
NOISE ACCUMULATION IN
HIGH DIMENSIONAL CLASSIFICATION

Miriam R. Elman

A THESIS

Presented to the
Oregon Health & Science University / Portland State University

School of Public Health in partial fulfillment of
the requirements for the degree of

Master of Science

March 2018

Department of Public Health & Preventive Medicine
School of Public Health

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Master’s thesis of
Miriam R. Elman
has been approved

Dongseok Choi, PhD (Mentor/Advisor)

Jessica Minnier, PhD (Committee Member)

Xiaohui Chang, PhD (Committee Member)

TABLE OF CONTENTS

Acknowledgements vii

Abstract viii

1 Introduction 1

2 Comparison of Classification Methods 5

2.1 Principal Component Analysis . 8

2.2 Simulation with Classification Methods 14

2.2.1 Simulations for Scenario 1 . 16

2.2.2 Simulations for Scenario 2 . 17

2.2.3 Simulations for Scenario 3 . 19

2.2.4 Simulations for Scenario 4 . 20

3 Characterization of Noise Accumulation 26

3.1 Simulations increasing sample size . 28

3.2 Simulations modifying signal strength 28

3.3 Simulations varying signal strength and total predictors 35

4 Total Signal Index 41

4.1 Theoretical total signal index . 42

4.2 Empirical total signal index . 42

4.3 Simulations for total signal indices . 43

5 Summary and conclusion 59

References 61

i

A Appendix 63

A.1 R code . 63

A.1.1 Code for Chapter 2 . 63

A.1.2 Code for Chapter 3 . 82

A.1.3 Code for Chapter 4 . 104

A.2 Motivation for setting signal magnitude equal to 1√
m 123

ii

List of Tables

1 Scenarios used in simulations for classification methods 7

2 Results from Scenario 1 for values of p0 17

3 Results from Scenario 2 for values of p0 18

4 Results from Scenario 3 for values of p0 19

5 Results from Scenario 4 for specified values of p0 21

6 Results of random forest simulations increasing sample size 29

7 Results of random forest simulations modifying signal strength 32

8 Results of random forest simulations varying signal strength and total pre-
dictors . 37

9 Scenarios for Total Signal Index simulations 44

iii

List of Figures

1 Simulations by Fan et al. (2014) . 6

2 Principal component analysis simulation for Scenario 1 10

3 Principal component analysis simulation for Scenario 2 11

4 Principal component analysis simulation for Scenario 3 12

5 Principal component analysis simulation for Scenario 4 13

6 Concepts behind support vector machines 16

7 Test error from Scenario 1 . 17

8 Test error from Scenario 2 . 18

9 Test error from Scenario 3 . 20

10 Test error from Scenario 4 . 21

11 Test error for Support Vector Machine from Scenario 3 and 4 22

12 Difference in training and test error from Scenario 4 25

13 Test error from simulations increasing sample size in Scenario S1(1) . . . 30

14 Test error from simulations increasing sample size in Scenario S2(1) . . . 31

15 Test error from simulations modifying signal strength in Scenario S1(2) . 33

16 Test error from simulations modifying signal strength in Scenario S2(2) . 34

17 Test error from simulations varying signal strength and total predictors in
Scenario S1(3) . 38

18 Test error from simulations varying signal strength and total predictors in
Scenario S2(3) . 39

19 Theoretical and empirical total signal index for n = 200 45

20 Theoretical and empirical total signal index for n = 500 46

21 Theoretical and empirical total signal index for n = 1000 47

22 Theoretical and empirical total signal index for n = 5000 48

23 Theoretical and empirical total signal index for n = 10000 49

24 Unsorted theoretical and empirical total signal index for n = 200 50

iv

25 Unsorted theoretical and empirical total signal index for n = 500 51

26 Unsorted theoretical and empirical total signal index for n = 1000 52

27 Unsorted theoretical and empirical total signal index for n = 5000 53

28 Unsorted theoretical and empirical total signal index for n = 10000 54

29 Empirical total signal index with correlations 57

30 Comparison of median total signal index for scenarios from Chapter 1 . . 58

v

For my parents

vi

Acknowledgements

I am extremely grateful to everyone who contributed to this project, my understanding of

statistics, and my life over the last six years. Foremost, I would like to express my gratitude

to Dr. Dongseok Choi who has been both a generous advisor and patient teacher. This

work could not have been completed without his support and guidance. He contributed

a tremendous amount of time, energy, and thought to this project as well as to advancing

my knowledge of machine learning, Big Data, and many other areas of statistics. I wish to

thank my committee members, Drs Jessica Minnier and Xiaohui Chang, for their generous

contribution of time and input on this project. I appreciate their encouragement and insight.

I would also like to acknowledge the biostatistics professors at Oregon Health & Science

University and Portland State University I have had over the course of this program and

my Masters in Public Health. I appreciate all the guidance, support, and wisdom they have

provided. A special thanks to Dr. Dawn Peters who kindly and perseveringly shepherded

my learning of the foundational elements of statistics. Finally, my family and friends keep

me getting up in the morning. They are the unsung heroes of my life.

vii

Abstract

A tremendous amount of attention has been paid to Big Data in recent years. Such data

hold promise for scientific discoveries but also pose challenges for analyses. In their 2014

article ”Challenges to Big Data analysis,” Fan and colleagues propose that the high dimen-

sionality of Big Data introduces statistical problems including noise accumulation. This

thesis explores noise accumulation in high dimensional two-group classification problems.

First, it aims to determine whether noise accumulation threatens the discriminative ability

of classifiers developed with three common machine learning approaches – random forest,

support vector machine, and boosted classification trees. Four different scenarios with dif-

fering amount of signal strength are simulated to evaluate each method. After determining

that noise accumulation may impact the performance of these classifiers, the thesis charac-

terizes factors which impact noise accumulation. Simulations varying sample size, signal

strength, signal strength proportional to the number predictors, and signal magnitude are

conducted with random forest classifiers. Finally, this thesis develops Total Signal Index

to summarize the amount of signal relative to noise in a two-group classification problem.

Theoretical and empirical versions of this measure are defined and simulations are used to

assess them.

viii

1 Introduction

Big Data have become pervasive in the last ten years. Technological advances and increased

computing power have enabled data to be continuously produced and cheaply stored, pro-

viding researchers with a wealth of information at a scale not previously available. Such

data are not new to statistics. The term ”huge” dataset was used in a 1994 article in COMP-

STAT – Proceedings in Computational Statistics.1, 2 ”Massive” datasets were described in

the proceedings for the Committee on Applied and Theoretical Statistics in the same year.3

However, such data and corresponding analytics have become increasingly popular. While

such Big Data provide opportunities for new discoveries, they may challenge conventional

statistical methods not developed for settings in which the number of predictors far ex-

ceeds sample size or sparse data is used for simultaneous estimation of a large number of

parameters.

A range of definitions has been proposed for Big Data.4 We define it in accordance

with ”Challenges of Big Data analysis,” which motivated this project.5 The authors Fan et

al. characterize Big Data by massive size and high dimensionality. Although they do not

explicitly define what massive size entails, high dimensionality occurs when the number of

predictors far exceeds sample size – that is, n� p. The authors posit several unique features

of Big Data’s dimensionality that they assert pose significant challenges to traditional data

analysis and, consequently, necessitate the development of new statistical methods. They

include noise accumulation, spurious correlation, and incidental endogeneity. This thesis

focuses on noise accumulation.

Noise accumulation occurs when simultaneous estimation or testing of multiple pa-

rameters results in estimation error. This can happen when many weak predictors or ones

unrelated to the outcome are included in a model. Such noise can concentrate, obstruct-

ing true signal and the estimation of corresponding parameters. Noise accumulation is

1

generally not an issue in conventional statistical settings where sample size exceeds the

number of predictors. High dimensional data – such as those arising in gene expression

studies and biomedical imaging – is highly susceptible to its effect. Fan and Fan (2008)

demonstrate that prediction with most classification rules based on linear discriminant rules

performs equivalently to guessing with high dimensional data due to noise accumulation.6

They also assert that projection methods such as principal component analysis (PCA) tend

to perform poorly in high dimensional settings. Hall et al. (2008) and Fan (2013) stud-

ied distance-based classifiers in high dimensional settings and found performance was ad-

versely affected.7, 8 The impact of noise accumulation on classification using PCA was

further explored by simulation Fan et al. (2014) in ”Challenges of Big Data analysis.”5

To illustrate the issue of noise accumulation, Fan et al. explore a classification scenario

with data from two classes.5 Both classes are drawn from standard multivariate normal

distributions with identity covariance matrices. Data from the first class is from

X1, . . . ,Xn ∼MVp(µ1,Ip)

where µ1 = 0, n = 100 from each class, and p = 1000. The second class,

Y1, . . . ,Yn ∼MVp(µ2,Ip)

is constructed identically to the first class except the first 10 elements of µ2 are nonzero

with value equal to 3 and all other entries zero. That is,

µ2 = (3,3,3,3,3,3,3,3,3,3,0, . . . ,0)

Thus, the nonzero components ofµ2 comprise signal that differentiates the two classes. Fan

et al. computed principal components for the first p = 2, 40, 200, and 1000 predictors then

visually assessed how well the two classes can be separated – that is, the discriminative

power – by plotting the first two principal components. They report that discriminative

power is high when there are a low number of predictors, which they found to be p0 < 200

2

in their simulations.∗ When the number of predictors is low enough, there is adequate signal

to drown out noise and differentiate between the classes. As the number of predictors

grows, noise eventually overwhelms signal and predicting the class membership for the

observations becomes infeasible. Fan et al. found this threshold to be p0 ≥ 200 in their

simulations. Since the amount of signal in the scenario they describe is fixed to be 10

nonzero elements, no signal is added after p0 > 10 and further input is noise. The described

setting was the only simulation they reported in their article and appeared to be the basis of

their conclusions.

We replicated the simulations conducted by Fan et al. and repeated the PCA they de-

scribe. Despite careful adherence to their published simulation, our findings were dis-

crepant with those presented in the article. Where Fan and colleagues observed low dis-

criminative ability at p0 ≥ 200 in the scenario they describe, we were still able to differ-

entiate between the two groups. Seeking to understand the differences in our results and

weigh whether noise accumulation was an issue in high dimensional two-group classifica-

tion, we explored additional scenarios with PCA in which we varied the number of nonzero

elements as well as the value of the entries. Results of these investigations did not resolve

the discrepancy but suggested there might be more to discover about noise accumulation.

Further, Fan et al. use PCA as means to visually access discriminative ability rather than

a direct method to develop and evaluate a classification rule. We thought using a classifi-

cation approach might provide more objective results about discriminative ability. Noise

accumulation is well known in regression9 but was quantified first in classification by Fan

and Fan.6 Besides this work and that discussed above, little research has been done to

characterize noise accumulation in classification. To our knowledge, limited work to-date

has directly tested the discriminative ability of classifiers under conditions of noise accu-

∗Note that we will use p0 throughout this thesis to designate to specific values of predictors from simu-
lations whereas p is reserved to refer to predictors more generally.

3

mulation. In addition to the previously cited work done with distance-classifiers, linear

discriminant rules, and PCA, Fan et al showed that the independent classification rule was

susceptible to noise accumulation but could be overcome with variable selection.6 Classi-

fication approaches commonly used in high dimensional settings such as gene expression

analysis, however, have not been explored.

This thesis focuses on noise accumulation in two-group classification, problems where

data originate from two distinct classes and a rule is constructed with which to classify new

observations into either the first or second class. It will cover three topics related to noise

accumulation in the context of these types of classification problems. First, we present

our findings from PCA described by Fan et al. in ”Challenges of Big Data analysis” and

expand to additional scenarios. We apply these scenarios to three popular classification

approaches in high dimensional settings – support vector machines, random forests, and

boosted classification trees – and assess the results. Second, we explore characteristics of

noise accumulation in two-group classification, using a random forest approach to construct

the classification rules. Finally, we develop theoretical and empirical versions of Total

Signal Index, a measure to quantify signal compared to background noise in these settings.

4

2 Comparison of Classification Methods

In ”Challenges of Big Data analysis,” Fan et al. conducted a simulation in which data from

two classes are drawn from standard multivariate normal distributions with equal sample

size n for each class, p predictors, and an identity covariance matrix. The two classes were

defined as:

X1, . . . ,Xn ∼MVp(µ1,Ip)

Y1, . . . ,Yn ∼MVp(µ2,Ip),

where µ1 = 0, n = 100 for each class, and p = 1000. The first 10 elements of µ2 are

nonzero with value equal to three and all other entries zero:

µ2 = (3,3,3,3,3,3,3,3,3,3,0, . . . ,0).

As described previously, these authors used principal component analysis (PCA) for the

first p = 2, 40, 200, and 1000 predictors to create scatterplots for the first two principal

components (Figure 1†). They determined that discriminative power was high when the

number of predictors was sufficiently small, which they report as p0 < 200 in their simula-

tions. At p0 ≥ 200, they found that noise eventually overwhelms signal.

Like Fan et al., we simulated data for two classes from standard multivariate normal

distributions with an identity covariance matrix and p predictors

Class 1: X1, . . . ,Xn ∼MVp(µ1,Ip)

Class 2: Y1, . . . ,Yn ∼MVp(µ2,Ip)

where µ1 = 0, µ2 was defined to be sparse with m nonzero elements and the remaining

entries equal to zero, and n = 100 for each class. In our simulations, we extended the total

†In the figure the authors use m for the number or predictors rather than p as we use throughout this thesis

5

Figure 1. Scatterplots of the projection of observed data (n = 100 for each class) onto the first two principal
components of the m-dimensional space. Projected data with the red circles and the blue triangles indicate
the first and second classes, respectively.‡

‡Fan, Jianqing, Fang Han, and Han Liu. ”Challenges of big data analysis.” National science review
(2014): 299 by permission from Oxford University Press.

6

number of predictors used by Fan et al. from p = 1000 to 5000 as well as considered four

different scenarios for the nonzero elements of µ2 (Table 1).

Table 1. Scenarios used in simulations for classification methods

Scenario m Signal magnitude Form of µ2

1 10 3 (3,3,3,3,3,3,3,3,3,3,0, . . . ,0)
2 6 3 (3,3,3,3,3,3,0, . . . ,0)
3 2 3 (3,3,0, . . . ,0)
4 10 1 (1,1,1,1,1,1,1,1,1,1,0, . . . ,0)

m, number of nonzero elements in µ2.

We started by replicating the PCA simulation conducted by Fan et al. described in Sce-

nario 1 then repeated the analyses for each of the other scenarios using a single simulated

dataset. We also sought to build classification rules using different methods and assess

their discriminative ability for the scenarios initially explored with principal components.

We used three common machine learning methods – random forests (RF), support vector

machines (SVM), and boosted classification trees (BCT) – to build classifiers and evaluate

their performance. For each method and scenario, a classification rule was developed for

p = 2 to 5000 predictors on a training dataset. This classifier was then applied to a corre-

sponding test dataset and used to predict whether new observations should be categorized

into the first or second class. This process was repeated 100 times on training datasets then

these classifiers were applied to 100 test datasets to predict class membership for observa-

tions from 100 test datasets. Classifiers’ discriminative power was assessed by the median

classification error for test datasets by comparing the categorization predicted by the clas-

sifier to its true class in the test dataset. Along with the median test error, we report 10th

and 90th percentile bounds. We evaluated the overall trend of median classification error

in the scenarios as well as explicitly examine the maximum classification error for p0 < 10

and p0 = 5000.

7

Simulations were batch processed in R version 3.4.0 using the OHSU Exacloud com-

putational environment, developed in partnership with Intel and operated by the OHSU

Advanced Computing Center.10 The nodes employed for analyses were running on Cen-

tOS Linux 7. PCA was conducted using the prcomp function in base R while randomForest

(4.6-12), e1071 (1.6-8), and gbm (2.1.3) packages were used for to run RF, SVM, and BCT

procedures, respectively.11–13 We primarily used the default settings from each package;

see code in Appendix A.1 for details.

2.1 Principal Component Analysis

We computed the principal components for p = 2, 10, 100, 200, 1000, and 5000 predictors

and plotted the projections of the first two components. Figures 2 through 5 show scat-

terplots showing the results of these simulations with class membership for observations

indicated by the black or red filled circles.

In general, our results were analogous to those of Fan et al. in our visual assessment

of scatterplots of observed data projected onto the first two principal components (Figures

2–5). That is, high discriminative power appears possible when p is sufficiently low but

decreases as p increases. However, the threshold for what Fan et al. deemed low differed in

our replication of their simulation. They reported that accumulated noise began to exceed

signal at p0 ≥ 200 yet we found that the threshold for the number of predictors to achieve

high discriminative power appeared to be much higher in Scenario 1 (Figure 2). When we

replicated their simulation, our data showed high discriminative ability even up through

p0 = 5000. In Scenario 2 – where the number of nonzero elements was reduced to m = 6

but the value of each element is three, the procedure produced fairly distinct separation of

classes up through p0 = 1000 (Figure 3). With m = 2 nonzero elements of equal to three

(Scenario 3, Figure 4), discriminative ability disappeared more quickly, becoming poor at

8

p0 < 200. When the number of nonzero elements was m = 10 but the value of each element

was one in Scenario 4, high discriminative ability appears possible when p0 < 1000 but is

otherwise low (Figure 5). Based on these results, it appears that discriminative ability is

a factor of both signal magnitude (value of the nonzero elements) as well as its strength

(number of the nonzero elements).

9

●
●
●
●●

●

●●
●

●

●●
●●●

●
●
●●

●●●●●●●
●
●●

●●
●●●●

●●
●
●●●
●
●●

●●●●
●

●
●●

●
●
●●●

●●●●● ●●●
●
●
●●●
●●●
●●●●●

●●
●
●●●●
●
●●●

●●
●●
●

●●●●
●
●

●●
●
●●●●
●
●●●●●●
●●

●
●●●●
●●
●
●

●
●●
●●●

●●●●●
●

●
●●●
●●●●

●
●●

●●●●●
●●●●●●
●●

●

●●●
●

●

●
●●
●●
●

●
●

●●●●●
●

●
●

●
●●
●

●
●●
●●
●

●
●

●
●
●
●●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(A) p=2

●
●
●

●
●
●●●
●

●●
●●●●●
●●●●●

●

●●
●●
●

●●●
●●●●●
●
●●●
●

●
●●●●●
●
●
●
●
●
●●

●●
●●●
●
●●
●

●
●●
●

●

●

●
●●●●
●
●●●●
●●●●●●●●●●●
●
●

●

●●●

● ●
●●● ●●●●●●●●

●

●

●
●
●

●●

●

●●

●●

●
●●
●
●●

●
●

●●●
●

●●●
●●
●●●
●

●●●

●
●●●●

●●●
●

●
●●

● ●●●
●
●●●

●●●
●

●

●●●●

●
●●●●●●●●
●
●
●
●●
●
●
●●●●●●
●●●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(B) p=10

●●

●

●

●●
●

●

●

●
●
●●

●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●
●
●

●

●●
●

●

●●

●●

●●●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●●

●
●

● ●
●
●

●

●
●

●
●● ●

●●

●

●
●

●
●●
●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●
●●

●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●●
●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●●

●
●

●

●

●

●●

●
●

●

●

● ●

●

●●

●●

●●
●●

●
●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(C) p=100

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●●●

●
●●

●

●

●

●

●●

●●●
●●
●●

●

●
●

●

●
●
●

●

●

●

●●
●
●●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●●
●

●
●

●●●●
●

●

●
●

●

●
●

●

●

●

●●
●●

●
●

●
●●

●

●

●
●●
●

●

●

●
●

●●●

●

●

●

●

●

●
●●
●
●
●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(D) p=200

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(E) p=1000

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(F) p=5000

Figure 2. Scatterplots of the projection of observed data from Scenario 1 (n = 100 for each class, m = 10
nonzero elements for µ2 each equal to three and µ1 = 0) onto the first two principal components of the
m-dimensional space. Black circles indicate the first class, red circles indicate the second.

