
Modeling the Bandwidth Sharing Behavior of

Congestion Controlled Flows

Kang Li

A dissertation presented to the faculty of the
OGI School of Science & Engineering
at Oregon Health & Science University

in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

November 2002

The dissertation "Modeling the Bandwidth Sharing Behavior of Congestion Controlled

Flows" by Kang Li has been examined and approved by the following Examination

Committee:

Dr. Jonathan
Professor
Thesis Research Advisor

Dr. Molly H. ~ h o r V
Assistant Professor
Thesis Research Advisor

Dr. Calton Pu
Professor
Georgia Institute of Technology

Dr. Wuchang ~ e n k /
Assistant Professor
Oregon Graduate Institute

Acknowledgement

I have been fortunate enough to have the help and support of a large number of people. I
would especially like to thank my advisors Jonathan Walpole and Molly H. Shor, who
have been extremely helpful in identifying my thesis topic, developing the ideas,
publishing paper, construct the structure of this thesis, and for all other guidance
throughout many years.

I would also like to thank

The members of my thesis committee members, Professor Calton Pu and
Wuchang Feng, for their insightful comments on my proposals, and the
dissertation. I would like to thank Calton for his helps on many strategy points.
Without his help, I would not finish this thesis.

Charles "Buck" Krasic, Ashvin Goel that have been working with me through a
long way form DSRG, DISC, to SYSL, and all the members of the system
software group, Jonathan Walpole, Wuchang Feng, Wuchi Feng, David Steere,
Dylan McNamee, Andrew Black, Perry Wagle, Jie Huang, Francis Chang, Mike
Shrea, Jin Choi, Jim Snow and many others.

Mark Morrissey and Jim Binkley from Portland State University for their many
useful and insightful discussions about networking and other random topics.

Rainer Koster, Tong Zhou, Yong Xu, Erik Walthinsen, Peter Geib, Anne-
Francoise Lemeur, Dan Revel, Songtao Xia, Wei Tang, Wei Han, Henrique
Paques and others that brought a lot of fun to my student life in OGI.

Shanwei Cen, who recommended me to this graduate school.

Finally, I would like to thank National Science Foundation, and the Defense Advance
Research Project Agency, for their financial support.

Table of Contents

... Acknowledgements 111

. Abstract x

. 1 Introduction 1

. 1.1 The Research Problem 4

1.2OurApproach . 4

1.3Contributions . 6

. 1.4 Dissertation Overview 7

. 2 TCP Overview 9

. 2.1 TCP Congestion Control 10

. 2.1.1 Acknowledgements 11

. 2.1.2 Congestion Window 11

. 2.1.3 Congestion Signals 12

. 2.1.4 Slow Start and AIMD 13

. 2.1.5 TCP Flavors 14

. 2.2 TCP-friendliness 16

. 2.2.1 TCP-style Fairness 16

. 2.2.2 TCP-Friendliness 16

. 2.2.3 State of the Art 17

. 2.3 AIMD-based Algorithm 18

. 3 A State-space Model for TCP 20

. 3.1 State-Space Modeling 20

. 3.1.1 A State-Space Model 21

. 3.1.2 System Stability 22

3.2 A State-Space Model for A Bandwidth Sharing System 24

. 3.2.1 Target System 25

. 3.2.2 System State 29

. 3.2.3 Differential Equations and State-Jumps 29

. 3.2.4 Simulation 32

. 3.2.5 System Dynamics 33

. 3.3Discussions 44

3.3.1 Linear versus Nonlinear System . 44

. 3.3.2 Modeling Competing Traffic 45

. 3.3.3 Assumptions about Congestion Signal 45

. 4 State-space Modeling Results and Analysis 48

. 4.1Fairness 48

4.1.1 TCP-style Fairness . 49

4.1.2 Fairness of Flows with different AIMD Parameters 52

4.1.3 Fairness under Non-universal Congestion Signals 56

. 4.1.4 Discussions 65

. 4.2 Buffering requirements for CBR interactive applications 70

. 4.2.1 Buffering and Adaptations 70

. 4.2.2 Buffering Requirement for AIMD Congestion Control 73

. 5 Real World Experiments 77

. 5.1 Adaptive Control 78

. 5.1.1 Motivation 78

. 5.1.2 Linux Implementation 79

5.2ExperimentSetup . 85

. 5.3 Experiments and Results 86

. 5.3.1 Fairness Time-scales 86

. 5.3.2 Share among TCP-friendly AIMD Flows 93

. 5.3.3 Share among Unfriendly AlMD Flows 108

. 5.3.4 Other Fairness Ratios 119

5.4Summ ary . 123

. 6 Relatedwork 126

. 6.1 Theoretical Studies 126

............. 6.1.1 Mathematical Modeling of Bandwidth Sharing Fairness 127

. 6.1.2 Models for TCP Congestion Control 128

. 6.1.3 Feedback Control Analysis of Computer Systems 129

. 6.2 Network Simulations 130

. 6.3 System Works: TCP-friendly Congestion Control Protocols 131

. 7 Conclusion and Future Work 135

. 7.1 Summary of Contributions 135

7.2FutureWork . 137

. 7.2.1 Stochastic Stability 137

. 7.2.2 Dynamic Congestion Control Adaptations 138

. Bibliography 139

AppendixAl . 145

List of Figures

. Figure 2.1. TCP Slow Start and AIMD rate control 14

Figure 3.1 : A Bandwidth Sharing System . 25

. Figure 3.2. AIMD Rate Control Subsystem 27

Figure 3.3. The Bandwidth Sharing System with Key Information only 28

. Figure 3.4. A Snapshot of a Simulink Simulation Block 32

. Figure 3.5. Trajectory of a System with a Single Flow 34

. Figure 3.6. Trajectory of a System with Two Flows 37

Figure 3.7. Trajectory of a System with Four Flows . 39

Figure 4.1. Fairness between two TCPs with the Same RTT . 49

Figure 4.2. Fairness between two TCPs with equal BD but different FD 51

Figure 4.3. Fairness between two TCPs with equal FD but different BD 51

Figure 4.4. Fairness between unfriendly Flows . 54

Figure 4.5. Fairness between TCP-friendly Flows . 54

Figure 4.6. State-Space Trajectory without a Clear Limit Cycle . 60

Figure 4.7. Average Throughput of two different AIMD flows . 62

Figure 4.8. State-Space Trajectory without a Clear Limit Cycle 63

Figure 4.9. Average Throughput versus AIMD Parameters . 63

Figure 4.10. Average Congestion Signal Rate versus AIMD Parameters 65

Figure 4.11. Original TCP-style Fairness . 68

Figure 4.12. Uniform Fairness . 68

Figure 4.13. A Modified State-space with Only Valid Points . 69

Figure 4.14. A QoS-Adaptive Application over the Internet . 71

vii

Figure 4.15. Buffering Requirement of an AIMD-based Congestion Control 74

Figure 4.16. Buffering Requirement for Two Continuous Back-offs 75

Figure 5.1 Slow Start and Additive Increase . 80

Figure 5.2 Multiplicative Decrease . -81

Figure 5.3. Socket Option API of the Adaptive AIMD . 82

Figure 5.4. Congestion window size of an Adaptive AIMD flow and a TCP flow 83

Figure 5.5. Congestion window of more Adaptive AIMD flows 84

Figure 5.6. Experiment Network Topology . 85

Figure 5.7. The System Trajectory Monitored in a Real Network 88

Figure 5.8. Fairness for two identical competing flows in different timescales 89

Figure 5.9. Fairness for 20 identical competing flows . 91

Figure 5.10. Fairness for 200 identical competing flows . 91

Figure 5.1 1 : Fairness Index versus R?T . 92

Figure 5.12: Bandwidth Share Ratio of TCP-friendly Flows during a Light Congestion 99

Figure 5.13. Link Utilization during a Light Congestion . 99

Figure 5.14: Congestion Signals Experienced by TCP-friendly Flows during a Light . 100

Figure 5.15: Bandwidth Share Ratio of TCP-friendly Flows with Severe Congestion . 104

Figure 5.16. Link Utilizations of TCP-friendly Flows during a Severe Congestion 104

Figure 5.17: Congestion Signals of TCP-friendly Flows during a Severe Congestion . 104

Figure 5.18 Timeouts of TCP-friendly Flows during a Severe Congestion 105

Figure 5.19. Timeouts versus congestion levels . 106

Figure 5.20. Share Ratio of 14 TCP-Friendly Flows during a Light Congestion 107

Figure 5.21. Share Ratio Impact of a Parameter, Light Congestion 110

Figure 5.22. Share Ratio Impact of small a Parameter, Light Congestion 111

Figure 5.23. Utilization Impact of a Parameter, Light Congestion 111

Figure 5.24. Congestion Signal Impact of a Parameter, Light Congestion 111

Figure 5.25. Share Ratio Impact of a Parameter, Severe Congestion 113

Figure 5.26. Utilization Impact of a Parameter, Severe Congestion 114

Figure 5.27. Congestion Signal Impact of a Parameter, Severe Congestion 114

Figure 5.28. Timeout Impact of a Parameter, Severe Congestion 114

Figure 5.29. Share Ratio Impact of the j3 Parameter. Light Congestion 116

Figure 5.30. Utilization Impact of the P Parameter. Light Congestion 116

Figure 5.31. Congestion Signal Impact of the j3 Parameter. Light Congestion 117

Figure 5.32. Share Ratio Impact of the P Parameter. Severe Congestion 118

Figure 5.33. Utilization Impact of the P Parameter. Severe Congestion 118

Figure 5.34. Congestion Signal Impact of the j3 Parameter. Severe Congestion 118

. Figure 5.35. Timeout Impact of the j3 Parameter. Severe Congestion 119

. Figure 5.36. Network Topology 120

. Figure 5.37. Adjusting AIMD parameters for RlT compensations 122

Abstract

Modeling the Bandwidth Sharing Behavior of Congestion Controlled Flows
Kang Li

OGI School of Science & Engineering
at Oregon Health & Science University

August 2002

Thesis Advisors: Dr. Jonathan Walpole and Dr. Molly H. Shor

Multimedia applications have become increasingly popular in the Internet. TCP is the

dominant Internet congestion control protocol, but it does not serve all applications well.

Thus, many new congestion control protocols have been proposed recently, in particular

for multimedia applications.

To ensure that these flows share bandwidth fairly with TCP flows, TCP-friendliness is

proposed as a criterion for designing new protocols. Currently, the TCP-friendliness

criterion is defined based on the assumption that all flows experience the same static

congestion signal. However, the bandwidth sharing and congestion signal is a result of

the dynamic behavior of all participating flows. The claim of this thesis is that the

bandwidth sharing behavior among competing flows should be studied in a dynamical

environment.

To understand a dynamic phenomenon one needs a theoretical model that adequately

describes the behavior of the system being studied. In this dissertation, we propose a

state-space model to study the dynamics of the bandwidth competition, in particular

among AIMD-based TCP-friendly flows. It characterizes a dynamic system by a set of

related state variables, which can change with time in a manner that is predictable

provided that the external influences acting on the system are known. We use the model

to describe the stability of bandwidth competitions, which is characterized as

convergence to a dynamically oscillating limit cycle in the state space. This stability

description clearly distinguishes transient and long-term fairness.

Along with the state-space modeling, we build an adaptive AIMD-based congestion

control protocol that exposes its parameters to applications. This dissertation presents

some example uses of this adaptive protocol to verify the results derived from the state-

space model. As an example, we adjust the AIMD parameters to achieve a uniform

fairness that is independent of round-trip-times.

Chapter 1

Introduction

At the heart of the success of the Internet is its congestion control behavior. The Internet

serves flows in a best-effort way, which does not use bandwidth reservation mechanisms.

Careful design thus is required to prevent applications from congesting the network with

a heavy load. Until now, it has been the congestion control protocol at each end-host that

has prevented applications from overloading the network.

A congestion control protocol limits a flow's rate to its portion of the available bandwidth

and prevents it from sending too fast and causing network overload. A congestion control

protocol does not know the available bandwidth a priori. Thus it has to probe the

available bandwidth by increasing its rate until it detects signs of congestion, and then

decreasing its rate. A congestion control protocol detects congestion by indications of

packet loss (timeouts or duplicated acknowledgements) and explicit marks (with support

from active queue management mechanisms [BCC+98]). We call these indications the

congestion signals.

Transmission Control Protocol (TCP) [JK89, APS991 is the de-facto standard congestion

control protocol in the Internet. It uses an additive-increase and multiplicative-decrease

(AIMD) algorithm, which probes the available bandwidth by increasing its transmission

rate additively, and responds to a congestion signal by decreasing its rate by half.

TCP, although powerful and effective, is not sufficient to satisfy applications that require

different rate behaviors than TCP. For instance, TCP's behavior of cutting its rate by half

upon a congestion signal could cause too much rate variation for a streaming media

application that prefers a smooth rate [BBFSOl, FF991. Fortunately, TCP is not the only

possible congestion control protocol. It uses one specific algorithm with specific

parameters for the congestion control, whereas many alternative algorithms with different

rate behaviors are available. Recently, many congestion control protocols [BMP94,

CPW98, RHE99a, TCPF] have been proposed, particularly for streaming media

applications in the Internet.

A congestion control protocol, depending on its manner of probing the available

bandwidth and responding to congestion, produces various rate behaviors. In general,

applications care about the following aspects of a congestion control protocol's rate

behavior:

Rate Smoothness: how large the magnitude of rate variations is and how often the

rate varies.

Responsiveness: how fast the congestion control protocol responds to changes in

network conditions.

Fairness: what the bandwidth share ratio is when it competes with other flows.

Average throughput: whether there are underutilizations of resources caused by

the congestion control scheme.

Typically, applications prefer a congestion control that has a smooth rate and a fast

responsiveness. They also prefer a congestion control that shares bandwidth fairly with

other flows while still maintaining a high average throughput. However, not all of these

preferred behaviors can be achieved at the same time. For instance, a tradeoff exists

between responsiveness and smoothness. When a protocol's sending rate is smooth and

less sensitive to the variations in network conditions, it will be less responsive to changes

in the network. Different applications have different preferences on this tradeoff based on

their requirements, thus each of them could prefer a different congestion control protocol

that meets its preferred rate behavior.

Although many congestion control protocols have been built to produce desired rate

behaviors, an important aspect, the stability of systems composed by new protocols and

TCP, has been largely ignored by most of the protocol designers. Understanding the

system stability is important because many, if not all, of the above rate behaviors are

defined based on the system stability. For example, responsiveness is actually the time

for a system to reach a stable state upon a certain input. Without understanding a

system's stability, there is no basis for discussing responsiveness. Similarly, fairness is

mostly only interesting when competing flows achieve a stable state. If a system has no

stable state, fairness is just a transient aspect and thus is not very meaningful as a rate

behavior. Interestingly, the stable state of a system doesn't necessarily need to be a static

state, it could be an oscillation through a cycle of system states. In the latter case, the

fairness behavior should also include the deviations and oscillating frequencies, etc.

Besides understanding the system stability, protocol designers have the problem of

predicting the rate behavior of the new congestion control protocols. Most new protocols'

rate behaviors, for example the average throughput, are designed based on a static

assumption that the congestion control protocol will perceive the same congestion signals

no matter how it behaves. We use statically derived protocols to denote those designed

based on the assumption that congestion signals are independent of the rate behaviors of

the congestion control protocols.

Recent experiments [BBFSOl, FHPOO, LSWOl] have shown that some of the statically

derived protocols that are supposed to share bandwidth equally with TCP flows do not

share bandwidth equally with TCP flows, or with each other, as predicted. Although

Bansal et. al. [BBFSOl] show that their statically derived protocols tend to use less

bandwidth than TCP (which means they are more friendly to TCP flows) and can thus be

safely deployed in the Internet, they do not erase the question of how to predict

accurately the rate behavior of a congestion control protocol in a dynamic environment.

These statically derived protocols do not produce the expected rate behaviors because the

rate behaviors of congestion control protocols are dynamically determined. By

"dynamically determined", we mean that their rate behaviors and congestion signals are

inter-dependent. The rate behaviors of a congestion control protocol are directly related

to the congestion signals perceived by it, whereas its rate behaviors directly contribute to

the production of the congestion signal. Because of this inter-dependency, adjusting a

congestion control protocol, such as changing its parameters or using alternative

algorithms, implies that the resulting rate behavior, and congestion signal behavior, must

be studied in a dynamic environment. We refer to the rate behavior of a congestion

control protocol as its dynamic behavior, because it must be characterized in a dynamic

environment.

1.1 The Research Problem

The topic of this thesis is to understand the dynamic rate behavior of congestion control

protocols. It is important to understand system stability because a lot of rate behaviors are

related to it. It is also important to study the dynamic behaviors of newly developed

congestion control protocols, which are designed for applications that are not served well

by certain dynamic rate behavior. Any efforts to predict accurately the dynamic rate

behaviors must take into consideration the interdependency between a congestion control

protocol's input (congestion signal) and its output (the rate behaviors).

1.2 Our Approach

Instead of using an approach that separates the rate behaviors and the congestion signals,

we study them within one bandwidth sharing system, which consists of a bottleneck link

used by all competing flows. In a bandwidth sharing system, congestion signals are

generated by the rate behaviors of all competing flows.

Our goal is to understand the stability and dynamic rate behaviors of a system. This

naturally raises the need for a theoretical model that adequately describes the behavior of

the system being studied. Generally, modeling work can choose either a deterministic or

a stochastic approach. A deterministic approadh tends to produce an accurate description

of the system behavior but requires deterministic information of all the inputs. Whereas a

stochastic approach requires only statistically based values, but produces only a high

level description of the system.

We choose a deterministic approach becauhe this thesis work focuses on the rate

behaviors of individual flows in various time scales, rather than the aggregate behavior of

many flows over a large time scale. The latter issue is also interesting but is outside of the

scope of this thesis.

We model the bandwidth sharing system usiLg the state-space modeling technique of

modern control theory [B91, C861. The goal of this modeling approach is to produce a

description of the dynamic rate behaviors. In a state-space model, a dynamic system is

characterized by a set of related state variables, which change with time in a manner that

is predictable provided that the external influences acting on the system are known. In

particular, the dynamic behaviors of a system are described by a group of differential

equations and state jumps in our model. Using these mathematical descriptions of the

model, we can study theoretically the system stability. Along with the mathematical

description of system states, our state-space model of bandwidth sharing includes a state

plot analysis that help one visualize the transient and stable behaviors.

In addition, we design a general adaptive congestion control protocol that is based on the

general AIMD algorithm [LSWOl, YLOO]. We build simulations and real-world

implementations so that we can verify the outcomes from the state-space model, which

describes the rate behaviors of individual flows.

1.3 Contributions

This study of dynamic behaviors makes the following contributions:

State Space Model

We design a state-space model for the bandwidth sharing system. It is the first model that

defines the dynamic stability of the bandwidth competition, which is a limit cycle in the

system state-space. We use this model to show that statically derived TCP-friendly

protocols actually do not share bandwidth equally in dynamical environments. With this

state-space model, we also derive many implications for real systems, such as the

appropriate time-scale for measuring TCP-friendly fairness, the quantization effect of

packet sizes, and the minimal buffering delay requirements for delay-sensitive

applications.

