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Abstract 
 

Advancing precision medicine in the treatment of cancer is complex and requires 

extensive molecular profiling to identify therapeutic targets and appropriately stratify 

patients into groups that differ in therapeutic vulnerability. The Cancer Genome Atlas 

(TCGA) has molecularly defined several cancer types and identified distinct subtypes. 

However, in some cases identification of molecular subtypes have failed to translate 

clinically. In particular, glioblastoma (GBM) and muscle-invasive bladder cancer (MIBC) 

are two such cancers that have molecular subtypes defined, though little clinical 

advancements have occurred as a result. Over the past three decades, there have been 

few treatment options and little change in overall survival for these cancers, with less 

than a 5% five-year survival rate for GBM and metastatic MIBC. Intra-tumoral 

heterogeneity and tumor microenvironment (TME) signals further complicate the ability 

to adopt precision medicine approaches for these cancers. We hypothesize that more 

accurate molecular subtyping and patient stratification can be achieved by taking into 

account intra-tumoral heterogeneity and microenvironment signals. This will allow for the 

ability to predict which treatments will work best for different groups of patients. 

 

Precise management of GBM will require stratification of tumors into subtypes 

that differ in outcome and therapeutic vulnerability. We hypothesize that stratification into 

subtypes and prognostic groups can be achieved by taking GBM intra-tumoral 

heterogeneity into account. Our approach utilizes open-source transcriptional profiles of 

predefined histological structures from human GBM to develop methods to mitigate the 

impact of heterogeneity on transcriptomic-based stratification. We show that histologic 

architecture strongly influences tumor classification when assessing established gene 

signatures for subtyping and prognostic marker development, and that using mixed 

structure samples gives misleading results. We identify cellular tumor as a GBM 



 xv 

structure from which transcriptional subtyping and prognostic strategies can be applied 

to more accurately stratify patient cohorts. We analyzed this specific architecture to 

create an improved risk stratification tool. Our results suggest that biomarker 

performance for diagnostics, prognostics, and prediction of therapeutic response can be 

improved by analyzing transcriptional profiles in pure cellular tumor.  

 

TME signals and differentiation state plasticity are two overlooked potential 

targets to aid in predictions of therapeutic response in the treatment of MIBC. Signals 

from the TME cooperate with tumor cell genotype (mutations, translocations, copy 

number), and phenotype (differentiation state) to select for the cell type most fit to 

survive the conditions of the environment. Understanding the interplay between TME 

signals that stimulate a pro-proliferative phenotype, and induce differentiation state 

plasticity has implications in identifying predictors of outcome and targets for therapeutic 

intervention. We hypothesize that distinct TME signals stimulate proliferation and 

differentiation state plasticity in human bladder cancer cell lines in the presence and 

absence of drug treatment. To test our hypothesis, we utilized a novel platform, 

microenvironment microarray (MEMA) technology, to identify candidate 

microenvironment signals that have effects on cellular proliferation and differentiation 

state in bladder cancer cell lines. Our results suggest that response to microenvironment 

signals is dependent on genotype, and cells have the ability to exhibit differentiation 

state plasticity and interpret microenvironmental cues as pro-proliferative, which may 

enhance tumorigenesis. This knowledge can enable the development of targeted 

therapies aimed at inhibiting the transduction of microenvironment signals and 

differentiation state changes. This collective work has the potential to improve 

predictions of outcome and advance GBM and MIBC into the modern era of precision 

medicine.
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CHAPTER 1. INTRODUCTION TO CANCER AND ADVANCEMENT INTO THE AGE 
OF PRECISION MEDICINE 

 

1.1 Defining cancer 

Cancer is the second most common cause of death in the United States, and 

represents a major health concern. Cancer is a term that describes malignant cells that 

have the propensity for uncontrollable growth and division or are resistant to cell death. 

Malignant neoplasms, or new cancerous growths, have varying degrees of invasiveness 

and typically invade surrounding tissues or spread to distant organs via blood or 

lymphatic vessels. There are over 100 recognized cancer types and are generally 

classified based on the tissue of origin. The main types of cancer include carcinomas, 

central nervous system cancers, sarcomas, leukemias, and lymphomas. Carcinomas 

refer to cancer cells that are epithelial in origin and arise in skin or the lining of internal 

organs. Central nervous system cancers originate in the brain and spinal cord. 

Sarcomas are cancers of mesenchymal origin that begin in connective tissue such as 

bone, cartilage, fat, or muscle. Leukemias begin in the blood marrow from abnormal 

white blood cells or leukocytes. Lymphomas commence in lymphocytes, a type of 

leukocyte1.  

 

1.2 Cancer in Ancient Times 

Fossilized tumors of the bone, ancient manuscripts, and mummified humans in 

ancient Egypt include some of the earliest chronicles of cancer. Evidence of bony skull 

destruction signifying head and neck cancer and growths indicative of osteosarcoma 

have been recognized in mummies2. The earliest descriptions of cancer were recorded 

in the Edwin Smith Papyrus, which contained notes on trauma surgery from an ancient 

Egyptian textbook written around 2500 BC3–5. It describes tumors of the breast treated 

by surgical resection with a fire drill and adds that the disease is incurable3–5. 
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1.3 Origin of the term cancer 

The Greek physician, Hippocrates (460 - 370 BC), is known as the “Father of 

Medicine” and is credited for the origins of the term cancer. Hippocrates referred to 

cancer by the word karkinos, Greek for crab, likely based on the finger-like projections of 

a malignant tumor reminiscent of a crab. Celsus (28 - 50 BC), a Roman physician, later 

translated the Greek term to cancer, meaning crab in Latin. Later, Galen (130-200 AD), 

another Greek physician, described tumors with the term oncos, the Greek word for 

swelling. Galen’s term is the origin for the word oncology, the modern study of 

cancer2,6,7.  

 

1.4 The Advent of Cancer Biology 

In 1838, the German pathologist Johannes Müller developed the blastema 

theory, the notion that cancer is made up of budding elements (blastema), or a collection 

of cells. This theory founded the study of cancer histopathology. Around the same time, 

in 1839, Theodor Schwann and Matthias Schleiden introduced cell theory, the idea that 

all living organisms are comprised of uni- or mult-unit cells and that the most basic unit 

of life is the cell. In 1855, Muller’s student Rudolph Virchow, supplemented cell theory by 

adding that all cells, even diseased cells such as cancer, originated from other cells. 

Virchow continued to study diseased tissues and associated histopathology to illness, 

which allowed a cellular insight into cancer pathology and assisted cancer surgery. 

Tissue removed during surgery could now be examined and a diagnosis made based on 

pathology. The tissue could also be examined by the pathologist to determine whether 

the surgery excised the cancer completely with clean margins. Today, pathologists 

continue to assist in diagnosis of cancers and determine whether there are clean 
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margins. Due to these contributions, Virchow is known as the founder of cellular 

pathology8,910.  

  

1.5 Seed and soil hypothesis 

In 1889, an English surgeon, Stephen Paget proposed the seed and soil 

hypothesis after realizing that specific cancers spread through the bloodstream and 

exhibited organotropism, or a predilection of certain cancers to distinct organs. Paget 

reasoned that for cancer metastasis to be non-random, cancer cells (seeds) can only 

live and grow in an environment (soil) conducive for life and growth. Nearly a century 

later, Paget’s hypothesis was finally confirmed by modern cellular and molecular biology 

techniques. This hypothesis led to the thorough appreciation of metastatic disease and 

helped recognize that surgery alone was limited and that systemic treatment before or 

after surgery may help minimize the seeding of cancer to distant sites. Paget is credited 

as being the founder of tumor microenvironment research11,12.  

 

1.6 Cancer is a Genetic Disease 

In 1902, Theodor Boveri, a German biologist, proposed that cancer was a result 

of genomic insults. Boveri pioneered experiments in the field of cytology by studying 

chromosomal segregation in sea urchin embryos. He found that an improper number of 

chromosomes caused embryonic cells to die or endure abnormal differentiation. Boveri 

rationalized that chromosome abnormalities may be causative of cancer since cancer 

also had chromosome anomalies. Further sea urchin embryo experiments with chemical 

carcinogens caused chromosome impairment demonstrating that genomic damage 

causes cancer. Boveri further postulated that cancer is a consequence of cell 

proliferation due to chromosomal damage, and predicted the presence of oncogenes, 
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tumor suppressor genes, and heritable oncogenic mutations. Boveri’s postulates led to 

the somatic mutation theory of cancer13,14. 

 

1.7 Rous sarcoma virus 

In 1911, Francis Peyton Rous discovered the Rous sarcoma virus (RSV) by 

demonstrating that cancer in chickens was transmissible by a virus. Rous took cell-free 

filtrate from a chicken sarcoma and injected it into healthy chickens. The injected 

chickens soon grew sarcomas, showing for the first time that a virus could transmit 

cancer. RSV could now be used as a model to explore the molecular mechanisms of 

cancer initiation and progression. Following RSV, several other tumor-inducing viruses 

were soon identified leading to the Epstein-Barr virus discovery in 1964, the first 

oncogenic human virus known. In 1966, Rous was awarded the Nobel prize for his 

revolutionary work. Rous’ pioneering work has established the basis of modern virology 

and oncology15. 

 

1.8 Two-hit hypothesis 

The somatic mutation theory of cancer eventually led to the two-hit hypothesis by 

Alfred Knudson. The two-hit hypothesis is the concept that cancer is a consequence of 

at least two mutations in a cell’s DNA that affect both alleles of a particular gene. This 

general idea was initially proposed in the multi-mutation theory on cancer by Carl 

Nordling in 1953, with the exception that a series of multiple cumulative mutations were 

suggested. D.J. Ashley revisited Nordling’s theory in 1969 and concluded that cancer 

resulted in the accumulation of about 3 to 7 mutations. Subsequently, in 1971, Knudson 

applied a statistical analysis to retinoblastoma cases where children either inherited or 

sporadically developed a tumor of the retina. Knudson observed that inherited 

retinoblastoma frequently occurred bilaterally, and younger in age when compared to 
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sporadic cases, suggesting a predisposition to the disease. In inherited retinoblastoma, 

children would inherit the initial mutation, and any additional mutations would cause 

cancer. In sporadic retinoblastoma, at least two mutations had to occur before the 

disease would develop. These results suggested that a minimum of two “hits” needed to 

occur to cause cancer. Knudson's work indirectly led to the identification of critical genes 

involved in cancer called tumor suppressor genes.  

 

1.9 The Discovery of Viral Oncogenes 

Continued studies with RSV led to the discovery of a viral oncogene, v-src. 

Focus forming transformation assays were developed in 1958 and were utilized in RSV 

mutant and non-mutant strains. Some RSV strains demonstrated that they had the ability 

to replicate and transform chicken fibroblasts, while others strains could only replicate or 

transform cells, but not both. These studies showed that virus replication and oncogenic 

transformation were not interdependent events, indicating that a distinct gene caused 

transformation. In 1970, Dominique Stehelin, a post-doctoral researcher in the lab of 

Michel Bishop and Harold Varmus, compared non-mutant RSV with normal replicative 

and transforming abilities to mutant RSV strains that could replicate but not transform. 

Through this work, Stehelin identified src as the gene responsible for transformation. 

This established src, later named v-src, as the first oncogene identified, which 

demonstrated the initial evidence that expression of a single altered gene had the ability 

to cause cancer16–18.  

 

1.10 The Discovery of Proto-Oncogenes 

Bishop and Varmus conducted experiments to identify related genes to src in 

other species. Surprisingly, they found src in all avian cells, but also in higher organisms, 

including human cells. In 1976, hybridization assays between v-src and normal chicken 

https://en.wikipedia.org/wiki/Gene
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DNA helped discover a cellular non-oncogenic variant of src in many avian species, c-

src. This discovery introduced the idea of proto-oncogenes, where c-src is the proto-

oncogene, or the wild-type non-oncogenic version, that mutates to v-src and acquires 

constitutive activity. This concept suggests that cancer may be induced by alterations in 

normal genes. Oncogenic viruses, such as RSV and others, are believed to have 

incorporated a proto-oncogene from the hosts genome during viral replication, and later 

acquired a mutation in the transduced gene, resulting in a viral oncogene. Bishop and 

Varmus were awarded the Nobel prize for their discovery in 198916,17. 

 

1.11 The Discovery of Human Oncogenes 

The v-src oncogene became the model for identifying other transforming genes 

harbored in oncogenic viruses. For example, the first two ras genes, H-ras (associated 

with bladder cancer) and K-ras (associated with pancreatic, lung, and colorectal cancer) 

were identified based on studies of two oncogenic viruses, the Harvey sarcoma virus 

and Kirsten sarcoma virus. During the 1960’s, these viruses were discovered initially in 

rats by Jennifer Harvey and Werner Kirsten, respectively. In 1982, activated and 

transforming human ras genes were discovered in human cancer cells by several 

groups. N-ras, a third ras gene was then discovered by Robin Weiss’ group and Michael 

Wigler’s group, named based on its initial identification in human neuroblastoma cells. A 

nearly identical gene was found in normal human DNA. Cloning and sequencing 

identified the gene as c-ras, the normal proto-oncogene. It was later appreciated that ras 

family genes are the most common oncogenes in cancer, having alterations in up to 

25% of all human cancers. In 1977, the myc gene was first identified in the avian 

myelocytoma virus (v-myc). Homology between v-Myc and an over-expressed gene in 

various human cancers, c-Myc, led it its discovery. Further homology studies helped 

discover the human genes n-Myc and l-Myc. Oncogenic c-Myc is most frequently 
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discussed in reference to Burkitt lymphoma, a cancer with chromosomal translocations 

of chromosome 8 and 14. This translocation places the highly active immunoglobulin (Ig) 

promoter region upstream of c-Myc, resulting in c-Myc overexpression. These findings  

suggested that human cancers were driven by human oncogenes19–24.  

 

1.12 Tumor suppressor genes 

Shortly after the discovery of oncogenes, DNA tumor viruses (e.g. SV40, 

adenovirus, papillomavirus) were found to express oncoproteins (e.g. SV40 Large T-

antigen, E1A, E7) that interact with cell proteins and inhibit their ability to control the cell 

cycle. Tumor suppressor genes were the name later designated for the genes encoding 

the targeted cell proteins. The normal role of tumor suppressor genes is to down-

regulate cell division to allow for DNA repair and initiate cell death when DNA is too 

damaged for repair or when otherwise appropriate. Therefore, inactivating tumor 

suppressor genes removes critical regulatory proteins and results in uncontrolled cell 

growth and cancer. Somatic cell hybridization experiments performed by Henry Harris in 

1969 provided the initial understanding into the function of tumor suppressor genes. 

Tumor cells were fused with normal cells generating hybrid cells with chromosomes from 

both parental cells types. Hybrid cells rarely formed tumors in animals, leading to the 

conclusion that genes originating from normal parental cells had the ability to suppress 

tumor development13,25,26.  

 

1.12.1 Rb gene 

A more extensive molecular definition and functional awareness of tumor 

suppressor genes came from later studies in retinoblastoma, which helped identify Rb as 

the first tumor suppressor gene. Chromosome morphology studies in retinoblastoma 

showed that Rb was a negative regulator of tumorigenesis. Chromosome 13q14 was 
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visible deleted in certain retinoblastomas, indicating that loss the Rb gene, not activation, 

led to tumor formation. Further studies in gene-mapping in the late 1970’s suggested 

that tumor development was a result of normal Rb genes. In 1986, Rb was isolated as a 

molecularly clone and was found to be undoubtedly deleted or mutated in 

retinoblastomas. Direct confirmation that Rb is a tumor suppressor came from 

introducing normal Rb into retinoblastoma cells, which reverted tumor cells back to a 

normal phenotype. Additionally, Rb protein was identified as a target of oncoviral 

proteins from the DNA viruses SV40, adenoviruses, and human papillomaviruses26–28.  

 

Since the original identification in retinoblastoma, deleted or inactivated Rb has 

been identified in many common cancers such as bladder, breast, and lung carcinomas. 

Classification of Rb as a tumor suppressor gene paved the way for identification of other 

tumor suppressor genes that may pay a role in cancer development26,29.  

 

1.12.2 p53 gene 

p53 was the second tumor suppressor gene identified and is altered in over 50% 

of all human cancers. p53 becomes activated by cellular stresses, such as oncogene 

activation, DNA damage, and hypoxia and initiates cell cycle arrest, DNA repair, and cell 

death by apoptosis to prevent damaged cells from proliferating. Alternatively, inactivating 

p53 leads to uncontrolled proliferation culminating in tumor development30.  

 

In 1979, six groups independently identified a 53 kD nuclear protein that 

associated with the Large T antigen of the SV40 oncovirus in human and mouse cells 

now known as p53. Many groups then began studying p53 to characterize its function 

and classification. There were numerous indications that p53 was indeed an oncogene. 

Several studies from 1982-84 with the murine and human p53 suggested that it was an 
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oncogene due to the fact that it was able to transform cells upon transfection of the 

gene. p53 was also found to be overexpressed in many types of cancer cells and 

knockout of p53 prompted arrest of cell proliferation. The association with oncoviral 

protein also indicated the likelihood that p53 was an oncogene. The interpretation of the 

findings from p53 experiments largely reflected what was known at the time in cancer 

research. It seemed appropriate at the time to classify p53 as an oncogene as they were 

thought to be vital to cancer development. On the other hand, tumor suppressor were 

overlooked for the classification of p53 due to the lack of evidence for their 

existence26,29,30.  

 

Nearly a decade after its’ discovery, p53 was rightly classified as a tumor 

suppressor by applying the two-hit hypothesis test. Recall that statistical analysis of 

retinoblastoma cases helped establish the two-hit hypothesis, which became the method 

for distinguishing between a mutant gene as an oncogene or a tumor suppressor gene. 

If both alleles of the gene were altered, it was categorized as a tumor suppressor gene. 

In contrast, the gene was classified as an oncogene if only one allele was altered. In 

1989, one TP53 copy of a tumor was lost and the other was sequenced, finding that the 

remaining copy was mutated, whereas in the normal tissue it was not. In other tumors, it 

was found that there was either loss or mutations in the TP53 gene indicating that p53 

was in fact a tumor suppressor, not an oncogene. In addition, p53, like Rb, was identified 

as a target of oncoviral proteins from the DNA viruses SV40, adenoviruses, and human 

papillomaviruses. Further studies in p53 demonstrated that it is the most frequently 

mutated gene in tumors31.  

 

Over the last few decades since its discovery, several functions have attributed 

to different p53 alterations. Different studies have shown that missense mutations in p53 
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can abolish tumor suppressor function, but may also provide p53 oncogenic gain-of-

function abilities. Some mutant forms of p53 are able to inactivate the endogenous wild-

type p53 protein in a dominant-negative fashion by forming a heterotetramer complex. 

These findings suggest that dominant-negative mutations in one p53 allele should be 

sufficient to inactivate p53 function in a cell. Further studies show that specific mutant 

forms in one copy of p53 can exert a dominant-negative function and inactivate wild-type 

p53 through the formation of a heterotetramer complex. These results indicate that in 

some cases one “hit” is sufficient to cause tumorigenesis. Furthermore, dominant-

negative p53 mutants may play a pivotal role in accelerating glioblastoma development. 

The average age of patients that harbor dominant-negative p53 mutations is significantly 

lower than those that do not possess these mutants. Thus far, there is evidence that p53 

mutants contribute to a wide array of functions such as tumor proliferation, survival, 

replication, somatic cell reprogramming, genomic instability, inflammation, disruption of 

tissue architecture, migration, invasion, angiogenesis, and metastasis. Despite several 

decades worth of research on p53, there is still more to learn about the roles that p53 

and its mutants play in tumorigenesis26,29,32–34.  

 

1.13 The tumor microenvironment (TME) 

The TME includes a collection of seemingly normal cells that surround a tumor 

and contribute to tumorigenic traits. Blood and lymph vessels, immune cells, and 

fibroblasts, as well as soluble signaling molecules and extracellular matrix make up 

components of the TME. Studies in many cancer types have implicated the TME in 

promoting tumor progression. Through multiple signals, a tumor can alter the TME to 

create favorable conditions for proliferation. The TME can, in turn, signal to the tumor 

and modulate survival, proliferation and differentiation, via transducing signals into cells 

through a variety of cell surface receptors. Intra-tumoral heterogeneity allows 
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subpopulations of cells to differentially respond to TME signals. Fully recognizing the 

contribution of the TME to tumorigenesis and can aid in identifying new therapeutic 

targets and developing novel drugs35–38.  

 

1.14 Cancer Treatments 

1.14.1 Surgery 

Advances in cancer treatment underwent slow development from initial 

references of cancer treatment until today. Ancients realized that cancer would usually 

recur once removed, and intervention may do more harm than good. Galen wrote that 

surgical cures for breast cancer were possible and depended on the full resection of the 

tumor early in the disease. At the time, surgery was primitive without general anesthesia 

and was encumbered by complications such as severe pain and blood loss. Knowledge 

of the surgical experience prior to the age of anesthesia came in 1812 from the novelist 

Fanny Burney who graphically recounted her traumatic mastectomy experience in 

18112,6,39. 

 

Major advancements in the treatment of cancer didn’t arrive until 1846 with the 

advent of anesthesia. General anesthesia enabled surgeons Theodor Bilroth in 

Germany, W. Sampson Handley in London, and William Halsted in Baltimore, to perform 

extensive tumor resections that included the primary tumor and the regional lymph 

nodes. Halstead introduced the radical mastectomy as the standard of care in 1894 and 

continued to refine it in the United States. This practice was based in part on work by 

Handley, who believed that the primary tumor spread outward by invasion40,41.  

 

Radical mastectomy was a gruesome and highly disfiguring operation. Not only 

were the tumor and lymph nodes removed, but the surrounding muscles of the chest 
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wall and extended lymph nodes were removed as well, based on the belief that the 

patient could be cured with a greater excision. This remained the standard of care 

treatment of breast cancer until the 1970’s with 90% of patients treated with radical 

mastectomy between 1890 and 1975. This extreme surgery was unnecessary in many 

cases. For women with local disease, the tumor hadn’t invaded surrounding tissue 

necessitating such an extensive surgery. For women with metastatic disease, the 

disease was incurable with surgery alone. A better understanding of cancer biology was 

needed to reduce undue harm and improve outcomes over surgery alone42–45. 

 

In 1889, Stephen Paget developed the seed and soil hypothesis (see previous 

section) suggesting that cancer cells from a primary tumor metastasized through the 

bloodstream and demonstrated organotropism. The full appreciation of this hypothesis 

was delayed, but eventually became a defining element in acknowledging the limitations 

of cancer surgery. It ultimately led to the development of systemic treatments used after 

surgery to kill cells that had spread, allowing less destructive operations. Today, 

systemic treatments may be used prior to surgery as well8,11,12.  

 

In the 1970s, clinical trials revealed that most women with breast cancer can 

undergo less extensive surgery and have equally effective outcomes. Current surgical 

treatment for most women with breast cancer include removing the primary tumor by 

lumpectomy, and then follow with radiation therapy44. 

 

Throughout the end of the 20th century, surgeons continued to develop greater 

technical skills in maximizing the extent of tumor resection while minimizing the amounts 

of normal tissue removed. This progress was made possible by enhanced knowledge of 

cancer biology, better surgical instruments, chemotherapy, and radiation. Until the end of 

https://www.cancer.org/treatment/treatments-and-side-effects/clinical-trials.html
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the 20th century, surgery was frequently required to obtain tissue samples for testing by 

pathologists to diagnose cancer. Beginning in the 1970’s, many operations for diagnostic 

purposes are unnecessary due to the advancement in imaging modalities such as 

ultrasound (sonography), computed tomography (CT scans), magnetic resonance 

imaging (MRI scans), and positron emission tomography (PET scans). CT scans and 

ultrasound can be used to guide biopsy needles into tumors to obtain tissue samples for 

pathologic testing44,46,47.  

 

Today, surgeons have the ability to visualize and perform laparoscopic surgery 

(inside the abdomen) or thorascopic surgery (inside the chest) by using specialized 

surgical instruments through narrow tubes that are placed in small incisions in the skin. 

Endoscopic surgery is similar, but differs in that the tubes are placed in natural orifices 

and can be used to remove some tumors from the colon, esophagus, or bladder48,49.  

 

Lasers, as opposed to scalpels, can also be used to cut or vaporize tumor tissue 

of cervix, larynx, liver, rectum, skin and other organs. Recently, even less invasive ways 

of killing tumors are being investigated including cryosurgery and radiofrequency 

ablation. Cryosurgery uses liquid nitrogen spray to freeze and kill abnormal cells, and 

radiofrequency ablation transmits radio waves to a small antenna positioned in the tumor 

to kill cancer cells by heating49–51. 

 

1.14.2 Hormone Therapy 

In 1878, George Thomas Beatson, a British physician, discovered that rabbits 

ceased the production of breast milk following the removal of the ovaries, or 

oophorectomy. This indicated that one organ (the ovaries) controlled the ability of a 

separate organ (the breasts) to produce a secretion (breast milk). Beatson decided to 
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test oophorectomy in women with advanced breast cancer, finding that oophorectomy 

frequently resulted in improvement. He also surmised that the ovaries were the cause of 

breast cancer. Beatson essentially identified the stimulating effect of estrogen, the 

female ovarian hormone, on breast cancer, even before it was discovered. This work 

established the modern use of hormone therapy to treat or prevent breast cancer, such 

as tamoxifen (blocks estrogen receptor) and the aromatase inhibitors (blocks estrogen 

production)52. 

 

Following Beatson’s discovery, Charles Huggins, a urologist, in 1941 described 

dramatic regression of metastatic prostate cancer following castration (orchiectomy), or 

removal of the testicles. Based on this observation, a hormonal influence on prostate 

cancer was established. Following Huggins discovery, an effective treatment for prostate 

cancer was realized in androgen deprivation therapy through surgical (orchiectomy) or 

medical castration (luteinizing hormone-releasing hormone (LHRH) agonists). Huggins 

was awarded the Nobel Prize in 1966 for discovering in hormones could be used to 

control the spread of some cancers53. 