10

●●●●
●

●

●●
●●
●
●

●●
●

●●
●
●●●
●

●●●
●

●●
●●

●
●●●●●
●●●●●

●

●●●
●●●●●

●

●

●●
●●

●

●●

●

●
●

●●●●●●●
●

●●●●●

●
●●●●●
●
●●
●
●●●●

●●
●●

●
●

●●●
●●

●●●
●●●

●
●

●● ●●●
●●●●

●
●●●

●

●●●
●
●
●●●●

●
●●
●
●●●
●
●●
●
●
●
●●
●●●●●●●●●
●

●●●●●●
●
●
●●
●●●●●●

●

●
●●
●

●
●

●●
●●

●
●●
●
●●●●●
●

●
●
●
●●●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(A) p=2

●●●
●

●

●●
●
●●
●●

●
●●
●

●

●

●
●
●

●

●

●
●
●

●

●●

●●
●●●

●

●
●

●
●
●

●●

●

●

●
●
●●

●

●●

●

●
●●●
●●●
●
●●

●

●

●●

●●

●

●

●

●
●●

●
●
●

●
●

●

●●
●
●●
●

●

●

●●●
●

●●●
●
●●●● ●

●
●●●

●

●●●●
●

●

●●
●●●

●

●
●●
●●●

●●●
●●

●●

●●●●
●
●

●
●

●
●
●
●●●
●

●
●●
●●

●●●

●●

●

●●●
●

●

●●●
●
●

●
●

●
●●

●●
●

●●
●

●

●
●

●

● ●

●

●●
●
●

●
●
●

●

●

●
●●

●
●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(B) p=10

●
●●

●
●●

●

●

●●

●
●

●

●
●

●

●●●

●● ●●●
●

●●
●

●

●

●●

●

●

●

●

●●
●
●

●

●
●

●
●

●
●

●
●
●●

●

●
●
●
●

●●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●
●
●
●●
●●●●●

●

●

●

●●

●●
●

●

●●●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(C) p=100

●

●
●

●

●

●

●
●

●
●● ●

●
●

●

●

●

●
●

●
●

●

●●
●

●●●

●
●

●

●
●

●
●

●
●●●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●●●

●

●

●●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●
●

●●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●● ●
●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(D) p=200

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

● ●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(E) p=1000

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(F) p=5000

Figure 3. Scatterplots of the projection of observed data from Scenario 2 (n = 100 for each class, m =
6 nonzero elements for µ2 each equal to three and µ1 = 0) onto the first two principal components of the
m-dimensional space. Black circles indicate the first class, red circles indicate the second.

11

●●●
●●
●●●
●●●

●
●●

●●

●
●●

●
●

●
●●
●●

●●●●●●●
●

●
●●●●
●

●●●
●●
●

●●

●

●●
●●
●

●●●●
●
●●

●
●
●

●●

●●

●
●●
●

●
● ●●

●
●

●

●
●●●●●●●●●
●●●●●●
●

●

●
●
●

●●●
●

●
●●●●●●●●●●●●
●●●

●●●●
●●●●●

●

●
●●●

●●
●

●
●

●
●●
●●
●
●
●
●
●

●
●●
●●●

●●●
●●
●●●
●●

●
●●●●

●
●
●
●●●

●
●
●●●●●●● ●●
●

●●
●

●

●
●

●●
●●●●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(A) p=2

●

●
●●

●●
●
●

●

●●●
●

●

●

●
●
●

●

●●●
●

●

●

●

●●

●

●

●
●
●
●

●
●

●

●●

●●●

●

●●

●
●
●●

●

●

●

●

●

●
●

●
●
●●●

●
●

●

●●●
●
●

●●●●●
●

●
●●

●

●●●

●
●

●

●

●
●

●
●

●

●
●
●
●
●●

●●
●

●

●

●

●●
●

●●
●●●
●

●
●●

●●
●
●
●●●
●

●
●

●

●●●

●●
●●

●

●
●

●
●
●

●

●
●●

●

●

●
●
●

●●

●

●

●●
●

●●

●

●

●●●●
●
●

●

●
●
●

●
●●

●
●
●

●

●
●

●
●

●●
●

●
● ●●

●

●
●

●

●●
●

●

●
●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(B) p=10

●

●

●

●
●

●

●

●

●●
● ●●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

● ●
● ● ●

●●

●

●
●●

●

●

●

●●

●

● ●

●
●
●

●
●

●
●

●
●

●

●

●
●● ● ●

●

●

●
●

●

●●
●●

●

●●
●

●

●

●
●

●

●

●●
●

● ●
●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●

●●●
●

●

●
●●

●

●●

●
●

●

●

●●●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●●

●
●

●
● ●●●

●●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(C) p=100

●●
●

●
●●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●●

●●
●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●●
●

●
●

●

●

●● ●

●●
●●

●

●
●

● ●●

●
●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●
●
●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

● ●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(D) p=200

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

● ●
●

●
●

●

●● ●

●

●
●●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(E) p=1000

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(F) p=5000

Figure 4. Scatterplots of the projection of observed data from Scenario 3 (n = 100 for each class, m =
2 nonzero elements for µ2 each equal to three and µ1 = 0) onto the first two principal components of the
m-dimensional space. Black circles indicate the first class, red circles indicate the second.

12

● ●
●

●
●
●

●●●

●

●●●
●●

●●●
●

●

●
●

●

●
●●●

●●
●●●

●
●●●●

●

●●
●

●
●

●
●●

●

●●●●●●
●●

●
●●

●

●

●

●

●
●

●
●

●
●
●
●

●

●●●
●

●●●●●●
●

●
●

●
●

● ●
●

●●●●
●

●
●●●●

●
●
●

●
●
●
●

●●

●
●

●
●●●

●
●●●

●

●
●

●
●●
●

●●●
●
●●●●●●
●

●●●●
●●●●

●
●
●
●

●●
●

● ●●●
●
●
●●

●
●

●●●

●
●
●
●

●
●●●
●●●●

●●
●

●
●● ●

●

●●
●

●
●

●

●●
●●

●
●●●

●
●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(A) p=2

●●
●●●●

●●●●
●●

●●
●●

●●

●

●
●

●
●

●

●

●
●

●●
●
●
●
●●●

●

●

●
●●●

●

●●

●●
●

●
●
●

●

●

●
●
●

●●
●

●

●
●

●
●
●● ●

●●

●

●
●●●

●● ●
●●

●

●
●●

●

●

●●
● ●●

●
●

●
●

●●●
●●●

●
●
●
●

●

●

●
●

●
●
●●
●

●●
●●

●

●

●
●●
●

●

●●

●

●
●●●●

●

●

●●

●
●

●

●●
●
●

●

●
●●

●

●
●●

●
●

●
●

●●●

●

●●
●

●
●●●●●
●●

●
●

●
●

●●

●
●●● ●

●●●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●
●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(B) p=10

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●●●●
●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●●●●●

●

●

●

●●

●●
●●●

●●
●

●

●

●

●

●
●

●

●
●●

●

●●
●

●

● ●
●

●

●
● ●

●

●●

●

●

●

●●

●●

●
●●

●
●

●

●
●

●

●●

●
●
●

●

●

●●

●

●

●

●
●●●

●

●
●

● ●

●

●

●

●

●

●●

●
●● ●

●

●

●

●
●
● ●

●

● ●

●

●

●

●

●

●

●
●●
●

●●
●

●

●
●

●

●

●
●
●

●

●
●

●

●●

●

●

●●

●●

● ●●

●

●

●●
●●

●

●
●
●●

●
●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(C) p=100

●
●

●

●
●

●

●● ●
●

●
●●
●● ●

● ●

●

● ●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●
●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●●●

●

●

●●

●●●●
●

●

●

●

●
●●● ●

●

●
●●
●

●
●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●● ●

●
●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(D) p=200

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●●

●
● ●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(E) p=1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

(F) p=5000

Figure 5. Scatterplots of the projection of observed data from Scenario 4 (n = 100 for each class, m =
10 nonzero elements for µ2 each equal to one and µ1 = 0) onto the first two principal components of the
m-dimensional space. Black circles indicate the first class, red circles indicate the second.

13

2.2 Simulation with Classification Methods

We assessed noise accumulation for the scenarios in Table 1 using RF, BCT, and SVM.

Before reviewing the results of these simulations, we present a brief description of each of

these methods.

Random forests

RF is a machine learning method developed by Leo Breiman in 2001, expanding upon the

idea of decision trees.14 The algorithm applies bootstrap aggregation (bagging) and ran-

dom selection of predictors to a set of decision trees. Bagging helps reduce the variation of

a single decision tree by repeated, random sampling of a dataset with replacement (that is,

bootstrapping) and aggregating the results. In addition to bagging, random forests decor-

relate trees by randomly selecting a subset of predictors from all predictors as candidates

for the split in the nodes of each tree. A new subset of predictors is chosen for each node.

After a specified number of trees have been grown, their results are combined and used for

prediction. For classification, majority vote – using the most commonly occurring class

from the trees to classify a new observation – is used to aggregate the results.15 In majority

vote, the most commonly occurring class from the collection of trees is used to classify a

new observation.

Boosted classification trees

BCT is a tree-based method like RF. The idea behind BCT is to grow simple, sequential

trees and slowly improve prediction.16 In contrast to RF, each successive decision tree is

grown off the residuals of the preceding ones rather than being built from an independent,

bootstrapped subset of the original data. Like RF, boosting is an ensemble method that

synthesizes the results of a large number of trees. Each individual tree, however, may be

small with few terminal nodes. As each new decision tree is added to the fitted model,

14

the residuals are updated to inform the next. By fitting small trees, the classifier slowly

improves where it performs poorly. Unlike bagging, the construction of each tree depends

on the trees that have already been grown. The implementation of boosting used by the R

package gbm, gradient boosting, adds a loss function to the described framework.13, 17 The

addition of this penalty, which is minimized at each step, improves the performance of the

algorithm by reducing overfitting.15

Support vector machines

Unlike RF and BCT, SVM is not a tree-method. The original SVM algorithm was de-

veloped in the 1960s by Vladmir Vapnik and Alexey Ya Chervonenkis in the 1960s then

updated in the 1990s to include nonlinear classifiers and soft margins.18 SVM originates

from the simple, two-dimensional concept of separating observations from two classes by

dividing them with a line. A new observation will be assigned a class relative to which

side of the line it falls (Figure 6, left). Extending this idea beyond two dimensions, the

line used as a classification rule becomes a separating hyperplane. Such straightforward

classification may not be possible; if it is, there is an infinite number of hyperplanes that

separate the classes. The one equidistant from the observations in either class is called

the maximal margin hyperplane and the smallest distance between the observations and

the hyperplane is the margin (Figure 6, middle). However, a separating hyperplane – even

the maximal margin one – must perfectly divide the classes. In many cases, this does not

exist. To address this problem, a support vector classifier uses a soft margin, permitting

some observations to be misclassified to the incorrect side of the margin or hyperplane

(Figure 6, right). Besides providing a solution to the non-separable case, the support vector

classifier helps prevent overfitting training data because it has greater robustness to indi-

vidual observations. Once the support vector classifier has been chosen, a new observation

is still classified by identifying on which side of the hyperplane it lands. Support vector

15

0 2 4 6

0
2

4
6

8
10

x

y

0 2 4 6

0
2

4
6

8
10

x

y

0 2 4 6

0
2

4
6

8
10

x

y

0 2 4 6

0
2

4
6

8
10

x

y

Figure 6. Scatterplots depicting observations from two classes, shown in blue and red. Left: Three of many
possible separating hyperplanes are shown by the solid lines. Middle: The maximal margin hyperplane is
shown as the solid line while the margin is the distance from either dashed line to the solid one. Right:
A support vector classifier equivalent of the adjacent maximal margin hyperplane with points added on the
wrong side of the hyperplane and margin. The hyperplane is the solid line and the dashed lines are the
margins.

machines generalize support vector classifiers, allowing for a non-linear decision boundary

using kernel methods.15

2.2.1 Simulations for Scenario 1

All three classification methods demonstrated high discriminative ability in Scenario 1.

Overall, the median test error was < 10% for RF, SVM, and BCT (Figure 7). In particular,

RF and BCT performed extremely well with no misclassification when p0 > 4. Below this

point, when 2 ≤ p0 ≤ 4, test error reached its maximum for RF and BCT. While the test

error dropped substantially for RF and BCT for p0 > 10, it increased for SVM. Table 2

summarizes the highest test error for p0 ≤ 10 and its value at p0 = 5000. In Figure 7,

RF and BCT do not show evidence of being affected by noise accumulation. After an

initial increase, the median test error drops then remains fairly constant for all predictors.

The graph for SVM, on the other hand, does show signs of noise accumulation. Around

p0 = 1000, the median classification error increases and continues to grow with larger p.

16

Table 2. Test error for values of p0 in Scenario 1

p0 Classification method Median 10th Percentile 90th Percentile

p0 ≤ 10*
Random forests 2.5 1.5 4.0
Support vector machine 1.5 0.5 3.0
Boosted classification trees 2.5 1.5 4.5

p0 = 5000
Random forests 0.0 0.0 0.0
Support vector machine 8.5 5.5 12.1
Boosted classification trees 0.0 0.0 0.0

*Highest test error.

(a) Random Forest

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(b) Support Vector Machine

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or
(c) Boosted Classification Trees

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors
Te

st
 e

rr
or

Figure 7. Test error for three classification methods from Scenario 1 (n = 100 for each class, m = 10 nonzero
elements for µ2 each equal to three and µ1 = 0) for p0 = 2 to 5000 predictors. Thick lines represent the
median classification error from 100 simulations; lighter lines show 10th and 90th percentiles.

2.2.2 Simulations for Scenario 2

Results from the second scenario were similar to the first except SVM performed worse

and showed more evidence of noise accumulation (Figure 8). As in Scenario 1, the overall

median test error was < 3% for RF and BCT and the test error for these methods peaked

when 2 ≤ p0 ≤ 4 (Table 3). After this point, there was almost no test error for these

methods. Contrary to the other two methods, SVM had a small initial peak in test error

at p0 ≤ 3, which dropped back down then rose even higher as p grew. Table 3 shows the

final value of test error for each method at p0 = 5000. Based on a visual inspection of the

17

plots in Figure 8, SVM appears more susceptible to the effects of noise accumulation in

this scenario while RF and BCT do not. Once again, the median classification error for RF

and BCT remains flat after p0 > 10 whereas it steeply rises for SVM.

Table 3. Test error for values of p0 in Scenario 2

p0 Classification method s Median 10th Percentile 90th Percentile

p0 ≤ 10*
Random forests 2.5 1.0 4.0
Support vector machine 1.5 1.0 3.0
Boosted classification trees 2.5 1.0 4.1

p0 = 5000
Random forests 0.0 0.0 0.5
Support vector machine 20.5 17.5 23.5
Boosted classification trees 0.0 0.0 0.5

*Highest test error.

(a) Random Forest

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(b) Support Vector Machine

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(c) Boosted Classification Trees

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

Figure 8. Test error for three classification methods from Scenario 2 (n = 100 for each class, m = 6 nonzero
elements for µ2 each equal to three and µ1 = 0) for p = 2 to 5000 predictors. Thick lines represent the
median classification error from 100 simulations; lighter lines show 10th and 90th percentiles.

2.2.3 Simulations for Scenario 3

There was a decline in discriminative ability and a rise in noise accumulation for RF and

especially SVM in Scenario 3 (Figure 9). Despite the increase in test error between this

18

scenario and the previous ones, the RF classifier performed reasonably well with overall

median test error ≤ 8%. Unlike in the previous scenarios, however, the median test er-

ror slowly rises as p increases, indicating noise accumulation is slowly growing as more

predictors are added to the classification rule. The impact of noise accumulation is more

extreme in the case of SVM as the median classification error precipitously climbs between

0≤ p0 ≤ 1000. In terms of test error, SVM did not behave as well; its overall median test

error was > 35%. BCT still performed at nearly an equivalent degree as in Scenarios 1 and

2; its overall median test error was ≤ 4%. Also, BCT continued to show no evidence of

noise accumulation. Unlike previous scenarios, the highest test error did not occur when

p0 < 5 for RF and BCT. For p0 ≤ 10, SVM outperformed RF and BCT; the highest median

test error for this method was 2.0%. The others were 2.5% and 3.0%, respectively (Table

4). When p0 > 10, the test error grew for all simulations as p increased. At p0 = 5000,

BCT performed best (median test error, 3.0%) among the three methods, followed closely

by RF (median test error, 7.5%) with SVM (median test error, 39.5%) far behind (Table 4).

Table 4. Test error for values of p0 in Scenario 3

p0 Classification method Median 10th Percentile 90th Percentile

p0 ≤ 10*
Random forests 2.5 1.5 4.1
Support vector machine 2.0 1.0 3.5
Boosted classification trees 3.0 1.5 4.5

p0 = 5000
Random forests 7.5 5.0 10.5
Support vector machine 39.5 35.5 43.1
Boosted classification trees 3.0 1.5 5.1

*Highest test error.

19

(a) Random Forest

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(b) Support Vector Machine

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(c) Boosted Classification Trees

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

Figure 9. Test error for three classification methods from Scenario 3 (n = 100 for each class, m = 2 nonzero
elements for µ2 each equal to three and µ1 = 0) for p = 2 to 5000 predictors. Thick lines represent the
median classification error from 100 simulations; lighter lines show 10th and 90th percentiles.

2.2.4 Simulations for Scenario 4

Scenario 4 proved to be a difficult simulation for all classification approaches (Figure 10)

though the test error for SVM was slightly better in this scenario than the previous one.

Overall, the median test error was < 30% for RF and BCT while it was > 30% for SVM.

The test error peaked again at 2≤ p0 ≤ 3 for RF and BCT but at p0 = 5000 for SVM. After

the initial increase for p0 ≤ 10 (see Table 5 for the maximum test error for this range), test

error decreased for all of the methods. The plots of median test error for p0 > 10 differed

for the three methods: classification error increased gradually for RF but was not as high

as p0 = 2; it escalated quickly for SVM, exceeding the initial jump; and it stayed fairly flat

at about 10% for BCT. This behavior is indicative of the impact of noise accumulation in

each approach. The BCT classifiers do not seem to be influenced by noise accumulation

yet both RF and SVM show signs of its presence as the median classification error for these

methods rapidly ascends as the number of predictors increases.

20

Table 5. Test error for specified values of p0 in Scenario 4

p0 Classification method Median 10th Percentile 90th Percentile

p0 ≤ 10*
Random forests 28.0 24.5 33.0
Support vector machine 24.5 20.5 28.1
Boosted classification trees 25.5 21.0 29.0

p0 = 5000
Random forests 19.5 15.0 24.1
Support vector machine 35.0 31.0 39.0
Boosted classification trees 10.0 8.0 13.5

*Highest test error.

(a) Random Forest

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(b) Support Vector Machine

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

(c) Boosted Classification Trees

0 1000 2000 3000 4000 5000
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Predictors

Te
st

 e
rr

or

Figure 10. Test error for three classification methods from Scenario 4 (n = 100 for each class, m = 10
nonzero elements for µ2 each equal to one and µ1 = 0) for p = 2 to 5000 predictors. Thick lines represent
the median classification error from 100 simulations; lighter lines show 10th and 90th percentiles.

Of the classification methods we investigated, SVM appeared to be more susceptible to

noise accumulation than RF or GBM. Figure 11 shows the results for SVM comparing

Scenarios 3 and 4. Although the median test error for Scenario 4 starts off higher, the one

for Scenario 3 has a steeper slope; the error for Scenario 4 catches up to Scenario 3 at

about p0 = 400 then exceeds it. This may suggest that signal strength is more important

than magnitude for SVM as noise accumulates. For RF and GBM, test error increases in

scenarios 1 through 4 such that the medians never cross.

21

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

Te
st

 e
rr

or

Figure 11. Test error for support vector machines from Scenarios 3 (n = 100 for each class, m = 2 nonzero
elements for µ2 each equal to three and µ1 = 0) and 4 (n = 100 for each class, m = 10 nonzero elements
for µ2 each equal to one and µ1 = 0) for p = 2 to 5000 predictors. The median classification error from 100
simulations is shown by the navy line for Scenario 3 and the green line for Scenario 4.

22

Previous plots summarize the performance of classifiers for each scenario and approach

developed on the training datasets then applied to the test datasets. It is also informative to

know how well the classifiers built on the training data fit the underlying distribution of the

data. If the classifier follows the noise too closely, it will overfit the data and not produce

accurate estimates of the response for new observations. Figure 12 shows the difference in

median training minus test error for Scenario 4 for each method used for classification. For

RF, the error ranged between 0 and 10% and the classifiers’ performance improves on the

test compared with the training data. We found the RF classifiers consistently performed

as good or better on the test datasets for all scenarios and values of p. It increased from

0.0% at p0 = 2 to 8.5% at p0 = 5000. BCT tended to produce classifiers that worked well

on the test data, only slight overfitting Scenarios 3 and 4. Further, the difference between

training and test datasets was fairly constant across p; it was about -9.5% for Scenario

4. By contrast, the SVM classifiers overfit the test data in all scenarios, worsened as p

increased. For Scenario 4, the difference in median error ranged between -0.5% at p0 = 10

and -30.0% for p0 = 5000.

In ”Challenges of Big Data analysis,” Fan et al. discuss the impact of the massive

size of Big Data on traditional computing infrastructure. The simulated data we used had

200*5000 = 100,000 data points and we ran the simulation 100 times for each method

for every 10 predictors, meaning the classifiers developed for each simulation and method

used 10,000,000 data points. Even though this magnitude of data seems large, it is not

nearly the scale of billions or trillions of data points that the authors consider. Still, the

simulations were computationally intensive and the processing time for BCT especially

was substantial. The SVM computations took 1.8 days, RF 15.8 days, and BCT over 2

months. For this project, we parallelized creation of the data but not the construction and

validation of the classifiers. It is likely that the simulations could have been spread out over

nodes in the computing cluster we employed but not all methods could have been sped up

23

this way. For example, the sequential nature of BCT prevents the algorithm from being

parallelized.