Controllable Fairness

Using the implications from the state-space model, we develop the mechanism to achieve

various sharing ratios by tuning the parameters of AlMD algorithms. In particular, a

uniform fairness, independent of the RlTs, can be achieved rather than the TCP-style

fairness.

Adaptive Congestion Control

We build an adaptive congestion control protocol that exposes the control parameters to

applications rather than using a fixed set of parameters. Applications can adjust the

behavior of the congestion control, such as the tradeoff between responsiveness and

smoothness, based on application requirements. In addition, the current definition of

TCP-friendly behavior can be satisfied by constraining the relationship between

parameters.

1.4 Dissertation Overview

The dissertation is organized as follows:

Chapter 2 reviews TCP and its AIMD algorithm.

Chapter 3 describes the state-space modeling technique. It contains the definitions of

system state and system dynamics in general, and it introduces the difference between

static and dynamic equilibriums. It then presents the result of applying the state-space

model to a system of competing AIMD-based flows. This model shows that the system

has a dynamic equilibrium and describes its stability by a limit cycle in the state space.

Through the model's state plots, we also investigate the impacts of various parameters on

a single flow, and demonstrate different dynamics of bandwidth sharing behaviors among

various competing flows. Among them, we show how the changes of a single flow's

behavior over short time scales can change the behavior of the whole system over long

time scales. In addition, we show a way to aggregate states of many AIMD flows to one

flow, which can help us overcome the scalability limitation of keeping per-flow state in a

state-space model.

Chapter 4 presents a list of implications from the state-space model for AIMD-based

flows. It indicates that the time-scale of the fairness measurement must be larger than the

period of the stable limit cycle. It also indicates that an AIMD flow's rate oscillations at

its stable state cause a buffering delay that is quadratic to the flow's round-trip-time and

is proportional to its average rate. In addition, the state-space model shows the

relationship between a flow's AIMD parameters and its average bandwidth share. We use

the relationship to produce a different fairness paradigm other than TCP-style fairness

among competing flows.

Chapter 5 describes our work on building an adaptive AIMD congestion control protocol

that exposes the AIMD control parameters to applications. By exposing the parameters of

the AIMD algorithm, applications can tailor the congestion control protocol based on

their requirements. With this adaptive AIMD congestion control, we conduct experiments

in a controlled real-world setup to verify the implications from the state-space model.

These real-world experiments verify the following aspects of the bandwidth sharing

behaviors: (1) the timescale of fairness among AIMD flows, (2) the unfairness between

TCP-friendly AIMD congestion control protocols, and (3) the possibility of adjusting

AIMD parameters to achieve different share ratios other than TCP-style fairness.

Chapter 6 reviews some related work and addresses the differences between previous

work and the work presented in this dissertation.

Chapter 7 concludes the dissertation and outlines some of our future plan.

Chapter 2

TCP Overview

The main concern of this thesis is the rate behavior of congestion control protocols. TCP

is the dominant congestion control protocol that is used in almost every computer in the

Internet, and thus it is important first to understand TCP and its congestion control

algorithm.

TCP as a transport layer protocol has many functions, and congestion control is only one

of them. The major functions of TCP are: reliability control, flow control, and congestion

control.

TCP Reliability Control provides an in-order reliable data transmission. In each

TCP connection, packets are marked with increasing sequence numbers. The

receiver sends acknowledgements to the sender for the packets that have arrived

correctly in-order. When packet losses happen, the sender retransmits the lost

packets to the receiver.

TCP Flow Control prevents a fast sender from overflowing the receiver buffer of

a slow receiver. In TCP, the receiver reports its open buffer space to the sender in

each acknowledgment. The sender is only allowed to send as much data as

indicated by the acknowledgements. When the receiver's buffer is full, the sender

will stop sending any data until the receiver acknowledges it with new open space

indications.

TCP Congestion Control prevents a fast sender from overflowing the buffer in

the bottleneck router on the path between the sender and the receiver.

In this thesis, we simply use TCP to refer to its congestion control. We review the TCP

congestion control protocol and its well-known AIMD algorithm in the following

sections.

2.1 TCP Congestion Control

Congestion control is imperative in order to allow the network to recover from

congestion and operate in a state of low delay and high utilization. Ideally, to achieve

high utilization, end systems need to send as fast as they can. However, if their sending

rates exceed the network capacity, data accumulates in buffers in the network, which can

cause long delay. Furthermore, routers have limited buffer space to tolerate temporary

overloading. When the network becomes overloaded, the buffer in the bottleneck router

starts to fill up, and eventually overflows. The network overloading stage is generally

called congestion, which can cause packet losses and long delays to applications. Most

lost packets are detected by end systems and retransmitted. But if end systems did not

slow down their transmission rates during congestion, most of the bandwidth would be

used to transmit packets that would be dropped before reaching the receivers. This

behavior is called "pouring gasoline on fire" in a computer network [JK88]. The ideal

behavior, which is also the goal of congestion control, is to keep end systems sending as

fast as the network capacity for high bandwidth utilization without creating too much

congestion.

TCP congestion control attempts to achieve this goal as follows. It starts with a low rate

and probes for the existence of additional unused link bandwidth on its path by

progressively increasing its rate. It continues to increases its rate until a congestion signal

occurs. When TCP detects congestion, it reduces its rate to a "safe level" and begins

probing again. In the following subsections, we review the way TCP detects congestion

and limits its rate, and we discuss the algorithm TCP uses for probing and responding to

congestions.

2.1.1 Acknowledgments

TCP uses acknowledgments to carry feedback information for all three control functions

mentioned above.

Each time a receiver gets a packet', it informs the sender of the sequence number of the

next in-sequence packet. The packet used to inform the sender is called an

acknowledgement. Acknowledgments can be piggybacked on data packets when the

receiver has data packets to send back to the sender.

When there are no pgcket reordering events or losses, the acknowledgment contains the

sequence number of the packet following the one that just arrived. If there is a packet

loss, the acknowledgments of later packets contain the sequence number of the lost

packet, which is the sequence number of the next in-sequence packet in the data stream.

2.1.2 Congestion window

TCP limits its sending rate by controlling its congestion window size, which is the

number of packets that may be transmitted-but-yet-to-be-acknowledged in a flow.

Normally, the time between delivering a packet and receiving its acknowledgement is

one round-trip-time (RTT). A TCP sender can send up to the congestion window size of

data packets during one RIIT. Once TCP sends out a window size of data packets, it can

send new data packets only after some acknowledgements arrive. Thus the average rate

of a TCP over one RTT is roughly the window size divided by the RTT.

' When TCP's delay acknowledgement is enabled, the TCP receiver could send one acknowledgement only
after receiving multiple packets.

2.1.3 Congestion signals

In most wire-connected modern networks, packet losses due to link-level noise have

become very rare because of technology improvements. Loss typically results from the

overflowing of router buffers as the network becomes congested. TCP uses packet losses

as an indication of congestion.

TCP detects packet losses with two mechanisms. The first one is the timeout. A TCP

sender starts a timer when it sends a packet to a receiver. If the timer expires before the

sender receives the packet's corresponding acknowledgement, TCP thinks the packet is

lost. Clearly, the timeout interval should be larger than TCP7s RTT. Actually, TCP adapts

this interval dynamically based on its RTT estimations. In most of the TCP

implementations, the timeout interval is set to the average of RTT estimations plus 4

times the deviation. A detailed'study of the effect of various timeout settings is presented

in [AP99].

The second way that TCP detects packet losses is through duplicate acknowledgments. A

TCP receiver only acknowledges the sequence number of the next in-sequence packet. A

packet loss causes the receiver to re-acknowledge the sequence number of the lost packet

when the next packet arrives. The sender thus receives duplicate acknowledgements for

the same sequence number. Since packet reordering in the network can also cause

duplicated acknowledgements, TCP uses a threshold to avoid treating reordering as

packet losses. Typically, TCP sets the threshold to three. Only when a TCP receives three

or more duplicated acknowledgements does it consider that a packet is lost and thus

generates a retransmission. This mechanism to detect packet losses is also referred as the

"Triple Duplicated ACK Hack". Duplicated acknowledgements may detect packet losses

earlier than the timeout timer. Thus detecting congestion by duplicated

acknowledgements is called Fast Retransmission.

Notice that packet losses are not always caused by congestion. Noise, especially in

wireless networks, can cause a significant amount of packet loss. Taking these random

packet losses by noise as indications of congestion can significantly impact the

performance of TCP congestion control. Many recent research studies have addressed

this issue, but, since our focus is not on congestion detection, we assume TCP7s

congestion detection is adequate.

Recently, explicit congestion notifications (ECN) [RFBOl] may be used to detect

congestions. ECN capable routers can mark packets with a congestion notification when

they experience congestion. In this way, TCP can be informed of congestion earlier and

more accurately than using timeouts or duplicate acknowledgements. TCP can thus adjust

its rate according to the congestion signal without getting dropped packets.

In this thesis, both indications of packet losses and explicit congestion marks are called

congestion signals.

2.1.4 Slow Start & AIMD

Besides congestion signals and how TCP uses a congestion window to limit its rate, the

remaining aspect of TCP congestion control is its dynamical window adjustment

algorithms.

The basic rate control mechanisms are an exponential initialization stage called Slow

Start and an additive-increase-multiplicative-decrease (AIMD) steady-state stage. An

example of a TCP flow's two stages is shown in Figure 2.1.

The Slow Start is used when TCP is in the initial stage or after a timeout. During a Slow

Start stage, TCP starts with an initial window size (typically one or two packets) and

increases its window size by one packet upon the receipt of each acknowledgment. This

behavior leads to an exponential increase2 in sending rate.

Slow Start is called "slow," compared to jumping to a fast rate immediately, but it actually accelerates
very quickly (exponentially).

The AIMD algorithm is used in TCP7s steady-state stage. During an AIMD stage, TCP

increases its current window by one packet for each full window of data acknowledged.

This is the Additive Increase (AI) part of AIMD. Once a Fast Retransmission (duplicate

acknowledgements) happens, TCP cuts its window by half and then restarts the additive

increase. The halving of window size is the Multiplicative Decrease (MD) part of AIMD.

The procedure of cutting the window by half and then immediately going back to additive

increase is also called Fast Recovery, which is fast compared to the alternative of cutting

the window to the initial value.

 ate

Time
-b

Figure 2.1: TCP Slow Start and AIMD rate control (RTT is the
TCP flow's round-trip-time, MSS is the TCP flow's packet size)

The transitions between Slow Start and AIMD are controlled by a threshold and timeout

events. TCP starts with a Slow Start, and once the congestion window goes across a

threshold, it switches to the AIMD stage. During an AIMD stage, if a timeout event

happens, TCP sets its window back to the initial value and enters Slow Start again. Both

the threshold and the timeout interval are adjusted dynamically. Details can be found in

[APS99].

2.1.5 TCP Flavors

TCP has evolved in the last decade, and thus many different TCP flavors are deployed in

the Internet today. Here we list the key features of a few TCP flavors:

Tahoe: TCP Tahoe detects congestion only by timeouts and has only Slow Start

and A1 stages. It starts with a Slow Start. Once the window size passes a

threshold, TCP Tahoe switches to the additive increase stage. Once a timeout

happens, it sets the window size back to the initial value and does Slow Start

again.

Reno: TCP Reno adds both Fast Retransmission and Fast Recovery to TCP

Tahoe, and thus includes both Slow Start and AIMD. TCP Reno does the same

thing as TCP Tahoe upon timeouts. In addition to the timeouts used in TCP

Tahoe, TCP Reno also detects congestions by duplicated acknowledgements (Fast

Retransmission). Upon the triple-duplicated-acknowledgements, TCP Reno cuts

the congestion window by half and continues the additive increase stage (fast

recovery) rather than resetting to initial windows size of one and doing slowstart.

New Reno: TCP New Reno treats multiple packets losses in one RTT as one

congestion signal instead of several as in TCP Reno, and thus does at most one

multiplicative decrease per RTT.

SACK (Selective Acknowledgments): TCP SACK'S receiver informs the sender

with sequence numbers of multiple missing packets, rather than only

acknowledging the sequence number of the first missing one. Thus TCP SACK

can retransmit the lost packets, earlier than TCP Reno if more than one packet is

lost.

FACK (Forward Acknowledgments): TCP FACK's receiver informs the sender

of the highest sequence number that has arrived (even out of order). With this

information, the sender can estimate accurately how many packets have left the

network for this particular flow, and thus could make a better control on its

window size.

Vegas: TCP Vegas is generally not viewed as a member of the cIassic TCP

family. However, it is as well-known as any of the above flavors, and we list it

here. The difference between Vegas and other TCP flavors is that TCP Vegas

does not rely on AIMD as the major congestion avoidance algorithm. Instead,

TCP Vegas monitors the RTT of each packet and adjusts its rate to control the

router queue length, which is approximately derived from the R'IT measurements.

Congestion control protocols not only prevent flows from overloading the Internet, but

also determine the fairness, which is the bandwidth sharing ratio among them. Because

the bandwidth resource is shared among all participating users, a stable bandwidth

sharing fairness is desired in the heterogeneous Internet, and the case of one user gaining

most of the bandwidth and starving others should not happen.

2.2.1 TCP-style Fairness

TCP's congestion control algorithm ensures that similarly situated TCP flows (same

RTT, same packet size) receive roughly equal throughput. We call it TCP-style fairness.

Notice that it does not assure equality of throughput between flows with different round-

trip-times (RTT), or using different packet sizes. More than a decade of deployment of

TCP in the Internet has proven that TCP congestion control maintains this TCP-style

fairness across a very wide range of network environments.

Recently, many new congestion control protocols [BMP94, CPW98, RHE99al have been

proposed for applications that are not served well by TCP. This emergence of new

congestion control protocols raises the issue of inter-flow fairness across different

protocols. FIows using newly proposed congestion control protocols may not preserve the

bandwidth sharing equality with similarly situated TCP flows.

The Internet community has struggled with this tension between preserving TCP-style

fairness, and meeting the demands of applications for which TCP is a far-from-ideal

solution. A recently proposed resolution is the TCP-friendliness paradigm [FF99, TCPF].

A congestion control protocol is called TCPfiendly when it uses the same amount of

bandwidth on average as a similarly situated TCP flow.

2.2.3 State of the Art

Currently the notion of TCP-friendliness is defined in terms of the average throughput

over a long time interval (many seconds to minutes). The cornerstone of this approach is

the observation [PFTK98] that one can roughly characterize the average throughput F of

a TCP flow in the presence of a constant packet loss rate p with the following equation:

in which, MSS is the flow's packet size and RTT is the round-trip-time.

The model is based on the following assumptions:

TCP congestion control is working in the AIMD steady state, which means TCP

is assume to detect congestions by duplicate acknowledgements. This assumption

is reasonable when the packet loss rate is low. When the loss rate is high, timeout

becomes the dominant mechanism for congestion detections, and a more complex

throughput model [PFTK99] is needed.

Congestion signals are independent from the sending rate, which means a

congestion control protocol is assumed to experience the same congestion signal

no matter how its transient rate behaves.

The detailed derivation of the throughput equation (2.1) can be found in [PFTK98].

This TCP-friendliness definition enables a wide variety of TCP-friendly congestion

control protocols that can be tailored to different application requirements. The work

[TCPF] has a rich collection of existing TCP-friendly congestion control protocols.

Although many TCP-friendly protocols have been proposed recently, several aspects of

the bandwidth sharing behavior between various congestion-controlled flows are still

unclear. Examples of these issues are: whether the bandwidth sharing among competing

TCP-friendly flows is stable, how long it takes the system to converge to its stable

behavior, and in what time scale the average throughput should be measured to judge a

flow's TCP-friendliness, and whether transient sending rate behavior affects congestion

signals. The research presented in this thesis will shed some light on these issues.

2.3 AIMD-based Algorithm

The steady-state stage of the TCP congestion control protocol uses the AIMD algorithm.

TCP7s AIMD algorithm is actually a specific example of an AIMD-based algorithm. A

AIMD-based algorithm can be described as:

Increase (Additive): W(t+RTT)=W(t)+a a > O
(2.2)

Decrease (Multiplicative): W(t + 6) t W (t) - m (t) 0 < P < 1

where W(t) is the window size at time t, and Ri'Tis the round-trip-time. In the absence of

congestion signals, the algorithm uses the Increase rule in (2.2), which increases its

window by a constant a in every RlT. When the congestion control detects congestions

at time t, the algorithm uses the Decrease rule in (2.2), which decreases its window by a

constant factor p . The new window size is denoted as W(t+S), in which t+6 indicates

the time instance just after time t. TCPYs algorithm can be viewed as a special case of the

AIMD-based congestion control algorithm with a =1 (packet) andP =1/2. Throughout

this paper, we use AIMD(a , P) to denote an AIMD-based algorithm using

parameters a and p , and thus use AIMD(1,1/2) to denote TCP' s algorithm.

For an AIMD-based algorithm to be TCP-friendly, a andP are not independent, but have

to follow the relationship

The derivation is based on the throughput model (2.1) with the assumption that the

AIMD-based protocol will experience the same congestion signal as a similarly situated

TCP flow. The derivation of this relation can be found in [LSWOI, YLOO] 3. Intuitively,

in order to make a flow with a smaller a parameter get the same throughput as a TCP

flow, it must back off less than the TCP flow. By choosing a smaller a and a smaller P ,
an AIMD-based algorithm's rate varies by a smaller magnitude than a normal TCP does.

In some work, the multiplicative decrease part of AIMD is described as W(t) t P W(t) instead of W(t)

t W(t) -/? W(t). Thus the TCP-friendly relationship is presented in a slightly different form.

A State-space Model

This chapter presents our work on applying the state-space control modeling technique

[B91, C86] to a bandwidth sharing system. State-space modeling is one modern control

technique that has been developed to study the dynamic behaviors of systems in areas of

physics, mechanics, electronics, aerospace, etc. The term "dynamic behaviors" is a

familiar concept in these areas. In this chapter, we use a state-space model to capture the

dynamic rate behaviors of congestion-controlled flows.

The chapter starts with a general description of the state-space control modeling

technique, and then describes a state-space model for a bandwidth sharing system that is

composed of congestion-controlled flows. At the end of this chapter, some examples are

given of using this model to study the dynamic behaviors of bandwidth sharing systems.

3.1 State-Space Modeling

A state-space model for a system is a representation that describes the evolution of the

system state, which captures the dynamic behaviors of the system.

Before explaining the details, we first introduce some terms used to describe a state-space

model.

State Variables - State variables [C86] can be viewed as a running collection of a

system's initial conditions. Knowledge of these conditions at a given time

together with a fixed explicit input is all that is necessary to specify future

behaviors. For convenience of notation, we usually collect the state variables into

a vector, called a state vector. In this document, we simply use system state to

refer to a system's state vector.

Event-driven State Jumps - Events in a system are generated based on certain

conditions of the system state (for example, when a state variable exceeds a

predefined value). Event-driven state jumps are state transitions that are

associated with those events and can't be described as differential equations. A

state jump is always associated with an event, or with a certain delay after an

event.

