
A Framework for Quality-Adaptive Media

Streaming :

Encode Once - Stream Anywhere

Charles Krasic

B.Math., University of Waterloo, 1992

M.Math., University of Waterloo, 1996

A dissertation submitted to the faculty of the

OG1 School of Science & Engineering

at Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

February 2004

@ Copyright 2004 by Charles Krasic

All Rights Reserved

The dissertation "A Framework for Quality-Adaptive Media Streaming" by Charles

Krasic has been examined and approved by the following Examination Committee:

Jonathan walpoy
Professor
OGI School of Science and Engineering
Thesis Research Adviser

Y -
Wu-chi Feng
Associate Professor
OGI School of Science and Engineering

~ h r k Jones
Associate Professor
OGI School of Science and Engineering

- - - - -- -- - -- - - -
Thomas Plagemann
Professor
University of Oslo

Dedication

To my parents, for their love and support always.

Acknowledgements

There are many colleagues and collaborators whose influence has helped me to form the re-

search ideas in this dissertation, and to them I am deeply grateful. I was very fortunate to have

Jonathan Walpole as my adviser. His tolerance, guidance, and strong support over the years have

been instrumental to the successful completion of this work. He was a generous mentor outside

of work also, where I was the benefactor of his great expertise and experience as a competitive

cyclist and skier. I know I was not alone in this. Much like his research ideas, Jon's approach

to his many hobbies are well known as being contagious to many of the people around him. His

balance between profession and lifestyle remains one of my primary inspirations for pursuing an

academic career.

Through my many years at OGI, many faculty have been generous with their time discussing

research issues large and small, in collaborations, or simply in collegial gatherings. When I started

at OGI, Calton Pu and Crispin Cowan were central to the vibrant group culture that deepened my

interest in research. It was a real treat to visit and work with Charles Consel and the Compose

group at IRISA. Dylan McNamrnee and David Steere further motivated my interest in systems in

general. The members of PACSOFT, especially John Launchbury, Tim Sheard and Mark Jones

were extremely supportive of my interest, and my somewhat cranky attitudes, in matters of pro-

gramming languages. Finally, I can only say that OGI and the SySL are extremely lucky to have

Wu-chi Feng and Wu-chang Feng on board. I am particularly grateful to Wu-chi who helped me

refine my work, and provided a direct contribution to this thesis in the form of the simulation

software that I used to compare my work to previous approaches.

Over the years at OGI, I worked with many great students, staff members, visitors, and interns.

My dissertation stands squarely on my predecessors in DSRG, Shanwei Cen and Richard Staehli.

I also would like to thank Mark Jeffereys, Erik Walthinsen, Josh Gruenberg, Perry Wagle, Dan

Revel, Anne-Francoise Le Meur, Jim Snow, Francis Chang, and Mike Shea, Luca Abeni, Kang-Li

and Jie Huang. I couldn't have asked for a better office mate than Ashvin Goel.

Contents

. Dedication iv

. Acknowledgements v

Abstract . xiv

. 1 Introduction 1
. 1.1 A basic overview of the streaming problem 1

. 1.2 Quality-adaptive streaming requirements 3
. 1.2.1 Scalable video compression 4

. 1.2.2 Finding the best mix of video adaptations 4
. 1.2.3 Micro-level streaming problems: effectiveness 5

. 1.2.4 Macro-level streaming problems: efficiency and scalability 8
. 1.3 Overview of our approach: the Priority-Progress framework 9

. 1.3.1 SPEG: Scalable MPEG 10
. 1.3.2 PriorityMapping 10

. 1.3.3 Priority-Progress Streaming 10
. 1.3.4 Priority-Progress Multicast 11

. 1.4 Software Prototype 11
. 1.5 Thesis Statement 12

. 1.6 Summary of Contributions 13
. 1.7 Dissertation outline 14

. Background and Related Work 15
. 2.1 On the limited impact of streaming 15

. 2.1.1 Streaming in practice 16
. 2.1.2 Video compresssion and variable bitrates 17

. 2.1.3 Multicast 19
. 2.1.4 Internet QoS 22

. 2.2 Adaptive Streaming 23
. 2.2.1 Single Rate Adapation 24

vii

. 2.2.2 Multi-version Techniques 25
. 2.2.3 Online scaling 25

. 2.2.4 Scalable compression 26
. 2.2.5 Adaptive Unicast Streaming 27
. 2.2.6 Adaptive Multicast Streaming 28

. 3 Streaming Friendly Video 31
. 3.1 Scalable Video 32

. 3.2 Priority Mapping 37
. 3.2.1 Mapper window duration 42

. 3.3 Mapping Results 43
. 3.4 The Price of Adaptation 46

. 3.5 Related Work 46
. 3.6 Summary 47

. 4 Priority-Progress Streaming 49
. 4.1 Streaming Scenarios 52

. 4.1.1 Adaptive Streaming 53
. 4.1.2 Unacceptable Quality 53

. 4.1.3 Full Quality 54
. 4.2 Window Durations: Latency vs Consistency 55

. 4.2.1 Latency 56
. 4.2.2 Consistency 58

. 4.3 Window Scaling 60
. 4.4 Propagation Delay 67

. 4.4.1 Server-side Phase Adjustments 68

. 4.4.2 Player-side Phase Adjustments 69
. 4.4.3 Improving latency with MINBUF 69

. 4.4.4 Supporting Interactive Applications 70
. 4.5 Related Work 71

. 4.6 Summary 71

. 5 Streaming for Multicast Overlays 73
. 5.1 Priority-Progress Multicast 74

. 5.1.1 SDU Fragmentation 76
. 5.1.2 Multicast Flow Control 77

. 5.2 Related Work 78
. 5.3 Summary 79

viii

. 6 The QStream Implementation
. 6.1 Quasar Streaming Framework

. 6.1.1 Challenges: Concurrency and Timeliness
. 6.1.2 Reactive Programming

. 6.1.3 Kernel considerations

6.1.4 GAIO .
6.1.5 QSF .

. 6.1.6 Summary
. 6.2 QStream Architecture and PPS Message Protocol

. 6.2.1 Naming conventions
. 6.2.2 PPS messages

. 6.3 StreamSem Algorithm
. 6.3.1 StreamServ Data Structures

. 6.3.2 StreamServ Phase I: Session Startup
. 6.3.3 StreamServ Phase 11: Window Preparation

. 6.3.4 StreamServ Phase 111: Window Transmission
. 6.4 StreamPlay Algorithm
. 6.4.1 Data Structures

. 6.4.2 Streamplay Phase I: Session Startup
. 6.4.3 StreamPlay Phase 11: Receive Windows

. 6.4.4 StreamPlay Phase 111: Decode and Display
. 6.5 Priority Progress Multicast

. 6.5.1 MCastProxy
. 6.5.2 Data Structures

. 6.5.3 MCastProxy Phase I: Stream Startup
. 6.5.4 MCastProxy Phase II: Forward Windows

. 6.5.5 StreamServ: Multicast Extensions
. 6.5.6 Data Structures

. 6.6 The QStream Monitor

. 7 Streaming Evaluation 138
. 7.1 Experimental Approach 138

. 7.2 Network Emulation Testbed Setup 141
. 7.2.1 Testbed Hardware 141

. 7.2.2 Testbed Software 141
. 7.3 Adaptive Video 142

. 7.4 Unicast Streaming 147

. 7.5 Multicast Streaming 152
. 7.5.1 Multi-rate Adaptation 152

. 7.5.2 Upstream Bandwidth Conservation 154
. 7.5.3 Bandwidth Conservation with Progressive Bottlnecks 156

. 8 Conclusions and Future Work 159
. 8.1 Conclusions 159

. 8.1.1 Motivating arguments 159
. 8.1.2 Conceptual contributions 160

. 8.1.3 Implementation 161
. 8.1.4 Evaluation 162

. 8.1.5 Summary of Conclusions 164
. 8.2 Future Work 165

. 8.2.1 Better quality-calibration in scalable compression 165
. 8.2.2 Quality adaptation for other resource types 166

. 8.2.3 Quality adaptation for other application domains 167
. 8.2.4 Alternatives to TCP 167

. 8.2.5 Improving TCP's support for streaming applications 168

. Bibliography 170

. Biographical Note 179

List of Tables

. 4.1 PPSExample 52
. 4.2 Window Scaling Example 62

. 4.3 Generalized Window Scaling Example 65

List of Figures

. Typical Hierarchical Structure of Compressed Video 33
. The Discrete Cosine Transform @CT) 35

. Priority Mapper 38
ADus . 39

. A utility function with thresholds 40
. SDUs: prioritized and grouped ADUs 41

. Movie Inputs 44
. QoS Mapping Applied to SPEG 45

. Bandwidth Overhead of SPEG 46

. PPS Conceptual Architecture 50
. PPS Example 51

. Streaming Scenarios 53
. PPS Latency 57

. Adaptation Window Transmission 59
. PPS with Window Scaling Example 61
. Example of PPS with Window Scaling 64

. Window Scaling and Consistency 66

. 6.1 QSFMessage 88
. 6.2 QSF debug logging 90

. 6.3 QS tream in a Unicast Configuration 92
. 6.4 Sequence of Messages in a PPS session 95

. 6.5 StreamServ PPS Session Object 98
. 6.6 StrearnHeader Object 99

. 6.7 StreamServ Adaptation Window Object 100
. 6.8 ADU and SDU Objects 100

. 6.9 Streamplay Per-Session State 114
. 6.10 StreamPlay Adaptation Window Object 114
. 6.1 1 Sequence of Messages in a PPM session 121

. 6.12 MCastProxy Per-Session State 123

xii

. 6.13 MCastProxy Per-Session Child State 124

. 6.14 StrearnServ PPS Session Object: extensions for multicast 134

. 7.1 Maximum video rate for full 2 hour video 143

. 7.2 Relative video rates by priority of full 2 hour video 144

. 7.3 Relative video rates by priority of a selected 30 second interval 145
. 7.4 UnicastExperiment Setup 147

. 7.5 Video stream TCP Transmission Rate (smoothed to 1s intervals) 148
. 7.6 Window size (growth r a t s 1 . 1) 149

. 7.7 Streaming Results 151

. 7.8 Testbed setup for basic multi-rate multicast experiment 152

. 7.9 Measured link rates in multi-rate multicast with PPM 153
. 7.10 Stressing flow control with a deep multicast tree 155

. 7.11 Measured link rates in a deep PPM tree 156

. 7.12 Stressing flow control with a deep and wide multicast tree 157
. 7.13 Measured link rates in a deep and wide PPM tree 158

...
X l l l

Abstract

A Framework for Quality-Adaptive Media Streaming:

Encode Once - Stream Anywhere

Charles Krasic

Supervising Professor: Jonathan Walpole

This dissertation presents a general design strategy for streaming media applications in best

effort computing and networking environments. Our target application scenario is video streaming

using commodity computers and the Internet. In this scenario, where resource reservations and

admission control mechanisms are generally not available, effective streaming should be able to

adapt to variations in bandwidth in a responsive and graceful manner. The design strategy we

propose is based on a single simple idea, adaptation by priority data dropping, or priority drop for

short. We evaluate the efficacy of priority drop in the video and networking domains.

For video, we show how common compression formats can be extended to support priority

drop, thereby becoming streamingfriendly. In particular, we demonstrate that priority-drop video

allows adaptation over a wide range of rates and with fine granularity, and that the adaptation is tai-

lorable through declarative adaptation-policy specifications. Our main technical contribution is to

show how to express adaptation policies and how to do priority-mapping, an automatic translation

from adaptation policies to priority assignments on the basic units of video.

In the networking component of this thesis, we present two versions of Priority-Progress

Streaming, a real-time best-effort streaming protocol. The basic version does classic unicast

streaming for video on demand style streaming applications. The extended version supports effi-

cient broadcast style streaming, through a multi-rate multicast overlay.

xiv

We have implemented a prototype video streaming system that combines priority-drop video,

priority mapping, and the Priority-Progress Streaming proctocols. The system demonstrates the

following advantages of our approach: a) it maintains timeliness of the stream in the face of rate

fluctuations in the network, b) it utilizes available bandwidth fully thereby maximizing the average

video quality, c) it starts video display quickly after the user initiates the stream, and d) it limits

the number of quality changes that occur. In summary, we will show that priority-drop is very

effective: a single video source can be streamed across a wide range of network bandwidths, and

on networks saturated with competing traffic, all the while maintaining real-time performance and

gracefully adapting quality.

Chapter 1

Introduction

Audio and video are increasingly important on the Internet. In fact, with the sustained trends to

lower costs of computing and storage, greater deployment of broadband access, and development

of file sharing applications such as Napster and its successors, there has been a significant surge in

interest and usage of the Internet for transport of audio and video [77]. An eventual convergence

toward Internet distribution of audio and video seems likely, although a number of serious tech-

nical and social challenges remain. Streaming is one technology component that is sure to play a

significant role as this convergence unfolds.

The motivation for streaming is to provide the same instant access to continuous media that

the web gives to text and images. However, there are a number of technical problems that must be

addressed for streaming to reach its full potential in applications for communication and entertain-

ment. In this chapter, we describe the basic technical problems and briefly overview the common

approaches used to address them.

1.1 A basic overview of the streaming problem

The elementary problems for continuous media applications in general are the resource limitations

of the fundamental resources: processors, storage, and network. For streaming applications, the

network resource is perhaps the primary concern because of all the resource types, wide-area

bandwidth costs are the most expensive and the slowest to improve. Hence, one of the primary

research challenges in video delivery is reducing the bandwidth costs. At a very high level, there

are two general ways to reduce the resource costs of video delivery over networks: one is to

improve the representation of video data, through compression, the other is to make the network

distribution mechanism more efficient, both through basic improvements in network technology

and through video specific distribution techniques.

There has been a great deal of research into video compression, and video compression is now

commonly available. Most notably, current techniques can achieve very high compression, with

ratios as high as two orders of magnitude being quite typical. On the distribution side, there have

been steady improvements in the speed and cost of basic networking technologies, such as link

types, switches, routers, etc. At a higher level, techniques such as caching and multicasting have

been explored to exploit various forms of locality of access to video content.

Apart from the basic desire to reduce overall transmission cost, there is a very important

secondary problem for streaming, which is dealing with the consequences of variable video and

network rates. Intuitively, the basic job of any streaming mechanism is to deliver video across the

network with the proper timing, so that it is displayed at the receiver at the proper rate and without

interruption. For these timing requirements to be met, it follows that the volume of video data

transmitted-as determined by the video's bitrate requirements-must not exceed the available

bandwidth in the network. As it turns out, both the video and the network rates are highly variable

over time. The question of how variable, and whether variations can be accurately predicted, is

in fact the subject of considerable research. However, the reasons for variation in the video and

networks rates are quite straightforward.

Video bitrates are bursty due to the use of video compression, which as we mentioned above

is motivated by the desire to reduce cost. As with any data compression, the goal of video com-

pression is to identify and eliminate redundancy. Video content is variable virtually by definition,

because from one video to the next, there are random choices of camera angle, patterns of move-

ment, changes of scene, etc. Predictive coding methods, where compression encodes some frames

(predictive frames) as the difference relative to others (reference frames) leads to variation too. For

example, as the similarity between a predictive frame and its reference increases, the compression

ratio improves, but the variation increases since a larger percentage of the information is carried

in the reference frame. In the limit, all the information comes from the reference frame and the

predictive frame encodes zero changes. Thus, it follows that more efficient video compression

naturally leads to bitrate profiles that more closely track the inherent variabilities (the entropy) of

the source content.

Network rates are volatile because of the elementary properties of the Internet architecture.

On the Internet, the available bandwidth varies over time because of the best effort sharing model

on which the Internet service model is based. The Internet protocols in general do not perform any

kind of admission control or attempt to provide service guarantees. The success of the Internet is

evidence of its cost effectiveness in providing wide area connectivity, which, it could be argued,

has a fairly direct connection to its best effort model. We take the position in this dissertation that

the best effort nature of the Internet will not change fundamentally in the foreseeable future, so

that variable bandwidth must be assumed to be part of the streaming problem.

Given that video and network rates are fickle, the simple observation made earlier that the

video rate should be kept below the available bandwidth is non trivial to achieve. To address

this problem, quality-adaptive approaches to streaming have been developed. The basic idea of

all of these approaches is to adjust the compression ratio of the video adaptively, so that the

timeliness of video playout is maintained. Adjusting the compression ratio is possible because

of the lossy nature of the common video compression formats. Unlike other data types (such as

normal text), lossy compression methods are preferable for video because they yield major gains

in compression efficiency, in exchange for a minor reduction in video fidelity. The amount of

fidelity lost, the distortion, is generally a tradeoff against the amount of compression. In quality-

adaptive streaming, this rate-distortion tradeoff is manipulated for the purpose of rate-matching

the video to the network bandwidth.

The overall goals for quality-adaptive streaming are to make quality-rate adjustments so that

streaming is effective, yet efficient and scalable. Achieving these goals requires addressing a

number of sub-problems, which we describe in the following section.

1.2 Quality-adaptive streaming requirements

The description above included the essential properties of quality-adaptive streaming. We now

expand upon the sub-components of the problem, and on how they relate to the overall goals

of effectiveness, efficiency, and scalability. As a group, these problems constitute an interesting

systems challenge, because they span boundaries of several distinct research domains, such as

video compression, networking, and real-time computing.

1.2.1 Scalable video compression

Video representation plays a central role in the set of problems for adaptive streaming. As men-

tioned earlier, the resource requirements for representing video necessitate the use of video com-

pression. The basic goal of compression is to reduce the number of bits required to represent a

given video, or equivalently to reduce the bitrate of the video over time. The conventional com-

pression problem might be framed in terms of maximizing video quality for a target bitrate (or

minimizing the bitrate for a target quality). In practice, the quality-rate goals must be tempered

against the computational requirements of compression and decompression, so that real-time dis-

play is feasible. As CPUs have generally improved, so too has the raw rate-distortion efficiency

of video compression technology.

In adaptive streaming, we assume that the network is a best effort resource, hence there is

no way to select a unique target rate ahead of time. Instead, the strategy of adaptive streaming

is to adjust the video rate according to network conditions. Thus, the requirements for video

compression must be re-phrased, so that the goal is to support some range of possible rates, which

is commonly referred to as scalable compression. The aim of scalable compression can be viewed

as a direct generalization of the aim of conventional compression, where the more generalized

version is to maximize the quality across a range of target rates (or minimize the bitrates across a

range of quality levels). In practice, the range of adaptation will be both limited in its span and it

will be discrete rather than continuous. Hence, adaptive streaming has additional new goals, which

are to maximize the range of supported rates and quality levels, and to provide the finest granularity

of realizable points within that range. The greater the range and the finer the granularity, the more

freedom there will be in rate-matching the video with the network bandwidth.

1.2.2 Finding the best mix of video adaptations

Video quality is multi-dimensional and consequently, there are several ways to adapt the quality-

rate tradeoff. Smoothness of motion, spatial detail, spatial size, and accuracy of color, are just a

few of the aspects of video quality that can be adjusted to alter the rate requirements. However,

the best mix of adaptations will be content, task, and user specific. Finding the best mix possible

is important, but it is predicated on the capability to influence the mix in the first place. Therefore,

given that there is no single best way to adapt video in general, or even a given video, it would

be preferable to support a range of adaptation mixes, and to make mixed adaption decisions in a

policy driven manner. On the one hand this has implications for the video representation, which

must provide some way to effect adaptations of various independent dimensions of video quality,

while still meeting the basic goals of compression efficiency. On the other, the network transport

needs to be able to interact with the video representation to effect the policies, without unduly

compromising modularity or efficiency.

1.2.3 Micro-level streaming problems: effectiveness

In this section, we turn from how video can facilitate adaptive streaming toward the actual prob-

lems of the delivery process itself. We have described the goals of quality-adaptive streaming to

be effective, efficient and scalable. In this section, we expand upon the notion of what it means

for adaptive streaming to be effective in the microscopic sense (from the perspective of an indi-

vidual user). We propose the following four criterea to categorize the sub-problems in adaptive

streaming: robustness, utilization, latency, and consistency.

Robustness

The overall goal of streaming is to deliver the video across the network such that the receiver sees

a continuous playout at the correct rate and without interruptions. Here we are concerned with the

timing implications of the rate-matching process: is the chosen video rate low enough that video

data arrives on time for proper display? Depending on the streaming approach, we also may be

concerned with what happens when some of the data is damaged or lost entirely in transmission.

We define the degree to which streaming can avoid interruptions in the face of network conditions

as its robustness. Due to the best-effort nature of the network, and the volatility of rates that result,

robustness is a principal aspect of the effectiveness of a streaming approach.

Utilization

Although avoiding streaming failures is important, the quality of the video also matters a great

deal. It is certainly possible to achieve a very robust solution if we ignore the resulting quality.

A higher bitrate generally translates to higher video quality, therefore we observe an opposite

pressure to robustness, namely utilization: is the chosen video rate high enough to make full

use of available bandwidth, hence, is the user experiencing the highest quality video possible?

This aspect of streaming effectiveness is particularly relevant looking forward to the future, when

we can expect a general trend toward better infrastructure (processors, storage, and networking).

Rigid streaming approaches are in a sense forced to sacrifice utilization in the future, in favor of

robustness in the present (the time video is first made available). There's a certain irony to the

situation, since infrastructure improvements may seem less desirable if they don't yield noticeable

increases in the user experience.

Latency

Video delivery can take on numerous forms, so it is worth emphasizing what distinguishes stream-

ing from other approaches, particularly downloading. We describe streaming as being fundamen-

tally about providing the same level of instant access to audio and video as the web does for text

and images. For the web, document downloads are largely sufficient. Documents can generally

broken down into pages which are small enough that their download times are acceptable to users,

which is to say that users still spend the majority their time reading the documents, rather than

waiting for downloads. If we take the same approach to continuous media, the wait time for

downloads will certainly exceed the tolerance threshold needed to maintain the illusion of instant

access. It might be argued that instant access is not important, and it would be difficult to formally

prove that it is. However, we can refer to the history of the Internet for anecdotal evidence. Before

the web, the Internet consisted mainly of download mechanisms, such as e-mail, ftp, and Usenet

news. Although these mechanisms still exist, it seems clear that the instant, interactive, access of

the web was a major boost to the utility of the Internet, and has generally increased our overall

access to information.

The main technical premise of streaming is to eliminate the wait of downloads by making the

transmission and display processes happen at the same time (as opposed to waiting for the entire

transmission to complete before display can commence). In practice, streaming mechanisms will

still be subject to delays due to bandwidth restrictions, propagation delays, buffers, etc. These

delays can vary considerably from one streaming approach to the next, so we view the latency of

a streaming mechanism as an important evaluation criteria. It is also important to point out that

latency can be measured in different ways, some of which may or may not reflect what the user

experiences. Therefore, we define two user-centric notions of latency as the following:

Navigation latency: The delay between when a user initiates some navigation action and when

they see the corresponding result, for example the delay between when a user chooses to

start play and when the video starts to play.

Communication latency: The continuous measurement of the delay between when video enters

the streaming process at the sender to the time the corresponding video is displayed.

It may not be obvious, but these two definitions may have different values for the same system

(later chapters will explain fully). We make the distinction between them because their impor-

tance to the user will vary according to the type of video application. For instance, in video on

demand, the navigation latency will be apparent, but once playing, the communication time is not

perceptible. On the other hand, in a video phone application, the communication latency is critical

to maintaining the natural flow of human conversations.

Consistency

Our argument for a quality-adaptive approach rests on the assumptions that the video rates and

network rates are inescapably variable over time, and impractical to treat completely in advance.

Thus, we argue that quality adjustments are necessary as part of the streaming process in light

of the above robustness, utilization and latency criteria for effective streaming. However, we

also recognize that quality changes can be distracting to the user. We define the consistency of

adaptive streaming in relation to the frequency and magnitude of quality changes which the user

may perceive (fewer and smaller changes mean better consistency). In due consideration of the

other criteria, we also put forth that greater consistency will lead to a better user experience.

Summarizing Effectiveness

We have framed the effectiveness of streaming in relation to aspects that would be apparent to the

individual user, through a definition of four sub-components to streaming effectiveness: robust-

ness, utilization, latency, and consistency. On a number of levels, some obvious and some subtle,

the metrics associated with these sub-components are in conflict with each other, so a high level

of overall effectiveness will be more about striking a good balance among the parts, rather finding

a perfect solution to any one. In the next section, we turn to the macroscopic goals (network wide)

for streaming: efficiency and scalability.

1.2.4 Macro-level streaming problems: efficiency and scalability

Video applications are potentially a major threat to the current stability of the Internet. The basic

fact that video has much higher bandwidth requirements per user than other types of traffic means

that it has greater potential to take an unfair share of bandwidth away from existing traffic, and

generally congest the network. This is a major concern in the Internet, where resource sharing is

largely a voluntary and co-operative activity.

Despite their greedy nature, video applications must behave as good network citizens. The

majority of current Internet traffic is TCP based, therefore streaming transports need to be TCP

friendly [go]. Intuitively, TCP friendly means that a flow consumes bandwidth in the same way

that TCP would. Since TCP includes congestion control, this means that the flow will back off its

transmission rate in times of congestion. Just as the current TCP applications, video must employ

congestion control to ensure that the network can avoid congestion collapse and that video traffic

shares fairly with other classes of traffic.

Scalable distribution

Another part of the macro-level streaming problem is finding ways to take advantage of locality

of reference among the users of video. We call this the scalable distribution part of the streaming

problem. Two major approaches to scalable distribution are content distribution networks (CDNs)

and multicast. At a very high level, their common goal is to eliminate redundant network traf-

fic due to the fact that different users are accessing the same content. CDNs and multicast are

distinguishable by the form of locality they treat. CDNs are more about spatial locality and Mul-

ticast is more about temporal locality. The basic idea in a CDN is to employ persistent storage

replication in the network to lighten the load on wide-area links. In CDNs, the emphasis is on

exploiting spatial locality through the use of this persistent storage, involving techniques such as

proxy caching. The locality is spatial in the sense that the CDN will try to service users from

caches that are physically the closest (in network distance) to the users. In multicast, the emphasis

is more on temporal locality, in the sense of users accessing the same content at the same time (like

a broadcast). Multicast is lighter weight than a CDN, because it doesn't require persistent storage

in the network. CDNs and multicast do have common elements: their goal is to increase the num-

ber of video users that the network can support, and they both require some form of in-network

assistance (e.g., caching and multicast forwarding).

Efficiency concerns

Scalable video distribution mechanisms transform the role of the network from a simple forwarder

toward a more active participant. Consequently, there is a need to ensure that quality-adaptation

mechanisms are efficient enough for in-network implementation. In particular, network nodes in

CDNs and multicast may need to implement quality-adaptations in the network, due to the fact

that they partition the end-to-end delivery path (in time or space) between the original source and

the receiver. To preserve network utilization, these in network devices will need to be able to

sustain their quality-adaptation duties at full line rates, which could easily reach Gigabit levels at

interior points of the network. To support scalable distribution, quality-adaptive video delivery

should strive for computationally simple adaptation mechanisms.

1.3 Overview of our approach: the Priority-Progress framework

In the previous section, we enumerated the main problems and some of the sub-problems for video

streaming in the Internet. In this section, we give an overview of our approach to streaming, and

the manner in which it addresses the above problems.

Our overall approach is named Priority-Progress, because of the connection between its cen-

tral theme of informed data dropping and the two essential data attributes necessary to implement

it in time-sensitive applications: a priority and a timestamp. This dissertation presents a complete

framework for quality-adaptive streaming through the Priority-Progress approach. The framework

treats the problems of video representation, adaptive streaming, and scalable distribution described

in the previous section.

The key components of the Priority-Progress framework are outlined in the following subsec-

tions.

1.3.1 SPEG: Scalable MPEG

Although video coding is not the main subject of this dissertation, the availability of scalable

media-compression formats is a principal assumption of the Priority-Progress approach. This

dissertation describes one example of such a format that we have developed, called SPEG (Scal-

able MPEG). A single SPEG video file supports video adaptation in multiple quality dimensions.

Moreover, the space of adaptation is over a very wide range with fine granularity. SPEG demon-

strates the benefits of scalable compression in eliminating the "one target rate" constraint of con-

ventional compression.

1.3.2 Priority Mapping

Adaptive streaming needs a policy driven way to choose from the many possible ways to mix

video adapatations. The policy can reflect content, device, author and user requirements. The

policy specification should be as declarative as possible to avoid exposing unnecessarily the com-

plexities of the underlying streaming mechanisms. In our approach, policy specifications take the

form of utility functions. The utility functions express the prefered mix of adaptations across the

range of acceptable quality levels. We present a Mapper that accepts these utility functions and

automatically prioritizes the units of a video stream such that priority order dropping of the data

results in the specified mix of adaptations.

1.3.3 Priority-Progress Streaming

During transmission, we want to adapt video according to the rate decisions of a TCP-friendly

congestion control. In this way, TCP friendliness is assured. We present an algorithm for quality-

adaptive transmission called Priority-Progress Streaming (PPS). The basic idea in PPS is to send

high priority data before low, but to stream successfully we need to manage timing and priorities si-

multaneously. The PPS algorithm defines how this is done, in a manner that aims to maximize both

robustness and utilization. Furthermore, it has an important component called window-scaling that

provides a way to balance two conflicting objectives of adaptive streaming: low navigation latency

and high consistency.

1.3.4 Priority-Progress Multicast

We extend Priority-Progress beyond unicast Video on Demand (VoD) to broadcast. By restricting

the service model to synchronized viewing of a finite number of channels, a distribution network

can scale to a potentially unlimited number of viewers. Individual link and node stress is bounded

by the number of channels, not the number of viewers. We simulate broadcast via multicast,

in our case Priority-Progress Multicast (PPM). In PPM, we construct a multicast overlay from

a tree whose edges are independent PPS unicasts. PPM is a TCP-friendly multi-rate multicast.

PPM nodes in the interior of the tree perform a very simple dropping algorithm, which can be

implemented very efficiently in commodity hardware. TCP friendliness and multi-rate adaptation

greatly simplify the problems of scalable distribution. In addition to multicast style broadcasts,

PPM could also be a building block for video CDNs and Peer to Peer (P2P) VoD in a way that is

resilient to problems of "flash crowds.

1.4 Software Prototype

We have developed a software prototype to support the claims of this dissertation. Our software

prototype is called QStream (short for the Quasar Streaming System). QStrearn is a complete

video streaming system that includes a streaming video server, a streaming player, a multicast

proxy, and a remote monitor1. The QStream prototype includes implementations of the SPEG, the

Priority-Mapper, and the PPS and PPM algorithms. We have made the source code for QStream

publicly available under the terms of the GNU Public License (GPL). The QStream prototype

serves as the basis for qualitative and quantitative experimental evaluation of the thesis ideas.

'The remote monitor provides real-time visualization of an extensive set of streaming statistics through a software
oscilloscope.

1.5 Thesis Statement

This dissertation presents a software framework for media streaming over the Internet based

around novel adaptation techniques. The distinguishing characteristics of our framework are re-

lated by an overall goal of supporting an "encode once, stream anywhere" model of media stream-

ing. The specific hypotheses of this dissertation are as follows: a) streaming video can be made

scalable with fine granularity over a wide range of rates; b) tailorable adaptation policies can be

used to control the mixture of adaptations to best meet content, task, and user specific require-

ments; c) this kind of video leads to an enhanced user experience when streaming takes place over

typical Internet links; d) the video can be streamed over networks in a TCP-friendly way making it

easier to deploy in the real world; and e) TCP-friendly video streaming can be applied efficiently

to multicast delivery, enabling large scale video broadcast distribution.

Today's streaming systems are not adaptive enough to cope with the unpredictable quality of

service in the Internet. The basic best-effort architecture of the Internet is unlikely to change,

so streaming systems must adopt adaptation that can address the volatility of Internet quality of

service (QoS). In this dissertation we will argue the reasons for inadequacy of current approaches.

We summarize the state of the art as follows.

Today's streaming techniques are unreliable and the quality is generally poor. In practice,

streaming is usually restricted to small video clips, on the order of a minute or less. Of course,

the advantages of streaming for this scenario are small, since the additional startup delay for a

download may not be very large. For longer duration content, where the benefits of streaming over

download should manifest, the current systems show their fragility with respect to transient surges

in network activity. In order to reduce the occurrence of failures with longer duration content,

the typical approach is to set a very conservative target rate for the video, significantly lower than

the average available network bandwidth. This under-utilization of the network resource is highly

ironic given the vast amount of research effort spent on improving the compression efficiency of

video codecs.

We argue that Internet video streaming must employ better adaptation to provide acceptable

quality and robustness. In this dissertation, we present a uniform approach to adaptation called

Priority-Progress that has the goal of supporting an "encode once, stream anywhere" level of

simplicity in Internet streaming systems. The central idea is to employ data dropping, uniformly

and in a fashion informed by priority and timing information in the data, as a means of adaptation

to best effort network conditions. We show the efficacy of this idea through a complete strategy

for adaptive streaming, and its implementation in a working prototype system, the scope of which

spans from the video encoding to the network streaming protocol.

1.6 Summary of Contributions

To summarize, the main contributions of this dissertation are as follows:

SPEG and the Priority Mapper: We show how through proper framing and prioritization,

video need only be encoded once, yet it can support a wide range of bitrates with fine

granularity. Moreover, the mix of adaptations within the range is explicitly controllable so

that user, content, task and device specific requirements can be optimally addressed.

Priority-Progress Streaming (PPS): We develop an adaptive streaming protocol that achieves

several important objectives, namely robustness, high utilization, consistent quality over

time, and low navigation latency.

Priority-Progress Multicast (PPM): We extend PPS to multicast distribution through an over-

lay approach. PPM supports multi-rate, quality-adaptive, multicast distribution, in a com-

pletely TCP friendly manner. To our knowledge, prior approaches have only been able to a

subset of these characteristics simultaneously.

QStream prototype: the above conceptual contributions are made concrete in a comprehen-

sive prototype implementation. This prototype is the basis for our experimental evaluation

of our framework. The prototype itself also constitutes interesting contributions toward pro-

gramming for time-sensitive applications, such as the use of reactive programming, and the

use of remote, real-time, visualization techniques.

1.7 Dissertation outline

The remainder of this dissertation is organized as follows. In the next chapter we revisit the prob-

lems presented in this chapter and discuss them in relation to the related work. In Chapter 3, we

describe SPEG video and priority mapping. In Chapter 4 we give an overview of the PPS protocol.

We give an overview of our multicast protocol, PPM, in Chapter 5. Chapter 6 presents the com-

plete algorithms for unicast and multicast streaming as implemented in the prototype software,

QStream. Chapter 7 presents an experimental evaluation of unicast (PPS) and multicast (PPM)

streaming. Chapter 8 presents our conclusions and suggests problems that require future work.

Chapter 2

Background and Related Work

The basic idea of Internet streaming is a relatively old one, the first systems for streaming audio

and video over the Internet have existed since the early to mid 1990's [a, 60, 10, 591. However,

the impact of streaming so far seems to be well short of its potential. In this chapter we present a

brief history of streaming, describe the current state of the art, and point out relationships between

the contributions in this dissertation and the previous work.

2.1 On the limited impact of streaming

Since the time that Internet streaming technology first became available, many popular Internet

sites have incorporated streaming content. News sites such as cnn . c o m and ny t i r n e s . c o m reg-

ularly provide news clips in streaming formats. Entertainment oriented sites such as iFi l m . corn

and A t o m F i l m s . corn feature movie trailers and some short films in streaming formats. Music

videos are also available via sites like m t v . corn. It is difficult to obtain exact estimates of how

many Internet users utilize streaming content, but anecdotal evidence suggests that most users at

least have a streaming player installed on their computer, and this could be taken as an indication

of the mainstream status of streaming. On the other hand, it would seem that relatively few people

actually use streaming on a regular basis, certainly less than the other basic Internet technologies,

such as e-mail, the web, instant messaging, and more recently peer to peer (P2P) file sharing sys-

tems '. One might interpret the limited success of streaming as a general indication that people

are not as interested in using the Internet for audio and video, but this interpretation can be quickly

dismissed. One only has to consider the developments related to Napster and the subsequent P2P

 gain, this is difficult to verify in the literature, but anecdotal evidence is strong.

15

systems for strong evidence to the contrary. In one recent traffic study [73], it was shown that

video and audio account for the first and second largest portions of Internet traffic. Individuals

(and businesses) are clearly very interested in using the Internet to deliver audio and video. We

believe there is a large gap between the current and potential popularity of streaming and that this

gap is due to a mixture of technology, business, and social-legal issues. Although the focus of

this dissertation is entirely on technology aspects, we must acknowledge that resolutions to the

other non-technological issues are essential to enable many streaming applications. Nevertheless,

the work in this dissertation is motivated by the belief that current streaming technology could

improve significantly, and that such improvements can eventually contribute to more wide spread

use of streaming. We now turn to the history of streaming so far, and to the current state of the art.

2.1.1 Streaming in practice

Very soon after the first streaming systems appeared and were described in the literature [lo, 591,

there was rapid development and competition among commercial software platforms for video

streaming. This competition led fairly quickly to a division (which remains today) into three

popular platforms: Microsoft's Windows Media, Real Networks' Realsystem [13], and Apple's

QuickTime. These three platforms consitute the basis for the majority of streaming on the Internet.

There are also some systems developed by academic projects, such as the Quasar project at OGI

[lo, 871 and the MASH project at Berkeley [59], but those systems did not develop large user

communities.

To various degrees, the popular streaming systems adhere to a suite of Internet standards re-

lated to streaming, such as RTP [74], RSTP [75], SIP [34], and SMiL [33]. Despite the standard-

ization efforts, the three commercial systems were still largely proprietary. It is especially worth

noting that the core issue we address in this dissertation-how to adapt to variable resources-

are almost entirely outside the scope of the Internet standards. The Real-Time Protocol (RTP)

protocol, perhaps due to its rather general name, is often confused with a complete solution to

streaming. In fact, RTP and its various sub-profiles are mainly limited to specifying syntax for

timing and other information, and they do not specify at all how to manage timing of the stream-

ing process, nor do they provide any algorithms for adapting to available resources. We argue that

Internet streaming is unlike most other Real-Time applications, because of the best effort nature

of the services provided by the Internet infrastructure. Classic real-time design generally involves

worst-case analysis and testing of system timeliness properties, and provisioning sufficient re-

sources for the worst case. However, neither video nor the Internet are well suited to worst-case

analysis, because the rate properties of both (video and available bandwidth) are known to be ex-

tremely bursty [29,91, 141. For video, the burstiness is due to the use of video compression. The

burstiness of available bandwidth on the Internet is due to its best effort model, and to the absence

of end-to-end resource provisioning services. We will now discuss why these properties are un-

likely to change, either for video or for the Internet, and hence motivate the subsequent discussion

of adaptive streaming approaches.

2.1.2 Video compresssion and variable bitrates

When television was developed, it used entirely analog electronics. The advent of computer tech-

nology led to the development of digital representations of video. Raw (uncompressed) video has

extremely high rate requirements, especially when the video is represented digitally. For exam-

ple, a television grade signal in digital form is typically coded to about 125 megabits per second

(~ b ~ s) ~ . When digital video equipment was first developed, only highly specialized and expen-

sive devices could deal with such high resource requirements. Soon after, when video compression

techniques were introduced, it became possible to reduce the rate requirements of video dramati-

cally. Initially, the goals of using compression were tied to making digital video usable with more

affordable equipment. For example, the development of the MPEG-1 standard was closely tied

to the advent of consumer CD-ROM devices. Hence, MPEG-1 was often associated with a target

video rate of 1.5Mbps which fit nicely within the capabilities of early generations of CD-ROM

devices[41]. Since the time that MPEG-1 was developed, there has been significant progress in

improving video compression [35,42]. However, the progress in hardware has been even greater,

and it seems likely that general purpose hardware will continue to improve more quickly than

compression. Thus it is worth considering whether the expected advances in hardware will elimi-

nate the need for video compression altogether. For the forseable future, we believe that the need

'125 Mbps is based on 720 x 480 pixel frames with 12 bits per pixel (W V formats using 6 bytes for 4 pixels) and
30 frames per second.

for compression will persist because compression technology already can reduce the rate require-

ments of video by between one and two orders of magnitude. This reduction in rate requirements

translates to cost reductions of the same proportions for storage and network bandwidth resources.

