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Abstract

Microbiome community composition is an important factor in human health, and while
most microbiome research to date has focused on high microbial biomass communities,
low biomass communities, such as found in the urinary tract, are also of medical
importance. The relative scarcity of microbes in low biomass communities makes an
accurate determination of community composition challenging, since contamination
and technical noise may confound the true community signal when biomass is very low.
However, the impact of these noise sources on microbial community inference is not
well studied. The most common technique for estimating community composition is to
sequence the 16S rRNA genes, which serve as phylogenetic barcodes for prokaryotes, in
a sample. True community sequences, and hence composition, are then inferred from
the noisy sequence data. OTU clustering algorithms have been the de facto standard for
in silico community inference from 16S rRNA sequence data, but recently, several
algorithms have emerged that use sequencer error models to improve inference. Here,
we benchmarked six community inference software methods, including two OTU
methods, three error model methods, and one entropy-based method, to assess their
performance on samples of varying biomass. First, we compared the methods using four
high microbial biomass mock communities to assess their baseline performance with

III

“typical” microbiome data. Then, we compared the methods’ performance on a dilution

series made from a single mock community, to generate samples that varied only in



relative biomass. Sequences inferred by each method were classified according to their
most likely source: community, technical noise, contamination, or unknown. With the
high biomass data, we found that the error model methods showed both good
sensitivity and specificity, whereas the other three methods showed relatively poor
sensitivity, specificity, or both. Contamination was present in the inferred communities,
but in very small proportions. With the dilution series data, contamination made up an
increasing proportion of the inferred communities, dominating the composition of the
most dilute sample, regardless of inference method. However, the error model methods
showed a nearly linear association between the number of contaminant sequences
inferred and sample concentration, whereas the entropy-based method exhibited a less
linear relationship, and the OTU methods showed the least relationship between
inferred contaminant sequences and sample biomass. Thus, we conclude that while no
inference method on its own distinguishes true community from contaminant
sequences, error model methods provide the most accurate characterization of
community and contaminants, and further research into in silico contaminant

identification using error model methods is warranted.

vi



l. Introduction

A microbiome is a community of microbes— bacteria, archaea, viruses, and fungi— that
coexist in a defined, small-scale environment. Examples of environments that host
microbiomes include the human gut, skin, and mucosae, as well as soil, plant leaves, and
bodies of water. The group of organisms that inhabit a given microbiome are referred to
collectively as the microbiota. With the rapid growth of interest in their study, it seems
that microbiomes are found almost wherever we look, including environments once

thought to be sterile such as the urine,(1) the lungs,(2) and blood.(3)

Microbiomes have been closely tied to human health. Distinct microbial community
compositions have been associated with a wide range of host phenotypes and diseases,
from obesity to irritable bowel disease to Parkinson’s disease.(4—6) In addition, there is
ample evidence that the microbiota play an important role in training and regulating the
immune system.(7) Although in most cases causal links have yet to be demonstrated
between microbiome composition and an associated host phenotype, understanding
these associations can nevertheless be of great potential benefit to the biomedical
community: the human microbiome may help to diagnose and treat diseases, as well as
predict response to treatments and long-term health outcomes.(8) In one example of
using the microbiome for clinical application, fecal transplants have been successfully
used to treat Clostridium difficile infections by re-establishing beneficial microbial

populations.(9)



While the majority of human microbiome research to date has focused on body sites
with relatively large microbial biomass, such as the gut, vagina, and oral cavity, microbial
communities are also found at much lower abundance in a variety of other sites. Some
examples of these low biomass microbiomes are found in urine and the urinary tract, (1)
on the mucosae of the lungs,(2) and in the blood.(3) There is even evidence that the air
surrounding each of us contains a cloud of microorganisms given off by our bodies.(10)
Just as with the higher biomass microbiota, low biomass communities have been
associated with a number of human disorders. Changes in the urinary microbiota
relative to healthy population controls are seen in women who suffer from urgency
urinary incontinence,(11) and distinct microbial communities are observed in patients
with cystic fibrosis, asthma, and chronic obstructive pulmonary disease.(12) However,
studying these low biomass communities presents special challenges to researchers.
Because samples taken from urine or blood, for example, contain a relatively small
amount of microbial material, accurate characterization of the community composition

can be very difficult.(13,14)

Currently, the most common method for profiling a microbial community is to sequence
the 16S rRNA gene. Found in all prokaryotes, the 16S rRNA gene consists of
hypervariable regions, which serve as barcodes that are unique to distinct organisms,
flanked by highly conserved regions that offer a target for PCR primers to isolate and
amplify the region of interest in a wide range of organisms. DNA sequencing reads

generated from the targeted 16S rRNA region are then processed by quality filtering and



sequence inference in silico to remove noise introduced by PCR and sequencing, as well

as to account for intra-organism variation.

Since at least 2006,(15) clustering reads into operational taxonomic units (OTUs) has
been the de facto standard for sequence inference with 16S rRNA data. With OTU
methods, the researcher selects a radius of variability (typically 3%), within which
sequence differences are assumed to be due to variation within the taxonomic group or
random sequencer noise. All sequence reads within the chosen radius from each other
are clustered into a single OTU, which is commonly inferred as representing one
“organism” or taxonomic group. Recently, several methods have been published that
take a different approach.(16—18) These algorithms, which we refer to here as error
modeling methods, attempt to model the error of the sequencer, and then cluster reads
so that their distribution within clusters is consistent with the error model. This
approach avoids making any assumption about the variation within a taxonomic group
(e.g., “intra-species 16S rRNA variation is 3%"), a weakness of OTU methods.(19) By
considering both sequence similarity and abundance in the model, error modeling
methods account for the broader error profiles (in terms of number of base-pair
substitutions) that result from high-throughput, next-generation sequencing (NGS)
experiments, which may produce many thousands of reads for a single template
sequence. Hence, error modeling has the potential to simultaneously improve the

sensitivity and specificity of 16S rRNA sequence inference compared to OTU methods.



As mentioned above, samples taken from an environment with low microbial biomass
present distinct challenges to the researcher, and methods deemed appropriate for high
biomass samples— both in the lab and in silico— may not transfer well to low biomass
studies. When dealing with low biomass samples, there is less starting template DNA for
the PCR reaction. Consequently, any contamination from extraction reagents or the
laboratory environment makes up a larger fraction of the extracted sample when
compared to high microbial biomass samples.(13) (Examples of genera commonly found
as contaminants in sequencing experiments include Bradyrhizobium,
Rhizobium/Agrobacterium, Sphingomonas, Burkholderia, Microbacterium,
Propionibacterium, and Pseudomonas.(14,20)) Additionally, the greater number of PCR
cycles typically required with low biomass samples may produce disproportionate
quantities of chimeric and contaminant DNA sequences.(2) In other words, the
sequencing of low biomass microbiome communities suffers from a low signal-to-noise
ratio, a problem not encountered when sequencing high microbial biomass
communities, since any contaminating sequences are overwhelmed by the community

DNA in the latter case.

The low signal-to-noise ratio encountered when sequencing low microbial biomass
samples can have serious implications for the biological, and even biomedical,
interpretation of an experiment. On the one hand, if the strength of the noise—
particularly noise from contaminating species— is too great, it may be mis-interpreted
as forming an important component of the microbial community. Even noise from

technical sources, such as sequencer substitution errors, can lead to inflated estimates



of sample diversity. On the other hand, the diminished strength of the community signal
means that sparse but important community members may not be detected , or else
may be dismissed as background noise. In the worst case, confounding noise might even
lead to invalid conclusions about the biomedical role of a microbiome community,

leading to a misguided understanding of the role of microbiomes in our health.

A few studies have investigated the effects of wet-lab variables on low biomass
microbiome sequencing experiments, for example the impact of different quantities of
starting material,(21,22) the contamination introduced by different DNA extraction and
sequencing reagents,(14,23) and the effects of other potential sources of
contamination.(24) Here, we instead propose to study the impact of in silico methods
on the inference of community composition in low biomass samples. Specifically, we
intend to compare the accuracy of various core algorithms in 16S rRNA read processing
pipelines, namely OTU and error modeling methods, when presented with low biomass
data. We only consider methods designed for or compatible with Illumina sequence
data, since this has become the predominant sequencing platform,(25) and the vast
majority of modern microbiome investigations currently use lllumina technology. First,
we benchmark selected inference methods on mock microbial community samples with
high microbial biomass to assess their baseline performance on data from high biomass
communities. Then, we will compare the same methods on a mock community dilution
series— a set of samples with successively decreasing DNA concentration— to observe
how inference results change when sample biomass becomes small, and to evaluate

how each method performs in this scenario.



Il. Background

A variety of experimental techniques have been used to investigate microbiomes since
at least the 1960s. The earliest studies used conventional culturing methods to grow
bacteria from a sample, e.g., a swab of the oral cavity. The resulting cultures would then
be examined microscopically and bacteria would be identified by their morphologic and
biochemical characteristics.(26—28) However, culture methods suffer from the severe
limitation that a vast majority of microorganisms will not grow in conventional culture
media, a fact that was not well appreciated until culture-independent technologies were
developed in the 1980s.(29) This constraint results in low sensitivity for culture
experiments, and also led to the misconception that certain body sites (particularly
those that are home to low biomass communities) were sterile. Another drawback to
culture-based studies is their reliance on phenotype to distinguish organisms,
observations that can be subjective and often ambiguous. The development of DNA
probe hybridization technology provided one of the earliest culture-independent tools
for querying microbiomes.(30) Although not constrained by whether or not an organism
can be cultured, the sensitivity and precision of DNA probes are constrained by the set
of probes used. In effect, this restriction means that only a relatively small set of known

organisms can be detected by DNA hybridization.

DNA sequencing technologies represent a major advance in our ability to query
microbiome communities, and the development of inexpensive, high-throughput next-

generation sequencing (NGS) has fueled a huge growth in microbiome research over the



last decade. Two primary strategies exist to study microbial communities using NGS.(31)
The first, shotgun whole-genome sequencing, attempts to sequence all genomic DNA
present in a microbiome sample. By sequencing the entire metagenome (the genome of
a community), this method affords the highest resolution of community
characterization, in terms of distinguishing between similar organisms, and permits
direct functional gene profiling of the microbiota. On the downside, it is expensive to
achieve the sequencing depth required for shotgun metagenomic experiments. Also,
when studying human microbiomes, detection of microbes is hindered by the fact that a
majority of the sample DNA is contamination from the human host. In addition, analysis
of the data is difficult, requiring removal of human read sequences and accurate read
mapping and/or assembly of a large number of microbial genomes, all of which requires

substantial computational resources.(32)

Targeted sequencing of the prokaryotic 16S rRNA gene avoids many of the difficulties
encountered with shotgun sequencing, while still offering reasonable sensitivity and
precision for community profiling. Found in all bacteria and archaea, the 16S rRNA gene
includes regions of DNA that are highly conserved across organisms, offering an ideal
target for well-designed PCR primers to isolate and amplify a gene common to
community members. Other regions of the 16S rRNA gene sequence, called
hypervariable regions, vary such that they can be used as barcodes to distinguish
organisms from each other. Thus, by targeting and sequencing 16S rRNA genes (so-
called “amplicon” sequencing) from a human host sample, a census of the bacteria living

in a body habitat can be taken. Although not as precise as shotgun metagenomes, 16S



rRNA hypervariable regions are quite phylogenetically informative, typically permitting
classification to genus level, with species or even strain-level distinctions sometimes
possible.(16) The much smaller coverage requirement of amplicons relative to whole-
genome sequencing means that 16S rRNA experiments are much less expensive to carry
out. Also, the data sets produced are smaller, and don’t require assembly or mapping of
reads, making the analysis more tractable with only modest computational resources.
Because of this accessibility and the high degree of phylogenetic information it provides,
16S rRNA sequencing is the most popular technique for studying the human

microbiome, and it is this sequencing strategy that is the focus of our study.

