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Abstract
Rare cellular subsets are a marginally infrequent set of cells, represented by a transcriptional signature or an immunophe-
notype. The importance of RCS clinically in various clinical domains from oncology to infectious diseases has propelled
research to define clinically actionable signatures. In this dissertation we asked if there is a robust and reproducible compu-
tational method to classify RCS; improving the downstream hypothesis testing for research or clinical needs. For example,
being able to detect 1 leukemic cell from 10,000 healthy cells, has been shown to be prognostic of outcome in adult acute
lymphoblastic leukemia. However, detection of specific RCS is not sufficient to save lives and also improve future therapy
and prophylaxis. That is why we believe the potential future application of the methods researched an developed herein,
needs to be combined in a systems approach; integrating multiple sources of evidence from various ’-omics’-based analy-
ses to provide targeted calls within a precision medicine framework. However, there are current limitations in computational
methods that utilize single-cell data, especially in the context of RCS. Such limitations arise from the high-throughput na-
ture of single-cell technologies that demand robust and generalizable computational methods that scale and can handle
high-dimensionality.

In this investigation, we address two current limitations of computationally classifying cellular subsets: Transcriptionally,
how well can RCS be classified? And how well does a classifier generalize across datasets, even if the sources/platforms
differ? We assume that the signature or phenotype of interest has been previously characterized and data is available
for training machine learning algorithms; parallel to human experts who train on previous literature and data. With this
assumption, the primary machine learning methods of interest fall under the umbrella of supervised learning. However,
two major assumptions of many of such methods is that A) the training and testing data are independent, but identically
distributed (i.i.d) and B) the marginal frequency of the population of interest does not significantly differ between training
and testing. Another machine learning domain, called transfer learning (TL) does not have these assumptions. Based on
such theoretical considerations, we hypothesized that within a TL framework, both of the computational limitations i.e., RCS
and generalizability can be researched and potentially addressed.

For the development of this framework, we leveraged a previously published TL algorithm, designed to classify specific
immunophenotypes (IPs) by flow cytometry (FC) data. However, as the original code nor the datasets of the workshop
manuscript were available, our initial goal was the implementation of an equivalent framework. The ’baseline’ RTL version,
closely adheres to the previously published approach 1. Once implemented and validated with simulated and pilot FC data,
to improve the overall automation of the pipeline and classification robustness and generalizability, we proposed and devel-
oped extensions to several of the modules in this framework i.e., the extended version. Finally, to improve the precision of
the classification call in the context of RCS, we introduced the utility of the area-under the density curve (AUD) parameter
transfer (PT) option; transferring the trained positive class marginal frequency (in addition to a small random Gaussian
error) to aid the classification of the testing set. We plan for an open-source release both versions, combined as the RTL
framework, in conjunction with the publication of its manuscript.

To benchmark the RTL framework, we utilized publicly available scRNASeq data with known cell cycle labels, paralleling
our approach with a previously published assessment with 6 different classifiers. This meant that it was necessary to
rank-normalize the expression matrices. However, such task-specific normalizations can introduce bias in the classification
task. Therefore, we ran parallel classification runs using the log-scaled gene counts directly as well as conducting quantile
and log-median-absolute-value normalization for comparison. This also aids in evaluating the hypothesis that in TL can
adapt/generalize across differently sourced datasets without the need to perform task-specific normalization. Briefly, we
demonstrate equal or higher F1

score

within the RTL framework than those previously published, however, confounded by
the task-specific normalization methods performed prior to the classification. In our internal validation (i.e., leave-one-out
5-fold cross-validation), quantifying the performance of the RTL framework, the highest F1

score

and overall accuracy was
achieved with the log-median-absolute-value (LogMAV) normalization. However, in our external validation (i.e., 5-fold CV
on two datasets from differences sources, such that training is achieved on one and inference on the other), which quan-
tifies the classifier generalizability, we found LogMAV normalization produced the lowest F1

score

, regardless of the two
versions of the RTL framework. Therefore, the next highest computed F1

score

, was found on the log-scaled counts; in both
of the internal and external validations. Next, in evaluating the classification of RCS down to 1% of the total, we achieved
the highest F1

score

when utilizing the PT feature with the baseline version. In the RCS context, we find our extended
implementation is biased towards precision as opposed to the baseline which generally has higher recall than precision;
consequently, PT has a much greater impact on this extended version when classifying RCS.

Finally, to demonstrate and evaluate classification of a clinically valuable immunophenotype compared to manual gating in
flow cytometry data, we utilized the publicly available HVTN080 dataset. We designed two train/test set schemes to evalu-

1 The baseline version of the RTL framework is not an exact 1:1; to accommodate scRNASeq data as well as utility of R-specific libraries several
changes were made.



ate the performance of the RTL framework. As expected, a higher F1
score

was achieved with the ensemble scheme where
multiple trained classifiers, train on non-identical sets of FC-samples/files were used for inference on the same testing set
to obtain a probability of association to the positive class of interests for all the cells/events. Comparing the baseline and
extended versions in this context we observed that the latter produced calls with higher variance, thus on average lower
performing the the baseline version.

In conclusion, we have made available an open-source TL framework, which can be applied to several different clas-
sification tasks. Proper evaluation is required to determine which version is appropriate and is ideal to utilize as well as
pre-processing procedures such as normalization, projections, and transformations. In this dissertation we perform such
evaluations in the context of single-cell analysis with scRNASeq and FC data.
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1 Introduction
The capacity to study specific subsets of cells, especially rare cellular subsets (RCS) such as those associated with a
disease-phenotype is at an inflection point; the high-throughput nature of such studies necessitates robust and generaliz-
able computational methods to be developed and tested. Single-cell analysis has flourished since the early applications
in Flow cytometry (FC) [14]. Currently, fluorescent-FC can optimally quantify up to 20 features on each of the single
cells [15]. New mass-based cytometry technologies (e.g. CyTOF) have enabled measuring over 100 features on single
cells [16]; also useful for barcoding samples in multiplexed runs. More recently, it is even possible to evaluate single
cells transcriptionally (scRNASeq), with specialized applications that combine multiple technological platforms [17]. Which
technology we use, usually depends on feasibility within the context of a specific hypothesis and budget. In the near future,
such single-cell data (or a respective analyzed summary) will be used in the clinic, guiding evidence-based diagnostics,
prognostics, and treatment optimization plans. For this integration to occur, it is expected that the underlying computational
processes must have high performance statistics.

In a classification task, the scope of this work, high-performance means when a positive call is made, most are actually
positive (high precision) with a high proportion of the total negatives (specificity) and positives (recall) identified correctly.
As our major focus is on rare cellular subtypes/signatures (RCS), the selection of such a statistical measure becomes
critical. For example, when the marginal frequency of the positive cases is 1%, 99% accuracy can be achieved by simply
inferring all as negatives. Furthermore, such measures can be confounded by the inherent limitations (or assumptions)
of a selected classification method, as well as various factors pertaining to the data acquisition (protocols, technology,
reagents, etc) and the pre-processing procedures (cleaning, scaling, normalization, feature selection, etc). Herein, we
explore these issues as they are pertaining within the scope of our investigation in classifying cellular subsets/signatures
with a transfer learning (TL) framework. The main computational motivation for this research was the robust classification
cellular subsets or signatures, specifically RCS, that are deterministic of disease and health. The immediate return from
this TL framework is to conduct reproducible research that can be easily scaled to process high-throughput single-cell
data. The long-term extension is the integration of such classification models within a precision medicine framework, inte-
grated with additional -omics data and analyses to make systems based, targeted calls [1]; from stratification of patients
in clinical trials to guiding optimal treatments and prophylaxis (Figure 1B).

1.1 Motivation

A B

Figure 1: Main motivating factors of this research. A: HIV and Mtb the causative agents of approximately 3 million deaths
in 2015. B: Systems based integration of -omics based data towards targeted calls within a precision medicine framework;
adapted from [1].

Computationally, we are motivated by a current bottleneck in classifying rare cellular subsets (RCS). Clinically several
challenges have motivated the study of cellular subsets/signatures, especially RCS as determinants of health and dis-
ease. For example, according to the World Health Organization (WHO), the human immunodeficiency virus (HIV) and
Mycobacterium tuberculosis (Mtb) were the causative agents of 3-million deaths worldwide in 2015 [18, 19]. Access to
healthcare and medicines has been critical in reducing the rates of new infections as well as improving the prognosis of
infected people in many parts of the world. However, even in the developed world, specific communities of people are
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not as fortunate. Furthermore, new studies for both pathogens have shown resurgence of drug-resistant genotypes [20].
Therefore, there is a major motivation to unravel the pathophysiology of such infectious diseases, both at the scope of the
population and at the individualized scope, so that we can develop and disseminate targeted treatments and vaccines to
eradicate them.

Specific immunophenotypes (cellular subsets/signatures) in various pathologies such as those caused by HIV or Mtb have
been shown to be clinically important; useful for diagnostic and prognostic [21, 22, 23, 24] needs. However, there is still
work to be done integrating and translating such findings into clinically actionable targets or calls within the context of
precision medicine. This is now feasible with recent -omics based technologies and computational/analytical methods
which have enabled the unraveling of disease/health mechanisms and molecular networks (e.g. phenomics, epigenomics,
genomics, transcriptomics, proteomics) [25].

Figure 2: Three Major factors and examples at various scopes that contribute to imprecise classification. An example
of miss-classification may be diagnosing active vs. latent disease due to unspecific clinical definitions pertaining to host,
pathological, or phenotyping factors; highly problematic for clinical trial recruitment.

One of the current major limitations of clinical trials and medicine in practice is that many patients do not respond to
treatments or prophylaxis. Fiscally, this translates to over $300 billion annually in the U.S. alone [26]. Heterogeneity
is a significant contributor to this problem: A) Host/Patient factors: age, gender, ethnicity, etc. B) Pathological factors:
species, genotype, temporality, severity, mutability, etc. C) Phenotyping factors: Etiological, symptomatic, prognostic, or
pathoanatomic [27, 1]. Therefore, there is a major need for high-throughput multi-omics data combined with secondary
analysis from public data to identify relevant signatures and develop predictive models that can eventually identify clinically
actionable signatures; the highly valuable return of such efforts would be making targeted calls such as the stratification
of patients for clinical trials or the development and prioritization of treatments or vaccines [1]. Current efforts to over-
come such limitations is supported by the results observed in targeted cancer therapy; pathological molecular profiling
and molecular-based patient stratification.

Single-cell technologies have had a recent rebirth due to modern computing capabilities. Shifting away from profiling
molecular targets on proteins and sugars on or inside the cells towards transcriptional profiling of single cells. That said,
every research hypothesis or clinical diagnosis does not require transcriptional analysis of single cells. However, it has
been shown that in many pathologies such as cancer, complex diseases, and infectious diseases many cell types are
involved; both epigenetic and genetic changes in these cell types can be quantified by transcriptional analysis and corre-
lated to the pathology.

1.2 Single-cell technologies
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Figure 3: single-cell technologies and scope: Flow cytometry (FC) and single-cell RNA sequencing (scRNASeq) can be
summarized similarly as a per-cell expression matrix of features.

1.2.1 Fluorescent and Mass-labeled Flow Cytometry (FC)

Flow-cytometric based experiments begin with the acquisition of isolated cells in suspension and end with the analysis of
’.fcs’ files [28] produced during acquisition. Once the cells of interest are in appropriate aliquots, antibodies tagged with
fluorophores or metal beads are used to label the cells based on phenotypic features of interest; usually with cell-surface
markers combined with other internal targets of interest. Laminar flow within the fluidics system of the flow cytometer
pushes individual cells forward in a queue, eventually passing the platform’s detector. Multi-parameter analysis then en-
ables discrimination of single-cells based on the quantified labels [29]. Traditionally, this approach has been a manual
process called ’gating’ that defines boundaries surrounding density-clouds in bi-axial scatter plot; these decisions are
based on a priori definitions of immunophenotypes acquired from the literature. Computational methods automate this
task in robust, scalable, and reproducible frameworks [30]. Many of the limitations of manual or automated gating that
fall under the umbrella of confounding factors (technical or biological), can be overcome by standardization of the en-
tire experimental and analytical protocols. Additionally, multiplexing significantly improves the signal to noise ratio for
high-throughput demanding experiments by minimizing the noise across the samples. Overall, the goal is to significantly
improve the quality of analysis by increasing the statistical power that can be achieved [31]. Although much effort has
been put on ways to improve such cohort analysis in FC, several challenges remain; for example the difficulty of classifying
rare cellular subtypes (RCS), manually or computationally.

In fluorescent FC, the lasers in the flow cytometer excite the antibody-bound fluorophores, which causes them to emit
a spectrum (wavelength) of light to return to the lower energy state. The more features per cell in a given experiment,
the more fluorochromes are needed, but the overlap in the emission spectra from all these fluorochromes set significant
limitations such as an upper-bound limit on the optimal number of fluorochromes per experiment. In the context of RCS,
the fluorochrome(s) used to identify them must have an emission spectrum that is bright, low variant, and with minimal
to zero interference from other fluorochromes emission spectra in the experiment. Ideally, more than one marker can be
used to improve the classification by reducing the false positives. Mass cytometry (CyTOF) overcomes this limitation as
the metals with different masses are accelerated and their time of flight (TOF) to a detector is measured. Furthermore,
there is no auto-fluorescence and there are a large set of metal-tags to choose from. However, during experiment design,
it should be noted that the metal elements naturally have isotopes with varying purity which can cause overlapped signals.

The antibodies that tag a specific target molecules in FC analysis (and fluorescent microscopy) have specific binding
affinities based on their sequence and 3-dimensional topology. This means, even for a major marker such as CD3, a
ubiquitously used T cell marker in FC, due to the biological diversity of this molecule relative to the clone(s) producing the
antibody, we expect a variable binding affinity curve. Within a single sample, there are additional sources of unwanted
experimental variation. For example, the relative intensity of a marker on a given cell, is the sum of the fluorochrome emis-
sions at the moment of detection. Therefore the amount and location of the target molecule’s expression in the context
of the hypothesis becomes critical. Finally, in the context of RCS, this translates to the target marker(s) used must be
well-expressed in the population of interest and experimentally distinguishable from controls.

Currently, both platforms of FC are used for medical and research needs. More recently, mass cytometry [32] has been
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identified as a valuable tool in translational clinical research [33], but there are some limitations pertaining this instrument.
Primarily, reproducibility is the key challenge to research that utilizes CyTOF. That is because generally CyTOF has been
used as an exploratory expedition [34, 35, 36, 37]. This, of course, is a problem statistically speaking as the exploration
confounds the utility of the generated dataset; mandating multiple datasets to be generated to validate any findings via
hypothesis testing. The Second major limitation and a source of bias for exploratory research is that FC will only capture
the set of probes previously decided in an experimental protocol; in other words, potentially many targets may not be
quantified, simply because the antibodies to those targets are not present in the cocktail used; this is analogous to the
criticisms of microarray-based transcriptional profiling compared to next-generation RNA sequencing. That said, there still
a major applied benefit to high-throughput clinical or research use of CyTOF because of its multiplexing capacity, mixing
multiple samples within a single run by barcoding.

1.2.2 High-throughput single-cell RNA-sequencing (scRNASeq)

High-throughput RNA-sequencing at the single-cell level i.e., scRNASeq, is a recent and major technological advance-
ment predicated on a few decades of gene expression profiling of bulk cells [38]. The benefit of using next-generation
sequencing is that it overcomes the limitations and biases microarrays posed on transcriptomic fingerprinting, i.e. because
sequence-based technologies do not use probes [25]. Two recent reviews comprehensively discuss scRNASeq methods,
instruments, utility, impact, and current limitations [39, 40]. Briefly, there are many medical tests or research hypotheses
that can still be answered with previous technologies such as bulk-cell and non-sequencing transcriptional profiling. How-
ever, when we consider that for each bulk sample (e.g., tissue sample) we are measuring the mean expression of any
gene/transcript for that entire sample, it is evident that A) we lose being able to discriminate cellular heterogeneity B) if
the cells of interest are low in frequency, their entire signal is diluted and C) we lose the capacity to quantify transcrip-
tional kinetics amongst the potential cellular subtypes. That is why only when a research hypothesis is justified to use
scRNASeq, it is best to utilize this technology. We refer to [25] as a review of several sequencing platforms; there are
important considerations such as cross-platform comparisons that are not trivial and may affect the downstream analyses
and hypothesis testing.

A B

Figure 4: An overview of the acquisition and pre-processing involved in scRNASeq, adapted from [2]. A From single cells
suspended in media to sequenced reads per cells. B From reads to gene counts, several QC steps remove anomalous
and problematic cells. The counts are normalized to remove unwanted technical and biological noise based on the specific
protocol utilized. In the context of RCS of interest, such procedures could be bias to remove rare cells as they may be
considered anomalous.

Briefly, summarized in Figure 4, the current approach to scRNASeq starts with experimentally isolating the cells of inter-
est; using methods that minimize tissue-isolation transcriptional changes such as magnetic-activated cell sorting (MACS),
laser capture dissection (LCM), or fluorescence-activated cell sorting (FACS). The cells are then lysed and their mRNA
molecules 2 are captured and reverse transcription converts them to the more stable respective cDNA molecules. Next,
the cDNA molecules are amplified and profiled by next-generation sequencing [2]. As with other high-throughput -omics
data, the first step in the bioinformatics pipeline is quality control. That is because the multiplex process may capture
a range of cells: from a perfect, healthy, unstressed and undamaged single cell to nothing at all. Therefore, low-quality

2polyadenylated fraction of mRNA
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cells need to be removed so that they don’t bias the downstream processes. For an in-depth and recent review of the
scRNASeq pre-processing pipelines, we refer to [41].

The gene-level expression matrix for each of the individual cells is the resulting data type after the pre-processing bioin-
formatics. If unique molecular identifiers (UMIs) were used, transcript molecules are counted directly, where as if the
experiment lacked UMIs, counts are estimated by algorithms such as htseq-count; a popular tool that counts the overlap
of reads with genes [42]. Alternatively, relative expression such as transcripts per million mapped reads (TPM), counts per
million mapped reads (CPM), reads per kilobase per million mapped reads (RPKM) or fragments per kilobase per million
mapped reads (FPKM) can be used. Overall, such counts are considered similar in terms of signal distribution to FC which
is broadly attributed to having at least two modes indicating ’on’ or ’off’ states [43] supporting the application of similar
computational tools, at the expression matrix scope, across these data platforms.

A critical next step in the scRNASeq processing pipeline, so that across the cells within an experiment, the expression data
are comparable, three potential normalizations procedures are possible depending on the experimental design and proto-
col: A) Normalization for RNA content, B) normalization for library size, and C) normalization of between-cell variation. For
example, extrinsic/artificial spike-ins [44], are commonly used in scRNASeq experiments to help determine cell-specific
scaling factors. More specifically, because the spike-ins are added to the cell lysates at a known constant concentration,
it can be concluded that when the ratio of reads mapped to the genome over the number of reads mapped to spike-ins is
lower than other cells on average, that cell is anomalous and considered to be removed from downstream analysis; low
RNA concentration is the most probable etiology.

Currently, a commonly used pipeline is a software package called Scater [45]. Not only does this process prove a uni-
form and fast computable data structure for scRNASeq datasets, in the commonly used R language, it also provides a
pipeline to run pre-processing, quality control, normalization and compute pertinent summary statistics and visualizations.
However, in the context of RCS, this process can be biased, and potentially remove them as aberrant events. Of note,
is the consideration of technical dropouts, where the expression of a gene is not detected, but expected to be so; at-
tributed to capture failure in the reverse transcription stage. This is an important consideration for experimental design
and pre-processing. The scope of this dissertation relevant to the processing of the scRNASeq data is beyond addressing
this limitation; we utilize a pre-processed dataset for benchmarking purposes of machine learning classification. In this
dataset, the marginal frequency of the class labels are not rare, but rather as described in a later section, we derive rare
labels by in-silico methods.

At the scope of the expression matrix, a current major difference between scRNASeq compared to FC is the number of
cells assessed in each experiment, as well as the number of experimental samples. Furthermore, in the context of RCS, it
is important to consider how the data was created and process to get to the expression matrix level. A common practice in
the QC processing of scRNASeq data is removing low-expressing genes, which in fact belong to rare cells. In other words,
there is a difference in the false positive/negative rates between the generation and processing of FC data represented
by detection by fluorescence intensity or mass-based time-of-flight (TOF) compared to scRNASeq counts, a measure of
expressed mRNA that is noisy and partially stochastic by nature. Combined, the transition towards high-dimensionality
has introduced new statistical challenges and limitations, mandating the production of new or upgrading and adapting
previously developed reproducible and scalable computational methods, at various scopes in the analysis pipelines. For
this dissertation, as our goal is to benchmark our developed machine learning algorithm to previous methods, we utilize
the processed expression matrices directly from the respective studies.

1.3 Frequent and Rare Cellular Subsets (RCS)
Rare cellular subsets (RCS) are distinct phenotypes/clusters/signatures of interest, common and important in biology [4].
For example, in a recent study, it was shown by detection of residual cancer cells across several time points during disease
treatment was prognostic; in this minimum residual disease (MRD) context of adults with acute lymphoblastic leukemia
(ALL), MRD was detected at 0.0001 frequency (0.01%) [3]. In another context, antigen-specific T cells may be the sub-
set of interest which can be as rare as 1E-6 3. Evaluating the cytokine responses of these t cells means detecting the

3It is, in fact, the hallmark of the adaptive system to create many rare antigen-specific cells, that can expand when needed.
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Figure 5: The definition of rare cellular subsets by frequency with examples of critical subsets. * [3], ** [4].

responding t cell populations at frequencies of 0.01 or less [46]; although usually, this means conducting multi-parameter
analysis, which enriches for the rare cellular subsets of interest by gating out the non-relevant majority phenotypes. Other
biologically important examples, such as progenitor cells, stem cells, and circulating tumors, they can have marginal fre-
quencies as low as 1E-7 [4]. However, for practical exploration of such extremely rare subsets, a specific hypothesis based
on a clinical need is required. There are several experimental methods to sort or enrich for a population of interest that
minimize transcriptional (as well as phenotypic) changes. Therefore, a practical definition of an RCS is a subset with a
marginal frequency in [0.0001, 0.01] [4]; in this study, our scope is within the upper limit of this range due to data availability
and computational feasibility.

Three main reasons why it is difficult to identify RCS from a mixture, manually or computationally. A) effect size, a standard-
ized measure of difference between two populations and B) marginal frequency of the RCS of interest and C) total sample
size; having enough ’N’ representatives for proper determination of a classification boundary as well as training machine
learning algorithms. In applied work, each population may be associated with a specific false positive or false negative
rates. Since with high-throughput technologies we are almost always in high-dimensional (HD) space, feature selection
is usually necessary as high-dimensionality confounds classification by introducing unwanted variance. The population
of interest (i.e., phenotypes or signatures) may be gradients rather than discrete subsets. And there maybe confounding
factors (technical and/or unwanted biology) that especially impede the detection of RCS.

1.3.1 Rare cellular subsets (RCS), rare-event/anomaly detection, and class-imbalanced classifiers

There are several approaches in applying machine learning algorithms to classify a rare subset within a sample. Gener-
ally, in the context of supervised learning, when the marginal frequency of a positive class is considerably smaller than the
negative class, the inference is expected to favor the larger class. By design, such algorithms maximize the overall number
of correct predictions because an equal cost of miss-classification is given to both classes, which can be expect to favor
the larger subset in the case of class-imbalance. This problem can be even more difficult to address in high-dimensional
data [47]; especially in biomedical research as the sample sizes tend to be small. As we demonstrated in our assessment
of the 1D-simulated evaluation, also supported by a previous study in [48], there are three reasons that contribute to
poor classification in the context of rare-event detection: A) effect size between the positive and negative class, i.e., data
complexity B) the marginal frequency of the positive class and C) total sample size (used for training and inference). We
also show in a later section that feature selection is crucial in classification tasks which we categorize under the umbrella
of ’changing the effect size’. Finally, we note that the effect of confounding factors (technical or unwanted biological) that
potentially impede machine learning classification, is amplified in the context of RCS.

Because of the difficulty and cost associated with the development of datasets, there are several in silico approaches to
creating class-imbalanced data from an existing dataset. For a review, we refer to the [49, 47, 48] articles. Briefly, the
two methods explored in this dissertation are the random over-sampling and random under-sampling methods (Figure 48).
The former, via random replication (sampling with replacement), is known to potentially increase the likelihood of over-
fitting due to multiple exact replicas in the data. The latter, via random elimination of the majority class, has the limitation
of excluding potentially valuable examples. Several additional methods exist, which were not explored in this dissertation

6



research, but are potential future directions to attempted and evaluate: Tomek links, Condensed Nearest Neighbor (CNN)
Rule, One-sided selection, CNN + Tomek links, Neighborhood cleaning rules, Smote, and others reviewed [49].

1.4 Supervised and unsupervised methods, an overview
Statistical learning (and inference) also known as machine learning are methods to describe how data is used to bring
about higher understanding. Simply, sometimes the task is to use previous data to make a future prediction. For example,
statistical regression is a mathematically-based method to examine and build models of data (such as the linear model
y = �0 + �1 · x1 + �2 · x2 + · · · + �

m

· x2). Building such a model means training on data where y and x are known to
find the optimal values for the coefficients �

m

for all m features. Finally, on new data where y is not known, this model
can be used to make an inference ŷ. Generally, methods that involve training and inference, fall under the supervised
methods category. In an alternate scenario, if training data is not available, and the task is to find patterns in the data
or to reveal higher understanding by exploring the architecture and relationships in the data, we would need to find an
appropriate unsupervised method. We refer to [50] for a deep and highly organized exploration of the entire domain of
machine learning methods.

1.4.1 The F1-Score

The F1 � Score is the harmonic mean between recall and precision. We use this measure as the key criteria to bench-
mark and compare between classification models across this research; although the other pertinent statistics are also
presented. In the context of binary classification, the hope is that when a positive call is made, most are actual/true pos-
itives (high precision) with a high proportion of the total negatives (specificity) and positives (recall) identified correctly. A
major limitation of the general F1 � Score is that knowing just it, does not help identify if the classification had better recall
or precision. Furthermore, depending on the application if it is necessary to weight recall more than precision or vice versa
we can use the adjust F-measure [5]; the difference between the two is illustrated in Figure 6.

A B

Figure 6: Comparison of the range of the A regular F1 � Score vs. B the adjusted F1 � Score which weights the recall
more than precision [5].

1.4.2 Demonstration of machine learning classification with 1D bimodal simulated data

The main classification goal in this dissertation involves large numbers of input features, i.e., high-dimensional data. Intu-
itive comprehension of such data can be limited and thus for demonstration and evaluation we simulated 1D bimodal data.
Two parameters under control are the marginal frequencies and the effect size between the positive and negative class
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examples. We quantify the effect size using Cohen’s D as in equation 4.

(length
x

, length
y

) = (length(dist1) � 1, length(dist2) � 1) (1)

AbsMeanDifference = abs(mean(x)�mean(y)) (2)

CommonSD =
q
(length

x

⇤ var(x) + length
y

⇤ var(y))/(length
x

+ length
y

) (3)

Cohens
d

= AbsMeanDifference/CommonSD (4)

The simulation of 1D bimodal data, involves combining two samples from two distributions at specified ratios (i.e., N1/N2 =
freq), such that each distribution parameter such as mean (µ1 and µ2) and standard deviation (�1 and �2) can be defined;
when combined this set defines the domain of each sample. As our intent is to produce reproducible and interpretable ex-
amples that are not hindered by sample distribution complexity, we chose to sample from Gaussian (Normal) distributions
N(µ = int,� = 1). Depending on the application more appropriate evaluations with alternate distributions and additional
subsets and features can also be done as in [51].

We demonstrate using simulated 1D data that there are two major factors that confound the classification. First as in
Figures 7A-1, 2, and 3, we simulated a thousand (1000) events, where the two class labels are proportional i.e 1:1, but,
the positive class gets closer to the negative class, reducing its effect size as estimated by Cohen’s D value reported. The
classification results using three different commonly used supervised classifiers (GLM, SVM, and Random Forest) are re-
ported in Table 1, where the reduction in effect size negatively impacts the classification statistics. Next, instead of altering
effect size, we reduce the marginal frequency of the positive class (7:3, 9:1, and then 99:1) as reported in Figures 7A-4, 5,
and 6. Again we see a drop in the classification statistics as the positive class becomes less frequent.

A-1 2 3 4 5 6

B-1 2 3 4 5 6

Figure 7: Simulated 1D bimodal samples varied by effect size and marginal frequency. A Each figure set contains (top to
bottom): i- the class distribution, ii. box plots per class, and iii. estimated density curves per class. B Multi-dimensional
Scaling (MDS) plot from the proximity matrix of an unsupervised random forest classifier.
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Sensitivity Specificity Precision Recall F1 Prevalence Detection Prevalence Balanced Accuracy Accuracy AccuracyLower AccuracyUpper
Effect size (Cohen’s D) ⇡ 6.0

1:1 u1 = 0, u2 = 8 w/ GLM 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 0.99 1.00
1:1 u1 = 0, u2 = 8 w/ SVM 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 0.99 1.00

1:1 u1 = 0, u2 = 8 w/ SupRF 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00
Effect size (Cohen’s D) ⇡ 2.2

1:1 u1 = 0, u2 = 3 w/ GLM 0.86 0.86 0.86 0.86 0.86 0.50 0.50 0.86 0.86 0.84 0.88
1:1 u1 = 0, u2 = 3 w/ SVM 0.86 0.86 0.86 0.86 0.86 0.50 0.50 0.86 0.86 0.84 0.88

1:1 u1 = 0, u2 = 3 w/ SupRF 0.93 0.93 0.93 0.93 0.93 0.50 0.50 0.93 0.93 0.91 0.95
Effect size (Cohen’s D) ⇡ 0.7

1:1 u1 = 0, u2 = 1 w/ GLM 0.65 0.64 0.64 0.65 0.65 0.50 0.51 0.64 0.64 0.61 0.67
1:1 u1 = 0, u2 = 1 w/ SVM 0.65 0.64 0.64 0.65 0.65 0.50 0.51 0.65 0.65 0.61 0.67

1:1 u1 = 0, u2 = 1 w/ SupRF 0.84 0.84 0.84 0.84 0.84 0.50 0.50 0.84 0.84 0.82 0.86
Effect size (Cohen’s D) ⇡ 2.2

7:3 u1 = 0, u2 = 3 w/ GLM 0.77 0.93 0.82 0.77 0.80 0.30 0.28 0.85 0.88 0.86 0.90
7:3 u1 = 0, u2 = 3 w/ SVM 0.76 0.93 0.83 0.76 0.79 0.30 0.27 0.85 0.88 0.86 0.90

7:3 u1 = 0, u2 = 3 w/ SupRF 0.90 0.96 0.90 0.90 0.90 0.30 0.30 0.93 0.94 0.92 0.95
Effect size (Cohen’s D) ⇡ 2.4

9:1 u1 = 0, u2 = 3 w/ GLM 0.56 0.98 0.79 0.56 0.65 0.10 0.07 0.77 0.94 0.92 0.95
9:1 u1 = 0, u2 = 3 w/ SVM 0.46 0.99 0.84 0.46 0.59 0.10 0.06 0.73 0.94 0.92 0.95

9:1 u1 = 0, u2 = 3 w/ SupRF 0.83 0.98 0.84 0.83 0.84 0.10 0.10 0.91 0.97 0.95 0.98
Effect size (Cohen’s D) ⇡ 2.2

99:1 u1 = 0, u2 = 3 w/ GLM 0.18 1.00 0.72 0.18 0.37 0.01 0.00 0.59 0.99 0.98 1.00
99:1 u1 = 0, u2 = 3 w/ SVM 0.00 1.00 0.00 0.00 0.00 0.01 0.00 0.50 0.99 0.98 1.00

99:1 u1 = 0, u2 = 3 w/ SupRF 0.75 1.00 0.77 0.75 0.75 0.01 0.01 0.87 1.00 0.99 1.00

Table 1: Supervised classifiers (Generalized linear model, linear SVM [C=0.1, �=0.5], and a random forest) were trained
on simulated 1D data, where in a leave-one-out scheme, one of the 20 random samples generated is held as the test set
and the other 19 are sampled (N=1000 examples). The simulations reported herein parallel those in Figure 7A1-5. The
lower the effect size (Cohen’s D), the worse the classification is. Additionally, if the displacement between the two classer
are kept constant (i.e., similar effect size), reduction in the marginal frequency of the positive class negatively impacts the
classification.