Thus, as long as there are non-negligible costs for storage and network bandwidth, the incentive to

utilize compression will remain strong. However, the space and bandwidth benefits of compres-

sion do not come without some disadvantages.

One of the primary disadvantages of video compression is that compressed video has rate

requirements that are highly variable over time. Statistical studies have shown that compressed

video is bursty over the full range of time scales [29]. While the rate reduction from compression

aids streaming, it is also true that compression hinders streaming because it adds the requirement

of dealing with significant rate changes over time. To be clear, these changes are not a deficiency

of video compression, they just reflect the fact that the entropy in video will naturally change as the

content varies betweeen frames and from one scene to the next. Some video encoders offer pur-

ported support for Constant Bit Rate (CBR) coding, but they do so at the expense of compression

efficiency3. As a more efficient alternative, various buffering techniques have been developed to

smooth out these rate changes for network transmission. Feng [25] has compared the performance

of a selection of the proposed smoothing techniques. However, all of the approaches examined

in Feng's study assumed that there was some fixed level of available bandwidth, which would

be true if it were possible to provision network bandwidth in advance. While some special pur-

pose networks (such as networks dedicated solely to video broadcast) may have that property, the

general-purpose Internet does not. To cope with network bandwidth changes, adaptive streaming

is necessary. In this dissertation we will present an integrated approach that deals with video rate

and network bandwidth variations simultaneously.

Before we turn our attention to adaptive streaming, we first review two considerable efforts

towards augmenting the basic services of the Internet: Multicast and Quality of Service (QoS).

Both of these efforts share better support for video delivery as a principal goal. Multicast concerns

how to improve the scalablility of Internet based delivery. QoS concerns the goals of provisioned

resources and predictable service.

3 ~ o s t CBR coders involve some amount of zero padding of the video data to smooth the rate.

2.1.3 Multicast

Multicast is a transmission technique that aims to support efficient, one-to-many data transmis-

sions such as video broadcasts. Multicast is especially attractive for multimedia data such as

video because the high bitrates of video and very large numbers of receivers can combine to make

the cost of a unicast based approach prohibative.

Multicast works by organizing the transmission to a group of receivers into a tree structure,

where the data is replicated at interior branch points of the tree. The effect of the tree is to limit

the amount of stress placed on any single point in the distribution. By stress, we mean the the

number of copies of the packets of a given flow to traverse a given node or link. An ideal multicast

tree will limit link stress to exactly 1 per active session, and the node stress will be the degree of

each node (number of directly connected edges). In a unicast scenario, the node and link stress

at the source of the distribution will be the same as the total number of destination receivers.

With multicast, the lower maximum stress means that the resource demands on nodes and links in

multicast can be spread more evenly throughout the network, hence multicast enables sharing the

available resources better with other traffic than unicast, which can easily overwhelm capacity of

links and nodes close to the source.

IP Multicast (Rip)

IP multicast [18] was proposed to incorporate multicasting as a basic service primitive in the

Internet. Intended as an interim solution, the MBone [20] was developed to allow IP multicast

traffic to cross regions of the Internet without native IP multicast support. For various reasons,

which include a mixture of technical and economic issues, full deployment of IP multicast has

yet to materialize [19]. Some of the technical reasons include problems with inter-domain routing

protocols, problems with management of the multicast address space, and the lack of congestion

control in multicast transports. The economic reasons include the pervasiveness of asymmetric

"policy" routing in the Internet, where Internet Service Providers (ISPs) configure routing policy

within their own domain so as to cause foreign packets to exit as soon as possible, rather than

taking the shortest route to the destination4. For this reason, routes on the Internet are often asym-

metric taking different paths in each direction between two end hosts (because the end hosts use

different service providers). The asymmetric aspect of policy routing can conflict with the stan-

dard mechanisms used to establish routing for multicast trees (e.g., reverse-path routing). Some

ISP may even perceive an economic disincentive to accept "foreign" multicast packets at all, due

to the interaction with service level agreements (SLAs) between ISPs. SLAs are usually enforced

based on packet accounting mechanisms at border points between ISPs. However, multicast pack-

ets may replicate at points other than the border, thus bypassing the SLA accounting. Network

operators are thus reluctant to allow IP multicast within their networks. After more than a decade

of development, IP multicast service is unavailable to most end users of the Internet. Due to the

slow deployment of IP Multicast, recent research is revisiting some of the assumptions of the 1P

multicast design.

Multicast Revisited

In the wake of IP multicast's shortcomings, there have been many recent multicast proposals that

move away from the notion of multicast as an IP primitive and move toward application level

approaches (overlays). Unlike the original multicast overlay-the MBone-these new proposals

also explore altering some of the basic assumptions of what the multicast service model should

be.

Although multicast can potentially generalize to many kinds of data distribution, there has

always been a fairly close association between multicast and video delivery. As mentioned in

Section 2.1.2, the high bitrates associated with video make it desirable to find ways to reduce

bandwidth costs. Multicast can be thought of as a kind of compression technique in so much as

it can reduce the overall network requirements to distribute a video to a group of users. Also,

like video compression, we see that multicast can bring additional complexities, which can only

be justified if the savings from using multicast are large enough. For the purpose of this disserta-

tion, we classify the challenges in multicast into two main categories: tree management and data

forwarding.

- - - - - - - - -

4~ foreign packet is one who's source address does not match any of the ISP's customers.

In multicast, one of the basic issues is how to establish and maintain the topology of mul-

ticast distribution trees. For instance, in order to simplify the address space and routing issues

relative to IP multicast (as well as certain security related issues), many of the recent overlay

approaches assume a strict, single-source model, as opposed to the more general many-to-many

model supported by IP multicast [94]. Another common direction has been to combine multicast

with ideas from the many recent peer to peer (P2P) approaches, which employ various strategies

with the common theme of achieving scalable and self-organizing routing [l l , 45,811. One of the

key problem areas is how to find multicast topologies in an overlay that deliver the best perfor-

mance. A related question is what metric or combination of metrics should be used as in selecting

and judging topologies. The fact that overlays often only maintain partial routing information-

which can obscure the true underlying network topology-is a significant complication because

edges that are distinct in the overlay topology may in fact have common physical links in the real

network. However, many of the recent systems are intentionally designed to accept the possib-

lity of slightly suboptimal topologies (due to only partial knowlege) in exchange for much better

scalability properties.

Much of the work in multicast is on the routing side, and does not treat the data forwarding

issue. The default multicast forwarding function is relatively trivial: it simply duplicates and

forwards data as necessary from the incoming edge to the outgoing edges in a best effort fashion.

One of the goals of the IP multicast architecture is to keep the forwarding function as simple

as possible, preferably with minimal overhead relative to unicast IP forwarding. To maintain

this simplicity, purely end-host managed mechanisms had to be used to add other features to the

multicast service model, such as reliability [95,28], and congestion control [85, 69,7]. Although

the desire to minimize complexity inside the network is well intentioned and has been a long-

proven strength of the Internet architecture [72], the purely end-host based schemes for reliability

and congestion control were complex and, in some cases, it was difficult to judge if they achieved

the desired effect. For instance, congestion control mechanisms that rely on joining and leaving

multicast groups work on different time scales than TCP's congestion control, so it is unclear

how fairly they share. Given the trend toward overlay multicast instead of IP multicast, it stands

to reason that an overlay might be designed with more advanced data forwarding functionality,

moving some of the complexity back into the network in the hope of realizing a better overall

solution.

In this dissertation, we explore an overlay based approach for multi-rate adaptive multicast of

video, which treats the data-forwarding side of multicast. Our approach can be combined with

recent topology management techniques mentioned above to produce a fully adaptive multicast

solution. As with the unicast components of this dissertation, our focus is on adaptive delivery,

which is motivated largely by our expectation that resource provisioning will be unavailable to

most users of the Internet for at least the near future and perhaps well beyond that. Section 2.2.6

will discuss the related work on adaptive multicast.

2.1.4 Internet QoS

From the early days of the Internet, it was recognized that the Internet's best-effort architecture was

at odds with the goals of time sensitive applications such as audio and video [12]. Often, the design

principles of telecommunications networks used for traditional voice traffic (telephone) were held

up as examples for how digital networks can provide provisioned resources. For some time, there

was a general belief that there would be some kind of unification between the architectures of data

networks typified by the Internet, and the more traditional telecommunications networks. Many

expected ATM technology to achieve this unification, bringing with it true support for Quality of

Service (QoS) in the Internet. In networking circles, the QoS term is often used to denote support

for various forms of resource reservation. Good support for video was an often touted payoff for

the transition to ATM and QoS support. A core design decision in ATM was that the use of small

fixed size packets (cells in ATM terminology), which allowed ATM to provide various degrees of

predictable service, and better switching latency properties. However, a significant transition of

the Internet towards ATM did not materialize and seems completely improbable now, for reasons

described well elsewhere by Kalmanek [46].

In addition to the activity surrounding ATM, there were efforts to add QoS support directly

to the existing Internet protocols. The approaches included two broad IETF programs: Integrated

Services (IntServ) and Differentiated Services (DiffServ). At a high level, the two differed in

their granularity. IntServ was more ambitious, and aimed to augment the Internet with mecha-

nisms that would provide per $ow reservations, mainly via the RSVP protocol [92]. RSVP did

not succeed in achieving significant deployment. The resistance to RSVP was due to scalability

problems (overall it was too heavy weight) and its high overheads [15]. DiffServ was an attempt

at a lighter weight solution, with coarser granularity of provisioning [6]. Unlike IntServ, which

was aimed at end-user per flow reservations, DiffServ was aimed at aggregate reservations mainly

for use between enterprises and service providers. However, by the time DifFServ arrived, service

providers had already decided that simply over provisioning the core of the Internet was a simpler

and cost effective enough solution to many of the problems addressed by DiffServ. As described

by Crowcroft et al. [15], DiffServ was "too little, too late".

After more than a decade of significant effort, QoS support (especially on the "last mile" to

end-users) is almost non-existant. However, the research in the area remains active, and there are

new approaches (e.g. Subramaniam describes an overlay approach to QoS support [79]) that may

eventually prove more successful. Nevertheless, the lessons from the QoS efforts so far tell us

that it would be unwise to design video streaming to depend entirely on QoS support. Instead, we

should consider video streaming and Internet QoS as separate and complementary technologies.

Video streaming should benefit from QoS support if and when it is available, but it should deal

gracefully with the best effort infrastructure that seems likely to be with us for a long time to come.

2.2 Adaptive Streaming

Given the apparent barriers to including resource provisioning in the basic Internet service model,

our position is that an adaptive approach is essential to deal with the diversity and volatilty of the

various resources involved in Internet based streaming.

There has indeed been a great deal of work in the literature related to adaptive video stream-

ing, which spans several distinct domains, including video compression, real-time systems, and

networking (unicast and multicast). A spectrum of adaptive strategies have been proposed to deal

with the consequences of the Internet's best effort service model, which we summarize below. The

surveys of [93] and [84] are also good references.

In the remainder of this section we expand on the basic performance issues for quality-adaptive

streaming in light of some of the approaches proposed in the literature and in terms of commercial

streaming systems. The related work on quality-adaptive streaming relevant to this dissertation

falls into six categories: single rate adaptation, multi-version techniques, online-scaling, scalable

compression, adaptive unicast streaming, and adaptive multicast streaming. We will discuss each

of these areas below.

One of the main issues that spans each of these areas is the granularity of adaptation. Ideally, a

quality-adaptive streaming system will select video quality to match the average available network

bandwidth. In practice, adaptation tends to be limited to discrete steps, and consequently the rate

match is only approximate. A system that supports steps with finer-granularity generally results

in a better match, which manifests itself in higher quality and better reliability of streaming. The

type of video compression, especially whether the compression is scalable or not, is a major fac-

tor influencing the granularity of quality-adaptive streaming. Because many of the compression

formats in common use are not explicitly scalable [41, 40, 42, 431, the target rate is a required

parameter for encoding. These formats do not provide explicit support for adapting rate after en-

coding. Frame dropping is a well known work-around, and is probably the most popular video

adaptation mechanism, having been used since the first quality-adaptive Internet streaming sys-

tems appeared [lo]. In addition to frame dropping, there are other important ways to adapt video,

which will be discussed in the following sections. When multiple adaptations are combined, it can

help to increase the granularity of the space of adaptations.

2.2.1 Single Rate Adapation

In practice, one of the most commonly used strategies is one-time adaptation, where the user

chooses between a small set of predetermined rates before streaming begins. Once started, stream-

ing is fixed at this single-rate regardless of competing traffic. One-time adaptation has two basic

problems: it is prone to yield lower quality than necessary when more bandwidth is available, and

it is prone to complete failure when less bandwidth is available (requiring play to pause while

client side buffers are re-filled). Both problems become more probable as the duration of stream-

ing increases. From a user's perspective, the result of these difficiencies are that streaming for

long periods has poor quality and is unreliable. Apple's Quicktime uses one-time adaptation and,

in addition, it adjusts the amount of client-side buffering based on measured rate volatility during

startup [83]. Consequently, startup time while initial buffering is established can be quite high--on

the order of tens of seconds. Windows Media and Realsystem based systems are often configured

in this mode also, even though they offer advanced mechanisms as options.

2.2.2 Multi-version Techniques

Multi-version streaming systems store a single video at a range of pre-selected bitrates, with the

goal of switching adaptively between the versions according to available bandwidth. Multi-version

adaptation benefits from being able to use conventional, non-scalable codecs, which are more

commonly available. Also, conventional codecs presently achieve higher compression efficiency

than scaleable codecs. The main drawback to multi-version adaptation is that, to keep encoding

and storage overheads reasonable, it requires the selected bitrates divide the range of rates with

coarse granularity. This leads to quantization effects in the adaptation controllers, which hinders

their ability to attain utilization and robustness. A poor controller has similar problems to the one-

time adaptation strategy, it can under utilize average bandwidth, or it can be unreliable in times of

congestion. It is worth noting that, to the user of the video, the under utilization of bandwidth can

negate the compression efficiency advantages of using conventional codecs. The coarse division

of rates also makes it difficult to offer control over the kinds of adapation that occur, so as to

best match specific requirements. Despite these limitations, multi-version adapatation is the most

widely deployed technique for stored content, as it is used in Windows Media IntelliStream [5]

and Real's Surestream [13].

2.2.3 Online scaling

Online-scaling techniques, which include live encoding, transcoding, and data-rate shaping (DRS),

allow changing the target rate parameter of the encoder or transcoder on the fly [44,96]. Transcod-

ing and DRS can have significantly lower computational complexity than live encoding. The main

advantage of online scaling is very fine granularity. However, even DRS (the most efficient of

online-scaling methods) is very computationally intensive relative to non-adaptive streaming, or

to adaptive streaming through frame dropping or multi-coding5. While online scaling allows very

fine-grained adaptation, the computational time required to recode limits scalability quite severely.

Online scaling is best suited to applications which only require support for just a single receiver

or perhaps for a small number of receivers. However, the computation cost of online scaling in

'DRS either requires a full encoding step, or a transcoding step, which decompresses all the video blocks sufficiently
to modify them, and then re-codes the result.

servers and edge devices make it an ill-advised choice for supporting large numbers of indepen-

dently adaptable streams.

2.2.4 Scalable compression

Scalable video coding technologies focus on creating compression formats that allow adaptation

of the rate-distortion relationship without explicitly re-coding (e.g. MPEG-2 scalability, MPEG-4

FGS). In contrast to online scaling, scalable compression aims to support low-complexity adapta-

tion that will scale to large numbers of streams. Scalable compression schemes explicitly support

multiple quality levels, exposing two or more layers in the encoded video. The layers are progres-

sive: the higher layers depend on the lower layers, and the higher layers are used to refine quality.

The various scalable compression approaches differ in terms of granularity, ranging from very

coarse, as in the work in Layered Multicast [61] and MPEG-2 Scalability [35], to very fine, such

as in recent work in MPEG-4 and H.26L Fine Granularity Scalability [55, 371. With the current

state of the art in scalable video compression, there remains a compression efficiency penalty, in

that video quality from scaleable compression is lower compared to the results of non-scalable

compression at the same rate, but this penalty is getting smaller [37]. Fine granularity scalabil-

ity through layering makes it possible to begin streaming without even knowing the target rate

by sending lower layers before higher layers and truncating higher layers if time runs out. The

contrast between this approach and online-scaling, where the quality adaptation must commit to

a target rate before encoded data is ready to transmit, is worth noting. In exchange for the small

efficiency penalty (see Section 3.4), scalable compression offers a significant boost in freedom for

the design of adaptive streaming mechanisms. Scalable compression techniques are complemen-

tary to the work we describe in this dissertation. We expect advances in scalable compression can

be easily and directly incorporated into our framework.

While the three categories above are concerned mainly with video representation and coding,

the next two categories concern adaptive streaming, that is, the mechanics of actual network de-

livery. We discuss adaptive streaming with respect to unicast scenarios first, and then we extend

our view to adaptive multicast.

2.2.5 Adaptive Unicast Streaming

A principal concern with streaming is the potential impact of video traffic on existing Internet

traffic. Many research projects have studied quality adaptive streaming in relationship with TCP-

friendly congestion control [93, 66, 24, 22, 44, 78, 501. A common idea among them is to let the

transport protocol and its congestion control dictate the appropriate sending rate. The main differ-

ences are in the details of deciding what to send and what to drop, and what information are used

to inform these control decisions. For example, Rejaie et a1 describe their algorithms for optimal

streaming [66], where optimal means minimal client-side buffering, and thus a minimal associated

contribution to end-to-end latency. The role of their algorithm is to control adding and removing

quality layers, where the control decisions are based on a rate-driven feedback control. The design

of their control is based on analysis of additive-increase multiplicative-decrease (AIMD) conges-

tion control6 and an assumption of a priori knowledge of video rate requirements [66]. Feamster

et a2 extend this work to more general congestion control mechanisms [22]. Recently, Dai et al.

[16] have presented an approach that proposes to integrate scaleable compression (MPEG-4 FGS)

with adaptive streaming, using alternative congestion controls based on Kelly controllers.

In contrast to these systems that explicitly attempt to match rates, Feng et a1 describe an

adaptive streaming algorithm that uses a sliding window over video frames, sending data from

low to high quality, in best effort fashion [24]. Feng's algorithm gains simplicity because it does

not attempt to minimize client-side buffering absolutely, and it has the advantage of working

without direct assumptions about the design of the underlying congestion control. Kang et al. [47]

propose a priority-driven adaptation, but assuming fixed bandwidth channels. Prior to the work

in this dissertation, the question of how to link scalable video encoding and tailorable adaptation

policies to TCP-friendly streaming was mainly an open one.

The framework presented in this dissertation uses scalable compression and TCP. One of the

contributions of our approach is to demonstrate the benefits of using the priority-timestamp packet

as the basic unit of media abstraction, as opposed to video frames or layers in a stream. Through

priority mapping, we extend scalable video compression to support tailorable adaptation so that

compromises made in quality better reflect the influence of specific content, viewing devices, and

6 ~ ~ ~ s congestion control uses an instance of AIMD after it reaches steady state.

user preferences. Our Priority-Progress Streaming (PPS) algorithm extends TCP-friendly adap-

tive streaming to support direct control over quality compromises in streaming, such as relative

preferences between different dimensions of video quality, latency tolerances, and limits on the

number of quality changes, while preserving the goals of high utilization and video quality.

2.2.6 Adaptive Multicast Streaming

The same basic principles that motivate an adaptive approach for unicast streaming apply to multi-

cast as well. To summarize, the bitrate of video is variable because of the use of compression, and

the available bandwidth is bursty because of the diverse makeup of the network and its best-effort

service model. Thus, an adaptive approach is needed to scale the video to match network con-

ditions. Moreover, where unicast streaming is concerned with adapting video to the highest rate

appropriate to a single receiver, in multicast there are multiple receivers, each of which may have

a unique appropriate rate. In contrast to unicast streaming, work on adaptive multicast has been

mainly confined to research, it is not yet supported by any of the popular commercial streaming

systems. In the remainder of this section, we summarize some of the related work on adaptive

multicast from the literature. For more details, Liu et al. have done a nice survey of the area [56].

We remark that we restrict our view to multicast streaming, noting that there has been considerable

work on multicast downloads as well.

Solutions for adaptive multicast can be either single rate or multi-rate. In both approaches, one

of the primary goals is to share the network fairly with other traffic, that is, the adaptation should

serve a congestion control function like that of TCP. In the single rate approach, the adaptation

matches the rate of the entire tree to that of the slowest link. Obviously, this penalizes some

receivers in the tree, but it may be simple to implement. In the multi-rate approach, the goal is to

find the best rate for each receiver, in a way that avoids penalizing faster receivers in the presence

of other slower recievers in the tree .
Receiver Driven Layered Multicast (RLM) was an early proposal for adaptive media stream-

ing over IP multicast for continuous media such as video [61]. The basic approach was to have the

media partitioned into layers that were associated with individual multicast groups. The layers in

the groups are progressive in that a base layer is used to cany the minimum quality version, and en-

hancement layers each refine the quality (presuming each of the lower layers are also present). The

layered multicast approach is necessarily coarse grained-typically the layer sizes are distributed

exponentially, for example, each higher layer is double the size of the previous lower layer. The

coarse granularity is necessary to limit the number of multicast groups, and to limit the number

of join and leave operations, each of which can take significant time to complete. These join and

leave operations are the basis for adaptation in RLM, RLM receivers increase and decrease their

data rate by joining and leaving multicast groups. The receiver oriented nature of RLM is driven

by the goal of scalability. One of the main advantages (at least at the time of its design) of the

RLM approach is that it builds entirely upon the existing features of IP multicast service. This ad-

vantage is somewhat moot now, as deployment of IP multicast hasn't reached significant numbers

of users (see Section 2.1.3). A major disadvantage of RLM is its coarse granularity of adaptation,

which among other things means that RLM is unable to share the network fairly with TCP traffic.

Extensions to the RLM approach to try and address the issue of TCP friendliness for the single

rate case have been proposed by Vicisano et. a1 [85] and later extended by Rizzo [69]. A number

of studies have also looked at approaches to multi-rate congestion control [86, 71, 48, 531. The

priority drop approach we take in the multicast component of this dissertation is quite a departure

from those works, which generally assume a layered source stream. In these layered approaches,

adaptation is co-ordinated by recievers or the sender. In our approach, the internal nodes of the

multicast tree participate in the priority dropping decisions. Also, the TCP friendliness of our

approach is very easy to understand, since we use TCP.

Multi-rate adaptive multicast has also been one of the main target problems for a variety of

proposals for Active Networks. The basic idea of Active Networks was to add various forms of

extensibility to routers. Most of the literature in Active Networks concerns the infrastructure sup-

port needed to provide extensibility. However, some of the work took a higher level view towards

target applications such as video [96,49,88,36]. Yeadon's PhD work [96] proposed various ways

to adapt video in an active service framework. Our inspiration to develop SPEG came mainly from

Yeadon's work. Yeadon's filters were also our inspiration to investigate an alternate approach to

simplify the operations required of network nodes, because the computational complexity of his

filters is a serious impediment to scalability. In some sense, Yeadon's filters are similar to Amir's

earlier work on application level video gateways [I] in that they both do transcoding in the net-

work. The approach in this dissertation is to restrict in-network operations to priority dropping, so

that our multicast data forwarding has much more modest computational demands.

Chapter 3

Streaming Friendly Video

In this chapter, we describe how we extend a common type of video compression to support

graceful quality adaptation (via priority data dropping). In our approach, video can adapt across

multiple quality dimensions simultaneously and the mix of adaptations is tailorable, meaning that

the adaptations can be controlled through an explicitly specified policy. These features are made

possible by a component of our system called the Priority Mapper (hereafter referred to simply

as the Mapper) that automatically converts specified adaptation policies into appropriate priority

assignments. The policies express relative quality preferences, which may be content, user, device,

and task specific. The Mapper assigned priorities are such that priority-order data dropping will

cause video quality to degrade in the least important aspects first, according to the specified policy.

The architecture of our adapative streaming framework divides the adaptive streaming process

into several distinct stages. The common point of reference between the stages is priority-drop

based adaptation. In this chapter, we describe the two stages that constitute the video preparation

phase of our architecture: video encoding and priority mapping. The adaptive streaming stage will

be described separately in Chapters 4 through 7. By treating video encoding and priority mapping

as separate stages, we allow the possibility that there may be multiple priority assignments for

the same video, which might be used to tailor the mix of adaptations to diverse usage scenarios.

For example, the mix of adaptations for a user with a small screen on a mobile device may differ

from a user with a workstation or even a home theater. Taking another example, the adaptation

mix may need to change temporarily whenever the viewer decides to do a slow motion replay.

Our separation between encoding and priority mapping makes it easy to tailor the adaptations as

necessary without incurring the cost of multiple encodings.

Our video preparation stages-encoding and priority mapping--can be done before (offline)

or during (online) the actual streaming process. Because, in this dissertation, we focus mainly

on streaming of stored content (video on demand), we chose to do the encoding offline, and the

priority mapping online. It is also possible to do the priority-mapping offline, perhaps several times

to form a canned set of adaptation mixes. This would have less flexibility than mapping online, but

it would decrease the overall workload of the streaming server. We have not actually implemented

offline mapping, because the computational cost of online mapping hasn't actually been significant

in practice. On the encoding side, we have done an online version in the context of a live streaming

variant of our system (from a webcam source) [38]. Whatever the chosen staging is, the result of

the preparation stages is a generic encapsulation of the video data, where priority and timestamp

information capture the essential information necessary for the streaming process to effect graceful

adaptation. The general techniques we have taken for video could potentially be applied to other

streaming data types (e.g., measurements from environmental sensors), with appropriate encoding

and priority-mapping analogues, while our Priority-Progress network protocols should continue

to work without changes.

3.1 Scalable Video

The video format used in our streaming system is called SPEG (Scaleable MPEG). Although

scaleable compression is an important component of our framework, it is not the primary focus

of this dissertation. SPEG adds a fairly basic level of spatial detail scaleabilty to MPEG, just

enough to demonstrate the basic properties we expect from more optimized scaleable codecs. In

particular, we are interested in the ideas that a scalable coding can be adapted gracefully across

a very wide range of rates and quality levels, and that more than one dimension of video quality

is adaptable. At the time this work began, there were few items in the literature to describe such

encodings, and no publicly available software implemenations that we knew of1. More recently,

other researchers have developed high performance scaleable compression with similar properties

for current standards such as MPEG-4 [55,37]. In the body of this chapter, we give a basic review

of video coding along with the details of how SPEG adds spatial scalability. Readers familiar

with MPEG and FGS [35, 551 may choose to skip this material. We will conclude the discussion

' ~ t the time of writing, ours is still the only publically available implementation that we are aware of.

