

offspring were used for each group at each wave.   

There was a trend towards decreased social proximity in IL-6 animals during the early 

developmental wave (see supplementary figure 4, p = .067). Otherwise, across waves IL-6 

animals performed similarly on the social behavior task to controls, both on social proximity 

measures as well as the proportion of time spent in the social side of the three choice chamber 

(all p > .05).  

Dose, sex, and weight 

In order to assess the effect of IL-6 dose on behavioral performance, a linear mixed 

effects model was run including the main effect of dose (low vs. high IL-6 dose). Anxiety-like 

behavior was not influenced by dose (center time (p = .74) and light dark (p = .36)). A trend was 

found where IL-6 subjects given a higher dose had increased locomotor distance traveled (p = 

.07).  

 Sex did not influence any of the behavioral findings (group, wave, or group by wave 

interactions, all p >.25). Only a trend towards a main effect of sex on center time (p = .09) was 

observed where females spent slightly longer in the center of the open field compared to males 

(males M = 49.73 seconds, females M = 50.31).  

MRI results 

Group and group differences in developmental trajectories  
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The first analyses examined differences in amygdala connectivity resulting from IL-6 

exposure. We found that across developmental waves, two amygdala connections showed 

positive group effects, such that IL-6 animals had reduced amygdala FC (see figure 3.4D). These 

connections were from the left amygdala to the left caudate putamen (t = 2.87, p = .004) and 

ventral pallidum (t=2.23, p=.02) (see figure 3.4A).  

Next, we asked whether the development of the amygdala was altered in IL-6 offspring. 

That is, were group differences a function of development (i.e., a group by wave interaction)? 

We found 9 connections indicating that IL-6 animals show under-connectivity of the amygdala 

during early development, but increased amygdala connectivity in late development (see figure 

3.4B-D). This pattern from the amygdala spans a variety of regions including subcortical regions, 

and entorhinal, temporal, and cingulate cortex. The overlap between group and group by wave 

effects in the connection between the left amygdala and left caudate suggest that this group 

effects was driven in part driven by differences in this connections developmental trajectory. To 

illustrate these effects, figure 3.4D averages the right and left amygdala connectivity to each of 

their respective significant connections (figure 3.4B).  
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Figure 3.4. Amygdala connectivity changes as a function of developmental wave. A) Subtle 

effects on amygdala connectivity were found across age, however, the majority of the effects 

were explained by B-D) group by wave (i.e. age) interactions on connectivity. B) Regions which 

show significant developmental change in the amygdala. # indicates connections with both group 

by wave and group effects. C) Developmentally changing connections from the amygdala 

(black) are visualized. The amygdala is broadly under-connected during early development 

(PND 35), but over-connected in late development (PND 55). D) Bar graphs depict the average 

connectivity between all significant amygdala connections at each developmental stage.  

Four connections showed the opposite group coefficients indicating higher R values 

compared to controls at W1 (see supplementary figure S3.1). Three of these connections were 

driven by differences in developmental trajectories (i.e. these connections show both group and 

group by wave effects), where IL-6 had higher R values at developmental W1 but lower R values 

at W2 (figure 3.S2). These connections included those from the amygdala to parietal, visual, and 
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motor cortex. Post hoc analyses showed that these effects were driven by negative correlations. 

In these cases, IL-6 offspring show an increase in negative, as opposed to positive correlations 

compared to controls. At the first developmental wave IL-6 animals show decreased negative 

correlation and an increased negative correlation at W2 (see figure S3.1). See supplementary 

material for additional post hoc analyses and full detail on these effects.  

Relationships between connectivity and anxiety-like behavior 

Given the robust anxiety-like phenotype we observed, we next examined whether FC 

from the amygdala was related to anxiety as measured by the light dark box. Fifteen connections 

related to increased amygdala connectivity and increased anxiety behavior (see Figure 3.5b). For 

example, increased connectivity from the right amygdala to right dorsolateral thalamus (t = -

7.15), right caudate putamen (t = -6.69), right posterodorsal hippocampus (t = -6.23), as well as 

the left amygdala to left (t = -4.8) and right (t = -4.5) retrosplenial and right cingulate cortex (t = 

-4.45) were all related to increased anxiety behavior. Of the 18 significant connections, 3 related 

to anxiety in the opposite direction, where decreased amygdala connectivity related to increased 

anxiety. These connections included the right amygdala to the left motor (t = 5.24) and 

somatosensory cortices (t = 4.98).  Three of these effects overlap with group by wave effects, 

including connections to the temporal association cortex, ventral pallidum, and motor cortex. 

These overlapping effects are indicated by a # in figure 3.5.  
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Figure 3.5. Anxiety is related to amygdala connectivity. Depicted are amygdala connections 

that are related to anxiety behavior. In the majority of connections, more anxiety (less time in the 

light during the light dark box test) is related to greater amygdala connectivity. A) Regions from 

the amygdala (black) showing this relationship. B) A table of all amygdala connections with a 

significant relationship between amygdala connectivity and anxiety behavior on the light dark 

task. These behavioral relationships are partially overlapping with the connections showing IL-6 
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related developmental change indicated by the #. Across the brain, three connections from the 

amygdala show the opposite effect, where increased connectivity relates to decreased anxiety. 

All connections shown are p < .05 (FDR corrected). C) The scatter plot highlights an example 

where increased connectivity between the right amygdala and right thalamus relates to greater 

anxiety behavior (i.e., more time spent in the dark).  

Network level FC change 

Next, we examined whether the observed alterations in developmental trajectories were 

specific to the amygdala or were also altered between large scale brain networks. For this 

analysis we examined the distribution of connections which showed differential developmental 

trajectories between groups (i.e., group by wave interactions). A chi-squared statistic was 

computed to examine the distribution of these effects clustered in particular networks more than 

expected by chance. In this way, we can observe if the pattern observed in the amygdala was also 

found at the network level across the brain. Figure 3.6 shows each connection with a significant 

group by wave interaction (negative group by wave coefficients). Each cell indicates connections 

that show the same pattern to that of the amygdala, that is, IL-6 offspring are under-connected 

early and over-connected late in development. Networks outlined by red boxes highlight 

significant networks which have more effects within them than expected by chance (χ2 statistic, 

p < .05). On a network level, connections within subcortical regions (Figure 3.6B, χ2, p = .0084), 

and connections within the parietal to frontal network (Figure 3.6C, χ2, p = .02), had a higher 

proportion of group by wave effects. No other network showed significant group differences in 

this developmental trajectory. Note the individual amygdala connections showing this pattern, 

highlighted in Figure 4B. Figure 6D illustrates the group by wave effect by averaging significant 

subcortical connections for each group at each wave. On the network level, average connectivity 
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within significantly changing subcortical or frontal to parietal network connections were not 

related to anxiety behavior (p > .4).  

 

Figure 3.6. Whole brain network analyses implicate the subcortical network as the most 

developmentally altered network after IL-6 exposure. The region by region matrix shows 

connections with significant group by wave interactions (negative coefficients corresponding to 

positive connections). Each cell indicates a group by wave interaction where IL-6 connectivity is 

decreased early and increased late in development (p < .05). Typically with age, A) connections 

from the amygdala, B) and the subcortical network (p = .0084), tend to decrease in connectivity 
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from early to late development in control animals. This trajectory is reversed in IL-6 exposed 

offspring. C) The parietal to frontal network cortex also shows subtle group differences across 

development (p = .02). D) The observed differences in this developmental trajectory is illustrated 

by averaging FC within significantly changing subcortical connections. To identify the 

individual connections shown above refer to the full ROI list and their network assignments in 

table S1.   

Chi-squared effects within positive group by wave coefficients (related to differences in 

negative correlations, see supplementary figure 3.2) were also examined. Here we find different 

developmental trajectories primarily in networks related to sensory processing and sensory 

integration. These networks include subcortical to visual, as well as motor to olfactory and 

hippocampal, and parietal to hippocampal networks (p < .05). These effects can be seen in 

supplementary figure 3.3. These effects mirror the main developmental trajectory findings, only 

now in terms of negative correlations. For instance, typically negative correlations decreased 

with age. IL-6 offspring show the opposite developmental pattern. That is, reduced negative 

correlations early in development but elevated negative correlations late in development. See 

supplementary figure 3 for full detail. On a network level, average connectivity within 

significantly changing subcortical to visual connections was related to anxiety, increased anxiety 

was related to more negative connectivity (p = .01, see supplementary figure S3.5). No other 

networks showed a relationship between connectivity and anxiety.  