State Space - A state space is a multi-dimensional space in which each dimension

represents a state variable. Thus any system state can be represented as a point in

the state space4.

State-Space Plot - A state-space plot is a geometrical representation of how a

system's state evolves over time in a state-space model. The solution of the

differential equations and state jumps is visualized as a trajectory in the state

space. State space pIots are also called phase plots in the literature.

3.1.1 A State-Space Model

A state-space model consists of a set of equations describing the evolution of the system

state. The future behavior resulting from a particular input can be calculated from the

state-space model once the current state is known. Our state space models use differential

equations and state jumps to describe the evolution of the system state. We use x(t) to

represent the system state at time t and u(t) to represent the input to the system at time t.

The derivative of x(t) is represented by x(t) . The differential equations are written in the

form of (3.1), and state jumps are in the form of (3.2). In this mathematical

representation, h(x(t)) is the event trigger function, which returns zero when no state-

jump events should happen. During this period, the function f(x(t),u(t)) of the differential

equation governs the system state evolution. Function h(x(t)) returns a non-zero value

when some state-jump events should happen. At this instance, the function g(x(t)) is the

function that controls the state-jumps. We use t- and t+ to represent the times immediately

before and after the time t.

x(t) = f (x (t) ,u (t)) when h(x(t)) = 0

x(t+ + g(x(t-)) when h(x(t)) + 0

In addition to the above mathematical representation, a state-space model can also have a

geometrical representation that helps one visualize the system state transitions and shows

the relationship among the state variables. The geometrical view of the system states is a

state-space trajectory in a state-space plot.

An important property of the geometrical representation is the uniqueness of its states in

the state-space. Since the system state is supposed to contain sufficient information about

the system at any given time for its subsequent behavior to be predicted if the future input

is known, it's necessary that the differential equation and state-jumps for x(t) should have

a unique solution for every initial state x(to) and input u(t), @to. Because of this

uniqueness property, there is one and only one trajectory from any given point5 in the

geometrical representation, for a particular input u(t), t>_to.

3.1.2 System Stability

Capturing a system's dynamic behavior is the goal of state-space modeling. A system's

dynamic behaviors can be divided into steady-state behaviors and transient behaviors.

The steady state behaviors are how a stable system behaves once it converges to its

steady state, and the transient behaviors are how the system behaves on its way from an

Notice here that not every point in the state space is necessary a valid state in the system.
Because of the state jumps, we could have state transitions from many points to one point.

initial state to steady state. Generally, steady-state behaviors get more focus because they

are the dominant behaviors if a system is stable. To study the steady-state behaviors, or

even the transient behaviors, we need to first study the system's stability. In this

subsection, we present a brief review of the system stability in the context of a state-space

model.

3.1.2.1 Equilibrium

Equilibrium describes possible a steady-state behavior of the system. Equilibria are

generally classified as static or dynamic. Here we assume the input u is fixed at u=O.

A static equilibrium is commonly referred to in the classical control theory as an

equilibrium point. An equilibrium point is a state 2 that if once the system state x(t) is

equal to 2 , it remains equal to 2 for all future time and a fixed input G . Mathematically,

it means that

h(2) = 0 (3.3)
and

x(t) = f (2, G) = 0 (3 4 ,
in which equation (3.3) guarantees no state-jumps and (3.4) guarantees that the system

state can not leave 2 under the control of the differential equation.

Static equilibria do not cover all the interesting steady state behaviors of a system. A

common feature of nonlinear systems with state jumps is the occurrence of a special type

of trajectory that takes the form of a closed curve. This is known as a limit cycle and

represents a periodic solution of the system equations since, when the system state returns

to its initial value, it must necessarily repeat its previous motion and so continue

indefinitely. We call a limit cycle a dynamic equilibrium state of a system. It represents

an oscillation that is intrinsic to the system and is not caused by external input variations.

3.1.2.2 Stability

The existence of an equilibrium is a necessary condition for system stability but not

sufficient. Stability requires a stable equilibrium, in which a small perturbation won't

cause the system to leave the neighborhood of the equilibrium state or trajectory.

Roughly, an equilibrium point is asymptotically stable in a region around the equilibrium

if whenever the system starts from any place within the region, it ends up returning to the

equilibrium. It is unstable if it moves away when starting at some position in the region.

A limit cycle is asymptotically stable in a nearby region if all trajectories starting in that

region approach it asymptotically and is unstable if some trajectory starting in the region

moves away. An asymptotically stable limit cycle is also called a periodic attractor.

Above is a geometric description of the stability of a system. Mathematically, system

stability is defined in the following way:

An equilibrium state 2 (or dynamic limit cycle) is said to be stable, s f o r any

arbitrarily small number n =0, there exists real numbers S > 0, and D O ,

such that, i f I Ix(0)- 2 11 <& then I lx(t)- i ((< E for all t>T. Otherwise, the

equilibrium state (or the limit cycle) is unstable. It is asymptotically stable if

it is stable and, in addition, ((x(t)- i 1) 3 0 as t+ in$

Here Ilx(t)- 2 I] is defined as the distance between the state x(t) and the equilibrium state 2

when 2 is an equilibrium point. If i is a limit cycle, the distance is the shortest distance

from x(t) to any points on the limit cycle.

3.2 A State-Space Model for a Bandwidth Sharing System

After briefly describing the state-space modeling technique, now we are ready to present

a state-space model for a bandwidth sharing system.

3.2.1 Target System

We are generally interested in the rate behaviors of flows in the Internet. However, the

Internet is too big and has too many factors to be characterized by a single state-space

model. To simplify the study, we choose a target system that is composed of a fixed

number of flows that all use AIMD-based congestion control algorithms. To focus on the

steady state congestion control algorithm, we ignore all timeouts and other components in

a congestion control protocol, and we make no distinctions between retransmitted data

and new data, and abstract all of them just as a data rate. In addition, we assume a single

bottleneck link for all competing flows in the system. Figure 3.1 illustrates the target

system of our study, in which N congestion controlled flows are competing for the same

bottleneck link L, which has a fixed rate R and a limited queueing capacity B.

Figure 3.1: A Bandwidth Sharing System

Models for a network system can generally be divided into packet-based and fluid-based

ones. A packet-based model uses packets as the basic units and the system's behavior is

related to the detailed character of each packet, such as its size and timing information. A

fluid-based model abstracts a system's behavior by rates, and thus ignores the

information of various packet sizes and the packet interval times. In general, packet-

based models are close to reality but are harder to use for any theoretical studies than

fluid-based models. We choose to use a fluid-based approach because it requires fewer

state variables. In later chapters, we address the quantization effect and randomness

caused by packet sizes.

To construct a model for the target system, we first divide it into a bottleneck subsystem

and N AIMD rate control subsystems. We then locate the key factors in each kind of

subsystem to determine the system state.

3.2.1.1 Bottleneck Subsystem

We abstract a bottleneck link as a leaky bucket that has a constant leak rate (the

bottleneck rate) R and a bucket (the bottleneck queue) with a limited size B. The bucket

fill-levelfE(t) is controlled by the leak rate and the input rate rs(t) to the bucket, which is

the sum of input rates of all the flows to the queue. The equations for the evolution of fE(t)

are summarized in (3.5).

= m i n t (t) - R,O) if fE(t) = B

dj(t)
-= r, 0) -R if 0 <fl(t) < B

dt
dm) -- - m a t s (t) - R, 0) if P(t) = 0

dt

A congestion signal is produced whenfl(t) = B and r,(t)>R . However, it is not necessary

that every flow perceives the congestion signal. Determining which flow should perceive

the congestion signal is not simple. In reality, some flows might be "unfortunate" and get

their packet dropped when the bottleneck queue is full, while some flows do not. This

random phenomenon happens in the taildrop queue, and could be exaggerated by some

advanced queue management schemes [BCC+98] such as RED [FJ93]. We address this

issue when we define the event trigger function h(x).

3.2.1.2 AIMD Subsystem

We view the AIMD rate controller of each flow in the target system as a feedback

subsystem, which outputs a signal onto the network to probe the bottleneck state and uses

the probe result to control the data output rate. This feedback subsystem is illustrated in

Figure 3.2. An AIMD rate controller probes the network's state with the data it sends.

Data packets travel from the sender to the receiver, and acknowledgments for each packet

travel back from the receiver to the sender. The time from sending a packet to receiving

its acknowledgment is the round-trip time (RTT). The RTT is important because it is the

delay around the feedback loop.

AIMD Rate
Controller

I
I
I

Figure 3.2: AIMD Rate Control Subsystem

We divide the RTT into three parts: the forward delay FD, the bottleneck queueing delay

QD, and the backward delay BD (that is: RTT = FD + QD + BD). The forward delay is

the time between the instant that a flow increases its rate to the instant that the increment

starts contributing to the input rate to the bottleneck queue. The bottleneck queueing

delay is the time that is taken by a packet to go through the bottleneck queue. The

backward delay is the time between the instant that a congestion signal is generated at the

bottleneck to the instant that the flow receives it. Since we assume a single bottleneck

link, packets should only accumulate at the bottleneck and not at other links. Thus, both

the forward delay and backward delay are composed by link propagation delays, and are

therefore treated as constants in our study. Since the queueing delay is related to the

amount of data in the queue, we simply let QD = fl(t)/R.

Now we start to abstract the behavior of an AIMD rate controller. An AIMD rate

controller limits the rate at which data is sent out on the network by using a congestion

window. The congestion window size defines the maximum amount of outstanding data,

data that has been sent but not yet acknowledged; hence, the amount that is sent out in

one RTT. If no congestion signals have arrived at the AIMD controller, it should have

received acknowledgments for all packets that were sent during the last RTT. An AIMD

rate controller uses packet losses or explicit notifications as congestion signals. For

details of packet loss detections, please refer to Chapter 2. Under the absence of

congestion signals, an AIMD controller increases its congestion window size by a

packets in every RTT (that is increasing its rate ri by a packets/R?T in every RTT);

otherwise it decreases its congestion window by P times the current window size.

Equation (3.6) and (3.7) summarize an AIMD controller's behaviors.

When no congestion occurs (uncongested state):

d q (t) a x MSS -- - (3.6),
dt RY.

in which MSS is the packet size.

When congestion occurs:

With the above abstractions of the bottleneck link and AIMD controllers, the target

system can be represented as a decentralized control system, whose behavior is controlled

by N AIMD controllers and one bottleneck queue. The link between these distributed

controllers and the key variables of the system is presented in Figure 3.3. Our studies of

bandwidth sharing systems are based on this abstracted system.

......... -
j

i ;.__._ p q b , . . .
; j
: : ; t Congestion . .

1 . j . Signals
: :

Figure 3.3: The Bandwidth Sharing System with Key Information only

3.2.2 System State

The essential feature of the state of a state-space model for a system is that it contains all

information about the past history of the system that is relevant to its future behavior. In

the target system, the important information that captures the state of the system is the

instantaneous transmission rate of each flow and the queue fill-level in the bottleneck

router at any instant. Each flow adjusts its rate based on its current rate and the

congestion signals from the bottleneck link, which are determined by the aggregated rate

of all competing flows. Thus, the transient transmission rates of all competing flows and

the queue fill-level of the bottleneck router hold all the history information that is

relevant to determine the future behavior of the system. Therefore, we choose the

transmission rate of every competing flow and the fill-level of the bottleneck router

queue as the state variables. We use ri(t) to denote the transmission rate of flow i, andfl(t)

to denote the bottleneck queue fill-level at time t . For a system with N competing flows,

the system's state at time t in our model is a vector x(t) = [r , (t), r,(t),..., r, (t), fl(t)lT .

The target system has a few other key factors that affect the system behaviors but are not

counted as state variables because they are static or being assumed static by us. These

factors are the bottleneck rate R, the queue size B at the bottleneck router, and the

forward and backward delay between each sender and the bottleneck queue. In a real

system, these factors might be varied by router software dong custom queuing or

differential services.

3.2.3 Differential Equations and State-Jumps

Based on the above system state definition, we now present the rules that control the state

evolution. We first look at the event trigger function h(x), and then discuss the functions

g(x) andflx, u) for the system evolution with and without state-jumps.

The event trigger function h(x) is not straightforward. As mentioned in subsection

3.2.1.1, one issue that needs to be addressed by the trigger function is which flow

perceives the congestion signal. We have a few choices on the selection of the trigger

function. One choice is a pure deterrninistic approach in which every flow perceives all

congestion signals. This choice maps to the reality when severe congestions happen. An

alternative choice is using a random process that links the possibility of perceiving a

congestion signal to the transient rate of the flow. The goal of building the model is to

study the dynamic rate behaviors. This goal includes two tasks: understanding the system

stability and understanding the interaction between controller behavior and its congestion

perceptions. For the task of studying system stability, the first choice (every flow

perceiving a congestion signal) provides an easy start. For the task of studying the

interaction between rate and congestion perceptions, we can no longer assume that all

flows perceive all congestion signals. In later chapters, we will show through experiments

that flows with different parameters in their rate controller have different congestion

perceptions. In this chapter, since the major theme is to use the state-space model to study

the system stability, we decide to start with the simple assumption that every flow

perceives a congestion signal whenever congestion happens. We will extend our model to

more general cases and investigate the effects of these choices in the next two chapters

using simulations and real-world experiments.

The event trigger function h(x) also needs to address the effect of feedback delays on

AIMD controllers. An AIMD controller will not back off continuously during queueing

overflows at the bottleneck. Because RTT is an AIMD controller's feedback delay, an

AIMD controller lets back offs happen no more than once in a single RTT period6. In

addition, different AIMD controllers could perceive congestion signals at different times

when they have unequal backward delays.

For this delay issue, and since the backward delay could differ among flows, we define a

separate event trigger function hi(x) for each flow i as:

i(x) = 1 if Jl(t-BDi)=B, rS (t - BD) > R , and hi(o) is 0 for all o such that t-RTT<o<t

otherwise.
(3.8)

This definition makes sure that, once the fill-level reaches its limit B and the total input

rate from all flows r,(t) is higher than the link rate, the flow i receives a congestion signal

after a delay BDi (indicated by the condition P(t-BDi)=B andrs(t - BD) > R). The

definition in (3.8) also makes sure that the flow receives at most one congestion signal

per RTT, otherwise hi(o) would not be zero for all o such that t-RTT<o < t.

Up to now, we know the trigger functions for all the state jumps. To define the functions

that control the system behavior other than state-jumps, we want a function that indicates

the absence of state-jumps. Therefore, we define a global event trigger function h(x).

if all hi(x) = 0 (no state-jumps)

otherwise

When the event trigger function h(x) = 0, the system state evolution is under the control

of differential equations, in which the evolution function f(x,u) is presented as the

following:

a, x MSq a2 x MS& aN x MSSN
f (x(t),u(t)) = [... ,mints (t) - R,0)IT if jZ(t) = B

R@(t) ' RGYt) ' ' R Z (t)
cr;xMSq a 2 x M S & a N x M &

f (x(t),u(t)) = [... ' S r (t) - RIT if O<fE(t) < B (3.10)
R@(t) ' ~ @ (t) ' ' R G (t)
q x M S q a 2 x M S & a; ,xMS&

f (x(t),u(t)) = , max& (t) - R,O)lT if P(t) = 0
R@(t) ' R@(t) ' ' R G (t)

ai x MSS,
In f(x,,u), flow i increases its rate by , in which ai is the AIMD increment

R T ~ ; . ~ (t)

parameter of flow i, and RTTi(t) is its round-trip-time. Also in (3.10),

This claim is right for TCP NewReno, TCP SACK, but it is not right for TCP Tahoe and TCP Reno. We
make this claim because TCP NewReno and TCP SACK are the dominant flavors of TCP in the Internet
today [PFO 11.

32

N

rS (t) =I fj (t - FDi), which is the total rate of all competing flows at the bottleneck,
i=1

where FDj is the forward delay of flow i. Notice that (3.10) is divided into three cases

based on the value of fl(t). When fl(t) is larger than zero but less than B, then the

derivative of fill-level can be either positive, zero, or negative. When it is equal to zero,

since the fill-level cannot become negative, the derivative of fl(t) can only be positive or

zero.

When h(x) is not zero, that means at least one state-jump happens. For every hlx) =1, we

have a state transition under the control of glx):

g i ([r1(t), r2(t),..., rN (t), fl(t)f) = [r1(t),..., (1- Pi)fj (t),..., rN(t), fl(t)f (3.11).

In (3.11), only flow i's rate is reduced by a factor of Pi and all other state variables of the

system are unchanged. This is the AIMD's rate behavior in (3.7).

The state definition in subsection 3.2.2 and the equations (and transitions) (3.8) ~ (3.11)

together comprise the state-space model for our target system.

3.2.4 Simulation

Figure 3.4 A Snapshot of a Simulink Simulation Block

Based on the state-space model presented above, we build a simulation for the target

system using Matlab's Simulink toolkit [MATLAB]. The Simulink toolkit supplies

building blocks to represent the differential equations, event triggers, and state jumps,

which enable us to build a simulation according to our model. Actually the development

of our model is motivated as an example of using the Simulink toollut to study computer

applications. As an example, we show a captured figure of the simulation block of an

AIMD rate controller in Figure 3.4. The full Simulink simulation based on (3.8) - (3.1 1)

is available on [SIMU].

3.2.5 System Dynamics

The goal of building the state-space model is to understand the dynamic rate behavior of

competing flows in the network. The power of a state-space model is that it can help one

visualize the dynamic behavior in its state space. In this subsection, we present some

examples to demonstrate the geometrical representations.

To make a step-by-step demonstration, we first apply the model to a system with a single

flow, and then show the cases with two flows and N flows.

In all the following examples in this section, we assume an equal backward delay for all

competing flows. We also assume that every flow perceives the congestion signal when a

congestion happens. Thus, all flows get synchronized congestion signals. We also assume

identical AIMD controllers and the same forward delay for every flow in the system. We

make such assumptions just to demonstrate the system behavior in simple environments.

The reality has many more random factors that could cause more complex behavior than

that presented in this chapter. We do not argue that the systems we show in these

examples are realistic. On the contrary, we will discuss how realistic this assumption is at

the end of this chapter, and we will extend our study to more complex cases in the

following chapters.

3.2.5.1 A System with a Single Flow

For a system with only one flow, its system state is represented by a two-dimensional

(2D) vector x(t) =[r(t), fl(t)lT. The state-space of the system is a two-dimensional space,

and the system trajectory is presented in Figure 3.5, which is produced from a Simulink

simulation with a SOKBIS bottleneck link rate and 1500B queue limit.

2088
systen state {r,fl) -

Figure 3.5 (a): Trajectory of a System with a Single Flow

2000
'systen state tr.fl1 -

1

Rate r (KB/S)

Figure 3.5 (b): The Limit Cycle of a System with a Single Flow

We show two figures of the system state. The first one, Figure 3.5(a), shows the system

trajectory starting from the initial point (SOKBIS initial rate and 0 fill-level) and ending

up following a limit cycle. The second one, Figure 3.4(b), shows just the limit cycle,

which is the system state during its stable state.