33

Sequence0 Sequencell...1 Sequencej

Picture
0

Slice
0

I Slicell ISliCeml

MB
0 EJ EJ ... Ej
~~~@]EJ

Figure 3.1: Typical Hierarchical Structure of Compressed Video

of SPEG with some observations of how we expect future scalable compression formats will be

improved to better assist streaming delivery.

This dissertation does not expect the reader to be familiar with the mathematics of signal

processing that underlies video coding. We attempt to provide explanation to give the intuition of

the mathematics, although understanding the compression aspect is not critical.

Figure 3.1 shows the typical structure of compressed images in common video formats such

as MPEG. A video consists of a sequence of groups of pictures (GOPs). A GOP is a sequence

of frames2. A frame is decomposed into sub-units, such as MPEG slices. A slice consists of a

2Although we try to use the term "frame" consistently in this dissertation, it should be noted that the terms image,
picture, and frame are synonymous



sequence of macro blocks, which in turn consists of fixed numbers of blocks with a block being a 

pixel array. Slices serve a combined purpose of allowing limited error recovery in the event of bit 

errors, and some ability to fine tune certain encoding parameters for specific regions of a frame. 

However, the error recovery role of slices in MPEG is very limited and is not intended to solve the 

kinds of problems that occur during network transmission. The purpose of the macroblock relates 

to the fact that it is common practice in video to represent color with lower fidelity than luminance 

(color subsampling). So typically, as in MPEG, a macroblock might contain four luminance (Y) 

blocks, and one block each for the two color components (U and V). Finally, a block is an array 

of pixel values. In MPEG-1 through 4, a single fixed 8x8 size is used for all blocks. Upcoming 

revisions to MPEG-4 will support a range of possible block sizes. 

The foundation of MPEG compression is the treatment of the data in the blocks. MPEG 

transforms the pixel values using a staple technique from signal processing called a frequency 

transform. The original values are considered to represent values of a signal over time, where the 

position of the pixel value within the block determines the time point in the signal, and the value of 

the point represents the amplitude of the signal. The transformation produces a function over the 

frequency components of the signal that approximates the orginal signal. MPEG uses the Discrete 

Cosine Transform (DCT). The form of the function is a summation over cosines. The output of the 

transform is the set of coefficients for the cosine terms of the sum. The value of each coefficient 

represents how strongly the original signal contains the frequency of that corresponding term in 

the sum. Intuitively, a larger value for a higher frequency term means the values of corresponding 

pixels change quickly. Conversely, if the pixel values are similar to each other in the area of the 

block, then only the coefficients of lower frequency terms will have large values. 

Figure 3.2(a) shows the formula of a cosine transform. The shape of the function as a whole 

is the same as the original sequence of pixel values. Figure 3.2(b) gives a visual representation 

of the two dimensional (horizontal and vertical) DCT basis, which can give some of the intuition 

for how they are combined to represent arbitrary signals. From left to right, the basis functions 

have increasing frequency in the horizonal direction, and from bottom to top, frequencies increase 

in the vertical direction. The bottom left is the zero frequency basis, often referred to as the 

DC component, because it has a constant value (i.e., by analogy to electronics with DC "direct 

current", as opposed to AC "alternating current" ). The remaining components are referred to 



F( u, v)
1 7 7

= 4C(u)C(v) L L f(x, y) cos((2x + l)u~) cos((2y+ l)v ~)
x=Oy=O

u,v,x,y 0,1,2,...,7

CU)
{

I .f
'

= v'21J=0
1 ifj>O

(a) DCT equation used in MPEG-l

, m..~.B.~.).
~ ...ig...~....
= i:E ,8' fm':=g:B ~ m
:: "~.8. ':::sm

.m
'''.

.

f

.=
'
.

'

.

"'~

.".'.""
,- . . k. .'

W'IM

I ~III U II nUl III ;~III

---_.

----

..
III

(b) Visual representation of DCT basis functions

Figure 3.2: The Discrete Cosine Transform (DCT)

35



as AC components. The DCT transform function takes a two dimensional array of pixel values 

and produces a set of weighting coefficients, which, when applied in a summation over these 

basis functions, results in the best approximation to the input pixel values. The DCT coefficients 

constitute a frequency domain representation of the signal (pixel data). Using the inverse DCT 

(IDCT), the transform can be reversed (applied to the coefficients) so as to produce original pixel 

values. 

The compression benefit comes from the fact that, whereas the original pixel values may be 

distributed evenly (albeit randomly), the frequency domain version will tend to be concentrated in 

a few low frequency coefficients. The high frequency coefficients will tend to have small values, 

close to zero. Or rather more importantly, the human eye is more sensitive to the parts of the image 

that are represented by the low frequency coefficients. This is the crux of the compression gains for 

lossy video encoding compared to losseless techniques. It is possible to drop information from the 

higher frequency coefficients with a relatively low perceivable impact on the image. By reducing 

the numeric precision used to represent these coefficients, a simple conventional compression 

algorithm, for example run-length and Huffman coding, can achieve orders of magnitude higher 

compression ratios compared to the same algorithms applied directly to the original pixel data. So 

then quantization, which is the strategic removal of low order bits from the DCT coefficients, is the 

primary basis for compression gains in MPEG and very many other similar compression schemes. 

Increasing the quantization (i.e., reducing the precision of coefficients) reduces the total size of the 

compressed representation, in exchange for degradation of the fidelity of the reconstructed image. 

The job of matching a target bit rate for an MPEG stream is done by a component of the encoder 

called the rate control. 

Whereas rate control tries to find quantization values that cause the compressed video to match 

a target rate statically, a spatially layered coding partitions the coefficient data so that quantization 

can be done dynamically and incrementally. This is the basic idea used in SPEG. 

SPEG transcodes MPEG coefficents to a set of levels (one base level and three enhancement 

levels) as follows. If we denote the original MPEG coefficents X [ i ,  j ] ,  then SPEG partitions this 

coefficient data according to the following equations3 : 

3 ~ h e  >> denotes the right bitwise shift operator, and the & denotes the bitwise end operation. 



The four layers are denoted Xbase [i, j ]  , XeO [i , j ]  , Xel [i , j ]  , Xe3 [i , j ]  respectively. The layers 

in each SPEG frame are the basic application level data units (ADUs) in SPEG. The above steps 

can be reversed to return SPEG back to the original MPEG. Alternatively, we can drop some or 

or all of the enhancement layer ADUs (from high to low) subsituting zero values for the missing 

data. The effect of such dropping is analogous to having used higher quantization parameters 

during MPEG encoding, yielding lower bitrate in exchange for less spatial fidelity. SPEG suffices 

to demonstrate the essential properties of scalable compression, albeit with lower compression 

efficiency and fewer layers than something like MPEG-4 FGS. 

We expect future scalable codecs will expose even more scalability mechanisms. One example 

is spatial-size scalability, where the number of pixels of height and width are scalable. Another 

example is chroma scalability which might allow a range of color fidelities, from 4:4:4 to 4:2:2 to 

4: 1: 1 to greyscale to monochrome. The object based compression techniques starting to appear in 

standards like MPEG-4 might allow content adaptation through addition and removal of objects 

[42]. These possibilities raise the issue of tailorable adaptation. In order to take full advantage 

of all of these scalability options, there would need to be a good way to control how they are 

used together. To explore tailorable adaptation, we use SPEG's spatial scalability in combination 

with frame dropping to provide a minimal example of a compression scheme with more than one 

scalability mechanism. 

Finally we note that a deficiency of SPEG, and of MPEG rate control, is that we do not explic- 

itly know how much image degradation a given level of quantization causes. We will discuss this 

issue further in Chapter 8. 

3.2 Priority Mapping 

Having more than one quality dimension raises the issue that choosing how to best adapt the 

multiple dimensions may depend on the usage scenario. For example, the target device may 



Adaptation 
Policy 

I 

ADUs (1 SDUs 
Priority 
Mapper t- 

Figure 3.3: Priority Mapper 

have a small screen, so preserving frame-rate may make more sense than spatial detail. A user 

may want to repeat a scene in slow motion, which looks smoother if more frames are inserted. 

Conversly, skipping frames is harder to notice when doing fast-forward scan. We have designed a 

priority-mapper with the intent of providing a general approach to tailoring quality adaptation to 

such specific quality preferences. A priority-mapper automatically assigns priorities to the units 

of a media stream, so that priority drop yields the most graceful degradation, as appropriate to the 

viewing scenario. 

Figure 3.3 depicts the mapper used in our framework. The mapper's inputs are application 

data units (ADUs) and the quality adaptation policy. The output of the mapper is a sequence of 

streaming data units (SDUs). Each SDU contains a group (subset) of the input ADUs, along with 

a timestamp and priority computed by the mapper algorithm. 

Figure 3.4 shows a set of ADUs. The ADUs have a packet like form, consisting of a fixed- 

length header, and a variable length payload. The header contains basic information needed by 

the mapper, such as the position and length of the payload. The mapper can examine the payload 

to infer other properties, such as the timestamp, the type of MPEG frame the ADU is part of (I, B, 

or P), and to which spatial scalability layer the ADU belongs4. 

We use utility functions as declarative specifications for adaptation policy. A utility function 

is a simple and general means for users to specify their preferences. Figure 3.5 depicts the general 

form of a utility function. The horizontal axis describes an objective measure of lost quality, while 

4 ~ o  simplify our examples, Figure 3.4 depicts only two spatial layers although our SPEG implementation has four. 



timestamp: 

level: base . . . payload . . . 

length: ... 
timestamp: 33 

level: enh 
... payload ... 

timestamp: 33 

level: enh level: base 
... payload ... . . .  payload . . .  

length: . . .  length: . . .  
timestamp: 66 timestamp: 66 

level: base level: enh 
... payload . . .  . . .  payload . . .  

Figure 3.4: ADUs 

the vertical axis describes the subjective utility of a presentation at each quality level. The region 

between the q,,, and q,i, thresholds is where a presentation is acceptable. The q,,, threshold 

marks the point where lost quality is so small that the user considers the presentation "as good as 

perfect." The area to the left of this threshold, even if technically feasible, brings no additional 

value to the user. The rightmost threshold q,i, marks the point where lost quality has exceeded 

what the user can tolerate, and the presentation is no longer of any use. The utility levels on 

the vertical axis are normalized so that zero and one correspond to the "useless" and "as good 

as perfect" thresholds. In the acceptable region of the presentation, the utility function should 

be monotonically decreasing, reflecting the notion that decreased quality should correspond to 

decreased utility. In the case of priority mapping for SPEG, the adaptation policy consists of two 

utility functions, one for spatial quality and one for temporal quality. 

The mapping algorithm subdivides the timeline of the media stream into intervals called map- 

ping windows. The mapper algorithm prioritizes the ADUs within each window separately. We 

use the ADUs from Figure 3.4 as an example mapping window, which consists of a single GOP 

and spans the interval 0-66 ms. The priority mapping algorithm processes the ADUs within a 

window in two phases. 

In the first phase, the ADUs are partially ordered according to a drop before relationship, 

which we denote using the 4 symbol 5 ,  based on video data dependencies. For example, the 

 his is really drop no-later than, since dropping is always optional. 



utility 

A 
exessive 
quality 1 - 

threshold 

unacceptable 
quality 0 b lost quality 

threshold %lax q,in 

Figure 3.5: A utility function with thresholds 

spatial layering requires that base layer ADUs should not be dropped before their corresponding 

enhancement layer ADUs, which applies to the ADUs of Figure 3.4 as follows: 

ADUl 4 ADUo ADU3 4 ADU2 ADU5 4 ADU4 

In the example of Figure 3.4, ADUI is the enhancement layer of the I frame with timestamp 

0, and ADUo is the base layer of the same I frame, so it follows that ADUl should be dropped 

before ADUo . 

Similarly, MPEG's predictive coding rules (for I,P,B frames) are expressed as follows: 

ADU4 4 ADUz 4 ADUo 

Again from the Figure 3.4, ADU2 is the base layer of a P frame that depends on the I frame 

whose base layer is contained in ADUo, so we have that ADU2 should be dropped before ADUo. 

These first two sets of ordering constraints represent hard dependency rules, in that they sim- 

ply reflect SPEG semantics. The mapper adds some other soft dependency rules which improve 

adapation results. With video, for example, the mapper would add soft-dependencies so as to 

ensure that frame dropping be as evenly spaced as possible6. 

6 ~ f  half the frames are to be dropped, then our in our experience, it has been clear that it is best to drop every other 
frame, as opposed to more clustered dropping such as keeping even GOPs and dropping odd GOPs 



After the first mapping phase embodying hard and soft dependencies, there still remains sig- 

nificant freedom for adaptation. For example, Figure 3.6 contains two very different mappings for 

the ADUs of figure 3.4, yet both mappings adhere to the phase one constraints above. 

SDU 
length: . . .  
timestamp: 0 
priority: 0 

Fl 

SDUl 
length: ... 
timestamp: 0 
priority: 1 

pq 

SDU2 
length: ... 
timestamp: 0 
priority: 2 

p=q 

(a) Frame drop only 

3 

SDU 
length: . . .  
timestamp: 0 
priority: 0 

FJ 
F I  
pK-1 

SDUl 
length: . . .  
timestamp: 0 
priority: 1 

pq 

(b) Spatial drop only 

Figure 3.6: SDUs: prioritized and grouped ADUs 

The second phase of the priority mapper algorithm is where adaptation policy is used to refine 

the partial ordering from the first phase, generating the prioritized SDUs. The algorithm works 

through an iterative process of elimination over the ADUs. We say an ADU is alive if it is still 

in the set of unprioritized ADUs, and dead otherwise. Each iteration considers a set of candidate 

ADUs that are not yet dead (initially all ADUs from the mapping window), and have no living 

dependants, based on the constraints generated by the first phase. For each of these candidate 

ADUs, and for each quality dimension (spatial and temporal in SPEG), the mapper computes the 



presentation quality that would result if the candidate ADU were dropped, that is, the quality is 

computed based on all ADUs that are still alive, less the current candidate. For the temporal 

quality dimension, the mapper computes the frame rate, and for spatial quality the spatial level. 

At this point the mapper is ready to apply the adapation policy. The utility functions are used 

directly to convert the computed quality values to corresponding utilities. The "overall utility" 

for each ADU is just the minimum of its per dimension utilities. The candidate ADU that has the 

highest utility is selected as the next victim (i.e. dropping this ADU next has the smallest impact 

on utility). The priority value for the victim ADU is a linear (inverse) fitting of the utility into the 

range of priority values. For example, in the Quasar pipeline this fit goes from a utility range of 

0 to 1 to a priority range of 15 to 07. The iterations stop when all ADUs have been assigned a 

priority. 

3.2.1 Mapper window duration 

The boundaries of mapper windows are chosen by the mapper to avoid the potential for broken 

data dependencies in the dropping actions of later stages. In particular, the mapper enforces that 

mapper windows are aligned with SPEG GOP boundaries. Recall that the GOP patterns (i.e., the 

combinations of I, B, and P frames) are decided by the video encoder (i.e., SPEG compression 

algorithm). The GOP pattern need not be fixed from one GOP to the next in SPEG. For stored 

SPEG content, such as DVDs, GOPs are selected adaptively by the encoder to improve compres- 

sion efficiency. GOPs often coincide with scene boundaries of the content, so they effectively 

have a random distribution. We define the lower limit for mapper windows based on the GOPs: 

mapper windows must contain one or more whole GOPs. Thus, the mapper algorithm assumes 

it will be given an set of whole GOPs as input. Typically, the longest GOPs will be less than a 

second, which will be the approximate range for the smallest possible mapper windows. It may 

split the input set of GOPs into multiple mapper windows (only along GOP boundaries) if their 

total duration exceeds a threshold parameter. The mapper will not split the set if it would produce 

a mapper window smaller than the threshold value, hence the largest possible mapper window 

will be twice the threshold. Keeping the duration of mapping windows bounded by splitting helps 

7The maximum priority level (for the most important ADUs) is 15 



to keep the computational complexity of the mapping algorithm low, and as should become clear 

later, it will allow a finer granularity of adaptation later on (in the streaming stage)*. 

Once the mapping algorithm has assigned priorities to all of the ADUs in a map window, it 

then groups them into SDUs. In our algorithm, there is one SDU per priority level, which contains 

all the ADUs that ended up with that same priority. In addition to the priority, the other main 

attribute of an SDU is its timestamp. If we didn't group ADUs into SDUs in this way, the most 

obvious values for the timestamps might be the time values of corresponding video frames to 

which ADUs belong. However, with our method of ADU grouping, we use a more conservative 

(coarse grained) timestamp assignment where the SDUs (groups of ADUs) are all set to have the 

same timestamp as the first video frame in the whole map window. Thus, all the ADUs in a map 

window are grouped into a single set of SDUs, sharing the same timestamp, but distinguished by 

priority. This grouping simplifies matters for later stages, like the PPS algorithm and the video 

decoder, because the timestamps expose the minimum information needed to preserve low-level 

data dependencies in the dropping process9. This organization of one timestamp per map window 

forms a layer of abstraction which provides just enough detail to perform informed dropping (via 

the priorities) in a manner that avoids violating low level data dependencies (via the timestamps). 

3.3 Mapping Results 

We now present the results of mapping for several test movies. Figure 3.7 shows the set of movies, 

which were prepared with a variety of encoders and encoder parameters. 

In Figures 3.8(a) and (b) we set a quality adaptation policy consisting of equal linear utility 

functions for temporal and spatial quality. Figures 3.8(c) and (d), show the presentation quality 

derived from this policy for various priority-drop thresholds. At each threshold, the quality corre- 

sponds to the point where all packets with priority lower than the threshold are dropped. Increased 

priority drop threshold means more packets are dropped. 

'we do not formally characterize the asymptotic complexity of the mapper in this disseration, although we expect 
it is super-linear in the number of ADUs 

'otherwise, there can be pathological cases during streaming where low priority ADUs for one timestamp are kept 
even though higher priority ADUs with different timestamps, but belonging to the same mapping window, are dropped. 
For example, a P frame (low priority) might be kept when its I frame (high priority) was dropped, however the P frame 
can not be decoded properly without the dropped I frame. 



Figure 3.7: Movie Inputs. The movies were coded with several different MPEG encoders. A 
variety of content types, movie resolutions, and GOP patterns were chosen to verify our techniques 
perform consistently. 

Video 

Ideally, the presentation quality graphs would look the same as the utility functions they were 

derived from. In particular, the range of acceptable presentation QoS would be covered, and 

the shape of adaptation would follow the shapes of the utility functions. Figure 3.8(c) shows 

the relationship between presentation-QoS for temporal resolution (frame rate) and priority-drop 

threshold. It should be noted that Figure 3.8(c) contains lines for each of the test movies, but 

they overlap very closely because the mapper is able to label packets to follow the utility function 

policy closely. Although desirable, this result was not entirely expected because MPEG's inter- 

frame dependencies constrain the order in which frames can be dropped, and some GOP patterns 

are particularly poorly suited to frame dropping. On the spatial resolution side, in Figure 3.8(d), 

we note that the mapper drops resolution levels uniformly across all frames, resulting in a stair- 

shaped graph, because there are only 4 spatial levels in SPEG. In as much as the SPEG format 

allows, the presentation-QoS matches the specified user preferences. 

The resource side of the adaptation profiles is shown in the third pair of graphs in Figures 3.8(e) 

and (f). We show the average bandwidth of the movies at each drop threshold as a percentage of the 

bandwidth when no packets are dropped. Similarly, we show the CPU time required for client side 

processing of the video at each drop threshold. A good shape for these graphs would be smooth 

and linear over a wide range of resource levels. We see that bandwidth in Figure 3.8(e) does indeed 

range all the way down to only a few percent, although there is a rather sharp drop when the first 

SNR layer is dropped. CPU time in Figure 3.8(f) is very nice and smooth, although it does not 

cover as much range as bandwidth, and reaches a minimum of about 10 percent. We also note 

that the movies are closely clustered in their resource-QoS graphs, indicating that adaptation is 

independent from differences in encoders or encoder parameters. Further results for other policies 

Wallice and Grommit 240x176 
Jackie Chan 720x480 
Apollo 13 720x480 864 
Phantom Menace 352x240 4416 16 

Resolution Length 
(frames) 

GOP 
length 



M Utility d Utility 

P O t 4 P  
3 o g 0 g g g  
m 0 P  

SNR level (average) 
0 - N W . P  

Frame Rate (fps) 

0 & 

n 
3 

CPU time (%) 

0 g g s g G  

"- 
m a  

n 
0 
w 

m Bandwidth (%) 



are presented in [52]. 

3.4 The Price of Adaptation 

We now describe some of the performance costs associated with dynamic quality adjustment. 

Figure 3.9 compares compression performance for MPEG and SPEG versions of movies at the 

same presentation quality level. 

Figure 3.9: Bandwidth Overhead of SPEG 

Given the wide range of adaptation shown in the adaptation experiments, the relatively small 

bandwidth overhead of SPEG is encouraging, especially considering the simplicity of the approach 

used in SPEG. The fact that SPEG defines ADUs based on MPEG slices appears to be the source 

of much of the variation in increase bandwidth in Figure 3.9. Some encoders only generate one 

slice per picture, while others generate as many as one per row of macroblocks. Since the main 

purpose of SPEG is a test vehicle for the Mapper and the PPS protocol, we do not persue further 

improvements to SPEG's compression efficiency. A production grade implementation could easily 

replace SPEG with something like MPEG-4 FGS. 

Increase 
bandwidth 

3.5 Related Work 

Giro d'Italia 1.823 2.121 
1.081 

Jackie Chan 1.839 2.479 
Apollo 13 3.474 4.193 
Phantom Menace 1.228 1.313 

SPEG 
bandwidth 

Video 

As mentioned in the sections above, SPEG is representative of various approaches to scalable 

compression such as MPEG FGS [55]. Other streaming frameworks have been based upon scal- 

able compression, very notably the recent work of Phillippe de Cuetos on streaming of MPEG-4 

FGS [17]. The most important difference in our approach is our focus on generic framing of data 

MPEG 
bandwidth 



and explicit prioritization. In other words, our approach deliberately prepares the video so that 

the network layer will only be exposed to generic attributes such as timestamps and priorities. In 

contrast, de Cuetos framework features a tight coupling between the encoding format and the net- 

work transmission layer. In his framework, de Cuetos has delved more deeply into complexities 

such as receiver-side loss concealment when using lossy transports. On the other hand, we have 

addressed issues of mixed adaptation across multiple quality dimensions, and (as we will show) 

quality-adaptive multicast. 

3.6 Summary 

In this chapter, we discussed how video preparation is handled in our approach. We treat video 

preparation as a two stage process, where video is first encoded using scalable compression, and 

then, once encoded, we assign priorities to the video data so as to expose how video should be 

adapted. 

To show how scalable video coding fits into our framework, we introduced a simple scalable 

video format called SPEG that adds spatial scalability to MPEG. With SPEG, a single encoded 

video can support a wide range of bitrates and video quality levels with fine granularity. Mea- 

surements from our implementation of SPEG showed that the range of bitrates spanned about two 

orders of magnitude from the minimum to maximum rates. Within the space of supported bitrates, 

SPEG allows spatial and temporal qualities to be adapted independently. The actual adaptation is 

determined by the order in which SPEG data is dropped. However SPEG does not fix such an or- 

der because that would overly constrain the video before appropriate details of the usage scenario 

are known. 

To best match the video to requirements that might be content, user, task, or device specific, we 

presented a general strategy for policy-driven priority assignment called the Mapper. The Mapper 

accepts policy specifications in the form of utility functions, which relate the supportable quality 

levels (in each of the controllable dimensions of video quality) to their utility to the user. The 

Mapper algorithm produces a prioritized version of SPEG data such that priority-order dropping 

has the effect that the least important aspects of video quality degrade first. We have presented 

results from our implementation of the Mapper to show that it provides effective control over the 



mix of adaptations, in that priority-order dropping directly reflects the supplied utility functions. 

By separating encoding and mapping, we allow the corresponding steps to be done offline, online, 

or a mixture of both, according to what makes sense for the type of video application. The sepa- 

ration also makes it possible to apply the Mapper several times to the same SPEG video, so as to 

tailor the mix of adaptations to different usage scenarios. 

We call our approach to video preparation streamingfriendly because it emphasizes flexibility 

in anticipation of the difficulties of streaming over best effort networks. The next chapter will 

begin to describe the networking parts of our streaming framework, the Priority-Progress adap- 

tive streaming protocols, where the benefits of streaming-friendly video preparation will come to 

fruition. 



Chapter 4 

Priority-Progress Streaming 

The previous chapter described our scalable video encoding (SPEG) and our priority mapper 

(Mapper) algorithm. Recall that the Mapper transforms the application data units (ADUs) of a 

video into a sequence of streaming data units (SDUs) that have explicit timestamp and priority 

labels. The purpose of organizing the video into SDUs is to prepare it for our adaptive stream- 

ing algorithm, Priority-Progress Streaming (PPS). Based on the SDU timestamp labels, PPS can 

regulate the progress of the stream so as to ensure that the receiver can achieve proper playback 

timing. Should the data requirements for the stream exceed the bandwidth available between the 

sender and the receiver, then the priorities describe the order in which video data may be dropped, 

from least important to most important, to ensure that video quality degradation is as graceful as 

possible. So adaptive streaming is able to maintain timing (using timestamps) and adapt to the 

available bandwidth (using priorities) at the same time. However, these goals each imply two 

different transmission orders. To achieve both, the PPS algorithm first subdivides the timeline of 

the video into a sequence of time intervals using the SDU timestamps. We call these intervals 

adaptation windows1. Next, the algorithm transmits the sequence of windows in time order, but 

the algorithm transmits the SDUs within each window in priority order. The rest of this chapter 

will examine the PPS approach in more detail. 

Figure 4.1 shows the conceptual outline of PPS. A pair of re-ordering buffers is employed 

around the bottleneck, for example, the TCP transport. The buffers contain the SDUs of an adap- 

tation window. The algorithm for PPS contains three subcomponents, the upstream buffer, the 

downstream buffer, and the progress regulator. The upstream buffer admits all SDUs within the 

' ~ e c a l l  that each mapper window results in a single set of SDUs with the same timestamp and differing priorities, 
hence an adaptation window is by its definition a sequence of one or more mapper windows. 



Progress Phase Adjust/ 

Regulator Downsb-earn 
Clock 

Regulator Clock 

ADUs = .) SDUS 

(timestamp (priority 
order) order) 

Figure 4.1: PPS Conceptual Architecture 

time boundaries of an adaptation window, these boundaries are chosen by the progress regulator. 

Each time the regulator advances the window forward, the unsent SDUs from the old window 

position are expired and the window is populated with SDUs from the new position. SDUs flow 

from the buffer in priority-order through the bottleneck to the downstream adaptation buffer, as 

fast as the bottleneck will allow. The downstream adaptation buffer collects ADUs contained in 

SDUs and re-orders them to their original timestamp order. When the regulator advances forward, 

the entire downstream buffer contents are passed on for subsequent processing, which normally 

consists of decoding and display. SDUs may arrive late because of unexpected delays through the 

bottleneck. In the event of a late SDU, since the decoding window to which the SDU belongs has 

already begun, the late SDU is dropped. When late SDU(s) occur, the progress regulator is notified 

so that it may try to avoid late SDUs in the future by adjusting the phase between the clocks. The 

goal is that the downstream buffer receives as many SDUs as the bandwidth of the bottleneck will 

allow and the rest, which are of lowest priority, are dropped at the server. In this way, the dropping 

will adapt video quality to match the network conditions between the sender and the receiver. 



Time 

Figure 4.2: PPS Example 

As described in the paragraph above, each adaptation window goes through three distinct pro- 

cessing phases. The first phase is window preparation, which includes retrieval from the source 

(file or live capture), prioritization, and re-ordering from timestamp to priority order. The second 

phase is window transmission, where the SDUs are transmitted in priority order. The third phase 

is decoding and display. Figure 4.2 and Table 4.1 give a simple example for a sequence of seven 

adaptation windows. In the table, each row describes the timing of the phases for the nth adapta- 

tion window. Referring to this example, we make some simple observations about how the PPS 

algorithm works. 

First, observe that the timelines of the phases are continuous, so the end value for a given 

phase in the nth window is the same as the corresponding start value of the (n + l)th window. A 

gap in the transmission timeline, for example, would imply under utilization of the network. A 

gap in the display timeline would indicate a failure to maintain the timeliness of the video. 

The second observation is that the transmission of a window has to completely precede its 

display, so in Table 4.1 the transmit end value of a given window must be less than or equal to 



Table 4.1 : PPS Example 

Window 
Number 

the display start of the same window. This is a consequence of how re-ordering works in PPS. 

Transmission of a window's contents proceeds in priority order, but display in time order. On the 

receiving side, the re-ordering from priority-order back to time-order can not complete until all 

of the priority-ordered SDUs have arrived from the sender. Hence, the transmission and display 

phases are strictly sequential for a given window. However, the transmission and display phases 

do overlap in time in the sense that an earlier window is displayed while the current window 

transmits, except for the first and last windows2. This is a ubiquitous strategy called pipelining. 

Finally, observe that the first and last windows are special cases. Since the first window has 

no predecessor, there is nothing to display while it transmits. This period is commonly referred 

to as the transmission preroll period. Similarly, the last window has no successor, so transmission 

stops when the last window begins the display phase. For symmetry, we'll call the last period 

postroll. The duration of the preroll period represents the main component of startup wait time- 

the streaming responsiveness, which is a subject of the next section. The postroll period is also 

significant, as we shall see later in Section 4.3. 

4.1 Streaming Scenarios 

Prepare 
Start I End 

The main control problem for the PPS algorithm is managing the sequence of adaptation win- 

dows: when should each window be transmitted, and what segment of the video timeline should 

each window contain? When considering the transmission schedule for windows, there are three 

2 ~ n  Table 4.1, it happens that display phase for window i + 1 happens at exactly the same time as the transmit phase 
for window i, but this will not always be the case in practice 

Transmit 
Start I End 

Display 
Start I End 



t 
No need to adapt - Minium Video Rate 

I - - - Maximum Video Rate 

Figure 4.3: Streaming Scenarios 

d 

separate scenarios to consider, which are defined according to the relationship between available 

bandwidth and the adaptation range of the video stream. These scenarios correspond to the three 

regions of Figure 4.3: adaptive streaming, unacceptable quality, and full quality. 

+ 

4.1.1 Adaptive Streaming 

A -  
Time 

Unacceptable 
Quality 

The main concern of this dissertation is the middle region of Figure 4.3, where available bandwidth 

is somewhere between the minimum and maximum of the video rates. This case is the main target 

of our overall approach. In this case, the timing of window transmissions will be more or less 

linked to the real-time rate of the video. The most basic constraint is that the windows should 

always be transmitted so as to maintain real-time playout at the receiver. 

4.1.2 Unacceptable Quality 

The lowest region of Figure 4.3 is when the available bandwidth is less than the minimum required 

by the video. In our approach, this lower bound corresponds to the scenario where the algorithm 

finds that it does not have enough time to transmit all the highest priority SDUs. When this 

scenario arises, a logical recourse might be to declare a fatal failure and abort the stream. Other 

possibilities would be to play slower than real-time, or to skip whole adaptation windows to try 



and keep up with real-time3. In the implementation we chose a mixed strategy. If the base layer 

of a window has started tranmsission, we always complete it, even it means allowing playout 

interruptions. We call such a scenario base layer backup. If we discover that a window is late for 

display before we even begin transmission, then we skip it entirely. 

4.1.3 Full Quality 

Finally, the top region of Figure 4.3 is where available bandwidth is more than the maximum 

rate of the video. On the one hand, one might disqualify consideration of this region, on the 

grounds that it contradicts the observations in Chapter 1. If available bandwidth is always more 

than enough, then adaptive streaming isn't needed at all. However, there may be threshold cases 

where available bandwidth fluctuates above and below the upper limit of the video rate. Also, in a 

multicast tree there may be some clients that have excess bandwidth while others do not. Thus, it 

is worth considering what should happen in the upper region. 

Work Conservation Options 

PPS can use two possible strategies when network bandwidth is abundant. It can be work conserv- 

ing or non work conserving. 

In the work conserving strategy, as soon as the upstream buffer is emptied, that is, when all 

SDUs in the window have been transmitted before the window's deadline, then the algorithm 

advances immediately to the next adaptation window. This strategy is work conserving in the 

sense that it tries to ensure that the network transport always has data to transmit, which in turn 

ensures that the stream claims its full share of available bandwidth. However, in this strategy the 

transmission timeline is advancing faster than the real-time rate of the video. Because the display 

component of the receiver will only consume video at the real-time rate, the fill levels of its buffers 

will increase in proportion to the difference between network bandwidth and video rate. In the 

limit, if bandwidth were essentially infinite, the client would have to buffer the entire movie. The 

work-conserving strategy is not feasible for certain application scenarios, such as live streaming. 

3 ~ h e s e  might be considered degenerate solutions. The semantics of the highest priority level is that the data are 
essential to maintain the minimum acceptable quality. So these solutions proceed on a path that, by definition, delivers 
unacceptable quality. 



With a live source, it is not possible to advance early to the next adaptation window, since the 

video for the next window may not have been captured yet. The multicast overlay covered later 

will also turn out to be an example where the work conserving strategy does not make sense. 

The non work conserving strategy, in contrast, is where the PPS algorithm does not advance 

immediately if the upstream buffer is emptied, but rather the algorithm waits for the adaptation 

window deadline anyway, effectively pausing network transmission. In this strategy, the client 

side buffer requirements are bounded to a single adaptation window. 

Our implementation supports both strategies or a hybrid combination of the two. A workahead 

limit is used to specify how much work conservation is allowable. If the limit is as large as the 

duration of the video, then the algorithm will be fully work conserving. If the limit is less, then the 

algorithm switches from work-conserving mode to non-work conserving mode when a specified 

workahead limit is reached. Finally, if the workahead limit is zero, the algorithm is always in non 

work conserving mode. 

4.2 Window Durations: Latency vs Consistency 

The duration of the adaptation windows has major implications for the performance of the ap- 

proach. The minimum possible value for window duration is constrained by the requirements of 

the video. Clearly, an adaptation window duration must be long enough to hold at least one ba- 

sic unit of the stream, such as a single video frame. In Section 3.2.1, we described how mapper 

window boundaries are chosen to avoid the possibility of broken data dependencies in dropping. 

Therefore, we honor the data dependencies by requiring that adaptation windows contain a se- 

quence of one or more undivided mapper windows. This restriction to whole mapper windows 

means that the minimum size of an adaptation window will in general be at least several video 

frames. However, as we described in Section 3.2.1, a single map window (which determines the 

minimum adaptation window size) will be on the order of one second or less. On the other hand, 

the upper limit for the adaptation window size could comprise as many mapper windows as we 

like, upto the full duration of the video itself4, or we might deliberately constrain the upper limit 

4 ~ h e  video may not have a bounded duration, if for example, it were a TV style broadcast channel which operates 
24 hours a day. 



in order to bound the amount of storage required for the streaming process. 

Using only primary storage (RAM), a window size of several minutes is certainly feasible. 

For example, 64 Mbytes holds over 8 minutes of 1 Mbitts video. With a minimum duration on the 

order of a second and maximum durations on the order of minutes, the range of possible window 

sizes is very wide (several orders of magnitude). The best size depends on several factors. As 

the next couple of sections will explain, the duration of adaptation windows is directly linked to 

a trade-off between the end-to-end latency of the streaming process and the consistency of video 

quality. 

4.2.1 Latency 

To understand the latency-consistency tradeoff, we first analyze the expected latency of the steps 

of PPS. The overall concern is the end-to-end latency, the time it takes between when a user makes 

a request, starting the stream for example, and when they see the results. However, this section will 

focus on the component of latency that is due to the re-ordering employed in the PPS algorithm. 

An ideal streaming mechanism would have zero perceivable latency. In contrast, a download 

has best effort semantics and effectively unbounded latency. However, unlike the ideal, all stream- 

ing algorithms will buffer some data, which in turn will add some latency to the overall end-to-end 

latency. In PPS, the buffers are the adaptation windows5. Since one of the principal goals of the 

algorithm is to maintain the timing of the video, an important part of the design of the PPS algo- 

rithm is that it manages adaptation windows in terms of time. That is, the timestamps of SDUs 

control what goes into the buffers. This differs from traditional buffers, which are managed in 

units of storage space such as kilobytes, and the relationship between buffer fill and time can be 

imprecise (since video rates fluctuate). Just as time-sized buffers allow control over timing, they 

also make it straightforward to predict the latency contribution of PPS. 

Figure 4.4 shows how the latency introduced by PPS is related to the window duration T. 

Recall that each adaptation window goes through three phases. We'll now describe why the total 

duration of the phases is at most 3T, and the latency of an individual component (e.g., video 

frame) through these phases is at most 2T. 

 his is not entirely true, Section 4.4 will discuss how PPS buffers, in addition to the adaptation windows, also 
include a separate component to compensate transport delays (e.g. TCP delay). 



Figure 4.4: PPS Latency: Total latency for contents of a window of duration T is at most 2T 

Prepare Transmit Decode and 
Window Window Display 

The first phase is window preparation, where the video data for the window interval are col- 

lected, prioritized, and sorted into priority order, at which point they are ready for transmission. 

Preparation should take at most time T, where T is the duration of the window in the video time- 

line. For stored content, preparation may take much less than T, given fast enough storage and 

CPU time6. For live content the preparation will require the full time T, since real video frames 

are collected in real time. 

The time given to the transmission phase is a decision for the PPS algorithm. A transmit time 

greater than T is disqualified since it would not provide data fast enough for real-time play. If the 

window is given time T to stream, then the transmission timeline advances at the same rate of the 

video, using all of the available network bandwidth. Hence, we assume for now that the full time 

T is given for transmission. 

Finally, the duration of the display phase would also equal the duration of the window T, 

assuming normal playout matching the "real-time" rate of the video. 

Figure 4.4 also shows the latency for each video frame in the window, in terms of the frame 

i, assuming each of the phases takes time T to complete. In the preparation phase, the ith frame 

must wait until all n frames of the window have been converted into SDUs and sorted into priority 

order, this time is given by the term x T. Similarly, only when the last SDU arrives at the 

receiver can the receiver complete re-sorting back to timestamp order for the decode and display 

'?his is verified in our prototype, where the preparation stage is at least an order of magnitude faster than real time. 

b4 T b 

+ 
4 b 

i -XT 
n 

4 T 
4 

4 * 
n - i - XT 

n 

+ Time 
fo *.. fi ... n 

f S ~ U ,  ... S ~ U ,  fo ... f. ..- f 

b4 T 
2 X T  



stage7. Hence all video frames experience the entire delay of the transmission phase, T. In the 

display phase, the i'th video frame of the window would be displayed only after the previous i - 1 

frames, which is given by x T. Summing the latencies for the three phases, as shown in the 

Figure 4.4, the total latency for each video frame is at most twice the duration of the adaptation 

window, i.e., 2T. Thus, using smaller values of T (shorter adaptation windows) in PPS will reduce 

its contribution to end to end latency. 

In the next section, we consider a technique where PPS will vary the value of T from one 

window to the next, with the goal of taking advantage of the following observation. Although 

streaming is in a sense by its definition about small startup latency, it remains that, for some video 

applications, the end-to-end latency is only temporarily important or perceptible the user. The 

latency is perceivable in terms of the startup time, or more generally in the response to interactive 

controls (such as fast forward, rewind, etc.). When video is actually playing, some of the video's 

timing properties may be very perceptible (such as rate, jitter, audio synchronization), but the end 

to end latency is not necessarily one of them. In applications such as video conferencing, remote 

control, or surveillance, the latency may be perceptible or important due to interactive aspects of 

the application. However, in many other video applications, the users have a completely passive 

role, such as when viewing video for entertainment, like a movie or an episode of a TV series. For 

these applications, the latency after play commences is neither perceptible nor important to the 

