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Abstract. 

 

There is a body of research demonstrating in-vitro and in-vivo synergy between Natural 

Products and anti-neoplastic drugs for some cancers. Natural products (NP) are isolated 

compounds derived from plants and fungi. The core premise of my work is that the examination 

of the target space associated with natural products will increase the number of potential 

therapeutically accessible targets and lead to novel combination therapies for cancer treatment. 

When considering Reactome pathways only targeted by natural products, at all levels of target 

evidence, there is an increase in coverage of 61%, relative to pathways covered by FDA 

approved antineoplastic drugs.  The Cancer Targetome is the target network associated with 

FDA approved antineoplastic drugs. Not only are the number of pathways targeted increased 

when considering the natural product target space, but target coverage, or interactions, is 

increased in pathways already targeted by Cancer Targetome drugs. We also examined the 

distribution of cancer driver genes across pathways and found 24 pathways enriched for cancer 

drivers that had no cancer Targetome drug interactions (based on binding affinity threshold of < 

100 nM) but had at least one target interaction with a natural product at that same binding 

threshold.  Assessment of network context highlighted the fact that natural products show target 

family groupings both distinct from and in common with cancer drugs, further highlighting the 

potential for natural products in the cancer therapeutic space. These findings support the 

potential for discovery of novel combination therapies when considering natural products.  
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1. Background 

  

 The National Cancer Institute lists eight categories of cancer treatments. These include 

surgery, radiation, chemotherapy, immunotherapy, targeted therapy, stem cell transplant and 

precision medicine [1]. Historically, surgery, radiation and chemotherapy were the primary 

forms of treatment. In the late 1990s the FDA started approving targeted therapies for cancer, i.e. 

a therapy directed towards unique molecular characteristics that drive oncogenesis. Imatinib 

treatment has shown an 80% decrease in 5-year mortality with chronic myeloid leukemia 

patients [2]. While some of the early targeted therapies have resulted in dramatic clinical 

responses, drug resistance often develops after an initial positive response. This adaptation to 

treatment is known as acquired drug resistance, as opposed to intrinsic resistance, which exists 

prior to any cancer therapy [3]. 

 Acquired drug resistance is seen with both cytotoxic chemotherapies and targeted 

therapies, although mechanisms differ. Knowledge of the molecular mechanisms of resistance 

can inform therapeutic strategies. In cancer, these mechanisms can include compensatory and 

redundant molecular signaling, target mutations acquired during treatment, increased expression 

of the targeted protein, inactivation of pro-apoptotic pathways, inhibition of DNA repair 

mechanisms, epithelial-mesenchymal transition, activation of pro-survival signaling, and 

upregulation of tumor cell efflux transporters [3, 4] . For drug resistance caused by mutations in 

drug targets or redundant cell pathways, ‘rational combinatorial targeted therapy’ is a possible 

solution [5]. This ‘rational’ approach is done within the framework of network pharmacology, 

which brings together systems biology, network analysis, redundancy, and consideration of all 
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drug target effects, beyond therapeutic intention, for designing therapies [6]. Knowledge of 

molecular signaling pathways can be used to design multi-target strategies to block redundant 

pathways or newly mutated targets. Simultaneous targeting of multiple cancer hallmarks is 

another approach [6]. Along with reduction in drug resistance, this approach can also lead to 

decreased adverse effects and increased efficacy [7] . For these combinations, multiple 

therapeutic agents can be used andthese methods can also take advantage of poly-

pharmacological characteristics of each single agent [8]. Drugs can also work together through 

pharmacokinetic mechanisms, coalistic mechanisms [9], and through independent actions when 

used in combination [10]. A coalisitic interaction is when two compounds interact in a biological 

context to form a new third compound. 

     Computational methods, including approaches in graph theory [11], assessment of differential 

gene expression [12], and modeling via ordinary differential equations have been successfully 

developed to predict synergy between compounds in-silico. Predicting these effective drug 

combinations often require up-to-date comprehensive knowledge of the target space associated 

with a set of compounds, such as FDA approved cancer drugs.  Thus, the core premise of my 

thesis project is that the examination of the target space associated with natural products (NP) 

will increase the number of potential therapeutically accessible targets and lead to novel 

combination therapies for cancer treatment.  

Natural products can be broadly defined as any compound derived from a living source 

(animal, plant, microbial, fungi). This absolute definition would include ‘natural’ cosmetics, 

‘natural’ foods, wood, silk, bioplastics and even coal. A more specific definition was based on 

the following from the National Center for Complementary and Integrative Health (NCCIH) 

[13]:  
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‘Natural products include a large and diverse group of substances from a variety of sources. 

They are produced by marine organisms, bacteria, fungi, and plants. The term encompasses 

complex extracts from these producers, but also the isolated compounds derived from those 

extracts. It also includes vitamins, minerals and probiotics.’ 

 

    We have further refined this definition with the following inclusion and exclusion criteria. 

Only NPs from plants and fungi were included, and only isolated compounds. In addition, only 

plants and fungi that have a history of traditional medicinal use were included. These compounds 

already have some historic use as therapeutic agents, and some are already classified as safe for 

human consumption by the FDA’s Dietary Supplement Health and Education Act of 1994. 

Natural product compounds show greater structural diversity, bioactivity and complexity 

than compounds in synthetic drug libraries, have the ability to inhibit some targets considered 

‘undruggable’, such as protein-protein interactions, and inherently target biologically relevant 

space since they are mostly secondary metabolites, or signaling molecules [14]. There is also 

limited overlap between the molecular space targeted by natural products and targeted by 

synthetic drug libraries [14]. These characteristics not only indicate the potential for new targets 

for therapy, but also can help reduce the cost of the development of new treatments, since these 

molecules already exist in nature, and offer additional options for combination therapies. As a 

matter of fact, natural products, or natural product derivatives, are the source of 33% of cancer 

drugs developed between 1981-2014 [15]. There is also a body of literature demonstrating in-

vitro and in-vivo natural product synergies with cancer drugs [16] [17], overcoming drug 

resistance with the addition of natural products [18], and paradoxical synergy in cancer cells with 
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simultaneous antagonism in healthy tissue [17]. Therefore, the exploration of the natural product 

target space could offer the potential to improve existing drug therapy outcomes and reduce side 

effects. 