 

The contributions of Beatson and Huggins to the field of cancer biology has led to 

the understanding of the influence of hormones on cancer growth. This has directed the 

development of a variety of new drugs for cancer treatment. 

 

1.14.3 Radiation Therapy 

In 1896 a German physics professor, Wilhelm Conrad Roentgen is credited as 

the discoverer of the X-ray. Worldwide excitement led to plans for X-ray use in 

diagnostics within months, and within 3 years, radiation was used for cancer treatment. 

In 1901, Roentgen received the first Nobel Prize awarded in physics. In the early 20th 

https://en.wikipedia.org/wiki/Hormone
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century, soon after radiation was used for diagnosis and therapy, researchers 

discovered that radiation could cause cancer as well as cure it. Many early radiologists 

developed leukemia from exposing themselves to radiation routinely. They would use 

their skin to test the optimum radiation strength of the machines by identifying a dose 

that produced a pink reaction (erythema) similar to a sunburn. This was called the 

erythema dose and indicated an estimate of the proper daily fraction of radiation.  

 

Recent radiation physics and computer technology advancements made it 

possible to direct radiation more precisely leading to several types of radiation therapy 

described below: 

 

i. Conformal radiation therapy (CRT) – uses CT images and computers to precisely 

map the cancer location in 3 dimensions. Radiation beams are matched to the 

tumor shape and delivered from several directions. A plastic mold is fitted to the 

patient to ensure the body is kept still and in the same position for each 

treatment54.  

 

ii. Intensity-modulated radiation therapy (IMRT) – similar to CRT, but the beams 

can vary in intensity allowing more control of dosing so that normal tissues are 

less affected55.  

 

iii. Conformal proton beam radiation therapy – similar to CRT, but uses proton 

beams instead of X-rays causing less damage to tissues it passes through. Can 

deliver more radiation while potentially reducing damage to normal tissue with 

this method54. 
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iv. Stereotactic radiation therapy – encompasses several techniques that deliver a 

large and precise radiation dose to a small area. The brain is the most common 

site treated with this technique54,56. 

 

v. Intraoperative radiation therapy (IORT) – cancer is removed surgically 

immediately followed by radiation to adjacent tissues. Commonly used in 

abdominal, and pelvic tumors as well as in cancers that tend to recur, such as 

bladder cancer57,58. 

 

Currently research is being conducted to identify radiosensitizers that make 

cancer more sensitive to radiation therapy. Ideal agents would make the tumor more 

sensitive while having a minimal or no effect on normal tissues. Research is also being 

done to identify formulations that protect normal cells from radiation54.  

 

1.14.4 Chemotherapy 

The development of chemotherapy for cancer treatment was a result of 

knowledge obtained after military people were exposed to mustard gas during World 

War II. Exposed people had considerably reduced leukocyte count due to bone marrow 

cell toxicity. Investigators asked whether similar compounds to mustard gas would be 

effective anti-cancer therapies. This led to the identification of nitrogen mustard 

(mustine), which was effective against lymphoma. In the 1940’s, Alfred Gilman and Louis 

Goodman, two pharmacologists at Yale, studied mustard agents for the treatment of 

lymphoma. They demonstrated efficacy of mustard agents in mice models of lymphoma. 

In 1943, in collaboration with Gustav Linskog, a thoracic surgeon, Gilman and Goodman 

injected nitrogen mustard into a non-Hodgkin’s lymphoma patient. The patient’s tumors 

significantly reduced after treatment, marking the beginning of the era of cytotoxic 
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treatment of cancer. The results of this study were published in 1946, resulting in 

nitrogen mustard becoming a popular treatment for lymphomas in the United States. 

Nitrogen mustard became the prototype for the development of other, more effective 

mustard gas derivatives known as alkylating agents. Examples of alkylating agents 

include the tetrazines and cisplatins, which have the ability to kill rapidly growing cells 

through damaging DNA by alkylation59,60.  

 

Another approach to chemotherapy agents was investigated by Harvard Medical 

School pathologist, Sidney Farber. He considered folic acid, an essential vitamin in DNA 

metabolism, as a target for anticancer effects. Farber developed a folate analogue, 

aminopterin, that was antagonistic to normal folate and in 1948 showed that this could 

induce remissions in children with acute lymphoblastic leukemia. Aminopterin preceded 

methotrexate, a folate analogue used today for the treatment of cancer. In 1956, 

methotrexate proved extremely effective in metastatic cancer against a rare tumor, 

choriocarcinoma, by curing it. Other examples of chemotherapies include plant alkaloids 

extracted from Vinca rosea that were reported to be effective in leukemia patients. This 

led to the introduction of the vinca alkaloids, vinblastine and vincristine in the 1960’s. 

Researchers continued to investigate others therapies and their ability to block cell 

growth and replication in cancer, which initiated the era of chemotherapy61–64. 

 

Intense research efforts went into identifying other agents with anticancer 

properties. In 1978 cisplatin, an alkylating agent, was approved by the U.S. Food and 

Drug Administration (FDA) for the treatment of testicular cancer, ovarian cancer, and 

bladder cancer. Cisplatin was wildly successful in treating testicular cancer and 

effectively considered a cure. The approval for cisplatin in bladder cancer made cisplatin 

the first chemotherapy drug approved for bladder cancer and is still used today. Another 
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alkylating agent, temozolomide, was identified as effective against melanomas and 

certain brain cancers. In 1999, the FDA approved temozolomide for refractory anaplastic 

astrocytomas, and in 2005 for newly diagnosed adult glioblastomas (GBM). 

Temozolomide is still the first line chemotherapeutic agent for GBM65–67. 

 

In the early 20th century, only small localized cancers that could be entirely 

removed by surgery were considered curable. Later, radiation therapy was introduced 

after surgery to destroy remaining cancer cells not able to surgically excise. Finally, 

chemotherapy was introduced to kill cancer cells spread beyond the local tumor 

environment beyond the reach of the surgery or radiation. Chemotherapy used after 

surgery is called adjuvant therapy. Sometimes chemotherapy is used before surgery and 

is called neoadjuvant therapy.  

 

The introduction of chemotherapy has proven successful in the treatment of 

many cancers. Long-term remission or cures have been attributed to chemotherapy. 

However, this has not come without compromise. The side effects associated with some 

chemotherapies are sometimes intense and dose limiting due to the non-specificity of 

these drugs to cancer cells. The intent of chemotherapy use is to affect rapidly dividing 

cancer cells; however, normal dividing cells are also affected resulting in toxicities. This 

makes the use of chemotherapies a fine balance between killing tumor cells while 

managing potentially life-threatening side effects. 

Over the last two decades, chemotherapy has been aimed at the use of 

combination chemotherapy, with differing mechanisms of action to effectively treat the 

cancer and reduce side effects. Treatment approaches in conjunction with early 

detection has improved patient survival and demonstrated a decline in mortality. There is 

now the trend to identify who will respond best to certain chemotherapies based on 
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genetic markers. Ongoing clinic trials stratify patients based on their genetics and test 

new treatment options again standard treatments so that benefits and risks are 

appropriately understood68,69.  

 

1.14.5 Immunotherapy 

There are multiple descriptions of tumors shrinking or disappearing following an 

infection or elevated febrile episode dating back to ancient times up until the early 18th 

century. Histologic principles first had to be established before these accounts were able 

to be validated.  

Two German physicians, W. Busch and F. Fehleisen, independently observed 

tumor regression in patients after accidental infections by erysipelas. In 1868, Busch 

intentionally infected a cancer patient with bacteria and the tumor shrank. Fehleisen 

followed suit in 1882 witnessing the same result from a streptococci-causing erysipelas. 

In 1891, an American surgeon, William Coley, independently observed regression of a 

sarcoma after he injected an inoperable patient with streptococcal organisms. Over the 

next several decades, Coley injected over 1000 cancer patients with bacteria or bacterial 

products known as Coley's Toxins, bringing the field of cancer immunology to life. He 

and fellow doctors injected Coley’s Toxins into cancer patients and reported exceptional 

results, particularly in bone and soft-tissue sarcomas. However, many colleagues were 

in disbelief of Coley’s results, fueled by the lack of good scientific protocols and 

inconsistencies in reproducibility. These controversies along with the advent of radiation 

therapy and chemotherapy led to the gradual disappearance of Coley’s Toxins from use, 

as well as cancer immunotherapy for the time being70–72.  

 

In 1976, there was a resurgence of Coley’s principles and cancer immunotherapy 

when the use of bacteria was finally justified. Morales et al. validated the effectiveness of 



 

 35 

the bacterium Bacillus Calmette-Guérin (BCG) in the treatment of superficial bladder 

cancer. A 1959 study by Old et al demonstrated the anti-tumor effects of BCG in a 

mouse model and provided the basis for the 1976 clinical trial. Coley and Old have each 

been denoted as the “Father of Immunotherapy” due to their foundational contributions 

to the field73–75. 

 

Today, cancer immunotherapies are defined as a type of treatment that uses 

biological agents to exploit the innate ability of the immune system to combat cancer. 

These biological agents can now be produced in the laboratory and used as cancer 

immunotherapies, many of which function with different mechanisms of action. These 

treatments can exert their function directly by helping the immune system attack the 

cancer or indirectly though general stimulation of the immune system9,76,77. 

 

Types of immunotherapy that function directly include: 

i. Checkpoint inhibitors - T cells can distinguish between healthy cells and 

malignant cells through activation or deactivation of various receptors on the T-

cell surface. Cancer cells can escape immune detection by mimicking healthy 

cells through the expression of cell surface molecules that interact with T cell 

receptors. This results in the immune system remaining inactive against the 

cancer cells. Checkpoint inhibitors are drugs that help the immune system 

respond to the presence of a tumor cell and kill it. These drugs work by inhibiting 

the inappropriate interaction between T cells and cancer cells, thereby releasing 

T cells’ inhibition to kill cancer cells. These drugs do not target the tumor directly, 

but block the ability of cancer cells to evade immune system attack. Three main 

checkpoint targets include PDL-1 (programmed death ligand-1), programmed cell 

death protein-1 (PD-1), and cytotoxic T-lymphocyte associated protein 4 (CTLA-
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4). Inhibiting these checkpoints has been the primary focus for the treatment of 

bladder cancer, and have many inhibitor agents approved. These treatments 

hold promise in being effective in many other cancer types, and are currently 

being tested in clinical trials. Limitations of these inhibitors include their 

associated adverse events, cost, and access. Immune-related adverse events 

are the most worrisome of the limitations and can be severe and life-threatening 

due to the overstimulation of the immune system or the induction of 

autoimmunity. Adverse events frequently include rash and gastrointestinal 

complications, but may also result in pulmonary, renal, endocrine, and hepatic 

dysfunction78–80.  

 

ii. Adoptive cell transfer (ACT) - A treatment that attempts to boost the natural 

ability of the patients’ T-cells to fight cancer. T-cells are isolated from the tumor 

and those that show the most activity against the cancer are grown in large 

batches in the lab for 2 to 8 weeks. During this time, chemotherapy or radiation 

therapy may be used to reduce immune cells and enhance ACT efficacy by 

eliminating cells that compete for homeostatic cytokines necessary for survival of 

the transferred cells. After these treatments, the T-cells that were grown in the 

lab are given back and hopefully attack the cancer. There are several types of 

adoptive cell transfer protocols, with the greatest advancements seen in chimeric 

antigen receptor (CAR) T-cell therapy, which uses a patients’ own T-cells that are 

engineered in the lab to express a receptor for a specific antigen of interest on 

tumor cells. The modified cells are then reintroduced to the patient and home to 

the tumor cells expressing the antigen. Limitations to CAR T-cell therapy include 

toxicities and cost of over $250,000 per infusion. Toxicities can be severe and 

include neurologic, cardiovascular, hepatic, renal, gastrointestinal, and 
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musculoskeletal effects. Despite toxicity profiles, in 2017 the FDA approved two 

CAR T-cell therapies, Kymriah™ (tisagenlecleucel) and Yescarta™ 

(axicabtagene ciloleucel), the first gene therapies approved in the United States. 

Kymriah™ was approved for patients less than 25 years old with refractory or 

relapse acute lymphoblastic leukemia, and Yescarta™ was approved to treat 

adults with refractory or relapse large B-cell lymphoma. Research is still being 

conducted to demonstrate the efficacy of CAR T-cell therapy in the treatment of 

solid tumors81–85. 

 

iii. Monoclonal antibodies - Therapeutic monoclonal antibodies are immune system 

proteins created in a lab and designed to attach to specific target antigens on 

cancer cells. Due to this specificity, therapeutic monoclonal antibodies are also 

considered targeted therapies. Some monoclonal antibodies bind to cancer cells 

and recruit the immune system. Other monoclonal antibodies bind cancer cells 

and directly stop them from growing or cause them to die. Certain antibodies are 

conjugated to drugs or toxins and deliver them to cancer cells. Rituximab 

(Rituxan) and trastuzumab (Herceptin) in the late 1990’s were the first 

therapeutic monoclonal antibodies approved that specifically target CD20 on 

lymphoma cells and HER2 on breast cancer cells, respectively. Since then, many 

other monoclonal antibodies have been developed to target blood and solid 

cancers. The specificity of monoclonal antibodies makes them an attractive 

therapeutic option and is one of the main advantages for their use as a cancer 

treatment. Limitations of monoclonal antibodies include adverse reactions, such 

as infusion-related reactions and tumor lysis syndrome. Infusion-related reactions 

are any symptoms experienced by the patient during infusion of the antibodies or 

during the first day of treatment, and can be mild or extend to life-threatening 



 

 38 

anaphylaxis. Tumor lysis syndrome can occur after administration of monoclonal 

antibodies causes large amounts of tumor cells to die resulting in acute renal 

failure and associated electrolyte imbalances, which may be fatal. More common 

adverse reactions include chills, malaise, headache, vomiting, diarrhea, and 

rashes. Other limitations of monoclonal antibodies in the treatment of cancer 

include the high production cost, which is estimated to be double that of other 

standard drugs. Monoclonal antibodies for the treatment of cancer continue to be 

developed to offer more specific, less toxic, and more cost-effective 

treatment76,77,86.  

 

iv. Treatment vaccines – Boosts your immune system’s response to cancer cells. 

Treatment vaccines do not refer to preventative vaccines. 

 

Types of immunotherapy that function indirectly include: 

I. Cytokines - Proteins that play important roles in the body’s normal immune 

response and in the immune system’s ability to respond to cancer and include 

interferons and interleukins. Interferon-alpha and interleukin-2 are the main 

cytokines being used as anti-cancer therapies. Interleukin-2 is normally produced 

by activated T-cells in response to infection and as a cancer therapy can 

stimulate T-cells to target cancer cells and B-cells to produce anti-cancer 

antibodies. Interferon-alpha may boost the immune response by enhancing the 

production of dendritic cells, natural killer cells and macrophages to attack cancer 

cells, and may also inhibit cancer growth or promote cell death. Cytokine therapy 

been approved for leukemias and lymphomas, melanoma, and renal cell 

carcinoma, and is being used in clinical trials for bladder cancer87–89.  
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II. BCG - An immunotherapy approved in 1976 to treat superficial bladder cancer. It 

is the weakened form of Mycobacterium bovis that causes tuberculosis in cows. 

BCG causes an immune response against bladder cancer when inserted directly 

into the bladder with a catheter. Research is being studied on its effectiveness in 

other types of cancer. 

 

1.14.6 Targeted Therapy 

Prior to the late 1990’s, most drugs used for the treatment of cancer, excluding 

hormone therapy, worked by destroying cells that were undergoing replication and were 

extremely toxic. These chemotherapy drugs had the greatest effect on cancer cells due 

to their rapid proliferative profile, but had toxicity limitations because they affected 

normal proliferating cells. It became clear that targeted therapies were needed to 

increase specificity and reduce toxicities. The concept of targeted therapies refers to 

targeting a genetically distinct alteration in cancer cells that is absent in normal cells, 

thereby enhancing specificity of cancer cell death while protecting normal cells. Specific 

targets for the use of targeted therapies include aberrant growth signaling, pro-

angiogenic signaling, loss of inhibitory or cell death signaling, as well as other signals 

that give cancer cells a growth, survival, or mobility advantage69,90,91.  

 

1.14.6.1 Growth signal inhibitors 

Growth factors bind to cell surface receptors and signal to a cell when to grow 

and divide. The role of growth factors in fetal growth and tissue repair was first 

appreciated in the 1960’s. Subsequently, researchers identified overexpression or 

altered forms of growth factors contribute to carcinogenesis with the molecular 

mechanisms not fully understood. During the 1980s, it was discovered that many growth 

factors, growth factor receptors, and proteins responsible for transducing their 
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intracellular signal were products of oncogenes. This discovery led to the development 

of targeted therapies to block unrestrained cell growth. The earliest of these targeted 

therapies include the monoclonal antibodies trastuzumab (Herceptin; targets HER2), and 

cetuximab (Erbitux; targets EGFR), as well as the tyrosine kinase inhibitors gefitinib 

(Iressa; targets EGFR), and imatinib (Gleevec; targets Bcr-Abl). Monoclonal antibodies 

specific to growth factor receptors can block signaling by inhibiting normal ligand binding 

or by keeping the receptor in its’ inactive conformation. Tyrosine kinase inhibitors can 

interrupt growth signaling by binding to the activate site of tyrosine kinases and compete 

with ATP binding, substrate binding, or both, and can also affect enzyme activity by 

binding to an allosteric site. Limitations of these targeted therapies include specificity, 

delivery, and resistance. Depending on the dose, there may be off-target binding and 

rapid turnover or degradation. Resistance can also be a problem when cells adapt to 

inhibition of one pathway through upregulation of the same pathway or activation of 

orthogonal pathways. These limitations need to be considered when developing new 

targeted approaches and designing clinical trials86,92,93.  

 

1.14.6.2 Angiogenesis inhibitors 

Angiogenesis is the physiological formation of new blood vessels from pre-

existing vessels and has roles in wound healing and repair. In contrast, under a 

pathological setting such as cancer, angiogenesis supports de novo formation of blood 

vessels to provide the growing mass with its own blood supply. However, these blood 

vessels are abnormally formed and tortuous. Anti-angiogenesis substances are forms of 

targeted therapy that inhibit the new formation of blood vessels in tumors. This concept 

of inhibiting angiogenesis in cancer was first suggested by Judah Folkman in the early 

1970s, but the first angiogenesis inhibitor, bevacizumab (Avastin), wasn’t approved for 

clinical use until 2004. Bevacizumab is used to treat advanced colorectal, kidney, and 
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lung cancers, as well as adult patients with glioblastoma that progressed following prior 

therapy. There are two main anti-angiogenesis classes: (i) antibodies or small molecules 

that target pro-angiogenic factors of tumor cells, such as VEGF, bFGF or PDGF, and (ii) 

endogenous inhibitors of angiogenesis such as thrombospondin-1, angiostatin, 

interferons, endostatin, arresten, canstatin and tumstatin that function by inhibiting 

angiogenesis by targeting vascular endothelial cells. Bevacizumab and other inhibitors of 

angiogenesis are currently being studied as treatment for many other types of cancer. 

However, cancer cells can adapt to a hypoxic setting without an adequate blood supply, 

or produce blood vessels via alternative pathways and survive. To be clinically relevant 

and successful, multiple therapies would have to be used to inhibit angiogenesis through 

canonical or non-cononical pathways, as well as inhibit the ability to adapt to a hypoxic 

environment94–96.  

 

1.14.6.3 Apoptosis-inducing drugs 

Apoptosis, or programmed cell death, is a physiological process of cellular 

suicide committed to remove damaged, mutated, or aged cells. Apoptosis is initiated 

when DNA is too damaged to be repaired as a result of various DNA-damaging agents 

such as radiation or chemotherapy. If a cell doesn’t activate apoptosis and die when it 

should, such as in the case of irreparable DNA damage, the cell will survive with 

mutations potentially leading to aberrant functions that can cause cancer. 

Overexpression of anti-apoptotic proteins, inhibition of pro-apoptotic proteins, or the 

combination of the two can result in cancer. Therefore, apoptotic pathways represent 

potential targets for therapeutic intervention. Several agents targeting some aspect of 

apoptosis are being tested in pre-clinical and clinical trials as single agents or 

combination therapy. Molecules currently being tested include antisense 

oligonucleotides or small molecule inhibitors against anti-apoptotic genes such as Bcl-2 
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and inhibitor of apoptosis proteins (IAPs), BH3-mimetics, and histone deacetylases 

(HDAC) inhibitors. Antisense oligonucleotides are single-stranded synthetic DNA that 

have the ability to bind target mRNA and inhibit expression of the encoded gene and can 

enhance sensitivity to cytotoxic drugs. Main limitations for these drugs is that they are 

rapidly degraded. The development of oblimersen sodium (G3139), an 18-base anti-

BCL-2 mRNA agent has had the most promise, and was the first proof of principle for 

oligonucleotides in inhibiting tumors. Oblimersen is currently being tested in phase I and 

phase II clinical trials for hematologic and solid cancers that have relapsed or are 

unresponsive to standard therapy. Activity of IAPs affect cell death by controlling initiator 

and effector caspases. Overexpression of IAPs have been associated with a poor 

prognosis and chemoresistance in many cancers, making them a good drug target. 

Currently, small molecule inhibitors of IAP are being tested in phase I and phase II 

clinical trials for their efficacy in advanced solid cancers. Small molecule BH3-mimetics 

are a new class of drugs that antagonize anti-apoptotic Bcl-2 family members by 

mimicking pro-apoptotic BH3-only Bcl-2 family members. Navitoclax was the first oral 

BH3-mimetic developed and proved effective against chronic lym phoblastic leukemia. 

However, in clinical trials navitoclax demonstrated dose limiting thrombocytopenia due to 

platelet toxicity. This led to the development of a drug with less platelet toxicity, 

venetoclax. Clinical trials of venetoclax are currently being tested in hematologic cancers 

to enhance response while minimizing toxicities. HDACs are good potential drug targets 

in cancer due to their control of gene expression, and the recognition that HDAC 

overexpression is a critical event in tumorigenesis. The FDA has approved the HDAC 

inhibitors vorinostat (SAHA) and romidepsin (Istodax) for the treatment of cutaneous T-

cell lymphoma, as well as belinostat (Beleodaq) and romidepsin for peripheral T-cell 
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lymphoma. These HDAC inhibitors are further being investigated for ability to inhibit 

other hematologic and solid tumors in phase I and II clinical trials97,98.  

 

1.15 The Omics Era 

Sequencing the human genome along with computational and technological 

advancements in the 21st century have enabled the birth of the omics era. Omics is the 

overarching word that refers to the collective study of specific fields of biology with the 

suffix -omics.  Omic technologies are concerned with the comprehensive detection of 

genes (genomics), mRNA (transcriptomics), proteins (proteomics), epigenetic 

modifications (epigenomics), and metabolites (metabolomics). The integration of this 

information is referred to as systems biology, which takes a holistic perspective of the 

complex interactions of a biological system. Using a systems biology approach to 

understanding cancer has implications in prevention, diagnosis, and treatment99–103.  

 

1.16 The Promise of Precision Medicine 

Precision medicine refers to the custom management of disease often using 

extensive omic analyses and a systems biology approach to identify optimal treatment 

options for an individual patient. Precision oncology is the precision medicine approach 

applied to cancer patients and involves omic profiling of their tumor to identify drug 

targets. This approach allows the ability to predict which treatments will work best in 

different groups of patients and who among them are at the highest risk for rapid 

progression. To be successful in cancer treatment, we must move from a one-size fits all 

approach traditionally used in medicine to a precision medicine approach where the right 

therapy is selected for the right patient at the right time based on their omic profile. A 

prime example demonstrating the need to move toward precision medicine is EGFR in 

GBM. EGFR is overexpressed in GBM making it a good target for inhibition with targeted 
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small molecule tyrosine kinase inhibitors. However, targeted inhibition of EGFR in GBM 

has been unsuccessful due to variable EGFR expression within a GBM, adaption to 

EGFR pathway inhibition, and activation of redundant alternative signaling pathways. 

This example supports the idea that individual cases need to be considered to develop 

the best treatment plans for the best outcomes to be observed. If successful, precision 

oncology holds promise in improving quality of life and extending overall survival99,104–108.   

 

1.17 Molecular Classification of Cancers 

Realizing the potential of precision medicine in cancer is dependent on optimal 

clinical classification, which has previously been hindered by a lack of molecular insight. 

Accordingly, The Cancer Genome Atlas (TCGA) was developed to identify molecular 

alterations involved in cancer and classify patients based on their omic profile. Through 

this mission, TCGA has profiled 33 cancer types beginning with GBM in 2008 and 

extending to others, including bladder cancer. The hopes are that the information 

obtained through TCGA will enable the development of precision medicine approaches 

to treating cancer109,110.  

 

1.18 Towards advancing precision medicine – two tales 

Realizing the potential of precision medicine in cancer is dependent on optimal 

clinical classification, which has previously been hindered by a lack of molecular insight. 

Accordingly, TCGA was developed to identify molecular alterations involved in cancer 

and classify patients based on their omic profile and identify molecular subtypes. 

Through this mission, TCGA has profiled 33 cancer types beginning with GBM in 2008 

and extending to others, including bladder cancer in 2014. The hope is that TCGA 

information and molecular subtype classification will enable the development of precision 

medicine approaches to treating cancer. In some cancers, identification of molecular 
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subtypes has failed to translate clinically. GBM and muscle-invasive bladder cancer 

(MIBC) are two prime examples that demonstrate little clinical advancements despite 

having molecular subtypes defined. Treatment options and overall survival for these 

cancers has minimally changed for these cancers over the past three decades, with less 

than a 5% five-year survival rate for GBM and metastatic MIBC. Furthermore, potential 

therapeutic vulnerabilities have been identified for each of these cancers, but clinical 

trials with targeted therapies aimed at the vulnerabilities have failed to demonstrate 

effectiveness. This is likely due to the lack of integration of knowledge about intra-

tumoral heterogeneity and the tumor microenvironment. Precision medicine approaches 

in GBM and MIBC are direly needed to observe changes in overall survival and have the 

potential to be successful if intra-tumoral heterogeneity and the tumor microenvironment 

are taken into account111–116. 