Once a 16S rRNA sequencing experiment has been performed and the raw data
obtained, computational analysis is required to extract meaningful information from the
read sequences. This analysis can be separated into two stages: primary analysis, in
which the raw read sequences are processed to infer the community composition; and
secondary, or “downstream”, analysis, which may include estimating community
properties such as alpha and beta diversity, comparing samples to detect significant
differences, and conducting network analysis. Here, we will address the primary
processing of raw reads to infer community composition. Specifically, we will focus on
data generated by the Illumina sequencing platform, which has become the
predominant sequencing technology for high-throughput sequencing experiments,

including microbiome experiments.(25)



The simplest approach to 16S rRNA read processing is to simply group sequences by
identity, counting the number of times each unique read occurs and considering each
unique read to represent a distinct organism. However, this approach is flawed because
sequence data contain non-trivial errors and noise from both technical and biological
sources. One source of technical error is introduced by PCR (necessary to isolate and
amplify a 16S rRNA hypervariable region), and occurs when two 16S rRNA fragments
from different parent sequences become fused to form a hybrid sequence, or chimera,
which is not biological. Another source of technical artifacts is the sequencer, which has
a finite error rate for individual base calls (on the order of 0.1% for typical lllumina
reads). Some degree of biological error, either from DNA contamination of extraction
reagents or from imperfectly sterile lab conditions, is also likely to be present. As a
result of these various error sources, samples of a microbial community known to have
only a few distinct organisms routinely produce tens of thousands or more unique read

sequences.

To reduce the complexity of noisy data and allow for inference of sample composition,
the most common strategy is to cluster sequences above a certain threshold of
similarity into operational taxonomic units, or OTUs. Figure 1 shows an example of OTU
clustering. Typically, a threshold of 97% similarity is used, which is presumed to
correspond to the natural variation within bacterial species. Thus, OTUs reduce spurious
sequence identification by clustering reads presumed to differ only due to intra-species
variation or technical artifacts, i.e., sequencer error. Representative sequences from

each OTU cluster can then be mapped to a 16S rRNA reference database for taxonomic



identification. Such databases have been compiled over several decades and represent a
compilation of millions of 16S rRNA sequences that have been deposited by researchers

from the microbiology community.(33)

Figure 1: Example of OTU clustering. OTU clustering methods group read sequences using a fixed
similarity threshold. Each dark shaded dot represents the true 16S rRNA sequence of an
organism, lighter shaded dots represent read sequences with errors (derived from the true
sequence of the same color). Distance between dots shows degree of difference between
sequences, size of dots represents relative abundance of reads in dataset. Light grey circles are
OTU clusters, with fixed similarity threshold shown by T. OTUs may lump organisms with similar
sequences into a single cluster (as shows for blue and violet sequences above, as well as green
and yellow sequences), thereby detecting only one “organism” when multiple are present. OTUs
may also split reads with sequencing errors into distinct clusters (as shown by the light green
sequences above), potentially resulting in false positive detections.

One issue with OTU clustering is that the fixed similarity threshold corresponds poorly to
biological taxa. For example, some genera exhibit wide intra-genus variation in their 16S

rRNA sequences, whereas others vary only slightly,(19) so clustering with a fixed

10



similarity threshold arbitrarily splits some taxa while lumping others with very similar
sequences. This lumping of taxa also means that OTU clustering limits the ability to
resolve closely related sequences that may represent meaningful phylogenetic
differences. Similarly, the fixed threshold of OTUs does a poor job of removing
sequencer error, as it does not account for the possibility that an erroneous sequence
could differ from its true sequence by more than the threshold, an event that is much
more likely as sequencing depth and throughput have increased with improved
technologies. As a consequence, OTU clustering tends to greatly inflate the number of
distinct organisms present in a sample, with estimates in the thousands commonly given

even for samples likely to be of much lower diversity.(34)

Recently, a number of new methods have emerged to overcome the limitations of OTU
clustering.(16—18,35) Rather than simply considering similarity to cluster reads, these
algorithms use sequencer error models to distinguish erroneous reads from true
biological reads. Figure 2 shows an example of error model inference. Some of these
error modeling methods employ a priori models of typical sequencer error profiles,
while another approach is to use an adaptive model estimated from the data
themselves. In addition to read similarity, error modeling methods take into account the
frequency distribution of sequences, and may also consider quality scores reported by
the sequencer. Once the set of biological read sequences has been inferred, all variation
is considered to be biologically meaningful. Further clustering of sequences into OTUs is
then possible, but may be undesirable, as it only reduces the information content and

hence the resolution for organism identification. With both simulated and mock

11



community data, error modeling methods have been shown to increase the ability to
resolve closely related organisms while decreasing the number of spurious

identifications relative to OTU methods.(16,35)
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Figure 2: Example of error model sequence inference. Error modeling methods use an explicit
model of sequencer error to infer community sequences. Each colored bar represents the true
16S rRNA sequence of an organism, light grey bars represent read sequences with errors.
Distance between bars (x-axis) shows degree of difference between sequences, height of bars
represents relative abundance of reads in dataset. Dark grey lines show a hypothetical error
model, representing the maximum expected frequency of sequencer error as distance from the
central sequence varies. The error model correctly infers the community composition, since
each true sequence is too abundant to fall under the error profile of another sequence, while all
sequences with errors are consistent with the error model for one of the true sequences.

For this study, we have selected six sequence inference methods for comparison,

including two representative OTU methods, an OTU alternative that uses an

12



information-theoretic entropy-based approach, and three error modeling methods. The
two OTU methods are called UCLUST (36) and UPARSE,(37) the entropy-based method is
named Minimum Entropy Decomposition (MED),(35) and the error modeling methods
are UNOISE,(17) Deblur,(18) and the Divisive Amplicon Denoising Algorithm 2 (DADA2).

(16) Each is described in more detail below.

UCLUST is an OTU clustering method that we chose because it has been widely used and
cited in microbiome research. Its widespread use is largely due to its inclusion, until
recently, as the default inference method in the Quantitative Insights Into Microbial
Ecology (QIIME) software suite,(38) a popular microbiome analysis tool. The UCLUST
algorithm in QIIME begins with an abundance-sorted list of sequences. It then aligns
those sequences against a database of cluster seeds, which is initially empty. Sequences
are greedily clustered if they are within the radius of variation (typically 3%, or 97%

similarity) of existing seeds, otherwise they become new seeds.

The second OTU method chosen, UPARSE is a newer algorithm published in 2013 by the
same author as UCLUST.(36,37) UPARSE uses the same greedy clustering strategy, but
precedes it with a stringent quality filtering step, which excludes lower-quality read
sequences from the set used to form cluster seeds. It also removes chimeric sequences
concurrently with the clustering stage (rather than prior to clustering as with UCLUST) if
a query sequence is best explained as a chimera of existing cluster seeds. We selected
UPARSE because it has been shown to greatly reduce the inflation of community

diversity estimates that result from most OTU clustering algorithms.(34)

13



One of the first published 16S rRNA sequence processing methods to use a different
strategy from the OTU approach was MED.(35) MED begins by placing all sequences in a
single cluster and aligning them. The Shannon entropy of each alignment column is
computed, and if any column has entropy higher than a threshold (computed
dynamically for each cluster), the cluster is divided so as to make the entropy of the
offending column zero in each new cluster. New entropy thresholds are computed, and
cluster division repeats until all clusters have entropy below the threshold. MED then
removes clusters whose abundance is below a minimum threshold (0.02% of all dataset
reads by default), considering these to be noise. Included in the entropy calculation is a
consideration of read and nucleotide frequency profiles, and thus the entropy threshold
serves as an implicit model of sequencer error. Figure 3 shows an example of entropy-

based clustering.

MED was evaluated on two biological datasets,(35) and compared to UCLUST and a
method that performs direct taxonomic classification of unique reads (GAST).(39) In
each case, MED resolved single OTUs (from UCLUST) or single taxa (from GAST) into
multiple nodes that corresponded to distinct species or host sites, demonstrating that
MED has higher sensitivity for resolving ecologically meaningful information from 16S
rRNA data when compared to OTU clustering. MED is included in this study for its

potential to give distinct results from either OTU or error modeling methods.
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Step 2 (final)

Cluster 1
TCTATTCGGCAACT
TCTATTCGGCAACT
TCTATTCGGCAACT
TCTATTCGGCAACT
TCTATTCGGCAACT
TCTATTCGGCAACT
TCTATTCGGCAACG

Cluster 3

Cluster 4
TGGACGGCAACT
TGGACGGCAACT
TGGACGGCAACT
TGGACGGCAACT

Figure 3: Example of entropy-based clustering. Entropy-based clustering considers the Shannon

entropy (amount of variation) of individual columns of the aligned sequences. Sequences with

the same color above are identical. If the entropy of a column is above a designated threshold,

the cluster is split so as to make the entropy of the column zero in the new clusters. Columns

with entropy below the threshold do not lead to cluster splitting. Cluster splitting stops when all

columns in all clusters have entropy below the threshold.

Published in 2016, the first stand-alone method developed for lllumina sequencing data

to use an explicit error model for sequence inference was DADA2.(16) DADA?2 uses a

multivariate Poisson distribution to model errors in sequencing reads, and the model

parameters are estimated empirically from the data by considering quality scores

reported by the sequencer. Beginning with a worst-case assumption for the error

model, the algorithm alternates between clustering sequences given the error model

15



and estimating the error model given the clustering, until convergence. During
clustering, all sequences begin in a single cluster whose centroid is the most abundant
sequence, inferred to be the correct template sequence. The probabilities that all other
sequences were derived from the centroid, given the error model, is calculated. If the
least probable sequence is below a p-value threshold (1x10™° by default), it forms a new
cluster centroid, and sequences are re-assigned to their most likely cluster. Cluster

division repeats until all clusters are consistent with the error model.

The authors compared DADA2 to MED and three OTU clustering methods. On three
mock community datasets, DADA2 outperformed the other methods in terms of both
sensitivity and specificity: it resolved finer variation than any of the OTU methods,
detected rare variants that were discarded by MED’s noise-filtering abundance
threshold, and generally output fewer false positive sequences than the other methods
on each of the three datasets. On a natural microbiome dataset, DADA?2 identified six
variants of a single species that showed evidence of being ecologically distinct, which
would have been lumped into a single OTU owing to their highly similar 16S rRNA
sequences. This showed that using an error model, higher resolution of 16S rRNA data is

possible without reducing specificity.

Another denoising algorithm, UNOISE, was originally published in 2015 (40) and later
updated to its current version (UNOISE2) in 2016.(17) Similar to DADA2, UNOISE uses a

parametric error model, but rather than a multivariate Poisson model, UNOISE employs

16



a simpler power-law distribution to approximate sequencer error, with a single user-

specified tuning parameter.

UNOISE was benchmarked on three mock community datasets and three biological
datasets, and results compared to those of DADA2. In general, the performance of
UNOISE was very similar to that of DADA2, and in some cases UNOISE produced
apparently better results. The author’s evaluation showed that a simplified error model
that does not consider sequence quality scores can perform comparably to one that
uses quality scores to estimate many parameters (DADA2), thus requiring additional

intensive computation.

Like DADA2 and UNOISE2, Deblur, published in 2017,(18) considers read frequency and
inter-sequence distance to predict erroneous sequences. Instead of a smooth
parametric model, Deblur employs stepwise, empirical thresholds that specify the
maximum number of erroneous sequences expected at each Hamming distance
(number of nucleotide substitutions) from a given query sequence, up to a maximum
distance of 11. In decreasing order of abundance, each sequence's expected error
abundances are computed and subtracted from the abundances of neighboring
sequences. Sequences whose abundance remains above zero after all subtractions have

been done are inferred as the correct template sequences.