There is a need to not only compile a comprehensive set of natural product targets from 

public sources, but also to characterize these compound-target relationships, within a variety of 

relevant contexts (Fig 1), so that this knowledge can be applied to the prediction of therapeutic 

combinations with approved cancer drugs or other natural products. To the author’s knowledge, 

a characterization such as this has not been done for natural products and compared to the 

companion space for cancer drugs. Such a characterization was recently completed for all FDA-

approved antineoplastic drugs from multiple public resources by Blucher, et al, the Cancer 

Targetome (CT) [19]. The methods and evidence framework from that project were applied here 

to develop and characterize a natural product target network  (natural product compounds linked 

to associated targets) and to compare it to the Cancer Targetome. The characterization of this 

network includes target/pathway coverage, compound promiscuity assessment, inclusion of 

established cancer driver genes, and the potential to inhibit molecular compensatory signaling 

mechanisms. The characterization of this natural product target space will not only identify 

potential new targets, but also evaluate the importance of these targets in a molecular context for 

cancer. In particular, the functional changes created with the addition of natural product targets 

to the Cancer Targetome will be evaluated for potential of synergy between these compounds. 
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Figure 1. Natural Product Target Network Evaluation. The targets associated with both natural products and 

anti-neoplastic drugs were evaluated in different contexts of increasing complexity. Complementary and distinct 

coverage of protein targets and pathways by the two compound classes were assessed. Target importance and 

relationships were evaluated in biological contexts, which include protein-protein interaction networks and 

molecular pathways. Pathway relationships and shared target space were assessed through the construction of a 

pathway-pathway network and a compound-compound network. Red lines indicate the existence of an edge 

between nodes in these networks. Two compounds have an edge if they share at least one target, and two 

pathways have an edge if they share at least one protein. Graphics from Creative Mahira, Becris, Takao 

Umehara [20]. 
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2. Methods 

 

2.1 Data Collection 

 

A total of seven public databases were used to construct the natural product target 

network used in this project, as sources of both compounds and targets. Two of the seven 

databases were the source of natural product chemical compounds, TarNet (2016) [21] and The 

Traditional Chinese Medicine Integrated Database for herb molecular mechanism analysis 

(TCMID, version 2.01) [22]. These databases were chosen because they contain only compounds 

from plants used from medicinal traditions.  

Four of the target source databases used were not specific to natural product compounds, 

and were also used in the creation of the Cancer Targetome. These included DrugBank, version 

5.0.7 [23], Therapeutic Targets Database, version 4.3.02 [24], the International Union of Basic 

and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) database, 

version 2017.4 [25], and BindingDB (7/1/2017). Additional human target interactions were 

included from three databases that contained only natural product information. These include 

TarNet, TCMID and the Universal Natural Products Database (UNPD, 2016) [26].  

All seven databases were used for the human target interaction information for these 

compounds. 

 

 

2.1.1 Base Natural Product Compounds 
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The TarNet database, the first of the two sources of NP compounds used, contains 

information about 12,187 compounds derived from 894 medicinal plants. These plants are used 

in four traditions of botanical medicine: Chinese, Japanese, European and American [21]. This 

database also contains 10,783 bio-targets associated with the plant compounds. Both the plant-

compound and compound-biotarget relationships were derived by text-mining and manual 

curation. A random sample of 246 literature references, used by TarNet to support the 

compound-biotarget relationships, were manually checked for accuracy and also for the presence 

of binding affinity data in the source. 

The second source, Traditional Chinese Medicine Integrated Database (TCMID) 

comprises plants, associated compounds, and bio-targets curated from Traditional Chinese 

Medicine (TCM). The goal of this database seeks to translate the common factors between 

modern western medicine and TCM. The TCMID database contains 8,159 plants, 43,413 

associated compounds, and 17,521 bio-targets compiled through a combination of other 

databases and text mining [20][27]. 

The compounds from these two databases were combined and redundancies were 

removed. This was done through the use of the multiple keys associated with each compound in 

each database. TarNet compounds were classified by chemical name, Chemical Abstracts 

Service (CAS) number, simplified molecular-input line-entry system (SMILES), and 

International Union of Pure and Applied Chemistry’s International Chemical Identifier Key 

(INCHIKEY). TCMID compounds were classified by PubChem Compound ID, SMILES and 

chemical name. The Chemical Translation Service (CTS) from the University of California at 

Davis was used to help resolve some of the missing key data in TarNet [28]. The two compound 

lists were then combined and scrubbed for possible drugs that are not of NP origin using lists 
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from DrugBank [23] and the FDA. To check whether these compounds are consistent with the 

natural product definition given for this project, 135 entries were randomly selected and curated. 

The five keys found in the source databases: chemical name, SMILES, INCHIKEY, Pubchem 

Compound ID and CAS number, were then used to retrieve target information from a variety of 

sources as detailed below. 

 

2.1.2 Biological Target Retrieval 

   

 Molecular target interaction information for the NP compounds was retrieved from seven 

publicly available data sources. Four widely used data sources were chosen based on the 

rationale used by Blucher, et al for the Cancer Targetome [19]. These sources include DrugBank 

[23], Therapeutic Targets Database [24],  the International Union of Basic and Clinical 

Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to Pharmacology [25], 

and BindingDB [29]. These four sources contain substantial information about NPs, but are not 

limited to this class of compounds. Three additional sources of target interaction data, which are 

limited only to NPs, were also used. These include TarNet [21], TCMID [22], and the Universal 

Natural Products Database (UNPD) [26]. All of the interaction data used for this project was 

based on literature and/or experimental data, no computationally predicted interactions were 

used. 

 This data was retrieved by systematically merging each of the five NP keys, from the 

base NP data, individually to the seven target data sources. The data retrieved by the individual 

key was then associated back to the unique five key combination of values from which it was 

derived and data redundancies were resolved to create the final NP target network database. 
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 The Evidence Level framework developed by Blucher, et al was then applied to this data 

as follows. Each NP-target interaction could have more than one piece of supporting evidence. 

Each piece of evidence was assigned one of three levels. Evidence Level I only had an entry in 

one of the databases for the interaction, without a supporting literature reference or experimental 

binding value. Evidence Level II has a supporting literature reference in the database, and 

Evidence Level III would also have an experimental binding value, in addition to the literature 

reference. For NP-target interactions with multiple evidence entries from different databases, the 

maximum Evidence Level was assigned. For a single target, the maximum Evidence Level from 

all NP-target interactions was assigned. Analyses for this project will consider all levels of 

evidence, when appropriate, and also focus on interactions only with evidence of strong binding 

affinity, less then 100 nM. Less stringent levels can still be considered biologically relevant, but 

below 100 nM is considered significant for drug binding [30, 31]. 

  

2.2 Target, Pathway, and Tumor Type Coverage 

 

 Analyses compared the two target networks above, i.e. the NP target network and the 

Cancer Targetome (CT). First, the two sets of targets associated with the two networks were 

mapped onto two sets of molecular pathways. The Reactome Pathway Knowledgebase [32] was 

the source of the pathway information, which leverages biological entity reactions.  

A total of 1,944 hierarchically structured pathways used from this database for the first 

pathway mapping, which used all of these pathways. For a subsequent pathway mapping a set of 

pan-cancer aberrant pathways were derived from the full set of Reactome pathways by 

performing an over representation analysis with likely cancer driver genes. The genes catalogued 
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for the Cancer Genome Interpreter [33] were used for this analysis. These genes have either 

experimental, clinical or in-silico evidence showing that their mutations can drive tumorigenesis. 