The state space figure in Figure 3.5(b) illustrates the significance of the state-jumps,

which is the thin part of the limit cycle. Upon a state jump (congestion signal arriving at

the AIMD controller), the flow's rate jumps from 74KBlS to 37 KBIS because this flow

uses AWLD (1,1/2) as its controller. Compared to the thin line between the states before

and after a state jump, the system states under the control of the differential equation tend

to migrate gradually and are thus shown on the figure as the thick part of the limit cycle.

Compared to a normal time-sequence saw tooth figure, the state-space trajectory

illustrates the connection between the internal states of a system. For example, the system

trajectory shows a few interesting aspects of the system. First, the effect of the feedback

delay is clear in Figure 3.4(b). After the queue fill-level reaches its limit B, the AIMD

controller still increases its rate until the congestion signal arrives at the AIMD controller.

This behavior is indicated by the state evolution marked X in the figure, and this period is

BD, which is the backward delay7. Similarly, after the AIMD controller receives a signal,

it reduces its rate and this rate reduction will only arrive at the bottleneck after a delay

FD. The state evolution during this period is the marked Y in the figure.

The system experiences a period (BD+FD) of overflow before the queue fill-level goes

down. In reality, this behavior can be alleviated by using the rule of packet conservation.

The rule of packet conservation says that the sender should not send a new packet unless

it knows a packet has successively left the network. In TCP congestion control, the

packet conservation is implemented by using the arrival of acknowledgements as triggers

for sending new packets. When a sender sends faster than the network capacity, it will

notreceive acknowledgments in a rate that can match its sending rate (because packets

are delayed or dropped in the network). By applying the packet conservation rule, the

7 Notice here that the distance on the state-space plot doesn't indicate time directly. The trajectory is plotted
by sampling the state every constant period. The number of sampling points on the state trajectory actually
indicates the time period.

sender would not keep increasing its rate once its acknowledgment rate cannot keep up.

Thus the sender can avoid increasing its rate when its rate is already higher than the

network capacity. Currently, our state-space model does not model the packet

conservation rule for two reasons. First it is a rule that is independent of AIMD

congestion control and some newly developed congestion control protocols do not use it

[BBSFOl]. Second, a long feedback delay could still cause a rate increase and congestion

over a long period. To model the packet conservation rule is one of our future plans to

extend the state-space model. The effect of feedback delay creating a long congestion

period motivates the deployment of active queue management approaches, such as RED,

at the bottleneck queue. An early congestion signal can effectively reduce this overflow

period. It may also reduce the average queuing delay, which shortens the feedback delay.

In Figure 3.5(b), we plotted one more line, the link capacity line, in addition to the system

state trajectory. Ideally, when the flow's rate is lower than the capacity, the bottleneck

queue fill-level decreases. Once the flow's rate passes the capacity, the bottleneck queue

fill-level increases. However, due to the same effect of the forward delay shown above,

the changing of fill-level is actually delayed. We plotted a dotted line to indicate the

system state at the time the fill-level changes from draining to filling. The distance

between the bandwidth capacity line and the dotted line is caused by the forward delay.

In a system with zero forward delay, the two lines overlap.

3.2.5.2 A System with Two Flows

For a system with two flows, the system state is represented by a vector x(t) =[rl(t),r2(t),

jZ(t)lT. The system state is again plotted in the system's state-space.

One thing we can see from the 3D system trajectory figure, Figure 3.6(a), is that the

system state converges to a limit cycle. The proof of this dynamic stability is presented at

the end of this section.

system state irlcr2,fll -
fl 4B)

Figure 3.6 (a): Trajectory of a System with Two Flows

systen state <rl,fl) - ='@I
1588

A
m
Y

rl (c

4

!i Ieee
rl

rl
rl
4 LL

500

0
0 20 40 60 80 100 I20 140

Rate r l <KB/S)

Figure 3.6 (b): Projection 1 of the System Trajectory

More can be observed from this state-space plot. Since this system has two flows, the

fairness of bandwidth sharing between the two flows is one aspect we are interested in.

We make projections of the 3-D plots onto 2-D figures. If the 2 dimensions we choose to

project to are the queue fill-level and a flow's rate, the projected figure, Figure 3.6(b), is

similar to the single flow case. However, if we choose the 2 dimensions as the rates of

both flows, we get a figure, Figure 3.6(c), of the relative progress of the two rates. We

add a 45-degree line, called the fairness line, in this projection. Points on the fairness line

indicate states in which the two flows have the same transient transmission rate. We can

see that the two flows achieve a fair sharing of bandwidth in the system's stable state.

The use of 2-D system state projections to show the fairness has became a popular way to

show the TCP-friendliness aspect in some recent papers [BBSFO 1, YLOO].

rairmss l ine

0 28 48 BB
Rate r l (KB/S)

Figure 3.6 (c): Projection 2 of the System Trajectory

3.2.5.3 A System with N flows

For a system with N flows, its system state is represented by x(t) =[rr(t),r2(t), ..., rdt) ,

jZ(t)lT. To present the system state in its state space, we need to overcome a representation

problem: it is not easy to represent on paper clearly a plot with more than three

dimensions. One solution to this problem is to use special graphics tools [WLG97] to

draw high dimension trajectories on paper. Another one is to aggregate multiple

dimensions to one as long as we are not interested in the individual state variables that are

being aggregated.

systen state (rl, r2+~2+r3, fl) -

Figure 3.7 (a): Trajectory of a System with Four Flows

We design an aggregation technique to present the system state plot based on the

assumption of synchronized congestion signals. If we focus on only one flow, we can

merge the system state of the other flows as one, and we show that the aggregated

behavior of a group of AIMD flows can be represented as an AIMD flow with different

parameters. When we only care about the aggregated behavior as a whole rather than the

behavior of each individual flow, we use the following way to aggregate competing

traffic:

Under the synchronized back oflassumption, N AIMD(a , P)flows can be

viewed as one AIMD(N*a , P)flow in terms of aggregated dynamics.

The intuition of this aggregation is that N AIMD flows would get N times the bandwidth

of a single AIMD flow. Here we show an example of a system with 4 flows. We

aggregate flows 2 to 4 to one flow using the above method, and plot the system state in

Figure 3.7 (a)-(c). Figure 3.7 (a) and (b) show that the state trajectory converges to a

limit cycle as shown in earlier examples.

In Figure 3.7(c), the initial state is changed to the point at which the aggregated

competing traffic holds zero bandwidth and the target flow has all the available

bandwidth. The trajectory shows that the system state later stabilizes on a limit cycle that

has an average sharing ratio 3:1, which is consistent with intuition. This result also

indicates that an AIMD(N*a , P) flow will get N times the bandwidth of an

AIMD(a , ,8) flow under the assumption of synchronized congestion signals.

Rate r l <KB/S)

Figure 3.7 (b): Projection 1 of the System Trajectory

airness line c

0 20 48 60 88 10B 120 140

Rate r l (KB/S)

Figure 3.7 (c): Projection 2 of the System Trajectory

3.2.5.4 Stable Limit Cycle

Early examples have shown geometrically that the system state converges to a stable

limit cycle. In this section, we present a theoretical proof of this dynamic stability. We

state the goal of the proof in Theorem-1 first, followed by a brief proof.

Theorem-]:

When multiple A l M D flows compete for a constant available bandwidth R, the system

state, under the assumption of synchronized back off (with a common backward delay B D

and a common forward delay FD), and packet conservation, converges to a limit cycle

that passes through the point P = [r, , r, , . - - , rN , BIT , in which

BD a,MSS, FD a,MSSj
where R ' = R + - x x + - x C

2 j;, RTT; 2 ,=I R T ~ ; '

and the AIMD flows' parameters satisfj the following constraint:

R

i=1 Pi ~q~) < (BD + FD)

When all the flows have the same AZMD parameters, MSS, and RTT, they get equal

bandwidth share.

We argue in Theorem-1 that the given limit cycle is stable. This proof is based on the

assumption that a>O and O<P<l. The proof of Theorem-1 is in 3 steps. First, we prove

that system trajectories from any point would have a series of cross points with the plane

fl=B in the state-space. Second, we prove the trajectory starting from the point stated in

Theorem-1 comes back to the same point, and thus it is a limit cycle. Third, we prove the

crossing points of a trajectory with the plane get closer and closer to the point P in the

Theorem-1, hence showing that is stable. We briefly present the idea of each step as

follows, and a more detailed proof is in Appendix Al .

In this step, we prove that, for any starting state X = [r , , r2 ;.., rN, $ l T , the system

trajectory starting from X intersects planefE=B again and again.

N

If X I ; < R, according to (3.8), we know that no state-jumps happen no matter what
i=l

value$ has, and the system state is under the control of (3.10). Notice that for every flow

. ai x MSSi
z, >O, which indicates that ri keeps increasing. In addition, the increment

RV. (t)

a, x MSS, a,, x MSS,,
is always larger than a positive constant , in which

R ~ T ~ ~ (t) R n m x (t)

a~, ,=min[al , az, ..., aN] and R7T,,,,=max[FDI, F a , ..., FDN]+BD+BB. Thus we know

r. > R . Without state- t h a t z I ; will continue to increase and eventually result in x , -
i=l i=l

N

jumps, r; keeps increasing and thus $ increases. Eventually, the system arrives at the
i =I

N

state X ' = [r,', r:, as., r; , BIT , which is a state on plane fE=B. Since x r;' t R and P=B,
i=l

state-jumps will happen until causing the system to leave the planefE=B and drop below

it when O < , 8 < 1. If the system leaves the planeJE=B, the above process will be repeated

again in future.

To continue the proof, we divide the system migration along a trajectory to multiple

rounds. The system state from any point would go across the plane $=B followed by a

state-jump. We choose the state-jump as the end of each round. Thus, each round starts

with a state just after a backing off upon a congestion signal, and ends with a state jump

on the next congestion signal.

This step verifies that the trajectory starting from the point P in Theorem-1 is a limit

cycle. The way we prove it is to prove that the trajectory that starts from P comes back to

P. The detailed derivation is presented in Appendix A. 1.

As defined in Step-I, each round starts with a state just after a backing off upon a

congestion signal, and ends with a state jump on the next congestion signal. We compare

the distance of the system state at the beginning of every round to the point P in

Theorem-1. If the distance is converging to zero, it indicates that the system state vector

is approaching the limit cycle. Furthermore, we know if the system state ever reaches the

above limit cycle, it will stay on it, unless there is noise to cause the system state to leave

the limit cycle again.

We assume that the system states of the flows start from a random initial condition

P =[q $4'5 +L$,-. ;rN + A ~ , B J ~ , and the system states arrive at

P" = [r , +A:, r, +A; ,. - ., r, + A;, BIT after one more round. The position of the system is

represented in a way to emphasize the distance from the one state to the point

P = [r, , r,, - - a , r, , BIT . If we can prove that the distance A: in each dimension becomes

smaller and smaller, then we know that the system state gets closer to P.

To prove this, we first derive the following relationship between A: and AT:

]=I
In the Appendix Al , we prove that , < 1 when 0 < p < 1, which indicates that

the distance to the limit cycle becomes smaller as time goes by. Therefore, as time goes

to infinity, the distance to the limit cycle approaches zero. Thus, the limit cycle is stable.

We have presented elsewhere that the trajectory of a system composed by a single AIMD

flow is a limit cycle [SLW+OO]. Here by proving that the system state converges to a

limit cycle, we prove that a system with multiple AIMD flows converges to a dynamic

stability. However, this proof depends on the assumptions of all flows receiving

synchronized congestion signals.

3.3 Discussion

In this chapter, we described a state-space model that combines differential equations and

state jumps. We used this model as a tool to study the dynamic behavior of systems in a

computer network. We made several assumptions in this model and here we present a

brief discussion of them and some miscellaneous issues of the model.

3.3.1 Linear versus Nonlinear Systems

In this work, the state-space model is mainly for nonlinear systems that are linear most of

the time but have additional state jumps driven by internal events.

Even with only state jumps, the behavior of these systems can be quite different from the

behavior of linear systems. Modeling techniques for linear systems do not fit these

systems because they lack the global property of linearity. The stability of a nonlinear

system in the neighborhood of an equilibrium point does not necessarily imply any global

properties8. There may indeed be many equilibriums, some stable and others not, in

which case there will be only a limited region of convergence (domain of attraction)

around any equilibrium point which is locally asymptotically stable. Furthermore, there

can be other nonlinear behavior, such as the persistent oscillations known as limit cycles,

which constitute a type of dynamic equilibrium, rather than the static equilibrium points

that are dominant in linear systems. One advantage of the state-space model is its

geometrical representation. It can help us visualize the internal relationship among state

variables, which is sometimes important for understanding the dynamics of the system,

especially for nonlinear systems.

3.3.2 Modeling Competing Traffic

This chapter discusses the state-space model in a closed system that has no competing

traffic from outside and thus has a zero input.

In general, competing traffic can be divided into responsive and unresponsive flows.

Responsive traffic adjusts its rate according to the congestion status of the bottleneck

link, and thus should be counted as one of the flows in the system. For unresponsive

traffic, the model can deal with competing traffic by modeling it as an input to the

system. Only one modification to the model, the aggregate rate r,(t), is required in order

to take such external competing traffic into account. With a non-zero input, the system

state is then determined by the differential equation, state jumps, and the external input.

In the following chapters, we show examples of extending the model with competing

traffic.

3.3.3 Assumptions about Congestion Signals

- - - - -

Here the global property of linearity refers to the fact that the additivity property and homogeneity are
globally applied in a linear system. Mathematically, let yl be the output of XI, and y2 be the output of x2.
Then the additivity property requires that yl+y2 is the output of xl+x2, and homogeneity requires that
c*yl is the output of c*xl, where c is a constant.

Early in this chapter we mentioned the complexity of generating congestion signals in the

state-space model. Because events are very important parts of the state-space model, and

congestion signals are the only events in the system, we believe it is worth discussing and

recapitulating various assumptions made about congestion signal events.

Traditionally congestion signals are classified as either synchronized or asynchronous,

and universal or non-universal. For synchronized congestion signals, all flows receive the

same congestion signal at the same time. For asynchronous congestion signals, all flows

receive congestion signals at different times. For universal congestion signals, signal is

delivered to all flows. For non-universal congestion signals, it is delivered to a specific

subset of the flows. Furthermore, there may be variation in the signal propagation time.

That is the delay from when the congestion event is generated to when a flow's controller

receives the signal. The signal propagation is captured in the backward delay (BD) in the

state-space model.

Synchronized congestion signals are simply universal congestion signals with a common

backward delay for all flows. Either non-universal congestion signals or different

backward delays could cause asynchronous congestion signals.

Research work on bandwidth sharing behaviors can be divided according to the

assumptions made about the congestion signals. The simulation complexity, as well as

how close the assumption is to reality, varies as the assumptions change.

The most widely used and also the simplest assumption for congestion signals is

synchronized back offs with a zero backward delay for all competing flows. It is used in

the early study by Chiu and Jain [CJ89] before the design of TCP, and by many recent

works on TCP-friendly congestion control protocols [BBOl, PKTK99, YLOl]. Early in

this chapter we used a similar assumption with a non-zero common backward delay for

all flows.

In the following chapters, we study the bandwidth sharing behavior with asynchronous

congestion signals. We first continue with the assumption of universal congestion signals,

but permit the backward delay to be different across flows. With different backward

delays, the congestion signals to all competing flows are no longer synchronized.

After a study of the impact of different backward delays, we extend the assumptions one

more step, so that each time a congestion happens some of the flows perceive the

congestion signal and some not. The congestion signal distribution is controlled by a

random process, which determines which flows get the signal based on their transient

rates at the bottleneck and the congestion period. This random congestion distribution is

becoming dominant as more and more random drop queues are deployed in the Internet.

Chapter 4

State-space Modeling Results and Analysis

In Chapter 3, we described the state-space model and studied its stability under the
assumption of universal congestion signals and common backward delays. In this
chapter, we extend the model to more complex cases, such as situations with non-
common backward delays, or with non-universal congestion signals.

Based on the results in this chapter, we argue the following points about the bandwidth

competition. These points are mostly about the fairness aspect among AIMD-based

flows:

i. Fairness is only important between flows whose lifetimes are long enough

compared to the stable limit cycle period.
. .
11. Fairness during the stable state is partly determined by the AIMD parameters of

all competing flows.

iii. AIMD flows that are TCP-friendly under the assumption of universal congestion

signals do not necessarily share bandwidth equally when congestion signals are

non-univeral, because fairness is related to the congestion signal distributions,

which in turn are related to the AIMD parameters.

iv. The inherent oscillations during the stable state cause an unavoidable buffering

delay for CBR applications.

4.1 Fairness

This section discusses the fairness implications (points i, ii, and iii) of the state-space

model. The section proceeds as follows: We first review TCP-style fairness in the state-

space mode1 with various feedback delays, and we then extend the study to the fairness

between flows with different AIMD parameters. Both of these studies assume universal

congestion signals. We relax this assumption at the end of this section by introducing

non-universally distributed congestion signals and repeat the study of the fairness among

AIMD flows.

4.1.1 TCP-style Fairness

In the current Internet paradigm, TCP ensures that flows share bandwidth equally under

universal congestion signals when they have the same RTT. However, they do not share

equally when they have different RTTs. We refer to this sharing behavior as TCP-style

fairness.

n
8 20 49 60 00 100 120 148

Rats o f A I I ID - I (FlHl08ns, BDsB)

Figure 4.1: Fairness between two TCPs with the Same RTT.
(Universal Congestion Signals, Constant and Equal Signal Propagation Delay)

We plot the system state trajectory to illustrate TCP-style fairness in the state-space

model. The system here has two competing flows and both of them use (1, ?h) as their

AIMD parameters. We first assume that every time the bottleneck queue overflows, each

flow perceives a congestion signal after some constant backward delay. In addition, in all

the following plot examples, we start with one flow (AIMD I) at a zero rate and the other

flow (AIMD 11) with the maximum bottleneck bandwidth. We plot the system state in the

state space until it achieves a stable position. Since the fairness aspect is the focus here,

we only plot a 2-D projection of the state-space trajectory with the rates of flows as the

two dimensions.

Equal RTTs

We start with the case of two flows having the same forward and backward delays. The

resulting trajectory in Figure 4.1 is essentially the same as the result presented in section

3.2.5.2: the system state converges to and oscillates on the fairness line.

Although the system state eventually enters a limit cycle, it is important to notice that the

system state takes a while to converge to the fairness line. For a flow with a lifetime that

is too short to reach the stable state, both its average and transient rates are not equal to

the fair share (the link capacity divided by the total number of flows). Therefore, it does

not make sense to discuss the fairness for short-lived flows, or to claim they share

bandwidth unfairly with other flows. We argue that the fairness issue is only interesting

for flows that live long enough to attain stability. Further discussion of the time-scales for

fairness is presented in Section 4.1.2.

Unequal RTTs

The above result is only for a system with two identical flows. We now extend it to flows

with different RTTs. When two flows in the target system have different RTTs, they could

have different forward delays (FD), backward delays (BD) or both. Here we only look at

the cases of (I) different FDs with the same BD, and (2) different BDs with the same FD.

