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Abstract

Microbiome community compositon is an important factor in human health, and while 

most microbiome research to date has focused on high microbial biomass communites, 

low biomass communites, such as found in the urinary tract, are also of medical 

importance. The relatve scarcity of microbes in low biomass communites makes an 

accurate determinaton of community compositon challenging, since contaminaton 

and technical noise may confound the true community signal when biomass is very low. 

However, the impact of these noise sources on microbial community inference is not 

well studied. The most common techni-ue for estmatng community compositon is to 

se-uence the 16S rRNA genes, which serve as phylogenetc barcodes for prokaryotes, in 

a sample. True community se-uences, and hence compositon, are then inferred from 

the noisy se-uence data. OTU clustering algorithms have been the de facto standard for 

in silico community inference from 16S rRNA se-uence data, but recently, several 

algorithms have emerged that use se-uencer error models to improve inference. Here, 

we benchmarked six community inference software methods, including two OTU 

methods, three error model methods, and one entropy-based method, to assess their 

performance on samples of varying biomass. First, we compared the methods using four

high microbial biomass mock communites to assess their baseline performance with 

“typical” microbiome data. Then, we compared the methods’ performance on a diluton 

series made from a single mock community, to generate samples that varied only in 
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relatve biomass. Se-uences inferred by each method were classifed according to their 

most likely source: community, technical noise, contaminaton, or unknown. With the 

high biomass data, we found that the error model methods showed both good 

sensitvity and specifcity, whereas the other three methods showed relatvely poor 

sensitvity, specifcity, or both. Contaminaton was present in the inferred communites, 

but in very small proportons. With the diluton series data, contaminaton made up an 

increasing proporton of the inferred communites, dominatng the compositon of the 

most dilute sample, regardless of inference method. However, the error model methods

showed a nearly linear associaton between the number of contaminant se-uences 

inferred and sample concentraton, whereas the entropy-based method exhibited a less 

linear relatonship, and the OTU methods showed the least relatonship between 

inferred contaminant se-uences and sample biomass. Thus, we conclude that while no 

inference method on its own distnguishes true community from contaminant 

se-uences, error model methods provide the most accurate characterizaton of 

community and contaminants, and further research into in silico contaminant 

identfcaton using error model methods is warranted.
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I. Introduction

A microbiome is a community of microbes— bacteria, archaea, viruses, and fungi— that 

coexist in a defned, small-scale environment. Examples of environments that host 

microbiomes include the human gut, skin, and mucosae, as well as soil, plant leaves, and

bodies of water. The group of organisms that inhabit a given microbiome are referred to

collectvely as the microbiota. With the rapid growth of interest in their study, it seems 

that microbiomes are found almost wherever we look, including environments once 

thought to be sterile such as the urine,(1) the lungs,(2) and blood.(3)

Microbiomes have been closely ted to human health. Distnct microbial community 

compositons have been associated with a wide range of host phenotypes and diseases, 

from obesity to irritable bowel disease to Parkinson’s disease.(4–6) In additon, there is 

ample evidence that the microbiota play an important role in training and regulatng the

immune system.(7) Although in most cases causal links have yet to be demonstrated 

between microbiome compositon and an associated host phenotype, understanding 

these associatons can nevertheless be of great potental beneft to the biomedical 

community: the human microbiome may help to diagnose and treat diseases, as well as 

predict response to treatments and long-term health outcomes.(8) In one example of 

using the microbiome for clinical applicaton, fecal transplants have been successfully 

used to treat Clostridium difcile infectons by re-establishing benefcial microbial 

populatons.(9)
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While the majority of human microbiome research to date has focused on body sites 

with relatvely large microbial biomass, such as the gut, vagina, and oral cavity, microbial

communites are also found at much lower abundance in a variety of other sites. Some 

examples of these low biomass microbiomes are found in urine and the urinary tract,(1) 

on the mucosae of the lungs,(2) and in the blood.(3) There is even evidence that the air 

surrounding each of us contains a cloud of microorganisms given of by our bodies.(10) 

Just as with the higher biomass microbiota, low biomass communites have been 

associated with a number of human disorders. Changes in the urinary microbiota 

relatve to healthy populaton controls are seen in women who sufer from urgency 

urinary incontnence,(11) and distnct microbial communites are observed in patents 

with cystc fbrosis, asthma, and chronic obstructve pulmonary disease.(12) However, 

studying these low biomass communites presents special challenges to researchers. 

Because samples taken from urine or blood, for example, contain a relatvely small 

amount of microbial material, accurate characterizaton of the community compositon 

can be very difcult.(13,14)

Currently, the most common method for profling a microbial community is to se-uence

the 16S rRNA gene. Found in all prokaryotes, the 16S rRNA gene consists of 

hypervariable regions, which serve as barcodes that are uni-ue to distnct organisms, 

fanked by highly conserved regions that ofer a target for PCR primers to isolate and 

amplify the region of interest in a wide range of organisms. DNA se-uencing reads 

generated from the targeted 16S rRNA region are then processed by -uality fltering and
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se-uence inference in silico to remove noise introduced by PCR and se-uencing, as well 

as to account for intra-organism variaton.

Since at least 2006,(15) clustering reads into operatonal taxonomic units (OTUs) has 

been the de facto standard for se-uence inference with 16S rRNA data. With OTU 

methods, the researcher selects a radius of variability (typically 3%), within which 

se-uence diferences are assumed to be due to variaton within the taxonomic group or 

random se-uencer noise. All se-uence reads within the chosen radius from each other 

are clustered into a single OTU, which is commonly inferred as representng one 

“organism” or taxonomic group. Recently, several methods have been published that 

take a diferent approach.(16–18) These algorithms, which we refer to here as error 

modeling methods, atempt to model the error of the se-uencer, and then cluster reads

so that their distributon within clusters is consistent with the error model. This 

approach avoids making any assumpton about the variaton within a taxonomic group 

(e.g., “intra-species 16S rRNA variaton is 3%”), a weakness of OTU methods.(19) By 

considering both se-uence similarity and abundance in the model, error modeling 

methods account for the broader error profles (in terms of number of base-pair 

substtutons) that result from high-throughput, next-generaton se-uencing (NGS) 

experiments, which may produce many thousands of reads for a single template 

se-uence. Hence, error modeling has the potental to simultaneously improve the 

sensitvity and specifcity of 16S rRNA se-uence inference compared to OTU methods.
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As mentoned above, samples taken from an environment with low microbial biomass 

present distnct challenges to the researcher, and methods deemed appropriate for high

biomass samples— both in the lab and in silico— may not transfer well to low biomass 

studies. When dealing with low biomass samples, there is less startng template DNA for

the PCR reacton. Conse-uently, any contaminaton from extracton reagents or the 

laboratory environment makes up a larger fracton of the extracted sample when 

compared to high microbial biomass samples.(13) (Examples of genera commonly found

as contaminants in se-uencing experiments include Bradyrhizobium, 

Rhizobium/Agrobacterium, Sphingomonas, Burkholderia, Microbacterium, 

Propionibacterium, and Pseudomonas.(14,20)) Additonally, the greater number of PCR 

cycles typically re-uired with low biomass samples may produce disproportonate 

-uanttes of chimeric and contaminant DNA se-uences.(2) In other words, the 

se-uencing of low biomass microbiome communites sufers from a low signal-to-noise 

rato, a problem not encountered when se-uencing high microbial biomass 

communites, since any contaminatng se-uences are overwhelmed by the community 

DNA in the later case.

The low signal-to-noise rato encountered when se-uencing low microbial biomass 

samples can have serious implicatons for the biological, and even biomedical, 

interpretaton of an experiment. On the one hand, if the strength of the noise— 

partcularly noise from contaminatng species— is too great, it may be mis-interpreted 

as forming an important component of the microbial community. Even noise from 

technical sources, such as se-uencer substtuton errors, can lead to infated estmates 
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of sample diversity. On the other hand, the diminished strength of the community signal

means that sparse but important community members may not be detected , or else 

may be dismissed as background noise. In the worst case, confounding noise might even

lead to invalid conclusions about the biomedical role of a microbiome community, 

leading to a misguided understanding of the role of microbiomes in our health.

A few studies have investgated the efects of wet-lab variables on low biomass 

microbiome se-uencing experiments, for example the impact of diferent -uanttes of 

startng material,(21,22) the contaminaton introduced by diferent DNA extracton and 

se-uencing reagents,(14,23) and the efects of other potental sources of 

contaminaton.(24) Here, we instead propose to study the impact of in silico methods 

on the inference of community compositon in low biomass samples. Specifcally, we 

intend to compare the accuracy of various core algorithms in 16S rRNA read processing 

pipelines, namely OTU and error modeling methods, when presented with low biomass 

data. We only consider methods designed for or compatble with Illumina se-uence 

data, since this has become the predominant se-uencing platorm,(25) and the vast 

majority of modern microbiome investgatons currently use Illumina technology. First, 

we benchmark selected inference methods on mock microbial community samples with 

high microbial biomass to assess their baseline performance on data from high biomass 

communites. Then, we will compare the same methods on a mock community diluton 

series— a set of samples with successively decreasing DNA concentraton— to observe 

how inference results change when sample biomass becomes small, and to evaluate 

how each method performs in this scenario.
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II. Background

A variety of experimental techni-ues have been used to investgate microbiomes since 

at least the 1960s. The earliest studies used conventonal culturing methods to grow 

bacteria from a sample, e.g., a swab of the oral cavity. The resultng cultures would then

be examined microscopically and bacteria would be identfed by their morphologic and 

biochemical characteristcs.(26–28) However, culture methods sufer from the severe 

limitaton that a vast majority of microorganisms will not grow in conventonal culture 

media, a fact that was not well appreciated untl culture-independent technologies were

developed in the 1980s.(29) This constraint results in low sensitvity for culture 

experiments, and also led to the misconcepton that certain body sites (partcularly 

those that are home to low biomass communites) were sterile. Another drawback to 

culture-based studies is their reliance on phenotype to distnguish organisms, 

observatons that can be subjectve and often ambiguous. The development of DNA 

probe hybridizaton technology provided one of the earliest culture-independent tools 

for -uerying microbiomes.(30) Although not constrained by whether or not an organism

can be cultured, the sensitvity and precision of DNA probes are constrained by the set 

of probes used. In efect, this restricton means that only a relatvely small set of known 

organisms can be detected by DNA hybridizaton. 

