A Systematic Review of Geographic Information System Applications in Pediatric Health Services Access and Utilization: A Study of Current and Future Research Directions

Authors:

Jonathan M. Tan, MD MPH^{1,2,3}, Allan F. Simpao, MD MBI^{1,2}, Jorge A. Galvez, MD MBI^{1,2}, Grace Hsu, MD¹, Heather Griffis, PhD⁴, Sherry E. Morgan, PhD MLS RN⁵, Annette M. Totten, PhD⁶

- ¹ Assistant Professor of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
- ² Assistant Professor of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA.
- ³ Senior Fellow, The Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA; Senior Fellow, The Center for Public Health Initiatives, University of Pennsylvania, Philadelphia, PA.
- ⁴ Director of the HealthCare Analytics Unit, Center for Pediatric Clinical Effectiveness and PolicyLab, The Children's Hospital of Philadelphia, Philadelphia, PA.
- ⁵ Graduate and Clinical Research Liaison, University of Pennsylvania Biomedical Library, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
- ⁶ Assistant Professor, Department of Medical Informatics and Clinical Epidemiology, Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, Portland, OR.

Keywords: Geographic Information Systems (GIS), Geospatial Data, Spatial Analysis, Pediatric Care, Health Care Access, Health Care Delivery, Systematic Review, Access to Care

School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Master's Capstone Project of

Jonathan M. Tan, MD MPH

"A Systematic Review of Geographic Information System Applications in Pediatric Health Services Access and Utilization: A Study of Current and Future Research Directions"

Has been approved

Annette M. Totten, PhD

ABSTRACT

Background

Access to appropriate and timely health care services is an important component of achieving health for children and critical in reducing morbidity and mortality. The increasing availability of data, informatics and ubiquity of computing in health care has allowed for the development of new tools and applications to study access and utilization of health care services. Geographic information systems (GIS) has the advantage of allowing the exploration and study of spatial relationships and health outcomes, health care services, and populations.

Objective

To conduct a systematic review of peer-reviewed articles on the applications of GIS in understanding health care access and utilization for children using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols. Our assessment of the literature is expanded by a discussion of the limitations in current GIS work and future directions of GIS applications in pediatric health care access and utilization research.

Methods

English language studies published peer-reviewed journals were identified by searches of PubMed and EMBASE from January 2000 to December 2017 that focused on applications of GIS and geospatial analysis in pediatric health care services research. Two reviewers screened studies based on title, abstract, and full text. Identified studies included in the review were assessed for the risk of bias. Any disagreements in the review process that could not be resolved led to the involvement of a third reviewer. The overall quality of evidence was then assessed.

Results

The final analysis yielded 25 research studies that reported on the use of GIS in pediatric health services research. There was a large variety of clinical outcomes and non-clinical outcomes reported by the studies that ranged from vaccination rates and mortality to density of health care providers to pediatric populations for health care planning purposes. Most studies were observational in study design. Studies ranged from very low to moderate scores for overall quality. Significant variation exists regarding spatial analysis methodology and reporting of methods and results.

Conclusions

Applications of GIS in understanding access and utilization of pediatric health services had significant variation in content and methodology. While the quality of evidence was limited by the design and methodology of most studies, the overall impact of GIS allowed for a better understanding of spatial relationships with regards to pediatric health care access and utilization. Future research needs to focus on developing improved study designs that go beyond descriptive analysis, more standardized approaches to geospatial analysis methodology, and improved standards for reporting geographic analysis results.

INTRODUCTION

Access to appropriate and timely health care services is an important component of achieving health for children and critical in reducing morbidity and mortality. Access can be defined and measured by whether a population with health care needs can enter the medical system and utilize health services when needed.¹ Access to health care can be viewed through the dimensions of availability, accessibility, accommodation, affordability and acceptability. Access to health care services can limited by financial, cultural, language, socioeconomic, transportation and geographic barriers.^{2,3} Some examples of studies related to access of care may include spatial proximity to a hospital or the ratio of health care providers to a population in an area.⁴⁻⁶

Utilization of health care services can also be studied, and while related, access to health services research is different. Studying utilization can often be challenging due to the need to obtain more granular individual patient level data. Subsequently, there have been fewer studies that have examined detailed patterns of service utilization as compared to studies of access to health care services.⁷ Some examples of studies related to utilization of health care services include understanding how many times a pediatric patient has seen a dentist to adhere to recommendations or quantifying emergency department visits. Understanding access and utilization of health care services is important for a variety of reasons including advising health care policy, health system design planning, understanding and reducing disparities in care as well as determining ways to improve individual and population health.⁸⁻¹⁰

The increasing availability of data, informatics and ubiquity of computing in health care has allowed for the development of new tools and applications to study access and utilization of health care services. Geographic information system (GIS) is a tool that is increasingly used in health care due to the advancement of informatics science, the availability of data and an acceptance that location factors and environmental factors influence health status, access and utilization. Geographic information systems (GIS) are software and hardware that are used together for the storage, management, retrieval, manipulation, analysis, modeling and visualization of geographical data. Classical uses of GIS have been used for disease epidemiology, disaster management and environmental health studies. Perhaps, the earliest use of mapping in medicine to improve health care was in 1854 when Dr. John Snow studied the cholera outbreak in London and traced disease epidemiology to water pumps based on simple mapping techniques.¹¹

The contemporary use of GIS and methods of geospatial analysis are relatively recent with GIS only assigned its own Medical Subject Heading (MeSH) term in 2003 by the US National Library of Medicine. The number of scientific articles on GIS in health published each year has increased dramatically, underscoring the usefulness in GIS as a tool to investigate health care issues.¹²⁻¹⁴ Spatial analysis, the tools employed in GIS applications is a more recent addition with its MeSH term created in 2013.

In particular, GIS has the advantage of allowing the exploration and study of spatial relationships and health outcomes, health care services and populations. In addition to health care data and health system data, unique to GIS is the need for geographically referenced data. Geographically referenced data allows for an understanding and calculation of distance and

time traveled by different modalities such as car, airplane, public transportation or walking. The process of geographically referencing data is called geocoding. Geocoding is the process of assigning coordinates such as latitude and longitude to a specified location using data granularity that can be relatively nonspecific as zip code or census block data or as specific as a home address.^{15,16} Challenges exist as to the process of geocoding since geographic data can vary in scale which can limit GIS analysis.¹⁷⁻²⁰ Furthermore, geocoding and geospatial analysis needs to be conducted with a respect for ensuring patient privacy in research.^{21,22}

Geospatial analysis in health care access and utilization research has led to an understanding of the distance-decay effect. This concept has been described as the decreasing utilization of health care services that occurs with increasing distance of a person's residence from a health care facility or system.^{23,24} This phenomenon has been documented in geospatial studies of health care and has been demonstrated in different countries, patient populations such as pediatric and adults, different medical conditions and treatments.²⁵⁻²⁹ Distance decay and other geographic barriers to accessing and utilizing health care services are important to understand and model. GIS has been used to facilitate geospatial analysis and further the understanding of the impact distance and spatial relationships have on medical care. Applications of GIS in understanding health care systems and services is important for multiple stakeholders including, public health officials, health care administrators, policy makers, and health care providers.

