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Physical Lens on the Cell: Advanced Diffusion and the 
Fokker-Planck Picture
Daniel M. Zuckerman, Oregon Health & Science University

On the one hand, the basics of diffusion seem easy to understand: random motion, a Gaussian distribution of steps,
and linear (in time) mean-squared distance behavior. On the other hand, the diffusion equation is a partial
differential equation ... and it only describes simple diffusion, whereas observed diffusion in cells is rarely simple and
requires still more complicated math. Here you can deepen your understanding of the math and physics underlying
diffusive behavior.

The time-dependent probability distribution and its connection to
molecular trajectories
The diffusion equation describes the behavior of the time-dependent spatial distribution  of a collection of
molecules. To keep the math and concepts as simple as possible, we will focus on one-dimensional behavior, where
the diffusion equation is

It is a remarkable connection between time and space derivatives of the distribution that we will derive later and 
understand in some detail.

Before studying the diffusion equation itself, we must have a firm grasp on the distribution . In simplest
terms, if one has a collection of diffusing particles, each located at some  value,  represents the histogram of
those positions with some minor mathematical adjustments. Sometimes, to remind myself that this is a distribution
of  values valid at any (and all) fixed , I write the function as . Mathematically, we need to be clear that 

 is a true distribution - so strictly speaking it is a probability density whcih is normalized so that the sum
(integral) over all  values is one at any fixed  value:
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To say that  is a density means that it is a probability per unit length (in one dimension). A trick for understanding
units in an integral like (2) is to note that since the integral of  is the simple/pure number , which is
dimensionless, then  and  must have reciprocal units. You should think of  as a length, and so  must
have units of inverese length - i.e.,  is a density.

It's very useful to understand the connection between the somewhat abstract quantity  and specific
trajectories of individual particles. Define  be the  position of a given particle (e.g., molecule) at every  - i.e. the
particle's trajectory. If we have many particles and make a histogram of all their positions at every  value, we obtain 

. It may seem that we're retaining all the information from the trajectories, but in fact creating a histogram is
an averaging process that discards information. Specifically,  does not tell us where the density (probability) at
a given  value at a given time came from - e.g., from left or right or some combination. We cannot take 
alone and re-create the trajectories that led to it, though the trajectories do fully determine . This is not to say
that  is without value - it's very important! - but we should understand its limitations. Some of these ideas are
sketched in the figure, where "prob" is the same thing as .

Deriving the diffusion equation from probability principles
Even if you've seen the diffusion equation many times and accept it as true, there are some things about it that
hardly are obvious. For me, the first question about this simple, beautiful relation is: Why no first derivative? (If you're
clever, perhaps you can make an argument about symmetry, but that's not quite the same as understanding the
physics.) Second, what is  and why does it appear without any prefactors (e.g., 2 or )?
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Using basic calculus and probability ideas, we can derive the diffusion equation. To do so, we follow the strategy
described in the article by Metzler and Klafter with slight modifications. The basic idea is to construct a simple
diffusion process that we observe at time  and a very short time later at . In that interval we will make the
following minimal assumptions: (i) A fraction  of the probability in any spatial interval of width  diffuses out of
the interval and the fraction  remains; these fractions will depend on both  and . (ii) Because simple
diffusion is non-directional, of the probability that leaves any interval, an equal amount diffuses in each direction. (iii)
The time interval  is so short that all the probability that leaves any spatial interval goes to the two neighboring
intervals. These assumptions imply the following equation:

where  is defined to be the probability contained in the  interval about .

Implicit in the three assumptions above, importantly, is the notion that probability flows at different points in space
do not interfere with one another. That is, probability can flow left or right regardless of how much probability (if any)
is already present at particular locations. This is idealized behavior and can be considered the continuum analog of
(discretized) mass action kinetics or the dynamical analog of the assumptions underlying ideal gas thermodynamics.