DNA se-uencing technologies represent a major advance in our ability to -uery 

microbiome communites, and the development of inexpensive, high-throughput next-

generaton se-uencing (NGS) has fueled a huge growth in microbiome research over the
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last decade. Two primary strategies exist to study microbial communites using NGS.(31)

The frst, shotgun whole-genome se-uencing, atempts to se-uence all genomic DNA 

present in a microbiome sample. By se-uencing the entre metagenome (the genome of

a community), this method afords the highest resoluton of community 

characterizaton, in terms of distnguishing between similar organisms, and permits 

direct functonal gene profling of the microbiota. On the downside, it is expensive to 

achieve the se-uencing depth re-uired for shotgun metagenomic experiments. Also, 

when studying human microbiomes, detecton of microbes is hindered by the fact that a

majority of the sample DNA is contaminaton from the human host. In additon, analysis 

of the data is difcult, re-uiring removal of human read se-uences and accurate read 

mapping and/or assembly of a large number of microbial genomes, all of which re-uires 

substantal computatonal resources.(32)

Targeted se-uencing of the prokaryotc 16S rRNA gene avoids many of the difcultes 

encountered with shotgun se-uencing, while stll ofering reasonable sensitvity and 

precision for community profling. Found in all bacteria and archaea, the 16S rRNA gene 

includes regions of DNA that are highly conserved across organisms, ofering an ideal 

target for well-designed PCR primers to isolate and amplify a gene common to 

community members. Other regions of the 16S rRNA gene se-uence, called 

hypervariable regions, vary such that they can be used as barcodes to distnguish 

organisms from each other. Thus, by targetng and se-uencing 16S rRNA genes (so-

called “amplicon” se-uencing) from a human host sample, a census of the bacteria living

in a body habitat can be taken. Although not as precise as shotgun metagenomes, 16S 
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rRNA hypervariable regions are -uite phylogenetcally informatve, typically permitng 

classifcaton to genus level, with species or even strain-level distnctons sometmes 

possible.(16) The much smaller coverage re-uirement of amplicons relatve to whole-

genome se-uencing means that 16S rRNA experiments are much less expensive to carry 

out. Also, the data sets produced are smaller, and don’t re-uire assembly or mapping of 

reads, making the analysis more tractable with only modest computatonal resources. 

Because of this accessibility and the high degree of phylogenetc informaton it provides,

16S rRNA se-uencing is the most popular techni-ue for studying the human 

microbiome, and it is this se-uencing strategy that is the focus of our study. 

Once a 16S rRNA se-uencing experiment has been performed and the raw data 

obtained, computatonal analysis is re-uired to extract meaningful informaton from the

read se-uences. This analysis can be separated into two stages: primary analysis, in 

which the raw read se-uences are processed to infer the community compositon; and 

secondary, or “downstream”, analysis, which may include estmatng community 

propertes such as alpha and beta diversity, comparing samples to detect signifcant 

diferences, and conductng network analysis. Here, we will address the primary 

processing of raw reads to infer community compositon. Specifcally, we will focus on 

data generated by the Illumina se-uencing platorm, which has become the 

predominant se-uencing technology for high-throughput se-uencing experiments, 

including microbiome experiments.(25)
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The simplest approach to 16S rRNA read processing is to simply group se-uences by 

identty, countng the number of tmes each uni-ue read occurs and considering each 

uni-ue read to represent a distnct organism. However, this approach is fawed because 

se-uence data contain non-trivial errors and noise from both technical and biological 

sources. One source of technical error is introduced by PCR (necessary to isolate and 

amplify a 16S rRNA hypervariable region), and occurs when two 16S rRNA fragments 

from diferent parent se-uences become fused to form a hybrid se-uence, or chimera, 

which is not biological. Another source of technical artfacts is the se-uencer, which has 

a fnite error rate for individual base calls (on the order of 0.1% for typical Illumina 

reads). Some degree of biological error, either from DNA contaminaton of extracton 

reagents or from imperfectly sterile lab conditons, is also likely to be present. As a 

result of these various error sources, samples of a microbial community known to have 

only a few distnct organisms routnely produce tens of thousands or more uni-ue read 

se-uences. 

To reduce the complexity of noisy data and allow for inference of sample compositon, 

the most common strategy is to cluster se-uences above a certain threshold of 

similarity into operatonal taxonomic units, or OTUs. Figure 1 shows an example of OTU 

clustering. Typically, a threshold of 97% similarity is used, which is presumed to 

correspond to the natural variaton within bacterial species. Thus, OTUs reduce spurious

se-uence identfcaton by clustering reads presumed to difer only due to intra-species 

variaton or technical artfacts, i.e., se-uencer error. Representatve se-uences from 

each OTU cluster can then be mapped to a 16S rRNA reference database for taxonomic 
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identfcaton. Such databases have been compiled over several decades and represent a

compilaton of millions of 16S rRNA se-uences that have been deposited by researchers 

from the microbiology community.(33)

One issue with OTU clustering is that the fxed similarity threshold corresponds poorly to

biological taxa. For example, some genera exhibit wide intra-genus variaton in their 16S

rRNA se-uences, whereas others vary only slightly,(19) so clustering with a fxed 
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Figure 1: Example of OTU clustering. OTU clustering methods group read se-uences using a fxed 

similarity threshold. Each dark shaded dot represents the true 16S rRNA se-uence of an 

organism, lighter shaded dots represent read se-uences with errors (derived from the true 

se-uence of the same color). Distance between dots shows degree of diference between 

se-uences, size of dots represents relatve abundance of reads in dataset. Light grey circles are 

OTU clusters, with fxed similarity threshold shown by T. OTUs may lump organisms with similar 

se-uences into a single cluster (as shows for blue and violet se-uences above, as well as green 

and yellow se-uences), thereby detectng only one “organism” when multple are present. OTUs

may also split reads with se-uencing errors into distnct clusters (as shown by the light green 

se-uences above), potentally resultng in false positve detectons.



similarity threshold arbitrarily splits some taxa while lumping others with very similar 

se-uences. This lumping of taxa also means that OTU clustering limits the ability to 

resolve closely related se-uences that may represent meaningful phylogenetc 

diferences. Similarly, the fxed threshold of OTUs does a poor job of removing 

se-uencer error, as it does not account for the possibility that an erroneous se-uence 

could difer from its true se-uence by more than the threshold, an event that is much 

more likely as se-uencing depth and throughput have increased with improved 

technologies. As a conse-uence, OTU clustering tends to greatly infate the number of 

distnct organisms present in a sample, with estmates in the thousands commonly given

even for samples likely to be of much lower diversity.(34)

Recently, a number of new methods have emerged to overcome the limitatons of OTU 

clustering.(16–18,35) Rather than simply considering similarity to cluster reads, these 

algorithms use se-uencer error models to distnguish erroneous reads from true 

biological reads. Figure 2 shows an example of error model inference. Some of these 

error modeling methods employ a priori models of typical se-uencer error profles, 

while another approach is to use an adaptve model estmated from the data 

themselves. In additon to read similarity, error modeling methods take into account the

fre-uency distributon of se-uences, and may also consider -uality scores reported by 

the se-uencer. Once the set of biological read se-uences has been inferred, all variaton

is considered to be biologically meaningful. Further clustering of se-uences into OTUs is 

then possible, but may be undesirable, as it only reduces the informaton content and 

hence the resoluton for organism identfcaton.  With both simulated and mock 
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community data, error modeling methods have been shown to increase the ability to 

resolve closely related organisms while decreasing the number of spurious 

identfcatons relatve to OTU methods.(16,35)

For this study, we have selected six se-uence inference methods for comparison, 

including two representatve OTU methods, an OTU alternatve that uses an 
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Figure 2: Example of error model se-uence inference. Error modeling methods use an explicit 

model of se-uencer error to infer community se-uences. Each colored bar represents the true 

16S rRNA se-uence of an organism, light grey bars represent read se-uences with errors. 

Distance between bars (x-axis) shows degree of diference between se-uences, height of bars 

represents relatve abundance of reads in dataset. Dark grey lines show a hypothetcal error 

model, representng the maximum expected fre-uency of se-uencer error as distance from the 

central se-uence varies. The error model correctly infers the community compositon, since 

each true se-uence is too abundant to fall under the error profle of another se-uence, while all 

se-uences with errors are consistent with the error model for one of the true se-uences.



informaton-theoretc entropy-based approach, and three error modeling methods. The 

two OTU methods are called UCLUST (36) and UPARSE,(37) the entropy-based method is

named Minimum Entropy Decompositon (MED),(35) and the error modeling methods 

are UNOISE,(17) Deblur,(18) and the Divisive Amplicon Denoising Algorithm 2 (DADA2).

(16) Each is described in more detail below.

UCLUST is an OTU clustering method that we chose because it has been widely used and

cited in microbiome research. Its widespread use is largely due to its inclusion, untl 

recently, as the default inference method in the Quanttatve Insights Into Microbial 

Ecology (QIIME) software suite,(38) a popular microbiome analysis tool. The UCLUST 

algorithm in QIIME begins with an abundance-sorted list of se-uences. It then aligns 

those se-uences against a database of cluster seeds, which is initally empty. Se-uences 

are greedily clustered if they are within the radius of variaton (typically 3%, or 97% 

similarity) of existng seeds, otherwise they become new seeds. 

The second OTU method chosen, UPARSE is a newer algorithm published in 2013 by the 

same author as UCLUST.(36,37) UPARSE uses the same greedy clustering strategy, but 

precedes it with a stringent -uality fltering step, which excludes lower--uality read 

se-uences from the set used to form cluster seeds. It also removes chimeric se-uences 

concurrently with the clustering stage (rather than prior to clustering as with UCLUST) if 

a -uery se-uence is best explained as a chimera of existng cluster seeds. We selected 

UPARSE because it has been shown to greatly reduce the infaton of community 

diversity estmates that result from most OTU clustering algorithms.(34) 
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One of the frst published 16S rRNA se-uence processing methods to use a diferent 

strategy from the OTU approach was MED.(35) MED begins by placing all se-uences in a 

single cluster and aligning them. The Shannon entropy of each alignment column is 

computed, and if any column has entropy higher than a threshold (computed 

dynamically for each cluster), the cluster is divided so as to make the entropy of the 

ofending column zero in each new cluster. New entropy thresholds are computed, and 

cluster division repeats untl all clusters have entropy below the threshold. MED then 

removes clusters whose abundance is below a minimum threshold (0.02% of all dataset 

reads by default), considering these to be noise. Included in the entropy calculaton is a 

consideraton of read and nucleotde fre-uency profles, and thus the entropy threshold 

serves as an implicit model of se-uencer error. Figure 3 shows an example of entropy-

based clustering. 