 

1.19 Glioblastoma multiforme (GBM) 

1.19.1 Gliomas 

GBM is the most common, aggressive and lethal malignant primary brain tumor, 

accounting for 46.1% of all malignant primary brain and CNS tumors diagnosed in the 

United States117. GBM is a glioma, which are the most common type (80%) of malignant 

primary brain and central nervous system (CNS) tumor, and are comprised of cells that 

have similar histologic features of glial cells (astrocytes, oligodendrocytes, and 

ependymal cells)117–120. Adult diffuse gliomas are diffusely infiltrating tumors and are 

classified by the world health organization (WHO) as grade II and III astrocytomas and 

oligodendrogliomas, as well as grade IV glioblastomas (GBM)121.  
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1.19.2 Site 

The majority of adult GBM tumors (95%) occur in supratentorial locations (frontal, 

temporal, parietal, and occipital lobes), though in rare occasions may occur in the 

cerebellum, brainstem, and spinal cord. In order of incidence, GBM most frequently 

occurs in the frontal lobe, followed by multiple lobes simultaneously, temporal lobes, and 

parietal lobes122,123. In contrast to adults, pediatric GBM occurs more frequently (10-30%) 

in central locations such as the ventricles, brain stem, and cerebellum124,125. 

 

1.19.3 Epidemiology 

In the United States, the average annual age-adjusted incidence rate is 2-3 new 

GBM diagnoses per 100,000 people per year, or approximately 13,200 new cases per 

year. GBM is uncommon in children and in adults increases in frequency with age. At 

diagnosis, the median age is 64 years, peaking in incidence between 45 and 75 years of 

age. GBM affects more men at a rate of approximately 1.5 times that of women and is 2-

3 times more common in Caucasians than other race groups126,127. 

 

1.19.4 Prognosis 

GBM is an incurable disease with an exceptionally poor prognosis. A population-

based study in the U.S. showed that median survival for GBM has improved from 4.9 

months to 11.5 months for the periods of 1980 to 1994 and 2005 to 2009, respectively. 

Currently, the median overall survival for GBM is only about 14-15 months, with less 

than a 5% 5-year survival rate. These extensions in overall survival, albeit minimal, are 
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likely attributed to the introduction of temozolomide therapy into the treatment regimen in 

2005 leading to its current widespread use126,127. 

 

1.19.5 Prognostic Factors 

While all patients with GBM have a dismal prognosis, there are some factors that 

help identify better or worse prognosis within the disease. Prognostic factors for GBM 

include extent of surgical resection of the tumor, Karnofsky Performance Scale (KPS) 

score, age, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, 

and isocitrate dehydrogenase 1 (IDH1) mutation. MGMT promoter methylation and IDH1 

mutation status are intriguing prognostic factors as they indicate genetic differences 

between tumors and will be discussed in further detail in subsequent sections. The KPS 

score classifies patients based on their functional abilities or impairments on a scale of 0 

to 100. The higher the score, the greater the functionality; the lower the score, the 

greater the impairment. KPS score and age are more obvious prognostic factors as they 

indicate the ability to recover after treatment. Extent of surgical resection is also an 

obvious prognostic factor as a patient would likely live longer with removal of more of the 

tumor. In general, a younger patient with an extensive tumor resection, IDH1 mutation, 

MGMT promoter methylation, and a high KPS score prior to surgery would have the best 

prognosis of all GBM patients. In contrast, an older patient, with a minimally resected 

tumor, IDH1-WT, MGMT promoter un-methylated, and a low KPS score would have the 

worst prognosis of all GBM patients128–131.  

 

1.19.6 Risk factors 

Accepted risk factors for developing GBM are rare genetic mutations, a family 

history, and exposure to ionizing radiation. However, the majority of cases are not 

attributed to these factors. Rarely, GBM is a consequence of hereditary tumor 
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predisposition syndromes such as Li-Fraumeni syndrome (inherited mutations in the 

tumor suppressor genes TP53 or CHEK2) and constitutional mismatch repair-deficiency 

or Turcot syndrome (inherited biallelic mutations in mismatch repair genes MSH2/6, 

MLH1, PMS2). In these cases, there are usually multiple family members with a history 

of early-onset cancers. In other GBM cases, there is a clear family history of brain 

cancers with no known genetic cause. Exposure to ionizing radiation is the only known 

risk factor for developing GBM, aside from genetic considerations. It’s estimated that 

ionizing radiation increases the risk of developing GBM by 2.5%120,126–128.  

 

1.19.7 Symptoms 

Patients with GBM have progressive neurological symptoms that depend on 

location and size of the tumor. Symptoms can be a direct effect of tumor tissue 

undergoing necrosis and destroying brain tissue, leading to focal neurologic deficits (40-

60%) and cognitive impairment. These types of focal effects are highly dependent on the 

region of the brain the tumor resides. For instance, patients who present with personality 

changes (20-40%) are due to their tumor being in their frontal lobe imparting cognitive 

impairment, while patients who have hearing and visual symptoms have their tumor in 

the temporal lobe. Other focal neurologic symptoms include memory loss, motor 

weakness, and speech difficulty. Symptoms may also be due to a mass effect causing 

secondary pathological effects as a result of increased tumor size. Consequently, there 

is increased edema and intracranial pressure, which leads to a displacement of 

intracranial contents resulting in headaches, the most common symptom in 50-60% of 

GBM patients. Headaches may also be accompanied by nausea and vomiting. New 

onset seizures are also symptoms in GBM patients126,132,133. 
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1.19.8 WHO classification of CNS tumors  

Historically, classification of brain tumors was based on histology and level of 

differentiation. In 2016, the WHO updated it’s 2007 classification parameters to 

incorporate molecular features into the classification scheme of CNS tumors, signifying a 

shift in century-old diagnostic principles to the molecular era. The new classification is 

based on the idea of an integrated or layered diagnosis, combining phenotype and 

genotype classification. The integrated diagnosis layer is the top layer and is only 

applicable if all of the information of the lower layers is available. The second layer is for 

histological classification of cell type (e.g. astrocytoma or oligodendroglioma). The third 

layer involves grading into grade I to IV based on the state of differentiation and level of 

malignancy. The last layer considers molecular features (e.g. IDH-wildtype or IDH-

mutant)121.  

 

Accordingly, GBM is designated grade IV due to being undifferentiated with a 

high level of malignant characteristics (highly invasive, necrosis, mitotic figures, and 

vascular endothelial hyperplasia), and is divided into the following three groups: 

i. GBM, IDH-wildtype - corresponds similarly with the clinically defined primary 

GBM group representing 90% of cases.   

ii. GBM, IDH-mutant - corresponds closely to the clinically defined secondary GBM 

group representing 10% of cases.  

iii. GBM, NOS (not otherwise specified) - a diagnosis given when there is insufficient 

molecular information to make a firm diagnosis. 

 

1.19.9 Primary and secondary GBM 

GBM has traditionally been divided into primary and secondary types based on 

clinical characteristics and distinct genetic modifications. Primary or de novo GBM arises 
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with no known clinical or histological precursor and primarily affects patients over 55 

years of age (mean age = 64 years). Primary GBM is also typified by the presence of 

several genetic alterations such as PTEN and TERT promotor mutations, 

overexpression of EGFR and MDM2, as well as CDKN2A (p16/INK4a) deletion. 

Secondary GBM tends to occur in younger patients (mean age = 45 years) with a history 

of a precursor low grade diffuse glioma lesion. Genetic aberrations characteristic of 

secondary GBM include mutations in IDH1/2, ATRX, and TP53, as well as amplification 

of platelet-derived growth factor (PDGF) signaling by over expression of PDGFA and 

PDGFRA. Loss of heterozygosity of the 10q chromosomal arm occurs in both primary 

and secondary GBM with 70% and 65% of patients affected, respectively134–136. 

 

1.19.10 Glioma - CpG island methylator phenotype (G-CIMP) 

G-CIMP, a promoter hypermethylator phenotype, may be an additional method to 

further classify secondary GBM. Studies using a GBM tumor tissue database identified 

this phenotype in younger patients with IDH1 mutant tumors who had a better prognosis 

compared with similarly classified patients without G-CIMP. Independent of tumor grade 

and histology, demethylation signifies glioma progression with G-CIMP-high tumors 

evolving to G-CIMP-low at recurrence129,137,138. 

 

1.19.11 Macroscopic and Histologic Features of GBM 

As the multiforme designation suggests, GBM displays diverse macroscopic and 

histologic features (Figure 1). At the macroscopic level, both multifocal and multicentric 

disease can be appreciated. Frequently GBM will be displayed as a single, large, 

irregularly shaped tumor with thick margins surrounded by vasogenic edema, a central 

necrotic core, and the potential for a hemorrhagic element. In multifocal disease, tumor 

foci are noticeably linked by abnormal white matter, which represents microscopic 
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dissemination of tumor cells. In multicentric disease, no connections between tumor foci 

can be appreciated. Grossly there are heterogeneous features of hemorrhagic, necrotic 

(soft and yellow), cystic (firm and white), and gelatinous regions identified. Histologically 

there is a diversity of patterns with pleomorphic cell populations featured throughout the 

tumor. GBM displays high cellularity with a range of cell architectures such as small 

undifferentiated tumor cells, large multinucleated tumor cells, pseudopalisading cells 

around regions of necrosis, proliferative vascular endothelial cells, and glomeruloid 

vascular structures. Microscopic infiltration into normal brain structures and a high Ki-67 

labeling index, indicating proliferative activity, are also characteristic features of 

GBM121,136,139. 

 

Figure 1. Macroscopic and histologic view of glioblastoma.  

(A) Post-gadolinium contrast T1-weighted MRI showing a large mass in the superior part of the right 
temporal lobe with irregularly enhanced margins. (B) T2-weighted MRI demonstrating an intense signal in 
the center of the mass, suggestive of necrosis. (C) Hemotoxylin and eosin staining of a glioblastoma section 
showing enhanced cellularity (EC), necrosis (N), pseudopalisading cells around necrosis (PAN), and 
prominent vascularity (V). (A and B) Adapted from Glioblastoma NOS Case courtesy of A.Prof Frank 
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Gaillard, Radiopaedia.org, rID: 8939. (C) Adapted from Abdelzaher, E. Glioblastoma multiforme. 
http://www.pathologyoutlines.com/topic/cnstumorglioblastoma.html. Accessed July 17th, 2018. 

 

1.19.12 Histological GBM variants 

There are several histological variants of glioblastoma recognized with distinct 

histologic features. Giant cell GBM, gliosarcoma, and epihelioid GBM are all IDH-

wildtype GBM. Other patterns include GBM with primitive neuronal component, small cell 

GBM and granular cell GBM. Giant cell glioblastoma display large cells that are up to 

400 μm diameter that are multinucleated with greater than 20 nuclei per giant cell. A 

stromal reticulin network occasionally will be present and these cells have a high 

frequency of TP53 mutations. Gliosarcoma exhibit gliomatous and sarcomatous 

features. This variant has similar genetic alterations as traditional GBM, though with 

infrequent MGMT promoter methylation and EGFR mutations. Epithelioid GBM display 

large epithelioid cells that have an eosinophilic-rich cytoplasm, prominent nucleoli, 

chromatin with vesicular components, and may have rhabdoid cells present. This variant 

lacks classic IDH-wildtype genetic features such as EGFR amplifications and 

chromosome 10 loss. GBM with primitive neuronal component was previously referred to 

as GBM with primitive neural ectodermal tumor (PNET)-like component, and has well-

demarcated nodules with neuronal differentiation exhibited in primitive cells. This GBM 

variant occasionally has MYC or MYCN amplification with approximately 25% 

developing from a low-grade glioma precursor and are IDH-mutant. Small cell GBM 

features uniformly small cells that resemble oligodendrogliomas, which regularly amplify 

EGFR. Granular cell GBM is characterized by lysosome-rich cells that are granular or 

macrophage-like121,140. 

 

1.19.13 Treatment 
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GBM is treated through a multimodal approach consisting of surgical debulking of 

the tumor, followed by adjuvant radiation therapy and concomitant temozolomide 

chemotherapy141.  

 

The primary goal of surgery is to resect as much of the tumor as possible while 

preserving neurological function. Debulking surgery usually reduces symptoms 

associated with the mass effect of the tumor such as increased intracranial pressure, 

seizures and neurological deficits, thereby improving the quality of remaining life and 

possibly prolonging life. The extent of surgical resection usually depends on the location 

of the tumor and how crucial that site is to normal function. However, complete resection 

is impossible due to the highly infiltrative nature of GBM cells, which invade normal brain 

tissue and create undefined tumor margins141,142.  

 

Several intraoperative techniques are used to improve the extent of surgical 

resection while preserving normal brain function. For tumors involved in the speech, 

sensory or motor cortex, an awake craniotomy may be performed along with frameless 

computer guided stereotaxis and cortical stimulation to identify the location of these 

cortices and avoid them during resection. This technique incorporates previously 

acquired MRI and CT scans with a neuronavigational system to identify intracranial 

locations. Alternatively, intracranial navigation can assist the resection in real time by 

employing intraoperative CT or MRI scanners. The latter technique does not rely on 

preoperative data, and can identify residual tumor after initial resection and can guide 

further resection. Despite the attempt for complete resection and advancements in 

technology to assist in complete resection, recurrences are almost always inevitable143–

146. 
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Seminal studies in GBM have shown that radiation therapy following surgery 

extends survival compared with surgery alone. Therefore, the treatment protocol for 

GBM patients includes post-operative radiation therapy to kill any remaining tumor cells 

that were unresectable during surgery, including infiltrating tumor cells that may be 

present beyond the visible tumor margin147. Unfortunately, some tumors may exhibit 

radio-resistance and recur. There are also side effects associated with radiation therapy 

and include radiation-induced necrosis and permanent neuronal damage141,148.  

 

Following surgery, median survival was improved in GBM patients treated 

concomitantly with temozolomide and radiation therapy (14.6 months) compared to 

radiation therapy alone (12.1 months; Figure 2). Other chemotherapy regimens other 

than temozolomide have been tested in clinical trials, but temozolomide has 

demonstrated superiority. Therefore, the standard chemotherapy treatment for GBM is 

temozolomide and is administered concurrently with radiation therapy, as well as 6 to 12 

cycles after radiation therapy. Temozolomide is given the first 5 days of each 28-day 

cycle, followed by a recovery period of 23 days. Side effects of temozolomide treatment 

include nausea, vomiting and dose-limiting myelosuppression65,149.  
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Figure 2. Kaplan-Meier estimates of overall survival by treatment group.  

The radiotherapy plus temozolamide group demonstrated a longer overall survival as compared to the 
radiotherapy alone group with a hazard ratio for death at 0.63 (95% confidence interval, 0.52-0.75; p<0.001). 
Adapted from “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma” by R. Stupp, 
et.al., 2005, N Engl J Med, Volume 352 (Issue 10), p.987-96. Copyright [2005] by Massachusetts Medical 

Society150. 

Aside from the standard of care approaches to treat the tumor, GBM 

management also includes supportive care, which entails treating worsening symptoms 

due to the tumor or the standard treatment. Thorough management includes treating 

cerebral edema, seizures, cognitive impairment, mood disorders, as well as other 

symptoms previously described133,141,151.  
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1.19.14 GBM Molecular Subtypes 

In 2008, TCGA began a series of systematic studies of different cancer types, 

and GBM was the first to be investigated. The initial study involved the analysis of 206 

GBMs at the genomic and transcriptomic level, which allowed the detection of somatic 

modifications that commonly converged on three signaling pathways. The common 

pathways altered include the p53 stress response pathway (87% of GBMs), Rb cell cycle 

control signaling pathway (78% of GBMs), and receptor tyrosine kinase/RAS/PI3K signal 

transduction pathway (88% of GBMs). Despite the convergence on common pathways, 

extensive inter-tumor genomic heterogeneity was also appreciated. In 2010, Verhaak 

and colleagues reported the results of employing an iterative consensus clustering 

method to group the cohort of patients in the TCGA analysis based on similar molecular 

features and resolved the inter-tumor heterogeneity, leaving intra-tumor heterogeneity 

unresolved. This resulted in the classification of GBM into four distinct molecular 

subtypes based on gene expression and are identified as proneural, neural, classical, 

and mesenchymal (Figure 3)115,116.   
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Figure 3. GBM molecular subtypes as defined by TCGA.  

Heatmap of TCGA patient samples (x-axis) ordered based on molecular subtype predictions and an 840-
gene list (y-axis) was clustered using 173 TCGA GBM samples. Prominent genes in each cluster are labeled 
on the left. Adapted from “An integrated genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1” by R. Verhaak, et.al., 
2010, Cancer Cell, Volume 17 (Issue 1), p.98. Copyright [2009] by the Elsevier Inc115.  
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The proneural subtype is characterized by PDGFRA amplifications, as well as 

IDH1 and TP53 mutations. Modifications in PDGFRA and TP53 were seen in other 

subtypes, but the majority were seen in the proneural subtype. IDH1-mutant GBM are 

nearly exclusive to proneural tumors, and harbor a DNA hypermethylation profile termed 

G-CIMP as defined in a previous section, which provide a survival advantage of this 

subtype over others. Interestingly, proneural tumors are also enriched in oligodendrocyte 

proneural genes115,137,138. The classical subtype is typified by EGFR amplification and 

loss of CDKN2A. Classical tumors distinctively lack TP53 mutations and have similar 

enrichment patterns as astrocytes115,152. The mesenchymal subtype typically has NF1 

deletion or mutations, and mutations in PTEN and TP53. Notably, this subtype has 

enrichment of genes expressed in cultured astroglia cells115,116. Distinct molecular 

aberrations have not been identified for the neural subtype. However, this subtype has 

been found to have similar gene expression to normal astrocytes and 

oligodendrocytes115. Recent studies attempting to validate GBM molecular subtypes, as 

well as single cell profiling of GBM tumors indicate that the neural subtype is not a true 

subtype153,154.  

 

The molecular subtypes identified through the auspices of TCGA are a valuable 

reference for GBM110. However, these subtypes have yet to find clinical utility. While 

molecular subtypes were able to resolve general inter-tumor heterogeneity, intra-tumor 

heterogeneity remains unresolved155. Recent regional and single-cell studies have 

shown that indeed various subtypes had the ability to co-exist within an individual 

tumor153,154. The assigned subtype likely reflects the dominant expression profile of the 

tumor sample isolated at a particular location and time. Furthermore, regional biopsy 

sampling may confound subtyping in cases where samples are obtained from the most 

convenient location, not necessarily the most malignant region due to it residing in an 
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eloquent location. Additionally, sampling may have been directed by MRI intensity, which 

tends to coincide with vasculature leakiness, not the region of proliferating tumor156,157.  

 

1.19.15 Resistance to standard treatment 

The mechanism of action of temozolomide is DNA alkylation by methylating 

purines at the N7 and O6 position on guanine and N3 position on adenine158–160. 

Temozolomide cytotoxicity is induced primarily by O-6-methylguanine, which 

erroneously hydrogen bonds with thymine during DNA replication. Failure of the DNA 

mismatch repair (MMR) system to identify an appropriate complementary base, 

ultimately results in single and double stranded DNA breaks, which blocks progression 

of the cell cycle and triggers apoptosis. However, cells can escape apoptosis and lead to 

temozolomide resistance if deficient in the MMR system or if MGMT is expressed. 

MGMT expression confers resistance due to its ability to transfer the methyl group of O-

6-methylguanine to a sulfur in MGMT’s own catalytic pocket, which repairs guanine and 

inactivates MGMT. Each MGMT copy can transfer only one methyl group making repair 

dependent on the level of MGMT expression. Accordingly, epigenetic silencing of MGMT 

via MGMT promoter methylation is associated with longer overall survival in patients 

treated with the standard of care161,162. The addition of the MGMT inhibitor O-6-

benzylguanine to temozolomide treatment has been investigated to induce sensitization, 

but inhibition of MGMT has not been successfully sustained through this approach163,164. 

 

Furthermore, temozolomide treatment induces mutations in the setting of 

silenced MGMT and deficient MMR, which may lead to a hypermutator phenotype 

frequently observed in recurrent tumors165,166. Currently, the prognostic significance of 

the hypermutator phenotype is not fully understood. Additionally, GBM mesenchymal 

cells display resistance to radiation and recurrent tumors typically display a shift to the 
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mesenchymal subtype160,167. However, it is not yet appreciated how non-mesenchymal 

tumors develop radiation resistance and recur as mesenchymal.  

 

1.19.16 Heterogeneity 

Glioblastoma is the archetypal heterogeneous tumor displaying a high degree of 

both inter- and intra-tumoral heterogeneity168,169. Studies investigating inter-tumor 

heterogeneity have led to the molecular subtyping classification previously described. 

Intra-tumoral heterogeneity, on the other hand, has not been studied in depth and is not 

well understood155. Spatially distinct GBM samples analyzed in bulk or at the single cell 

level have revealed that morphologic, genotypic and phenotypic diversity exists153,154,170. 

This intra-tumoral heterogeneity contributes to clonal adaptions to the microenvironment 

with individual clones demonstrating unique proliferative, differentiation, and therapeutic 

responses. The heterogeneous responses in a single tumor likely underlie the failure of 

standard treatment to achieve long-term survival. The interplay between inter and intra-

tumoral heterogeneity highlights the need for non-reliance on single-agent 

chemotherapy. Spatiotemporal sampling of GBM has demonstrated that a single-site 

biopsy is insufficient in capturing an accurate assessment of the heterogeneous genetic 

alterations in the bulk tumor171,172. A precision oncology approach will be necessary to 

effectively target spatially heterogeneous clonal aberrations and extend overall survival.  

 

1.19.17 Recent Advancements in Treatment 

Numerous immune-based therapies are currently being investigated for the 

treatment of gliomas and include immune checkpoint inhibitors, peptide vaccines, 

dendritic cell vaccines, and engineered T-cell therapy. In particular, immune checkpoint 

blockade has proven its value in treating patients with a number of cancer types. Robust 

responses have been witnessed in tumors that have high mutational loads and are 
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deficient in MMR genes, such as non-small cell lung cancers and melanomas. This has 

garnered enthusiasm for the use of immune checkpoint blockade in treating GBM due to 

the presence of a hypermutator phenotype and MMR deficiency in some tumors.  

 

On May 23, 2017, pembrolizumab (Keytruda®), a PD-1 inhibitor, was granted 

accelerated approval by the FDA for the treatment of unresectable or metastatic solid 

tumors that are microsatellite instability-high, or MMR-deficient and progressed after 

treatment173,174. This approval was granted for any tumor site or histology, making this 

the first tissue and site independent approval by the FDA175. Immune checkpoint 

inhibitors are now being evaluated for newly diagnosed GBM (CheckMate-498, and 

CheckMate-548) and for recurrent GBM (CheckMate-143)176,177. However, results have 

been discouraging and calling to question appropriate patient selection. PD-L1 and 

lymphocyte marker expression have been used as biomarkers to predict response to 

immune checkpoint blockade, though have proven unsuccessful178,179. It is thought that 

immunohistochemistry techniques are inconsistently utilized rendering the biomarkers 

unsuitable for use. Additionally, pembrolizumab is currently being employed in recurrent 

malignant glioma patients (grades II–IV) with a hypermutator phenotype (MK-3475)180. 

The results of this trial will help identify whether immune checkpoint blockade is effective 

in the hypermutator phenotype. Although immune checkpoint blockade has proven 

unsuccessful in gliomas thus far, it is important to not disregard these therapies as 

useful and further explore how to properly select patients for maximal effectiveness in 

clinical trials. 

 

Optune® is another type of treatment recently FDA approved for the treatment of 

newly diagnosed adult GBM patients (22 years old or older) in combination with 

temozolomide after standard of care management181,182. For the treatment of recurrent 
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GBM, Optune® is intended to be used alone as an alternative to standard therapy. 

Optune® is a portable device that uses 4 adhesive patches applied to the scalp, called 

transducer arrays, to produce electric fields known as tumor treating fields (TTFields). 

Transducer arrays connect to the device and battery, which are conveniently carried in a 

back or shoulder bag. TTFields work by interfering with cancer cell division and may 

destroy them. The recommendation is that the device be worn at least 18 hours per day 

for best treatment responses182–185.  

 

The EF-14 phase 3 clinical trial using Optune® in conjunction with temozolomide 

for newly diagnosed GBM showed a progression-free survival and overall survival 

advantage versus treatment with temozolomide alone. The open-label trial enrolled 695 

patients from 83 centers and assigned 466 patients to the TTFields plus temozolomide 

arm and 229 patients to the temozolomide arm alone, while balancing patient 

characteristics between the groups. Median progression-free survival was 6.7 months for 

the TTFields plus temozolomide group as compared to 4.0 months for the temozolomide 

alone group. Similarly, a survival advantage was seen in the TTFields plus 

temozolomide arm with a median overall survival of 20.9 months versus 16.0 months in 

the temozolomide arm alone. No significant increases in systemic adverse events were 

identified in the TTFields plus temozolomide arm as compared to the temozolomide arm 

alone. However, Optune® treatment was associated with mild to moderate skin irritation 

beneath the transducer arrays. Limitations of the study include the lack of a placebo 

control, as well as the requirement of patients receiving the TTField therapy to 

continuously carry the Optune® device and have it applied to a shaved scalp. Clinical 

trials will continue to evaluate the benefit of other Optune® combinations besides 

temozolomide181–186. 
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1.19.18 Remaining impediments in advancing precision medicine in GBM 

Advancing precision medicine in the treatment of GBM will require stratification of 

tumors into subtypes that differ in outcome and therapeutic vulnerability. Successful 

stratification would improve clinical decision-making, design of clinical trials, and patient 

outcomes. Unfortunately, immense intra-tumoral heterogeneity in GBM has hindered the 

development of stratification strategies155. GBMs high degree of heterogeneity 

contributes to inherent and acquired resistance to therapy and doesn’t allow single site 

sampling to capture the repertoire of genetic aberrations that exist within a tumor153,168. 