Deblur’s performance was compared to DADA2 and UNOISE on simulated, mock
community, and real biological datasets. All three methods achieved high accuracy on

the simulated data, with Deblur and UNOISE showing somewhat better sensitivity, and

17



all methods gave results close to the ground truth on the mock community data,
although DADA?2 predicted the fewest, and Deblur the most, false positives. Evaluated
for stability on technical replicates, Deblur achieved a higher overlap of inferred
sequences between replicates than DADA2 (UNOISE was not tested). Deblur thus
represents another strong alternative to OTU clustering, and it was additionally shown

to run an order of magnitude faster than DADA2 owing to its simple, a priori model.

Each of these six methods will be benchmarked according to the following two specific

aims:

Aim 1

For the first aim, two methods representative of the OTU clustering algorithm, UCLUST
and UPARSE, as well as MED and three error modeling methods, will be evaluated on
several mock communities with high microbial biomass. The goal of this aim is twofold:
first, to provide a benchmark of these methods independent of the authors who
published them; and second, to establish the baseline performance of each method on
“typical”, high microbial biomass samples. We hypothesize that error-modeling methods

will be superior to clustering methods for this purpose.

Aim 2
For the second aim, | will evaluate the same methods on a dilution series, which mimics
successively lower sample biomass. There are also two goals for this stage. The first is to

identify which, if any, methods perform consistently better, or better at low
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concentrations. The second is to observe the extent to which low microbial biomass

affects community inference, regardless of method.

The overarching goal is not only to observe the extent to which sample biomass alone
can alter the community composition inferred by a given method, but also to assess the
potential of various inference strategies for identifying and removing contaminating
sequences computationally. Our hypothesis is that error modeling methods will be both
more sensitive and specific than OTU methods, regardless of starting biomass. We also
anticipate that decreasing the starting DNA concentration will lead to an increase in the
inference of spurious and contaminant sequences due to the lower signal-to-noise ratio,

but that error modeling will more accurately identify the true contamination present.

This study is motivated by the desire to characterize the community of low biomass
microbiomes as accurately as possible using existing 16S rRNA data processing methods,
in order to strengthen the validity of association between distinct microbiota profiles
and phenotypes (including diseases) of interest. While a number of studies have
compared the performance of these methods on typical data sets, to our knowledge this

is the first to systematically examine their ability to process low biomass sample data.
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IlIl. Methods

Experimental design
To assess the performance of the six selected methods, we benchmarked each method
on a number of mock community datasets. Mock communities are used instead of

III

“natural” biological samples (such as stool or urine) because the community
composition of a mock community is known in advance, which allows a more objective
assessment of the accuracy of the community inferred by each method. We first
compared the six methods on four high biomass (undiluted) mock community datasets,
which served two purposes: first, to give an independent assessment of the merits of
these methods; and second, to show the baseline performance of each method on
samples representative of high microbial biomass communities (such as the gut
microbiota). Three of these datasets, referred to here as “Kozich”, “Schirmer”, and
“D’Amore” are from previously published studies.(41-43) The fourth dataset, which we

call “Zymo”, was generated for this study by Mark Asquith’s lab at the Oregon Health &

Science University.

We next benchmarked each method on a mock community dilution series, prepared
from the Zymo mock community by performing eight serial dilutions (each having 1/3
the DNA concentration of the previous dilution), for a total of nine samples. The dilution
series mimics samples of successively lower biomass, and allowed us to observe how

each method's inference results change as biomass decreases.
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Datasets
The Kozich mock community (41) comprises equal concentrations of 21 different
bacterial strains, and the dataset is available as run 130403 at

https://www.mothur.org/MiSeqgDevelopmentData.html. The Schirmer mock community

(42) was made from equal proportions of 57 prokaryotic strains (both archaea and
bacteria). The dataset was obtained from the European Nucleotide Archive (ENA,

https://www.ebi.ac.uk/ena), project accession PRJIEB6244, run accession ERR777695

(sample metalD-35). The D'Amore mock community (43) contains the same 57
prokaryotic strains as the Schirmer community, but the D'Amore sample has DNA
guantities that vary according to a logarithmic distribution. The data are also available
from ENA project accession PRIEB6244, run accession ERR777739 (sample metalD-88).
The Zymo community includes 8 strains with equal genomic proportions. Table 1 gives a

concise summary of these high microbial biomass mock communities.

Table 1: High microbial biomass datasets

Number of Genomic

Dataset name Source strains proportions Raw reads
Kozich Kozich, et al.(41) 21 equal 269.8k
Schirmer Schirmer, et al.(42) 57 equal 593.9k
D’Amore D’Amore, et al.(43) 57 logarithmic 262.1k
Zymo Zymo Research 8 equal 427.2k

The Zymo mock community, including the high biomass (undiluted) sample and each of
the dilution series samples, comprises 8 bacterial strains in equal proportions (see Table

2 for community composition), and was prepared for this study from the ZymoBIOMICS
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Microbial Community Standard, available from Zymo Research

(https://www.zymoresearch.com/zymobiomics-community-standard). This mock

community consists of both Gram positive and Gram negative bacteria in addition to
yeast species and thus is a useful tool to ensure the success of DNA extraction (and
subsequent sequencing) from a broad diversity of micro-organisms which may have
intrinsic biological properties (eg. cell wall thickness) that make them more or less
refractory to DNA isolation. DNA was extracted from the microbial standard with the
Qiagen DNeasy blood & tissue kit following the manufacturer's recommended protocol.
In brief, bacterial cells were lysed by mechanical and enzymatic lysis, followed by
removal of the inhibitor by precipitation. DNA was collected by passing it through a DNA
binding column. For further purification, binding products were washed to remove

contaminants, and purified DNA was collected by elution.

Table 2: Zymo mock community composition

Species Average GC Gram stain gDNA abundance

(%) (%)

Pseudomonas aeruginosa 66.2 - 12
Escherichia coli 56.8 - 12
Salmonella enterica 52.2 - 12
Lactobacillus fermentum 52.8 + 12
Enterococcus faecalis 37.5 + 12
Staphylococcus aureus 32.7 + 12
Listeria monocytogenes 38.0 + 12
Bacillus subtilis 43.8 + 12
Saccharomyces cerevisiae* 38.4 Yeast 2
Cryptococcus neoformans* 48.2 Yeast 2

* These species do not have 16S rRNA genes, and hence were not sequenced in this experiment
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Subsequently, eight serial dilutions were made from the extracted DNA, where each
successive aliquot was diluted with molecular grade water to 1/3 of its previous
concentration, resulting in nine total samples with the following concentrations relative
to the original extraction: 1/1 (undiluted), 1/3, 1/9, 1/81, 1/243, 1/729, 1/2187, and
1/6561. The V4 region of the 16S rRNA gene was amplified by PCR using Golay barcodes
and the 515FB/806RB primer pair.(44—48) PCR was performed in triplicate for 35 cycles
[verify] with ProMega hottaq polymerase (M5005), and amplification products
confirmed with gel electrophoresis. Amplified DNA was purified with the Qiagen
QIAquick PCR Purification kit. Samples were normalized to a concentration of 10 ng/pL,
pooled, and sequenced on an lllumina MiSeq using a Reagent Kit V2 to generate 2x251

base-pair reads.

Sequence pre-processing

Prior to clustering, reads were first trimmed, merged, and filtered to remove low quality
data. In all datasets, the first 15 nucleotides from the 5' end, which often contain
pathological errors, were removed, as well as the low quality 3' tails, which varied by
dataset (trim positions of forward/reverse reads: Zymo 230/210, D'Amore 250/240,
Kozich 240/220, and Schirmer 240/220). After trimming, forward and reverse reads
were merged and then filtered to remove low quality sequences. Merging was
performed with the USEARCH (36) fastq_mergepairs command, with a maximum of 10
differences (fastq_maxdiffs = 10). To ensure that only sequences from the V4 region of
the 16S rRNA were retained, merged sequences were removed if their lengths were

outside the expected range for the primer pair used. These ranges are 220-225 bp for
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Zymo and Kozich reads, and 258-263 bp for D'Amore and Schirmer reads (as the latter
used a different primer pair that targets a longer V4 sequence). Merged sequences were
further filtered to remove those with more than 2 expected errors, based on the
posterior Q-scores computed by USEARCH. An exception to this protocol is for the
DADA?2 pipeline, in which forward and reverse reads are filtered independently, and
only merged after sequence inference. In order to retain a similar proportion of the data
as for the other methods, forward and reverse reads were filtered with a higher
maximum of expected errors for the DADA2 pipeline (forward/reverse maximum errors:

Zymo 2.5/2.5, D’Amore 2.5/2.5, Kozich 2.5/3.0, and Schirmer 2.5/2.5).

Sequence inference

Each of the six clustering methods was run with default parameters on each
preprocessed datasets. The primary commands used for each method, as well as any
additional required parameters, are described here. For the QIIME-UCLUST method,
chimeras were first removed with identify_chimeric_seqs.py using the UCHIME (49)
method (option -m usearch61) with the gold.fa reference database (available at

http://drive5.com/otupipe/gold.tz). Sequences were then clustered de novo with the

pick_de_novo_otus.py command and the default uc/ustalgorithm. The UPARSE method
was executed by calling the cluster_otus command in USEARCH (which concurrently
removes chimeras), and then mapping reads to cluster seeds with the otutab command.
Similarly, the UNOISE method was run by calling unoise3in USEARCH (which also
removes chimeras), and reads were mapped to centroids with the otutab command.

The MED method was run by invoking the decompose command within the Oligotyping
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Pipeline.(50) As MED does not include native chimera removal, chimeras were removed
with uchime2_denovoin USEARCH after sorting clusters by size. Deblur was run by
calling workflow within the Deblur package, with the trim option (-t) set to the lower
bound of the merge length window mentioned above to guarantee that all sequences
have the same length, a requirement of Deblur. The DADA2 method was run with a
custom R script based on the dada2 library: first, error rates were estimated with the
learnErrors command; dereplicated reads were then clustered with dada, merged with
mergePairs, and tabled with makeSequenceTable; sequences outside the allowed merge
length window (see Sequence preprocessing above) were removed, and chimeras were

removed with removeBimeraDenovo.

Evaluation

To evaluate the results from each processing method, we classified sequences into five
categories, using a scheme similar to that used by Edgar (17) and by Callahan, et al.(16)
Sequences that exactly matched a reference sequence from the known community were
classified as "Reference". Those that differed from a more abundant Reference
sequence by up to 10 nucleotides were labeled "Ref Noisy", as these are likely
sequences with errors derived from Reference sequences that were incorrectly inferred
as distinct. (It is also possible that such sequences arose via contamination or mutation,
but this is less likely and not possible to determine conclusively.) Any unclassified
sequences were compared to the National Center for Biotechnology Information's
Nucleotide (NT) database (51) using BLAST.(52) The NT database is a very large

collection of DNA sequences from a variety of sources. Sequences that matched an NT
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sequence exactly were classified as "Contaminant”, as these likely represent correctly
identified contaminanting DNA in the sample. Sequences that were up to 10 nucleotides
off from a more abundant Contaminant sequence were dubbed "Contam Noisy". All
remaining sequences were labeled "Other", and may include unaccounted-for PCR

artifacts (such as chimeras) and sequencing noise.

To obtain results at the taxonomic level, taxonomy was assigned using both
assignTaxonomy and assignSpecies in the dada2 R library. For each function, the
appropriately formatted Silva database (53) version 132 file was used (available at

https://zenodo.org/record/1172783#.Wrb4f9ZG2kA). The resulting labels were then

merged to obtain the highest available resolution, replacing any missing values for
genus in one set with non-missing values in the other wherever possible. Labels at each
taxonomic level were concatenated to generate a single label for each sequence, and
these compound labels used to determine the number of unique taxa in each sequence

category.