To make progress toward deriving the diffusion equation, we only need to substitute in Taylor expansions for the
various  expressions. These are

(In the last expansion, the left-side positive sign matches the right-side + and likewise for the negative signs.) If we
substitute these into (3) a number of the terms cancel. The  on the left cancels with 

 on the right. On the right side, the two terms linear in  cancel with one another
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http://www.physicallensonthecell.org/chemical-physics/basics-mass-action-kinetics
http://www.physicallensonthecell.org/chemical-physics/underpinnings-mass-action-ideal-gas
https://en.wikipedia.org/wiki/Taylor_series
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because of the opposite signs in  - which mathematically is why there is no first-derivative term in the
diffusion equation.

What remains after the substitution is something that resembles (but is not yet) the diffusion equation. If we retain
only the lowest order terms in  and , because the others will be negligible as these increments approach zero,
we have:

If we recall that  is defined to be the probability in a  interval based on the function , then to lowest order in 
, that probability is just the area of the corresponding rectangle: . When we

substitute this in to (5) the resulting  factors cancel on both sides because  is a constant and we obtain

We know these derivatives do not vanish, so the limit evidently leads to a finite value and, in particular, the bracketed
expression becomes the diffusion constant  seen in (1).

We can now see why there is no first derivative in  occurring in the diffusion equation. Really it stems from the
most basic diffusion ideas embodied in our starting relation (3) : each interval 'emits' probability equally to the left
and right. Thus, each interval will receive probability from the left and right ... which will be equal if there is no curvature
to the distribution. In other words, the approximate linearity in a small interval of a smooth function,  or , means
that contributions from the left and right entering an interval will exactly average to the value already in the interval -
and will exaclty balance the amount that leaves. First-derivative effects therefore are 'invisible' in diffusion. This is
not to say that there would be no motion on the molecular scale - only that the molecules entering from left and
right will average to the number leaving the interval based a linear gradient.

A technical comment on . Recalling that  represents the fraction diffusing out of a  interval in time , we can
imagine two limits. If  is finite, then  will vanish with  because there won't be time for probability to leave. On
the other hand, if  is finite, then  will approach unity as  vanishes because there is negligible chance to remain
in a vanishingly small interval. Given that we know the bracketed expression in (6) must not vanish, we can surmise
that  as the limit is taken.

A simpler derivation, with a key assumption
There is a much simpler way to derive the diffusion equation if we're willing to make a stronger assumption to start
with. I find this route less satisfying, but it's valuable because it illustrates a few further aspects of diffusion
phenomena, particularly ideas of flow and continuity which we expand on further below.

The assumption we can start out with is that net rate of flow at any point in space is proportional to - i.e., a simple
multiple of - the gradient of the probability density . In one dimension, the gradient is simply the derivative ,
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so the assumption is that

where  is a constant whose value is unknown at present. We know there must be a negative sign in the
proportionality because if probability is increasing with , the flow will move to the left as diffusion evens out the
probability distribution.

Knowing the flow is useful because we can use simple ideas of 'continuity' which is just the conservation of
probability - think of the conservation of energy. In a given  increment, some probability will flow in and some
will flow out in a time interval ; the difference between the two must be the change in probability  for that
increment. The flow out will be the net flow at the increment of interest - i.e., the flow rate (7) multiplied by the time
increment . The flow in will come from the neighboring increment having a higher probability - which we'll
assume for now is on the left (at ) opposite to what's shown in our picture above. And of course we are
assuming those flows take the mathematical form given in (7). Putting all this together in an equation, we have

From here, two steps are needed: a Taylor expansion of the partial derivative of  at  and for us to recall that 
, so . The Taylor expansion of a first derivative retaining the linear term 

yields the desired second derivative, as you can check for yourself. The first term of the Taylor expansion is the
partial derivative itself, which cancels in (8) leaving

This becomes the diffusion equation after we cancel out  then divide through by , and evidently 
is the diffusion constant itself. You can check that we would have obtained the same result assuming higher
probability to the right at  in Eq. (8).