24

0 1000 2000 3000 4000 5000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Predictors

Tr
ai

ni
ng

 −
 te

st
 e

rr
or

RF SVM BCT

Figure 12. Difference in training and test error for three classification methods for Scenario 4 (n = 100 for
each class, m = 10 nonzero elements for µ2 each equal to one and µ1 = 0) for p = 2 to 5000 predictors. The
brown line shows the median classification error from 100 simulations from random forests, olive line from
support vector machine, and green line for boosted classification trees.

25

3 Characterization of Noise Accumulation

In this chapter, we examine characteristics of noise accumulation using RF to construct

the classifiers. We continue our assessment of noise accumulation, now focusing on this

approach as our classification method both because of its popularity for analyzing high

dimensional data but also due to its performance in simulations from the previous chap-

ter. We wanted a classification method that showed evidence of being impacted by noise

accumulation but had reasonable discriminative ability. We also wanted one that could pro-

duce results in a realistic amount of time. Unlike the support vector machine approach, RF

demonstrated good discriminative ability in the most challenging scenarios and, in contrast

to BCT, it produced results in a viable amount of computing time.

To characterize noise accumulation, we conducted simulations to explore different as-

pects that might impact its magnitude or behavior. We varied sample size, signal strength,

and ratio of predictors to signal strength using signal magnitude equal to one. Subsequently,

we repeated these simulations, modifying the magnitude of the nonzero elements to be 1√
m

to see what impact weak signal of the same strength would have. We chose this value for

the nonzero elements in our second set of simulations because we wanted to explore more

challenging settings in which distance between the mean locations of classes was fixed in

all dimensions. See Appendix A.2 for details on how we chose 1√
m .

As before, simulations were batch processed in R version 3.4.0 using the OHSU Exa-

cloud computational environment with nodes running CentOS Linux 7.10 RF classification

was conducted using randomForest (4.6-12).11 We used the default settings for the pack-

age; see code in Appendix A.1 for details.

As before, we simulated data for two classes from a multivariate normal distribution

with equal sample size n in each class, p predictors, and an identity covariance matrix:

26

Class 1: X1, . . . ,Xn ∼MVp(µ1,Ip)

Class 2: Y1, . . . ,Yn ∼MVp(µ2,Ip)

where µ1 = 0 and µ2 was defined to be sparse with m nonzero elements and the remaining

entries equal to zero. For the first set of simulations, we fixed µ1 = 0 and the value of

the m the nonzero elements of µ2 to be equal to one and sample size n was divided evenly

between the two classes. We conducted the following scenarios:

S1(1) Increase sample size

Sample size was assessed at n =200, 500, 1000, and 5000 with m = 10.

S1(2) Modify signal strength

The number of nonzero elements in Class 2 was varied for m = 5, 10, 20, and 30.

That is, µ2 = (µ21, µ22, 0, . . . , 0) for m = 2; µ2 = (µ21, µ22, . . ., µ29, µ210, 0, . . ., 0)

for m = 10; and so on.

S1(3) Vary signal strength and total predictors

The ratio of m to the maximum number predictors pmax (m : pmax) was fixed while

the signal strength was increased. m : pmax was assessed for 10 : 5000, 30 : 15000,

50 : 25000, 70 : 35000, and 90 : 45000.

For each scenario, a RF-based classification rule was developed for 30 training and test

datasets. A classifier was developed for predictors from p = 2 to 5000 to categorize obser-

vations into one of the two classes except for the third scenario where pmax was used. As

in Chapter 2, the classifiers developed on the training sets for each value of p were applied

to corresponding test datasets to predict class membership. We gauged the discriminative

power for each classifier by calculating the median classification error with 10th and 90th

27

percentile bounds by comparing the predicted categorization to its true classification. We

repeated these initial simulations changing the value of the nonzero elements of µ2 from

one to 1√
m with no additional modifications. This second set of simulations are S2(1), S2(2),

S2(3), respectively.

3.1 Simulations increasing sample size

Figure 13 shows results from S1(1); the discriminative ability of the RF classifier improved

as sample size increased. As we saw in the previous section, there was a spike in test error

for p0≤ 10. For all n, the maximum error was highest for p0 = 2, where the average median

error was 27.4%. At p0 = 5000, the median test error steadily decreased from 19.5% (10 –

90% percentile: 15.0 – 24.1%) when n = 200 to 8.3% (10 – 90% percentile: 7.7 – 8.9%)

when n= 5000. Likewise, noise accumulation diminished as n→ 5000 with the plot almost

flat at n = 5000. Results from S2(1) demonstrate much poorer performance of the classifier

clearly affected by noise accumulation (Figure 14). When p0 ≤ 10, the median test error

was greatest at p0 = 2 for each value of n. The median test error for p0 > 10 decreased

slightly as n increased yet it was more than 25% higher than in S1(1). Noise accumulation

is present for n = 200, 500, and 1000 but recedes somewhat for n = 5000. Table 6 shows

median test error for p = 2 and 5000 with 10th and 90th percentiles for both S1(1) and

S2(1).

3.2 Simulations modifying signal strength

Results from S1(2) illustrate both noise accumulation and test error decreased steadily with

increasing signal strength (Figure 15). Median test error peaked at approximately 28%

28

when p0 = 2 (Table 7). Disregarding p0 ≤ 10, the slope of the median error was steepest

for simulations with the lowest value of m then evened out as signal strength increased.

At p0 = 5000 (Table 7), the median test error was highest at m = 5 – 31.3% (10 – 90%

percentile: 27.5 – 35.5%) – and lowest at m = 30, 3.8% (10 – 90% percentile: 1.5 – 5.5%).

Table 6. Test error for values of p0 for random forest simulations increasing sample size

Scenario p0 n Median 10th Percentile 90th Percentile

S1(1)

p0 ≤ 10*

200 28.0 24.5 33.0
500 27.2 24.2 30.4

1000 27.4 25.9 29.4
5000 27.4 26.7 28.2

p0 = 5000

200 19.5 15.0 24.1
500 12.4 10.4 14.8

1000 10.5 9.4 11.4
5000 8.3 7.7 8.9

S2(1)

p0 ≤ 10*

200 44.5 41.7 49.6
500 45.8 42.6 48.8

1000 46.3 44.5 48.3
5000 45.9 45.1 47.2

p0 = 5000

200 50.0 46.5 53.0
500 47.6 44.8 50.4

1000 45.6 43.1 46.9
5000 39.7 39.0 40.9

*Highest test error.

29

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predictors

Te
st

 e
rr

or

n=200 n=500 n=1000 n=5000

Figure 13. Test error for Scenario S1(1) (sample size varying between n= 200 and 5000 split equally between
classes, m = 10 nonzero elements for µ2 each equal to one and µ1 = 0) for p = 2 to 5000 predictors. Lines
represent the median classification error from 100 simulations; gold line shows classification for n = 200,
dark green for n = 500, grey for n = 1000, and brown for n = 5000.

30

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predictors

Te
st

 e
rr

or

n=200 n=500 n=1000 n=5000

Figure 14. Test error for Scenario S2(1) (sample size varying between n= 200 and 5000 split equally between
classes, m = 10 nonzero elements for µ2 each equal to 1√

m and µ1 = 0) for p = 2 to 5000 predictors. Lines
represent the median classification error from 100 simulations; yellow line shows classification for n = 200,
dark green for n = 500, grey for n = 1000, and brown for n = 5000.

31

As before, test error rose when the value of the nonzero elements of µ2 changed from one

to 1√
m in S2(2) (Figure 16). In these simulations, the median test error peaked between

42.8% and 49.0% at p0 = 2 for p0 ≤ 10 (Table 7). Between p0 > 10 and p0 = 5000, the

slope of the error tended to increase rapidly for all S2(2) simulations then remain fairly

constant above 40%. This does not appear to be due to abatement of noise accumulation,

which is evident from the sharply increasing slope after an initial drop for p < 10, but from

a ceiling effect in the performance of the classifiers. There was not much difference in error

or noise acumulation for any of the simulations.

Table 7. Test error for values of p0 for random forest simulations modifying signal
strength

Scenario p0 m Median 10th Percentile 90th Percentile

S1(2)

p0 ≤ 10*

5 29.0 24.0 31.5
10 28.0 24.5 33.0
20 27.3 24.5 31.2
30 28.5 23.0 33.5

p0 = 5000

5 31.3 27.5 35.6
10 19.5 15.0 24.1
20 8.0 6.5 10.5
30 3.8 1.5 5.5

S2(2)

p0 ≤ 10*

5 42.8 37.9 46.6
10 46.8 40.5 51.0
20 47.8 45.0 51.6
30 49.0 44.4 54.6

p0 = 5000

5 49.0 44.9 55.2
10 49.8 46.5 55.1
20 49.0 44.0 52.7
30 49.0 46.0 51.1

*Highest test error.

32

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predictors

Te
st

 e
rr

or

m=5 m=10 m=20 m=30

Figure 15. Test error for Scenario S1(2) (n = 100 for each class, signal strength varying between m = 5 and
30 nonzero elements for µ2 each equal to one and µ1 = 0) for p = 2 to 5000 predictors. Lines represent the
median classification error from 100 simulations where blue shows classification for m = 5, gold for m = 10,
lilac for m = 20, and fuchsia for m = 30.

33

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predictors

Te
st

 e
rr

or

m=5 m=10 m=20 m=30

Figure 16. Test error for Scenario S2(2) (n = 100 for each class, signal strength varying between m = 5 and
30 nonzero elements for µ2 each equal to 1√

m and µ1 = 0) for p = 2 to 5000 predictors. Lines represent
the median classification error from 100 simulations where blue shows classification for m = 5, yellow for
m = 10, lilac for m = 20, and fuchsia for m = 30.

34

3.3 Simulations varying signal strength and total predictors

The median test error for simulations in S1(3) showed similar behavior to S1(2). That is, it

decreased with greater signal strength as p increased (Figure 17). The median error peaked

at p0 = 2 where it was approximately 28.5% for all m : pmax simulations (Table 8). We

showed previously that the median test error for the baseline case (m = 10, pmax = 5000) at

p0 = 5000 was 19.5% (10 – 90% percentile: 15.0 – 24.1%). At m = 30 and pmax = 15000,

it reduced substantially to 9.0% (10 – 90% percentile: 6.4 – 11.5%). As evident in Figure

17), the median error for the remaining simulations gradually reduced towards zero; Table

8 summarizes it for p0 = 5000. The nadir, when m = 90 and pmax = 45000, had median

error of 1.5% (10 – 90% percentile: 0.5 – 3.0%). As in the previous scenario S1(2), the

slope of the median test error tended to be sharpest for simulations with the lower values of

m in the m : pmax simulations and leveled out as m increased. This pattern of diminishing

median classification error with increasing m proportional to p also describes the behavior

of noise accumulation in this series of simulations. By contrast, the median error for the

S2(3) simulations initially increased after p0 > 10 then remained steady at about 50% for

every simulation except m : pmax = 10 : 5000 (Figure 18). Also, these classifiers performed

uniformly poorly where the median test error was above 30% for all simulations and val-

ues of p. Table 8 displays the test error for p0 = 2 where it was highest for p0 ≤ 10 and

p0 = 5000. Noise accumulation affected all S2(3) scenarios. Noise accumulation affected

classification almost immediately after p0 > m as in the S2(2) simulations. As in that case,

noise accumulation appears to level out due to a ceiling effect in the median classification

error.

Scenarios S1(1) and S1(2), where the nonzero elements of µ2 are equal to one, behaved

as conjectured. As sample size and signal increased, the discriminative ability of the RF

classifiers improved. For S1(1), this improvement is anticipated from asymptotic theory.

35

As n→ ∞, the estimator should converge to the true value of the parameter being esti-

mated thus accuracy of classification should rise. Indeed, classification error was less than

10% even for the 90th percentile when sample size was n = 5000 but even n = 500 per-

formed markedly better than the base scenario of n = 200 and comparably to the larger

sample cases. As for S1(2), common sense dictates that classification would improve as

signal strength grows since the classifier draws on this information to differentiate between

groups. Increasing the number of nonzero elements in of µ2 seemed to have a greater pos-

itive impact on discriminative ability than increasing sample size. For S1(2), the median

classification error dropped to less than 5% when m = 30, lower even than n = 5000 in

S1(1). Results from the third scenario – increasing the amount of signal while keeping the

ratio of predictors constant – were less expected. They demonstrated that discriminative

ability improved with signal strength even as the number of predictors grew proportionally.

The median test error fell between m : pmax = 10 : 5000 (the base scenario) and 30 : 15000.

At m : pmax = 90 : 45000, the error was less than 2%. The result from this simulation

is notable because it implies that discriminative ability will be high with sufficient signal

regardless of the number of predictors.

When the nonzero elements of µ2 were reduced to 1√
m , the classifiers’ performance

deteriorated considerably. Results from S2(1), in which the RF classifier was constructed

with different sample sizes, showed the best discriminative ability of these scenarios. As

in S1(1), the classifier improved as sample size increased. The test error dropped from

classifying half of observations incorrectly at p0 = 5000 when n = 200 to 39.7% when

n = 5000. The test error from scenarios S2(2) and S2(3) look equally poor for nearly all

simulations where the classifiers do no better than chance.

These simulations suggest that noise accumulation may threaten accurate separation of

data into two classes when sample size is small relative to the number of predictors, sig-

nal strength is low, and signal magnitude is weak. We explored extreme cases of these

36

Table 8. Test error for values of p0 for random forest simulations varying signal strength and total
predictors

Scenario p0 m : pmax Median 10th Percentile 90th Percentile

S1(3)

p0 ≤ 10*

10 : 5000 28.0 24.5 33.0
30 : 15000 29.0 25.4 32.0
50 : 25000 28.5 26.0 32.1
70 : 35000 28.5 25.4 32.5
90 : 45000 27.8 23.9 33.1

p0 = 5000 10 : 5000 19.5 15.0 24.1
p0 = 15000 30 : 15000 9.0 6.4 11.6
p0 = 25000 50 : 25000 4.8 3.0 7.0
p0 = 35000 70 : 35000 3.0 1.0 4.6
p0 = 45000 90 : 45000 1.5 0.5 3.0

S2(3)

p0 ≤ 10*

10 : 5000 45.8 41.4 49.7
30 : 15000 49.0 46.8 53.6
50 : 25000 50.3 44.9 55.8
70 : 35000 49.8 45.5 53.7
90 : 45000 49.5 46.0 52.0

p0 = 5000 10 : 5000 46.5 42.0 53.1
p0 = 15000 30 : 15000 52.0 47.0 56.0
p0 = 25000 50 : 25000 49.8 44.4 54.1
p0 = 35000 70 : 35000 50.5 46.5 54.3
p0 = 45000 90 : 45000 48.8 44.2 56.0

*Highest test error.

37

0 10000 20000 30000 40000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predictors

Te
st

 e
rr

or

10:5000 30:15000 50:25000 70:35000 90:45000

Figure 17. Test error for Scenario S1(3) (n = 100 for each class, m : pmax varying between 10 : 5000 and 90 :
45000 where m are the nonzero elements for µ2 each equal to one, pmax is the total number of predictors, and
µ1 = 0). Lines represent the median classification error from 100 simulations where gold shows classification
for m : pmax = 10 : 5000, light green for m : pmax = 30 : 15000, turquoise for m : pmax = 50 : 25000, blue for
m : pmax = 70 : 35000, and navy for m : pmax = 90 : 45000.

38

0 10000 20000 30000 40000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predictors

Te
st

 e
rr

or

10:5000 30:15000 50:25000 70:35000 90:45000

Figure 18. Test error for Scenario S2(3) (n = 100 for each class, m : pmax varying between 10 : 5000
and 90 : 45000 where m are the nonzero elements for µ2 each equal to 1√

m , pmax is the total number of
predictors, and µ1 = 0). Lines represent the median classification error from 100 simulations where yellow
shows classification for m : pmax = 10 : 5000, light green for m : pmax = 30 : 15000, turquoise for m : pmax =
50 : 25000, blue for m : pmax = 70 : 35000, and navy for m : pmax = 90 : 45000.

39

situations but they may be unlikely in practice. Our findings suggest that as long as the

signal magnitude is sufficiently large, it is possible to counteract noise accumulation by

collecting large sample, selecting classes that are as different as possible, or – ideally – both.

It is likely that increasing sample size is the most modifiable way to avoid this problem.

In settings where the magnitude of signal is weak, good discriminative ability may not be

possible.

40

4 Total Signal Index

While running simulations for the previous chapters, we wondered how investigators would

evaluate whether noise accumulation was a threat to analysis. In practice, without the

luxury of knowing true values, it is difficult to detect. Such concerns led us to consider ways

to quantify it. Signal to noise ratio (SNR) is a popular measure in science and engineering

to compare the level of signal compared to background noise in order to assess the amount

of useful information. Although there are many definitions for this ratio, a common one in

statistics is the quotient of the signal mean and the standard deviation of the noise:

SNR =
µ

σ
(1)

where µ is the signal mean and σ is the standard deviation of the noise. Higher ratios mean

there is more useful information (i.e., signal) relative to erroneous data (i.e., noise).

One way to interpret signal in the context of classification is as the distance between

the means of the two classes. Variance is the noise around each of those means; it indicates

how much data will spread out from the mean, thus also whether the classes will overlap.

The greater the distance between two means and the smaller their variances, the greater the

signal and easier it is to distinguish them. We combined the definition of SNR in (1) with

the idea of signal being the distance between class means to develop an index which could

summarize the ability of a classifier to differentiate between two groups.

41

4.1 Theoretical total signal index

Define two independent groups X1 and X2 from a multivariate distribution with sample size

n1 and n2, respectively, such that

X1 :x11, . . . ,x1n1 withX1 ∼MV(µ1,Λ1)

X2 :x21, . . . ,x2n2 withX2 ∼MV(µ2,Λ2)

where Λ1 and Λ2 are diagonal covariance matrices; x1k1 and x2k2 are p-dimensional vec-

tors for k1 = 1,2, . . . ,n1 and k2 = 1,2, . . . ,n2. We define the total signal index (TSI) as the

Euclidean distance of the difference in SNR between the two classes:

T SI =

√
p

∑
i=1

(
µ1i

σ1i
− µ2i

σ2i

)2
(2)

As defined in (2), we expect TSI to increase with greater distance between the two classes

and drop as the distance decreases. Equivalently, TSI will be higher with more signal and

lower with less signal.

4.2 Empirical total signal index

We propose an empiric version of TSI, TSIe, that can be estimated from sample data. We

use the sample mean and variance for each group in lieu of the population parameters. Let

Y1 and Y2 be independent groups from a multivariate distribution with sample size m1 and

m2

Y1 :y11, . . . ,y1m1 with Y1 ∼MV(ȳ1,s
2
1)

Y2 :y21, . . . ,y2m2 with Y2 ∼MV(ȳ2,s
2
2)

42

where s2
1 and s2

2 are diagonal covariance matrices; y1k1 and y2k2 are p-dimensional vectors

for k1 = 1,2, . . . ,m1 and k2 = 1,2, . . . ,m2. Then we define TSIe as

T SIe =

√
p

∑
i=1

(ȳ1i

s1i
− ȳ2i

s2i

)2
(3)

As with TSI, the value of TSIe be higher with more signal and lower with less signal.

Although (3) does not directly account for correlation, we will show that TSIe can be used

to indirectly evaluate data with correlated predictors.

4.3 Simulations for total signal indices

Next, we consider simulations to assess the performance of TSIe. We randomly sampled

data from multivariate normal distributions such that s1 = 1 and s2 = 1. We considered

scenarios with ȳ1 and ȳ2 summarized in Table 9. Thus,

ȳ1 = (1,1,1,1,1,1,1,1,1,1,0, . . . ,0) and

ȳ2 = 0 = (0, . . . ,0)

in the first scenario and

ȳ1 = (3,3,3,3,3,3,3,3,3,3,0, . . . ,0) and

ȳ2 = (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,0, . . . ,0)

in the second. For each scenario, we generated 100 datasets and considered sample sizes

n =200, 500, 1000, 5000, and 10000 split equally between the two groups. We computed

minimum, median, and maximum TSIe for every p0 = 1,2, . . . ,5000 predictors. We also

calculated the theoretical value of TSI for each scenario for corresponding values of n, p0,

µ1i, µ2i, σ1, and σ2. Figures 19 through 23 show median TSIe plotted for each predictor

with bands for minimum and maximum values. The lefthand graph in each figure shows

1 ≤ p0 ≤ 50, displaying TSIe tightly fitting TSI for this range of p. This series of figures

demonstrates that TSIe traces TSI well when p is small. As the number of predictors in-

43

creases (displayed on the righthand side of the figures), TSIe drifts upwards, overestimating

TSI. Ironically, this divergence appears to be due to noise accumulation, which is magni-

fied when each term of TSIe is summed. When interpreted together, the plots indicate that

the difference between the empirical and theoretical indices can be ameliorated either by

augmenting the number of samples in the groups or increasing the distance between ȳ1i

and ȳ2i. From Figures 19 through 23, the gap between TSIe and TSI shrinks as n grows

and it almost disappears at n = 10000. In each of the figures, the separation between TSIe

and TSI is reduced for Scenario 2 compared to Scenario 1, suggesting that a larger distance

between ȳ1i and ȳ2i may help TSIe better estimate TSI.