Figure 4.2 and 4.3 show the trajectories of systems with universal congestion signals but

different FDs and BDs respectively. Concretely, in Figure 4.2, AIMD-I has a looms

delay, and AIMD-I1 has a 200ms FD. Both BDs of the two flows are set to 0. In Figure

4.3, A m - I has a looms BD and AIMD-I1 has a 200111s BD. Both FDs of the two flows

are set to 0. In both systems, the two AIMD flows use the same AIMD parameters

(1,112).

0
8 28 98 68 88 108 128 148

Rate of AIHD-I WtWI88ns. BD=&s)

Figure 4.2: Fairness between two TCPs with equal BD but different F?D.

0
8 28 48 68 88 190 120 148

Rate of AIHD-I (FE0. BD=l08ns)

Figure 4.3: Fairness between two TCPs with equal m> but different BD

swten state crl,rh, -2

The trajectories in Figure 4.29 and 4.3 indicate a few interesting points. First, they show

that the TCP-style fairness is actually unfair for AIMD flows with different RTTs. This

Point X on Figure 4.2 might surprise someone because the rate reduction seems to happen before the total
rate hits the capacity. In fact, the two state variables in all these figures are the transient rates at the senders,
not the input rates to the bottleneck. The latter are the former with forward delays, and the delays here are
different. Although the sum of the current rates at the senders is lower than the capacity, the sum of their
rates at the bottleneck input is higher than the capacity and causes the congestion.

behavior is well-known in practice. In both 4.2 and 4.3, the sharing ratio between flows is

inversely proportional to the square of RTT if congestion signals are universa~'~. Both

Figure 4.2 and 4.3 show that the system state converges to the 4: 1 ratio line.

Second, Figure 4.2 shows that, when the two flows have the same BD, they maintain the

same bandwidth share ratio throughout the stable state, even though they have different

RTTs due to the FD part. In contrast, Figure 4.3 shows that, when the two flows have

different BD, they maintain the same bandwidth share only over a portion of the stable

state. The ratio varies over a short time period during the stable state. Although both

flows perceive the same congestion signal, the signal no longer arrives at the two AIMD

controllers at the same time. Because of the asynchronous congestion signals, the

resulting limit cycle on the 2-D projection is divided into parts, which are around the 4:l

ratio line rather than on it. Because the system state jumps around the 4:l ratio line, the

transient sharing ratio between the two flows actually varies during the stable state. This

result also indicates the sensitivity of the bandwidth sharing ratio over different

timescales.

We conclude from these trajectories that AIMD flows with different RTTs share

bandwidth unfairly. A difference between backward delays causes more complex

stability behavior, and actually affects the transient sharing ratio during the stable state.

In Chapter 5, we verify these sharing results using packet-based simulations and real

world experiments.

4.1.2 Fairness of Flows with different AIMD Parameters

In this section, we extend the study in 4.1.1 with changes of AIMD parameters. We study

the bandwidth sharing between two competing AIMD flows (AIMD-I and AIMD-11) with

equal forward and backward delays but different AlMD parameters. AIMD-11's

'O Here, we have RTT=FD+QD+BD. Since QD is relatively small compared to the value we set to FD+BD,
we use FD+BD as the RTT to calculate the ratio between flows. This approximation causes the system state
to stabilize close to but not exactly on the 4: 1 ratio line, as shown in Figure 4.2.

parameters are always (1,112). We choose four sets of parameters for AIMD-I: (112, 112),

(1, 1/5), (113, 115), (2, 415). The first set is chosen so that flows have a common P
parameter with TCP but a different a . The second set is chosen so that flows have a

common a parameter with TCP but a different ,B . The last two sets have both a and P
parameters different to TCP but based on the relationship (2.3) derived in [FHPOO,

LSWO1, YLOO]. Here, we repeat (2.3) as (4.1) for easy reference.

We let AIMD-I start with zero rate and AIMD-I1 with all the bandwidth, and plot how the

system state converges to stability. The trajectories of the four systems are presented in 2-

D projections in Figure 4.4 (a), (b) and 4.5 (a), (b), respectively.

We can see from Figure 4.4 and 4.5" that AIMD parameters play an important role in

determining the fairness at a system's stable state.

In Figure 4.4 (a), the flow AIMD-I using a smaller a (112 in this example) than the

AIMD-11's (1 in this example) ends up using less bandwidth. Similarly, from Figure

4.4(b), we can see that a smaller P (115 in this example) causes a flow to get more

bandwidth than the normal AIMD(1,112).

Ideally, maintaining a relationship between a and P is a way to make an AIMD flow

share bandwidth equally with a TCP flow even though it has different parameters than

TCP. The TCP-friendly equation (4.1) is designed with this thought.

" Because of the forward and backward delay, each flow tends to overshoot its rate. In sum, they have a
higher transient rate than the bottleneck link capacity when the input rate at the bottleneck (the rate at
sender after a forward delay) is equal to the capacity. Thus, the centers of the stable limit cycles in both
figures are not on the capacity line but are actually higher than it. However, according to our
measurements, both the centers are still on the fairness line, and thus the average share ratio between two
flows over long time scales is equal.

Bystenr state irl,s-2) --
/ -

8 8
0 28 40 60 88 l B0 128 140 0 28 48 68 88 188 128 148

Rate o f RINO-I<1/2. l/2) Rate of RRR-I<I, 1/5>

Figure 4.4: Fairness between unfriendly flows.
(a) AMD(1/2,1/2) andAIMD(1, 1/2), (b) AIMD(1,1/5) andAIMD(1,1/2)

n

N \

lee
w "

0 8
8 28 48 60 88 108 120 140 0 28 48 68 88 100 120 148

Rate o f RII(O-I(l/3, 1/5) Rate o f RRRI-I(2, 4/11>

Figure 4.5: Fairness between TCP-friendly flows.
(a) AIMD(1/3,1/5) and AMD(1,1/2), (b) AIMD(2,4/5) and AIMD(1,1/2)

Figure 4.5 (a) and (b) show two trajectories of systems that use two different sets of TCP-

friendly parameters. Here the assumption about the congestion signal is still that it is

universal and that all flows perceive it with a common backward delay. We can see that

the resulting system states in both systems stabilize around the fairness line, although

along different limit cycles.

One interesting aspect of these two trajectories is that the stable states are almost always

not on the fairness line except at their centers. This aspect brings back an early issue

about the time-scale of fairness. Clearly, even after the system reaches the stable state,

the bandwidth share ratio is almost always not fair over small time scales. Only when

averaging the share ratio over a period longer than the period of the stable limit cycle,

will a TCP-friendly AIMD flow have an average share equal to a normal TCP flow.

With this result, we claim that fairness is only an interesting aspect for flows whose

lifetime is longer than the time taken for the system to stabilize and to traverse the stable

limit cycle at least once. Thus fairness among AIMD flows should be measured over a

time-scale larger than the period of the stable limit cycle T specified in (4.2). This time

value is usually many times a flow's RTT. Unfortunately, for most of today's web-traffic,

the data content can fit in one or two packets, and thus they last about 3 R n s (one for

SYN and SYN+ACK, one for ACK and Data, and one for FIN and FIN+ACK). HTTP

1.1 has started to use a persistent TCP connection to carry multiple short lived flows as

one flow. However, the majority of H'ITP flows are still short lived due to the small size

of the content transferred. This situation could change in the next few years due to the

incremental deployment of multimedia data on the Internet. Until then, fairness is not an

interesting aspect among these short-lived web flows.

The period of the limit cycle depends on all participating flows' behavior. We derived the

period of the stable limit cycle as in (4.2). This period is related to the parameters of all

competing flows. For the details of the derivation, please refer to the derivations of

(A1. 10) in the Appendix Al.

When all flows have the same a , P , MSS and RTT, the period can be simplified to (4.3).

This result indicates that systems with low feedback delay (BD+FD) traverse the stable

limit cycle fast. So does a system with large a and small P parameters. Low feedback

delay, large a parameters, and small P parameters, help to reduce the time-scale lower

limit for measuring fairness.

Remember that all the derivations so far are based on the assumption of universal

congestion signals. In reality, this assumption may not hold.

4.1.3 Fairness under Non-universal Congestion Signals

In this section, we study the case of non-universal congestion signals, in which not all

flows perceive the same congestion signal. Because of the relative complexity of non-

universal congestion signals, we first describe the process of congestion signal

distribution before discussing the model and results.

Congestion Signal Distribution

In real network systems, packet losses are used as congestion signals, but not all flows

get packet losses during a period of congestion. The distribution of congestion signals is

not universal among flows but has some randomness. The probability of a flow losing a

packet due to buffer overflow depends on the number of packets of that flow arriving at

the bottleneck buffer, which is proportional to the flow's sending rate. This behavior

covers the majority of real world systems. As advanced techniques such as RED and

ECN are deployed, a router process will select which flows will be sent congestion

signals to. A simple policy would be to select flows randomly. Again, in this case, the

probability of being selected would depend on rate.

Based on this relationship between loss probability and transmission rate, we add a

congestion signal distribution process to introduce some randomness into the state-space

model. Concretely, we assume that the packet loss events are independent, and the chance

of a flow getting a congestion signal is proportional to the amount of data sent by it

during the period of congestion12. To simplify the discussion, we also assume that all

flows use the same packet size (MSS).

Our distribution process includes two subsystems, the loss trigger subsystem that

determines when a packet loss happens, and the signal distribution subsystem that

determines to which flow the lost packet is attributed. The two subsystems include

several functions whose return values are all set to zero at the beginning of a congestion.

In the following discussion, we assume that a congestion starts at time to, and describe all

functions and their meaning one by one.

We first look at the loss trigger subsystem, which uses the loss trigger function L:

in which to is the start time of a congestion period, T is the time that a congestion has

lasted so far, R is the bottleneck link capacity, ri(t-FDi) is the input rate at the bottleneck

link from flow i at time t, and FDi is the flow i's forward delay.

l 2 In real networks, the packet loss events are not strictly independent [P99], and flows could use different
packet sizes. To verify the result in this section, we conduct real world experiments and present them in
Chapter 5. Also, in real networks, a flow's packet loss rate is not exactly proportional to its amount of data
transmitted during the congestion when the bottleneck uses tail-drop queue management. However, many
recently proposed active queue management techniques, such as RED [FJ93] and BLUE [FKSS99],
actually intend to enforce that congestion distribution be proportional to the data rate.

The value of the loss trigger function L is actually the amount13 of packets lost from the

bottleneck since the congestion period started. The factor [x r, (t - FD,) - Rut is rT
the total amount of data that has been dropped during the period T. Divided by the packet

size MSS, it gives us the amount of packets that have been dropped during that period.

The loss trigger function L determines when a packet loss happens. A packet is lost at

time to, which is the time the congestion started. After that, every time L increases by one

packet, it indicates that a new packet is lost.

When the loss trigger function L indicates that a new packet loss happens, the signal

distribution subsystem chooses one flow and attributes the packet loss to it. The

distribution is based on a per flow probability function Wi(t+T), which is defined as

follows:

Wj(t) is the weight used to calculate the chance for flow i to receive a congestion signal.

The numerator I; (t - FDi)dt is the total amount of data that has arrived from flow i $+'
N

at the bottleneck during period T. The denominator ~ [r ' ~ r,(t - FDj)dt] is the total
j=l '0

amount of data that has arrived at this bottleneck during the period T. The ratio of these

two factors is the portion of the total traffic generated by flow i. We assume the chance of

a flow getting a packet loss is proportional to the amount of data the flow sent during the

congestion period. Therefore, the chance of a packet loss being allocated to flow i is

proportional to the value of Wi(t+T).

The loss distribution chooses one flow to experience a packet loss every time the loss

trigger function L indicates a lost packet. The loss distribution process uses a uniform

l 3 Notice here, the amount is not necessarily an integer but can include a fraction of one packet.

random generator to generate random values between 0 and 1. The region [0: 11 is divided

into N contiguous parts. At time t, a flow i would get a W, (t) size region between [0: I]. If

the value generated by the uniform random process happens to be in flow i's region, then

flow i loses a packet.

One thing to remember is that the above process just determines the packet loss

distribution. The congestion event trigger in the AIMD controller is still under the control

of (3.8) described in Chapter 3, which takes RTT into account and limits the congestion

signal to at most one per RTT.

System Setup

The congestion distribution process is the only component changed compared to the state

space model presented in Chapter 3. After describing the extended congestion

distribution process above, now we are ready to describe our target system.

The goal of this study is to check the interaction between the AIMD controller's

behaviors and the congestion signal distributions. We first choose a simple setup with

only two AIMD flows in the system, and study the fairness between the two flows under

non-universal congestion signals. Note two identical flows get the same distribution of

congestion signals because they are symmetric with respect to the congestion distribution

process. Therefore the interesting case is when the two flows have different AIMD

parameters. We start with the case of two different AIMD flows, and at the end of this

section, we extend the study to the case with more than two AIMD flows.

We choose a setup such that all flows have the same RTT, and to simplify (4.4) and (4.3,

we set the forward delays (FD) to be zero so that the backward delays (BD) are the same

for both flows and are the dominant part of RTT.

4.1.3.1 Fairness between two AIMD flows

We start with two AIMD flows: AIMD-I (1,112) and AIMD-I1 (113, 115), and then we

deal with a wider variety of AIMD flows at the end.

Because of the randomness introduced in the congestion distribution process, the state-

space trajectory no longer exhibits a clear limit cycle. We plot a 2-D projection of the

system trajectory, with the rate of AIMD-I as one dimension, and the rate of AIMD-II as

the other dimension. The trajectory is around the fair share line. However, it's difficult to

tell from the figure whether the average sharing ratio between these two dimensions is

equal to 1:l or not.

350 1 state (rl, 1-21 - -1

0 50 1BB 158 288 250 380 358

Rate (rl) of RIM)-I <1.1/2)

Figure 4.6: State-Space trajectory without a clear limit cycle.
two different AIMD flows, non-universal congestion signals

From the trajectory in Figure 4.6 and earlier results, we can see that bandwidth is not

evenly shared over short time scales. However, it is unclear whether these flows share

bandwidth evenly over long time scales either.

Because of the lack of a visible limit cycle, we are left with two approaches to study the

fairness among these flows. The first option is to extend the notion of stable limit cycle to

include stochastic stability. The second option is to measure the sharing ratio among

competing flows empirically. We are still working on applying stochastic control theory

to the stability of bandwidth competitions, therefore we temporarily choose the second

option.

As mentioned before, we care only about the fairness at stability. The main difficulty

with the empirical approach is that it is not possible to define exactly what constitutes the

stable state or when it starts. The process of removing the transient part and letting us

focus only on the steady state is called transient removal. The way we perform transient

removal is to perform long running experiments and truncate the early part of each

experiment.

In each experiment using our Simulink model, we set the simulation time to 40 minutes.

To measure the average throughput, we truncate the first half of the experiment, and only

average the throughput of each flow in the second 20 minutes. Although we have no

proof that the system reaches stability within 20 minutes, our experiment observations

indicate that 20 minutes is long enough for the flows to adjust to a stable state if the

system has stability when the RTT of each flow is only set to 50msec.

The goal of measuring the average throughput is to tell whether the two flows have the

same throughput. However, the signal distribution process involves a random generator,

and it has an infinite number of seeds. It is not possible to get a perfect estimation of the

real average throughput over all seeds. The best we can do is repeat experiments multiple

times and get a probabilistic bound for the real average throughput over all seeds. A

bound around the measured average is called a confidence interval, which indicates the

range of the real average. It is a probabilistic bound because the size of the confidence

interval relates to the level of confidence we choose, and the confidence level is usually

represented by a percentage value. For example, a confidence interval of a 90%

confidence indicates that the probability of the real average fit in the confidence interval

is 90%. The size of the confidence interval also relates to the number of experiments.

Increasing the number of experiments could reduce the size of the confidence interval. If

the two confidence intervals of the throughput of the two flows are apart and have no

overlap, it assures the two flows have different throughputs with the given confidence

level.

Fortunately, it is not necessary to repeat too many samples to get a high confidence

probability. In this example, we repeat each study 10 times with different generator seeds,

and get a 99% confidence14 that the average rate of the two flows are different.

Figure 4.7 shows the average throughput measured in each experiment, and the

confidence interval for the average throughput of each flow with 99% confidence. The

result shows that the two confidence intervals do not overlap, and thus we believe these

two flows have different average throughputs in average. This is the case in spite of the

choice of a and p according to Equation (2.3) for TCP-friendly flows.

Flous

Figure 4.7: Average Throughput of two different AIMD flows
Non-Universal Congestion Signals

4.1.3.2 Fairness between multiple different AIMD flows

In addition to the experiments with two flows, we perform the following experiments

with 6 flows just to check the effect on a wide range of AIMD parameters. All 6 flows

have different AIMD parameters: (113, 115) (213,411 I), (1,112), (413, 8/13), (513,517), and

l4 The calculation of confidence interval is available in the Chapter 13 of [J91].

(2,415). We number them from flow-1 to flow-6. All the AIMD parameters of these

flows are TCP-friendly according to Equation (2.3).

-
0 50 100 150 200 250 380 358

figeregate Rate of Flou-1-5

Figure 4.8: State-Space Trajectory without a Clear Limit Cycle
Six different AIMD Flows, Non-universal Congestion Signals

As in section 3.2.5.3, we plot a 2-D projection of the system trajectory shown in Figure

4.8, with the aggregate rate of the flow-1 to flow-5 as one dimension, and the rate of the

flow-6 as the other dimension. The trajectory is around the 5:l ratio line. However, it's

hard to tell from the figure whether the average sharing ratio between these two

dimensions is equal to 5: 1 or not.

Figure 4.9: Average Throughput versus AIMD Parameters

Since the signal distribution process involves a random number generator, we repeat each

study 10 times with different generator seeds. We plot both the average rate of each flow

in each run, and also each flow's average rate over multiple runs, in Figure 4.9.

The result shown in Figure 4.9 contradicts our expectation of TCP-friendliness from

equation (2.3). We know from section 4.1.2 that flows with different AIMD parameters

do not get equal bandwidth share over short time scales, but do share bandwidth evenly

over long time scales. However, this claim is under the assumption of universal

congestion signals. In the result presented in Figures 4.7 and 4.9, flows with TCP-

friendly parameters do not get equal bandwidth share. In particular, flows with larger a

get more bandwidth in this example.

According to recent literature [FHPOO, YLOO], building congestion control according to

the equation (2.3) falls into a category of TCP-friendly congestion control. Now our

study shows that TCP-friendly flows are not friendly to each other in the presence of a

non-universal congestion distribution process. With more and more deployment of

random drop queue management, we believe non-universal congestion distribution will

become dominant. Thus we believe the non-universal congestion distribution process

used in our simulations models reality more accurately than a universal congestion

distribution process.

We believe the contradiction comes from an unrealistic assumption in the derivation of

TCP-friendliness. According to early research on TCP throughput [PFTK98] two flows

should get about equal throughput if they have the same average packet loss rate.