The Gaussian Solution - and Implications
An exact analytical solution (one we can write as a function) is available for a special case. When all the probability is
intially located at a single point in space and the system has no defined boundaries, probability will spread over time
as a simple Gaussian. Specifically, if all the probability is localized to the point  (imagine we "inject" particles here)
at time , we can use the vertical-bar notation of conditional probability to write

(7)
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where the prefactor is essential to ensuring that the distribution is normalized according to (2) at all times. You can
also check that if you don't include the prefactor, the distribution (10) will not obey the diffusion equation! Relations
like (10) , which provide the response to an initial point 'impulse', are called Green functions.

From the form of Eq. (10) , we can read off a key property - namely the standard deviation  or its square, the
variance. To do this, we need to recall the general form of a Gaussian (normal) distribution as 

, which indicates that for diffusion the variance is . The linear growth
of the variance with time is what enables estimation of the diffusion constant from a plot of the mean-squared
distance vs. time derived from the behavior of single particle trajectories.

Because the probabilty at any given point will spread like a Gaussian over time according to Eq. (10) and because we
know that in simple diffusion theory probability flows don't interfere with one another, we can then predict how an
arbitrary distribution will evolve in time. In essence, each point in an initial distribution  can be viewed as
'emitting' a Gaussian that will spread in time. Mathematically, we can therefore write an expression for the resulting
probability at an arbitrary later time:

which tells us that the probability at any point  at time  results from summing (integrating) over all the Gaussian
contributions from all  values. Eq. (11) is an example of a Chapman-Kolmogorov relation because it gives the
probability distribution at a time of interest based on an earlier time - using the Green function (10) to propagate it.

It's worth recalling why diffusion behavior is Gaussian in the first place. As noted on the basic diffusion page , the
central limit theorem tells us that any process which amounts to a sum of small increments - like the molecular
collisions underlying diffusion - will exhibit Gaussian behavior once enough increments are included. So it's fair to
say that diffusion won't be exactly Gaussian over very small time windows, which don't include enough molecular
collisions. You may wonder, then, how we derived the diffusion equation - for which the Gaussian (10) is an exact
solution at any . The answer, as with any calculation, is that the result depended on our assumptions. In essence, our
derivation assumed diffusion-like (non-inertial) behavior even at the shortest time and space scales, which is not
really true.

Linearity in time of the mean-squared displacement (MSD)
Let's take another look at the linear proportionality of the MSD =  with time, where  and 
denotes an average over many diffusive trajectories. We saw this from the linearity in  of the variance of the
Gaussian solution (10) to the diffusion equation, but it's really a more fundamental statistical phenomenon.

Ideal diffusion assumes independence of steps from one another (e.g., equal probability to go left or right, regardless
of previous step) and that alone implies linearity with  of the MSD based on the variance sum rule. Let's see why.
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https://en.wikipedia.org/wiki/Green%27s_function
http://www.physicallensonthecell.org/physical-molecular-processes/diffusion-faq-basics
https://en.wikipedia.org/wiki/Chapman%E2%80%93Kolmogorov_equation
http://www.physicallensonthecell.org/physical-molecular-processes/diffusion-faq-basics
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Variance#Sum_of_uncorrelated_variables_(Bienaym%C3%A9_formula)
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We start by writing a discretized version of our trajectory as a list of  points separated by some time increment 
; it will look like this: . We can then simply define the increments , 

 ..., which are assumed independent in diffusion. Independence implies that certain quantities must
be zero, like the following average:

To see why this vanishes, first recall we are averaging over all possible diffusion trajectories. Imagine we select a
subset of trajectories in which  has some (arbitrary) fixed value, and we examine all the  values in this
subset of trajectories. Since  is independent of , there will be an equal number of positive and negative 

 values - in fact, distributed as a Gaussian - so we know the average must vanish for any fixed . If we now
observe that the full average in (12) is simply over all possible  values, then the overall average is also zero.