1.5 Transfer Learning, an overview

Figure 8: Relationship of the domain of transfer learning and its major settings in the context of supervised and unsuper-
vised methods. We refer to [6] for a review of the definitions used herein.

Transfer Learning (TL) is a specialized application of machine learning distinct from general supervised (i.e., learning and
searching for statistical patterns) and unsupervised (i.e., uncovering innate structure) methods. For the purposes of this
dissertation, we assume training data is available to train on, which parallels human experts having access to literature
and data to train on to make inference on new data. Thus in addition to supervised methods, transfer learning (TL) is
another potential domain of machine learning. There are several types TL applications. However, some minor variations
in defining them exist in the previously published literature. Specifically to our need, one branch is the transductive TL,
where learning is achieved by training on the source data and the gained knowledge is generalized and transferred to the
unlabeled target data. Unlike supervised and semi-supervised methods that assume the training and test input feature
spaces i.e., X

train

and X
test

have been drawn from the same distribution, in TL, as it is in most applied circumstances, it
is assumed that they are drawn from the two different distributions Dsource and Dtarget respectively [7]. Another important
distinguishing component pertains to the set of possible labels i.e., Y

train

and Y
test

; In transductive TL, they are assumed
the same for the two distributions. A final component of transductive learning in literature is the utility of just X

test

(without
Y
test

) during training; Cohen et al. discuss using the entire X
test

[7] whereas Pan and Yang suggest using a fraction to
obtain an estimate of the marginal probabilities in the target data [6].
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Figure 9: The simple generalization of linear SVM hyperplanes from the training set (or subsets of it) to classify a new test
set as described in [7]. In test set 1, we observe a mapping that resembles an optimal transfer where the correct minima
is at 0, thus values above it are representative of those events predicted as positive. However, it is possible as in test set
2, the mapping is not optimal; the majority of the data is being classified positive, and the low-density region is evidence
that potentially the linear classifying hyperplane can be shifted by updating its bias. Unfortunately in test set 3, we don’t
observe a low-density region, which can be explained by several factors. Perhaps the marginal frequency of the positive
cases is different between the test and training sets or the effect size is altered (due to additional technical noise caused
by a different experimental protocol).

Figure 10: An illustration of a contour plot, with two modes or centers with the assumption that these two are the mappings
of a binary classification. The classifying hyperplane Y-hat should pass through the center for the optimal classification. If
a wrong bias is selected, the mapping can be shifted. On the right we observe the that rotation of the hyperplane can also
have a significant impact on the expected density-curve shape of the mapped y-hat values.
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2 The RTL framework
The RTL framework a package that houses two transfer learning (TL) classification frameworks. As introduced earlier, a
baseline version was initially implemented, based on the published algorithms in [52] because neither the code or dataset
used was available. Based on our validation tests, we then developed extensions to several of the modules in the baseline
version to improve classification robustness.

The various modules of the RTL framework utilize functions from library packages as well as newly written code. The
new code includes functional parts of the algorithm, as well as connecting and figure-producing code. Although it is not
generally necessary to validate the functionality of functions from major libraries, it is key to flag inputs and outputs for
correctness; such as data structures, formats, size limitations, etc. The newly implemented functions, as well as the
connecting code, needs to be validated i.e., the output at each critical point matches the expectation. Flagging and error
capturing will be key to automating this process. Once the design was sketched out, previously distributed libraries were
identified to be imported for building the RTL framework. The R language was chosen specifically because there are al-
ready a plethora of compatible libraries and packages for statistical modeling and analysis. Furthermore, as our intention
is to use this framework for bioinformatics applications such as flow cytometric or scRNASeq analysis, there are also many
libraries for preprocessing and exploratory analysis.

2.1 The Lee et al., 2011, automation of FC analysis
Lee et al. have proposed a transfer learning framework based on previous simpler form in [7] for the problem of classifying
known immunophenotypes in multiple FC sample. These authors initially train linear-SVM classifiers on multiple gated
FC data and obtain a generalization by obtaining a robust mean of the identified hyperplanes. Instead of direct inference
using this naive classifier, they adapt the hyperplane to the test data by updating the hyperplane coefficients < w0, b0 >
heuristically by identifying optimal low-density separation criterion. Figure 11 illustrates an overview of the learning and
inference in the TL framework. One limitation of the original Lee et al. algorithm is that although their target population
was clinically important, rare subsets were not the focus of the research, thus the lower boundary of population frequency
has not been previously assessed. Finally, since Lee et al. 2011, did not publicly release an open-source version of their
software nor dataset used, a direct comparison is not possible. Therefore, the testing and benchmarking conducted in this
research pertains to the RTL framework and its current two versions.
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Figure 11: Major algorithmic modules and their function in the RTL framework (both versions), based on the pipeline
proposed by Lee et. al to generalize a linear classification boundary.

2.2 Algorithms of the baseline and extended modules of the RTL framework

2.2.1 Baseline Classifier (Algorithm 1)

Algorithm 1: Baseline Classifier (Algorithm 1)
input : source (training) data {X

train

}M
m=1 for m = 1, ...,M ;

regularization parameters: {C
m

}M
m=1

output: [W
m

, b
m

]

1 for m = 1 to M do
2 [w

m

, b
m

] = SVM({X
train

}
m

, C
m

)

2.2.2 Robust Mean and Covariance (Algorithm 2)
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Algorithm 2: Robust Mean and Covariance (Algorithm 2)
input : (W

m

, b
m

) for m = 1, ...,M ;
output: < µ

robust

,C
robust

>

1 Concatenate:
2 u

m

 [W
m

, b
m

], 8 m

3 Initialize:
4 µ mean(u

m

), C  cov(u
m

)

5 RTL implementation: < µ

robust

,C
robust

> GSE :: HuberPairwise(u
m

)

2.2.3 Shift Compensation (Algorithm 3)

Algorithm 3: Shift Compensation (Algorithm 3)
input : hyperplane (w, b);

source data {X
train

}M
m=1;

target data {X
test

}K
k=1

output: b
k

1 z
,j

 < w, b > · {X
test

}
,j

2 for k = 1 to K do
3 for m = 1 to M do
4 z

m,i

 < w, b > · {X
train

}
m,i

5 e
m

 argmax
z

KDE(z, z, j) ?KDE(z, zm, i) s.t. ? is maximum cross� correlation

6 b
k

 b0 �median(e
m

)

2.2.4 Bias update (Algorithm 4)
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Algorithm 4: Bias update (Algorithm 4)

1 Baseline implementation, with robustness:—————————-

input : hyperplane (w, b);
target data {X

test

}K
k=1;

output: bnew
k

2 Compute: z
k,j

 < w, b > · {X
test

}
k,j

3 Build Grid: s
k,j

 sort(z
k,j

)

4 N
t

= length(s
k,j

)
5 for j = 1 to N

t

do
6 c

k,j

 
P

i

q { |z
all

�s

k,j

|
kwk < Alg4

margin

}

7 h KernelBandwidth
Silverman

({(s
k,j

, c
k,j

)})

8 Smooth:
9 bp(z

k

) 
P

j

c
k,j

k
h

(z, s
k,j

)

10 z⇤
k

 GradientDecent(bp(z
k

), 0)
11 bn

k

ew  b
k

� z⇤
k

12 Extended implementation:—————————-

input : hyperplane (w, b);
target data {X

test

}K
k=1;

output: bnew

13 Compute: z
k,j

 < w, b > · {X
test

}
k,j

h
k

 KernelBandwidth
V enables�Ripley

({(z
k,j

)})
14 h

k,s

 h ⇤ scales scales 2 (0, 1]
15 ˆz

k,s

 KernelSmoothEstimate
Gau

((z
k,j

), h
k,s

)
16 ˆz

k,s

0  Diff( ˆz
k,s

) 8 s
17 ˆz � inv

k,s

00  �1 ⇤Diff( ˆz
k,s

0) 8 s
18 z⇤

k

 mean(GradientDescent( ˆz
k,s

, NearPeak) 8 s)
19 z⇤

k

0  mean(GradientDescent( ˆz
k,s

0, NearPeak) 8 s)
20 z⇤

k

00  mean(GradientDescent( ˆz � inv
k,s

00, NearPeak) 8 s)
21 z⇤

k

< �mean(z⇤
k

, z⇤
k

0, z⇤
k

00)
22 bnew

k

 b� z⇤
k
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2.2.5 Kernel bandwidth estimation (Algorithm 5)

Algorithm 5: Kernel bandwidth estimation (Algorithm 5) [12, 13]

1 Based on Silverman (1986):—————————-

input : grid points and counts {(s
k

, c
k

)}
output: h

2 N  
P

k

c
k

3 s̄ 1
N

P
k

s
k

c
k

4 �̂  
q

1
N�1

P
k

c
k

(s
k

� s̄)2

5 h 0.9�̂N�1/5

6 Based on Venables and Ripley (2002):—————————-

input : counts {(c
k

)}
output: h

7 r  quntiles(c
k

, (0.25, 0.75))
8 N  length(c

k

)
9 h (r0.75 � r0.25)/1.34

10 �̂  var(c
k

)

11 h 4 ⇤min(�̂, h) ⇤N�1/5

2.2.6 Normal vector update (Algorithm 6)
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Algorithm 6: Normal vector update (Algorithm 6)

1 Baseline implementation:—————————-

input : hyperplane (w, b)
direction of change v

t

target data {X
test

}K
k=1

output: w
new

2 for a
rot

= �0.5 to 0.5 step 0.01 do
3 w

new  w + a
k

v

t

4 c
k,

 
P

i

q{
���<w

new
,{Xtest}k,j>+b

kwnewk

��� < Alg6
margin

}

5 h
k

 KernelBandwidth({(a
rot

, c
k,

)})

6 Smooth: bg(a) 
P

j

c
k,

k
h

(a, a
rot

)

7 a
t

 GradientDecent(bg(a), 0)
8 w

new

 w + a
t

v

t

9 Extended implementation:—————————-

input : hyperplane (w, b)
direction of change v

t

target data {X
test

}K
k=1

output: w
new

10 for a
k

= �0.5 to 0.5 step .01 do
11 w

new  w + a
k

v

t

12 c
k,

 
P

i

q{< w

new,{X
test

}
k,j

> +b < 0}
13 h

k,

 KernelBandwidth
V enables�Ripley

({(c
k,

)})
14 ĉ

k,

 KernelSmoothEstimate
Gau

((c
k,

), h)
15 a

k,t

 GradientDescent(ĉ
k,

, 0)
16 w

new

 w + a
k,t

· v
t
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2.2.7 Combined set of algorithms for running multiple epochs (Algorithm 7)

Algorithm 7: Combined set of algorithms for running multiple epochs (Algorithm 7)
input : source data {X

train

}M
m=1;

regularization parameters: {C
m

}M
m=1;

target data {X
test

}
output: [w

t

, b
t

]

1 for m = 1 to M do
2 [w

m

, b
m

] = SVM(X
train

}
m

, C
m

)

3 Initialize:

4 [W0, b0],C0  Algorithm2({(W
m

, b
m

)}
m

)
5 v0  eig(C0)

6 Normalize:

7 w

t

 w0
kw0k

8 b
t

 b0
kw0k

9 v
t

 Orthonormalize v0 with respect to w0

10 Shift Compensation:

11 b
t

 Alg3(w
t

, b
t

, {X
train

}
m

}, {X
test

})
12 Bias Update:

13 b
t

 Alg4(w
t

, b
t

, {X
test

})

14 Update Normal Vector:
15 w

t

 Alg6(w
t

, b
t

,v
t

, {X
test

})

16 Final hyperplane’s figures and statistics:
17 ˆy

final

 sign(w
t

· {X
test

}+ b
t

)

2.2.8 Argmax Cross-Correlation

Algorithm 8: Argmax Cross-Correlation
input : UniV arSeries

a

, UniV arSeries
b

, MaxLag
output: �Shift

lag

1 AllLags CrossCorrelation(KDE(UniV arSeries
a

), KDE(UniV arSeries
b

), MaxLag) s.t. AllLags =<
cors, lags >

2 Lag
max|cor|  Lag[max(abs(cors))]

3 �Shift
lag

 UniV arSeries
a

[Lag
max|cor| + k]� UniV arSeries

b

[k] for k positions in either series

2.2.9 Gram-Schmidt Orthonormalization
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Algorithm 9: Gram-Schmidt Orthonormalization of V
a

on V

b

input : V ector

a

[1 : d], V ector

b

[1 : d]
output: W , Orthonormalization of V

a

on V

b

1 X[i1,2, d] < i1 : V ector

a

[1 : d], i2 : V ector

a

[1 : d] >

2 W [i1,2,1] X[i1,2,1]

3 for k = 2 to d s.t. d = length(vector
a

) = length(vector
b

) do
4 g

w

 repeat(0, i)

5 for j = 1 to k � 1 do
6 g

k,j

 W

T [i1,2, j] ·X[i1,2, k]/(W T [i1,2, j] ·W [i1,2, j])
7 g

w

 g
w

+ g
k,j

·W [i1,2, j]

8 W [i1,2, k] X[i1,2, k]� g
w

9 W  ( 1p
diag(crossproduct(W ))

·W T )T where, crossproduct() function returns the scalar squared sum and diag()

returns the diagonal of the matrix. This is equivalent to obtaining the spectral norm of the matrix.

2.3 A 1D simulated dataset to validate the RTL framework
The training set includes 16 bimodal samples that were designed to be representative of variation seen in an FC experi-
ment, but only with 1 bimodal feature/dimension. To create a bimodal sample, two Gaussian normal samples at difference
centers (i.e., µ1 and µ2; �1 = �2 = 1) were simulated and combined. The marginal frequency of the positive class across
the training samples does not change, rather only the centers of the two modes changed; this simulates minor domain
shifts and effect size observed in a single channel of FC data across multiple samples (Figure 12). The goal for this train-
ing set is to return a set of classification hyperplanes, one per training sample to define a boundary for the classification
hyperplanes. In practice, a formal assessment of the number of training samples can be done to optimize the framework
for a specific application. A large set of training may not be needed and in fact, significantly slows down the classification.
Table 2 summarizes the µ1 and µ2 used to sample a normal distributions such that N(µ,� = 1); the computed effect sizes
for this set is summarized in Table 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Neg 1.00 1.00 2.00 3.00 -0.00 -1.00 2.00 1.00 -7.00 1.00 -4.00 -19.00 6.00 3.00 -0.00 9.00
Pos 7.00 7.00 7.00 9.00 6.00 5.00 8.00 7.00 -1.00 8.00 2.00 -13.00 12.00 9.00 6.00 15.00

Table 2: Training set containing 16 samples, each with 5000 examples and a negative:positive class ratio of 6:4; shown
are the bimodal centers, i.e., µ1 and µ2, used to sample Gaussian distributions i.e., N(µ,� = 1).

The test set includes 40 bimodal simulated samples, specifically designed to evaluate the effects of changing the marginal
frequency and the effect sizes in the test samples; created similar to training sets, but with a total of 2000 examples/cells.
The first 10 samples, we validate the reproducibility of each algorithm in the framework as each of the 10 samples is a
separate but similar random samples; also similar to the training sets, this first 10 test samples have the same nega-
tive:positive ratio of 6:4 (i.e., N1 = 1200 and N2 = 800) and the average effect size (Cohen’s D) is approximately 6 (µ1 = 1
and µ2 = 6). Next, samples 11-20 starting at µ1 = 1 and µ2 = 6, we reduced effect size by changing µ2; each µ1 � µ2

pair is represented by two samples to evaluate the robustness of the call (i.e., 11=12, 13=14, ...). For sample 21-30 we
kept the effect size unchanged(µ1 = 0 and µ2 = 6) but altered the marginal frequency of the two class labels from %20 to
%5. Finally, for samples 31-40 we combined both confounding factors, where on average the effect size is 2 and changing
marginal frequency respective to the samples 21-30.
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A B

Figure 12: A. Each class label per sample is plotted as a density graph to highlight the variance in effect size between the
two classes; the marginal frequency differences are not visible in this plot. B. Overlay of the density plots, to demonstrate
the marginal frequency differences as well as the domain shifts for each sample.

Data Source µ1 µ2 N1 N2

Test samples (1-10) 1 6 1600 400
Test samples (11-20) 1 2,3,4,5,6 1200 800
Test samples (21-24) 1 6 100, 200, 300, 400 1900, 1800, 1700, 1600
Test samples (25-26) 1 6 1000 1000
Test samples (27-30) 1 6 1600, 1700, 1800, 1900 400, 300, 200, 100
Test samples (31-34) 1 3 100, 200, 300, 400 1900, 1800, 1700, 1600
Test samples (35-36) 1 3 1000 1000
Test samples (37-40) 1 3 1600, 1700, 1800, 1900 400, 300, 200, 100

Table 3: A summary of the parameters used (µ1, µ2, N1, and N2) to create the 40 sample simulated test set using
Gaussian distributions i.e., N(µ,� = 1).

Effect Size (Cohen’s D) sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9 sample10
6.04 6.04 6.04 5.95 6.03 5.83 6.20 6.08 6.13 5.84

sample11 sample12 sample13 sample14 sample15 sample16 sample17 sample18 sample19 sample20
5.07 4.87 4.05 3.93 3.02 3.08 2.02 1.96 1.12 0.94

sample21 sample22 sample23 sample24 sample25 sample26 sample27 sample28 sample29 sample30
4.96 5.19 5.14 5.09 4.97 4.91 5.02 5.09 4.83 5.31

sample31 sample32 sample33 sample34 sample35 sample36 sample37 sample38 sample39 sample40
2.17 1.92 1.96 2.03 2.01 2.00 2.16 1.88 2.06 2.04

Table 4: A summary of the computed effect size (Cohen’s D) on the simulated test data (40 samples).
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B C

A

Figure 13: Test set (40 simulated samples): A. Each class label per sample is plotted as a density graph to highlight the
differences in effect size (caused by the different means of the sampled Gaussian distributions) between the two classes;
the marginal frequency difference is not visible in this plot. B. Overlay of the density plots, without considering the class
label to demonstrate the marginal frequency differences as well as the shifts in the domain (x) of each sample.
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2.3.1 A walk-though of the RTL framework using the 1D bimodal simulated data

Algorithm 1, computes the baseline hyperplanes by taking each of the training samples Xtrain

(i,m) (such that each sample
(m 2 [1, 2, ..,M ]) has i examples or simply X

train

), as well as corresponding regularization parameters to train m linear
SVM classification models. From each model, the hyperplane parameters (W

m

and b
m

) are obtained and passed to
Algorithm 2. In our simulated case example, the first training sample and its corresponding SVM-derived classifying line
is shown in Figure 14A. Since there are 16 training samples (m=16), we visually demonstrate in Figure 14B, the conse-
quence of directly transferring any one of the resulting hyperplanes on the first test case.

A B

Figure 14: A. Demonstration of the trained classification boundary from training sample 1, plotted directly on it self,
showing its optimal classification. B. The 16 trained classification boundaries shown on test set 1.

sample_1 sample_2 sample_3 sample_4 sample_5 sample_6 sample_7 sample_8 sample_9 sample_10 sample_11 sample_12 sample_13 sample_14 sample_15 sample_16
W

m

-1.96 -2.15 -2.03 -1.95 -2.45 -2.10 -1.91 -1.70 -2.00 -2.30 -2.14 -2.02 -1.85 -2.10 -2.39 -2.15
b�m -7.98 -7.68 -9.24 -11.85 -6.54 -4.11 -9.47 -6.88 7.72 -10.29 2.00 32.29 -16.71 -12.70 -7.34 -25.84

Table 5: Output of Algorithm 1, on the 1D simulated training set. From Algorithm 2, the simple mean hyperplane general-
izing the training <W

m

,b�m> is <-2.07, -5.91> and the robust mean is <-2.06, -7.83>.

Algorithm 2, computes the robust mean and covariance of input hyperplanes obtained in Algorithm 1; i.e., the baseline <
W0, b0> hyperplane. Computing the robust mean as oppose to the simple mean, ensures outliers in training datasets do
not heavily bias the overall position of the hyperplane. In the Lee et al paper, the method is described as computing the
Mahalanobis distances and using the Huber-loss weight function to remove atypical variation in the set of hyperplanes in
computing the robust mean, which defines the distance of mth observation from the mean of the observations; commonly
used to detect multi-dimensional outliers. This distance measure is used to weight the mth observation such that large
distances are down-weighted [53]. The etiology and application of several robust methods are reviewed in [54] which
serves as a resource for key proofs and explanations about the appropriateness of procedures and parameters. In the
RTL framework, we utilize the HuberPairwise() function from the ’Generalized S-Estimator’ (GSE) package [55] to es-
timate the robust mean < w0, b0 > and covariance C0; the tuning constant c0 = 1.345 is used for the Huber-pairwise
estimation function.

Several additional variables are calculated at this stage for use in downstream algorithms. First, the magnitude (simple
Euclidean) of the robust mean hyperplane < w0 > i.e., ||w|| was computed and used to normalize the hyperplane as in
algorithm 7 to obtain < w

t

, b
t

>. Next, we compute the direction of change as v0 = eig(C0), and orthonormalize it with
respect to w0. The first principle eigenvector is then chosen as the value of v

t

; this will be used to rotate the normal vector
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around the first principle component. The orthonormalization approach used by the RTL framework is the Gram-Schmidt
orthonormalization method as described in Algorithm 9. Simply put, the goal is to find a unit vector that is orthogonal to
the input data. In the context of the RTL framework, the input data is the set of hyperplanes from Algorithm 1 which is
decomposed (using the R’s base spectral decomposition) to obtain its eigenvalues 4; for further reading we refer to [56]for
a brief and detailed explanation and derivation of eigenvalues and eigenvectors. Unfortunately, the exact algorithm used
by Lee et al. is not known; it is only referred to in the workshop manuscript as ’orthonormalization’ 5. There are several
different algorithms that perform this computation; pseudocode and details found in [57]. Regardless of the method, it
is simple to test orthogonality since orthogonal vectors should always have their inner product equal to zero. i.e., w is
orthogonal to v i.i.f. w · v = 0; a flag can always check this to be true.

Briefly, we compare the orthonormalization used in the RTL framework (a form of the modified) Gram-Schmidt algorithm
with three other commonly utilized calculation. For simplicity, we combine five 2-dimensional vectors as a 2x5 matrix.
The robust mean of the vectors is shown in black in Figure 15 and the orthonormal vectors are shown in various colored
lines. We observe that the both the modified Gram-Schmidt algorithms from the RTL framework and the pracma package
provide identical results. Although the relative position of the other two methods are different, we observe that they are all
parallel, which is of most interest in the context of the RTL framework. The limitation of the pracma modified Gram-Schmidt
is illustrated in the special case where the input matrix does not have full rank and is non-invertible i.e., a singular matrix 6.
Thus in practice, the modified Gram-Schmidt algorithm in the RTL framework is superior for automation of machine learn-
ing applications.

1 2
1 1.00 2.00
2 0.90 1.50
3 0.80 1.00
4 0.95 0.50
5 0.98 0.00

Table 6: Five 2-dimensional vectors combined as a 2x5 matrix.

4eigenvalues are scalar sets associated to the system of equations (i.e., hyperplanes) usually represented as rows in a matrix of equations
5In a section not specifically defining the method, it is hinted the ’Gram-Schmidt process’ might have been used by Lee et al.; described in the context

of potential future direction of this algorithm
6for example this is a non-invertible matrix << �1, 2/3 >,< 3/2,�1 >>.
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A

Figure 15: Visualization of five 2-dimensional vectors from Table 6. The robust mean is shown as the black line. The blue,
plum, red, and green colored lines are the computed orthonormal vectors by the RTL framework’s modified Gram-Schmidt,
R-base QR decomposition [8], the Modified Gram-Schmidt in the pracma package [9], and the Householder method also
from the pracma package.

Algorithm 3 compensates for shift in range by comparing the Gaussian-kernel smoothed projection of each task z
k

sample
k, {X

test

}K
k=1, with the generalized classification hyperplane to the projection of the source/training samples {X

train

}M
m=1

using [w
m

, b
m

] as in line 1 of algorithm 3. The shift between the test and training projections is then computed by identify-
ing maximum cross-correlation and the median of the shifts is used to update the classifying hyperplane’s bias i.e., b

k

adapted

as the output. This alignment is done because with a previously unseen test case, the robust mean hyperplane most likely
will not provide the ’optimal’ classification result. In other words, the mapping of X ! Y for the test (target) case(s) need
to be shifted compared to the training cases, where the robust mean hyperplane is derived from. Therefore, in algorithm 3,
the ArgMaxCross� Correlation algorithm is used. However, in the Lee et al. workshop manuscript, the exact algorithm
and settings used is not specified. Thus, for the RTL framework, we formally describe the maximum cross-correlation
(algorithm 8), that returns the �Shift

lag

between the target test case(s) and the training examples which utilizes the ccf()
function from R’s ’Stats’ library to compute the cross-correlations and obtain the maximum absolute correlation.

To compute the shifts between the two vectors, the Gaussian kernel density estimates between the test case(s) and the
training cases are first computed. It should be noted that as described in algorithm 7, the normalized robust mean hyper-
plane i.e., < w

t

, b
t

> is utilized and then updated in this algorithm. The MaxLag parameter used in algorithm 8 defines
how large the maximum lag between the two univariate series can be. The lag defines the positional shift i.e., where the
position in the two vectors V

a

or V
b

is V
a

[i + shift] and V
b

[i] respectively. For example, if the values in each of the series
is equally separated, such as in (position, value) :: k

a

= [(1, 1), (2, 2), ...(<,<)], the change in the lag will correspond
equally with the shift change. However, this is not necessarily is expected to be the case with the mappings of X ! Y and
thus to compute the �Shiftlag

k

, we subtract the values with respect to the position lag. The value of MaxLag parameter
used in the original Lee et al. workshop manuscript is unknown, thus for RTL it is possible to experimentally identify an
optimal value, however as a default it is computed as equal to half of the longer of the two vectors. Finally, for a robust
shift, for each test k, the median of all computed shifts is returned as the final result;�Shiftlag

k

.

As a case example, Test set 1 is used to visualize the bias-shift process when this test case is compared to the 16
training examples (Figure 16). Overall, this algorithm performs as expected, i.e., returns the appropriate algorithmically
defined output. However, we have implemented code that instead of maximum cross-correlation, the median-median of
the mapped ŷ can also robustly identify the shift; a significantly less complex computation.
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Figure 16: Algorithm 3 figures, demonstrating a case example in computing �Shift
lag

for test set 1 compared to training
sets 1 to 16 (starting top left moving right). Each figure set starts with a comparison of the distribution of the training and
test mappings using boxplots. Next, lag is plotted against absolute(cross-correlation)) for the two mappings. The next
sub-figure is the overlapped density plots prior to shift correction. Finally, in the next row of sub-figures we observe the
density curves of the same mappings post-shift, first using median-max-absolute cross-correlation and also an optional
approach using the median of the median of the mappings.
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Algorithm 4, updates the hyperplane bias by identifying an an area of low-density using the input the hyperplane
[w

t

, b
t

adapted

] for each test k ({X
test

}
k

). Briefly, this is done by identifying an optimal minima with a gradient descent
algorithm near the robust mean (i.e., ’baseline’). Lee et al. define the margin (� = 1) as the range to count data-points
near the normalized hyperplane [w

t

, b
t

adapted

] across the grid of biases s
j

. Prior to the gradient descent, however, the
counts are smoothed using an estimated bandwidth for Gaussian kernel smoothing computed as described in algorithm 5.
The RTL framework utilizes the ksmooth() function from the Stats package [8]; a highly utilized and validated package for
various calculations in R. The ksmooth() function implements the Nadaraya-Watson kernel regression smoother, which is
a non-parametric linear estimator. However, the selection of the bandwidth is critical as smoothing with an inappropriate
bandwidth, returns many ’NA’ estimates because the binning can become very small. The production of ’NA’ due to the
small bandwidth is not unique to this function. The 2D-KDE estimator from the KernSmooth package [58] also behaves
similarly when tested. To avoid the potential risk of over-smoothing and losing the key optimas (maxima and minima) the
bandwidth iteratively is changed, determined by quantifying the frequency of ’NA’ values in the estimate. Still, finding the
correct bandwidth is a difficult balance to automate: small bandwidths are likely produce sparse results and higher values
over smooth and key topological landmarks are lost.

Depending on the application, the ’minima’ may be difficult to identify on the smoothed counts; even across a range of
bandwidths. To remedy this limitation, we can decrease the margin i.e., � < 1; which is used in Algorithm 4 to count the
number of events that fall within it. In the RTL framework, any value can be passed as the margin parameter �. During
validation with the simulated data and preliminary analysis with flow cytometry data, we found the optimal � to be as low as
0.1, depending on the effect size and marginal frequency of the class labels. Globally, however, as long as the landmarks
i.e., several key optimal points i.e., minima and maxima are not smoothed over the actual value of � is not highly critical.

The gradient descent algorithm used in the RTL framework is a stochastic average gradient descent (SAGD) Method from
the gradDescent package [59]. To facilitate the automation of the framework, this algorithm is housed in a customized
function that computes several additional variables and flags. However, the implemented custom gradient decent function
adds to the complexity of the overall pipeline; especially if flags are caused which result in additional computations. As a
solution to reduce the complexity, it is possible to narrow the search-space for the gradient descent algorithm using key
landmarks to guide the gradient descent. For example, the peak position can be meaningful depending on the context of
the classification. Since the goal here is finding the optimal intercept position in a binary classification, we expect to be
able to find at minimum between two peaks. With this logic, the customized wrapping function first identifies landmarks
(if possible) and create windows to search for possible local minimas and return the most optimal minima based on a
pre-specified rule. For example, in the ’near zero’ mode, the minima closest to 0 is returned as needed when Algorithm 6
calls the customized gradient descent function.
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Figure 17: Updating the bias using the test samples (40) from the baseline implementation of Algorithm 4 given the margin
� < 0.1. Shown are the mapped ŷ for each test sample by the robust mean hyperplane derived in Algorithm 2; lack of
bi-modality is correlated to a reduced effect size.
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Algorithm 5 estimates the kernel bandwidth to be used for a Gaussian smoothing function. A non-parametric and practical
approach as described in [12] for computing the smoothed density-curve estimate used in algorithms 4 and 6.

Algorithm 6 finds an optimal direction for updating the normal vector (i.e., the classification hyperplane is perpendicular
(?) to), effectively rotating the classifier hyperplane based on a low-density criteria. Briefly, the inputs are each test k,
{X

test

}
k

, the hyperplane [w
t

, b
adapted

], and the direction of change v
t

. This is done by w

new  w + a
t

v

t

such that a
t

determines the range which the search is conducted in i.e., a
t

2 [�0.5, 0.5]. Similar to algorithm 4, gradient descent is
used to obtain a minima solution near the hyperplane. In other words, the goal of this algorithm is to rotate the hyperplane
i.e., change w

t

across a range to find a low-density solution. Although our case example demonstration has 1D samples,
the benefit of such an approach is actually in the context of higher dimensions; the features collectively are mapped to ŷ

such that the signed value results in ’+1’ (positive) and ’-1’ (negative) classification. The final hyperplanes [wnew, b
adapted

]
k

are then used to produce figures and classification statistics.
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Figure 18: Finding the low-density optima to update the normal vector on test samples (40) in the baseline implementation
of Algorithm 6. The x-axis is the rotation factor, from -0.5 to 0.5; since very low counts are removed to improved the
identification of the appropriate minima, not all x-axis show this range, rather the range of the filtered segment.
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Figure 19: Classification results with the baseline implementation of the RTL framework on the 40-sample 1D simulated
test set. Each sample demonstrate 3 results with 3 classification hyperplanes: the baseline (tan) is the robust mean
hyperplane from Algorithm 2, the bias-updated hyperplane from Algorithm 4 (violet) and the final rotated hyperplane from
Algorithm 6 (green). The 40 test samples represent four groups, A) independent but identical random samples, B) samples
with their effect size reduced, c) samples with distinct changes to the marginal frequency of the positive/negative cases,
and D) new samples derived with parameters combining B and C. See Table 4 for the respective effect sizes and Table 3
for the test set creation parameters.
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2.3.2 Extending Algorithms 4, 5, and 6

Figure 20: A visualization of the major algorithmic modules and their functions in the RTL framework which generalize a
linear classification boundary comparing the baseline and extended versions.