There are 837 genes catalogued representing 193 different tumor types. A hypergeometric test 

was used to identify pathways enriched with these driver genes. The Benjamini Yekuteli method 

was used to control the false discovery rate for multiple testing with dependencies [34].  If a 

pathway contained at least one molecular target with evidence of an interaction with either a NP 

or a CT drug, the entire pathway was considered targeted by one of those two compound 

categories. Pathways, from both pathway sets, were then classified as either targeted by NP only, 

CT drugs only, both NP and CT drugs, or neither. This same mapping classification was also 

applied to at the protein target level, as opposed to the pathway level, from all of the targets 

associated with both target networks, and to targets only associated with the pan-cancer aberrant 

pathways. And finally, tumor types were identified for that were associated with cancer driver 

genes targeted only by NPs. Only high affinity interactions (IC50, EC50, Ki, KD less than 100 

nM) were considered for this analysis. 

 

2.3 Molecular Interaction Network Topology 

 

 For this analysis, the NP targets, CT drug targets and cancer driver gene products were 

projected onto biological networks and the topological features of these targets were evaluated 

and compared. Target oriented topology research often uses a large non-specific protein-protein 

interaction network (PPI) for the biological context, but it has also been suggested that the base 

network should be either be more specific to the tissue or disease of interest, or have greater 

biological relevance [35]. For this reason, two specific interaction networks were used for this 
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evaluation. For the first biological network, the protein interactions from the Reactome 

Functional Interaction Network were used. This network integrates uncurated relationships from 

sources such as PPI databases and others, with curated interaction information derived from 

pathway data in Reactome and other databases [36]. These functional interactions have a higher 

likelihood of being functional in a biological context than an interaction from an uncurated PPI 

database. The second network is a PPI constructed by Wang, et al [37] from the integration of 

four manually curated human cancer signaling networks with protein interactions from BioGRID 

[38-42].  

 Network measures that were considered include degree centrality, betweenness centrality, 

eigenvector centrality, and average shortest distance to cancer driver genes in the network. 

Degree centrality is the number of connections a node in a network has to neighboring nodes. In 

a biological network this could be the number of different interaction partners a single protein 

might have. Betweenness centrality is the number of shortest paths in a network that pass 

through a specific node. In a biological network this measure can capture the node’s ability to 

control communication [35]. Eigenvector centrality is a measure of how connected the nodes are 

that are connected to the node of interest. This is a measure of importance of the node's 

neighbors in the biological network. The average shortest distance is the path between two nodes 

that contains the minimum number of nodes, or steps. In a biological network this can be related 

to the number of reaction steps between two proteins ￼[39]￼[43]. Proteins that are closer could 

have a higher likelihood of impacting each other, if used as a therapeutic target. 

To compare the topology measures, the nodes in the network were classified in four 

ways: targeted only by NPs, targeted only by CT drugs, targeted by both, and not targeted by 

either. These were compared to each other for similarities and differences to evaluate any 
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additional therapeutic potential achieved with the addition of NPs. Only targets with strong 

binding affinities, less than 100 nM, were considered. 

 

2.4 Compensatory Pathways 

 

           To assess compound synergy through pathway crosstalk inhibition we constructed a 

pathway-pathway network. In this network each node is an entire pathway, and there is an edge 

between pathways if they share at least one gene. This structure was chosen as a good method to 

evaluate the NP and CT drug target network’s crosstalk inhibition potential since it is possible to 

measure global patterns in this framework and assess the two target sets in their entirety. 

Pathways in this network were then classified as being associated with NPs only, CT drugs only, 

both or none. A compound was associated with a pathway only if there was at least one target 

with a strong binding affinity, less than 100 nM, in a pathway. Average shortest path distance 

between the two pathway sets was assessed as a prediction of synergy. This metric has been 

shown to be correlated with synergy [44]. Reactome entity level pathways (non-hierarchical) 

were chosen to construct the network, of which there are 290, and an edge was created between 

two pathways if at least one gene was shared between them. In addition, the previously described 

cancer driver genes were used to do an over representation analysis on this set of 290 pathways, 

identifying possible aberrant cancer pathways in this network. Orientation to these cancer 

pathways in this network was then assessed for the pathways associated with NPs only, CT 

drugs, and both NPs and CT drugs. Distance between NPs and CT drugs was also assessed to 

estimate the possible synergistic potential between NPs and CT drugs, and also to estimate 

increased cross talk inhibition by considering NPs. 
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    2.5 Compound-Compound Network 

 

  In this network, a node represents a compound, either NP or CT drug, and an edge exists 

if they share at least one target, both having a binding value of less than 100 nM. The edges were 

also weighted based on the number of targets shared. This network analysis has also been used 

for FDA approved drugs [43]. Network communities were identified and assessed for enrichment 

in either NPs or CT drugs to see if they are clustering around the same targets, or separate sets of 

targets. The targets of each network community were also classified based on protein families, 

defined in IUPHAR. Multilevel clustering was used as the community detection method. This 

method is a greedy algorithm (creates an optimal solution at each step to find a global optimum) 

that creates communities based on maximizing modularity, and is recommended for networks of 

this size. This method is also appropriate for unconnected networks and can use edge weights to 

determine community structure. [45]. 

 

2.6 Targets, Pathways, Tumor Types and Cancer Drivers Per Compound 

 

 The multi-targeting aspect of these two compound classes (NP and CT drug) is 

considered the basis for their poly-pharmacological effects [8]. These effects can be undesirable, 

such as adverse events, or they could be the mechanism of the therapeutic effect. For this reason, 

it is important to map out and compare this characteristic of the two target networks, NP and CT, 

and to understand how NPs might differ from the CT drugs.  
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 For most analyses in this project we only considered target interactions with binding 

affinities less than 100 nM, but for this analysis we considered two binding affinity thresholds: 

less than 1000nM and less than 100nM. Distributions of interactions per compound were then 

compared between NPs and CT drugs for four categories: targets per compound, pathways per 

compound, cancer driver genes per compound, and number of tumor types targeted per 

compound. A two sample Kolomogorov Smirnov test was used to compare the two distributions, 

NP and CT drugs. 

 2.7 In-Silico Synergy Prediction Methods for Drugs 

 There is a body of research for methods to predict synergistic drug combinations for 

drugs. Two of these methods were selected to test their ability to predict natural product/drug 

synergistic combinations. For this, a literature search was done to create a curated truth dataset of 

known natural product/drug synergistic pairs. From these pairs the individual compounds were 

reshuffled to create a set of unknown, or unlabeled pairs. These two sets were combined to create 

a semi-supervised dataset to be used to test the prediction methods. 