Discussion 

This study found that prenatal exposure to chronically elevated IL-6 results in persistent 

behavioral abnormalities throughout development, primarily in anxiety-like behavior. IL-6 

offspring show more subtle effects on locomotor and sociability tasks during early development. 
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FC analyses found that amygdala development was most prominently characterized by a pattern 

of under-connectivity then over-connectivity compared to controls during late development. 

Amygdala FC was related to anxiety, where increased anxiety was correlated with increased 

amygdala connectivity. On a network level, subcortical and parietal to frontal networks showed a 

similar pattern to the amygdala, but these findings were unrelated to anxiety. Interesting findings 

were also observed for connections that were primarily negative in nature. However, because of 

some of the controversy regarding these types of links (Murphy, Birn, Handwerker, Jones, & 

Bandettini, 2009; Murphy & Fox, 2017), we’ll focus on the positive correlations here with a 

short discussion on negative correlations in the supplementary material. 

Maternal prenatal IL-6 exposure causes a persistent anxiety-like phenotype in offspring 

throughout development  

Anxiety is a prominent behavioral phenotype in IL-6 associated psychiatric disorders 

such as autism (Chalfant, Rapee, & Carroll, 2007; Lang, Regester, Lauderdale, Ashbaugh, & 

Haring, 2010; White, Oswald, Ollendick, & Scahill, 2009). Anxiety is also associated with 

prenatal exposure to stress (Davis, Glynn, Waffarn, & Sandman, 2011; Glover, 2011; Talge, 

Neal, & Glover, 2007) and high fat diet (Sasaki, de Vega, St-Cyr, Pan, & McGowan, 2013; 

Sullivan et al., 2010, 2014). Both maternal Poly-IC and LPS inflammation models have observed 

these anxiety-like phenotypes (Depino, 2015; Gibney, McGuinness, Prendergast, Harkin, & 

Connor, 2013; Le Belle et al., 2014; Meyer, 2014; Meyer & Feldon, 2012). These studies also 

generally find decreased sociability and less distance traveled in an open field, although results 

are mixed (Le Belle et al., 2014; Malkova, Yu, Hsiao, Moore, & Patterson, 2012; Samuelsson, 

Jennische, Hansson, & Holmäng, 2006; Schwartzer et al., 2013). To the best of our knowledge, 

the few studies examining the effects of prenatal IL-6 specifically have not investigated these 
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anxiety-like behaviors. These IL-6 induced anxiety behaviors persist throughout development; 

however, until now, our understanding of how they relate to anxiety related circuits using in-vivo 

MR imaging is largely unknown.   

Maternal prenatal IL-6 exposure IL-6 exposure leads to altered amygdala connectivity in 

offspring, which relates to anxiety-like behavior 

The amygdala is a key limbic structure involved in mood regulation and anxiety. It is 

associated with anxiety and depression (Etkin & Wager, 2007), is implicated autism (Haznedar 

et al., 2000; Stanfield et al., 2008), and its FC has been shown to be altered in infants exposed to 

prenatal stress (Scheinost et al., 2016), as well as prenatal IL-6 exposure more specifically 

(Graham et al., 2017). The amygdala may also play an important role in the central integration of 

afferent signals from the peripheral immune system (Engler et al., 2011). For example, low dose 

LPS administered to humans results in enhanced amygdala responses to threatening faces 

(Inagaki, Muscatell, Irwin, Cole, & Eisenberger, 2012). Further, a translational study showed 

that LPS induced inflammation results in a significant increase in neuronal activity within the 

amygdala and a substantial rise in extracellular noradrenaline levels. Importantly this study also 

found that amygdala activity related to an increase in anxiety-like behavior (Engler et al., 2011). 

According to Nusslock and colleagues, from an evolutionary perspective increased signaling, 

such as this, from the amygdala could be adaptive in some sense. When stimuli are perceived as 

threatening, cell groups in the amygdala signal hypothalamic centers that subsequently mobilize 

fight-or-flight responses mediated by the HPA axis. Cortico-amygdala signalling could also work 

to enable peripheral leukocytes to send warning signals to the brain, enhancing threat-vigilance 

(Nusslock & Miller, 2016). Such signaling might be maladaptive in today’s environment. 
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Our findings are generally consistent within this framework. We find that amygdala 

connectivity relates to increased anxiety-like behavior. This work points to the amygdala as a 

critical locus for IL-6 related brain change, and suggests that its FC plays a role in mediating 

anxiety-like behaviors. Numerous connections from the amygdala may play a role in mediating 

these behaviors. Many connections we identified have also been implicated in previous work. 

For instance, the anterior cingulate has rich anatomical connections to amygdala (Carmichael & 

Price, 1995; Palomero-Gallagher, Mohlberg, Zilles, & Vogt, 2008; Palomero-Gallagher, Vogt, 

Schleicher, Mayberg, & Zilles, 2009), these regions are implicated in generalized anxiety 

disorder (Etkin, Prater, Schatzberg, Menon, & Greicius, 2009; Etkin & Wager, 2007; Tromp et 

al., 2012), and are thought to play a central role in emotion processing (Etkin, Egner, Peraza, 

Kandel, & Hirsch, 2006). FC from other amygdala connections were also related to anxiety 

including thalamic connections, which have been shown to mediate anxiety (Abrahamson & 

Moore, 2001; Shekhar, 1993; Shekhar, Hingtgen, & DiMicco, 1990). Interestingly, preclinical 

FC studies have also suggested that the posterior hypothalamic area, whose connectivity to the 

amygdala related to anxiety like behavior here, is a key hub mediating anxiety (Upadhyay et al., 

2011). Furthermore, we identified connections to the nucleus accumbens, a region with 

integrated with the limbic system and known to be involved in emotion and anxiety regulation 

(Floresco, 2015). The hippocampus was also implicated here. This is in-line with previous work 

showing the distinct role of the hippocampus in untrained anxiety, independent of its roles in 

learning and memory (Engin & Treit, 2007). It should be noted that FC is not always 

monosynaptic (Randy L. Buckner, Krienen, & Yeo, 2013) and alterations to the amygdala can 

result in widespread changes to network structure across the brain, including to regions without 

direct anatomical projections (Grayson et al., 2016). Overall, our work suggests that increased 
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FC from the amygdala to a variety of regions, both those directly and indirectly connected to the 

amygdala, and many of which are involved in anxiety, is associated with increased anxiety-like 

behavior in rodents. 

IL-6 exposure leads to altered developmental trajectories of the amygdala and subcortical 

network 

Numerous studies have shown that FC changes throughout development, and that these 

maturation patterns are important for proper health and cognitive function in health and disease 

(Nordahl et al., 2012; Szatmari et al., 2015; Uddin et al., 2010). Therefore, developmental 

reorganization of FC is a crucial variable to consider when examining group differences in 

connectivity. Accordingly, we found that patterns of connectivity from the amygdala and within 

the subcortical network were developmentally sensitive. In our work, typical patterns within 

these regions were characterized by a decrease in FC with development.  

Although the developmental trajectories at these ages are still incompletely understood, 

the decrease in connectivity of the amygdala and subcortical network with age in our control 

group was not unexpected. Previously it has been shown that, in humans, the amygdala decreases 

in connectivity with age. Although not all connections show this developmental decrease, this 

pattern is seen between many amygdala connections including those to temporal, insular, 

parahippocampal, and posterior cingulate regions (Gabard-Durnam et al., 2014). Indeed, this 

observed pattern also overlaps within findings from the human literature, in which subcortical 

connectivity is greater in children than adults. Supekar and colleagues interpreted these findings 

as a shift from diffuse to more focal brain activity. They suggest these FC findings could reflect a 

dynamic process of over-connectivity followed by pruning, which rewires connectivity at the 
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neuronal level, and is reflected at the systems level to reconfigure and rebalance subcortical and 

paralimbic connectivity in the developing brain (K Supekar, Musen, & Menon, 2009). 

In our work, this developmental trajectory was reversed in IL-6, who showed early 

under-connectivity and a late over connectivity compared to controls. Atypical brain 

developmental trajectories is a common theme in autism (Courchesne, 2002). FC studies have 

shown that children with ASD often have increased or decreased connectivity depending on their 

age (Maximo, Cadena, & Kana, 2014; Uddin, Supekar, & Menon, 2013), and structural imaging 

studies have shown that in ASD, amygdala growth trajectories are disrupted or accelerated 

(Nordahl et al., 2012). Such work has suggested that cognitive developmental delay/or deficit is 

related to altered brain development and disrupted functional specialization and integration 

between brain circuits. That being said, our understanding of atypical age trajectories in 

developmental disorders is still incomplete. Through the use of non-invasive longitudinal 

imaging in preclinical animal models, we can further our understanding of how a disruption of 

typical connectivity trajectories may influence later developmental outcomes and atypical 

behavior resulting from prenatal insults. It will be important in future work to extend the 

developmental period longer in our animal model to determine if these overall trends reverse or 

are maintained over time.  