While there have been increasing number of publications related to the application of GIS and understanding health care access and utilization, there has only been one narrative review and two systematic reviews published. The narrative review was published in 2004 and had the main objective of reviewing the use of GIS-based measures to understand health care access and outcomes.³⁰ The review did not focus on the pediatric population and was conducted in a time when GIS and computing systems was not as ubiquitous as modern day GIS analysis. One systematic review focused exclusively on malaria and anemia disease states with pediatric health and did not specifically assess health care resource access and use.³¹ The other systematic review focused only on adult populations and in global north countries.³² To date, there has not been narrative review or systematic review of the applications of GIS towards understanding pediatric health care access and utilization.

Given the importance of understanding access and utilization of health care services and the rising use and research on GIS, our primary objective was to conduct a systematic review of peer-reviewed articles that study how GIS is being utilized to understand health care access and utilization for children. We did this by systematically describing and analyzing the breadth of peer-reviewed literature using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P).^{33,34} Furthermore, our assessment of the literature is expanded by a discussion of the limitations in current GIS work and future directions of GIS applications in pediatric health care access and utilization research.

METHODS

Eligibility Criteria

Studies were identified based on queries that focused on the applications of GIS and geospatial analysis methods in pediatric (\leq 18 years old) health care access and utilization research that were published in English in peer-reviewed journals. Particularly, studies were included that had assessed the spatial proximity of health care services relative to the pediatric patient by quantifying distance traveled or time traveled. Publication dates included in the search were between January 1, 2000 through December 31, 2017.

Studies excluded were those that were non-peer reviewed, review articles, abstracts, conference proceedings and papers that primarily compared methodology. Other exclusion criteria were studies that did not focus exclusively on pediatric patients only. In particular, populations that included adults or pregnant populations were excluded from analysis. Telemedicine studies were also excluded.

Information Sources

Queries of the electronic databases PubMed and EMBASE were conducted to identify studies for this review.

Search Strategy and Screening

The systematic review search was conducted in PubMed and EMBASE by one reviewer [JMT] and with the input and expertise of a Health Sciences Librarian [SEM]. The specific search query can be found in *Appendix 1*. Medical Subject Heading (MeSH) terms were used including: "Geographic Information System", "Health Services Research", "Health Services Accessibility", and "spatial analysis." Other terms and keywords were also combined with the MeSH terms which included "children", "child", and "pediatric." The EMBASE database was also queried with a combination of keywords and terms including "Geographic Information System", "Health services research", "health care access", "health care utilization," and terms and keywords for "children", "child", and "pediatric."

The results of the PubMed and EMBASE searches were then combined in Endnote reference manager software (v. X8.2, *Clarivate Analytics*, Philadelphia, PA). Duplicates were identified by the software and manually reviewed [JMT] prior to removing duplicates. Two reviewers [JMT, AFS] then screened the article titles for relevance based on title and designated them accept, reject or further review. The two reviewers then screened the abstracts of the articles that were designated accept or further review. A third reviewer [JAG] adjudicated any conflicts between the initial two reviewers. The full text electronic version of the articles accepted after the abstract screening were then obtained via institutional access. The full article texts were reviewed to determine if they met inclusion criteria and if they employed GIS and geospatial analysis for understanding pediatric health care access and utilization. Reference sections from selected manuscripts were reviewed by hand to identify other relevant studies that were not found in the electronic query of PubMed and EMBASE. While review articles and non-peer reviewed manuscripts were not included, reference sections of these were also manually reviewed.

Data Extraction

The full text versions of manuscripts were reviewed and a predesigned form was used to extract relevant data from the manuscripts. Data were extracted into Microsoft Excel spreadsheets. The data items extracted were based on general descriptive summaries of each manuscript including study objective, population type, data source, sample size, study geographic location and if there were any funding sources. These items were also used to determine the possible risks of bias and to further demonstrate the type of studies and variation. In addition, data was also extracted using another predesigned form that reviewed and collected information the variation in study methodology for geospatial analysis among the studies. These variables included primary outcome, reported method of measurement, geocoding method, origin and destination points and if the geographic level for which geographic study data was presented in any data visualizations.

Risk of Bias Assessment and Quality of Evidence

Studies that were included in the systematic review were assessed for risk of bias. The Cochrane Risk of Bias Criteria was used to assess each of the 25 studies.³⁵ The risk of bias assessment included broad factors such as selective reporting, blinding of participants and personnel, blinding of outcome assessment and whether there was incomplete outcome data. Risk of bias assessment and reporting was evaluated as low risk, moderate risk or high risk. Three reviewers [JMT, AFS and JAG] graded the studies.

The overall quality of evidence was then assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system for grading evidence.³⁶ GRADE evaluations take into account the quality of the evidence based on factors such as study method and limitations, indirectness of evidence, risk of bias, inconsistency, imprecision, publication bias, magnitude of effect, consideration of other plausible confounding factors and the possibility of dose-response relationships. A predesignated form was selected to assist with evaluation using the GRADE criteria which can be found in *Appendix 2*.³⁷ Three reviewers [JMT, AFS and JAG] graded the studies with a discussion and use of this form. The quality of evidence was considered for two groups of articles identified in this review as the 19 studies that focus on access to pediatric health care services and the remaining 6 that focused on utilization of pediatric health care services. Overall quality of evidence for the groups of studies was then rated on one of four levels, high, moderate, low and very low based on the GRADE criteria. Based on GRADE the definitions for the evidence quality can be described as:

- High Quality further research is very unlikely to change our confidence in the estimate of effect.
- Moderate Quality further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
- Low Quality further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
- Very Low Quality any estimate of effect is very uncertain.

Data Synthesis

Due to the study design and anticipated fact that most of the studies in geographic information system science are observational with heterogeneity by reported outcome measure and methodology, a qualitative synthesis rather than meta-analysis was conducted. Methods used to apply geographical analysis or spatial analysis were also assessed.

RESULTS

Figure 1 is the study selection flow diagram. The PubMed search query yielded 829 articles and the EMBASE search yielded 453 articles. After comparison of the two search results, 133 articles were removed due to duplication of articles. The total number of unique articles from the initial literature search was 1149 references. After screening titles for relevant articles to GIS in pediatric health services research 952 articles were rejected and 197 were then screened for content based on their abstracts. A review of these abstracts for relevance led to a rejection of 167 articles, resulting in 30 articles. The full text of the remaining articles was then reviewed. A total of 5 articles were rejected based on inclusion and exclusion criteria, including an exclusion of review articles. A total of 25 references remained for inclusion in this review and underwent quality assessment and data synthesis.

Table 1 includes the summary descriptions of the 25 studies selected for inclusion in this systematic review and overall quality of evidence ratings based on the GRADE criteria. Of the studies included, 24 of them were observational or survey studies using cross-sectional data and 1 was a secondary analysis of randomized controlled trial data. The data sources varied significantly based on the scale of the geography that the study was set in. For example, the large datasets used were from national level data such as the US Census Bureau which utilized a nationally represented dataset of children in the United States. On the other hand, the smallest scale study involved just 71 adolescents and attempted to determine whether distance to the bariatric surgery clinic would predict post-operative follow-up compliance. Most of the studies used children as the population with several international papers in developing countries focusing on young children or infants as they related to vaccination and mortality data. A little more than half of the studies included were conducted in the United States with one from Canada and one from China and the rest from developing countries.