user. 

4.2.2 Consistency 

In PPS, the duration of the adaptation windows also has important implications on the consistency 

of video quality. Having fewer quality changes is generally desirable from a viewer's perspective. 

Although adapting video quality to match the network is the foundation of adaptive streaming, it 

is also true that the goal should be to adapt with least noticeable effect to the user. Making fewer 

changes is surely one way to make adaptation less noticeable. 

 h he last transmitted SDU could belong to the first video frame of the window. 



59

Adaptation Window
~!~

~.-;.....
0.-;.....

~

1---

Quality Level

L~\ --~

Video Timeline

DSDU
--. Transmission

Order

Figure 4.5: Two Quality Levels per Window. Each block represents an SDU, and each vertical
column of blocks corresponds to a single map window.

In PPS, the sizes of the adaptation windows have a direct effect on the number of quality

changes. Figure 4.5 shows how, for a single adaptation window, the final quality levels are deter-

mined by the transmission order used in PPS. The PPS transmission order is such that the SDUs

for the window are transmitted primarily in priority-order, and secondarily in timestamp order,

as in the figure. The resulting transmission pattern is like filling the rectangle from left to right,

bottom to top. In the end, there are (upto) two priority levels that have been reached, hence two

quality levels, as shown by the dashed line8. Consequently, the total number of quality changes for

the whole video will be at most two times the number of adaptation windows in the video timeline.

It follows naturally that since longer adaptation windows mean fewer window positions in the PPS

timeline, and since fewer windows means fewer quality changes, that therefore longer adaptation

windows ensure more consistent quality. In practice the quality is not only more consistent in

terms of the number of changes, but also in terms of smaller variances between quality levels.

SThis assumes that quality for a single priority level is uniform, which is true for our priority mapper algorithm.



4.3 Window Scaling 

The previous section established that shorter and longer adaptation windows each have their bene- 

fits, which reflects what is probably an inherent trade-off between responsiveness and consistency 

in adaptive streaming. Indeed this kind of trade-off is likely common to most forms of adap- 

tive control. However, in PPS it is not necessary to restrict all window sizes to the same value. 

The PPS algorithm includes the option to adjust the window size during the streaming process, 

which we call window scaling. With window scaling, the window duration starts out minimal, so 

that the startup latency is minimal, and then the window durations grow with each new window 

as the stream plays. As the window durations get larger, quality changes become less frequent. 

Compared to a fixed window duration, we will see that window scaling yields dramatically better 

balance between latency and consistency. However, we must first explain how window scaling 

actually works, and in doing so, we'll examine the trade-offs that arise. The main questions will 

be how fast can windows grow, and what are the quality implications? 

Window scaling is possible because PPS can transmit the video at a faster (or slower) rate than 

it will be consumed at the receiver. The consumption rate at the receiver is naturally fixed to the 

video's "real time" rate, but the transmission schedule is not so constrained. The priority dropping 

mechanism is what affords flexibility in this respect. Sending a window faster just means that 

more SDUs might be dropped. In altering the transmission schedule, the PPS algorithm can create 

(or reclaim) workahead in the transmission schedule, which is what allows subsequent adaptation 

windows to be larger (or smaller). Workahead accumulates whenever the duration of the transmis- 

sion phase is shorter than the display phase. By definition, the preroll period establishes the initial 

workahead. With the exception of the preroll window, the accumulated workahead is the upper 

bound on the duration of each step of the transmission phase. We call the ratio between duration 

of a step of the transmission phase and the duration of the corresponding step of the display phase 

the window scaling growth ratio. 

Figure 4.6 and Table 4.2 describe the timelines for four adaptation windows, where the growth 

ratio is fixed at 2. Each box in Figure 4.6 represents an adaptation window. The height of the boxes 

represents the display duration of the window. The top timeline of Figure 4.6 is for the Transmit 

phase, the rectangular shapes of the boxes in that timeline reflect that the windows' transmission 



61

I Expanding

Adaptation Windows

Istroll

Transmit

Time

Figure 4.6: PPS with Window Scaling Example



durations are less than their display durations. The Display phase proceeds at the normal real-time 

rate of the video, so the boxes on the bottom timeline of Figure 4.6 are square. Table 4.1 gives 

the details of the timelines depicted in Figure 4.6. The group of columns marked Video describe 

the timestamps from a stored video. The Transmit and Display describe the windows in terms of 

the streaming timeline as depicted in the figure. In this example, the transmit duration is always 

the full amount of workahead, so that the display of an adaptation window starts exactly when the 

transmission ends. This is not the case in the actual implementation: the transmit durations do not 

usually match workahead exactly because the intervals of video contained within each adaptation 

window have to be aligned with GOP boundaries. 

Table 4.2: Window Scaling Example: windows grow at 100% rate 

From this example we now extrapolate to a more general analysis of window scaling, which 

sheds more light on the question of quality implications of window scaling. 

If the PPS growth ratio is kept constant as in this example, then the sequence of window 

durations forms a geometric series, whose total is the overall duration of the video. In the example 

the series is 1 + 2 + 4 + 8 = 15 seconds. Generically, the geometric series is S = a + ar + ar2 + 
. . . + urn where S is the total duration of the video, a is the duration of the initial window, r is 

the growth ratio, and n + 1 is the number of windows. Recall that the solution for the sum of a 

geometric series is S = p. Solving this equation for the number of windows n + 1, we 

get n + 1 = log, v. In words, the number of adaptation windows is logarithmic, where 

the base of the logarithm is the growth ratio, and the argument to the logarithm is a function of the 

total length of the video, the growth ratio, and the initial window size. In non mathematical terms, 

this means that, through window scaling in PPS, the number of adaptation windows grows very 

slowly relative to the total duration of a video. The analysis could be extended to the case where r 

might be allowed to vary. For instance, it might be profitable to start with a relatively large value 

Display 
Duration I Start I End 

Window 
Number 

Video 
Duration I Start I end 

Transmit 
Duration I Start I End 



of r and decrease the value as time goes on. A piecewise version of the analysis here could be 

used to show the same general results. 

The significant implication of this analysis is that window scaling in PPS can cause video 

quality to become more and more consistent the longer the video plays. This result holds no 

matter how volatile the video rates and network rates are (within reason). 

In the analysis above, we see that the consistency effects of window scaling depend on several 

parameters: the total length of the video, the initial window duration a, and the window scaling 

growth rate r. Of these variables, r turns out to be of the main interest. The length of the video is 

a fixed value that depends on the chosen content. The value of a is the preroll duration, for which 

there is an incentive to choose the smallest values the video constraints will allow, in order to have 

the best interactive response (as discussed in the previous section). The question remains: how 

fast should the windows grow, or, what values should r have? From the analysis of the previous 

paragraph, larger values of r yield more consistent quality (the larger the base, the smaller a 

logarithmic value will be). On the other hand, larger values of r have a negative impact on network 

utilization and average video quality, for reasons we describe next, so arbitrarily large values of r 

will not be acceptable. 

To help explain the negatives of large values of r ,  we begin by considering the example in Table 

4.2. Notice that the sum of the transmit durations is 7.5, while the sum of the display durations 

15. In other words, the transmission occurs only for half of the time that video is displayed. If we 

assume that available network bandwidth is uniform, then our example results in using only one 

half of the network bandwidth that was available, which would be reflected in the average quality 

of the video. This level of utilization is unacceptable, as high utilization is one of the primary 

motivations of PPS and adaptive streaming in general. The cause of the problem in this case is 

that window growth leads to a very large postfix window, and recall that during the display of the 

postfix window, PPS will leave available network bandwidth unused. 

Figure 4.7 and Table 4.3 give an example which shows how we can modify the window scaling 

approach to avoid sacrificing so much network utilization. In this example, the windows grow for 

the first half of the video, and then shrink down again for the second half, significantly reducing the 

size of the postfix. The postfix interval now represents a very small fraction of the total timeline. 

As a result, utilization is close to complete, and average quality will reflect the nearly double 



Transmit

preroll :

Displayi

64

II Expanding

D Neutral

Contracting

AdaptationWindows

postroll

4

4

Time

Figure 4.7: Example of PPS with Window Scaling.



Table 4.3: Modified Window Scaling Example: windows 1-3 form an expansion phase, window 
4 is neutral, and windows 5-7 are the shrinking phase. 

average rate compared to the previous example where windows only grow. This improvement 

in utilization has come at some expense in consistency, because there are now more adaptation 

windows (approximately twice as many compared to when scaling only grows the window), but 

the total number of windows still retains a logarithmic relationship with the total video duration. 

That is, it retains the important property that longer videos will have more consistent quality. This 

example reflects the strategy for window scaling that is used in the current implementation of PPS, 

which is as follows. 

As Figure 4.7 shows, the PPS timeline is subdivided into three phases: expansion, neutral, 

and contraction. In the expansion phase, the windows grow at a growth rate r. The expansion 

phase lasts until a window size limit is reached, in which case a neutral phase begins, or when 

the half-way point of the video timeline is reached. The expansion of the streaming timeline is 

essentially mirrored in reverse for the final part, yielding a contraction phase of similar length to 

the expansion phase, in which windows shrink at a rate of :. The three phases provide a balance 

between consistency, average overall quality, and latency. Now, we turn to the issue of what are 

plausible values for the growth ratio r. 

For the sake of argument, let us suppose for the moment that the video has a constant rela- 

tionship between data rate and video quality, and let us also assume that the available network 

bandwidth is constant (denoted as C)9. With these assumptions, we can see that the example 

choice of growth factor of 2 in Table 4.3 has a rather major problem. In the expansion phase, 

Window 
Number 

1 
2 
3 
4 

5 
6 
7 

'~hese  assumptions are not true in practice, but the difference is neither here nor there for the point we make in this 
paragraph. 

Display 
Duration 

1 
2 
4 

4 

2 
1 
0.5 

Video Transmit 
Start 

0.5 
1.5 
3.5 

7.5 

11.5 
13.5 
14.5 

Duration 

0.5 
1 
2 
4 

4 
2 
1 

End 

1.5 
3.5 
7.5 

11.5 

13.5 
14.5 
15 

end 

1 
3 
7 
11 

13 
14 
14.5 

Duration 

1 
2 
4 

4 

2 
1 
0.5 

Start 

0 
1 
3 
7 

11 
13 
14 

Start 

0 
0.5 
1.5 

2.5 

8.5 
10.5 
12.5 

End 

0.5 
1.5 
2.5 
6.5 

10.5 
12.5 
13.5 



there are 3 windows that account for 7 seconds of the video timeline, but are given 3.5 seconds 

to stream, yielding an average video rate of about C/2. In contrast, during the contraction phase, 

there are 3 windows spanning 3.5 seconds of the video timeline and given 7 seconds to stream, so 

the average video rate for these windows is close to 2C. Thus the video quality for the expansion 

phase will be 4 times worse than in the contraction phase. In the general case, with growth rate 

r, the quality imbalance will be r2. To keep the quality imbalance between the expansion and 

contraction phases reasonable, the value of r needs to be much more conservative than 2. 

looo i 
Window Scaling Growth Ratio ....: 

1.1 - : 
12.: ...--- 

...f,s ........ ,,..: 

0.1 
0.1 1 10 100 

Video Duration (minutes) 

Figure 4.8: Window Scaling and Consistency: This plot shows the average time between quality 
changes as a function of the total duration of stream. Initial window size is 0.25 seconds. Both 
axes are log scale. 

Fortunately, growth ratios as small as 1.1-1.5 give reasonable results. Let us define consistency 

to be the average time between quality changes. With window scaling, this average increases as a 

function of total video duration. Given that quality can change twice per window, the upper limit 

on the average can be approximated with the following formula: 2 Jko windowduration(t) 
n where 

n is the video duration, and window-duration(t) is the size of the adaptation window at time t in 

the stream. Figure 4.8 shows this average, for a range of video durations upto 2 hours, assuming 

that the initial window size is 0.25 seconds, and that the window grows until the half way point of 

the timeline, then shrinks back down for the second half. Even with a conservative growth rate of 



1.1, quality changes are on average approximately 10 seconds apart for a 10 minute clip, and for a 

two hour movie they would be nearly two minutes apart. 

If the user can perform interactive (VCR style) operations, then some modifications to the win- 

dow scaling schedule will be required. One way to treat interactive operations would be to proceed 

as if the streaming process were starting over. That is, PPS would reset window size to the min- 

imum size and restart the expansion phase, starting at the point in the video timeline where the 

interactive operation was initiated. This would be simple to implement, but there is certainly room 

for optimizations. One might be to attempt to avoid re-transmitting valid data that already made it 

to the client before the interactive operation occurred. Another optimization would be to continue 

with the original streaming schedule in the cases where the interactive operation goes backward, 

restarting the expansion phase only if the interactive operation goes forward. This might be com- 

bined with having the player cache video data (to local secondary storage) as it arrives, so that 

all of the data from previous adaptation windows is available. With these approaches, interactive 

operations will tend to reduce the maximum consistency, but the general benefit of window scaling 

(better consistency) will still hold as long as there are significant periods where play is allowed to 

proceed uninterrupted. 

In review, latency and consistency are in conflict with each other. Through window scaling, 

this conflict can be mitigated in PPS. Using short windows at the start and end of streaming 

allows interactive operations to be responsive and network utilization to be maximized. Using 

larger windows elsewhere allows big improvements in average consistency. This technique is not 

appropriate for a live conversation, but it is feasible for the large class of applications that do not 

involve two way communication. Even for some live applications, such as watching live sporting 

events, or the evening news, a few seconds or even a few minutes of latency are unlikely to matter 

to most viewers. 

4.4 Propagation Delay 

So far in this chapter, the description of PPS has only alluded at how to deal with delay in the 

network transport path. For ease of presentation, the examples of the previous sections presumed 

a zero delay between the sender and receiver sides of a PPS stream. Actual network transports 



will introduce significant delay, due to a number of factors. In this section, we now explain how 

PPS deals with the delay through the network transport. 

In Figure 4.1, the outline of the PPS architecture shows two distinct clocks, the regulator 

clock and the downstream clock. The reason for separate clocks is precisely to cope with trans- 

mission delay. In particular, the PPS regulator contains a state variable we call phase ofset, whose 

value should be the largest transmission delay PPS expects to experience. The regulator maintains 

the two clocks so that downstream clock time equals the regulator clock minus the phase offset: 

c l o ~ k d o v n s t r e a r n  = clockTegulator - phase-of f set- 

To ensure unintempted playout, the downstream side of PPS will set a deadline on each 

adaptation window. The deadline corresponds to the point when the workahead (see Section 4.3) 

reaches zero, and the display would run out of video frames to display. The normal expectation 

is that the last SDU for each window will arrive downstream before this deadline is reached. 

As long as the phase offset is larger than transmission delay, this will be true. If, however, the 

phase offset value is understated in error, then as soon as the deadline expires, the contents of 

downstream buffer will be committed for decode and display. Subsequently, any SDUs that arrive 

for that window are considered late, and dropped by the receiver. These late SDUs waste network 

bandwidth because they do not end up contributing to quality of the displayed video. To avoid 

future waste, the regulator is informed about unexpected delay (late SDUs), and the phase offset is 

adjusted, causing one of the two clocks to change. We now consider some pros and cons of which 

of the two clocks to adjust. 

4.4.1 Server-side Phase Adjustments 

The first strategy for dealing with unexpected delay is to adjust the regulator clock backward, by 

an amount proportional to the tardiness of the late SDU(s). This will have the effect of causing the 

upstream side to advance transmission of the current and future adaptation windows earlier than 

originally expected. The video quality for the current window will be somewhat lower as a result. 

However, the video quality for subsequent windows will be unaffected. Using this approach, 

unexpected delays manifest in transient drops in quality. With our implementation, our observation 

is that such quality effects are often qualitatively imperceptible. Unfortunately, this approach is 

not appropriate for all applications. With live content for example, it may not be feasible to adjust 



the regulator clock, because it can not request video that hasn't been captured yet. 

4.4.2 Player-side Phase Adjustments 

Another alternative method for delay compensation is to adjust the downstream clock. This ap- 

proach implies making adjustments to the video playout rate. To avoid timing artifacts in the video 

and in the audio component in particular, the regulator should gradually adjust the playout clock 

to reach the new target phase offset. Since computer audio devices do not typically provide a way 

to alter their timing directly, the player will need to employ digital signal processing algorithms 

to resample the audio data so that the audio timeline can converge to the new target phase offset. 

These techniques are not yet implemented in our player, but we do anticipate that doing so would 

not be difficult. 

4.4.3 Improving latency with MINBUF 

With either of the above two strategies, the value of the phase offset effectively adds to client 

side buffering, and hence to the total latency of PPS described in Section 4.2.1. In practice, if the 

network path is saturated with competing traffic, the phase offset typically settles to a value of a 

few seconds within the first minute of streaming. 

Our measurements have shown that the send side socket buffer is responsible for the majority 

of the transport latency. This can be reduced significantly through a minor extension to the socket 

API called the MINBUF socket option [31]. Roughly speaking, the MINBUF option signals the 

kernel to buffer only as much data as TCP's congestion window requires1'. With MINBUF the 

phase offset stays much closer to the true network delay between the sender and receiver, and the 

quality artifacts associated of phase offset adjustments are much less significant. Once streaming 

is underway, the phase offset tends to stabilize within the first seconds. Meanwhile, the window 

scaling mechanism takes effect to grow the adaptation windows. As time progresses, the phase 

offset becomes an insignificant component of the buffering, since it may be on the order of a 

second, whereas the adaptation window is orders of magnitude larger. 

'O~he amount of data buffered is subject to tuning parameters, which can be used to adjust tradeoffs between through- 
put and latency. 



4.4.4 Supporting Interactive Applications 

There are some classes of video application, such as conferencing, where the user is continually 

sensitive to end-to-end latency. The general reason these applications are latency sensitive is that 

they are interactive. In conferencing, the dialog is based on a sequence of exchanges between 

the participants. High streaming latency causes the natural flow the dialog to become interrupted, 

which is hard for people to tolerate. Similarly, surveillance and remote control applications may 

require that users take some real world response to what they see. For instance, a pilot flying an 

unmanned aircraft based on a video feed from the aircraft itself requires that the video is as fresh 

as possible to avoid crashing. Generally, we consider these interactive applications to be outside 

the scope of this dissertation, however we can make some observations about PPS and interactive 

applications. 

Huang began follow on work to this dissertation to examine PPS and interactive applications 

[38], the preliminary results show that we measured latencies in the range of 400ms with our 

prototype. To summarize, the total contribution to end-to-end latency by PPS is controlled by (the 

sum of) two parameters: the adaptation window size and the phase offset. Other delays relating to 

capture and decode and display will add to the PPS delay. In relation to other approaches in the 

literature (e.g., feedback based), the window size component of PPS delay reflects the upper bound 

on extra delay due to the data re-ordering aspect of PPS. It is worth noting that, as mentioned at 

the end of Section 4.3, window scaling is inappropriate for interactive applications, because the 

demand for fresh video trumps the desire to hide quality fluctuations. 

Aside from the delay due to re-ordering, the phase adjustment strategy of PPS described in the 

sections above is probably too simplistic for interactive applications, and leads to unacceptable 

delay. The problem is that our current approach never attempts to reduce the phase offset, even 

though it may have overcompensated. In the non-interactive case, this was acceptable because 

the phase offset delay, even when overcompensted, represented a small amount relative to the 

adaptation window part of PPS delay. Recall that the window scaling mechanism increases the 

window size to tens of seconds or even minutes. In an interactive (live) application, the window 

size would be restricted to reflect the latency tolerance of the application, which might be just 

a few hundred milliseconds. In this case, the current phase adjustment strategy can easily allow 



phase offset to grow beyond acceptable levels. Thus for interactive streaming, it might be more 

prudent to control the phase offset less conservatively. In particular, the control should work so 

that streaming latency can be reduced if and when network conditions improve. Also, it might 

be sensible to set an upper bound on the phase-offset, accepting occassional badput due to spikes 

in transmission delays. We have implemented the bounded phase offset as an option in QStream, 

but not the more agressive control. These and other issues of low-latency PPS are the subjects of 

ongoing work. 

4.5 Related Work 

There are numerous works in the literature on multimedia streaming in general and quality- 

adaptive streaming in particular. We have already discussed them generally in Section 2.2, so 

we do not repeat the references here. However, one rather unique issue the we have treated in 

this chapter has been what we termed consistency, and the role of our window scaling approach 

to balance consistency against latency. Our motivation to minimize the amount of quality changes 

has been based on our intuition and experience with our prototype implementation, QStream. Re- 

cently, Zink has performed a a proper human subject study on the perceptual effects of quality 

changes in video and his results affirm our intuitions [97]. It is also worth noting that Zink incor- 

porated our SPEG implementation into his study, because at the time, it was still the only publicly 

available implementation of a scalable video codec. 

4.6 Summary 

In this chapter we have described the design of PPS, our quality adaptive streaming protocol. PPS 

uses timestamps and priorities to manage the real-time and adaptive requirements of streaming. 

The basic approach is to subdivide the video timeline into intervals called adaptation windows, and 

then to transmit the contents of these windows in priority order. The rate of transmission is limited 

according to the congestion control of the underlying transport protocol. When proper play-out 

timing requires it, the transmission will move from one window to the next, possible dropping 

unsent data (lowest priority by definition). We also described how the duration of adaptation 

windows plays a crucial role in controlling the trade-off between startup latency and consistency. 



We then described how window-scaling can be used to manipulate the trade-off so that startup 

latency is low, yet the quality will still be very consistent on average. 



Chapter 5 

Streaming for Multicast Overlays 

Multicast is a transmission technique that aims to improve the scalability of video delivery to large 

numbers of receivers. The basic idea is to form a tree structured distribution network in which the 

interior nodes perform data replication. The structure of the tree serves to reduce the resources 

required at any single point, in contrast to unicast, which can quickly cause resources near the 

source of a distribution network to be overwhelmed when there are large numbers of receivers 

trying to access the same content. In Chapter 2, we described the related work on multicast and 

some of the outstanding challenges. In this chapter, we describe how we extend the framework 

we've developed so far (SPEG, the Mapper, and PPS) to provide a solution for multi-rate multicast. 

Our multicast extension is called Priority-Progress Multicast (PPM) streaming. The unicast 

PPS algorithm is adaptive at a very fine-granularity, and can even work well using TCP as the 

transport. PPM streaming works by implementing the multicast tree as a series of point-to-point 

unicast PPS sessions. However, the application level processing done in the interior nodes of 

the PPM tree has significantly lower complexity than for the end-points. We show that Priority- 

Progress Multicast (PPM) can achieve multi-rate multicast in a TCP friendly manner. By multi- 

rate, we mean that the bandwidth of the stream reaching each receiver of the multicast is as if 

there were a unicast between that receiver and the sender. Thus, slow receivers of the multicast do 

not penalize fast receivers of the multicast. The TCP friendliness results from the fact that each 

point-to-point connection in the tree is a unicast connection that employs TCP friendly congestion 

control. In our implementation, this unicast connection actually is TCP. Our experiments have 

verified that PPM correctly implements multi-rate multicast for broadcasting. They also show that 

PPM is very lightweight. On commodity server class hardware, our implementation of PPM can 

support very large volumes of multicast traffic, saturating Gigabit network links. Thus, we do not 



expect node stress to be a first order scalability factor for PPM trees. 

5.1 Priority-Progress Multicast 

The basic Priority-Progress architecture consists of three components: a progress regulator, an 

upstream re-order buffer, and a downstream re-order buffer. The network link is the conceptual 

bottleneck residing between the two re-order buffers. 

In Priority-Progress Multicast (PPM), we put a distribution tree in place of the single link. The 

tree consists of multiple network links, connected by PPM forwarding nodes. In this dissertation, 

we do not address how the topology of the tree is established. Instead, we assume that either the 

tree topology is pre-established statically, or that one of the recent techniques from the literature 

is used for dynamic tree construction [2, 1 1, 8 11. Our implementation uses a static tree topology. 

In PPM, each edge in the tree is a separate unicast PPS session, which as we mentioned earlier is 

layered over TCP in our implementation. Thus, a multicast forwarder has one incoming (upstream 

side) TCP flow, and one or more outgoing (downstream side) TCP flows per active PPS session. 

For the purpose of this presentation, a PPS session can be thought to be analogous to a TV channel 

in traditional video broadcast. We now describe the operation of the PPM forwarder. 

Session Startup 

The first task of the PPM forwarder is to handle the start phase of PPS sessions. For the start 

phase we have two cases, the first being the initial activation of a multicast session due to the 

arrival of the first session member, and the second case being the arrival of subsequent members 

who join in on the already active broadcast. The arrival of the first member is the easier one to 

handle, in that the steps involved are very similar to the case in unicast streaming, only they are 

replicated as datagrams relayed through the nodes on the path from the source to the sink. Since 

Priority-Progress sends data in priority order, and the lower priority data generally represents 

enhancements relative to high priority data, it follows that joining in on an active session can only 

happen at points where a new window position is started, otherwise the missing high priority data 

would make all the remaining data unusable. As suggested, the simple solution is to have new 

members wait until the next window to begin. Since the decode and presentation of data does not 



begin until the first window is completely received at the receiver, this means the startup process 

can take at least one and as long as two whole window periods from the time the member selects 

a session to the time session display begins. 

To improve startup times in multicast, we might implement a more advanced hybrid-startup in 

the future, which we sketch here. The hybrid version would begin with unicast and transition to 

multicast. New members are started with an separate unicast that begins with a small window size, 

the window size then ramps up (using the window scaling option of PPS) until it synchronizes its 

size and position of the window of the multicast session. Once synchronized, the unicast session 

is terminated, and the member is switched into the multicast section proper. The goal of this 

approach is to support rapid "channel surfing" by way of the unicasts, while using relatively large 

windows in the multicast during the periods of time where the viewer has settled into viewing 

one particular session. The large windows are desirable for the reason of keeping quality resilient 

against transient bandwidth changes. After startup, the PPM forwarder enters the main multicast 

streaming phase. 

Window Forwarding 

The root of the PPM tree periodically sends window position messages to the PPM forwarder 

immediately below in the tree (for simplicity of explanation, we assume there is one, but extension 

to multiple receivers is straightforward). The PPM forwarder in turn, replicates the message along 

each of its downstream edges (and so on down the tree). The forwarder then begins receiving data 

units for the window position from upstream. We use a reference counting mechanism to track 

which data have been forwarded down each of the downstream edges. For each data unit received 

the forwarder maintains a reference counter, which is initialized to the number of downstream 

edges. Each data unit and its counter is entered into the head end of a FIFO linked-list data 

structure. The forwarder maintains a separate pointer into the list for each of the outgoing tree 

edges, which we call the "out pointer7' vector. Each out pointer is initialized to point at list tail. 

For each connection the forwarder writes the data unit pointed to by the corresponding out pointer. 

When the write completes, the counter for the data unit is decremented. The new value of this out 

pointer will be the next item in the list. If the counter decrement reached zero, the item is removed 

from the list. In the event that the head of the list is reached, the out pointer is null, and output 



for the downstream link is (temporarily) paused. A separate list is maintained to track which 

downstream connections are paused. For every data unit received, this list is processed to resume 

any paused connections. This whole process continues, with data units arriving from upstream, 

and writes on each of the downstream links. Eventually, the forwarder receives the message from 

the upstream regulator indicating the start of the next window position, followed immediately by 

the first data unit for the new position. At this time, the current contents of the list are flushed, 

dropping any remaining data units from the old window position, and the new window position 

message is replicated down each of the downstream links. 

5.1.1 SDU Fragmentation 

PPM is an example of the store and forward networking model, similar to the model used in the 

IP protocol. As it turns out, the description of PPM so far overlooks a problem that relates to 

store and forward. The problem occurs when PPS messages, SDUs in particular, are very large. In 

concrete terms, a single SDU in PPS can be tens or even hundreds of kilobytes. When SDUs are 

this large, it introduces the chance that a PPM forwarder may spend a substantial amount of time 

just receiving a single large SDU. Even though QStream is implemented using reactive style that 

avoids blocking, it is still the case that a PPM forwarder waits for the entire SDU to arrive before it 

starts to forward it downstream. In this time, the PPM forwarder can run out of data to send to its 

downstream children, which allows the downstream connections to go idle, even though network 

bandwidth is available. It turns out that this happens quite often at the start of each adapation 

window, because data from older windows have been dropped, and the first SDU must arrive in its 

entirety before it can be forwarded. This problem can cause serious reductions in PPM's ability to 

utilize available bandwidth. 

To solve this problem, we choose to limit the size of SDU messages by splitting an SDU into 

a sequence of smaller SDU fragment messages. These SDU fragments messages are limited to a 

size similar to the maximum segment size of TCP. As a result, PPM is able to forward data very 

quickly when it is received. Chapter 7 will show that SDU fragmentation allows PPM to achieve 

full network utilization. 



5.1.2 Multicast Flow Control 

Another issue not addressed in the PPM algorithm, as described so far, is conservation of upstream 

bandwidth. That is, what if the upstream link is significantly faster than all of the downstream 

links? The algorithm above allows the upstream link to proceed at full rate. In the case where all 

the downstream links are relatively slow, a large proportion of SDUs received from upstream will 

be dropped before they make it to any receiver. This issue arises in PPM because it partitions the 

path between the source and the client into separate transport (TCP) sessions, one for each edge 

of the tree. By contrast, in unicast PPS, all of the dropping happens at the server. To prevent such 

waste, PPM includes a (application level) multicast flow control option. 

PPM flow control works as follows. Each PPM forwarder keeps a count of SDUs in its SDU 

queue that have not yet been transmitted through any of its downstream edges. This value is called 

the SDUJill. When the SDU fill exceeds a high water threshold, the upstream link is paused. To 

pause the link, a message is sent upstream to the parent, which causes the parent to stop sending 

SDUs. The parent may delay this pause if it has base layer SDUs to send. Also, the start of the 

next adapation window (signalled by the arrival of a corresponding message) always immediately 

unpauses all links. While the upstream link is paused, messages will continue their transmission 

on the downstream links, causing the SDU fill level to drop. When the SDU fill drops below a 

low water threshold, then the PPM forwarder will resume the upstream link, by sending a resume 

message upstream. This flow control mechanism is naturally recursive, since pausing the link to 

the parent may cause the parent's SDU fill level to rise, and hence the parent may send a pause 

message further up the tree, and so on, until the final link to the root of the tree is paused. The 

resume messages will propagate in the same way. 

An alternative approach to PPM flow control would be to use the transport's flow control more 

directly. In this version, rather than sending a pause message upstream, a PPM forwarder would 

cause the pause simply by halting reception (reads) of messages from upstream. The main advan- 

tage of this option over using explicit pause/resume messages is that it involves fewer changes to 

the PPM algorithm, in particular the algorithm at the root is unchanged. However, this approach 

is deficient due to its effect on end-to-end latency. If a PPM node suspends message reception as 

suggested, then eventually the flow control mechanism in the transport would stop upstream nodes 



from sending further messages, which is the desired effect. Unfortunately this process completes 

only after all the upstream receive buffers become full, for every edge on the path to the root. 

When the PPM forwarder resumes accepting messages, all of those buffers will have to drain, 

which would often cause significant latency. In the worst scenario, should the root of the tree need 

to advance to the next adaptation window during the period where all the receive buffers are full, 

then it will be unable to transmit the window start message until after the buffers drain. This may 

cause many of the buffered SDUs to be declared late at the leaves of the tree. The phase offset 

will adjust eventually, but the resulting phase offset would be much larger than truly necessary. 

In contrast, with the explicit pauselresume flow control scheme, transport receive buffers should 

stay close to empty, as the Priority-Progress algorithm always consumes incoming messages as 

soon as possible. Also, the root of the tree will send window start messages regardless of the flow 

control. Therefore, the flow-control should make no difference to the phase-offset. Thus PPM, 

uses explicit flow control messages because they do not impair end-to-end latency. 

5.2 Related Work 

In section Section 2.2.6, we gave an overview of the literature on adaptive multicast. PPM dis- 

tinguishing features are that it supports multi-rate adaptation of video, and since it can be imple- 

mented using TCP, it is TCP friendly by definition. Furthermore it conserves bandwidth at the top 

of the tree so that it only expends bandwidth at the source that will be used by at least some of the 

receivers. 

More recently in the literature, a new development in multicast has been emerging, namely, 

multicast approaches which go beyond a strict tree structure. Systems such as SplitStream [9], 

CoopNet [65], and Bullet [51] use multi-path multicast techniques, either through multiple trees 

(CoopNet and SplitStream) or meshes (Bullet). These multi-path approaches have advantages in 

light of the greater potential for nodes to be unreliable when the trees correspond mostly or entirely 

of end-hosts. As these systems are all very new, a comprehensive comparison of them remains an 

open problem. 



5.3 Summary 

In this chapter, we described PPM which uses the basic PPS approach to construct a multicast 

overlay. In PPM, each edge of a multicast tree is a separate PPS session. Since the PPS server at 

the root of the tree transmits data into the tree in priority order, the PPM forwarder can do data 

dropping in a simple, first-in, first-out fashion. PPM uses the arrival of a new adaptation window 

as the trigger to drop data for slower receivers. PPM also includes an application level flow control 

to ensure that the subdivision of the path into separate sessions does not lead to wasted bandwidth 

in the higher parts of the tree. 



Chapter 6 

The QStream Implementation 

The previous two chapters were intended to provide the reader with a basic understanding of how 

Priority-Progress Streaming (PPS) and Priority-Progress Multicast (PPM) work, and to explain 

the important performance trade-offs and how they can be controlled. 

The purpose of this chapter is to present a concrete description of the PPS and the PPM al- 

gorithms, based on our prototype streaming system, QStream. This description provides pseudo- 

code and commentary at a level of detail which is greater than the previous chapters, yet still 

significantly more abstract than the actual QStrearn source code. In this chapter, we also elab- 

orate on how the software developed for this thesis constitutes a framework for adaptive media 

streaming. 

The framework we present, and its realization in QStream, is divided between parts that are 

implemented as directly re-usable software components (libraries) and those which are re-usable 

as a kind of design pattern. This division in the framework falls roughly along the line between 

the real-time and quality-adaptive aspects of the streaming application. Our libraries are called 

QSF (Quasar Streaming Framework) and GAIO (Asynchronous 10). They provide support for the 

conventional real-time aspects of the application. The quality-adaptive parts of our framework 

(SPEG, the Mapper, PPS and PPM) are implemented in the QStrearn application, but are not 

packaged as libraries or components that would be immediately re-usable in other applications. 

However, we do feel that Priority-Progress illustrates a relatively clear design pattern applicable to 

wide range of applications. We have released all of the QStrearn software under open source terms, 

as one way to promote re-use of the entire framework. The next section describes the libraries in 

greater detail, and the remaining sections of the chapter describe the QStream application and 

the details of the PPS and PPM algorithms (see Chapter 3 for the descriptions of SPEG and the 



Mapper). 

6.1 Quasar Streaming Framework 

This section will describe the approach to real-time programming used in QStream, and the two 

software libraries we have developed to support the approach. We begin by describing some of the 

motivating design requirements of adaptive media streaming, which have to do with concurrency 

and timeliness. 

6.1.1 Challenges: Concurrency and Timeliness 

There are multiple levels at which concurrency arises in media streaming. A streaming server, like 

most network servers, has one obvious concurrency requirement in that a server should be able 

to maintain multiple sessions to distinct and unrelated network clients, all at the same time. We 

call this type of concurrency inter-session concurrency. Media streaming also requires the ability 

to deal with intra-session concurrency, because a single streaming session consists of separate 

control and data communications planes. The control plane implements user actions, such as the 

so-called VCR actions (start, pause, fast forward, rewind, etc.). The data plane implements the 

continuous parts of the session, such as the video stream. In addition to the concurrency between 

the data plane and the control plane, the data plane is typically also internally concurrent. A 

video player, for example, has to manage video rendering and audio playback at the same time. 

Concurrent programs are notoriously tricky to develop because there are types of errors that are 

easy to make in concurrent programming that do not exist in sequential programming. Some 

well known examples of the unique types of errors that arise in concurrent programming are race 

conditions, deadlocks, and livelocks. 

Conventional servers, such as web servers or database servers, have similar concurrency is- 

sues, but their main performance concern is optimizing overall throughput of the server. A video 

streaming system also requires high throughput, but additionally it requires accurate timing for 

the time sensitive elements of the streaming process. For example, a streaming system has to 

deal with maintaining audio-video synchronization, which is easy to spot when it goes wrong (but 

not necessarily easy to correct). With all their concurrency requirements, Video players are often 



used as the example application for real-time systems research. Streaming video systems add the 

challenges of distributed systems to the real-time challenges of regular video players. 

Given the objective of developing a video streaming system which addresses concurrency 

and timing issues, there are several flavors of programming model to choose from. Three of the 

most well known programming models are preemptive multitasking, cooperative multitasking, 

and event driven. Various hybrid combinations of these models are possible (and do exist). Our 

implementation of PPS has evolved through various architectures representing different choice 

points in space of these three models. The current implementation is based on a flavor of event- 

driven model, referred to as reactive programming. 

6.1.2 Reactive Programming 

Reactive programming is so called because it places emphasis on the notion of programs that are 

driven by external events (which originate ultimately from real-world sources) and generate real 

world output in response. Reactive programming is a natural fit for building real-time systems 

when clocks are included in the set of event sources. The reactive model has been used very 

successfully as the basis for time-sensitive applications, especially those in embedded systems [4]. 

The model is based on state machines which are driven by the arrival of the external events. The 