With this result in hand we can simply do the calculation based on the definition of the MSD.

In the calculation above, the second line is obtained from the first simply by multiplying out all the terms and the
third line is obtained from the second using the fact that all the cross-terms vanish, as we saw previously in (12).

Because the MSD is a sum of the mean-squared deviations (variances) of the individual increments - and the
number of increments is proportional to the elapsed time - the MSD itself must be linear in time. This linearity of the
MSD is then most fundamentally a property of (linearly) independent increments, which do occur in diffusion but
are not specific to diffusion.

Behavior of the probability distribution in the presence of forces: The
Smoluchowski/Fokker-Planck picture
In many scientific contexts, random processes occur in the presence of forces: diffusing particles typically will
interact with their environments, for example. More generally, when we think of complex systems described by
many degrees of freedom, such as protein configurations , none of these systems simply diffuses in its
state/configuration space. Instead their random motion is significantly affected, even dominated by forces. Proteins
after all don't take on purely random configurations but tend to stay folded or at least occupy a small fraction of
geometrically possibly conforrmations ... because of the forces at work, such as electrostatics and van der Waals
attractions.

Here we will derive the mathematical machinery for describing the time evolution of (i.e., differential equation for)
the probability distribution of a one-dimensional system operating in the presence of a spatially varying potential
energy function . All the key conceptual and mathematical issues can be addressed in one dimension. You'll

N+1
Δt { , , , … , }x0 x1 x2 xN Δ = −x1 x1 x0

Δ = −x2 x2 x1

(12)

Δx1 Δx2

Δx2 Δx1

Δx2 Δx1

Δx1

(13)

U(x)

http://www.physicallensonthecell.org/chemical-physics/conformational-statistical-mechanics
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recall from high-school physics that a spatially varying potential implies forces: force is minus the derivative of the
potential .

We'll start with the analog of Eq. (3) , but with two adjustments. First, we'll assume from the beginning that all
probability leaves a given  interval over the time increment , implying  as discussed above. Second,
because of the forces present, we can no longer assume that equal fractions of probability go left and right, and
indeed these fractions must depend on position in general. Following Metzler and Klafter, we'll call the fractions 

 and , with  for any . Our starting point is therefore

To make progress, as before, we substitute our Taylor expansions (4) into the basic rule (14). Taking advantage of 
, we obtain

This is not a very informative equation because we still don't know what  and  are!

To finish the derivation, we must exploit a basic principle from statistical mechanics - namely, that a system without
inputs or outputs, as is the case for us, will reach equilibrium at long enough times ( ) when all non-
equilibrium processes have relaxed away. Because equilibrium is a steady state , all time derivatives will be zero, and
in particular . Statistical mechanics also teaches us that the states of any system in equilibrium will follow
a Boltzmann -factor distribution , so that  where  is an unknown
constant,  is the potential energy function,  is Boltzmann's constant, and  is the absolute temperature. Based
on the steady-state condition and the Boltzmann factor, Eq. (15) becomes

After taking the indicated derivatives and cancelling constants, we find

where  and  is the force. This is exactly what we need for Eq. (15)! Substituting in that
equation, we have

f = −dU/dx

Δx Δt q = 1
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http://www.physicallensonthecell.org/chemical-physics/non-equilibrium-steady-states
http://www.physicallensonthecell.org/chemical-physics/equilibrium-means-detailed-balance
https://en.wikipedia.org/wiki/Boltzmann_distribution
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Using the same limiting procedure as we did for the diffusion equation above, we now obtain the Smoluchowski
equation

which, as promised, tells us how the probability distribution of a diffusive process evolves in time in the presence of
forces (a potential energy function). For your information, the Smoluchowski equation is a special case of the more
general Fokker-Planck equation which typically includes velocity  degrees of freedom, so the distribution is over 
and  but the two equations are conceptually identical.