Table 9. Scenarios for Total Signal
Index simulations

m1 m2
Value
of m1

Value
of m2

1 10 0 1 0
2 10 10 3 -1

m1, number of nonzero elements in ȳ1; m2,
number of nonzero elements inȳ2.

We repeated Scenario 1 as described above with a slight modification. Unlike in the

previous simulations of TSI, the nonzero elements in the first group that comprised the

signal were not defined as the first 10 entries of the vector of means for ȳ1i. Rather, these

elements were scattered randomly throughout the length of ȳ1i for TSIe and, analogously,

µ1i for TSI. As before, we calculated the median TSIe and plotted it with the theoretical

TSI. Figures 24 through 28 show the results of these simulations. These plots demonstrate

that TSIe follows the theoretical value of TSI even when signal is not sorted as the first m

nonzero elements of the sample mean. Further, the distance between these two measures

decreases as n increases.

44

0 10 20 30 40 50

0
5

10
15

20

Predictors

T
S

I

0 1000 3000 5000

0
5

10
15

20

Predictors

T
S

I

Empirical TSI, Scenario 1
Empirical TSI, Scenario 2

Theoretical TSI, Scenario 1
Theoretical TSI, Scenario 2

Figure 19. Median empirical total signal index (TSI) by number of predictors (p = 1 to 50 on left, p = 1
to 5000 on right) with theoretical value of TSI overlaid for n = 200. Black line is median empirical TSI
for Scenario 1 (ȳ1 has value one for the first 10 nonzero elements then zero afterward and ȳ2 = 0); red line
is corresponding TSI. Blue line is median empirical TSI for Scenario 2 (ȳ1 = 3 and ȳ2 = −1 for the first
10 nonzero elements then zero afterward); green line is corresponding TSI. Grey and blue bands show the
minimum and maximum values for empirical TSI in Scenarios 1 and 2, respectively.

45

0 10 20 30 40 50

0
5

10
15

20

Predictors

T
S

I

0 1000 3000 5000

0
5

10
15

20

Predictors

T
S

I

Empirical TSI, Scenario 1
Empirical TSI, Scenario 2

Theoretical TSI, Scenario 1
Theoretical TSI, Scenario 2

Figure 20. Median empirical total signal index (TSI) by number of predictors (p = 1 to 50 on left, p = 1
to 5000 on right) with theoretical value of TSI overlaid for n = 500. Black line is median empirical TSI
for Scenario 1 (ȳ1 has value one for the first 10 nonzero elements then zero afterward and ȳ2 = 0); red line
is corresponding TSI. Blue line is median empirical TSI for Scenario 2 (ȳ1 = 3 and ȳ2 = −1 for the first
10 nonzero elements then zero afterward); green line is corresponding TSI. Grey and blue bands show the
minimum and maximum values for empirical TSI in Scenarios 1 and 2, respectively.

46

0 10 20 30 40 50

0
5

10
15

20

Predictors

T
S

I

0 1000 3000 5000

0
5

10
15

20

Predictors

T
S

I

Empirical TSI, Scenario 1
Empirical TSI, Scenario 2

Theoretical TSI, Scenario 1
Theoretical TSI, Scenario 2

Figure 21. Median empirical total signal index (TSI) by number of predictors (p = 1 to 50 on left, p = 1
to 5000 on right) with theoretical value of TSI overlaid for n = 1000. Black line is median empirical TSI
for Scenario 1 (ȳ1 has value one for the first 10 nonzero elements then zero afterward and ȳ2 = 0); red line
is corresponding TSI. Blue line is median empirical TSI for Scenario 2 (ȳ1 = 3 and ȳ2 = −1 for the first
10 nonzero elements then zero afterward); green line is corresponding TSI. Grey and blue bands show the
minimum and maximum values for empirical TSI in Scenarios 1 and 2, respectively.

47

0 10 20 30 40 50

0
5

10
15

20

Predictors

T
S

I

0 1000 3000 5000

0
5

10
15

20

Predictors

T
S

I

Empirical TSI, Scenario 1
Empirical TSI, Scenario 2

Theoretical TSI, Scenario 1
Theoretical TSI, Scenario 2

Figure 22. Median empirical total signal index (TSI) by number of predictors (p = 1 to 50 on left, p = 1
to 5000 on right) with theoretical value of TSI overlaid for n = 5000. Black line is median empirical TSI
for Scenario 1 (ȳ1 has value one for the first 10 nonzero elements then zero afterward and ȳ2 = 0); red line
is corresponding TSI. Blue line is median empirical TSI for Scenario 2 (ȳ1 = 3 and ȳ2 = −1 for the first
10 nonzero elements then zero afterward); green line is corresponding TSI. Grey and blue bands show the
minimum and maximum values for empirical TSI in Scenarios 1 and 2, respectively.

48

0 10 20 30 40 50

0
5

10
15

20

Predictors

T
S

I

0 1000 3000 5000

0
5

10
15

20

Predictors

T
S

I

Empirical TSI, Scenario 1
Empirical TSI, Scenario 2

Theoretical TSI, Scenario 1
Theoretical TSI, Scenario 2

Figure 23. Median empirical total signal index (TSI) by number of predictors (p = 1 to 50 on left, p = 1
to 5000 on right) with theoretical value of TSI overlaid for n = 10000. Black line is median empirical TSI
for Scenario 1 (ȳ1 has value one for the first 10 nonzero elements then zero afterward and ȳ2 = 0); red line
is corresponding TSI. Blue line is median empirical TSI for Scenario 2 (ȳ1 = 3 and ȳ2 = −1 for the first
10 nonzero elements then zero afterward); green line is corresponding TSI. Grey and blue bands show the
minimum and maximum values for empirical TSI in Scenarios 1 and 2, respectively.

49

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictors

T
S

I

0 1000 3000 5000

0
2

4
6

8
10

Predictors

T
S

I

Empirical TSI Theoretical TSI

Figure 24. Median empirical total signal index (TSI) for simulations with unsorted signal by number of
predictors (p = 1 to 50 on left, p = 1 to 5000 on right) with theoretical value of TSI overlaid for n = 200. Blue
line is median empirical TSI (ȳ1 has 10 randomly distributed, nonzero elements with other elements equal
zero and ȳ2 = 0); orange line is corresponding TSI.

50

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictors

T
S

I

0 1000 3000 5000

0
2

4
6

8
10

Predictors

T
S

I

Empirical TSI Theoretical TSI

Figure 25. Median empirical total signal index (TSI) for simulations with unsorted signal by number of
predictors (p = 1 to 50 on left, p = 1 to 5000 on right) with theoretical value of TSI overlaid for n = 500. Blue
line is median empirical TSI (ȳ1 has 10 randomly distributed, nonzero elements with other elements equal
zero and ȳ2 = 0); orange line is corresponding TSI.

51

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictors

T
S

I

0 1000 3000 5000

0
2

4
6

8
10

Predictors

T
S

I

Empirical TSI Theoretical TSI

Figure 26. Median empirical total signal index (TSI) for simulations with unsorted signal by number of
predictors (p = 1 to 50 on left, p = 1 to 5000 on right) with theoretical value of TSI overlaid for n = 1000.
Blue line is median empirical TSI (ȳ1 has 10 randomly distributed, nonzero elements with other elements
equal zero and ȳ2 = 0); orange line is corresponding TSI.

52

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

T
S

I

0 1000 3000 5000

0
1

2
3

4
5

Predictors

T
S

I

Empirical TSI Theoretical TSI

Figure 27. Median empirical total signal index (TSI) for simulations with unsorted signal by number of
predictors (p = 1 to 50 on left, p = 1 to 5000 on right) with theoretical value of TSI overlaid for n = 5000.
Blue line is median empirical TSI (ȳ1 has 10 randomly distributed, nonzero elements with other elements
equal zero and ȳ2 = 0); orange line is corresponding TSI.

53

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Predictors

T
S

I

0 1000 3000 5000

0
1

2
3

4
5

Predictors

T
S

I

Empirical TSI Theoretical TSI

Figure 28. Median empirical total signal index (TSI) for simulations with unsorted signal by number of
predictors (p = 1 to 50 on left, p = 1 to 5000 on right) with theoretical value of TSI overlaid for n = 10000.
Blue line is median empirical TSI (ȳ1 has 10 randomly distributed, nonzero elements with other elements
equal zero and bary2 = 0); orange line is corresponding TSI.

54

We also sought to investigate the performance of TSIe in settings where there was cor-

relation between the predictors. We generated data from a multivariate normal distribution

for two classes similar to those in Scenario 1 described in the first row of Table 9. That

is, the nonzero elements of ȳ1 were one, all elements of ȳ2 = 0, and variances for both

samples were one. Unlike the previous scenarios, we added covariance terms to the off

diagonal entries of the variance-covariance matrix corresponding to the nonzero entries of

ȳ1 for Λ1 and Λ2:

1 ρ ρ ρ ρ ρ ρ ρ ρ ρ 0 · · · 0

ρ 1 ρ ρ ρ ρ ρ ρ ρ ρ 0 · · · 0

ρ ρ 1 ρ ρ ρ ρ ρ ρ ρ 0 · · · 0

ρ ρ ρ 1 ρ ρ ρ ρ ρ ρ 0 · · · 0

ρ ρ ρ ρ 1 ρ ρ ρ ρ ρ 0 · · · 0

ρ ρ ρ ρ ρ 1 ρ ρ ρ ρ 0 · · · 0

ρ ρ ρ ρ ρ ρ 1 ρ ρ ρ 0 · · · 0

ρ ρ ρ ρ ρ ρ ρ 1 ρ ρ 0 · · · 0

ρ ρ ρ ρ ρ ρ ρ ρ 1 ρ 0 · · · 0

ρ ρ ρ ρ ρ ρ ρ ρ ρ 1 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 0 · · · 0

We explored 100 simulations for ρ = 0.25, 0.50, and 0.75 where n = 200, divided equally

between classes. Although we also attempted to include simulations for ρ = -0.25, -0.50,

and -0.75, these variance-covariance matrices were not semi-positive definite and could not

be computed. We calculated TSIe as before and graphed the results in Figure 29 along with

theoretical and empiric measures assuming independence among the predictors. As seen in

55

this figure, the median TSIe for the correlated simulations where ρ = 0.25 and 0.50 closely

match the one without correlation. When ρ = 0.75, median TSIe underestimates TSI until

around p0 = 100. At this point, median TSIe for ρ = 0.75 crosses the line for TSI and

thereafter exceeds it. Generally, the results for this simulation follow a similar trend to the

one with no correlation and are not concerning for TSIe performance.

Finally, we wanted to gauge the performance of TSIe vis-à-vis scenarios from the first

chapter (Table 1) to see whether the index behaved as expected. In these scenarios, signal

strength remains fixed at three for the first three scenarios but its strength decreases from 10

to six to three nonzero elements. Consequently, we expect TSI to decline with dwindling

signal between Scenarios 1, 2, and 3. Based on the performance of random forest and

boosting classifiers, Scenario 4 appears to have the least amount of signal strength of the

scenarios thus we expect this scenario to have the lowest TSI. Figure 30 displays the median

TSI for 100 simulations conducted with the same parameter values from Chapter 2 and 100

samples per group. Visual inspection of the graph indicates that TSIe acts as anticipated:

Scenario 1 has the highest TSIe followed by Scenario 2 then Scenario 3 and, lastly,

Scenario 4.

56

0 10 20 30 40 50

0
1

2
3

4
5

Predictors

T
S

I

0 100 300 500

0
1

2
3

4
5

Predictors

T
S

I

ρ=0
ρ=0.25

ρ=0.50
ρ=0.75

theoretical TSI

Figure 29. Median empirical total signal index (TSI) for simulations with correlation between predictors (p
= 1 to 50 on left, p = 1 to 5000 on right) with theoretical value of TSI overlaid for n = 200. All simulations
developed for ȳ1 equal one for the first 10 nonzero elements then zero afterward and ȳ2 = 0; black line is
median empirical total signal index for ρ = 0, pink for ρ = 0.25, red for ρ = 0.50, and dark red for ρ = 0.75.

57

0 1000 2000 3000 4000 5000

0
5

10
15

Predictors

T
S

I

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 30. Comparison of total signal index (TSI) from each of four scenarios where n = 100 for each class.
Thick lines represent the median TSI from 100 simulations with the navy line representing Scenario 1 (m =
10 nonzero elements for ȳ2 each equal to three and ȳ1 = 0), purple Scenario 2 (m = 6 nonzero elements for
ȳ2 each equal to three and ȳ1 = 0), rose Scenario 3 (m = 2 nonzero elements for ȳ2 each equal to three and
ȳ1 = 0), and pink Scenario 4 (m = 10 nonzero elements for ȳ2 each equal to one and ȳ1 = 0).

58

5 Summary and conclusion

Over the course of this thesis, we scrutinized noise accumulation when conducting two

group classification with high dimensional data using various simulations. In Chapter 2,

we explored how noise accumulation impacts the discriminative ability of random forest,

support vector machine, and boosted classification in varying conditions of signal strength

and magnitude. We showed that the support vector machine algorithm had poor classi-

fication ability when signal strength was low or its magnitude limited, at least without

additional tailoring of default settings. Boosting performed extremely well in all scenarios

but was extremely time intensive. This approach would be the best option in settings of

low signal and many predictors as long as time is not constrained or multiple runs of the

algorithm could be parallelized. Although boosting outperformed it in the scenarios with

less signal, the random forest classifier provided about 80% accurate class predictions in

the most challenging settings and took a lot less time. In the third chapter, we sought to un-

derstand the behavior of noise accumulation in random forest classification. The results of

our simulations indicated that the effects of noise accumulation could be minimized by in-

creasing the dataset’s sample size or signal strength. We also discovered that the magnitude

of signal needs to be sufficient for these modifications to influence the classifier’s discrim-

inative ability. In Chapter 4, we derived theoretical and empirical measures to summarize

signal relative to background noise for two classes then tested it with simulations. Although

affected by noise accumulation itself, empirical TSI replicated the pattern of classification

difficulty ascertained from previous simulations.

For this project, we chose to limit our inquiry to a two-group classification problem

with simplistic assumptions about the correlation between predictors. Future research in-

volving multiple groups or more realistic variance-covariance structures would help fur-

ther characterize noise accumulation. Likewise, our Total Signal Index could be extended

59

to multiple groups or the equation generalized to directly account for correlation among

predictors. It would also be informative to see how newer classification methods invented

to deal with sparse data such as least absolute shrinkage and selection operator (LASSO)

or sparse linear discriminate analyses would handle the scenarios we examined. Also, re-

cent R packages like xgboost may speed up the algorithm for boosted classification trees,

making this approach more accessible for further study.

The impetus for this thesis was to explore noise accumulation in classification and elu-

cidate how it challenged statistical analysis of high dimensional data as Fan et al. proposed

in ”Challenges of Big Data analysis.” Noise accumulation does appear to constitute a prob-

lem for high dimensional classification but it can be addressed with study design as we

suggested in Chapter 2 or with variable selection that effectively reduces the dimension of

datasets.5 Finally, noise accumulation may be difficult to detect in practice. We hope Total

Signal Index will be a useful tool to detecting noise accumulation in high dimensional data

and, in doing so, allow researchers to reflect on whether and how to adapt their analyses.

60

References
1 Speed T. Data science, big data and statistics: Can we all live to-

gether? http://www.chalmers.se/en/areas-of-advance/ict/calendar/

Pages/Terry-Speed.aspx. 2014.

2 Huber PJ. Huge data sets. In: Compstat. Springer. 1994; 3–13.

3 Council NR. Massive Data Sets: Proceedings of a Workshop. Washington, DC: The
National Academies Press. 1996.

4 Gandomi A, Haider M. Beyond the hype: Big data concepts, methods, and analytics.
International Journal of Information Management. 2015;35(2):137–144 .

5 Fan J, Han F, Liu H. Challenges of big data analysis. National science review. 2014;
1(2):293–314 .

6 Fan J, Fan Y. High dimensional classification using features annealed independence
rules. Annals of statistics. 2008;36(6):2605 .

7 Hall P, Pittelkow Y, Ghosh M. Theoretical measures of relative performance of classi-
fiers for high dimensional data with small sample sizes. Journal of the Royal Statistical
Society: Series B (Statistical Methodology). 2008;70(1):159–173 .

8 Fan J. Features of big data and sparsest solution in high confidence set. Past, present,
and future of statistical science. 2013;507–523 .

9 Fan J, Lv J. A selective overview of variable selection in high dimensional feature space.
Statistica Sinica. 2010;20(1):101 .

10 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. 2017.

11 Liaw A, Wiener M. Classification and regression by randomforest. R News. 2002;
2(3):18–22 .

12 Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions
of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.
2015. R package version 1.6-6.

13 Ridgeway G. gbm: Generalized Boosted Regression Models. 2017. URL https://

CRAN.R-project.org/package=gbm. R package version 2.1.3.

14 Breiman L. Random forests. Machine learning. 2001;45(1):5–32 .

15 James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning, vol-
ume 112. Springer. 2013.

61

http://www.chalmers.se/en/areas-of-advance/ict/calendar/Pages/Terry-Speed.aspx
http://www.chalmers.se/en/areas-of-advance/ict/calendar/Pages/Terry-Speed.aspx
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm

16 Friedman J, Hastie T, Tibshirani R, et al. Additive logistic regression: a statistical view
of boosting (with discussion and a rejoinder by the authors). The annals of statistics.
2000;28(2):337–407 .

17 Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of
statistics. 2001;1189–1232 .

18 Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995;20(3):273–297 .

62

A Appendix

A.1 R code

A.1.1 Code for Chapter 2

###

function to generate data

use rnorm as data not correlated (significantly faster than mvnorm)

draw3 = function(d,ss1,ss2,nonsparse,mu1,mu2,sd1,sd2){

n21 = nonsparse

class 2

y1a = matrix(rnorm(n=ss2*n21,

mean=mu1,

sd=sd1),nrow=ss2,ncol=n21,byrow=FALSE)

y1b = matrix(rnorm(n=ss2*(d-n21),

mean=0,

sd=1),nrow=ss2,ncol=d-n21,byrow=FALSE)

y1 = cbind(y1a,y1b)

class 1

x1a = matrix(rnorm(n=ss1*n21,

mean=mu2,

sd=sd2),nrow=ss1,ncol=n21,byrow=FALSE)

x1b = matrix(rnorm(n=ss1*(d-n21),

mean=0,

sd=1),nrow=ss1,ncol=d-n21,byrow=FALSE)

x1 = cbind(x1a,x1b)

sdata = rbind(y1,x1)

return(sdata=sdata)

}

generate data for simulations

number of simulations

iters = 100

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

all scenarios -- d=5000, ss1=100, ss2=100, mu1=0, sd1=1, sd2=1

scenario 1 -- mu2 = 3, nonsparse = 10

train_a1 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=10,

mu1=0,mu2=3,sd=1,sd2=1)

}

test_a1 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=10,

mu1=0,mu2=3,sd=1,sd2=1)

}

scenario 2 -- mu2 = 3, nonsparse = 6

train_a2 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=6,

mu1=0,mu2=3,sd=1,sd2=1)

}

test_a2 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=6,

mu1=0,mu2=3,sd=1,sd2=1)

}

scenario 3 -- mu2 = 3, nonsparse = 2

train_a3 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=2,

mu1=0,mu2=3,sd=1,sd2=1)

}

test_a3 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=2,

mu1=0,mu2=3,sd=1,sd2=1)

}

scenario 4 -- mu2 = 1, nonsparse = 10

train_a4 = foreach(icount(iters)) %dopar% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=10,

mu1=0,mu2=1,sd=1,sd2=1)

}

test_a4 = foreach(icount(iters)) %dopar% {

64

draw3(d=5000,ss1=100,ss2=100,nonsparse=10,

mu1=0,mu2=1,sd=1,sd2=1)

}

stopCluster(cl)

registerDoSEQ()

###

principal component analysis simulations

PCA for Scenario 1

pc_a1_p2=prcomp(train_a1[[1]][,1:2],scale=T,retx=T)

pc_a1_p10=prcomp(train_a1[[1]][,1:10],scale=T,retx=T)

pc_a1_p100=prcomp(train_a1[[1]][,1:100],scale=T,retx=T)

pc_a1_p200=prcomp(train_a1[[1]][,1:200],scale=T,retx=T)

pc_a1_p1000=prcomp(train_a1[[1]][,1:1000],scale=T,retx=T)

pc_a1_p5000=prcomp(train_a1[[1]][,1:5000],scale=T,retx=T)