Advancement into the precision medicine era for GBM will be accomplished when we 

are able to clearly identify the diversity of genetic drivers within a GBM and treat the 

patient accordingly with a treatment combination that targets those drivers.  
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1.20 Bladder Cancer 

1.20.1 Natural History of Bladder Cancer 

Bladder cancer is the sixth most prevalent cancer in the United States and will 

contribute to an estimated 81,190 new cases and 17,240 deaths in 20181. Males are 

disproportionately affected at a 4-fold higher rate than women, though the gender bias is 

not fully understood. Risk factors for bladder cancer include tobacco smoking, exposure 

to carcinogenic industrial compounds such as aromatic amines, arsenic-contaminated 

water, previous cyclophosphamide chemotherapy, and a family history. The most 

common clinical presentation of bladder cancer is gross or microscopic hematuria, or 

blood in the urine. Approximately 95 percent of cases originate from the inner epithelial 

lining of the bladder, or urothelium, making the majority of bladder cancers urothelial 

carcinomas. Urothelial carcinomas are broadly classified as non-muscle invasive 

(NMIBC; tumor stages CIS, Ta, TI) based on the confinement of the tumor to the 

urothelium, or muscle-invasive bladder cancer (MIBC; tumor stages TII-TIV), the more 

aggressive form of the disease, based on the invasion of the tumor into the surrounding 

muscle. Approximately 25% of patients are diagnosed with MIBC or metastatic disease 

at the time of diagnosis resulting in a worse prognosis. The majority of deaths are due to 

MIBC, (34% 5-year survival) and progression to metastasis results in even poorer 

survival (5% 5-year survival). In advanced disease, MIBC spreads beyond the bladder 

and metastasizes to distant sites such as lymph nodes, bone, liver, lung, or 

peritoneum187–191.  

 

1.20.2 Standard of Care in Urothelial Carcinoma 

Treatment of urothelial carcinoma is dependent on invasiveness, histological 

grade and clinical stage192. NMIBC treatment consists of transurethral resection of the 

bladder tumor followed non-systemic mitomycin C, a DNA crosslinker, applied directly 
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into the bladder, also known as intravesical chemotherapy. Low grade NMIBC patients 

undergo surveillance or repeated treatment with intravesical chemotherapy. Moderate- 

to high-grade NMIBC patients typically receive intravesical BCG immunotherapy to 

stimulate an immune response in the tumor microenvironment. For over 30 years, the 

first-line standard of care for patients with MIBC is a regimen of cytotoxic chemotherapy, 

surgical cystectomy along with an extended bilateral pelvic lymphadenectomy. 

Randomized-control trials have demonstrated a survival benefit with neoadjuvant 

combination chemotherapy along with radical cystectomy over surgery alone. Due to 

these studies, neoadjuvant chemotherapy is recommended prior to surgery to shrink the 

tumor and reduce the risk of recurrence. Despite the demonstrated survival benefit, 

widespread administration of neoadjuvant chemotherapy is not yet practiced prior to 

surgery with reports showing approximately only 20% of patients with MIBC get 

neoadjuvant chemotherapy. In these settings, chemotherapy is administered as an 

adjuvant therapy after surgery. Reasons for non-administration of neoadjuvant therapy 

include toxicity concerns and delay of surgery. For patients who are able to tolerate 

neoadjuvant or adjuvant treatment, cisplatin-based combination chemotherapy is 

recommended and includes methotrexate, vinblastine, doxorubicin and cisplatin 

(established in 1985). Another cisplatin-based treatment includes gemcitabine plus 

cisplatin, which is a better option in older patients or when limiting toxicities is of 

interest193,194. 

 

1.20.3 The tumor microenvironment as a pro-proliferative cue 

Bladder cancer tumors frequently exhibit heterogeneous cellular differentiation 

states that correlate with outcome. Hence, differentiation state plasticity in bladder 

cancer may allow subsets of cells to thrive in certain TME settings and contribute to 

aggressiveness. Currently, the extent to which extrinsic factors, within the TME, 
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promotes proliferation and facilitates differentiation in MIBC remains unclear. 

Additionally, there has been a lack of comprehensive studies to examine proteins in the 

ME that may have effects on MIBC proliferation. Understanding interactions between 

MIBC and the TME may aid the development of new therapeutic strategies35–38.  

 

1.20.4 Bladder cancer differentiation states 

The bladder urothelium is comprised of an epithelial lining of cells with 3-5 layers 

corresponding to the basic architecture of basal, intermediate, and luminal umbrella 

cells195,196. Each cell type represents a unique stage in differentiation corresponding to 

early, mid, and terminal differentiation, which are typically distinguished by their unique 

cytokeratin (KRT) expression. Basal cells are cuboidal, rest on the basement membrane, 

and represent an early differentiation state. KRT5/17 and CD44 expression identify basal 

cells of the urothelium. KRT14 is expressed in early stem/progenitor cells in the basal 

population. Basal cells give rise to larger intermediate cells that form several layers of 

the urothelium. Some studies show that the loss of KRT14 and remainder of KRT5 

demark the intermediate cell population, while other studies suggest that KRT 8/18 

expression better identify this population. Intermediate cells give rise to large, flat 

superficial umbrella cells that are adjacent to the bladder lumen. Expression of KRT20 

and uroplakin (UPK) 1A/2 identify this terminally differentiated population of luminal 

umbrella cells197,198. 

MIBCs are frequently heterogeneous with individual cells within a tumor 

exhibiting distinct differentiation state phenotypes. This heterogeneity allows 

subpopulations of cells within the tumor to differentially respond to TME cues and adapt 

to their environment differently. Even clonal populations of cells can have a differential 

response when exposed to different environmental signals. Cells can adapt to their 

environment by becoming plastic and intrinsically altering their differentiation. Moreover, 
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any of these cell types can undergo malignant transformation and give rise to pro-

proliferative tumors with diverse phenotypes and propensities to metastasize. Recent 

studies using a KRT14 Cre reporter mouse followed by lineage-tracing in bladder 

urothelium demonstrated that KRT14 marks progenitor cells that have the capacity to 

give rise to all urothelial layers. Patient bladder tumors with high expression of KRT-14 

have a poorer prognosis, suggesting that cellular differentiation state affects disease 

progression, treatment efficacy, or both. To prevent disease recurrence and progression, 

it is crucial to understand the molecular interactions between a heterogeneous 

population of tumor cells and their environment and how this allows subpopulations of 

cells to proliferate and thrive197,199–201.  

 

1.20.5 Molecular subtypes 

Over the past several years, TCGA and other groups have described distinct 

molecular subtypes in MIBC based on molecular signatures. In 2013, TCGA identified 4 

mRNA expression-based molecular subtypes using a 131-tumor set. In 2017, TCGA 

further refined their molecular subtyping and identified 5 subtypes by extending their 

131-tumor set to 408 (Figure 4). The 5 subtypes were concordant with the 4 initial 

subtypes described. They were able to identify the well-established luminal and basal 

subtypes of bladder cancer while further delineating the luminal subtype and identifying 

a new neuronal subtype. The 5 MIBC expression subtypes include: luminal-papillary (n = 

142, 35%), luminal-infiltrated (n = 78, 19%), luminal (n = 26, 6%), basal-squamous (n = 

142, 35%), and neuronal (n = 20, 5%). Though, due to purity concerns, some of the 

subtypes identified may be a consequence of increased signal from other cell types in 

the tumor microenvironment112,113. 
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Figure 4. MIBC molecular subtypes as defined by TCGA. 

Heatmap of MIBC TCGA patient samples (x-axis) ordered based on molecular subtype predictions using 
normalized expression for miRNAs and proteins, and z-score of log2 expression for selected genes (y-axis). 
Molecular subtypes (top, left to right) include luminal-papillary, luminal-infiltrated, luminal, basal-squamous 
and neuronal. Adapted from “Comprehensive Molecular Characterization of Muscle-Invasive Bladder 
Cancer” by A.G. Robertson, et.al., 2017, Cell, Volume 171, p.540-556. Copyright [2017] by the Elsevier Inc.  

 
 

In general, samples from the luminal subtypes had increased expression of 

uroplakins (UPK1A and UPK2) as well as differentiation markers FOXA1, GATA3 and 

PPARG. Distinct clustering of the 3 luminal subtypes is confounded by purity differences, 

which may have contributed to their ultimate separation into subtypes. In favor of being 

truly distinct subtypes, there were differences in wild-type p53, EMT, and stromal gene 
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signatures among the 3 luminal subtypes. Though, this may be a consequence of 

varying levels of contamination from the tumor microenvironment112,202. 

 

The luminal-papillary subtype was enriched in tumors with papillary histology, 

lower stage and higher purity. FGFR3 mutations, amplification, overexpression, and 

TACC3 fusions were prominent features of this subtype. These tumors also had low 

carcinoma in situ (CIS) expression scores and active SHH signaling. These features 

collectively imply that luminal-papillary tumors developed from a precursor papillary 

NMIBC. Of the 5 subtypes, luminal-papillary tumors have the best survival outcome with 

5-year survival rates at approximately 60%, indicating a low risk for progression. 

Preclinical studies suggest that these tumors do not respond well to cisplatin-based 

neoadjuvant chemotherapy. However, the high frequency of FGFR3 alterations suggests 

that patients with these tumors may benefit from FGFR3 tyrosine kinase inhibitors112. 

 

The luminal-infiltrated subtype has the lowest purity with lymphocytic infiltrates, 

and high expression of smooth muscle and myofibroblast genes, indicating that gene 

signatures from non-tumor cell types may be a driver of this subtype. There is also 

increased expression of EMT genes and the immune markers CD274 (PD-L1) and 

PDCD1 (PD-1). Initial studies on the luminal-infiltrative subtype show that this subtype is 

resistant to cisplatin-based chemotherapy and sensitive to immune checkpoint inhibition 

with anti-PDL1 treatment. Ongoing studies are continuing to test this hypothesis.   

 

The luminal subtype most highly expressed markers of terminally differentiated 

luminal umbrella cells (UPK1A, UPK2, KRT20). Treatment efficacy in this subtype has 

not been fully explored. Future clinical trials should consider testing the efficacy of 
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cisplatin-based neoadjuvant chemotherapy to immune checkpoint inhibition, as well as 

other targeted therapies rationally employed based on mutation and expression profiles. 

 

The basal-squamous subtype was more common in females and characterized 

by high expression of basal and stem-like markers, squamous differentiation markers, 

immune infiltration, CIS signature, TP53 mutations, and loss of SHH signaling. This 

subtype collectively had low purity as evidenced by large amounts of lymphocytic 

infiltration and the highest expression of immune genes. Surprisingly, several samples 

(n=20) were classified as the basal-squamous subtype, though they lacked expression 

of both basal and squamous markers. They were classified as such due to the lack of 

luminal marker expression and similarly high immune marker expression to other basal-

squamous samples. These samples are likely not basal-squamous, but a distinct 

subtype on their own. These samples should be identified as mesenchymal due to the 

lack of basal-squamous, and luminal marker gene expression, and the presence of EMT 

gene expression. Future studies should focus on achieving greater tumor cell purity in 

tissues such that greater resolution of tumor cell intrinsic biology can be achieved to fully 

separate out samples that don’t share similar biology and follow-up with rational 

treatment options112. 

 

The neuronal subtype (n=20) had high expression of neuroendocrine markers as 

well as neuronal differentiation and development genes. However, only 3 samples had 

identifiable neuroendocrine histology present. Half of the samples subtyped as neuronal 

had either TP53 and RB1 mutations, or a TP53 mutation and E2F3 amplification, 

consistent with small cell neuroendocrine cancers and an unregulated proliferative state. 

The majority of neuronal samples (n=17) had p53 or cell-cycle pathway genes altered. 

The neuronal subtype is important to recognize clinically as the neuronal subtype has 
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the poorest survival (~15% 5-year survival) of the 5 subtypes identified in MIBC. 

Research should be done on how to identify this subtype using a straightforward, rapid 

approach since the classic neuroendocrine features are typically absent. The efficacy of 

etoposide plus cisplatin therapy should be tested in clinical trials for this subtype in MIBC 

due to this being the preferred treatment for neuroendocrine cancers originating from 

different tissues112. 

 

Classifying MIBC into molecular subtypes have moved the field forward 

tremendously in being able to broadly classify samples and associate outcomes. 

However, the influence of non-tumor cells to the molecular signature may confound 

subtyping. Methodologies are needed to either increase tumor purity or amplify the 

molecular signature from the tumor cells themselves so that we can more accurately 

subtype MIBCs and begin to identify the molecular drivers of each subtype and their 

therapeutic vulnerabilities.  

 

1.20.6 Recent Advancements in Treatment 

Over the last three decades there have been limited options in the treatment of 

MIBC with combination cisplatin-based chemotherapy playing a prominent role in 

treatment. However, many patients with advanced disease are not candidates for 

cisplatin-based chemotherapies due to comorbidities such as impaired kidney function, 

hearing loss, or heart failure. Cisplatin ineligible patients or those who failed cisplatin-

based therapy have traditionally had few options and frequently succumb to their 

disease. With the advent of immune checkpoint inhibitors over the last decade, the 

treatment landscape in multiple malignancies, including MIBC, has drastically changed. 

Excitingly, within the past 2 years five new immune checkpoint inhibitors have been 

approved for the treatment of advanced MIBC. These inhibitors include atezolizumab 



 

 72 

(Tecentriq®), durvalumab (Imfinzi™), and avelumab (Bavencio®), monoclonal 

antibodies against PDL-1 on tumor cells. Approved inhibitors also include nivolumab 

(Opdivo®) and pembrolizumab (Keytruda®), monoclonal antibodies that block PD-1 on 

immune cells. Results of clinical trials and toxicity profiles associated with each inhibitor 

will be discussed below79,203.  

 

In May 2016, the FDA granted accelerated approval of atezolizumab 

(Tecentriq®) in the second-line setting for patients with locally advanced or metastatic 

MIBC that became worse during or after treatment with cisplatin-based therapy. The 

conditional approval was based on the results of the open-label Phase II IMvigor210 

study and was subject to confirmation. Unfortunately, on May 10, 2017 it was announced 

that atezolizumab failed to meet the primary endpoint of improved overall survival 

compared with chemotherapy in the randomized Phase III IMvigor211 study, which 

enrolled pretreated metastatic MIBC patients pre-stratified according to PD-L1 

expression. The results are disappointing, however, atezolizumab did demonstrate 

activity against platinum-refractory MIBC and warrants further study to identify the 

population that would best benefit from this therapy. Atezolizumab also represents a 

good alternative to other second-line chemotherapies based on equivalent efficacy and a 

favorable toxicity profile79,204,205. 

 

Before the announcement that atezolizumab failed the Phase III endpoint as a 

second-line therapy in MIBC, on April 17, 2017, the FDA granted an accelerated 

approval of atezolizumab as a first-line treatment for patients with locally advanced or 

metastatic MIBC who are ineligible to receive cisplatin-based chemotherapy. 

The expanded approval of atezolizumab as a first-line treatment was based on the 

results of the single-arm phase II IMvigor210 trial with 119 patients. The overall 
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response rate was 23.5% (n=28/119) for patients who received atezolizumab, including 

partial and complete responses of 16.8% (n=20/119) and 6.7% (n=8/119), respectively. 

Common side effects of atezolizumab treatments include fatigue, diarrhea, and severe 

itching, or pruritus. Immune system-related side effects may also be caused by the 

treatment. Side effect severity lead to nine patients discontinuing the drug204,206. 

 

On May 1, 2017, durvalumab (Imfinzi™), and May 9, 2017, avelumab 

(Bavencio®) was approved for patients with locally advanced or metastatic bladder 

cancer whose disease has progressed during or after platinum-containing chemotherapy 

or within 12 months of neoadjuvant or adjuvant chemotherapy. Durvalumab approval 

was based on the 182-patient phase 1/2 Study 1108 whose disease had progressed 

after treatment with platinum-containing chemotherapy. The objective response rate in 

the study was 17%. Side effects of durvalumab commonly included fatigue, 

musculoskeletal pain, and constipation, and less commonly infection and immune-

related side effects. Avelumab approval was based on objective response, or reduction 

in tumor size, in the single-arm open-label 242-patient JAVELIN Solid Tumor trial. The 

overall response rate was 13.3% (n=32/242) at 13 weeks and increased to 16.1% 

(n=39/242) at six months. The most common side effects of the avelumab included 

fatigue, musculoskeletal pain, and nausea. Forty-one percent (n=99/242) of patients had 

serious adverse reactions, including urinary tract infection and secondary bacterial 

infections of the blood, blood in the urine and urinary tract, and intestinal obstruction. 

Adverse reactions to avelumab led to the deaths of 6% (n=14/242) of patients in the trial. 

Avelumab is currently being evaluated as a first-line treatment in patients with locally 

advanced or metastatic MIBC in the ongoing phase III JAVELIN Bladder 100 trial79,207,208. 
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Nivolumab (Opdivo®) was approved in February 2017 for patients with surgically 

unresectable locally advanced or metastatic bladder cancer that progressed or recurred 

after treatment with platinum-based chemotherapy. Approval was based on a 

Checkmate-275, a multicenter, single-arm phase II clinical trial of 270 patients.  

Nivolumab treatment resulted in an objective response rate of 19.6% (n=53/270), a 

complete response of 2% (n=6/270), and a 17% (n=46/270) partial response. Fatigue, 

diarrhea and skin rashes were common side effects. Fourteen patients discontinued 

nivolumab treatment due to side effects and three deaths were a result of treatment 

causing pneumonitis, acute respiratory failure and cardiovascular issues80,209,210. 

 

On May 18, 2017, the FDA approved pembrolizumab (Keytruda®) for use in the 

second-line setting in patients with locally advanced or metastatic urothelial cancer 

whose disease has progressed during or after platinum-based therapy. The second-line 

setting pembrolizumab approval was based on the KEYNOTE-045 study, a randomized 

phase III study for second-line treatment of locally advanced or metastatic urothelial 

carcinoma. This multicenter study demonstrated a clear improvement in overall survival 

with pembrolizumab compared with investigator’s choice chemotherapy for pretreated 

patients with urothelial carcinoma. Pembrolizumab as a single-agent demonstrated a 

median overall survival of 10.3 versus 7.4 months for chemotherapy and patients 

receiving pembrolizumab had fewer treatment related side effects. The FDA also 

granted accelerated approval to pembrolizumab for patients with locally advanced or 

metastatic bladder cancer in the front-line setting for patients who are treatment-naive 

and ineligible for cisplatin. The accelerated approval was based on the KEYNOTE-052 

study, a single-arm, open-label trial in 370 patients who were not eligible for cisplatin-

containing chemotherapy. The response rate was approximately 29% at the median 
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follow-up of 7.8 months. Common side effects in the two trials included fatigue, 

musculoskeletal pain, decreased appetite, nausea, and diarrhea211–213. 

 

Immune blockade represents a promising leap forward in treating MIBC, though 

there is still much work to be done in correctly identifying patients who will most benefit 

from this type of treatment. Unfortunately, excitement for immune checkpoint inhibition in 

MIBC has been dampened by atezolizumab’s inability to meet endpoint expectations in 

clinical validation studies. This failure has raised doubts for the success of the other four 

PD-1/L1 drugs approved to treat MIBC, despite success in other cancer types. 

Continued work is being done to compare efficacy of PD-1 versus PD-L1 inhibition. To 

further advance this burgeoning field of MIBC treatment, studies need to be done on 

immunotherapy and chemotherapy combination effectiveness, the optimal treatment 

sequence, how to overcome resistance mechanisms and toxicities, and how to achieve 

a prolonged response duration. Furthermore, clinically useful molecular signatures need 

to be developed to identify the optimal treatment for patients. The recently redefined 

molecular subtypes may help in recognizing therapeutic vulnerabilities in subsets of 

patients.  

 

1.20.7 Remaining impediments in advancing precision medicine in MIBC 

Recurrence and resistance are difficult to predict and we don’t fully understand 

how the TME and cellular heterogeneity contribute to aggressiveness in MIBC. Each 

urothelial carcinoma is comprised of varying amounts of cells from each differentiation 

state depending on the level of heterogeneity. Recently, there has been interest in the 

molecular profiling of MIBC, both to understand the biology of these tumors and to 

develop novel therapies. Molecular subtypes are based in part on differentiation state 

and differentiation state is tied to prognosis. Therefore, developing a prognostic gene 
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signature based on tumor differentiation seems rational. There has been some effort in 

moving forward with this idea using the subtype classification defined by the TCGA. 

However, there have only been two specifically distinct differentiation states fully 

appreciated and able to distinguish based on gene expression - basal and luminal. 

Though, there are 5 distinct subtypes the TCGA has defined. These additional subtypes 

are seemingly based on the presence or absence of a response from the TME. Smooth 

muscle, ECM and immune infiltrate seem to be driving some of the additional subtypes 

identified. While it is important to understand how and why some tumors have more or 

less of these components and try to correlate them with survival and therapeutic 

response, it’s arguable that it is more important to identify tumor cell specific signatures 

and how the cancer cell in its’ specific TME is driving this response. It’s also plausible 

that samples were taken without regard for histology and more stroma was present in a 

subset of samples, as suggested by the purity estimates. Macrodissection or 

microdissection of tumor cells from MIBC may help in better distinguishing subtypes of 

MIBC that differ in intrinsic biology, therapeutic response, and survival.  
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CHAPTER 2. ATIENT STRATIFICATION IN GLIOBLASTOMA IS IMPROVED BY 
ACCOUNTING FOR VARIATIONS IN GENE EXPRESSION CAUSED BY 

DIFFERENT HISTOLOGICAL STRUCTURES. 
 

 

 

2.1 Abstract  

Precise management of glioblastoma multiforme (GBM) will require stratification 

of tumors into subtypes that differ in outcome and therapeutic vulnerability. To date, 

stratification strategies have been hampered by immense intra-tumoral heterogeneity. 

We have used open-source transcriptional profiles of predefined histological structures 

from human GBM to develop methods to mitigate the impact of heterogeneity on 

transcriptomic-based stratification. We show that histologic architecture strongly 

influences tumor classification when assessing established gene signatures for 

subtyping and prognostic marker development, and that using mixed structure samples 

gives misleading results. We identify cellular tumor as a GBM structure from which 

transcriptional subtyping and prognostic strategies can be applied to more accurately 

stratify patient cohorts. We analyzed this specific architecture to create an improved risk 

stratification tool. Our results suggest that biomarker performance for diagnostics, 

prognostics, and prediction of therapeutic response can be improved by analyzing 

transcriptional profiles in pure cellular tumor.  

 

2.2 Introduction 

Glioblastoma multiforme (GBM), a grade IV glioma, is the most common and 

aggressive malignant primary brain tumor, with a median survival of only 18.1 months149. 

The contents of this chapter are part of a submission for publication and will also be 
present in the dissertation of Cymon N. Kersch due to co-authorship of this study. 
This study was entirely collaborative with both Cymon and I equally contributing to 
each portion. 
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Efforts to improve survival are hindered by the current inability to stratify GBMs into 

groups with differential sensitivity to various therapies (chemoradiotherapy [CRT], 

immunotherapies, and targeted therapies) and to identify patients with the highest risk of 

rapid disease progression. Being able to identify patient cohorts with similar GBM tumors 

would improve clinical decision-making, design of clinical trials, and patient outcomes.  

Stratification of GBM is particularly challenging because these tumors display 

complex multilayered inter- and intra-tumoral heterogeneity168,169. Current clinical 

stratification methods include: extent of resection, Karnofsky Performance Score (KPS), 

age, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and 

isocitrate dehydrogenase 1 (IDH1) mutation, none of which capture the intricate 

molecular and heterogeneous landscape of GBM123,135,161,162,214,215. However, modern 

‘omic’ technologies, such as high-throughput genomic, transcriptomic, and proteomic 

profiling enable new approaches for tumor subset identification. Omic analyses of GBM 

samples from The Cancer Genome Atlas (TCGA) defined four molecular subtypes: 

classical, neural, proneural, and mesenchymal115. However, these subtypes and 

subsequent prognostic gene signatures have not found clinical utility. 

We explore the hypothesis that GBM’s intra-tumoral heterogeneity has impeded 

the development of robust molecular tools for patient stratification due to sampling 

regions that differ in histological structure. GBM tumors are clinically defined by their 

diverse histologic structures, with grade IV gliomas distinguished from grade III by the 

histological presence of necrosis and/or microvascular proliferation121,135. Nearly all omic 

studies investigating GBM have used samples collected with little regard for histological 

structure other than necrosis 114. This methodology captures histologically diverse tissue 

architecture composed of cancer cells, stromal cells, vasculature, immune infiltration, 

and some necrosis. Samples that contain a mixture of these elements may obscure 

detection of key tumorigenic processes enriched or depleted in specific tumor 
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microenvironments. Furthermore, this histologic heterogeneity may interfere with inter-

patient comparisons when biopsies are composed of inconsistent tissue architecture. 

We show that characterizing transcriptional patterns in intra-tumoral 

heterogeneity enables identification of a more consistent histologic region that can be 

assayed to improve inter-patient comparisons. Specifically, we demonstrate that (1) 

histologic structures within a tumor are molecularly distinct and that variations in 

histology confound results of established gene signatures created from mixed samples, 

and (2) focusing specifically on the dense cellular tumor structure improves both GBM 

subtyping into biologically distinct cohorts and patient risk stratification that are more 

strongly associated with clinical outcome. These advances will guide the future 

development of personalized medicine approaches for GBM and enhance prognostics to 

identify patients with the highest risk of rapid progression. 