We further summarized results by computing recall and precision at the inferred
sequence level, as well as the proportion of reads mapped to each sequence category.
For sequence-level statistics, we use an observation-versus-expectation criterion:
sequences that are both expected and observed (i.e., observed Reference sequences)
are true positives (TP), those expected but not observed (unobserved References) are
false negatives (FN), and those observed but not expected (all non-References) are false

positives (FP). Sequence-level statistics give a sense of the accuracy of community
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diversity estimates, whereas read-level statistics measure the bulk accuracy of a

clustering algorithm.

Software

QIIME-UCLUST was implemented with scripts are from QIIME v1.9.1.(38) The
identify_chimeric_seqs.py QIIME script requires USEARCH (36) v6.1.544, and
pick_de_novo_otus.py calls the PyNAST alignment tool (v0.1).(54) UPARSE and UNOISE
were implemented with USEARCH v10.0.240.(36) For the MED pipeline, clustering was
done with v2.1 of the Oligotyping Pipeline (50); however, chimera removal was done
with USEARCH version 9.2.64 (due to a known bug in v10.0.240). The Deblur pipeline
uses Deblur v1.0.3,(18) which depends on VSEARCH v2.5.0,(55) MAFFT v7.3.10,(56) and
SortMeRNA v2.0.(57) DADA2 was implemented in R with v1.6.0 of the dada2 package.
(16) All analysis of clustering results was completed in R v3.4.3.(58) The analysis and all

pipeline scripts are available at https://github.com/carusov/noisy-

microbes/tree/master/community-inference/scripts.
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IV. Results

High microbial biomass mock communities

We firs t benchmarked each method on the four undiluted mock community datasets to
establish their baseline performance characteristics on "typical" data, representative of

high microbial biomass samples. The number of sequences inferred by each method for

each dataset, and their classification according the scheme described above, is shown in

Table 3.

Table 3: Sequences inferred for high biomass communities

Dataset Method Total Reference Ref Noisy Contaminant C:r;'::;n Other
UCLUST 200 8 78 47 1 66
UPARSE 69 8 2 35 0 24
Zymo MED 57 8 49 0 0 0
(8 strains) UNOISE 12 8 1 0
Deblur 8 8 0 0
DADA2 20 8 0 4
UCLUST 191 20 42 102 4 23
UPARSE 101 20 1 75 0 5
Kozich MED 46 22 21 3 0 0
(21 strains) UNOISE 40 21 1 17 0 1
Deblur 32 20 0 11 0 1
DADA2 56 22 1 31 0 2
UCLUST 185 46 68 28 4 39
UPARSE 77 46 1 26 0 4
Schirmer MED 65 56 3 6 0 0
(57 strains) UNOISE 78 57 0 20 1 0
Deblur 71 54 0 16 1 0
DADA2 88 57 2 28 0 1
UCLUST 66 42 4 16 0 4
UPARSE 58 42 0 15 0 1
D’Amore MED 55 50 2 0 0
(57 strains) UNOISE 59 51 0 0 0
Deblur 56 48 0 0 0
DADA2 66 51 0 15 0 0
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A few trends are apparent in the categorized inference results. UCLUST reports the
largest number of sequences in all cases, while Deblur reports the fewest (for Zymo and
Kozich) or second-fewest (for Schirmer and D'Amore). MED finds the fewest sequences
on the Schirmer and D'Amore datasets but ranges in the middle on the Zymo and Kozich
datasets. Among the error modeling methods, DADA2 detects the most sequences. With
the less diverse Zymo and Kozich datasets, all methods recover nearly all of the
expected Reference sequences (8 of 8 for Zymo and at least 20 of 21 for Kozich), but on
the larger Schirmer and D'Amore data, the OTU methods detect notably fewer
References (46 of 57 for Schirmer and just 42 of 57 for D'Amore). DADA2 detects the
most Reference sequences in all cases, matched or closely followed by UNOISE and
MED. Large numbers of Ref Noisy sequences were reported by UCLUST (42-78) for three
of the four mock communities, and by MED (21-49) for two datasets, whereas all other
methods inferred no more than 3 sequences in this category. In general, several
sequences were detected in the Contaminant class. UCLUST and UPARSE gave the
highest Contaminant counts (15-102) among all methods, while DADA2 reported the
most (5-31) and Deblur the fewest (0-16) among the error modeling methods; MED is
the notable exception, reporting no more than 6 Contaminant sequences. In the Contam
Noisy category, UCLUST gave 4 sequences for the Kozich and Schirmer data, while no
method exceeded one Contam Noisy in all other cases. Similarly, the number of Other
sequences inferred typically ranged from 0-5, but UCLUST found much higher totals (23-

66) for three communities, as did UPARSE (24) for the Zymo data.
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To get an idea of the number of taxonomic groups represented by the inferred
sequences, we assigned taxonomy to each sequence using the most specific designation
available from the Silva version 132 database. Table 4 shows the number of distinct
taxonomic groups in each sequence category. (Note that the total number of groups
does not, in general, equal the sum of groups in each category, since some groups may
be present in more than one category.) Here we find that while the number of
taxonomic groups is usually smaller than the number of sequences (in some cases
considerably so), the same general trends hold. UCLUST still reports the most total
distinct groups, followed by UPARSE, while either Deblur or MED reports the fewest. As
with sequences, UCLUST and MED stand alone in reporting several groups in the Ref
Noisy category with the Zymo and Kozich data. The exception to the trends found with
the sequence-level analysis is in the Reference category: whereas the numbers of
Reference sequences reported reveal sizable differences in sensitivity between the OTU
methods and the others, these differences are not apparent at the taxonomic group
level, as the number of distinct groups detected by the OTU methods is equal to or only
slightly smaller than the numbers found by DADA2, UNOISE, and MED, which detected

the most sequences and groups.
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Table 4: Taxonomic groups inferred for high biomass communities

. . Contam
Dataset Method Total Reference Ref Noisy Contaminant Nol Other
oisy
UCLUST 70 8 17 36 1 31
UPARSE 49 8 2 29 0 17
MED 15 8 13 0 0 0
Zymo
UNOISE 12 8 0
Deblur 8 8 0 0 0
DADA2 18 8 0 3
UCLUST 132 19 21 84 3 20
UPARSE 84 19 1 62 0 5
MED 30 19 14 3 0 0
Kozich
UNOISE 35 18 15 0 1
Deblur 29 18 0 10 0 1
DADA2 51 19 1 29 0 2
UCLUST 97 46 31 26 1 21
UPARSE 74 46 1 25 0 4
MED 55 48 2 6 0 0
Schirmer
UNOISE 67 49 0 17 1 0
Deblur 63 48 0 14 1 0
DADA2 76 49 2 24 0 1
UCLUST 59 42 3 16 0 4
UPARSE 57 42 0 15 0 1
MED 47 43 1 0 0
D’Amore
UNOISE 51 44 0 0 0
Deblur 50 43 0 7 0 0
DADA2 58 44 0 14 0 0

For a more concise summary of sequence inference performance, we computed the

precision and recall of each method for each dataset, using sequences as the unit of

analysis (Table 5 and Table 6). At the sequence level, recall measures the proportion of

known community members that were detected by each method, while precision gives

the proportion of predicted community members that actually belong to the known

community. Recall is generally high on all four undiluted mock communities, ranging

from 74%-100%. DADA2 and UNOISE achieve the highest sequence recall across

datasets (100% on three of four, and 89% for D'Amore). MED's recall is equal or only
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slightly lower (98% for Schirmer and 88% for D'Amore), followed closely by Deblur (95%,
95%, and 84% for Kozich, Schirmer, and D'Amore, respectively). UCLUST and UPARSE
give the lowest recall, which is still quite high on the two smaller communities (95%-
100%), but falls notably for the larger Schirmer and D'Amore communities (81% and
74%, respectively). Precision varies much more (4%-100%) across methods and datasets,
owing to the wide variation in numbers of unanticipated sequences. Deblur and UNOISE
give relatively high sequence precision on all datasets (63%-100% and 53%-86%,
respectively), as does MED on Schirmer and D'Amore communities (86%-91%, whereas
UCLUST and UPARSE rank last on all datasets (4%-64% and 11%-72%, respecitvely). MED

exhibits the most variation across datasets, ranging from 14%-91% precision.

Table 5: Sequence-level recall for the high biomass communities

Dataset
Method

Kozich Schirmer D’Amore
UCLUST
UPARSE
MED

UNOISE
Deblur
DADA2

Table 6: Sequence-level precision for the high biomass communities

Dataset

Kozich Schirmer D’Amore
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To measure the bulk impact of the various noise sources on target community inference
by each method, we computed the percentage of output reads assigned to Reference
sequences (see Table 7). Here we find that a large majority of reads for all samples were
mapped to the target mock community regardless of inference method, with only small
differences. The largest variation is for the Zymo dataset, where UNOISE and DADA?2
map ~96% of reads to Reference sequences, and MED only 92%, whereas the remaining
methods map nearly 100% to References. In the case of UNOISE and DADA2, this is
mainly due to a single Ref Noisy sequence with high abundance (data not shown), while

for MED it is due to the large number of Ref Noisy sequences.

Table 7: Percentage of reads mapped to Reference sequences

Dataset
Method

Kozich Schirmer D’Amore
UCLUST

UPARSE

MED

UNOISE

Deblur

DADA2

In addition to estimating the accuracy a method's sequence inference, we also wanted
to observe how well it discriminates the desired biological signal from the various noise
sources. Biological signal refers to the true 16S rRNA sequences of the mock community
members, and noise includes contaminant species (introduced during sample

processing), PCR artifacts (e.g., chimeras), and sequencer error. Figure 4 plots the log-

33



scaled distributions of Reference and non-Reference sequence abundances inferred by
each method studied, for each of the four high microbial biomass datasets. For the
Zymo and Kozich datasets, the target signal is mostly well separated from the
distribution of noisy sequences, whereas there is somewhat more overlap of signal and
noise distributions on the Schirmer and D'Amore communities. Among methods, the
minimum signal strength is typically highest for DADA2 and UNOISE, while that of Deblur
is somewhat lower on Zymo and Kozich data, and that of UCLUST and UPARSE is much
lower on all but the Zymo data. The maximum noise strength is higher for DADA2, MED,
and UNOISE on the Zymo data (Deblur reports no non-Reference sequences here), but is
comparable for all methods on the remaining datasets. We also see that the density of
MED's noise distribution is concentrated at higher levels than that of other methods,

particularly for the Zymo and Kozich data.
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Figure 4: Abundance distributions of Reference and non-Reference sequences for high biomass
communities. Logi,-transformed read abundance distributions of Reference sequences (those
that match the 16S rRNA sequence of a known mock community member) and non-Reference
sequences, as inferred by each of the six methods. Boxplots show median, IQR, 1.5 x IQR, and
outliers. Each subplot shows abundance distributions for one of the four high biomass
communities.

Dilution series of the Zymo mock community

To assess performance on low microbial biomass samples, we next evaluated the six
inference methods on a dilution series prepared from the ZymoBIOMICS mock
community. Each successive sample was diluted to 1/3 the starting DNA concentration

of the previous sample in the series, for a total of 9 samples ranging from 1:1 (neat) to
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1:6561 relative concentrations. A summary of sequence counts inferred by each method

across the dilution series, including classification results, is shown in Table 8.