Of the 25 studies, 19 studies studied the role of distance relationships in relation to access to pediatric health care services, with only 6 studies that focused on actual utilization of pediatric health care services. Studies of health care access in the setting of spatial relationships utilized methodology that looked at distribution of health care systems in relation to a population with the assumption that the individuals in a population would utilize the nearest health facility. Such studies included straight line distance relationships, drive times and simple measures of being within a concentric distance from the health care facility. Studies that assessed health care utilization, in contrast, used specific individual level data from electronic medical records or survey data at the individual patient level in order to determine utilization in relation to geographic proximity. Studies of pediatric health services utilization were smaller in study sample size when compared to the sample sizes of studies that assessed health care access.

Almost all of the studies with regards to access to care and all of the utilization studies but for one concluded that distance decay effects were observed. The majority of results of the studies reviewed demonstrated that the further that patients were from a health care facility or center for the outcome of interest studied, the less access or utilization of services were achieved. Studies that looked at spatial access and spatial density of health care providers (i.e. Anesthesiologists and Trauma Centers) to population density did not assess for distance decay effects.

Risk of bias assessment using the Cochrane Risk of Bias tool were reported for each study after analysis by three reviewers. The risk of bias assessment ranged from "low" to "moderate" and "high." A total of 10 studies were considered "low" risk of bias, 12 were rated as "moderate" risk of bias and the remaining 3 were rated as "high" risk of bias.

Table 2 includes the description of selected studies and key characteristics related to the study method and geospatial analysis. Of the 25 studies, 22 studies assessed travel distance or travel time as the primary outcome of comparison with regards to access to care and utilization. The remaining 3 studies had the primary outcome of determining the percentage of patients or population density in a given geographic region in relation to a health care provider (i.e. pediatric anesthesiologist) or health care system (i.e. pediatric trauma care). These studies were oriented toward assessing potential access to health care systems and were conducted to help guide or support health care policy and recommendations.

There were significant variations in the method by which geospatial relationships and distance were calculated in each study. Variations in distance measurement from one point to another point of interest were observed among the studies included. Of the 25 studies, 13 calculated distance relationships using Euclidean/Straight Line measurements, 2 using concentric circle distance measurements, 2 used turn by turn direction measurements, 1 utilized shortest drive distance, 3 used cost-analysis techniques of estimating travel time, 1 studied relied on self-reported distance and time estimates from study participants, 1 provided only a visual display and no actual measurement and finally 2 studies did not report distance based measurement techniques even though distance and time were reported as results.

Geocoding locations used in geospatial analysis among the studies also had significant variation. Of the 25 studies, 11 studies geocoded the actual individual address of locations (i.e. residential address and hospital center address), 7 studies used the center of a geographic block that was either existing (i.e. US Census Block, zip code) or artificially grouped (i.e. aggregation of data into distance-based neighborhoods, 6 studies used hand-held global positioning satellite (GPS) devices to determine precise latitude and longitude of locations and 1 study did not geocode due to the self-reported survey nature of the study. Use of hand-held GPS devices were in rural areas of developing countries.

Method of reporting geospatial data in the studies was also varied by scale. Some studies reported data at the country level, county level, government administrative units, district level and state level. Four of the studies did not provide a visualization of geospatial data on a map. Only two of the studies that presented geographic data on a map of patients had conducted geomasking with coordinate shifts, the process of skewing the coordinates when reporting (while maintaining the original results) in order to provide confidentiality and privacy for the study population. **Table 3**, includes the overall quality of evidence results for the use of GIS in understanding geographic relationships with location and access to or utilization of pediatric health care services.

DICSUSSION

This systematic review is the first to synthesize the available evidence on the applications of GIS towards understanding pediatric access and utilization of health services. One of the objectives of our review was to determine the breadth and depth of how GIS is being utilized in pediatric health services research currently. While there has been increasing use of GIS in health care services research applications, within the pediatric population, the role of GIS is still limited in the literature.

Significant variation existed among the studies included in our systematic review regarding applications of GIS. For example, some studies assessed disease states, while others studied access to dental care and genetics care and other yet studies assessed geospatial relationships to specialty care centers (i.e. pediatric trauma or pediatric anesthesiologist availability). The wide variety of studies was also reflected by the large number of geographic areas that were included in the studies reviewed, variations in sample size studied and sources of data that was the foundation of the studies.

Interestingly, while there was significant variation in the type of studies conducted one major theme regarding results was consistent. The concept of distance decay was demonstrated in almost all of the studies. Increasing distance from health care services was related to decreases in a specific measured pediatric outcome in the studies reviewed. From a strength of study perspective among geographic information systems, this is akin to a dose-response relationship and provided an increase in the quality grading of some of the studies. Furthermore, this phenomenon of distance decay has also been supported by other published studies across a range of population types and health outcomes, further strengthening the quality of evidence supporting the use of geospatial analysis and understanding pediatric health care access and utilization.²⁵⁻²⁸

The risk of bias was assessed for each study and demonstrated that there was significant variation with the risk of bias among studies. While there was significant low and moderate risk of bias assessments there was only three studies that were identified as high risk of bias. The high risk of bias studies was limited in their study design, nature of data collection for geographic analysis and lastly did not take into account important confounding factors that could influence utilization of care. One of these studies used measurements of geospatial distance and travel time using telephone survey data of participants without other objective measurements. Another study assessed the outcome of intubations in transporting pediatric patients from one center to another but did not report the severity of patient condition necessitating transport. This was a critical source of data that could severely undermine the geospatial analysis in that study.

Risk of bias can be directly influenced by study design. The most likely reasons for the variation in assessments and moderate to high level risk could be that virtually all of the studies utilizing geographic information systems to understand pediatric health care access and utilization were observational. For example, it is unlikely at this juncture to see a GIS study that

is based on a primary randomized controlled trial study design. The nature of observational research, retrospective data and database studies that is consistent across the majority of geospatial studies will lead to a variation in risk of bias analysis.

The overall quality of evidence for the role of GIS and geospatial analysis in understanding geographic barriers to access to pediatric health services was high. The overall quality of evidence for the role of GIS and geospatial analysis in understanding geographic barriers to utilization of pediatric health services was also high. While study design limitations and some data sources were limited in their data granularity to provide a lower risk of bias and a high directness assessment, the overall consistency across studies, populations, sample size and geographic location of the studies support a strong argument for the role of distance decay effects in pediatric health care services access and utilization. Overall, studies were noted to have a dose-response relationship (i.e. distance decay effect) and also took into account other confounding factors that are important to achieving access to health services including socioeconomic factors and demographic factors – a demonstration that access to care is more than just geographic but also social, cultural, financial and more.^{38,39}

The overall strength of evidence for the use of geographic information systems in understanding distance decay on access and utilization of pediatric health services was good. The culmination of studies supporting this phenomenon, across populations and countries and disease states is important to consider. Observing this phenomenon in adult literature and health care access and utilization studies is also important in the overall strength of evidence consideration.

There were several limitations in our systematic review of GIS applications in pediatric health services research. There are limitations to the methodology related to quality of evidence ratings. Geographic information system research is typically non-experimental in study design and therefore not randomized controlled trials. As a result, using a rating system such as GRADE, that starts non-randomized studies at low quality evidence ratings may be skewing the systematic review results toward low quality when in fact this is standard within the research field and methodology. However, there currently is no standard for evaluating geographic research or spatial analysis methodology. In the setting of no standard, it seems plausible to continue to consider using validated and accepted frameworks of evidence grading in order to provide a structured and more likely objective measure of quality than not. We employed multiple reviewers for quality of evidence ratings as well to mitigate bias.