 

2.3 Results  

2.3.1 Histologic structures in GBM tumors are molecularly distinct, explaining in part 

intra-tumoral heterogeneity.  

We analyzed RNA-sequencing and corresponding clinical data from the Ivy 

Glioblastoma Atlas Project (IvyGAP) to assess the extent to which transcription profiles 

varied between histological structures216. The IvyGAP dataset is comprised of two 

companion databases: (1) RNAseq and In Situ Hybridization data from histologically 

identified tumor structures and (2) clinical information including patient demographics, 

pathology, and survival. Briefly, this database was generated by analyzing tissue blocks 

with usable RNA obtained at tumor resection (Supplemental Figure 1A). Pre-defined 

histologic structures including: infiltrative tumor (IT), leading edge (LE), cellular tumor 

(CT), perinecrotic zones (PNZ), pseudopalisading cells around necrosis (PAN), 

hyperplastic blood vessels (HBV), and microvascular proliferation (MVP), were outlined 
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on H&E stained tumor sections and microdissected on adjacent sections at the Allen 

Brain Institute (Figure 5A; Supplemental Figure 1B-C; Supplemental Table 1). The 

number of different structures sampled varied between patients. Dissected structures 

underwent RNA sequencing and results were archived as Fragments Per Kilobase of 

transcript per Million (FPKM) mapped reads. We used the FPKM data from 34 newly 

diagnosed GBM in the present analyses.  

We analyzed histological structure specific transcriptional profiles from the 

IvyGAP database using principal component analysis (PCA) and correlation network 

analysis217–219. The first two principal components in the PCA explained 50.9% of the 

variance in the 1000 most variable genes in the dataset and separated samples by 

structure, but not by other clinical features associated with GBM such as KPS, age, 

MGMT promoter methylation, and IDH1 mutation (Figure 5B; Supplemental Figure 2A-

G). This finding suggests that sample variance was driven by histologic structure and not 

by other patient characteristics. Transcript-to-transcript correlation network analysis 

corroborated PCA results, confirming that samples within a region were more highly 

correlated than samples from different regions, even in cases where samples were from 

the same patient (Figure 5C)217,218.  

Samples from several of the 7 histologically-defined structures had overlapping 

clusters in PCA and network analyses, indicating that their transcription profiles were 

similar. We used the gap statistic method, k-means clustering, and hierarchical 

clustering to show that the original 7 histologic structures could be collapsed to 4 

molecularly distinct structures having high tumor cellularity (CT), tumor invasion (LE/IT), 

vascular involvement (HBV/MVP) and necrosis (PAN/PNZ)(Figure 5D, Supplemental 

Figure 2H,I). The analyses that follow focus on these four structures. 
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2.3.2 Distinct biological processes are enriched in tumor structures.  

We analyzed whole transcriptome measurements of each of the four 

transcriptionally distinct structures using Gene Set Enrichment Analysis (GSEA) of gene 

ontology (GO) to identify biological processes enriched in each structure relative to the 

rest of the tumor (Figure 6)220–224. The LE/IT structure, where the ratio of tumor cells to 

central nervous system (CNS) cells is low, had enrichment of normal CNS processes 

such as neuron development, synaptic signaling, and regulation of ion and 

neurotransmitter homeostasis. Thus, transcriptomic analysis of the bulk tumor edge 

captures CNS processes, rather than cancer specific biology. The vascular architecture 

(HBV/MVP), as expected, was associated with angiogenesis, regulation of blood 

pressure, vascular permeability, cell junction assembly, and extracellular structure 

organization. This region also was enriched in immune processes including regulation of 

phagocytosis, leukocyte migration and activation, and cytokine production, suggesting 

this is an inflammatory microenvironment in GBM. The PNZ/PAN architecture also was 

associated with enhanced immune processes, such as monocyte and lymphocyte 

differentiation, and leukocyte migration and chemotaxis. Additionally, the PNZ/PAN 

region was characterized by biological networks associated with necrosis, cellular 

starvation, hypoxia, and oxidative stress.  

The CT structure has the highest density of neoplastic cells and the transcription 

profiles of this structure varied between patients, suggesting that analysis of transcription 

profiles from CT might enable more precise identification of biologically distinct GBM 

cohorts. The variation between patients decreased our ability to identify biological 

processes associated with the overall CT structures. However, there was a trend toward 

enhancement of traditional cancer processes including DNA replication and repair, 

chromatin remodeling, and stem cell proliferation.  
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The diversity of biological networks interacting in spatially distinct histological 

structures highlights the complexity of GBM tissue. These studies suggest that efforts to 

compare tumors using samples containing unknown quantities of these structures may 

be compromised. Instead, comparing tumors using gene expression profiles measured 

for a consistent structure across patients, particularly the CT, may be an effective inter-

tumoral comparison method. 

 

2.3.3 Molecular subtype classification depends on structure, with CT best able to 

distinguish subtypes. 

 Existing GBM molecular subtypes (mesenchymal, classical, neural, and 

proneural) are not strongly associated with clinical endpoints115. Thus, this gene 

classifier has not translated clinically. Additionally, several analyses have reported 

classification of a single tumor into multiple subtypes153,155,225. We reasoned that both of 

these issues might be related to histological heterogeneity within and between tumors. 

Our analyses of subtype gene expression profiles showed that histological 

architecture significantly influenced subtype classification of samples, using subtype 

criteria defined by TCGA (Figure 7A; Supplemental Figure 3A). Neural and proneural 

subtype-defining genes were strongly expressed in LE and IT samples, while 

mesenchymal subtype genes were highly expressed in HBV and MVP samples. This 

suggests that a biopsy taken from the tumor edge might be classified as neural or 

proneural, while a biopsy from the same tumor taken from a highly vascular region might 

be classified as mesenchymal. To test this, we subtyped all samples from each 

structure, using single-sample GSEA. We found that, in many cases, a single patient 

would be classified as every subtype depending on the structure analyzed. To avoid this 

problem, we focused on using solely the CT since this structure showed the most 

variability in subtype gene expression (Supplemental Table 1). Our analyses 
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demonstrated that all four subtypes could be distinguished in CT (Figure 7B,C; 

Supplemental Figure 3B). Furthermore, these results suggested three main subtypes 

exist: proneural, classical, and mesenchymal (Figure 7C). This result supports the idea 

that the original neural subtype may have been an artifact226. 

The finding that analyses limited to CT structures could stratify molecular 

subtypes needed to be validated in an independent dataset. Doing so was complicated 

since all other GBM gene expression databases, to our knowledge, have been created 

from mixed-structure samples. Therefore, we created a novel gene expression classifier, 

using lasso logistic regression on each of the 4 transcriptionally distinct tumor structures 

in the IvyGAP database, to identify expression profiles that distinguish the 4 structures 

(Supplemental Figure 4A,B)227. Applying this new gene classifier to tissue composed of 

mixed structures identifies the predominant structure in a sample. We applied this 

structure classifier to GBM samples from TCGA and identified 40 samples predicted to 

be composed of predominantly CT (Supplemental Figure 4C)116. Clustering these 40 

predicted CT samples revealed proneural, classical, and mesenchymal cohorts, similar 

in pattern to the IvyGAP CT samples (Figure 7D). 

 

2.3.4 Molecular subtype classification using CT distinguishes tumors with unique 

biology.  

We applied GSEA to the proneural, classical, and mesenchymal cohorts 

identified in the CT samples from the IvyGAP database to identify enriched hallmark 

gene sets in each subtype220,228. The proneural and mesenchymal, but not classical and 

neural, cohorts had significantly enriched gene sets (Figure 7E; Supplemental Figure 5). 

Cell cycle checkpoints (G2M and E2F hallmark gene sets) and MYC signaling (MYC 

targets hallmark gene set) were enriched in proneural tumors, while the mesenchymal 

tumors were highly inflammatory (enriched inflammatory response, IL6/JAK/STAT3 
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signaling, coagulation, and IFNγ response gene sets). These patterns were corroborated 

in the CT-predicted TCGA samples (Supplemental Figure 5).  

 

2.3.5 Survival prediction using an established prognostic gene signature is driven by 

tumor structure.  

We applied an established multigene predictor of GBM outcome to transcriptomic 

profiles from structurally distinct samples and observed that predicted outcome was 

confounded by structure (Figure 8A, Supplemental Figure 6A)229. Specifically, this 

analysis predicted that samples rich in LE and/or IT would have good prognoses, while 

samples rich in PNZ, PAN, HBV, and/or MVP have poor prognoses, independent of 

patient origin. In other words, an individual could be assigned either a good or poor 

prognosis based on the histological structure analyzed (Figure 8B, Supplemental Figure 

6B)229. Using the metagene score to separate all IvyGAP samples into high versus low-

risk groups showed no survival difference in Kaplan-Meier analysis. This result was 

observed due a single endpoint being associated with multiple samples that predict 

opposite outcomes. 

We performed independent Kaplan-Meier analyses on samples within each 

structure to test whether applying the survival prediction gene signature to a specific 

structure could accurately stratify patients. CT showed a minor trend in correctly 

stratifying patients, but only analysis of HBV samples was statistically significant 

(p<0.05). However, analysis of HBV samples inverted the survival curve, alarmingly 

predicting opposite outcomes; patients predicted to have a poor prognosis had longer 

overall survival. 

Our analyses suggest that applying this existing gene signature to a mixed 

structure sample could assign a prognosis based on the structure composition of the 

sample more than aggressiveness of the neoplastic cells, with highly vascular and 
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necrotic tumors having a worse prognosis. Guided by this, we next asked whether 

patients could be better stratified according to outcome using gene expression profiles 

measured for the cancer cell rich CT structures. 

 

2.3.6 A novel prognostic gene signature, created utilizing CT transcriptomics, identifies 

highest-risk GBM patients.  

We performed stepwise multivariate Cox proportional hazards regression on 

IvyGAP CT samples to create a novel prognostic model and risk score equation for GBM 

(Figure 9A; Supplemental Table 2). We included known prognostic factors including age, 

MGMT status, and IDH1 mutation in the model. The final risk score calculation included 

MGMT status, age, and expression of 6 genes: PGAM4, ETNK2, MIA, GMPS, BCL7B, 

and IBSP. 

We assessed hazard ratios in samples from IvyGAP and validated these using 

the CT samples in the TCGA dataset in order to determine whether our prognostic 

signature improved survival prediction over MGMT methylation status alone. In both 

datasets, stratification of patients into moderate versus highest-risk groups was 

statistically significant and better than MGMT expression alone (Figure 9B,C). When we 

applied the gene signature to all samples from IvyGAP and TCGA (not only CT 

samples), the model correctly stratified patients, again improving stratification over 

MGMT expression alone (Figure 9D,E). These results suggest that our survival 

prediction model, created based on CT gene expression, can be applied to samples 

containing either pure CT or mixed structures. The model also effectively identified 

medium and low risk groups (Supplemental Figure 7). 

We asked whether genes associated with high-risk had enriched biological 

patterns that could highlight key tumorigenic processes. To test this, we ranked the 

entire transcriptome in order of the Wald statistic calculated during multivariate Cox 
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regression analysis. We then used GSEA to probe this ranked list for established gene 

signatures enriched in transcripts with the greatest Wald statistic. Hallmark pathways, 

including oxidative phosphorylation, MYC targets, MTORC1 signaling, Glycolysis and 

DNA repair, were associated with high-risk genes (Supplemental Figure 7a). 

Furthermore, enrichment of genes at chromosomal locations Chr13q12, ChrXp11, 

Chr16p12, Chr3q22, and Chr3q25 were associated with high-risk status (Supplemental 

Figure 7b). 
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Figure 5. Variation in GBM sample gene expression is primarily explained by histologic structure. 

(a) Representative image demonstrating the histologic structures identified by the Allen Brain Institute (ABI), 
outlined by different colors. The ABI microdissected these structures, performed RNAseq on the dissected 
structures, and then archived the FPKM level data in the Ivy Glioblastoma Atlas Project (IvyGAP) database. 
See Supplemental Table 1 for higher magnification structure images and definitions. (b-d) Analysis of the 
1000 most variable genes in the IvyGAP data set. (b) Principle component analysis (PCA) of dimensions 1 
(Dim1) and 2 (Dim2) demonstrate that most variation in the data is explained by the histologic structure from 
which the RNA was extracted. Each sample is represented as a symbol, and colored by the structure the 
sample is from; ellipses are drawn around samples from the same structure (ellipse level=0.66). (c) 
Correlation network analysis shows samples from a histologic structure are clustered. Nodes represent 
samples, color represents the structure samples came from, and edge length depicts the degree of 
correlation between samples. (d) Dendrogram of hierarchically clustered (k = 4) samples demonstrating 
structures with the most similarity.  
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Figure 6. Biological processes enriched in tumor structures.  

Gene Set Enrichment Analysis (GSEA) followed by enrichment map visualization shows gene ontology (GO) 
biological processes enriched in (a) leading edge (LE) and infiltrating tumor (IT), (b) cellular tumor (CT), (c) 
hyperplastic blood vessels (HBV) and microvascular proliferation (MVP), as well as (d) perinecrotic zones 

(PNZ) and pseudopalisading cells around necrosis (PAN) relative to the rest of the tumor. Nodes represent 
GO terms. Clusters of functionally related enriched GO terms were manually circled and labeled. Node color 
represents the structure enriched (Purple: LE/IT; Green: CT; Dark orange: HBV/MVP; Blue: PNZ/PAN). 
Node size within each structure quadrant is proportional to the number of genes within each GO term. Edge 
thickness signifies the overlap between GO terms (number of genes shared between two gene sets); thicker 
edges depict connections between nodes that share more genes than thinner edges. For visualization 
purposes, significance thresholds were set highly conservative for the LE/IT and HBV/MVP structures (p-
value cutoff 0.005, false discovery rate (FDR) q-value cutoff 0.001), conservative for PNZ/PAN (p-value 
cutoff 0.005, FDR q-value cutoff 0.1), and very loose for CT (p-value cutoff 0.1, FDR q-value cutoff 0.4). 
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Figure 7. Molecular subtype classification depends on the structure sampled, with Cellular Tumor (CT) 
able to distinguish biologically distinct subtypes.  
(a) Expression of subtype gene set (y-axis) in IvyGAP samples from each region (x-axis) show that sample 

structure is a main contributor to expression of subtype gene signatures. Genes corresponding to each 
subtype were organized independently by unsupervised hierarchical clustering. (b) Subtype classification for 

samples corresponding to subjects with ≥4 samples from different regions. All sample calls are shown in 
Supplemental Figure 3b. CT* represents subtype analysis using only CT (z-scored data across CT samples 
only). (c) Unsupervised hierarchical clustering of IvyGAP CT samples (z-scored data across CT samples only) 
showing 3 main clusters with signatures of proneural, classical, and mesenchymal GBM subtypes. (d) 

Unsupervised hierarchical clustering of TCGA samples predicted to be composed predominantly of CT, also 
showing 3 main clusters with signatures of proneural, classical, and mesenchymal subtypes. (e) Enrichment 

of hallmark gene sets in the GBM subtypes (stratified based on the CT sample analysis) showing statistically 
significantly enriched processes in proneural and mesenchymal tumors (none were statistically significant in 
classical or neural). Proneural and mesenchymal tumors have enrichment of cell cycle checkpoints and 
immune processes, respectively. NES: normalized enrichment score; FDR: false discovery rate. 
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Figure 8. Established prognostic gene signature expression is driven by tumor structure.  

(a) A survival prediction gene set, composed of genes associated with poor or good prognosis, shows 
differential expression based on tumor structure, with opposite expression in the IT/LE compared to the 
PAN/PNZ/HBV/MVP. The prognostic gene sets were organized independently by unsupervised hierarchical 
clustering. (b) Prognostic prediction for samples from subjects with ≥4 samples from different structures, with 
prognosis determined based on sample metagene score. A single patient (subject) can be predicted to be 
either high or low risk depending on which structure in their tumor is analyzed. All sample calls are shown in 
Supplemental Figure 6b. (c) Kaplan-Meier survival analysis of all IvyGAP samples. No difference is observed 
when all structure data is combined. (d) Analysis of survival prediction using a metagene score based on only 
CT samples. Results in a Kaplan-Meier curve show a minor, but correct trend in stratification of longer versus 
shorter survivors. (e) Analysis of survival prediction using a metagene score based on only HBV samples 
results in a statistically significant Kaplan-Meier curve that incorrectly, and oppositely, stratified long versus 
short survivors. For survival analysis, metagene scores were used to risk stratify (poor prognosis: metagene 
score > 0; good prognosis: metagene score < 0). Differences between survival curves was evaluated using 
the log-rank test. All tests were two-tailed; p-values < 0.05 were considered significant. 
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Figure 9. Novel prognostic gene signature created utilizing solely Cellular Tumor (CT) sample gene 
expression data.  
(a) Risk score and hazard ratio (HR) prediction equation created using a novel prognostic model for GBM. 

The risk score is calculated as the sum of the product of the defined weighting factors with the 
corresponding predictors, MGMT promoter methylation status (0: not methylated; 1: methylated), patient age 
(in years), and normalized expression values of 6 genes: PGAM4, ETNK2, MIA, GMPS, BCL7B, and IBSP. 
Kaplan-Meier survival analysis of (b) IvyGAP CT samples, (c) CT-predicted TCGA samples, (d) all IvyGAP 
samples, and (e) all TCGA samples dichotomized into high and low risk groups based on MGMT promoter 

methylation status (left) and predicted HR (right). For MGMT promoter methylation status, survival was 
evaluated by separating samples into methylated (low risk) or unmethylated (high risk) groups. For 
assessing survival using the new prognostic model, tertiles of HR values were used to risk stratify (high risk: 
HR > quantile(2/3); low risk: HR < quantile(2/3). Differences between survival curves was evaluated using the 
log-rank test. All tests were two-tailed; p-values < 0.05 were considered significant. Shading on survival lines 
correspond to 95% confidence intervals. *MGMT promoter methylation status. ** Samples predicted to be 
predominantly CT as classified using the structure-based lasso logistic regression classifier. 
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Supplemental Figure 1.  
(a) Tissue collection, subsectioning, and freezing done by the Allen Brain Institute (ABI). (b) Example of 
histologic structure identification done by the ABI. (c) Slide layout for serial sections for structure alignment, 

completed by the ABI. Images: ABI, technical white paper. 
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Supplemental Figure 2. Additional PCA and clustering analyses.  
(a) Scree plot showing percent of variance described by each principle component (dimension) in analysis of 
the top 1000 most variable transcripts. PCA labeling clinical patient stratifiers (b) MGMT methylation status, 
(c) Karnofsky Performance Score (KPS), (d) IDH1 mutation status, (e) overall survival days, (f) patient age 
at time of diagnosis, and (g) gender of the samples (each symbol represents and individual sample). No 

alternative labeling explains variance in the data set as well or better than histologic structure seen in figure 
1. (h) Gap statistic method identifying optimal number of clusters for k=1-10. (i) K-means clustering using 

k=4 and visualization of clusters using PCA.  
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Supplemental Figure 3. IvyGAP molecular subtyping.  
(a) Expression of subtype gene set (y-axis) in the IvyGAP samples from each region (x-axis) showing 

sample structure is a main contributor to expression of subtype gene signatures. Samples were organized 
by unsupervised hierarchical clustering using Ward’s method and the Euclidean distance metric. (b) Subtype 

classification calls for structures from all samples. CT* represents subtype calls using CT z-scored data 
across only the CT samples. 
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Supplemental Figure 4. Structure-based gene signature.  
(a) Heatmap displaying z-score normalized expression of the structure-based genes signature, which was 
created by logistic regression modeling on the IvyGAP data with known tumor structures. (b) Heatmap of the 

structure-based signature genes in the TCGA GBM data. The predominant structure was predicted by 
applying the model learned by logistic regression from the IVGAP data to the TCGA GBM data. (a,b) 

Samples and genes were organized by unsupervised hierarchical clustering, which results in a nearly 
perfect separation of the structure (a). Genes are on the y-axis, samples on the x-axis. 
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Supplemental Figure 5. GSEA hallmark gene set enrichment results from CT stratified molecular 
subtypes.  

Enrichment plots of top enriched hallmark gene sets in IvyGAP CT samples from (a) Proneural versus REST 
(all samples not classified as proneural), and (b) Mesenchymal versus REST (all samples not classified as 
mesenchymal) analyses. The top enriched hallmark gene sets in IvyGAP CT samples were also enriched in 
TCGA CT-predicted samples as shown by enrichment plots of (c) Proneural versus REST, and (d) 
Mesenchymal versus REST analyses. No results were statistically significant in Classical or Neural versus 
REST in both IvyGAP and TCGA analyses. Molecular subtyping was determined after z-score normalizing 
within only the IvyGAP CT and TCGA CT-predicted samples. ES: Enrichment score; NES: Normalized 
enrichment score; NOM: Nominal; FDR: False discovery rate.  
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Supplemental Figure 6. Analysis of established prognostic gene signature expression with all 
samples. 
(a) A survival prediction gene set, composed of genes associated with poor and good prognosis, shows 

differential expression based on tumor structure, with opposite expression in IT/LE compared to 
PAN/PNZ/HBV/MVP. Samples and genes were both organized by unsupervised hierarchical clustering. (b) 

Survival prediction for each sample, with prognosis determined based on sample metagene score (poor 
prognosis: metagene score > 0; good prognosis: metagene score < 0). 
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Supplemental Figure 7. Enriched gene sets in IvyGAP CT genes associated with increased risk. 
(a) Hallmark and (b) chromosome location gene sets enriched in genes associated with high risk of short 

overall survival with enrichment plots of the top 3 gene sets for each. ES: Enrichment score; NES: 
Normalized enrichment score; NOM: Nominal; FDR: False discovery rate.  
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Supplemental Figure 8. Survival analysis using the new survival prediction gene signature.  
Kaplan-Meier survival analysis of (a,b) IvyGAP CT samples, (c,d) all IvyGAP samples, (e,f) CT-predicted 
TCGA samples, and (g,h) all TCGA samples. Based on predicted HR, samples were separated into high, 
medium, and low risk groups (a,c,e,g; high risk: HR > quantile(2/3); medium risk: quantile(1/3) < HR < 
quantile(2/3); low risk: HR < quantile(1/3)), or high and low risk (b,d,f,h; high risk: HR > 1; low risk: HR < 1). 

Differences between survival curves was evaluated using the log-rank test. All tests were two-tailed, and p-
values less than 0.05 were considered to be significant. Shading on survival lines correspond to 95% 
confidence intervals. *Predicted to be predominantly CT as classified using the structure-based lasso logistic 
regression classifier. 
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Supplemental Table 1. Tumor structure definitions.  

Adapted from IvyGAP Technical White Paper Figures 2-9. 

 

Structure Example Images Definition 

Leading Edge 
(LE) 

 “Leading Edge is the outermost boundary of the tumor, 
where the ratio of tumor to normal cells is about 1-3/100. 
Layers of the cortex are often observed.” 

Infiltrating 

Tumor (IT) 

 “Infiltrating tumor is the intermediate zone between the 

Leading Edge (LE) and Cellular Tumor (CT), where the ratio 
of tumor cells is about 10-20/100. Neuronal cell bodies as 
well as glial cell aggregating on neurons, are often 

observed.” 

Cellular Tumor 
(CT) 

 “Cellular tumor constitutes the major part of core, where the 
ratio of tumor cells to normal cells is about 100/1 to 500/1. 
Tumor densities often exceed typical levels of cells (left 

panel), but can also have low cell mass due to edema or 
early necrosis (right panel).” 

Microvascular 

Proliferation 
(MVP) 

 “…generally found in the core of tumors, and is marked by 

two or more blood vessels sharing a common vessel wall of 
endothelial and smooth muscle cells (e.g. 100 μm diameter). 
They can appear as glomerulus (left panel, 100 μm 

diameter), or as a “garland” of multiple interconnected blood 
vessels (right panel, 50 μm diameter x 1-6 mm).” 

Hyperplastic 
Blood Vessels 

(HBV) 

 Hyperplastic blood vessels are found throughout tumors, 
and exhibit many sizes and shapes (left panel). The features 

are marked by increased density of blood vessels that 
appear to have thickened walls (endothelial cell proliferation) 
(right panel). 

Pseudo-
palisading 
Cells around 

Necrosis 
(PAN) 

 Pseudopalisading cells around necrosis is generally found in 
the core of tumors. Tumor cells aggregate or line up in rows 
10-30 nuclei wide at higher density than the surrounding CT 

to form pseudopalisading cells, which may appear to point 
toward a common center in necrosis. Necrosis is required 
for PAN.” 

Perinecrotic 
Zone (PNZ) 

 “Perinecrotic zone is generally found in the core of tumors, 
and refers to a boundary of tumor cells typically 10-30 nuclei 

wide along the edge of necrosis that lacks a clear 
demarcation of PAN.” 

Necrosis (NE)  
 
*No RNAseq 

data for this 
structure 

 “Perinecrotic zone is generally found in the core of tumors, 
and refers to a boundary of tumor cells typically 10-30 nuclei 
wide along the edge of necrosis that lacks a clear 

demarcation of PAN.” 
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Supplemental Table 2. New prognostic gene signature statistics.  
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2.4 Discussion 

Improving outcomes for GBM is hindered by our inability to stratify patients into 

cohorts that require different clinical care. Patient-to-patient tumor comparisons are 

difficult in GBM due to intra-tumoral heterogeneity. We demonstrated that histologic 

structures account for part of this heterogeneity, and propose that assessing gene 

expression in CT will improve inter-tumoral comparisons. Our results highlight that using 

mixed-structure samples or samples rich in non-CT regions to determine GBM subtype 

could produce invalid results, while classifying subtypes using CT identifies distinct 

cohorts with unique biology. Additionally, utilizing exclusively CT, we created a 

prognostic model to identify the highest-risk patients. The biological patterns uncovered 

in the subtypes and risk-stratified groups have important implications for guiding 

precision medicine and steering future studies investigating malignant pathways in 

GBM.  