Of note was that the majority of the connections from the amygdala that were altered in 

our study, including to the caudate/putamen, globus pallidus, thalamus, and temporal cortex, 

have been shown to have positive FC to the amygdala in healthy human subjects (Roy et al., 

2009). This suggests that most of the amygdala connections that are impacted in IL-6 are those 

that are likely to be most important for amygdala FC development in humans.  

Relationships to translational and human studies 
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The use of animal models offers the ability to understand the developmental dynamics of 

connectivity change in a controlled environment. However, translational studies of this nature 

represent a critical gap in the field. To our knowledge this is the first assessment of longitudinal 

developmental changes in resting state functional connectivity in rodents, and is the first FC 

study done on the effects of prenatal exposure to inflammatory cytokines in rodents. Therefore, 

we are in uncharted territory regarding how rodent connectivity changes through early and late 

development, and how these trajectories are impacted resulting from prenatal exposure to 

inflammation.  

That being said, one preclinical DTI study examined white matter microstructural 

changes resulting from prenatal exposure to inflammation, through poly-IC. They found white 

matter microstructural alterations to areas including the amygdala, piriform, hippocampus, and 

striatum (Li et al., 2010); regions that were also implicated in the current report. One preclinical 

study of prenatal exposure to stress found differences in offspring FC of regions including the 

right amygdala, caudate, and infralimbic cortex, and found that prenatal stress disturbed FC 

symmetry, resulting in increased right hemisphere FC (Goelman et al., 2014). Interestingly, we 

similarly found more differences in FC from the right compared to left amygdala, lending 

converging evidence for the role of asymmetries in FC resulting from prenatal exposure to 

inflammation. These asymmetries should be examined further in future reports.  

Comparing our results to the human literature is somewhat more complicated and offer 

both consistencies and inconsistencies. For instance, a recent study examined the effect of 

prenatal IL-6 levels on FC in infants roughly 4 weeks of age. They found that increased IL-6 

correlated with greater amygdala connectivity (Graham et al., 2017). We found that the 

amygdala was over-connected, but only nearing late development. These inconsistencies may be 
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partially due to difference between the ages at which each study examined amygdala 

connectivity. Our first MRI occurs at approximately 35 days of age, which corresponds to about 

a 2.5 year old human (Semple et al., 2013). In contrast, Graham et al. examined amygdala 

connectivity in four week old infants. These differences in age could potentially explain the 

inconsistency regarding the direction of these amygdala findings between studies. Of course, 

differences between these studies can also likely be attributed, to a large degree, simply to the 

sizeable differences in human and rodent brain development in general.  

With that said, our findings are generally consistent with recent studies examining infants 

who were prenatally exposed to stress. These studies scanned infants at 42 weeks of age, closer 

to our early developmental wave compared to Graham et al. Prenatal stress was associated with 

decreased amygdala connectivity with the thalamus, hypothalamus, and peristriatal cortex during 

early development (Scheinost et al., 2016).  

Given that prenatal IL-6 is a risk factor for autism (Mitchell & Goldstein, 2014; Wei et 

al., 2013), there is reason to compare our findings with those seen in the ASD literature. 

Although the neurobiology of ASD is complex and no single neurobiological phenotype 

characterizes all children (Feczko et al., 2017; Ring, Woodbury-Smith, Watson, Wheelwright, & 

Baron-Cohen, 2008; Toal et al., 2010), a prominent theme is that ASD is characterized by an 

altered trajectory of brain development. Both cross sectional (Schumann, 2004) and longitudinal 

studies have identified increased rates of amygdala growth in children with ASD (Nordahl et al., 

2012). These altered trajectories emerge between 2 and 4 years, roughly approximating the early 

developmental time in our current work.  

In regards to FC measurements in ASD, amygdala FC connectivity has been assessed 

during very early development, at 3.5 years of age (Shen et al., 2016). Consistent with what is 
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observed in our study, the amygdala is under-connected at this age. In older children with ASD, 

a more consistent age to W2, the direction of findings are mixed. Some studies find mostly 

decreased amygdala FC (Guo et al., 2016; Rausch et al., 2016) and others finding increased 

amygdala connectivity (Nomi & Uddin, 2015), the latter being consistent with our report during 

late development. Overall, the trajectory of amygdala structure and FC is a dynamic process, 

which appears to be altered in ASD and IL-6 exposed rodents.  

ASD is a heterogeneous disorder and not all presentations of ASD are likely to share 

mechanisms mediated by inflammatory factors. Clearly, more research will be needed to 

examine the degree to which inflammation mediates FC presentations in ASD and how these 

phenotypes compare to translational animal models of the disease.  

Early Brain and Amygdala Development 

IL-6 in dams was heightened for ~28 days, a period corresponding to heightened 

exposure during gestation and presumably into the first week of pregnancy because IL-6 can also 

be transferred postnatally through mothers milk (Garofalo, 2010). Brain development in the 

rodent, although beginning in the gestational environment does not reach comparable stages to a 

human term infant until about roughly PND 7. That being said, the amygdala may be particularly 

sensitive to even earlier insults. In the context of developmental programming the amygdala 

develops at an early embryonic stage compared to other structures (Buss et al., 2012; Fareri & 

Tottenham, 2016; Scheinost et al., 2016). Further, the amygdala is also believed to be 

particularly sensitive during development to elevated levels of glucocorticoids (Teicher et al., 

2003), and HPA axis dysfunction (Herman, Ostrander, Mueller, & Figueiredo, 2005). Previous 

research has also implicated stress during the early intrauterine periods of gestation as being 

particularly detrimental to the amygdala. This is in part because its rapid developmental change 
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during this period leaves it particularly vulnerable to disorganizing influences like prenatal stress 

(Gluckman & Hanson, 2004; Scheinost et al., 2016). Our work further supports these arguments 

and highlights IL-6 exposure as a disorganizing influences on amygdala development.  

Blood Plasma Levels 

Blood plasma elevations observed in IL-6 dams were roughly 4-8x higher than control 

dams, depending on the time blood was taken. The literature is still incomplete in regards to the 

precise quantification of IL-6 levels in health and disease. However, there is some evidence that 

is useful to compare. Under normal conditions IL-6 is in relatively low abundance (Ferrucci et 

al., 1999). However,  stress has been shown to result increases of about four times the IL-6 

compared to blood plasma from non-stressed controls (Kiecolt-Glaser et al., 2003). That being 

said, even more subtle increases in IL-6, about 1.5x normal levels may be detrimental to long 

term health outcomes (Ferrucci et al., 1999). The experimental treatments described in the 

current work could be considered of moderate severity. Subtle increases in IL-6 are more 

representative to conditions like stress, in contrast, more extreme increases in IL-6 can result 

from direct administration of LPS (a common MIA model). LPS can cause peaks in IL-6 many 

thousand times greater than what are observed in the current report (Kemna, Pickkers, Nemeth, 

Van Der Hoeven, & Swinkels, 2005). Overall, methodological differences should be considered 

when comparing absolute levels of these low abundance and difficult to measure cytokines (i.e. 

ELISA sensitivity, mesoscale detection methods, etc.). Future work should be done to determine 

how both pro and anti-inflammatory cytokine expression is altered in both dams and offspring 

exposed to prenatal manipulations to IL-6.  

Considerations and limitations 
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One limitation of preclinical studies is that they often require the use of anesthesia. 

Complicating findings regarding the typical developmental trajectory of FC is that the effect of 

repeated exposures to isoflurane on FC is incompletely understood. However, group differences 

in developmental trajectories are unlikely to be mediated by interactions between IL-6 exposure 

and repeated anesthesia.  Future research could assess connectivity change across development 

using cross sectional studies, in which all animals are only given a single dose of anesthesia.  

Another limitation of our study is that there were a subset of effects that we were 

underpowered to examine. For instance, we did not find differences in anxiety behavior between 

offspring exposed to low and high doses of IL-6. However, only two dams received the higher 

dose. The current work may have been underpowered to detect these effects. More targeted 

studies across more dams should be done to examine dose effects on subsequent behavior and 

imaging markers.  

Furthermore, although anxiety is highlighted as the most prominent behavioral effect, we 

also identified a trend towards decreased social behavior in IL-6 exposed offspring. First, the 

number of behavioral tests conducted was limited in this study and more behaviors that were not 

examined might be altered by the maternal exposure. Second, while we know that social 

behavior decreases are also often reported in MIA models, in the current report technical 

difficulties during some social behavior tests resulted in fewer animals being assessed on this 

test. This may have resulted in an underpowered sample to adequately assess social behavior 

change. Relationships between social behaviors and connectivity could also be explored in future 

work with a larger sample. 