I consider the Smoluchowski equation to be a landmark result of statistical mechanics. In a sense, it's all you need to
know about diffusion - because it includes forces and so governs all diffusive scenarios of interest. Its general form in
higher dimensions applies both to 'real-space' diffusion where particles (perhaps proteins on a cell surface) are
moving in two or three dimensions as well to configurational motion (e.g., of a protein's configuration). And the one-
dimensional version (19) is sufficient for understanding those ideas, so you can now consider yourself knowledgeable
in non-equilbrium statistical mechanics.

Always remember that  is nothing more than a histogram made by averaging over physical trajectories. In the
present case, those trajectories will be affected by forces, but  is still just a histogram. Think concretely to guide
yourself through new abstract concepts.

The figure above shows an example of a trajectory distribution initialized at  in the left basin of a two-basin
energy landscape . At some later time , most of the trajectories are still in the left basin, and only one has

(19)

v x
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made the improbable transition over the barrier to the right basin. The probability distribution  represents an
average over many such trajectories, though I can only a draw a few in the figure.

Continuity: Connecting probability and flow/current
There is one last topic we should address to round out our understanding of time-evolving probability distributions:
the connection between probability change and flow. In fact, we already discussed the key point, which is embodied
in Eq. (8) , which says essentially that probability won't be created or destroyed. If probability flows into a region but
not out, there will be an accumulation in the region.

To formalize the key idea mathematically, we define  to be the net current of probability flowing to the right
(positive  direction) at time . From a trajectory picture, current could be calculated from the net fraction of
trajectories in an ensemble which flow past a given position per unit time - i.e., subtracting the left-movers from the
right-movers. This current can vary with position at any fixed time, but if it does, that means probability is being
added to some regions and depleted from others. Conversely, if the current is constant in space, an equal amount of
probability is leaving and entering each region ... so the probability won't change unless there is a source or sink
present. And here we're assuming there are no sources or sinks.

In terms of , Eq. (8) becomes

If we divide both sides of this equation by  and recall that  ... and then finally take the
limit of small  and , we obtain

p(x, t)

J(x, t)
x t

J(x, t)

(20)

ΔtΔx (x, t) ≃ p(x, t)Δxp̂

Δt Δx

(21)
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where we used the definition of the derivative on the right-hand side. This continuity equation is a general relation
that applies in the presence or absence of forces - we did not make any assumptions here about forces.

We can learn more about the current by comparing the continuity equation (21) with the Smoluchowski equation
(19). By comparing right-hand sides, we find

In the purely diffusive case of zero forces ( ), the current is just proportional to the gradient of , as
already discussed prior to Eq. (7) . When forces are present, there is an addition "drift" current proportional to the
force and the probability. The drift of probability in proportion to the force precisely mimics the behavior expected
for overdamped Langevin dynamics .
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Exercises
1. Make a symmetry argument to explain why the diffusion equation (1) has no first spatial derivative. It may help

you to consider a probability distribution that itself is spatially symmetric at a certain point in time: how do you
expect that to evolve?

2. Put a drop of food color in a glass and watch what happens (or find a video showing this). Disappointingly
perhaps, the colored molecules do not spread as a Gaussian. Why not? Which of our assumptions in deriving the
diffusion equation are not true for this situation?

3. Show that Eq. (9) can also be derived by assuming higher probability at  when writing down Eq. (8).
What if  is a local minimum or maximum? That's more involved but you will still find the same diffusion
equation!

4. Advanced. In our derivation of the diffusion equation, there is an inconsistency. We assume in Eq. (3) that
probability moves only a single step to the left or right in the time increment , yet we also take the limit of 

 and conclude that  so all (or at minimum, a finite fraction) of the probability leaves the initial
interval. If most or all of the probability leaves the central interval at  and if intervals get vanishingly small, it is
not conceivable (to me) that probability does not travel further than a single . So the question becomes,
does this matter? Will the final result change? Try to check this by allowing additional probability to enter
increments at a distance of  from the central interval and see if the (usual) diffusion equation still emerges.
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