 The first method is the Ranking System of Anti-Cancer Synergy (RACS) by Sun et 

al[11]. This is a semi-supervised method trained on 26 known synergistic pairs of drugs from the 

Drug Combination Database (DCDB). Seven features were selected from a pool of fourteen as 

the base model. These features are all derived from evaluations of the two target networks 

associated with the two compounds that are being ranked for synergy. Features include Gene 

Ontology-based mutual information entropy, average distance in a protein-protein interaction 

network (PPI), drug combination interference, efficacy for betweenness, degree, and eigenvector 

centrality, and unrelated mapped pathway pairs. Gene Ontology-based mutual information 

entropy is a measure of the overlap in biological function associated with the two compounds. 
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Average distance is the average shortest path between the two target networks in a PPI created 

from BioGrid [42], MINT [46], HPRD [47] and DIP [48]. Drug combination interference is a 

measure of the change in network information transmitting efficiency seen when removing the 

targets associated with the two compounds, either separately or simultaneously. Efficacy is a 

based on three measures: betweenness, degree and eigenvector centrality. It is an assessment of 

the difference in these measures between cancer targets and non-cancer targets in the PPI when 

projecting the two compound target networks into this PPI. And unrelated mapped pathway pairs 

is the percent of cancer pathways associated with the two compounds, via their target networks, 

that do not communicate through shared genes or a PPI. Manifold ranking was then used to rank 

pairs based on similarity to a the known 26 ‘bait’ pairs. This method then does a secondary 

screen of candidate combinations using two measures based on cell line gene expression data 

after treatment with compounds of interest. One measure looks at the overlap of upregulated and 

downregulated targets between the two compounds, and the other measure looks at percentage of 

disease pathways targeted by the two compounds. Input data includes cell line gene expression 

data and a drug-target-disease network.   

The other method was developed by Liu et al [12]. The main point of this paper was that 

combining structural dissimilarity with gene expression similarity increases predictive power for 

synergy.  The two features evaluated for this model include compound structural similarity as 

measured by Tanimoto coefficient based on the molecular binary fingerprint downloaded from 

Pubchem. The other feature is based on differentially expressed gene signatures created for each 

compound individually. This feature is the number of upregulated and downregulated genes that 

overlap between the two compounds. 

 2.8 Analysis Tools 



 

 18 

 The analysis was done using Base R (v3.3.1). Packages used included Dplyr (v0.7.4) and 

iGraph (v1.1.2). Work was also done in Cytoscape (v3.4.0).     

 

3. Results 

 

3.1 Natural Product Data Distributions 

 

The final list of NPs, compiled from TarNet and TCMID, contained 50,109 compounds, 

uniquely identified by the five keys found in the source databases: chemical name, SMILES, 

INCHIKEY, Pubchem Compound ID and CAS number. Of these compounds, target interaction 

data was retrieved for 4,991 from at least one of the seven public databases. There are 137 anti-

neoplastic drugs in the Cancer Targetome.  

Most of the NP-target interactions are classified as Evidence Level I (94%), and most CT 

interactions are classified as Evidence Level III (95%), although the absolute counts are much 

larger for NPs (Fig 2a). For stronger affinity interactions (Evidence Level III Exact), the raw 

numbers of interactions are comparable between natural products and cancer drugs (Fig 2b). The 

large volume of Level I evidence for NPs is primarily from the TarNet database, which was 

created by text mining. All of these interactions are supported by literature references, which 

would be Evidence Level II, but the publicly available data from this source does not have a link 

to these references. Curation of a random sample of these data also shows that approximately 

37% of the interactions do have binding data available in the supporting literature, and would 

therefore be assigned Level III if the link to these references was available.   
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Targets are reported according to the highest evidence level of all of the associated 

compound interactions for each target (Fig 2a).  This perspective allows us to take a target-

focused perspective and determine the maximum strength of evidence supporting any 

compound/drugs interacting with it. So, if we had a set of targets of interest, this would allow us 

to prioritize according to those targets with stronger evidence for interactions with 

compounds/drugs. As with the target-interaction distribution, most of the NP associated targets 

have a maximum Evidence Level I (83%) and most of the CT drug associated targets have a 

maximum Evidence Level III (85%), but the distributions are more comparable for within 

Evidence Level III (Fig 2b). 

 

 

 

Figure 2. Compound-Target interactions. CT=Cancer Targetome, NP=Natural Product Target Network. 

A. Comparison of interaction distribution by evidence level between NPs and CT drugs. B. Comparison of 

interaction distribution at high affinity only (Evidence Level III exact values). Values are in nM. 

 

 

 

A. B.
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Figure 3. Maximum Compound Interaction Level Per Target. CT=Cancer Targetome, NP=Natural 

Product Target Network. A. Comparison of maximum target evidence level distribution between NPs and 

CT drugs. B. Comparison of maximum target evidence level distribution at high affinity only (Evidence 

Level III exact values). Values are in nM. 

 

 

3.2 Natural product space increases coverage of cancer pathways, targets and tumor 

types  

 

Coverage is considered at all levels of evidence and only for interactions with a binding 

value of less than 100 nM. Of the 1,944 hierarchically structured pathways contained in the full 

Reactome database, 533 were considered pan-cancer aberrational, based on over-representation 

analysis.  

For all Reactome pathways, at all levels of evidence, natural products increased coverage 

by 61%, relative to pathways covered by both natural products and Cancer Targetome drugs, or 

Cancer Targetome drugs only. Reactome pathway coverage at the 100 nM level was increased 

by 29%, relatively (Table 1). For the aberrational cancer pathways, the NP relative coverage 

increase for all evidence levels was 12%, and 6% at the 100 nM level (Table 2). The percentage 

of aberrational cancer pathways targeted by both NPs and CT drugs was higher than it is for all 

B.A.
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Reactome pathways, which would be expected since the Cancer Targetome is specific to the 

disease domain associated with this subset of pathways.  

When considering the NP contributions within pathways targeted by both NPs and CT 

drugs, 51% of the individual target interactions in the 1,196 Reactome pathways are with NPs 

only. And for the 495 Reactome pathways targeted by both at the 100 nM level, 43% of the 

target interactions are with NPs only. For cancer pathways targeted with affinities less than 100 

nM there is a high degree of overlap at the pathway level, but very little overlap at the target 

level (Fig 4). Not only are the number of pathways targeted increased when considering the NP 

target space, but coverage is increased in pathways already targeted by CT drugs. 

When considering all of the targets contained in both target networks, NP and CT, there 

is a large number of interactions with only NPs (Table 1). This is also true for the 7,339 targets 

associated with the aberrational cancer pathways (Table 2). The vast majority of these 

interactions are Level I evidence from the TarNet database, which are derived from text mining. 

Manual curation of a random sample of this data suggests that 37% could have valid binding 

values associated with NPs in the supporting literature. At the higher binding affinity (100 nM), 

there is a relative increase in target coverage of 65% for all targets from the two networks, and 

60% for targets from the aberrational cancer pathways.  

 

 

Table 1.  Consideration of natural product targets increases both pathway and target coverage in all 

Reactome pathways. This pathway data includes hierarchically nested Reactome pathways. 
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Table 2.   Consideration of natural product targets increases both pathway and target coverage in 

cancer pathways. The cancer pathways include 533 pathways and 7,339 associated targets from the 

Reactome hierarchically nested pathways. 