Future directions 
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The current work represents one of the first steps in understanding the relationships 

between prenatal cytokine exposure and FC development, but much remains to be done. For 

instance, the current work examined maternal, but not offspring cytokine levels. Although likely 

that the mother’s immune status is transferred to the offspring (Hsiao & Patterson, 2011; 

Patterson, 2011), it is possible that not all offspring show immune dysfunction resulting from 

these exposures.  A few initial studies have begun to link FC directly to inflammatory states 

(Felger et al., 2016), and to IL-6 levels specifically (Creswell et al., 2016). Future work should 

investigate whether offspring cytokine levels are directly related to these FC patterns, and 

whether developmental change in FC tracks with changes in either plasma cytokine levels or 

cytokine expression in the brain. Furthermore, there is some evidence suggesting that the timing 

of prenatal immune insults result in variable behavioral and brain changes (Meyer et al., 2008). 

These complications were avoided in the current work by inducing a chronic increase in IL-6 

throughout gestation. Developmental timing of these effects are critical and more research 

should be done to examine the timing of IL-6 exposure and resulting changes in FC through 

development. Furthermore, the current work examined offspring until postnatal day 55. 

However, developmental disorders such as autism can affect an individual across the lifespan. It 

remains to be tested whether IL-6 exposure causes persistent changes in FC and behavior into 

adulthood.  

Several studies have examined histological changes resulting from prenatal exposure to 

MIA and IL-6 (Estes & McAllister, 2016; S. Smith et al., 2007), however, although important, it 

is often unclear how histological changes relate to, or are representative of changes observed in 

humans. One avenue for future research will be to examine how changes at this level relate to 

FC. With FC, new targets for subsequent histological analyses, experimental manipulation, and 



94 

 

further probing of causal mechanisms can be identified.  For example, it has recently been shown 

that targeted manipulation of the amygdala using DREADDs (Urban & Roth, 2014) results in 

reorganization of FC networks across the brain (Grayson et al., 2016). By manipulating affected 

circuits (e.g. manipulating amygdala activity at given developmental windows), future research 

could attempt to reproduce large-scale FC profiles and behavioral phenotypes seen in IL-6, or 

could potentially move to reverse these phenotypes in IL-6 exposed offspring. Similarly, through 

these types of studies, preclinical FC could also have utility for longitudinally tracking the 

effects of pharmacological interventions on brain network organization in a way that could be 

comparable to human disease (Miranda-Domínguez et al., 2014; Stafford et al., 2014). 

Supplementary Materials 

Negative correlations 

This work primarily focused on connectivity differences representing group and group by 

wave coefficients representing positive functional correlations between regions. However, we 

also observed interesting effects driven by differences in negative correlations. For instance, we 

observed similar developmental trends from the amygdala to visual, motor, and parietal regions. 

In these connections, IL-6 had reduced negative correlations early in development and increased 

negative correlation late in development; mirroring the generally trend identified in the main 

analyses, only with negative connectivity. Network level effects in these developmental 

trajectories were disproportionately identified between networks including the parietal, visual, 

and motor networks. These relationships may be of potential interest given that reduced negative 

correlations have been found in ASD (Anderson et al., 2011). Further, these networks are also of 

potential interest as a core component of ASD stems from difficulties in sensory processing 

(visual and motor cortex) and sensory integration (parietal lobe). 
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However, it should be noted that this manuscript used global signal regression, a MRI 

preprocessing technique which has been shown to reduce noise and decrease spurious 

correlations (Power et al., 2014), but also induce negative correlations (Murphy et al., 2009). It is 

highly likely that the strongest negative correlations are indeed real based on the human and non-

human primate literature; however thorough examination of these effects in rodents has not yet 

been explored. As such, we chose to use caution when interpreting these effects not presented in 

the main text.   

Post hoc analyses on positive and negative group and group by wave effect coefficients 

Positive group and negative group by wave coefficients were reported in the main text. 

The following section will demonstrate that the effects reported in the main text correspond 

differences between positive functional correlations between regions. In contrast, coefficients in 

the opposite direction (negative group and positive group by wave coefficients) correspond to 

group differences in negative correlations between regions.   

For example, negative group coefficients (that we will now term ‘negative effects’ 

herein) represented connections which show increased negative connectivity in IL-6 animals 

compared to controls (see figure S3.1D). Similarly, positive group by wave coefficients (that we 

will now term ‘negative effects’ herein) represented effects in which negative correlations were 

decreased in IL-6 during W1 but increased at W2. Given these unexpected findings, a series of 

additional post hoc analyses were performed. The purpose of these tests were to examine the 

relationship between the direction group and group by wave coefficients and the corresponding 

connectivity strength, for each connection. Two analyses were performed. First, we noticed that 

all positive group coefficients were between positively correlated regions (as defined by each 

connections R value, averaged across all scans). In contrast, negative group coefficients were 
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between connections which were on average negatively correlated across groups (see 

supplementary figure 3.1A&C). Next, to confirm this relationship we correlated the average 

connectivity strength by group coefficient term across all regions (regardless of their statistical 

significance). We observed a relationship between group coefficient direction (measured by 

positive or negative t-score) and correlation strength (R = .314, p = .0061, see supplementary 

figure 1E), such that increased average R was related to more positive coefficients (t-scores). 

Overall, these analyses suggest that positive group coefficients are likely to represent 

connections with positive connectivity, and show reduced connectivity in IL-6 animals, as was 

reported in the main text (Figure S3.1B). Correspondingly, negative group coefficients represent 

connections which are between negatively correlated regions on average, and represent 

connections which show increases in negative connectivity in IL-6 animals (figure S1D).  

The same analyses were done on group by wave interactions. Here we found that 

negative group by wave interactions are between connections which are on average positively 

connected (see figure S3.2A). These coefficients are reported in the main text, and represent 

connections which show early decreases in connectivity in IL-6 and increased connectivity late 

in development compared to controls (figure S3.2B). Conversely, positive coefficients are 

between connections which are on average negatively correlated (supplementary figure 3.2C), 

and represent cases where controls show increased negative connectivity early in development in 

controls, and IL-6 offspring show increased negative connectivity compared to controls during 

late development (figure 3.2D). By correlating the average connectivity strength by coefficient, 

we demonstrate this relationship between connectivity strength and group by wave coefficients 

across amygdala connections (R = -.54, p < .0001). Based on these analyses we separate our 

presentation and network analyses between negative and positive coefficients and the main text 
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highlight group and group by wave coefficients indicating differences in differences in positive 

correlations. 

Supplementary Figures 

 

Supplementary Figure 3.1. Group effects including positive and negative coefficients. In 

each linear mixed effects model, group coefficients were examined, controlling for 

developmental wave and interactions between group and wave. A) Positive group effect 

coefficients were identified where B) where IL-6 is shows decreased positive functional 

connectivity compared to controls. Bar graphs illustrate this relationship by comparing the 

average R within each significant connection. C-D) Conversely, negative group coefficients 

represent connections in which negative correlations are increased in IL-6 animals. The Average 

connectivity column in A&C represent whether on average correlations are either R>0 or R<0 

(computed as the grand mean in R across all scans). E) Shows the correlation between average R 

and the group coefficient (t-scores) across all connections from the amygdala. This relationship 

suggests that positive group coefficients are related to connections with positive correlations.  
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Supplementary Figure 3.2. Group by wave effects including both positive and negative 

coefficients. In each linear mixed effects model, a group by wave interaction indicated a 

difference in developmental trajectories between groups. A) Negative group by wave coefficients 

were identified B) where IL-6 is shows decreased positive correlations compared to controls at 

wave 1 but increased positive correlations at wave two. Bar graphs illustrate this relationship by 

comparing the average R within each significant connection. C-D) Conversely, positive group 

coefficients represent connections in which negative correlations are decreased early but 

increased late in development in IL-6 offspring. The Average connectivity column in A&C 

represent whether on average correlations are either R>0 or R<0 (computed as the grand mean in 

R across all scans). E) Shows the correlation between average R and the group by wave 

coefficient (t-scores) across all connections from the amygdala. This relationship suggests that 

negative group by wave coefficients are related to connections with positive correlations. 
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Supplementary figure 3.3. Positive group by wave coefficients corresponding to group 

differences in developmental trajectories within negatively correlated connections. Each cell 

indicates a group by wave interaction in positive coefficients, and blue outlines represent 

networks with a higher proportion of these effects than expected by chance.  This network 

analyses implicate visual networks, motor, parietal, olfactory, and hippocampal networks. A) To 

illustrate this effect, significant connections within the motor to hippocampal network were 

averaged at each developmental wave. Typically with age, these connections increase in negative 

correlation. This pattern is reversed in IL-6 who show less negative correlation early, but 

increased correlation late in development.  
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Supplementary Figure 3.4. Social behavior in IL-6 exposed offspring. The proportion of time 

spent in social proximity to the stimulus rat shows a trend towards being reduced in IL-6 animals 

during W1. # p = .056. 