In testing our implemented RTL framework, we have identified potential limitations that negatively impact the overall classi-
fication. Both algorithms 4 (bias update) and 6 (normal vector update), which utilize gradient descent to identify an optimal
minima defined as a region of low-density in the mapped X

test

, suffer from bias introduced by the smoothness of the
estimated density curve. This bias is the result of the existence of multiple local minimas from two main components: first,
there are a low number of cells to split across each test K-fold. The second factor is the type of kernel and its bandwidth
used to compute and smooth the density curve. To overcome this bias, we have implemented an alternative approach to
algorithms 4, 5, and 6, described below.

The original method to estimate a kernel bandwidth for a Gaussian kernel [12] can be problematic in our testing as it
commonly yields multiple local minimas. Although there are many other techniques to obtain an optimal bandwidth, we
used a commonly utilized technique with a bandwidth estimate that is suitable for scaling the final smoothed estimate [13].
This capacity is important since to robustly identify the minima associated with the correct intercept for the separating hy-
perplane, in the extended Algorithm 4, the minima is identified as a mean location from several scaled density estimates.
This approach allows us to use a set of the kernel-smoothed estimates for repeating downstream computations to obtain a
robust final call. For additional evidence, the first and the inverse of the second derivatives of the density curve estimates
are computed for each scaled bandwidth used. Because in our application, each classification is separating 2 classes,
we use the first derivative to identify a major flip (inflection) in the direction of the curve, which identifies the local minima
associated with the gap between the classes. Similarly, the inverse of the second derivative can be used to identify the
peaks and valleys of the original density function; a major minima in the inverse of the second derivative is expected to
be in the same place as the peak of the larger class in the original density curve. A limitation of these changes is that
the additional information gained to improve the robustness of the call, comes at a significant cost to complexity; for each
K-fold test set, computing at least 5 bandwidth scales, each with 3 gradient descent attempts (i.e., y

hat

, y0
hat

, y00
hat

). On a
positive note, a major gained advantage of the extended Algorithm 4 is also that we no longer require defining a margin;
removing it as a confounding variable from the framework. This elimination also removes the need to initially find the
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optimal values for them, a minor reduction to the added computing complexity.

Next, as an alternate approach to Algorithm 6 (normal vector update) for improving its robustness, we made several
changes. First, instead of counting how many of the normalized mappings fall within a predefined margin as the classifica-
tion hyperplane is rotated, we count directly how many of the signed mappings of X

test

(i.e., sign(ŷ)) are less than 0 (i.e.,
classified as the negative case). These rotations are derived from multiplying the original direction change v

t

(from Algo-
rithm 2) by a pre-set sequence of numbers (s.t. ↵ 2 [�0.5, 0.5]). The expected result is a valley between two peaks; the
peaks pertain to rotations that result from a higher number of false negatives. Therefore, finding a minima near zero is the
optimal solution with this approach, i.e., the smallest rotation with the least false negatives. Additionally, the larger of the
two peaks defines the peak classification associated with the negative case label; the closer an ↵ is chosen to this peak,
the higher false negatives are expected; therefore, it is possible as an alternative to the minima near zero, other optimal
points to be chosen as augmentations to the classification hyperplane. Overall, not only does this approach eliminates the
definition of a margin as needed for the baseline algorithm 6, but also the computed counts provide a less rigid density
curve for the gradient descent algorithm.

Finally, we introduce and test a new feature, ’parameter transfer’ (PT), to transfer apriori knowledge learned from the
training set regarding the frequency of the positive class label to improve the overall classification results on the unlabeled
samples (Equation 33); this is especially important when focusing on rare cellular subsets (RCS). The idea is derived
from the notion that a classifying hyperplane will map the positive cases with higher values, which is the main point of
updating the bias of the hyperplane based on minima as in Algorithm 4; the positive and negative classes in the best case
scenario should cluster with two modes. In the context of RCS, the true minima is difficult to identify as either it can be
over-smoothed or diluted by other local minima. We, therefore, introduced AUD-based focusing via Parameter Transfer
(PT). First, from the training set, we estimate the marginal frequency (PT = p(class

G1,G2M,S

|X
train

) + ✏). During the test
set classification in Algorithm 4, once the density curve for the mapped test set is computed, its AUD is used in combina-
tion to the transferred PT to filter the majority of the negative cases in the test set; reducing the space which the gradient
decent next searches for the optimal minima. As we assumed earlier that the marginal frequencies in the test sample differ
from those in the training, we add a minor random Gaussian error the PT as in equation 34.
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Figure 21: Updated bias on the test samples (40) using the extended implementation of Algorithm 4. Each figure set from
each test sample, has 6 total figures. On the top, from left to right, the mapped and smoothed ˆ(y), followed by its first and
second derivatives are shown. On the bottom, the first, second, and inverse of the second derivatives are plotted and the
red line indicates the optima identified respectively.As a representative, one of the figure sets is expanded on the top.
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Figure 22: Finding the low-density optima to update the normal vector on test samples (40) with the extended implemen-
tation of Algorithm 6. The x-axis is the rotation factor, from -0.5 to 0.5; since very low counts are removed to improved the
identification of the appropriate minima, not all x-axis show this range, rather the range of the filtered segment.
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Figure 23: Classification results with the extended implementation of the RTL framework on the 40-sample 1D simulated
test set. Each sample demonstrate 3 results with 3 classification hyperplanes: the baseline (tan) is the robust mean
hyperplane from Algorithm 2, the bias-updated hyperplane from Algorithm 4 (violet) and the final rotated hyperplane from
Algorithm 6 (green). The 40 test samples represent four groups, A) independent but identical random samples, B) samples
with their effect size reduced, c) samples with distinct changes to the marginal frequency of the positive/negative cases,
and D) new samples derived with parameters combining B and C. See Table 4 for the respective effect sizes and Table 3
for the test set creation parameters.
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2.3.3 Discussion

To validate the RTL framework without losing intuition due to high-dimensional complexity, we simulated varying 1D training
and test sets as previously described. After testing each new module and function independently to validate its perfor-
mance relative to the expected outcome, we performed classification with the entire framework. We found that the main
limitation of the RTL framework, regardless of which version we tested, is the effect size between the positive and negative
cases; in other words, this factor has the most drastic impact on classification outcome. Altering the marginal frequency
has a smaller impact on the classification performance. Both versions of the RTL framework performed similarly in this
simulated evaluation. Since we have now gained confidence in the working segments and the overall functionality of the
RTL framework, we next move on to non-simulated datasets.
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3 Classification of cellular subsets or signatures in FC
Flow cytometry (FC) has been a powerful tool in quantifying cellular subsets. The earliest reports in enumerating rare
subsets, specifically fetal red blood cells in the maternal blood (0.0001-0.00001 frequency) were done by Cupp et al. in the
early 1980s [14]. In this infancy, the methods depended on standard morphologic techniques for discriminating between a
few different cell type. Improvements in electronics and the FC technology as well as motivational challenges in the detec-
tion of minimal residual disease (MRD), in the context of hematological cancers, seeded the beginning stages of molecular
profiling at the scope of single cells. Since measurements of MRD can be a robust prognostic of treatment outcome, the
detection goal at the dawn of the twenty-first century in the context of MRD in acute leukemia was one leukemic cell among
10,000 normal bone marrow cells [60]. Nowadays, this goal has already been achieved by modern multi-parameter flow
cytometry (mFC) [3]. In a different context, Nilsson et al. demonstrate the quantification of rare hematopoeitic stem cell
with mFC in [61].

A B

Figure 24: FC experiment estimation of number of events to collected based on formulations in [10]. A. Controlling
coefficient of variation, by collecting N rare cells of interest. For example, if 5%CV is desired, this means at least 400 cells of
the rare immunophenotype needs to be collected. CV = SD/n

EventsCollected

⇤100 and SD = sqrt(n
EventsCollected

) B. How
many total cells to collect (y-axis), given a priori the marginal frequency of a rare cell of interest shown as Log10(marginal
frequency) on the x-axis.

Hedley and Keeney review the technical issues with rare cellular subsets (RCS) i.e., rare-event analysis in FC applica-
tion in [10]. Briefly, they categorize and provide guidelines to overcome the technical issues in A) sample preparation, B)
antibody and fluorochrome selection, and data acquisition. Furthermore, they provide a statistical framework to calculate
the database/sample size needed, given a desired confidence and statistical power, for an RCS at a defined frequency
(Figure 24. Nilsson et al. also highlight the importance of biological controls as well as gate setting controls in the design
of mFC experiments; recommending using internal reference populations to improve the classification of RCS [61].

3.1 Manual Vs. Automated FC analysis
Classification of individual cells in FC analysis has been traditionally done by a manual process called ’gating’. A limitation
of this approach is gating rare cellular subsets (RCS) because the ’true’ state is difficult to discern. In other words, the do-
main expert(s) makes the call as to include a specific event within a gate. That is why manual gates risk classifying events
as false positives or negatives since their classification can be subjective and non-reproducible. Although the hierarchy
of gates used to identify the immunophenotypes (IP), overall improves the precision and specificity of their classification,
each of the 2D scatter plots used to apply each of the gates can introduce error that accumulates and heavily confounds
gating RCS. Finally, in practice we cannot assume that all of the populations in each of the 2D scatter plots are perfectly
separable by a line (the most common boundary of manual gates); cellular debris, covariance between the features, aut-
ofluorescence, signal overlap, etc are known to introduce false events, spikes, and non-linearly separable boundaries in
FC analysis. That said, manual gating is the current gold standard especially in the context of clinical trials where the
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critical quantifier is well-defined a-priori [62]. The problem is that it is difficult to scale manual gating, especially when RCS
are the target; reproducibility is a key.

Computationally, two major branches of statistical learning are utilized for identifying subsets in high-dimensional data.
Supervised methods can learn from curated manually gated datasets and automate the inference of specific IPs in new
FC data [30]. On the other hand, unsupervised methods, identify clusters based on expression similarity; requiring the
specification of a distance measure as well as a clustering method. Moreover, clustering requires the number of clusters to
be given or estimated; which is not always known. Finally, in clustering, the identified clusters may not necessarily reflect
biology. Unfortunately, the majority of such approaches are affected by unwanted bias and variance 7 rooted in confound-
ing factors. For this reason, high-throughput experiments such as FC (and scRNASeq) require multi-scope standardization
(i.e., experiment and analysis) with appropriate power-analyses [31]. Without such efforts, reproducibility of results are at
risk due to a plethora of confounding factors which dilute the biological signal of interest.

3.1.1 Computational FC analysis

In recent years, several algorithms have been developed to address the computational needs for scaling automated, ro-
bust, and reproducible single-cell FC analysis; several are summarized in table 7. Overall, these tools are used to visualize
and identify patterns in FC data. This means, there are overlaps in their inherent assumptions, limitations, and theory. For
example, in many biological samples, imputing a hierarchy is important to unraveling the cellular subsets present; unlike
cancer cells that may have stochastic state transitions [63] and thus no real hierarchy, immune cells are innately in a linear
hierarchy. To visualize and leverage such hierarchy for downstream analysis, SPADE was developed. Initially, the input
cytometry data are down-sampled to equally represent all cell types; requiring a priori manual gating to identify these cell
types. Next, clustering identifies similar immunophenotypes (IP) on the down-sampled data. These clusters are used to
compute a minimum spanning tree (MST) 8. Finally, each of the original cells (and also any new datasets) are mapped
to each of these clusters to visualize the magnitude of the IP in the sample in a quantitatively computed tree. Another
clustering based tool, Citrus, delivers a statistical framework, going beyond visualization, to identify diverging signatures
amongst clusters of similar cell types in conjuncture to an endpoint (or cohorts) of interest. In the next category of, i.e.,
dimensionality reduction, there are methods which project the samples from their input space (with possible covariates) to
a constrained space. For example, in principle component analysis (PCA), an orthogonal projection, in a space where the
new variables (PCs) are linearly uncorrelated. Generally, the first few PCs are identified as explanatory of the variance in
the input data. Alternatively, t-SNE is non-linear dimensionality reduction method that explicitly maps the data two a 2D or
3D space, mainly for visualization of high-dimensional datasets. As the name suggests, the class of Stochastic Nonlinear
Embedding (SNE) algorithms have limited reproducibility; large data with large computing resources are generally needed
to be able to optimally utilize them. Finally, cell trajectory algorithms try to find order between the input cells base on their
phenotypic identity.

It would be beneficial to conduct an exhaustive validation analysis of currently used tools with a standardized RCS-focused
dataset. We expect that there will be an impact due to class-balance ratio, total sample size, and feature-selection [64, 65]
on the performance key unsupervised and supervised methods such as k-nearest neighbor (k-NN), linear discriminant
analysis (LDA), [66] random forests (RF), and [67] and support vector machines (SVM) [68].

7such as experimental and technical (batch, reagents, platforms, etc.), as well as biological (race, age, gender, disease, etc.)
8a tree connecting all clusters with minimum total edge length
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General Methodological Domain Algorithm Name General Descriptions Ref
Clustering

SPADE Hierarchical clustering using minimum spanning tree (MST), visualizing marker progression, using uniform density across populations [69]
FLOW-MAP Similar to SPADE, however uses forced-directed graph structure instead of MST [70]
Citrus Signature discovery with multi-sample comparison, given clinical endpoints [71]
PhenoGraph Social network algorithms clustering cells by phenotypic similarity [72]
Scaffold map Force-directed graph using landmark populations [73]

Dimensionality Reduction
PCA Linear dimensionality reduction by low-dimensional embedding to best preserves their variance in HD space [74]
MDS Linear multidimensional scaling by embedding to preserves the inter-point distances (equal to PCA if Euclidean distances) [75]
t-SNE Stochastic Non-linear Embedding, preserving the relationships between points in HD into LD [76]

Cell Trajectory
ISOMAP Uses MDS and focuses on distances on only neighboring points [75]
Diffusion Map Utilizing the assumption that the HD data lie on a LD-manifold of the dimensions ( a property of repeat sampled data from the same process). [77]
Wanderlust Graph-based trajectory detection converting to one-dimensional developmental trajectory [78]

Table 7: Selected literature of automated FC-analytical methods. Although not comprehensive, this table summarizes the
recent and major algorithms and pipelines.

3.2 The R computing statistical platform and importing FCS and FlowJo manual gates
There are several methods to analyze/gate FCS files. FlowJo is a software produced by TreeStar inc. that is commonly
used to gate FCS data. There are also Python and R [8] platform packages that also can be used to import and analyze
FCS files in a more flexible, scalable, and open-source environment. The latter has had significant proliferation amongst
bioinformatics researchers in recent years; especially true for FC and other single-cell platforms [79].

3.3 Normalization, scaling, and transformation of FC data

Flow cytometry (fluorescent or mass) data, commonly stored as sets of ’.fcs’ 9 files, house the expression matrix with rows
of cells and columns of measurements/features. Due to the various technical and experimental causes, the range of each
channel is not the same across samples. For example, in fluorescent flow, each feature is a measure luminescence from
the photochrome-labeled antibodies whereas, in mass cytometry, each feature is a measure of time of flight (TOF), as
metals with various masses are bound to antibodies of the experiment. Naturally, for within platform analysis and interop-
erability across platforms, appropriate normalization, scaling, and transformations are needed. Common transformations
are the Logicle (biexponential) [80], Box-Cox [81], and the generalized hyperbolic arcsine [82] transformations. Using
simulated data, we demonstrate the consequence of such transformations. The Logicle (biexponential) transformation is
shown in Equation 5; given the default attributes a = 0.5, b=1, c=0.5, d=1, f=0, w=0, then, it is simplified to Equation 6.
Next, the adjusted arcsinh function (Equation 7 where the default values for the parameters are a = 0, b=1, and c=0. Finally
the Box-Cox transformation (Equation 8 is shown and defined with the condition that parameter � > 0. For a technical
analysis of normalization on a large FC dataset, we refer to the recent work in [62]; unless stated, for our analysis, we use
the asinh() transformation.

biexp(x) = a ⇤ exp(b ⇤ (x� w))� c ⇤ exp(�d ⇤ (x� w)) + f (5)

biexp(x) = (exp(x)� exp(�x))/2 (6)

asinh(x) = asinh(a+ b ⇤ x) + c (7)

BoxCox(x) = (sign(x) ⇤ abs(x)� � 1)/lambda if � > 0 (8)

9a compressed MD5 structured file containing the expression matrix and pertaining metadata
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Figure 25: A. Comparison of transformations paired to demonstrate the range and relationships, where x 2 [�500, 500].
B.The transformation consequence on the distribution is shown using histograms. C. Using a simulated trimodal sample
(3 normal distributions where µ1 = �10, µ2 = 0, µ3 = 10) the consequence of the of the transformations are shown relative
to the 3 labels.

3.4 The FlowCAP challenges
FlowCAP is the project seeded by a consortium of researchers aimed at providing standard and open datasets for al-
gorithm development; enabling direct comparison of algorithmic performance towards specific tasks. FlowCAP I and II
focused on developing computational tools to mimic manual gaiting as well as automated methods. Overall, they have pro-
vided several tools which can, in fact, achieve robustly automated gating for the majority of the cell populations. However,
as there are limitations with FC analysis (i.e., antibody affinity, emission spectra overlap and autofluorescence) the classi-
fication quality also varies across cell types (i.e., monocytes vs. t cells), cohorts (e.g., infants vs. adults), and are heavily
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impacted by debris contamination. Although these approaches are useful for specific tasks, pre-processing is mandatory
such as normalization to remove unwanted technical noise across datasets. No classification method is perfect; multiple
iterations and validation by multiple experts are needed. Finally, an emergent result from the earlier FlowCAP challenges
was that rare cellular subsets (RCS) are currently the research bottleneck (manual or automated).

3.4.1 FlowCAP-III Challenge 1 data

In response to the need for developing and evaluating computational tools that are robust and reproducible, especially
in the context of RCS, FlowCAP-III includes a computational challenge focused on two RCS. A classification challenge
evaluating inferred predictions against manual gating using the F1

score

on two rare immunophenotypes. Unfortunately, this
dataset 10 has not been fully released yet as a challenge set [83]. Briefly, there were 405 FCS files, where about half (202)
of the manual gating results are given for training where the labels (i.e., Y ) were 0, 1, and 2 ("ungated", cell population 1,
and cell population 2 respectively). The task was to infer these populations in the next half (403) files (i.e., Ŷ ) and compare
the classification results to the manual gating; although in the context of the challenge, the participants were blind to the
true test set labels. Qui has demonstrated via a faithful down-sampling methodology [84] that a linear ensemble SVMs
classifier can be trained to identify rare cellular subsets (RCS); The down-sampling is used to increase the influence of
rare subsets on the algorithm. They also highlight the utility of the multivariate distance metric, the Hellinger divergence
to quantify similarity across samples, which is claimed to account for the batch effects. This method can be investigated
to be incorporated in our extended TL-FC framework to assess improvements of the TL predictions. They achieved an
overall F-measure of 0.64 on the FlowCAP-III dataset. Unfortunately, for our benchmarking and evaluation needs, it is not
possible to directly compare to this results.

3.5 HVTN080 immunogenicity and safety trial data
To develop and evaluate computational methods for flow cytometry (FC) a large well-curated dataset is needed. For our
analysis herein we focus on a publicly available dataset 11 in the context of HIV vaccine safety and immunogenicity [85].
This study 12 is similar to the FlowCAP-III data, with available manual gating, which enables evaluating the classification
learning and inference. Specifically, this dataset is produced experimentally using an intracellular cytokine staining (ICS)
and phenotyping assay. Furthermore, both of the populations in FlowCAP-III Challenge 1 are present in the HVTN080 data.

3.5.1 Intracellular cytokine staining (ICS) assay in the context of HIV

Briefly, HIV is retrovirus composed of two RNA strands housed by a protein capsid [86]. The RNA code contains many
open reading frames (ORFs) for structural and regulatory viral proteins, specifically the HIV genome is known to have
9 genes coding for 15 proteins [87, 88]. Three of these proteins, the structural polyproteins, are processed to smaller
proteins: interior proteins i.e., group-specific antigen (Gag), viral enzymes (Pol) such as the reverse transcriptase, and the
envelope (env). Peptides from such proteins are used as the stimuli experimentally; such as Intracellular cytokine staining
(ICS) experiments. ICS is a common tool in the immunologist’s toolbox, which enables the quantification of accumulated
cytokine in cellular vesicles, over a period of time, in various conditions. The accumulation of the vesicles is usually
because of a fungus-derived molecule, Brefeldin A that blocks protein transport from the endoplasmic reticulum (ER) to
the Golgi apparatus.

3.5.2 Exploratory Data Analysis on the HVTN080 data

The HVTN080 FC data is from a t cell stimulation assay with 4 stimulations conditions (Negative-Control, Gag, Pol1, and
Pol2), where responding cells are identified if they produce select cytokines in response to the specific stimuli. Once the
full dataset is acquired, we find that there are a total of 470 FCS files corresponding to 48 healthy human subjects assayed
at Day 0 and at day 40 post-vaccine. In addition to the FCS files, the manual gates are imported via the provided FlowJo

10The FlowCAP-III challenge 1 dataset pertains to the External Quality Assurance Program Oversight Laboratory (EQAPOL) project Proficiency Test.
11https://flowrepository.org/id/FR-FCM-ZZ7U
12"Safety of and Immune Response to the PENNVAX-B DNA Vaccine With and Without IL-12 in HIV-uninfected Adults." ClinicalTrials.gov Identifier:

NCT00991354. https://clinicaltrials.gov/ct2/show/NCT00991354
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exported XML files which reveals the files are split to 15 batches. Furthermore, there are several compensation files that
represent a subset of the total 470 FCS files; reducing the set to 435 usable FCS files. The channels available are FITC,
PerCP Cy55 Blue-A, Pacific Blue, AmCyan, APC-A, Alexa 680, APC Cy7, PE-Green, PE-TxRD, PE Cy5-A, PE Cy55-A
which correspond to the targets "TNFa", "CD8", "CD57", "Live/Vivid", "Perforin", "GranzymeB", "CD4", "IL2", "CD3", "NA",
"NA", and "IFNg"; these targets are cell-surface markers as well as several intracellular targets. The gating hierarchy
reveals that there are 148 defined gates, but since our goal is the classification of one of these specific immunophenotype
(IP) vs. the rest, not all gates are needed.

Day 0 Day 5 Total
GAG-1-PTEG 48 46 94

negctrl 96 92 188
POL-1-PTEG 48 46 94
POL-2-PTEG 48 46 94

Total 240 230 470
Table 8: Full HVTN080 data, FCS count across the 2 time-
points.

Neg.CNTRL HIV.GAG1 HIV.POL1 HIV.POL2 Total
Batch0880 16 8 8 8 40
Batch0881 16 8 8 8 40
Batch0882 12 6 6 6 30
Batch0883 12 6 6 6 30
Batch0884 12 6 6 6 30
Batch0939 6 3 3 3 15
Batch0940 8 4 4 4 20
Batch0941 10 5 5 5 25
Batch1049 14 7 7 7 35
Batch1050 8 4 4 4 20
Batch1053 16 8 8 8 40

Batch1054M 16 8 8 8 40
Batch1055M 16 8 8 8 40
Batch1056M 10 5 5 5 25

Batch1078 2 1 1 1 5
Total 174 87 87 87 435

Table 9: HVTN080 FCS count per Batch; 15 total batches,
435 FCS files; those with available manual gating that are
not compensation controls.

Specifically, from the manual gating hierarchy we extract the "root" node cells i.e., all cellular events and debris. The IP of
interests is the CD4 t cells, gated as "/S/Lv/L/3+/4+" i.e., singlet, live, lymphocytes, that are CD3 and CD4 positive; Table 10
summarizes the distribution of cells across the entire dataset. There is also another gated IP of interest, the stimulated
IL-2 producing cytotoxic t cells, "/S/Lv/L/3+/8+/IL2+". However, this IP, is not well represented across all the samples; the
majority of the data has less than 5 single positive events with many being 0. This is somewhat expected as the negative
controls should have 0 stimulated t cells. To conduct classification with this IP, requires hand curation of the training and
test sets. Therefore, to evaluate classification performance compared to manual gating, the CD4 t cell IP is better because:
A) sufficient representative positive examples are present in all samples. B) there is biological variation across the sub-
jects/donors. C) The experimental conditions are not expected to confound the marginal frequency of the IP 13 and thus
can be considered as replicates. D) CD4 helper t cells are clinically important in the context of HIV pathogenesis. There-
fore, we narrow our focus and reduce the input feature space to include the most relevant (per gating) features: FSCA,
SSCA, APCCy7(CD4), PE-Green (IL-2), PerCPCy55Blue (CD8), PE-TxRD(CD3), and AmCyan (Live/Vivid). Specific to
the CD4 t cells, the features used are the SSCA, AmCyan (Live/Vivid) , TxRD(CD3), and APCCy7(CD4).

Min. 1st Qu. Median Mean 3rd Qu. Max.
Freq. CD4 t cells of total/root 0.17 0.30 0.34 0.34 0.39 0.51

Freq. IL2+CD8 t cells of total/root 0.0000000 0.0000045 0.0000108 0.0000185 0.0000212 0.0006040
No. of CD4 t cells 31929 62024 74591 76688 90729 139330

No. of IL2+CD8 t cells 0 1 2 4 5 189
No. of total/root cells 117539 190746 220104 226366 258533 414124

Table 10: Distribution of two main immunophenotypes across the usable 435 FCS files in the HVTN080 dataset.

Prior to downstream classification analysis, to visualize the variance and topology of the entire dataset, we combined all of
the 3000-event sampled FCS files (435 total); as our focus is the CD4 t cell immunophenotype, this dataset has the input
feature space of SSCA, AmCyan (Live/Vivid) , TxRD(CD3), and APCCy7(CD4) thus a total of four principle components
are computed. As summarized in Table 11, PC1 contains the majority of the variance proportionally. When we visualize the
projection (Figure 26), i.e., the loadings of the PCA, where the co-linearity (linear covariance) amongst the input features

13In specific conditions, the expression of a marker might change (without change to the marginal frequency). For example, in the positive control
condition with the ’SEB’ super antigen, downregulation of CD3 and CD8 markers are sometimes observed.
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has been removed, we observe two distinct clusters across PC1 and PC2. Furthermore, when we plotted the known con-
founders (batch, experimental conditions, and timepoint), specific patters identifying clusters of these confounders were
not found, indicating that the majority of variance observed in these principle components is not due to these confounders.
Finally, we identify the CD4 t cells clustered mostly together, indicating the homogeneity/similarity of their signature.

PC1 PC2 PC3 PC4
Standard deviation 42620.8927 986.6542 507.2750 428.5234

Proportion of Variance 0.9992 0.0005 0.0001 0.0001
Cumulative Proportion 0.9992 0.9998 0.9999 1.0000

Table 11: PCA analysis with HVTN080 dataset, combining 3000 random examples from each 435 FCS samples, specific
to the CD4 t cells, with the input feature space SSCA, AmCyan (Live/Vivid) , TxRD(CD3), and APCCy7(CD4).
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Figure 26: PCA with HVTN080 dataset, combining 3000 random examples from each 435 FCS samples, specific to the
CD4 t cells, with the input feature space SSCA, AmCyan (Live/Vivid) , TxRD(CD3), and APCCy7(CD4). Plotted are the
loadings from the four principle components. From top left, clockwise, the colors represent the batches, the experimental
conditions, the actual gated CD4 t cells vs. rest (root gate), and finally the vaccination timepoints. In these figures, a
representative random sample (N=6000) is plotted.

44



Figure 27: PCA with HVTN080 dataset, combining 3000 random examples from each 435 FCS samples, with additional in-
put features than Figure 26; i.e., FSCA, SSCA, APCCy7(CD4), PE-Green (IL-2), PerCPCy55Blue (CD8), PE-TxRD(CD3),
and AmCyan (Live/Vivid). In these figures, a representative random sample (N=6000) is plotted.
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3.5.3 Training and Testing sets from with the HVTN080 data

To create the training and test sets, we start with the 435 actual experimental files with manual gating. To reduce the
processing speed and to create samples with an equal number of events, each of the 435 samples was first shrunk by
randomly selecting 100,000 cells from the root of the gating hierarchy; all cell subsets including debris. Subsequently,
in the final stage of creating the training/test sets, we reduce each sample to 5000 random cells, with the option to be
sampled at each epoch to avoid sample-bias via multiple iterations. Although there are several ways to create training
and test sets, we have approached it in two schemes as shown in Figure 28. In Scheme 1, we assume agnosticism to all
confounders (known and unknown) and create a completely random 1:1 split of the dataset. Specifically, we first randomly
split this dataset to 220 training and 215 test samples. Next, From each, we randomly selected 200 of the samples to
create 10 balanced training and test sets, each housing 20 random FCS files. This avoids training on the entire 200+
samples which not only reduces the training time but also reduces the likelihood that a set of outliers in the samples would
heavily impact the inference. Furthermore, this strategy over several epochs allows for an iterative process where all the
FCS files are eventually part of the classification dataset; reducing the effects of sample-bias. Scheme 2 is designed to
improve the inference on any set of test samples by combining the predictions from multiple sets. The combination can be
done in two ways: First, each training set’s generalized hyperplane obtained (i.e., Algorithm 2’s robust mean hyperplane)
can again be averaged then transferred to the test set, followed up by updating its bias and normal vector in downstream
algorithms. Alternatively, each training set’s hyperplane independently is transferred and updated in Algorithms 4 and 6,
and the final calls are used to obtain each of the cells probability of being labeled either positive or negative. Below we
conducted classification within the RTL framework using both scheme 1 and scheme 2; in the latter, we conducted the
cell-level probability approach.

Figure 28: Creating training and testing sets from the acquired HVTN080 435-FCS files. Here the Starting Dataset which
is actually 435 different FCS files, is summarized as a single expression matrix; The Training and Test Sets are similarly
visualized. The example shown is specific for the gated CD4+ t cells, where the relevant features are the SSCA, AmCyan
(Live/Vivid), TxRD(CD3), and APCCy7(CD4). For each epoch, the 220 FCS files are assigned to the training set and the
remaining 215 to the test set. From each, 200 FCS files are randomly selected to create the final training and test sets.
Next, in the two training and testing schemes are shown, each test set contains 20 random FCS files without replacement.
In Scheme 1, the training from each of the FCS files per set is generalized and transferred to the test set of FCS files.
Alternatively, for a more exhaustive approach, the generalized training from all of the 10 training sets is used on each test
set to compute a final classification.

3.6 Classifying CD4 t cells from HVTN080 within the RTL Framework
In our initial approach, we employ the training-test set ’scheme 1’ (Figure 28) which starts with the 435 total FCS. From
these files, 200 random non-repeated samples are assigned to the training set and 200 to the test set. Each of the 200-
sample sets is further split into 10 sets of 20 random non-repeating samples. The goal of designing such training and test
sets is so that their creation is completely agnostic to any potential confounders from the meta-data such as batch, subject,
timepoint, etc. This approach at its core demonstrates the capacity to generalize classification of an immunophenotype
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from any set of training samples to any set of test samples. The limitation of this approach is that if one of the training
sets yields a hyperplane that is poorly generalizable, the corresponding test set samples will not be properly classified,
and also difficult to adapt to the test set within the transfer learning framework. Consequently in our alternate approach,
’scheme 2’ (Figure 28), instead of a 1 training set to 1 test set, we use the all of the 10 training sets per each test set (i.e.,
10 to 1). To demonstrate this approach we created a single 50-sample test set and the training sets was created similar
to scheme 1 (i.e., 10sets x 20 random fcs each). A final classification call is made by averaging across all the calls from
each of the training sets per cell; since the calls are +1 (CD4 t cell) or -1 (not/rest) if the average is 0, it means that an
inference was not possible on that individual cell, thus it was computed as an ’NA’ for the computation of the confusion
matrix. Alternatively, a probability-based approach and a threshold (e.g., 50%) can be used to determine the final call.