ideal realization of the model would be a state machine which responds with optimal timeliness 

to all events. To achieve the instant execution property of an ideal reactive program, the program 

must have two properties: the first is that all I 0  operations are asynchronous, and the second is 

that CPU speed is sufficiently fast that computation times are a non-issue. 

The traditional I 0  APIs provided in general purpose operating systems are synchronous, which 

is to say that an I 0  request returns only after its result is complete. With asynchronous 10, rather 

than issue an I 0  and wait for a completion, the I 0  is requested, and if it's completion is not im- 

mediate, then the completion will generate a new separate event in the future. Dividing the I 0  

into two parts, one for issuing the request and the other for handling the result, is generally harder 

to program than using a synchronous I 0  API. The payoff is a much better approximation to the 

instant responsiveness the reactive model aspires to, because asynchronous I 0  allows the applica- 

tion's state machine to respond to new events while other I 0  requests are pending completion. 

If we were free of practical resource constraints, we could imagine that achieving the ideal 



of optimal responsiveness would mean that state actions execute instantly (in zero time), so the 

timing of the system would depend solely on the arrival of the external events. In the limit, we 

could consider the CPU to be infinitely fast, so that all computations take zero time. In practise, 

it suffices if the CPU time available for execution of event handlers is such that event response 

times stay within acceptable bounds. Our implementation relies on the application to bound the 

time of individual state actions, and hence preserve overall timeliness. Our implementation does 

not enforce responsiveness, in particular, it does not employ pre-emptive state scheduling. This 

requires that the application programmer has some understanding of the CPU requirements of the 

state actions. If a state does require so much computation time that it would impede the programs 

ability to maintain tolerable response times, then the state should be subdivided into smaller states. 

Often this technique is used in connection with potentially long loops, by scheduling successive 

iterations of a loop as separate events. 

In our case, we implement the reactive programming support within an application through 

GAIO and QSF, the pair of support libraries we mentioned earlier. Although we've concentrated 

at the application level, the effectiveness of our real-time support also relies on the service provided 

by the OS kernel. In [30], we evaluate the Linux kernel's support for time sensitive applications. 

Briefly, we can summarize as as follows. 

6.1.3 Kernel considerations 

There are three main concerns with kernel performance for a time-sensitive application: schedul- 

ing policy, accuracy of timer facilities, and responsiveness of kernel (how quickly it can act on 

scheduling decisions). The first, scheduling policy, has to do with how the kernel allocates CPU 

time between various running processes, that is how it makes the decision to switch to the context 

of a target process. The second concern, the timer mechanism, has to do with how accurately 

the kernel can implement application specified deadlines (this accuracy is independent of what 

competing applications may be running), which can be one of several reasons the scheduler might 

switch to a target process. The last of the three concerns has to do with how responsive the kernel 

is in actually effecting scheduling policy. Responsiveness is independent of the scheduling policy, 

but has to do with granularity issues within the kernel. The evaluation in [30] shows that Linux can 

provide very accurate timers and that the kernel can execute with fine granularity, hence providing 



a high degree of responsiveness. The Linux kernel developers generally maintain two versions 

of the kernel at a time: the stable branch (even numbered minor version) and the development 

branch (odd numbered minor version). At the time of writing, the stable development tree of the 

standard Linux kernel (version 2.4) requires some modifications to achieve the timer accuracy and 

fine granularity properties, as described in [30]. The development branch of the Linux kernel tree 

(version 2.5) has already incorporated adequate changes. The development branch is expected to 

transition into the new stable version in the near future. The issue of scheduling policy, which 

has been a principle issue of real-time scheduling research, remains the more open research area. 

However, our approach is less prone to the effects of scheduling policy, in the following ways. 

One of the key properties of our implementation of reactive programming is that we generally 

strive to minimize the number of threads or processes used within the application. Although we've 

just described how media streaming has many concurrent aspects, we avoid the natural temptation 

to map those aspects into a multi-threaded application. In designing QStream, we've considered 

multi-threading strictly as a last resort, to be used when there is no other choice. The philosophy 

behind this policy is simple: we wish to keep as much control over timing as possible within the 

application. Hence, our approach tends to limit the importance of the kernel CPU scheduler so 

that it only matters in relation to how other applications may impact our timeliness. In contrast, a 

multi-threaded application architecture tends to depend on the kernel CPU scheduler even in the 

complete absence of competing applications. Our approach also affords a pragmatic option when 

competing applications do exist, that is, running the streaming system with real-time priority. 

This is a kind of brute-force solution, in the sense that it doesn't go very far in a scenario with 

several time sensitive applications. However, although it is not a panacea, the single-threaded 

real-time priority architecture is reasonable in many typical usage scenarios. Alternatively, one 

can consider it as a proof of concept demonstration of what could be achieved with an OS that 

provided direct support for reactive programming in the style of the GAIO and QSF APIs. For 

example, StrearnPlay (the QStream player) can effectively manage two or more video sessions 

at the same time on a single display1, without noticeable timing artifacts in video or audio. We 

are unaware of any other publicly available Linux video solution (streaming or otherwise) that is 

'provided an adequately fast CPU. 



capable of this at this time. 

6.1.4 GAIO 

The GAIO library provides the core API for reactive programming in QStream (using the C lan- 

guage) consisting of the following services: 

Asynchronous I 0  primitives, which are emulated over the nonblocking file API. 

A primitive to schedule events for execution at a given time deadline. 

A primitive to schedule an event for execution immediately (as soon as possible). 

a An event dispatcher that schedules the handlers for the mix of I 0  completion events, dead- 

line events, and immediate events. GAIO allows the application to prioritize all events so 

that the application has some control over the order of event execution. 

A worst case execution time (WCET) profiler. 

6.1.4.1 Event Dispatcher 

The GAIO event dispatcher is the core of the application's state machine. The application calls 

GAIO and QSF primitives, providing a event-handler callback parameter (a C function pointer) to 

be invoked when the requested action is complete (the I 0  has completed or the deadline expired). 

Primitives that always complete immediately omit the callback. The event dispatcher also ensures 

that executions of event handlers are atomic; i.e., every time an event handler is dispatched, it is 

allowed to run to completion before another handler can be dispatched. We think this property 

makes it easier to avoid race conditions in the application2. The event handlers contained in an 

application constitute the states of its state machine. GAIO allows events to be prioritized so that 

order of execution can be tuned in cases where multiple events are ready to run. 

2~nother  reason for making the handlers atomic is to bound the size of the application stack. Earlier versions of 
GAIO allowed the dispatcher to make nested invocations of event handlers, and under some workloads we could cause 
the stack to grow so large that it corrupted other program data structures. 



6.1.4.2 I 0  Events 

The I 0  primitives provided by GAIO are relatively similar to their counterparts in the standard 

Berkeley Sockets API, with the addition of asynchronous semantics. The difference between 

nonblocking and asynchronous APIs can be subtle. The primitives of a nonblocking API always 

return immediately, with a special error type (EAGAIN) if an immediate result is not possible. 

An asynchronous API always returns immediately, but the completion status is always delivered 

later (usually by a function callback). The difference is that calling an asynchronous primitive 

commits the application to the request, whereas the non-blocking version requires the application 

to re-issue the request if the non-blocking I 0  returns the EAGAIN error. The non-blocking version 

only makes sense if there is a way to check later when the I 0  should be re-issued, as with the 

select() and poll() primitives in the case for network sockets. However, these primitives do not 

apply to filesystems, since filesystem I 0  only occurs in response to committed requests. Hence, 

the asynchronous style of API semantics are slightly more general than the non-blocking style3. 

With GAIO, the application instantiates a separate GAIO object for each file (unix file de- 

scriptor) it uses. GAIO allows the application to specify dispatching priority on a per GAIO 

object basis. For example, in the QStream video player, the GAIO object for the audio device gets 

assigned the highest priority, since audio interruptions are very important to avoid. 

6.1.4.3 Immediate Events 

GAIO also provides a primitive to schedule an event handler of a specified priority for execution 

as soon as possible, meaning after any other outstanding events that have higher priority. As de- 

scribed above, this allows the program to avoid long running computations that might hamper the 

event dispatcher's ability to respond to other events, by dividing the computations across multi- 

ple events. For example, if a sequence of iterations of a long running loop that are scheduled as 

separate events, the loop may be interrupted if another higher priority event occurs, such as an I 0  

completion or a deadline expiry. 

3~lthough standardized by POSIX, asynchronous APIs remain un-supported in many OS kernels, which is one of 
the reasons we developed GAIO. 



6.1.4.4 Deadline Scheduled Events 

The GAIO dispatcher provides a timer primitive that allows the application to schedule an event 

handler for execution at a set deadline time. The deadline can be specified as an absolute time, 

or time relative to the current time. When the deadline expires, the event dispatcher will execute 

the handler as soon as possible. All other events have lower dispatching priority than those with 

expired deadlines. 

6.1.4.5 WCET Profiler 

Since in our reactive approach, the overall timeliness of an application depends on limiting the time 

in any single event handler, GAIO provides a tool to assist in diagnosing long running handlers. 

The tool is a Worst Case Execution Time (WCET) profiling facility. When this is enabled, GAIO 

tracks the duration of every event handler it dispatches. At the end of a test, GAIO can print a 

sorted list of the longest running event handlers, identified by the function name of the handler. 

GAIO uses a feature of the GNU bfd library to translate pointers (callback parameters) to their 

symbolic name. Enabling the facility typically adds a 10-20% CPU overhead to the program. 

Using this facility, the application developer can identify when an event handler might need to be 

restructured to improve the application granularity. In QStream, our subjective assessment was 

that application timeliness seemed very good when the largest WCET value was kept below 1 or 

2 milliseconds. 

6.1.5 QSF 

In addition to GAIO, QStream includes a second library called QSF (Quasar Streaming Frarne- 

work) that provides services that are more specialized to network streaming applications. The 

services provided by QSF are the following: 

Simplified primitives for establishing network connections (initiate and accept connections). 

Primitives for message passing style communication over QSF connections. 

A primitive to safely enable real-time OS scheduling, which includes the feature that it 

creates a separate watchdog process. 



a Logging and tracing primitives, to help in understanding the dynamics of the program exe- 

cutions (for debugging and performance analysis). 

6.1.5.1 Networking and Message Passing 

The GAIO network primitives provide the same level of generality as the underlying Berkeley 

API upon which they are implemented. Thus, one could use GAIO to implement most kinds 

of network application, such as a web servers or file servers, using standardized protocols. The 

goals of QStream are not so general. QStream is an experimental platform for adaptive media 

streaming. Consequently, we were not concerned with compatibility with existing protocols, but 

rather in developing a prototype PPS protocol. Initially, we developed PPS directly with GAIO, but 

we discovered that some of the code was verbose and repeated within several QStream programs. 

In order to make the most salient details of PPS most prominent, we decided to develop a higher 

level API for networking which more directly supports the message oriented style of the PPS 

protocol4. QSF provides a generic API for message oriented protocols, of which PPS is one 

instance. QStream contains two other message based protocols which are implemented using 

the QSF API, one used by the MxTraf traffic generator, and the other used by the Monitor. The 

Monitor and MxTraf are applications provided with QStream that will be described later (see 

Sections 6.6 and 7.2.2). 

The goal of the QSF network primitives is to provide a simple API for sending and receiving 

messages. These primitives require that all messages share a generic message header. Figure 6.1 

shows the generic message header defined by QSF. 

QsfMsg { 
Integer length; 
Integer type; 
Integer magic; 

1 

Figure 6.1: QSF Message 

The length and type fields provide the essential information necessary to implement message 

4~~~ started with the networking support, the other features came later. 



oriented communication over a (TCP style) reliable, byte-stream session. The length field indi- 

cates the size in bytes of the message body that follows the header. The type indicates the what 

kind of message is contained in the body. The type values are application specific. The magic 

field is for debugging purposes, and it is used to detect if basic framing of messages has been 

corrupted5. 

On the sender side, QSF provides helper functions for message creation and initialization, as 

well as the primitives for sending the message. On the receiving side, QSF provides a complete 

message dispatching facility. For each QSF session, the application registers a set of handler func- 

tions, which is indexed by message types. The QSF dispatcher then handles the low level details 

of receiving the messages and dispatches the appropriate handler for each complete incoming 

message. 

Since QSF is built on top of GAIO, the application can safely mix GAIO and QSF primitives. 

For example, StreamPlay uses QSF for the PPS connection to Streamsew, but it uses GAIO 

primitives to do asynchronous I 0  on the sound card device. 

6.1.5.2 Logging and Tracing 

Although perhaps mundane, application logging (instrumentation) is nevertheless a critical facility 

for debugging and maintenance. The QStream programs have extensive amounts of instrumenta- 

tion in two forms. The first form of instrumentation generates debugging messages to an appli- 

cation log. The second kind of instrumentation sends data to the QStream monitor for real-time 

visualization in the gscope software oscilloscope (see Section 6.6). 

The QStream programs accept a command line argument which enables the generation of the 

debug messages. One of the main benefits of the QSF logging facility is that its messages contain 

a wealth of human readable time references. 

Figure 6.2 shows an example of the output from StrearnPlay when the debug option is enabled. 

The details of the messages are application specific, but some aspects are generic to QSF logging. 

Each message has a prefix which is generated by QSF on behalf of the application. The prefix 

can contain the session number, absolute time, session time, and a time delta, as in the last line of 

 he value of magic should be 0x1337. 



0.003091 connected, socket pair=127.0.0.1.4005,127.0.0.1.33808, 
starting recvs 

0.000096 sending open file request:file=/mpgs/angels 
0.023738 Open ok, uuid=20142hO6-~802-4373-86e9-dldb5ed8afbe, 

video duration= 00:04:10.992000, hsize=704, vsize=304 
0.123991 audio fd is 10 
0.000046 sending start stream 
0.117146 stream start:origin=15:12:44.173870: 

stream time= 00:00:00.000000 
00:00:00.000139 0.000017 win 00: vid range= 00:00:00.000000- 

00:00:01.876874 
xmit end= 00:00:01.706078 
num_sdus=32 num_base_sdus=2 
pictures=45 

00:00:00.000228 0.000089 win 00: schedule decode start 
at 00:00:01.706078 

00:00:00.000246 0.000018 win 00: recv first £rag length=412 
00:00:00.000278 0.000032 win 00: recv cont'd £rag length=6732 
00:00:00.000323 0.000045 win 00: recv cont'd £rag length=8 

Figure 6.2: Example of QSF debug logging. This log fragment comes from Streamplay, it shows 
the initial sequence of events in a PPS session. 

Figure 6.2. The time delta is simply the difference between the absolute time of the current and 

previous message in the log. A very large value of the delta can often provide a quick hint to help 

in diagnosing timing related problems. 

The remainder of the log message is supplied by the application, but QSF does provide some 

helper primitives, for making human readable time values, to ease the formatting of the application 

part of messages. These helpers make it easy for the application to format time values in the same 

format used in the prefix: hh:mm:ss.uuuuuu (hours, minutes, seconds, and microseconds) . We 

have found the debugging messages to be invaluable during the development of QStream. 

6.1.5.3 Safe Real Time Scheduling 

As described earlier in Section 6.1.2, our implementation of the reactive model is done at the user 

level, but the kernel CPU scheduler still has the ultimate control over the timing of the program. 

Like most general purpose operating system kernels, Linux does offer some basic support for 

real-time applications. The Linux scheduler allows applications (with root privileges) to specify a 

real-time scheduling priority, which assures the application will always get scheduling preference 

over non real-time processes. Linux also implements the POSIX standardized mbckall() system 

call, which allows a process to pin all of its virtual memory pages into physical memory. In Linux, 



if an application runs at real-time priority (with no other real-time competitors) and has all of its 

pages pinned, then it will have very tight control over its timing. 

However, running applications at real-time priority is commonly and rightfully considered 

very dangerous, because real-time processes can effectively freeze the entire system if they enter 

a non-terminating loop-usually due to a bug (a livelock condition). Because of the danger, the 

Linux kernel strongly discourages casual use of its real-time facilities by only allowing processes 

running as root to enable real-time priority or to pin pages with mlockall(). 

One technique to reduce the danger of running real-time is to use an application-level watch- 

dog. A watchdog is a separate helper process that also runs at real-time priority (higher than the 

main process) with the sole purpose of detecting if the main process has livelocked the system. If 

the watchdog detects livelock, it will terminate the main process. The technique works by having 

the main process emit heartbeats to the watchdog on a periodic basis6. If the main process erro- 

neously enters an infinite loop, it will cease to emit the heartbeats, which in turn will be detected 

by the watchdog. QSF provides a primitive that enables real time priority and also automatically 

establishes the watchdog process, taking care of all the details of the watchdog's operation on 

behalf of the application. 

6.1.6 Summary 

The QStream implementation is a full realization of our framework for quality-adaptive streaming. 

Our description of the implementation is divided along the conceptual line between the real-time 

aspects of the problem and the quality-adaptive aspects. This section has been concerned with 

describing the real-time support in our framework, which is embodied by a pair of libraries, called 

GAIO and QSF. GAIO provides the core facilities for real-time with the reactive programming 

model, including an event scheduling and dispatching facility and primitives for asynchronous 10. 

QSF complements GAIO by providing specific support for streaming applications, such as easy 

setup of network sessions and application message passing over those sessions. In the following 

sections, we describe the implementation of the applications included in QStream, focusing on the 

details of the algorithms for the Priority-Progress protocols. Along with SPEG and the Mapper 

6 ~ e  use a unix pipe to communicate the heartbeats, once per second. 



(described in Chapter 3), the Priority-Progress protocols realize the quality-adaptive duties in our 

framework. 

6.2 QStream Architecture and PPS Message Protocol 

- playn. requests s m p  for specific video 

Repare Windows for Transmission 
- accept StreamServ -fetch ADUs within window interval from 

- open index and SPEG -mapper assigns priorities 
for requested video - ADU's are transformed to SDUs 

- sort SDUs into priority order far streaming 
- lookup ADUs in immal 
-ensure ADU payloads Transmit Windows 
are memory resldem -send SDUs until window deadline 

. dmp expired (low-priority) SDUS 

1 session stamp 
StreamPlay 

- r1111eEt to StreamServ 
-request video 
- initialize decoder and display 

-window SM: set window deadline 
receive SDUs in priority order 
. m m p  SDUs back into timeadered ADUs 
.phase adjust clock to cornpenrate for Late SDUS 

........... ............ .......... ........... ............ .......... ............ ~ .......... ----.-.-- -------.---..~~~~~- 

Figure 6.3: QStream in a Unicast Configuration 

Figure 6.3 shows the QStream architecture in a unicast streaming configuration. The upstream 

node stores two types of data per video: a video bitstream and an index. In QStream, the format of 

the bitstream is SPEG (see Chapter 3). The index uses Berkeley DB B-trees to provide time-based 

lookups into the bitstream. The index supports efficient assembly of the adaptation windows in 



the PPS algorithm7. QStream provides a pair of programs, not shown in the figure, that convert 

MPEG-1 video files to SPEG and generate the index (offline). 

The upstream node consists of a pair of threads, called Filesen and Streamserv8. Most of the 

work of the PPS algorithm is done by StreamSen. To help keep good control over timing, Stream- 

Serv restricts itself exclusively to using non-blocking 10. Our target implementation platform is 

Linux, which (at the time of writing) provides only synchronous (blocking) access to filesystems. 

To isolate StreamServ from operations that could potentially block, a separate QStream thread 

called FileServ is used to perform all filesystem accesses needed for each session. Streamsen 

and Filesen communicate with each other through QSF and GAIO, in this case layered over 

Unix local sockets, which support the same non-blocking API as network sockets (over TCP). 

The bottom program in Figure 6.3 is StreamPlay. StreamPlay implements the downstream 

part of the PPS algorithm (see Figure 4. I), video decode, and video display. 

Another QStream program, not shown in the figure, is the QStream remote monitor, hereafter 

referred to simply as the Monitor. All of the the QStream programs contain extensive internal 

instrumentation which is used for generating both online and offline traces of various aspects of 

QStream performance and the PPS algorithms. The online versions of the traces are visually 

presented in real-time using a graphical software oscilloscope called gscope [32]. The offline 

versions can be plotted graphically using software such as gnuplot [go]. 

Compared to the conceptual architecture presented in Figure 4.1 of Chapter 4, the concrete 

architecture of QStream presented in this chapter is somewhat different. As one might expect, the 

upstream component of the conceptual architecture is realized in StreamSen and the downstream 

component in StreamPlay. As the following sections will reveal, the functionality of the PPS 

progress regulator is mainly contained within StreamSen, but a few aspects (mostly relating to 

maintenance of the phase offset) are contained in Streamplay. 

7~andom access seeking functions are also easier to support with the index. 
' ~ i l e ~ e r v  and StreamServ were initially separate programs. They were later merged into a single, dual-threaded 

program for reasons of ease of use. 



6.2.1 Naming conventions 

The following sections will describe the algorithms of the QStream implementation of PPS. Each 

algorithm contains several functions. We use a particular naming convention for these functions, 

which is described here. 

For example, we have a function named ss-childsendstreamstart(). Each name begins with 

a prefix that identifies which QStream program or to which library the function belongs. In this 

example, the ss prefix is for functions in the StreamServ program. Other program prefixes are sp 

for StreamPlay, and fs for FileServ. The qsfprefix is used for QSF library functions. The second 

component of the name often refers to the object on which the function acts or was triggered 

by. In this example, child refers to a network session. In this chapter, we have three names for 

network sessions: StreamServ's connection to FileServ is called helper, StreamServ's downstream 

connection to StreamPlay is called child, and Streamplay's upstream connection to StreamServ is 

called parent9. The remaining suffix of the name describes the action performed by the handler, 

which in this example is to send a STARTBEQUEST message. 

6.2.2 PPS messages 

Figure 6.4 gives an example of the sequence of messages that would be exchanged between the 

QStream programs during the start of a PPS session. The messages exchanged between Stream- 

Serv and StreamPlay comprise the PPS protocol. The dialogue between StreamServ and, its helper 

program, FileServ are not part of the protocol proper, but we include them in the figure to help 

understand the QStream implementation. 

Each PPS session begins with the StreamPlay establishing a transport level connection to 

StreamServ, which in turn establishes a connection to FileServ. From then on, the PPS session 

consists of a sequence of application level messages exchanged across the transport connections. 

Unlike some other protocols [74,76], PPS interleaves control and data messages within the same 

transport connection. 

The startup is made up of two steps. First StreamPlay sends an OPENXEQUEST message 

'when we introduce multicast, there will be intermediate nodes between S t rearnSe~ and StreamPlay. 



StreamPlay StreamSem FileServ 

Figure 6.4: Sequence of Messages in a PPS session 

Connect 0 
- ~ . . . ~ ~ - ~ . . . - - ~ ~ . . ~ ~ ~ ~ ~ . . -  ~ - ~ . .  ~~~. . .~~- . . .~-  ~ . . - ~ ~ -  

Accept ( ) 
~-.. ~- - . . - -~~~. .~ -  ~ . . .~~~~ . .~ -~~ . . .~ - - - . .  ~ ~ ~ - . . ~ ~ - ~  Connect 0 

~ ~ ~ ~ . .  ~ - ~ . .  - ~ ~ ~ ~ .  ~ - ~ ~ . . - ~ ~ ~ ~ . ~ ~ - ~ - . . - ~ ~ ~ ~ . ~ ~ - ~ -  ..~- 

Accept ( ) 

OPEN-REQUEST 
F 

OPEN-RESPONSE 
4 

START-REQUEST w 

START-RESPONSE 
4 - 

WINDOW-START 
4- 

S DU 
4 

SDU 
4 

....................................................... 

OPEN-REQUEST 
b 

OPEN-RESPONSE 
4 

READ-RANGE-REQUEST 

READ-RANGE-RESPONSE 
4 

READ-RANGE-REQUEST . 

S DU 
1 

WINDOW-START 
4 

4 
SDU 

READ-RANGE-RESPONSE 
4 



to StreamServ that indicates which video to stream. StreamServ forwards this message to File- 

Serv, which is responsible for checking that the video bitstream and index files are available for 

streaming. The OPENRESPONSE message is sent back to StreamServ and then forwarded from 

StrearnServ to StreamPlay. The message indicates whether the video is available and, if so, in- 

cludes a stream header for the video. The stream header contains basic information about the 

video (duration, resolution, audio sample frequency, . . .), which the client can use, for exam- 

ple, to configure output devices such as the display window and audio card. StreamServ initiates 

preparation of the first adaptation window, which includes sending a R E A D B N G E R E Q U E S T  

to FileServ to fetch the contents of the first adaptation window from storage. FileServ sends back 

a R E A D B N G E X E S P O N S E  when the contents are ready. StreamServ will not actually start 

transmission of the first window until the second step of PPS startup completes. In the second 

step, the client sends a STARTXEQUEST message to StreamSew. This may not happen until the 

destination video and audio devices are given a chance to get ready at the client1'. StreamServ 

then sends the STARTRESPONSE message to StreamPlay. 

The purpose of the START-RESPONSE is to provide an approximate time synchronization 

between the StreamServ and StreamPlay sides of the PPS session. PPS does not assume a globally 

synchronized time reference is available, because services such as ntp [62] are not implemented in 

the majority of Internet hosts. Each side maintains a session origin time, which is an absolute time 

reference relative to the local time. All other time values communicated between the StreamSew 

and StrearnPlay are expressed in terms relative to the origin. StreamSew sets the origin for the PPS 

session to be the local time at which it sent the STARTRESPONSE message, while StrearnPlay 

sets it to the local time upon receipt of the STARTRESPONSE. The basic assumption is that while 

the local times of StreamServ and StreamPlay may not be synchronized to the same value, they 

advance at the same rate1 ' 
Once the STARTRESPONSE is sent, then the remainder of the session consists of a sequence 

of adaptation windows. From the perspective of StreamPlay, each adaptation window starts with 

'O~nd until the server has established a connection to the Monitor, although we elide the details of Monitor commu- 
nication here. 

"should there be significant rate drift, the phase offset management part of the algorithm will adjust to compensate 
for it. 



the reception of a WINDOWSTART message from StreamServ, followed by a sequence of indi- 

vidual SDU messages. The WZNDOWSTART message contains information about the adapta- 

tion window such as its positions within the video (display) timeline and the transmission time- 

line. To prepare each adaptation window, StreamServ sends a READRANGEREQUEST to File- 

Serv, which fetches the video data from storage, and sends a READXANGERESPONSE back to 

StreamServ to indicate the data can be accessed without risk of blocking. 

6.3 StreamServ Algorithm 

This section presents the server-side algorithm for PPS. The presentation includes a description 

of the main data structures, and pseudo-code, based on the source code for StreamServ as im- 

plemented in QStream. Despite the low-level of detail here, there is still a significant amount of 

simplification relative to the actual source code. Some details from the source code have been 

omitted because they are not specific to the PPS algorithm. They include error handling, debug 

logging, remote monitoring, and normal session termination and cleanup. There are also some 

parts of the server side of the PPS algorithm that are multicast specific, they are presented later in 

Section 6.5. 

6.3.1 StreamServ Data Structures 

There are two main data structures used in the StrearnServ program, one for a state related to a 

PPS session and the other for individual adaptation windows. They are shown in Figures 6.5 and 

6.7. References to these structures will appear throughout the pseudo-code fragments that appear 

in the following sections. 

A StreamSewSession object, shown in Figure 6.5, is allocated for each PPS session. The 

childsession and helper-session fields are handles used to send and receive messages with QSF 

(QSF was described in Section 6.1.5). As mentioned earlier in Section 6.2.1, the child-session is 

used for the PPS protocol, while helper-session is used for communication to FileServ. 

The StreamServ side of the PPS algorithm pipelines its preparation and transmission phases 

to ensure that data is always ready for transmission before it is needed, which in turn ensures that 



ServPpsSession 
QsfSession 
QsfSession 
Queue 
Queue 
Queue 
StreamHeader 
Mapsession 
Integer 
Time 
Time 
Time 
Time 
Time 
Time 
Time 
Float 
Boolean 
Boolean 
. . .  

1 

{ 
child-session; / / 
helper-session; / /  
recv-windows; / / 
mapped-windows; / /  
xmit-windows; / / 
streaxheader; / / 
mapper-session; / /  
video-fd; / / 
session-origin; / /  
phase-offset; / / 
workahead-limit; / /  
expand-end; / / 
shrink-start; / / 
prev-vid-end; / / 
prev-mi t-end ; / / 
growth-rate; / / 
servready; / / 
child-ready; / / 

Handle for TCP connection downstream 
Handle for local connection to FileServ 
windows captured/fetched from storage 
windows mapped beyond workahead limit 
adaptation windows ready to stream 
contains video duration, fps, etc. 
mapper specific sesssion state 
file descriptor for video data 
base time of regulator clock 
worst case transport latency 
for work conserving mode 
when window sizes stop growing? 
when window sizes start shrinking? 
video end position of latest window 
transmit end position of lastest window 
how fast do windows grow/shrink? 
first window ready for transmit 
child has sent start request 

Figure 6.5: StreamServ PPS Session Object 

the available network bandwidth will be fully utilized by PPS'~. The basic unit of work in the 

pipeline is the PPS adaptation window (the ServPpsWindow object is described below), each stage 

of the pipeline maintains a separate queue (first in, first out) of windows belonging to that stage. 

There are three such queues per session: recv-windows, mapped-windows and xmit-windows. The 

recv-windows queue holds windows as they are initially fetched from storage (or captured and 

encoded in the case of streaming directly from a live source), and prioritized by the mapper. The 

map-windows queue holds windows that have been prioritized but are not ready for transmission 

(due to the workahead limit). Finally, the xmit-windows queue holds windows that have been fully 

prioritized and are eligible for transmission. 

The use of queues for the pipeline stages might not seem an obvious choice. Intuitively, the 

server side of the PPS algorithm should only require two windows at a time (one in preparation, 

and the other in transmission). However, we realized queues were necessary when we extended 

 he pipelining ensures that transient storage access latencies do not delay transmission. Non-transient latencies 
would be the result of insufficient sustainable throughput from the filesystem. In this dissertation, we are making 
the assumption that the storage system can sustain the rates required by PPS. Adapting to filesystem performance 
bottlenecks is outside the scope of this work. 



our original implementation with features such as work conserving mode (discussed in Section 

4.1.3) and live streaming, each of which can lead to scenarios with several windows in various 

stages of progress. 

The map-session object contains state for the Mapper algorithm (the Mapper is described in 

Chapter 3). The streamheader field contains configuration information from the video. The 

contents of the stream-header are shown in Figure 6.6. The resolution information is used by 

Streamplay to initialize the display window during startup. The preroll-duration is used to inform 

the PPS of the smallest feasible adaptation window duration, which is constrained by the GoPs 

that happen to occur in the particular video (see Section 3.2.1). Aside from the brief comments 

in Figure 6.5, we leave the discussion of remaining fields of the ServPpsSession object until they 

appear in the pseudo-code of the following sections. 

StreamHeader { 

VideoRate video-rate; / /  fps, timecode settings 
Time duration; / /  total duration of stream 
Integer h-size; / /  horizontal resolution 
Integer v-size; / /  vertical resolution 
Time preroll-duration; 

1 

Figure 6.6: StreamHeader Object 

Figure 6.7 shows the ServPpsWindow object that is allocated per adaptation window. The 

vidstart and vid-end fields delimit the position of this window within the video timeline. The 

xmitstart and xmit-end are the window's position within the transmission timeline. 

Before priority-mapping, the contents of the adaptation window is a set of ADUs. The 

fetchdone flag is used to track whether FileServ has fetched the contents. When received from 

FileServ, the adus field stores these ADUs, which are as yet unprioritized. The content of adus 

is consumed by the mapper algorithm, which prioritizes and groups the ADUs transforming them 

into SDUs. As the mapper proceeds, it inserts SDUs into a heap data structure, the sdus field. Us- 

ing a heap allows the priority sorting to be done incrementally. The ADU and SDU object types 

are shown in Figure 6.8. 

In work conserving mode, the transmission of an adaptation window is allowed to start imme- 

diately if bandwidth was enough for the previous window to finish before its deadline. However, 



ServPpsWindow { 
Time vid-start; / / 
Time vid-end; / / 
Time xmit-start; / / 
Time m i  t-end; / / 
Time xmit-deadline; / /  
Boolean fetch-done; / / 
Queue adus; / / 
Heap sdus ; / / 
Timeout start-timeout / /  
Timeout mit-timeout / / 

1 

start position in video timeline 
end position in video timeline 
start position in transmit timeline 
end position in transmit timeline 
end position in absolute time 
window has arrived 
window contents before mapping (time order), 
window contents after mapping (priority order) 
handle to timeout scheduled to start transmit 
handle to timeout scheduled to stop transmit 

Figure 6.7: StreamServ Adaptation Window Object 

this is allowed only up to the configurable workahedlimit for the session (see ServPpsWindow 

above). The start-timeout field stores a handle to a scheduled callback, in this case the callback 

enqueues the window for transmission. The use of start-timeout may possibly delay the trans- 

mission of the current window so that workahead-limit is honoured. The xmitdimeout is used 

to issue a callback that will trigger the transmission phase to stop for the current window (drop- 

ping unsent SDUs), allowing the next window to start. In the non work conserving configuration, 

the start-timeout deadline for a window will always be equal to the xmit-timeout deadline of the 

previous window. 

PpsSdu { 
Time 
Integer 
Integer 
Pps Adu 
Bytes 

3 

timestamp; / /  derived from map window 
priority; / /  assigned by mapper 
num-adus ; / /  PpsAdus follow, then ADU payloads 
adus[num_adusl; / /  Index ADU payloads 
payloads [ 1 ; / /  ADU payloads (variable length) 

PpsAdu { 

Fileoffset offset; 
Integer length; 

3 

Figure 6.8: ADU and SDU Objects 

Figure 6.8 shows the message related objects, for SDUs and ADUs. An SDU contains the 

timestamp and priority, along with a group of ADUs. The adus field is an array which describes 



the logical location of the ADU within the video bitstream. The actual ADU payloads form the 

suffix of the SDU. 

This completes our description of the StreamServ data structures. The PPS algorithm will 

be described in pseudo-code in the following three sections, one each for the three phases of the 

algorithm: startup, window preparation, and window transmission. 

6.3.2 StreamServ Phase I: Session Startup 

The session startup phase is where StreamServ accepts a new child connection and the initial 

PPS protocol sequence is processed. This protocol sequence starts with an OPENREQUEST 

message from downstream that indicates which video is requested. After receiving this message, 

StreamSew initiates a connection to Filesew for the session13. Once the connection to FileServ 

is established, StreamServ forwards the OPENREQUEST message to FileServ, which opens the 

requested video and its index. After opening the files, FileServ generates a response message to 

StreamServ that includes the video stream header. StreamServ forwards the response downstream. 

StreamPlay uses the information in the stream header for initializing the output window and audio 

device. Finally, StreamSew initiates the preparation phase for the first adaptation window. 

SS-CHILD-ACCEPTOR (child-session) 

1 pps t ~ ~ ~ ( S e r v P p s S e s s i o n )  

2 pps.childsession = childsession 

3 pps.he1persession t QSF-CONNECT( f ileservaddress, helper-methods, pps) 

This function is the entry point for the the PPS algorithm, it is called when a new connec- 

tion has been accepted. This marks the beginning of a new PPS session. Line 1 creates a new 

ServPpsSession object. Line 3 initiates a local connection to FileServ,Jileserv-address is the name 

of a unix local socket. The helpermethods argument is an array that associates PPS messages 

with the corresponding functions below. 

13~nother option would be to have a single connection between StreamServ and FileServ, multiplexing requests from 
all active PPS sessions. This is how communication with the remote monitor works. 



This function is called when the per-session connection to FileServ has been established. At 

this point, the application-level message dispatching is enabled for both the downstream TCP 

connection and the local connection to FileServ (lines 1 and 2). Between the time a connec- 

tion is established and the time dispatching is enabled, messages transmitted over the connection 

would simply accumulate in OS kernel buffers. The only message expected at this point in PPS is 

the OPEN-REQUEST message from downstream (see Figure 6.4), which mainly indicates which 

video the user wishes to stream. 

SS-CHILD-RECV-OPEN-FILE(~~S, open-filerequest) 

1 ~ ~ ~ ~ S ~ ~ ~ ~ ~ S ~ ( p p s . h e ~ p e r s e s s i o n ,  open-f ilerequest) 

ss-child-recv-open_file is called upon receipt of the OPENREQUEST message from Stream- 

Play, it simply forwards the request to FileServ (line 1). 

SS-HELPER-RECV-OPEN~ILE(~~S, open-f ileresponse) 

1 pps.stream-header t open-file_response.stream-header 

2 QSF-SEND-~s~(pps.chiIdsession, open-f ileresponse) 

3 ss-WINSREP-FIRST(PPS) 

ss-helper-recvspen-$le is dispatched upon the arrival of an OPEN-RESPONSE message from 

Filesem. The message contains a stream header object which contains information that will be 

needed in ss-winprep-&st, such as the required preroll duration and the total duration of the video 

(line 1). The message is forwarded downstream to Streamplay so that it may use the stream header 

information to initialize its display (line 2). Line 3 calls ss-winprep-.rst to initiate preparation of 

the first adaptation window. 



~ ~ - W I N - P R E P - F I R S T ( ~ ~ S )  

1 win t ~ ~ ~ ( S e r v P p s W i n d o w )  

2 win.xmit-start c 0 

3 win.vidstart t 0 

4 win.vid-end t initial-winsize 

5 ifpps.growthrate > 1 

6 then pps.expand-end t pps.max~win~duratim/(pps.growth-rate - 1) 

7 pps.shrinkstart t pps.stream-header.duration - pps.expand-end 

8 if pps.shrink-start < pps.expand-end 

9 then pps.expand-end t pps.stream-header.durationl2 

10 pps.shrinkstart c pps.expand-end 

11 ENQUEUE(~~S.T~C~-windows, win) 

12 ss-HELPER-SEND-READ-RANGE(~~S) 

ss-winprep-jrst allocates a ServPpsWindow object for the first window of the session timeline 

(line 1). The mit-start and vid-start fields are set to zero since this is the first window in the stream 

(lines 2-3). The vid-end is set to according to a configuration value initial-winsize (line 4), which 

may be adjusted downward later by FileServ to align with the first GoPs in the video. If window 

scaling is enabled (checked on line 5), then lines 5-10 compute the expand-end and shrink-start 

values that are to be used in later steps for computing the sequence of adaptation windows. Note 

that if growth-rate is 1, then the expand-end and shrink-start values will have no effect (they will 

be 0 and duration respectively). Line 11 puts the new window in the recv-windows queue, where 

it will stay until the preparation phase is complete. The first step in window preparation is for 

FileServ to locate and fetch the contents of the window from storage. This is initiated by the call 

to ss-helper-send-read-range function (see Section 6.3.3.1) which sends a read range message for 

the new window to FileServ (line 12). 

ss-CHILDJECV-START-STREAM~S) 
1 pps.childready e TRUE 

2 if pps.serv-ready 

3 then s s - S T A R T - S T R E A M ( ~ ~ S )  



ss-child-recv-open-$le is called upon receipt of the STARTREQUEST message from Stream- 

Play. This message indicates that the child is ready to receive the first adaptation window, which 

is recorded in the variable child-ready (Line I). Line 2 tests sen-ready, which indicates whether 

the first adaptation window has been fully prepared. If so, the call to ssstart-stream (see Section 

6.3.3.5) will begin the transmission phase for the session. Otherwise, transmission will begin later 

when the preparation of the first adaption window completes (see Section 6.3.3.4). 

6.3.3 StreamServ Phase 11: Window Preparation 

This phase is driven by the amval of READRANGERESPONSE messages from FileServ. Each 

message will include descriptors for all the ADUs that fall within an adaptation window interval. 

StreamServ calls the priority map algorithm to convert the ADUs to a set of prioritized SDUs. 

When mapping is complete, the adaptation window can enter the transmission phase of Stream- 

Serv. 

ss-HELPER-SEND-READ-RANGE(~~S) 
1 win t ~ ~ ~ ~ ~ ~ ~ ~ ( p p s . r e C v - w i n d o w s )  

2 readrange-msg.vidstart t win.vid-start 

3 read-range-msg.vid-end t win.vid-end 

4 read-range-msg.win t win 

5 ~ ~ ~ - ~ ~ ~ ~ - ~ ~ ~ ( p p s . h e ~ p e r - s e s s i o n ,  readrange-msg) 

The first step in the preparation phase is to send a READRANGEREQUEST message to 

FileServ (lines 1-5), which directs FileServ to locate and retrieve all the ADUs that fall within the 

interval of the window. 

SS-HELPERBECV-READAANGE(~~S, read-rangeresponse) 

1 win = P E E K H E A D ( ~ ~ S . ~ ~ ~ ~ - w i n d o w s )  

2 win. f etchdone t TRUE 
3 win.adus t read-range-response.adus 

4 win.vid-start t read-range-response.start 

5 win.vid-end + read-rangeresponse.end 



vid-duration = win.vid-end - win.widstart 

switch 

case win.xmitstart < pps.expand-end : 

xmit-duration t widduration t pps.growth-rate 

case win.xmit-start > pps.shrinkstart : 

xmit-duration t vid-duration x pps.grmthrate 

case default : 

xmitduration t widduration 