 

Supplementary Figure 3.5. Relationship between network level findings and anxiety 

behavior. Significant network level connections (chi-squared analyses figure S3) from the 

subcortical to visual network were averaged and related to anxiety behavior (in a linear mixed 
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effects model). As can be seen average connectivity is related to anxiety, such that increased 

anxiety (as measured by less time spent in the light) is related to decreased correlation between 

these networks. No other network level effects were related to anxiety.  

ROI 

number 

Region Name Network 

1 L_CortexCingulate Frontal 

2 L_CortexFrontalAssociation Frontal 

3 L_CortexMedialPrefrontal Frontal 

4 L_CortexOrbitofrontal Frontal 

5 R_CortexCingulate Frontal 

6 R_CortexFrontalAssociation Frontal 

7 R_CortexMedialPrefrontal Frontal 

8 R_CortexOrbitofrontal Frontal 

9 L_AcbC Limbic 

10 L_AcbSh Limbic 

11 L_Amygdala Limbic 

12 L_BNST Limbic 

13 L_CortexInsular Limbic 

14 L_Septum Limbic 

15 R_AcbC Limbic 

16 R_AcbSh Limbic 

17 R_Amygdala Limbic 

18 R_BNST Limbic 

19 R_CortexInsular Limbic 

20 R_Septum Limbic 

21 L_CaudatePutamen Subcortical 

22 L_GlobusPallidus Subcortical 

23 L_HypothalamusLateral Subcortical 

24 L_HypothalamusMedial Subcortical 

25 L_Raphe Subcortical 

26 L_SubstantiaNigra Subcortical 

27 L_SuperiorColliculus Subcortical 

28 L_ThalamusDorsolateral Subcortical 

29 L_ThalamusMidlineDorsal Subcortical 

30 L_ThalamusVentromedial Subcortical 

31 L_VentralPallidum Subcortical 

32 L_VTA Subcortical 

33 L_ZonaIncerta Subcortical 

34 R_CaudatePutamen Subcortical 

35 R_GlobusPallidus Subcortical 

36 R_HypothalamusLateral Subcortical 

37 R_HypothalamusMedial Subcortical 
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38 R_Raphe Subcortical 

39 R_SubstantiaNigra Subcortical 

40 R_SuperiorColliculus Subcortical 

41 R_ThalamusDorsolateral Subcortical 

42 R_ThalamusMidlineDorsal Subcortical 

43 R_ThalamusVentromedial Subcortical 

44 R_VentralPallidum Subcortical 

45 R_VTA Subcortical 

46 R_ZonaIncerta Subcortical 

47 L_CortexMotor Motor 

48 L_CortexSomatosensory Motor 

49 R_CortexMotor Motor 

50 R_CortexSomatosensory Motor 

51 L_CortexPiriform Olfactory 

52 L_OlfactoryTubercle Olfactory 

53 R_CortexPiriform Olfactory 

54 R_OlfactoryTubercle Olfactory 

55 L_HippocampusAnteroDorsal Hippocampal 

56 L_HippocampusPosterior Hippocampal 

57 L_HippocampusPosteroDorsal Hippocampal 

58 L_HippocampusSubiculum Hippocampal 

59 L_HippocampusVentral Hippocampal 

60 R_HippocampusAnteroDorsal Hippocampal 

61 R_HippocampusPosterior Hippocampal 

62 R_HippocampusPosteroDorsal Hippocampal 

63 R_HippocampusSubiculum Hippocampal 

64 R_HippocampusVentral Hippocampal 

65 L_CortexAuditory Auditory/Temporal 

66 L_CortexEntorhinal Auditory/Temporal 

67 L_CortexTemporalAssociation Auditory/Temporal 

68 R_CortexAuditory Auditory/Temporal 

69 R_CortexEntorhinal Auditory/Temporal 

70 R_CortexTemporalAssociation Auditory/Temporal 

71 L_CortexParietalAssociation Parietal 

72 L_CortexRetrosplenial Parietal 

73 R_CortexParietalAssociation Parietal 

74 R_CortexRetrosplenial Parietal 

75 L_CortexVisual Visual 

76 R_CortexVisual Visual 

Supplementary Table 3.1. Regions included the current study and their corresponding network 

definitions used in the chi-square analyses.  
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Chapter 4: Discussion and Future Directions 

The current work helped to validate rs-fcMRI as a viable method to characterize rodent 

functional neuroanatomy, increased our knowledge of the biological underpinnings of this signal, 

and applied this method to a novel translational animal model examining the effects of prenatal 

exposure to IL-6.  

Chapter 4 will be broken into three sections. Section 1 discusses the validation project 

and examines what we have learned by integrating cellular and molecular information to model 

FC. This section introduces the idea of using these data for targeted experimental manipulations 

to be used to further our knowledge of the mechanisms underlying FC organization. Section 2 

discusses what we have learned by applying FC to a preclinical animal model examining prenatal 

exposure to IL-6 and will discuss future directions this type of research could take. Section 3 

demonstrates how one can directly relate findings between human and animal models and 

highlights three examples of this. Example 1 qualitatively compares network organization 

between species; example 2 uses a quantitative approach to directly compare human and 

macaque connectivity; and example 3 uses graph theory to compare functional connectome 

topology between humans, macaques, and rodents.  

Section 1: Validation and biological influences on FC 

Project 1 shows how FC patterns are shaped by anatomical connectivity and genetic 

similarity between brain regions. Our results suggest that FC is highly related to the underlying 

biology. Across the brain, our model including anatomical and genetic information explained a 

significant amount of variance in the FC signal (R2 = .624), and was explanatory above Euclidian 

distance and spatial adjacency. 
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Surprisingly, we found that models of CGE explained more variance (R2 = .604) in FC 

than did models using anatomical wiring (R2 = .584). Further, the genes that drive FC are likely 

to be related to voltage gated cation channels, glutamate signaling, and regulation of synaptic 

membrane structure. We also found that some brain areas, such as cortical, motor, and striatial 

regions, may have relatively more overlap between FC and CGE. This suggests that FC could be 

driven by distinct mechanisms depending on the connection.  

Our work adds to a growing body of literature examining how anatomical connectivity 

influences FC (Honey et al., 2009; Miranda-Domínguez et al., 2014; Stafford et al., 2014). The 

addition of regional similarities in gene expression adds an important piece of the puzzle, and 

could be used to further improve existing models to predict functional connectivity (Hansen, 

Battaglia, Spiegler, Deco, & Jirsa, 2015; Honey et al., 2009; Messé et al., 2014). Although 

statistical models of FC are powerful, a complete understanding of their causal role in shaping 

FC require further validation through experimental perturbations.  

Combining modeling techniques and experimental manipulation 

A major goal of translational research is to leverage FC data in order to predict outcomes 

and pinpoint potential pathways for targeted intervention (Fornito et al., 2015; Grayson et al., 

2016; Warren et al., 2014). Accordingly, through the combination of connectome level modeling 

techniques and experimental perturbations to specific neuronal circuits, we can make significant 

progress on these aims while at the same time advancing our understanding of the causal 

mechanisms underlying FC organization and dysfunction in disease.  

This section will briefly explore the ways we can use FC to identify focal abnormalities 

in particular brain circuits and use experimental techniques to examine brain-wide network 

reorganization before and after perturbation. By examining whether these focal perturbations 
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result in the expected changes in large scale reorganization, we can further our knowledge and 

ability to treat diseases with complex presentations.  

Manipulating connectivity to understand mechanisms 

Recent technological advances have allowed for precise control over neuronal activity. 

For example, the use of designer receptors exclusively activated by designer drugs (DREADDs) 

(Urban & Roth, 2014), as well as optogenetics (Chow & Boyden, 2013; Deisseroth, 2011) 

provides a means to manipulate brain activity in vivo (Eldridge et al., 2015; Grayson et al., 2016; 

Michaelides et al., 2013). Through these methods one can modulate specific neuroanatomical 

circuits and examine the resulting global functional network reorganization. Further, through the 

integration of inter-regional anatomical connectivity information, modeling techniques can 

estimate the effects of a ‘simulated lesion’ on FC reorganization. These estimated effects can 

then be compared to FC change resulting from directional experimental lesions to these regions 

or connections. Such experiment would be able to experimentally assess how accurate these 

models of FC are or assess whether these models are more or less accurate based on the 

experimentally lesioned area. For example, it is possible that functional “hubs” with dense 

functional connections (Sporns, Honey, & Kötter, 2007) are modeled more accurately than less 

densely connected regions.   