Another limitation in our systematic review was regarding an understanding of the methods employed to include in this review. It was not feasible to assess for specific pediatric health services research studies with similar methodologies because the current range of global pediatric health research that includes GIS is not described or well understood. We employed our methodology to identify current study design, methodology and results when GIS is applied to pediatric health services research.

Overall, there is significant heterogeneity across peer reviewed research studies assessing GIS applications in understanding access and utilization of pediatric health services. Large variation in study methodology include study size and the lack of assessing for confounding factors to access such as socioeconomic status and other demographic variables. Large variation in methodology exists as well within the scope of these studies. Large variation in geocoding levels can impact accuracy of studies although this can be mitigated with large data sets and with trend analysis and demonstration of dose-response relationships seen in distance decay phenomenon.⁴⁰ Variations in measuring distance is also important to consider across studies.⁴¹ Depending on the use of methods to measure drive distance, for example, results can be variable. It is possible that standards need to be created to at least demonstrate that sensitivity analysis of various methods of distance and travel time estimations do not change study results. This level of comparison and sensitivity analysis would bolster the strength of analysis of studies.

Our systematic review also allowed us to identify areas for future research and development and to propose that GIS research should be directed towards given gaps in the literature and significant heterogeneity in methodology. These directions were identified as a result of reviewing the literature and conducting this systematic review with incorporation of the GRADE criteria for quality of evidence rating. Future GIS studies that assess geospatial relationships and health care access and utilization need to take into account possible confounding factors such as other barriers to health care access that has already been demonstrated in the literature besides geographic. Furthermore, reporting and publishing criteria should be created by expert consensus, however should include at the very least methodology and scale of geocoding and detailed descriptions of calculations of travel time and distance measurements. Publication of manuscripts without this data limits the quality of study and ability to reproduce the study as well. Considerations as to the incorporation of sensitivity analysis into geospatial analysis, using various methods of calculating distance, should also be considered in future work. Lastly, presentation of geospatial data and mapping in publications should be conducted with consideration of patient privacy. Geospatial data can be viewed as protected health information and in peer reviewed papers, the resolution of published patient maps can be reverse engineered to determine an approximate location.²¹ Geomasking should be considered and reported when publishing data at certain scale to maintain study population confidentiality.

CONCLUSION

Research that applies of GIS in understanding access and utilization of pediatric health services vary significantly in content and methodology. While the quality of evidence was limited by the design and methodology of most studies, the overall impact of GIS allowed for a better understanding of spatial relationships with regards to pediatric health care access and utilization. Distance decay phenomenon was observed in the majority of the studies. Future research needs to focus on developing improved study designs that go beyond descriptive analysis, more standardized approaches to geospatial analysis methodology, and improved standards for reporting geographic analysis results.

Authors Contributions:

JMT wrote the protocol with input from AFS, JAG, GH, HG and AMT. JMT developed the search strategy and conducted electronic searches with support from SEM who provided librarian scientific support. JMT, AFS, JAG, GH participated in the review of articles. JMT and AMT contributed to the conception and design of this review and revised it for important intellectual content. JMT is responsible for drafting the manuscript.

Funding:

This work was supported by departmental resources.

Declarations (Conflicts of Interest):

The authors have no financial and non-financial conflicts of interest related to the contents of this manuscript.

Figure 1. Study selection flow diagram from literature review to data synthesis of articles published between 1/1/2000 and 12/31/2017 on the use of geographic information system to study access and utilization of health care services for pediatric populations retrieved from PubMed and EMBASE. Articles were also filtered for full peer reviewed publications, English language and human studies only.

 Table 1. Summary description of selected studies and quality of evidence rating using GRADE

				Sample Size (Unit of	Geographic		
Author (year)	Data Source	Population	Study Objectives	Analysis)	Region	Funding Source	Risk of Bias
			To characterize				
			geographic access to				
			comprehensive cardiac				
			care among				
	Population based		adolescents with				
Sommerhalter	surveillance database - State		congenital heart	2,522	State (New York,		
(2017) ⁴²	Level	Adolescents	defects.	Adolescents	USA)	Grant: CDC	Low
			To determine the				
			geographic distribution				
	Surgeons OverSeas		of surgical conditions			Grant: Institutional	
	Assessment of Surgical Need		among children		Country	/ Johnson&	
Smith (2017) ⁴³	(SOSAS) Survey	Children	throughout Uganda.	2,176 Children	(Uganda)	Johnson	Moderate
			To describe the				
			geographic distribution				
			of pediatric				
			anesthesiologists				
			relative to the US				
	US Census Bureau Data; US		pediatric population (0-				
	Department of Health and		17 years) and a subset				
	Human Services Area Health		of the pediatric	US Children in			
Muffly (2017) ⁴⁴	Resource File	Children	population (0-4 years).	2010 Census	Country (USA)	None	Low
			To determine if				
	A Single Local Emergency		endotracheal				
	Medical System (EMS)		intubation procedures	7,797 EMS	County (Oregon,		
Hansen (2016) ⁴⁵	database	Children	are more likely to occur	Runs	USA)	None	High

			at greater distances				
			from the hospital and				
			near clusters of				
			pediatric calls.				
			To assess geographic				
			access to delivery				
			hospitals and risk of				
	South Carolina Department		neonatal death among				
	of Health and Environmental		singleton very low	2,030 very low			
Featherstone	Control Birth and Death		birthweight infants	birth weight	State (South		
(2016) ⁴⁶	Certificate records	Infants	born in South Carolina.	Infants	Carolina, USA)	Grant: Institutional	Low
				347 moderate			
				to severe			
			To assess the impact of	injured			
			geographical access to	children in			
			pediatric trauma	Nova Scotia			
			centers on patient	and 1710			
			outcomes, and to	moderate to			
	Hospital administration data		determine spatial	severe injured	Province (British	Primary Author	
	sets from British Columbia		access to pediatric	children in	Columbia and	Supported by	
	and Nova Scotia trauma		trauma centers across	British	Nova Scotia,	Canadian Institutes	
Amram (2016) ⁴⁷	registry	Children	Canada.	Columbia	Canada)	of Health Research	Low
			To investigate the		,		
			importance of				
			geographic risk factors				
			and to confirm				
			previously derived				
	Electronic health record data		clinical risk factors that				
	from single academic		influence readmissions	501 Patients			
			for sickle cell disease		City		
NA-NA:U (2015)48	pediatric hospital and US	Children		with sickle cell	City	News	1
McMillan (2015) ⁴⁸	Census Bureau	Children	pain crisis.	crisis	(Washington, DC)	None	Low