The derivation of the TCP-friendly relationship (2.3) is based on the assumption that the

congestion signal distribution is independent of the behavior of the congestion control. In

reality, this assumption is not true. To explain why the contradiction happens, we plot the

congestion perceptions of each flow in the earlier experiments. Here we use two metrics,

the packet loss probability of each flow, and the total amount of packet losses over the

steady state.

average-loss-rate -
f -- *

(a)

L C

65

congestion signals - *
L -

f -
v r *

(b) -

Parmter a o f flItID(a,b), uhere +%/(2-b) Paranter a o f mD(a.b), i n uhich b=2d(3+a)

Figure 4.10: Congestion Signals versus AIMD Parameters
(a) Packet loss probability, (b) Total congestion signals over 20 minutes.

Figure 4,10(a) shows the packet loss probability versus the AIMD parameters. As we

expected, the perceived loss probability is not the same for all flows. Flows with a small

a have high per packet loss rates and thus have lower throughputs (Figure 4.9) in this

example. Figure 4.10(b) shows the total number of congestion signals (packet losses) for

every flow. Although AIMD flows with larger a have lower per packet loss probability,

they have higher throughput. As a result, the AIMD flows with larger alpha end up

getting a larger total number of congestion signals. We conclude that the difference in the

AIMD parameters makes a difference to their congestion signal perceptions, which in

turn affects their average throughput.

4.1.4 Discussion

We conclude the study in this section with the claim that AIMD-based TCP-friendly

flows do not necessarily share bandwidth evenly with each other even when they have the

same RTT and MSS. Thus they are not friendly to each other. There are several follow up

questions related to this result.

The first question is, why they perceive congestion signals differently? The answer is that

the congestion signal is distributed based on the flows' transient behavior. Details of this

reasoning deserve some further study and is part of our future work.

The second follow up question is: if TCP-friendly AIMD flows do not share bandwidth

evenly, how can we predict their bandwidth share ratio? If we can predict the ratio, can

we adjust AIMD parameters to achieve a desired ratio?

The experimental results in this section are based on one particular setup. The sharing

ratio could be changed when the mixing ratio of AIMD flows and TCP flows changes.

However, this study is not to predict the exact ratio of each flow, but to expose the

unfairness between TCP-friendly AIMD flows under the exact same environment.

Furthermore, adjusting any flow's AIMD parameters could potentially change the

occurrence frequency of congestion overall. We don't have a way to predict the precise

rate share ratio, which is part of our future work. In the later chapters, we start to study

this aspect, and try to make the AIMD parameters tunable to applications so that we can

empirically adjust the parameters to check the sharing behavior among flows. That work

is still in a very preliminary stage, and a thorough study of predicting the bandwidth

sharing dynamics deserves considerable future work.

The studies presented in this section only address a small set of the fairness related

problems using a simple model. There are many more issues that are not covered by these

studies. We briefly address two additional problems in this section.

First, all study is about TCP-style fairness, but TCP-style of fairness is unfair. The TCP-

style fairness is biased to flows with a short round-trip-time, whereas some other

scenarios might prefer fairness regardless of RTTs. Thus, we briefly discuss other

fairness paradigms in this section.

Second, all study is based on our fluid-based model that does not have a notion of

packets, and hence the granularity of measuring any state variable can be arbitrarily

small. In real networks, this is simply not true. Data are sent in packets. The size of

packets could be a factor that impacts the fairness among flows. In subsection 4.1.4.2, we

discuss how packet size might affect our model.

4.1.4.1 Uniform Fairness

Here we make the case that a fairness model other than TCP-style fairness is required.

One example scenario is a distributed first-man-shoot game that wants to give players

equal advantage no matter what type of network connections they are using, or how far

away they are from the server. We call the notion of even bandwidth sharing regardless

of R?T, uniform fairness.

When assuming universal congestion signals, we can actually tune the fairness of

bandwidth sharing to achieve equal bandwidth allocation regardless of RTT by tuning the

AIMD parameters. We extend TCP's throughput equation in (2.1) to a general case for an

AIMD-based algorithm [LSWOI]:

a (2 - p) * MSS

2 P RV*&

Thus, if we adjust all competing flows' a parameters proportionally to the square of

RTT, and leavep the same as the default ?h, then they can achieve equal bandwidth

sharing regardless of their RTTs.

In section 4.1.1, we have shown that a flow (AIMD-I) with looms RTT gets four times

the throughput of a flow (AIMD-11) with 200ms. When both flows use normal

AIMD(1,112), the result is shown in Figure 4.1 1. In Figure 4.12, AIMD-I1 uses (4,112)

instead of (1,112) as its AIMD parameters. Both figures are produced under the

assumption of universal congestion signals.

systen state (rl .r2> -
148 /

0 28 48 68 88 188 128 149

Rate o f Rim-I CFO=lE0ns, BD=@ws)

Figure 4.1 1 : Original TCP-style Fairness

68

systen state (r l , r2> -

B
8 29 48 69 88 100 120 149

Rate o f ilI1*1-1(1,1/2> (m=leem, ES=ens)

Figure 4.12: Uniform Fairness

Figure 4.1 1 shows the case where the bandwidth sharing result stabilizes around a point

that gives a higher rate for the flow with a small RTT. Figure 4.12 shows the bandwidth

sharing result from the same two flows in Figure 4.1 1 except the one with the longer RTT

uses a larger a . The resulting trajectory stabilizes along the fairness line regardless of

the RTT differences, and thus uniform fairness is achieved.

The derivation of (4.6) and the above experiments are based on the assumption of

universal congestion signals. Under this assumption, we conclude that uniform fairness

can be achieved by letting all flows adjust their a to conform to the following simple

rule:

in which C is an arbitrary positive constant, as long as all the flows use the same C.

However, the assumption of uniform congestion signals is not accurate, as we have

shown in 4.1.3. We will study the accuracy of (4.7) to achieve uniform fairness and how

to compensate it through reaI world experiments in later chapters. The compensation

could be in the form of adjusting the relationship between a and RTT, and could also be

some adjustment to the p parameter.

4.1.4.2 Quantization Effect

The state-space model for AIMD flows is fluid based, and it assumes a flow can send at

any available share of the bandwidth. However, TCP and many TCP-friendly congestion

control flows do not have sophisticated rate control. They use round-trip-time as the time

period over which to control their transmission rates, and they cannot send fractional

packets in one round-trip-time. When the bandwidth share for each flow cannot map to

an exact number of packets per round-trip-time, some flows round-up to more bandwidth

than the ideal share and some flows get less. We call this round-off behavior a

quantization efect due to packet sizes.

Valid State Space with a Constant Packet Size

Valfd State PointiE *

Buffering Delay *
9 P

Figure 4.13: A Modified State-space with Only Valid Points

Regarding the state space, this quantization effect limits the valid state spaces to some

discrete points rather than the whole non-negative space used in our early work. A new

state space for the model is illustrated in Figure 4.13. The system trajectory is no longer

an arbitrary trace in the space but a series of transitions between these discrete points.

As one can imagine, the distance between neighboring points is related to the packet size.

The state space for a system with a small packet size exhibits denser valid points than one

with large packet size. As packet size gets smaller, the valid state space gets closer to the

space for the fluid-based model.

To further study the effect of this quantization effect, either experiments in a real network

or some extension to the state-space model are required. We plan to do the latter first in

our future work.

4.2 Buffering requirement for CBR interactive applications

All the work so far shows that there are oscillations of the system state in a bandwidth

competition system. This inherent oscillation during the stable state causes an

unavoidable buffering delay for applications that use a constant bit rate (CBR).

4.2.1 Buffering and Adaptations

To study the impact of the dynamics of congestion control on applications, we have to

make some assumptions about the application behaviors, because applications could have

different preferences regarding the behavior of congestion control. Hence, this section

presents the structure of our target application and how adaptation and buffering are used

in this application. It then describes the relationships between various adaptation policies

and their minimal buffering requirements.

4.2.1.1 Application Structure

Figure 4.14 describes our target application's structure15. It includes a data source (e.g., a

video camera) and a data sink (e.g., a display) connected through the Internet. The sender

side generates data on the fly and sends data to a congestion control protocol through a

buffer. Data is transmitted over the Internet under the limit of a congestion control

-- -

l 5 We assume the application has only one-way traffic. A typical interactive application usually involves
two-way traffic, which can be divided to two applications with one-way traffic but with tight dependency
on each other.

protocol and is put into a receiver side buffer. The data sink fetches data from the buffer

and presents it to users.

""'s Network Transmission Rate ", Application Playback Rate

Figure 4.14: A QoS-Adaptive Application over the Internet

The transmission rate over the Internet oscillates over time. To achieve a stable playback

quality at the data sink, a receiver-side buffering policy and a sender-side adaptation

policy are used in this structure. We assume that a constant playback quality of the

application maps to a constant bit rate16. Thus, the users' preference of constant playback

quality maps to the preference of a constant draining rate from the receiver-side buffer.

The receiver delays the start of playback at the data sink side until enough data has been

accumulated in the receiver-side buffer, so that the sink can keep playing even when the

network transmission rate drops below the playback rate. As long as the network

transmission rate can catch up before the receiver-side buffer reaches empty, the user will

not perceive any network rate oscillation. Once the transmission rate is higher than the

playback rate the buffer will start to fill again.

Determining what data to send and how to fill the buffer is complex. Applications require

smart buffer filling strategies so that all buffered data are useful to compensate for

network rate drops in the future. Since buffer management is not the focus of our work,

we simply assume that the application can fully utilize all the buffered data. Studies of

l6 In reality, a constant quality could map to a variable bit rate [KW99], which will be more complex but
will not invalidate the buffering delay derivation in this work.

smart buffer management approaches can be found in recent research work [FLKP99,

FR99, KWLGO 1, RHE99bl.

To reduce the buffering requirements, the target application makes QoS adaptations to

adjust sending rate according to the network transmission rate. We assume that the

adaptation is fine-grain layer-based, and the application can adapt its rate closely to the

network transmission rate. Several research works have shown ways of making fine-

grained rate adaptations to the available bandwidth. For example, Jacobs et al. [.TI3961

adapt encoding parameters according to the available bandwidth; Krasic et al. [KW99]

propose a priority-based encoding mechanism and make a scalable rate adjustment for

video streams; and more recently, Byers et al. apply a fine-grained rate adaptation

[BLMO 11 to multicast environments.

4.2.1.2 Ideal Adaptation

QoS adaptations are used to compensate for long-term rate variations, and buffering is

used to compensate for short-term rate variations. If the congestion control can sustain a

constant long-term average, no QoS adaptation is required, and the buffering delay is for

short-term variations only. If the congestion control varies the long-term rate, the QoS

adaptation compensates for it.

Ideally, QoS adaptation can always find the right long-term average rate of the

congestion control. We call this adaptation policy ideal adaptation. According to our

early study, the steady state of an AIMD congestion control algorithm is a limit cycle in

the state space. This limit cycle in the state space maps to a saw-tooth shape rate

behavior in the time domain. The QoS adaptation is ideal when we assume it knows

ahead of time the rate of one saw-tooth in the future. Since it knows one saw-tooth in the

future, it can choose the average of the next saw-tooth as its sending rate. Therefore it

achieves a stable quality (in the next saw-tooth period) and maximizes the throughput.

The buffering requirement for this ideal adaptation policy is the amount of data buffering

required to smooth one saw-tooth of the network transmission rate.

Discussing the ideal QoS approach is useful as a benchmark comparison for other

approaches, even though it is not totally realistic to implement this ideal QoS adaptation.

In reality, there are many QoS adaptation approaches that are close to the ideal

adaptation. The discussion of these QoS adaptation approaches is out of the scope of this

thesis. Readers can check the QoS adaptation work [KW99, LKWi-011 for details of

other adaptation policies.

4.2.1.3 Cost for the Ideal Adaptation

This ideal adaptation might not be a preferred adaptation policy by applications.

However, as an extreme case of adaptations, it exposes the minimal buffering

requirement for maximizing the throughput.

For other LLrealistic" policies, if they push the application rate to the upper bound of the

network transmission rate achievable by congestion control protocols, they require at

least the same amount of buffering as this ideal adaptation. This buffering cost is caused

by the mechanisms that smooth out the inherent rate oscillation in the congestion control

protocols. This buffering is required because the application does not want to oscillate its

quality with the rate of congestion control (such as the rate variations within one saw-

tooth). This buffering delay could be significant depending on the application's sending

rate and round-trip-time. At some point, this buffering delay can become too high for

interactive applications. We give a simple derivation for this inherent buffering

requirement in Section 4.2.2.

4.2.2 Buffering Requirement for AIMD Congestion Control

In this section, we derive the minimal buffer requirement caused by the rate oscillation

during the steady state of an AIMD-based congestion control protocol.

4.2.2.1 Minimal Buffering Requirement

To determine the buffering requirement for smoothing the rate oscillations, we need to

describe how the rate of an AIMD-based protocol evolves along time. Figure 4.15 shows

an AIMD flow with a playback rate R. For an AIMD flow, the achievable rate in a RTT

is its window size divided by the RTT. The window size evolution of an AIMD flow is

controlled by the algorithm stated in (2.2): if the window size before a back off is W, the

achievable network transmission rate for this flow periodically varies from (1-P)*W I

RTT to WIRTT.

Rate - Network Transmission Rate

---Playback Rate
W1R'r-r

(I-P) wmm
I b Time

tl tz t,
Figure 4.15: Buffering Requirement of an AIMD-based Congestion Control

With an ideal adaptation, the application playback rate is the average of the achievable

transmission rate:

W W
R = (2--p-)I2

RTT RTT

The application fetches data from the receiver-side buffer at rate R, but the network

delivers data to the buffer at the average rate of the saw-tooth shape during its steady

limit cycle. Therefore, the data buffering required to smooth the rate oscillations in one

saw-tooth is equal to the area of triangle Aabc in Figure 4.15, which is:

1
Aabc = - P x (-) x R x RTT (4.9).

W S S 2 - p

The details of the derivation are in Appendix A.2.

From this simple derivation, we can see that the buffering requirement is related to the

selection of AIMD parameters (a$). More importantly, this buffering requirement is in

proportion to the square of rate and RTT, which is significant for high rate and long RTT

applications. This result indicates that interactive applications with tight latency

constraints might not want to fully utilize all the available bandwidth in order to avoid

this buffering cost. This result also indicates that adjusting the AIMD parameters can

change the buffering delay. Early study in this chapter shows that adjusting AIMD

parameters can change the bandwidth share ratio between flows. From (4.9), we can see

that the adjustment also has an impact on the buffering delay.

With the amount of buffering indicated by (4.9), an application will have a stable

playback quality within one saw-tooth period. If the bandwidth share is very stable and

saw-tooth shape is evenly repeated along time, then the application keeps a stable quality

all the time and utilizes its entire bandwidth share.

Rate

Figure 4.16: Buffering Requirement for Two Closely-spaced Back-offs

A - Network Transmission Rate

However, in the Internet, even a relatively stable bandwidth share would not produce a

regularly repeating saw-tooth shape. In the state-space, that means the system stabilizes

on a larger time scale than a single limit cycle. In the time domain, the saw-tooth back-

offs come closely together for a while, and then spread sparsely for another while. With

the ideal adaptation, the application changes its playback quality at every saw-tooth

period. If the application prefers a more stable playback quality, it should buffer more

data for the rate oscillations caused by closely spaced back-offs, at least to the stability

timescale.

w 1

R

-

(1-P)' w m n

Figure 4.16 shows an example of two closely spaced back-offs. If an application wants to

keep a stable playback quality when two back-offs happen closely spaced, the buffering

requirement would be at most the area of triangle Adef, which is

.................Ap v- , ---Playback Rate

-.-.-. Data Buffering - -
....................... -

e
Time

Similar derivations can be applied to the buffering requirement that is used to smooth

more than 2 closely spaced back-offs.

4.2.2.2 Buffering Requirement for AIMD-based TCP-friendly Flows

Early work [FHPOO, YLOO] has studied how to make AIMD-based congestion control

friendly to other TCP traffic in the Internet. A simplified result from the TCP-friendliness

study can be expressed as a constraint on its a and P parameters as shown in (2.3). With

this a and p relationship, we can refine the buffering requirement to smooth the inherent

oscillation of AIMD-based TCP-friendly congestion control as:

a
Aabc = - XR'XRTT'

18MSS

and the buffering requirement to smooth out two closely spaced backing offs as:

9-a a
Adef = (3 - 2 ~) ' Aabc = (-) ' x - x R' x R Z ~ - ~ (4.12).

3+a 18MSS

Chapter 5

Real World Experiments

The previous two chapters have addressed the dynamic behaviors of bandwidth sharing

through a state-space model. While the modeling is important for understanding the

impacts of AIMD parameters in theory, real world experiments are important for

verifying the modeling result. As discussed in Chapter 3, the state-space modeling

approach is based on a few simplifying assumptions, such as viewing flows as continuous

fluids and assuming independent packet losses. In the real Internet, flows are delivered in

terms of packets, and today, many routers are still using tail-drop queues, with which

packet losses show strong inter-dependences.

This chapter describes some experiments with competing flows in a real network

environment. The goal of the real-world experiments is to verify the following aspects of

the bandwidth sharing behaviors: (1) the timescale of fairness among AIMD flows, (2)

the unfairness between TCP-friendly AIMD congestion control protocols, and (3) the

possibility of adjusting AIMD parameters to achieve different share ratios other than

TCP-style fairness.

To conduct real world experiments of AIMD flows, we need to generate flows that use

various AIMD parameters. Unfortunately, no available commercial operating systems

support a general AIMD congestion control protocol other than TCP's AIMD(1,1/2).

Thus we have to build a general AIMD congestion control protocol ourselves. We call it

adaptive AZMD congestion control.

5.1 Adaptive AIMD Congestion Control

This section describes the adaptive AIMD congestion control protocol. We first address

the motivation for building such a protocol, then we briefly describe the TCP congestion

control implementation in the Linux kernel, and how it can be extended to produce an

adaptive AIMD congestion control.

5.1.1 Motivation

In addition to the motivation of producing AIMD traffic in a real network environment,

the adaptive AIMD congestion control protocol provides a more general and flexible

congestion control framework.

Recently, researchers proposed several TCP-friendly congestion control protocols

[FHPJOO, TCPF, YLOO]. They are claimed to be friendly to TCP based on having the

same average throughput over long timescales. Compared to the transmission rate of

TCP's additive-increase multiplicative-decrease (AIMD) algorithm, these newly

proposed protocols tend to result in a smoother transmission rate, which is good for

delay-sensitive applications, such as video conferencing.

The penalty for having a smoother transmission rate than TCP and competing fairly for

bandwidth is that these TCP-friendly congestion control protocols respond slower than

TCP to bandwidth variations. This limitation comes from the fact that congestion control

protocols use data transmissions to detect congestion. In order to quickly probe the spare

capacity, the congestion control has to adjust its rate quickly, which leads to a less

smooth rate. If it adjusts its rate less frequently in order to preserve a smooth rate, it

probes the spare capacity slowly. TCP-friendly protocols make this smoothness

improvement by giving up some responsiveness.