One trend that is immediately apparent is that as starting concentration decreases, the
number of inferred sequences increases-- dramatically for some methods. (This trend
appears not to hold for the two most dilute samples, but this can be explained primarily
by the much lower sequencing depth obtained for these samples. See Table 8 for the
read counts of each dilution sample, after quality filtering.) At the highest
concentrations (1:1 and 1:3), as observed with the high biomass communities, the error
modeling methods reported the fewest sequences (8-22), but their totals increase
steadily across the dilution series (again, with the exception of the two most dilute
samples, as explained above) to a peak of 381-530 sequences at 1:729 dilution. The total
number reported by MED is initially between those of the error model methods and
those of the OTU methods for the neat sample, and remains relatively unchanging over
the first four dilution samples (57-102 sequences), but then rises sharply so that it
detects the highest numbers of sequences (278-570) among all methods for the three
most dilute samples. In contrast, the OTU methods-- UCLUST in particular-- begin at the
high end for the three highest concentration samples (69-288 for UPARSE, 202-450 for
UCLUST), with a sharp spike for the 1:9 sample, but their numbers level off over the rest
of the dilution series, and UPARSE actually reports the fewest sequences (142-304) for

the four most dilute samples.
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Table 8: Sequences inferred for the dilution series of the Zymo community

Dilution Method Total Reference Ref Noisy Contaminant Contam Noisy Other
UCLUST 200 8 78 47 0 69
1:1 UPARSE 69 8 2 35 0 24
MED 57 8 49 0 0 0
(243.5k UNOISE 12 8 2 1 1 0
reads) Deblur 8 8 0 0 0 0
DADA2 20 8 3 5 1 3
UCLUST 179 8 52 62 0 57
13 UPARSE 77 8 0 50 0 19
MED 86 8 78 0 0 0
(198.0k UNOISE 17 8 1 8 0 0
reads) Deblur 10 8 0 2 0 0
DADA2 22 8 3 9 1 1
UCLUST 450 8 64 218 25 135
1:9 UPARSE 288 8 0 197 2 81
MED 78 8 64 6 0 0
(282.0k UNOISE 119 8 1 97 3 10
reads) Deblur 85 8 0 75 0 2
DADA2 114 8 3 91 0 12
UCLUST 272 8 27 172 13 52
1:27 UPARSE 206 8 0 164 4 30
MED 102 8 71 23 0 0
(270.8k  ynoisE 283 8 1 198 47 29
reads) Deblur 207 8 0 157 21 21
DADA2 169 8 1 132 6 22
UCLUST 336 8 23 200 14 91
1:81 UPARSE 269 8 1 186 2 72
MED 153 8 66 76 2 1
(243.5k UNOISE 449 8 2 277 91 71
reads) Deblur 339 8 0 237 38 56
DADA2 261 8 1 195 9 48
UCLUST 313 8 3 197 18 87
1:243 UPARSE 259 8 0 187 3 61
MED 398 8 50 227 63 50
(151.3k UNOISE 444 8 1 281 79 75
reads) Deblur 373 8 0 254 43 68
DADA2 309 8 1 219 24 57
UCLUST 377 8 2 239 37 91
1:729 UPARSE 304 8 0 228 5 63
MED 570 8 30 349 139 44
(144.3k UNOISE 530 8 1 330 123 68
reads) Deblur 430 8 0 293 68 61
DADA2 381 8 2 270 49 52
UCLUST 153 8 1 97 2 45
1:2187 UPARSE 142 8 1 97 0 36
MED 278 8 63 127 42 38
(46.1k UNOISE 190 8 1 119 2 40
reads) Deblur 168 8 1 111 11 37
DADA2 148 8 0 100 10 30
UCLUST 195 8 2 127 9 49
1:6561 UPARSE 183 8 1 126 2 46
MED 325 8 25 177 64 51
(49.4k UNOISE 267 8 4 161 39 55
reads) Deblur 226 8 2 152 16 48
DADA2 193 8 1 129 11 44

37



Examining the sequence classifications gives insight into the source of the observed
variation. Here we find that the variation in total sequences is largely driven by
Contaminant sequences (illustrated in Figure 5), which tend to increase as samples
become more dilute. However, the trend lines in Figure 6 show that this increase in
Contaminant sequences is nearly linear for the error model methods (with the exception
of the two most dilute samples, as explained above), somewhat less so for MED, while
the OTU methods exhibit the least association between sample dilution and number of
Contaminants. We observed a smaller but roughly proportional trend for Contam Noisy
sequences with error modeling methods and MED. The remaining Other sequences
were somewhat less linear with dilution for the error models, and showed almost no
relationship with dilution for OTU methods and MED. We also found that among error
models, DADA2 generally reported the fewest Contaminant, Contam Noisy, and Other
sequences, although it gave slightly higher numbers for the three most concentrated
samples. All methods detected all 8 expected community members, regardless of
sample dilution. Just as we observed with the high microbial biomass communities, MED
and UCLUST are the only methods that infer a high number of Ref Noisy sequences, but
whereas the number remains high for MED across the dilution series, it declines almost

to zero for UCLUST at the lowest concentrations (see Figure 6).
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Figure 5: Sequence-level composition of dilution series samples. Composition of each sample in
terms of the number of sequences in each category, as sample concentration decreases (x-axis).
Categories are defined in Methods. Each subplot shows sample compositions inferred by one of
the six methods benchmarked.
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Figure 6: Trend lines of inferred sequences across the dilution series. (A) Number of Reference
and Ref Noisy sequences inferred vs. decreasing sample concentration. (B) Number of
Contaminant, Contam Noisy, and Other sequences inferred vs. decreasing sample
concentration. Sequence categories are defined in Methods. Each subplot shows trend lines for
sequences inferred by one of the six methods benchmarked.

40



Table 9 shows the results of grouping sequences according to taxonomic classification,
as was done for the high biomass communities. Just as with the sequence-level results,
inferred taxonomic groups tend to rise as community biomass decreases, but with
distinct patterns depending on the inference algorithm. As illustrated in Figure 7, the
increase in total inferred taxonomic groups is driven by Contaminants, and the OTU
methods exhibit the most jagged trend lines, with a rapid initial increase in Contaminant
taxonomic groups that then slows or flattens at higher dilutions. MED, on the other
hand, shows the smallest initial increase in Contaminants, with the number increasing
sharply as concentration continues to decrease. The number of Contaminant groups
inferred by the error modeling methods increases more steadily across the dilution
series, although not quite as linearly as observed for sequences (see Figure 6). The
number of Ref Noisy taxonomic groups is still notably higher for UCLUST and MED
compared to all other methods, but is typically less than half the number of sequences
in this category. Also, DADA2 continues to report the fewest Contaminant, Contam
Noisy, and Other among the error modeling methods at the taxonomic group level, with

the exception of the three most concentrated samples.

41



Table 9: Taxonomic groups inferred for dilution series of the Zymo community

Dilution Method Total Reference Ref Noisy Contaminant  Contam Noisy Other
UCLUST 69 8 16 36 0 31
UPARSE 50 8 2 29 0 17
11 MED 15 8 13 0 0 0
’ UNOISE 12 8 2 1 1 0
Deblur 8 8 0 0 0 0
DADA2 18 8 3 5 1 2
UCLUST 88 8 17 46 0 37
UPARSE 56 8 0 38 0 15
1:3 MED 16 8 15 0 0 0
UNOISE 17 8 1 8 0 0
Deblur 10 8 0 2 0 0
DADA2 21 8 3 9 1 1
UCLUST 167 8 16 117 13 71
UPARSE 134 8 0 107 2 45
1:9 MED 20 8 13 5 0 0
) UNOISE 74 8 1 61 3 8
Deblur 60 8 0 51 0 2
DADA2 88 8 3 69 0 11
UCLUST 105 8 11 80 8 29
UPARSE 92 8 0 78 4 18
1:27 MED 30 8 14 15 0 0
) UNOISE 90 8 1 76 20 16
Deblur 79 8 0 67 14 14
DADA2 78 8 1 65 4 15
UCLUST 130 8 9 98 8 44
UPARSE 119 8 1 95 2 42
1:81 MED 55 8 12 41 2 1
’ UNOISE 128 8 2 110 28 32
Deblur 119 8 0 101 21 31
DADA2 115 8 1 94 6 28
UCLUST 133 8 3 102 12 42
UPARSE 123 8 0 101 3 35
1:243 MED 116 8 13 92 22 28
UNOISE 132 8 1 109 27 33
Deblur 127 8 0 106 20 32
DADA2 129 8 1 107 16 31
UCLUST 160 8 1 135 15 43
UPARSE 156 8 0 132 4 39
1:729 MED 160 8 10 133 40 26
) UNOISE 169 8 1 146 46 35
Deblur 161 8 0 141 36 31
DADA2 162 8 2 136 22 31
UCLUST 90 8 1 67 2 30
UPARSE 87 8 1 66 0 25
MED 98 8 14 67 25 24
1:2187 UNOISE 89 8 1 69 14 24
Deblur 86 8 1 67 9 23
DADA2 87 8 0 67 8 23
UCLUST 108 8 2 87 5 29
UPARSE 105 8 1 86 2 27
MED 113 8 13 87 21 24
. UNOISE 108 8 4 87 16 26
Deblur 103 8 2 85 8 24
DADA2 103 8 1 84 7 24
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Figure 7: Trend lines of inferred taxonomic groups across the dilution series. (A) Number of
taxonomic groups in the Reference and Ref Noisy categories vs. decreasing sample
concentration. (B) Number of taxonomic groups in the Contaminant, Contam Noisy, and Other
sequences inferred vs. decreasing sample concentration. Sequence categories are defined in
Methods. Taxonomic groups were determined by assigning the highest possible resolution of
taxonomy to each sequence using the SILVA v123 16S rRNA database, then counting the number
of unique taxonomic labels. Each subplot shows trend lines for taxonomic groups inferred by
one of the six methods benchmarked.
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Sequence-level recall was perfect across the dilution series-- all methods detected all 8
expected strains at every sample concentration-- likely due to the low diversity and even
genomic proportions of the Zymo mock community. However, sequence precision is
more variable, which reflects the high numbers of false positives at lower
concentrations. For the two highest concentrations, precision is best with Deblur (80%-
100%) and worst for UCLUST (~4%), but MED has the best precision at middle
concentrations (1:9 to 1:81), while UPARSE has the best precision at lowest
concentrations (1:243 to 1:6561). However, beyond 1:9 dilution, all methods achieve

well below 10% precision.

Figure 8 shows the proportion of reads in each class for each method, across the
dilution series. Immediately we see that as concentration drops, the proportion of
Reference reads declines considerably with all methods, reaching a minimum of less
than 20% for the most dilute sample. At the highest concentrations (1:1 and 1:3), Deblur
and the OTU methods assign over 99% of reads to Reference sequences. UNOISE and
DADAZ2 have small but notable proportions of Ref Noisy reads over the first six dilutions
(1%-4%, primarily due to a single Ref Noisy sequence, data not shown), and MED assigns
the largest proportion to Ref Noisy across all methods and dilutions (2%-11%). Beginning
with the 1:9 dilution sample, reads assigned to Contaminant sequences become
apparent, increasing steadily in proportion until they dominate the inferred composition
for the three lowest dilutions, making up 43%-70% of the sample. Reads from Other and
Contam Noisy sequences also generally increase across the dilution series. The former

typically comprise a larger fraction, reaching a maximum of ~10% at the lowest
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concentration, but MED and UNOISE exhibit Contam Noisy fractions comparable to

those of Other reads.
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Figure 8: Read-level composition of dilution series samples. Composition of each sample, in terms
of proportion of total sample reads in each sequence category, as community biomass
decreases, for the Zymo mock community. Categories are defined in Methods. Each subplot
shows the sample compositions inferred by one of the six methods benchmarked.

As with the undiluted mock communities, we compared target community signal
distribution with that of the noise for the dilution series samples. The results are shown
in Figure 9. Regardless of inference method, we observed that as concentration

decreases, the signal and noise distributions steadily converge, as the signal weakens

45



and noise grows. Over the first few dilution samples (1:1 to 1:81 relative concentration),
the signal distribution remains nearly constant, and even though the strength of the
noise increases, signal and noise are generally well separated (a single non-Reference
sequence overlaps the Reference distributions for DADA2, MED, and UNOISE). Deblur
achieves the largest separation for the three highest concentrations, while MED's gap is
much smaller. However, with decreasing DNA concentration, the distributions begin to
overlap considerably, as the signal strength steadily declines while the noise strength
continues to increase, and there is little difference between methods at lower

concentrations.