A

B

Figure 29: A summary of F1
score

results for both train/test data sampling schemes and both versions of the RTL frame-
work. Violin plots of major classification statistics classifying CD4 t cells from the HVTN080 dataset A. Baseline version
results. B. Extended version results.

3.6.1 Scheme 1, the baseline version

Training and inference are done one set at a time and the results are separately visualized in Figure 30. We observe that
on average, the baseline transferred hyperplane, i.e., the robust mean hyperplane from the training set, performs fairly well
on the test sets (Table 12). Across sample batches, timepoints, and experimental conditions we did not observe major
differences with regards to classification in the test set. However, we do observe subject specific variation with regards to
specificity and precision. This is in contrast to the very high recall observe, across the subject indicating that most of the
CD4 t cells were identified.
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Figure 30: Scheme 1, HVTN080 Test set classification results within the baseline version RTL framework, tuned for FC
data analysis. From top left going across, the results from test sets 1-10 are shown followed by a per set aggregate and
cumulative bar graphs with 95%CI. For each, we demonstrate Accuracy, Detection rate, F1

score

, Precision, Prevalence,
Recall/Sensitivity, and Specificity. The Baseline (tan) result is the direct transfer of the robust means hyperplane from
Algorithm 2. The Alg4 (plum) result is from the baseline hyperplane with the updated bias after Algorithm 4. Finally, Alg6
(green) result is after rotating the hyperplane in Algorithm 6.
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Sensitivity Specificity Precision Recall F1 Prevalence Detection Rate Accuracy
Average 88.23 79.99 71.28 88.23 77.90 32.77 29.09 82.61

By Batch
Batch0880_Samples 97.36 82.13 75.41 97.36 83.55 36.23 35.19 86.76
Batch0881_Samples 80.23 75.07 69.06 80.23 74.04 37.37 29.87 76.99
Batch0882_Samples 89.48 75.99 64.80 89.48 73.41 32.67 29.82 80.34
Batch0883_Samples 90.03 84.25 76.93 90.03 82.53 32.46 29.62 86.41
Batch0884_Samples 95.36 83.22 76.45 95.36 84.02 33.73 32.20 87.31
Batch0939_Samples 85.93 78.92 70.24 85.93 76.62 35.58 31.83 81.66
Batch0940_Samples 86.82 93.96 87.18 86.82 86.00 29.60 25.62 91.77
Batch0941_Samples 98.00 87.15 80.70 98.00 88.49 35.19 34.51 91.05
Batch1049_Samples 86.88 68.15 53.23 86.88 64.43 26.04 22.17 72.41
Batch1050_Samples 97.70 88.00 80.50 97.70 88.17 33.15 32.41 91.30
Batch1053_Samples 87.19 78.88 69.21 87.19 76.66 34.60 30.17 81.77

Batch1054M_Samples 82.34 78.00 73.17 82.34 77.14 37.37 30.93 79.71
Batch1055M_Samples 77.37 67.08 52.60 77.37 61.33 27.31 21.31 69.71
Batch1056M_Samples 76.62 67.28 58.83 76.62 65.97 32.64 25.23 70.21

Batch1078_Samples 92.12 91.73 80.91 92.12 86.13 27.66 25.47 91.82
By Subject

080-1 95.85 88.11 86.61 95.85 91.00 44.52 42.68 91.56
080-10 98.53 87.06 82.61 98.53 89.82 38.88 38.29 91.46
080-11 98.16 90.38 84.93 98.16 91.02 36.12 35.46 93.16
080-12 50.00 36.72 19.42 50.00 27.98 24.41 11.68 39.60
080-13 79.89 69.71 64.58 79.89 71.42 36.97 29.42 73.46
080-14 81.07 76.14 67.99 81.07 73.85 31.27 25.22 77.68
080-15 99.03 87.82 80.82 99.03 88.94 34.30 33.97 91.64
080-16 92.12 91.73 80.91 92.12 86.13 27.66 25.47 91.82
080-17 97.49 87.39 79.31 97.49 87.15 31.71 30.91 90.59
080-18 97.55 88.39 82.42 97.55 89.22 34.95 34.11 91.65
080-19 66.67 46.25 22.30 66.67 33.29 26.34 17.67 51.71

080-2 98.45 69.82 55.46 98.45 69.21 25.69 25.21 76.61
080-20 98.63 85.03 83.56 98.63 90.46 43.33 42.74 90.96
080-21 98.78 86.91 84.83 98.78 91.27 42.45 41.93 91.96
080-22 74.33 68.45 57.29 74.33 64.56 27.22 20.17 70.00
080-23 94.01 92.52 83.60 94.01 87.80 27.66 25.97 92.88
080-24 88.90 92.56 84.56 88.90 85.68 28.82 25.59 91.47
080-25 99.51 77.80 62.26 99.51 76.48 26.56 26.43 83.57
080-26 98.42 86.40 71.01 98.42 82.48 25.26 24.86 89.43
080-27 71.33 63.17 41.08 71.33 51.82 24.43 17.39 65.07
080-28 98.36 90.58 84.04 98.36 90.62 33.60 33.06 93.20
080-29 50.92 45.53 39.19 50.92 44.28 37.51 19.59 47.68

080-3 96.41 88.11 82.29 96.41 88.78 36.37 35.07 91.13
080-30 79.52 68.44 46.64 79.52 56.95 22.60 19.12 71.21
080-31 98.81 85.65 79.61 98.81 88.15 36.11 35.68 90.39
080-32 98.41 88.31 79.23 98.41 87.69 30.61 30.14 91.45
080-33 96.34 88.38 80.84 96.34 87.89 33.65 32.41 91.06
080-34 67.27 57.80 54.24 67.27 60.03 40.10 27.27 61.64
080-35 83.72 91.04 85.19 83.72 82.98 32.17 27.03 88.92
080-36 74.15 61.18 48.82 74.15 56.45 29.32 22.43 65.37
080-37 96.15 87.00 80.34 96.15 87.29 34.62 33.28 90.19
080-38 97.02 86.82 78.73 97.02 86.84 32.93 31.97 90.23
080-39 82.38 74.62 67.22 82.38 74.03 36.48 29.56 77.34

080-4 98.35 88.66 86.18 98.35 91.83 41.59 40.89 92.69
080-40 84.48 75.17 71.38 84.48 77.19 41.50 34.94 78.96
080-41 99.80 83.02 71.21 99.80 83.02 29.39 29.33 87.93
080-42 99.76 83.53 83.47 99.76 90.89 45.46 45.35 90.91
080-43 87.36 97.03 94.24 87.36 90.55 35.79 31.18 93.47
080-44 89.91 91.96 88.44 89.91 88.52 38.05 34.26 91.25
080-45 97.00 91.17 84.76 97.00 90.15 31.59 30.66 93.07
080-46 66.41 62.47 52.01 66.41 58.31 28.87 18.51 63.49
080-47 74.64 69.76 62.33 74.64 67.93 35.00 25.95 71.45
080-48 71.12 59.26 46.05 71.12 54.67 26.67 19.00 62.07

080-5 73.87 68.14 63.92 73.87 68.43 41.16 30.81 70.54
080-6 73.64 70.00 64.19 73.64 68.58 38.23 27.48 71.28
080-7 96.68 90.37 86.33 96.68 91.11 38.13 36.87 92.79
080-8 100.00 56.74 37.17 100.00 54.19 20.37 20.37 65.56
080-9 75.61 79.49 71.66 75.61 72.95 32.80 24.76 78.35

By Timepoint
Day 0 88.38 77.82 69.14 88.38 76.42 32.45 28.72 80.97
Day 5 85.74 78.97 70.39 85.74 76.46 33.96 29.43 81.30

By Experimental Condition
GAG-1-PTEG 87.26 81.68 71.99 87.26 78.24 33.63 29.94 83.77

negctrl 90.30 80.49 71.98 90.30 79.30 33.38 30.24 83.59
POL-1-PTEG 78.95 69.63 59.87 78.95 67.06 32.33 25.49 72.42
POL-2-PTEG 89.56 79.60 73.00 89.56 78.61 32.91 29.38 82.45

Table 12: Scheme 1, HVTN080 Test set classification results within the the baseline version RTL framework, tuned for FC
data analysis.
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Figure 31: Aggregation of the HVTN080 classification statistics with the RTL framework to demonstrate their intrinsic
relationships in the context of batch, condition, individual/subject, and timepoint.
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3.6.2 Scheme 1, the extended version

Although the original intent of the extended version of the RTL framework was classification in transcriptomics data, where
generally significantly lower number of examples (cells) per sample exist with many more quantified features, it is possible
to evaluate its performance compared to the baseline version; in the transcriptomics section we show that the baseline
version demonstrates a minor improvement in generalizability across datasets which potentially may also apply for FC
data. Figure 32 and Table 13 summarize the findings. Compared to the results of scheme 1 with the baseline version
of the RTL framework, we observe significantly lower specificity, precision and accuracy. A potential reason for this is
potentially the different approach taken by Algorithm 6; In Figure 32, the final summary bar plot on the bottom right shows
that on average, Algorithm 6’s output reduced the accuracy of the call compared Algorithm 4 (i.e., without rotation). That
said, scheme 1 is limited by its 1 training set (20 random fcs samples) to 1 test set (20 random fcs samples), which is why
scheme 2 is done, as it is a better assessment of overall performance.
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Figure 32: Scheme 1, HVTN080 Test set classification results within the extended version RTL framework, tuned for FC
data analysis. From top left going across, the results from test sets 1-10 are shown followed by a per set aggregate and
a cumulative bar graphs with 95%CI. For each, we demonstrate Accuracy, Detection rate, F1

score

, Precision, Prevelance,
Recall/Sensitivity, and Specificity. The Baseline (tan) result is the direct transfer of the robust means hyperplane from
Algorithm 2. The Alg4 (plum) result is from the baseline hyperplane with the updated bias after Algorithm 4. Finally, Alg6
(green) result is after rotating the hyperplane in Algorithm 6.
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Sensitivity Specificity Precision Recall F1 Prevalence Detection Rate Accuracy
Average 87.48 57.02 58.17 87.48 63.13 32.79 29.00 67.52

By Batch
Batch0880_Samples 92.55 50.24 59.62 92.55 67.42 36.58 34.07 66.38
Batch0881_Samples 81.14 68.20 73.96 81.14 69.51 37.79 30.62 73.59
Batch0882_Samples 97.18 56.17 60.51 97.18 71.47 33.09 32.19 69.93
Batch0883_Samples 93.49 57.40 62.05 93.49 68.61 31.96 30.23 70.22
Batch0884_Samples 87.21 46.52 51.46 87.21 56.70 33.73 29.60 60.43
Batch0939_Samples 71.40 56.03 36.03 71.40 47.03 34.84 26.02 62.85
Batch0940_Samples 88.41 58.05 56.02 88.41 61.81 29.59 26.30 67.17
Batch0941_Samples 99.65 47.07 53.71 99.65 68.61 35.72 35.57 65.50
Batch1049_Samples 71.93 61.05 53.23 71.93 48.18 25.64 17.99 62.26
Batch1050_Samples 82.05 65.52 65.13 82.05 63.88 32.55 26.97 71.59
Batch1053_Samples 91.50 58.88 65.30 91.50 71.15 34.47 31.34 70.34

Batch1054M_Samples 92.92 56.47 62.62 92.92 70.75 37.68 35.53 71.57
Batch1055M_Samples 76.76 74.15 65.98 76.76 59.29 27.70 22.72 76.70
Batch1056M_Samples 85.98 69.15 71.41 85.98 70.26 32.90 28.11 74.78

Batch1078_Samples 100.00 30.32 35.51 100.00 52.32 27.66 27.66 49.52
By Subject

080-1 99.98 35.54 56.08 99.98 71.61 44.52 44.52 64.15
080-10 62.30 72.19 74.42 62.30 52.64 38.88 22.70 65.70
080-11 79.55 80.31 79.99 79.55 74.85 36.12 29.01 80.69
080-12 99.91 50.44 49.84 99.91 63.65 24.41 24.39 62.91
080-13 81.01 46.91 59.45 81.01 54.36 37.52 30.51 59.88
080-14 68.48 91.71 84.60 68.48 66.69 31.27 21.35 84.38
080-15 96.95 50.72 58.53 96.95 69.75 33.48 32.58 66.43
080-16 100.00 30.32 35.51 100.00 52.32 27.66 27.66 49.52
080-17 85.53 77.16 75.79 85.53 75.17 31.72 27.08 79.73
080-18 97.59 66.00 67.00 97.59 77.53 34.70 33.90 77.28
080-19 100.00 24.40 33.75 100.00 50.18 26.51 26.51 44.76

080-2 87.26 60.78 58.89 87.26 61.09 25.69 21.71 66.17
080-20 99.22 44.75 61.49 99.22 74.70 43.33 43.00 68.54
080-21 100.00 23.85 50.35 100.00 66.80 42.88 42.88 56.64
080-22 83.36 73.11 70.07 83.36 64.57 26.91 22.58 75.64
080-23 82.24 60.46 57.01 82.24 57.17 27.50 22.65 66.60
080-24 97.24 63.89 59.31 97.24 71.09 28.92 28.11 73.53
080-25 65.15 99.46 97.79 65.15 78.00 26.56 17.30 90.34
080-26 50.00 73.44 19.56 50.00 28.12 25.26 12.72 67.66
080-27 82.78 53.44 48.74 82.78 50.46 23.99 20.03 60.26
080-28 41.98 99.82 99.23 41.98 56.91 32.40 13.57 81.05
080-29 100.00 51.25 55.45 100.00 71.30 37.51 37.51 69.61

080-3 78.33 59.19 69.27 78.33 63.24 36.37 28.50 66.19
080-30 39.99 75.85 47.03 39.99 24.77 22.60 11.56 71.80
080-31 63.91 99.14 97.90 63.91 76.47 36.11 23.02 86.36
080-32 88.13 94.40 90.43 88.13 88.42 30.89 27.22 92.52
080-33 85.21 47.10 48.68 85.21 54.63 33.35 28.53 59.93
080-34 99.19 58.19 63.94 99.19 76.57 40.10 39.75 74.23
080-35 94.79 56.46 58.08 94.79 68.92 33.08 31.38 69.20
080-36 60.46 50.66 38.25 60.46 31.52 29.32 18.14 54.12
080-37 95.93 58.93 59.96 95.93 71.54 34.62 33.18 71.65
080-38 100.00 19.89 39.69 100.00 56.56 33.66 33.66 46.87
080-39 99.93 42.32 53.14 99.93 68.26 36.48 36.45 63.34

080-4 100.00 46.93 58.22 100.00 73.32 41.82 41.82 68.98
080-40 100.00 25.03 49.66 100.00 65.97 41.54 41.54 56.05
080-41 69.23 88.79 84.31 69.23 67.01 29.39 20.38 83.04
080-42 100.00 50.61 63.83 100.00 77.68 45.46 45.46 73.18
080-43 97.25 79.30 74.25 97.25 83.27 35.79 34.76 85.45
080-44 100.00 33.68 49.06 100.00 65.46 37.84 37.84 58.72
080-45 97.44 80.54 74.51 97.44 82.78 31.59 30.76 85.73
080-46 97.86 81.79 74.23 97.86 83.20 29.50 28.90 86.76
080-47 99.62 59.01 61.47 99.62 74.64 34.93 34.80 73.41
080-48 78.51 68.68 57.52 78.51 54.05 26.13 19.60 69.05

080-5 99.73 47.08 59.19 99.73 73.66 41.38 41.27 69.00
080-6 65.06 84.08 81.04 65.06 59.96 38.23 24.32 76.00
080-7 74.95 56.03 41.30 74.95 52.83 38.13 29.02 64.62
080-8 100.00 27.22 27.41 100.00 42.59 20.37 20.37 41.97
080-9 93.86 56.33 63.96 93.86 71.33 33.02 30.91 68.36

By Timepoint
Day 0 84.92 59.80 61.30 84.92 63.07 32.50 28.18 69.04
Day 5 89.08 58.20 60.17 89.08 65.89 33.93 30.35 68.99

By Experimental Condition
GAG-1-PTEG 87.54 56.70 57.14 87.54 63.02 33.98 29.83 67.04

negctrl 85.75 59.23 61.85 85.75 64.25 33.32 29.12 69.09
POL-1-PTEG 86.01 62.58 63.12 86.01 64.66 32.30 28.02 70.62
POL-2-PTEG 88.90 57.39 59.72 88.90 65.40 32.96 29.80 69.02

Table 13: Scheme1, HVTN080 Test set classification results within the extended version RTL framework, tuned for FC
data analysis.
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Figure 33: Aggregation of the HVTN080 classification statistics with the extended RTL framework to demonstrate their
intrinsic relationships in the context of batch, condition, individual/subject, and timepoint.
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3.6.3 Scheme 2, the baseline version

As described earlier, in scheme 2, a random 50 fcs samples are the test set, and the training set is created similar to
scheme 1 with 10 sets of 20 random fcs files each. This design is done to evaluate the overall performance of the base-
line and extended versions of RTL framework in the context of FC data without the potential limitations of sample-bias
in scheme 1. Figure 34 and Table 14 summarize the findings. As expected, an ensemble classification outperform the
simple 1 training set to 1 test set context; we observe a significant boost to classification statistics compared to scheme 1
because of the additional evidence each training set provides.

Sensitivity Specificity Precision Recall F1 Prevalence Detection Rate Accuracy
Average 96.93 84.62 77.34 96.93 84.74 32.77 31.74 88.29

By Experimental Condition
GAG-1-PTEG 94.08 89.10 82.49 94.08 86.87 34.94 32.80 90.57

negctrl 97.35 85.45 78.07 97.35 85.65 32.78 31.93 89.13
POL-1-PTEG 98.42 78.04 69.43 98.42 79.21 30.45 29.95 83.55
POL-2-PTEG 96.06 83.47 78.66 96.06 85.21 34.72 33.39 87.70

Table 14: HVTN080 Test set classification results with training-test set scheme 2, within the baseline version RTL frame-
work, tuned for FC data analysis.
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Figure 34: HVTN080 Test set classification results with training-test set scheme 2, within the the baseline version RTL
framework, tuned for FC data analysis. From top left going across, the results from test sets 1-10 are shown followed by a
per set aggregate and a cumulative bar graphs with 95%CI. For each, we demonstrate Accuracy, Detection rate, F1

score

,
Precision, Prevelance, Recall/Sensitivity, and Specificity. The Baseline (tan) result is the direct transfer of the robust means
hyperplane from Algorithm 2. The Alg4 (plum) result is from the baseline hyperplane with the updated bias after Algorithm
4. Finally, Alg6 (green) result is after rotating the hyperplane in Algorithm 6.
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Figure 35: Aggregation of the HVTN080 classification statistics using training-test set scheme 2, with the baseline RTL
framework to demonstrate their intrinsic relationships in the context of batch, condition, individual/subject, and timepoint.
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3.6.4 Scheme 2, the extended version

In this train/test set design scheme, using the extended version we found similar classification to the baseline version of
the RTL framework classifying FC samples, but with higher variance, especially with regards to sensitivity and recall. As
before, the etiology of this higher variance could be Algorithm 6, as we observe on average lower accuracy compared to
the un-rotated Algorithm 4 in the bottom right summary bar plot of Figure 36.

Sensitivity Specificity Precision Recall F1 Prevalence Detection Rate Accuracy
Average 93.45 60.61 64.49 93.45 71.40 34.97 33.88 73.96

By Experimental Condition
GAG-1-PTEG 95.47 58.86 62.70 95.47 72.12 32.68 31.96 72.57

negctrl 93.83 57.62 62.22 93.83 69.69 34.87 33.81 71.96
POL-1-PTEG 92.29 65.90 67.23 92.29 72.62 35.83 34.41 76.63
POL-2-PTEG 99.16 66.57 69.20 99.16 80.60 38.46 38.19 79.84

Table 15: HVTN080 Test set classification results with training-test set scheme 2, within the extended version RTL frame-
work, tuned for FC data analysis.
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Figure 36: HVTN080 Test set classification results with training-test set scheme 2, within the extended version RTL
framework, tuned for FC data analysis. From top left going across, the results from test sets 1-10 are shown followed by a
per set aggregate and a cumulative bar graphs with 95%CI. For each, we demonstrate Accuracy, Detection rate, F1

score

,
Precision, Prevelance, Recall/Sensitivity, and Specificity. The Baseline (tan) result is the direct transfer of the robust means
hyperplane from Algorithm 2. The Alg4 (plum) result is from the baseline hyperplane with the updated bias after Algorithm
4. Finally, Alg6 (green) result is after rotating the hyperplane in Algorithm 6.
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Figure 37: Aggregation of the HVTN080 classification statistics using training-test set scheme 2, with the extended RTL
framework to demonstrate their intrinsic relationships in the context of batch, condition, individual/subject, and timepoint.
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3.6.5 Discussion

To evaluate classification of a clinically valuable immunophenotype compared to manual gating, we utilized the publicly
available HVTN080 dataset. We designed two train/test set schemes to evaluate the performance of the RTL framework
within this FC context. Initially, in scheme 1, the entire HVTN080 (435 FCS files) was randomly sampled to create 10
sets of 20 random FCS files for training and testing samples (400 FCS used per epoch for symmetry and reduction of
sample-bias). Summarized in Figure 29, in our 1 to 1 approach (scheme 1), where each training and test set pair was
used for learning and inference, we found the baseline version of the RTL framework outperforms the extended version.
However, in scheme 2, an ensemble approach was used; the test set was reduced to 50 random samples (instead of
the 200 compared to scheme 1, to reduce the computation time) but the training set size was kept similar to scheme 1.
Thus 10 sets of 20 FCS each, separately were used to learn and make inference on the same 50 sample test set within
the RTL framework. A final call was made by averaging the calls (-1 or +1) where the average of 0 means no call (’NA’).
As expected, the ensemble approach was able to achieve much higher classification statistics (scheme 1 vs scheme 2).
Comparing the two version of the RTL framework, we found that in the context of FC the baseline version outperforms the
extended. We believe the potential etiology of this to be the extended version’s Algorithm 6, where on average the rotation
found reduces the classification accuracy compared to the un-rotated hyperplane of Algorithm 4 as in Figures 32 and 36.
However, this could also be rooted in the potential over-smoothing of the density curves in Algorithm 4 to find the optimal
minima as the classification hyperplane’s bias update. Regardless, from our scheme 2 results, the consequence is higher
classification variance especially with regards to sensitivity and recall.
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4 Classification of cellular subsets/signatures in scRNASeq
In this section we focus on classifying cells quantified transcriptionally by next-generation sequencing technologies (scR-
NASeq).

4.1 Acquisition and pre-processing of scRNASeq data
To evaluate the RTL framework, we utilized two publicly available single-cell RNA-seq datasets where the cell-cycle (G1,
S, and G2M) states of each cell is known a priori ; therefore, the classification goal of interest to be achieved within the
RTL framework is to infer the cell cycle states transcriptionally and compare it to the known labels. These datasets have
been previously used for similar benchmarking applications with 6 classifiers assessed by Scialdone et al. [89]. Specif-
ically, we benchmark the RTL framework on the 182 cell EMTAB2805 data, filtered by their published 40 gene set, used
by their top performing classifiers. Next, we evaluate classification generalizability with the RTL framework by training
on EMTAB2805 and predicting on a similar but separate dataset (GSE42268). We can thus use the F1 � Score and the
macro�averaged F1�Score 14 to compare how well the RTL framework performed across all cell-cycle phases. Next, we
test the effect of several normalization methods on the classification performance within the RTL framework. Finally, by
performing re-sampling, new training and test samples are created where the marginal frequency of each cell cycle label
from EMTAB2805 adjusted to represent a desired rare cell subsets (RCS) down to the defined frequency of 1% of the
total. These experiments were run by conducting K-fold cross-validation, where each round a random set of cells (without
replacement) are withheld for testing; a practical approach when data are scarce [50].

4.1.1 Data sets

A

Figure 38: A. An illustration of the pipeline to create training and test sets from the scRNASeq datasets pre-processed
by Scialdone et al. Once the datasets were reduced by the 405 cell cycle genes, the corresponding normalization (when
specified) is done. A final reduction of the genes is done using either the Scialdone 40-gene set or the top ’N’ genes
identified as described in a previous section. For the internal validation, we conducted 5-fold cross-validation where the
training is done on a combination of 4 folds and inference is done on the left-out fold, which is rotated such that each fold
eventually has been used as the validation fold. For the external validation, we conducted 5-fold cross validation where
the training set is iterated as a combination of 4 of the folds and the inference each time is on the entire 35 cells from the
GSE42268 dataset.

14To make an independent assessment regardless of the number of cells in each cycle in the testing dataset, the average of precision and recall over
all phases will be done before computing the harmonic mean as suggested in [89]
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A) First, we utilize the gene-expression matrix of EMTAB2805 [90] as processed by Scialdone et al. [89]. This pre-
processed EMTAB2805 dataset contains 182 staged moused embryonic stem cells (mESCs), described in [90]; the
marginal distributions are summarized in Table 17. Briefly, cultured Rex1-GFP-expressing mESCs (Rex1-GFP mESCs)
were stained with Hoechst15. FACS identification of three different cell-cycle states was done prior to sequencing. The
sequencing was done using the Fluidigm C1 protocol16. The processed dataset available as a supplemental to [89] has
already passed several quality control checks, removing low-quality cells. For example, cells with an aberrantly low total
sum of counts of all genes and spike-ins 17, i.e, library size, are removed as they are suspect of issues with the capturing of
mRNA to cDNA or the cDNA amplification process. Furthermore, as part of their processing, they normalized this dataset
by two size factors, i.e., the technical size factors estimated using the ERCC spike-in genes as well as the endogenous
size factors using the endogenous genes. We refer to [91] for a detailed description of this process and its assumptions
and limitations. Finally, Scialdone et al. identified 6635 genes with variation above the technical background level (FDR <
0.1).

B) The second dataset used was the Sasagawa Quartz-Seq (GSE42268) [92], the transcriptional profiles of 35 mESC
cells, summarized in Table 20. This dataset alone is not ideal for training machine learning algorithms as it is small and
technical noise cannot be removed as it lacks the use of spike-in controls. However, normalization to remove technical
noise is still possible by using the log-linear fit between the expression mean and the squared coefficient of variation be-
tween the cells. Scialdone et al. provide this normalized data, which identifies 5546 highly variable genes. Furthermore,
compared to the EMTAB2805, there are two major differences: First, the culture condition, specifically the growth media
of the mESC cells are different. Second, the sequencing protocols are different. Both of these factors can have conse-
quential effects on the transcriptional profiles of the cells. This is apparent in our principal component analysis on the
log-transformed gene counts (Figure 39) where the two datasets cluster separately. When we performed rank-based (Fig-
ure 40) or quantile normalization ( 41), we observe that cell cycle is explanatory of the main variance observed in the first
two principal components. Using the log-transformed gene counts compared to the other normalization methods utilized
presents an opportunity to evaluate the hypothesis that a TL classification framework overcomes the need for task-specific
normalization prior to analysis. This hypothesis will be supported if the normalization of the data reduces or has no effect
on the overall classification compared to the log-transformed counts, especially in the context of classifier generalizability.

4.1.2 Rank-based, Quantile, and log Median absolute value normalizations:

Broadly, normalization is a procedure to set a mutual reference between samples [93]. In other words, normalization is
done to correct for systematic variance between two or more samples [94, 95]. In complex transcriptomics experiments,
there are several scopes of unwanted variation [96]. For example, correcting for differences in sequencing depth as well
as other technical sources of variation. Recently, standard procedures are developed for scRNASeq that aid this process
such as using ERCC spike-in controls [44]. However, initially in the context of bulk transcriptomics with microarray and
sequencing technologies, it was shown that normalization can itself affect reproducibility of the results [97, 98, 99]. Specific
to the scRNASeq datasets used herein, Scialdone et al. also demonstrate that the selection of the normalization technique
had a significant effect on their downstream classification 18; highlighting the critical role of normalization for scRNASeq,
especially in the context of classification generalizability. The rank-based normalization is done by Scialdone et al. is
task-specific normalization in the context of the classification task; it is done because despite all efforts there still may be
residual unwanted differences in the distribution of expression matrices between two samples.

As alternative approaches to the methods herein, as well as expanding on the potential landscape of pertinent solutions
to conducting analysis across multiple datasets we highlight that Bacher et al., have recently introduced SCnorm [100] for
"accurate and efficient normalization" of scRNASeq data. For a detailed recent review of challenges and opportunities in
normalizing scRNASeq data we refer to [101]. Finally Wang et al. [102] provide a framework that improves generalizability
of clustering (unsupervised methods) across scRNASeq dataset.

15Invitrogen, Hoechst 33342; optimized for the Rex1-GFP mESC
16C1 Single-Cell Auto Prep System (Fluidigm; 100-7000)
17number of non-zero counts
18Compared to rank-based normalization, when they trained their predictors on the total read count normalized transcriptomics data, the performance

of the respective classifiers decreased
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Specifically in this dissertation, for benchmarking purposes, similar to Scialdone et al’s approach, we utilized the task-
specific rank-based normalization. This will enable the direct comparison of our classifier with those in [89]. As a second
normalization technique, we conducted quantile normalization, commonly utilized in transcriptomics analyses. Quantile
normalization ensures that the distribution of the log-transformed counts to be the same in all the datasets used. Finally,
as a non-ranked based normalization method, we conducted log Median absolute value (logMAV) normalization, such that
the expression of the genes (columns) for each cell (rows) is normalized to the median of that cell’s expression.

A B

C D

Figure 39: Log-transformed, combination of 182 cells from EMTAB2805 with 35 from GSE42268 processed by Scialdone
et al. A Using the starting point 405 cell cycle genes, PCA is done on the combined data and the resulting projections on
the first two principle components are shown relative to the cell cycle states and the origin of cells. B A second similar
PCA, but on the Scialdone 40 gene set. Below them are violin plots of the Scialdone 40 gene set relative to cell cycle C
and origin D.
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Figure 40: Rank-normalized, combination of 182 cells from EMTAB2805 with 35 from GSE42268 processed by Scialdone
et al. A Using the starting point 405 cell cycle genes, PCA is done on the combined data and the resulting projections on
the first two principle components are shown relative to the cell cycle states and the origin of cells. B A second similar
PCA, but on the Scialdone 40 gene set. Below them are violin plots of the Scialdone 40 gene set relative to cell cycle C
and origin D.
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Figure 41: Quantile-normalized, combination of 182 cells from EMTAB2805 with 35 from GSE42268 processed by Scial-
done et al. A Using the starting point 405 cell cycle genes, PCA is done on the combined data and the resulting projections
on the first two principle components are shown relative to the cell cycle states and the origin of cells. B A second similar
PCA, but on the Scialdone 40 gene set. Below them are violin plots of the Scialdone 40 gene set relative to cell cycle C
and origin D.
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Figure 42: Median absolute value normalized, combination of 182 cells from EMTAB2805 with 35 from GSE42268 pro-
cessed by Scialdone et al. A Using the starting point 405 cell cycle genes, PCA is done on the combined data and the
resulting projections on the first two principle components are shown relative to the cell cycle states and the origin of cells.
B A second similar PCA, but on the Scialdone 40 gene set. Below them are violin plots of the Scialdone 40 gene set
relative to cell cycle C and origin D.
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4.1.3 Feature (gene) importance/selection:

1:8 9:16 17:24 25:32 33:40
Plk1 aurka cdc25c tmem2 fzr1
nde1 ckap2l kif23 aurkb cdc20
tex14 h2afx liph cenpn cdc25b
tacc3 bub1b depdc1b ccnf kif11
cenpe lrif1 prc1 kif2c nusap1
smc1b katnb1 rps6kb1 mad1l1 espl1
pbk nus1 ube2c cdca2 gabpb1
ccne1 ccne2 sephs1 papd7 dmc1

Table 16: Scialdone et al.’s identified set of top 40 cell cycle genes; ranked by the loadings on first principle component.