Accordingly, using DREADDs, Grayson and colleagues found that focal inactivation of 

the amygdala resulted in global FC reorganization spanning multiple brain systems.  Importantly, 

these changes were predicted through modeling the estimated effects via ‘simulated lesion’ 

(Grayson et al., 2016). The findings indicate that FC change is partially guided by polysynaptic 

anatomical connectivity to the target area but also that focal alterations result in large scale but 

predicable change in network reorganization. This raises the possibility that complex, global 
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disturbances in brain function (assessed through rs-fcMRI) might quantitatively predict focal 

brain pathology underlying neurological and psychiatric disorders.  

Through modeling that takes into account additional variables including FC, anatomical 

connectivity, and correlated gene expression data, models of FC can 1) better estimate a region’s 

importance and influence on global network structure, and 2) more accurately predict the way in 

which network structure will be reorganized given an experimental manipulation to a particular 

node. Similar to Grayson and colleagues (Grayson et al., 2016), quantitative tests of these ideas 

can then be performed through temporary inactivation of one or multiple candidate regions using 

DREADDs or optogenetics. The resulting topological reorganization can be assessed and 

compared to predictions made from our multifactorial models of FC.  

Similar applications of these methods can also advance a major aim of FC; to pinpoint 

potential pathways for targeted intervention. Through the use of graph theoretical modeling 

techniques (Bassett & Sporns, 2017; Golfinopoulos, Tourville, & Guenther, 2010)  prominent 

loci of dysfunction in particular disease states can be identified. In preclinical animal models we 

can then systemically target a candidate node or sets of nodes for experimental manipulation. By 

quantifying the predicted FC reorganization and determining the degree of overlap to the human 

disease state (see section 3 for a discussion on how to determine this overlap), this type of 

research can begin to understand the causal influences giving rise to functional brain 

organization and disorganization in psychiatric disease.  

Section 2: Applying validated techniques to a preclinical models 

In project 2 we examined behavioral and FC change resulting from a risk factor for 

developmental disorders, prenatal exposure to IL-6. We found that IL-6 induces a robust 

behavioral phenotype, primarily seen as anxiety-like behavior. The most prominent imaging 
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finding was an altered developmental trajectory (early under-connectivity followed by later over-

connectivity) of the amygdala as well as the subcortical, and parietal to frontal networks more 

broadly. We also found that amygdala connectivity was related to anxiety-like behavior, such 

that increased connectivity was associated with more anxiety.  

Manipulating connectivity to further explore causal mechanisms 

This project represents first steps in our understanding of the relationships between early 

prenatal insults, consequent network reorganization, and behavioral outcomes. One way to 

further our understanding and confidence in these links would be to experimentally induce the 

observed FC patterns and reassess their relationships to anxiety-like behavior. For example, by 

experimentally activating the amygdala during the rs-fcMRI experiment (e.g. through 

DREADDs) we would expect to identify similar FC profiles to that observed in IL-6 animals. 

However, given that we observed amygdala under-connectivity during early development but 

over-connectivity during late development, it is important to consider the timing of this 

manipulation. That is, silencing the amygdala (e.g. using inhibitory DREADDs) during early 

development and activating the amygdala during late development (e.g. excitatory DREADDs) 

should produce similar changes in FC downstream from the amygdala (i.e. connectivity changes 

to regions including the caudate and putamen, nucleus accumbens, substantia nigra, etc. (see 

figure 3.4)). Further, by targeting these circuits out of the scanner, we could test whether these 

manipulations recapitulate behavioral phenotypes observed in IL-6 exposed offspring (i.e. 

increased anxiety). Overall, by showing that manipulations to these circuits produce the expected 

downstream effects (i.e., manipulations to the amygdala result in similar changes downstream as 

we see in IL-6 animals), and also result in the expected behavioral alterations (i.e. anxiety), we 

can further the causal evidence for these targets importance in the IL-6 phenotype and anxiety.  
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Exploring mechanisms: microglia and pruning 

As stated previously, in control animals we found increased FC during early development 

followed by decreased FC in late development. This pattern was inverted in IL-6 exposed 

offspring, who showed early under connectivity and a late over connectivity compared to 

controls. In the human literature, others have found similar patterns of FC through development 

and have suggested this could be related to the early over proliferation and later synaptic pruning 

(Kaustubh Supekar, Musen, & Menon, 2009).  Interestingly, W1 corresponds to the age where 

synaptic density peaks and W2 corresponds to the developmental period at which synaptic 

pruning should be reducing synaptic densities towards their final adults levels (Semple et al., 

2013). The use of animal models allows us to investigate whether these mechanisms are a 

driving factor influencing patterns of FC in control animals and if deviations in these 

mechanisms are responsible for the alterations seen in IL-6 exposed offspring. In preclinical 

animal models we can test these ideas using immunohistochemistry (IHC) to probe synaptic and 

neuronal density at each wave. In the amygdala, we would expect controls to have increased 

density during early compared to late development. Inversely, we would expect the opposite 

pattern in IL-6 animals (mirroring the FC findings), corresponding to decreases in densities early 

but increases late in development. This result would lend evidence for a synaptic 

overproliferation and pruning within the amygdala in control animals and deficits in these 

mechanisms as a result of IL-6 exposure. Importantly, through the use of preclinical animals 

models we can also directly compare FC and IHC based measurements to see if the IHC 

measurements mediate the FC patterns we see as a result of IL-6. If such an experiment 

confirmed these findings, we could more confidently assert that FC impairments are driven by 
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synaptic proliferation and pruning deficits during these periods and could identify potential 

targets for biological intervention.  

One such intervention could be related to the function and activation of the brains 

microglia.  Microglia are a promising target because they are implicated in MIA models and are 

likely to be activated as a result of IL-6 exposure (Knuesel et al., 2014). Microglia also plays a 

key role in eliminating synapses during normal developmental pruning (Paolicelli et al., 2011); 

making it a possible mechanism that could be disturbed as a result of IL-6 exposure. Dual 

labeling for synaptic and microglial markers could be used to test whether 1) microglia is indeed 

activated as a result of IL-6 exposure and 2) whether increased microglia activation relates to 

increased synaptic pruning and reductions in density measurements. If these processes are indeed 

abnormal in IL-6 animals, it would lend experimental evidence for the role of microglia leading 

to atypical pruning processes in IL-6 animals. Through these types of studies additional 

mechanistic knowledge of FC impairments can be assessed, tested, and potentially reversed and 

tracked in-vivo using FC measures in preclinical animal models. 

Test and develop therapeutics to be used in humans  

FC experiments also have the opportunity to serve as useful biomarkers for testing 

various pharmacological or behavioral interventions. For instance, abnormalities to particular 

systems may be playing a role in inducing FC abnormalities. Through subsequent histological 

analyses within areas which have been identified using FC (i.e. amygdala and/or subcortical 

regions), we can move to discover the likely candidate systems influencing FC change. Through 

such a top-down approach we can identify areas to focus our efforts on. Several studies have 

shown that MIA models result in decreases in serotonin in various areas of the brain (Fatemi et 

al., 2008; S. Wang, Yan, Lo, Carvey, & Ling, 2009; Winter et al., 2008, 2009). MIA also results 
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in widespread changes in brain gene expression (Lombardo et al., 2017) and serotonin gene 

expression more specifically (Fatemi et al., 2008). Accordingly, an experiment could be designed 

to confirm this in IL-6 exposed animals by showing decreased serotonin receptor densities, or 

reduced serotonin gene expression within the amygdala, for example. Next, by targeting this 

system through early pharmacological intervention or experimental genetic therapies targeting 

the amygdala (e.g.. increase serotonin expression using CRISPR (Ran et al., 2013)), we would 

expect a viable therapy to result in the following. 1) Result in the expected normalization of FC 

and behavioral phenotypes, and 2) produce histological or genetic expression changes that track 

with FC change within these same regions. Should both of these criteria be satisfied in a pre-

clinical animal model, the experimental therapy might also affect these phenotypes in humans. 

Research using rs-fcMRI in preclinical animal models can be ideal because not only can one 

target and track the reversal of these non-invasive measures (i.e. longitudinally track brain 

development at multiple times), but they can also be directly compared to human functional 

neuroanatomy in developmentally healthy and diseased states. Approaches to making such inter-

species comparisons of FC is the topic of the next section.   

Section 3: Directly comparing between human and animal models  

Both rodent and nonhuman primate research provide numerous advantages detailed 

throughout this document, including their ability to probe the mechanisms of disease, their 

experimental control, and extensive histological study of brain structure and development. 