One interesting phenomenon is that sequence counts for the individually processed
dilution series samples changed when the samples were pooled and processed as a
single dataset. In general, total inferred sequences, as well as counts in each category,
increased when the samples were processed together as one dataset. The exception
was for DADA2, which reported the same counts regardless of whether the neat sample

was processed individually or not.
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Figure 9: Abundance distributions of Reference and non-Reference sequences for the dilution series.
Logie-transformed read abundance distributions of Reference sequences (those that match the
16S rRNA sequence of a known mock community member) and non-Reference sequences vs.
decreasing community biomass for the Zymo mock community. Boxplots show median, IQR, 1.5
x IQR, and outliers. Each subplot shows abundance distributions inferred by one of the six
methods benchmarked.
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V. Discussion

High microbial biomass benchmarking

On the high biomass mock communities, the numbers of sequences in each class
inferred by the error modeling methods were in good agreement, and also correlated
with the known diversity of each community much better than with the other three
methods. Deblur exhibited the best specificity of the three in the sense that it reported
the fewest unexpected sequences, but DADA2 and UNOISE had somewhat better
sensitivity for expected sequences. The higher Contaminant counts detected by DADA2
and UNOISE suggest that they may be more sensitive to low-abundance contamination,
but it is also possible that their models underestimate the error, resulting in over-
splitting of sequence clusters, i.e., poorer specificity. The error modeling methods as a
group also out-performed the other three algorithms in terms of their ability to
distinguish the true signal from sources of noise. Thus, error models in general offer
superior performance than OTU or entropy-based algorithms, combining good
sensitivity with good specificity, and the choice of which error modeling method to use
depends upon the goals of the research. If minimizing detection of spurious sequences
and contaminants is most important, Deblur seems more appropriate. However, if
maximizing detection of true community members and/or real biological contaminants

is the priority, DADA2 or UNOISE appear to be better suited.

Results for MED were less consistent. While sequence sensitivity was quite high for all

undiluted samples, specificity was highly variable. Specificity was excellent on the
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Schirmer and D'Amore communities, but suffered on the Zymo and Kozich samples due
to a large number of Ref Noisy sequences (49 and 21, respectively). Virtually all of these
Ref Noisy were within 1 nt of a reference strain, strongly suggesting that they are indeed
false positives that should have been clustered with a Reference sequence. This false
detection is also reflected in the signal and noise distributions: MED's inference of
several Ref Noisy sequences with relatively high abundance results in the poor
separation of signal from noise observed with the Zymo and Kozich datasets (Figure 4).
Hence, although MED was designed to distinguish biological strains with extremely
similar 16S rRNA sequences, it does so unreliably, as it is prone to reporting spurious
sequences that arise from sequencer errors. However, in studies for which such fine
distinctions are not deemed important, MED has the potential to yield accurate results

by simply collapsing inferred sequences that differ by a single nucleotide.

The OTU methods produced both the poorest recall and specificity. Since these methods
rely only on a distance metric for clustering, their reduced sensitivity must result from
lumping together distinct strains with high 16S rRNA sequence identity, ignoring read
abundance. On the other hand, the high numbers of non-Reference sequences reported
by the OTU methods relative to the other methods are almost certainly the result of
splitting into distinct clusters those reads with sequencing errors that fall outside the
similarity threshold of the template sequence from which they were derived. UPARSE
had identical sensitivity to UCLUST, but showed considerably better specificity,
especially in terms of Ref Noisy sequences. This is best explained by UPARSE's strict

quality filtering step prior to cluster inference, which presumably removes the majority
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of reads with several sequencing errors. Some of the many Contaminant sequences
inferred by the OTU methods probably represent real biological contamination, as some
Contaminants are reported for each sample by most or all methods. However, it is
revealing that the communities for which UCLUST and UPARSE diverge most from the
consensus are Zymo and Kozich, which have poorer read quality profiles compared to
Schirmer and D'Amore, and thus are expected to have more sequencing errors. Clearly,
the fixed similarity threshold of OTU methods is ill-equipped to deal with such scenarios.
In addition, UCLUST and UPARSE tended to report one or more Reference sequences
with much lower signal strength than the other methods studied (see Figure 4). These
observations show that OTU methods are inferior to the other algorithms on multiple

counts, and thus their continued use for research is not advised.

Grouping inferred sequences by taxonomic classification tended to mask some of the
distinctions between methods. The OTU methods still tended to report higher numbers
of Contaminant and Other taxonomic, and UCLUST and MED found several more Ref
Noisy groups than other methods, indicating poorer specificity for the non-error
modeling methods, but the differences were less dramatic than with the sequence-level
analysis. This observation suggests that in some cases, the lack of specificity exhibited by
OTU methods and MED may not have a large impact on community inference, since
many of the spurious sequences may still fall into the same taxonomic group as the
template sequence from which they were derived. However, the differences between
the numbers of sequences and the numbers of taxonomic groups in the Reference

category illustrates perhaps the most important utility of error model inference. The
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taxonomic grouping might lead to the conclusion that all methods have very similar
sensitivities, since there is little variation in the number of Reference groups detected. In
contrast, at the sequence level the error model methods and MED show clearly superior
sensitivity for the most diverse Schirmer and D’Amore communities, since they
distinguished several strains within some taxonomic groups— distinctions which we
know exist, given the mock community composition. Hence, if strain-level sensitivity is

potentially important, then OTU methods are inadequate.

Dilution series benchmarking

The dilution series results clearly show that as starting DNA concentration decreases,
sequences derived from noise sources comprise an increasing proportion of the inferred
community, both in terms of number of distinct sequences present as well as their
abundances. The dramatic rise across methods in numbers of Contaminant sequences
detected at lower starting concentrations suggests that, in comparison to samples of
high microbial biomass, there are in fact many more contaminating species present at
detectable levels in sequencing libraries prepared from samples with low microbial
biomass. This can be explained by the observation that when less sample DNA is present
for PCR amplification, small levels of microbial contaminants (introduced via non-sterile
lab equipment, imperfect aseptic technique, and reagent kits [citations needed]) make
up a larger proportion of the total DNA. Hence, the contaminant sequences are
amplified with higher probability and to a greater extent than would be the case with a
high microbial biomass sample (in which the sample DNA overwhelms the

contamination). Thus, the "Contaminant"-labeled sequences detected in the dilution
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samples with low microbial biomass most likely reflect biological contamination

introduced during sample processing, rather than indicating false positives.

Given this likelihood, the strong association we observed between sample dilution and
the number of Contaminant sequences inferred by each of the error modeling methods
is evidence that these three methods detect the true contamination present more
accurately than the OTU methods or MED. This is consistent with the higher sensitivity
and specificity exhibited by these three methods on the high microbial biomass
communities. The differences between the three methods in numbers of Contaminant
and Contam Noisy sequences, which maintain their order across most of the dilution
series (UNOISE reports more than Deblur, which reports more than DADA2), can be
attributed to differences in their error models. Either UNOISE and Deblur are more
sensitive than DADAZ2 for this dataset, or else the former two underestimate the actual
sequencing error, leading to poorer specificity. Based on the results with the undiluted
mock communities, for which DADA2 showed the highest sensitivity among all methods,
it seems unlikely that DADA2 should now have the lowest sensitivity of the three.
Furthermore, UNOISE and Deblur use a fixed error model (with the default settings),
whereas DADA2 estimates its model dynamically from the data; and since the dilution
series dataset had a relatively poor read quality profile, it therefore seems plausible that
DADA2's model is better adjusted to a higher degree of error, and that UNOISE and
Deblur underestimate the error profile on this dataset. Changing the error model

parameters from their defaults for UNOISE and Deblur may yield better results for
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datasets with lower read quality, but establishing guidelines for doing so may be

challenging and is beyond the scope of this study.

MED, the lone entropy-based inference method, is unique in inferring none to very few
Contaminants at higher concentrations, then rising sharply to infer the most
Contaminants at very low concentrations. This phenomenon is primarily explained by
MED's use of a read abundance threshold (set to 0.02% of total dataset reads by
default) to filter out clusters arising from noise. The filter greatly limits the number of
Contaminant sequences detected at higher concentrations, when true contamination is
sparse, but as the proportion of contaminant DNA rises, many more contamination-
derived sequences exceed the abundance filter. Thus, the effectiveness of this type of
filter for removing biological noise depends unpredictably on the sample's DNA
concentration (as well as on dataset size), and it comes with the risk that lower-
abundance species present in the target community will also be removed, reducing

sensitivity.

Additionally, the relatively high number of Ref Noisy sequences inferred by MED at all
sample dilutions, as well as the high number of Contaminant and Contam Noisy inferred
at low concentrations, show that the entropy criterion used to divide sequence clusters
is too sensitive, i.e., it underestimates the sequencer error, resulting in many false
positives. As with the error model parameters of UNOISE and Deblur, MED's default
entropy criterion can be adjusted to better reflect the error rate for a given dataset, but

choosing an appropriate value would require validation by the user.
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To some extent, inference results for the OTU methods followed the trend of increasing
sequence counts as concentration decreases, driven by a rise in Contaminant
sequences. However, the number of inferred Contaminant sequences was much less
associated with sample dilution than we observed for error model-based inference. This
makes sense in light of the reduced sensitivity observed previously on the high microbial
biomass communities. As the samples become more dilute and noise (i.e.,
contamination) grows relative to the target signal, OTU methods initially generate many
new clusters. But as relative contamination continues to increase and more sequences
are amplified, some distinct contaminant sequences may be lumped together by the
similarity threshold, leading to the plateau in Contaminant sequences observed with
OTU methods. With UCLUST, the drop in the number of Ref Noisy sequences over the
dilution series reflects the OTU clustering strategy. For the highest concentration
samples, large quantities of community template DNA lead to high sequencing depth
and a corresponding wide range of sequencer errors for these sequences, producing
high numbers of Ref Noisy sequences due to reads with errors that fall outside the OTU
similarity threshold. Decreasing concentration brings decreased sequencing depth and a
concomitant reduction in the range of errors, so fewer community-derived sequences
have errors that exceed the cluster radius. This phenomenon clearly illustrates that OTU
methods in general are not well suited to modern high-throughput sequencing data: the
typical similarity radius does not account for the wide error profiles that occur with
deep 16S rRNA sequencing, and increasing the radius would only further degrade the

already reduced sensitivity.

54



The significant overlap of the signal and noise abundance distributions at low DNA
concentrations illustrates the difficulty of separating the target community from noise
sources for low microbial biomass samples. Clearly, an abundance filter (as is commonly
used with high microbial biomass samples to remove contamination) would be
ineffective in this scenario, as any choice of threshold risks either removing several
community species or retaining several non-community species. Since this overlap was
observed for all methods at low concentrations, we may conclude that none of the
inference methods studied here is sufficient on its own to adequately distinguish
community signal from noise. However, the clear positive correlation of starting DNA
concentration with signal strength, and the negative correlation with noise strength,
suggests a possible strategy for detecting contaminant sequences. Namely, a dilution
series could be prepared from a mock community or sample aliquot and processed in
parallel with the samples under study. Sequences inferred for the dilution series whose
abundance increases with decreasing concentration could then be labeled as
contaminants, and removed from the inferred communities of study samples. Indeed,
such an approach has already been implemented in one form by Callahan, et al. [citation
needed], and other variations on this approach are possible. Furthermore, based on the
results of this study, it is our hypothesis that such a strategy would work best when an
error modeling method is used for sequence inference, since these algorithms produced
the best correlation between concentration and both number and abundance of noise
sequences (see Figure 6 and Figure 9), likely due to superior sensitivity and specificity as

evidenced for the high biomass communities. MED shows some relationship between
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concentration and non-Reference sequences detected, but abundances appear much
less correlated; and while the OTU methods exhibit stronger abundance correlation,
their demonstrated lack of sensitivity and specificity for Reference and apparently for
non-Reference sequences would likely limit their accuracy when paired with such a

contaminant-detection strategy.