The enriched biological processes we identified in GBM subtypes have the 

potential to guide therapeutic intervention. Proneural tumors showed enrichment of 

genes expressed during cell cycle checkpoints, stages of cell replication when DNA 

integrity is assessed. Current standard-of-care treatment for GBM is CRT, which 

functions through eliciting DNA damage149. Having elevated expression of cell cycle 

checkpoints makes it plausible that proneural tumors have different sensitivity to CRT 

than other subtypes. Accordingly, purely proneural tumors have been reported to have 

longer survival than other GBMs, while mesenchymal differentiation has been 

associated with therapeutic resistance and decreased survival153,167,230. In contrast, 

mesenchymal tumors had enriched immune processes - the target of immunotherapies. 

This is consistent with previous reports showing that mesenchymal GBM has elevated 

immune activation and leukocyte infiltration231–233. This distinction is essential to consider 

in the context of immunotherapies, as highly immunogenic tumors are more responsive 
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to immunotherapy than tumors with a weak endogenous immune response234. Thus, 

mesenchymal GBM may be exceptional candidates for single-agent immunotherapy, 

whereas proneural tumors may require an immunogenic vaccine prior to immunotherapy 

233,235,236. Future studies should investigate the influence of pretreatment levels of cell 

cycle checkpoint transcripts and immune phenotype on GBM susceptibility to CRT and 

immunotherapies. Additionally, stratifying patients based on CT-characterized subtype in 

analysis of retrospective and prospective treatment efficacy trials may identify cohorts 

sensitive to specific therapies. 

Our analyses of the established prognostic gene signature suggest that structure 

composition contributes to its prognostic prediction. Colman and colleagues noted that 

worse prognosis in their gene set was associated with a mesenchymal-angiogenic 

phenotype229. This observation is supported by our findings that vascular and necrotic 

tissue have a poor prognostic signature and that vascular regions have a strong 

mesenchymal phenotype. While GBM is differentiated from grade III gliomas by the 

presence of vascular proliferation and necrosis121, much less is known about how the 

extent of vascular proliferation and necrosis within GBM relate to the rate of tumor 

progression. It is plausible that the relative amount of these regions within GBM may be 

prognostic themselves, perhaps secondary to rapid tumor proliferation. Other groups 

have noted that angiogenic, necrotic and highly proliferative GBMs may be more 

aggressive230,237,238. As immunohistochemistry and magnetic resonance imaging (MRI) 

can detect these elements239,240, investigating the relationship between the level of 

vascularity and necrosis in GBM with survival merits further evaluation. 

Using CT to create a novel prognostic gene signature allowed us to identify the 

highest-risk patients and probe the underlying biology of this cohort. Among the 

pathways we identified in the high-risk genes, MYC targets are attractive because MYC 

has multiple pro-tumorigenic functions in GBM20,241. Unfortunately, there are currently no 
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clinically viable MYC inhibitors242. Work developing these inhibitors is critical as they may 

have utility in treating the most aggressive GBMs. Additionally, multiple metabolic 

pathways were associated with high risk of rapid progression (Supplemental Figure 7A). 

Previous work has demonstrated a link between differential metabolic signatures with 

GBM subtypes and outcomes243. Taken together with our findings, this highlights the 

importance of GBM subtypes as possibly harboring distinct biology, bio-energetics, 

proliferative capacity, immune interaction, and disease progression, all of which are 

appreciable when accounting for structural variability in tumor analysis. Expression of 

genes from specific chromosomal locations were also enriched in the high-risk group. As 

MGMT promoter methylation is strongly correlated with survival outcomes in GBM162, it 

is probable that unappreciated epigenetic modifications that drive rapid tumor 

progression exist. Epigenetic modifications are aberrant in many cancers, and are 

intriguing as they provide modifiable targets244. While studies have investigated global 

methylation in GBM245, we propose that specifically analyzing the patterns in CT may 

expose novel drivers of GBM malignancy. 

As CT-based transcriptomics permit inter-patient comparison, work is now 

needed to translate this stratification method for clinical utility. The next steps include (1) 

creating predictive signatures for tumor sensitivity and response to treatment, and (2) 

identifying methods to collect CT without microdissection. To create predictive 

signatures for treatment sensitivity that can be used for personalized medicine, studies 

should correlate gene expression in newly diagnosed GBM with outcomes following 

CRT, targeted therapies, and immunotherapies. Unfortunately, using CT for clinical 

purposes will be hindered by the labor-intensive microdissection, and work is needed to 

identify clinically feasible methods to collect CT. Image-guided biopsy is one potential 

method to obtain predominantly CT tissue. Previous investigations demonstrated that 

diffusion weighted MRI and amino acid positron tomography can localize GBM regions 
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with elevated tumor cellularity and mitotic indices170,246. These imaging modalities are 

already being integrated into the operating room via neuronavagational image-guided 

tissue sampling and could allow for selective CT localization and biopsy146. Alternatively, 

macro-dissection may be sufficient to collect cellular tumor with minimal contamination of 

other structures, and a study comparing the utility of this method versus microdissection 

is needed. 

We have shown that analysis of transcriptomics in CT can stratify patients into 

distinct cohorts, and that using mixed structure samples can give misleading information. 

Ultimately, we believe the present study is the first step in generating a novel set of 

transcriptomic-based clinical tools utilized to plan and execute optimal care for GBM 

patients. Limitations of this study include low patient number (n=36), and the current 

inability to fully externally validate the results reported due to the lack of similar datasets 

in existence. Furthermore, we cannot extend clinical applicability without first externally 

validating the results in an independent cohort with histologic structures laser 

microdissected from patient GBM tissue samples along with RNA sequencing and DNA 

methylation performed. 

  



 

 106 

2.5 Online Methods 

2.5.1 Data sets.  

The analyses described herein were performed on either the IvyGAP or TCGA 

data set with described processing steps.  

 

2.5.1.4 IvyGAP.  

We mined RNA-sequencing data from the open-source Ivy Glioblastoma Atlas 

Project (Allen Brain Institute) and Swedish IvyGAP Database for clinical data. A detailed 

explanation of the methods used to generate these data are available 

(http://glioblastoma.alleninstitute.org). Briefly, tissue blocks were obtained at tumor 

resection, subdivided, and rapidly frozen. Tissues were later sectioned and subjected to 

H&E staining. Histologic structures including infiltrative tumor (IT), leading edge (LE), 

microvascular proliferation (MVP), hyperplastic blood vessels (HBV), perinecrotic zones 

(PNZ), pseudopalisading cells (PAN), and cellular tumor (CT) were outlined on one 

section and then laser microdissected on adjacent sections. Dissected structures then 

underwent RNA sequencing; results were normalized as Fragments Per Kilobase of 

transcript per Million (FPKM) mapped reads. The total number of patients enrolled was 

42; 36 patients (18 male; 18 female) had usable samples with intact RNA, and of these 

each subject had variable numbers of samples obtained for each region. Not all patients 

have data from all structures and recurrent tumors (2) were excluded.  

 

2.5.1.5 TCGA.  

The gene expression data (174 cases, Workflow Type: HTSeq-FPKM) and 

corresponding clinical information were downloaded from the Genomic Data Commons 

Data Portal for the Glioblastoma Multiforme projects (TCGA-GBM; 

https://portal.gdc.cancer.gov). Methylation data was downloaded from https://tcga-

https://tcga-data.nci.nih.gov/docs/publications/gbm_2013/
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data.nci.nih.gov/docs/publications/gbm_2013/. Recurrent tumors and normal brain 

samples were excluded yielding a total of 156 cases.  

 

2.5.1.6 Data pre-processing.  

To obtain a log-transformed, normal distributed data set, we excluded genes with 

very low expression across all samples by applying the following filtering method to 

IvyGAP and TCGA data sets: 1) Take expression values for all genes and all samples, 

remove zero’s and find quartiles to be used as filtering value. 2) Calculate mean of each 

gene across samples and exclude genes with a mean less than the lower quartile 

filtering value. A combination of raw FPKM values, log2-transformed data, and z-score 

normalized values, where every transcript had mean value of 0 and standard deviation 

of 1, were used for all analyses.  

 

2.5.2 Variation in gene expression is primarily explained by histologic structure. 

To assess the interrelationships between all samples in the IvyGAP data set, we 

used principal component analysis (PCA) and transcript-to-transcript correlation network 

analysis. To determine the optimal number of clusters within the dataset, we applied the 

gap statistic method, followed by k-means clustering and hierarchical clustering to 

identify the constituents of the optimally numbered clusters. 

 

2.5.2.7 PCA. 

 We performed PCA using the 1000 most variable genes in the IvyGAP data set 

to assess the variance among sample transcriptomes on the log2-transformed and z-

score normalized data matrix (PCA() function in [FactoMineR R package] and [factoextra 

package in R]).  

 

https://tcga-data.nci.nih.gov/docs/publications/gbm_2013/
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2.5.2.8 Correlation network analysis.  

Regional differences were also assessed in BioLayout Express3D by plotting a 

sample-to-sample correlation graph with the Pearson correlation threshold, r = 0.92, for 

visualization. Nodes represent individual samples, and edge length depicts the degree of 

correlation between samples with Pearson correlation coefficients above the selected 

threshold. 

 

2.5.2.9 Gap statistic analysis.  

To identify the optimal number of clusters for subsequent partitioning methods in 

the IvyGAP dataset, we determined the gap statistic on the top 1000 most variable 

genes, which compares the total intra-cluster variation for k = 1-10 with expected values 

under null distribution of the data. The optimal number of clusters is the value that 

maximizes the gap statistic, meaning that the clustering structure is far from random 

uniform distribution (fviz_nbclust() function [factoextra R package]). 

 

2.5.2.10 K-means clustering.  

To identify which of the seven histologic structures collapse together for 

subsequent analysis, we performed k-means clustering on the 1000 most variable genes 

in the IvyGAP data set using k=4, the optimal number of clusters determined by the gap 

statistic analysis. The clusters were visualized by principal components (kmeans() 

function [stats R package]; fviz_cluster() function [factoextra R package]). 

 

2.5.2.11 Dendrogram.  

To identify which of the seven histologic structures collapse together for 

subsequent analysis, we also computed a distance matrix on the 1000 most variable 

genes in the IvyGAP dataset using Euclidean distance measure and performed 
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hierarchical cluster analysis using Ward’s method. The dendrogram was constructed 

using k=4 groups, as determined by gap statistic analysis (distance matrix and clustering 

was computed using dist() and hclust() functions in [stats R package]; fviz_dend() 

function in [factoextra R package]). 

 

2.5.3 Structure-based lasso logistic regression classifier.  

We aimed to create a method for discriminating between GBM histologic 

structures using transcriptomic features with the goal of applying this method to mixed 

GBM samples to identify the predominant CT region for further analysis.  

The IvyGAP data set was first balanced between structures and evenly split into 

train and test sets based on structure using Stratified K-Folds cross-validator 

(n_splits=5). Next, using train sets, a lasso regularized multinomial logistic regression 

classifier was built to predict GBM structure in independent data sets (penalty=‘L1’; 

solver=‘saga’; C=‘1/8’, multi-class= ‘multinomial’, fit intercept=True, ). The 5-fold cross 

validation average accuracy for the logistic regression classifier on test sets is 98.45%. 

Lastly, the classifier was used to predict the structure classification of all GBM-TCGA 

samples (class sklearn.linear_model.StratifiedKFolds and .LogisticRegression; 

Python3.6). 

 

2.5.4 Gene Set Enrichment Analysis (GSEA) to assess for enriched biological 

processes and perform GBM subtype analysis.  

Gene set enrichment analysis was performed using GSEA software (ref = 

Subramanian et al, PNAS, 2005) (Broad Institute) with FPKM gene expression data. 

Defaults were used for GSEA analysis, including Signal2Noise ranking metrics. Gene 

sets were excluded that were smaller than 15 genes and greater than 500 genes, and 

enrichment p-values were estimated by 1,000 permutations and corrected for multiple 
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testing using the Benjamini-Hochberg method. Analyzed gene sets were from the 

molecular signature database (MsigDB), Gene Ontology (C5), Hallmark (H), or 

Positional (C1) collections, at www.broadinstitute.org/gsea/msigdb/collections.jsp.  

For structurally enriched biological processes, GSEA results were visualized 

using the Enrichment Map (ref= Merico, Bader et al, PLos one, 2010) plugin for 

Cytoscape (V2.8, www.cytoscape.org). For visualization purposes, clusters of 

functionally related enriched GO terms were manually circled and labeled, and 

significance thresholds were set to be highly conservative for the LE/IT and HBV/MVP 

structures (p-value cutoff 0.005; FDR q-value cutoff 0.001), conservative for PNZ/PAN 

(p-value cutoff 0.005; FDR q-value cutoff 0.1), and loose for CT (p-value cutoff 0.1; FDR 

q-value cutoff 0.4).  

 

2.5.5 Survival prediction using an established prognostic gene signature and 

metagene score.  

To determine if expression of an established multigene predictor of GBM 

outcome has structural specificity, we calculated a metagene score for each sample in 

the IvyGAP dataset (z-scored using all samples) following methods from Colman and 

colleagues. Kaplan-Meier survival analysis was performed using the metagene score to 

separate all IvyGAP samples into high (metagene score > 0) and low risk (metagene 

score < 0) groups.  

To test if assessing the gene signature within a specific structure could 

accurately stratify subjects in terms of overall survival, we z-scored samples within each 

structure independently, and re-calculated a metagene score for each sample followed 

by Kaplan-Meier analysis as before. 

 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp
http://www.cytoscape.org)/
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2.5.6 Cox proportional hazards model for survival analysis.  

We aimed to create a method for discriminating between high risk (short overall 

survival) versus low risk (long overall survival) patients using transcriptomic features in 

the CT and clinical characteristics to calculate an individual’s risk score. This risk score 

method was then applied to CT predicted GBM samples for validationcoo. 

 

2.5.6.12 Univariate Analysis. 

 To determine whether the clinical covariates age, gender, MGMT methylation 

status, IDH1 mutation status, 1p19q deletion status and KPS score were significantly 

associated with overall survival in the IvyGAP CT samples, univariate Cox proportional 

hazards regression was performed (coxph() function in [survival package in R]). 

 

2.5.6.13 Multivariate Analysis.  

To determine whether genes were significantly associated with overall survival 

and independent of clinical covariates, multivariate Cox proportional hazards regression 

using the clinical covariates MGMT methylation status, IDH1 mutation status and age 

was performed. Each gene was assigned a hazard ratio (HR), Wald statistic, and a 

corresponding p-value using Cox regression analysis. Genes were selected as 

candidates significantly associated with survival if the p-value was < 0.05, which also 

coincides with the confidence interval for the combined HR for a given gene not crossing 

the baseline risk (HR = 1). The HR for a given gene >1, was defined as a potential risk 

gene, <1, it was defined as a potential protective gene (coxph() function in [survival 

package in R]).  
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2.5.6.14 Stepwise selection.  

The gene candidates from multivariate analysis were applied to the process of 

forward stepwise selection, which is designed to add genes to the base model with 

clinical covariates that increase the model’s ability to discriminate between long versus 

short-term survivors. First, 10 random seeds were generated and for each seed the 

IvyGAP CT samples were split into train and test sets using 5-fold cross validation. Next, 

using train sets, HR’s, log-rank test scores and associated p-values are computed for 

the base model, iteratively fit with each candidate gene. An updated model is created 

adding only the candidate gene with the highest log-rank test score (and the lowest log-

rank test p-value) to the base model. Then, the process is repeated to determine which 

of the remaining candidate genes will lead to the greatest improvement if added to the 

model. This process is continued until the concordance for the model reaches 1, 

signifying that the discriminatory power of the model is perfect, or 10 genes have been 

added, whichever occurs first (createFolds() function in [caret R package]; coxph() 

function in [survival package in R]).  

 

2.5.6.15 Internal validation.  

The model for each training set that underwent stepwise selection was used to 

predict the HR of the corresponding test set and the concordance and log-rank test p-

value was computed. Models were excluded that, upon prediction on the test set, had 

concordance < 0.5 or log-rank test p-value > 0.05. To avoid overfitting, the model that 

was selected for subsequent analyses was the model with concordance nearest the 

mean (0.75) of all remaining models (predict() function in [stats package in R]).  
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2.5.6.16 Finalized survival model.  

Since we want to ensure generalizability and that each feature of the model is an 

independent predictor, to finalize the model, it was applied to the entire IvyGAP CT data 

set and features were excluded that had a Wald statistic p-value >0.05. The resulting 

finalized model was trained on the IvyGAP CT data and used to predict the HR’s for 

each sample in the IvyGAP CT set alone as well as the entire IvyGAP data set (coxph() 

function in [survival R package]; predict() function in [stats R package]). 

 

2.5.6.17 External validation.  

The GBM-TCGA samples that were predicted to be predominantly CT by the 

structure-based lasso logistic regression classifier were used for external validation of 

the finalized survival model. The model was trained on the IvyGAP CT data and used to 

predict the HR’s for the GBM-TCGA CT samples alone as well as the entire GBM-TCGA 

data set (predict() function in [stats package in R]). 

 

2.5.6.18 Survival analysis.  

Under different circumstances, an HR of 1 (high risk: HR > 1; low risk: HR < 1) 

was taken as the cut-off point for group classification, or tertiles of HR values were used 

to classify into two (high risk: HR > quantile(2/3); low risk: HR < quantile(2/3)) or three 

groups (high risk: HR > quantile(2/3); medium-risk: quantile(1/3) < HR < quantile(2/3); low 

risk: HR < quantile(1/3)). The Kaplan-Meier method was used to generate survival curves 

based on the different cut-offs and the difference between survival curves was evaluated 

using the log-rank test. All tests were two-tailed, and p-values less than 0.05 were 

considered to be significant (survfit() function in [survival package in R]; ggsurvplot() 

function in [survminer R package]).  
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2.5.7 Heatmaps. 

 For all heatmap visualizations, if clustering was performed, transcripts and 

samples were organized by unsupervised hierarchical clustering using Ward’s method 

with the Euclidean distance metric. Heatmap visualization and hierarchical clustering 

were performed on log2-transformed and z-score-normalized data (pheatmap() function 

[pheatmap R package]).  

 

2.5.8 Data availability.  

All computer code used in this work is free and open-source software available at 

https://github.com/gbm-dx. IvyGAP data were acquired from 

http://glioblastoma.alleninstitute.org. TCGA data were acquired from 

https://portal.gdc.cancer.gov and https://tcga-

data.nci.nih.gov/docs/publications/gbm_2013/ 

https://github.com/gbm-dx
http://glioblastoma.alleninstitute.org/
https://portal.gdc.cancer.gov/
https://tcga-data.nci.nih.gov/docs/publications/gbm_2013/
https://tcga-data.nci.nih.gov/docs/publications/gbm_2013/
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CHAPTER 3. MICROENVIRONMENT FACTORS INFLUENCE CELL COUNT AND 
DIFFERENTIATION STATE CHANGES IN HUMAN BLADDER CANCER CELL 

LINES  
 

 

3.1 Abstract 

Bladder cancer is the sixth most prevalent cancer in the United States and is a 

major contributor to patient morbidity and mortality. The tumor microenvironment (TME) 

may play a role in cell growth and differentiation that may be associated with disease 

recurrence and metastasis. TME signals cooperate with tumor cell genotype (mutations, 

translocations, copy number), and phenotype (differentiation state) to select for the cell 

type most fit to survive the conditions of the environment. This interplay is important to 

understand to identify signals that stimulate a pro-proliferative phenotype, and determine 

whether cells exhibit differentiation state plasticity to highlight potential targets for cancer 

interventions and predict outcome. We hypothesize that distinct TME signals stimulate 

proliferation and differentiation state plasticity in human bladder cancer cell lines in the 

presence and absence of drug treatment. To test our hypothesis, we utilized 

microenvironment microarray (MEMA) technology and identified lymphatic vessel 

endothelial hyaluronan receptor 1 (LYVE1) and cluster of differentiation 44 (CD44) as 

potential protein combinations that increased 5-ethynyl-2'-deoxyuridine (EdU) 

incorporation, a surrogate marker for proliferation. Validation results showed that LYVE1 

and CD44 can independently increase cell count, but have a greater ability to do so in 

combination in the presence or absence of cisplatin. Cell cycle analysis indicated that 

LYVE1 had a trend in reducing apoptosis, and either increases proliferation or enhances 

DNA repair in cells treated with cisplatin. Additionally, neuregulin (NRG) isoforms 

The contents of this chapter are in preparation for a submission to PLOS ONE for 
publication.  
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differentially affected bladder cancer cell count, EdU incorporation, and differentiation. 

Regardless of the specific TME signals, a switch to a more differentiated, intermediate or 

luminal state promoted an increase in cell number. The identified microenvironment 

factors that promote cell growth and differentiation will lay the foundation for improved 

strategies to predict recurrence and metastasis, and provide insight into potential 

therapeutic targets. 

 

3.2 Introduction 

Bladder cancer is the sixth most prevalent cancer in the United States with 

81,190 new cases and 17,240 deaths estimated in 20181. The majority of these deaths 

are due to muscle-invasive bladder cancer, the more aggressive form of the disease 

(34% 5-year survival)191,247. Progression to metastasis will result in even poorer survival 

(5% 5-year survival)248,249. Standard care for invasive disease is aggressive treatment 

with cisplatin, and surgical intervention (cystectomy and an extended 

lymphadenectomy)194,250,251. Bladder carcinomas have a high propensity to recur despite 

aggressive treatment113. Many patients who initially respond to standard of care 

treatment exhibit refractory disease within a few years. The high rate of recurrence 

presents a challenge for the clinical management of this disease requiring frequent and 

often life-long surveillance of patients194. Many intrinsic factors that promote tumor 

progression and recurrence have been elucidated252. For example, bladder tumors 

frequently exhibit enhanced fibroblast growth factor receptor 3 (FGFR3) signaling 

through FGFR3 overexpression or FGFR3-transforming acid coiled-coil containing 

protein 3 (FGFR-TACC3) fusions, and also display aberrant human epidermal growth 

factor receptor 2 (HER2) activity112,113. However, the contribution of extrinsic factors to 

tumor progression has been understudied. 
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Extrinsic components of the TME have recently been implicated in promoting 

tumor growth and differentiation in many cancers, and has been shown to influence 

resistance to targeted therapy in bladder cancer cell lines35–38,253. The TME consists of 

the collection of neighboring stromal cells, immune cells, blood and lymphatic vessels, 

and their secretions36. TME factors provide multiple inputs into cells to control survival, 

proliferation and differentiation of cells via transducing signals into cells through a variety 

of cell surface receptors35. 

 

Bladder tumors are heterogeneous, with individual cells within a tumor displaying 

unique differentiation states representing early, mid, and later differentiation states 

(basal, intermediate, and luminal umbrella cells, respectively)254. Basal, intermediate, 

and umbrella cells are distinguished by unique expression of cytokeratins (KRT) 5/14, 5, 

and 20, respectively196–198. Patient bladder tumors with high expression of KRT-14 have 

a poorer prognosis, suggesting cellular differentiation state affects disease progression, 

treatment efficacy, or both. Moreover, any of these cell types can undergo malignant 

transformation and give rise to tumors with diverse phenotypes and propensities for 

growth and metastasis196. The cancer genome atlas (TCGA) has recently defined 

molecular subtypes for muscle-invasive bladder cancer that use expression of distinct 

genes that comprise KRT differentiation state markers112,113. However, the clinical use of 

molecular subtypes for bladder cancer has not been realized. 

 

It is critical to understand the communication between bladder cancer and its 

microenvironment to begin to target signals that promote growth. Currently, the extent to 

which extrinsic signals within the TME influence bladder cancer growth and 

differentiation is unknown, including whether response is subtype dependent. With this 

work, we aim to identify microenvironment factors that affect cell number, proliferation, 
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and differentiation state changes, and determine if a relationship exists between these 

endpoints. Identifying microenvironment factors that promote cell growth and 

differentiation will lay the foundation for improved strategies to predict recurrence and 

metastasis, and provide insight into potential therapeutic targets. 

 

3.3 Results 

3.3.1 Molecular subtyping of bladder cancer cell lines revealed 5 subtypes.  

Cell lines were utilized in the current studies for their relative ease of use along 

with high reproducibility, and because cell lines model the genomic diversity of primary 

bladder cancer as shown by hierarchical clustering of patient samples with cell lines 

(Supplemental Figure 9). Thirty-two bladder cancer cell lines were organized by 

unsupervised hierarchical clustering to identify molecular subtypes using z-scored 

expression of genes defined by TCGA (Supplemental Figure 10). Gene sets are grouped 

as luminal, extracellular matrix (ECM) and smooth muscle (SM), epithelial to 

mesenchymal transition (EMT) and claudin, basal, squamous, immune, neuronal, 

carcinoma in situ (CIS), and sonic hedgehog sets. Clustering revealed poor organization 

of a portion of the gene set groups into clusters (ECM and SM, immune, neuronal, CIS, 

and sonic hedgehog). This seemed to suggest that the gene sets associated with 

components of the microenvironment did not cluster well due to their lack of 

representation in cell lines. Hierarchical clustering was then repeated without the gene 

sets representative of the microenvironment while still containing the gene set groups 

luminal, EMT and claudin, basal, and squamous to better define molecular subtypes that 

were representative of the cancer cells themselves (Figure 10). Five main clusters were 

identified corresponding to a mesenchymal subtype rich in EMT genes (Cluster I), a 

basal-squamous subtype (Cluster II), a luminal/TP63-high subtype (Cluster III), a 

luminal/TP63-low/FGFR3-low subtype (Cluster IV), and a luminal claudin-high KRT20-
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high subtype (Cluster V). Additional information about bladder cancer cell lines including 

known gene mutations of major oncogenes and tumor suppressors, as well as stage, 

and grade of tumors the cell lines were derived from can be found in Supplemental 

Table 3. 