win.xmit-end = win.xmit-start + xmit-duration 

displaystart = pps.stream-header.prerol1-duration + win.vid-start 

win.xmit-end = MIN(displaystart,  win.xmit-end) 

G A I O - S C H E D U L E _ E V E N T ( ~ ~ - ~ ~ ~ A ~ U ~ ,  pps) 

pps.prew-vid-end = win.vid-end 

pps.preusmit-end = win.xmit-end 

ss-helper-recv-redrange is dispatched when the READRANGERESPONSE message ar- 

rives from FileServ. The response message contains an array of ADU descriptors for the ADUs 

that fall within the range requested, which are stored for later processing by the priority mapper 

(line 3). The response also includes the adjusted adaptation window boundaries (lines 4-5). File- 

Serv is allowed to adjust the requested video boundaries downward if necessary; for example, to 

make sure that the adaptation window boundary is aligned with timestamps in the videoI4. This 

alignment is necessary to ensure that window duration accurately matches the amount of video the 

window contains. 

Lines 6-16 compute the transmission expiry deadline for the window. The transmission dead- 

line is derived from the window's duration in the video timeline and the session's window scaling 

policy. Lines 8-9 treat the case where the window is part of the window scaling expansion phase. 

Similarly, lines 10-11 treat the shrink phase, and line 13 treats the neutral phase. Lines 14-16 

clamp the deadline to ensure the transmission ends by the time display must start. The next step 

of the preparation phase is priority mapping. Since the mapper algorithm is CPU oriented, the 

mapper function is scheduled as an event with the GAIO event dispatcher (line 17), which will 

call ssmap-adus as soon as no other higher priority events are pending. Lines 18-19 store the 

actual end position of this window which will become the start position for the next window. 

141t also ensures that the response is non-empty, that is, it contains at least one GoP 



S S - M A P - ~ ~ u s ( p p s )  

1 win t PEEK-HE~D(pps.recv-windows) 

2 MAPPER-PRIORITIZE(W~~.~~US, win.sdus) 

3 if Q U E U E _ E M P T Y ( W ~ ~ . ~ ~ ~ S )  

4 t h e n s s - ~ ~ p - ~ o ~ ~ ( p p s )  

5 else G - A I O - S C H E D U L E _ E V E N T ( ~ ~ - ~ ~ ~ - ~ ~ ~ ~ ,  p p ~ )  

ssmapadus  is a wrapper function that calls the mapper algorithm to prioritize the contents 

of the adaptation window. The adaptation window consists of a sequence of one or more smaller 

intervals called map windows, which were discussed in Section 3.2. Line 2 -calls to the mapper to 

prioritize a single map window, which will consume some number of the ADUs in the win.adus 

queue. When the mapper has prioritized the entire adaptation window, the win.adus queue will 

be empty (line 3) and the adaptation window is ready to enter the transmission phase (line 4). 

Otherwise, the mapper is scheduled to continue processing the ADUs of the next map window 

(line 5). 

S S - M A P - D O N E ( ~ ~ S )  

1 win + ~ ~ ~ u ~ u ~ ( p p s . r e c v - w i n s )  

2 ~ ~ ~ u ~ u ~ ( p p s . m a p p e d - w i n s ,  win) 

3 if win.number = 0 

4 then pps.servready t TRUE 

5 if pps.child_ready 

6 then S S - S T A R T - S T R E A M ( ~ ~ S )  

7 else xmit-deadline t pps.session-origin + win.xmitstart - pps.workaheadJimit 

8 win.start-timeout c 
9 G - A I O - S C H E D U L E - T I M E O U T ( X ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ,  SS-WINXMIT-START, pps) 

10 win 4- ~ ~ ~ ~ _ ~ ~ A ~ ( p p s . r e c v - w i n s )  

1 I if win # N I L  and win. f etchdone 

12 then G - A I ~ - ~ C H E D U L E - E V E N T ( S ~ - ~ ~ ~ ~ ~ ~ ~ ,  pps) 

When preparation of an adaptation window is complete, ssmapadus  calls ssmapdone.  At 

this point, the window is moved from the recv-wins queue to the mapped-wins queue (lines 1-2). 

Lines 3-6 of ssmapdone treat the case of the very first adaptation window in the stream. 



Line 4 updates sew-ready to indicate that the first adaptation window is ready for transmission. 

Line 5 checks whether the client has send a START-REQUEST message yet. If so, the call to 

ssstartstream (described below) in Line 6 will initiate the transmission phase. 

Lines 7-9 of ssmapdone treat all adaptation windows other than the first. Line 7 computes 

the deadline (in absolute time units) at which transmission of the window should start. If the value 

of workahedlimit is greater than zero, then the algorithm is in the work conserving configuration. 

Lines 8-9 schedule the dispatch ss-winmitstart at the deadline. If the value of xmitdeadline 

happens to have already past, then the event dispatcher will dispatch ss-winxmitstart as soon 

as possible. Lines 10-12 check whether the next adaptation window is available and ready for 

mapping, and if so, an event is scheduled to invoke the mapper. 

The ssstart-stream routine initiates the transmission phase for the first adaptation window 

in the stream. As described in Section 6.2.2, line 1 is where the server side session clock is 

started, by recording the current time in session-origin. The ss-child-send-streamstart function 

(line 2) simply constructs the STARTXESPONSE message and sends it to the child. Line 3 calls 

ss-winxmitstart (described next) which begins transmitting the actual window contents. 

ss-WINXMIT-START(PPS) 

1 win t DEQuEu~(pps.mapped-wzns) 

2 ~ ~ ~ ~ E u ~ ( p p s . x m i t - w i n s ,  win) 

3 xmit-deadline t pps.sessionlrrigin + pps.phase-o f f set + win.xmit-end 

4 win.xmit-timeout t G ~ A I O ~ S C H E D U L E ~ T I M E O U T ( X ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ,  

5 SS-WINXMIT-EXPIRE, win) 
6 ss-WIN-PREP-NEXT(PPS) 

7 if Q U E U E - L E N G T H ( ~ ~ ~ . X ~ ~ ~ - W ~ ~ ~ O W S )  = 1 

8 then ss-CHILD-SEND-WIN-START(~~S) 



ss-winxmitstart is called each time an adaptation window is ready to begin the transmission 

phase. By this point, the window contents have been fetched into memory, prioritized, and sorted 

into priority order. By queueing the window for transmission, the window enters the transmission 

phase (line 1). A timeout is scheduled to expire the window (lines 2-5). If the timeout fires before 

the transmission of the entire window contents completes, then the algorithm will proceed to drop 

unsent SDUs for this window (see Sections 6.3.3.7 and 6.3.4.4). Line 6 invokes a helper called 

ss-winprepnext to initiate preparation of the next adaptation window in the video timeline, this 

preparation will then proceed concurrently with the transmission of the current window. Lines 

7-8 start (or resume) the transmission phase if necessary, which is determined by the absence of 

other adaptation windows in the transmission queue'5. 

SS-WIN-XMIT-EXPIRE(W~~) 
1 win.xmit-timeout t NIL 

The ss-winxmit-expire function simply clears the xmit-timeout field. This will trigger the 

retirement of the current window in sssdunext (see Section 6.3.4.4). 

ss-WIN-PREP-NEXT(~~S) 

1 if pps.prev-vid-end = pps.stream-header.duration 

2 then return () 

3 new-win t ~ ~ ~ ( S e r v P p s W i n d o w )  

4 ~~~u~u~(pps.recv-windows, new-win) 

5 new-win.vid-start t pps.prev-vid-end 
6 new-win.xmit-start t pps.prevsmit-end 
7 xmit-duration t pps.stream-header.prerol1-duration + new-win.vid-start- 

8 new-win.xmit-start 
9 switch 

10 case new-win.xmit-start < pps.expand-end : 
11 vidduration t xmit-duration + pps.growthrate 

''The transmission phase pauses if it empties the queue, which would happen if bandwidth were abundant. 



12 case new-win.xmit-start 2 pps.shrinkstart : 

13 vid-duration t xmit-duration x pps.growthrate 

14 case default : vid-duration t xmit-duration 

15 vid-duration = CLAMP(V~~-duration, pps.min-win-duration, pps.max-win-duration) 

16 new-win.vid-end t new-win.vid-start + vidduration 

17 ss-HELPER-SEND-READ- RANGE(^^^) 

ss-winprepnext instantiates the ServPpsWindow object for the next adaptation window in the 

PPS timeline, and initiates the preparation phase for the new window. This includes computing the 

new window's position in the video and transmission timelines, taking into account the window 

scaling settings of the session. 

Line 1 checks if the previous adaptation window reached the end of the stream. If so, the 

function returns immediately without creating a window (line 2). Otherwise, line 3 allocates the 

object for the new window and line 4 puts that window into recv-windows queue. Lines 5-6 set the 

start positions for the new window in the transmission and video timelines. These start positions 

are set to the end positions of the last window, ensuring that the timelines are free of gaps. Lines 

7-16 compute the target duration of the new window in the transmit and video timelines. It should 

be noted that the actual durations (in the video and transmit timelines) may end up shorter, since 

FileServ may round the window boundary down to align with the timestamps present in the stream 

(see Section 6.3.3.2). The target duration is computed based on the amount of time available to 

transmit, which is computed in Line 7 as the difference between the time that window will be 

needed for display (preroll + video start) and the time that the window will start transmission. 

Then, using this transmission time and the window scaling schedule, lines 9-14 compute the 

duration in the video timeline. Lines 10-1 1 treat the case where the window falls within the 

window scaling expansion phase. Lines 12-13 treat the shrink phase. Line 14 treats the neutral 

phase. Line 15 ensures that the resulting duration falls within configuration parameters for the 

session. Line 17 initiates the iteration of the preparation stage for the newly created adaptation 

window, issuing the read range request to FileServ. 



6.3.4 StreamServ Phase 111: Window Transmission 

The third phase of StreamServ handles network transmission of the adaptation window. A WZN- 

DOWSTARTmessage is sent at the beginning of each window, followed by as many SDUs as the 

network will allow before the window's transmission expiry deadline. When the deadline passes, 

low priority SDUs are dropped, and transmission of the next adaptations window commences. 

ss-CHILD-SEND-WIN-START(~PS) 
1 win t Q U E U E ~ P E E K ~ H E A D ( ~ ~ ~ . X ~ ~ ~ ~ W ~ ~ ~ ~ W ~ )  

2 win-start-msg.vid-start t win.vid-start 

3 win-start-msg.vid_end + win.vid-end 

4 win-start-msg.xmitstart t win.xmit-start 

5 win-start-msg.xmit-end t win.xmit-end 

6 winstart-msg.numsdus t win.numsdus 

7 win-start-msg.numbasesd2ls t win.numbase-sdus 

8 ~S~S'E~~-~S~(pps.chiIdsession, win-start-message, SS-CHILD-SEND-SDU-HEAD) 

ss-childsend-winstart is the entry point for the transmission phase of StreamServ. It instan- 

tiates a WZNDOWSTARTmessage and sends the message downstream. 

The SDU data structure consists of a header and a payload. Recall that all ADUs with the same 

priority in a mapper window are grouped into one SDU (see Section 3.2). Thus, an SDU payload 

consists of the ADUs that have been grouped together. The header part of the SDU contains and 

array of ADU descriptors which specify offset and length of each ADU within the video bitstream. 

The descriptors are present in the SDU so that Streamplay can re-sort ADUs back from priority 

order back to bitstream order. The second part of an SDU contains actual video data from the 

bitstream file. 

Transmission of each SDU is divided across two functions in QStream. The extra function is 

required in order to take advantage of the sendfile primitive to forward raw video data directly from 

the filesystem to the downstream socket16. Using sendfile instead of read and write reduces CPU 

overhead. The reduction is due to fewer user-kernel context switches, fewer memory copies, and 

16sendjle() is available on Linux and BSD. Similar primitives are available in most other operating systems. 



offloading of memory copies from the CPU to the NIC. The code to transmit an SDU is divided 

into the following two functions, which send the header and payload parts respectively. 

ss-CHILD-SEND-SDU-HEAD(~~S) 
1 win t ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ( p p s . x m i t - w i n d o w s )  

2 msg t H E A P ~ E E K M I N ( W ~ ~ . S ~ U S )  

3 win.adu-count c 0 

4 ~ ~ ~ ~ ~ ~ ~ ~ M ~ ~ ( p p s . c h i ~ d - s e s s i o n ,  msg, SS-CHILD-SENDADU) 

ss-childsend-sdu-head transmits the header part of the SDU. Lines 1-2 select the SDU fi-om 

the head of queue for the current adaptation window of the transmission phase. Line 3 initializes 

the count of adus sent (for the current SDU) to zero. Line 4 sends the header part of the SDU 

message. 

SS-CHILD-SEND-ADU(~~S) 

1 win + Q U E U E ~ P E E K H E A D ( ~ ~ ~ . X ~ ~ ~ ~ W ~ ~ ~ ~ W ~ )  

2 if win.adu-count < sdu.numadus 
3 then msg t H E A P ~ P E E K _ M I N ( W ~ ~ . S ~ ~ S )  

4 sdu t msg.sdu 

5 off set t sdu.adus[win.adu~count].of f set 
6 count + sdu.adus[win.adu-count].count 
7 win.adu-count t win.adu-count + 1 
8 qs f -sendf ile-msg(pps.childsession, pps.video-f d, off set, count, 

9 SS-CHILD-SEND-ADU) 

10 else HEAP-DELETE_MIN(W~~.S~US) 

1 1  SS-SDU-NEXT(~~S, win) 

ss -chi ldsenddu transmits the video data parts of the current SDU to the downstream socket 

using sendfile(). The function iterates through the path from lines 3-9 for each ADU in the SDU, 

transmitting them one by one. When all ADUs have been transmitted, the current SDU is retired 

(line 10) and the helper function sssdunext is called to start transmission of the next SDU. 



SS-SDU-NEXT(~~S, win) 

1 if HEAP-1s-EMPTY (win.sdus) 

2 then SS-WIN-DONE(~~S, win) 
3 else sdu 4- H E A P - P E E K - M I N ( W ~ ~ . ~ ~ U ~ )  

4 if win.xmit-timeout = NIL and sdu.priority < M A X P R I O R I T Y  

5 then SS-WIN-DONE(~~S, win) 

6 else ss-CHILD-SEND-SDU-HEAD(P~S) 

When transmission of the current SDU is complete, sssdunext is called to start transmission 

of the next SDU. Line 1 checks if the current SDU was the last, if so, line 2 calls ss-windone 

(described below) to perform end of window processing. sssdunext will also call ss-windone 

(line 5) if it detects that the window expiry timeout has occurred, and also provided that at least 

the base layer SDUs are done (line 4). Otherwise, Line 6 initiates transmission of the next SDU 

in the window. 

SS-WIN-DONE(~~S, win) 

1 ~ u ~ u ~ ~ ~ ~ ~ o v ~ ( p p s . x m i t ~ w i n d o w s ,  win) 
2 if win.xmit-timeout # NIL 

3 then ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ( w i n . x m i t ~ t i m e o u t )  

4 win.xmit-timeout t NIL 

5 if not ~ ~ ~ ~ ~ - ~ ~ - E ~ ~ T ~ ( p p s . x r n i t - w i n d o w s )  

6 then SS-CHILD-SEND-WIN-START(~~S) 

7 else if win.end = pps.stream-header.duration 

8 then ~~~-sEN~-Ms~(pps.~hiId-session, eo f -msg) 

ss-windone treats end of window processing. Line 1 removes the current window from the 

transmission queue. If the current window has finished before its expiry timeout has occurred, 

then the current window's timeout is cancelled (lines 2 4 ) .  If the transmission queue contains 

another adaptation window, then transmission of that window commences immediately (lines 5- 

6). Otherwise, if the current window is the last in the stream, then an end of stream message is 

sent downstream (lines 7-8). 



This completes the description of the server side of PPS. The next section will describe the 

client side of PPS. 

6.4 StreamPlay Algorithm 

The client side of the PPS algorithm is implemented in Streamplay. Similar to the server case, 

there are three main phases in the client side of the PPS algorithm. 

The first phase is session startup. A connection to StreamServ is initiated. Once established, 

an OPENREQUEST message is sent upstream to StreamServ, to identify the video to stream. An 

OPENRESPONSE from StreamServ will provide information about the video. This information 

is used to initialize output devices. Once they are ready, a STARTREQUEST message will be 

send upstream. A subsequent STARTRESPONSE message will indicate the start of continuous 

streaming, and marks the point where the client-side clock for the session should start. 

The second phase in StreamPlay receives adaptation windows from StreamServ. Each win- 

dow consists of a WZNDOWSTART message and a sequence of SDUs. Since the contents of the 

window are re-ordered as they arrive, the reception of the entire window must complete before it 

can be displayed. To maintain continuous play-out, the window must be ready for display-at the 

latest-by the time all frames of the previous window have been displayed. Thus a timeout is set 

for each window to prevent gaps in the display timeline. If the start of the next window arrives 

before the timeout occurs, the timeout is cancelled. Otherwise, when the timeout fires, the ADUs 

already present are committed for display, and subsequent SDU arrivals are considered late. In the 

event of late SDUs, an adjustment is made to the phase offset to try and prevent late SDUs from 

also occurring in future windows. 

The final StreamPlay phase decodes and displays the contents of the adaptation windows. 

6.4.1 Data Structures 

Similar to StreamServ, Streamplay's main data structures are a per-session object called PlayPpsSes- 

sion and a per-adaptation window object called PlayPpsWindow, shown in Figures 6.9 and 6.10. 

A PlayPpsSession object is allocated for each active PPS session. Normally the player will 

have just one active session at a time, although multiple sessions are plausible, for example in 



PlayPpsSession { 
QsfSession parent-session; / /  handle for TCP connection upstream 
Stredeader stre-header; / /  contains video duration, fps, etc. 
Time session-origin; / /  base time of regulator clock 
Time slack; / /  how early did last SDU arrive? 
PlayPpsWindow xmit-window; / /  window in transmission 
Queue decode-windows; / /  adaptation windows in decode/display 

1 

Figure 6.9: StreamPlay Per-Session State 

surveillance applications. The parent-session field is a handle to the network socket to Strearn- 

Serv corresponding to the PPS session. The stream-header is also received during the startup 

phase, and is used to initialize decode and display components. The session-origin contains the 

start time of the transmission phase for this session, in absolute (wall-clock) time units, and is 

used as the basis for converting time of day values to the transmission and display timelines. For 

every SDU that arrives, the slack field is set to the amount of time remaining before the deadline 

for its adaptation window. A negative value means the last SDU received was late. The slack 

value is used to maintain the correct phase offset between the StreamServ and StreamPlay clocks. 

The xmit-window field is a PlayPps Window object (described below) corresponding to the current 

adaptation window of the transmission phase. The decode-windows field is a queue of PlayPp- 

sWindow objects for adaptation window(s) in the process of decoding. A queue is used to allow 

the transmission phase to work more than one window ahead of the decode and display phase, 

which can be necessary when PPS is configured to be work conserving. 

PlayPpsWindow { 
Time vid-start; 
Time vid-end; 
Time xmit-start; 
Time m i  t-end ; 

Boolean decode-started; 
Integer sdu-count; 
Integer num-base-sdus; 
Heap adus ; 

1 

start position in video timeline 
end position in video timeline 
when should xmit start 
when should xmit end 
handle for cancellation 
has decode already started? 
how many SDUs so far 
how many SDUs in base layer 
window contents (time order), 

Figure 6.10: StreamPlay Adaptation Window Object 



Figure 6.10 shows the PlayPpsWindow object, which is instantiated for each adaptation win- 

dow in the video timeline. The vid-start and vid-end fields delimit the position of the window in 

the video timeline. The xmit-end field contains the time at which the decodeldisplay phase for the 

window must start, which is also the time that any subsequent SDUs for this window must be con- 

sidered late. The xmit-timeout field is a handle to a scheduled timeout, which can be used to cancel 

the timeout in the event that processing of the window completes prior to the timeout deadline. 

The numsdus and numbasesdus are used to track the status of the current transmission phase 

window, in order to detect conditions such as when the base layer is complete and when the entire 

window is complete (reached full quality). The udus field is a handle to the heap data structure 

that is used to sort the contents of SDUs from priority order back to the original time order. 

This completes our description of client-side data structures. The following sections will pro- 

vide pseudo-code for the three phases of the client side of the PPS algorithm: startup, receive 

windows, and decode and display. 

6.4.2 Streamplay Phase I: Session Startup 

The first stage of the Streamplay PPS algorithm is where session startup is treated. The startup 

consists exchange of four messages with the server (as described in detail in Section 6.2.2) : 

OPEAJXEQUEST, OPENXESPONSE, STARTREQUEST, and STARTXESPONSE. 

SPSARENT-CONNECTED(PPS) 

1 ~ S ~ - ~ ~ ~ ~ ~ - ~ S ~ - ~ ~ ~ ~ S ( p p s . p a r e n t - s e s s i o n )  

2 QSF-SEND-~s~(pps.parent-session, open-f ile-msg) 

The ~~~aren t -connec ted( )  function is the entry point of the session startup phase, when the 

upstream connection has been established. Line 1 starts message dispatching for incoming mes- 

sages on the connection to the parent. Line 2 sends an OPENREQUEST request to StreamServ 

to identify which video to transmit. 



SP-PARENT-RECV-OPEN-FILE(~~S, open-f ileresponse) 

1 pps.stream-header t open- f zle~esponse.stream-header 

2 SP-DISPLAY-INIT(~~S) 

3 ~ s ~ - ~ ~ ~ ~ - ~ ~ ~ ( p p s . p a r e n t s e s s i o n ,  startrequest) 

sp-parent-recv-open-file is dispatched when the OPENXESPONSE message has arrived. The 

stream header field of the response includes basic parameters necessary to initialize play-out, such 

as duration of the stream, width and height of the video, and frame rate. Line 2 calls spdisplay-init 

to do whatever is necessary to initialize the video decoder and display window. After that, line 

3 sends the STARTXEQUEST message upstream to indicate the player is ready to commence 

streaming. An alternative option would be to wait until a separate start request is made by the 

user. This might be preferable in some circumstances, for example to give user a chance to select 

preferences, such as adjusting window size. 

SP-PARENT-RECV-STREAM-START(~~S, streamstart-msg) 

1 pps.session-origin + GET-CURRENT-TIME() 

The START-REQUEST message has arrived. The client side stream clock is initialized at this 

point. The first adaptation window of the stream should follow immediately, marking the start of 

the receive phase. 

6.4.3 StreamPlay Phase 11: Receive Windows 

The second phase of StreamPlay is where adaptation windows are received, each window consist- 

ing of a window start message and a sequence of SDUs in priority order. Based on information 

in the window start message, an expiry deadline is set for the adaptation window. Before the 

deadline, as SDUs arrive they are disassembled into their constituent ADUs, and the ADUs are 

sorted to their original bitstream (time) order. If the deadline passes before the next window starts, 

then the ADUs that have already arrived are committed to the decode and display phase, and any 

subsequent SDUs for the current window are considered late. 



SP~ARENT-RECV-WIN-START(~~S, win-start-msg) 

1 ifpps.xmit-window f NIL 

2 then S P - W I N - D O N E ( ~ ~ S )  

3 win t ~ ~ ~ ( P l a y P p s W i n d o w )  

4 win.num-sdus -+ win-start-msg.numsdus 

5 win.num-base-sdus t win-start-msg.numbasesdus 

6 win.xmit-deadline = pps.session-origin + win-start-msg.xmit-end 

7 win.xmit-timeout = G ~ A I O ~ S C H E D U L E ~ T I M E O U T ( ~ ~ ~ . X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  

8 SP-WIN-EXPIRE, win) 

9 pps.xmit-window t win 

ss-parent-recv-winstart is dispatched when a window start message arrives from StrearnServ. 

This is also the normal indication that the previous window is done, and that it should be com- 

mitted to the decode and display phase (lines 1-2). A new instance of PlayPpsWindow is created 

for the new window, and initialized according to the contents of the window start message (lines 

3-6). Lines 7-8 schedule a timeout to expire the window at its deadline to ensure that the display 

does not stall due to late arrival of the next transmission window. Finally, the new window object 

is set to be the current window for the transmit phase of the session (line 9). After the window 

start message, SDUs for this window will start to arrive. 

S P - P A R E N T - R E C V - ~ ~ ~ ( p p s ,  sdu-msg) 

1 win = pps.xmit-window 

2 win.sdu_count t win.sdu-count + 1 

3 win.slack e win.xmit-deadline - GET-CURRENT-TIME()  

4 if win.xmit-timeout # N I L  or sdu-msg.priority = M A X - P R I O R I T Y  

5 then for i t 0 to s d u . n u m ~ d u s  - 1 

6 do H E A P ~ I N S E R T ( W ~ ~ . ~ ~ U ~ ,  sdu.adus[i]) 

7 switch 

8 case win.sdu-cant = win.num-sdus : 

9 S P - W I N - D O N E ( ~ ~ S )  

10 casepps.xmit-timeout = N I L  and win.sdu-count = win.num-base-sdus : 

11 S P - W I N - E X P I R E ( ~ ~ S )  



sp-parent-recv-sdu is called upon the arrival of each SDU message. A counter in the adap- 

tation window object tracks how many SDUs have arrived so far for the window (line 2). The 

counter is used to check two special case conditions. The first is whether the base layer of the 

window is complete. The second is whether all of its SDUs have arrived. In addition to the SDU 

counter, a slack value for the window is updated upon the arrival of each SDU, where the slack is 

the difference between the expiry deadline for the window and the arrival time of the SDU (line 

3). The slack represents how early or late the SDU arrived. When the window experiences late 

SDUs, the slack value will be used to adjust the phase offset between server and player clocks. 

If the display phase hasn't begun for the current transmission window, then the ADUs con- 

tained within the SDU are entered into a heap, which has the effect of sorting all of the ADUs for 

the window back to their original time-order (lines 4-6). 

Lines 7-1 1 treat two cases where the window might be ready for the decode and display phase. 

The first case is that the SDU counter has reached the total number of SDUs for this window, so 

the window is committed immediately (lines 8-9). The second case is that the window's timeout 

previously expired, but the base layer is only now complete with the arrival of the current SDU 

(lines 10-11). 

SP-WINDONE(WS) 

1 if pps.xmit~window.xmitttimeout # NIL 

2 then ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ( p p s . x m i t ~ w i n d o w . x m i t - t i m e a t )  

3 SP-WIN-EXPIRE(~~S) 
4 if pps.xmit-window.slaclc < 0 

5 then phase-adus-msg.tardiness c (-pps.xmit-window.slack) 

6 ~ ~ ~ - ~ ~ ~ ~ - ~ ~ ~ ( p p s . p a r e n t - s e s s i o n ,  phaseadjust-msg) 

sp-windone is called by spqarent-recv-winstart or sp-parent-recv-sdu (for the last SDU in 

a window) to retire the current transmit-phase window. Lines 1-3 handle cancelling the window's 

expiry timeout, if it hasn't already fired. Lines 4-6 check whether there were late SDUs in this 

window. If so, a phase adjust message is sent to StreamServ, which tells StreamServ how much it 

should adjust its clock in order to avoid late SDUs in future windows17. 

"~lternativel~, we could adjust the display clock, as discussed in section 4.4. 



SP-WIN-EXPIRE~S)  

1 pps.xmit-window.xmit-timeout t NIL 

2 if pps.xmit~window.sdu-count 1 pps.xmit~window.num-basesdus 
3 then pps.xmit-window.display-started t TRUE 
4 ~ ~ ~ u ~ ~ ~ ( p p s . d e c o d e ~ w i n d o w s ,  pps.xmit-window) 

5 if ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ( p p s . d e c o d e - w i n d o w s )  = 1 

6 then SCHEDULE-IDLE(SP-DECODE, pps) 

sp-win-expire is either triggered by the adaptation window expiry timeout, or by the arrival of 

the last base layer SDU in the event of base layer backup (see Section 4.1.2). Line 1 clears the 

value of the xmit-timeout field in the adaptation window object. This way, xmitdimeout can be 

used elsewhere to detect whether the window expiry has occurred. If the base layer is complete 

(line 2), then the window enters decode phase immediately (line 4), restarting decode processing 

if necessary (lines 5-6). 

6.4.4 StreamPlay Phase 111: Decode and Display 

The third phase of client side PPS algorithm is where the video data are decoded and displayed. 

SP-DECODE(~~S) 
1 window + QUEUE_PEEK-~E~D(pps.decode-windows) 
2 while not H E A P - E M P T Y ( W ~ ~ ~ O W . ~ ~ U ~ )  and . . . 
3 do V I D E O ~ D E C O D E ( H E A P D E L E T E M I N ( W ~ ~ ~ ~ ~ . ~ ~ ~ ~ ) )  

4 if HEAP-EMPTY (window.adus) 
5 then ~ ~ ~ u ~ s ~ ~ ~ ~ ~ ~ ~ ( p p s . d e c o d e ~ w i n d o w s )  

6 if ~ ~ ~ ~ ~ - ~ ~ N ~ ~ ~ ( p p s . d e c o d e - w i n d o w s )  > 0 

7 then SCHEDULE-IDLE(SP-DECODE, pps) 

Since this chapter's main concern is the PPS details, the pseudo-code for spdecode is just a 

sketch of final StreamPlay phase, omitting video specific processing. The receive phase will com- 

mit adaptation windows to the decode queue. Lines 1-3 of spdecode do some decode processing 

for the the adaptation window at the head of the pps.decode-windows queue, consuming ADUs 

from the window's heap (line 3). The loop condition is partially unspecified (line 2), but the idea is 



that the worst case execution time of sp-decode should be limited to maintain the responsiveness 

of the StreamPlay algorithm. In QStream, the video decoding step (line 3) includes the conversion 

from SPEG back to MPEG, and MPEG decode. It also schedules a timeout for each decoded 

frame to display it at the appropriate time. 

When the adaptation window's heap becomes empty, the window is removed Erom the decode 

phase (lines 4-5). If there are more windows already in the queue, then spdecode immediately 

schedules itself for execution at the next idle time (lines 6-7). 

This concludes our description of the core PPS algorithm for unicast streaming. In the next 

section we describe the Priority-Progress multicast algorithms. 

6.5 Priority Progress Multicast 

Recall from Chapter 5 that PPM implements a multicast tree by treating each of the edges of the 

tree as a separate PPS session. The nodes of PPM trees fall into three distinct categories: the root, 

interior nodes, and leaves. In QStream, the root and leaves are and are implemented by StreamServ 

and StreamPlay. To support PPM, some extensions to StreamServ, relating to PPM flow control, 

are necessary. Otherwise, the PPS algorithm in StreamServ and StreamPlay is the same in unicast 

and multicast. For the interior nodes, we developed a separate program called MCastProxy. The 

basic role of MCastProxy is to forward PPS messages from the upstream edges to downstream 

edges in a best effort fashion. The arrival of a WINDOWSTART message from the upstream edge is 

used as the trigger that initiates dropping of unsent SDUs from the previous window. MCastProxy 

also implements the PPM flow control mechanism, which is intended to prevent waste of upstream 

bandwidth when downstream links are constrained. The remainder of this section will consist of 

two parts: first, we describe the core algorithms in the MCastProxy implementation, and second, 

we describe the extensions in StreamServ to support PPM flow control. 

6.5.1 MCastProxy 

MCastProxy implements the interior node part of the PPM algorithm. This part of the algorithm 

has two main phases: Stream Startup and Forward W o w s .  

The Stream Startup phase is where new children arrive. The first message received from a 



Figure 6.11: Sequence of Messages in a PPM session 

child will identify which video the child is requesting. If a session is already started for that video. 

the child is added into that session. Otherwise a new session will be started, forwarding the startup 

process up the tree to the parent. In the case that the child is joining an already active session, the 

logic of the startup phase will delay completion of the forwarding phase for the new child until the 

next adaptation window begins. 

The Forward Windows phase of the MCastProxy algorithm forwards adaptation windows to 

the children, dropping unsent SDUs from the current window when a new adaptation window 

starts. Since the messages arrive in priority order, the dropped SDUs are the lowest priority ones. 



6.5.1.1 PPM Messages 

The messages exchanged in PPM are a superset of those in PPS (see Section 6.2.2). Figure 6.1 1 

depicts an example of the messages exchanged during the steady state of PPM. PPM adds two 

new messages to PPS, PAUSE and RESUME, which are used to implement PPM flow control. 

When a child sends a PAUSE message to its parent, the parent will suspend transmission of 

SDU messages. The child will do this when it determines that the parent is getting too far ahead 

of all of the child's descendants. After a PAUSE, the child may later send RESUME message 

upstream, which happens if and when at least one of its children are sufficiently caught up. Al- 

ternatively, the WINDOWSTART message implies a resume, since the start of a new window in 

PPM is what triggers dropping of unsent SDUs, which in turn forces all of the children to become 

caught up18. Because the transmission of messages in opposite directions may overlap in time, 

the PAUSE and RESUME messages contain the window number for which they are issued. The 

parent uses the window number to detect if they have crossed paths with a WINDOWSTART, and 

if so, it ignores them. For example, in Figure 6.11 the second PAUSE message is ignored because 

it arrives after the parent has already started transmission of the next adaptation window. 

6.5.2 Data Structures 

The are two kinds of object in the MCastProxy algorithm. The first, called MCastPpsSession, is 

used to manage per session state. Each session consists of a set of two or more unicast Priority- 

Progress connections, one to the parent in the tree and the rest to the children. The second kind of 

object called MCastChild is allocated one per-child, it tracks the state for a child connection. 

Figure 6.12 shows the MCastPpsSession object. The parent-session field holds a Qsf han- 

dle for the connection to the parent in the tree. Four lists are used to keep track of children 

(MCastChild objects) in various states: startups, xmits, stalled, and paused. The startups list con- 

tains children that are waiting for a new adaptation window so they can join the session. Recall 

that PPM uses a simple policy where new children can not join a window after it has already 

started, because some of the SDUs for that window may have already been discarded. Due to 

the dependencies between SDUs, the remaining SDUs may be of no use to new children without 

 he exception to this rule is the base layer (maximum priority), which will not be dropped by PPM. 



MCastPpsSession { 
QsfSession parent-session; / /  handle for TCP connection to parent 

/ /  Children in various states 
List startups ; / /  waiting for first window start 
List xmits; : / /  streaming has started 
List stalled; / /  waiting for upstream 
List paused; / /  paused due to downstream request 

QsfMsg 
Mcas tMsg 
QsfMsg 
Mcas tMsg 
Queue 
Integer 
Boolean 
Boolean 
Integer 
Integer 

open-request; / /  cached for new arrivals 
open-response; / /  cached for new arrivals 
stream-start-request; / /  cached for new arrivals 
stream-start-response; / /  cached for new arrivals 
mcast-msgs; / /  messages to be forwarded 
max-ref-count; / /  used to initialize sdu.ref-count 
parent-started; 
parentqaused; / /  for limiting upstream bandwidth 
sdu-f ill ; / /  how many unsent SDUs are there? 
win-nun; / /  most recent window 

Figure 6.12: MCastProxy Per-Session State 

the missing SDUs. The list will be used to start such children when the next WINDOWSTART 

message arrives. The xmits list contains children to which transmission is active19. Once trans- 

mission to a child is active, it may be suspended for two reasons: lack of data to send, and a flow 

control request from the child. The stalled list contains children that have stopped transmission 

because they have completely caught up with the messages received so far. The stalled list is 

used to resume such children as soon as a new message arrives from the parent. The paused list 

contains children for which transmission has been suspended because they sent PAUSE messages. 

This list is used to resume them all immediately in the event that a WINDOWSTART message 

arrives from the parent. Note that a child can be both paused and stalled at the same time. The 

open-request, open-response, streamstart-request and stream-start-response are cached copies of 

messages from the startup phase of the session. They are used in adding new children that arrive 

after the session has already started. The mcastmsgs field is a queue that stores all other PPS mes- 

sages as they arrive from the parent in the tree. These messages will be forwarded to the children, 

each of which has a separate pointer into the mcastmsgs list to track what messages have been 

19~he  list is used mainly for cleanup purposes. 



sent so far. A reference count is used for each message to determine if it has been forwarded to 

all of the children. When the reference count reaches zero, the message will be removed from the 

queue. Otherwise, messages stay in the queue until the next window start message arrives. At that 

time, all non-base layer messages are dropped (recall that base layer SDUs are never dropped). 

The value max-ref-count stores the number of children that are eligible to forward each incom- 

ing message, this number is used to initialize the reference count for each message. When an 

message's reference count reaches zero, the message will be discarded. The parent-started field 

is used to record if a STARTXEQUEST has been sent to the parent. This is used to ensure that 

only one em STARTAEQUEST is forwarded upstream. Theparent-paused, sdu-fill and winnum 

fields are used to implement the flow control part of the PPM algorithm, which aims to keep up- 

stream bandwidth usage from exceeding the downstream bandwidth to the fastest of the children 

(see Section 5.1.2). 

MCastPauseStatus := 
UNPAUSED 

( PAUSE-PENDING 
I PAUSED 

MCastChild { 

QsfSession child-session; / /  handle for downstream connection to child 
MCastPpsSession pps; / /  backpointer to session wide state 
Mcas tMsg mcast-msg; / /  private pointer into pps.mcast-msgs 
Boolean start-reqd; / /  received stream start request 
Integer win-num ; / /  what window is child working on 
MCastPauseStatus pause-status; / /  downstream flow control state 

} 

Figure 6.13: MCastProxy Per-Session Child State 

The per-child state object is shown in figure 6.13. The childsession field stores the Qsf handle 

for the network connection to the child. The pps field is simply a back-pointer to the session wide 

state. The mcastmsg field is a pointer into the mcastmsgs list of the pps object, the pointer marks 

the boundary between those messages that have already been forwarded to this child and those that 

have not. If a child has sent all of the messages received so far-meaning it is completely caught up 

with the parent-then this pointer will have a NIL value, and this child will be in the list of stalled 

children. The start-reqd field is used during session startup to record whether the SESSIONSTART 



message has been received from the child. MCastProxy will only start forwarding adaptation 

windows after it arrives2'. The winnum and pause-status fields are used to implement PPM flow 

control (see Section 5.1.2). 

This completes the description of MCastProxy's data structures. The next two sections will 

describe the PPM algorithm which consists of two phases: startup and window forwarding. 

6.5.3 MCastProxy Phase I: Stream Startup 

In the first phase of the PPM algorithm, the startup of new sessions, and addition of new children 

to existing sessions are handled. 

M P - C H I L D - A C C E P T O R ( C ~ ~ E ~ - S ~ S ~ ~ O ~ )  
1 child t ~ ~ ~ ( M C a s t C h i l d )  

2 child.childsession t child-session 

3 child.win-num t -1 

4 child.pausestatus t U N P A U S E D  

5 Q S F - S T A R T - M ~ G - R E C V S ( C ~ ~ ~ ~ - S ~ ~ S ~ O ~ ,  dispatch_tabZe) 

MCastProxy's entry point is mp-child-acceptor, which is called when a new connection has 

arrived. Lines 1-4 instantiate a new MCastChild object. The protocol sequence will begin with 

the child sending an OPENJEQUEST message to identify which video to transmit. 

MP-CHILDAECV- child, msg)  

1 pps t H A S H - T A B L E - L O O K U P ( ~ C ~ ~ V ~ - ~ ~ S ~ ~ O ~ ~ ,  msg.  f iZename) 

2 ifpps = N I L  

3 then pps c ~ ~ ~ ( M C a s t P p s S e s s i o n )  

4 pps.parent t QSF-CONNECT(LOOKUP-PARENT(O~~~- f de-msg. f i lename), 

5 parent-methods, pps) 

6 pps.open-request t msg 

2 0 ~ n  the implementation, there can be delay because the child may not send the SESSIONSTART until it has fully 
established its connection to the Monitor. This is to ensure that the Monitor will record the complete history of a 
session. 



7 pps.children t ~ I S ~ - ~ ~ ~ ~ ~ ~ ~ ( p a r e n t . c h i E d r e n ,  child) 

8 H A S H - T A B L E - I N S E R T ( ~ C ~ ~ V ~ - S ~ S ~ ~ ~ ~ ~ S ,  msg. f ilename, pps)child.pps t pps 

9 pps.startups t ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ( c h i l d , p p s . s t a r t u p s )  

10 if pps.openresponse # NIL 
11 then ~ ~ ~ - ~ ~ N ~ A I ~ ~ ( c h i ~ d . c h i ~ d s e s s i o n ,  pps.openresponse) 

12 child.opensent + TRUE 

mp-child-open-jile is dispatched when the OPENREQUEST message arrives. A hash table is 

used to map video names to their corresponding session objects. The table contains entries for all 

active sessions. Lines 1-2 check whether there is an active session for the requested video. 

If the requested video does not have an active session, a new session is created (lines 3- 

8). Line 3 instantiates a new MCastPpsSession object. Lines 4-5 initiate a connection to the 

parent. The lookup-parent() function is called to provide the address of the parent in the multicast 

tree. lookup-parent() might be a hook into a multicast routing subsystem, such as End System 

Multicast [ll]. In the current QStream prototype, the multicast topology is completely static, so 

the lookup-parent() call is simply a placeholder, returning an address fixed as a startup parameter 

of MCastProxy. Line 6 stores the OPENREQUEST so that it can be forwarded upstream after the 

connection to the parent has been established. Line 7 attaches the child to the just created session 

object. Line 8 enters the new session into the hash table, so that subsequent requests for the same 

video will join the existing session. 

Line 9 enters the session into the startups list, which will be used later when the next WIN- 

DOWSTARTmessage anrives from the parent. If the child is joining an existing session for which 

the OPENRESPONSE has already arrived, then the OPENBESPONSE is forwarded to the child 

immediately, so that downstream players may initialize their displays as soon as possible (lines 

10-12). 

MP-CHILD-RECV-START(C~~~~, msg) 

1 pps t child.pps 

2 child.startreqd t TRUE 

3 if pps.parent-started = FALSE 
4 then pps.parent-started = TRUE 



5 Q S F - S E N D - M S G ( ~ ~ S . ~ ~ ~ ~ ~ ~ - S ~ S S ~ O T ~ ,  m s g )  

The mp-child-recv-start function is dispatched on the arrival of a STARTXEQUEST from 

downstream. Line 2 records the fact that it has arrived, which will allow this child to start 

streaming when the next WINDOWSTART message arrives from upstream. If this is the first 

STARTXEQUEST to arrive for the session, then the message is forwarded upstream (lines 3-5). 

mpqarent-connected is dispatched when the connection to the parent in the multicast tree is 

established. Line 1 enables message dispatching for incoming messages on the connection. Line 

2 starts the upstream protocol sequence, by forwarding the open file request up to the parent. 

MP-PARENT-RECV-OPEN(~~S, m s g )  

1 pps.open-reply t msg 

2 for child in pps.startups 

3 do if child.opensent = FALSE 
4 then child.opensent t TRUE 

5 ~ s ~ - s ~ ~ ~ - ~ s ~ ( c h i ~ d . c h i l d s e s s i o l 2 ,  pps.openresponse) 

mpparent-recvgpen-jle is dispatched when the OPENXESPONSE message has arrived from 

upstream. Line 1 caches the message in the session object, for use in the future when new chil- 

dren connect and request the same file. Lines 2-5 immediately forward the message to existing 

children. 

MP-PARENT-RECV-STREAM-START(~~S, msg)  

1 pps.streamstart-response c msg 



mpparent-recvstreamstart is dispatched when the START-RESPONSE message arrives from 

upstream. StreamServ sends the STARTXESPONSE when it begins the transmission of the first 

adaptation window. The message is stored, and will be forwarded when the first WINDOWSTART 

arrives. 

6.5.4 MCastProxy Phase 11: Forward Windows 

Once the session is established, the session enters the second phase of the PPM algorithm, which 

consists of forwarding adaptation windows to the children. A first-in first-out queue (mcastmsgs) 

is used to store messages as they arrive from upstream. Each child maintains a private pointer into 

the queue, where the pointer signifies the next message to transmit for that child. 

MPPARENT-RECV-WIN-START(~~S, msg) 

1 pps.win-num t msg.win-num 

2 pps.parent-paused = F A L S E  

3 pps.sdu-fill = O  
4 pps.maxre f -count = LISTLENGTH(pps.xmits) 

5 for child in pps.startups 

6 do if child.start-reqd = TRUE 
7 then pps.maxre f -count = pps .ma$-re f -count + 1 

8 msg.sent-f lag t F A L S E  

9 msg.re f -count t pps.maxre f -count 

10 E ~ ~ L J ~ ~ E ( p p s . m c a s t - m s g s ,  msg) 

11  for child in pps.startups 

12 do if child.startreqd = T R U E  

13 then pps.startups t ~ r s ~ ~ ~ ~ o v ~ ( p p s . s t a r t u p s ,  child) 

14 pps.xmits t L I S T ~ R E P E N D ( ~ ~ S . X ~ ~ ~ S ,  child) 

15 ~s~~s~~~~~s~(chi~d.childsession,pps.startresponse) 

16 M P - C H I L D - S E N D M S G ( C ~ ~ ~ ~ )  

17 M P - C H I L D R E N - W A K E U P ( ~ ~ S ,  msg) 

mpparent-recv-winstart is dispatched when a window start message anives from upstream, 

each adaptation window begins with such a message. Line 1 sets the window counter for the 

session. This will trigger the children to skip forward to the new window as soon as possible (see 

Section 6.5.4.6). Lines 2-3 reset the parent-paused and sdu-$11 values, since WINDOWSTART 



messages restart the flow control process. Line 4 sets the starting value for SDU reference counter 

to include children that have already started, while lines 5-7 add children that will be newly 

started due to the arrival of this message. Lines 8-10 initialize the reference count and send status 

for the WINDOWSTART message itself, and enter it into the transmission queue. Lines 11-16 

initiate the transmission phase for newly joined children. Finally, the call to mp-children-wakeup 

(described next) will restart the transmission logic for children that were previously paused due to 

flow control, or stalled due to a lack of messages to send. 

M P - C H I L D R E N - W A K E U P ( ~ ~ S ,  msg) 

1 for child in pps.paused 

2 do old-status t child.pausestatus 

3 child.pausestatus t UNPAUSED 

4 pps.paused = ~ ~ s ~ ~ ~ ~ o v ~ ( p p s . p a u s e d ,  child) 

5 if old-status = PAUSED and child.mcast-msg 

6 then M P - C H I L D - S E N D - M ~ G ( C ~ ~ ~ ~ )  

7 MP-CHILDREN-UN.STALL(~~S, msg) 

mp-children-wakeup is simple helper function for mpparent-recv-winstart that iterates through 

the list of previously paused children and restarts them. The check in line 5 prevents re-starting 

children that haven't actually paused yet (their pause-status is still PAUSEYENDING). The call to 