 

 

 

  

Figure 4.  High level of cancer pathway overlap at affinities less than 100 nM, but little overlap at the 

target level  

 

 Target interactions were then assessed for the 837 cancer drivers that were used for the 

over representation analysis. Only binding values less than 100 nM were considered for this 

analysis. Cancer drivers with these interactions were then mapped back to their associated tumor 

types. There were twelve tumor types for which NPs increased driver coverage (Table 3). Five 

cancer drivers, uniquely targeted by NPs at less than 100 nM were associated with these 12 

tumor types. These include Adenylate Cyclase 1 (ADCY1), Matrix Metallopeptidase 2 (MMP2), 
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Aryl Hydrocarbon Receptor (AHR), Cyclin Dependent Kinase 2 (CDK2), and Mitogen-

Activated Protein Kinase 11 (MAP3K11). These cancer drivers are targeted by five NPs. Some 

of the NPs that target one or more of these drivers include forskolin (from the Indian coleus 

plant), caffeic acid (found in many foods including coffee), kaempferol (found in many common 

foods including apples, grapes, tomatoes and green tea), and flavopiridol (a semi-synthetic 

derivative from the Pithraj tree). 

 

 

Table 3. Natural Products Improve Coverage of Cancer Drivers Across Cancer Types. Tumor types 

with drivers targeted only by NPs, at binding values of 100nM or less. The NP Only column lists the 

number of drivers targeted only by NPs. There are five driver genes associated with these 12 tumor types.    

 

 There were 24 pathways in Reactome that were enriched for cancer drivers, had no CT 

drug interactions at less than 100 nM, and had at least one target interaction with a NP with a 

binding affinity less than 100 nM. In some of these pathways, such as ‘RUNX1 regulates 

transcription of genes involved in differentiation of myeloid cells’, the NP interaction was not 

with a driver gene (Fig 5). In this example the interacting NP is a phorbol ester isolated from 

croton oil. These compounds have been called ‘double edged swords’, showing both tumor 

promoting and tumor inhibiting activities, depending on the cancer [49]. This pathway is 
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involved with the differentiation of myeloid progenitors and also with apoptosis of mature 

myeloid cells [50]. The three driver genes in this pathway are associated with over 20 tumor 

types, including acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid 

leukemia, myelodysplastic syndrome, and non-Hodgkin’s lymphoma. The close proximity of the 

NP-target interaction to the drivers in this pathway could indicate a potential to inhibit associated 

aberrant signals. Further in-vitro testing would be necessary to test the actual effect of this 

interaction. 

 

Figure 5. Cancer pathway targeted only by natural products for a non cancer driver target. 

This Reactome pathway (RUNX1 regulates transcription of genes involved in differentiation 

of myeloid cells) is an example of an aberrant cancer pathway targeted only by NPs at less than 

100 nM (green border). No FDA-approved cancer drugs target this pathway with <100nM 

evidence. Cancer drivers are shown in yellow. The NP target is not a cancer driver. Dashed lines 

are predicted interactions. The diamond shaped genes are connectors, not part of the formal 

pathway. 
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 In other pathways, such as ‘TP53 Regulates Transcription of Genes Involved in G1 

Cell Cycle Arrest’, the NP interaction was directly with a driver gene (Fig 6). The interacting 

NP for this example is flavopiridol, which is a semisynthetic derivative of a compound extracted 

from the Pithraj tree. This compound is already in numerous clinical trials for several cancer 

types [51]. This pathway primarily inhibits the cell cycle transition from the G1 phase to the S 

phase through multiple mechanisms [50]. Over 40 tumor types are associated with the five 

cancer drivers in this pathway, including breast, bladder, esophagus, head and neck, lung, 

prostate, ovary, and hepatocellular. 

 

Figure 6.  Cancer pathway targeted only by natural products for a cancer driver target. 

Another aberrant cancer pathway (TP53 Regulates Transcription of Genes Involved in G1 Cell 

Cycle Arrest) targeted only by NPs at less than 100 nM (green border). No FDA-approved cancer 

drugs target this pathway with <100nM evidence. Cancer drivers are shown in yellow. In this 

pathway the NP target is also a cancer driver. Dashed lines are predicted interactions.   
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 There were also 286 pathways in Reactome that were enriched for cancer drivers that 

were targeted by both NPs and CT drugs at binding affinities less than 100 nM. One smaller 

pathway example of this is “MAPK3 (ERK1) activation” (Fig 7). The two NP compounds 

targeting the three proteins in this pathway are flavopiridol, mentioned before, and arctigenin, 

extracted from the burdock plant. This pathway is involved in a wide range of cellular processes, 

including cytoskeleton remodeling, proliferation, differentiation and regulation of inflammatory 

responses [50]. Over 20 tumor types are associated with the four cancer drivers found in this 

pathway, including leukemias, lung cancers, colorectal cancer, melanoma and head and neck 

squamous cell cancer.   

NPs offer a substantial increase in coverage of both pathways and targets compared with 

FDA-approved antineoplastic drugs. It is now important to assess the functional significance of 

these targets and pathways in a biological context.  
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Figure 7. Cancer pathway targeted by both NPs and CT drugs. This Reactome pathway 

(MAPK3 (ERK1) activation) is an example of an aberrant cancer pathway targeted by both NPs 

(3) and FDA-approved cancer drugs (4) at <100nM evidence. Cancer drivers are shown in yellow. 

A solid green border is a target for NP only, borders with both green and orange is a target for 

both a NP and a CT drug, and orange borders are targets for only CT. 

 

3.3 Natural product targets and Cancer Targetome targets show similar topology 

characteristics in selected biological networks 

 

It is important to consider the target sets associated with NPs and CT drugs in the context 

of molecular interaction networks, such as protein-protein interactions networks (PPI). The 

topology of these networks can be related to biological function [52]. Some topology measures 

commonly considered relevant to biological function include degree centrality, betweenness 
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centrality, eigenvector centrality, average shortest paths, and clustering coefficients [53, 54]. 

These measures, and others, have been suggested as a guide to identify potential therapeutic 

targets for drug development [35, 52, 55, 56]. In general, these biological networks are scale 

free, meaning that many nodes have low connectivity and are not critical to the function of the 

network, but some nodes are highly connected and more critical, possibly making good 

therapeutic targets. Topology measures can guide the identification of these critical nodes. Both 

degree and betweenness are considered measures of strong importance to the network, but nodes 

with high values of either can be considered too lethal or toxic to target [35, 52, 55, 56]. It is 

possible to identify nodes with network influence that have lower essentiality [52] by using 

measures such as eigenvector centrality, bridging centrality, and others [35, 55, 56]. Eigenvector 

centrality is a measure of the connectivity of the nodes that are connected to the node of interest. 

Bridging centrality, developed by Hwang, et al, is a measure of how well a node connects 

separate modular subregions in a network. Other strategies for reducing adverse effects consider 

targets that influence critical nodes without targeting the critical nodes themselves [35, 57]. For 

this reason, assessing the shortest path distances from critical nodes, such as cancer drivers, is 

important. This distance could also be considered an estimate of the number of molecular steps 

from this node [43]. 

 It has also been shown that cancer genes have topology measures in biological networks 

that are distinctly different from other nodes. These differences include higher degree and 

betweenness, shorter paths between them and weaker clustering coefficients [52, 58, 59]. 

 Biological network topology has also been used to predict therapeutic synergy between 

compounds, an aspect of interest for designing novel combination therapies [60]. Several in-

silico methods for prediction of synergy in combination therapy use topology measures [11, 61, 
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62]. Generally, higher values of measures, such as degree and betweenness, are preferred in these 

models. 