PCA for Scenario 2

pc_a2_p2=prcomp(train_a2[[1]][,1:2],scale=T,retx=T)

pc_a2_p10=prcomp(train_a2[[1]][,1:10],scale=T,retx=T)

pc_a2_p100=prcomp(train_a2[[1]][,1:100],scale=T,retx=T)

pc_a2_p200=prcomp(train_a2[[1]][,1:200],scale=T,retx=T)

pc_a2_p1000=prcomp(train_a2[[1]][,1:1000],scale=T,retx=T)

pc_a2_p5000=prcomp(train_a2[[1]][,1:5000],scale=T,retx=T)

PCA for Scenario 3

pc_a3_p2=prcomp(train_a3[[1]][,1:2],scale=T,retx=T)

pc_a3_p10=prcomp(train_a3[[1]][,1:10],scale=T,retx=T)

pc_a3_p100=prcomp(train_a3[[1]][,1:100],scale=T,retx=T)

pc_a3_p200=prcomp(train_a3[[1]][,1:200],scale=T,retx=T)

pc_a3_p1000=prcomp(train_a3[[1]][,1:1000],scale=T,retx=T)

pc_a3_p5000=prcomp(train_a3[[1]][,1:5000],scale=T,retx=T)

PCA for Scenario 4

pc_a4_p2=prcomp(train_a4[[1]][,1:2],scale=T,retx=T)

pc_a4_p10=prcomp(train_a4[[1]][,1:10],scale=T,retx=T)

pc_a4_p100=prcomp(train_a4[[1]][,1:100],scale=T,retx=T)

pc_a4_p200=prcomp(train_a4[[1]][,1:200],scale=T,retx=T)

pc_a4_p1000=prcomp(train_a4[[1]][,1:1000],scale=T,retx=T)

pc_a4_p5000=prcomp(train_a4[[1]][,1:5000],scale=T,retx=T)

###

65

random forest simulations

library(randomForest)

create classifier for random forest

run.rft = function(train,test,n,d){

s1 = list()

s2 = list()

for (j in 1:n){

s1[[j]] = matrix(,nrow=1,ncol=length(a))

s2[[j]] = matrix(,nrow=1,ncol=length(a))

for (i in 1:length(a)){

rf = randomForest(y=as.factor(g),

x=train[[j]][,1:a[i]],

ntrees=1000,

importance=T,

proximity=T)

s1[[j]][,i] = 1 - (sum(rf$confusion[1,1],

rf$confusion[2,2])/

(length(train[[j]][,1])))

s2[[j]][,i] = 1 - (sum(diag(table(predict(

rf,test[[j]][,1:a[i]]),g)))/

(length(test[[j]][,1])))

}

}

return(list(s1=s1,s2=s2))

}

make groups

g = c(rep(1,100),rep(2,100))

every predictor between 2 and 100

a = seq(2,100,1)

rf_a1_detail = run.rft(train=train_a1,test=test_a1,n=100,d=max(a))

rf_a2_detail = run.rft(train=train_a2,test=test_a2,n=100,d=max(a))

rf_a3_detail = run.rft(train=train_a3,test=test_a3,n=100,d=max(a))

rf_a4_detail = run.rft(train=train_a4,test=test_a4,n=100,d=max(a))

66

every 10th predictor between 2 and 5000

a = seq(0,5000,10)

a[1] = 2

rf_a1 = run.rft(train=train_a1,test=test_a1,n=100,d=max(a))

rf_a2 = run.rft(train=train_a2,test=test_a2,n=100,d=max(a))

rf_a3 = run.rft(train=train_a3,test=test_a3,n=100,d=max(a))

rf_a4 = run.rft(train=train_a4,test=test_a4,n=100,d=max(a))

###

support vector machine simulations

library(e1071)

create classifier for SVM

run.svm = function(train,test,n){

t1 = list()

t2 = list()

for (j in 1:n){

t1[[j]] = matrix(,nrow=1,ncol=length(a))

t2[[j]] = matrix(,nrow=1,ncol=length(a))

for (i in 1:length(a)){

sv = svm(y=as.factor(g),

x=train[[j]][,1:a[i]],

kernel="linear",

cost=0.01)

t1[[j]][,i] = 1 - ((sum(diag(table(g, predict(sv)))))/

(length(train[[j]][,1])))

t2[[j]][,i] = 1-(sum(diag(table(predict(

sv,test[[j]][,1:a[i]]),g)))/

(length(test[[j]][,1])))

}

}

return(list(t1=t1,t2=t2))

}

make groups

g = c(rep(1,100),rep(2,100))

every predictor between 2 and 100

a = seq(2,100,1)

67

svm_a1_detail = run.svm(train=train_a1,test=test_a1,n=100)

svm_a2_detail = run.svm(train=train_a2,test=test_a2,n=100)

svm_a3_detail = run.svm(train=train_a3,test=test_a3,n=100)

svm_a4_detail = run.svm(train=train_a4,test=test_a4,n=100)

every 10th predictor between 2 and 5000

a = seq(0,5000,10)

a[1] = 2

svm_a1 = run.svm(train=train_a1,test=test_a1,n=100)

svm_a2 = run.svm(train=train_a2,test=test_a2,n=100)

svm_a3 = run.svm(train=train_a3,test=test_a3,n=100)

svm_a4 = run.svm(train=train_a4,test=test_a4,n=100)

###

boosted classification tree simulations

library(gbm)

create classifier for boosting

run.gbm = function(train,test,n,d){

u1 = list()

u2 = list()

for (j in 1:n){

u1[[j]] = matrix(,nrow=1,ncol=length(a))

u2[[j]] = matrix(,nrow=1,ncol=length(a))

for (i in 1:length(a)){

bt = gbm.fit(y=g,

x=train[[j]][,1:a[i]],

n.trees=10000,

verbose=FALSE)

u1[[j]][,i] = 1-(sum(diag(table(ifelse(bt$fit<0,0,1),g)))/

(length(train[[j]][,1])))

u2[[j]][,i] = 1-(sum(diag(table(ifelse((predict(

bt,test[[j]][,1:a[i]],n.trees=10000))

<0,0,1),g)))/(length(test[[j]][,1])))

}

}

return(list(u1=u1,u2=u2

))

}

68

make groups

g = c(rep(0,100),rep(1,100))

every predictor between 2 and 100

a = seq(2,100,1)

gbm_a1_detail = run.gbm(train=train_a1,test=test_a1,n=100,d=max(a))

gbm_a2_detail = run.gbm(train=train_a2,test=test_a2,n=100,d=max(a))

gbm_a3_detail = run.gbm(train=train_a3,test=test_a3,n=100,d=max(a))

gbm_a4_detail = run.gbm(train=train_a4,test=test_a4,n=100,d=max(a))

every 10th predictor between 2 and 5000

a = seq(0,5000,10)

a[1] = 2

gbm_a1 = run.gbm(train=train_a1,test=test_a1,n=100,d=max(a))

gbm_a2 = run.gbm(train=train_a2,test=test_a2,n=100,d=max(a))

gbm_a3 = run.gbm(train=train_a3,test=test_a3,n=100,d=max(a))

gbm_a4 = run.gbm(train=train_a4,test=test_a4,n=100,d=max(a))

###

Results

RF

test error for every predictor between 2 and 100

t2 = do.call(rbind,rf_a1_detail$s2)

u2 = do.call(rbind,rf_a2_detail$s2)

v2 = do.call(rbind,rf_a3_detail$s2)

w2 = do.call(rbind,rf_a4_detail$s2)

t2.p = apply(t2,2,quantile,probs=c(.1,.5,.9))

u2.p = apply(u2,2,quantile,probs=c(.1,.5,.9))

v2.p = apply(v2,2,quantile,probs=c(.1,.5,.9))

w2.p = apply(w2,2,quantile,probs=c(.1,.5,.9))

scenario 1

10, 50, and 90 percentile test error between p=1 and 10

t2.p[1,1:10]

t2.p[2,1:10]

t2.p[3,1:10]

69

scenario 2

10, 50, and 90 percentile test error between p=1 and 10

u2.p[1,1:10]

u2.p[2,1:10]

u2.p[3,1:10]

scenario 3

10, 50, and 90 percentile test error between p=1 and 10

v2.p[1,1:10]

v2.p[2,1:10]

v2.p[3,1:10]

scenario 4

10, 50, and 90 percentile test error between p=1 and 10

w2.p[1,1:10]

w2.p[2,1:10]

w2.p[3,1:10]

test error for every 10th predictor between 2 and 5000

t2 = do.call(rbind,rf_a1$s2)

u2 = do.call(rbind,rf_a2$s2)

v2 = do.call(rbind,rf_a3$s2)

w2 = do.call(rbind,rf_a4$s2)

t2.p_rf = apply(t2,2,quantile,probs=c(.1,.5,.9))

u2.p_rf = apply(u2,2,quantile,probs=c(.1,.5,.9))

v2.p_rf = apply(v2,2,quantile,probs=c(.1,.5,.9))

w2.p_rf = apply(w2,2,quantile,probs=c(.1,.5,.9))

scenario 1

10, 50, and 90 percentile test error at p=5000

t2.p_rf[1,501]

t2.p_rf[2,501]

t2.p_rf[3,501]

scenario 2

10, 50, and 90 percentile test error at p=5000

u2.p_rf[1,501]

u2.p_rf[2,501]

u2.p_rf[3,501]

70

scenario 3

10, 50, and 90 percentile test error at p=5000

v2.p_rf[1,501]

v2.p_rf[2,501]

v2.p_rf[3,501]

scenario 4

10, 50, and 90 percentile test error at p=5000

w2.p_rf[1,501]

w2.p_rf[2,501]

w2.p_rf[3,501]

SVM

test error for every predictor between 2 and 100

t2 = do.call(rbind,svm_a1_detail$t2)

u2 = do.call(rbind,svm_a2_detail$t2)

v2 = do.call(rbind,svm_a3_detail$t2)

w2 = do.call(rbind,svm_a4_detail$t2)

t2.p = apply(t2,2,quantile,probs=c(.1,.5,.9))

u2.p = apply(u2,2,quantile,probs=c(.1,.5,.9))

v2.p = apply(v2,2,quantile,probs=c(.1,.5,.9))

w2.p = apply(w2,2,quantile,probs=c(.1,.5,.9))

scenario 1

10, 50, and 90 percentile test error between p=1 and 10

t2.p[1,1:10]

t2.p[2,1:10]

t2.p[3,1:10]

scenario 2

10, 50, and 90 percentile test error between p=1 and 10

u2.p[1,1:10]

u2.p[2,1:10]

u2.p[3,1:10]

scenario 3

10, 50, and 90 percentile test error between p=1 and 10

v2.p[1,1:10]

v2.p[2,1:10]

v2.p[3,1:10]

71

scenario 4

10, 50, and 90 percentile test error between p=1 and 10

w2.p[1,1:10]

w2.p[2,1:10]

w2.p[3,1:10]

test error for every 10th predictor between 2 and 5000

t2 = do.call(rbind,svm_a1$t2)

u2 = do.call(rbind,svm_a2$t2)

v2 = do.call(rbind,svm_a3$t2)

w2 = do.call(rbind,svm_a4$t2)

t2.p_svm = apply(t2,2,quantile,probs=c(.1,.5,.9))

u2.p_svm = apply(u2,2,quantile,probs=c(.1,.5,.9))

v2.p_svm = apply(v2,2,quantile,probs=c(.1,.5,.9))

w2.p_svm = apply(w2,2,quantile,probs=c(.1,.5,.9))

scenario 1

10, 50, and 90 percentile test error at p=5000

t2.p_svm[1,501]

t2.p_svm[2,501]

t2.p_svm[3,501]

scenario 2

10, 50, and 90 percentile test error at p=5000

u2.p_svm[1,501]

u2.p_svm[2,501]

u2.p_svm[3,501]

scenario 3

10, 50, and 90 percentile test error at p=5000

v2.p_svm[1,501]

v2.p_svm[2,501]

v2.p_svm[3,501]

scenario 4

10, 50, and 90 percentile test error at p=5000

w2.p_svm[1,501]

w2.p_svm[2,501]

w2.p_svm[3,501]

72

GBM

test error for every predictor between 2 and 100

t2 = do.call(rbind,gbm_a1_detail$u2)

u2 = do.call(rbind,gbm_a2_detail$u2)

v2 = do.call(rbind,gbm_a3_detail$u2)

w2 = do.call(rbind,gbm_a4_detail$u2)

t2.p = apply(t2,2,quantile,probs=c(.1,.5,.9))

u2.p = apply(u2,2,quantile,probs=c(.1,.5,.9))

v2.p = apply(v2,2,quantile,probs=c(.1,.5,.9))

w2.p = apply(w2,2,quantile,probs=c(.1,.5,.9))

scenario 1

10, 50, and 90 percentile test error between p=1 and 10

t2.p[1,1:10]

t2.p[2,1:10]

t2.p[3,1:10]

scenario 2

10, 50, and 90 percentile test error between p=1 and 10

u2.p[1,1:10]

u2.p[2,1:10]

u2.p[3,1:10]

scenario 3

10, 50, and 90 percentile test error between p=1 and 10

v2.p[1,1:10]

v2.p[2,1:10]

v2.p[3,1:10]

scenario 4

10, 50, and 90 percentile test error between p=1 and 10

w2.p[1,1:10]

w2.p[2,1:10]

w2.p[3,1:10]

test error for every 10th predictor between 2 and 5000

t2 = do.call(rbind,gbm_a1$u2)

u2 = do.call(rbind,gbm_a2$u2)

v2 = do.call(rbind,gbm_a3$u2)

73

w2 = do.call(rbind,gbm_a4$u2)

t2.p_gbm = apply(t2,2,quantile,probs=c(.1,.5,.9))

u2.p_gbm = apply(u2,2,quantile,probs=c(.1,.5,.9))

v2.p_gbm = apply(v2,2,quantile,probs=c(.1,.5,.9))

w2.p_gbm = apply(w2,2,quantile,probs=c(.1,.5,.9))

scenario 1

10, 50, and 90 percentile test error at p=5000

t2.p_gbm[1,501]

t2.p_gbm[2,501]

t2.p_gbm[3,501]

scenario 2

10, 50, and 90 percentile test error at p=5000

u2.p_gbm[1,501]

u2.p_gbm[2,501]

u2.p_gbm[3,501]

scenario 3

10, 50, and 90 percentile test error at p=5000

v2.p_gbm[1,501]

v2.p_gbm[2,501]

v2.p_gbm[3,501]

scenario 4

10, 50, and 90 percentile test error at p=5000

w2.p_gbm[1,501]

w2.p_gbm[2,501]

w2.p_gbm[3,501]

###

Graphs

graph results from PCA

make groups

g = c(rep(1,100),rep(2,100))

Scenario1

pdf("graphs/pca_a1.pdf")

par(mfrow=c(2,3))

74

plot(pc_a1_p2$x[,1],pc_a1_p2$x[,2],

xlab=’x’,ylab=’y’,

col=g,pch=16,xlim=c(-3,3),ylim=c(-3,3))

mtext("(A) p=2", at=-25,l=1)

plot(pc_a1_p10$x[,1],pc_a1_p10$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(B) p=10", at=-25,l=1)

plot(pc_a1_p100$x[,1],pc_a1_p100$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(C) p=100", at=-25,l=1)

plot(pc_a1_p200$x[,1],pc_a1_p200$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(D) p=200",at=-25,l=1)

plot(pc_a1_p1000$x[,1],pc_a1_p1000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(E) p=1000",at=-25,l=1)

plot(pc_a1_p5000$x[,1],pc_a1_p5000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(F) p=5000",at=-25,l=1)

dev.off()

Scenario 2

pdf("graphs/pca_a2.pdf")

par(mfrow=c(2,3))

plot(pc_a2_p2$x[,1],pc_a2_p2$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(A) p=2", at=-25,l=1)

plot(pc_a2_p10$x[,1],pc_a2_p10$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(B) p=10", at=-25,l=1)

plot(pc_a2_p100$x[,1],pc_a2_p100$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

plot(pc_a2_p200$x[,1],pc_a2_p200$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

75

mtext("(D) p=200",at=-25,l=1)

plot(pc_a2_p1000$x[,1],pc_a2_p1000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(E) p=1000",at=-25,l=1)

plot(pc_a2_p5000$x[,1],pc_a2_p5000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(F) p=5000",at=-25,l=1)

dev.off()

Scenario 3

pdf("graphs/pca_a3.pdf")

par(mfrow=c(2,3))

plot(pc_a3_p2$x[,1],pc_a3_p2$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(A) p=2", at=-25,l=1)

plot(pc_a3_p10$x[,1],pc_a3_p10$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(B) p=10", at=-25,l=1)

plot(pc_a3_p100$x[,1],pc_a3_p100$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(C) p=100",at=-25,l=1)

plot(pc_a3_p200$x[,1],pc_a3_p200$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(D) p=200",at=-25,l=1)

plot(pc_a3_p1000$x[,1],pc_a3_p1000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(E) p=1000",at=-25,l=1)

plot(pc_a3_p5000$x[,1],pc_a3_p5000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(F) p=5000",at=-25,l=1)

dev.off()

Scenario 4

pdf("graphs/pca_a4.pdf")

par(mfrow=c(2,3))

76

plot(pc_a4_p2$x[,1],pc_a4_p2$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(A) p=2", at=-25,l=1)

plot(pc_a4_p10$x[,1],pc_a4_p10$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(B) p=10", at=-25,l=1)

plot(pc_a4_p100$x[,1],pc_a4_p100$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(C) p=100",at=-25,l=1)

plot(pc_a4_p200$x[,1],pc_a4_p200$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(D) p=200",at=-25,l=1)

plot(pc_a4_p1000$x[,1],pc_a4_p1000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(E) p=1000",at=-25,l=1)

plot(pc_a4_p5000$x[,1],pc_a4_p5000$x[,2],

xlab=’1st Principal Component’,ylab=’2nd Principal Component’,

col=g,pch=16,xlim=c(-18,18),ylim=c(-18,18))

mtext("(F) p=5000",at=-25,l=1)

dev.off()

graph results from RF

Scenario 1

pdf("graphs/RF_a4.pdf")

plot(a,t2.p_rf[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="chocolate3",

cex.lab=1.3)

points(a,t2.p_rf[1,],type=’l’,lwd=1,col="darkgoldenrod1")

points(a,t2.p_rf[3,],type=’l’,lwd=1,col="darkgoldenrod1")

dev.off()

Scenario 2

pdf("graphs/RF_a2.pdf")

plot(a,u2.p_rf[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="chocolate3",

cex.lab=1.3)

77

points(a,u2.p_rf[1,],type=’l’,lwd=1,col="darkgoldenrod1")

points(a,u2.p_rf[3,],type=’l’,lwd=1,col="darkgoldenrod1")

dev.off()

Scenario 3

pdf("graphs/RF_a3.pdf")

plot(a,v2.p_rf[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="chocolate3",

cex.lab=1.3)

points(a,v2.p_rf[1,],type=’l’,lwd=1,col="darkgoldenrod1")

points(a,v2.p_rf[3,],type=’l’,lwd=1,col="darkgoldenrod1")

dev.off()

Scenario 4

pdf("graphs/RF_a4.pdf")

plot(a,w2.p_rf[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="chocolate3",

cex.lab=1.3)

points(a,w2.p_rf[1,],type=’l’,lwd=1,col="darkgoldenrod1")

points(a,w2.p_rf[3,],type=’l’,lwd=1,col="darkgoldenrod1")

dev.off()

graph results from SVM

Scenario 1

pdf("graphs/SVM_a1.pdf")

plot(a,t2.p_svm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="yellow4",

cex.lab=1.3)

points(a,t2.p_svm[1,],type=’l’,lwd=1,col="yellow3")

points(a,t2.p_svm[3,],type=’l’,lwd=1,col="yellow3")

dev.off()

Scenario 2

pdf("graphs/SVM_a2.pdf")

plot(a,u2.p_svm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="yellow4",

cex.lab=1.3)

points(a,u2.p_svm[1,],type=’l’,lwd=1,col="yellow3")

points(a,u2.p_svm[3,],type=’l’,lwd=1,col="yellow3")

dev.off()

78

Scenario 3

pdf("graphs/SVM_a3.pdf")

plot(a,v2.p_svm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="yellow4",

cex.lab=1.3)

points(a,v2.p_svm[1,],type=’l’,lwd=1,col="yellow3")

points(a,v2.p_svm[3,],type=’l’,lwd=1,col="yellow3")

dev.off()

Scenario 4

pdf("graphs/SVM_a4.pdf")

plot(a,w2.p_svm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="yellow4",

cex.lab=1.3)

points(a,w2.p_svm[1,],type=’l’,lwd=1,col="yellow3")

points(a,w2.p_svm[3,],type=’l’,lwd=1,col="yellow3")

dev.off()

graph results from boosted trees

Scenario 1

pdf("graphs/GBM_a1.pdf")

plot(a,t2.p_gbm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="limegreen",

cex.lab=1.3)

points(a,t2.p_gbm[1,],type=’l’,lwd=1,col="lightgreen")

points(a,t2.p_gbm[3,],type=’l’,lwd=1,col="lightgreen")

dev.off()