In processing the 182-cell mESCs dataset, Scialdone et al. have identified 6635 variant-genes above technical back-
ground (FDR<0.1). By intersecting this gene set with a curated cell cycle gene set from the Gene Ontology as well as the
CycleBase databases, they found a smaller set of genes, the ’informative cell-cycle markers’. This set is further filtered by
overlapping with it the informative cell-cycle markers found in the separate, but similar dataset (GSE42268) to a achieve
a final set of 405 genes. We utilize their published cell-cycle 405-gene set as our starting point. Specifically, this gene
set is used as the input for the normalization methods (Figure 38). To equally compare the RTL framework with the top
performing classifiers of Scialdone et al.’s, we utilize a smaller 40-gene set, a subset of the 405 cell cycle genes (Table 16)
which they describe in [89].

Although initially, we utilized the Scialdone et al.’s 40-gene set to benchmark and evaluate our implemented methods to the
top predictors demonstrated by Scialdone et al., we asked, if a different and more specific set of genes can be identified
per class label to boost the classification performance within the RTL framework. For our feature selection approach,
we initially conducted ten repeated training/test set splits, for each conducting 10-fold cross-validation classification with
a linear SVM classifier (equivalent to the RTL framework’s Algorithm 1). As described in [103], the importance of each
predictor was determined by computing the area under the curve (AUC) of receiver operating characteristic (ROC) curve.
This approach was done with the varIMP () function from the Caret library [103] which enabled the identification of the
top 50 predictors for each cell cycle label. This reduction from the 405 cell cycle genes significantly reduces the complexity
of our downstream processes and it is supported by previous findings in [90, 89] which separately identify smaller optimal
subsets of the 405 cell cycle genes for the task of computational classification of cell cycle labels. Next, to further refine
our identified top 50 gene lists and obtain the final top ’N’ gene sets, we define a threshold as the lowest mean classifi-
cation sum squared-error (SSE) by iterating classification with linear SVM models (50 epochs); for each cell cycle label,
each epoch classified the top 3 to 50 genes with random set of cells ( 2/3rd of the total, 20 per phase). Altogether, this
procedure was repeated for each normalization scheme described herein. Briefly, we find that the normalization utilized
confounds the sets of genes (Figure 45). In fact, compared to the Scialdone 40 gene set, the top ’N’ gene sets can be
dissimilar (Figure 44), but it is important to note a potential limitation of this approach is that using such specific gene set,
derived from a single source, may reduce generalizability as the classification could be over-fitted to the training set. But
as our results in the next section demonstrate, there is no reduction, in fact, there is an increase in the external validation
classification statistics.
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Figure 43: Unsupervised hierarchical pair-wise clustering with Euclidean distances and the complete linkage agglomer-
ation method in the context of the known cell cycle states.1-4 Log-transformed counts, rank-based normalized, quantile
normalized, and log median absolute value (logMAV) normalization respectively such that the respective normalization is
conducted on the 182 x 405 cell cycle gene set. A. and C. Heat map of the 182 mES cells from EMTAB2805 and B. and
D. with 35 mES cells from GSE42268 such that A and B represent the 40 gene set and C and D represent the 405 cell
cycle gene set.
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Figure 44: Comparing the Top ’N’ genes identified by lowest classification sum-squared error. A boolean (0/1) heatmap
to highlight gene association to specified set. Unsupervised clustering on columns demonstrates hierarchical Euclidean
distance. For counts see Table 26.
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A1 2 3

B1 2 3

C1 2 3

D1 2 3

Figure 45: Identification of top ’N’ genes for each class-label, determined by minimum mean classification summed
squared-error (SSE) with Algorithm 1’s classifier, conducting fifty (50), 10-fold cross-validated runs on the EMTAB2805
data. The ranking from 1-50 is first conducted as described previously by examining the ROC-AUC with a linear SVM.
Then for each run, starting with top 3 genes as the minimum number of genes to the 50th ranked gene, SSE is computed.
A Log-transformed baseline. B Rank-normalized. C Quantile-normalized.D Median absolute value (MAV) normalized.
Alternatively, an ’elbow’ can be identified instead of the minimum SSE to identify top N genes per class, as shown heuris-
tically on the first row of graphs.
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4.1.4 High-dimensionality and the need for multiple trained hyperplanes:

To be able to run high-dimensional data such as the 182 cell by 405 gene matrix in K-fold cross-validated runs of the RTL
framework, a modified approach to the original algorithm is required. This is because in Algorithm 2, to compute the robust
mean and covariance matrix of the trained hyperplanes from Algorithm 1, we require twice as many trained hyperplanes
than the number of features under consideration. This requirement is directly associated with the current implementation
that utilizes the HuberPairwise function from the GSE package for this task. As a standard approach to K-fold cross-
validation in the context of the RTL framework, in Algorithm 1, each training K-fold is used to obtain a single hyperplane
(i.e., a total of 9 hyperplanes if K=10). Next, Algorithm 2 finds the robust mean and covariance of the training hyperplanes.
To overcome this limitation, we have implemented a sampling strategy yielding twice as many samples as input-features;
each sample contains a random and non-duplicated 60% of all examples; producing slightly variant hyperplanes per
sample during training. Naturally, as the number features increases, so does the number of samples needed and the
likelihood that two identical samples are retrieved; problematic for downstream calculations. Another possible approach
is up/over-sampling i.e., re-sampling with replacement. However, since the gene sets used herein have a maximum of 50
features, our primary approach (random samples without replacement) is appropriate with lower computational complexity.

4.2 Classification results of cell cycle state in scRNASeq data with the RTL framework
To validate and benchmark the RTL framework we conducted an equivalent classification in comparison to the top per-
forming algorithms reported in [89]; requiring parallel pre-processing to reach the final 40 gene set used (Table 16). The
results reported are split based on several investigative criteria: As described previously, we first developed and adapted
a baseline implementation of the RTL framework based on a previously published algorithm for classifying immunophe-
notypes in flow-cytometry, to classify transcriptional signatures in scRNASeq. Next, we implemented an overhaul of 3 of
the modules (algorithms 4, 5, and 6) in an extended version (Alg4-Alg5-Alg6 V2.0) to improve the overall robustness in
transfering the classification inference to the test set to make an adapted inference. Finally, we have introduced a new
feature, the AUD-based parameter transfer (PT, equation 33), specifically to improve the classification in the context of
rare cellular subsets (RCS). The final call is made by leveraging the stochastic nature of the RTL framework’s internal
algorithms (such as the gradient descent) by conducting repeated epochs (N=25) of 5-fold cross-validation to obtain the
probability of each cell’s association to the three class labels; the highest probability defines the final call, but to break
ties, as oppose to a no-call, the priority scheme G1>G2M>S was used. This priority scheme is partially based on the
PCA analysis of the training set (Figure 39) where we observed that the G1 cells (green) are clearly the most distinct
cluster, and mostly overlap with the G2M cells. Similarly, the G2M and the S-phase cells mostly overlap; depending on
the normalization, they may even represent a single cluster. Furthermore, previous publication on the EMTAB2805 data
suggests that the S phase cells are the most difficult to classify. Combined the G1>G2M>S scheme ensures that when a
’S-phase’ call is made, it is with high precision.
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Figure 46: General scheme of conducting N (25) repeated K (5) fold cross-validation runs to compute each cell’s prob-
ability to be classified to each of the class labels. In the external validation described below, the validation set shown is
replaced with the test set of interest.

4.2.1 Internal Validation of the RTL framework with EMTAB2805:

Cell cycle N Freq%

S 58 31.9%
G1 59 32.4%
G2M 65 35.7%
Total 182 100.0%

Table 17: EMTAB2805 dataset

The baseline implementation of algorithms 4 and 6 require defining respective margins. Visualized as a boundary around
a hyperplane, the margins in the specified algorithms are used as means to count mapped events that fall within in them;
larger margins, effectively smooth over the minima that needs to be identified by a gradient descent algorithm and the
smaller the margin we observe higher likelihood of multiple local minimas. Before we initiated classification within the
RTL framework with the baseline version, it was necessary to find the optimal parameterization for these two key param-
eters. For each margin, we evaluated the classification results with two criteria: First, the classification sum squared-error
(Equation 32) adapted for K-fold cross-validation with Equation 31 as in [50] was used. Second, a qualitative evaluation
of the resulting density curves of the mappings from each algorithm i.e., ŷ to visually verify the existence of a minima in
the density curve which should be found by a gradient descent algorithm. We identified the optimal values can change
based on the normalization procedure; for the rank-based normalization (Alg4

margin

⇡ 0.1 and Alg6
margin

⇡ 0.4) versus
the other settings including the log-transformed counts (Alg4

margin

⇡ 0.5 and Alg6
margin

⇡ 0.7). This was done by con-
ducting 5-fold cross-validation across a pair-wise matrix of pre-set values (Alg4

margin

and Alg6
margin

2 (0, 1] step 0.1);
these values obtained on the training set are used for all downstream respective analyses when utilizing the baseline RTL
implementation.

Finding the optimal K for cross-validation. Using the rank normalized EMTAB2805 182 cells by 405 gens dataset, filtered
by the reduced 40-gene set, we computed the test set classification results obtained by K-fold cross-validation with K=3,
5, and 10. We chose ’K=5’ as the optimal value for downstream classification attempts since the 5-folds hold a reasonably
size representative sample to avoid concerns pertaining over-fitting. Additionally, the high accuracy and F1

score

achieved
(Table 18) supports this selection. We also found that in this context, the baseline version performs with slightly higher
precision, specificity, and recall.
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Evaluating the effects of normalization on classification with the RTL framework. To observe the normalization effects
on classification, we report the results of similar runs to the 5-fold CV runs with the rank-based normalization as well
as two other methods compared to the log-transformed counts. This evaluation is done with the baseline and extended
implementations of the RTL framework reported in Table 19 combined with Table 18-B and E. Initially, we observe the high-
est average F1

score

pertains too the log-median-absolute-value normalized samples using the baseline implementation
(F1

score

= 0.91). In the equivalent run with the extended implementation, lower specificity, precision, recall, and accuracy
are found. As a case example, we examine the etiology of in Figure 47 for the G1 cells. The main difference we observe is
that in updating the bias, the extended Algorithm 4 has found the optimal minima approximately at 0.1, whereas the base-
line version has found the optima at -0.5; this difference explains the difference in recall (36% vs. 83% respectively). The
associated outputs of Algorithm 6, are as expect. A broad takeaway from these results is that task-specific normalization
can confound the classification results with the RTL framework; thus the selection or lack of task-specific normalization
prior to classification with the RTL framework is important to evaluate on a given training set.

Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation:

A = Rank normalized, K=3
Class: G1 0.76 0.66 1.00 0.80 0.32 0.32 0.49 0.88

Class: G2M 0.89 0.82 0.89 0.85 0.36 0.32 0.39 0.89
Class: S 0.98 0.86 0.33 0.48 0.32 0.10 0.12 0.65
Average 0.87 0.78 0.74 0.71 0.33 0.25 0.33 0.81

Accuracy Accuracy Lower CI Accuracy Upper CI
0.75 0.68 0.81

B = A w/ K=5
Class: G1 0.78 0.69 1.00 0.81 0.32 0.32 0.47 0.89

Class: G2M 0.87 0.80 0.92 0.86 0.36 0.33 0.41 0.90
Class: S 0.98 0.90 0.33 0.48 0.32 0.10 0.12 0.66
Average 0.88 0.80 0.75 0.72 0.33 0.25 0.33 0.81

Accuracy Accuracy Lower CI Accuracy Upper CI
0.76 0.69 0.82

C = A w/ K=10
Class: G1 0.85 0.76 1.00 0.86 0.32 0.32 0.43 0.92

Class: G2M 0.84 0.77 0.98 0.86 0.36 0.35 0.46 0.91
Class: S 1.00 1.00 0.36 0.53 0.32 0.12 0.12 0.68
Average 0.89 0.84 0.78 0.75 0.33 0.26 0.33 0.84

Accuracy Accuracy Lower CI Accuracy Upper CI
0.79 0.72 0.85

Results w/ RTL Alg4-Alg5-Alg6 V2.0 extended version:
D = A

Class: G1 0.90 0.80 0.83 0.82 0.32 0.27 0.34 0.87
Class: G2M 0.74 0.67 0.97 0.79 0.36 0.35 0.52 0.85

Class: S 0.94 0.70 0.33 0.45 0.32 0.10 0.15 0.63
Average 0.86 0.73 0.71 0.69 0.33 0.24 0.33 0.78

Accuracy Accuracy Lower CI Accuracy Upper CI
0.72 0.65 0.78

E = B
Class: G1 0.89 0.80 0.88 0.84 0.32 0.29 0.36 0.89

Class: G2M 0.69 0.64 0.98 0.78 0.36 0.35 0.55 0.84
Class: S 0.98 0.82 0.24 0.37 0.32 0.08 0.09 0.61
Average 0.85 0.75 0.70 0.66 0.33 0.24 0.33 0.78

Accuracy Accuracy Lower CI Accuracy Upper CI
0.71 0.64 0.78

F = C
Class: G1 0.85 0.74 0.92 0.82 0.32 0.30 0.40 0.88

Class: G2M 0.70 0.65 0.98 0.78 0.36 0.35 0.54 0.84
Class: S 0.98 0.70 0.12 0.21 0.32 0.04 0.05 0.55
Average 0.84 0.70 0.67 0.60 0.33 0.23 0.33 0.76

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.61 0.75

Table 18: Test set classification results to determine optimal ’K=5’ for K-fold cross-validation in the RTL framework. Cells
are from EMTAB2805 filtered by the 405 cell cycle genes, rank-normalized, and further filtered by the Scialdone et al.’s 40
genes. Multiple (25) cross-validated runs per class label are used to determine the probability of each cell’s association to
each label; the highest probability was chosen as the final call. A-C Baseline RTL implementation and D-F classification
with the RTL framework with the extended Alg4, Alg5, and Alg6 modules i.e., Alg4-Alg5-Alg6 V2.0.
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, K=5:

A = Log counts, w/o PT
Class: G1 0.91 0.84 0.97 0.90 0.32 0.31 0.37 0.94

Class: G2M 0.89 0.82 0.94 0.88 0.36 0.34 0.41 0.91
Class: S 0.96 0.88 0.60 0.71 0.32 0.19 0.22 0.78
Average 0.92 0.85 0.84 0.83 0.33 0.28 0.33 0.88

Accuracy Accuracy Lower CI Accuracy Upper CI
0.84 0.78 0.89

B = A w/ log median absolute value normalized
Class: G1 0.98 0.96 0.83 0.89 0.32 0.27 0.28 0.91

Class: G2M 0.95 0.91 0.95 0.93 0.36 0.34 0.37 0.95
Class: S 0.93 0.86 0.93 0.89 0.32 0.30 0.35 0.93
Average 0.95 0.91 0.91 0.91 0.33 0.30 0.33 0.93

Accuracy Accuracy Lower CI Accuracy Upper CI
0.91 0.85 0.94

C = A w/ quantile normalized
Class: G1 0.89 0.80 0.97 0.88 0.32 0.31 0.39 0.93

Class: G2M 0.82 0.75 0.97 0.85 0.36 0.35 0.46 0.89
Class: S 0.98 0.89 0.41 0.56 0.32 0.13 0.15 0.69
Average 0.89 0.81 0.78 0.76 0.33 0.26 0.33 0.84

Accuracy Accuracy Lower CI Accuracy Upper CI
0.79 0.72 0.85

Results w/ RTL Alg4-Alg5-Alg6 V2.0 extended version, K=5:
D = A

Class: G1 0.93 0.86 0.97 0.91 0.32 0.31 0.36 0.95
Class: G2M 0.78 0.71 0.97 0.82 0.36 0.35 0.49 0.87

Class: S 0.98 0.89 0.41 0.56 0.32 0.13 0.15 0.69
Average 0.89 0.82 0.78 0.76 0.33 0.26 0.33 0.84

Accuracy Accuracy Lower CI Accuracy Upper CI
0.79 0.72 0.85

E = B
Class: G1 1.00 1.00 0.36 0.53 0.32 0.12 0.12 0.68

Class: G2M 0.86 0.77 0.85 0.81 0.36 0.30 0.39 0.85
Class: S 0.73 0.62 0.97 0.76 0.32 0.31 0.49 0.85
Average 0.86 0.80 0.72 0.70 0.33 0.24 0.33 0.79

Accuracy Accuracy Lower CI Accuracy Upper CI
0.73 0.65 0.79

F = C
Class: G1 0.87 0.78 0.98 0.87 0.32 0.32 0.41 0.93

Class: G2M 0.81 0.74 0.95 0.83 0.36 0.34 0.46 0.88
Class: S 0.98 0.88 0.36 0.51 0.32 0.12 0.13 0.67
Average 0.89 0.80 0.77 0.74 0.33 0.26 0.33 0.83

Accuracy Accuracy Lower CI Accuracy Upper CI
0.77 0.71 0.83

Table 19: Test set classification results to evaluate the effects of normalization on classification with the RTL framework.
Cells are from EMTAB2805 filtered by the 405 cell cycle genes, normalized as stated, and further filtered by the Scialdone
et al.’s 40 genes. Multiple (25) 5-fold cross-validated runs per class label are used to determine the probability of each
cell’s association to each label; the highest probability was chosen as the final call. A-C Baseline RTL implementation and
D-F classification with the RTL framework with the extended Alg4, Alg5, and Alg6 modules i.e., Alg4-Alg5-Alg6 V2.0.
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A.1 A.2

B.1 B.2

C

Figure 47: Case example forensics to compare the baseline and extended versions of the RTL framework. A.1 The
mapped results from the baseline version of Algorithm 4 and A.2 the extended version. B.1 and B.2 are the respective
outputs from Algorithm 6. C Illustration of the specific approach of the extended Algorithm 4 bias update where the
density-curve, its first and inverse of second derivatives are used to make a robust final call.
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4.2.2 External Validation with GSE42268:

Cell cycle N Freq%

S 7 20.0%
G1 20 57.1%
G2M 8 22.9%
Total 35 100.0%

Table 20: GSE42268 dataset

Evaluating generalizability in the context of normalization. We trained on the 182 cell by 40 gene EMTAB2805 dataset
and transferred the classifying hyperplane to the 35 mESC of GSE42268 filtered by the 40-gene set; running multiple
(25), 5-fold cross-validated epochs. This was done with the previously identified optimal parameters for Alg4 and Alg 6
margins on the training set when the baseline implementation was tested. Overall, the extensions (Alg4-Alg5-Alg6 V2.0)
demonstrated slightly higher accuracy and average F1

score

. The best classification statistics were achieved in the context
of quantile normalization and the log-transformed counts. Finally, unlike in the internal validation results, here logMAV
normalization resulted in the bottom two classification attempts (Table 21-B and F).
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, w/o PT, K=5:

A = Log counts
Class: G1 0.93 0.93 0.70 0.80 0.57 0.40 0.43 0.82

Class: G2M 0.67 0.44 0.88 0.58 0.23 0.20 0.46 0.77
Class: S 0.93 0.50 0.29 0.36 0.20 0.06 0.11 0.61
Average 0.84 0.62 0.62 0.58 0.33 0.22 0.33 0.73

Accuracy Accuracy Lower CI Accuracy Upper CI
0.66 0.48 0.81

B = A w/ log median absolute value normalized
Class: G1 0.80 0.70 0.35 0.47 0.57 0.20 0.29 0.57

Class: G2M 0.81 0.00 0.00 0.00 0.23 0.00 0.14 0.41
Class: S 0.39 0.15 0.43 0.22 0.20 0.09 0.57 0.41
Average 0.67 0.28 0.26 0.23 0.33 0.10 0.33 0.46

Accuracy Accuracy Lower CI Accuracy Upper CI
0.29 0.15 0.46

C = A w/ quantile normalized
Class: G1 1.00 1.00 0.65 0.79 0.57 0.37 0.37 0.82

Class: G2M 0.59 0.42 1.00 0.59 0.23 0.23 0.54 0.80
Class: S 0.93 0.33 0.14 0.20 0.20 0.03 0.09 0.54
Average 0.84 0.58 0.60 0.53 0.33 0.21 0.33 0.72

Accuracy Accuracy Lower CI Accuracy Upper CI
0.63 0.45 0.79

D = A w/ rank normalized
Class: G1 1.00 1.00 0.75 0.86 0.57 0.43 0.43 0.88

Class: G2M 0.59 0.42 1.00 0.59 0.23 0.23 0.54 0.80
Class: S 1.00 1.00 0.14 0.25 0.20 0.03 0.03 0.57
Average 0.86 0.81 0.63 0.57 0.33 0.23 0.33 0.75

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.51 0.83

Results w/ RTL Alg4-Alg5-Alg6 V2.0 extended version, w/o PT, K=5:
E = A

Class: G1 0.93 0.94 0.75 0.83 0.57 0.43 0.46 0.84
Class: G2M 0.70 0.47 0.88 0.61 0.23 0.20 0.43 0.79

Class: S 0.93 0.50 0.29 0.36 0.20 0.06 0.11 0.61
Average 0.86 0.63 0.64 0.60 0.33 0.23 0.33 0.75

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.51 0.83

F = B
Class: G1 1.00 1.00 0.20 0.33 0.57 0.11 0.11 0.60

Class: G2M 0.78 0.00 0.00 0.00 0.23 0.00 0.17 0.39
Class: S 0.25 0.16 0.57 0.25 0.20 0.11 0.71 0.41
Average 0.68 0.39 0.26 0.19 0.33 0.08 0.33 0.47

Accuracy Accuracy Lower CI Accuracy Upper CI
0.23 0.10 0.40

G = C
Class: G1 0.87 0.88 0.75 0.81 0.57 0.43 0.49 0.81

Class: G2M 0.70 0.47 0.88 0.61 0.23 0.20 0.43 0.79
Class: S 0.96 0.67 0.29 0.40 0.20 0.06 0.09 0.62
Average 0.84 0.67 0.64 0.61 0.33 0.23 0.33 0.74

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.51 0.83

H = D
Class: G1 0.73 0.80 0.80 0.80 0.57 0.46 0.57 0.77

Class: G2M 0.81 0.58 0.88 0.70 0.23 0.20 0.34 0.84
Class: S 0.93 0.33 0.14 0.20 0.20 0.03 0.09 0.54
Average 0.83 0.57 0.61 0.57 0.33 0.23 0.33 0.72

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.51 0.83

Table 21: External validation test set classification results within the RTL framework. Cells for training are from
EMTAB2805, the test set cells are from GSE42268 filtered by the Scialdone et al.’s 40 genes. Multiple (25) 5-fold cross-
validated runs per class label are used to determine the probability of each cell’s association to each label; the highest
probability was chosen as the final call. A-D Baseline RTL implementation and E-H classification with the RTL framework
with the extended Alg4, Alg5, and Alg6 modules i.e., Alg4-Alg5-Alg6 V2.0.

4.2.3 Classification of rare cellular subsets (RCS):

In silico RCS evaluation with EMTAB2805. Because of the small sample size, down-sampling the positive class to repre-
sent a marginal frequency of 1% or lower was not feasible, thus we up-sampled the negative class (Figure 48). Using the
40-gene set for parallel benchmarking to our prior results, we focused on the classification of rare cellular subsets (RCS) by
conducting multiple (25) K-fold cross-validation runs with the RTL framework on our In silico re-sampled dataset. Because
of the up-sampling, the calls made on the multiple examples of the same cell(s) within each sample were averaged within
an epoch. The accumulated result over multiple epochs (25) were used to obtain the probability of each cell being labeled
as the positive class for each of the respective cell cycle labels. In other words, because each cell cycle label represents a
specific signature, unlike in the non-RCS context, the final call is not made by combining the probabilities to determine the
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Figure 48: Total cells in the final RCS in silico sampling methodsA. Negative subset sampled with replacement and
combined with entire positive class (i.e., the negative subset is up-sampled). B. The positive class is down-sampled per
class label to define rare cellular subsets (RCS); defined thresholds (e.g. 20-1% of total cells) illustrate feasibility at various
marginal frequencies.

highest probability of a given cell to a specific label. Rather, individually for each label, the probability of being associated
with that label is determined by being called as such in more than 50% of the K-fold cross-validation runs. As before,
we first compare the baseline and extended versions of the RTL framework (without parameter transfer i.e., AUD-PT) as
reported in Table 22. Briefly, we observe that the baseline implementation performs well, even with RCS down to 1% of
the total. Without AUD-PT, the extended version has poor recall, but better precision than the baseline implementation
suggesting the extensions yield bias in this regard.

Figure 49: A visualization of the re-sampling procedure to create a desired marginal frequency per class label.
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, w/o PT, K=3:

A (1%) = rank normalized
Class: G1 0.99 0.47 1.00 0.64 0.01 0.01 0.02 0.99

Class: G2M 0.99 0.63 0.98 0.77 0.01 0.01 0.02 0.99
Class: S 0.99 0.42 0.72 0.53 0.01 0.01 0.02 0.86
Average 0.99 0.51 0.90 0.65 0.01 0.01 0.02 0.95

Accuracy Accuracy Lower CI Accuracy Upper CI
0.99 0.99 0.99

B (5%) = rank normalized
Class: G1 0.95 0.47 1.00 0.64 0.04 0.04 0.09 0.97

Class: G2M 0.97 0.60 0.98 0.75 0.05 0.05 0.08 0.98
Class: S 0.96 0.44 0.71 0.54 0.04 0.03 0.07 0.83
Average 0.96 0.50 0.90 0.64 0.04 0.04 0.08 0.93

Accuracy Accuracy Lower CI Accuracy Upper CI
0.96 0.94 0.97

C (10%) = rank normalized
Class: G1 0.90 0.48 1.00 0.64 0.08 0.08 0.17 0.95

Class: G2M 0.93 0.59 0.98 0.74 0.09 0.09 0.15 0.96
Class: S 0.93 0.52 0.79 0.63 0.08 0.06 0.13 0.86
Average 0.92 0.53 0.93 0.67 0.09 0.08 0.15 0.92

Accuracy Accuracy Lower CI Accuracy Upper CI
0.92 0.90 0.94

Results w/ RTL Alg4-Alg5-Alg6 V2.0 extended version, w/o PT, K=3:
D (1%) = A
Class: G1 1.00 0.64 0.98 0.78 0.01 0.01 0.01 0.99

Class: G2M 0.99 0.50 1.00 0.67 0.01 0.01 0.02 1.00
Class: S 0.99 0.46 0.76 0.57 0.01 0.01 0.01 0.88
Average 0.99 0.54 0.91 0.67 0.01 0.01 0.02 0.95

Accuracy Accuracy Lower CI Accuracy Upper CI
0.99 0.99 0.99

E (5%) = B
Class: G1 0.99 0.82 0.86 0.84 0.04 0.04 0.05 0.93

Class: G2M 0.95 0.52 0.98 0.68 0.05 0.05 0.09 0.97
Class: S 0.96 0.44 0.76 0.56 0.04 0.03 0.07 0.86
Average 0.97 0.59 0.87 0.69 0.04 0.04 0.07 0.92

Accuracy Accuracy Lower CI Accuracy Upper CI
0.96 0.95 0.97

F (10%) = C
Class: G1 1.00 1.00 0.25 0.41 0.08 0.02 0.02 0.63

Class: G2M 1.00 0.96 0.75 0.84 0.09 0.07 0.07 0.88
Class: S 1.00 0.90 0.16 0.26 0.08 0.01 0.01 0.58
Average 1.00 0.95 0.39 0.50 0.09 0.03 0.04 0.69

Accuracy Accuracy Lower CI Accuracy Upper CI
0.95 0.93 0.96

Table 22: Classifying rare cellular subsets (RCS) using EMTAB2805 without density-based parameter transfer (PT). Cells
are from EMTAB2805 filtered by the 405 cell cycle genes, normalized as stated, and further filtered by the Scialdone et
al.’s 40 genes. Separately, multiple (25) 5-fold cross-validated runs per class label are used to determine the probability
of each cell’s association to each label in the context RCS. That is, the negative class is re-sampled without replacement
as described earlier, to produce the specified marginal frequency of the positive class (i.e., 1, 5, and 10% of total).
Classification is reported as 1-vs-rest scheme.
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, w PT, K=3:

A (1%) = rank normalized
Class: G1 1.00 0.68 0.98 0.81 0.01 0.01 0.01 0.99

Class: G2M 1.00 0.77 0.95 0.85 0.01 0.01 0.01 0.98
Class: S 1.00 0.56 0.53 0.55 0.01 0.00 0.01 0.77
Average 1.00 0.67 0.82 0.73 0.01 0.01 0.01 0.91

Accuracy Accuracy Lower CI Accuracy Upper CI
0.99 0.99 1.00

B (5%) = rank normalized
Class: G1 0.97 0.61 1.00 0.76 0.04 0.04 0.07 0.99

Class: G2M 0.97 0.62 0.98 0.76 0.05 0.05 0.08 0.98
Class: S 0.98 0.64 0.60 0.62 0.04 0.03 0.04 0.79
Average 0.98 0.62 0.86 0.71 0.04 0.04 0.06 0.92

Accuracy Accuracy Lower CI Accuracy Upper CI
0.97 0.96 0.98

C (10%) = rank normalized
Class: G1 0.96 0.69 1.00 0.81 0.08 0.08 0.12 0.98

Class: G2M 0.93 0.60 0.98 0.74 0.09 0.09 0.15 0.96
Class: S 0.93 0.48 0.69 0.56 0.08 0.06 0.12 0.81
Average 0.94 0.59 0.89 0.71 0.09 0.08 0.13 0.92

Accuracy Accuracy Lower CI Accuracy Upper CI
0.94 0.92 0.95

Results w/ RTL Alg4-Alg5-Alg6 V2.0 extended version, w PT, K=3:
D (1%) = A
Class: G1 1.00 1.00 0.39 0.56 0.01 0.00 0.00 0.69

Class: G2M 1.00 0.88 0.91 0.89 0.01 0.01 0.01 0.95
Class: S 1.00 0.91 0.17 0.29 0.01 0.00 0.00 0.59
Average 1.00 0.93 0.49 0.58 0.01 0.00 0.01 0.74

Accuracy Accuracy Lower CI Accuracy Upper CI
0.99 0.99 1.00

E (5%) = B
Class: G1 1.00 1.00 0.27 0.43 0.04 0.01 0.01 0.64

Class: G2M 1.00 0.94 0.72 0.82 0.05 0.03 0.04 0.86
Class: S 1.00 1.00 0.14 0.24 0.04 0.01 0.01 0.57
Average 1.00 0.98 0.38 0.50 0.04 0.02 0.02 0.69

Accuracy Accuracy Lower CI Accuracy Upper CI
0.97 0.96 0.98

F (10%) = C
Class: G1 1.00 1.00 0.15 0.26 0.08 0.01 0.01 0.58

Class: G2M 1.00 1.00 0.51 0.67 0.09 0.05 0.05 0.75
Class: S 1.00 0.94 0.26 0.41 0.08 0.02 0.02 0.63
Average 1.00 0.98 0.31 0.45 0.09 0.03 0.03 0.65

Accuracy Accuracy Lower CI Accuracy Upper CI
0.94 0.92 0.96

Table 23: Classifying rare cellular subsets (RCS) using EMTAB2805 with density-based parameter transfer (PT) such that
PT = (freq=p(class

G1, G2M, or S

|X
train

) + ✏). Cells are from EMTAB2805 filtered by the 405 cell cycle genes, normalized
as stated, and further filtered by the Scialdone et al.’s 40 genes. Separately, multiple (25) 3-fold cross-validated runs per
class label are used to determine the probability of each cell’s association to each label in the context RCS. That is, the
negative class is re-sampled without replacement as described earlier, to produce the specified marginal frequency of the
positive class (i.e., 1, 5, and 10% of total). Classification is reported as 1-vs-rest scheme.
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4.2.4 AUD-based parameter transfer (PT) in a non-RCS setting

A

Figure 50: An illustration of the AUD-based parameter transfer (PT). From the training set the marginal frequency of the
positive class is obtained with an added random error to account for the differences between the testing and training sets.
The reduction of the search space aids the gradient decent algorithm in finding the optimal low-density minima.

we tested the marginal frequency of the positive class learned during training for either RTL versions would improve
the overall classification (Table 24). AUD-PT (PT for short) was originally conceived and implemented to overcome the
limitations associated with classifying RCS, discussed in an earlier section. When this optimization was applied to the
classification in this non-RCS setting, no major changes were observed to the overall accuracy or the average F1

score

, im-
plying that the original classification calls were optimal relative to the underlying data. But in the RCS mode, as expected,
we observe an overall boost to precision, recall, and thus the F1

score

. In fact, the best performance for each frequency
tested i.e., 1, 5, and 10% was the baseline implementation with AUD-PT.

Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, w/ PT, K=5:

A = rank normalized
Class: G1 0.82 0.73 1.00 0.84 0.32 0.32 0.45 0.91

Class: G2M 0.86 0.79 0.95 0.87 0.36 0.34 0.43 0.91
Class: S 1.00 1.00 0.40 0.57 0.32 0.13 0.13 0.70
Average 0.89 0.84 0.78 0.76 0.33 0.26 0.33 0.84

Accuracy Accuracy Lower CI Accuracy Upper CI
0.79 0.72 0.85

Results w/ RTL extended version, w/ PT, K=5:
A = rank normalized

Class: G1 0.93 0.84 0.71 0.77 0.32 0.23 0.27 0.82
Class: G2M 0.72 0.66 0.98 0.79 0.36 0.35 0.53 0.85

Class: S 0.87 0.54 0.33 0.41 0.32 0.10 0.19 0.60
Average 0.84 0.68 0.67 0.66 0.33 0.23 0.33 0.76

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.61 0.75

Table 24: Parallel classification to the internal validation using EMTAB2805, but with density-based parameter transfer (PT)
such that PT = (freq=p(class

G1, G2M, or S

|X
train

) + ✏). Only rank-based normalization shown for equivalent comparison.
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Accuracy
Results w/ RTL baseline implementation, w/ PT, K=5:

A = rank normalized
Class: G1 0.93 0.93 0.70 0.80 0.57 0.40 0.43 0.82

Class: G2M 0.70 0.50 1.00 0.67 0.23 0.23 0.46 0.85
Class: S 0.93 0.50 0.29 0.36 0.20 0.06 0.11 0.61
Average 0.86 0.64 0.66 0.61 0.33 0.23 0.33 0.76

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.51 0.83

Results w/ RTL extended version, w/ PT, K=5:
A = rank normalized

Class: G1 0.73 0.80 0.80 0.80 0.57 0.46 0.57 0.77
Class: G2M 0.89 0.67 0.75 0.71 0.23 0.17 0.26 0.82

Class: S 0.89 0.50 0.43 0.46 0.20 0.09 0.17 0.66
Average 0.84 0.66 0.66 0.66 0.33 0.24 0.33 0.75

Accuracy Accuracy Lower CI Accuracy Upper CI
0.71 0.54 0.85

Table 25: Parallel classification to the external validation using EMTAB2805 (training) and GSE42268 (testing), but with
density-based parameter transfer (PT) such that PT = (freq=p(class

G1, G2M, or S

|X
train

) + ✏). Only rank-based normal-
ization shown for equivalent comparison.

4.2.5 Classification with an alternate set of genes/features:

Top ’N’ identified gene sets Length of gene set
1- S-phase Rank Norm 45.00
2- G1-phase Rank Norm 48.00
3- G2M-phase Rank Norm 27.00
4- S-phase Log counts 49.00
5- G1-phase Log counts 29.00
6- G2M-phase Log counts 8.00
7- S-phase Log MAV Norm 44.00
8- G1-phase Log MAV Norm 18.00
9- G2M-phase Log MAV Norm 47.00
10- S-phase Quant Norm 48.00
11- G1-phase Quant Norm 35.00
12- G2M-phase Quant Norm 14.00
13- Scialdone 40 gene set 40.00

Table 26: Gene sets (13) and their lengths
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Ensemble Gene ID Gene Symbol Name N times Genes in sets (n/13)
ENSMUSG00000049932 H2afx 11.00
ENSMUSG00000038943 Prc1 9.00
ENSMUSG00000032254 Kif23 9.00
ENSMUSG00000030867 Plk1 8.00
ENSMUSG00000001403 Ube2c 8.00
ENSMUSG00000041431 Ccnb1 8.00
ENSMUSG00000027306 Nusap1 8.00
ENSMUSG00000006398 Cdc20 8.00
ENSMUSG00000027496 Aurka 7.00
ENSMUSG00000037313 Tacc3 7.00
ENSMUSG00000072082 Ccnf 7.00
ENSMUSG00000024754 Tmem2 6.00
ENSMUSG00000027469 Tpx2 6.00
ENSMUSG00000020235 Fzr1 6.00
ENSMUSG00000045328 Cenpe 6.00
ENSMUSG00000044201 Cdc25c 5.00
ENSMUSG00000048327 Ckap2l 5.00
ENSMUSG00000010342 Tex14 5.00
ENSMUSG00000044626 Liph 5.00
ENSMUSG00000031787 Katnb1 5.00
ENSMUSG00000021250 Fos 4.00
ENSMUSG00000022945 Chaf1b 4.00
ENSMUSG00000028583 Pdpn 4.00
ENSMUSG00000015839 Nfe2l2 4.00
ENSMUSG00000022432 Smc1b 4.00
ENSMUSG00000058290 Espl1 4.00
ENSMUSG00000001517 Foxm1 4.00
ENSMUSG00000064302 Clasp1 4.00
ENSMUSG00000027330 Cdc25b 4.00
ENSMUSG00000048922 Cdca2 4.00
ENSMUSG00000034575 Papd7 4.00
ENSMUSG00000021697 Depdc1b 4.00
ENSMUSG00000024087 Cyp1b1 3.00
ENSMUSG00000052087 Rgs14 3.00
ENSMUSG00000052560 Cpne8 3.00
ENSMUSG00000063065 Mapk3 3.00
ENSMUSG00000020745 Pafah1b1 3.00
ENSMUSG00000025077 Dclre1a 3.00
ENSMUSG00000031392 Irak1 3.00
ENSMUSG00000034154 Ino80 3.00
ENSMUSG00000063358 Mapk1 3.00
ENSMUSG00000078652 Psme3 3.00
ENSMUSG00000033713 Foxn3 3.00
ENSMUSG00000029554 Mad1l1 3.00
ENSMUSG00000028678 Kif2c 3.00
ENSMUSG00000031756 Cenpn 3.00
ENSMUSG00000022033 Pbk 3.00
ENSMUSG00000040084 Bub1b 3.00
ENSMUSG00000023150 Ivns1abp 3.00
ENSMUSG00000020516 Rps6kb1 3.00

Table 27: Genes in more than 2 gene sets (out of 13 as in Table 26)
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, w/ PT, K=5:

A = Log counts
Class: G1 0.98 0.95 0.97 0.96 0.32 0.31 0.33 0.97

Class: G2M 0.96 0.93 0.97 0.95 0.36 0.35 0.37 0.96
Class: S 0.98 0.94 0.88 0.91 0.32 0.28 0.30 0.93
Average 0.97 0.94 0.94 0.94 0.33 0.31 0.33 0.95

Accuracy Accuracy Lower CI Accuracy Upper CI
0.94 0.89 0.97

B = A w/ log median absolute value normalized
Class: G1 1.00 1.00 0.88 0.94 0.32 0.29 0.29 0.94

Class: G2M 0.97 0.95 0.97 0.96 0.36 0.35 0.36 0.97
Class: S 0.93 0.86 0.95 0.90 0.32 0.30 0.35 0.94
Average 0.97 0.94 0.93 0.93 0.33 0.31 0.33 0.95

Accuracy Accuracy Lower CI Accuracy Upper CI
0.93 0.89 0.97

C = rank normalized
Class: G1 0.91 0.83 0.93 0.88 0.32 0.30 0.36 0.92

Class: G2M 0.96 0.93 0.97 0.95 0.36 0.35 0.37 0.96
Class: S 0.97 0.92 0.76 0.83 0.32 0.24 0.26 0.86
Average 0.95 0.89 0.89 0.89 0.33 0.30 0.33 0.92

Accuracy Accuracy Lower CI Accuracy Upper CI
0.89 0.84 0.93

Results w/ RTL extended version, w/ PT, K=5:
A = Log counts

Class: G1 0.97 0.93 0.95 0.94 0.32 0.31 0.33 0.96
Class: G2M 0.70 0.64 0.97 0.77 0.36 0.35 0.54 0.84

Class: S 0.98 0.88 0.36 0.51 0.32 0.12 0.13 0.67
Average 0.88 0.82 0.76 0.74 0.33 0.26 0.33 0.82

Accuracy Accuracy Lower CI Accuracy Upper CI
0.77 0.70 0.83

B = A w/ log median absolute value normalized
Class: G1 1.00 1.00 0.63 0.77 0.32 0.20 0.20 0.81

Class: G2M 0.99 0.98 0.69 0.81 0.36 0.25 0.25 0.84
Class: S 0.67 0.59 1.00 0.74 0.32 0.32 0.54 0.83
Average 0.89 0.85 0.77 0.77 0.33 0.26 0.33 0.83

Accuracy Accuracy Lower CI Accuracy Upper CI
0.77 0.70 0.83

C = rank normalized
Class: G1 0.93 0.86 0.83 0.84 0.32 0.27 0.31 0.88

Class: G2M 0.79 0.73 0.98 0.84 0.36 0.35 0.48 0.89
Class: S 0.97 0.89 0.57 0.69 0.32 0.18 0.20 0.77
Average 0.90 0.83 0.79 0.79 0.33 0.27 0.33 0.85

Accuracy Accuracy Lower CI Accuracy Upper CI
0.80 0.74 0.86

Table 28: Test set classification results to evaluate classification using an alternate set of genes. Parallel with the internval
validation test set classification results using cells from EMTAB2805, but filtered by top ’N’ genes as previously described
per normalization method. Multiple (25) 5-fold cross-validated runs per class label are used to determine the probability of
each cell’s association to each label; the highest probability was chosen as the final call. A-D Baseline RTL implementation
and E-H classification with the RTL framework with the extended Alg4, Alg5, and Alg6 modules i.e., Alg4-Alg5-Alg6 V2.0.
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Specificity Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy
Results w/ RTL baseline implementation, w/ PT, K=5:

A = Log counts
Class: G1 0.93 0.94 0.75 0.83 0.57 0.43 0.46 0.84

Class: G2M 0.70 0.50 1.00 0.67 0.23 0.23 0.46 0.85
Class: S 0.96 0.67 0.29 0.40 0.20 0.06 0.09 0.62
Average 0.87 0.70 0.68 0.63 0.33 0.24 0.33 0.77

Accuracy Accuracy Lower CI Accuracy Upper CI
0.71 0.54 0.85

B = A w/ log median absolute value normalized
Class: G1 0.87 0.67 0.20 0.31 0.57 0.11 0.17 0.53

Class: G2M 0.85 0.33 0.25 0.29 0.23 0.06 0.17 0.55
Class: S 0.32 0.17 0.57 0.27 0.20 0.11 0.66 0.45
Average 0.68 0.39 0.34 0.29 0.33 0.10 0.33 0.51

Accuracy Accuracy Lower CI Accuracy Upper CI
0.29 0.15 0.46

C = rank normalized
Class: G1 0.93 0.93 0.70 0.80 0.57 0.40 0.43 0.82

Class: G2M 0.81 0.58 0.88 0.70 0.23 0.20 0.34 0.84
Class: S 0.82 0.38 0.43 0.40 0.20 0.09 0.23 0.62
Average 0.86 0.63 0.67 0.63 0.33 0.23 0.33 0.76

Accuracy Accuracy Lower CI Accuracy Upper CI
0.63 0.45 0.79

Results w/ RTL extended version, w/ PT, K=5:
A = Log counts

Class: G1 0.93 0.93 0.70 0.80 0.57 0.40 0.43 0.82
Class: G2M 0.78 0.57 1.00 0.73 0.23 0.23 0.40 0.89

Class: S 0.93 0.67 0.57 0.62 0.20 0.11 0.17 0.75
Average 0.88 0.72 0.76 0.71 0.33 0.25 0.33 0.82

Accuracy Accuracy Lower CI Accuracy Upper CI
0.74 0.57 0.88

B = A w/ log median absolute value normalized
Class: G1 0.73 0.67 0.40 0.50 0.57 0.23 0.34 0.57

Class: G2M 0.89 0.70 0.88 0.78 0.23 0.20 0.29 0.88
Class: S 0.64 0.23 0.43 0.30 0.20 0.09 0.37 0.54
Average 0.76 0.53 0.57 0.53 0.33 0.17 0.33 0.66

Accuracy Accuracy Lower CI Accuracy Upper CI
0.51 0.34 0.69

C = rank normalized
Class: G1 0.73 0.80 0.80 0.80 0.57 0.46 0.57 0.77

Class: G2M 0.89 0.67 0.75 0.71 0.23 0.17 0.26 0.82
Class: S 0.89 0.50 0.43 0.46 0.20 0.09 0.17 0.66
Average 0.84 0.66 0.66 0.66 0.33 0.24 0.33 0.75

Accuracy Accuracy Lower CI Accuracy Upper CI
0.69 0.51 0.83

Table 29: External validation test set classification results within the RTL framework. Cells for training are from
EMTAB2805, the test set cells are from GSE42268 filtered by top ’N’ genes as previously described per normalization
method. Multiple (25) 5-fold cross-validated runs per class label are used to determine the probability of each cell’s as-
sociation to each label; the highest probability was chosen as the final call. A-D Baseline RTL implementation and E-H
classification with the RTL framework with the extended Alg4, Alg5, and Alg6 modules i.e., Alg4-Alg5-Alg6 V2.0.
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4.2.6 Statistical comparison between to the two RTL versions:

A

B

C

Figure 51: Benchmark comparison between the RTL framework and Scialdone et al. A: The internal validation results. B:
The external validation results. C: The RCS classification results.

We report extensively the final classification statistics (accuracy, precision, recall, etc.), in the respective tables and figures
in previous sections. As summary of our results compared to the published Scialdone et al. results, we have adopted
their figure and imputed our results alongside it. It is difficult to assess significance between our results and theirs without
acquiring their code and experimental parameterization. As a general approach, their mean result can be compared to the
distribution of results we compute for our methods.

To quantitatively test the difference between any two models there are two potential ways to compute significance, aided by
the fact that for each classification task, we have conducted multiple epochs. Cell cycle allocation: A) Use each epoch to
compute a classification call and assess the distribution of each statistic of interest (e.g., F1

scores

) between the models. B)
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Sample the result of the previously ran epochs, randomly, multiple times, where each set is used to derive the probability
of the examples/cells ub the test set. This latter approach is synergistic with how the final call derived in our summarized
results in all the assessments, where the complete set of epochs are used to make a final call. In other words, because
the former method cannot be used to derive probabilities for each cell being associated to each of the labels, the final
classification call is different than the "N-repeated K-fold CV" approach we used to compute the final calls. Furthermore,
the published results from Scialdone et al. is a multi-class combination of 1-vs-rest classification attempts. In fact for
their ’Pairs’ method, they found that their classifier performed better if the cell cycle allocation was done based on the
G1 and G2M score where if a score of above 50% was not achieved for either, the cell was allocated to the S-phase.
Combined, this support the use of the second approach, creating random samples of the already ran multiple epochs;
this approach is feasible and avoids conducting a superfluous number of additional runs with different epoch sizes and
computing their distribution. Two potential issues are first, how large should should the sampled sets be? and if F1

scores

is indeed an appropriate measure? For an equivalent comparison with Scialdone et al. with the "N-repeated K-fold CV"
method used for classification with the RTL framework, the F1

scores

is the only option. In the context of RCS, the F1
scores

is
a balance between precision and recall which is better than using either independently or other measure such as accuracy.

In the second approach discussed above, to obtain a range of possible classification calls using the already ran epochs
(for each classification setting per cell cycle label), we sampled the random result of 2000 sets of 10-25 long calls 19. From
each set, a final classification call is made, as before by finding the probability of each cell being labeled to each of the cell
cycle class labels. Another benefit of this approach is that it highlights the improvement in the final classification call when
"N-repeated K-fold CV" is used as oppose to running a single run. For a statistical comparison of the F1

scores

distribu-
tions as the comparative quantifier between models, we employed the non-parametric Mann-Whitney-Wilcoxon two-sided
rank-based test; the null hypothesis states that the F1

scores

have identical distributions; more specifically, the likelihood
of a random sample taken from distribution A, to be greater or less than a randomly selected sample from distribution B.
Using a generally accepted ↵ = 0.05, we reject the null hypothesis when p-values with smaller significance are computed
i.e., higher p-values means there is no evidence that they are actually different.

A B

Figure 52: Internal Validation’s F1
scores

distributions, comparing the classification models with the Scialdone 40 gene set.
A. From the 25 epochs, 2000 random sets of 10-25 length are derived and the probabilistic final call is used to derive the
classification statistics. B. From each epoch individually a final call is made per cell cycle label in a 1-vs rest.

19Smaller sets tested, e.g. 3-25 or 5-25, result in distributions that are skewed, suggesting a larger sets is needed; avoiding sampling bias
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logCount.Vs.LogMAV logCount.Vs.QuantNorm logCount.Vs.RankNorm QuantNorm.Vs.RankNorm QuantNorm.Vs.LogMAV RankNorm.Vs.LogMAV
1 epoch per final call:

Baseline version:
G1 0.13258815 0.00090520 0.00000000 0.00000050 0.30829963 0.00000067

G2M 0.00041270 0.82335290 0.00006942 0.00010401 0.00044432 0.41506227
S 0.00004122 0.00009210 0.00000000 0.00000003 0.00000001 0.00000000

Average 0.06147057 0.01231150 0.00000000 0.00000005 0.00100128 0.00000001
Extended version:

G1 0.00000000 0.00000001 0.00000000 0.00000252 0.00000067 0.21418479
G2M 0.62323598 0.73316097 0.29356047 0.89667844 0.49127770 0.06695384

S 0.00007018 0.00000000 0.00063250 0.00000106 0.00007292 0.00007292
Average 0.11157131 0.00000156 0.00009599 0.00000183 0.11334724 0.13211782

2000 sets of 10-25 epochs:
Baseline version:

G1 0.00214132 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

S 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Average 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Extended version:
G1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
S 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Average 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Table 30: Internal Validation’s Significance p-values comparing the distributions of F1
scores

of specified classification
models. Mann-Whitney-Wilcoxon two-sided rank-based test was used to obtain p-values for the final comparisons.

LogMAV LogCount Quantile Rank
1 epoch per final call:

G1 0.00002539 0.00000263 0.04775766 0.52181148
G2M 0.00026421 0.00060789 0.02585825 0.00000059

S 0.00043130 0.00000086 0.04256153 0.00000000
Average 0.11069662 0.00001759 0.00745458 0.00000032

2000 sets of 10-25 epochs:
G1 0.00000000 0.00000000 0.02720969 0.00000000

G2M 0.00000000 0.00000000 0.00000000 0.00000000
S 0.00000000 0.00000000 0.00000000 0.00000000

Average 0.00000000 0.00000000 0.00000000 0.00000000

Table 31: Internal Validation’s Significance p-values comparing the distribution of F1
scores

between the baseline and
extended versions of the RTL framework given the log-scaled counts or the normalization methods utilized. To compute
the p-values, we utilized the non-parametric Mann-Whitney-Wilcoxon two-sided rank-based test.

A B

Figure 53: Comparison of the distribution of F1
scores

from the classification models in the external validation with the
Scialdone 40 gene set for all the normalization methods tested. A. From the 25 epochs, 2000 sets of 5-25 length are
derived and the probabilistic final call is used to derived the classification statistics. B. From each epoch individually a final
call is made per cell cycle label in a 1-vs rest.
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logCount.Vs.LogMAV logCount.Vs.QuantNorm logCount.Vs.RankNorm QuantNorm.Vs.RankNorm QuantNorm.Vs.LogMAV RankNorm.Vs.LogMAV
1 epoch per final call:

Baseline version:
G1 0.00000000 0.51004489 0.17896504 0.67461041 0.00000000 0.00000000

G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
S 0.00000000 0.96606401 0.31419183 0.65971374 0.00000000 0.00000000

Average 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Extended version:

G1 0.00000000 0.85840483 0.07441506 0.42408557 0.00000000 0.00000000
G2M 0.00000000 0.00000000 0.33705521 0.33705521 0.00000000 0.33705521

S 0.06353135 0.00000002 0.00119528 0.00014202 0.00000002 0.00002254
Average 0.00000000 0.00000000 0.33705521 0.33705521 0.00000000 0.33705521

2000 sets of 10-25 epochs:
Baseline version:

G1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

S 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Average 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Extended version:
G1 0.00000000 0.00000000 0.00000000 0.00126946 0.00000000 0.00000000

G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
S 0.00000000 0.00000000 0.00000000 0.00000000 0.00021129 0.00000000

Average 0.00000000 0.00000000 0.00000000 0.00003214 0.00000000 0.00000000

Table 32: External Validation’s Significance p-values comparing the distributions of F1
scores

of specified classification
models. Mann-Whitney-Wilcoxon two-sided rank-based test was used to obtain p-values for the final comparisons.

LogMAV LogCount Quantile Rank
1 epoch per final call:

G1 0.00000001 0.14046261 0.48969535 0.00006656
G2M 0.00000000 0.00000000 0.00000000 0.33705521

S 0.00000000 0.00000256 0.00000000 0.00000287
Average 0.00000000 0.00000000 0.00000000 0.33705521

2000 sets of 10-25 epochs:
G1 0.00000000 0.00000000 0.00000000 0.00000000

G2M 0.00000000 0.00000000 0.00000000 0.00000000
S 0.00000000 0.00023838 0.00000000 0.00000000

Average 0.00000000 0.00000000 0.00000000 0.00000000

Table 33: External Validation’s Significance p-values comparing the distribution of F1
scores

between the baseline and
extended versions of the RTL framework given the log-scaled counts or the normalization methods utilized. To compute
the p-values, we utilized the non-parametric Mann-Whitney-Wilcoxon two-sided rank-based test.

A B

Figure 54: Comparing the distributions of F1
scores

from the models in the context of RCS with marginal frequencies tested
(1%, 5%, and 10%). A. From the 25 epochs, 2000 sets of 10-25 length are derived and the probabilistic final call is used to
derived the classification statistics. B. From each epoch individually a final call is made per cell cycle label in a 1-vs rest.
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RCS_freq_0.01_baseline RCS_freq_0.01_extended RCS_freq_0.05_baseline RCS_freq_0.05_extended RCS_freq_0.1_baseline RCS_freq_0.1_extended
1 epoch per final call:

G1 0.00000000 0.00000005 0.00000000 0.00000000 0.00000000 0.00019147
G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

S 0.00000000 0.00598381 0.00000111 0.00019473 0.00000000 0.05469942
Average 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2000 sets of 10-25 epochs:
G1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.74813879

G2M 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
S 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Average 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Table 34: Significance p-values comparing with and without AUD-PT; the distributions of F1
scores

from the models in the
context RCS with marginal frequencies tested (1%, 5%, and 10%). We utilized the non-parametric Mann-Whitney-Wilcoxon
two-sided rank-based test to obtain p-values for the final comparisons.
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4.2.7 Supplemental Results

A representative example of directly comparing and visualizing the classification results obtained by two separate infer-
ences by the RTL framework is shown in Figure 55. In these figures, if the results were identical, they should form on the
diagonal line shown. A skew (above or below the diagonal) is indicative of higher probability given to those cells by that
model. For example, in Figure 55A, the internal validation results of the baseline to the extended RTL versions on the log-
scaled counts are comparatively shown. The baseline version (x-axis) results demonstrate a skew i.e., higher probability
was given to the S and G2M cells when classifying G1 vs rests. Whereas in Figure 55B, when classifying G2M vs rest
cells, the extended model infers higher probability to the S and some of the G1 phase cells. Comparing populations and
population based measures (e.g., mean, sd, etc) can helpful in many contexts to benchmark and evaluate models, how-
ever, deeper forensics is sometimes needed. This is the intention behind Figure 55, which aids comparing the prediction
differences on a cell by cell level, i.e., how did a pair of models do on the same cell?

To find the top cell cycle genes, that their expression was highly correlated with the predicted outcome (the class labels)
i.e., which genes were most influential in the predictive outcome of each model, we computed the Spearman’s rank-based
correlation coefficient for all cell cycle genes in the set, relative to the predicted probability of each class label. In Fig-
ure 56D, the distribution of the correlation coefficients for each label is plotted in the context of log-scaled expression
values. For each label, genes with |cor| >= 0.5 were filtered; some of tested classification results had 0 genes that match
this criterion, but if higher than 9 were found, the top 9 were filtered for visualization purposes. Figure 56 visualizes the
result of the baseline RTL framework on the log-scaled counts with the Scialdone et al. 40 gene set. For an equivalent
comparison Figure 57 is also on the log-scaled counts, but with the Top’N’ genes identified. This comparison is done to find
highly correlative genes outside of the Scialdone et al’s 40 genes, as part of the top ’N’ genes we have identified (described
in an earlier section). Finally, in figure 58, the baseline RTL framework on the rank-normalized data with the Scialdone et
al. 40 gene set is visualized. This comparison is shown to highlight the effect of normalization on the classification at this
cell-by-cell scope.

Besides differences in expression for each pertinent highly correlative gene, in parts E and F of each, we compare the
mean and variance of the 405 cell cycle expression by plotting them against the predicted probability of each cell cycle
label respectively. Interestingly, the G1 cells on average have lower expression compared to the G2M cells. The S phase
cells show a gradient. Potentially, this is one evidence supporting the difficulty of classifying the S-phase cells due to their
higher biological variance.
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A B

C D

Figure 55: Direct comparison of pairs of predicted probability outcomes by different classification models conducted with
the RTL framework. All utilize the Scialdone et al.’s 40-gene set. A Log-scaled counts baseline vs. log-scaled counts
extended. B log-scaled counts baseline vs. rank-normalized baseline.C log-scaled counts baseline vs. quantile normalize
baseline. text log-scaled counts vs. LogMAV normalized. The colors are the true label: green = G1, plum = G2M, and
orange = S.
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A B

C D

E F

Figure 56: Top cell cycle genes that their log-scaled expression was highly correlated with the predicted outcome i.e., the
class label. The classification model here is the baseline RTL framework using the log-scaled-counts with the Scialdone
et. al’s 40 gene set. The Spearman’s rank-based correlation coefficient was computed for all genes in the set, relative
to the predicted probability of each class label. A the top 9 correlates for the G1 label are shown. B the top 9 correlates
for the G2M label are shown. C Relative to the S-phase prediction, only 1 gene had a |cor| >= 0.5. D The distribution
of Spearman’s Correlation Coefficient values computed. E Mean Expression of the 405 cell cycle genes relative to the
predicted class label. F Standard Deviation of the expression of the 405 cell cycle genes relative to the predicted class
label. The colors are the true label: green = G1, plum = G2M, and orange = S.
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C D

E F

Figure 57: Top cell cycle genes that their log-scaled expression was highly correlated with the predicted outcome i.e., the
class label. The classification model here is the baseline RTL framework using the log-scaled-counts with the respective
Top’N’ gene set. The Spearman’s rank-based correlation coefficient was computed for all genes in the set, relative to the
predicted probability of each class label. A the top 9 correlates for the G1 label are shown. B the top 9 correlates for the
G2M label are shown. C Relative to the S-phase prediction,0 genes had a |cor| >= 0.5. D The distribution of Spearman’s
Correlation Coefficient values computed. E Mean Expression of the 405 cell cycle genes relative to the predicted class
label. F Standard Deviation of the expression of the 405 cell cycle genes relative to the predicted class label. The colors
are the true label: green = G1, plum = G2M, and orange = S.
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Figure 58: Top cell cycle genes that their rank-normalized expression was highly correlated with the predicted outcome
i.e., the class label. The classification model here is the baseline RTL framework using the rank-normalized data with
the Scialdone et. al’s 40 gene set. The Spearman’s rank-based correlation coefficient was computed for all genes in
the set, relative to the predicted probability of each class label. A the top 9 correlates for the G1 label are shown. B
the top 9 correlates for the G2M label are shown. C Relative to the S-phase prediction,0 genes had a |cor| >= 0.5. D
The distribution of Spearman’s Correlation Coefficient values computed. E Mean Expression of the 405 cell cycle genes
relative to the predicted class label. F Standard Deviation of the expression of the 405 cell cycle genes relative to the
predicted class label. The colors are the true label: green = G1, plum = G2M, and orange = S.
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4.3 Discussion
Transcriptional analysis of single cells is nowadays a major scientific focus. At a high-level, being able to use the genomic
and/or epigenomic information to categorize/subtype the cells and consequently study them in the context of a specific
hypothesis is a major investigative need. When quantifying hundreds to thousands of features (genes/transcripts/markers)
per cell, robust computational methods need to be developed and tested; a common task for machine learning (statisti-
cal) methods. For example, how to separate immune cells from tumor cells from a patient’s primary biopsy, sampled as
a scRNASeq experiment? Commonly unsupervised methods identify clusters, which then can then be interrogated and
characterized as immune v.s. tumor cells. However, what if the question is to identify cells of a specific signature (perhaps
pertaining to a specific phenotype) across multiple donor samples obtained from several scRNASeq datasets produced
by multiple research centers? In this context, commonly, supervised methods are used to train on a gold standard and
then to infer on the patient samples. An obvious problem is that the acquired data is confounded by technical sources
of variation across the centers, batches, and instrumentation. In fact, supervised methods are prone to over-fitting to a
specific dataset because of the noise introduced by such confounding factors. And the clusters produced by unsupervised
methods may not be biologically meaningful. That is why usually specific normalization procedure(s) are chosen to re-
move unwanted technical and biological noise. Additional task-specific normalization may also be necessary to be able
to perform a specific analysis (such as classification) across multiple datasets. However, such normalization methods can
introduce bias and affect the reproducibility of the results. That is why asides from supervised unsupervised methods, we
have investigated transfer learning as a potential approach to potentially overcome the need for task-specific normalization.

Transfer learning (TL), is a large sub-domain of machine learning in literature. There are several different applied branches
of TL (reviewed in [7], [6], and [104]) and in this research we focus on the transductive TL branch, as we aim to clas-
sify transcriptomic signatures (similar classification task in analogous feature spaces) across scRNASeq datasets from
diverging sources (i.e., different input feature distributions and marginal frequencies). The developed RTL framework is
based on a previous application, classifying immunophenotypes in flow cytometry data. However, we have developed a
major overhaul of three of the algorithms which improve the generalizability of the classification. Additionally, we have
introduced the area under the density-curve (AUD) parameter transfer (PT) feature to improve the precision and specificity
of calls in the context of rare cellular subsets (RCS). To evaluate the RTL framework (both versions with and without PT)
we conducted parallel classification runs to the six supervised methods published by Scialdone et al. [89]. Specifically,
using the F1

score

, we found equivalent or higher results compared to Scialdone et al.’s top classifiers, using the same 40
genes; however, we showed the performance can be confounded by the normalization scheme we used.