	Dental survey data from an academic primary care clinic and data from Pennsylvania Department of Public	Children (< 6	To examine dental utilization by Medicaid- insured children living in a high-resources area and characterize distance and travel- related variables to		City (Pittsburgh,	Grant: Dental Trade Alliance Foundation; Institutional	
Dumas (2015) ⁴⁹	Welfare Clinical Surveillance data from two large healthcare	years old)	accessing care.To investigate whetherstraight-line distancefrom residentialcompounds tohealthcare facilitiesinfluenced mortality,the incidence ofpneumonia andvaccine efficacy against	164 Children	PA) Rural area of Country	Funding; AHRQ Grant: Institution; Board of the Global Alliance for Vaccines and Immunizations and the Vaccine Fund; NIH/WHO; US Agency for International	Moderate
Zaman (2014) ⁵⁰	facilities Secondary analysis of placebo-controlled, double- blind randomized controlled	Children Children (<2	pneumonia. To measure the relationship between distance to the main study hospital and local-level pneumococcal vaccine	6,938 Children 12,194	(Gambia) Rural province of Country (Bohol,	Development	Moderate
Root (2014) ⁵¹	trial data Population based surveillance program - Florida Department of Transportation; Florida Birth Defects Registry; Hospital	years)	efficacy. To calculate travel impedance to access medical care for infants with spina bifida and identify geographic	Children	Philippines) State (Florida,	None Grant: March of	Moderate
Delmelle (2013) ⁵²	Discharge Records;	Infants	variations in travel	612 Children	USA)	Dimes	Moderate

			impedance to access				
			hospital care for these				
			infants.				
			To determine one-way				
			travel distance and				
			time to receive primary				
			cleft or craniofacial				
			care for families of				
			children with orofacial				
			clefts and the extent to				
			which taking a child to				
			cleft and craniofacial				
			care was perceived as a				
			problem. To examine				
	Population based birth		selected				
	defects registry - North		sociodemographic			Grant: National	
	Carolina Birth Defects		factors associated with			Center on Birth	
	Monitoring Program;		travel time and			Defects and	
	Mail/Phone Survey		distance to primary		State (North	Developmental	
Cassell (2013)53	Instrument	Children	cleft care.	245 Children	Carolina, USA)	Disabilities, CDC	High
			To assess whether				
			travel time to health				
			posts was associated				
			with childhood vaccine				
			coverage in a remote				
			area of rural Ethiopia.				
	Surveys conducted from		To assess if vaccination				
	random selection of eligible		coverage varied by				
Okwaraji,	households in the Dabat		household wealth				
					District (Dalast		
Mulholland	Health and Demographic	Children (<5	status and if the effect		District (Dabat		

			vaccine coverage was				
			modified by household				
			wealth.				
			To assess the effect of				
			travel time and				
			distance to health				
			facilities on child				
			mortality in this				
			remote area of rural				
	Surveys conducted from		Ethiopia. To assess				
	random selection of eligible		associations between				
	households in the Dabat		household wealth and				
Okwaraji, Cousens	Health and Demographic	Children (<5	child mortality in		District (Dabat		
(2012)55	Surveillance Site	years)	remote areas.	2,206 Children	district, Ethiopia)	None	Moderate
			To evaluate the				
			association between				
			proximity to a health				
			center and early				
			childhood mortality in				
			Madagascar, and to				
			assess the influence of				
			household wealth,				
	Birth records from a		maternal educational				
	nationally representative		attainment, and				
	demographic and health		maternal health on the	12,345	Country		
Kashima (2012) ⁵⁶	survey	Children	effects of distance.	Children	(Madagascar)	None	Moderate
			To describe by				
	US Census Bureau		geographic proximity				
	Data; National and		the extent to which the				
	International accrediting		US pediatric population	US Children in			
Brantley (2012) ⁵⁷	agencies; 2010 Homeland	Children	has access to pediatric	2008	Country (USA)	None	Moderate

	Security Infrastructure		and other specialized				
	Program Gold Dataset		critical care facilities,				
			and to highlight				
			regional differences in				
			population and critical				
			resource distribution				
			for preparedness				
			planning and utilization				
			during a mass public				
			health disaster				
						Grant: Government	
			To examine whether			of the Hong Kong	
			childhood hospital use			SAR; Research Fund	
			was associated with			for the Control of	
			proximity, for both			Infectious Diseases	
	Prospective population		planned and		City (Hong Kong,	in Hong Kong;	
Schooling (2011)58	representative birth cohort	Children	unplanned admissions.	6,688 Children	China)	Institutional	Low
			To determine whether				
			the distance to the				
	Single center cohort study -		clinic, and other				
	Follow-up of Adolescent		patient characteristics,				
	Bariatric Surgery (FABS)		would predict clinical		City (Cincinnati,	Grant: Ethicon	
Jenkins (2011) ⁵⁹	Study	Adolescents	follow-up compliance.	71 Adolescents	OH)	Endo-Surgery	High
			To examine the				
			relationship between				
			adolescent geographic				
			access (distance, travel				
	Longitudinal Survey Data		time, density) to Family			Grant: National	
	from the National Institute		Planning Clinics and			Institute of Child	
	of Child Health and Human		adolescent sexual	921	Counties	Health and Human	
Bersamin (2011) ⁶⁰	Development	Adolescents	behaviors, including	Adolescents	(California, USA)	Development	Moderate
	Development	Addiescents	Schavors, melading	Addiescents	(california, OSA)	Development	moderate

			sexual initiation,				
			number of partners				
			and condom use.				
			To identify predictors				
			of the timing of				
			immunization among				
			infants in Kilifi District,				
	Population		with a focus on the				
	register/Epidemiologic and		effect of spatial factors				
Moisi, Kabuka	Demographic Surveillance		such as distance to		District (Kilifi		
(2010)61	System	Children	vaccine clinics.	2,169 Children	District, Kenya)	None	Low
			To characterize spatial				
			variations in child				
			mortality in the Kilifi				
			District, Kenya, and				
			evaluate the effect of				
			distance to health				
	Population		facilities on child				
	register/Epidemiologic and		survival in a context of				
Moisi, Gatakaa	Demographic Surveillance	Children (<5	increased health	93,216	District (Kilifi		
(2010) ⁶²	System	years)	services density.	Children	District, Kenya)	None	Low
			To understand patterns				
			of pediatric trauma				
			patient transfers to the				
			study trauma center as				
			a first step in assessing				
			the quality and				
			efficiency of pediatric			Grant: Agency for	
			transfer within the		Region (Level 1	Healthcare	
	Institutional trauma		current trauma system		Pediatric Trauma	Research and	
Acosta (2010) ⁶³	database	Children	model.	2,798 Children	Center, California	Policy	Low

			To calculate and				
			analyze the				
			population's access to				
			pediatric-specific				
			trauma care for				
	US Census Bureau Data;		children younger than				
	National associations	Children (<15	15 years in the United	US Children in			
Nance (2009) ⁶⁴	databases	years)	States.	Census	Country (USA)	None	Low
			To explore the impact				
			of distance on				
	Population		utilization of peripheral		Rural location		
	register/Epidemiologic and		health facilities for sick		(Asembo in		
	Demographic Surveillance	Children (<5	child visits in Asembo,		Bondo District,		
Feikin (2009) ²⁷	System	years)	rural western Kenya.	2,432 Children	Kenya)	None	Moderate
			To use data from a				
			statewide birth defects				
			registry and geographic				
			information system				
			methodology to				
			compare the spatial				
			distribution and to				
			summarize the				
			distance of pediatric				
			clinical genetic service				
			providers in relation to				
			residential addresses of				
			children with selected	22,875	State (Texas,		
Case (2008) ⁶⁵	Texas Birth Defects Registry	Children	birth defects in Texas.	Children	USA)	Grant: CDC	Moderate