Scenario 2

pdf("graphs/GBM_a2.pdf")

plot(a,u2.p_gbm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="limegreen",

cex.lab=1.3)

points(a,u2.p_gbm[1,],type=’l’,lwd=1,col="lightgreen")

points(a,u2.p_gbm[3,],type=’l’,lwd=1,col="lightgreen")

dev.off()

Scenario 3

pdf("graphs/GBM_a3.pdf")

plot(a,v2.p_gbm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="limegreen",

79

cex.lab=1.3)

points(a,v2.p_gbm[1,],type=’l’,lwd=1,col="lightgreen")

points(a,v2.p_gbm[3,],type=’l’,lwd=1,col="lightgreen")

dev.off()

Scenario 4

pdf("graphs/GBM_a4.pdf")

plot(a,w2.p_gbm[2,],type=’l’, lwd=3, ylim=c(0,.5),

ylab=’Test error’,xlab=’Predictors’,col="limegreen"

,cex.lab=1.3)

points(a,w2.p_gbm[1,],type=’l’,lwd=1,col="lightgreen")

points(a,w2.p_gbm[3,],type=’l’,lwd=1,col="lightgreen")

dev.off()

compare SVM scenarios 3 & 4

pdf("graphs/SVM_a3a4.pdf")

plot(a,v2.p[2,],type=’l’, lwd=3, ylim=c(0,.5),xlim=c(0,5000),

ylab=’Test error’,xlab=’Predictors’,col="navy",cex.lab=1.3)

points(a,w2.p[2,],type=’l’,lwd=3,col="limegreen")

dev.off()

difference between training and test error

for RF, SVM, and BCT for scenario 4

reset <- function() {

par(mfrow=c(1, 1), oma=rep(0, 4), mar=rep(0, 4), new=TRUE)

plot(0:1, 0:1, type="n", xlab="", ylab="", axes=FALSE)

}

t.train4 = do.call(rbind,rf_a4$s1)

t.test4 = do.call(rbind,rf_a4$s2)

rf.train4 = apply(t.train4,2,median)

rf.test4 = apply(t.test4,2,median)

rf.diff4 = rf.train4-rf.test4

u.train4 = do.call(rbind,svm_a4$t1)

u.test4 = do.call(rbind,svm_a4$t2)

svm.train4 = apply(u.train4,2,median)

svm.test4 = apply(u.test4,2,median)

svm.diff4 = svm.train4-svm.test4

80

v.train4 = do.call(rbind,gbm_a4$u1)

v.test4 = do.call(rbind,gbm_a4$u2)

gbm.train4 = apply(v.train4,2,median)

gbm.test4 = apply(v.test4,2,median)

gbm.diff4 = gbm.train4-gbm.test4

pdf("graphs/Diff_S4.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(a,rf.diff4,type="l",lwd=3, ylim=c(-.4,.4),

ylab=’Training - test error’,xlab=’Predictors’,

col="chocolate3",cex.lab=1.3,)

lines(a,svm.diff4,type="l",lwd=3,col="yellow4")

lines(a,gbm.diff4,type="l",lwd=3,col="limegreen")

reset()

legend(x = "bottom",inset = 0,

legend = c("RF","SVM","BCT"),

col=c("chocolate3","yellow4","limegreen"),

lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

###

81

A.1.2 Code for Chapter 3

###

generate data for simulations

vary N where value of nonsparse elements = 1

number of simulations

iters = 30

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

vary N (mu=1,mu2=0,sd1=1,sd2=1,nonsparse=10)

n=500

train_n500_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=250,ss2=250,nonsparse=10,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_n500_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=250,ss2=250,nonsparse=10,mu1=0,mu2=1,

sd1=1,sd2=1)

}

n=1000

train_n1000_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=500,ss2=500,nonsparse=10,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_n1000_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=500,ss2=500,nonsparse=10,mu1=0,mu2=1,

sd1=1,sd2=1)

}

n=5000

train_n5000_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=2500,ss2=2500,nonsparse=10,mu1=0,mu2=1,

sd1=1,sd2=1)

}

82

test_n5000_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=2500,ss2=2500,nonsparse=10,mu1=0,mu2=1,

sd1=1,sd2=1)

}

stopCluster(cl)

registerDoSEQ()

vary N where value of nonsparse elements = 1/sqrt(m)

number of simulations

iters = 30

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

vary N (mu=1,mu2=0,sd1=1,sd2=1,nonsparse=10)

n=200

train_n200_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

test_n200_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

n=500

train_n500_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=250,ss2=250,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

test_n500_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=250,ss2=250,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

n=1000

train_n1000_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=500,ss2=500,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

83

test_n1000_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=500,ss2=500,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

n=5000

train_n5000_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=2500,ss2=2500,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

test_n5000_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=2500,ss2=2500,nonsparse=10,

mu1=0,mu2=1/sqrt(10),sd1=1,sd2=1)

}

stopCluster(cl)

registerDoSEQ()

vary m where value of nonsparse elements = 1

number of simulations

iters = 30

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

vary m (mu=1,sd1=1,sd2=1,n1=100,n2=100)

nonsparse elements=5

train_s5_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=5,mu1=0,mu2=1

,sd1=1,sd2=1)

}

test_s5_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=5,mu1=0,mu2=1,

sd1=1,sd2=1)

}

nonsparse elements=20

train_s20_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=20,mu1=0,mu2=1,

84

sd1=1,sd2=1)

}

test_s20_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=20,mu1=0,mu2=1,

sd1=1,sd2=1)

}

nonsparse elements=30

train_s30_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=30,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_s30_b1 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=30,mu1=0,mu2=1,

sd1=1,sd2=1)

}

stopCluster(cl)

registerDoSEQ()

vary m where value of nonsparse elements = 1/sqrt(m)

number of simulations

iters = 30

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

vary m (mu=1,sd1=1,sd2=1,n1=100,n2=100)

nonsparse elements=5

train_s5_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=5,mu1=0,

mu2=1/sqrt(5),sd1=1,sd2=1)

}

test_s5_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=5,mu1=0,

mu2=1/sqrt(5),sd1=1,sd2=1)

}

nonsparse elements=10

85

train_s10_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=5,mu1=0,

mu2=1/sqrt(10),sd1=1,sd2=1)

}

test_s10_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=5,mu1=0,

mu2=1/sqrt(10),sd1=1,sd2=1)

}

nonsparse elements=20

train_s20_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=20,mu1=0,

mu2=1/sqrt(20),sd1=1,sd2=1)

}

test_s20_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=20,mu1=0,

mu2=1/sqrt(20),sd1=1,sd2=1)

}

nonsparse elements=30

train_s30_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=30,mu1=0,

mu2=1/sqrt(30),sd1=1,sd2=1)

}

test_s30_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=30,mu1=0,

mu2=1/sqrt(30),sd1=1,sd2=1)

}

stopCluster(cl)

registerDoSEQ()

vary m : pmax where value of nonsparse elements = 1

number of simulations

iters = 30

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

86

vary m and p (mu=1,mu2=0,sd1=1,sd2=1,n=200)

p=15000, s=30

train_p15000s30_b1 = foreach(i=1:iters) %dorng% {

draw3(d=15000,ss1=100,ss2=100,nonsparse=30,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_p15000s30_b1 = foreach(i=1:iters) %dorng% {

draw3(d=15000,ss1=100,ss2=100,nonsparse=30,mu1=0,mu2=1,

sd1=1,sd2=1)

}

p=25000, s=50

train_p25000s50_b1 = foreach(i=1:iters) %dorng% {

draw3(d=25000,ss1=100,ss2=100,nonsparse=50,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_p25000s50_b1 = foreach(i=1:iters) %dorng% {

draw3(d=25000,ss1=100,ss2=100,nonsparse=50,mu1=0,mu2=1,

sd1=1,sd2=1)

}

p=35000, s=70

train_p35000s70_b1 = foreach(i=1:iters) %dorng% {

draw3(d=35000,ss1=100,ss2=100,nonsparse=70,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_p35000s70_b1 = foreach(i=1:iters) %dorng% {

draw3(d=35000,ss1=100,ss2=100,nonsparse=70,mu1=0,mu2=1,

sd1=1,sd2=1)

}

p=45000, s=90

train_p45000s90_b1 = foreach(i=1:iters) %dorng% {

draw3(d=45000,ss1=100,ss2=100,nonsparse=90,mu1=0,mu2=1,

sd1=1,sd2=1)

}

test_p45000s90_b1 = foreach(i=1:iters) %dorng% {

draw3(d=45000,ss1=100,ss2=100,nonsparse=90,mu1=0,mu2=1,

sd1=1,sd2=1)

}

87

stopCluster(cl)

registerDoSEQ()

vary m : pmax where value of nonsparse elements = 1/sqrt(m)

number of simulations

iters = 30

setup parallel backend to use 8 processors

cl <- makeCluster(8)

registerDoParallel(cl)

set.seed(1011)

vary m and P (mu=1,mu2=0,sd1=1,sd2=1,n=200)

p=5000, s=10

train_p5000s10_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=20,mu1=0,

mu2=1/sqrt(10),sd1=1,sd2=1)

}

test_p5000s10_b2 = foreach(i=1:iters) %dorng% {

draw3(d=5000,ss1=100,ss2=100,nonsparse=20,mu1=0,

mu2=1/sqrt(10),sd1=1,sd2=1)

}

p=15000, s=30

train_p15000s30_b2 = foreach(i=1:iters) %dorng% {

draw3(d=15000,ss1=100,ss2=100,nonsparse=30,mu1=0,

mu2=1/sqrt(30),sd1=1,sd2=1)

}

test_p15000s30_b2 = foreach(i=1:iters) %dorng% {

draw3(d=15000,ss1=100,ss2=100,nonsparse=30,mu1=0,

mu2=1/sqrt(30),sd1=1,sd2=1)

}

p=25000, s=50

train_p25000s50_b2 = foreach(i=1:iters) %dorng% {

draw3(d=25000,ss1=100,ss2=100,nonsparse=50,mu1=0,

mu2=1/sqrt(50),sd1=1,sd2=1)

}

88

test_p25000s50_b2 = foreach(i=1:iters) %dorng% {

draw3(d=25000,ss1=100,ss2=100,nonsparse=50,mu1=0,

mu2=1/sqrt(50),sd1=1,sd2=1)

}

p=35000, s=70

train_p35000s70_b2 = foreach(i=1:iters) %dorng% {

draw3(d=35000,ss1=100,ss2=100,nonsparse=70,mu1=0,

mu2=1/sqrt(70),sd1=1,sd2=1)

}

test_p35000s70_b2 = foreach(i=1:iters) %dorng% {

draw3(d=35000,ss1=100,ss2=100,nonsparse=70,mu1=0,

mu2=1/sqrt(70),sd1=1,sd2=1)

}

p=45000, s=90

train_p45000s90_b2 = foreach(i=1:iters) %dorng% {

draw3(d=45000,ss1=100,ss2=100,nonsparse=90,mu1=0,

mu2=1/sqrt(90),sd1=1,sd2=1)

}

test_p45000s90_b2 = foreach(i=1:iters) %dorng% {

draw3(d=45000,ss1=100,ss2=100,nonsparse=90,mu1=0,

mu2=1/sqrt(90),sd1=1,sd2=1)

}

stopCluster(cl)

registerDoSEQ()

###

simulations to vary sample size

vary N where value of nonsparse elements = 1

every 100th predictor between 2 and 5000

a1 = seq(0,100,1)

a2 = seq(0,5000,100)

a = c(a1[3:101],a2[3:51])

g = c(rep(1,250),rep(2,250))

a1_n500_b1 = run.rft(train=train_n500_b1,test=test_n500_b1,

n=30,d=max(a))

89

g = c(rep(1,500),rep(2,500))

a1_n1000_b1 = run.rft(train=train_n1000_b1,test=test_n1000_b1,

n=30,d=max(a))

g = c(rep(1,2500),rep(2,2500))

a1_n5000_b1 = run.rft(train=train_n5000_b1,test=test_n5000_b1,

n=30,d=max(a))

vary N where value of nonsparse elements = 1/sqrt(m)

every 100th predictor between 2 and 5000

a1 = seq(0,100,1)

a2 = seq(0,5000,100)

a = c(a1[3:101],a2[3:51])

g = c(rep(1,100),rep(2,100))

a1_n200_b2 = run.rft(train=train_n200_b2,test=test_n200_b2,

n=30,d=max(a))

g = c(rep(1,250),rep(2,250))

a1_n500_b2 = run.rft(train=train_n500_b2,test=test_n500_b2,

n=30,d=max(a))

g = c(rep(1,500),rep(2,500))

a1_n1000_b2 = run.rft(train=train_n1000_b2,test=test_n1000_b2,

n=30,d=max(a))

g = c(rep(1,2500),rep(2,2500))

a1_n5000_b2 = run.rft(train=train_n5000_b2,test=test_n5000_b2,

n=30,d=max(a))

simulations to vary signal strength

every 100th predictor between 2 and 5000

a1 = seq(0,100,1)

a2 = seq(0,5000,100)

a = c(a1[3:101],a2[3:51])

g = c(rep(0,100),rep(1,100))

90

vary m where value of nonsparse elements = 1

a1_s5_b1 = run.rft(train=train_s5_b1,test=test_s5_b1

,n=30,d=max(a))

a1_s20_b1 = run.rft(train=train_s20_b1,test=test_s20_b1,

n=30,d=max(a))

a1_s30_b1 = run.rft(train=train_s30_b1,test=test_s30_b1,

n=30,d=max(a))

vary m where value of nonsparse elements = 1/sqrt(m)

a1_s5_b2 = run.rft(train=train_s5_b2,test=test_s5_b2,

n=30,d=max(a))

a1_s10_b2 = run.rft(train=train_s10_b2,test=test_s10_b2,

n=30,d=max(a))

a1_s20_b2 = run.rft(train=train_s20_b2,test=test_s20_b2,

n=30,d=max(a))

a1_s30_b2 = run.rft(train=train_s30_b2,test=test_s30_b2,

n=30,d=max(a))

simulations to vary m : pmax where value of

nonsparse elements = 1

g = c(rep(0,100),rep(1,100))

m : pmax = 30 : 15000 for every 100th predictor, p = 2 -15000

a1 = seq(0,100,1)

a2 = seq(0,15000,100)

a = c(a1[3:101],a2[3:151])

a1_p15000s30_b1 = run.rft(train=train_p15000s30_b1,

test=test_p15000s30_b1 n=30,d=max(a))

m : pmax = 50 : 25000 for every 100th predictor, p = 2 - 25000

a1 = seq(0,100,1)

a2 = seq(0,25000,100)

a = c(a1[3:101],a2[3:251])

a1_p25000s50_b1 = run.rft(train=train_p25000s50_b1,

test=test_p25000s50_b1,n=30,d=max(a))

m : pmax = 70 : 35000 for every 100th predictor, p = 2 - 35000

a1 = seq(0,100,1)

a2 = seq(0,35000,100)

a = c(a1[3:101],a2[3:351])

91

a1_p35000s70_b1 = run.rft(train=train_p35000s70_b1,

test=test_p35000s70_b1,n=30,d=max(a))

m : pmax = 90 : 45000 for every 100th predictor p = 2 - 45000

a1 = seq(0,100,1)

a2 = seq(0,45000,100)

a = c(a1[3:101],a2[3:451])

a1_p45000s90_b1 = run.rft(train=train_p45000s90_b1,

test=test_p45000s90_b1,n=30,d=max(a))

simulations to vary m : pmax where value of

nonsparse elements = 1/sqrt(m)

g = c(rep(0,100),rep(1,100))

m : pmax = 10 : 5000 for every 100th predictor, p = 2 - 5000

a1 = seq(0,100,1)

a2 = seq(0,5000,100)

a = c(a1[3:101],a2[3:151])

a1_p5000s10_b1 = run.rft(train=train_p5000s10_b2,

test=test_p5000s10_b2 n=30,d=max(a))

m : pmax = 30 : 15000 for every 100th predictor, p = 2 - 25000

a1 = seq(0,100,1)

a2 = seq(0,15000,100)

a = c(a1[3:101],a2[3:151])

a1_p15000s30_b2 = run.rft(train=train_p15000s30_b2,

test=test_p15000s30_b2 n=30,d=max(a))

m : pmax = 50 : 25000 for every 100th predictor, p = 2 - 25000

a1 = seq(0,100,1)

a2 = seq(0,25000,100)

a = c(a1[3:101],a2[3:251])

a1_p25000s50_b2 = run.rft(train=train_p25000s50_b2,

test=test_p25000s50_b2,n=30,d=max(a))

m : pmax = 70 : 35000 for every 100th predictor, p = 2 - 35000

a1 = seq(0,100,1)

a2 = seq(0,35000,100)

a = c(a1[3:101],a2[3:351])

a1_p35000s70_b2 = run.rft(train=train_p35000s70_b2,

test=test_p35000s70_b2,n=30,d=max(a))

92

m : pmax = 90 : 45000 for every 100th predictor, p = 2 - 45000

a1 = seq(0,100,1)

a2 = seq(0,45000,100)

a = c(a1[3:101],a2[3:451])

a1_p45000s90_b2 = run.rft(train=train_p45000s90_b2,

test=test_p45000s90_b2,n=30,d=max(a))

###

Results

make baseline for value of nonsparse elements = 1

b1_train1 = do.call(rbind,rf_a4_detail$s1)

b1_test1= do.call(rbind,rf_a4_detail$s2)

b1 = seq(0,5000,10)

rf_a4_foo.test = list()

rf_a4_use.test = list()

for(j in 1:100){

rf_a4_foo.test[[j]] = rf_a4$s2[[j]][12:501]

i = 1

rf_a4_use.test[[j]] = rf_a4_foo.test[[j]][1:(i+9)==(i+9)]

}

b1_test2 = do.call(rbind,rf_a4_use.test)

tq.test2a = apply(b1_test1,2,median)

tq.test2b = apply(b1_test2,2,median)

base.test.50= c(tq.test2a,tq.test2b)

nq.test1.p1 = apply(t.test2a,2,quantile,probs=c(.1,.9))

nq.test1.p2 = apply(t.test2b,2,quantile,probs=c(.1,.9))

base.test.10 = c(nq.test1.p1[1,],nq.test1.p2[1,])

base.test.90 = c(nq.test1.p1[2,],nq.test1.p2[2,])

Vary N

a1 = seq(0,100,1)

a2 = seq(0,5000,100)

a = c(a1[3:101],a2[3:51])

93

nonsparse elements = 1

s.test2 = do.call(rbind,a1_n500_b1$s2)

s.test3 = do.call(rbind,a1_n1000_b1$s2)

s.test4 = do.call(rbind,a1_n5000_b1$s2)

n500_b1.p = apply(s.test2,2, quantile,probs=c(.1,.5,.9))

n1000_b1.p = apply(s.test3,2, quantile,probs=c(.1,.5,.9))

n5000_b1.p = apply(s.test4,2, quantile,probs=c(.1,.5,.9))

base.test.50[1:9]

base.test.10[1:9]

base.test.90[1:9]

base.test.50[148]

base.test.10[148]

base.test.90[148]

n500_b1.p[2,1:9]

n500_b1.p[1,1:9]

n500_b1.p[3,1:9]

n500_b1.p[2,148]

n500_b1.p[1,148]

n500_b1.p[3,148]

n1000_b1.p[2,1:9]

n1000_b1.p[1,1:9]

n1000_b1.p[3,1:9]

n1000_b1.p[2,148]

n1000_b1.p[1,148]

n1000_b1.p[3,148]

n5000_b1.p[2,1:9]

n5000_b1.p[1,1:9]

n5000_b1.p[3,1:9]

n5000_b1.p[2,148]

n5000_b1.p[1,148]

n5000_b1.p[3,148]

nonsparse elements = 1/sqrt(m)

t.test1 = do.call(rbind,a1_n200_b2$s2)

t.test2 = do.call(rbind,a1_n500_b2$s2)

t.test3 = do.call(rbind,a1_n1000_b2$s2)

t.test4 = do.call(rbind,a1_n5000_b2$s2)

94

n100_b2.p = apply(t.test1,2, quantile,probs=c(.1,.5,.9))

n500_b2.p = apply(t.test2,2, quantile,probs=c(.1,.5,.9))

n1000_b2.p = apply(t.test3,2, quantile,probs=c(.1,.5,.9))

n5000_b2.p = apply(t.test4,2, quantile,probs=c(.1,.5,.9))

n200_b2.p[2,1:9]

n200_b2.p[1,1:9]

n200_b2.p[3,1:9]

n200_b2.p[2,148]

n200_b2.p[1,148]

n200_b2.p[3,148]

n500_b2.p[2,1:9]

n500_b2.p[1,1:9]

n500_b2.p[3,1:9]

n500_b2.p[2,148]

n500_b2.p[1,148]

n500_b2.p[3,148]

n1000_b2.p[2,1:9]

n1000_b2.p[1,1:9]

n1000_b2.p[3,1:9]

n1000_b2.p[2,148]

n1000_b2.p[1,148]

n1000_b2.p[3,148]

n5000_b2.p[2,1:9]

n5000_b2.p[1,1:9]

n5000_b2.p[3,1:9]

n5000_b2.p[2,148]

n5000_b2.p[1,148]

n5000_b2.p[3,148]