Although not strictly related to microbial biomass, the observation that sequence counts
differed for most methods depending on whether samples were pooled or processed
independently gives further insight into the performance of these inference methods.
UCLUST, UPARSE, UNOISE, and MED all infer clusters based on the entire dataset,
regardless of the number of samples; reads from each sample are then mapped to
clusters to obtain sample-wise abundances. Thus, a larger dataset (e.g., the full dilution
series) will tend to produce more clusters than a smaller dataset. As demonstrated by
the inconsistent results for the dilution samples, employing such a strategy may mean
that community inference is difficult to reproduce, even for technical replicates. In
contrast, Deblur and DADA2 perform inference on each sample independently. After the
initial inference step, UNOISE, MED, and Deblur all attempt to control false positives
with a minimum abundance filter, using abundance across samples. UNOISE and Deblur
employ absolute minima (8 and 10 reads per inferred sequence by default, respectively),
whereas MED uses a relative minimum (0.02% of total datasets reads, per sequence, by
default). In either case, these abundance filters may complicate accurate sample
inference by creating a dependence on dataset size, and MED's proportional threshold

may remove many rare species, regardless of origin, which may be particularly
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problematic in the case of low microbial biomass community. In the instance of Deblur
and UNOISE, the use of such a filter may also have given an overly optimistic estimate of
specificity, since pooled sample processing showed that Deblur's error model actually
inferred several more sequences that were filtered out when samples were processed

independently.

The generalizability of our findings may be limited by certain characteristics of this
study. The ZymoBIOMICS Microbial Standard has low diversity and uniform genomic
proportions, and as such is not representative of a typical microbiome sample. This
mock community clearly exhibits the impact of contaminant noise at low microbial
biomass, but the high proportion of each species did not challenge the sensitivity of
inference at lower DNA concentrations. Dilution series data from a more varied
community structure might permit further distinctions between inference methods,
particularly among the error modeling algorithms. Another limitation is that a dilution
series cannot perfectly mimic low microbial biomass samples taken from a study
subject, as the act of diluting itself may introduce noise in the form of contamination.
However, similar to dilution series preparation, low microbial biomass samples typically
require additional processing to produce enough DNA for sequencing, which can also
introduce contaminants. Thus, a dilution series provides a good approximation of the
outsized impact that even small levels of contamination can have when starting DNA
concentration is low. Finally, the classification scheme we used to analyze inferred
sequences is inexact— there will inevitably be some overlap between categories that

represent technical noise (Ref Noisy and Contam Noisy) and those representing other
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noise sources (Contaminant and Other). Nevertheless, this scheme provides a logical
framework within which to compare and assess inference methods, and demonstrates

clear differences between the methods studied.
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VI. Summary and Conclusions

Despite its limitations, this study revealed some clear distinctions not only between
methods, but also between community inference for high and low microbial biomass
communities. From the high biomass results, we found that both of the OTU inference
methods studied suffered from a lack of sensitivity relative to newer inference
algorithms, and UCLUST in particular— a method which has been used in a large
number of published microbiome studies— also showed very poor specificity in the face
of technical sequencer noise. MED, the lone entropy-based method, showed generally
good sensitivity, but similar to UCLUST, it tended to overestimate community diversity
by mis-inferring community-derived sequences with errors as distinct organisms. The
three error modeling methods, on the other hand, all exhibited good sensitivity and
specificity. Among the three, Deblur appeared to be the least sensitive and/or most
specific, while DADA2 showed evidence of being the most sensitive and/or least specific,
but we believe further research is needed to confidently characterize the differences

between these three inference methods.

Aside from the differences in method performance, we found that with high microbial
biomass communities, biological noise, or contamination, had a small impact on
community inference. In general, every method detected several sequences that were
likely introduced contaminants, but their abundances and proportion of the overall

inferred community was very small relative to the known community members.
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Results from the dilution series benchmarking tended to support the differences in
method performance found on the high biomass communities. The nearly linear
association between sample dilution and purported contaminant sequences detected by
each of the error modeling methods showed further evidence of good accuracy for
these methods, in this case representing accurate detection of biological noise. In
contrast, the OTU methods displayed much less correlation between community
biomass and detection of new unexpected sequences. MED detected the fewest
purported contaminants at high DNA concentration, and the greatest number at low
concentration, exhibiting the effect of MED’s abundance filter in the former case, while

supporting a lack of specificity in the latter case.

However, in stark contrast to the high microbial biomass scenario, our observations of
the dilution series inference make it clear that for low microbial biomass samples,
biological noise can be a considerable confounding factor. In sequencing the 16S rRNA
of low biomass communities, very small levels of DNA contamination can be amplified
such that their abundance becomes comparable to that of the targeted community
sequences. We also found that none of the inference methods studied here is sufficient
on its own to distinguish the target community from biological contamination in this
scenario. Clearly, more research is needed to develop reliable techniques for removing
contamination, and since perfectly aseptic sample processing may be a practical
impossibility, contaminant removal by in silico methods may also be required. Owing to
their demonstrated superior sensitivity and specificity when challenged with technical

noise, as well as their apparently better accuracy for detecting biological noise, we
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believe that error modeling methods are the best choice currently available for
microbial community inference from 16S rRNA sequence data. In addition, we
hypothesize that an error modeling method combined with a dilution series as a positive
control may provide a viable tool for detecting biological noise, and propose this for

future study.

61



VII.

References

Siddiqui H, Nederbragt AJ, Lagesen K, Jeansson SL, Jakobsen KS. Assessing
diversity of the female urine microbiota by high throughput sequencing of 16S
rDNA amplicons. BMC Microbiol [Internet]. 2011;11(1):244. Available from:
http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-11-244

Aho VTE, Pereira P a B, Haahtela T, Pawankar R, Auvinen P, Koskinen K. The
microbiome of the human lower airways: a next generation sequencing
perspective. World Allergy Organ J [Internet]. 2015;1-13. Available from:
http://dx.doi.org/10.1186/s40413-015-0074-z

Paissé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive
description of blood microbiome from healthy donors assessed by 16S targeted
metagenomic sequencing. Transfusion. 2016;56(5):1138—47.

Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota:
relevance in nutrition. Annu Rev Nutr [Internet]. 2011;31(1):15-31. Available
from: http://www.annualreviews.org/doi/10.1146/annurev-nutr-072610-145146

Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, et al.
The Fecal Microbiota of Irritable Bowel Syndrome Patients Differs Significantly
From That of Healthy Subjects. Gastroenterology. 2007;133(1):24-33.

Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J
Gastroenterol [Internet]. 2015 [cited 2017 May 18];21(37):10609-20. Available
from: http://www.wjgnet.com/1007-9327/full/v21/i37/10609.htm

Chassaing B, Kumar M, Baker MT, Singh V, Vijay-Kumar M. Mammalian gut
immunity. Biomed J [Internet]. 2014;37(5):246-58. Available from:
http://www.biomedj.org/article.asp?issn=2319-

4170;year=2014;volume=37;issue=5;spage=246;epage=258;aulast=Chassaing

Nayak RR, Turnbaugh PJ. Mirror, mirror on the wall: which microbiomes will help
heal them all? BMC Med [Internet]. 2016;14(1):72. Available from:
http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0622-6

62


http://www.biomedj.org/article.asp?issn=2319-4170;year=2014;volume=37;issue=5;spage=246;epage=258;aulast=Chassaing
http://www.biomedj.org/article.asp?issn=2319-4170;year=2014;volume=37;issue=5;spage=246;epage=258;aulast=Chassaing
http://www.wjgnet.com/1007-9327/full/v21/i37/10609.htm
http://www.annualreviews.org/doi/10.1146/annurev-nutr-072610-145146
http://dx.doi.org/10.1186/s40413-015-0074-z
http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-11-244
http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0622-6

10.

11.

12.

13.

14.

15.

16.

Youngster |, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, et al. Fecal
microbiota transplant for relapsing clostridium difficile infection using a frozen
inoculum from unrelated donors: a randomized, open-label, controlled pilot
study. Clin Infect Dis. 2014;58(11):1515-22.

Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown G, Green JL, et al.
Humans differ in their personal microbial cloud. Peer] [Internet].
2015;3(1):e1258. Available from: https://peerj.com/articles/1258

Karstens L, Asquith M, Davin S, Stauffer P, Fair D, Gregory WT, et al. Does the
urinary microbiome play a role in urgency urinary incontinence and its severity?
Front Cell Infect Microbiol [Internet]. 2016 Jul 27 [cited 2017 Jan 25];6(78):1-13.
Available from:
http://journal.frontiersin.org/Article/10.3389/fcimb.2016.00078/abstract

Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome
in lung disease. Expert Rev Respir Med [Internet]. 2013 Jun 9 [cited 2017 May
1];7(3):245-57. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=4007100&tool=pmcentrez&rendertype=abstract

%5Cnhttp://www.tandfonline.com/doi/full/10.1586/ers.13.24

Lazarevic V, Gaia N, Emonet S, Girard M, Renzi G, Despres L, et al. Challenges in
the culture-independent analysis of oral and respiratory samples from intubated
patients. Front Cell Infect Microbiol [Internet]. 2014 [cited 2017 May 18];4:65.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/24904840

Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent
and laboratory contamination can critically impact sequence-based microbiome
analyses. BMC Biol [Internet]. 2014;12(1):87. Available from:
http://www.biomedcentral.com/1741-7007/12/87

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics [Internet]. 2006 Jul 1 [cited 2016
Nov 11];22(13):1658-9. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/16731699

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
high-resolution sample inference from lllumina amplicon data. Nat Methods
[Internet]. 2016 Jul [cited 2016 Sep 18];13(7):581-3. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27214047

63


http://www.ncbi.nlm.nih.gov/pubmed/27214047
http://www.ncbi.nlm.nih.gov/pubmed/16731699
http://www.biomedcentral.com/1741-7007/12/87
http://www.ncbi.nlm.nih.gov/pubmed/24904840
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4007100&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.tandfonline.com/doi/full/10.1586/ers.13.24
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4007100&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.tandfonline.com/doi/full/10.1586/ers.13.24
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4007100&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.tandfonline.com/doi/full/10.1586/ers.13.24
http://journal.frontiersin.org/Article/10.3389/fcimb.2016.00078/abstract
https://peerj.com/articles/1258

17.

18.

19.

20.

21.

22.

23.

24,

Edgar RC. UNOISE2: improved error-correction for lllumina 16S and ITS amplicon
sequencing. bioRxiv [Internet]. 2016; Available from:
http://biorxiv.org/content/early/2016/10/15/081257.abstract

Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al.
Deblur rapidly resolves single-nucleotide community sequence patterns. Gilbert
JA, editor. mSystems [Internet]. 2017 Apr 25 [cited 2017 Mar 8];2(e00191-16):1—
7. Available from:
http://msystems.asm.org/lookup/doi/10.1128/mSystems.00191-16

Schloss PD, Westcott SL. Assessing and improving methods used in operational
taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl
Environ Microbiol [Internet]. 2011 May [cited 2016 Oct 31];77(10):3219-26.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/21421784

Laurence M, Hatzis C, Brash DE. Common contaminants in next-generation
sequencing that hinder discovery of low-abundance microbes. Gilbert T, editor.
PLoS One [Internet]. 2014 May 16 [cited 2018 Mar 8];9(5):e97876. Available
from: http://dx.plos.org/10.1371/journal.pone.0097876

Chafee M, Maignien L, Simmons SL. The effects of variable sample biomass on
comparative metagenomics. Environ Microbiol [Internet]. 2015 Jul [cited 2017
Apr 8];17(7):2239-53. Available from: http://doi.wiley.com/10.1111/1462-

2920.12668

Bowers RM, Clum A, Tice H, Lim J, Singh K, Ciobanu D, et al. Impact of library
preparation protocols and template quantity on the metagenomic reconstruction
of a mock microbial community. BMC Genomics [Internet]. 2015;16(856):1-12.
Available from: http://www.biomedcentral.com/1471-2164/16/856

Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA
contamination of extraction and sequencing reagents may affect interpretation of
microbiota in low bacterial biomass samples. Gut Pathog [Internet]. 2016;8(1):24.
Available from:
http://gutpathogens.biomedcentral.com/articles/10.1186/s13099-016-0103-7

Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the
sources of experimental contamination in microbiome studies. Genome Biol
[Internet]. 2014;15(12):564. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=4311479&tool=pmcentrez&rendertype=abstract

64


http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4311479&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4311479&tool=pmcentrez&rendertype=abstract
http://gutpathogens.biomedcentral.com/articles/10.1186/s13099-016-0103-7
http://www.biomedcentral.com/1471-2164/16/856
http://doi.wiley.com/10.1111/1462-2920.12668
http://doi.wiley.com/10.1111/1462-2920.12668
http://dx.plos.org/10.1371/journal.pone.0097876
http://www.ncbi.nlm.nih.gov/pubmed/21421784
http://msystems.asm.org/lookup/doi/10.1128/mSystems.00191-16
http://biorxiv.org/content/early/2016/10/15/081257.abstract

25.