Table 2. Description of Selected Study Method Variation for Geospatial Analysis in Selected Studies

		Reported Method of			Visualization method to protect
Author (year)	Primary Outcome	Measurement	Geocode Method	Origin / Destination	confidentiality
				Residential Home to	
Sommerhalter	Drive time and public		Individual	Pediatric Cardiac	
(2017) ⁴²	transit time	Google Maps Distance Matrix	Addresses	Surgical Center	County Level
			Geometric center		
			of survey location	Geometric Center of	
Smith			and actual surgical	Survey Location to	
(2017) ⁴³	Distance and Travel Time	Euclidean Distance	center address	Surgical Facility	District Level
			Block group		
	Percentage of population		population and	US Census Block group	
Muffly	living within ranges of	Proportion within concentric	City/State/Zip code	population to Practice	
(2017) ⁴⁴	driving distance	driving distance of service area	of Anesthesiologist	Location Address	US Census Block Groups
Hansen	Distance and number of		Individual	Incident location to	
(2016) ⁴⁵	intubations	Visual display of data clusters	Addresses	hospital	County Level
		Specific method for calculation			
		not mentioned (only mentions			
Featherstone	Travel time and neonatal	ArcGIS Network Analyst	Individual	Maternal residence to	
(2016) ⁴⁶	mortality	Software Used	Addresses	delivery hospital	No map data visualization
				Residential Address to	
Amram	Driving time <60 min or >		Individual	Pediatric Trauma	
(2016) ⁴⁷	60 min	Turn-by-turn calculations	Addresses	Center	Providence Level
				Residential Address to	
				Hospital Main Campus,	
		Euclidean Distance and		affiliated primary care	
		subsequent categorization into		sites, emergency	
McMillan		distance bands determined a	Individual	department and	
(2015)48	30-day readmission	priori	Addresses	pharmacy	County Level

			Individual	Tract centroid	
			Addresses and tract	coordinates and	
Dumas			centroid	address of nearest	
(2015) ⁴⁹	Driving distance	Shortest Drive Distance	coordinates	dental clinic	City Level
(2020)		Euclidean Distance and	Hand-held global		
		subsequent categorization into	positioning system	Residential compound	
Zaman		distance bands determined a	(Latitude and	and clinics/health care	
(2014) ⁵⁰	Straight-line distance	priori	Longitude)	facility	Division Level
(2014)	Straight-line distance	ρισι	Aggregation of	lacinty	Division Level
		Euclidean Distance and	location into 2.5 km		
				Location of each child's	
D = = + (201 4)51	Distance	subsequent categorization into	and 3km	Location of each child's	
Root (2014) ⁵¹	Distance	distance bands	neighborhoods	house to health center	Government Administrative Units
Delmelle		Driving distance using road	Individual	Maternal home to	
(2013) ⁵²	Travel distance and times	network node modeling	Addresses	hospital	Geomasking with coordinate shift
				Self reported travel	
Cassell	Maternal report of travel	Survey respondent report of		distance to primary	
(2013)53	distance and time	travel distance and time	None	craniofacial care site	No map data visualization
		Travel time calculated using			
		"Cost analysis" that estimates			
		walking speed based on terrain	Hand-held global		
Okwaraji,		type traversed and subsequent	positioning system		
Mulholland		categorization into travel time	(Latitude and	Residential home and	Kebeles - the smallest administrative unit
(2012) ⁵⁴	Travel Time	groups	Longitude)	health center	in Ethiopia
			Hand-held global		
Okwaraji,			positioning system		
Cousens		Euclidean distance, distance	(Latitude and	Residential home and	Kebeles - the smallest administrative unit
(2012) ⁵⁵	Travel time and mortality	traveled and travel time	Longitude)	health center	in Ethiopia
		Euclidean Distance and			
Kashima		Euclidean Distance and subsequent categorization into		Household to nearest	
Kashima (2012) ⁵⁶	Distance		GPS Data	Household to nearest health center	Geomasking with coordinate shift

	Percentage of population		Block group	Grouped population to	
Brantley	living within ranges of	Proportion within concentric	population and	Practice Location	
(2012)57	driving distance	driving distance of service area	Hospital location	Address	State Level
	Distance and pubic				
	hospital admissions, bed-				
	days, and average length	Euclidean Distance and			
Schooling	of stay by type of	subsequent categorization into	Individual	Residential home to	
(2011) ⁵⁸	admission	distance bands	Addresses	nearest public hospital	Neighborhood Level
		Great circle method using			
	Distance and follow up at	shortest straight-line distance			
Jenkins	specified intervals after	between 2 points, accounting	Individual	Residential home to	
(2011) ⁵⁹	surgery	for curvature of the earth	Addresses	clinical center	State Level
		Euclidean Distance and			
Bersamin	Distance and sexual	subsequent categorization into	Indiviudal	Residential home to	
(2011) ⁶⁰	behavior	distance bands	Addresses	clinical center	No map data visualization
		Travel time calculated using			
		"Cost analysis" that estimates			
		speed based on terrain type	Hand-held global		
		traversed and subsequent	positioning system		
Moisi, Kabuka	Travel time and	categorization into travel time	(Latitude and	Residential home and	Administrative locations within the
(2010)61	immunization coverage	groups	Longitude)	health center	District Level
		Travel time calculated using			
		"Cost analysis" that estimates			
		speed based on terrain type	Hand-held global		
Moisi,		traversed and subsequent	positioning system		
Gatakaa		categorization into travel time	(Latitude and	Residential home and	Administrative locations within the
(2010)62	Travel time and mortality	groups	Longitude)	health center	District Level
			Georeferenced		
Acosta			databased on	Transferring hospital to	
(2010) ⁶³	Travel distance	Euclidean Distance	hospitals	study center	No map data visualization

News			Die als announ	Block group centroid to	
Nance	Percentage of pediatric	Straight-line and rectilinear	Block group	the nearest trauma	
(2009)64	populations	distance	population	center	State Level
			Hand-held global		
			positioning system		
Feikin	Distance and attendance		(Latitude and	Residential home and	
(2009)27	for sick visits	Straight-line distance	Longitude)	health center	Province Level
				Maternal home to	
Case (2008) ⁶⁵	Distance	Straight-line distance	Street level address	nearest facility	County Level

Table 3. Overall quality of evidence assessment for applications of GIS in understanding access andutilization for pediatric health care services

Туре	# of References	Risk of Bias	Consistency	Directness	Precision	Publication Bias	Dose Response Reported	Overall Assessment of Quality of Evidence
						Not		
Access	19	Moderate	High	Moderate	High	suspected	Yes	High
						Not		
Utilization	6	Moderate	High	Moderate	High	suspected	Yes	High

Appendix 1. Search Query for PubMed and EMBASE electronic database

PubMed Search Query:

Search (((((((gis OR geospatial OR geographic information systems OR spatial analysis)) AND ("2000/01/01"[PDat] : "2017/12/31"[PDat]))) AND (pediatric OR children OR child)) AND ("2000/01/01"[PDat] : "2017/12/31"[PDat]))) AND (health services OR utilization OR access OR accessibility) AND (("2000/01/01"[PDat] : "2017/12/31"[PDat]))