Vary m

nonsparse elements = 1

u.test1 = do.call(rbind,a1_s5_b1$s2)

u.test3 = do.call(rbind,a1_s20_b1$s2)

u.test4 = do.call(rbind,a1_s30_b1$s2)

95

s5_b1.p = apply(u.test1,2,quantile,probs=c(.1,.5,.9))

s20_b1.p = apply(u.test3,2, quantile,probs=c(.1,.5,.9))

s30_b1.p = apply(u.test4,2, quantile,probs=c(.1,.5,.9))

s5_b1.p[1,1:9]

s5_b1.p[3,1:9]

s5_b1.p[2,148]

s5_b1.p[1,148]

s5_b1.p[3,148]

base.test.50[1:9]

base.test.10[1:9]

base.test.90[1:9]

base.test.50[148]

base.test.10[148]

base.test.90[148]

s20_b1.p[1,1:9]

s20_b1.p[3,1:9]

s20_b1.p[2,148]

s20_b1.p[1,148]

s20_b1.p[3,148]

s30_b1.p[1,1:9]

s30_b1.p[3,1:9]

s30_b1.p[2,148]

s30_b1.p[1,148]

s30_b1.p[3,148]

nonsparse elements = 1/sqrt(m)

v.test1 = do.call(rbind,a1_s5_b2$s2)

v.test2 = do.call(rbind,a1_s10_b2$s2)

v.test3 = do.call(rbind,a1_s20_b2$s2)

v.test4 = do.call(rbind,a1_s30_b2$s2)

s5_b2.p = apply(v.test1,2,quantile,probs=c(.1,.5,.9))

s10_b2.p = apply(v.test3,2, quantile,probs=c(.1,.5,.9))

s20_b2.p = apply(v.test3,2, quantile,probs=c(.1,.5,.9))

s30_b2.p = apply(v.test4,2, quantile,probs=c(.1,.5,.9))

s5_b2.p[1,1:9]

s5_b2.p[3,1:9]

96

s5_b2.p[2,148]

s5_b2.p[1,148]

s5_b2.p[3,148]

s10_b2.p[1,1:9]

s10_b2.p[3,1:9]

s10_b2.p[2,148]

s10_b2.p[1,148]

s10_b2.p[3,148]

s20_b2.p[1,1:9]

s20_b2.p[3,1:9]

s20_b2.p[2,148]

s20_b2.p[1,148]

s20_b2.p[3,148]

s30_b2.p[1,1:9]

s30_b2.p[3,1:9]

s30_b2.p[2,148]

s30_b2.p[1,148]

s30_b2.p[3,148]

Vary m : pmax

nonsparse elements = 1

w.test2 = do.call(rbind,a1_p15000s30_b1$s2)

w.test3 = do.call(rbind,a1_p25000s50_b1$s2)

w.test4 = do.call(rbind, a1_p35000s70_b1$s2)

w.test5 = do.call(rbind, a1_p45000s90_b1$s2)

s30p15000_b1.p = apply(w.test2,2, quantile,probs=c(.1,.5,.9))

s50p25000_b1.p = apply(w.test3,2, quantile,probs=c(.1,.5,.9))

s70p35000_b1.p = apply(w.test4,2, quantile,probs=c(.1,.5,.9))

s90p45000_b1.p = apply(w.test5,2,quantile,probs=c(.1,.5,.9))

base.test.50[1:9]

base.test.10[1:9]

base.test.90[1:9]

base.test.50[148]

base.test.10[148]

base.test.90[148]

97

s30p15000_b1.p [2,1:9]

s30p15000_b1.p [1,1:9]

s30p15000_b1.p [3,1:9]

s30p15000_b1.p [2,248]

s30p15000_b1.p [1,248]

s30p15000_b1.p [3,248]

s50p25000_b1.p [2,1:9]

s50p25000_b1.p [1,1:9]

s50p25000_b1.p [3,1:9]

s50p25000_b1.p [2,248]

s50p25000_b1.p [1,248]

s50p25000_b1.p [3,248]

s70p35000_b1.p [2,1:9]

s70p35000_b1.p [1,1:9]

s70p35000_b1.p [3,1:9]

s70p35000_b1.p [2,248]

s70p35000_b1.p [1,248]

s70p35000_b1.p [3,248]

s90p45000_b1.p [2,1:9]

s90p45000_b1.p [1,1:9]

s90p45000_b1.p [3,1:9]

s90p45000_b1.p [2,248]

s90p45000_b1.p [1,248]

s90p45000_b1.p [3,248]

nonsparse elements = 1/sqrt(m)

x.test1 = do.call(rbind,a1_p15000s30_b2$s2)

x.test2 = do.call(rbind,a1_p15000s30_b2$s2)

x.test3 = do.call(rbind,a1_p25000s50_b2$s2)

x.test4 = do.call(rbind, a1_p35000s70_b2$s2)

x.test5 = do.call(rbind, a1_p45000s90_b2$s2)

s10p5000_b2.p = apply(x.test1,2, quantile,probs=c(.1,.5,.9))

s30p15000_b2.p = apply(x.test2,2, quantile,probs=c(.1,.5,.9))

s50p25000_b2.p = apply(x.test3,2, quantile,probs=c(.1,.5,.9))

s70p35000_b2.p = apply(x.test4,2, quantile,probs=c(.1,.5,.9))

s90p45000_b2.p = apply(x.test5,2,quantile,probs=c(.1,.5,.9))

98

s10p5000_b2.p [2,1:9]

s10p5000_b2.p [1,1:9]

s10p5000_b2.p [3,1:9]

s10p5000_b2.p [2,248]

s10p5000_b2.p [1,248]

s10p5000_b2.p [3,248]

s30p15000_b2.p [2,1:9]

s30p15000_b2.p [1,1:9]

s30p15000_b2.p [3,1:9]

s30p15000_b2.p [2,248]

s30p15000_b2.p [1,248]

s30p15000_b2.p [3,248]

s50p25000_b2.p [2,1:9]

s50p25000_b2.p [1,1:9]

s50p25000_b2.p [3,1:9]

s50p25000_b2.p [2,248]

s50p25000_b2.p [1,248]

s50p25000_b2.p [3,248]

s70p35000_b2.p [2,1:9]

s70p35000_b2.p [1,1:9]

s70p35000_b2.p [3,1:9]

s70p35000_b2.p [2,248]

s70p35000_b2.p [1,248]

s70p35000_b2.p [3,248]

s90p45000_b2.p [2,1:9]

s90p45000_b2.p [1,1:9]

s90p45000_b2.p [3,1:9]

s90p45000_b2.p [2,248]

s90p45000_b2.p [1,248]

s90p45000_b2.p [3,248]

###

99

Graphs

function to make space for legend

reset <- function() {

par(mfrow=c(1, 1), oma=rep(0, 4), mar=rep(0, 4), new=TRUE)

plot(0:1, 0:1, type="n", xlab="", ylab="", axes=FALSE)

}

Vary N

nonsparse elements = 1

col2 = c("darkgoldenrod1","#005800","#CFBFB6","#723900")

pdf("RF_VaryN_b1.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(a,base.test.50,type=’l’, lwd=3, ylim=c(0,.6),

ylab=’Test error’,xlab=’Predictors’,col=col2[1],cex.lab=1.3)

lines(a,n500_b1.p[2,],type=’l’, lwd=3, col=col2[2])

lines(a,n1000_b1.p[2,],type=’l’, lwd=3, col=col2[3])

lines(a,n5000_b1.p[2,],type=’l’, lwd=3, col=col2[4])

reset()

legend(x = "bottom",inset = 0,

legend = c("n=200","n=500","n=1000","n=5000"),

col=c(col2[1],col2[2],col2[3],col2[4]),

lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

nonsparse elements = 1/sqrt(m)

col2a = c("lightgoldenrod2","#005800","#CFBFB6","#723900")

pdf("RF_VaryN_b2.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(a,n200_b2.p[2,],type=’l’, lwd=3, ylim=c(0,.6),

ylab=’Test error’,xlab=’Predictors’,col=col2a[1],cex.lab=1.3)

lines(a,n500_b2.p[2,],type=’l’, lwd=3, col=col2a[2])

lines(a,n1000_b2.p[2,],type=’l’, lwd=3, col=col2a[3])

lines(a,n5000_b2.p[2,],type=’l’, lwd=3, col=col2a[4])

reset()

legend(x = "bottom",inset = 0,

legend = c("n=200","n=500","n=1000","n=5000"),

col=c(col2a[1], col2a[2], col2a[3], col2a[4]),

lwd=3, horiz = TRUE)

100

par(oma=rep(0, 4))

dev.off()

Vary m

nonsparse elements = 1

col1=c("#155DB5","darkgoldenrod1","#D9C1CF","#AB1E84")

pdf("RF_VaryM_b1.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(a,s5_b1.p[2,],type=’l’, lwd=3, ylim=c(0,.6),

ylab=’Test error’,xlab=’Predictors’,col=col1[1],cex.lab=1.3)

lines(a,base.test.50,type=’l’, lwd=3, col=col1[2],cex.lab=1.3)

lines(a,s20_b1.p[2,],type=’l’, lwd=3, col=col1[3],cex.lab=1.3)

lines(a,s30_b1.p[2,],type=’l’, lwd=3, col=col1[4],cex.lab=1.3)

reset()

legend(x = "bottom",inset = 0,

legend = c("m=5","m=10","m=20","m=30"),

col=col1, lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

nonsparse elements = 1/sqrt(m)

col1a=c("#155DB5","lightgoldenrod3","#D9C1CF","#AB1E84")

pdf("RF_VaryM_b2.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(a,ts5_b2.p,type=’l’, lwd=3, ylim=c(0,.6),

ylab=’Test error’,xlab=’Predictors’,col=col1a[1],cex.lab=1.3)

lines(a,s10_b2.p,type=’l’, lwd=3, col=col1a[2],cex.lab=1.3)

lines(a,s20_b2.p,type=’l’, lwd=3, col=col1a[3],cex.lab=1.3)

lines(a,s30_b2.p,type=’l’, lwd=3, col=col1a[4],cex.lab=1.3)

reset()

legend(x = "bottom",inset = 0,

legend = c("m=5","m=10","m=20","m=30"),

col=col1a,

lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

101

Vary m : pmax

sequences

b2a = seq(0,15000,100)

b2 = c(a1[3:101],b2a[3:151])

b3a = seq(0,25000,100)

b3 = c(a1[3:101],b3a[3:251])

b4a = seq(0,35000,100)

b4 = c(a1[3:101],b4a[3:351])

b5a = seq(0,45000,100)

b5 = c(a1[3:101],b5a[3:451])

nonsparse elements = 1

col3 = c("darkgoldenrod1","#A1DAB4","#41B6C4",

"#2C7FB8","#253494")

pdf("RF_VarySP_b1.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(b5,s90p45000_b1.p[2,],type=’l’, lwd=3, ylim=c(0,.6),

ylab=’Test error’,xlab=’Predictors’,col=col3[5],cex.lab=1.3)

lines(b4,s70p35000_b1.p[2,],type=’l’, lwd=3, col=col3[4])

lines(b3,s50p25000_b1.p[2,],type=’l’, lwd=3, col=col3[3])

lines(b2,s30p15000_b1.p[2,],type=’l’, lwd=3, col=col3[2])

lines(a,base.test.50,type=’l’, lwd=3, col=col3[1])

reset()

legend(x = "bottom",inset = 0,

legend = c("10:5000","30:15000","50:25000",

"70:35000","90:45000"),

col=c(col3[1],col3[2],col3[3],col3[4],col3[5]),

lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

nonsparse elements = 1/sqrt(m)

col3a = c("lightgoldenrod2","#A1DAB4","#41B6C4",

"#2C7FB8","#253494")

pdf("RF_VarySP_b2.pdf")

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(b5,s90p45000_b2.p[2,],type=’l’, lwd=3, ylim=c(0,.6),

ylab=’Test error’,xlab=’Predictors’,col=col3a[5],cex.lab=1.3)

102

lines(b4,s70p35000_b2.p[2,],type=’l’, lwd=3, col=col3a[3])

lines(b3,s50p25000_b2.p[2,],type=’l’, lwd=3, col=col3a[3])

lines(b2,s30p15000_b2.p[2,],type=’l’, lwd=3, col=col3a[2])

lines(a,s10p5000_b2.p[2,],type=’l’, lwd=3, col=col3a[1])

reset()

legend(x = "bottom",inset = 0,

legend = c("10:5000","30:15000","50:25000",

"70:35000","90:45000"),

col=c(col3a[1],col3a[2], col3a[3], col3a[4], col3a[5]),

lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

###

103

A.1.3 Code for Chapter 4

###

library(mvtnorm)

functions

sample 2 groups from MVN distribution w/independent predictors

draw3 = function(d,ss1,ss2,sd1=1,sd2=1,nonsparse,mu1,mu2){

n21 = nonsparse

class 2

y1a = matrix(rnorm(n=ss2*n21,mean=mu2,sd=sd2),nrow=ss2,ncol=n21,

byrow=FALSE)

y1b = matrix(rnorm(n=ss2*(d-n21),mean=0,sd=1),nrow=ss2,ncol=d-n21,

byrow=FALSE)

y1 = cbind(y1a,y1b)

class 1

x1a = matrix(rnorm(n=ss1*n21,mean=mu1,sd=sd1),nrow=ss1,ncol=n21,

byrow=FALSE)

x1b = matrix(rnorm(n=ss1*(d-n21),mean=0,sd=1),nrow=ss1,ncol=d-n21,

byrow=FALSE)

x1 = cbind(x1a,x1b)

sdata = rbind(y1,x1)

return(sdata=sdata)

}

sample 2 groups from MVN distribution w/correlated predictors,

variance in groups = 1

draw4 = function(d,ss1,ss2,rho,sd1=1,sd2=1,nonsparse,nz1,nz2){

mu1 = c(rep(nz1,nonsparse),rep(0,d-nonsparse))

mu2 = c(rep(nz2,nonsparse),rep(0,d-nonsparse))

sigma1a = matrix(rho,nrow=nonsparse,ncol= nonsparse,byrow=F)

sigma1b = matrix(0,nrow=nonsparse,ncol=d-nonsparse,byrow=F)

sigma1c = matrix(0,nrow=d-nonsparse,ncol=d,byrow=F)

sigma1 = rbind(cbind(sigma1a,sigma1b),sigma1c)

diag(sigma1) = sd1^2

104

sigma2a = matrix(rho,nrow=nonsparse,ncol= nonsparse,byrow=F)

sigma2b = matrix(0,nrow=nonsparse,ncol=d-nonsparse,byrow=F)

sigma2c = matrix(0,nrow=d-nonsparse,ncol=d,byrow=F)

sigma2 = rbind(cbind(sigma1a,sigma1b),sigma1c)

diag(sigma2) = sd2^2

y1=rmvnorm(ss1,mean=mu1,sigma=sigma1)

x1=rmvnorm(ss2,mean=mu2,sigma=sigma2)

sdata = rbind(y1,x1)

return(sdata=sdata)

}

theoretical TSI

TSI = function(mu1,mu2,sd1,sd2){

f1 = mu1/sd1

f2 = mu2/sd2

f = cumsum((f1-f2)^2)

tsi = sqrt(f)

return(tsi)

}

empirical TSI

TSIe = function(g1,g2){

mu1 = colMeans(g1)

mu2 = colMeans(g2)

sd1 = apply(g1,2,sd)

sd2 = apply(g2,2,sd)

f1 = mu1/sd1

f2 = mu2/sd2

f = cumsum((f1-f2)^2)

tsi = sqrt(f)

return(tsi)

}

###

theoretical TSI computations where sd1=1 and sd2=1

10 nonsparse elements where mu1=1, m1=0

mu1 = c(rep(1,10),rep(0,4990))

105

mu2 = c(rep(0,10),rep(0,4990))

sg1=rep(1,5000)

sg2=rep(1,5000)

t1 = TSI(mu1,mu2,sg1,sg2)

10 nonsparse elements where mu1 = 3, mu2 = -1

mu1 = c(rep(3,10),rep(0,4990))

mu2 = c(rep(-1,10),rep(0,4990))

sg1=rep(1,5000)

sg2=rep(1,5000)

t3m1 = TSI(mu1,mu2,sg1,sg2)

10 scrambled nonsparse elements where mu1=1 and m1=0

mu1 = c(rep(1,10),rep(0,4990))

set.seed(42)

mu1.s = sample(mu1)

mu2 = c(rep(0,10),rep(0,4990))

sg1=rep(1,5000)

sg2=rep(1,5000)

t1s = TSI(mu1.s,mu2,sg1,sg2)

###

empirical simulations

simulations with uncorrelated predictors

sample size = 200

t1e = matrix(NA,ncol=5000,nrow=100)

t3m1e = matrix(NA,ncol=5000,nrow=100)

t1se = matrix(NA,ncol=5000,nrow=100)

t3n10e = matrix(NA,ncol=5000,nrow=100)

t3n6e = matrix(NA,ncol=5000,nrow=100)

t3n2e = matrix(NA,ncol=5000,nrow=100)

for(i in 1:100){

n1 = 100

n2 = 100

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=1,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=-1)

g1=m0[1:n1,]

106

g2=m0[(n1+1):(n1+n2),]

t3m1e[i,] = TSIe(g1,g2)

m0 = rbind(

x = sapply(mu1.s,function(x)rnorm(n1,mean=x,sd=1)),

y = matrix(rnorm(n=n2,mean=0,sd=1),nrow=n2,ncol=5000,byrow=FALSE)

)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1se[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n10e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=6,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n6e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=2,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n2e[i,] = TSIe(g1,g2)

}

s1 = data.frame(t1e.min = apply(t1e,2,min),

t3m1e.min = apply(t3m1e,2,min),

t1se.min = apply(t1se,2,min),

t3n10e.min = apply(t3n10e,2,min),

t3n6e.min = apply(t3n6e,2,min),

t3n2e.min = apply(t3n2e,2,min),

t1e.med = apply(t1e,2,median),

t3m1e.med = apply(t3m1e,2,median),

t1se.med = apply(t1se,2,median),

t3n10e.med = apply(t3n10e,2,median),

t3n6e.med = apply(t3n6e,2,median),

t3n2e.med = apply(t3n2e,2,median),

t1e.max = apply(t1e,2,max),

t3m1e.max = apply(t3m1e,2,max),

t1se.max = apply(t1se,2,max),

t3n10e.max = apply(t3n10e,2,max),

t3n6e.max = apply(t3n6e,2,max),

107

t3n2e.max = apply(t3n2e,2,max))

sample size = 500

t1e = matrix(NA,ncol=5000,nrow=100)

t3m1e = matrix(NA,ncol=5000,nrow=100)

t1se = matrix(NA,ncol=5000,nrow=100)

t3n10e = matrix(NA,ncol=5000,nrow=100)

t3n6e = matrix(NA,ncol=5000,nrow=100)

t3n2e = matrix(NA,ncol=5000,nrow=100)

for(i in 1:100){

n1 = 250

n2 = 250

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=1,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=-1)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3m1e[i,] = TSIe(g1,g2)

m0 = rbind(

x = sapply(mu1.s,function(x)rnorm(n1,mean=x,sd=1)),

y = matrix(rnorm(n=n2,mean=0,sd=1),nrow=n2,ncol=5000,byrow=FALSE)

)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1se[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n10e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=6,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n6e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=2,mu1=3,mu2=0)

g1=m0[1:n1,]

108

g2=m0[(n1+1):(n1+n2),]

t3n2e[i,] = TSIe(g1,g2)

}

s2 = data.frame(t1e.min = apply(t1e,2,min),

t3m1e.min = apply(t3m1e,2,min),

t1se.min = apply(t1se,2,min),

t3n10e.min = apply(t3n10e,2,min),

t3n6e.min = apply(t3n6e,2,min),

t3n2e.min = apply(t3n2e,2,min),

t1e.med = apply(t1e,2,median),

t3m1e.med = apply(t3m1e,2,median),

t1se.med = apply(t1se,2,median),

t3n10e.med = apply(t3n10e,2,median),

t3n6e.med = apply(t3n6e,2,median),

t3n2e.med = apply(t3n2e,2,median),

t1e.max = apply(t1e,2,max),

t3m1e.max = apply(t3m1e,2,max),

t1se.max = apply(t1se,2,max),

t3n10e.max = apply(t3n10e,2,max),

t3n6e.max = apply(t3n6e,2,max),

t3n2e.max = apply(t3n2e,2,max))

sample size = 1000

t1e = matrix(NA,ncol=5000,nrow=100)

t3m1e = matrix(NA,ncol=5000,nrow=100)

t1se = matrix(NA,ncol=5000,nrow=100)

t3n10e = matrix(NA,ncol=5000,nrow=100)

t3n6e = matrix(NA,ncol=5000,nrow=100)

t3n2e = matrix(NA,ncol=5000,nrow=100)

for(i in 1:100){

n1 = 500

n2 = 500

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=1,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=-1)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3m1e[i,] = TSIe(g1,g2)