However, even with these benefits, it is not always clear that a given animal model is accurately 

reflecting the human condition for which it was designed. Performing comparisons of FC 

between species under normative conditions is therefore essential for future studies examining 

FC in typical and disease models. The following section will describe three approaches for 
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comparing FC data obtained across humans, macaques, and rodents. Approach one outlines 

qualitative similarities between species on measures of large scale network structure. The second 

approach outlines a method for making direct, quantitative comparisons between human and 

macaque FC, in which macaque areal atlases are mapped directly onto the human brain, using a 

set of homologous regions as landmarks or comparison. The final approach introduces graph 

theory as a method for examining and describing network structure, and will describe how these 

measures could be used to make comparisons between human patients and control groups, and 

their macaque and rodent counterparts. The following sections stem from a set of collaborative 

work between myself and members of the Fair Neuroimaging lab. The first project was led by 

Dr. Ben Jarrett and Dr. James Stafford in the previously described in work focusing on mouse 

functional connectivity (Stafford et al., 2014). Here I helped with analyses, data collection, and 

data processing. The macaque project was a joint effort between myself and Dr. Miranda-

Dominguez, for which I was co-first author on the manuscript (Miranda-Domínguez et al., 

2014). For this project I contributed to the analyses, data processing, and writing of the 

manuscript.  

Qualitative comparisons of networks between humans and macaques 

Comparing motor connectivity between species 

Seminal work by Biswal et al. in 1995 was the first to describe the phenomena of 

correlations in low frequency BOLD signals between homotopic motor cortices in humans (B. 

Biswal, Yetkin, Haughton, & Hyde, 1995). In this paper, they describe how task-based fMRI 

activation maps during a finger tapping task could be recapitulated if one examined the 

spontaneous fluctuations in BOLD activity within the motor cortex. For example the right motor 

cortex BOLD activity is most strongly correlated with its activity in its homotopic region in the 
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left motor cortex; demonstrating the bilateral nature of this resting state network. Comparing 

these seed-based connectivity maps under various conditions and clinical presentations form the 

basis of many resting state FC studies. Accordingly, a logical first step in comparing human, 

macaque, and rodent connectivity was to examine seed-based connectivity, both in these 

classically described networks (i.e., motor connectivity), as well as in more complex systems 

such as the default network.  

When examining motor network connectivity, clear qualitative similarities are seen 

among species. By examining the strongest functional connections from the right motor cortex 

(Figure 4.1), the bilateral nature of this connectivity signal can be clearly seen in a way that is 

conserved between species. However, we also notice that in the human, the connectivity strength 

is stronger; likely due to the awake versus anesthetized manipulation.  

 

Figure 4.1. Motor network homology between species. Primary motor cortex shows homology 

between mouse and primate (connection density at 10%). Comparison of the primary motor 

cortex in (A) human, (B) macaque, and (C) mouse. The right primary motor cortex was used as 

the seed region (red), and areas with strong correlation are shown. Strong correspondence is seen 

across species. The r label refers to correlation coefficient. 

Comparing default network structure between species 
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We can also compare more complex functional networks between species (Miranda-

Domínguez et al., 2014; Stafford et al., 2014). The default mode network (DMN) is a set of 

functionally interconnected brain regions that were originally shown to decrease their level of 

activity in humans during goal-directed tasks (Raichle et al., 2001; Shulman et al., 1997). These 

regions have subsequently been shown, using rs-fcMRI, to be highly functionally connected in 

the human (M. D. Greicius, Srivastava, Reiss, & Menon, 2004). In addition, strength of 

functional connectivity in this system has been tied to several neurologic and psychiatric 

conditions, including Alzheimer’s disease, Autism Spectrum Disorders, and Attention Deficit 

Hyperactivity Disorder (ADHD) (Broyd et al., 2009). 

Comparisons of DMN functional connectivity in the human, macaque, and rodent were 

operationalized as follows. Macaque default mode connectivity was examined using area 30 (the 

retrosplenial cortex, RSP) as the seed region, as that region is highly conserved across species 

(Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Upadhyay et al., 2011). In the 

macaque, the identified DMN constituted both the inferior and superior DMN subsystems, 

similar to that first described by Andrews-Hanna et al. (Andrews-Hanna, Reidler, Huang, & 

Buckner, 2010; Andrews-Hanna, Reidler, Sepulcre, et al., 2010). As can be seen in figure 4.2, 

the critical components of this system are the parietal cortex (pink arrow), the orbitofrontal 

cortex (orange arrow), and the anterior cingulate cortex (yellow arrow). Note that the superior 

subsystem is present in both humans and macaques and includes area 23 (posterior cingulate 

cortex; black arrow). 

In mice, we can also identify a putative DMN in regions including the cingulate, 

orbitofrontal, and parietal cortices (Stafford et al., 2014). These regions overlap nicely with 

regions from macaques and humans (Figure 4.2). Other regions in the mouse DMN were also 
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identified that were less expected. These areas included primary visual and somatosensory areas. 

Although these data are consistent with work in the rat (Lu et al., 2012; Upadhyay et al., 2011), 

they do represent an important deviation from the primate brain. Nonetheless, these types of 

discrepancies highlight the difficulties in comparing functional connectivity patterns across 

primates and rodents and make clear the need for additional experimental conditions to solidify 

this potential homology. 

Although the potential presence of this DMN subsystem appears intact in the mouse, 

there is a very important caveat. In primates, it has been proposed that the default system is split 

into a dorsal component and a more evolutionary distant ventral component (Andrews-Hanna, 

Reidler, Sepulcre, et al., 2010; Randy L Buckner & Krienen, 2013). At its core, the ventral 

component consists of the RSP, orbitofrontal cortex, and parietal cortices. The mouse has all of 

these component areas. The dorsal component of the default system consists of the posterior 

cingulate cortex, likely area 23, and the dorsal medial prefrontal cortex at its core (Andrews-

Hanna, Reidler, Sepulcre, et al., 2010). Importantly, there is no clear correlate of area 23 in 

rodents (Vogt, Vogt, & Farber, 2004). In addition, similarities of the frontal cortex are minimal 

between the rodent and humans (Randy L Buckner & Krienen, 2013). These facts suggest that, 

although a small component of the default system exists in the mouse, it is not present to the 

fullest extent as observed in primates. 

We note that examining DMN homology across species should be done with care 

considering the difficulty in precisely linking corresponding areas between species. Nonetheless, 

the findings presented here suggest that a subcomponent of the DMN is present in the mouse, 

enabling the use of high-throughput genetic, histological, and therapeutic manipulations that can 

be applied to better understand the system’s function in health and disease. 
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Figure 4.2. Default mode network connectivity across species. A-B) Using area 30 (RSP) as 

the seed region (red) reveals the presence of both the inferior (DMN) subsystem and superior 

DMN. The critical components of this system are the parietal cortex (pink arrow), the 

orbitofrontal cortex (orange arrow), and the anterior cingulate cortex (yellow arrow). Note that 

the superior subsystem is present in both (A) humans and (B) macaques and includes area 23 

(posterior cingulate cortex; black arrow). C) The default mode network in mice. Here the inferior 

DMN core in mouse functional connectome is shown. The mouse seed region used was the 

RSPagl. The hallmarks of the inferior DMN subsystem are seen here including the parietal 

cortex (pink arrow), the lateral/medial orbital cortex (orange arrow), and the cingulate area 

(yellow arrow). The r label refers to correlation coefficients. 

Quantitative comparisons between humans and macaques 

As noted above, qualitative similarities as well as differences in FC network structure 

were observed between species. In order to make direct comparisons between species, it is 

beneficial to have identical region definitions. To accomplish this, we first focused on comparing 

humans and macaques. To identify regional homologies we use a surface-based interspecies 

registration technique described by Van Essen et al. (2004, 2005). This registration procedure 

allowed for identical areal definitions on both human and macaque data. This approach allows 

for both a visual (qualitative) and computational (quantitative) comparison between species.  
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Human macaque registration 

This surface-based atlas registration uses a spherical, landmark-based registration 

algorithm (D C Van Essen, 2004b, 2005; D C Van Essen & Dierker, 2007b). Landmarks for 

registration included a standard set of regions that are likely to be homologous across species, 

including visual areas V1, V2, MT, and frontal eye fields; primary auditory cortex; and olfactory, 

gustatory, somatosensory, and primary motor cortex (Astafiev et al., 2003; D C Van Essen, 

2004a). Differences in overall cortical shape are minimized by mapping each cortical surface to a 

standard configuration (i.e., a sphere), and then each sphere is registered to one another 

constrained by this set of homologous landmarks. Deformation from macaque to human cortex 

results in a large, non-uniform expansion of parietal, temporal, and frontal cortex and much less 

expansion in presumably conserved regions between species (i.e., V1, motor cortex, etc.). 