MED was evaluated on two biological datasets,(35) and compared to UCLUST and a 

method that performs direct taxonomic classifcaton of uni-ue reads (GAST).(39) In 

each case, MED resolved single OTUs (from UCLUST) or single taxa (from GAST) into 

multple nodes that corresponded to distnct species or host sites, demonstratng that 

MED has higher sensitvity for resolving ecologically meaningful informaton from 16S 

rRNA data when compared to OTU clustering. MED is included in this study for its 

potental to give distnct results from either OTU or error modeling methods.
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Published in 2016, the frst stand-alone method developed for Illumina se-uencing data 

to use an explicit error model for se-uence inference was DADA2.(16) DADA2 uses a 

multvariate Poisson distributon to model errors in se-uencing reads, and the model 

parameters are estmated empirically from the data by considering -uality scores 

reported by the se-uencer. Beginning with a worst-case assumpton for the error 

model, the algorithm alternates between clustering se-uences given the error model 
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Figure 3: Example of entropy-based clustering. Entropy-based clustering considers the Shannon 

entropy (amount of variaton) of individual columns of the aligned se-uences. Se-uences with 

the same color above are identcal. If the entropy of a column is above a designated threshold, 

the cluster is split so as to make the entropy of the column zero in the new clusters. Columns 

with entropy below the threshold do not lead to cluster splitng. Cluster splitng stops when all 

columns in all clusters have entropy below the threshold.



and estmatng the error model given the clustering, untl convergence. During 

clustering, all se-uences begin in a single cluster whose centroid is the most abundant 

se-uence, inferred to be the correct template se-uence. The probabilites that all other 

se-uences were derived from the centroid, given the error model, is calculated. If the 

least probable se-uence is below a p-value threshold (1x10-40 by default), it forms a new 

cluster centroid, and se-uences are re-assigned to their most likely cluster. Cluster 

division repeats untl all clusters are consistent with the error model. 

The authors compared DADA2 to MED and three OTU clustering methods. On three 

mock community datasets, DADA2 outperformed the other methods in terms of both 

sensitvity and specifcity: it resolved fner variaton than any of the OTU methods, 

detected rare variants that were discarded by MED’s noise-fltering abundance 

threshold, and generally output fewer false positve se-uences than the other methods 

on each of the three datasets. On a natural microbiome dataset, DADA2 identfed six 

variants of a single species that showed evidence of being ecologically distnct, which 

would have been lumped into a single OTU owing to their highly similar 16S rRNA 

se-uences. This showed that using an error model, higher resoluton of 16S rRNA data is

possible without reducing specifcity. 

Another denoising algorithm, UNOISE, was originally published in 2015 (40) and later 

updated to its current version (UNOISE2) in 2016.(17) Similar to DADA2, UNOISE uses a 

parametric error model, but rather than a multvariate Poisson model, UNOISE employs 
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a simpler power-law distributon to approximate se-uencer error, with a single user-

specifed tuning parameter. 

UNOISE was benchmarked on three mock community datasets and three biological 

datasets, and results compared to those of DADA2. In general, the performance of 

UNOISE was very similar to that of DADA2, and in some cases UNOISE produced 

apparently beter results. The author’s evaluaton showed that a simplifed error model 

that does not consider se-uence -uality scores can perform comparably to one that 

uses -uality scores to estmate many parameters (DADA2), thus re-uiring additonal 

intensive computaton.

Like DADA2 and UNOISE2, Deblur, published in 2017,(18) considers read fre-uency and 

inter-se-uence distance to predict erroneous se-uences. Instead of a smooth 

parametric model, Deblur employs stepwise, empirical thresholds that specify the 

maximum number of erroneous se-uences expected at each Hamming distance 

(number of nucleotde substtutons) from a given -uery se-uence, up to a maximum 

distance of 11. In decreasing order of abundance, each se-uence's expected error 

abundances are computed and subtracted from the abundances of neighboring 

se-uences. Se-uences whose abundance remains above zero after all subtractons have 

been done are inferred as the correct template se-uences. 

Deblur’s performance was compared to DADA2 and UNOISE on simulated, mock 

community, and real biological datasets. All three methods achieved high accuracy on 

the simulated data, with Deblur and UNOISE showing somewhat beter sensitvity, and 
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all methods gave results close to the ground truth on the mock community data, 

although DADA2 predicted the fewest, and Deblur the most, false positves. Evaluated 

for stability on technical replicates, Deblur achieved a higher overlap of inferred 

se-uences between replicates than DADA2 (UNOISE was not tested). Deblur thus 

represents another strong alternatve to OTU clustering, and it was additonally shown 

to run an order of magnitude faster than DADA2 owing to its simple, a priori model.

Each of these six methods will be benchmarked according to the following two specifc 

aims:

Aim 1

For the frst aim, two methods representatve of the OTU clustering algorithm, UCLUST 

and UPARSE, as well as MED and three error modeling methods, will be evaluated on 

several mock communites with high microbial biomass. The goal of this aim is twofold: 

frst, to provide a benchmark of these methods independent of the authors who 

published them; and second, to establish the baseline performance of each method on 

“typical”, high microbial biomass samples. We hypothesize that error-modeling methods

will be superior to clustering methods for this purpose.

Aim 2

For the second aim, I will evaluate the same methods on a diluton series, which mimics 

successively lower sample biomass. There are also two goals for this stage. The frst is to

identfy which, if any, methods perform consistently beter, or beter at low 
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concentratons. The second is to observe the extent to which low microbial biomass 

afects community inference, regardless of method.

The overarching goal is not only to observe the extent to which sample biomass alone 

can alter the community compositon inferred by a given method, but also to assess the 

potental of various inference strategies for identfying and removing contaminatng 

se-uences computatonally. Our hypothesis is that error modeling methods will be both 

more sensitve and specifc than OTU methods, regardless of startng biomass. We also 

antcipate that decreasing the startng DNA concentraton will lead to an increase in the 

inference of spurious and contaminant se-uences due to the lower signal-to-noise rato,

but that error modeling will more accurately identfy the true contaminaton present. 

This study is motvated by the desire to characterize the community of low biomass 

microbiomes as accurately as possible using existng 16S rRNA data processing methods,

in order to strengthen the validity of associaton between distnct microbiota profles 

and phenotypes (including diseases) of interest. While a number of studies have 

compared the performance of these methods on typical data sets, to our knowledge this

is the frst to systematcally examine their ability to process low biomass sample data.
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III. Methods

Experimental design

To assess the performance of the six selected methods, we benchmarked each method 

on a number of mock community datasets. Mock communites are used instead of 

“natural” biological samples (such as stool or urine) because the community 

compositon of a mock community is known in advance, which allows a more objectve 

assessment of the accuracy of the community inferred by each method. We frst 

compared the six methods on four high biomass (undiluted) mock community datasets, 

which served two purposes: frst, to give an independent assessment of the merits of 

these methods; and second, to show the baseline performance of each method on 

samples representatve of high microbial biomass communites (such as the gut 

microbiota). Three of these datasets, referred to here as “Kozich”, “Schirmer”, and 

“D’Amore” are from previously published studies.(41–43) The fourth dataset, which we 

call “yymo”, was generated for this study by Mark As-uith’s lab at the Oregon Health & 

Science University.

We next benchmarked each method on a mock community diluton series, prepared 

from the yymo mock community by performing eight serial dilutons (each having 1/3 

the DNA concentraton of the previous diluton), for a total of nine samples. The diluton

series mimics samples of successively lower biomass, and allowed us to observe how 

each method's inference results change as biomass decreases.
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Datasets

The Kozich mock community (41) comprises e-ual concentratons of 21 diferent 

bacterial strains, and the dataset is available as run 130403 at 

htps://www.mothur.org/MiSe-DevelopmentData.html. The Schirmer mock community

(42) was made from e-ual proportons of 57 prokaryotc strains (both archaea and 

bacteria). The dataset was obtained from the European Nucleotde Archive (ENA, 

htps://www.ebi.ac.uk/ena), project accession PRJEB6244, run accession ERR777695 

(sample metaID-35). The D'Amore mock community (43) contains the same 57 

prokaryotc strains as the Schirmer community, but the D'Amore sample has DNA 

-uanttes that vary according to a logarithmic distributon. The data are also available 

from ENA project accession PRJEB6244, run accession ERR777739 (sample metaID-88). 

The yymo community includes 8 strains with e-ual genomic proportons. Table 1 gives a 

concise summary of these high microbial biomass mock communites. 

Table 1: High microbial biomass datasets

Dataset name Source
Number of

strains

Genomic

proportons
Raw reads

Kozich Kozich, et al.(41) 21 e-ual 269.8k

Schirmer Schirmer, et al.(42) 57 e-ual 593.9k

D’Amore D’Amore, et al.(43) 57 logarithmic 262.1k

yymo yymo Research 8 e-ual 427.2k

The yymo mock community, including the high biomass (undiluted) sample and each of 

the diluton series samples, comprises 8 bacterial strains in e-ual proportons (see Table 

2 for community compositon), and was prepared for this study from the yymoBIOMICS 
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Microbial Community Standard, available from yymo Research 

(htps://www.zymoresearch.com/zymobiomics-community-standard). This mock 

community consists of both Gram positve and Gram negatve bacteria in additon to 

yeast species and thus is a useful tool to ensure the success of DNA extracton (and 

subse-uent se-uencing) from a broad diversity of micro-organisms which may have 

intrinsic biological propertes (eg. cell wall thickness) that make them more or less 

refractory to DNA isolaton. DNA was extracted from the microbial standard with the 

Qiagen DNeasy blood & tssue kit following the manufacturer's recommended protocol. 