mp-children-unstall will resume those children that were stopped because they ran out of messages 

to send. 

MP-CHILDREN-UNSTALL(~~S, msg) 

1 for child in pps.stalled 

2 do pps.stal1ed t L I S T - R E M O V E ( ~ ~ S . S ~ ~ ~ ~ ~ ~ ,  child) 

3 child.mcast-msg t msg 

4 if child.pausestatus = UNPAUSED 

5 then M P - C H I L D - ~ E N D . . M S G ( C ~ ~ ~ ~ )  

The mp-children-unstall helper function is called when a WINDOWSTARTmessage or a SDU 

message arrives. It simply resumes transmission for all children that had previously caught up to 



the parent completely and had run out of messages to send. Note, the check in line 3 ensures that 

the child is not restarted if it is also paused due to PPM flow control. 

M P - P A R E N T - R E C V - ~ ~ ~ ( p p s ,  sdu-msg) 

1 if sdu-msg.priority < M A X - P R I O R I T Y  

2 then pps.sdu-fill t pps.sdu-fill + 1 

3 if pps.sdu-f ill > SDUS-HIGH-WATER and not pps.parent-paused 

4 then pps.parentqaused t TRUE 

5 pause-msg.win-num = pps.win-num 

6 ~s~-s~~~-~sG(pps.parent-session, pause-msg) 

7 sdu-msg.re f -count t pps.maxre f -count 

8 sdu-msg.sent-f lag t FALSE 

9 ~ ~ ~ ~ ~ - ~ ~ ~ H - ~ ~ l ~ ( p p s . r n c a s t - m s g s ,  S ~ U - m s g )  

10 MP-CHILDREN-UNSTALL(~~S, sdu-msg) 

mpparent-sdu is called upon each SDU message arrival. Lines 1-6 are part of PPM flow 

control. Lines 1-2 update the sdu-$21 value to count the number of non base layer messages that 

are as yet unsent by any child. When too many SDUs are backing up behind all the children (line 

3), the parent's status is changed and a pause message is sent upstream (lines 4-6). 

Lines 7-8 initialize the reference counter and flow control flag for the SDU and then enter it 

into the message transmission queue. The transmission logic for the children loops on the contents 

of the queue. Line 9 adds the message to the tail of the transmission queue. A child enters stalled 

status when it has transmitted all of the messages available. Lines 10 restarts any such children, 

since there is now a message available for them to send. 

M P - C H I L D - S E N D - ~ ~ ~ ( p p s ,  child) 

1 if child.mcast-msg.type = W I N D O W S T A R T  

2 then child.win-num t child.mcast-msg.win-num 

3 ~ S ~ - S ~ ~ ~ - ~ S ~ ( c h i ~ d . c h i E d s e s s i o n ,  child.msg, QSF-CHILD-SENT-MSG) 

mp-child-sendmsg starts transmission of the current message for a child. Lines 1-2 update 

the winnum field if the child is starting a new window (this field is used elsewhere to detect if 



the child should catch up to a new window position). Line 3 actually initiates transmission of the 

current message for this child. 

M P - C H I L D - S E N T - ~ ~ ~ ( p p s ,  child) 

1 M P - C H I L D - N E X T M S G ( ~ ~ S ,  child) 

2 if child.win-num < pps.win-num 

3 then while child.msg.priority < M A X - P R I O R I T Y  

4 do M P - C H I L D - N E X T - ~ ~ ~ ( p ' p s ,  child) 

5 if child.pausestatus = P A U S E - P E N D I N G  

6 then child.pausestatus t P A U S E D  

7 else i f  child.mcastmsg 

8 then M P - C H I L D - S E N D _ M S G ( ~ ~ S ,  child) 

mp-child-sentmsg is dispatched when the transmission of the current message to a particular 

child is complete. 

A helper function mp-child-nextmsg (described next) handles the details of advancing the 

child's private pointer to the next message in the transmission queue (line 1). If the child notices 

that it is working on an older window than the parent, then it will skip any non-base layer messages 

to try to catch up (lines 2-4). Line 5 checks whether a pause is pending for this child due to 

the previous arrival of a PAUSE message. If so, the status for the child is updated (line 6) and 

transmission stops. Otherwise, if there is a message to send, it begins sending right away (lines 

7-8). 

M P - C H I L D N E X T - ~ ~ ~ ( p p s ,  child) 

1 cur t child.mcast-msg 

2 next + child.mcast-msg.nezt 

3 if cursent- f lag = F A L S E  

4 then cur.sent-f lag t T R U E  

5 if child.win-nurn = pps.win-num and cur.priority # M A X P R I O R I T Y  

6 then pps.sdu-fill t pps.sdu-f ill - 1 

7 ifpps.sdu-fill 5 LOW-WATER-THRESH andpps.parent-paused 



then pps.parent-paused + FALSE 

resume-msg.win-num = pps.win-num 

~ ~ ~ - . S ~ ~ ~ - ~ ~ ~ ( p p s . p a r e n t - s e s s i o n ,  resume-msg) 

cur.re f erence-count t cur.re f erence-count - 1 

if cur.re f erence-count = 0 

then ~ u ~ u ~ - ~ ~ ~ o v ~ ( p p s . m c a s t - m s g s ,  CUT)  

child.mcast-msg = cur.next 

if child.mcast-msg = NIL 

then pps.stalled t L I S T S R E P E N D ( C ~ ~ E ~ ,  pps.stalled) 

mp-child_next_msg is responsible for advancing the child's private pointer into the transmis- 

sion queue (line 14). In doing so, it also performs the bulk of the work for PPM flow control and 

message cleanup. 

Lines 3-10 treat flow control duties. The sent-$ag is used to ensure that the sdu-Jill value is 

decremented once for every non-base layer SDU that has been transmitted to at least one child 

(lines 5-6). If the parent has been previously paused, then lines 7-10 take care of resuming the 

parent when the sdu-$11 value hits the LOW-WATER-THRESH value. Lines 11-13 maintain the 

reference count and free messages when the reference count hits zero. 

Lines 15-16 treat the case that there is no next message, so the child enters the stalled list. 

The child will resume when the next available message arrives from the parent. 

MP-CHILD-RECV-PAUSE(C~~~~, pause-msg) 

1 pps t child.pps 

2 if pausemsg.win-num = pps.win-num and child.pausestatus # PAUSED 

3 then if child.mcast-msg # N I L  

4 then child.pausestatus = P A U S E P E N D I N G  

5 else child.pausestatus = PAUSED 

mp-child-recv-pause is dispatched on the arrival of a PAUSE message from downstream. Line 

2 checks that the message matches the current adaptation window and that the child is not already 

paused. If not, the PAUSE message can be ignored. Line 3 checks whether this child is currently 

forwarding messages. If so, line 4 sets the child's pause-status to PAUSE-PENDING, which will 

signal transmission to stop after the current message is done (see Section 6.5.4.6). Otherwise, line 



5 marks the child as PAUSED immediately. Message forwarding to this child will be suspended 

until either a RESUME message arrives from downstream or a WZNDOWSTART message arrives 

from upstream. 

M P - C H I L D - R E S U M E ( C ~ ~ ~ ~ ,  resume-msg) 

1 pps c child.pps 

2 if resume-msg.win-num = pps.win-num 

3 then old-status = child.pausestatus 

4 child.pausestatus t UNPAUSED 

5 pps.paused t ~ ~ s ~ ~ ~ ~ o v ~ ( p p s . p a u s e d ,  child) 

6 if old-status = PAUSED and child.mcast-msg 

7 then M P - C H I L D - S E N D A ~ S G ( ~ ~ ~ ~ ~ )  

mp-child-resume is dispatched when a RESUME message arrives from downstream. The mes- 

sage will be ignored if it doesn't match the current adaptation window (line 2). Lines 3-7 handle 

updating the child's pause-status to UNPAUSED and if a message is ready, resume forwarding to 

the child immediately (lines 6-7). 

This concludes our description of the PPM algorithm parts of MCastProxy. The next section 

will describe the modifications to StreamServ necessary to support PPM flow control. 

6.5.5 StreamServ: Multicast Extensions 

A PPM tree consists of three node types: the server at the root of the tree, the interior nodes, and 

the video players at the leaves of the tree. The bulk of PPM algorithm is located in the interior 

nodes, as implemented in MCastProxy that was described in the previous section. The server and 

the players in PPM are essentially the same as for unicast PPS. The only significant component 

of the PPM algorithm outside of interior nodes is support for flow control required in the root 

of the tree, that is, in StreamServ. In this section, we describe the additions to StreamServ that 

implement the required support for PPM flow control. 



ServPauseStatus := 
UNPAUSED 

) PAUSE-PENDING 
1 PAUSED 

ServPauseStatus xmit-status; / /  for PPM flow control 
Integer xmit-window-n umbpr 

Figure 6.14: StreamServ PPS Session Object: extensions for multicast 

6.5.6 Data Structures 

Figure 6.14 shows the additional data structures required to add PPM flow control support into 

StreamServ (see Section 6.3.1 for the original data structures). The xmitstatus field tracks the 

flow control state of the child, like the pause-status value used in the MCastProxy algorithm. The 

xmit-windownumber is used to make sure that PAUSE and RESUME messages do not take effect 

in the case that they cross paths with a WZNDOWSTART message. 

ss-CHILD-SEND-SDU-HEAD(~~S) 
1 win + ~ u ~ u ~ - ~ ~ ~ ~ - ~ ~ ~ ~ ( p p s . x r n i t - w i n d ~ u ) s )  
2 msg t HEAPSEEK-~l~(win.sdus) 

3 win.adu-count t 0 

4 ifpps.xmit-status = P A U S E T E N D I N G  

5 then pps.xmit-status = PAUSED 
6 else ~ S ~ - S ~ ~ ~ - ~ S ~ ( p p s . c h i I d _ s e s s z o n ,  msg, SS-CHILD-SEND-ADU) 

The ss-childsend-sdu-head function is slightly extended for PPM. The original version was 

described in Section 6.3.4.2. The version here is the same in the first three lines. The added code 

is lines 4 and 5, which make the transmission of the SDU conditional on whether the a PAUSE 

message has arrived from downstream. 



~ ~ - W I N ~ ~ M I T - E X P I R E ( W ~ ~ )  

1 win.xmit_timeout t NIL 

2 s s - u ~ ~ ~ u s ~ ~ ~ ~ ~ ( w i n . p p s )  

The ss-winxmit-expire is also slightly modified for PPM (the original is in Section 6.3.3.7). 

Rather than waiting for the child to send a RESUME, the transmission of the new window is started 

immediately by the call to ss-unpause~mit (described next). 

S S - U N P A U S E X M I T ( W ~ ~ )  

1 old-status t pps.xmit-status 

2 pps.xmit-status t UNPAUSED 

3 if old-status = PAUSED 

4 then S S - S D U - N E X T ( ~ ~ S ,  Q U E U E S E E K _ H E A D ( ~ ~ S . X ~ ~ ~ - W ~ ~ ~ ) )  

ss-unpausexmit restarts transmission for the child if it was paused. This function is called 

either when a RESUME message arrives from downstream (described next) or when the timer 

event expires to start a new adaptation window (described above). 

SS-CHILD-RECV_PAU~E(~~S, pausemsg) 

1 if pause-message.window-number # pps.xmit~window~number 

2 then if not ~ u ~ u ~ - E ~ ~ ~ ~ ( p p s . x r n i t - w i n s )  

3 then win t Q U E U E _ P E E K - H E A D ( ~ ~ ~ . X ~ ~ ~ - W ~ ~ ~ )  

4 if pps-win.xmit-timeout 

5 then pps.xmit-status t PAUSE-PENDING 

ss-child-recv-pause is dispatched when a pause request is received from the multicast tree. The 

check in line 2 ensures the request matches the adaptation window currently in the transmission 

phase. If so, line 3 sets xmitstatus to reflect that pause has been requested. This will signal 

ss-child-sendsdu-head to pause transmission before starting the next SDU. 



ss-CHILD-RECV-RESUME~S, pause-msg) 

1 if pause-message.window-number = pps.xmit-window-number 

2 then SS-UNPAUSE-XMIT(~~) 

ss-child-recv-resume is dispatched when a resume request is received from the multicast tree. 

The check in line 2 ensures the request matches the adaptation window currently in the transmis- 

sion phase. Line 4 changes the transmission status to unpaused. Line 6 initiates transmission of 

the next SDU, but only if the transmission phase actually reached the paused state since the prior 

pause request (line 5). 

This completes our description of the PPS and PPM algorithms. The following section will 

briefly describe the support for remote monitoring of experiments in the QStream implementation. 

6.6 The QStream Monitor 

In this section, we give an overview of the QStream Monitor (hereafter referred to as the Monitor), 

which is a separate program in QStream that gathers data in real-time from the other QStream 

programs, and displays (or records) them as signals in a set of software oscilloscopes (or in graphs 

generated by gnuplot). At present, the Monitor contains more than a half dozen scopes, and close 

to a hundred different signals. The signals fall into several categories, such as information about 

SPEG, information about the PSS and PPM, and information about traffic generated by mxtraf. 

The Monitor facility has played an essential role in the development and performance evaluation 

tasks of this dissertation. The Monitor has also been a prominent feature when we show the 

QStream software in demonstrations and research talks. 

The Monitor is implemented as a network server. The other QStream programs establish a 

session with the Monitor when they start. As they perform their tasks (e.g. PPS), they send data 

samples to the Monitor, typically in the form of timestamped, attribute-value tuples. In addition 

to the server, the Monitor also provides a client-side library which provides a stub API for data 

collection. This API hides the work of network communication from the instrumented programs. 

Unlike PPS, the Monitor protocol is quite different in that it multiplexes sessions into a single 

connection. That is to say, each QStream program establishes at most one network connection 



to the Monitor, even when several logical sessions (PPS streams or mxtraf flow) are monitored. 

For example, if StreamServ accepts several PPS sessions at the same time, coming from different 

instances of StreamPlay, the monitoring data for all of the PPS sessions are sent by StreamServ 

over single connection to the Monitor. To sort out the data, every attribute-value tuple carries with 

it a unique session id. We use UUIDs for these IDS, which have the property that they can be 

generated without global communication, and without fear of collisions. This also allows data 

pertaining to the same session, but originating from different hosts to be combined in single view, 

for example to have signals for the same PPS session, but originating separately from StreamServ 

and StreamPlay, displayed in the same oscilloscope. Since the data originating from different 

programs may take different network paths, and hence different amounts of time to arrive, the 

Monitor uses a priority-queue (implemented via a heap) to buffer incoming samples, and sort 

them for display according to their timestamps. This allows certain signals to be displayed with 

perfect synchronization, even when their data samples originate from different hosts. The buffer 

is managed in the Monitor according to a late-offset parameter, which is used by the monitor to 

add a fixed delay between the timestamp values and when they are displayed. If the samples arrive 

at the monitor later than their timestamp adjusted by this offset, then they are considered late and 

dropped. In practise, we set the delay to a few seconds. This allows the TCP session to combine 

samples into full sized segments, which is good for keeping the TCP packet overheads minimized. 

In addition to the graphical oscilloscope, the Monitor can also store data to a database for 

offline processing. For example, we use this feature to generate plots with gnuplot. In this case, 

the timestamp is used as the sort key for the database. As samples arrive, they are inserted into 

the database (in this case, samples never need to be dropped). At the end of an experiment, the 

database will have all the samples available in timestamp sorted order, and an in-order traversal 

can be used extract the data for plotting. 



Chapter 7 

Streaming Evaluation 

In this chapter, we present an experimental evaluation of Priority-Progress Streaming (PPS) and 

Priority-Progress Multicast (PPM), based on a real implementation of them in our prototype 

streaming system, QStream (Quasar Streaming). As we described in Chapter 6, QStream includes 

significant internal instrumentation that generates data for various quantitative assessments. In our 

experiments, we use a combination of simulated, emulated and live networks, as appropriate to 

the questions we are trying to answer. In the next section, we expand upon the advantages and dis- 

advantages of each type of network. The remaining sections present three major groups of results. 

The first group addresses rate and quality metrics of SPEG video as they vary over the timeline 

of a video, expanding upon some of the basic results presented in Chapter 3. The second group 

of results addresses the performance of PPS in unicast streaming scenarios. The third group of 

results treats multicast streaming scenarios. 

7.1 Experimental Approach 

In distributed systems research, there are three general approaches to conducting experiments: 

simulation, emulation, and live experiments. Each approach remains popular because they each 

occupy different points in a space defined in terms of realism, control, and ease-of-use [89]. The 

results presented in this chapter are based on a mixture of simulation and emulation. For reasons 

that we describe below, our first preference is the emulation approach. To support experiments in 

an emulated network setting, we have invested a significant amount of effort in instrumenting the 

QStream code so as to produce a prolific set of measurements. 

Of the three experimental approaches, simulation is the most attractive approach in terms of 



control and ease-of-use. In simulation, all entities of an experiment, end-hosts, network nodes, 

and links, are modelled using discrete-event programming techniques. Simulation offers com- 

plete control, and thus repeatability, and is generally the easiest to use because experiments can 

be conducted entirely on a single machine. Simulation is also attractive because a small number 

of tools, especially ns and ns2 121,821, have achieved de-facto standard status in the networking 

community, which helps to make sharing of research results with the community more effective. 

Simulation's greatest weakness is realism. Although simulation tools go to great lengths to max- 

imize realism, they always abstract some details of real implementations. In the case of ns, the 

de-facto standard for network simulation, one such detail is the socket buffer used in real OS pro- 

tocol stacks. In a real in-kernel protocol stack, the socket buffer is used both for the purpose of 

supporting TCP retransmission, and for reducing CPU overhead due to user-system transitions. 

For the purposes of evaluating most networking topics such as routing protocols, congestion con- 

trol mechanisms, etc., the socket buffer does not have significant effects, so the simulation does not 

model the socket buffer at all. However, for streaming applications using a congestion controlled 

transport such as TCP, the socket buffer has the dominant impact on end to end latency [31]. To 

address this issue, we might have chosen to try and extend the simulators to encompass the miss- 

ing socket buffer dymamics, or to find other simulators that do model socket buffers. However, 

it seems clear that even with such extensions, it would be prudent to compare simulation results 

to some baseline based on measurements from a real implementation. So, we defer simulation 

of PPS to future work, and instead focus on the real system options, network emulation and live 

network experiments. 

Where simulation might be thought of as attempting to recreate the Internet in a single host, 

emulation can be thought of as extending the idea to recreate the Internet in a single laboratory 

testbed. The basic idea of emulation is to replace wide area network links with local ones, using 

routing software for each link to emulate the wide-area counterparts' behaviour in terms of delay, 

rate, and queuing characteristics. Additionally, traffic generation tools may be used to try and 

replicate the traffic conditions that occur on the real Internet. With the dramatic drops in hardware 

costs and the increased breadth of available open source software in recent years, it has become 

feasible for research institutions to construct testbeds capable of emulating a relatively large range 

of network scenarios. Potentially, emulation can be much more realistic than simulation, because 



a much larger fraction of software and hardware involved, relative to simulation, are the same 

as in the Internet. Experiment control and ease of use are more difficult since many of the im- 

portant control parameters must be separated across the many machines that makeup the testbed. 

Furthermore, since multiple systems are involved, a degree of non-determinism is introduced that 

makes exact repeatability impossible. However, with appropriate setup, experiments in an emula- 

tion testbed can be expected to yield acceptably consistent results under repetition. Scripting and 

other forms of automation can mitigate the ease-of-use issues. The balance between realism and 

control afford by emulation make it our main choice of experimental method. 

Live experiments, where experiments are conducted over the Internet, are at the other extreme 

from simulation in terms of control, ease-of use, and realism. Live experiments obviously hold the 

potential for the most realistic results. However, they are the most difficult from the perspective 

of control and ease of use. A live experiment cannot include control over traffic of other users, 

so the results from an experiment may be impossible to repeat. A live experiment is also the 

most difficult to co-ordinate because of issues of physical separation between components of the 

experiment. 

As mentioned above, we are very concerned with realism in our work, so we prefer to conduct 

our development and experiments under an emulation network, which gives a balance between re- 

alism and control. We did chose to use simulation to generate baseline performance measurements 

for a selection of other approaches previously described in the literature. Emulation is generally 

more realistic than simulation because it can reveal performance issues that might get missed in 

simulation. In the case of the baselines, we felt that simulation was acceptable, because by us- 

ing simulation we would at worst overstate the performance of the baselines and understate the 

advantages of our approach. 

In the next section, we describe the emulation testbed that we constructed for our experiments. 

The results of these experiments will be the main focus of our evaluation. However, we note that 

we have tested the QStream prototype regularly over live networks, including over cable-modem 

based broadband and 802.11 wireless links. Although we will not present any data here from 

live network tests, we can report that the behaviour of QStream in live network conditions has 

conformed to the results we will present from our emulation testbed experiments. Furthermore, 

all of the software components used in our experiments, including those we developed ourselves, 



are publicly ally available, so it should be feasible for other researchers to validate and extend 

upon our results. 

7.2 Network Emulation Testbed Setup 

7.2.1 Testbed Hardware 

The hardware of our experimental testbed consists of a rackmounted cluster of commodity hosts 

and a Gigabit network. The cluster contains 12 identical 1U sized hosts, which we use in the roles 

of end hosts and emulation routers in the testbed. The 1U hosts were manufactured by SuperMicro 

Inc., model name Superserver 6012P-6. Each host is a dual processor machine configured with 

1.8Ghz Pentium 4 Xeon processors, a pair of Gigabit NICs (Intel e1000), a single lOOMb M C  

(Intel e100), 1GB of RAM, and three 120GB disks (WD Caviar). At the time the cluster was con- 

structed (Summer 2002), commodity PC hardware was generally unable to reach the full potential 

of Gigabit links due to limitations of system memory and PC1 bus implementations. One of the 

reasons we chose the Superserver 6012P-6 models was because they were among the first to ship 

with the Intel E7500 server chipset, which has memory and I 0  bus capacities sufficient (3MBs 

each) to allow the Gigabit MCs to run at full speed. 

The cluster hosts are connected to each other via a CISCO Catalyst 4000 Gigabit switch. 

We use VLANs to partition the set of network links into separate virtual networks, whereby the 

switch enforces physical separation of traffic. We used the lOOMb links for cluster management, 

on a separate VLAN from the Gigabit links. The Gigabit links were also partitioned into two or 

more VLANs as required by the desired topology for each particular experiment. 

7.2.2 Testbed Software 

The operating system we use on the hosts is RedHat Linux version 8.0. The kernel version is 

RedHat 8.0's 2.4.18, with an small additional patch of our own for our TCP-MINBUF option to 

setsockopt ( ) , described in Section 4.4.3. The TCP-MINBUF option is only used in a subset 

of our experiments. RedHat kernels include a number of patches beyond the version maintained 

by Linus Torvalds. Notably, this RedHat kernel included a low-latency patch and a patch to allow 

finer granularity kernel clock (lms). 



To emulate wide area links, we use NISTnet [63]. NISTnet is a software package that enables 

a Linux router to mimic various characteristics of a wide area path, such as delay, drop probability, 

and bandwidth limitations through rate shaping or queue bounds. 

For many of our experiments, we use a traffic generator to mix competing traffic into the 

network path with PPS flows, to ensure that PPS is robust in the face of busy links. Creating traffic 

in a way that reflects what happens on the Internet is a non-trivial task. We examined several 

available traffic generation tools, but then decided to write our own, which is called mxtraf. The 

reason we resorted to writing mxtraf was that the existing tools were either too simplistic in 

the type of traffic they generated, or they were too slow to generate significant amounts of traffic. 

For example on the simple side, the ttcp package only generates a single flow at a time. In 

contrast, the SURGE traffic generator goes to great lengths to generate flows that accurately model 

the behaviour of individual web users, in terms of various statistical distributions such as file size, 

time between file accesses, etc. Unfortunately, when we tried SURGE we found that it required 

a considerable number of CPUs to generate just one or two megabits of traffic. In their study 

of aggregate traffic performance, Iannaconne et al. suggest that a mix of flows can reasonably 

approximate the dynamics of busy Internet routers [39]. In particular, they suggest that the traffic 

consists of three classes of flow: long-lived TCP flows, short-lived TCP flows which repeat, and a 

small amount of non-TCP traffic. However, their study used simulation. Our program, mxtraf, 

allows a similar mix of real flows to be injected into an emulation testbed. Although we sacrifice 

some of the accuracy of SURGE, mxtraf can scale the number of flows up so as to generate 

much more realistic amounts of traffic. Together, NISTnet and mxtraf are able to emulate a 

broad range of network scenarios. 

In the following sections we present measurements taken from QStream in our experimental 

testbed. 

7.3 Adaptive Video 

Recall, in Chapters 1 and 2, we gave our motivations for an adaptive approach. Recapping briefly, 

the two basic reasons we need to adapt are that video bitrates are variable over time, and that avail- 

able network bandwidth also varies. Video bitrates vary due to the use of compression. Although 



variable bitrates pose a challenge for streaming, the resource savings that result from compression 

are significant enough to justify its use. In this section, we will present some bitrate measurements 

to illustrate the volatilty of video bitrates from several perspectives. We will also re-affirm the first 

claim of our thesis statement: through informed dropping, it is possible to cover a very wide range 

of quality-rate combinations and with fine granularity. 

Minutes 

Figure 7.1: Maximum video rate for full 2 hour video 

We expect that the need for adaptation grows stronger for longer duration content. The simple 

intuition behind this expectation is that over a longer period there are more chances that mis- 

matches between video and network will occur. In Figure 7.1, we show the bitrate requirements 

(at maximum quality) for an SPEG encoding of a full length movie (approximately 2 hours). The 

movie in this case is "Crouching Tiger Hidden Dragon7'. The SPEG file was created in a two step 

process. First the DVD version of the movie was transcoded from the MPEG-2 on the DVD to 

MPEG-1. The MPEG-1 was transcoded to SPEG using Quasar software'. It should be noted that 

the data in Figure 7.1 is smoothed to 1 minute intervals in order to make it easier to read. Even 

with this level of smoothing the bitrate varies quite dramatically, spanning a wide range from about 

lMbps to close to 10Mbps. Although we do not present the data here, our own experience and 

other anectdotal evidence suggests that the bursty profile of this movie is reasonably representative 

of the level of burstiness in other movies (e.g., Feng et al. present a survey of data gathered from 

over 100 of the most popular DVDs which confirms this [23]). 

Another characteristic of major interest is the granularity of adaptation afforded by SPEG. 

'we used the transcoder from the Quasar pipeline, which is the predecessor to the QStream prototype. 



Section 3.3 summarized granularity issues of SPEG. Here, in Figures 7.2 and 7.3, we show the 

granularity over time. Each line in the figure represents the video bitrate at each of 16 priority 

thresholds, normalized to the maximum video bitrate. Each priority level represents a video qual- 

ity, with a corresponding frame rate and level of spatial detail (number of SPEG layers). In these 

figures, the bitrate is computed for each PPS mapper window. Recall that, in PPS, the timeline 

of the video is divided into mapper windows for the purpose of prioritization. A mapper window 

consists of one or more SPEG GoPs, and a PPS adaptation window consists of one or more mapper 

windows. In these figures, the mapper windows are 0.5 seconds each. Refer to Chapter 4 for more 

detailed descriptions of these subdivisions of the video timeline. Figure 7.2 shows the normalized 

bitrates by priority over the course of the entire video. 

Figure 7.2: Relative video rates by priority of full 2 hour video 

Figure 7.3 shows the same data as Figure 7.2 narrowed down to a selected 30 second interval. 

At this smaller timescale, it is possible to see the rates of individual mapper windows, noting that 

there are visible changes from one window to the next. 

These figures reinforce a couple of the basic messages from Chapter 3. SPEG covers a wide 

range of rates, and with fine granularity. However, there are some large gaps, due to the limited 

spatial scalability in SPEG (only 4 spatial levels). The relative distribution of bitrates by priority 

level is interesting too. If the bitrate variations were the same across priority levels, then the lines 

in these figures would have a constant spacing across the whole timeline. Figures 7.2 and 7.3 show 

that there are in fact some fairly substantial variations over time in the per-priority bitrates. This 

is of interest in relation to video smoothing techniques (we referred to this area of the literature in 



Figure 7.3: Relative video rates by priority of a selected 30 second interval 

Section 2.1.2). RecalI that those techniques use a priori knowledge of the video's bitrate profile 

to guide the buffering process during transmission, in such a way as to smooth the transmission 

rate requirements of the video stream. However, the smoothing algorithms in the literature were 

restricted to the assumption of a single target rate. In that case, the goal of smoothing was to 

aid in provisioning network resources. With adaptive streaming and scalable video, the goal of 

smoothing would be to improve the consistency of video quality. The most direct way to extend 

existing smoothing algorithms to scalable video (with multiple rates) is to calculate the smoothing 

plan based on the maximum rate. However, the variations in relative rates that we see above 

suggest a buffering plan that effectively smooths the video at the maximum quality level will not 

smooth the rate as well for lower quality levels. 

As we explained in Chapter 4, PPS uses adapation windows to match the video to the available 

network bandwidth. The window scaling feature of PPS, which expands the size of the windows 

over time, has a simultaneous smoothing effect in relation to the network bandwidth and the video 

bitrate. Unlike the smoothing techniques mentioned above, the window scaling mechanism does 

not use rate profiles in any way, because window scaling is intended to smooth the network rate 

and our assumption is that the network rate is effectively unpredictable. It might be viewed as a 

kind of side-effect that PPS window scaling also smoothes the video rate. We believe it would 

be relatively straightforward to extend window scaling to take advantage of a priori video rate 

knowlege, for example by making minor adjustments to the Critical Bandwidth Allocation (CBA) 

algorithm by Feng et al. [26]. However, as the results later in this chapter will show, the PPS 



window scaling already achieves a significant degree of smoothing. 

To summarize this section, our measurements verify that, through our approach to video, a 

wide range of adaptation is supported with fine granularity, which is the first of the claims in 

our thesis statement. The measurements also confirm the first component of our motivation for 

adaptive streaming, that is, that video requirements are very bursty. In the rest of this chapter, 

we show how PPS treats these bursty aspects of video bitrates with the goal of providing the best 

possible user experience. 



147

7.4 Unicast Streaming

25Mbps/50ms RTT

Sender Router Receiver

Monitor

Figure 7.4: Unicast Experiment Setup

In this section, we examine the performance of PPS in streaming the full-length movie de-

scribed above through a network saturated with competing traffic. The goals of the experiment are

to evaluate the robustness, utilization, and consistency of PPS, and to compare them with existing

streaming protocols. Figure 7.4 depicts the configuration of this experiment. This is a basic dumb-

ell setup where a router running NISTNET is used to impose a 25Mbs rate limitation and a 50ms

RTT delay between the sender and the receiver. The rate limitation in NISTNET is imposed by

two mechanisms. The maximum capacity of the forwarding queue is set according to maximum

number of packets in flight given the 50ms RTT and the 25Mbs rate target. Also, the maximum

speed of the router's incoming link is limited using a token bucket style shaper (which ensures that

burst rates do not exceed our modelled link capacity).

For the entire duration of the experiments, the network is saturated with competing traffic. We

use mxtraf (see Section 7.2.2) to generate the various mix of competing traffic, which is made

up of non-responsive UDP traffic (10%), short-lived (20Kb) TCP flows C60%), and long-lived

infinite-source TCP flows C30%), similar to measurements reported in [39]. The overall mxtraf

workload was balanced across a set of hosts, including the same hosts used for the PPS streams.

We use the QStream implemenation of PPS to stream a two hour video through this saturated

network path. We measure the performance of PPS in two cases, the first using a fixed adaptation

window, and the second with the PPS adaptation window scaling feature enabled.

To provide baseline performance references, we simulate two existing streaming algorithms



assuming they are given the same video and available bandwidth during our PPS experiments. The 

first algorithm is based on the Berkeley CMT [58], and the second on Feng's technique [24]. In 

the CMT algorithm, layered data is transmitted from low to high quality upto a fixed duration (2s) 

ahead of the current play point. The Feng priority-algorithm allows the workahead to grow to a 

much larger size (60s) in order to increase resiliency to short term rate fluctuations. 

Figure 7.5 shows the transmission rate over time of a TCP session used by PPS. The competing 

traffic generated by mxtraf ensures that the video stream never gets enough bandwidth to reach 

the maximum quality (refer to Figure 7.1). We were careful in QStream to ensure that PPS acts 

as a greedy source toward TCP, so that the transmission rate is exclusively determined by TCP's 

congestion control. This rate profile was used as an input to our simulations of the CMT and Feng 

algorithms. Our intent is to stress the adaptive capabilities of each of the streaming algorithms, 

and to compare them in terms of the resulting video quality. The high volatility of the session 

rate in Figure 7.5 demonstrates the second part of our overall motivation to investigate adaptive 

streaming. Even though we have a constant mix of background traffic, the session still experiences 

significant network rate variations. 

0 10 20 30 40 50 60 70 80 90 100 110 120 

Minutes 

Figure 7.5: Video stream TCP Transmission Rate (smoothed to 1s intervals) 

Figure 7.7 shows the performance of the streaming algorithms under these conditions. For 

each streaming algorithm we give one figure showing the frame-rate and another showing SNR 

level over the course of the whole stream2. Figures 7.7(a) and 7.7(b) show that the CMT algorithm 

has great difficulty with the conditions of our experiment. Video quality is extremely volatile, and 

2 ~ e c a l l  SPEG has four SNR levels. 



there are several instances where the algorithm is not able to deliver even the minimum quality. 

Figures 7.7(c) and 7.7(d) show that the sliding window algorithm fares much better, with fewer 

quality changes and no failures. The number of quality changes is still quite large though. Figures 

7.7(e) and 7.7(f) show that PPS with a fixed adaptation window behaves quite similarly to the 

sliding window approach. It would be possible to improve the consistency of PPS in the fixed 

window case by increasing the size of the window, but that would come at the direct expense of 

startup latency. The startup latency is perhaps why a sliding window approach might seem more 

intuitive at first. 

The major benefits of PPS arise when the adaptive window scaling is enabled, shown in Fig- 

ures 7.7(g) and 7.7(h), where quality gets more consistent over the course of the stream. For 

the majority of the movie timeline, quality changes are infrequent-several minutes apart, even 

though startup latency is in the range of 1 second. We notice that the quality is volatile at the start, 

in the first minute or so, and for several minutes at the end of the movie (approximately minutes 

110-120). 

Figure 7.6: Window size (growth rate=l . 1) 

Figure 7.6 shows the PPS adaptation window size for the window scaling version of the ex- 

periment. We see that the anomalies of Figures 7.7(g) and 7.7(h) correspond to the period at the 

end of the contraction phase in Figure 7.6, where window size is at the minimum. We deliberately 

chose to allow this to occur in this experiment because we wanted to see PPS behaviour in bound- 

ary conditions. In real use, we manage the contraction phase of the timeline more conservatively, 

only allowing the window size to reach the minimum at the last possible time. Moreover, it is not 

necessary to use the same minimum window size in the contraction phase as the expansion phase. 



Recall from Section 4.3, the purpose of the contraction phase is to ensure that PPS utilizes the 

network bandwidth over most of the streaming timeline. For a two-hour movie, we typically set 

the final window size in contraction phase to be on the order of 10s of seconds, which has only a 

slight impact on overall utilization, but avoids the drastic loss of consistency we observed in this 

experiment. 

One of the keys to PPS7s ability to control consistency is due to the sequential, non-overlapping 

treatment of windows, as was described in Section 4.2.2. Since existing algorithms use sliding 

windows, simply increasing their window sizes will not yield the same consistency benefit. 

To summarize the unicast portion of this chapter, our experiments have shown that, under 

saturated network conditions, PPS adapts effectively so that it is able to achieve full utilization, 

and is robust in that it avoids streaming failures. Furthermore, through window scaling, PPS is able 

to balance between low navigation latency and consistent video quality, which sets it apart from 

existing streaming algorithms. These experiments have confirmed two of the main claims of our 

thesis statement: c) this kind of video leads to an enhanced user experience when streaming takes 

place over typical Internet links; and d) the video can be streamed over networks in a TCP-friendly 

way, making it easier to deploy in the real world. 



0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120 

Minutes Minutes 

(a) CMT (2s buffer) (b) CMT (2s buffer) 

0 
0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100 110 120 

Minutes Minutes 

(c) Sliding Window Smoothing (60s window) (d) Sliding Window Smoothing (60s window) 

Minutes Minutes 

(e) PPS (10s window fixed) (0 PPS (10s window fixed) 

4 "-3 a :  
P 10 - 2 

5 
0 0 

0 10 X )  30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100110120 

Minutes Minutes 

(g) PPS with adaptive window scaling (10%) (h) PPS with adaptive window scaling (10%) 

Figure 7.7: Streaming results: Sub-figures (a)-(h) show the resulting video quality with each of 
four streaming algorithms. The left column shows temporal quality (frame rate). The right column 
shows spatial quality (number of SPEG levels). 



152

7.5 Multicast Streaming

In this section, we turn our attention to the performance of Priority-Progress Multicast (PPM)

in our QStream prototype. Here our concern is the ability of PPM to accomodate a diverse set

of receivers, and its ability to do so without wasting bandwidth high in the multicast tree. To

address the diversity, we aim to show that PPM correctly performs multi-rate adaptation. On the

efficiency side, our goal is to show that the multicast flow control in PPM correctly avoids sending

unnecessary data in higher parts of the multicast tree if none of the receivers below are able to use

it.

7.5.1 Multi-rate Adaptation

T
4Mbps/30ms RTT

1
T

1.5MbpS/2I RTI

T

O'75T/2oms RTI

IRecei ver (R 1) eceiver (R2)

tMonitor I

Figure 7.8: Testbed setup for basic multi-rate multicast experiment

This experiment is concerned with testing basic multi-rate adaptation, the first functional re-

quirement of PPM-that is to match the rate of the video to the available bandwith to each receiver.



153

We would like to see that PPM can match the video rate to the bandwidth available to each re-

ciever in the tree. Figure 7.8 depicts the topology we setup in our testbed to test the basic rate

matching functions of PPM. The topology is the minimal multicast tree, with a single sender, a

multicast node and two recievers. Between each pair of nodes, a router machine emulates wide

area link characteristics with NISTnet. On a separate network, each of the nodes particpating

in the tree sends measurements to the QStream monitor, which stores all of the data in a central

location for subsequent analysis. The links of this tree are set so that neither of the links between

the multicast node and the receivers have as much bandwidth as the upstream link between the

sender and the multicast node. Unlike the unicast experiments above, this configuration imposes a

static bandwidth limit on each link, which makes the following rate plot easier to understand than

it would be if we were to allow the link rates to vary in the presence of competing traffic.

Max
Mcast
Leaf a
Leaf b

20 40 60 80 100 120

Time (minutes)

Figure 7.9: Measured link rates in multi-rate multicast with PPM

Figure 7.9 shows the measured bitrates over the course of a complete broadcast of a two

hour movie. The PPS windows were fixed at a size of 10 seconds. In addition to the link rates,

we also show the maximum and minimum rate requirements of the movie, noting that in some

12

10

8
U)"
.w 6-r!

S1

4

2

0
0



periods, the maximum rate of the movie drops below the link capacity. The figure shows two 

basic results. First, PPM properly matches the rate of the video to the link capacity of each of the 

receivers. Second, the PPM flow control mechanism is properly conserving upstream bandwidth 

conservation, in that the upstream link between the sender and the mulicast node tracks the greater 

of its downstream links, as opposed to the maximum rate of the video. 

7.5.2 Upstream Bandwidth Conservation 

In this experiment, we expand the multicast topology to stress the PPM flow control mechanism. 

Recall from Section 5.1.2 that the PPM design includes flow control at the application protocol 

level, as opposed to just using the flow control functionality already provided by TCP. The pur- 

pose of this design decision is to conserve upstream bandwidth by reducing the number of places 

in the multicast tree where data will accumulate in buffers. If PPM just used TCP flow control, 

the receive buffer upstream of each stepdown point (a multicast forwarder that has more upstream 

bandwidth available than all of its children) would fill completely before the TCP flow control 

mechanism would cause the corresponding upstream node to stop sending. As a result, a complete 

path through the tree from the source to a reciever may include several reciever buffers worth of 

accumulated data. This would have a negative impact on the total source to receiver transmission 

latency and on the responsiveness of the flow control. PPM's flow control sends an explicit ap- 

plication level message upstream to stop sending, so that the multicast node can keep the receive 

buffer for its upstream TCP session drained. Figure 7.10 shows the topology we used to stress the 

PPM flow control mechansim. Here we use a deeper tree, where each level of the tree on the path 

from the sender to the receiver is progressively more bandwidth limited. 



~onitor I

155

Figure 7.10: Stressing flow control with a deep multicast tree



156

M

l

ast
Mast
M st

~ fst.1 I,'

Max
(level 1)
(level 2)
(level 3)
(level 11.)

20 40 60 80 100 120

Time (minutes)

Figure 7.11: Measured link rates in a deep PPM tree

In Figure 7.11, we show the rates for each link of the deep tree of Figure 7.10, again using a

two hour movie. Here we see that PPM flow control functions as we'd hope, in that the rates of all

of the links are properly limited to match the most constrained link at the bottom of the tree.

7.5.3 Bandwidth Conservation with Progressive Bottlnecks

While the previous experiment showed that PPM properly constrained link usage in a deep tree,

we now add additional receivers to the tree to ensure that PPM doesn't allow downstream limits

to overconstrain upstream links. In Figure 7.12, we show the modified topology which adds a

receiver at each level of the tree. The idea of this topology is that the receiver at each level should

cause the multicast node to fully utilize its upstream link.

12

10

8
UJ
'-.
.w 6-n
,.q

4

2

0
0



eceiver (Rl)1

eceiver (R2)1

eceiver (R3

!Receiver (R4)[

}MbP~Om' R'I1'

tMbJ"!20ffi. RTt

ILSMbP.nOm,Rh

IMbP~ R~

Figure 7.12: Stressing flow control with a deep and wide multicast tree

157



158

IC1

l

ent

I

c1 ent
Cl j=nt
Cl bnt

Max
(level 1)

(level 2)

(level 3)

(level 14.)
I. 11[:

20 40 60 80 100 120

Time (minutes)

Figure 7.13: Measured link rates in a deep and wide PPM tree

The resulting data rates are shown in Figure 7.13, which confirm that PPM is able to tightly

match the rate to each receiver closely to the available capacity between itself and the root of the