As mentioned in the methods, two biological networks (PPIs) were used. One is the 

Reactome Functional Interaction network, and the other was created by Wang, et al, based on 

interactions specific to cancer biology. The three target (node) categories include nodes 

(proteins) targeted by NPs only, targeted by CT drugs only, and targeted by both CT drugs and 

NPs. In Reactome, these three node categories represented 393 of the 12,227 nodes in the 

network. In the Wang (cancer) network, these three node categories represented 364 of the 6,306 

nodes in the network. Comparisons were done for the topology measures degree, betweenness 

and eigenvector centrality. 

 

Betweenness Centrality 

 

In the Reactome network, betweenness for all three target node categories was 

significantly higher than it was for non-targeted nodes in the network. There was no significant 

difference between these three categories. Consistent with previous research, betweenness was 

significantly higher for the cancer driver nodes than for non-driver nodes in this network. 

In the cancer network created by Wang, et al [37], as with the Reactome network, all 

three target node categories had higher betweenness than the non-target nodes. The nodes 

targeted only by NPs are not different from the nodes targeted only by CT drugs, but the 

betweenness for these nodes is less than that for the nodes targeted by both NPs and CT drugs. 

And, consistent with previous research, the cancer driver nodes were significantly higher for 

betweenness than the non-cancer driver nodes.  
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The results for this statistic were mostly consistent between the two networks. Overall 

nodes targeted by NPs are similar for this characteristic to nodes targeted by CT drugs, and 

different from non-targeted nodes. Another interesting characteristic is that the average value for 

the nodes targeted by both NPs and CT drugs was higher for this measure than the average for 

nodes targeted by either NP only or CT drugs only, although this difference was only significant 

when compared to CT only drug targets in the cancer network created by Wang, et al [37] 

(p=.0001), and there were only 39 nodes in this category. 

 Betwenness is the measure of the number of shortest paths in a network that pass through 

a node. The target with the highest betweenness in the Reactome network, interacting with NPs 

only at binding less than 100 nM, was nuclear factor kappa beta subunit 1 (NFKB1). The 

interacting NP compound was rocaglamide, extracted from a variety of Aglaia plant species. 

This gene functions in a dozen large molecular pathways, ranging in size from 72 to 758 genes, 

most of which are enriched with cancer drivers (Fig 8). This protein is a transcription factor 

found in almost all cell types and is involved in a wide variety of cell processes, including some 

that are related to cancer, such as inflammation, tumorigenesis, apoptosis and cell growth. This 

protein is activated by many intracellular and extracellular stimuli, which is consistent with a 

high degree of betweenness centrality. 

 

Degree Centrality 

 

 Degree, in the Reactome network, is not significantly different between all three target 

node categories, but each of these three categories are all significantly higher than non-targeted 
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nodes in the network, as was seen with betweenness. And the cancer driver nodes were also 

higher for this measure than non-driver nodes.  

 In the Wang, et al (cancer) network the nodes targeted by NPs only were not significantly 

different from non-targeted nodes, and they were significantly lower for this measure than nodes 

targeted by CT drugs only or nodes targeted by both NPs and CT drugs. The cancer driver nodes 

were also significantly higher for this measure in this network. 

 For degree centrality the two networks are not in agreement. The nodes targeted only by 

NPs are similar to CT drug nodes in the Reactome network, but not in the Wang, et al (cancer) 

network. But nodes targeted by both NPs and CT drugs are again higher on average than either 

of the other two categories, NP only and CT drugs only, although it is only significant for the 

comparison to the NP only targeted nodes. 

 The node with the highest degree targeted only by NPs at a binding affinity less than 100 

nM in the Reactome network is the same as the top node for betweenness for this category, 

nuclear factor kappa beta subunit 1 (NFKB1). In this network there are 515 interactions with 

other proteins for this protein target. Of these 515 proteins, 90 (17.5%) are cancer drivers. 

 

Eigenvector Centrality 

 

For this measure, in the Reactome network, nodes targeted only by NPs are not different 

than non-targeted nodes, are significantly higher than nodes targeted by CT drugs only and 

significantly lower than nodes targeted by both CT drugs and NPs. The nodes targeted only by 

CT drugs are significantly lower than non-targeted nodes, but not different from nodes targeted 

by both CT drugs and NPs. And the nodes targeted by both CT drugs and NPs are significantly 



 

 32 

higher than non-targeted nodes. Cancer driver nodes are significantly higher for this measure 

than non-cancer driver nodes in this network. 

In the Wang, et al (cancer) network, nodes targeted only by NPs are not different from 

non-targeted nodes, but are significantly less then nodes targeted only by CT drugs, and nodes 

that are targeted by both CT drugs and NPs. Nodes targeted by CT drugs only and those targeted 

by both CT drugs and NPs are significantly higher than non-targeted nodes. CT only nodes are 

not different from nodes targeted by both CT drugs and NPs. And cancer driver nodes are 

significantly higher than non-cancer driver nodes for this measure. 

The two networks are not in agreement for these node categories for this measure. 

Generally, nodes targeted by NP only are not the same as other targeted nodes in both networks, 

but the direction of these differences is not the same. This is partly due to the fact that the CT 

drug only nodes in the Reactome network are generally lower than most other categories, 

including non-targeted nodes. 

The node targeted only by NPs that has the highest eigenvector centrality in the 

Reactome network is Heterogeneous Nuclear Ribonucleoprotein A1 (HNRNPA1). This means 

that the other nodes directly connected to HNRNPA1 have a high level of connectivity. There are 

185 proteins interacting with this protein in this network, with an average degree of 217, which is 

significantly higher than the network average of 38. While there are only 27 cancer drivers in 

this list, or 15% of the 185 proteins, one of these proteins, E1A Binding Protein P300 (EP300), 

has over 1000 interactions listed in Reactome. HNRNPA1 is an abundant core protein found in 

the cell nucleus and functions in alternative splicing of RNA. 

There is a high level of overlap for the top genes ranked by betweenness and degree 

centrality for the three target categories (Table 4). There is less overlap between these lists and 
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the genes with the highest eigenvector centrality. The three target categories are by definition 

mutually exclusive, and seem to show some possible complementarity in cancer therapy 

strategies, based on cancer hallmarks. 

 

 

Figure 8. Top natural product only target for betweenness centrality. Nuclear factor kappa 

beta subunit 1 is shown in the center, illustrating a high betweenness centrality. Squares represent 

pathways that this gene participates in. If a pathway is yellow, it is enriched for cancer driver 

genes. 
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Table 4. Top genes for the three topology measures (betweenness, degree, eigenvector centrality). The 

top 6 genes with the highest values of betweenness, degree and eigenvector centrality are shown for each 

node category: targeted by NP only, targeted by CT drugs only, or targeted by both NP and CT drug. All 

interactions are less than 100 nM binding affinity. 

 

In both networks, the average shortest path distances from NP only, CT drug only and 

CT/NP both nodes to cancer driver nodes were significantly shorter than random controls. The 

nodes targeted by both CT drugs and NPs are the closest to the cancer driver nodes, on average. 