In brief, bacterial cells were lysed by mechanical and enzymatc lysis, followed by 

removal of the inhibitor by precipitaton. DNA was collected by passing it through a DNA

binding column. For further purifcaton, binding products were washed to remove 

contaminants, and purifed DNA was collected by eluton.

Table 2: yymo mock community compositon

Species
Average GC

(%)
Gram stain

gDNA abundance

(%)

Pseudomonas aeruginosa 66.2 – 12

Escherichia coli 56.8 – 12

Salmonella enterica 52.2 – 12

Lactobacillus fermentum 52.8 + 12

Enterococcus faecalis 37.5 + 12

Staphylococcus aureus 32.7 + 12

Listeria monocytogenes 38.0 + 12

Bacillus subtlis 43.8 + 12

Saccharomyces cerevisiae* 38.4 Yeast 2

Cryptococcus neoformans* 48.2 Yeast 2

*These species do not have 16S rRNA genes, and hence were not se-uenced in this experiment
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Subse-uently, eight serial dilutons were made from the extracted DNA, where each 

successive ali-uot was diluted with molecular grade water to 1/3 of its previous 

concentraton, resultng in nine total samples with the following concentratons relatve 

to the original extracton: 1/1 (undiluted), 1/3, 1/9, 1/81, 1/243, 1/729, 1/2187, and 

1/6561. The V4 region of the 16S rRNA gene was amplifed by PCR using Golay barcodes 

and the 515FB/806RB primer pair.(44–48) PCR was performed in triplicate for 35 cycles 

[verify] with ProMega hota- polymerase (M5005), and amplifcaton products 

confrmed with gel electrophoresis. Amplifed DNA was purifed with the Qiagen 

QIA-uick PCR Purifcaton kit. Samples were normalized to a concentraton of 10 ng/μL, 

pooled, and se-uenced on an Illumina MiSe- using a Reagent Kit V2 to generate 2x251 

base-pair reads.

Se-uence pre-processing

Prior to clustering, reads were frst trimmed, merged, and fltered to remove low -uality

data. In all datasets, the frst 15 nucleotdes from the 5' end, which often contain 

pathological errors, were removed, as well as the low -uality 3' tails, which varied by 

dataset (trim positons of forward/reverse reads: yymo 230/210, D'Amore 250/240, 

Kozich 240/220, and Schirmer 240/220). After trimming, forward and reverse reads 

were merged and then fltered to remove low -uality se-uences. Merging was 

performed with the USEARCH (36) fast-_mergepairs command, with a maximum of 10 

diferences (fast-_maxdifs = 10). To ensure that only se-uences from the V4 region of 

the 16S rRNA were retained, merged se-uences were removed if their lengths were 

outside the expected range for the primer pair used. These ranges are 220-225 bp for 
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yymo and Kozich reads, and 258-263 bp for D'Amore and Schirmer reads (as the later 

used a diferent primer pair that targets a longer V4 se-uence). Merged se-uences were

further fltered to remove those with more than 2 expected errors, based on the 

posterior Q-scores computed by USEARCH. An excepton to this protocol is for the 

DADA2 pipeline, in which forward and reverse reads are fltered independently, and 

only merged after se-uence inference. In order to retain a similar proporton of the data

as for the other methods, forward and reverse reads were fltered with a higher 

maximum of expected errors for the DADA2 pipeline (forward/reverse maximum errors:

yymo 2.5/2.5, D’Amore 2.5/2.5, Kozich 2.5/3.0, and Schirmer 2.5/2.5).

Se-uence inference

Each of the six clustering methods was run with default parameters on each 

preprocessed datasets. The primary commands used for each method, as well as any 

additonal re-uired parameters, are described here. For the QIIME-UCLUST method, 

chimeras were frst removed with identfy_chimeric_se-s.py using the UCHIME (49) 

method (opton -m usearch61) with the gold.fa reference database (available at 

htp://drive5.com/otupipe/gold.tz). Se-uences were then clustered de novo with the 

pick_de_novo_otus.py command and the default uclust algorithm. The UPARSE method 

was executed by calling the cluster_otus command in USEARCH (which concurrently 

removes chimeras), and then mapping reads to cluster seeds with the otutab command.

Similarly, the UNOISE method was run by calling unoise3 in USEARCH (which also 

removes chimeras), and reads were mapped to centroids with the otutab command. 

The MED method was run by invoking the decompose command within the Oligotyping 
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Pipeline.(50) As MED does not include natve chimera removal, chimeras were removed 

with uchime2_denovo in USEARCH after sortng clusters by size. Deblur was run by 

calling workfow within the Deblur package, with the trim opton (-t) set to the lower 

bound of the merge length window mentoned above to guarantee that all se-uences 

have the same length, a re-uirement of Deblur. The DADA2 method was run with a 

custom R script based on the dada2 library: frst, error rates were estmated with the 

learnErrors command; dereplicated reads were then clustered with dada, merged with 

mergePairs, and tabled with makeSe-uenceTable; se-uences outside the allowed merge

length window (see Se-uence preprocessing above) were removed, and chimeras were 

removed with removeBimeraDenovo.

Evaluaton

To evaluate the results from each processing method, we classifed se-uences into fve 

categories, using a scheme similar to that used by Edgar (17) and by Callahan, et al.(16) 

Se-uences that exactly matched a reference se-uence from the known community were

classifed as "Reference". Those that difered from a more abundant Reference 

se-uence by up to 10 nucleotdes were labeled "Ref Noisy", as these are likely 

se-uences with errors derived from Reference se-uences that were incorrectly inferred 

as distnct. (It is also possible that such se-uences arose via contaminaton or mutaton, 

but this is less likely and not possible to determine conclusively.) Any unclassifed 

se-uences were compared to the Natonal Center for Biotechnology Informaton's 

Nucleotde (NT) database (51) using BLAST.(52) The NT database is a very large 

collecton of DNA se-uences from a variety of sources. Se-uences that matched an NT 
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se-uence exactly were classifed as "Contaminant", as these likely represent correctly 

identfed contaminantng DNA in the sample. Se-uences that were up to 10 nucleotdes

of from a more abundant Contaminant se-uence were dubbed "Contam Noisy". All 

remaining se-uences were labeled "Other", and may include unaccounted-for PCR 

artfacts (such as chimeras) and se-uencing noise.

To obtain results at the taxonomic level, taxonomy was assigned using both 

assignTaxonomy and assignSpecies in the dada2 R library. For each functon, the 

appropriately formated Silva database (53) version 132 fle was used (available at 

htps://zenodo.org/record/1172783..Wrb4f9yG2kA). The resultng labels were then 

merged to obtain the highest available resoluton, replacing any missing values for 

genus in one set with non-missing values in the other wherever possible. Labels at each 

taxonomic level were concatenated to generate a single label for each se-uence, and 

these compound labels used to determine the number of uni-ue taxa in each se-uence 

category.

We further summarized results by computng recall and precision at the inferred 

se-uence level, as well as the proporton of reads mapped to each se-uence category. 

For se-uence-level statstcs, we use an observaton-versus-expectaton criterion: 

se-uences that are both expected and observed (i.e., observed Reference se-uences) 

are true positves (TP), those expected but not observed (unobserved References) are 

false negatves (FN), and those observed but not expected (all non-References) are false 

positves (FP). Se-uence-level statstcs give a sense of the accuracy of community 
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diversity estmates, whereas read-level statstcs measure the bulk accuracy of a 

clustering algorithm.

Software

QIIME-UCLUST was implemented with scripts are from QIIME v1.9.1.(38) The 

identfy_chimeric_se-s.py QIIME script re-uires USEARCH (36) v6.1.544, and 

pick_de_novo_otus.py calls the PyNAST alignment tool (v0.1).(54) UPARSE and UNOISE 

were implemented with USEARCH v10.0.240.(36) For the MED pipeline, clustering was 

done with v2.1 of the Oligotyping Pipeline (50); however, chimera removal was done 

with USEARCH version 9.2.64 (due to a known bug in v10.0.240). The Deblur pipeline 

uses Deblur v1.0.3,(18) which depends on VSEARCH v2.5.0,(55) MAFFT v7.3.10,(56) and 

SortMeRNA v2.0.(57) DADA2 was implemented in R with v1.6.0 of the dada2 package.

(16) All analysis of clustering results was completed in R v3.4.3.(58) The analysis and all 

pipeline scripts are available at htps://github.com/carusov/noisy-

microbes/tree/master/community-inference/scripts.

27

https://github.com/carusov/noisy-microbes/tree/master/community-inference/scripts
https://github.com/carusov/noisy-microbes/tree/master/community-inference/scripts


IV. Results

High microbial biomass mock communites

We frs t benchmarked each method on the four undiluted mock community datasets to

establish their baseline performance characteristcs on "typical" data, representatve of 

high microbial biomass samples. The number of se-uences inferred by each method for 

each dataset, and their classifcaton according the scheme described above, is shown in

Table 3. 