EMBASE Search Query:

(('gis'/exp OR gis OR geographic) AND ('information'/exp OR information) AND system OR geospatial OR 'spatial analysis'/exp OR 'spatial analysis') AND ('children'/exp OR children OR 'child'/exp OR child OR 'pediatric'/exp OR pediatric) AND ((('health'/exp OR health) AND ('care'/exp OR care) AND ('access'/exp OR access) OR 'health'/exp OR health) AND ('care'/exp OR care) AND ('utilization'/exp OR utilization) OR 'access'/exp OR access OR 'utilization'/exp OR utilization OR 'health'/exp OR health) AND ('access'/exp OR access) AND [English]/lim AND [2000-2017]/py

Appendix 2. Example table for assessing the GRADE criteria³⁷

GRADE criteria	Rating (circle one)	Footnotes (explain reasons for down- or upgrading)	Quality of the evidence (Circle one)
Outcome:			
Study design	RCT (starts as high quality) Non-RCT (starts as low quality)		
Risk of Bias (use the Cochrane Risk of Bias tables and figures)	No serious (-1) very serious (-2)		⊕⊕⊕⊕ High
Inconsistency	No serious (-1) very serious (-2)		⊕⊕⊕O Moderate
Indirectness	No serious (-1) very serious (-2)		⊕⊕OO Low
Imprecision	No serious (-1) very serious (-2)		⊕OOO Very Low
Publication Bias	Undetected Strongly suspected (-1)		
Other (upgrading factors, circle all that apply)	Large effect (+1 or +2) Dose response (+1 or +2) No Plausible confounding (+1 or +2)		

REFERENCES

- 1. Khan AA, Bhardwaj SM. Access to health care. A conceptual framework and its relevance to health care planning. *Evaluation & the health professions*. 1994;17(1):60-76.
- 2. Levesque JF, Harris MF, Russell G. Patient-centred access to health care: conceptualising access at the interface of health systems and populations. *International journal for equity in health.* 2013;12:18.
- 3. Gulliford M, Figueroa-Munoz J, Morgan M, et al. What does 'access to health care' mean? *Journal of health services research & policy.* 2002;7(3):186-188.
- 4. Guagliardo MF. Spatial accessibility of primary care: concepts, methods and challenges. International journal of health geographics. 2004;3(1):3.
- 5. Guagliardo MF, Jablonski KA, Joseph JG, Goodman DC. Do pediatric hospitalizations have a unique geography? *BMC health services research*. 2004;4(1):2.
- 6. Guagliardo MF, Ronzio CR, Cheung I, Chacko E, Joseph JG. Physician accessibility: an urban case study of pediatric providers. *Health & place*. 2004;10(3):273-283.
- 7. McLafferty SL. GIS and health care. *Annual review of public health*. 2003;24:25-42.
- 8. Andrulis DP. Access to care is the centerpiece in the elimination of socioeconomic disparities in health. *Annals of internal medicine*. 1998;129(5):412-416.
- 9. Griffith K, Evans L, Bor J. The Affordable Care Act Reduced Socioeconomic Disparities In Health Care Access. *Health affairs (Project Hope).* 2017.
- 10. Towne SD, Jr. Socioeconomic, Geospatial, and Geopolitical Disparities in Access to Health Care in the US 2011-2015. *International journal of environmental research and public health*. 2017;14(6).
- 11. Shiode N, Shiode S, Rod-Thatcher E, Rana S, Vinten-Johansen P. The mortality rates and the space-time patterns of John Snow's cholera epidemic map. *International journal of health geographics*. 2015;14:21.
- 12. Boulos MN. Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom. *International journal of health geographics*. 2004;3(1):1.
- 13. Sanati NA, Sanati M. Growing interest in use of geographic information systems in health and healthcare research: a review of PubMed from 2003 to 2011. *JRSM short reports*. 2013;4(6):2042533313478810.
- 14. Lyseen AK, Nohr C, Sorensen EM, et al. A Review and Framework for Categorizing Current Research and Development in Health Related Geographical Information Systems (GIS) Studies. *Yearbook of medical informatics.* 2014;9:110-124.
- 15. Goldberg DW, Jacquez GM. Advances in geocoding for the health sciences. *Spatial and spatio-temporal epidemiology.* 2012;3(1):1-5.
- 16. Jacquez GM. A research agenda: does geocoding positional error matter in health GIS studies? *Spatial and spatio-temporal epidemiology.* 2012;3(1):7-16.
- 17. Gesler W. The uses of spatial analysis in medical geography: a review. *Social science & medicine (1982).* 1986;23(10):963-973.
- 18. Graves BA. Integrative literature review: a review of literature related to geographical information systems, healthcare access, and health outcomes. *Perspectives in health information management*. 2008;5:11.

- 19. Samarasundera E, Walsh T, Cheng T, et al. Methods and tools for geographical mapping and analysis in primary health care. *Primary health care research & development*. 2012;13(1):10-21.
- 20. Musa GJ, Chiang PH, Sylk T, et al. Use of GIS Mapping as a Public Health Tool-From Cholera to Cancer. *Health services insights.* 2013;6:111-116.
- 21. Brownstein JS, Cassa CA, Kohane IS, Mandl KD. Reverse geocoding: concerns about patient confidentiality in the display of geospatial health data. *AMIA Annual Symposium proceedings AMIA Symposium*. 2005:905.
- 22. Nebeker C, Lagare T, Takemoto M, et al. Engaging research participants to inform the ethical conduct of mobile imaging, pervasive sensing, and location tracking research. *Translational behavioral medicine*. 2016;6(4):577-586.
- 23. Stock R. Distance and the utilization of health facilities in rural Nigeria. *Social science & medicine (1982).* 1983;17(9):563-570.
- 24. Hunter JM, Shannon GW. Jarvis revisited: distance decay in service areas of mid-19th century asylums. *The Professional geographer : the journal of the Association of American Geographers.* 1985;37:296-302.
- 25. Gething PW, Noor AM, Zurovac D, et al. Empirical modelling of government health service use by children with fevers in Kenya. *Acta tropica*. 2004;91(3):227-237.
- 26. Gething PW, Noor AM, Goodman CA, et al. Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics. *BMC medicine*. 2007;5:37.
- 27. Feikin DR, Nguyen LM, Adazu K, et al. The impact of distance of residence from a peripheral health facility on pediatric health utilisation in rural western Kenya. *Tropical medicine & international health : TM & IH.* 2009;14(1):54-61.
- 28. Malqvist M, Sohel N, Do TT, Eriksson L, Persson LA. Distance decay in delivery care utilisation associated with neonatal mortality. A case referent study in northern Vietnam. *BMC public health.* 2010;10:762.
- 29. Requia WJ, Roig HL, Adams MD, Zanobetti A, Koutrakis P. Mapping distance-decay of cardiorespiratory disease risk related to neighborhood environments. *Environmental research.* 2016;151:203-215.
- 30. Higgs G. A Literature Review of the Use of GIS-Based Measures of Access to Health Care Services. *Health Services & Outcomes Research Methodology*. 2004;5:119-139.
- 31. Aimone AM, Perumal N, Cole DC. A systematic review of the application and utility of geographical information systems for exploring disease-disease relationships in paediatric global health research: the case of anaemia and malaria. *International journal of health geographics.* 2013;12:1.
- 32. Kelly C, Hulme C, Farragher T, Clarke G. Are differences in travel time or distance to healthcare for adults in global north countries associated with an impact on health outcomes? A systematic review. *BMJ open.* 2016;6(11):e013059.
- 33. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Systematic reviews*. 2015;4:1.
- 34. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* (*Clinical research ed*). 2015;350:g7647.