tree.

To summarize, we have shown that PPM performs multi-rate multicast using an overlay tree

where the individual links are PPS multicast sessions. By virtue of the fact that each link is

a separate TCP friendly session, PPM is TCP friendly by definition. Our experiments showed

that PPM successfully preserves the basic strengths of PPS in the multicast setting meaning that,

through adapatation, each reciever is able to utilize the full bandwidth between it an the root

of the tree. Furthermore, the flow control mechanism in PPM ensures that upstream bandwidth

utilization is limited only to what is required below. These results confirm the final claim of our

thesis statement: e) TCP-video streaming can be applied efficiently to multicast delivery, enabling

large scale video broadcast distribution.

12

10

8
UJ
"-.

.w 6-rl

4

2

0
0



Chapter 8 

Conclusions and Future Work 

In the first section of this chapter, we summarize the contributions of this dissertation, recapping 

our motivating arguments, the conceptual contributions we made, the system components we im- 

plemented, and our evaluation methodology and the results we obtained. After that, the second 

section describes some of the open problems that we leave for future work. 

8.1 Conclusions 

This dissertation has presented a framework for adaptive media streaming toward an overall goal 

of an encode-once, stream anywhere level of flexibility and simplicity. 

8.1.1 Motivating arguments 

In this dissertation, we argued that an adaptive approach to streaming is necessary due to bitrate 

variations with compressed video and to the volatile dynamics of best-effort networks. We de- 

fined the goals of adaptive streaming as effectiveness, efficiency, and scalability. Our notion of 

effectiveness consisted of a number of sub-goals: robustness, utilization, latency and consistency. 

To achieve the basic goals of robustness and utilization, we argued for the necessity of a 

scalable video representation, which should have the goals of supporting a wide range of quality 

levels and bitrates, with fine granularity. We recognized that in light of the multi-dimensional 

nature of video quality, adaptive video streaming should allow control over the mix of video 

adaptations. These factors, and additional concerns for scalability, lead us to select the priority- 

drop approach for our investigation. To stream such video over the network, we made the case 

that an adaptive protocol is needed to match the rate of the video to available bandwidth (so that 



robustness and utilization can be maximized), and that the protocol should also balance the goals 

of latency and consistency. Finally, to support continued scalability of the Internet, we argued that 

adaptive video streaming needs to be TCP friendly, and should support multicast distribution. 

8.1.2 Conceptual contributions 

Our conceptual contributions began with our treatment of video in Chapter 3. To serve as a demon- 

stration of scalable video, we described SPEG, which is a simple extension to MPEG that adds 

spatial scalability. We used SPEG as a basis to exercise the priority-drop approach throughout the 

rest of our framework. To show how we could offer control over the mix of adaptations, we de- 

scribed our approach to quality specification based on utility finctions. We used utility functions 

to capture preferences that dictate the best mix of quality adaptations across the range of accept- 

able quality-resource tradeoffs. We showed how a Mapper could be used to effectively translate 

these preferences into priority assignments on the basic application data units (ADUs) of video 

data, the result being a set of timestamped and prioritized streaming data units (SDUs). 

For network transport, we described the Priority-Progress Streaming (PPS) algorithm (in 

Chapter 4), which adaptively matches the bitrate of a stream of SDUs to the network rate, as 

detected by a TCP-friendly congestion-control mechanism. We described how our PPS approach 

balances the simultaneous requirements of maintaining the real-time progress of the stream while 

adapting to the best-effort service of the network, thereby addressing the goals of robustness and 

utilization. We showed how PPS can do this by subdividing the timeline of the video into intervals 

called adaptation windows, and then re-ordering the data (SDUs) within those intervals so that 

transmission proceeds from high to low priority. When moving from one adaptation window to 

the next, PPS drops unsent (low-priority) data at the server without transmitting it to the network. 

In this way the rate of the PPS stream naturally matches the available bandwidth. We described the 

role of adaptation window size in determining the latency and consistency performance of PPS. 

Noting the conflict between these two objectives, we introduced a window scaling mechanism 

that allowed the size of the adaptation windows to change as streaming proceeds. We showed how 

this mechanism adjusts the compromise between latency and consistency over the course of a long 

stream, thereby allowing PPS to provide low navigation latency, and to deliver progressively better 



consistency (and robustness) as streaming proceeds uninterrupted (by navigation actions). To ad- 

dress network delay, we showed how to manage a phase offset between the server and receiver-side 

streaming clocks. The overall contribution of PPS is to show how to achieve effective streaming 

at the micro-level (single user). 

To address scalable distribution, we described how to extend PPS to a multicast overlay, called 

Priority-Progress Multicast (PPM) in Chapter 5 .  PPM defines an adaptive data forwarding disci- 

pline for multicast by composing a multicast tree as an overlay of unicast PPS sessions. Each edge 

of a PPM multicast tree is a self-contained PPS unicast session. We described how PPM enables 

priority data drop at each interior node of the multicast tree, so that the whole tree performs multi- 

rate adaptation, meaning that the video rate to each receiver is matched to the available bandwidth 

on the path between the receiver and the root of the tree. We showed that the presence of slower 

receivers in the tree does not penalize faster receivers. We also described the multicast flow control 

mechanism in PPM, which ensures that upstream bandwidth is conserved if none of the receivers 

below in the tree are able to utilize it. With PPM, we showed how the Priority-Progress approach 

can address macro-level (network wide) concerns of scalability. 

8.1.3 Implementation 

We have built a complete software system for video streaming based on the framework presented 

in this dissertation. Our streaming system is called QStream (Quasar Streaming). The QStream 

prototype is a fully operational end-to-end video streaming system. QStream includes a server 

(StreamServ), a player (Streamplay), a multicast proxy (MCastProxy), and a number of support 

programs and libraries. All of the major components described in this dissertation are fully im- 

plemented in QStream: the SPEG video format, the Mapper algorithm, the PPS protocol, and the 

PPM protocol. The SPEG format and Mapper algorithm were described in Chapter 3. Chapters 

4 and 5 gave the conceptual descriptions of the PPS and PPM protocols. More details of their 

algorithms were covered in Chapter 6. QStream also includes a number of significant features 

that were not described in this dissertation, such as audio support (multiplexed transport and syn- 

chronized playback), and live streaming from a webcam source. QStream was used extensively in 

the evaluation part of this dissertation. We have used it to generate data for simulations, we have 

used it for controlled tests in our lab testbed, and we have used it in live tests and demonstrations 



over the real Internet to home broadband (e.g., cable modems) and over 802.1 1b networks. In 

general, the system is stable enough and free of serious bugs, so that we use it frequently in live 

demonstrations and research talks to show the Priority Progress approach in action. 

In addition to the core streaming software, we developed a substantial amount of support soft- 

ware in QStream, including the the mxtraf traffic generator, the QStream remote network mon- 

itor (Monitor), and a pair of libraries called G A I O  (Asynchronous I 0  library) and qsf (Quasar 

Streaming Framework library). The mxtraf program is a scalable and efficient network traffic 

generator, used to inject realistic mixes of competing traffic into a network testbed. The QStream 

Monitor program collects a wealth of diagnostic data from the other QStream programs, and 

presents them for real-time visualization through a set of graphical views with a software os- 

cilloscope, gscope. We also used the Monitor to store the data to a database for offline analysis 

and subsequent visualization through programs such as gnuplot'. 

We described the G A I O  and qsf libraries in Chapter 6. They provide the infrastructure for 

the reactive programming model we adopted, and provide support for the network protocols in 

the QStream programs (PPS, PPM, mxtraf client-server protocol, and Monitor data collection 

protocol). We have publicly released all of the QStream software under open source terms (with 

a GPL license) to promote re-use of our framework by other researchers. The QStream software 

was used extensively in our evaluation of Priority Progress, which we summarize next. 

8.1.4 Evaluation 

The Priority-Progress framework was evaluated experimentally through measurements of QStream 

performance, including live and emulated network settings. We also used measurements from 

QStream to drive simulations that compared the performance of PPS to previous streaming algo- 

rithms. By using an emulated network in our lab testbed, we were able to verify the performance 

of PPS in demanding conditions where the network was saturated with competing traffic. Also, 

through carefully constructed multicast trees, we were able to use our testbed to verify PPM's abil- 

ity to perform effective and efficient multi-rate multicast. The rest of this section will summarize 

our major results. 

  his is how we generated most of the plots in this thesis 



In Chapter 3, using SPEG to encode a sequence of real movies, we showed how SPEG's 

scalability can span a wide range of bitrates, as much as two orders of magnitude between the 

minimum and maximum, and the supported rates were spread well within this range. This first set 

of results demonstrated the first claim of our thesis statement: a) through informed dropping, it is 

possible to cover a very wide range of quality-rate combinations and with fine granularity. We also 

showed, using our implementation of the Mapper, that the translations from policy specifications to 

priority assignments are correct, i.e. the priorities assigned by the Mapper cause priority dropping 

to produce a mix of adaptations that accurately match the target policy. Hence we have verified 

the second claim of our thesis statement: b) tailorable adaptation policies can be used to control 

the mixture of adaptations to best meet content, task, and user specific requirements. 

We presented the measured performance of the PPS protocol in Chapter 7. We tested PPS 

performance along a network path that emulated wide-area conditions (delay, bandwidth, etc.) 

and was saturated with competing traffic that we generated with mxtraf. In these conditions, we 

compared the performance of PPS over the course of a full length (two hour) movie to existing 

streaming algorithms, and showed that it was more effective and robust. In particular, we showed 

that, with the window scaling feature of PPS enabled, PPS delivered significantly better consis- 

tency than previous approaches. Hence we verified the next two claims of the thesis statement: c) 

this kind of video leads to an enhanced user experience when streaming over typical network lines, 

and d) video can be streamed over networks in a TCP-friendly way making it easier to deploy in 

the real world. 

Our next set of experiments, in Chapter 7, measured the performance of multicast PPM in our 

testbed, using a sequence of carefully selected multicast topologies. First, using a simple tree, we 

showed that PPM correctly matches the rates of individual receivers to the available bandwidth. 

Then, using a larger tree, we showed how PPM was able to use only the bandwidth necessary 

to service a given set of receivers. In particular, we verified that the flow control mechanism 

in PPM avoids the waste of upstream bandwidth. Our final PPM experiment used a tree that 

tested both aspects together, showing that rate matching and bandwidth conservation functions 

did not interfere with each other. The overall performance of PPM verified the final claim of our 

thesis statement: e) TCP-friendly video streaming can be applied efficiently to multicast delivery, 

enabling large scale video broadcast distribution. 



8.1.5 Summary of Conclusions 

Our framework is broad in its scope in that it treats areas of video representation, quality of service 

specification, network protocols, and even the real-time programming model. However, we had a 

common theme joining these areas, that is, adaption through priority data dropping. Priority-data 

drop is the foundation of our vision of an encode once, stream-anywhere framework. 

To summarize, the main contributions of this dissertation were the following: 

SPEG and the Priority Mapper: We showed how through proper framing and prioritization, 

a single video encoding can support a wide range of bitrates with fine granularity. Moreover, 

the mix of adaptations within the range is explicitly controllable so that user, content, task 

and device specific requirements can be optimally addressed. 

Priority-Progress Streaming (PPS): our adaptive streaming protocol achieves several im- 

portant objectives, namely robustness, high utilization. Furthermore, the window-scaling 

feature of PPS provides a powerful mechanism to mitigate the conflict between consistent 

quality over time (characteristic of downloads) and low navigation latency (characteristic of 

streaming). 

Priority-Progress Multicast (PPM): We extended PPS to multicast distribution through an 

overlay approach. PPM supports multi-rate, quality-adaptive, multicast distribution, in a 

completely TCP friendly manner. To our knowledge, prior approaches have only been able 

to a subset of these characteristics simultaneously. 

QStream prototype: We have implemented a complete implementation of our system that 

was used extensively for our experimental evaluation. The prototype itself also constitutes 

interesting contributions toward programming for time-sensitive network applications, such 

as the use of reactive programming, support for scalable generation of competing traffic, and 

the use of remote, real-time, visualization techniques. We have made the whole framework 

publicly available. 

Although we made contributions across the various sub-areas, the overall combination of the 

components into the framework, including their full implementation, is perhaps the major contri- 

bution. More than any of the parts, we believe it is the whole system that best demonstrates the 



elegance of priority data drop as an adaptation strategy. 

8.2 Future Work 

In this section, we describe some of the future research problems that have emerged from the work 

in this dissertation. Where appropriate, we sketch out the potential solutions we have devised. 

8.2.1 Better quality-calibration in scalable compression 

The emergence of scalable compression was one of the main factors that inspired our investiga- 

tion into priority-drop based adaptation. The SPEG format provides a sufficient demonstration of 

the essential advantages of a scalable approach: the ability to adapt quality with fine granularity 

over a wide range. The combination of scalable compression with priority-drop was quite potent, 

particularly in our framework where it retains the ability to control the mix of adaptations. We 

developed the SPEG part of this work mainly out of necessity, since we could not find publicly 

available scalable codecs. Our main research objectives were on the delivery side of streaming, 

with QoS specification and adaptive streaming. We were specifically not concerned with improv- 

ing the compression efficiency of scalable coding, which is a research area in which others are 

making steady progress. However, our experience with QStream shows that SPEG, and scalable 

compression in general, needs more radical restructuring to better support our overall goal of "en- 

code once, stream anywhere". For instance, scalable video compression should be more explicitly 

integrated with work from the emerging field of video quality metrics [70]. This area can be 

partitioned into two significant sub-areas: objective and subjective quality measurement. 

Objective quality measures are those that can be automated (i.e., given some video data possi- 

bly with a reference video, the metric can calculate a measure of the video quality). In QStream, 

we simply use the number of SPEG layers as our measure of spatial quality, although this value 

is only indirectly related to the actual spatial quality. The most ubiquitous quality measure in the 

field of video compression is the pseudo signal-to-noise ratio (PSNR), which is based on the mean 

square error between each reconstructed image and the original. Within the video community, it is 

widely acknowledged that PSNR is a rather crude quality measure. At least conceptually, it would 

be preferable to have a measure based on a model of the human visual system (HVS). On the 



other hand, PSNR is well understood and easy to implement, while the HVS based metrics remain 

an open research area. We think that our framework makes it obvious that scalable compression 

ought to calibrate various quality layers against one of these objective quality measures (perhaps 

PSNR initially, and an HVS measure when they become more practical), and that the quality val- 

ues should be exposed as part of the compressed representation. We think the construction of a 

new scalable video encoder in this way would have the dual advantage of better compression ef- 

ficiency, and in our framework it would have the advantage that it would facilitate more accurate 

priority assignments by our mapper. 

Subjective quality measurements use human subject studies to better understand the psychol- 

ogy of human visual perception, which can help provide insight into the biological side of visual 

perception, as well as provide a means to verify the effectiveness of objective quality measures. In 

terms of our approach, there are important questions about the utility of different aspects of video 

quality, as well as the impact of changes in quality to users. Zink et al. have built a subjective 

quality evaluation system, which uses our SPEG implementation, and they have conducted a study 

to measure human assessments of various patterns of changing quality [97]. This type of study is 

important in relation to this dissertation, as the information revealed relates directly to a question 

we have left unanswered: "On what basis should utility functions be set?' 

8.2.2 Quality adaptation for other resource types 

Our investigation of the priority-drop approach in this dissertation was limited to the context of 

adapting to a single resource type, wherein our goals concerned how to match video bitrate with 

the available bandwidth in the network. As it does for the network, the commodity infrastructure 

typically provides a best effort service model for the other basic resources, such as CPU time and 

storage (disk) bandwidth. The PPS approach can be extended to these resources also. The basic 

approach of PPS, which subdivides the processing timeline into adaptation windows, and then 

processes the contents of the windows in priority order, forms a design pattern that is applicable 

to the other resources. For instance, video decoding could work in this fashion so that it adapts 

to available CPU, although it would require minor modifications to legacy software, such as the 

f f mpeg codec [3] from which we derived the SPEG codec in QStream. The f f mpeg API is 

typical of software based video decoders, in that it assumes that frames are decoded in MPEG's 



natural order. To apply the PPS pattern, we would decode video in priority order. The context 

(state) management in the codec would need modifications to accommodate priority order decod- 

ing. We expect with these minor modifications, we could extend our player Streamplay to perform 

Priority-Progress based CPU adaptation. 

8.2.3 Quality adaptation for other application domains 

In this dissertation, we have focused on video streaming applications, as they embody many of 

the critical challenges relating to supporting time-sensitive applications in the Internet. How- 

ever, the general approach and parts of our existing framework are directly applicable to other 

data types and applications. For example, the Priority-Progress model should make sense for dis- 

tributed graphics applications such as networked games and scientific visualizations, especially as 

the size of the full graphical environments become large and detailed enough to overwhelm the 

available bandwidth of some receivers. The transport of sensor data in sensor networks is another 

good match with our approach, as consumers of sensor data generally desire fresh data with as 

much fidelity as possible. Sensor networks usually depend heavily or entirely upon wireless links, 

so bandwidth variabilites are extreme. Also, control over bandwidth usage is critical for power 

management in these types of networks, as power availability is yet another source of resource 

variation (beyond available network bandwidth and video bitrate requirements). Variable power 

availability will be especially significant for networks that derive some or all of their power from 

unpredictable sources such as wind and solar energy. 

8.2.4 Alternatives to TCP 

Another important question left unanswered in this thesis is how Priority-Progress might perform 

on the many alternative protocols (and congestion control schemes) targeted specifically at media 

streaming such as HPF [54], TFRC [27], RAP [67], TEAR[68], or SCTP [64]. Such a comparison 

is not trivial however, as these protocols are unreliable, and so using them with PPS will mean 

that the effects of random data loss must be dealt with in some way at the application level. In our 

estimation this could represent a significant amount of effort. SCTP might be the most promising 

choice in this regard, because it offers a partial reliability model (bounded retransmission time) 

that might be the most straightforward to accommodate in PPS. 



8.2.5 Improving TCP's support for streaming applications 

We have used TCP as our transport for streaming, which is notoriously difficult. The high ef- 

fectiveness of PPS over stock TCP might come as quite a surprise to many. That said, there is 

certainly room for improvement. 

8.2.5.1 AQM and ECN 

Although not discussed at detail in this dissertation, we expect that Active Queuing Mechanisms 

(AQM) in routers in combination with Early Congestion Notification (ECN) could result in sig- 

nificant benefits to TCP based streaming applications. In brief, one of the principle goals of an 

AQM+ECN combination is to eliminate packet dropping due to congestion through the use of ex- 

plicit congestion notifications. The AQM mechanism's job is to anticipate congestion (at routers) 

and to select the packets that belong to the best candidate for congestion avoidance. ECN imple- 

ments the actual mechanism for routers to signal these conditions to TCP endpoints. Although 

there are serious deployment issues with AQM and ECN (as with any mechanism that targets the 

core of the Internet), in our network testbed, we have observed significant improvements to TCP's 

latency and sharing performance when AQM (MSTnet's DRED mechanism) and ECN were en- 

abled. For future work, comprehensive measurement studies that investigate and quantify the 

potential benefits of AQM+ECN to multimedia would help to make the case for AQM deploy- 

ment, and might also shed further light on the strengths and weaknesses of TCP relative to other 

transport protocols we mentioned in Section 8.2.4. 

8.2.5.2 TCP segment-size tuning 

In a previous study [31], we described our TCPMINBUF socket option, which makes great im- 

provements to latency properties of TCP in practice, notably without changing the "on the wire" 

part of the TCP protocol. One of the areas we looked at in this dissertation was the performance 

of PPS in the presence of competing network traffic. Because PPS is layered above TCP, the basic 

sharing properties of TCP are of interest to us. TCP is known to converge to a fair sharing when 

flows compete for the same link. In [57], Mathis et al. suggest the rate behaviour for each TCP 

flow can be modelled by the following equation: BW = where BW is the bandwidth, 
RTT ,.@ 



MSS is the maximum segment sire, RTT is round-trip time, C is a constant (8) derived from 

TCP's congestion control, and p is the packet drop probability. Holding values on the right side 

of the equation constant (for a group of flows sharing a common bottleneck), the equation con- 

firms the rule of thumb that n TCP flows will converge on a l ln bandwidth share. However, we 

have noticed that this behaviour breaks down when the number of flows becomes large relative 

to the total capacity of the bottleneck. The reason for the breakdown stems from the relationship 

between packet size and RTT in TCP's congestion control. In view of the Matthis equation, we 

notice that, under high multiplexing, the bandwidth share for each flow, in terms of number of 

packets per round trip, drops below the minimum required to maintain AIMD. The range in which 

this effect holds increases with larger values of RTT and packet size. For instance, with RTT 

of 40ms and flows using path MTU discovery (PMTU), the minimum per flow rate required to 

sustain TCP's fair sharing is in the range of 500kbps2. This constrains the low end of the range 

of effectiveness of TCP for video streaming, and is a major concern for audio-only streaming us- 

ing TCP. We plan to investigate modifications to the OS protocol stack that would do packet size 

tuning, to adapt packet sizes at low rates in order to promote better sharing (and consistency of 

throughput). We think this technique could lead to important performance gains not only to media 

streaming, but for any application that does bulk transfer over TCP. 

*PMTU typically leads to a TCP MSS of about 1440 bytes. We're assuming an minimum average of 2 packets per 
round trip are required to maintain AIMD. 



Bibliography 

[I] AMIR, E., MCCANNE, S., AND ZHANG, H. An application level video gateway. In Pro- 

ceedings of the ACM Multimedia Conference (1995), pp. 255-265. 

[2] BANERJEE, S . , BHATTACHARJEE, B . , AND KOMMAREDDY, C. Scalable application layer 

multicast. In Proceedings of the Conference on Applications, Technologies, Architectures, 

and Protocols for Computer Communications (SIGCOMM) (2002), pp. 205-217. 

[3] BELLARD, F., NIEDERMAYER, M., ET AL. The FFMpeg Project. h t  t p  : / / f f mpeg . s f . 
net / . Date viewed: January 2003. 

[4] BERRY, G., AND GONTHIER, G. The Esterel Synchronous Programming Language: De- 

sign, Semantics, Implementation. Science of Computer Programming 19, 2 (1992), pp. 87- 

152. 

[5] BIRNEY, B. Intelligent Streaming. h t t p  : / Imsdn .microsof t . corn/, Date viewed: 

October 2000. 

[6] BLAKE, S., BLACK, D., CARLSON, M., DAVIES, E., WANG, Z., AND WEISS, W. An 

Architecture for Differentiated Services. RFC 2475, December 1998. 

[7] BYERS, J. ,  FRUMIN, M., HORN, G., MICHAEL LUBY, M. M., ROETTER, A., AND 

SHAVER, W. FLID-DL: Congestion Control for Layered Multicast. In Proceedings of the 

Second Int'l Workshop on Networked Group Communication (NGC 2000) (Stanford, CA, 

November 2000), pp. 7 1-81. 

[8] CASNER, S ., A N D  DEERING, S. First IETF Internet Audiocast. ACM Computer Communi- 

cation Review 22, 3 (July 1992), pp. 92-97. 

[9] CASTRO, M., DRUSCHEL, P., KERMARREC, A., NANDI, A., ROWSTRON, A., AND 

SINGH, A. Splitstream: High-bandwidth content distribution in a cooperative environment. 

In Proceedings of (ZPTPS'03) (February 2003). (2003), pp. 98-106. 

[lo] CEN, S., Pu, C., STAEHLI, R., COWAN, C., AND WALPOLE, J. A Distributed Real-Time 

MPEG Video Audio Player. In Network and Operating System Support for Digital Audio 

and Video (1995), pp. 142-153. 



[ l  11 CHU, Y.-H., RAO, S. G., AND ZHANG, H. A Case for End System Multicast. In Pro- 

ceedings of the ACM SIGMETRZCS Conference on Measurement and Modeling of Computer 

Systems (2000), pp. 1-12. 

[12] CLARK, D. D. The design philosophy of the DARPA internet protocols. In Proceedings 

of the Conference on Applications, Technologies, Architectures, and Protocols for Computer 

Communications (SIGCOMM) (Stanford, CA, Aug. 1988), ACM, pp. 106-1 14. 

[13] CONKLIN, G., GREENBAUM, G., LILLEVOLD, K., AND LIPPMAN, A. Video Coding for 

Streaming Media Delivery on the Internet. IEEE Transactions on Circuits and Systems for 

Video Technology 11,3 (March 2001), pp. 269-281. 

[14] CROVELLA, M. E., AND BESTAVROS, A. Self-similarity in World Wide Web traffic: evi- 

dence and possible causes. IEEE/ACM Transactions on Networking 5 ,6  (1997), pp. 835-846. 

[Is] CROWCROFT, J., HAND, S., MORTIER, R., ROSCOE, T., AND WARHELD, A. QoS'S 

Downfall: At the bottom, or not at all! In Proceedings of the Workshop on Revisiting IP 

QoS: Why do we care, what have we learned? (RIPQOS) (Karlsruhe, Germany, August 

2003), pp. 88-97. 

[16] DAI, M., AND LOGUINOV, D. Analysis of Rate-Distortion Functions and Congestion Con- 

trol in Scalable Internet Video Streaming. In Proceedings of the International Workshop 

on Network and Operating System Support for Digital Audio and Video (NOSSDAV) (June 

2003), pp. 60-7 1. 

[17] DE CUETOS, P., GUILLOTEL, P., ROSS, K., AND THOREAU, D. Implementation of adap- 

tive streaming of stored MPEG-4 FGS video over TCP. In Proceedings of the Interna- 

tional Conference on Multimedia and Expo (ICME) (Lausanne, Switzerland, August 2002), 

pp. 156-168. 

[18] DEERING, S. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford Univer- 

sity, 1991. 

[19] DIOT, C., LEVINE, B. N., LYLES, B., KASSEM, H., AND BALENSIEFEN, D. Deployment 

issues for the IP multicast service and architecture. IEEE Network 14, 1 (I 2000), pp. 78-88. 

[20] ERIKSSON, H. The multicast backbone. Communications of the ACM 8 (1994), pp. 54-60. 

[21] FALL, K. Network emulation in the VINT/NS simulator. Proceedings of the fourth IEEE 

Symposium on Computers and Communications (1999), pp. 244-255. 



[22] FEAMSTER, N., BANSAL, D., AND BALAKRISHNAN, H. On the Interactions Between 

Layered Quality Adaptation and Congestion Control for Streaming Video. In Proceedings 

of the International Packet Video Workshop (Kyongiu, Korea, April 2001), pp. 128-139. 

[23] FENG, W., CHOI, J., CHANG FENG, W., AND WALPOLE, J. Under the Plastic: A Quan- 

titative Look at DVD Video Encoding and Its Impact on Video Modeling. Tech. Rep. CSE- 

03-004, OGI, Feburary 27 2003. 

[24] FENG, W., LIU, M., KRISHNASWAMI, B., AND PRABHUDEV, A. A Priority-Based Tech- 

nique for the Best-Effort Delivery of Stored Video. In Proceedings of the SPIE Multimedia 

Computing and Networking Conference (San Jose, California, January 1999), pp. 129-139. 

1251 FENG, W., AND REXFORD, J. A Comparison of Bandwidth Smoothing Techniques for 

the Transmission of Prerecorded Compressed Video. In Proceedings of the ZEEE Znfocom 

(1997), pp. 58-66. 

[26] FENG, W., AND SECHREST, S. Critical Bandwidth Allocation for the Delivery of Com- 

pressed Video. Computer Communications (Special Issue on Systems Support for Multime- 

dia Computing) 18, 10 (October 1995), pp. 709-717. 

[27] FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J. Equation-based congestion 

control for unicast applications. In Proceedings of the Conference on Applications, Tech- 

nologies, Architectures, and Protocols for Computer Communications (SIGCOMM) (2000), 

pp. 43-56. 

[28] FLOYD, S., JACOBSON, V., LIU, C.-G., MCCANNE, S., AND ZHANG, L. A reliable 

multicast framework for light-weight sessions and application level framing. ZEEUACM 

Transactions on Networking 5,6  (1997), pp. 784-803. 

[29] GARRETT, M. W., AND WILLINGER, W. Analysis, modeling and generation of self-similar 

VBR video traffic. In Proceedings of the Conference on Applications, Technologies, Archi- 

tectures, and Protocols for Computer Communications (SIGCOMM) (1994), pp. 269-280. 

[30] GOEL, A., ABENI, L., KRASIC, C., SNOW, J., AND WALPOLE, J. Supporting time- 

sensitive applications on a commodity 0 s .  In Proceedings of the USENIX Symposium on 

Operating Systems Design and Implementation (Dec. 2002), pp. 165-180. 

[31] GOEL, A., KRASIC, C., LI, K., AND WALPOLE, J. Supporting Low Latency TCP-Based 

Media Streams. In Proceedings of the International Workshop on Quality of Service (IWQoS) 

(May 2002), pp. 156-164. 



[32] GOEL, A., AND WALPOLE, J. Gscope: A visualization tool for time-sensitive software. In 

Proceedings of the Freenix Track of USENIX Technical Conference (June 2002), pp. 133- 

142. 

[33] GROUP, S. M. W. Synchronized Multimedia Integration Language (SMIL) 1.0 Specifi- 

cation. Tech. rep., World Wide Web Consortium, 1998. h t  t p  : / /www . w3 . org/TR/ 
REC - s m i  1. Date Viewed: June 2000. 

[34] HANDLEY, M., SCHULZRINNE, H., SCHOOLER, E., AND ROSENBERG, J. SIP: Session 

Initiation Protocol. RFC 2543, March 1999. 

[35] HASKELL, B. G., PURI, A., AND NETRAVALI, A. N. Digital Video: An Introduction to 

MPEG-2. Chapman & Hall, 1997, ch. 9. 

[36] HE, D., MULLER, G., AND LAWALL, J. L. Distributing mpeg movies over the internet using 

programmable networks. In Proceedings of the International Conference on Distributed 

Computing Systems (July 2002), pp. 161-170. 

[37] HE, Y., WU, F., LI, S., ZHONG, Y., AND YANG, S. H.261-based fine granularity scalable 

video coding. In ZSCAS 2002 (Phoenix, USA, May 2002), pp. 548-551. 

[38] HUANG, J., KRASIC, C., WALPOLE, J., AND FENG, W. Adaptive Live Video Streaming 

by Priority Drop. In Proceedings of the IEEE International Conference on Advanced Video 

and Signal Based Surveillance (AVSS) (Miami, July 2003), pp. 342-354. 

[39] IANNACCONE, G., MAY, M., AND DIOT, C. Aggregate Traffic Performance with Active 

Queue Management and Drop from Tail. Computer Communication Review 31, 3 (July 

2001). 

[40] IS OIIEC. 138 18-2 Information technology - Generic coding of moving pictures and asso- 

ciated audio information: Video . International Standard, 1993. 

[41] ISOIIEC. 11172-2 Information technology - Coding of moving pictures and associated 

audio for digital storage media at up to about 1,5 Mbitls - Part 2: Video. International 

Standard, 1994. 

[42] ISOIIEC. 14496-2 Information technology - Coding of audio-visual objects - Part 2: 

Visual. International Standard, December 1999. First edition. 

[43] ISOIIEC. 61834 Helical-scan digital video cassette recording system using 6,35 mm mag- 

netic tape for consumer use (525-60, 625-50, 1125-60 and 1250-50 systems). International 

Standard, 1999. 



[44] JACOBS, S., AND ELEFTHERIADIS, A. Streaming Video using Dynamic Rate Shaping and 

TCP Flow Control. Journal of Visual Communication and Image Representatio 9,3  (January 

1998), pp. 21 1-222. (invited paper). 

1451 JANNOTTI, J., GIFFORD, D., JOHNSON, K., KAASHOEK, M., AND O'TOOLE, J. Overcast: 

Reliable multicasting with an overlay network. In Proceedings of the USENZX Symposium 

on Operating Systems Design and Implementation (San Diego, CA, October 2000), pp. 197- 

212. 

[46] KALMANEK, C. A Retrospective View of ATM. ACM Computer Communication Review 

32,5 (October/November 2002), pp. 13-18. 

[47] KANG, S. H., AND ZAKHOR, A. Packet Scheduling Algorithm for Wireless Video Stream- 

ing. In Proceedings of the International Packet Video Workshop (Pittsburgh, April 2002), 

pp. 121-133. 

[48] KAR, K., SARKAR, S., AND TASSIULAS, L. A scalable low-overhead rate control algorithm 

for multirate multicast sessions. ZEEE Journal on Selected Areas in Communications 20, 8 

(October 2002), pp. 127-146. 

[49] KELLER, R., CHOI, S., DECASPER, D., DASEN, M., FANKHAUSER, G., AND PLATTNER, 
B. An active router architecture for multicast video distribution. In Proceedings of the ZEEE 

Znfocom (2000), pp. 1137-1 146. 

[50] KIM, J.-W., KIM, Y.-G., H.-J. SONG, T.-Y. K., CHUNG, Y.-J., AND KUO, C.-C. J. 

TCP-friendly Internet Video Streaming employing Variable Frame-rate Encoding and Inter- 

polation. ZEEE Transaction on CSVT 1O,7 (October 2000), pp. 1 164-1 177. 

[51] KOSTIC, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT, A. Bullet: high bandwidth 

data dissemination using an overlay mesh. In Proceedings of the USENZX Symposium on 

Operating Systems Design and Zmplementation (Bolton Landing, NY,  USA, 2003), pp. 282- 

297. 

[52] KRASIC, C., AND WALPOLE, J. QoS scalability for streamed media delivery. CSE Techni- 

cal Report CSE-99-011, Oregon Graduate Institute, September 1999. 

[53] KWON, G.-I., AND BYERS, J. Smooth Multirate Multicast Congestion Control. In Pro- 

ceedings of the ZEEE Znfocom (April 2003), pp. 653-766. 

[54] LI, J., DWYER, D., AND BHARGHAVAN, V. A Transport Protocol for Heterogeneous Packet 

Flows. In Proceedings of the ZEEE Znfocom (1999), pp. 543-550. 



[55] LI, W., LING, F., AND CHEN, X. Fine Granularity Scalability in MPEG-4 for Streaming 

Video. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 

2000) (Geneva, Switzerland, May 2000), IEEE, pp. 657-769. 

[56] LIU, J., LI, B., AND ZHANG, Y.-Q. Adaptive video multicast over the internet. IEEE 

Multimedia 10, 1 (JanuaryFebruary 2003), pp. 22-31. 

[57] MATHIS, M., SEMKE, J., AND MAHDAVI, J. The Macrosopic Behavior of the TCP Con- 

gestion Avoidance Algorithm. ACM Computer Communication Review 27, 3 (July 1997), 

pp. 994-1010. 

[58] MAYER-PATEL, K., AND ROWE, L. Design and Performance of the Berkeley Continuous 

Media Toolkit. In Proceedings of the SPIE Multimedia Computing and Networking Confer- 

ence (San Jose, CA, February 1997), M. Freeman, P. Jardetzky, and H. M. Vin, Eds., SPIE, 

pp. 194-206. 

[59] MCCANNE, S., BREWER, E., KATZ, R., ROWE, L., AMIR, E., CHAWATHE, Y., COOP- 

ERSMITH, A., MAYER-PATEL, K., RAMAN, S., SCHUETT, A., SIMPSON, D., SWAN, A., 

TUNG, T. L., WU, D., AND SMITH, B. Toward a common infrastucture for multimedia- 

networking middleware. In Proceedings of the International Workshop on Network and 

Operating System Support for Digital Audio and Video (NOSSDAV) (St. Louis, Missouri, 

May 1997), pp. 3949. 

[60] MCCANNE, S ., AND JACOBSON, V. vic : A flexible framework for packet video. In ACM 

Multimedia (1995), pp. 5 11-522. 

[61] MCCANNE, S., VETTERLI, M., AND JACOBSON, V. Low-Complexity Video Coding for 

Receiver-driven Layered Multicast. IEEE Journal on Selected Areas in Communications 16, 

6 (August 1997), pp. 983-1001. 

[62] MILLS, D. L. Internet time synchronization: The network time protocol. In Global States 

and Time in Distributed Systems,. IEEE Computer Society Press, 1994, pp. 91-102. 

[63] NIST. The NIST Network Emulation Tool. h t  t p  : / /www . antd. nis t . gov/ i t g /  

n i  s tne  t . Date viewed: May 2001. 

[64] ONG, L., CORPORATION, C., YOAKUM, J., AND NETWORKS, N. RFC 3286, May 2002. 

[65] PADMANABHAN, V. N., WANG, H. J., CHOU, P. A., AND SRIPANIDKULCHAI, K. Dis- 

tributing streaming media content using cooperative networking. In Proceedings of the Inter- 

national Workshop on Network and Operating System Support for Digital Audio and Video 

(NOSSDAV) (Miami Beach, FL, May 2002), pp. 41-51. 



[66] REJAIE, R., HANDLEY, M., AND ESTRIN, D. Quality Adaptation for Congestion Con- 

trolled Video Playback over the Internet. In Proceedings of the Conference on Applications, 

Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM) 

(Cambridge, M A ,  October 1999), pp. 189-200. 

[67] REJAIE, R., HANDLEY, M., AND ESTRIN, D. RAP: An end-to-end rate-based congestiong 

control mechanism for realtime streams in the internet. In Proceeedings of IEEE Infocomm 

(March 1999), pp. 1337-1345. 

[68] RHEE, I., OZDEMIR, V., AND Y I, Y. TEAR: TCP Emulation at Receivers - Flow Control 

for Multimedia Streaming. Tech. rep., NCSU, April 2000. 

[69] R ~ z z o ,  L. pgmcc: a TCP-friendly single-rate multicast congestion control scheme. In 
Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols 

for Computer Communications (SIGCOMM) (2000), pp. 17-28. 

[70] ROHALY, A. M., ET AL. Video quality experts group: Current results and future directions. 

In Proceedings SPIE Visual Communications and Image Processing (Perth, Australia, June 

2000), VO~.  4067, pp. 742-753. 

[71] RUBENSTEIN, D., KUROSE, J., AND TOWSLEY, D. The Impact of Multicast Layering on 

Network Fairness. IEEE/ACM Transactions on Networking 10,2 (2002), pp. 169-182. 

[72] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end arguments in system design. 

ACM Transactions on Computer Systems 2,4 (Nov. 1984), pp. 277-288. 

[73] SAROIU, S., GUMMADI, K. P., DUNN, R., GRIBBLE, S. D., AND LEVY, H. M. An 

analysis of Internet content delivery systems. In Proceedings of the USENIX Symposium 

on Operating Systems Design and Implementation (Boston, MA, December 2002), pp. 315- 

328. 

[74] SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JACOBSON, V. RTP: A Transport 

Protocol for Real-Time Applications. RFC 1889, January 1996. 

[75] SCHULZRINNE, H., RAO, A., AND LANPHIER, R. Real Time Streaming Protocol (RTSP). 

RFC 2326, April 1998. 

[76] SCHULZRINNE, H., RAO, A., AND LANPHIER, R. Real Time Streaming Protocol (RTSP). 

RFC 2326, April 1998. 

[77] SEN, S ., AND WANG, J. Analyzing Peer-to-Peer Traffic Across Large Networks. In Pro- 

ceedings of the 2nd Internet Measurement Workshop (Marseille, France, November 2002), 

pp. 56-68. 



[78] SISALEM, D., AND SCHULZRINNE, H. The Loss-Delay Based Adjustment Algorithm: A 

TCP-Friendly Adaptation Scheme. In Proceedings of the International Workshop on Network 

and Operating System Support for Digital Audio and Video (NOSSDAV) (Cambridge, UK., 

1998). 

[79] SUBRAMANIAN, L.,  STOICA, I., BALAKRISHNAN, H., AND KATZ, R. H. OverQoS: 

Offering QoS using Overlays. In First Workshop on Hop Topics in Networks (HotNets-I) 

(October 2002). 

[80] The TCP-Friendly Website. http://www.psc.edu/networkingltcp~friendly.html. 

[81] TRAN, D., HUA, K., AND DO, T. ZIGZAG: An Efficient Peer-to-Peer Scheme for Media 

Streaming. In Proceedings of the ZEEE Znfocom (San Francisco, CA, April 2003), pp. 264- 

278. 

[82] UCBIISI, ET AL. The Network Simulator ns2. h t t p :  //www. isi . edu/nsnam/ns/. 
Date viewed: July 2003. 

[83] UNKNOWN. Fast-start vs Streaming. http://www.apple.com/quicktime/. Date viewed: June 

2002. 

[84] VANDALORE, B., FENG, W., JAIN, R., AND FAHMY, S. A Survey of Application Layer 

Techniques for Adaptive Streaming of Multimedia. Real-Time Imaging 7, 3 (2001), pp. 

221-235. 

1851 VICISANO, L., RIZZO, L., AND CROWCROFT, J. TCP-like congestion control for layered 

multicast data transfer. In Proceedings of the ZEEE Infocom (San Francisco, March 1998), 

pp. 996-1003. 

[86] VICKERS, B. J., ALBUQUERQUE, C., AND SUDA, T. Source-adaptive multilayered multi- 

cast algorithms for real-time video distribution. ZEEE/ACM Transactions on Networking 8 ,  

6 (2000), pp. 720-733. 

[87] WALPOLE, J., KOSTER, R., CEN, S., COWAN, C., MAIER, D., AND MCNAMEE, D. A 

Player for Adaptive MPEG Video Streaming Over the Internet. In Proceedings 26th Applied 

Imagery Patter Recognition Workship AZPR-97 (Washington, DC, October 1997), SPIE. 

[88] WEN, S., GRIFFIOEN, J., AND CALVERT, K. L. Building multicast services from unicast 

forwarding and ephemeral state. Computer Networks (Amsterdam, Netherlands: 1999) 38, 

3 (2002), pp. 327-345. 



[89] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S., NEWBOLD, M., 

HIBLER, M., BARB, C., AND JOGLEKAR, A. An integrated experimental environment for 

distributed systems and networks. In Proceedings of the USENZX Symposium on Operating 

Systems Design and Implementation (Boston, MA,  December 2002), pp. 255-270. 

[go] WILLIAMS, T., KELLEY, C., ET AL. gnuplot. http/ /www . gnuplot. in£ o. Date 

viewed: July 2003. 

[91] WILLINGER, W., TAQQU, M. S., SHERMAN, R., AND WILSON, D. V. Self-similarity 

through high-variability: statistical analysis of Ethernet LAN traffic at the source level. 

IEEE/ACM Transactions on Networking 5, 1 (1 997), pp. 7 1-86. 

[92] WROCLAWSKI, J. The Use of RSVP with IETF Integrated Services. RFC 2210, September 

1997. 

[93] Wu, D., Hou, Y., ZHU, W., ZHANG, Y., AND PEHA, J. Streaming video over the internet: 

Approaches and directions. ZEEE Transactions on Circuits and Systems for Video Technology 

11, 1 (Feb. 2001), pp. 1-20. 

[94] YANO, K., AND MCCANNE, S. The Breadcrumb Forwarding Service: A Synthesis of PGM 

and EXPRESS to Improve and Simplify Global IP Multicast. ACM Computer Communica- 

tion Review 30, 2 (April 2000), pp. 4149.  

[95] YAVATKAR, R., GRIFFOEN, J., AND SUDAN, M. A reliable dissemination protocol for 

interactive collaborative applications. In Proceedings of the ACM Multimedia Conference 

(1995), pp. 333-344. 

[96] YEADON, N. Quality of Service Filters for Multimedia Communications. PhD thesis, Lan- 

caster University, Lancaster, May 1996. 

[97] ZINK, M., KUENZEL, O., SCHMITT, J., AND STEINMETZ, R. Subjective Impression of 

Variations in Layer Encoded Video. In Proceedings of the International Workshop on Quality 

of Service (IWQoS) (Monterey, CA, June 2003), pp. 225-234. 



Biographical Note 

Charles "Buck" Krasic was born in Hamilton, Ontario on December 25, 1968. He graduated 

from Cardinal Newman High School in 1987. His undergraduate degree was a B.Math in Com- 

puter Science at the University of Waterloo, completed in 1992. As part of his undergraduate 

program, he did Co-op work terms with four different companies in Hamilton, Ottawa, Toronto, 

and Vancouver. After his undergraduate he joined the Programming Language Group at the Uni- 

versity of Waterloo as a programmer. In late 1993, Buck moved to Los Angeles to work for SHL 

Sytemhouse. In 1995, he completed a M.Math in Computer Science from Waterloo under the 

supervision of Professor Gordon Cormack. His M.Math thesis title was "Parametric Overloading 

in MY. Buck then moved to Portland to take a position as research programmer at OGI. 

At OGI, Buck worked on the Synthetix project on developing tools for specialization of op- 

erating systems, under the supervision of Calton Pu, Jonathan Walpole, and Crispin Cowan. As 

part of that work, Buck spent two months with the Compose team of Professor Charles Consel 

in Rennes, France. After working on Synthetix for three years, Buck decided in 1999 to join the 

Ph.D program at OGI, with the goal of researching adaptive multimedia under Professor Jonathan 

Walpole. In the summer of 2000, Buck took a brief hiatus from his Ph.d studies to pursue commer- 

cial application of his video research with a startup company called Digital Mercury Inc. (DMI) in 

Portland. At DMI, Buck had the lead role for a team developing a software solution for adaptive 

streaming of feature movies to the home. Buck returned to OGI in late 2000 to resume his Ph.d. 

In winter of 2003, Buck taught Advanced Topics in Networking course at OGI. 

Currently, Buck has joined the Department of Computer Science at the University of British 

Columbia as an assistant professor. 


	200402.krasic.charles to p. 80.pdf
	200402.krasic.charles to p. 179.pdf