Table 3: Se-uences inferred for high biomass communites

Dataset Method Total Reference Ref Noisy Contaminant
Contam

Noisy
Other

yymo

(8 strains)

UCLUST 200 8 78 47 1 66

UPARSE 69 8 2 35 0 24

MED 57 8 49 0 0 0

UNOISE 12 8 2 1 0 1

Deblur 8 8 0 0 0 0

DADA2 20 8 3 5 0 4

Kozich

(21 strains)

UCLUST 191 20 42 102 4 23

UPARSE 101 20 1 75 0 5

MED 46 22 21 3 0 0

UNOISE 40 21 1 17 0 1

Deblur 32 20 0 11 0 1

DADA2 56 22 1 31 0 2

Schirmer

(57 strains)

UCLUST 185 46 68 28 4 39

UPARSE 77 46 1 26 0 4

MED 65 56 3 6 0 0

UNOISE 78 57 0 20 1 0

Deblur 71 54 0 16 1 0

DADA2 88 57 2 28 0 1

D’Amore

(57 strains)

UCLUST 66 42 4 16 0 4

UPARSE 58 42 0 15 0 1

MED 55 50 2 3 0 0

UNOISE 59 51 0 8 0 0

Deblur 56 48 0 8 0 0

DADA2 66 51 0 15 0 0
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A few trends are apparent in the categorized inference results. UCLUST reports the 

largest number of se-uences in all cases, while Deblur reports the fewest (for yymo and 

Kozich) or second-fewest (for Schirmer and D'Amore). MED fnds the fewest se-uences 

on the Schirmer and D'Amore datasets but ranges in the middle on the yymo and Kozich

datasets. Among the error modeling methods, DADA2 detects the most se-uences. With

the less diverse yymo and Kozich datasets, all methods recover nearly all of the 

expected Reference se-uences (8 of 8 for yymo and at least 20 of 21 for Kozich), but on 

the larger Schirmer and D'Amore data, the OTU methods detect notably fewer 

References (46 of 57 for Schirmer and just 42 of 57 for D'Amore). DADA2 detects the 

most Reference se-uences in all cases, matched or closely followed by UNOISE and 

MED. Large numbers of Ref Noisy se-uences were reported by UCLUST (42-78) for three

of the four mock communites, and by MED (21-49) for two datasets, whereas all other 

methods inferred no more than 3 se-uences in this category. In general, several 

se-uences were detected in the Contaminant class. UCLUST and UPARSE gave the 

highest Contaminant counts (15-102) among all methods, while DADA2 reported the 

most (5-31) and Deblur the fewest (0-16) among the error modeling methods; MED is 

the notable excepton, reportng no more than 6 Contaminant se-uences. In the Contam

Noisy category, UCLUST gave 4 se-uences for the Kozich and Schirmer data, while no 

method exceeded one Contam Noisy in all other cases. Similarly, the number of Other 

se-uences inferred typically ranged from 0-5, but UCLUST found much higher totals (23-

66) for three communites, as did UPARSE (24) for the yymo data.
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To get an idea of the number of taxonomic groups represented by the inferred 

se-uences, we assigned taxonomy to each se-uence using the most specifc designaton

available from the Silva version 132 database. Table 4 shows the number of distnct 

taxonomic groups in each se-uence category. (Note that the total number of groups 

does not, in general, e-ual the sum of groups in each category, since some groups may 

be present in more than one category.) Here we fnd that while the number of 

taxonomic groups is usually smaller than the number of se-uences (in some cases 

considerably so), the same general trends hold. UCLUST stll reports the most total 

distnct groups, followed by UPARSE, while either Deblur or MED reports the fewest. As 

with se-uences, UCLUST and MED stand alone in reportng several groups in the Ref 

Noisy category with the yymo and Kozich data. The excepton to the trends found with 

the se-uence-level analysis is in the Reference category: whereas the numbers of 

Reference se-uences reported reveal sizable diferences in sensitvity between the OTU 

methods and the others, these diferences are not apparent at the taxonomic group 

level, as the number of distnct groups detected by the OTU methods is e-ual to or only 

slightly smaller than the numbers found by DADA2, UNOISE, and MED, which detected 

the most se-uences and groups.

30



Table 4: Taxonomic groups inferred for high biomass communites

Dataset Method Total Reference Ref Noisy Contaminant
Contam

Noisy
Other

yymo

UCLUST 70 8 17 36 1 31

UPARSE 49 8 2 29 0 17

MED 15 8 13 0 0 0

UNOISE 12 8 2 1 0 1

Deblur 8 8 0 0 0 0

DADA2 18 8 3 5 0 3

Kozich

UCLUST 132 19 21 84 3 20

UPARSE 84 19 1 62 0 5

MED 30 19 14 3 0 0

UNOISE 35 18 1 15 0 1

Deblur 29 18 0 10 0 1

DADA2 51 19 1 29 0 2

Schirmer

UCLUST 97 46 31 26 1 21

UPARSE 74 46 1 25 0 4

MED 55 48 2 6 0 0

UNOISE 67 49 0 17 1 0

Deblur 63 48 0 14 1 0

DADA2 76 49 2 24 0 1

D’Amore

UCLUST 59 42 3 16 0 4

UPARSE 57 42 0 15 0 1

MED 47 43 1 3 0 0

UNOISE 51 44 0 7 0 0

Deblur 50 43 0 7 0 0

DADA2 58 44 0 14 0 0

For a more concise summary of se-uence inference performance, we computed the 

precision and recall of each method for each dataset, using se-uences as the unit of 

analysis (Table 5 and Table 6). At the se-uence level, recall measures the proporton of 

known community members that were detected by each method, while precision gives 

the proporton of predicted community members that actually belong to the known 

community. Recall is generally high on all four undiluted mock communites, ranging 

from 74%-100%. DADA2 and UNOISE achieve the highest se-uence recall across 

datasets (100% on three of four, and 89% for D'Amore). MED's recall is e-ual or only 
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slightly lower (98% for Schirmer and 88% for D'Amore), followed closely by Deblur (95%,

95%, and 84% for Kozich, Schirmer, and D'Amore, respectvely). UCLUST and UPARSE 

give the lowest recall, which is stll -uite high on the two smaller communites (95%-

100%), but falls notably for the larger Schirmer and D'Amore communites (81% and 

74%, respectvely). Precision varies much more (4%-100%) across methods and datasets,

owing to the wide variaton in numbers of unantcipated se-uences. Deblur and UNOISE 

give relatvely high se-uence precision on all datasets (63%-100% and 53%-86%, 

respectvely), as does MED on Schirmer and D'Amore communites (86%-91%, whereas 

UCLUST and UPARSE rank last on all datasets (4%-64% and 11%-72%, respecitvely). MED

exhibits the most variaton across datasets, ranging from 14%-91% precision. 

Table 5: Se-uence-level recall for the high biomass communites

Method
Dataset

yymo Kozich Schirmer D’Amore

UCLUST 100 95 81 74

UPARSE 100 95 81 74

MED 100 100 98 88

UNOISE 100 100 100 89

Deblur 100 95 95 84

DADA2 100 100 100 89

Table 6: Se-uence-level precision for the high biomass communites

Method
Dataset

yymo Kozich Schirmer D’Amore

UCLUST 4 10 25 64

UPARSE 12 20 60 72

MED 14 48 86 91

UNOISE 67 53 73 86

Deblur 100 63 76 86

DADA2 40 39 65 77
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To measure the bulk impact of the various noise sources on target community inference

by each method, we computed the percentage of output reads assigned to Reference 

se-uences (see Table 7). Here we fnd that a large majority of reads for all samples were

mapped to the target mock community regardless of inference method, with only small 

diferences. The largest variaton is for the yymo dataset, where UNOISE and DADA2 

map ~96% of reads to Reference se-uences, and MED only 92%, whereas the remaining 

methods map nearly 100% to References. In the case of UNOISE and DADA2, this is 

mainly due to a single Ref Noisy se-uence with high abundance (data not shown), while 

for MED it is due to the large number of Ref Noisy se-uences.

Table 7: Percentage of reads mapped to Reference se-uences

Method
Dataset

yymo Kozich Schirmer D’Amore

UCLUST 99.2 98.9 96.6 98.3

UPARSE 99.8 99.1 95.2 98.0

MED 92.3 97.6 96.9 98.3

UNOISE 96.4 99.3 97.0 98.3

Deblur 100.0 99.3 96.9 98.3

DADA2 96.7 99.2 96.9 98.3

In additon to estmatng the accuracy a method's se-uence inference, we also wanted 

to observe how well it discriminates the desired biological signal from the various noise 

sources. Biological signal refers to the true 16S rRNA se-uences of the mock community 

members, and noise includes contaminant species (introduced during sample 

processing), PCR artfacts (e.g., chimeras), and se-uencer error. Figure 4 plots the log-
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scaled distributons of Reference and non-Reference se-uence abundances inferred by 

each method studied, for each of the four high microbial biomass datasets. For the 

yymo and Kozich datasets, the target signal is mostly well separated from the 

distributon of noisy se-uences, whereas there is somewhat more overlap of signal and 

noise distributons on the Schirmer and D'Amore communites. Among methods, the 

minimum signal strength is typically highest for DADA2 and UNOISE, while that of Deblur

is somewhat lower on yymo and Kozich data, and that of UCLUST and UPARSE is much 

lower on all but the yymo data. The maximum noise strength is higher for DADA2, MED, 

and UNOISE on the yymo data (Deblur reports no non-Reference se-uences here), but is

comparable for all methods on the remaining datasets. We also see that the density of 

MED's noise distributon is concentrated at higher levels than that of other methods, 

partcularly for the yymo and Kozich data.
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Diluton series of the yymo mock community

To assess performance on low microbial biomass samples, we next evaluated the six 

inference methods on a diluton series prepared from the yymoBIOMICS mock 

community. Each successive sample was diluted to 1/3 the startng DNA concentraton 

of the previous sample in the series, for a total of 9 samples ranging from 1:1 (neat) to 
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Figure 4: Abundance distributons of Reference and non-Reference se-uences for high biomass 

communites. Log10-transformed read abundance distributons of Reference se-uences (those 

that match the 16S rRNA se-uence of a known mock community member) and non-Reference 

se-uences, as inferred by each of the six methods. Boxplots show median, IQR, 1.5 × IQR, and 

outliers. Each subplot shows abundance distributons for one of the four high biomass 

communites.



1:6561 relatve concentratons. A summary of se-uence counts inferred by each method

across the diluton series, including classifcaton results, is shown in Table 8. 