Landmark-based registration provides a powerful method for analyzing structural and functional 

brain organization between humans and macaques (Denys et al., 2004; D C Van Essen, 2005; D 

C Van Essen & Dierker, 2007a). Areal region of interest (ROI) deformations were done as part 

of the freely available CARET software package 

(http://brainvis.wustl.edu/wiki/index.php/Main_Page). Figure 4.3 shows a similar comparative 

analysis of DMN connectivity between human and macaque, as was documented in figure 2. 

Here, we highlight similar distributions in connectivity, particularly between anterior, posterior, 

and inferior temporal cortices. Importantly, qualitative comparisons of interspecies DMN 

connectivity can now be performed on identical cortical surfaces.  

 

http://brainvis.wustl.edu/wiki/index.php/Main_Page
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Figure 4.3. Visual comparison of DMN between humans and macaques. In this example 

macaque connectivity is visualized on the human brain for comparison. Areal atlases have 

matching labels based on their regional homologies, allowing for direct comparison between FC. 

FC is shown between a right anterior node of the default network, area 10 (shown in red), and the 

rest of the cortex in the human and the macaque. Correlation coefficients between the seed 

region and each other ROI are indicated by the color scale. Similar distributions in connectivity 

are documented between species, particular between anterior, posterior, and inferior temporal 

cortices.  

Quantitative comparisons 

We have shown how given a set of conserved landmarks between species, we can deform 

macaque regional definitions to project to homologous regions on the human cortical surface. 

Now that our areal definitions are the same between species we can make quantitative 

interspecies comparisons. For example, a global comparison of the similarity between human 

and macaque functional connectivity, across all regions, can be made using linear regression or 

simple correlational techniques. In figure 4.4, scatter plots and regression lines show the 

relationship between human and macaque FC matrices, where corresponding histograms 

represent the distribution of correlations in both humans and macaques after Fisher's r to z 
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transformation. Here we can see there is a modest relationship between global human and 

macaque connectivity across the cortex. We note that the extent of overlap between areal 

boundaries in the human and macaque is currently unknown and some of discrepancies may be 

influenced by such differences. Nonetheless, when considering only the strongest connections 

(i.e. top 15% of connections), the match between human and macaque connectivity dramatically 

improves. Therefore, this initial moderate relationship appears to correspond to a mismatch of 

low-probability connections and highlights the correspondence of highly probable functional 

connections between species. 

  

Figure 4.4. Interspecies functional connectivity match. Scatter plot and regression line show 

the relationship between human and macaque functional connectivity considering all functional 

connections in both species (a) and the top 15% human functional connections plotted against all 

corresponding macaque functional connections (b). All values are considered after Fisher’s r to z 

transformation. 
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It should be noted that there is no method for using landmark based deformation to 

directly assess connectivity between humans and rodents. This possibility is unlikely to arise. 

That being said, outside of regression models, as described above, other methods of comparison 

can be used to compare and describe large scale network properties between all three species.  

Using graph theory to compare between species 

One way of comparing functional connectomes between species is to use graph theory. In 

this example we will explore the use of one such graph metric, node degree. Node degree is a 

cornerstone measurement of brain organization (Bullmore & Sporns, 2009). It identifies the most 

connected, and potentially important, nodes (or ROIs) in a network by counting the number of 

direct connections to all other nodes to which it is connected. A node with high degree will have 

strong, direct connections to many other nodes in the network (Bullmore & Sporns, 2009; 

Wasserman & Faust, 1994). Using node degree we can assess similarities in topological 

organization between species.  

Using this metric we find that similar to previous studies, humans have high node degree 

in the posterior cingulate (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; R L 

Buckner et al., 2009; P Hagmann et al., 2008). This suggests that the posterior cingulate is 

particularly important for integrating information across a wide range of modalities and is also an 

efficient route for passing information between systems. Interestingly, the posterior cingulate 

shows the highest node degree in the macaque, even higher than in the human. In humans, the 

posterior cingulate, while focal, is not the only node with relatively high node degree. Rather, 

these nodes are distributed in frontal-parietal systems, the anterior insula, and medial frontal 

areas. In humans and macaques, the degree distribution is distinct across species (Figure 4.5). In 
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the macaque, top nodes have a greater number of functional connections than do those in 

humans, suggesting a less scale-free and less distributed network structure in macaques.  

Using a similar analysis in rodents, we find some interesting similarities but also 

differences from the observations in humans and macaques. For example, we see high node 

degree in visual, motor, and parietal cortices but weaker degree within frontal, temporal, and 

more dorsal regions of the cortex. This could suggest that similar to what was observed in 

comparisons between humans and macaques, mouse connectivity may also be less distributed 

(Figure 4.6).  

Together, these results suggest a more scale-free network structure, perhaps more 

vulnerable to focal injuries in macaques and mice. In stroke patients, selective damage to 

network hubs with high node degree is associated with severe cognitive deficits, and damage to 

areas with fewer functional connections results in less severe deficits (Power, Schlaggar, Lessov-

Schlaggar, & Petersen, 2013). Accordingly, a network with more distributed hubs, such as 

observed in the humans, may reflect a more dynamic and resilient network structure (Grayson et 

al., 2014). Future research could be done to assess whether focal injury to such hubs results in 

more severe cognitive and behavioral deficits. Testing the robustness of our findings with 

alternative methods of defining hub architecture (Grayson et al., 2014; Patric Hagmann, Grant, & 

Fair, 2012; Power et al., 2013; van den Heuvel & Sporns, 2011) or assessing “connector” and 

“provincial” hub architecture (Power et al., 2013; van den Heuvel & Sporns, 2011) across 

species is also an important avenue for future work.  
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Figure 4.5. Interspecies comparison of node degree .a b. Node degree, or the number of 

functional connections each ROI has to all other regions, is visualized in both species. For all 

analyses, both human and macaque matrices were thresholded to include only the top 15% of the 

strongest functional connections.  Macaque connectivity is visualized on the human brain and 

scales are identical between species, allowing for direct comparison. Statistical comparison of 

human and macaque node degree are based on 10,000 permutations for 15% (c), 10% (e), and 

20% (f) connection density. Blue colors represent regions where macaques have higher node 

degree and red colors represent areas where humans have higher node degree than macaques (p < 

0.05, corrected). Notice that high degree nodes are clustered in the posterior cingulate in the 

macaque, whereas in humans, connections are spread to other networks such as the frontoparietal 

system. d, Nodes have been reordered according to the number of connections to allow for 

comparison of degree distributions. Highly connected hubs in the macaques are clustered in only 
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a few select regions that also have a greater number of max connections than humans (i.e., more 

“scale free”). Conversely, humans show amore distributed pattern in which highly connected 

hubs are spread throughout the cortex (i.e., less “scale free”). 

 

 

Figure 4.6. Surface map of node degree in the mouse functional connectome. Node degree, 

or the number of functional connections each ROI has to all other regions. Red regions indicate 

areas which are highly connected to the rest of the mouse connectome. Analyses were conducted 

on the top 16.46% connections. Note the higher node degree concentrated around motor, visual, 

and dorsal regions of the cortex.  

Using rs-fcMRI as a tool in translational medicine 

This section describes the normative baseline for comparing FC across species, and 

demonstrates similarities and differences that can be can be expected at both the network 

organization and global connectivity level. Further, we explore measurements of network 

organization that highlight potential areas of overlap, but also divergence, between species. Such 

information establishes a solid basis for using rs-fcMRI as a bridge between human and animal 

research. Future work could use these methods to compare between human disorders and animal 
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models of the respective diseases. Through these methods we might also better understand the 

overlap between FC change resulting from risk factors assessed in animal models and FC change 

resulting from the disorders themselves.   

Summary and conclusion 

 The goal of this thesis was first, to validate and understand the biology of resting state 

connectivity, and next, to apply these metrics to use these methods to test a risk factor for human 

disease. Through the use of non-invasive imaging in preclinical animal models, we were able to 

obtain a greater understanding of how white matter connectivity and regional similarities in gene 

expression influence the functional connectome, as well as gain confidence and validation for the 

FC measurements we can obtain in rodents. Next by applying these FC metrics we to a 

preclinical rodent model we found that prenatal exposure to inflammation through IL-6 resulted 

in offspring behavioral abnormities that related to changes in FC network reorganization. Finally, 

we examined ways in which we can make interspecies comparisons between FC observed in 

human and preclinical animal models. Through these methods we can gain insights into the 

organization of the functional connectome and how it relates between humans and animal 

models. This is an important piece of the puzzle as we embark down a path of understanding 

brain structure and function and its role in psychiatric and neurological disease. 
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