 

3.3.2 Expression of differentiation state markers showed phenotypic heterogeneity in 

bladder cancer patient tissue and cell lines.  

Heterogeneity between patients (inter-tumoral heterogeneity) and between cell 

lines exists, according to molecular subtyping performed by TCGA on bladder cancer 

patient tissues, and our subtyping on bladder cancer cell lines, respectively. We 

performed immunofluorescence staining for expression of bladder differentiation state 

markers KRT5, KRT14, and KRT20 to determine if heterogeneity exists within tumors 

(intra-tumoral heterogeneity) or within cell lines. Expression patterns in a fresh frozen 

paraffin embedded patient bladder cancer tissue sample showed the presence of intra-

tumoral heterogeneity with nests of KRT14 positive cells in some regions and other 

regions KRT14 negative and positive in KRT5 and KRT20. (Figure 11A). Cell lines also 

demonstrated heterogeneity in the expression patterns of KRT5, KRT14, and KRT20 

(Figure 11C). The basal-squamous cell line SCaBER displayed extensive heterogeneity 

when stained for KRT14 and the squamous marker TP63 with all possible combinations 

present: double negative, double positive, KRT14 positive and TP63 negative, and 

KRT14 negative and TP63 positive (Figure 11B). These results suggest that when 

subtyping is performed on a tumor or a cell line, the predominant subtype or expression 

pattern is what drives classification, but subtype heterogeneity likely exists at lower 

levels. 
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3.3.3 MEMAs identified factors that promote EdU incorporation and induce 

differentiation state changes.  

Microenvironment Microarrays (Figure 12) were used to identify pairwise 

combinations of soluble and insoluble microenvironment factors that promote 

proliferation and differentiation changes in luminal/TP63-high FGFR3-TACC3 fusion cell 

lines RT112 (Figure 13) and RT4 (Supplemental Figure 11)255,256. FGFR3-TACC3 fusion 

resulting in FGFR3 overexpression is a resounding feature in bladder tumors and 

modeling this characteristic in the context of microenvironmental influences is of clinical 

relevance. MEMAs were manufactured on-site and were comprised of 2688 different 

combinations of 56 soluble and 48 insoluble microenvironment components. These 

proteins were selected as a standard set of proteins that are representative of different 

types of local and metastatic tumor environments, including, but not limited to the 

bladder microenvironment. These proteins are constituents of extracellular matrix 

molecules, lymphocytic infiltrates, stroma, macrophages, as well as blood and lymphatic 

system secretions and endothelium. Collagen I was mixed with each insoluble protein to 

ensure robust printing and promote cell attachment. An array consists of insoluble 

proteins robotically printed in a well of an 8-well plate as ~300 mm diameter spots, which 

served as growth substrates for cells. Fifteen replicate spots of each insoluble substrate 

were printed in random locations to attain good statistical power within an array.  

 

RT112 cells or RT4 cells were seeded onto each MEMA set, and the cells were 

allowed to attach to the spots for 1 hour. After ensuring cell adhesion to the spots via 

bright field microscopy, excess cells were then removed, incubated overnight, and then 

a single soluble ligand or PBS was added to each well along with either 25 M cisplatin 

or DMSO as a control in the case of RT112, or 200 nM PD173074 (an FGFR inhibitor) in 

the case of RT4. The concentration of each drug was selected based on the 50% growth 
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inhibition of the respective cells after 72 hours. Following 47 hours of drug treatment, 

cells were pulsed for one hour with EdU, fixed in 2% paraformaldehyde, and stained with 

markers for DNA content (DAPI), EdU incorporation as a surrogate for proliferation, and 

differentiation state markers (KRT5 and KRT20 (RT112) or KRT5 and KRT14 (RT4)). 

The stained arrays were imaged using a GE IN Cell Analyzer 6000 high-content, laser-

based imaging platform and the IN Cell Analyzer image analysis software suite was 

used for image segmentation and extraction of quantitative image features. Resulting 

image features were normalized by RUV3 and LOESS regression to reduce variation in 

cell counts and staining intensity. The fraction of cells incorporating EdU, and expression 

of basal (KRT14/5), intermediate (KRT5), and luminal (KRT20) differentiation state 

markers due to combinatorial microenvironment factors in the presence or absence of 

drug treatment were assessed.  

 

With regard to RT112 cells, there was a high dynamic range of EdU incorporation 

in both settings of DMSO and cisplatin treatment. In the DMSO treatment group, the 

proportion of cells that incorporated EdU ranged from approximately 6% to 40% with a 

median at about 18% (Figure 13A). Similarly, after cisplatin treatment, RT112 cells 

incorporated EdU at a rate of about 5% to 40% (Figure 14A). However, the median was 

higher in the cisplatin treated group (~ 22.5%), with the majority of combinations eliciting 

a mean incorporation of EdU between 18.25% and 27%. The top factors that promoted 

EdU incorporation in the DMSO treated set included fibroblast growth factor-2 (FGF2), 

hepatocyte growth factor (HGF), fms-related tyrosine kinase 3 ligand (FLT3) ligand, and 

connective tissue growth factor (CTGF). Alternatively, pleiotrophin (PTN), lymphatic 

vessel endothelial hyaluronan receptor 1 (LYVE1), delta-like protein 1 (DLL1), and 

neuregulin1- (NRG1- or NRG1|1) promoted EdU incorporation in the cisplatin treated 

set. Interestingly, NRG isoforms differentially affected the ability of RT112 cells to 
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incorporate EdU when exposed to cisplatin. Of the NRG isoforms, NRG1- had the 

greatest ability to promote EdU incorporation, while sensory and motor neuron-derived 

factor (NRG1-SMDF or NRG1|10) had affects similar to the DMSO treated group, and 

neuregulin1-1 (NRG1- or NRG1|6) diminished EdU incorporation (approximately 26%, 

22%, and 15%, respectively). Microenvironment factors also influenced 

basal/intermediate and luminal differentiation (Figure 13B, 14B). The ratio of KRT20 to 

KRT5 was assessed after exposure to microenvironment factors with the presence or 

absence of cisplatin. Without drug treatment, the ratio of KRT20/KRT5 (Figure 13B), 

extended from approximately 1/3 to 1/56 as opposed to cisplatin treatment (Figure 14B), 

which influenced a narrower range of differentiation change of about 1/9 to 1/35. 

 

Regarding RT4 cells, microenvironment conditions induced a wide range of EdU 

incorporation after treatment with the tyrosine kinase inhibitor (TKI) inhibitor PD173074 

(Supplemental Figure 11A). TNF was the most prominent of all soluble factors that 

promoted EdU incorporation, which is consistent with TNF-mediated resistance reported 

in bladder cancer after administration of BCG. The Settleman group showed that NRG1-

1 had the ability to rescue cells from PD173071 induced effects, and that HGF, FGF 

basic, and PDGF could not rescue cells257. Analogously, our MEMA studies with RT4 

and PD173074 treatment showed a similar trend with NRG1- capable of promoting 

EdU incorporation to a greater extent than HGF, FGF2, and PDGF. Differentiation state 

was also broadly affected (Supplemental Figure 11B). 

 

3.3.4 LYVE1 promotes EdU incorporation in the presence of cisplatin 

Increased EdU incorporation upon cisplatin treatment in RT112 cells is likely due 

to enhanced DNA repair, not DNA synthesis. Cisplatin is the front-line therapy in bladder 
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cancer and therefore, clinically relevant to identify combinatorial microenvironments that 

enhance DNA repair upon treatment. For this reason, we decided to pursue validation of 

LYVE1 as a potentially important mediator of enhanced DNA repair upon cisplatin 

treatment. LYVE1 is a secreted receptor primarily expressed on the luminal and 

abluminal surface of lymphatic endothelial cells, is used as a lymphatic marker, and 

plays a role in lymphangiogenesis, invasion and metastasis of certain cancers258–263. As 

bladder cancer cells invade past the basement membrane, they are exposed to blood 

and lymphatic vessels and their secretions. Additionally, bladder cancer frequently 

invades the lymphatics and metastasizes to distant sites primarily via this route264. 

Therefore, it is logical that bladder cancer cells are exposed to LYVE1, and it is 

important to understand this interaction especially in the context of cisplatin treatment. 

 

Further examination of the effects of insoluble microenvironment factors in 

combination with LYVE1 in the RT112 MEMA cisplatin treated set showed differential 

EdU incorporation ranging from approximately 18.25% to 35% (Figure 14C). 

Interestingly, the combination of LYVE1 with its homolog CD44 resulted in the greatest 

EdU incorporation, suggesting that their region of sequence homology elicits this 

response. On the other hand, LYVE1 in combination with the basement membrane 

protein nidogen-1 resulted in the least EdU incorporation. Nidogen-1 in combination with 

other soluble factors in the DMSO or cisplatin treated set (not shown) resulted in a 

similar response, indicating that nidogen-1 universally inhibits bladder cancer 

proliferation.  

 

For validation of the LYVE1 response, cell count was assessed in RT112 cells 

plated in multi-well tissue-culture treated plates and treated with DMSO or 25 M 

cisplatin and PBS or 7 two-fold dilutions of LYVE1 ranging from 6.25 ng/ml to 400 ng/ml 
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(Figure 15). Results showed that cell count steadily increased with increasing 

concentrations of LYVE1 in both the DMSO and cisplatin treated groups. Response 

peaked at 200 ng/ml LYVE1 and resulted in a 1.7-fold increase over PBS for the DMSO 

treated cells and a 4.6-fold increase over PBS for the cisplatin treated cells. At the 

highest concentration of LYVE1 at 400 ng/ml, there was a dip in response that was 

slightly less than that observed at 100 ng/ml LYVE1. 

 

Next, effects of LYVE1 in combination with insoluble collagen I or CD44 mixed 

with collagen I were tested to fully validate the MEMA results and model the spots from 

the MEMA, which were comprised of collagen I or collagen I mixed with other proteins 

(Figure 16). RT112 cells were plated in multi-well plates pre-coated with collagen I or 

CD44 and collagen I and treated with PBS or 50 ng/ml LYVE1 and DMSO or 7 two-fold 

dilutions of cisplatin ranging from 3.125 M to 200 M. In the DMSO treated group, there 

was a trend of increased cell count in collagen I/LYVE1 treated versus collagen I/PBS 

treated cells. A significant increase in cell count was observed in CD44/PBS in 

comparison to collagen I/PBS, indicating that CD44 alone has the ability to increase cell 

count. A significant increase in cell count was also seen with CD44/LYVE exposure in 

comparison to collagen I/LYVE1. The greatest affect was detected in the CD44/LYVE1 

treatment compared to collagen I/PBS with a 2.3-fold increase, suggesting that together 

CD44 and LYVE1 have the potential to dramatically increase cell count. Similar affects 

were seen in the 3.125 M cisplatin treated cells with significant increases in cell count 

seen in CD44/LYVE1 exposure versus all other treatments, thereby negating cisplatin 

treatment. In 6.25, 12.5 and 25 M cisplatin treated concentrations, there was a trend of 

increased cell count with CD44/PBS and CD44/LYVE1 over collagen I/PBS and collagen 
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I/LYVE1. A diminished response is seen at 50 M cisplatin and a rebound in response is 

observed at 200 M. 

 

The effects of LYVE1 and CD44 were further investigated at 3.125 M cisplatin, 

the concentration with the most significant response. RT112 cells were plated in multi-

well plates pre-coated with collagen I (Supplemental Figure 12) or CD44 and collagen I 

(Figure 17A) and treated with DMSO or 3.125 M cisplatin and PBS or 7 two-fold 

dilutions of LYVE1 ranging from 6.25 ng/ml to 400 ng/ml. The cisplatin effect at this 

concentration was not as pronounced as previously observed, which could be due to 

cisplatin batch effects or degradation of cisplatin making it less effective. Despite this, 

there was a steady increase in cell count in collagen I coated plates in both DMSO and 

cisplatin treated cells in response to increasing concentrations of LYVE1 peaking at 50 

ng/ml and a subsequent decrease up to 400 ng/ml, which were near PBS/DMSO control 

levels. There was also an increase in cell count in coated plates containing CD44 mixed 

with collagen I, which peaked at 12.5 and 50 ng/ml and decreased at 400 ng/ml. 

 

Cell cycle analysis revealed there was a significant, but modest increase in the 

proportion of LYVE1 and cisplatin treated cells in S-phase in comparison to PBS and 

cisplatin treated cells in both CD44 (27% versus 22%) and collagen I (29% versus 25%) 

coated plates (Figure 17B). A significant difference was also observed between LYVE1 

and cisplatin treated cells in S-phase in comparison to LYVE and DMSO, as well as PBS 

and DMSO. In CD44 coated plates, a trend in S-phase is appreciated with an increasing 

proportion of cells from PBS/DMSO, through LYVE1/DMSO, PBS/Cisplatin up to 

LYVE1/Cisplatin. A concomitant decrease trended in G0/G1 phase. Sub-G0/G1 phase is 

indicative of cells undergoing apoptosis. There was a trend in increased apoptotic cells 
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with PBS/cisplatin treatment, as well as a trend in LYVE1/DMSO and LYVE1/cisplatin 

treatment reducing levels of apoptotic cells. Collectively, cell cycle analysis suggests that 

LYVE1 reduces apoptosis, and either increases proliferation or enhances DNA repair in 

cells treated with cisplatin. 

 

3.3.5 Effect of ligand treatment on cell count, proliferation, and differentiation in bladder 

cancer cell lines.  

To determine whether the responses of cells to microenvironmental ligands is 

subtype dependent, experiments were conducted in cell lines representative of distinct 

subtypes. The luminal/claudin-high/KRT20-high cell line UMUC9, luminal/TP63-high 

subtype RT112, basal-squamous cell line HT1376, and mesenchymal cell lines JMSU1, 

TCCSUP were plated into collagen I coated or tissue culture treated plates, incubated 

overnight and treated with a single soluble ligand or PBS. After 23 or 47 hours of ligand 

treatment, cells were pulsed for one hour with EdU, fixed in 2% paraformaldehyde, and 

stained with immunofluorescent markers for DNA content (DAPI), EdU incorporation as 

a surrogate for proliferation, and differentiation state markers. The ratio of KRT14 to 

KRT20 was assessed in RT112 and UMUC9 on collagen I coated plates and RT112 on 

tissue culture treated plates treated with ligands for 24 hours, and the ratio of KRT14 to 

KRT5 on collagen I coated and tissue culture treated plates treated with ligands for 48 

hours. Hierarchical clustering and a heatmap representation of cell count, EdU 

incorporation, KRT14 to 5 ratio, and KRT14 to 20 ratio were performed to assess the 

effects of ligand treatment across cell lines and plating conditions. 

 

NRG1- was stimulatory and promoted an increase in cell count across all cell 

lines and conditions, with the exception of RT112 plated in a tissue culture treated plate, 

which had a cell count similar to PBS (Figure 18A). NRG1- stimulated an increase in 
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cell count in collagen I conditions, but inhibited cell count in tissue culture treated 

conditions leading to a differential response between NRG1- and NRG1- in tissue 

culture treated plates. NRG1-SMDF mostly decreased cell count except for UMUC9 

plated in collagen I, which was slightly stimulatory. Additionally, proteins that promote 

angiogenesis or lymphangiogenesis such as angiopoietin-1, VEGFA, CXCL12-  and 

LYVE1 clustered together due to having similar effects on cell count.  

 

The most profound effects in EdU incorporation were observed in the cell lines 

TCCSUP and UMUC9 (Figure 18B). NRG1- induced differential EdU incorporation by 

decreasing incorporation in TCCSUP and dramatically increasing in UMUC9. NRG1- 

and NRG1-SMDF both stimulated EdU incorporation in TCCSUP and UMUC9 

demonstrating a differential response between NRG1- and NRG1- in TCCSUP.  

 

The most dramatic effects of ligands on KRT14 to KRT5 ratio were observed in 

the mesenchymal cell lines TCCSUP and JMSU1 (Figure 18C). NRG1- promoted a 

decrease in KRT14 to 5 ratio indicating a shift to a more intermediate differentiation 

state, while NRG1- promoted an increase in KRT14 to 5 ratio indicating a shift to a 

more stem like state. NRG1-SMDF slightly increased KRT14 to 5 ratio in mesenchymal 

cell lines TCCSUP and JMSU1. NRG1-SMDF also clustered with other proteins such as 

LYVE1 that similarly promoted a decrease in KRT14 to 5 ratio in non-mesenchymal cell 

lines, excluding RT112 under tissue culture treated conditions. The ratio of KRT14 to 5 

correlate with cell count in the mesenchymal cell lines JMSU1 and TCCSUP (Figure 

18E). In general, the lower ratios correspond with higher cell count and vice versa. This 

indicates that ligands that promote an increase in cell number change their differentiation 

to a more intermediate state. 
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KRT14 to KRT20 ratio was assessed in only the luminal/claudin-high/KRT20-high 

cell line UMUC9, and the luminal/TP63-high subtype RT112 (Figure 18D). NRG1-, 

NRG1-, and NRG1-SMDF all decreased the KRT14 to KRT20 ratio in UMUC9 cells, 

which also corresponded with an increase in EdU incorporation and cell count. 

Angiogenic and lymphangiogenic factors promoted a decrease in KRT14 to KRT20 ratio 

in UMUC9, with VEGFA inducing the most potent affect, which also stimulated the 

highest cell count. In RT112 cells, NRG1- and NRG1-SMDF promoted an increase in 

KRT14 to KRT20, which corresponded with a decrease in cell count. NRG1- showed a 

decrease in KRT14 to KRT20 ratio and corresponded with an increase in cell count. The 

ratio of KRT20 to 14 correlate with cell count in the luminal cell lines RT112 and UMUC9 

(Figure 18E). In general, the higher ratios correspond with higher cell count and vice 

versa. This collectively suggests that a greater shift to a fully differentiated state 

promotes an increase in proliferation and cell.  

  



 

 129 

 

Figure 10. Heatmap of bladder cancer cell lines hierarchically clustered to identify molecular 
subtypes.  

Thirty-two bladder cancer cell lines (x-axis) were organized by unsupervised hierarchically clustering using 
z-scored expression of a subset of genes defined by TCGA (y-axis) to identify molecular subtypes. Five 
main clusters were identified corresponding to a mesenchymal subtype rich in EMT genes (Cluster I), a 
basal-squamous subtype (Cluster II), a luminal/TP63-high subtype (Cluster III), a luminal/TP63-low/FGFR3-
low subtype (Cluster IV), and a luminal/claudin-high/KRT20-high subtype (Cluster V).  

 

Figure 11. Expression of differentiation state markers reveals phenotypic heterogeneity in bladder 
cancer cell lines.  
(A) Expression patterns in a fresh frozen paraffin embedded patient bladder cancer tissue sample stained 

with DAPI and for expression of KRT5, KRT14, and KRT20. (B) The basal-squamous cell line SCaBER 
stained with DAPI and for KRT14 and the squamous marker TP63. (C) Bladder cancer cell lines CAL29, 
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HT1376, JMSU1, RT112, SCaBER, TCCSUP, UMUC9, UMUC10, and VMCUB1 stained for the expression 
patterns of KRT5, KRT14, and KRT20. 

 

 

Figure 12. The MicroEnvironment MicroArray (MEMA) platform.  

A library of 48 insoluble extracellular matrix (ECM) proteins is spotted (300 m) onto the bottom of 8-well 
polystyrene microplates and desiccated for 48 hours.  Suspended cells are added to each well and allowed 
to adhere to the ECM spots for 1 hour. Non-adherent cells are washed off and fresh culture media is added. 
Cells are cultured overnight and a single soluble ligand is added to each well or PBS as a control. Cells are 
fixed and stained after 48 hours after ligand treatment and stained for endpoints of interest. A high-
throughput system captures images of each spot with stained cells followed by quality control and other 
analyses for extraction of features. Adapted from “Microenvironment-Mediated Mechanisms of Resistance to 
HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes” by S. Watson, et.al., 2018, Cell Systems, 
Volume 6 (Issue 3), p.329-342. Copyright [2018] by the Elsevier Inc255.  
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Figure 13. Microenvironment factors influence EdU incorporation and differentiation state.  

(A) Box plots of percent EdU proportion (n = 15, mean, upper & lower quartile, min & max, with outliers) of 
RT112 cells following 48 hours of soluble ligand (x-axis) and DMSO treatment on MEMAs. (B) Box plots of 
normalized KRT20 to KRT5 ratio (n = 15, mean, upper & lower quartile, min & max, with outliers) of RT112 
cells following 48 hours of ligand (x-axis) and DMSO treatment on MEMAs. Plates are colored to identify 
potential batch effects.  
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Figure 3. MEMA analysis of RT112 bladder cancer cells treated with 50 µM cisplatin for 48 h. A) Normalized proliferation analysis. Each signal of the dataset was independently normalized between arrays
using a round of the RUV3 method and the spatial residuals as the controls and k=7 followed by a round of bivariate loess using spatial residuals after the RUV3 round. First, the cells within each well are auto-
gated into EdU+. The proportion of EdU+ cells at each spot is calculated. The proportions are logit transformed then RUV3 and loess normalized. The normalized proportions are then summarized by the
medians of their replicates. B) Normalized proliferation analysis of LYVE-1 with ECM combinations. C) Representative images from MEMA spots showing microenvironment perturbations promote a spectrum
of phenotypes (left to right) cisplatin sensitivity, cisplatin resistance, cisplatin resistance and a luminal differentiation state, and cisplatin resistance and a basal differentiation state.
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Figure 14. Microenvironment factors influence EdU incorporation and differentiation state after 
cisplatin treatment.  

(A) Box plots of percent EdU proportion (n = 15, mean, upper & lower quartile, min & max, with outliers) of 

RT112 cells following 48 hours of ligand (x-axis) and 25 M cisplatin treatment on MEMAs. (B) Box plots of 
normalized KRT20 to KRT5 ratio (n = 15, mean, upper & lower quartile, min & max, with outliers) of RT112 

cells following 48 hours of ligand (x-axis) and 25 M cisplatin treatment on MEMAs. (C) Mean values of 
percent EdU incorporation of RT112 taken from (A) of the soluble ligand LYVE1 in combination with 
insoluble ECM substrates. Plates are colored to identify potential batch effects.  
  
 
 
 

 
Figure 15. LYVE-1 increases bladder cancer cell number in a dose response manner and does so in 
the presence of cisplatin in tissue-culture treated plates.  

Percentage of mean cell count and SEM (n = 3) of RT112 cells following 48 hours of 25 M cisplatin or DMSO 
treatment, and PBS or 7 two-fold dilutions of LYVE1 ranging from 6.25 ng/ml to 400 ng/ml. Cell count was 
normalized to DMSO/PBS treatment. 
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Figure 3. MEMA analysis of RT112 bladder cancer cells treated with 50 µM cisplatin for 48 h. A) Normalized proliferation analysis. Each signal of the dataset was independently normalized between arrays
using a round of the RUV3 method and the spatial residuals as the controls and k=7 followed by a round of bivariate loess using spatial residuals after the RUV3 round. First, the cells within each well are auto-
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medians of their replicates. B) Normalized proliferation analysis of LYVE-1 with ECM combinations. C) Representative images from MEMA spots showing microenvironment perturbations promote a spectrum
of phenotypes (left to right) cisplatin sensitivity, cisplatin resistance, cisplatin resistance and a luminal differentiation state, and cisplatin resistance and a basal differentiation state.
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Figure 16. LYVE-1 increases bladder cancer cell number in plates pre-coated with collagen I or CD44 
and collagen I.  

Percentage of mean cell count and SEM (n = 3) of RT112 cells seeded into plates pre-coated with collagen I 
or CD44 and collagen I and exposed for 48 hours to 50 ng/ml LYVE1 or PBS treatment, and DMSO or 7 

two-fold dilutions of cisplatin ranging from 3.125 M to 200 M. Cell count was normalized to collagen 
I/DMSO/PBS treatment.  
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Figure 17. LYVE-1 increases bladder cancer cell number and percentage of cells in S phase in plates 
pre-coated with CD44 and collagen I.  

(A) Percentage of mean cell count and SEM (n = 3) of RT112 cells seeded into plates pre-coated with CD44 

and collagen I and exposed for 48 hours to 3.125 M cisplatin or DMSO, and PBS or 7 two-fold dilutions of 
LYVE1 ranging from 6.25 ng/ml to 400 ng/ml. Cell count was normalized to DMSO/PBS treatment. (B) Cell 
cycle analysis of data from (A) of specific treatments including PBS or 50 ng/ml LYVE1, and DMSO or 3.125 

M cisplatin. Percentage of S phase cells was calculated by identifying a local minimum in the histogram of 
total EdU intensity and gating cells into EdU positive or negative that were above or below the local 
minimum, and calculating total EdU positive over total cells. Percentage of sub-G0/G1, G0/G1, and G2/M 
cells was calculated by identifying two local minimums in the histogram of total DAPI intensity. EdU negative 
cells were then taken and sub-G0 cells were gated into the lowest DAPI intensity group, G0/G1 were gated 
into the medium DAPI intensity group, and G2/M cells were gated into the highest DAPI intensity group, and 
percentages were calculated by quantifying cells in each gate over total cells. (C) 3-dimensional histogram 
of single cell total intensity of DAPI (x-axis), total intensity of EdU (y-axis), and frequency of cells in each bin 
(z-axis; 62,500 bins) spatially showing distinct phases of the cell cycle as indicated in the DMSO/PBS 
treatment. Apo: sub-G0/G1 apoptotic cells; G0/G1: G0/G1 phase of the cell cycle; G2/M: G2/M phase of the 
cell cycle; S: S phase of the cell cycle.  
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Effect	of	Ligands	on	Cell	CountA. 
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Effect	of	Ligands	on	EdU Positive	ProportionB. 
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Effect	of	Ligands	on	KRT14	to	KRT5	RatioC. 
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Effect	of	Ligands	on	KRT14	to	KRT20	RatioD. 
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Figure 18. Effect of soluble ligand treatment on cell count, proliferation, and differentiation in 
bladder cancer cell lines. 