One trend that is immediately apparent is that as startng concentraton decreases, the 

number of inferred se-uences increases-- dramatcally for some methods. (This trend 

appears not to hold for the two most dilute samples, but this can be explained primarily 

by the much lower se-uencing depth obtained for these samples. See Table 8 for the 

read counts of each diluton sample, after -uality fltering.)  At the highest 

concentratons (1:1 and 1:3), as observed with the high biomass communites, the error 

modeling methods reported the fewest se-uences (8-22), but their totals increase 

steadily across the diluton series (again, with the excepton of the two most dilute 

samples, as explained above) to a peak of 381-530 se-uences at 1:729 diluton. The total

number reported by MED is initally between those of the error model methods and 

those of the OTU methods for the neat sample, and remains relatvely unchanging over 

the frst four diluton samples (57-102 se-uences), but then rises sharply so that it 

detects the highest numbers of se-uences (278-570) among all methods for the three 

most dilute samples. In contrast, the OTU methods-- UCLUST in partcular-- begin at the 

high end for the three highest concentraton samples (69-288 for UPARSE, 202-450 for 

UCLUST), with a sharp spike for the 1:9 sample, but their numbers level of over the rest 

of the diluton series, and UPARSE actually reports the fewest se-uences (142-304) for 

the four most dilute samples.
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Table 8: Se-uences inferred for the diluton series of the yymo community

Diluton Method Total Reference Ref Noisy Contaminant Contam Noisy Other

1:1

(243.5k 

reads)

UCLUST 200 8 78 47 0 69

UPARSE 69 8 2 35 0 24

MED 57 8 49 0 0 0

UNOISE 12 8 2 1 1 0

Deblur 8 8 0 0 0 0

DADA2 20 8 3 5 1 3

1:3

(198.0k 

reads)

UCLUST 179 8 52 62 0 57

UPARSE 77 8 0 50 0 19

MED 86 8 78 0 0 0

UNOISE 17 8 1 8 0 0

Deblur 10 8 0 2 0 0

DADA2 22 8 3 9 1 1

1:9

(282.0k 

reads)

UCLUST 450 8 64 218 25 135

UPARSE 288 8 0 197 2 81

MED 78 8 64 6 0 0

UNOISE 119 8 1 97 3 10

Deblur 85 8 0 75 0 2

DADA2 114 8 3 91 0 12

1:27

(270.8k 

reads)

UCLUST 272 8 27 172 13 52

UPARSE 206 8 0 164 4 30

MED 102 8 71 23 0 0

UNOISE 283 8 1 198 47 29

Deblur 207 8 0 157 21 21

DADA2 169 8 1 132 6 22

1:81

(243.5k 

reads)

UCLUST 336 8 23 200 14 91

UPARSE 269 8 1 186 2 72

MED 153 8 66 76 2 1

UNOISE 449 8 2 277 91 71

Deblur 339 8 0 237 38 56

DADA2 261 8 1 195 9 48

1:243

(151.3k 

reads)

UCLUST 313 8 3 197 18 87

UPARSE 259 8 0 187 3 61

MED 398 8 50 227 63 50

UNOISE 444 8 1 281 79 75

Deblur 373 8 0 254 43 68

DADA2 309 8 1 219 24 57

1:729

(144.3k 

reads)

UCLUST 377 8 2 239 37 91

UPARSE 304 8 0 228 5 63

MED 570 8 30 349 139 44

UNOISE 530 8 1 330 123 68

Deblur 430 8 0 293 68 61

DADA2 381 8 2 270 49 52

1:2187

(46.1k 

reads)

UCLUST 153 8 1 97 2 45

UPARSE 142 8 1 97 0 36

MED 278 8 63 127 42 38

UNOISE 190 8 1 119 22 40

Deblur 168 8 1 111 11 37

DADA2 148 8 0 100 10 30

1:6561

(49.4k 

reads)

UCLUST 195 8 2 127 9 49

UPARSE 183 8 1 126 2 46

MED 325 8 25 177 64 51

UNOISE 267 8 4 161 39 55

Deblur 226 8 2 152 16 48

DADA2 193 8 1 129 11 44
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Examining the se-uence classifcatons gives insight into the source of the observed 

variaton. Here we fnd that the variaton in total se-uences is largely driven by 

Contaminant se-uences (illustrated in Figure 5), which tend to increase as samples 

become more dilute. However, the trend lines in Figure 6 show that this increase in 

Contaminant se-uences is nearly linear for the error model methods (with the excepton

of the two most dilute samples, as explained above), somewhat less so for MED, while 

the OTU methods exhibit the least associaton between sample diluton and number of 

Contaminants. We observed a smaller but roughly proportonal trend for Contam Noisy 

se-uences with error modeling methods and MED. The remaining Other se-uences 

were somewhat less linear with diluton for the error models, and showed almost no 

relatonship with diluton for OTU methods and MED. We also found that among error 

models, DADA2 generally reported the fewest Contaminant, Contam Noisy, and Other 

se-uences, although it gave slightly higher numbers for the three most concentrated 

samples. All methods detected all 8 expected community members, regardless of 

sample diluton. Just as we observed with the high microbial biomass communites, MED

and UCLUST are the only methods that infer a high number of Ref Noisy se-uences, but 

whereas the number remains high for MED across the diluton series, it declines almost 

to zero for UCLUST at the lowest concentratons (see Figure 6). 

38



Figure 5: Se-uence-level compositon of diluton series samples. Compositon of each sample in 

terms of the number of se-uences in each category, as sample concentraton decreases (x-axis). 

Categories are defned in Methods. Each subplot shows sample compositons inferred by one of 

the six methods benchmarked.
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Figure 6: Trend lines of inferred se-uences across the diluton series. (A) Number of Reference 

and Ref Noisy se-uences inferred vs. decreasing sample concentraton. (B) Number of 

Contaminant, Contam Noisy, and Other se-uences inferred vs. decreasing sample 

concentraton. Se-uence categories are defned in Methods. Each subplot shows trend lines for 

se-uences inferred by one of the six methods benchmarked.



Table 9 shows the results of grouping se-uences according to taxonomic classifcaton, 

as was done for the high biomass communites. Just as with the se-uence-level results, 

inferred taxonomic groups tend to rise as community biomass decreases, but with 

distnct paterns depending on the inference algorithm. As illustrated in Figure 7, the 

increase in total inferred taxonomic groups is driven by Contaminants, and the OTU 

methods exhibit the most jagged trend lines, with a rapid inital increase in Contaminant

taxonomic groups that then slows or fatens at higher dilutons. MED, on the other 

hand, shows the smallest inital increase in Contaminants, with the number increasing 

sharply as concentraton contnues to decrease. The number of Contaminant groups 

inferred by the error modeling methods increases more steadily across the diluton 

series, although not -uite as linearly as observed for se-uences (see Figure 6). The 

number of Ref Noisy taxonomic groups is stll notably higher for UCLUST and MED 

compared to all other methods, but is typically less than half the number of se-uences 

in this category. Also, DADA2 contnues to report the fewest Contaminant, Contam 

Noisy, and Other among the error modeling methods at the taxonomic group level, with

the excepton of the three most concentrated samples.
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Table 9: Taxonomic groups inferred for diluton series of the yymo community

Diluton Method Total Reference Ref Noisy Contaminant Contam Noisy Other

1:1

UCLUST 69 8 16 36 0 31

UPARSE 50 8 2 29 0 17

MED 15 8 13 0 0 0

UNOISE 12 8 2 1 1 0

Deblur 8 8 0 0 0 0

DADA2 18 8 3 5 1 2

1:3

UCLUST 88 8 17 46 0 37

UPARSE 56 8 0 38 0 15

MED 16 8 15 0 0 0

UNOISE 17 8 1 8 0 0

Deblur 10 8 0 2 0 0

DADA2 21 8 3 9 1 1

1:9

UCLUST 167 8 16 117 13 71

UPARSE 134 8 0 107 2 45

MED 20 8 13 5 0 0

UNOISE 74 8 1 61 3 8

Deblur 60 8 0 51 0 2

DADA2 88 8 3 69 0 11

1:27

UCLUST 105 8 11 80 8 29

UPARSE 92 8 0 78 4 18

MED 30 8 14 15 0 0

UNOISE 90 8 1 76 20 16

Deblur 79 8 0 67 14 14

DADA2 78 8 1 65 4 15

1:81

UCLUST 130 8 9 98 8 44

UPARSE 119 8 1 95 2 42

MED 55 8 12 41 2 1

UNOISE 128 8 2 110 28 32

Deblur 119 8 0 101 21 31

DADA2 115 8 1 94 6 28

1:243

UCLUST 133 8 3 102 12 42

UPARSE 123 8 0 101 3 35

MED 116 8 13 92 22 28

UNOISE 132 8 1 109 27 33

Deblur 127 8 0 106 20 32

DADA2 129 8 1 107 16 31

1:729

UCLUST 160 8 1 135 15 43

UPARSE 156 8 0 132 4 39

MED 160 8 10 133 40 26

UNOISE 169 8 1 146 46 35

Deblur 161 8 0 141 36 31

DADA2 162 8 2 136 22 31

1:2187

UCLUST 90 8 1 67 2 30

UPARSE 87 8 1 66 0 25

MED 98 8 14 67 25 24

UNOISE 89 8 1 69 14 24

Deblur 86 8 1 67 9 23

DADA2 87 8 0 67 8 23

1:6561

UCLUST 108 8 2 87 5 29

UPARSE 105 8 1 86 2 27

MED 113 8 13 87 21 24

UNOISE 108 8 4 87 16 26

Deblur 103 8 2 85 8 24

DADA2 103 8 1 84 7 24
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Figure 7: Trend lines of inferred taxonomic groups across the diluton series. (A) Number of 

taxonomic groups in the Reference and Ref Noisy categories vs. decreasing sample 

concentraton. (B) Number of taxonomic groups in the Contaminant, Contam Noisy, and Other 

se-uences inferred vs. decreasing sample concentraton. Se-uence categories are defned in 

Methods. Taxonomic groups were determined by assigning the highest possible resoluton of 

taxonomy to each se-uence using the SILVA v123 16S rRNA database, then countng the number

of uni-ue taxonomic labels. Each subplot shows trend lines for taxonomic groups inferred by 

one of the six methods benchmarked.



Se-uence-level recall was perfect across the diluton series-- all methods detected all 8 

expected strains at every sample concentraton-- likely due to the low diversity and even

genomic proportons of the yymo mock community. However, se-uence precision is 

more variable, which refects the high numbers of false positves at lower 

concentratons. For the two highest concentratons, precision is best with Deblur (80%-

100%) and worst for UCLUST (~4%), but MED has the best precision at middle 

concentratons (1:9 to 1:81), while UPARSE has the best precision at lowest 

concentratons (1:243 to 1:6561). However, beyond 1:9 diluton, all methods achieve 

well below 10% precision. 