Indeed, the tradeoff between responsiveness and smoothness is controllable. TCP-

friendly congestion control protocols can have quite different dynarnical behaviors

[BBFSOI, LSWO1, YLOO] by tuning their parameters, such as the a and P parameters of

an AIMD algorithm. For example, a TCP-friendly AIMD algorithm with a smaller a

parameter tends to have a lower responsiveness but a smoother rate than an algorithm

with a larger a parameter.

Although the tradeoff is controllable, the current paradigm for building a TCP-friendly

congestion control protocol is to choose an algorithm with a fixed set of parameters. This

approach is referred to here as a static protocol. Using this approach, all applications, at

least in the same category, must use the same algorithm. However, a static protocol

cannot satisfy the preferences of all applications. A more flexible congestion control

protocol is preferred in many scenarios.

We build an adaptive AIMD congestion control protocol in the Linux kernel that exposes

the AIMD parameters to user programs through the UNIX socket API. The flexibility of

the adaptive AIMD congestion control protocol is shown via experiments presented later

in this chapter.

5.1.2 Implementation of Linux Adaptive AIMD

Although TCP has a common protocol specification [APS99, MMFR961, its

implementations and their performance vary widely due to TCP's complexity [PAD+99].

Most of the TCP implementations in Unix operating systems are derived from the BSD

TCP code, which is very well documented in [WS95]. Our implementation of adaptive

AIMD congestion control is based on the Linux TCP, which is implemented

independently from the BSD TCP code. Unfortunately, there is no detailed

documentation for the Linux TCP implementation. Therefore, we give a brief overview

of the implementation of Linux TCP as well as our Adaptive AIMD congestion control

protocol based on it17.

" The Linux kernel we used is Linux 2.4.16. The TCP implementation of 2.4.x is significantly different
from early Linux TCP implementations in 1.2.x, 2.0.x, and 2.2.x. A Linux 2.4.x kernel has a New Reno
style of TCP with SACK option implemented.

5.1.2.1 Kernel Implementation

The Linux TCP implementation uses a snd-cwnd variable as the congestion window size

for each TCP flow. The variable snd-cwnd is in units of packets, and TCP achieves its

congestion control by limiting the value of snd-cwnd. The Linux TCP is event based, and

snd-cwnd is updated upon either an acknowledgement (ACK) arrival event or a timeout

event. Two algorithms are involved in the snd-cwnd updates. The TCP AIMD algorithm

is related to the ACK arrival event, and the TCP Slowstart algorithm is triggered by the

timeout event.

TCP potentially adjusts the snd-cwnd value on the arrival of every ACK, either

increasing or decreasing it. During the non-congestion period, Linux TCP increases the

snd-cwnd by one packet after receiving every CWND number of ACKs, as indicated by

the tcp-cong-avoid function shown in Figure 5.1.

1702 static -inline- void tcp-cong_avoid(struct tcp-opt *tp)
1703 {
1704 if (tp->snd-cwnd <= tp->snd-ssthresh) (

/" Slow Start Ini-lease clbnd bk 1 for evzr! ACK "/
1705 if (tp->snd-cwnd < tp->snd-cwnd-clamp)
1706 tp->snd-cwnd++;
1707) else {

/" Add~tit e irvrrasc. CM rld = cw nd + licwnd "1
1708 if (tp->snd-cwnd-cnt >= tp->snd-cwnd) {
1709 if (tp->snd-cwnd < tp->snd-cwnd-clamp)
17 10 tp->snd-cwnd++;
1711 tp->snd-cwnd-cnt=O;
1712) else
1713 tp->snd-cwnd-cnt++;
1714)

Figure 5.1 Slow Start and Additive Increase (from linux/net/ipv4/tcp- input.^)

When a congestion signal is detected, by either an ECN or a triple-duplicate-ACK, the

Linux TCP makes the multiplicative decrease in the snd-cwnd in two steps. The first step

occurs upon the detection of a congestion signal, and involves setting the variable

snd-ssthresh to be half of the current snd-cwnd value. The second step happens when the

Linux TCP detects the end of congestion, by either the end of congestion notification

marks (ECN) or the advance of acknowledged sequences (in the triple-duplicate-ACK

case). In both cases, the Linux TCP calls the function tcp-complete-cwr that sets

snd-cwnd to snd-ssthresh. The code segments of the two steps are shown in Figure 5.2.

1004 void tcp-enter-loss(struct sock *sk, lnt how)

/ -- ihter I,c)\\ state (by 1:ClV 01 dupllcatcd A d \)
'- resct \\tl~re\h to h:ilf
*/

1012 if (tp->ca-state <= TCP-CA-Disorder 11
101 3 tp->snd-una == tp->high-seq 1)
1014 (tp->ca-state == TCP-CA-Loss && !tp->retransmits)) {
1015 tp->prior-ssthresh = tcp-current-ssthresh(tp);
1016 tp->snd-ssthresh = tcp-recalc-ssthresh(tp);
1017 }
1018

.. ..

1 114 static inline u 3 2 tcp~recalc~ssthresh(struct tcp-opt *tp)
1115 {
1116 return max(tp->snd-cwnd >> lU, 2U);
1117
1118)

... .

I" Chdnpe i+indo\t, w e to the \sthresh \;due. \~hrc,h I \

' half 01 the o n p ~ n d l T\t.~ndov 4 1 ~ e
: /

1519 static -inline- void tcp~complete~cwr(struct tcp-opt *tp)
1520 {
1521 tp->snd-cwnd = min(tp->snd-cwnd, tp->snd-ssthresh);
1523 tp->snd-cwnd-stamp = tcp-time-stamp;
1524)

Figure 5.2 Multiplicative Decrease (from linux/net/ipv4/tcpjnput.c)

Once we understand the TCP implementation in the Linux kernel, the extension to

produce adaptive AIMD congestion control is straightforward. Instead of increasing the

snd-cwnd value by one packet for a window advance, it is increased by a packets1s.

Instead of reducing the snd-cwnd by half, it reduces it by P times.

In the implementation of adaptive AIMD, TCP SlowStart and timeout are unchanged. At

the transition between SlowStart and AIMD, the congestion window size is still cut by

half regardless of what P value users set. Preserving this action unchanged regardless of

the AIMD parameters guarantees that all adaptive AIMD flows have the same SlowStart

behavior. A more flexible adaptive congestion control approach could include adjusting

the SlowStart expanding ratio, or using MIMD with a small expanding ratio at the steady

state as in SubTCP [KSS97].

5.1.2.2 Application Programming Interface

To expose the a and p parameters to user level programs, we add two options: TCP

AIMRALPHA and AIMDBETA to the Unix socket API. User programs can adjust the

congestion control parameters through the socket option system calls. The APIs of these

two socket options are shown in Figure 5.3.

int getsockopt (int sock,
int level, I* SOL-TCP *I
int option, /* AIMD-ALPHA or AIMD-BETA *I
void *value,
socklen-t len);

int setsockopt (int sock,
int level, I* SOL-TCP */
int option, I* AIMEALPHA or AIMDBETA */
const void *value,
socklen-t len);

Figure 5.3: Socket Option API of the Adaptive AIMD

In addition to the per-socket based adaptive AIMD system calls, we also introduce a

system wide Adaptive AIMD interface through the Linux Proc file system [Linux]. Users

'* The congestion window size is no longer an integer value, hence the rate limitation of the congestion
control part is now based on its truncated integer value.

83

with root privilege can read and write the system wide AIMD settings by reading or

writing to the two proc files: /proc/ sys/net/ipv4/tcp _aimd_al pha and

/proc/sys/net/ipv4/tcp_aimd_beta.

To illustrate the effect of the parameter on the window size adjustments, we run a group

of adaptive AIMD flows with their parameters adjusted through the socket API, and we

capture their snd_cwnd migrations by periodically sampling the kernel status. Figure 5.4

shows a snapshot of the snd_cwnd migrations of two competing flows: AIMD(3,1/2) and

AIMD(1,1/2). It's clear that AIMD(3,1/2) increases its snd_cwnd value 3 times faster

than AIMD(3,1/2), whereas they back off their snd_cwnd in the same ratio. Also we

notice that both flows do not back off synchronously, and since AIMD(3,1/2) gains more

bandwidth, it experiences more congestion signals than AIMD(1,1/2) during the period

shown in Figure 5.4. We will address the impact of this issue in more detail in latter

experiments.

35

30
AIMD(3, 1/2)
AIMD(1,1/2) --oK--

10

25

"0

c:: 203:
()I

-g 15
C/)

5

0
13950 14000

Time
14050 14100

Figure 5.4: Congestion window size of an Adaptive AIMD flow and a normal TCP flow

We plot the congestion window migrations of more mixed flows in Figure 5.5. We plot

the congestion window of AIMD(3,1/2), AIMD(1,1I2), AIMD(3,4/5), and AIMD(1,4/5)

to show the impact of both parameters to verify the correctness of our implementation.

84

As expected, AIMD(3,1/2) and AIMD(3,4/5) have the same increment pace, but a

different back off ratio. So do AIMD(1,1/2) and AIMD(1, 4/5).

AIMD(3, 1/2)
AIMD(1, 1/2) ---j(--.
AIMD(3, 4/5) - - -JIf --.
AIMD(1, 4/5) m--{3-m_.

3000

Time

3050 3100

Figure 5.5: Congestion window of more Adaptive AIMD flows

All the results shown in Figure 5.4 and Figure 5.5 indicate that the Linux implementation

of the Adaptive AIMD behaves as we expected. With this implementation, we can

generate various AIMD flows in our real network test-bed, and conduct experiments on

the bandwidth sharing dynamic among AIMD flows.

5.1.2.3 Discussion

The major reason to expose the AIMD control parameters to user space is to measure the

effect of AIMD parameters on the bandwidth sharing dynamics. However, this approach

potentially lets users produce flows that are more aggressive than TCP since a can be set

large and J3can be set small. We are aware of this danger. However, we do not think it

introduces any more danger than the already available UDP interface. Furthermore, we

recommend an alternative user interface, in addition to the above API in Figure 5.3, in

which the relationship between a and J3can be constrained appropriately, to provide a

safer use of the adaptive AIMD congestion control. This alternative interface is called

TCP-friendly AIMD congestion control, which only exposes one parameter, such as a, to

35

30

25

"0
c: 20::
(..)1
-g 15en

10

5

0
2950

the user space. Whenever the a parameter is adjusted, the P parameter is adjusted

according to some "TCP-friendly" rules, such as (2.3). Some of the experiments in this

chapter verify the effect of this "TCP-friendly" parameter adjustment.

5.2 Experiment Setup

With the development of the Linux adaptive AlMD congestion control protocol, we

perform a study of the bandwidth sharing behavior among AIMD flows in a real network

environment.

The experiments are conducted in a controlled network environment, which is a Linux

2.4 test-bed that simulates a WAN network. In this environment, we can control the

number of flows, the position of the bottleneck, and the bottleneck capacity (including

rate, delay, and buffer space). All our experiments use a single common bottleneck with

FIFO scheduling.

Figure 5.6: Network Topology

The network topology is shown in Figure 5.6. Each node in the figure is a separate Linux

machine. Two of the Linux machines, S1 and SZ, are traffic senders. The machine Dl is

the receiver of all the traffic. The two machines in the middle, R1 and R2, act as routers

by running NISTNet [NIST], a network emulation program that allows the introduction

of additional delay and bandwidth constraints on the network path. Router R1 is used to

introduce additional delay to flows. We control R1 so that it can introduce different delays

to various flows if required. Router R2 is used as a common bottleneck for all flows, and

by default, it uses a tail-drop queue management approach.

In our experiments, we use a flow-generating tool called flowpair [FP] to study the

impact of the AIMD parameters on performance aspects, such as the flow's throughput.

Flowpair generates a group of flows from the source machines, S1 and Sz, to the

destination machine Dl. It exposes control knobs of the AIMD parameters for each flow,

and indicates the relative progress of each flow by showing the amount of data delivered.

5.3 Experiments and Results

In this section, we describe details of our experiments and their results. The first question

we try to answer is: In what timescales should we measure the throughput in order to

judge the inter-flow fairness? We answer this question by showing the bandwidth share

ratio of identical flows in different timescales. The second question we try to answer is:

Do theoretically fnendly AIMD flows share bandwidth evenly with TCP flows as

predicted by (2.3), or do they share bandwidth unevenly as predicted by the simulation in

Chapter 4? In the experiments, we adjust the AIMD parameters of the competing flows

and show the bandwidth share ratio. We also take measurements of the congestion events

experienced by competing flows. The third question we try to answer is: Can we tune the

AZMD parameters to produce a different share ratio? For example, can a flow be

adjusted to compensate for the TCP RTT bias and achieve the "unifonn fairness"

behavior introduced in section 4.1.4? The following sections address these three

problems.

5.3.1 Fairness Time-scales

The goal of the experiment in this section is to see the effect of the measurement

timescales on bandwidth sharing fairness. In chapter 4, the theoretical study shows that

the limit cycle period is a minimum measurement timescale, even under the circumstance

of identical AIMD flows. Measurement in a timescale smaller than the limit cycle period

would lead to an unfair share ratio.

We measure the bandwidth share of each flow in various timescales. To compare the

measured fairness among different timescales, we use the following fairness index:

in which N is the number of flows, T is a measurement timescale, and xi(T) is the

bandwidth share of the i-th flow measured in the timescale T. The fairness index F(T) is

a value between l/iV and 1. When the bandwidth share is extremely unfair, for example

only one flow gets all the bandwidth and other flows get nothing, the value of F(T) is

equal to IN. As the bandwidth shares of flows get closer, F(T) increases. And when the

bandwidth share is perfectly even among competing flows, F(T) is equal to 1. Our

experiment is to see how the timescales affect the fairness index.

Measuring the bandwidth share ratio between two competing flows is not simple. The

share ratios vary from one experiment to another even with the same setup. Many

components of the test-bed use a random process in their control, for example, the

Ethernet backoff timer and the random queue drop selection. These random processes,

plus the randomness introduced by the CPU scheduler, prevent the system from

generating exactly the same packet output at the millisecond level from multiple flows.

The behavior of TCP congestion control is sensitive to the timing and order of packet

deliveries. To compensate for this randomness and noise, every experiment has to be

repeated multiple times, and the mean value and the standard deviations of all

measurements are presented.

From the average behaviors, our result shows that measuring in timescales longer than

the theoretic limit cycle period can give an approximate fairness, while measuring in

timescales shorter than the limit cycle period leads to obvious unfairness.

5.3.1.1 No Perfect Even Share

Rate of flow-1 (KB/S)

Figure 5.7: The System Trajectory Monitored in a Real Network

We first run only two competing flows, and measure their bandwidth share ratios. In this

experiment, the bottleneck link bandwidth is set to lMB/S, the bottleneck queue size is

set to 33 packets, the round-trip-time is 50ms, and the packet size (MSS) is 1500 Bytes.

Theoretically, the system stabilizes on a limit cycle, and the limit cycle period is 300ms

according to the following equation (5.2). This equation is derived from (4.3) combined

with the conditions of a = 1 and P=0.5.

-X- R2T 3 N + - T = -
MSS 2

We plot a part of the system trajectory in Figure 5.7. Because of the packet granularity

and other factors discussed in Section 4.1.4, the trajectory is not as clear as the one in

Figure 4.1.

Since we don't have the ability to extract out visually the shape of the trajectory, we go

ahead to measure the fairness directly using the fairness index in (5.1). All the

measurements are started 20 minutes after the flows have started sending data, to truncate

89

the flow startup behavior, as we did in section 4.3.1.1. In this experiment, the bottleneck

rate and the bottleneck queue size are carefully chosen to make sure all flows are running

in AIMD steady state and thus that we are measuring AIMD flows rather than the TCP

slowstart. During the experiments, we monitor the timeout behaviors, and make sure no

timeouts happen. We study the impact of timeouts in later experiments in a severe

congestion scenario.

The measurement timescales we choose are from 20ms to 2000 seconds, which covers

the lifetime of most Internet flows. For each timescale measurement over each time

period is repeated multiple times, evenly distributed over the flows' lifetime19. In the

experiment result, we show 100 samples for each selected timescale.

0.4
0.01 0.1 1 10 100 1000

Timescales (See)

Figure 5.8: Fairness for two identical competing flows in different timescales

The bandwidth share measurement is conducted based on the traffic captured in the

output of the router R2. For every selected timescale r, the number of packets of each

flow is counted as xl r), which is fed into the equation (5.1) to calculate the fairness index

F(r).

19Since all measurements are for one connection, they are not really independent measurements. We think
it is still appropriate because the goal of the measurement is to check the effect of measurements of the
same object over different time scales.

1.2 .. I . I

Fairness Index Mean 0

1.1 I- FairnessIndex

1

I II It t I
f! t fx

Q.) 0.9"0 Ic

C/) Ii . K I
0.8 I

. X

C/) x x
Q.) . I :

.
c x

x x x x
x

.....

0.7 x " x x.(tj . .,u.. v X x

0.6

0.5

The result of the fairness index versus various timescales is presented in Figure 5.8,

which shows uneven share ratios over all time scales. The fairness index gets closer to 1

as timescales increase. However, the bandwidth shares between the two competing flows

are never perfectly equal, even in the timescale of 2000 seconds. This result indicates that

the notion of TCP-friendliness is not meaningful if it is defined as exactly even share of

bandwidth. In real systems, fairness among competing flows is a notion based on a

statistical average, not deterministic one.

The fairness index of the two flows is bounded between 0.5 and 1, which might be too

narrow to show the differences resulting from different timescales. We repeat the above

experiment twice, with 20 flows and 200 flows respectively. The experimental setup is

the same except that the bottleneck rate and the bottleneck queue size increase in

proportion to the flow numbers (10MBIS and 330 packets for 20flows, and 100MB/S and

3300 packets for 200 flows). The reason for these adjustments is to keep the same

average share for all flows in all three experiments for easy comparison. The results of

fairness index versus timescales for 20 and 200 flows are shown in Figures 5.9 and 5.10

respectively.

Figures 5.9 and 5.10 show that the fairness index is not equal to 1 even over very large

timescales, as shown by Figure 5.8. When more flows are used, the effective range of the

fairness index expands, and thus Figures 5.9 and 5.10 show more unfairness over small

timescales, where we expect unfairness.

91

: I

I ~
x x

Fairness Index Mean 0

Fairness Index

If It "ft It
Xx xx <~ 'x

. x

0
0.01 0.1 1 10 100 1000

Timescales (See)

Figure 5.9: Fairness for 20 identical competing flows

Figure 5.10: Fairness for 200 identical competing flows

5.3.1.2 Fairness over the Theoretical Limit Cycle Period.

Although we know that the theoretical limit cycle doesn't match the real system limit

cycle, we still want to check whether the theoretical limit cycle period can be used as a

1.2

1

x 0.8Q)
-0
E
rn

06 ['
rn
Q)

04 I

c::....
.(tj
LL

0.2 I

1.2 .. I I I

Fairness Index Mean 0

Fairness Index Samoles x

x x ;I

f t t t
I i

It
x I :x 0.8 i

. I

x
Q) x * x x x-0 x

E ' x Xx

I.
rn 0.6rn
Q) ic::

a....
.(tj x
LL 0.4 I

I0.2 I- .
I.

oIL.:.
0.01 0.1 1 10 100 1000

Timescales(See)

92

guidance (at least as a lower bound) for choosing the right measurement timescales,

because intuitively the real limit cycle period should be longer than the theoretical one.