These nodes also have higher betweenness and degree. These nodes represent a subset of both 

CT drug nodes and NP nodes that appear to be more critical in both networks. These 39 nodes 

also contain a higher percentage of cancer drivers than the other categories. 

 

3.4 Pathway interactions reveal potential synergistic relationships between natural 

products and cancer drugs. 

 

It is believed that the use of compensatory and redundant molecular pathways by the 

cancer cell is one of the mechanisms of acquired drug resistance, and that rational drug 

combination therapy could inhibit these processes. Several methods have been proposed to select 

and predict drug combinations that could inhibit this phenomenon [11, 35, 44, 63]. Chen, et al, 

constructed a pathway-pathway interaction network to evaluate drug synergy and as a possible 

model for the inhibition of pathway crosstalk. In this network, a node represents an entire 

molecular pathway and an edge represents an interaction between two pathways. Three types of 

interactions were used to construct three networks. Manually curated interactions from the 

KEGG database [64], protein-protein interactions, and shared genes were the three edge 
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definitions. Two sets of pathways were defined by associating the two drugs via the projection of 

the associated drug target networks onto the pathways. Chen, et al, found that drug synergy was 

correlated with the average shortest distance between the two sets of pathways in this network, 

most strongly in the network with edges representing shared genes.  

    For this analysis, the pathway network developed by Chen (et al) using shared genes as 

the criteria for an edge between two pathway nodes was used. This network contained 285 

pathways (nodes) with 9,152 edges. These 285 were non-hierarchical Reactome entity level 

pathways. Of the 285 pathways, 90 were enriched with cancer drivers. The majority of the cancer 

pathways are targeted by both NPs and CT drugs (73%), and most of the non-cancer pathways 

are not targeted by either NPs or CT drugs (48%). Only target interactions less than 100 nM were 

considered. 

The average shortest path in this network between pathways targeted by CT drugs, those 

targeted by NPs and between NP targeted pathways and CT drug targeted pathways were all 

similar, and closer than random controls. Based on previous research this could correlate with 

synergy between these classes of compounds, particularly between NPs and CT drugs. Pathways 

targeted by both CT drugs and NPs were closer on average to cancer pathways than random 

controls. Pathways targeted by NPs only and those targeted by CT drugs only were not closer to 

cancer pathways than random controls (Fig 9). 

 There are 559 examples of neighboring pathways (nodes) in this network where one is 

targeted only by NPs only and the other is a cancer enriched pathway targeted by either CT drugs 

or both CT drugs and NPs. An example is DAG and IP3 signaling and Signaling by FGFR1. In 

the Reactome database, these two pathways share the gene PLCG1 (1-phosphatidylinositol 4,5-

bisphosphate phosphodiesterase gamma-1), which creates an edge between them in this network. 
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Signaling by FGFR1 is enriched with cancer drivers, and has a CT drug target with an 

interaction less then 100 nM, BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase). This 

pathway initiates intracellular signaling pathways involved with cell proliferation and migration, 

and other functions. DAG and IP3 signaling is not enriched with cancer drivers and does not 

have any low affinity CT drug targets, but does have 6 high affinity NP targets: PRKCG,E,A,D 

(Protein Kinase C), PDE1A (Phosphodiesterase 1A) and ADCY1 (Adenylate Cyclase 1). DAG 

(diacylglycerol) and IP3 (inositol 1,4,5-trisphosphate) are secondary messengers used in 

intracellular signaling. 

 

 

Figure 9. Pathway-Pathway network analysis.  Average shortest path distances in blue were all shorter 

than random controls, except for NP only and CT only nodes to cancer nodes (empirical p<.01, 1000 

permutations).   

 

3.5 Natural products and FDA-approved anti-neoplastic drugs do not have similar 

distributions for targets and pathways interacting per compound.     
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We found that there are differences in the distributions of the number of targets and 

pathways interacting per compound between NPs and CT drugs, and that the binding affinity 

level impacted whether we saw these differences for tumor types per compound and cancer 

driver interactions per compound (Table 5). But it is difficult to draw any further conclusions 

about these differences since the motivations for studying the relationships are not necessarily 

the same between NPs and FDA approved cancer drugs, and are not captured in this data, 

although this rationale can be found in the supporting literature references, if a link exists in the 

data. Previous research has shown an increasing number of target interactions per compound 

along the drug development pipeline, with approved drugs having the highest level [8],[65]. 

Also, the total number of targets tested with these compounds, both NPs and CT drugs, is not 

captured in the public data resources used for this project. And finally, missing data is always a 

problem when assessing this compound characteristic since all possible target interactions that 

occur in a biological context cannot be known.       

 

  

Table 5. Distribution comparisons for Targets, Pathways, Tumors and Cancer Drivers. 

Differences between the number of targets, pathways, cancer drivers and tumors interactions per 

compound for NPs and CT drugs were tested using a two sample Kolmogorov Smirnov test to 
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detect differences in the distributions. This testing was assessed for binding levels of 100 nM or 

less, and 1000 nM or less. Tumor associations made via cancer driver interactions. 

 *indicates significance at p threshold of <.004 (Bonferroni adjustment)   

 

3.5 Natural products show target family groupings both distinct from and in 

common with cancer drugs 

 

There were a total of 253 compounds and 1,238 edges in the compound network, which 

included 68 CT drugs and 185 NPs. This network contained 26 unconnected subnetworks, with 

the majority of nodes (163) in one large connected component. Multilevel clustering created 35 

communities, most of which contained 5 or less compounds. Of interest were the three largest 

communities, each containing over 30 compounds (Fig 10a). One community was dominated by 

CT drugs, but also contained substantial NPs. The other two communities contained primarily 

NPs.   

The first community contained 32 CT drugs and 11 NPs. The community clustered 

primarily around kinase and other cancer related target families (Table 6). Kinases are extremely 

well-targeted by current FDA-approved cancer drugs and have been an active area of research 

following the break through kinase inhibitor imatinib. The next largest community was 

comprised of 39 NPs and 4 CT drugs. This community contained a variety of cytochrome P450 

families and other target families considered therapeutic targets, such as the carbonate 

dehydratases which are inhibited for the treatment of glaucoma and other conditions (Table 6). 

The third largest community contained no CT drugs and 30 NPs. The target protein families here 

were primarily hormone and neurotransmitter receptors (Table 6). 
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The clustering patterns seen in the larger communities in this network seem to indicate 

NP target interaction research driven by known therapeutic targets as seen in drug therapeutic 

classifications. Since the only therapeutic classification for the drugs used in this study is cancer, 

it follows that there is one large cluster containing a majority of the CT drugs and also some 

NPs, indicating interest in NPs for cancer research. If this analysis was expanded to include 

drugs from other therapeutic classifications the other communities might also contain the 

associated drugs, along with the NPs. 

 

 

Table 6. Natural Products (NP) and Approved Cancer Drugs (CT) Interact with Disjoint and 

 Shared Target Sets. The top 11 target families in the three largest compound-compound  network 

communities are shown, along with the NP/CT distribution in each. The largest   community is dominated 

by approved cancer drugs and the other two communities are dominated  by NPs. 