109

m0 = rbind(

x = sapply(mu1.s,function(x)rnorm(n1,mean=x,sd=1)),

y = matrix(rnorm(n=n2,mean=0,sd=1),nrow=n2,ncol=5000,byrow=FALSE)

)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1se[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n10e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=6,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n6e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=2,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n2e[i,] = TSIe(g1,g2)

}

s3 = data.frame(t1e.min = apply(t1e,2,min),

t3m1e.min = apply(t3m1e,2,min),

t1se.min = apply(t1se,2,min),

t3n10e.min = apply(t3n10e,2,min),

t3n6e.min = apply(t3n6e,2,min),

t3n2e.min = apply(t3n2e,2,min),

t1e.med = apply(t1e,2,median),

t3m1e.med = apply(t3m1e,2,median),

t1se.med = apply(t1se,2,median),

t3n10e.med = apply(t3n10e,2,median),

t3n6e.med = apply(t3n6e,2,median),

t3n2e.med = apply(t3n2e,2,median),

t1e.max = apply(t1e,2,max),

t3m1e.max = apply(t3m1e,2,max),

t1se.max = apply(t1se,2,max),

t3n10e.max = apply(t3n10e,2,max),

t3n6e.max = apply(t3n6e,2,max),

t3n2e.max = apply(t3n2e,2,max))

110

sample size = 5000

t1e = matrix(NA,ncol=5000,nrow=100)

t3m1e = matrix(NA,ncol=5000,nrow=100)

t1se = matrix(NA,ncol=5000,nrow=100)

t3n10e = matrix(NA,ncol=5000,nrow=100)

t3n6e = matrix(NA,ncol=5000,nrow=100)

t3n2e = matrix(NA,ncol=5000,nrow=100)

for(i in 1:100){

n1 = 2500

n2 = 2500

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=1,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=-1)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3m1e[i,] = TSIe(g1,g2)

m0 = rbind(

x = sapply(mu1.s,function(x)rnorm(n1,mean=x,sd=1)),

y = matrix(rnorm(n=n2,mean=0,sd=1),nrow=n2,ncol=5000,byrow=FALSE)

)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1se[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n10e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=6,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n6e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=2,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n2e[i,] = TSIe(g1,g2)

}

111

s4 = data.frame(t1e.min = apply(t1e,2,min),

t3m1e.min = apply(t3m1e,2,min),

t1se.min = apply(t1se,2,min),

t3n10e.min = apply(t3n10e,2,min),

t3n6e.min = apply(t3n6e,2,min),

t3n2e.min = apply(t3n2e,2,min),

t1e.med = apply(t1e,2,median),

t3m1e.med = apply(t3m1e,2,median),

t1se.med = apply(t1se,2,median),

t3n10e.med = apply(t3n10e,2,median),

t3n6e.med = apply(t3n6e,2,median),

t3n2e.med = apply(t3n2e,2,median),

t1e.max = apply(t1e,2,max),

t3m1e.max = apply(t3m1e,2,max),

t1se.max = apply(t1se,2,max),

t3n10e.max = apply(t3n10e,2,max),

t3n6e.max = apply(t3n6e,2,max),

t3n2e.max = apply(t3n2e,2,max))

sample size = 10000

t1e = matrix(NA,ncol=5000,nrow=100)

t3m1e = matrix(NA,ncol=5000,nrow=100)

t1se = matrix(NA,ncol=5000,nrow=100)

t3n10e = matrix(NA,ncol=5000,nrow=100)

t3n6e = matrix(NA,ncol=5000,nrow=100)

t3n2e = matrix(NA,ncol=5000,nrow=100)

for(i in 1:100){

n1 = 5000

n2 = 5000

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=1,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=-1)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3m1e[i,] = TSIe(g1,g2)

112

m0 = rbind(

x = sapply(mu1.s,function(x)rnorm(n1,mean=x,sd=1)),

y = matrix(rnorm(n=n2,mean=0,sd=1),nrow=n2,ncol=5000,byrow=FALSE)

)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t1se[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=10,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n10e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=6,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n6e[i,] = TSIe(g1,g2)

m0 = draw3(d=5000,ss1=n1,ss2=n2,nonsparse=2,mu1=3,mu2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

t3n2e[i,] = TSIe(g1,g2)

}

s5 = data.frame(t1e.min = apply(t1e,2,min),

t3m1e.min = apply(t3m1e,2,min),

t1se.min = apply(t1se,2,min),

t3n10e.min = apply(t3n10e,2,min),

t3n6e.min = apply(t3n6e,2,min),

t3n2e.min = apply(t3n2e,2,min),

t1e.med = apply(t1e,2,median),

t3m1e.med = apply(t3m1e,2,median),

t1se.med = apply(t1se,2,median),

t3n10e.med = apply(t3n10e,2,median),

t3n6e.med = apply(t3n6e,2,median),

t3n2e.med = apply(t3n2e,2,median),

t1e.max = apply(t1e,2,max),

t3m1e.max = apply(t3m1e,2,max),

t1se.max = apply(t1se,2,max),

t3n10e.max = apply(t3n10e,2,max),

t3n6e.max = apply(t3n6e,2,max),

t3n2e.max = apply(t3n2e,2,max))

113

simulation with correlated predictors

tc0e = matrix(NA,ncol=500,nrow=100)

tc25e = matrix(NA,ncol=500,nrow=100)

tc5e = matrix(NA,ncol=500,nrow=100)

tc75e = matrix(NA,ncol=500,nrow=100)

for(i in 1:100){

n1 = 100

n2 = 100

set.seed(3456)

m0 = draw4(d=500,ss1=100,ss2=100,rho=0,nonsparse=10,nz1=1,nz2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

tc0e[i,] = TSIe(g1,g2)

m0 = draw4(d=500,ss1=100,ss2=100,rho=.25,nonsparse=10,nz1=1,nz2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

tc25e[i,] = TSIe(g1,g2)

m0 = draw4(d=500,ss1=100,ss2=100,rho=.5,nonsparse=10,nz1=1,nz2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

tc5e[i,] = TSIe(g1,g2)

m0 = draw4(d=500,ss1=100,ss2=100,rho=.75,nonsparse=10,nz1=1,nz2=0)

g1=m0[1:n1,]

g2=m0[(n1+1):(n1+n2),]

tc75e[i,] = TSIe(g1,g2)

}

s6 = data.frame(tc0e.min = apply(tc0e,2,min),

tc25e.min = apply(tc25e,2,min),

tc5e.min = apply(tc5e,2,min),

tc75e.min = apply(tc75e,2,min),

tc0e.med = apply(tc0e,2,median),

tc25e.med = apply(tc25e,2,median),

tc5e.med = apply(tc5e,2,median),

tc75e.med = apply(tc75e,2,median),

tc0e.max = apply(tc0e,2,max),

tc25e.max = apply(tc25e,2,max),

tc5e.max = apply(tc5e,2,max),

tc75e.max = apply(tc75e,2,max))

114

###

graphics

library(colorspace)

overlay empirical with theoretical simulations

n = 200

pdf(’TSI_n200.pdf’)

par(mar=c(5.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:50,rev(1:50)),c(s1$t3m1e.min[1:50],

rev(s1$t3m1e.max[1:50])),col="grey",border=F)

points(s1$t3m1e.med[1:50],type="l",col="black")

points(t3m1[1:50],type="l",col="red")

polygon(c(1:50,rev(1:50)),c(s1$t1e.min[1:50],

rev(s1$t1e.max[1:50])),col="lightsteelblue1",border=F)

points(s1$t1e.med[1:50],type="l",col="blue")

points(t1[1:50],type="l",col="green")

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:5000,rev(1:5000)),c(s1$t3m1e.min[1:5000],

rev(s1$t3m1e.max[1:5000])),col="grey",border=F)

points(s1$t3m1e.med[1:5000],type="l",col="black")

points(t3m1[1:5000],type="l",col="red")

polygon(c(1:5000,rev(1:5000)),c(s1$t1e.min[1:5000],

rev(s1$t1e.max[1:5000])),col="lightsteelblue1",border=F)

points(s1$t1e.med[1:5000],type="l",col="blue")

points(t1[1:5000],type="l",col="green")

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI, Scenario 1",

"Empirical TSI, Scenario 2",

"Theoretical TSI, Scenario 1",

"Theoretical TSI, Scenario 2"),

col=c("black","blue","red","green"),

lwd=2,

ncol=2)

par(oma=rep(0, 4))

dev.off()

n = 500

pdf(’TSI_n500.pdf’)

par(mar=c(5.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

115

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:50,rev(1:50)),c(s2$t3m1e.min[1:50],

rev(s2$t3m1e.max[1:50])),col="grey",border=F)

points(s2$t3m1e.med[1:50],type="l",col="black")

points(t3m1[1:50],type="l",col="red")

polygon(c(1:50,rev(1:50)),c(s2$t1e.min[1:50],

rev(s2$t1e.max[1:50])),col="lightsteelblue1",border=F)

points(s2$t1e.med[1:50],type="l",col="blue")

points(t1[1:50],type="l",col="green")

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:5000,rev(1:5000)),c(s2$t3m1e.min[1:5000],

rev(s2$t3m1e.max[1:5000])),col="grey",border=F)

points(s2$t3m1e.med[1:5000],type="l",col="black")

points(t3m1[1:5000],type="l",col="red")

polygon(c(1:5000,rev(1:5000)),c(s2$t1e.min[1:5000],

rev(s2$t1e.max[1:5000])),col="lightsteelblue1",border=F)

points(s2$t1e.med[1:5000],type="l",col="blue")

points(t1[1:5000],type="l",col="green")

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI, Scenario 1",

"Empirical TSI, Scenario 2",

"Theoretical TSI, Scenario 1",

"Theoretical TSI, Scenario 2"),

col=c("black","blue","red","green"),

lwd=2,

ncol=2)

par(oma=rep(0, 4))

dev.off()

n = 1000

pdf(’TSI_n1000.pdf’)

par(mar=c(5.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:50,rev(1:50)),c(s3$t3m1e.min[1:50],

rev(s3$t3m1e.max[1:50])),col="grey",border=F)

points(s3$t3m1e.med[1:50],type="l",col="black")

points(t3m1[1:50],type="l",col="red")

polygon(c(1:50,rev(1:50)),c(s3$t1e.min[1:50],

rev(s3$t1e.max[1:50])),col="lightsteelblue1",border=F)

points(s3$t1e.med[1:50],type="l",col="blue")

points(t1[1:50],type="l",col="green")

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

116

polygon(c(1:5000,rev(1:5000)),c(s3$t3m1e.min[1:5000],

rev(s3$t3m1e.max[1:5000])),col="grey",border=F)

points(s3$t3m1e.med[1:5000],type="l",col="black")

points(t3m1[1:5000],type="l",col="red")

polygon(c(1:5000,rev(1:5000)),c(s3$t1e.min[1:5000],

rev(s3$t1e.max[1:5000])),col="lightsteelblue1",border=F)

points(s3$t1e.med[1:5000],type="l",col="blue")

points(t1[1:5000],type="l",col="green")

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI, Scenario 1",

"Empirical TSI, Scenario 2",

"Theoretical TSI, Scenario 1",

"Theoretical TSI, Scenario 2"),

col=c("black","blue","red","green"),

lwd=2,

ncol=2)

par(oma=rep(0, 4))

dev.off()

n = 5000

pdf(’TSI_n5000.pdf’)

par(mar=c(5.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:50,rev(1:50)),c(s4$t3m1e.min[1:50],

rev(s4$t3m1e.max[1:50])),col="grey",border=F)

points(s4$t3m1e.med[1:50],type="l",col="black")

points(t3m1[1:50],type="l",col="red")

polygon(c(1:50,rev(1:50)),c(s4$t1e.min[1:50],

rev(s4$t1e.max[1:50])),col="lightsteelblue1",border=F)

points(s4$t1e.med[1:50],type="l",col="blue")

points(t1[1:50],type="l",col="green")

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:5000,rev(1:5000)),c(s4$t3m1e.min[1:5000],

rev(s4$t3m1e.max[1:5000])),col="grey",border=F)

points(s4$t3m1e.med[1:5000],type="l",col="black")

points(t3m1[1:5000],type="l",col="red")

polygon(c(1:5000,rev(1:5000)),c(s4$t1e.min[1:5000],

rev(s4$t1e.max[1:5000])),col="lightsteelblue1",border=F)

points(s4$t1e.med[1:5000],type="l",col="blue")

points(t1[1:5000],type="l",col="green")

reset()

legend(x = "bottom",inset = 0,

117

legend = c("Empirical TSI, Scenario 1",

"Empirical TSI, Scenario 2",

"Theoretical TSI, Scenario 1",

"Theoretical TSI, Scenario 2"),

col=c("black","blue","red","green"),

lwd=2,

ncol=2)

par(oma=rep(0, 4))

dev.off()

n = 10000

pdf(’TSI_n10000.pdf’)

par(mar=c(5.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:50,rev(1:50)),c(s5$t3m1e.min[1:50],

rev(s5$t3m1e.max[1:50])),col="grey",border=F)

points(s5$t3m1e.med[1:50],type="l",col="black")

points(t3m1[1:50],type="l",col="red")

polygon(c(1:50,rev(1:50)),c(s5$t1e.min[1:50],

rev(s5$t1e.max[1:50])),col="lightsteelblue1",border=F)

points(s5$t1e.med[1:50],type="l",col="blue")

points(t1[1:50],type="l",col="green")

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,20))

polygon(c(1:5000,rev(1:5000)),c(s5$t3m1e.min[1:5000],

rev(s5$t3m1e.max[1:5000])),col="grey",border=F)

points(s5$t3m1e.med[1:5000],type="l",col="black")

points(t3m1[1:5000],type="l",col="red")

polygon(c(1:5000,rev(1:5000)),c(s5$t1e.min[1:5000],

rev(s5$t1e.max[1:5000])),col="lightsteelblue1",border=F)

points(s5$t1e.med[1:5000],type="l",col="blue")

points(t1[1:5000],type="l",col="green")

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI, Scenario 1",

"Empirical TSI, Scenario 2",

"Theoretical TSI, Scenario 1",

"Theoretical TSI, Scenario 2"),

col=c("black","blue","red","green"),

lwd=2,

ncol=2)

par(oma=rep(0, 4))

dev.off()

118

overlay scrambled empirical with scrambled theoretical simulations

n = 200

pdf(’TSI_n200_unsorted.pdf’)

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,1))

points(s1$t1se.med[1:50],type="l",col="cadetblue",lwd=2)

points(t1se[1:50],type="l",col="orange",lwd=2)

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,10))

points(s1$t1se.med[1:5000],type="l",col="cadetblue",lwd=2)

points(t1s[1:5000],type="l",col="orange",lwd=2)

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI","Theoretical TSI"),

col=c("cadetblue","orange"),

lwd=2, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

n = 500

pdf(’TSI_n500_unsorted.pdf’)

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,1))

points(s2$t1se.med[1:50],type="l",col="cadetblue",lwd=2)

points(t1se[1:50],type="l",col="orange",lwd=2)

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,10))

points(s2$t1se.med[1:5000],type="l",col="cadetblue",lwd=2)

points(t1s[1:5000],type="l",col="orange",lwd=2)

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI","Theoretical TSI"),

col=c("cadetblue","orange"),

lwd=2, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

n = 1000

pdf(’TSI_n1000_unsorted.pdf’)

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,1))

119

points(s3$t1se.med[1:50],type="l",col="cadetblue",lwd=2)

points(t1se[1:50],type="l",col="orange",lwd=2)

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,10))

points(s3$t1se.med[1:5000],type="l",col="cadetblue",lwd=2)

points(t1s[1:5000],type="l",col="orange",lwd=2)

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI","Theoretical TSI"),

col=c("cadetblue","orange"),

lwd=2, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

n = 5000

pdf(’TSI_n5000_unsorted.pdf’)

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,1))

points(s4$t1se.med[1:50],type="l",col="cadetblue",lwd=2)

points(t1se[1:50],type="l",col="orange",lwd=2)

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,10))

points(s4$t1se.med[1:5000],type="l",col="cadetblue",lwd=2)

points(t1s[1:5000],type="l",col="orange",lwd=2)

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI","Theoretical TSI"),

col=c("cadetblue","orange"),

lwd=2, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

n = 10000

pdf(’TSI_n10000_unsorted.pdf’)

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,1))

points(s5$t1se.med[1:50],type="l",col="cadetblue",lwd=2)

points(t1se[1:50],type="l",col="orange",lwd=2)

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,10))

points(s5$t1se.med[1:5000],type="l",col="cadetblue",lwd=2)

points(t1s[1:5000],type="l",col="orange",lwd=2)

reset()

legend(x = "bottom",inset = 0,

legend = c("Empirical TSI","Theoretical TSI"),

col=c("cadetblue","orange"),

120

lwd=2, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

TSIe for Scenarios from Chapter 2

col = heat_hcl(4,h=c(0,-100),l=c(75,40),c=c(40,80),power=1)

pdf(’TSI_ch1scenarios.pdf’)

par(mar=c(4.5,4,1,1), oma=c(2.5,1.75,1.5,1))

plot(c(1:5000),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,15))

points(s1$t3n10e.med[1:5000],type="l",col=col[4],lwd=2)

points(s1$t3n6e.med[1:5000],type="l",col=col[3],lwd=2)

points(s1$t3n2e.med[1:5000],type="l",col=col[2],lwd=2)

points(s1$t1e.med[1:5000],type="l",col=col[1],lwd=2)

reset()

legend(x = "bottom",inset = 0,

legend = c("Scenario 1",

"Scenario 2",

"Scenario 3",

"Scenario 4"),

col=c(col[4],col[3],col[2],col[1]),

lwd=3, horiz = TRUE)

par(oma=rep(0, 4))

dev.off()

TSIe with correlated predictors

pdf(’TSIcorr.pdf’)

par(mar=c(5.5,4,1,1), oma=c(2.5,1.75,1.5,1),mfrow=c(1,2))

plot(c(1:50),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,5))

points(s6$tc0e.med[1:50],type="l",col="black")

points(s6$tc25e.med[1:50],type="l",col="pink",lwd=2)

points(s6$tc5e.med[1:50],type="l",col="red",lwd=2)

points(s6$tc75e.med[1:50],type="l",col="darkred",lwd=2)

points(t1[1:50],type="l",col="blue")

plot(c(1:500),type="n",xlab="Predictors",ylab="TSI",ylim=c(0,5))

points(s6$tc0e.med[1:500],type="l",col="black")

points(s6$tc25e.med[1:500],type="l",col="pink",lwd=2)

points(s6$tc5e.med[1:500],type="l",col="red",lwd=2)

points(s6$tc75e.med[1:500],type="l",col="darkred",lwd=2)

points(t1[1:500],type="l",col="blue",)

121

reset()

legend(x = "bottom",inset = 0,

legend = c(expression(paste(rho,"=0")),

expression(paste(rho,"=0.25")),

expression(paste(rho,"=0.50")),

expression(paste(rho,"=0.75")),

"theoretical TSI"),

col=c("black","pink","red","darkred","blue"),

lwd=c(1,2,2,2,1), ncol=3)

par(oma=rep(0, 4))

dev.off()

###

122

A.2 Motivation for setting signal magnitude equal to 1√
m

In one dimension, the distance d(·) between two distributions centered at 0 and c is

d(µ1,µ2) =
√
(0−µ)2 = c

Assume we wish to fix the Euclidean distance between classes to c for p dimensions as in
the setting of this thesis. Define µ1 and µ2 for the two distributions as µ1 = 0 and µ2

sparse with m equal, nonzero elements and remaining entries equal to zero. We have

µ1 = (01,02, . . . ,0p−1,0p)

µ2 = (µ1,µ2, . . . ,µm,0m+1, . . . ,0p−1,0p)

Now we solve for µi for i ∈ {1,2, . . . ,m} with the distance function equal to c:

d(µ1,µ2) = c√
p

∑
i=1

(µ1i−µ2i)2 = c√
µ2

1 +µ2
2 + . . .+µ2

m = c√
mµ2

1 = c

mµ
2
1 = c2

µ
2
1 =

c2

m
µ1 =

c√
m

When c is set to one, the value of the nonzero elements in µ2 equals 1√
m .

123

	Acknowledgements
	Abstract
	Introduction
	Comparison of Classification Methods
	Principal Component Analysis
	Simulation with Classification Methods
	Simulations for Scenario 1
	Simulations for Scenario 2
	Simulations for Scenario 3
	Simulations for Scenario 4

	Characterization of Noise Accumulation
	Simulations increasing sample size
	Simulations modifying signal strength
	Simulations varying signal strength and total predictors

	Total Signal Index
	Theoretical total signal index
	Empirical total signal index
	Simulations for total signal indices

	Summary and conclusion
	References
	Appendix
	R code
	Code for Chapter 2
	Code for Chapter 3
	Code for Chapter 4

	Motivation for setting signal magnitude equal to 1m