The effects of the normalization scheme have a major impact on the input feature space. We computed the 2D principal
component space on the first and second components to visualize these difference (Figure 39, 41, 40, and 42). First,
in the log-transformed counts, we observe that the two datasets cluster separately, although the relative orientation of the
distribution of the cell cycle labels across PC1 is similar. Quantile and rank based normalization result in similar distribu-
tions and the two datasets overlap in a single stretched cluster, where the clusters observed belong to the cell cycle labels;
albeit, the clusters are not completely homogeneous. Finally, the logMAV normalization causes a major compression of
the data points in PC-space, of both datasets; relative to PC1, the three cell cycle clusters are still apparent. Based on
the PCA outcome, the rank and quantile normalization schemes are the most ideal for machine learning i.e., minimizing
unwanted variance such that the projected PC1 and PC2 no longer show two clusters based on data origin as in the
log-transformed counts. In fact, as mentioned earlier, the RTL framework can generalize the classification across two
datasets from divergent sources directly on the log-transformed gene counts. Other domains of machine learning such as
supervised and unsupervised methods, however, can be dramatically affected. For example, the consequence of these
normalization methods is shown using hierarchical unsupervised clustering relative to the cell cycle labels as heatmaps in
Figure 43. Next, we observe the effects of a supervised method in Figure 45. Specifically, using an optimally tuned linear
SVM classifier, we identify the top ’N’ genes for each cell cycle label and found that not only the number but the set of
genes changes relative to the normalization (Figure 44). Because of the strong effects that such diverging normalization
schemes cause, the selection of the right method is expected to demonstrate the enhanced separation of the classes.
Thus perhaps an ensemble classification scheme with varied normalizations may also compute a final improved inference.

In the machine learning application demonstrated in this manuscript, in the context of internal validation with the Scialdone
40-gene set, the highest average F1

score

(0.91) was obtained with the logMAV normalization followed by the log-scaled
counts (0.83) using the baseline version of the RTL framework. When using the top ’N’ gene sets, the highest average
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F1
score

(0.94) was achieved on the log-scaled counts with the baseline version (Table 28). However, in the context of
generalizability (external validation), we found the highest average F1

score

was achieved on the rank normalized data
(0.61) followed by the log-scaled counts (0.6) using the Scialdone 40-gene set with the extended version of the RTL
framework. With the alternate top ’N’ gene sets, the highest average F1

score

(0.71) was achieved on the log-transformed
counts using the extended version. Combined, this illustrates that: A) the extended version outperforms the baseline in the
context of generalizing across datasets. B) the task-specific normalization method chosen does affect the classification
performance, however, within the RTL framework, it may prove to be superfluous as classification can be performed on
the log-transformed counts. Another important consideration is the feature set used, which in our experiments generally
improved the classification performance compared to the Scialdone 40-gene set. This finding combined with the effects we
observe normalization has on the feature space and thus the classification statistics, suggests the limitation of our external
validation is potentially confounded by the pre-processing and sequencing instrumentation differences between the two
datasets. Additionally, the linear classifier used can confound the classification, but for our purpose, linearly classifying cell
cycle labels proves to be sufficient, as we achieved near perfect average classification accuracies. However, it is possible
to utilize the inner-product of kernels (such as Gaussian, quadratic, etc.) to overcome this limitation within the RTL frame-
work. The caveat is the computational cost/complexity associated with estimating the kernels for the high-dimensional
genomic feature spaces.

Overall, we find similar to Scialdone et al., that the S-phase cells are the most difficult to classify. The root of the low
precision and recall, specific to the S-phase cells is associated with at least two criteria, as also described in [89]. First,
the resolution of capturing each of the 3 class labels with flow cytometry is different, and lowest is associated with the
S-phase ’phenotype’. Second, the transcriptional signature of the S-phase cells is the also the least sensitive; base on
previous classification attempts by Scialdone et al. and the results showed herein. However, normalization can change
the sensitivity with which each of the labels is classified. This is also evident in our external validation results (Table 21).
This limitation can partially be explained by the overlapping clusters of the S-phase and G2M-phase cells in the principal
component 2D space (Figure 39).

If a signature of interest belongs to a small number of cells relative to the total cells sampled, it can be considered a rare
cellular subset (RCS); the actual frequency depends on the context, from stem cells to the heterogeneous sub-populations
of cancer cells and even the dynamic repertoire of specific immune cells during an infection that expands from very small
seeding populations. Experimentally, there may be several ways to enrich for such populations, but the caveat is the me-
chanical, chemical, and experimental conditions can confound the transcriptional profiles of these cells. We tested RCS
marginal frequency of up to 1% of the total cells mainly due to the statistical considerations in the context of our sampling
method. Outside of the biomedical literature, there are many published works on rare-event detection; generally, however,
training and inference in such a context require unique considerations as most commonly used supervised methods don’t
perform well. The large class-imbalance in rare-event classification especially in high-dimensional data presents several
key challenges. As the performance of a classifier generally depends on the distribution of the underlying data, the within-
class variance and the mean difference between any two classes affect the classifier’s performance. Another root cause
of poor classification performance is the lack of data, especially for the RCS of interest. That is why in our 5-fold cross-
validation runs, at each K, the entire positive class labeled cells are classified; with multiple epochs to obtain the probability
of association to the class label. In our findings, where each cell type is, in fact, a separate signature which was sampled
to produce the desired marginal frequency the classification statistics also depends on the distributions of the underlying
data. The highest F1

score

in the context of RCS classification for both versions belongs to the G2M-phase cells. As we
demonstrated herein, it is possible to classify rare events/RCS (from 10% to 1% of total events) within the RTL framework
fairly well in this manner. However, for using AUD-PT to improve the classification, we adhere to the assumption that the
marginal frequency of the positive class label is similar between the train and test sets.

We conclude that the publicly available, robust and reproducible RTL framework described herein facilitates the classifi-
cation transcriptomic signatures across scRNASeq data sources. However, the existence/development of a training set is
assumed. Exploratory analysis is needed to determine optimal normalization relative to the class labels; perhaps instead
of a single method, using an Ensemble classification with a few different normalization methods may improve the final
call. As the RTL framework is intended for broad and open-source application to enhance the discovery and screening
in biomedicine, in addition to scRNASeq data, mass or fluorescent flow cytometry data can also be classified with the
RTL framework, but this will require alternate pre-processing prior to classification. Finally, we believe the next develop-
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mental direction for the RTL framework needs three major considerations: first, as the datasets (FC and scRNASeq) are
getting larger (more events from more samples with more feature measure per cell) moving to cloud-based (multi-CPU)
environment is needed to scale the framework. Second, as described earlier, many classification tasks may not be linearly
separable, thus the evaluation and testing of the proposed utilization of the inner-product of kernels also remain as future
work. Finally, incorporate a tree-based or network based approach to classifying different cellular subsets within the same
dataset.

Figure 59: A summary figure of the findings within this dissertation. In the context of scRNASeq classification found
Equivalent or higher classification (F1) compared to previous published results of Scialdone et al. (Internal validation K-fold
CV runs); Normalization and feature selection are key. The extended version demonstrates improvement in generalizability
across the scRNASeq data, relative to the same F1 measure. Rare cellular subsets (with in silico resampling) were
classified successfully with frequencies as low as 0.01; again, the signature strength (effect size) is key. AUD-based
parameter transfer (PT) improves the precision (and thus F1) of classifying RCS. Finally we have also evaluated the RTL
framework successfully with FC data compared to manual gating.
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5 Supporting material

5.1 Phenotyping: Phenotypes, Phenomes, and Phenomics
As an important, but a tangential supplement to our research as wel as its future directions, in this section we focus on
connecting the concept of a critical (cellular) phenotype/signature to other -omics-based data to derive at potentially new
emergent properties and relationships.

Briefly, to the quantitative biologist, a phenotype is a descriptive tool; like all tools, its value and utility is proportional to
its validity and reliability (i.e., quality). The main goal of phenotyping is to be able to categorize and compare biology by
evaluating the relationships between the genome, phenome, and the environment. Phenotyping has significant utility in
the clinic and in evolutionary, developmental, and biomedical research. This high value has propelled the development of
resources for phenotypic associations with genotypes, whole-genome/exome associations, rare diseases, Mendelian or
complex disease, cancer, and pharmacology; for humans [105] and cross-species interoperation with model organisms
[106].

Figure 60: Five major dimensions of phenomics adapted from [11]. Definition, Acquisition, Representation, Interoperabil-
ity, and Processing.

To explore the world of phenotyping, Collier et al. have defined a four-dimensional framework to comprehensively cover
phenotypic descriptions computationally: Representation, acquisition, processing, and interoperability [107]. In a later
review, Oellrich et al. further evaluate the current status of phenotyping and associated methods with regards to these di-
mensions [108]. These authors define representation as a computable format to store and relate phenotypes. Acquisition,
is defined as the action of capturing phenotypes. Interoperability is defined as concordance across all phenotypes, across
tiers of complexity within an organism and across species. Finally, processing is defined as the analysis and the resulting
knowledge discovery. However, to acquire, represent, interoperate, and process a phenotype, an a priori definition of that
phenotype is implied. Definition of phenotypes is an integral and complex challenge in its own right. Therefore, we propose
the definition of a phenotype to be considered the fifth dimension of phenomics.

5.1.1 Phenotypes’ Definition

Brown et al. visualize the definition of a phenotype as a three-dimensional matrix of genetic context, environmental fea-
tures, and multiple tests [109]. However, there is great heterogeneity in how phenotypes are defined and utilized in
the literature (scope and aims). This is further confounded by experimental complexity which includes setting up proper
controls that ultimately define the differentiating phenotype of interest. Phenotypes can have a range of expression (i.e.,
severity), which may only be observed in a specific window of time (temporality) or in a given environment. Some phe-
notypes can be defined by single traits. Yet some phenotypes, may have overlapping etiologies/pathways (e.g., obesity)
[110] or be associated with several compound phenotypes (e.g. obstructed airflow [111]). Finally, mutations in the same
gene can lead to multiple phenotypes, known as pleiotropy. Brown et al. advocate for the realization that human diseases
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are compound gatherings of observations; thus a disease label is a ’probabilistic inference’ [109]. This modern view of
evidence-based medicine means bioinformaticians can conduct cross-species association of phenotypic features [112]
to enable the new discoveries in phenomics, such as novel biomarkers and targeted methods towards precision medicine
and unraveling our understanding of functional genomics.

Sub-phenotypes are important both in research and the clinic 20. One way to identify subphenotypes is cluster analysis.
For example, we define a 2-dimensional matrix of the phenotype classes (or individuals) in the rows and the quantitative
(or qualitative features) as columns. Several unsupervised algorithms, such as agglomerative hierarchical clustering, can
uncover the structure of this matrix, however, the major limitation is the dependence on a similarity metric [114] and
more importantly, the clusters are not guaranteed to return biologically meaningful clusters. When such unsupervised ap-
proaches are utilized, technical variance (e.g., batch), as well as covariates such as ethnicity, gender, and age, are major
sources of variance; many times the identified discriminating signatures are in fact explained by such unwanted variance.

The severity of a phenotype’s expression is a complex function of the interplay of the genetics and epigenetics of an
organism, triggered by environmental stimuli [115], through a tightly regulated but still ’noisy’ transcription process [116].
One method to define levels of severity is thresholding; used to transition between continuous and discrete phenotypic data
[117]. In a clinical context, severity i.e., the burden of illness, is difficult to assess. As an example in the clinical realm, Horn
and Horn propose using a composite index from the ’mode’ of seven overlapping features, each composed of a four-level
index [118]. One downside to such qualitative approaches is the loss of statistical power due to the binning. On the other
hand, in quantitative methods, the selection of the control group significantly changes the interpretation. Consider that
many phenotypes are defined on the bases of comparing healthy vs. disease groups. Such an experimental approach is
limiting as it lacks precision in severity (i.e., small but significant vs. large differences) as well as lacking a systems-level
perspective that explains the observed variance in the phenotypic expression of ’non-diseased’ i.e., healthy vs. ’disease’
traits.

Temporality in phenotypes can be considered in two types: phenotypes that are observed within a window (either due to a
medical intervention or environmental perturbations) and phenotypes related to aging [119]. Both forms of temporality are
intuitive and ubiquitous concepts in healthcare and research, thus their utility in practice with electronic health records and
precision medicine with ’big data’ challenges are under investigation. For example, Che et al. demonstrate the potential
for using electronic health records to capture meaningful temporal patterns that describe phenotypes such as physiology
[120]. The ability to capture temporal data for quantitative analysis is a key feature of utilizing of Electronic health records
(EHRs) for phenome-wide research. In the context of immunophenotyping, at the scope of an organism/patient, clinicians
measure the pathologically relevant phenotypes for utility in diagnosis, treatment, and prognosis. At the scope of the
immune system, the dynamic changes that occur during an infection, for example, can be quantified by transcriptional
changes (thus likely phenotypic changes), at various time points; dictating the function, expansion, and taxis of multiple
cellular components [121].

The environment is a powerful force in the relationships originally proposed by Watson and Crick as ’the central dogma’
of molecular biology and physiology. On the evolutionary scale, the environment is the driver of natural selection. On a
cellular level, temporal environmental cues or stimuli can cause specific responses [122]. Furthermore, the environment
can trigger permanent effects on the development of an organism [123] and [124]. Such developmental consequence
can also be epigenetically imprinted [125] and transferred to the next generations [115].

Phenotypic plasticity is defined as the ability to change or modify phenotypic trait(s) in response to stimuli or cues; internal
and external. Fienberg suggests that this plasticity is an important property, such that its disruption is a ’common theme’
of disease, which at the cellular level is etiologically tied with the epigenome. Fienberg defines two etiological classes of
such monogenic epigenetic diseases that reduce phenotypic plasticity: A) affected genes (i.e., epigenetic regulated such
as imprinting) B) affected epigenome and machinery [125]. In multi-cellular organisms, the epigenome drives cellular
differentiation, transcriptional and functional regulation; in fact, cells from the same tissues tend to cluster together in a
recent analysis of 111 human epigenomes [126]. This not only highlights that the epigenome regulation can produce a

20For example, the diagnosis of asthma is too broad and fails to properly identify and treat a severe subtype of asthma, ’refractory/severe asthma’.
This subtype specifically diagnoses about 10% of asthma patients; defined by at least one major and two minor criteria defined by the American thoracic
society workshop consensus for the definition of refractory asthma [113]
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plethora of phenotypes from the same ’code’, but also demonstrates the importance of epigenome studies across many
tissues to unravel the pathological mechanisms of disease.

5.1.2 Phenotypes’ Acquisition

The primary source of phenotypic data is the archive of biomedical literature [127]. Manual curation has been the early
gold standard; however, this method is costly and not efficiently scalable. On the other side of the spectrum, using com-
puter and technology such as deep phenotyping (derived from deep [machine] learning) is an aggregation method that can
explore the clinical data from the electronic health record; an indispensable criterion of precision medicine [128]. Such
technological amendments will enable the automation needed to contribute to the acquisition of a comprehensive set of
phenotypes (derived from the medical history, physical examination, quantitative clinical and laboratory tests, and various
imaging/radiographic sources) [114]. However, phenotyping from the health record can be fraught with incompleteness,
complexity, inaccuracy, and bias and thus quality evaluations such as sensitivity and specificity are needed to evaluate
phenotypes acquired in this manner [129] as well as external experimental validation.

Tracy, in the context of clinical phenotyping proposes three goals for expanding the engagement of bioinformatics to im-
prove the overall acquisition for the (near) future of deep phenotyping applications: The need for translational research
(clinical outcomes), the need for higher statistical power in associations, and the need for incorporating the temporality
of pathophysiology [130]. Such an expansion may seem superficially simple, however, it requires tightly designed and
executed studies.

In the context of immunophenotyping, in recent years, the acquisition of the raw and analyzed phenotypic data has been
facilitated by several key repositories that house FC and transcriptomics data. The limitation currently is that although there
are several standards that the field uses, there are platform differences as well as inconsistent national/global standards
in recording and providing metadata (related to the organism, experiment, etc). Furthermore, confounding factors such as
biological factors (age, gender, medical history, etc) as well as technical variance need to be systematically and if possible
automatically recorded for minimizing their effect in downstream processing. Without such standardization, it is inhibitive
to apply âĂŞomics level bioinformatics.

5.1.3 Phenotypes’ Representation

Representation refers to how phenotypes are digitally saved and stored that optimizes their computability, and interoper-
ability. Because phenotypic data are from diverse research domains and can be highly heterogeneous, there is a need to
represent them in a standardized method; enabling computability and integration with other data types. Ontologies were
formally introduced in the late 1990s [131], which were later adopted by biology within the context of gene ontologies
(GO). This effort was aimed at developing and validating a structured vocabulary to describe molecular functions, cellular
components, and biological processes [132]. With the success and adoption of GO, ontologies were used as a structured
footing for biological research and phenotypes [133]. Initial attempts to capture detailed quantitative or qualitative data
suggested using entity-quality (EQ) formalism. This had limitations regarding the stored information and their relation-
ships, so in 2004, Gkoutos et al. proposed five classes of ontologies to describe mouse phenotypes: âĂIJorganism, entity,
attribute, assay, and valueâĂİ [134]. Nowadays, the open biomedical ontologies (OBO) consortium supports hundreds of
ontologies [135], such as the human phenotype ontology project [136], focused on human disease phenotypes. In the
context of cellular phenotyping and immunophenotyping, the cell ontology (CO) is slowly being utilized and incorporated in
software which is ubiquitously used by the community, however, there are limitations in naming conversion and complete-
ness.

5.1.4 Phenotypes’ Interoperability

Interoperability is defined as the ability to effectively combine and interrogate phenotypes across species; especially useful
when model organisms are utilized. There are several approaches to interoperability, such as construct validity, orthologue
identification, or direct mapping using ontologies which are described in detail by Robinson et al. in the translational
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research context [137]. Briefly, to objectively discover phenotypic equivalences across spices, it is intuitive to identify or-
thologous genes (or determinant mutations of the genes in human health and disease) in a model species postulated upon
the functional similarity of molecules is maintained by their sequence/structure similarity i.e., the orthologue conjecture.
Although it has been useful in exploring several examples in biomedicine (e.g., the thousands of models between humans
and mice [138]), the orthologue conjecture ignores the systems perspective, where cardinality of the relationships within
a given species is much more complex than 1:1 [139] and [140].

The alternative to such assessments of construct validity in finding orthologues is identifying candidate gene sets through
methods such as pathway analysis to determine specific functional pathway, that interoperates with another species. Such
an approach is valid because even if the two species are evolutionarily distant relatives (e.g., yeast vs. humans), the as-
sumption is that they are functional orthologues. However, it can easily be imagined that at the scope of pathways, or even
higher such as systems and organisms, each composed of multiple functioning components, it is difficult to infer lower
level (e.g., gene level) similarity in function or structure; especially because higher-level scopes can have redundancies
in the function of the lower-level components, and thus disruptions of these components (e.g., an SNP mutation) may not
have a higher-level effect. Also, not all genes may have an equal effect on the phenotype of interest.

Finally, ontologies provide a computational basis to directly map across species. By representing knowledge in a structured
and controlled-vocabulary boundary, ontologies can be used to computationally interoperated across species. Robinson
et al. demonstrate this in an example that interoperates ’aortic stenosis’ from the Human Phenotype Ontology (HPO) to
’aortic valve stenosis’ defined in the Mammalian Phenotype Ontology (HPO) through mapping ’constricted’ using the Phe-
notype, Attribute, and Trait Ontology (PATO) and the anatomical term ’aortic valve’ is mapped using Uberon, a combined
cross-species ontology [137].

5.1.5 Phenotypes’ Processing (End-utility)

Phenotyping enables clinicians and researchers to describe their observations and derive a hypotheses/diagnosis to
test/treat. Therefore, in the clinic, phenotyping is a powerful diagnostic, therapeutic, and prognostic tool which also has
empowered the research community to understand the etiology of phenotypes by mapping them on genotypes. For ex-
ample, in the early 1960s, correlations between karyotype and phenotype, demonstrated an early link between genetic
abnormality and disease manifestation of Turner’s syndrome [141]. Since then, a rapid growth of technology has promoted
research leading to thousands of genes implicated as the etiology of specific Mendelian and non-Mendelian complex traits
[142]. Technological progress for such research and advances in the application of bioinformatics and computational bi-
ology has led the path towards improving clinical evaluations and genomic studies [114] and are paving the road towards
precision medicine [143] and [144].

Tools such as the haplotype map of the human genome (HapMap) project [145], the international human phenome project
[146], and the various genome-wide investigations and phenome-wide studies [147] broadly share the goal of associating
the entire set of phenotypes to a genotype of interest [148]. Although currently, phenome-wide studies are in their early
stages, the idea of mapping phenotypes or traits has shown significant promise. For example, Valdes et al. demon-
strated the linkage of severe alcoholism to chromosome 19 [145]. Using expression quantitative trait loci (eQTL) analysis
with short-term selected and bred mice for phenotypes related to alcohol consumption and withdrawal, Hitzemann et al.,
demonstrated common eQTL for these phenotypes [146]. More recently Hitzemann et al. have highlighted that RNA-seq
can provide higher accuracy in expression-QTL analysis due to the higher dynamic range over microarrays [149] as an
indicator of progress and current technology.

5.2 Linear Support Vector Machine (SVM)
Support vector machines (SVM) are powerful supervised machine learning/statistical models; in general for learning the
structure of data through applications of regression or classification. In the more common supervised case, a training set
that has the ’true’ labels is needed. New test cases are then inferred on to obtain the relevant results. A linear SVM does
this specifically by defining linear hyperplanes (a line in the 2D case) that define a discriminatory boundary. SVMs are
in general effective at tasks in high-dimensional spaces and the use of Kernel methods makes them versatile in various

103



types of decision boundaries. They are also known to have limitations in the context of complexity, thus very large datasets
need higher computing resources, but once trained, the inference is highly efficient. Finally, if the training set is small,
in fact fewer example (rows) than features (columns) are present, poor performance is also expected i.e., the curse of
dimensionality.

5.2.1 A formal description of linear SMVs

• Training : Learn the mapping from X ! Y where x
i

are the examples (i.e., rows, objects or cell) such that y
i

are the
class labels (e.g., ±1); x

i

2 X and y
i

2 Y . Since we have multiple samples j 2 {1, ..,K} to train on, we have {x
i,j

}N,K

i,j=1

dataset with labels {y
i,j

}N,K

i,j=1. We can split this data for training and test sets as needed for learning and model evaluation.

• Inference : given a new sample x 2X estimate ŷ or ˆf(x).

• Result : The result of training j samples with i examples i.e., x
i,j

, are a set of j hyperplanes with the general equa-
tion for K-features as in equation 9. If w0 = 0, then the hyperplanes f(X) goes through the origin.

f(X
j

) = w

j,0 +w

j,1Xj,1 + · · ·+w

j,K

X

j,K

= 0 (9)

Here w is a vector of coefficients pertaining to the separating hyperplane; analogous to y = mx + b where m is the
slope coefficient of the line with the intercept b. The sign() function limits and discretizes f(X) to ±1. Shown in equation
10, the discriminatory boundary Y or f(X) is defined as a line (2D), plane (3D), or hyperplane (�4D). This boundary is
geometrically perpendicular (?) to w. When testing new cases, we estimate which side it belongs to as in equation 11.

f(w ·X + b) = 0 (10)

f̂(X) = sign(w ·X + b) (11)

Given any two points x1 and x2 that define the limits of the margin (i.e., support vectors) and a hyperplane f(X),
equation 12 shows the width of this margin is 2 ⇤ |a|. If the data is scaled so that |a| = 1 (without changing the problem),
the margin’s width will equal to 2. This means that the distance (Euclidean) between x1 and x2 i.e., k(x1 � x2)k can be
derived from equations 13 and 14. The latter shows that in order to maximize the margin, we need to minimize kwk. This
geometric relationship between the hyperplane w, f(X) and example data-points is visualized in a 2D coordinate system
in figure 61. The magnitude of the w i.e., kwk is algebraically the Euclidean distance

p
w ·w.

w ·X + b = +a · · · and · · ·w ·X + b = �a (12)

w · (x1 � x2) = 2 (13)

kx1 � x2k =
2

kwk (14)

Once training with a an SVM is finished, a subset of the data-points from x

i,j

define the margin and are called the support
vectors. For each support vector x

SVi , a coefficient ↵
i

is computed (i.e., slope or weight). A linear combination of these
support vectors and ↵

i

s, results in the w vector as in equation 15, where No.SV i is the number of support vectors. As
well as the ↵

i

s, the bias b is also computed and returned.
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No.SV iX
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x

SV i

s.t. a
i

6= 0 (15)

At their core, SVMs are solving a quadratic problem called the constrained optimization problem. A minimization
min

w,b

(kwk2

2 ) to find optimal < w, b > given the constraint f
i

(x · < w, b >) � 1 as in equation 16. This problem
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Figure 61: Given the two dimensions X1 and X2, where f(X1, X2) is of interest. The hyperplane W and its relationship
to the coordinates is visualized.

has been computationally optimized by rephrasing it as a convex quadratic program, which is implemented in the e1071
package.

Find < w, b >, min(
kwk2

2
) s.t. f

i

(x · < w, b >) � 1 where f
i

2 {�1, 1} (16)

To reduce the rigidity of the margin, we can penalized the objective function which allows some amount of error in the
classification. For this utility, cost C is defined as the trade-off of margin-width and discordance. Generally, this is written
as in equation 17 where the loss is the step-loss (or zero-one loss). The loss is shown with the indicator function II()
such that II(�) = 1 if the condition � is "true", 0 otherwise. This minimization is considered a combinatorial optimization
problem, which are computationally expensive. A lossfunction(`) quantifies the discordance between the prediction ŷ and
the truth y. Another commonly used loss function known as the "hinge-loss" (H) is defined as `(y, ŷ) = max(0, 1 � y ˆ(y)).
By using the hinge-loss we are casting the problem with combinatorial complexity to quadratic or better because one of
the properties of H, one being its convex upper bound.

min
w,b

(
kwk2

2
+ C

X

i

II[f
i

(x
i

· < w, b >) < 1]) (17)

By introducing ⇠
i

as the error tolerance for each ith example in the training we simplify the algebra as in equation 18.
If ⇠

i

= 0 or C = 0, the margin would be have the same original rigid boundary; thus both are defined as to be greater or
equal to 0 i.e. ⇠

i

� 0 and C � 0. However, as C ! 1 or the penalization ⇠
i

! 1, the solution again gets closer to the
rigid-boundary.

min
w,b

(
kwk2

2
+ C

X

i

⇠
i

) s.t. f
i

(x · < w, b >) � 1� ⇠
i

(18)

To solve this optimization, its Lagrangian dual function needs to be derived. A simple general example, the La-
grangian is defined when given an optimization problem on x 2 <n which we aim to minimize f0(x) while subject to
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f
i

(x)  0 and h
j

(x) = 0 where i 2 {1, · · ·m} and j 2 {1, · · · p}. The Lagrangian L : <n ⇤ <m ⇤ <p ! < is thus written as
in equation 19. The Lagrange multipliers � and ⌫ are vectors defined in the Lagrange dual function as in equation 20. A
takeaway from this dual function is that the domain of g() is defined when g > �1 given sets of � and ⌫. This means that
the dual function consists of many functions albeit constrained, and it is concave in (�, ⌫) enabling the identification the
optimal the minimum or maximum values.

L(x,�, ⌫) := f0(x) +
mX

i=1

�
i

f
i

(x) +
pX

j=1

⌫
i

h
j

(x) (19)

g(�, ⌫) = inf
x2D

L(x,�, ⌫) (20)

Specifically for the SVM, the Lagrangian for this problem is written as in equation 21. Minimizing with respect to the
w, b, and ⇠ means computing the partial derivatives with respect to w, b, and xi

i

22, 23, and 24 respectively. The latter
highlights that for non-support vectors, ↵ = 0, for margin support vectors, 0 < ↵ < 0, and finally for non-margin support
vectors, ↵ = C. Firstly implication is that the non-margin support vectors can only be as influential with an upper range of
C; reducing the severity of extreme outliers.

g(�,w, b, ⇠,↵) =
kwk2

2
+ C

X

i

⇠
i

+
X

i

↵
i

(1� f
i

(x · < w, b >)� ⇠
i

) +
X

i

�
i

(�⇠
i

) s.t. ↵
i

� 0, �
i

� 0 (21)

dL

dw
= w �

X

i

↵
i

y
i

x
i

= 0 ) w =
X

i

↵
i

y
i

x
i

(22)

dL

db
=

X

i

↵
i

y
i

= 0 (23)

dL

d⇠
i

= C � ↵
i

� �
i

= 0 ) ↵
i

= C � �
i

; given� � 0 ) ↵
i

 C (24)

Similar to the general example demonstrated earlier, the Lagrangian dual function can now be derived as in equation
25 and simplified to equation 26. The goal here is to compute a solution for bmw by maximizing the dual function subject
to the constraints 0  ↵

i

 C and
P

i

f
i

alpha
i

= 0.

g(↵,�) =
kwk2

2
+ C

X

i

⇠
i

+
X

i

↵
i

(1� f
i

(x · < w, b >)� ⇠
i

) +
X

i

�
i

(�⇠
i

) (25)

g(↵) =
X

i

↵
i

�
P

m

i

P
m

j

↵
i

↵
j

y
i

y
j

x
i

x
j

2
s.t.m 2 {1, · · · , No.SV i} (26)

Finally, as another representation of the SVM classifier, we define the kernel-based SVM classifier, given the kernel
k(x, ·). To do this, we introduce the reproducing kernel Hilbert space (RKHS) as a mathematical approach to evaluate any
two functions in a Hilbert space; this allows the leveraging of key properties of the Hilbert space. For example the RKHS
corresponding to the Gaussian Kernel, as with other RKHs, essentially performs a smoothing task. The decision function
with k(x, ·) is shown in equation 27.

w =
X

i

f
i

↵
i

k(x
i

, ·) (27)
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5.3 General Equations Used

F1 = 2 · precision ⇤ recall
precision+ recall

(28)

recall =
TruePositives

TruePositives+ FalseNegatives
(29)

precision =
TruePositives

TruePositives+ FalsePositives
(30)

CV (f̂ ,↵) =

P
N

i=1 L(yi, f̂
�k(i)(x

i

,↵))

N
(31)

SSE =
nX

1

(y
i

� f̂k(i))2 n 2 {1, · · · , N} (32)

PT = (freq = p(class
G1, G2M, or S

|X
train

) + ✏
PT

(33)

✏
PT

= mean(norm(1000, u = µ
p(class

G1, G2M, or S

|X
train

),� = 1)) ⇤ 0.3 (34)

5.4 R Workflows

5.4.1 Code availability and open-source access

This project is produced in R with a culmination of open-source code, packages, and libraries described in detail in the
next section. The entire RTL framework, was intended for public-release and open access which can be access here:
https://github.com/eisascience/RTL

There are several requirements for installation, documented in the vignettes. The structure and flow of data is demon-
strated via the 1-D simulated demo (code available in a section below and as a vignette within the RTL framework’s
package).

5.4.2 Software, packages, and libraries

• R version 3.4.3 (2017-11-30), x86_64-apple-darwin15.6.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Running under: OS X El Capitan 10.11.6

• Matrix products: default

• BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A...

• BLAS: /Frameworks/vecLib.framework/Versions/A/libBLAS.dylib

• LAPACK: /System/Library/Frameworks/Accelerate.framework...