26.

27.

28.

29.

30.

31.

32.

Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A
communal catalogue reveals Earth’s multiscale microbial diversity. Nature
[Internet]. 2017 Nov 1 [cited 2018 Mar 26];551(7681):457. Available from:
http://www.nature.com/doifinder/10.1038/nature24621

Eutick ML, O’Brien RW, Slaytor M. Bacteria from the gut of Australian termites.
Appl Environ Microbiol. 1978;35(5):823-8.

Socransky SS, Gibbons RJ, Dale AC, Bortnick L, Rosenthal E, Macdonald JB. The
microbiota of the gingival crevice area of man—I. Arch Oral Biol [Internet]. 1963
May [cited 2017 May 18];8(3):275-80. Available from:
http://linkinghub.elsevier.com/retrieve/pii/0003996963900190

O’Rourke J, Lee A, McNeill J. Differences in the gastrointestinal microbiota of
specific pathogen free mice: an often unknown variable in biomedical research.
Lab Anim [Internet]. 1988;22(4):297-303. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/2976437

Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA. Microbial ecology and
evolution: a ribosomal RNA approach. Ann Rev Microbiol [Internet]. 1986 [cited
2018 Mar 26];40:337-65. Available from: https://www-annualreviews-
org.liboff.ohsu.edu/doi/pdf/10.1146/annurev.mi.40.100186.002005

Smith GL, Socransky SS, Smith CM. Non-isotopic DNA probes for the identification
of subgingival microorganisms. Oral Microbiol Immunol [Internet]. 1989 Mar
[cited 2017 May 18];4(1):41-6. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/2628867

Weinstock GM. Genomic approaches to studying the human microbiota. Nature
[Internet]. 2012 Sep 13 [cited 2018 Mar 25];489(7415):250—6. Available from:
http://www.nature.com/articles/nature11553

Ferretti P, Farina S, Cristofolini M, Girolomoni G, Tett A, Segata N. Experimental
metagenomics and ribosomal profiling of the human skin microbiome. Exp
Dermatol [Internet]. 2017;26:211-9. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27623553%5Cnhttp://doi.wiley.com/10.1

111/exd.13210

65


http://www.nature.com/articles/nature11553
http://www.ncbi.nlm.nih.gov/pubmed/2628867
https://www-annualreviews-org.liboff.ohsu.edu/doi/pdf/10.1146/annurev.mi.40.100186.002005
https://www-annualreviews-org.liboff.ohsu.edu/doi/pdf/10.1146/annurev.mi.40.100186.002005
http://www.ncbi.nlm.nih.gov/pubmed/2976437
http://linkinghub.elsevier.com/retrieve/pii/0003996963900190
http://www.nature.com/doifinder/10.1038/nature24621
http://www.ncbi.nlm.nih.gov/pubmed/27623553%5Cnhttp://doi.wiley.com/10.1111/exd.13210
http://www.ncbi.nlm.nih.gov/pubmed/27623553%5Cnhttp://doi.wiley.com/10.1111/exd.13210

33.

34.

35.

36.

37.

38.

39.

40.

Glockner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of
serving the community with ribosomal RNA gene reference databases and tools. J
Biotechnol [Internet]. 2017 Nov 10 [cited 2018 Mar 25];261:169-76. Available
from: https://www.sciencedirect.com/science/article/pii/S0168165617314943

Kopylova E, Navas-Molina JA, Mercier C, Xu ZZ, Mahé F, He Y, et al. Open-source
sequence clustering methods improve the state of the art. mSystems.
2016;1(1):1-16.

Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum
entropy decomposition: unsupervised oligotyping for sensitive partitioning of
high-throughput marker gene sequences. ISME J [Internet]. 2014 Oct 17 [cited
2016 Nov 13];9(4):968-79. Available from:
http://www.nature.com/doifinder/10.1038/ismej.2014.195

Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics [Internet]. 2010 Oct 1 [cited 2016 Nov 11];26(19):2460-1.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/20709691

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon
reads. Nat Methods [Internet]. 2013 Aug 18 [cited 2017 Feb 11];10(10):996-8.
Available from: http://www.nature.com/doifinder/10.1038/nmeth.2604

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al.
QIIME allows analysis of high-throughput community sequencing data. Nat
Methods [Internet]. 2010 May 11 [cited 2018 Jan 7];7(5):335—6. Available from:
http://www.nature.com/articles/nmeth.f.303

Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. Exploring
microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing.
Eisen JA, editor. PLoS Genet [Internet]. 2008 Nov 21 [cited 2017 Apr
23];4(11):e1000255. Available from:
http://dx.plos.org/10.1371/journal.pgen.1000255

Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-
generation sequencing reads. Bioinformatics [Internet]. 2015 Nov 1 [cited 2017
Apr 26];31(21):3476—-82. Available from:
https://academic.oup.com/biocinformatics/article-

lookup/doi/10.1093/bioinformatics/btv401

66


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv401
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv401
http://dx.plos.org/10.1371/journal.pgen.1000255
http://www.nature.com/articles/nmeth.f.303
http://www.nature.com/doifinder/10.1038/nmeth.2604
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://www.nature.com/doifinder/10.1038/ismej.2014.195
https://www.sciencedirect.com/science/article/pii/S0168165617314943

41.

42.

43.

44.

45.

46.

47.

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a
dual-index sequencing strategy and curation pipeline for analyzing amplicon
sequence data on the MiSeq lllumina sequencing platform. Appl Environ
Microbiol [Internet]. 2013 Sep 1 [cited 2017 Aug 15];79(17):5112-20. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/23793624

Schirmer M, ljaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. Insight into biases
and sequencing errors for amplicon sequencing with the lllumina MiSeq platform.
Nucleic Acids Res [Internet]. 2015 Mar 31 [cited 2017 Sep 11];43(6):e37—e37.
Available from: https://academic.oup.com/nar/article-
lookup/doi/10.1093/nar/gku1341

D’Amore R, ljaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, et al. A
comprehensive benchmarking study of protocols and sequencing platforms for
16S rRNA community profiling. BMC Genomics [Internet]. 2016 Dec 14 [cited
2017 Sep 16];17(1):55. Available from: http://www.biomedcentral.com/1471-
2164/17/55

Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA
806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat
Microb Ecol [Internet]. 2015 Jun 4 [cited 2018 Mar 25];75(2):129-37. Available
from: http://www.int-res.com/abstracts/ame/v75/n2/p129-137/

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ,

et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per
sample. Proc Natl Acad Sci U S A [Internet]. 2011;108 Suppl(Supplement_1):4516—
22. Available from: http://www.pnas.org/content/108/Supplement_1/4516.short

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
Ultra-high-throughput microbial community analysis on the lllumina HiSeq and
MiSeq platforms. ISME J [Internet]. 2012 Aug 8 [cited 2018 Mar 25];6(8):1621-4.
Available from: http://www.nature.com/articles/ismej20128

Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small
subunit rRNA primers for marine microbiomes with mock communities, time
series and global field samples. Environ Microbiol [Internet]. 2016 May 1 [cited
2018 Mar 25];18(5):1403—14. Available from:
http://doi.wiley.com/10.1111/1462-2920.13023

67


http://doi.wiley.com/10.1111/1462-2920.13023
http://www.nature.com/articles/ismej20128
http://www.pnas.org/content/108/Supplement_1/4516.short
http://www.int-res.com/abstracts/ame/v75/n2/p129-137/
http://www.biomedcentral.com/1471-2164/17/55
http://www.biomedcentral.com/1471-2164/17/55
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku1341
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku1341
http://www.ncbi.nlm.nih.gov/pubmed/23793624

48.

49.

50.

51.

52.

53.

54.

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al.
Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed
spacer marker gene primers for microbial community surveys. mSystems
[Internet]. 2016 Feb 25 [cited 2018 Mar 25];1(1):e00009-15. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27822518

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity
and speed of chimera detection. Bioinformatics [Internet]. 2011 Aug 15 [cited
2018 Jan 71;27(16):2194-200. Available from:
https://academic.oup.com/bioinformatics/article-
lookup/doi/10.1093/bioinformatics/btr381

Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al.
Oligotyping: differentiating between closely related microbial taxa using 16S rRNA
gene data. Freckleton R, editor. Methods Ecol Evol [Internet]. 2013 Dec [cited
2016 Oct 19];4(12):1111-9. Available from: http://doi.wiley.com/10.1111/2041-
210X.12114

Nucleotide [Internet]. Bethesda, MD: National Center for Biotechnology
Information; 1988. Available from: https://www.ncbi.nlm.nih.gov/nucleotide

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alighment search
tool. J Mol Biol [Internet]. 1990 Oct 5 [cited 2018 Jan 9];215(3):403—10. Available
from:
http://www.sciencedirect.com.liboff.ohsu.edu/science/article/pii/S00222836058
03602?via%3Dihub

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Res [Internet]. 2012 Nov 27 [cited 2018 Mar
26];41(D1):D590-6. Available from:
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-
ribosomal-RNA-gene-database-project

Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R.
PyNAST: a flexible tool for aligning sequences to a template alignment.
Bioinformatics [Internet]. 2010 Jan 15 [cited 2018 Jan 7];26(2):266-7. Available
from: https://academic.oup.com/bioinformatics/article-
lookup/doi/10.1093/biocinformatics/btp636

68


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp636
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp636
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://www.sciencedirect.com.liboff.ohsu.edu/science/article/pii/S0022283605803602?via%3Dihub
http://www.sciencedirect.com.liboff.ohsu.edu/science/article/pii/S0022283605803602?via%3Dihub
https://www.ncbi.nlm.nih.gov/nucleotide
http://doi.wiley.com/10.1111/2041-210X.12114
http://doi.wiley.com/10.1111/2041-210X.12114
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr381
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr381
http://www.ncbi.nlm.nih.gov/pubmed/27822518

55.

56.

57.

58.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source
tool for metagenomics. Peer] [Internet]. 2016 Oct 18 [cited 2017 Feb
22];4(e2584):1-22. Available from: https://peerj.com/articles/2584

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform. Nucleic Acids Res [Internet].
2002 Jul 15 [cited 2018 Jan 7];30(14):3059-66. Available from:
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkf436

Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal
RNAs in metatranscriptomic data. Bioinformatics [Internet]. 2012 Dec 1 [cited
2017 Feb 17];28(24):3211-7. Available from:
https://academic.oup.com/bioinformatics/article-
lookup/doi/10.1093/biocinformatics/bts611

Team RC. R: A language and environment for statistical computing. [Internet].
Vienna, Austria: R Foundation for Statistical Computing; 2017. Available from:
https://www.r-project.org

69


https://www.r-project.org/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bts611
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bts611
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkf436
https://peerj.com/articles/2584

	I. Introduction
	II. Background
	III. Methods
	IV. Results
	V. Discussion
	VI. Summary and Conclusions
	VII. References