 HT1376, JMSU1, RT112, UMUC9, and TCCSUP1 were seeded onto tissue culture treated plates (IbiTreat) 
or collagen I pre-coated plates, incubated overnight and treated with soluble ligands for 24 or 48 hours. 
Heatmaps of the effect of ligands on (A) cell count, (B) EdU incorporation, (C) KRT14 to KRT5 ratio, and (D) 
KRT14 to KRT20 ratio were plotted. (E) Scatter plot showing the relationship between cell count (y-axis) and 
the ratio of KRT20 to KRT14 (UMUC9 and RT112 cells after 24 hour ligand treatment) or KRT14 to KRT5 
(JMSU1 and TCCSUP cells after 48 hour ligand treatment). All values were normalized to PBS control for 
each cell line in their respective treatments.  
 
 

 

E. 
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Supplemental Figure 9. A panel of bladder cancer cell lines models the genomic diversity of primary 
bladder cancer tumors.  

Gene expression data from the Cancer Cell Line Encyclopedia265 was integrated with gene expression data 
from a patient data set 266 and hierarchically clustered. Cell lines (marked with arrows) disperse evenly 
throughout the cluster dendrogram of patient samples. Adapted from unpublished data from a previous post-
doctoral fellow in the Gray lab, Trevor Levin.  

 

 

 
Supplemental Figure 10. Heatmap of bladder cancer cell lines hierarchically clustered to identify 
molecular subtypes.  

Thirty-two bladder cancer cell lines (x-axis) were organized by unsupervised hierarchically clustering using 
z-scored expression of genes defined by TCGA (y-axis) to identify molecular subtypes. 
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Supplemental Table 3. Genetic characterization of major oncogenes and tumor suppressor genes in 
urinary bladder cancer cell lines.  

Amp, amplification; WT, wild type; Mut, mutant; LOH, loss of heterozygosity; HD, homozygous deletion; N, 
copy number neutral; Y, Y chromosome detected. Adapted from “The UBC-40 Urothelial Bladder Cancer cell 
line index: a genomic resource for functional studies” by J. Earl, et. al., BMC Genomics, 2015, Volume 16 
(Issue 1), p.403267.  
  

  
  

97-7 T1 G2/3 Y S249C WT WT WT Mut WT cd	128/N

HT1197 T2 G4 M S249C E545K WT
WT/Q6

1R
Mut WT WT/c.1094A->G

HT1376 T2 G3 F WT WT WT WT Mut WT c.749C>T/LOH

J82 T3 G3 M WT/K652E P124L WT WT Mut WT

c.960G-

>C&c.820G-

>T&c.811G-

MGH-U3 Ta G1 M Y375C/Y373C WT WT WT Mut HD WT/N

RT112 G2 F
WT/Amp/FGFR3-

TACC3	fusion
WT WT WT Mut HD

c.743G>A&c.548

C->G/LOH

RT4 T2 G1 M
WT/Amp/FGFR3-

TACC3	fusion
WT WT WT Mut HD WT/LOH

SCaBER T3 M WT WT WT WT Mut LOH c.329G>T/LOH

SW-1710 F WT WT WT WT Mut HD c.817C>T/LOH

SW-780 G1 F
WT/S773F2/FG

FR3-BAIAP2L1	
WT WT WT Mut HD WT/N

T24 G3 F WT WT G12V WT Mut WT/LOH c.378C>G/N

TCCSUP T4 G4 F WT E545K WT WT Mut WT c.1045G>T/LOH

UM-UC-1 G2 M WT WT WT WT HD c.454C->T/LOH

UM-UC-3 M WT WT WT WT Mut HD/WT c.338T>G/N

UM-UC-4 F WT WT WT LOH

UM-UC-5 F WT E545K WT WT Mut HD LOH

UM-UC-6 M WT/R248C E545K WT HD WT/LOH

UM-UC-7 M WT WT WT Mut WT LOH

UM-UC-9 WT WT WT Mut LOH Mut/LOH

UM-UC-10 WT WT WT WT Mut Mut

UM-UC-11 WT WT WT WT Mut HD WT/N

UM-UC-13 Y WT WT WT WT Mut LOH Mut/N

UM-UC-14 Y S249C WT Mut HD Mut/LOH

VM-CUB-1 G2 M WT
WT/E54

2K+E67
WT WT Mut

c.322G>C

/LOH

c.524G>A&c.378

C->G/LOH

TP53Sex N-RAS INK4ATERTFGFR3 PIK3CA H-RASName StageStage Grade
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Supplemental Figure 11. Microenvironment factors influence EdU incorporation and differentiation.  

(A) Box plots of percent EdU proportion (n = 15, mean, upper & lower quartile, min & max, with outliers) of 
RT4 cells following 48 hours of soluble ligand (x-axis) and 200 nM PD173071 treatment on MEMAs. (B) Box 
plots of normalized KRT5 to KRT14 ratio (n = 15, mean, upper & lower quartile, min & max, with outliers) of 
RT4 cells following 48 hours of ligand (x-axis) and 200 nM PD173071 treatment on MEMAs. Plates are 
colored to identify potential batch effects.  
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Supplemental Figure 12. LYVE-1 increases bladder cancer cell number and percentage of cells in S 
phase in plates pre-coated with collagen I.  

(A) Percentage of mean cell count and SEM (n = 3) of RT112 cells seeded into plates pre-coated with CD44 

and collagen I and exposed for 48 hours to 3.125 M cisplatin or DMSO, and PBS or 7 two-fold dilutions of 
LYVE1 ranging from 6.25 ng/ml to 400 ng/ml. Cell count was normalized to DMSO/PBS treatment. (B) Cell 
cycle analysis of data from (A) of specific treatments including PBS or 50 ng/ml LYVE1, and DMSO or 3.125 

M cisplatin. Percentage of S phase cells was calculated by identifying a local minimum in the histogram of 
total EdU intensity and gating cells into EdU positive or negative that were above or below the local 
minimum, and calculating total EdU positive over total cells. Percentage of sub-G0/G1, G0/G1, and G2/M 
cells was calculated by identifying two local minimums in the histogram of total DAPI intensity. EdU negative 
cells were then taken and sub-G0 cells were gated into the lowest DAPI intensity group, G0/G1 were gated 
into the medium DAPI intensity group, and G2/M cells were gated into the highest DAPI intensity group, and 
percentages were calculated by quantifying cells in each gate over total cells. (C) 3-dimensional histogram 
of single cell total intensity of DAPI (x-axis), total intensity of EdU (y-axis), and frequency of cells in each bin 
(z-axis; 62,500 bins) spatially showing distinct phases of the cell cycle as indicated in the DMSO/PBS 
treatment. Apo: sub-G0/G1 apoptotic cells; G0/G1: G0/G1 phase.  
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3.4 Discussion 

The TME in bladder cancer may play a role in stimulating a pro-proliferative 

phenotype and induce differentiation state plasticity. Understanding responses to TME 

signals in the context of molecular subtype characterization of bladder cancer cells will 

ultimately highlight potential targets for cancer interventions and allow predictions of 

outcome. The current study interrogates the response of bladder cancer cells lines, with 

refined molecular subtype characterization, to TME signals and uncovers relationships 

between cell count, EdU incorporation, and differentiation state.  

 

Five molecular subtypes for bladder cancer cell lines were identified based on a 

subset of gene expression markers defined by TCGA (Figure 10)112. Bladder cancer cell 

lines were used as a tool to refine molecular subtyping that may be broadly applicable 

due to the focus on the cancer cells themselves, devoid of the TME, as opposed to 

patient tissue that is potentially TME-rich. While it is important to consider the TME, 

signals derived from each need to be better understood to fully understand cancer cell-

TME communication so that we can identify targeted therapies to disrupt pro-proliferative 

communication. Subtyping patients based on this new classification may help identify 

therapeutic vulnerabilities. Patients subtyped as mesenchymal or luminal/TP63-low may 

be good candidates for recently approved PD-L1 inhibitors as cell lines classified as 

such were enriched in PD-L1(CD274) (Supplemental Figure 10 and Figure 10)79. 

Patients subtyped as luminal/TP63-high subtype, or a luminal claudin-high KRT20-high 

subtype may respond well to tyrosine kinase inhibitors targeting FGFR3 as these cell 

line clusters overexpressed FGFR3. (Supplemental Figure 10 and Figure 10).  
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MEMA technology was utilized as a discovery tool to identify TME factors that 

increase cell count and promote EdU incorporation. Limitations of this technology 

include the lack of replicate ligand wells and the requirement of multiple plates (8 plates) 

to assess the effects of the entire MEMA ligand set (56 ligands), which necessitates 

additional statistical methods for normalization. Other limitations include not being able 

to discern the difference between cellular responses due to the added soluble ligands 

versus cellular responses due nearby cells secreting soluble factors.  

 

MEMA technology helped identify TNF as a pro-proliferative TME signal in a 

FGFR3-TACC3 fusion cell line upon exposure to the TKI inhibitor PD173074 

(Supplemental Figure 11). In bladder cancer, the TME was first implicated in conferring 

resistance to treatment in studies aimed at elucidating the mechanisms of resistance to 

BCG therapy, the gold standard immunotherapy. Upon administration of BCG, 

neutrophils are recruited to the TME where they secrete TNF, which causes upregulation 

of anti-apoptotic pathway genes to cause resistance268. This is important to consider 

during design of clinical trials as recently approved immunotherapies begin combination 

therapy with targeted TKI inhibitors.  

 

LYVE1 and CD44 were identified as a potential protein combinations that 

enhanced DNA repair upon cisplatin treatment with the aid of MEMAs (Figure 14). 

Cisplatin is the standard of care chemotherapy in bladder cancer, making it important to 

better understand the interaction between bladder cancer cells, LYVE1, and/or CD44. 

Validation of the MEMA results in a non-array format showed that LYVE1 increased cell 

count regardless of cisplatin being present at concentrations that are physiologically 

relevant (Figure 15). Additionally, CD44 alone had the ability to increase cell count in the 

presence and absence of cisplatin at physiological concentrations, but the greatest 
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affect, albeit modest, was detected when CD44 and LYVE1 were in combination (Figure 

16). Furthermore, cell cycle analysis indicated that LYVE1 reduces apoptosis, and either 

increases proliferation or enhances DNA repair in cells treated with cisplatin (Figure 17). 

It is possible that LYVE1 and CD44 stimulate the secretion of another unknown protein 

that initiates a positive-feedback loop in bladder cancer cells to elicit the responses 

observed. CD44 and LYVE1 have 43% sequence homology and are hyaluronan 

receptors on blood endothelial cells and lymphatic endothelial cells, respectively261. 

Bladder cancer frequently invades the lymphatics and metastasizes to lymph nodes and 

distant sites via this route269. As bladder cancer cells invade past the urothelium, they 

are exposed to blood and lymphatic vessels and their secretions. Just below the 

urothelium, LYVE1 positive lymphatic vessels are normally present in the lamina propria 

of the bladder, as well as in the detrusor muscle, and in the bladder adventitia270. Studies 

in neuroblastoma have shown that LYVE1 upregulation correlates with unfavorable 

prognosis and lymph node metastasis262. CD44 has been shown to mediate growth, 

migration, and cisplatin resistance in head and neck cancer271,272. In gastric cancer, 

LYVE1 and CD44 gene expression was significantly higher in comparison to normal 

tissue and correlated with lymph node metastasis263. Collectively, these studies suggest 

a potential role for LYVE1 and CD44 in progression of bladder cancer. Future studies 

should examine the mechanism of interaction of LYVE1 and CD44 with bladder cancer, 

their role in progression of bladder cancer and whether they contribute to lymph node 

metastasis. 

 

NRG isoforms differentially affected the ability of bladder cancer cells to 

incorporate EdU when exposed to cisplatin (Figure 14A). In the absence of drug, NRG 

isoforms also differentially affected bladder cancer cell count (Figure 18A), EdU 

incorporation (Figure 18B), and differentiation state changes (Figures 18C, 18D). 
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Previous studies of bladder tumors showed that NRG1- and NRG1- were expressed 

with increased NRG1- in higher stage and grade273. NRG1 is an epidermal growth 

factor (EGF) family member and has at least 10 NRG1 soluble or transmembrane 

isoforms through alternative splicing or the use of alternative promoters. 

Transmembrane isoforms can be cleaved by proteases and become solubilized. All 

isoforms possess an EGF-like domain, which is necessary for binding to the receptor 

tyrosine kinases HER3 and HER4. Subsequent recruitment and heterodimerization with 

HER2 leads to tyrosine phosphorylation and downstream signaling. NRG1 isoforms are 

classified into types I, II, and III with distinct domains. Types I and II have an Ig-like 

domain, whereas type III has a cysteine-rich domain. Types I and II differ by a 

glycosylation-rich domain in type II. Alternative splicing of the EGF-like domain results in 

 and  variants. NRG1- and NRG1- are type I and NRG1-SMDF is type III274–276. 

Using targeted HER2 therapy such as trastuzumab on subsets of patients that 

overexpress HER2 and HER3 and have NRG1 isoforms present may overcome the shift 

in differentiation state and growth promotion. Further studies need to be done to fully 

understand the differential response of the NRG isoforms in terms of cell number and 

differentiation state to identify patients that would most benefit from therapy aimed at 

blocking the interaction of NRG with its receptors.  

 

Regardless of the specific TME signals, a switch to a more differentiated, 

intermediate or luminal state promoted an increase in cell number (Figure 18E). 

Identifying therapies that disrupt this transition could help improve survival in bladder 

cancer. Furthermore, predicting which tumors have a higher propensity for a 

differentiation shift to occur could help predict outcomes.  
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These results have the potential to provide new information that will enable 

researchers to devise novel targeted approaches aimed at anticipating or overcoming 

pro-proliferative TME signaling. Thus, this work has the potential to greatly impact 

bladder cancer patients’ quality of life and overall survival.  

 

3.5 Materials and Methods 

3.5.1 Cell Lines and Cell Culture 

All cell lines were cultured according to the protocols recommended for each cell 

line (ATCC, Manassos, VA, USA).  

 

3.5.2 Heatmap  

For heatmap visualization, samples were organized by unsupervised hierarchical 

clustering using Ward’s method with the Euclidean distance metric. Heatmap 

visualization and hierarchical clustering were performed on log2-transformed and z-

score-normalized data (pheatmap() function [pheatmap R package]). 

 

3.5.3 MicroEnvironment MicroArrays 

MEMAs in this study were manufactured on-site and all are spotted in separate 

wells that have the same design of 300 μm diameter spots of 48 ECM proteins spotted in 

35 rows and 20 columns on the well bottom of polystyrene microplates (8 wells per plate, 

Nunc Brand, Roskilde, Denmark) using an Aushon2470 microarray printing platform. For 

each assay, there are 2688 microenvironment perturbations (MEPs) that are pairwise 

combinations of 48 printed ECM proteins (15 replicates) and 56 ligands or growth 

factors. One full MEMA set consists of eight 8-well plates, each consisting of one control 

well, equating to a total of 56 ligand treatment wells and 8 control wells. Cells were 

dispersed with non-trypsin cell detachment reagent HyQtase (HyClone, South Logan, 
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UT, USA) and ~ 5 × 106 cells in 4 mL of growth medium were added to each well and 

allowed to adhere at 37 °C for 1 hour. Non-adherent cells were washed off and 4 ml of 

fresh media was added. Cells incubated overnight, and then a single soluble ligand or 

PBS was added to each well along with either drug treatment or vehicle as control.  

 

3.5.4 Cell Line Assays and Image Cytometry 

Immunofluorescence staining was performed on cells according to the following 

protocol 24 or 48 hours after culturing depending on the assay. First, EdU was added to 

wells for 1 h at 37°C in 5% CO2. The culture medium was aspirated and the cells were 

fixed with 2% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) in PBS for 15 min 

at room temperature (RT). Cells were washed for 5 min with PBS and permeabilized 

with 0.1% Triton-X100 in PBS for 15 min at RT. The Click-IT reaction for proliferation 

was performed, then the arrays were washed 3 × 5 min with PBS, rinsed with 0.05% 

PBS-Tween 20 and stained with primary antibody in 2% BSA-PBS overnight at 4 °C. 

Primary antibodies are against KRTs 5, 14 and 20 to assess for differentiation state 

(Abcam). Wells were washed 2 × 5 min with PBS and for 5 min with 0.05% PBS-Tween 

20 and then stained with diluted Alexa fluorochrome-conjugated (Life Technologies) 

secondary antibodies along with DAPI counterstaining for 1 hour at RT. Cells were then 

washed as described above.  

 

Imaging was performed using an IN Cell Analyzer 6000 Cell Imaging System (GE 

Healthcare Bio-Sciences, USA) equipped with sCMOS 5.5 Mp digital camera. Each 

printed spot was imaged individually with a 20× 0.45 objective using four LED lasers 

(405, 488, 561, and 642 nm) for DAPI, Alexa488, Alexa555 and Alexa647 dyes. The IN 

Cell Analyzer image analysis software suite was used for extraction of quantitative 

image features. Image features were quantified for cell populations using the IN Cell 
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software and further analyzed using R software. The effects of each drug on each 

specific response endpoint in each cell line was assessed by comparing image 

parameters (e.g., total fluorescence intensity per cell) with comparable image 

parameters measured for untreated cells.  

 

3.5.5 Statistics 

For MEMAs, 15 replicate spots of each ECM was analyzed to attain good 

statistical power within an array. The dataset is organized into the four imaging 

categories, which include raw data, normalized data, normalized data aggregated to the 

spot level and normalized data aggregated to the replicate level. The data merging and 

analysis was done in R using open source software that allows comparison of activity in 

one ME relative to another, as well as compare activity in a control environment with the 

drug treated microenvironments. Each well is scored for even cell seeding according to 

the count of the DAPI-stained nuclei. Quality analysis scores range from 0 to 1 and 

represent the proportion of the spots that have at least one cell and are not in low cell 

count neighborhoods. The data was normalized with the RUV3 and LOESS regression 

methods to determine within and between MEMA well comparisons. In brief, this is done 

by normalizing the mean of replicate spots in non-control wells to the collective mean of 

replicate spots of all PBS control wells. The proliferation analysis method is as follows: 

First, the cells within each well are gated into EdU+. The proportion of EdU+ cells at 

each spot was calculated. The proportions are logit transformed then normalized. The 

normalized proportions are then summarized by the medians of their replicates. A highly-

filtered dataset is created as follows: spots with less than 20 cells, wells with quality 

analysis scores below 0.7, wells with low quality DAPI, MEPs with less than 3 replicates 

and the FBS control wells are removed from the dataset255,277,278. 



 

 154 

For 96-well assays, significance was computed by performing ANOVA tests 

followed by Tukey’s HSD or Dunnett’s tests in R279,280.
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CHAPTER 4. CONCLUSIONS AND FUTURE DIRECTIONS 
 

4.1 Conclusions 

Histologic and differentiation state intra-tumoral heterogeneity and TME signals 

represent a problem in the ability to accurately subtype cancers to be able to predict 

response to therapy and outcome. TCGA has molecularly defined distinct subtypes in 

GBM and MIBC, but these subtypes have failed to translate clinically. This is likely due 

to heterogeneity and the influence of TME signals confounding the signature. We 

hypothesized that more accurate molecular subtyping and patient stratification can be 

achieved by taking into account intra-tumoral heterogeneity and microenvironment 

signals. We were able to support our hypothesis in GBM and MIBC by refining patient 

stratification and molecular subtyping through distinct approaches.  

 

We hypothesized that stratification into subtypes and prognostic groups can be 

achieved by taking GBM intra-tumoral heterogeneity into account. We supported this 

hypothesis by demonstrating that intra-tumoral heterogeneity in GBM is accounted for in 

part by histologic structures, and that by assessing gene expression in CT inter-tumoral 

comparisons are able to be made. We show that GBM subtypes, characterized based on 

gene expression in CT, identify cohorts with distinct biology, while subtypes can be 

misclassified if samples contain mixed structures or are rich in non-CT architecture. 

Furthermore, the role of the TME in GBM should be contemplated and whether the 

histologic structures identified within a single tumor should be considered TME features. 

It seems fitting that these histologic structures would be TME components as they are 

seemingly normal cells that co-mingle with tumor cells. However, there is a clear 

definition for each histologic structure in GBM and it seems more helpful to define these 
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regions in this way as opposed to identifying them more generally as components of the 

TME. There is no definitive answer at this time, but this concept should be revisited.  

 

Additionally, we hypothesize that distinct TME signals stimulate proliferation and 

differentiation state plasticity in human bladder cancer cell lines in the presence and 

absence of drug treatment. This hypothesis was supported through the utilization of 

MEMAs and soluble ligand libraries and by refining molecular subtyping based on gene 

expression of bladder cancer cells themselves. We showed that TME signals in bladder 

cancer can influence cell count and differentiation state, and that cell count and 

differentiation state changes correlate. Increases in cell count can be a function of 

increased proliferation or decreased cell death. While cell cycle analysis was explored to 

identify proliferation and cell death, this only captures one moment in time at the end of 

the experiment. It is possible and likely that responses to the TME regarding proliferation 

and cell death are time dependent. Kinetic experiments should be performed to further 

elucidate the response of bladder cancer to the TME over time. Moreover, results 

suggest that differentiation state changes may be a good potential therapeutic 

intervention point. If drugs are identified that inhibit the differentiation state shift, it is 

plausible that cell count will not be increased. Furthering this logic, drugs may be able to 

reverse differentiation state shifts upon stimulation with certain TME components and 

render cancer cells vulnerable to cell death. Studies should investigate the potential of 

altering differentiation state to render cells vulnerable to treatment. 

 

The concept of molecular subtyping is plagued by controversy due to the lack of 

clear clinical translation in some cancers. Here, we demonstrate a refinement of 

molecular subtypes that identify potential targets for therapeutic intervention. However, 

there is no guarantee that this refinement of molecular subtypes would be any better 
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than targeting a few genetic drivers of tumorigenesis. The best compromise between the 

two concepts would be to identify molecular subtypes based on clear drivers. 

Additionally, the design of clinical trials and the delivery of therapies would benefit the 

most out of molecular subtypes truly identifying subsets of patients with therapeutic 

vulnerabilities. If this is realized, rapid diagnostic tools can be developed to identify the 

subtype patients belong to, and definitive treatment regimens can be prescribed that 

benefit patients the best with accurate predictions in outcome. 

 

This represents contributions to our understanding of how histologic structures 

and the TME influence GBM and bladder cancer cell interpretation, respectively. 

Identifying signatures from cancer cells themselves and devising methods of integrating 

them with signals from the TME may hold the key to advancing GBM and MIBC into the 

realm of precision medicine.  

 

4.2 Future Directions Validation 

Future work includes validating the current study. Once validated, the repertoire 

of CT-specific gene signatures will be expanded, as well as creating a workflow to obtain 

CT-rich clinical samples should be explored to advance the clinical management of 

GBM. 

 Validate CT as the best histological structure to assess for diagnostics and 

prognostics. 

 This is currently underway in an independent cohort of banked GBM tissue 

samples at Oregon Health & Science University. Steps involved include:  

1. A neuropathologist identifying CT regions. 

2. A trained technician performing laser capture microdissection of CT.  
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3. RNA and DNA extraction for RNA sequencing and DNA methylation 

profiling.  

4. Data normalization and processing and running the pipelines established 

for the current study should be carried out. 

5. Comparing these findings to bulk dissected CT regions in GBM should be 

performed to determine if similar findings can be obtained, as bulk 

dissection has more clinical utility due to the relative ease of use in 

comparison to laser capture.  

 Further validating the prognostic gene signature in the aforementioned independent 

cohort of GBM samples as well as other databases. 

 Subsequent development of a prognostic gene chip that probes for gene 

expression of the genes identified here as prognostic to determine risk in 

patients.  

 Improving methods to obtain predominantly CT in GBM should be explored through 

the use of image-guided biopsy. 

 Further refining molecular subtyping using CT gene expression in GBM may also 

help in realizing clinical utility of molecular subtypes by identifying targetable 

pathways distinct to subtypes. 

 Ultimately, we believe that CT gene expression signatures can become clinical tools 

utilized to plan and execute optimal care for GBM patients, which could function as 

follows:  

1) A patient receives an image-guided biopsy, targeting CT devoid of vasculature 

and necrotic regions.  

2) This sample is subsequently probed for omic signatures to rapidly risk stratify 

the patient and predict their individual therapeutic sensitivity.  
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3) The patient then receives personalized treatment.  

4) When radiographic progression is observed, this is categorized as tumor 

growth or treatment-related immune response based on an initial gene 

signature.  

Our results coupled with continued efforts to develop CT signatures have the 

potential to enhance methods for GBM patient stratification to guide clinical care.  

 

Future directions for MIBC include improving molecular subtyping to better 

predict therapeutic response and outcome. Macrodissection or microdissection of tumor 

cells from MIBC may help in better distinguishing subtypes of MIBC that differ in intrinsic 

biology, therapeutic response, and survival. Plans should follow similarly to what has 

been proposed for future work in GBM. Once more accurate subtypes have been 

defined, characterizing the response of the TME in each subtype could help further 

elucidate drug targets and refine predictions of response and outcome. Co-culture and 

3D cell culture systems can help further investigate the influence of the TME on cell 

response. Future work should also explore cues that influence differentiation state 

change and identify therapeutic inhibitors of differentiation to inhibit adaption to the 

environment. 
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