• LAPACK: /Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: data.table 1.10.4-3, ggplot2 2.2.1.9000, knitr 1.20, rmarkdown 1.8, RTL 1.0.0, xtable 1.8-2
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• Loaded via a namespace (and not attached): assertthat 0.2.0, backports 1.1.2, bindr 0.1, bindrcpp 0.2, boot 1.3-20,
broom 0.4.3, caret 6.0-78, class 7.3-14, codetools 0.2-15, colorspace 1.3-2, compiler 3.4.3, CVST 0.2-1,
ddalpha 1.3.1, DEoptimR 1.0-8, DescTools 0.99.23, digest 0.6.14, dimRed 0.1.0, doParallel 1.0.11, dplyr 0.7.4,
DRR 0.0.2, e1071 1.6-8, evaluate 0.10.1, expm 0.999-2, foreach 1.4.4, foreign 0.8-69, glue 1.2.0, gower 0.1.2,
gradDescent 2.0.1, grid 3.4.3, GSE 4.1, gtable 0.2.0, htmltools 0.3.6, ipred 0.9-6, iterators 1.0.9, kernlab 0.9-25,
labeling 0.3, lattice 0.20-35, lava 1.5.1, lazyeval 0.2.1, lubridate 1.7.1, magrittr 1.5, manipulate 1.0.1, MASS 7.3-48,
Matrix 1.2-12, matrixStats 0.52.2, mnormt 1.5-5, ModelMetrics 1.1.0, munsell 0.4.3, mvtnorm 1.0-6, nlme 3.1-131,
nnet 7.3-12, parallel 3.4.3, parallelSVM 0.1-9, pillar 1.0.1, pkgconfig 2.0.1, plyr 1.8.4, prodlim 1.6.1, psych 1.7.8,
purrr 0.2.4, R6 2.2.2, RColorBrewer 1.1-2, Rcpp 0.12.16, RcppRoll 0.2.2, recipes 0.1.1, reshape2 1.4.3,
rlang 0.1.6.9003, robustbase 0.92-8, rpart 4.1-11, rprojroot 1.3-1, scales 0.5.0.9000, sfsmisc 1.1-1, sgd 1.1,
splines 3.4.3, stats4 3.4.3, stringi 1.1.6, stringr 1.2.0, survival 2.41-3, tibble 1.4.1, tidyr 0.7.2, tidyselect 0.2.3,
timeDate 3042.101, tools 3.4.3, withr 2.1.1.9000, zoo 1.8-0

5.4.3 A Demo Run With the RTL Framework Using A Simulated One-Dimensional Dataset

Since the code is done in R using rknitr package, the output when knitted in the pdf format, is used to import sections of it
into this document; redundant output is removed to conserve the number of pages.
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RTL Demo on 1D Simulated Data

@eisamahyari
3/8/2018

The RTL package includes everything necessary to run TL in R. See Installs.R for easy install of all imports.

library(knitr)
library(rmarkdown)
#render("./vignettes/RTL_1D_SimDemo.Rmd", html_document())

#render("./vignettes/RTL_1D_SimDemo.Rmd", pdf_document())

#render("./vignettes/RTL_1D_SimDemo.Rmd", latex_document())

#render("./vignettes/RTL_1D_SimDemo.Rmd", "all")

#load the packages needed

suppressPackageStartupMessages(library(RTL))
library(xtable)
library(ggplot2)
library(data.table)

## data.table 1.10.4.3

## **********
## This installation of data.table has not detected OpenMP support. It should still work but in single-threaded mode. If this is a Mac, please ensure you are using R>=3.4.0 and have installed the MacOS binary package from CRAN: see ?install.packages, the �type=� argument and the �Binary packages� section. If you compiled from source, please reinstall and precisely follow the installation instructions on the data.table homepage. This warning message should not occur on Windows or Linux. If it does and you�ve followed the installation instructions on the data.table homepage, please file a GitHub issue.
## **********

## The fastest way to learn (by data.table authors): https://www.datacamp.com/courses/data-analysis-the-data-table-way

## Documentation: ?data.table, example(data.table) and browseVignettes("data.table")

## Release notes, videos and slides: http://r-datatable.com

getwd(); knitting = F

## [1] "/Volumes/Maggie/School/Projects/Eisa/R/RTL/RTL_public_release_v1.0/vignettes"

if(grepl("vignettes", getwd())) knitting = T

#Name the run

runID = "RTL.1DSim.FullRun.01"
strID = "BimodalGaus_S5xT10_N2000_Alg4V2Alg6V2"

CoreClassifier = "LinSVM" #LinSVM

RTLalg4v2BL = T # if T, use alg4 v2; default = F

RTLalg6v2BL = T # if T, use alg6 v2; default = F

DensityFocusBL = F #set to T to pass a density threshold to focus the GD

Check the directory for Figures, log files, and saved intermediate .rds files. They are saved during the run in

seperate folders.

A 1D Simulation is available as a function in the RTL framework. With Ntest=50, we the design is we obtain

5 cohors with 10 samples in each as the test set; Loaded from .RDS provided. Up to 10 cohorts are availble,

or simulate your own 1,2,.., N dim samples.

1
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getwd()

## [1] "/Volumes/Maggie/School/Projects/Eisa/R/RTL/RTL_public_release_v1.0/vignettes"
#Load demo data

#simulated bimodal gaussian, i.e., two distributions, to classify one from the other

#5 training 1D sample and �Ntest� tests. The training and tests vary only by shift.

#this dataset is chosen for simplicity in interpretation

TrainTest.ls <- Load1DSim(Ntest = 10)
#16 simulated training sets are avaiable, for speed we choose 5

TrainTest.ls$TrainSetXYls <- lapply(names(TrainTest.ls$TrainSetXYls)[1:5], function(xN){
TrainTest.ls$TrainSetXYls[[xN]]

})

———-Some exploratory analysis of the datasets created. ———

The training set bimodal centers are shown:

TrainCenters <- t(rbindlist(lapply(1:length(TrainTest.ls$TrainSetXYls), function(xi){
as.data.frame(cbind(Neg=round(mean(TrainTest.ls$TrainSetXYls[[xi]]$X.train[which(TrainTest.ls$TrainSetXYls[[xi]]$Y.train==-1)]),0),

Pos=round(mean(TrainTest.ls$TrainSetXYls[[xi]]$X.train[which(TrainTest.ls$TrainSetXYls[[xi]]$Y.train==1)]),0)))
})))

colnames(TrainCenters) <- paste("TrainSamp", 1:ncol(TrainCenters), sep="")
rownames(TrainCenters) <- paste(rownames(TrainCenters), "Class", sep="")

print(xtable(TrainCenters), type="html")

TrainSamp1

TrainSamp2

TrainSamp3

TrainSamp4

TrainSamp5

NegClass

1.00

1.00

2.00

3.00

-0.00

PosClass

7.00

7.00

7.00

9.00

6.00

The E�ect Size:

2
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EffectSizeSumm <- t(summary(unlist((lapply(1:length(TrainTest.ls$TrainSetXYls), function(sampI) {
Cohens_d(

x = TrainTest.ls$TrainSetXYls[[sampI]]$X.train[which(TrainTest.ls$TrainSetXYls[[sampI]]$Y.train==1)],
y = TrainTest.ls$TrainSetXYls[[sampI]]$X.train[which(TrainTest.ls$TrainSetXYls[[sampI]]$Y.train==-1)])

})))))

EffectSizeSumm <- rbind(EffectSizeSumm, t(summary(unlist((lapply(1:length(TrainTest.ls$TestSetXYls), function(sampI) {
Cohens_d(

x = TrainTest.ls$TestSetXYls[[sampI]]$X.test[which(TrainTest.ls$TestSetXYls[[sampI]]$Y.test==1)],
y = TrainTest.ls$TestSetXYls[[sampI]]$X.test[which(TrainTest.ls$TestSetXYls[[sampI]]$Y.test==-1)])

}))))))

rownames(EffectSizeSumm) <- c("TrainSet", "TestSet")

print(xtable(EffectSizeSumm), type="html")

Min.

1st Qu.

Median

Mean

3rd Qu.

Max.

TrainSet

5.92

5.95

6.00

6.00

6.01

6.13

TestSet

5.83

5.97

6.04

6.02

6.07

6.20

Lets visualize the 1D density curves these bimodal samples create.

BaseFigDIR <- paste(figsdir,"TLViz/", runID, "/", strID, "/",sep="" )
if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)

par(mfrow=c(1,2))

3
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plot(density(TrainTest.ls$TrainSetXYls$sample_1$X.train),
main="Training Set Density Curve", col=col_vector[1], lwd=2)

for(counti in 2:length(TrainTest.ls$TrainSetXYls)){

lines(density(TrainTest.ls$TrainSetXYls[[names(TrainTest.ls$TrainSetXYls)[counti]]]$X.train),
lwd=2, col=col_vector[counti])

}

plot(density(TrainTest.ls$TestSetXYls$sample_1$X.test),
main="Testing Set Density Curve\ni.i.d samples as technical replicates", col=col_vector[1], lwd=2, lty=3)

for(counti in 2:length(TrainTest.ls$TestSetXYls)){

lines(density(TrainTest.ls$TestSetXYls[[names(TrainTest.ls$TestSetXYls)[counti]]]$X.test),
lwd=2, col=col_vector[counti], lty=3)

}
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Algorithm 1, trains to find a classification boundary for each training; thus for each training example (here

16), we have a single boundary (total 16 here) in each feature space.

par(mfrow=c(1,1))

analysisID = "TLAlg1_FCmode_10KCV_g0.02_C0.5"

fileID = paste(savedir, runID, strID, analysisID, ".rds", sep="")

if(!file.exists(fileID)){

4
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alg1_res <- alg1_baselineClass(
TrainXls = lapply(TrainTest.ls$TrainSetXYls, function(x){x$X.train}),
TrainYls = lapply(TrainTest.ls$TrainSetXYls, function(x){x$Y.train}),
TestXls = lapply(TrainTest.ls$TestSetXYls, function(x){x$X.test}),
TestYls = lapply(TrainTest.ls$TestSetXYls, function(x){x$Y.test}),
K_forCrossV = 10,
svmGamma = .02,
svmCost = .5,
prnt2scr = T,
X_cols2Keep = NA,
transX=F, sampleRed=F, doParalellSVM=F, datatyp="FC")

saveRDS(alg1_res, fileID)
PrimaryRun = T

} else {
alg1_res <- readRDS(fileID)
PrimaryRun = F

}

(alg1_res$baselineSVM)

Wm1 b.int
sample_1 -1.957020 -7.980612
sample_2 -2.147168 -7.684405
sample_3 -2.025060 -9.243727
sample_4 -1.948663 -11.850207
sample_5 -2.447174 -6.544719

par(mfrow=c(1,1))
plot(x=TrainTest.ls$TrainSetXYls$sample_1$X.train,

y=TrainTest.ls$TrainSetXYls$sample_1$Y.train,
col=factor(TrainTest.ls$TrainSetXYls$sample_1$Y.train),
pch=20, xlab="x", ylab="y", main=paste("Train Set #1 with hyperplane #1\nClassification F1-score = ",round(alg1_res$results.all$sample_1$train$byClass["F1"]*100,2), sep="" ))

abline(a=alg1_res$baselineSVM[1,2], b=-alg1_res$baselineSVM[1,1], lwd=2,lty=2)

5
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Classification F1−score = 99.77
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#--------------------------

plot(x=TrainTest.ls$TestSetXYls$sample_1$X.test,
y=TrainTest.ls$TestSetXYls$sample_1$Y.test,
col=factor(TrainTest.ls$TestSetXYls$sample_1$Y.test),
pch=20, xlab="x", ylab="y", main="Test Set #1 with color as �true� Y labels\nAll of the training hyperplanes")

for(HypInt in 1:nrow(alg1_res$baselineSVM)){
abline(a=alg1_res$baselineSVM[HypInt,2], b=-alg1_res$baselineSVM[HypInt,1], lwd=2,lty=2, col=col_vector[HypInt])

}

6
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#--------------------------

#dot product to obtain yhat example on first Train set

yhat <- sign(-TrainTest.ls$TrainSetXYls$sample_1$X.train * alg1_res$baselineSVM[1,1] + alg1_res$baselineSVM[1,2])

#confusion matrix

table(pred=yhat, ref=TrainTest.ls$TrainSetXYls$sample_1$Y.train)

## ref
## pred -1 1
## -1 2996 5
## 1 4 1995
#The found classification matches internal alg1 results

alg1_res$results.all$sample_1$train$table

## Reference
## Prediction -1 1
## -1 2996 5
## 1 4 1995

alg1_res$results.all$sample_1$train$byClass

## Sensitivity Specificity Pos Pred Value
## 0.9975000 0.9986667 0.9979990
## Neg Pred Value Precision Recall
## 0.9983339 0.9979990 0.9975000
## F1 Prevalence Detection Rate
## 0.9977494 0.4000000 0.3990000
## Detection Prevalence Balanced Accuracy
## 0.3998000 0.9980833
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alg1_res$results.all$sample_1$train$overall

## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 0.9982000 0.9962497 0.9965858 0.9991766 0.6000000
## AccuracyPValue McnemarPValue
## 0.0000000 1.0000000
#Trainin Stats

summary(t(as.data.frame(lapply(alg1_res$results.all, function(resi){
c(resi$train$byClass[c(2,5,6,7,8,9,11)], resi$train$overall[1])

}))))

## Specificity Precision Recall F1
## Min. :0.9983 Min. :0.9975 Min. :0.9975 Min. :0.9977
## 1st Qu.:0.9987 1st Qu.:0.9980 1st Qu.:0.9980 1st Qu.:0.9978
## Median :0.9990 Median :0.9985 Median :0.9980 Median :0.9982
## Mean :0.9989 Mean :0.9984 Mean :0.9983 Mean :0.9983
## 3rd Qu.:0.9990 3rd Qu.:0.9985 3rd Qu.:0.9980 3rd Qu.:0.9982
## Max. :0.9997 Max. :0.9995 Max. :1.0000 Max. :0.9998
## Prevalence Detection Rate Balanced Accuracy Accuracy
## Min. :0.4 Min. :0.3990 Min. :0.9981 Min. :0.9982
## 1st Qu.:0.4 1st Qu.:0.3992 1st Qu.:0.9982 1st Qu.:0.9982
## Median :0.4 Median :0.3992 Median :0.9985 Median :0.9986
## Mean :0.4 Mean :0.3993 Mean :0.9986 Mean :0.9987
## 3rd Qu.:0.4 3rd Qu.:0.3992 3rd Qu.:0.9985 3rd Qu.:0.9986
## Max. :0.4 Max. :0.4000 Max. :0.9998 Max. :0.9998

These classification boundaries are summarized to a single via robust mean in algorithm 2.

analysisID = "TLAlg2"
BaseFigDIR <- paste(figsdir,"TLAlg2/", runID, "/", strID, "/", analysisID,sep="" )
if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)

fileID = paste(savedir, runID, strID, analysisID, ".rds", sep="")

if(!file.exists(fileID)){
#UVC01.nonRCS.CD3.unstimulated

alg2_res <- alg2_rob_meanNCov(alg1_res$baselineSVM)
saveRDS(alg2_res, fileID)
PrimaryRun = T

} else {
alg2_res <- readRDS(fileID)
PrimaryRun = F

}

head(alg2_res)

$U_simple Wm1 b.int -2.105017 -8.660734

$U_robust Wm1 b.int -2.025060 -7.980612

$C_simple Wm1 b.int Wm1 0.04289774 -0.3024523 b.int -0.30245226 4.1014805

$C_robust Wm1 b.int Wm1 0.0128295 -0.1467514 b.int -0.1467514 3.5069820

$v_0 [1] 0.0128295
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$w_euc_mag [1] 2.02506

print(xtable(t(alg1_res$baselineSVM)), type="html")

sample_1

sample_2

sample_3

sample_4

sample_5

Wm1

-1.96

-2.15

-2.03

-1.95

-2.45

b.int

-7.98

-7.68

-9.24

-11.85

-6.54

round(alg2_res$U_simple,2) #simple average

Wm1 b.int -2.11 -8.66

round(alg2_res$U_robust,2) #robust average

Wm1 b.int -2.03 -7.98

round(alg2_res$C_robust,2) #robust covariance

Wm1 b.int

Wm1 0.01 -0.15 b.int -0.15 3.51

round(alg2_res$C_simple,2) #simple covariance

Wm1 b.int

Wm1 0.04 -0.3 b.int -0.30 4.1

Each test set’s mapping with the robust classifier is aligned to each trainin set’s y_hat via maximum

cross-correlation, and the median shift compared to the training samples is reported in algorithm 3.

analysisID = "TLAlg3_FCmode_ml0_AbsCor"
BaseFigDIR <- paste(figsdir,"TLAlg3/", runID, "/", strID, "/", analysisID,sep="" )
if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)

fileID = paste(savedir, runID, strID, analysisID, ".rds", sep="")

PermLogSaveDirV <<- paste(saveLnLdir, PermLogSaveName, "/","TLAlg3/", runID, "/", strID, "/", analysisID, sep="")
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if(!dir.exists(PermLogSaveDirV)) dir.create(PermLogSaveDirV, recursive = T)

if(!file.exists(fileID)){

alg3_res <- alg3_shiftComp(
task_list = lapply(TrainTest.ls$TestSetXYls,

function(x){x$X.test}),
source_list = lapply(TrainTest.ls$TrainSetXYls,

function(x){x$X.train}),
alg2_result = alg2_res,
print2screen = F,
ImpFeats = "",
save2file = T,
maximumLag = 0,
CoreClassifier=CoreClassifier,
datatyp="FC",
useAbsCor = T,
medianMediansBL = F)

saveRDS(alg3_res, fileID)
PrimaryRun = T

} else {
alg3_res <- readRDS(fileID)
PrimaryRun = F

}

The robust classifier is adapted to each test case by updating its bias. This is done on the mapped y_hat of

each test case to find a low-density optima initialized at 0.

analysisID = "TLAlg4_FCmode"

if(RTLalg4v2BL) {
analysisID <- paste(analysisID, "_Mna_V2", sep="")

} else {
analysisID<- paste(analysisID, "_M1_V1", sep="")

}

BaseFigDIR <- paste(figsdir,"TLAlg4/", runID, "/", strID, "/", analysisID,sep="" )

if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)

fileID = paste(savedir, runID, strID, analysisID, ".rds", sep="")

if(!file.exists(fileID)){

if(!RTLalg4v2BL) {
alg4_res <- alg4_BiasUpdate(task_list = lapply(TrainTest.ls$TestSetXYls,

function(x){x$X.test}),
alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
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goodColumns = "", alg4MinFx = "gd",
Marg = 1,
save2file =T, ADM=F,
useMedian = T, ZnormMappingBL=F, datatyp="FC",
RCSmodeBL = F,
CoreClassifier = CoreClassifier)

}
if(RTLalg4v2BL) {

alg4_res <- alg4_BiasUpdateV2(task_list = lapply(TrainTest.ls$TestSetXYls,
function(x){x$X.test}),

alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
goodColumns = "", alg4MinFx = "gd",
Marg = 1,
save2file =T, ADM=F,
useMedian = T, ZnormMappingBL=F, datatyp="FC",
RCSmodeBL = F,
CoreClassifier = CoreClassifier)

}

saveRDS(alg4_res, fileID)
PrimaryRun = T

} else {
alg4_res <- readRDS(fileID)
PrimaryRun = F

}

(alg4_res)

b_alg2_norm b_alg3_norm b_alg_norm
Task1 -7.980612 8.006727 7.120307
Task2 -7.980612 11.401461 8.488168
Task3 -7.980612 8.655556 7.340460
Task4 -7.980612 10.711306 7.310723
Task5 -7.980612 10.187537 7.339616
Task6 -7.980612 9.887072 7.199037
Task7 -7.980612 11.376925 8.499601
Task8 -7.980612 10.006021 7.986975
Task9 -7.980612 9.826883 7.088367
Task10 -7.980612 7.461974 6.691979
###############
#As this is a Demo Run, the settings we chose run the Extended version (V2.0) of the RTL framework.

#for comparison of results, we also run the base line here side by side

# This is a hacky approach for this Vignette, usually only 1 is chose at a time, comparin

fileID = paste(savedir, runID, strID, analysisID, "_hackyBaseline.rds", sep="")

if(!file.exists(fileID)){

alg4_res_baselineV <- alg4_BiasUpdate(task_list = lapply(TrainTest.ls$TestSetXYls,
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function(x){x$X.test}),
alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
goodColumns = "", alg4MinFx = "gd",
Marg = 1,
save2file =T, ADM=F,
useMedian = T, ZnormMappingBL=F, datatyp="FC",
RCSmodeBL = F,
CoreClassifier = CoreClassifier)

saveRDS(alg4_res_baselineV, fileID)
#PrimaryRun = T

} else {
alg4_res_baselineV <- readRDS(fileID)
#PrimaryRun = F

}

Each new classification boundary (50 of them as there are 50 test cases), is really the robust classifier with its

bias updated in algorithm 4. Now we update the normal vector which has the e�ect of rotating the classifier;

in the current implementation this rotation is only along the first principle component. In the next update, a

robust approach to finding the rotation will be implemented. The rotation will also go beyond the first PC.

analysisID = "TLAlg6_FCmode"

if(RTLalg6v2BL) {
analysisID <- paste(analysisID, "_Mna_V2", sep="")

} else {
analysisID<- paste(analysisID, "_M0.2_V1", sep="")

}

BaseFigDIR <- paste(figsdir,"TLAlg6/", runID, "/", strID, "/", analysisID,sep="" )

if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)
fileID = paste(savedir, runID, strID, analysisID, ".rds", sep="")

if(!file.exists(fileID)){

if(!RTLalg6v2BL) {
alg6_res <- alg6_NormalVectorUpdate(task_list = lapply(TrainTest.ls$TestSetXYls, function(x){x$X.test}),

alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
alg4_result = alg4_res,
X_feat_cols = "",
save2file = T,
Marg = .2, ADM=F, datatyp="FC",
RCSmodeBL = F,
CoreClassifier = CoreClassifier)

}
if(RTLalg6v2BL) {

alg6_res <- alg6_NormalVectorUpdateV2(task_list = lapply(TrainTest.ls$TestSetXYls, function(x){x$X.test}),
alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
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alg4_result = alg4_res,
X_feat_cols = "",
save2file = T,
Marg = .2, ADM=F, datatyp="FC",
RCSmodeBL = F,
CoreClassifier = CoreClassifier)

}
saveRDS(alg6_res, fileID)
PrimaryRun = T

} else {
alg6_res <- readRDS(fileID)
PrimaryRun = F

}

###############
#As this is a Demo Run, the settings we chose run the Extended version (V2.0) of the RTL framework.

#for comparison of results, we also run the base line here side by side

# This is a hacky approach for this Vignette, usually only 1 is chose at a time, comparin

fileID = paste(savedir, runID, strID, analysisID, "_hackyBaseline.rds", sep="")

if(!file.exists(fileID)){

alg6_res_baselineV <- alg6_NormalVectorUpdate(task_list = lapply(TrainTest.ls$TestSetXYls, function(x){x$X.test}),
alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
alg4_result = alg4_res_baselineV,
X_feat_cols = "",
save2file = T,
Marg = .2, ADM=F, datatyp="FC",
RCSmodeBL = F,
CoreClassifier = CoreClassifier)

saveRDS(alg6_res_baselineV, fileID)
#PrimaryRun = T

} else {
alg6_res_baselineV <- readRDS(fileID)
#PrimaryRun = F

}

Select set of figures produced as evaluation of the classification and the framework. Check the main dir. for

logs, latex tables, figures, . . . that also demonstrates the inner workings of the RTL framework, QA/QC, and

reproducibility.

###Viz
analysisID = "TLFinalViz"

BaseFigDIR <- paste(figsdir,"RTLviz/", runID, "/", strID, "/", analysisID,sep="" )
if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)
fileID = paste(savedir, runID, strID, analysisID, ".rds", sep="")
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if(!file.exists(fileID)){

Viz_res <- FinalViz(TrainTestSet.ls = TrainTest.ls$TestSetXYls,
alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
alg4_result = alg4_res,
alg6_result = alg6_res,
datatyp = "FC",
ADM = F)

saveRDS(Viz_res, fileID)

} else{

Viz_res <- readRDS(fileID)

}

#######hacky version of the baseline versions from above
analysisID = "TLFinalViz_hackyBaseline"

BaseFigDIR <- paste(figsdir,"RTLviz/", runID, "/", strID, "/", analysisID,sep="" )
if(!dir.exists(BaseFigDIR)) dir.create(BaseFigDIR, recursive = T)

Viz_res_baselineV <- FinalViz(TrainTestSet.ls = TrainTest.ls$TestSetXYls,
alg1_result = alg1_res,
alg2_result = alg2_res,
alg3_result = alg3_res,
alg4_result = alg4_res_baselineV,
alg6_result = alg6_res_baselineV,
datatyp = "FC",
ADM = F)

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10
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Specificity

Precision Prevalence Recall/Sensitivity

Accuracy Detection Rate F1
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factor(L2)
0.alg6

1.alg4

2.baseline

Classification by Hyperplanes
BimodalGaus_S5xT10_N2000_Alg4V2Alg6V2

dtb.CSS <- as.data.table(Viz_res$comStats.sub)
dtb.CSS[, Mean:=mean(value, na.rm = T), by=list(variable, L2)]
dtb.CSS[, CI95:=quantile(value, c(.95), na.rm = T) , by=list(variable, L2)]
dtb.CSS[, CI05:=quantile(value, c(.05), na.rm = T) , by=list(variable, L2)]

dtb.CSS[, Meankfolds:=mean(value, na.rm = T), by=list(variable, L2)]
dtb.CSS[, MeankfoldsLCI:=quantile(value, c(0.05), na.rm = T), by=list(variable, L2)]
dtb.CSS[, MeankfoldsUCI:=quantile(value, c(0.95), na.rm = T), by=list(variable, L2)]

gg6 <- ggplot(dtb.CSS, aes(x=factor(L2), y=(Meankfolds*100), fill=factor(L2))) +

geom_bar(position=position_dodge(), stat="identity") +

geom_errorbar(aes(ymin=MeankfoldsLCI*100, ymax=MeankfoldsUCI*100),
width=.2, position=position_dodge(.9)) +

facet_wrap(~factor(variable), ncol=2) +

theme_bw() +

theme(plot.title = element_text( color="#666666", face="bold", size=25, hjust=0.5)) +

theme(axis.title = element_text( color="#666666", face="bold", size=20)) + ylim(-5,105) +

labs(title = paste("Classification by Hyperplanes\n", sep=""), y = "Mean (%) +/- 95CI", x = "statistic") +

theme(axis.ticks.x=element_blank(), axis.text.x = element_text(angle = 90, hjust = 1)) +

scale_fill_manual(values = col_vector)
plot(gg6)
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Specificity
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factor(L2)
0.alg6

1.alg4

2.baseline

Classification by Hyperplanes

dtb.CSS

variable value L1 L2 id Mean CI95
1: Accuracy 0.9830000 accuracy 2.baseline 1 0.9841500 0.9885000
2: Accuracy 0.9595000 accuracy 1.alg4 1 0.9694500 0.9921500
3: Accuracy 0.9505000 accuracy 0.alg6 1 0.9609000 0.9917000
4: Specificity 0.9716667 rest 2.baseline 1 0.9735833 0.9808333
5: Specificity 0.9325000 rest 1.alg4 1 0.9490833 0.9869167

---
206: Prevalence 0.4000000 rest 1.alg4 10 0.4000000 0.4000000
207: Prevalence 0.4000000 rest 0.alg6 10 0.4000000 0.4000000
208: Detection Rate 0.4000000 rest 2.baseline 10 0.4000000 0.4000000
209: Detection Rate 0.4000000 rest 1.alg4 10 0.4000000 0.4000000
210: Detection Rate 0.4000000 rest 0.alg6 10 0.4000000 0.4000000

CI05 Meankfolds MeankfoldsLCI MeankfoldsUCI
1: 0.9798500 0.9841500 0.9798500 0.9885000
2: 0.9496500 0.9694500 0.9496500 0.9921500
3: 0.9342000 0.9609000 0.9342000 0.9917000
4: 0.9664167 0.9735833 0.9664167 0.9808333
5: 0.9160833 0.9490833 0.9160833 0.9869167

---
206: 0.4000000 0.4000000 0.4000000 0.4000000
207: 0.4000000 0.4000000 0.4000000 0.4000000
208: 0.4000000 0.4000000 0.4000000 0.4000000
209: 0.4000000 0.4000000 0.4000000 0.4000000
210: 0.4000000 0.4000000 0.4000000 0.4000000
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alg4_res_baselineV

b_alg2_norm b_alg3_norm b_alg_norm
Task1 -7.980612 8.006727 7.227297
Task2 -7.980612 11.40146 9.837877
Task3 -7.980612 8.655556 11.089900
Task4 -7.980612 10.71131 10.180175
Task5 -7.980612 10.18754 9.282849
Task6 -7.980612 9.887072 10.524864
Task7 -7.980612 11.37692 10.243215
Task8 -7.980612 10.00602 11.435009
Task9 -7.980612 9.826883 8.955640
Task10 -7.980612 7.461974 11.284305
alg4_res

b_alg2_norm b_alg3_norm b_alg_norm
Task1 -7.980612 8.006727 7.120307
Task2 -7.980612 11.401461 8.488168
Task3 -7.980612 8.655556 7.340460
Task4 -7.980612 10.711306 7.310723
Task5 -7.980612 10.187537 7.339616
Task6 -7.980612 9.887072 7.199037
Task7 -7.980612 11.376925 8.499601
Task8 -7.980612 10.006021 7.986975
Task9 -7.980612 9.826883 7.088367
Task10 -7.980612 7.461974 6.691979

plot(alg4_res_baselineV$b_alg2_norm, alg4_res$b_alg2_norm, main="Alg2 output\nbaseline vs extended")
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plot(unlist(alg4_res_baselineV$b_alg3_norm), alg4_res$b_alg3_norm, main="Alg3 output\nbaseline vs extended")

8 9 10 11

8
9

10
11

Alg3 output
baseline vs extended

unlist(alg4_res_baselineV$b_alg3_norm)
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_a
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rm

plot(alg4_res_baselineV$b_alg_norm, alg4_res$b_alg_norm, main="Alg4 output\nbaseline vs extended",
xlim=range(0,15),ylim=range(0,15))

lines(0:15, 0:15)
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cbind(alg6_res$alg6_w_new, betas = alg4_res$b_alg_norm)

Wm1 betas
[1,] 2.073064 7.120307
[2,] 2.067730 8.488168
[3,] 2.079731 7.340460
[4,] 2.066397 7.310723
[5,] 2.161738 7.339616
[6,] 2.113734 7.199037
[7,] 2.033394 8.499601
[8,] 1.992724 7.986975
[9,] 2.148404 7.088367

[10,] 2.091066 6.691979

cbind(alg6_res_baselineV$alg6_w_new, betas = alg4_res_baselineV$b_alg_norm)

Wm1 betas
[1,] 2.132966 7.227297
[2,] 2.036076 9.837877
[3,] 2.153208 11.089900
[4,] 2.072900 10.180175
[5,] 1.961584 9.282849
[6,] 2.088216 10.524864
[7,] 2.025795 10.243215
[8,] 1.706827 11.435009
[9,] 2.115975 8.955640

[10,] 1.798291 11.284305
#Test set 1

yhat <- sign(TrainTest.ls$TestSetXYls$sample_1$X.test * alg6_res$alg6_w_new[1] - alg4_res$b_alg_norm[1])
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table(truth=TrainTest.ls$TestSetXYls$sample_1$Y.test, pred=yhat)

pred
truth -1 1

-1 1101 99
1 0 800

yhat_baselineV <- sign(TrainTest.ls$TestSetXYls$sample_1$X.test * alg6_res_baselineV$alg6_w_new[1] - alg4_res_baselineV$b_alg_norm[1])

table(truth=TrainTest.ls$TestSetXYls$sample_1$Y.test, pred=yhat_baselineV)

pred
truth -1 1

-1 1093 107
1 0 800

predicRes <- cbind(yhat_extneded = TrainTest.ls$TestSetXYls$sample_1$X.test * alg6_res$alg6_w_new[1] - alg4_res$b_alg_norm[1],
yhat_baseline = TrainTest.ls$TestSetXYls$sample_1$X.test * alg6_res_baselineV$alg6_w_new[1] - alg4_res_baselineV$b_alg_norm[1])

plot(predicRes, pch=20, col=factor(TrainTest.ls$TestSetXYls$sample_1$Y.test),
main="Final Inference Baseline Vs. Extended Version\nTest set 1\nTrue sampled positive = red")

abline(h=0)
abline(v=0)
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