3.6 Some Features from In-Silico Drug Synergy Methods Can Separate NP/Drug 

Labeled Synergistic Pairs from Unlabeled Pairs 

 Two unsupervised datasets were created from literature curation. One dataset had 36 

labeled synergistic pairs combined with 179 unlabeled pairs for a total of 215 pairs. The second 

dataset had 11 labeled pairs and 45 unlabeled pairs for a total of 56 pairs. The second dataset was 

a subset of the first and was restricted by available gene expression data in Connectivity Map, 

since gene expression profiles were used in both models. All natural products, in both datasets, 

had to be found in Connectivity Map. Since not all features used in these models require gene 
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expression data, the larger dataset was used to test the features not dependent on these profiles. 

These datasets were used to do bivariate tests (Wilcoxon rank sum) on nine features from the two 

methods.  

 We found significant differences (p<.05) in five of the eight features (Fig 10). The 

feature derived from gene expression profiles was not tested since there was no overlap in the 

dataset with 56 pairs. The direction of the difference for mutual information entropy and 

Tanimoto coefficient was not consistent with that found for drug pairs in the RACS evaluation, 

but for the efficacy measures it was consistent. 

 When manifold ranking from RACS was applied to the core model we did not find 

enrichment of synergistic pairs in the top twenty ranked pairs. This could be due to the weakness 

of the truth datasets, or that 26 drug pairs were used as the ‘bait’ in the model. These might not 

be appropriate for identifying synergy between natural product/drug pairs. 
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 Figure 10. Significantly different features from both methods tested. A. The larger dataset was 

significant, finding more overlap in biological function for synergistic pairs. B. The larger dataset was significantly 

different with synergistic pairs having a larger value, indicating a greater difference between cancer targets and non-

cancer targets for betweenness. C. Efficacy for degree had the result as efficacy for betweenness. D. Efficacy for 

eigenvector centrality was significant for the smaller dataset, again with larger values found for synergistic pairs. E. 

Synergistic pairs were found to have greater structural similarity.  

4. Discussion. 

 The intent of this work was not only to assess the number of new potential therapeutic 

targets available when considering publicly available NP information, but also to assess these 

targets from a complementary perspective with FDA approved cancer drugs. Most of this 

analysis only considered high affinity target interactions. At these levels, for the cancer pathways 

of interest, the increase in number of pathways targeted only by NPs was a small percentage of 

the total pathways, but these 24 pathways are involved in multiple cancers. Within cancer 

pathways targeted by both NPs and CT drugs, there is a substantial percentage of targets 

interacting with only NPs, supporting the potential for new novel combination therapies in 

cancer. We did see a large increase in both pathway and target coverage when considering all 

evidence levels, and our random sampling indicates that up to a third of the Level I interactions 

presented here are accompanied by binding values in the literature. While these binding values 

can be expected to fall across a wide range, our random sample would indicate that 

approximately 10% should be less than 100nM. For natural products, we see that the number of 

targets per compound depends on the evidence level used, and is not currently comparable to 

what is known for CT drugs. Based on what is not captured in databases but does exist in 

supporting literature, and also the potential for untested targets, there is a need to focus on both 

areas to increase knowledge of the NP target space. 
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It is also important to consider and compare these two target spaces in a biological 

context. We used two networks to do this, but the Reactome network could be considered more 

comprehensive than the cancer-specific network. In the Reactome network the new targets 

identified by considering NPs were similar to drug-targeted nodes, and less similar to non-

targeted nodes, when considering betweenness and degree. This similarity was not seen for 

eigenvector centrality. Degree and betweenness are strong measures of criticality in a network 

and the fact that the new NP targets are similar to CT drug targets could indicate potential for 

novel combination therapies. Also of interest is that the nodes targeted by both NPs and CT 

drugs tended to have higher average values for these measures than either CT drug only or NP 

only targets. (although this was not statistically significant, is that correct.  Again curious about p 

value is it < 0.20?  if so may want to put it in) 

It is likely that the research for NP targets that are not targeted by CT drugs is motivated 

by other drug therapeutic categories, which could also be investigated for cancer therapies. In 

this study, we have not investigated non-cancer drugs that interact with the targets found to 

interact only with NPs. But the fact that we saw compound clustering around target families 

common to NPs and CT drugs, and also clustering around families unique to NPs, when 

compared to CT drugs, could offer more support for complementary therapeutic relationships 

between the two compound classifications. 

From the perspective of combination therapy and synergy discovery, the focus of this 

research was on a pharmacodynamic framework. There is a large body of literature for predictive 

algorithms for combination therapies that is based on network  pharmacology, which influenced 

this work. But NPs can interact with other compounds, either synergistically, additively or 

antagonistically, through other mechanisms. These can include pharmacokinetic interactions, 
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interactions with drug efflux transporters and the cell microenvironment. Some of the synergy 

effects of NPs are not necessarily mediated by direct interaction with a protein target, but also 

through the up or down regulation of the expression of the protein of interest. Since binding 

assay results do not necessarily provide functional information about the compound-target 

interaction, the presence of a strong binding assay result does not necessarily indicate a positive 

therapeutic effect for cancer. In fact, some of the interactions could promote tumor growth, as is 

the case in some cancers with the phorbol esters isolated from croton oil. Future efforts should 

consider both the strength of compound-target binding and the functional effect of the 

interaction. All of these mechanisms could be considered in future algorithms to predict 

combination therapies. Briefly, how would you do this in a future study? 

A limitation of this study was the quality of publicly available resources for natural 

product–target interaction data. The two databases chosen are not the only ones available for 

NPs, but they were appropriate for our NP criteria. The heavy reliance on text mining could 

explain some of the problems. Some of these data sources appear to contain drugs that do not 

have a NP source, and also compounds that are apparently used in the extraction of these NP 

compounds. For this reason, we removed any compounds with a synonym match to drugs using 

FDA and DrugBank compound lists [Methods]. We also manually curated our high affinity 

natural product compounds and removed about 11% due to quality concerns. Another issue 

encountered with these data sources was the inability to download the entire database. There are 

well curated proprietary natural product databases, such as NapAlert and The Dictionary of 

Natural Products, for future application of these methods and findings beyond our current 

analyses including only public resources. 
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 In our analysis, it seemed that some of the natural product targets we reviewed, that were 

not shared by CT drugs, might have been motivated by other drug therapeutic classifications. We 

also restricted our natural products to plants and fungi only used in medicinal traditions. There 

are many more NP compounds in publicly available data sources, and more NP assay data in 

recently created data sources than we were able to retrieve (NPASS) [66]. In addition, it appears 

that the large amount of Level I data could be reviewed to retrieve more assay data. For this 

reason, it would be important to expand this analysis to include all drugs and all known NP 

compounds available, still within the context of cancer therapies. This would allow for a greater 

search space for combinations therapies and repurposing opportunities. 

I recommend adding a conclusion (short paragraph). Summarize main findings in 2 sentences 

and then 2-3 sentences of next steps.  
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