- 35. Higgins J, Altman D, Stern J. Assessing risk of bias in included studies: In: Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions. *The Cochrane Collaboraton*. 2008:187-241.
- Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ (Clinical research ed)*. 2008;336(7650):924-926.
- Ryan R, Hill S. How to GRADE the quality of the evidence. *Cochrane Consumers and Communication Group, available at <u>http://cccrgcochraneorg/author-resources</u> Version 3. 2016.*
- 38. Andersen RM. Revisiting the behavioral model and access to medical care: does it matter? *Journal of health and social behavior.* 1995;36(1):1-10.
- Babitsch B, Gohl D, von Lengerke T. Re-revisiting Andersen's Behavioral Model of Health Services Use: a systematic review of studies from 1998-2011. *Psycho-social medicine*. 2012;9:Doc11.
- 40. Schootman M, Sterling DA, Struthers J, et al. Positional accuracy and geographic bias of four methods of geocoding in epidemiologic research. *Annals of epidemiology*. 2007;17(6):464-470.
- 41. Haynes R, Jones AP, Sauerzapf V, Zhao H. Validation of travel times to hospital estimated by GIS. *International journal of health geographics*. 2006;5:40.
- 42. Sommerhalter KM, Insaf TZ, Akkaya-Hocagil T, et al. Proximity to Pediatric Cardiac Surgical Care among Adolescents with Congenital Heart Defects in 11 New York Counties. *Birth Defects Research.* 2017;109(18):1494-1503.
- 43. Smith ER, Vissoci JRN, Rocha TAH, et al. Geospatial analysis of unmet pediatric surgical need in Uganda. *Journal of Pediatric Surgery*. 2017;52(10):1691-1698.
- 44. Muffly MK, Medeiros D, Muffly TM, Singleton MA, Honkanen A. The Geographic Distribution of Pediatric Anesthesiologists Relative to the US Pediatric Population. *Anesthesia and analgesia.* 2017;125(1):261-267.
- 45. Hansen M, Loker W, Warden C. Geospatial Analysis of Pediatric EMS Run Density and Endotracheal Intubation. *The western journal of emergency medicine*. 2016;17(5):656-661.
- 46. Featherstone P, Eberth JM, Nitcheva D, Liu J. Geographic Accessibility to Health Services and Neonatal Mortality Among Very-Low Birthweight Infants in South Carolina. *Maternal and child health journal.* 2016;20(11):2382-2391.
- 47. Amram O, Schuurman N, Pike I, Friger M, Yanchar NL. Assessing access to paediatric trauma centres in Canada, and the impact of the golden hour on length of stay at the hospital: an observational study. *BMJ open.* 2016;6(1):e010274.
- 48. McMillan JE, Meier ER, Winer JC, et al. Clinical and Geographic Characterization of 30-Day Readmissions in Pediatric Sickle Cell Crisis Patients. *Hospital pediatrics*. 2015;5(8):423-431.
- 49. Dumas SA, Polk D. Pediatric dental clinic location and utilization in a high-resource setting. *Journal of public health dentistry*. 2015;75(3):183-190.
- 50. Zaman SM, Cox J, Enwere GC, Bottomley C, Greenwood BM, Cutts FT. The effect of distance on observed mortality, childhood pneumonia and vaccine efficacy in rural Gambia. *Epidemiology and infection*. 2014;142(12):2491-2500.

- 51. Root ED, Lucero M, Nohynek H, et al. Distance to health services affects local-level vaccine efficacy for pneumococcal conjugate vaccine (PCV) among rural Filipino children. *Proceedings of the National Academy of Sciences of the United States of America.* 2014;111(9):3520-3525.
- 52. Delmelle EM, Cassell CH, Dony C, et al. Modeling travel impedance to medical care for children with birth defects using Geographic Information Systems. *Birth defects research Part A, Clinical and molecular teratology.* 2013;97(10):673-684.
- 53. Cassell CH, Krohmer A, Mendez DD, Lee KA, Strauss RP, Meyer RE. Factors associated with distance and time traveled to cleft and craniofacial care. *Birth defects research Part A, Clinical and molecular teratology.* 2013;97(10):685-695.
- 54. Okwaraji YB, Mulholland K, Schellenberg JR, Andarge G, Admassu M, Edmond KM. The association between travel time to health facilities and childhood vaccine coverage in rural Ethiopia. A community based cross sectional study. *BMC public health.* 2012;12:476.
- 55. Okwaraji YB, Cousens S, Berhane Y, Mulholland K, Edmond K. Effect of geographical access to health facilities on child mortality in rural Ethiopia: a community based cross sectional study. *PLoS One.* 2012;7(3):e33564.
- 56. Kashima S, Suzuki E, Okayasu T, Louis R, Eboshida A, Subramanian SV. Association between proximity to a health center and early childhood mortality in madagascar. *PLoS ONE.* 2012;7(6).
- 57. Brantley MD, Lu H, Barfield WD, Holt JB, Williams A. Mapping US pediatric hospitals and subspecialty critical care for public health preparedness and disaster response, 2008. *Disaster medicine and public health preparedness*. 2012;6(2):117-125.
- 58. Schooling CM, Kwok MK, Yau C, Cowling BJ, Lam TH, Leung GM. Spatial proximity and childhood hospital admissions in a densely populated conurbation: evidence from Hong Kong's 'Children of 1997' birth cohort. *Health & place*. 2011;17(5):1038-1043.
- 59. Jenkins TM, Xanthakos SA, Zeller MH, Barnett SJ, Inge TH. Distance to clinic and followup visit compliance in adolescent gastric bypass cohort. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery.* 2011;7(5):611-615.
- 60. Bersamin M, Todd M, Remer L. Does distance matter? Access to family planning clinics and adolescent sexual behaviors. *Maternal and child health journal.* 2011;15(5):652-659.
- 61. Moïsi JC, Kabuka J, Mitingi D, Levine OS, Scott JAG. Spatial and socio-demographic predictors of time-to-immunization in a rural area in Kenya: Is equity attainable? *Vaccine.* 2010;28(35):5725-5730.
- 62. Moïsi JC, Gatakaa H, Noor AM, et al. Geographic access to care is not a determinant of child mortality in a rural Kenyan setting with high health facility density. *BMC public health.* 2010;10:142.
- 63. Acosta CD, Kit Delgado M, Gisondi MA, et al. Characteristics of pediatric trauma transfers to a level i trauma center: implications for developing a regionalized pediatric trauma system in california. *Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.* 2010;17(12):1364-1373.
- 64. Nance ML, Carr BG, Branas CC. Access to pediatric trauma care in the United States. *Archives of Pediatrics and Adolescent Medicine*. 2009;163(6):512-518.

65. Case AP, Canfield MA, Barnett A, et al. Proximity of pediatric genetic services to children with birth defects in Texas. *Birth defects research Part A, Clinical and molecular teratology.* 2008;82(11):795-798.