Figure 8 shows the proporton of reads in each class for each method, across the 

diluton series. Immediately we see that as concentraton drops, the proporton of 

Reference reads declines considerably with all methods, reaching a minimum of less 

than 20% for the most dilute sample. At the highest concentratons (1:1 and 1:3), Deblur

and the OTU methods assign over 99% of reads to Reference se-uences. UNOISE and 

DADA2 have small but notable proportons of Ref Noisy reads over the frst six dilutons 

(1%-4%, primarily due to a single Ref Noisy se-uence, data not shown), and MED assigns

the largest proporton to Ref Noisy across all methods and dilutons (2%-11%). Beginning

with the 1:9 diluton sample, reads assigned to Contaminant se-uences become 

apparent, increasing steadily in proporton untl they dominate the inferred compositon

for the three lowest dilutons, making up 43%-70% of the sample. Reads from Other and

Contam Noisy se-uences also generally increase across the diluton series. The former 

typically comprise a larger fracton, reaching a maximum of ~10% at the lowest 
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concentraton, but MED and UNOISE exhibit Contam Noisy fractons comparable to 

those of Other reads.

As with the undiluted mock communites, we compared target community signal 

distributon with that of the noise for the diluton series samples. The results are shown 

in Figure 9. Regardless of inference method, we observed that as concentraton 

decreases, the signal and noise distributons steadily converge, as the signal weakens 
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Figure 8: Read-level compositon of diluton series samples. Compositon of each sample, in terms 

of proporton of total sample reads in each se-uence category, as community biomass 

decreases, for the yymo mock community. Categories are defned in Methods. Each subplot 

shows the sample compositons inferred by one of the six methods benchmarked.



and noise grows. Over the frst few diluton samples (1:1 to 1:81 relatve concentraton), 

the signal distributon remains nearly constant, and even though the strength of the 

noise increases, signal and noise are generally well separated (a single non-Reference 

se-uence overlaps the Reference distributons for DADA2, MED, and UNOISE). Deblur 

achieves the largest separaton for the three highest concentratons, while MED's gap is 

much smaller. However, with decreasing DNA concentraton, the distributons begin to 

overlap considerably, as the signal strength steadily declines while the noise strength 

contnues to increase, and there is litle diference between methods at lower 

concentratons.

One interestng phenomenon is that se-uence counts for the individually processed 

diluton series samples changed when the samples were pooled and processed as a 

single dataset. In general, total inferred se-uences, as well as counts in each category, 

increased when the samples were processed together as one dataset. The excepton 

was for DADA2, which reported the same counts regardless of whether the neat sample 

was processed individually or not.
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Figure 9: Abundance distributons of Reference and non-Reference se-uences for the diluton series. 

Log10-transformed read abundance distributons of Reference se-uences (those that match the 

16S rRNA se-uence of a known mock community member) and non-Reference se-uences vs. 

decreasing community biomass for the yymo mock community. Boxplots show median, IQR, 1.5 

× IQR, and outliers. Each subplot shows abundance distributons inferred by one of the six 

methods benchmarked.



V. Discussion

High microbial biomass benchmarking

On the high biomass mock communites, the numbers of se-uences in each class 

inferred by the error modeling methods were in good agreement, and also correlated 

with the known diversity of each community much beter than with the other three 

methods. Deblur exhibited the best specifcity of the three in the sense that it reported 

the fewest unexpected se-uences, but DADA2 and UNOISE had somewhat beter 

sensitvity for expected se-uences. The higher Contaminant counts detected by DADA2 

and UNOISE suggest that they may be more sensitve to low-abundance contaminaton, 

but it is also possible that their models underestmate the error, resultng in over-

splitng of se-uence clusters, i.e., poorer specifcity. The error modeling methods as a 

group also out-performed the other three algorithms in terms of their ability to 

distnguish the true signal from sources of noise. Thus, error models in general ofer 

superior performance than OTU or entropy-based algorithms, combining good 

sensitvity with good specifcity, and the choice of which error modeling method to use 

depends upon the goals of the research. If minimizing detecton of spurious se-uences 

and contaminants is most important, Deblur seems more appropriate. However, if 

maximizing detecton of true community members and/or real biological contaminants 

is the priority, DADA2 or UNOISE appear to be beter suited.

Results for MED were less consistent. While se-uence sensitvity was -uite high for all 

undiluted samples, specifcity was highly variable. Specifcity was excellent on the 
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Schirmer and D'Amore communites, but sufered on the yymo and Kozich samples due 

to a large number of Ref Noisy se-uences (49 and 21, respectvely). Virtually all of these 

Ref Noisy were within 1 nt of a reference strain, strongly suggestng that they are indeed

false positves that should have been clustered with a Reference se-uence. This false 

detecton is also refected in the signal and noise distributons: MED's inference of 

several Ref Noisy se-uences with relatvely high abundance results in the poor 

separaton of signal from noise observed with the yymo and Kozich datasets (Figure 4). 

Hence, although MED was designed to distnguish biological strains with extremely 

similar 16S rRNA se-uences, it does so unreliably, as it is prone to reportng spurious 

se-uences that arise from se-uencer errors. However, in studies for which such fne 

distnctons are not deemed important, MED has the potental to yield accurate results 

by simply collapsing inferred se-uences that difer by a single nucleotde.

The OTU methods produced both the poorest recall and specifcity. Since these methods

rely only on a distance metric for clustering, their reduced sensitvity must result from 

lumping together distnct strains with high 16S rRNA se-uence identty, ignoring read 

abundance. On the other hand, the high numbers of non-Reference se-uences reported

by the OTU methods relatve to the other methods are almost certainly the result of 

splitng into distnct clusters those reads with se-uencing errors that fall outside the 

similarity threshold of the template se-uence from which they were derived. UPARSE 

had identcal sensitvity to UCLUST, but showed considerably beter specifcity, 

especially in terms of Ref Noisy se-uences. This is best explained by UPARSE's strict 

-uality fltering step prior to cluster inference, which presumably removes the majority 
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of reads with several se-uencing errors. Some of the many Contaminant se-uences 

inferred by the OTU methods probably represent real biological contaminaton, as some 

Contaminants are reported for each sample by most or all methods. However, it is 

revealing that the communites for which UCLUST and UPARSE diverge most from the 

consensus are yymo and Kozich, which have poorer read -uality profles compared to 

Schirmer and D'Amore, and thus are expected to have more se-uencing errors. Clearly, 

the fxed similarity threshold of OTU methods is ill-e-uipped to deal with such scenarios.

In additon, UCLUST and UPARSE tended to report one or more Reference se-uences 

with much lower signal strength than the other methods studied (see Figure 4). These 

observatons show that OTU methods are inferior to the other algorithms on multple 

counts, and thus their contnued use for research is not advised.

Grouping inferred se-uences by taxonomic classifcaton tended to mask some of the 

distnctons between methods. The OTU methods stll tended to report higher numbers 

of Contaminant and Other taxonomic, and UCLUST and MED found several more Ref 

Noisy groups than other methods, indicatng poorer specifcity for the non-error 

modeling methods, but the diferences were less dramatc than with the se-uence-level 

analysis. This observaton suggests that in some cases, the lack of specifcity exhibited by

OTU methods and MED may not have a large impact on community inference, since 

many of the spurious se-uences may stll fall into the same taxonomic group as the 

template se-uence from which they were derived. However, the diferences between 

the numbers of se-uences and the numbers of taxonomic groups in the Reference 

category illustrates perhaps the most important utlity of error model inference. The 
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taxonomic grouping might lead to the conclusion that all methods have very similar 

sensitvites, since there is litle variaton in the number of Reference groups detected. In

contrast, at the se-uence level the error model methods and MED show clearly superior

sensitvity for the most diverse Schirmer and D’Amore communites, since they 

distnguished several strains within some taxonomic groups— distnctons which we 

know exist, given the mock community compositon. Hence, if strain-level sensitvity is 

potentally important, then OTU methods are inade-uate.

Diluton series benchmarking

The diluton series results clearly show that as startng DNA concentraton decreases, 

se-uences derived from noise sources comprise an increasing proporton of the inferred

community, both in terms of number of distnct se-uences present as well as their 

abundances. The dramatc rise across methods in numbers of Contaminant se-uences 

detected at lower startng concentratons suggests that, in comparison to samples of 

high microbial biomass, there are in fact many more contaminatng species present at 

detectable levels in se-uencing libraries prepared from samples with low microbial 

biomass. This can be explained by the observaton that when less sample DNA is present

for PCR amplifcaton, small levels of microbial contaminants (introduced via non-sterile 

lab e-uipment, imperfect aseptc techni-ue, and reagent kits [citatons needed]) make 

up a larger proporton of the total DNA. Hence, the contaminant se-uences are 

amplifed with higher probability and to a greater extent than would be the case with a 

high microbial biomass sample (in which the sample DNA overwhelms the 

contaminaton). Thus, the "Contaminant"-labeled se-uences detected in the diluton 
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samples with low microbial biomass most likely refect biological contaminaton 

introduced during sample processing, rather than indicatng false positves.

Given this likelihood, the strong associaton we observed between sample diluton and 

the number of Contaminant se-uences inferred by each of the error modeling methods 

is evidence that these three methods detect the true contaminaton present more 

accurately than the OTU methods or MED. This is consistent with the higher sensitvity 

and specifcity exhibited by these three methods on the high microbial biomass 

communites. The diferences between the three methods in numbers of Contaminant 

and Contam Noisy se-uences, which maintain their order across most of the diluton 

series (UNOISE reports more than Deblur, which reports more than DADA2), can be 

atributed to diferences in their error models. Either UNOISE and Deblur are more 

sensitve than DADA2 for this dataset, or else the former two underestmate the actual 

se-uencing error, leading to poorer specifcity. Based on the results with the undiluted 

mock communites, for which DADA2 showed the highest sensitvity among all methods,

it seems unlikely that DADA2 should now have the lowest sensitvity of the three. 

Furthermore, UNOISE and Deblur use a fxed error model (with the default setngs), 

whereas DADA2 estmates its model dynamically from the data; and since the diluton 

series dataset had a relatvely poor read -uality profle, it therefore seems plausible that

DADA2's model is beter adjusted to a higher degree of error, and that UNOISE and 

Deblur underestmate the error profle on this dataset. Changing the error model 

parameters from their defaults for UNOISE and Deblur may yield beter results for 
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datasets with lower read -uality, but establishing guidelines for doing so may be 

challenging and is beyond the scope of this study.

MED, the lone entropy-based inference method, is uni-ue in inferring none to very few 

Contaminants at higher concentratons, then rising sharply to infer the most 

Contaminants at very low concentratons. This phenomenon is primarily explained by 

MED's use of a read abundance threshold (set to 0.02% of total dataset reads by 

default) to flter out clusters arising from noise. The flter greatly limits the number of 

Contaminant se-uences detected at higher concentratons, when true contaminaton is 

sparse, but as the proporton of contaminant DNA rises, many more contaminaton-

derived se-uences exceed the abundance flter. Thus, the efectveness of this type of 

flter for removing biological noise depends unpredictably on the sample's DNA 

concentraton (as well as on dataset size), and it comes with the risk that lower-

abundance species present in the target community will also be removed, reducing 

sensitvity.

Additonally, the relatvely high number of Ref Noisy se-uences inferred by MED at all 

sample dilutons, as well as the high number of Contaminant and Contam Noisy inferred 

at low concentratons, show that the entropy criterion used to divide se-uence clusters 

is too sensitve, i.e., it underestmates the se-uencer error, resultng in many false 

positves. As with the error model parameters of UNOISE and Deblur, MED's default 

entropy criterion can be adjusted to beter refect the error rate for a given dataset, but 

choosing an appropriate value would re-uire validaton by the user.
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To some extent, inference results for the OTU methods followed the trend of increasing 

se-uence counts as concentraton decreases, driven by a rise in Contaminant 

se-uences. However, the number of inferred Contaminant se-uences was much less 

associated with sample diluton than we observed for error model-based inference. This 

makes sense in light of the reduced sensitvity observed previously on the high microbial

biomass communites. As the samples become more dilute and noise (i.e., 

contaminaton) grows relatve to the target signal, OTU methods initally generate many 

new clusters. But as relatve contaminaton contnues to increase and more se-uences 

are amplifed, some distnct contaminant se-uences may be lumped together by the 

similarity threshold, leading to the plateau in Contaminant se-uences observed with 

OTU methods. With UCLUST, the drop in the number of Ref Noisy se-uences over the 

diluton series refects the OTU clustering strategy. For the highest concentraton 

samples, large -uanttes of community template DNA lead to high se-uencing depth 

and a corresponding wide range of se-uencer errors for these se-uences, producing 

high numbers of Ref Noisy se-uences due to reads with errors that fall outside the OTU 

similarity threshold. Decreasing concentraton brings decreased se-uencing depth and a

concomitant reducton in the range of errors, so fewer community-derived se-uences 

have errors that exceed the cluster radius. This phenomenon clearly illustrates that OTU 

methods in general are not well suited to modern high-throughput se-uencing data: the

typical similarity radius does not account for the wide error profles that occur with 

deep 16S rRNA se-uencing, and increasing the radius would only further degrade the 

already reduced sensitvity.
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The signifcant overlap of the signal and noise abundance distributons at low DNA 

concentratons illustrates the difculty of separatng the target community from noise 

sources for low microbial biomass samples. Clearly, an abundance flter (as is commonly 

used with high microbial biomass samples to remove contaminaton) would be 

inefectve in this scenario, as any choice of threshold risks either removing several 

community species or retaining several non-community species. Since this overlap was 

observed for all methods at low concentratons, we may conclude that none of the 

inference methods studied here is sufcient on its own to ade-uately distnguish 

community signal from noise. However, the clear positve correlaton of startng DNA 

concentraton with signal strength, and the negatve correlaton with noise strength, 

suggests a possible strategy for detectng contaminant se-uences. Namely, a diluton 

series could be prepared from a mock community or sample ali-uot and processed in 

parallel with the samples under study. Se-uences inferred for the diluton series whose 

abundance increases with decreasing concentraton could then be labeled as 

contaminants, and removed from the inferred communites of study samples. Indeed, 

such an approach has already been implemented in one form by Callahan, et al. [citaton

needed], and other variatons on this approach are possible. Furthermore, based on the 

results of this study, it is our hypothesis that such a strategy would work best when an 

error modeling method is used for se-uence inference, since these algorithms produced

the best correlaton between concentraton and both number and abundance of noise 

se-uences (see Figure 6 and Figure 9), likely due to superior sensitvity and specifcity as 

evidenced for the high biomass communites. MED shows some relatonship between 
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concentraton and non-Reference se-uences detected, but abundances appear much 

less correlated; and while the OTU methods exhibit stronger abundance correlaton, 

their demonstrated lack of sensitvity and specifcity for Reference and apparently for 

non-Reference se-uences would likely limit their accuracy when paired with such a 

contaminant-detecton strategy.

Although not strictly related to microbial biomass, the observaton that se-uence counts

difered for most methods depending on whether samples were pooled or processed 

independently gives further insight into the performance of these inference methods. 

UCLUST, UPARSE, UNOISE, and MED all infer clusters based on the entre dataset, 

regardless of the number of samples; reads from each sample are then mapped to 

clusters to obtain sample-wise abundances. Thus, a larger dataset (e.g., the full diluton 

series) will tend to produce more clusters than a smaller dataset. As demonstrated by 

the inconsistent results for the diluton samples, employing such a strategy may mean 

that community inference is difcult to reproduce, even for technical replicates. In 

contrast, Deblur and DADA2 perform inference on each sample independently. After the

inital inference step, UNOISE, MED, and Deblur all atempt to control false positves 

with a minimum abundance flter, using abundance across samples. UNOISE and Deblur 

employ absolute minima (8 and 10 reads per inferred se-uence by default, respectvely),

whereas MED uses a relatve minimum (0.02% of total datasets reads, per se-uence, by 

default). In either case, these abundance flters may complicate accurate sample 

inference by creatng a dependence on dataset size, and MED's proportonal threshold 

may remove many rare species, regardless of origin, which may be partcularly 

56



problematc in the case of low microbial biomass community. In the instance of Deblur 

and UNOISE, the use of such a flter may also have given an overly optmistc estmate of

specifcity, since pooled sample processing showed that Deblur's error model actually 

inferred several more se-uences that were fltered out when samples were processed 

independently.

The generalizability of our fndings may be limited by certain characteristcs of this 

study. The yymoBIOMICS Microbial Standard has low diversity and uniform genomic 

proportons, and as such is not representatve of a typical microbiome sample. This 

mock community clearly exhibits the impact of contaminant noise at low microbial 

biomass, but the high proporton of each species did not challenge the sensitvity of 

inference at lower DNA concentratons. Diluton series data from a more varied 

community structure might permit further distnctons between inference methods, 

partcularly among the error modeling algorithms. Another limitaton is that a diluton 

series cannot perfectly mimic low microbial biomass samples taken from a study 

subject, as the act of dilutng itself may introduce noise in the form of contaminaton. 

However, similar to diluton series preparaton, low microbial biomass samples typically 

re-uire additonal processing to produce enough DNA for se-uencing, which can also 

introduce contaminants. Thus, a diluton series provides a good approximaton of the 

outsized impact that even small levels of contaminaton can have when startng DNA 

concentraton is low. Finally, the classifcaton scheme we used to analyze inferred 

se-uences is inexact— there will inevitably be some overlap between categories that 

represent technical noise (Ref Noisy and Contam Noisy) and those representng other 
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noise sources (Contaminant and Other). Nevertheless, this scheme provides a logical 

framework within which to compare and assess inference methods, and demonstrates 

clear diferences between the methods studied.  
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VI. Summary and Conclusions

Despite its limitatons, this study revealed some clear distnctons not only between 

methods, but also between community inference for high and low microbial biomass 

communites. From the high biomass results, we found that both of the OTU inference 

methods studied sufered from a lack of sensitvity relatve to newer inference 

algorithms, and UCLUST in partcular— a method which has been used in a large 

number of published microbiome studies— also showed very poor specifcity in the face

of technical se-uencer noise. MED, the lone entropy-based method, showed generally 

good sensitvity, but similar to UCLUST, it tended to overestmate community diversity 

by mis-inferring community-derived se-uences with errors as distnct organisms. The 

three error modeling methods, on the other hand, all exhibited good sensitvity and 

specifcity. Among the three, Deblur appeared to be the least sensitve and/or most 

specifc, while DADA2 showed evidence of being the most sensitve and/or least specifc,

but we believe further research is needed to confdently characterize the diferences 

between these three inference methods.

Aside from the diferences in method performance, we found that with high microbial 

biomass communites, biological noise, or contaminaton, had a small impact on 

community inference. In general, every method detected several se-uences that were 

likely introduced contaminants, but their abundances and proporton of the overall 

inferred community was very small relatve to the known community members.
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Results from the diluton series benchmarking tended to support the diferences in 

method performance found on the high biomass communites. The nearly linear 

associaton between sample diluton and purported contaminant se-uences detected by

each of the error modeling methods showed further evidence of good accuracy for 

these methods, in this case representng accurate detecton of biological noise. In 

contrast, the OTU methods displayed much less correlaton between community 

biomass and detecton of new unexpected se-uences. MED detected the fewest 

purported contaminants at high DNA concentraton, and the greatest number at low 

concentraton, exhibitng the efect of MED’s abundance flter in the former case, while 

supportng a lack of specifcity in the later case. 

However, in stark contrast to the high microbial biomass scenario, our observatons of 

the diluton series inference make it clear that for low microbial biomass samples, 

biological noise can be a considerable confounding factor. In se-uencing the 16S rRNA 

of low biomass communites, very small levels of DNA contaminaton can be amplifed 

such that their abundance becomes comparable to that of the targeted community 

se-uences. We also found that none of the inference methods studied here is sufcient 

on its own to distnguish the target community from biological contaminaton in this 

scenario. Clearly, more research is needed to develop reliable techni-ues for removing 

contaminaton, and since perfectly aseptc sample processing may be a practcal 

impossibility, contaminant removal by in silico methods may also be re-uired. Owing to 

their demonstrated superior sensitvity and specifcity when challenged with technical 

noise, as well as their apparently beter accuracy for detectng biological noise, we 
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believe that error modeling methods are the best choice currently available for 

microbial community inference from 16S rRNA se-uence data. In additon, we 

hypothesize that an error modeling method combined with a diluton series as a positve

control may provide a viable tool for detectng biological noise, and propose this for 

future study.
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