It is hard to judge what timescale is the cutting line between good and bad measurement

timescales, because the fairness index is not 1 even with very large timescales. We decide

to compare the fairness index measured in the theoretical limit cycle period to the fairness

index measured in the largest timescale (2000 seconds) used in our experiments.

We repeat the experiments of 20 flows with RTTs equal to 5ms, lOms, 20ms, 50ms,

lOOms,200ms and 500ms respectively. The corresponding theoretical limit cycle periods

of these RTTs are 30ms, 60ms, 120ms, 300ms, 600ms, 1200ms, and 3000ms, We plot the

mean fairness index measured in the theoretic limit cycle period T, as well as the one

measured in T/2, T/IO, and 2000 seconds. The result is shown in Figure 5.11.

1.4

1.2
c:
cu

~ 1
x
Q)
-g 0.8
en
~ 0.6c:.....

;f 0.4

0.2

F(T/10) I I I
F(T/2) 1--7(--1

F(T) !---*--J
F(2000Sec) ; [] ;

~~::~-::~~~~~~~~~~-~~~~~~~~

~- - i-- - ~------~-- -}- ---~ -.- --~

0
50

RTT(ms)

Figure 5.11: Fairness Index versus RTf

5 500

Figure 5.11 shows that F(T), the mean fairness measured in the theoretical limit cycle T,

is very close to the fairness index measured in the maximum timescale we used, whereas

the measurements in T/2 and TIlO are much less fair than F(T). Therefore, although the

system has a more complex trajectory than the one in our model, the limit cycle period T

is still a good guideline for choosing the measurement timescales.

5.3.1.3 Discussion

The results from this section indicate that bandwidth shares among identical flows are not

strictly equal even over large timescales. The round-trip-time and the number of flows do

not change this result. The exact causes of this uneven sharing behavior are still unclear

to us. Recent studies [PA02, VOO] of this problem using control theory and complex

system theory hint that the bandwidth sharing among packet based flows might be subject

to the butterfly efiect, and thus a small disturbance, such as the end system interrupt

timer, can significantly change the system's exact behavior. However, fairness measured

in the theoretical limit cycle timescale is still close to fairness in the large timescale. This

result indicates, although does not prove, that the average behavior is close to the

theoretic predictions.

In the following experiments, we decide to use a fixed timescale, 1000 sec, to measure

fairness. This timescale is guaranteed to be larger than the theoretical limit cycle period

in all our experiments. Plus, most of today's long lived flows are in the order of tens of

minutes, which is about this selected timescale. Friendliness or Fairness is then judged by

comparing the bandwidth share ratio measured in this timescale.

5.3.2 Share among "TCP-friendly" AIMD flows

The intention of the experiments in this section is to verify the impact of "TCP-friendly"

AIMD parameters on the throughput and the sharing ratio of competing flows.

Recent studies [PFTK98, PFTK99, NSTOO] of TCP show that a few factors have a

significant impact on a flow's throughput. These factors are:

Number of congestion signals (ECN or triple-dup-ACK) experienced by a flow,

Number of timeouts experienced by a flow,

The socket buffer size.

The values of these factors2', as well as their impacts on a flow's throughput, depend on

the experimental scenarios, including the bottleneck rate, RTT and the bottleneck buffer

capacity. For example, if the bottleneck's rate-delay product is larger than the sum of the

receiver-side socket buffer sizes2' of all competing flows, then only the flow control of

all the competing flows matters. If they have the same socket buffer size, they share

bandwidth evenly no matter what congestion control parameters they use. Therefore, for

the scenarios where congestions seldom happen, AIMD parameters do not affect the

throughputs of competing flows and their bandwidth share ratio.

In this chapter, we only study scenarios where congestion happens at least occasionally.

Therefore, we ensure that the socket buffer of any flow is large enough, so that the

congestion control protocol determines the bandwidth share ratio.

The impact of AIMD parameters on the bandwidth competition would is through the

measured bandwidth share ratio, the link utilization, and the number of congestion signals

and timeouts. Here we refer to every group of ECN packets or duplicated ACKs that

cause a congestion window back off as a congestion signal event. We refer to every TCP

retransmission timeout that triggers TCP Slowstart as a timeout event. In our

measurements, the congestion signals do not include timeouts.

Both congestion signal and timeout events are important to determine a flow's network

rate behavior. Timeouts become especially significant in the heavily congested scenarios.

20 The socket buffer sizes in most systems are static, so their values are not affected by the running
scenarios. However, some recent research [SMM98, GKLW021 has proposed automatic socket buffer
tuning. Therefore, it is possible that this size is also dynamically changing according to the running
scenario.

By default, TCP's socket buffer size is set to 64KB in Linux 2.4. For the typical 1550 Bytes MTU size
(1448 Bytes application data), this buffer size is about 45 packets. Because of flow control, TCP's
congestion window size will not increase over this buffer size limit. Once TCP's congestion window size
reaches 45, the TCP flow control would be the only mechanism that controls the transmission rate. Thus,
by default, TCP's maximum congestion window is 45 packets.

However, every timeout event triggers a Slowstart, which is not modeled in our

simulation and modeling work in Chapters 3 and 4. Since we want to verify the result

from our simulations, and we want to cover as many congestion scenarios as possible, we

divide all the experiments into two scenarios: I) light congestion, and 11) severe

congestion, so that we can avoid mixing the effect of timeouts and congestion signals.

We control the network setup to ensure zero timeouts happen in the light congestion

scenario, so that it can be used to verify the siinulation results in Chapter 4. The severe

congestion scenario is designed to study the impacts of timeouts.

The difference between light and severe congestion is the buffer capacity of the

bottleneck router. In the light congestion case, the bottleneck buffer capacity is set to

20*N packets, where N is the number of competing TCP flows. We choose 20 packets as

the average window size per flow, because 20 is about half of 45 packets, which is the

default socket buffer size. A 20 packet average window gives a flow's congestion control

a large range of actions for expanding or contracting without giving control to the flow

control. In the severe congestion control case, we set the bottleneck router's buffer

capacity to 5*N packets, so that the congestion control of each flow has only a small

range for adjusting its congestion window, and the window size is very close to its initial

window size. Timeouts are more likely to happen with a small window size.

Each running scenario is further divided into two sub-cases based on the queue

management schemes used in the bottleneck router. The two queue management schemes

are a tail drop queue and a random drop queue with ECN support. We discovered that the

two queue management approaches correspond to the two different assumptions about

congestion signal distribution that we made in our simulations in Chapter 4. The tail-drop

queue case corresponds to the assumption of universal-congestion, whereas a random-

drop queue corresponds to the non-universal congestion signal assumption.

All flows in this section use the "TCP-friendly" equation (3.1). Because this equation

controls the relationship between a and J3, a single one of the parameters can determine

the flow's behavior. In this section, we choose to use TCP-friendly AIMD(a) to represent

the "TCP-friendly" AIMD(a,P) flow.

The result of our experiments indicates that the impact of AIMD parameters is different

in the light and heavy congestion, and between the two queue management schemes.

Here we briefly summarize this result, prior to presenting the details of the experiment

results.

When the congestion is not severe, in the sense that timeouts seldom happen, the

theoretical TCP-friendly AIMD flows get bandwidth equal to normal TCP flows

under tail-drop queue management at the bottleneck. Under the severe congestion

with a random-early drop queue, the theoretical TCP-friendly AIMD flows get

bandwidth shares that are not equal to those of normal TCP flows. Specifically,

the AIMD flows with a smaller a get less bandwidth than the ones with a larger

a . This result matches our simulation result that the TCP-friendly relationship for

a and p is accurate only with universal congestion signals (with tail drop queues),

and is not accurate with non-universal congestion signal (with random drop

queues). With more and more deployment of active queue managements, the

latter case will be the dominant one in the future.

When the congestion is severe in the sense that a lot of timeouts happen, the

theoretical TCP-friendly AIMD flows get unequal share compared to a normal

TCP flow. AIMD flows with larger a tend to get more bandwidth. Since the

buffer capacity is very limited in the severe congestion case, the random drop

queue with ECN and the tail drop queue produce the same results. Our theoretical

studies do not cover this scenario, since the behavior is dominated by TCP's

Slowstart algorithm, which we did not model. This result indicates that timeouts

are important when modeling severe congestions, and is an area for future

research.

5.3.2.1 Two Flows

We start with a system that has only 2 flows: one normal TCP flow, one TCP-friendly

AIMD(a) flow. To show the impact of AIMD parameters, we choose a group of different

TCP-friendly AIMD(a) flows and measure their bandwidth sharing behavior with a

normal TCP flow. The a parameters we chose for the experiments range from 0.2 to 2.8

with 0.2 as the step increase22.

We measure the bandwidth share ratio between the TCP flow and the TCP-friendly

AIMD(a) flow, the link utilization, the congestion signals, and the timeouts in each

running scenario. The bandwidth share ratio is measured over a timescale of 1000

seconds. We do not use the fairness index here because it can not tell us which flow gets

more bandwidth, whereas the bandwidth share ratio can. The link utilization is measured

as the percentage of the bottleneck rate that represents application level throughput. The

number of congestion signals and timeouts are measured in the kernel TCP stack. No

matter how many duplicated ACKs or ECN packets it receives, every time a flow backs

off its window we count it as one congestion signal event23. This behavior corresponds to

TCP NewReno, which is the one used in these experiments. Every time a kernel TCP

retransmission timeout happens and triggers a Slowstart, we count it as a timeout event.

The congestion signals and timeouts are presented in the results by the average number of

events in every 10 seconds period24.

Due to the limited time to perform experiments, we repeated each measurement 20 times.

As a result, the experiment takes 6 days for each running scenario. We present the mean

and the standard deviation of each set of measurements in the results. The results are

presented in Figures 5.12 - 5.20.

22 We choose this range between 0 to 3 because (1) a is required to be larger than zero to do additive
increase, (2) a can not be larger than 3 since otherwise it causes a negative P according to (2.3), where
OcPc1 is required.
23 TCP can trigger a back off by mistake when reordering happens in the network. Therefore, the measured
congestion events are not necessarily the exact number of congestion signals as defined in Chapter 4.
However, we believe the reordering rarely happens in our test-bed. Therefore, we believe using the kernel
state is an accurate reflection of the flow's congestion experience.

Scenario I: Light Congestion

In this section, we present the results in the light congestion scenario in two cases: the

case with a tail drop queue, and the case with a random drop queue. This separates

experiments according to the different assumptions used in the early studies in Chapter 4.

The tail-drop queue experiment corresponds to the universal congestion signal

assumption, whereas the random drop queue corresponds to the non-universal congestion

signal assumption.

(a) Tail drop queue

The bandwidth share ratio between the two TCP-friendly flows is equal when the

bottleneck router uses a tail drop queue. The TCP-friendly AIMD(a) flow's a parameter

varies from 0.2 to 2.8 across 14 experiments. Adjusting the a parameter does not change

the bandwidth share ratio. This result is shown in Figure 5.12 (a), which plots the ratio of

achieved average throughputs over 1000 seconds.

The link utilization for these experiments, shown in Figure 5.13 (a), decreases slightly as

the a parameter increases. The link utilization is not 100% for several reasons. First,

retransmissions do not contribute to application throughput. Second, the bottleneck buffer

occasionally runs out of packets due to the slowdown of both flows. These events occur

in the experiments due to the congestion signals, which are shown in Figure 5.14 (a). As

the congestion signals increase, both factors (retransmissions and buffer underflows)

increase, and thus the link utilization degrades slightly. However, compared to the studies

presented later in 5.3.3, where unfriendly AIMD congestion control flows are used, this

link utilization degradation is small.

24 This representation shows the events per time. Another popular way of represent the congestion
experience is using per packet event possibility, which can be derived from the event per time combined
with the throughput measurement.

Although the bandwidth share ratio is unchanged, the total number of congestion signals

experienced by the two flows is not. The Figure 5.14 (a) shows the congestion signals

experienced by each flow over the same time period. Clearly, as the a parameter of the

TCP-friendly AIMD(a) flow increases, the congestion signals experienced by both flows

increase. We believe this increment of congestion signals is due to the increment of flow

aggressiveness, because a flow with a larger a parameter can fill the same amount of

buffer faster than a flow with a smaller a .

0 0
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+a])

Figure 5.12: Bandwidth Share Ratio of TCP-friendly Flows during a Light Congestion.
(a) Tail-drop Queue, (b) Random-drop Queue

0 0
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+a])

Figure 5.13: Link Utilization during a Light Congestion.
(a) Tail-drop Queue, (b) Random-drop Queue

We also measured the number of timeouts experienced by the two flows. Zero timeouts

happen for these two flows during this experiment; therefore, no timeout figures are

presented here. The timeout values under various network conditions (including this one)

are pIotted in Figure 5.19.

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+aJ)

Figure 5.14: Congestion Signals Experienced by TCP-friendly Flows during a Light
Congestion. (a) Tail-drop Queue, (b) Random-drop Queue

(b) Random Drop Queue (DRD + ECN)

The bandwidth share ratio between the two TCP-friendly flows is no longer equal when

the bottleneck router uses a random drop queue. In our experiment, a derivative random

drop (DRD) queue with explicit congestion notification (ECN) is enabled. This result is

shown in the Figure 5.12 (b), which plots the ratio of the two flows' achieved average

throughput over 1000 seconds. The flow that has a larger a parameter acquires slightly

more bandwidth than the one with a smaller a parameter.

The link utilization in the random drop queue case, shown in Figure 5.13(b), is higher

than the link utilization in the tail drop queue case, shown in Figure 5.13(a). This is the

result of random early ECN marks by the DRD queue management, so that the two

competing flows behave less synchronously and keep filling the bottleneck buffer

without overflowing it.

The measurement of the number of congestion signals shows a counter-intuitive result.

Intuitively, a random early drop queue with ECN sends early notifications back to a

sender before the queue is filled up, thus it causes more back offs to the sender than a

tail-drop queue does. The experiment results in Figure 5.14, however, show that the

random drop queue case has fewer congestion signals than the case with a tail drop

queue. The congestion window trace in the kernel indicates that the random drop case has

most of its back offs spaced apart and typically only one of the two flows back offs for a

congestion, whereas the tail-drop case has more contiguous back offs, and typically both

flows back off for a congestion.

The other aspects of the measurement of congestion signals in the random drop queue

case are similar to the tail-drop case. As in the case of tail-drop, the total number of

congestion signals experienced by the two flows increases as the parameter a increases.

The Figure 5.14 (b) shows the congestion signals experienced by each flow over the same

time period. As the a parameter of the TCP-friendly AIMD(a) flow increases, the

congestion signals experienced by both flows increase. No timeouts happen for these two

flows during this experiment.

The bandwidth sharing ratio results are different between the cases with a tail-drop queue

and with a random drop queue. The reason is that a tail-drop queue typically causes

packet losses to the two flows together, i.e. tail-drop could be modeled using a universal

congestion signal in this case. The random-drop queue has a higher chance of marlung

only one flow, and thus has more non-universal congestion signals. The TCP-friendly

parameter relationship (2.3) is derived with the assumption of universal congestion

signals, which is close to the result from a tail-drop queue. Thus, the TCP-friendly

AIMD(a) flow is more "friendly" to the TCP flow in the tail-drop queue case than in the

random-drop queue case. In the random drop queue case, a flow's congestion experience

is more related to its transient transmission rate. This relationship is similar to the

assumption used in our Simulink simulations in section 4.1.3, and the result shows a

similar impact of the AIMD parameters.

Scenario-11: Severe Congestion

In the case of severe congestion, two major factors, both congestion signals and timeouts,

play important roles in determining the bandwidth share ratio. In our early simulations,

we did not model the timeout events. Experiments in this section actually show that

timeouts are no longer absent during severe congestion, but rather significant. This result

indicates that further improvement to the model to include timeouts is desired, especially

to study severely congested networks.

(a) Tail drop queue

The bandwidth share ratio is no longer fair in the tail drop queue case. Figure 5.15 (a)

shows the average throughput ratio between a TCP-Friendly AIMD(a) flow and a normal

TCP flow, which diverges from the even-share. The flow that has a larger a parameter

acquires slightly more bandwidth than the one with a smaller a.

The link utilization, shown in Figure 5.16(a), clearly decreases as the a parameter

increases. The reason for this utilization decrease can be found in Figure 5.17 (a) and

5.18 (a), in which congestion signals and timeouts are shown respectively. Both timeouts

and congestion signals happen in the experiments, and the total of each of them increase

as a increases. One more thing to notice is that, as the a parameters differ far from 1, the

congestion experience (both congestion signals and timeouts) of the AIMD(a) flow

differs far from the TCP flow's experience. This indicates that as flows' parameters differ

far away from each other, so do their congestion experiences.

The experiment result indicates that timeouts are significant. Figure 5.17 (a) and Figure

5.18 (a) present the congestion signals and the timeouts respectively. Figure 5.17(a)

indicates that the flow with a larger a tends to get more congestion signals than the one

with a smaller a . In the a = 2.8 case, the flow AIMD(2.8) gets about 20% more

congestion signals than the flow AIMD(l.0, 0.5). If there were no timeout difference, the

flow AIMD(2.8) would get less bandwidth than AIMD(1.0, 0.5). On the contrary, the

flow AIMD(2.8) gets about 10% more bandwidth than AIMD(l.O, 0.5). We believe the

change is caused by the behavior of timeouts. As shown in Figure 5.17(a), the flow

AIMD(l.O, 0.5) gets about twice the number of timeouts as the flow AIMD(2.8). The

amount of timeouts not only balances the difference in congestion signals, but also causes

AlMD (1,O.S) to get more bandwidth. Therefore, we conclude that timeouts play an

important role in determining the bandwidth share ratio. A small number of timeouts can

significantly reduce a flow's ability to compete for bandwidth. One possible reason for

the more aggressive flow getting fewer timeouts is that it sends more packets in bursts,

and therefore is more likely to get duplicated ACKs rather than waiting for timeouts for a

given lost packet.

(b) Random Drop Queue @RD + ECN)

In the severe congestion scenario, the experiment result with a random drop queue

exhibits a similar bandwidth share ratio as the case with a tail drop queue. The bandwidth

share ratio, the link utilization, the congestion signals, and the experienced timeouts are

shown in Figure 5.15 (b), 5.16 (b), 5.17 (b) and 5.18 (b) respectively.

Similar to the tail-drop queue case, timeouts play a significant role in determining the

bandwidth share ratios. Most of the aspects shown in this experiment are very similar to

the case with tail-drop queue. The reason is that the queue in the severe congestion

scenario is small compared to the path bandwidth-delay product, and the early congestion

notifications are actually not early enough to prevent the queue from filling up and

dropping packets.

0 0
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a1[3+a])

Figure 5.15: Bandwidth Share Ratio of TCP-friendly Flows during a Severe Congestion.
(a) Tail-drop Queue, (b) Random-drop Queue

0 0
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+a])

Figure 5.16: Link Utilizations of TCP-friendly Flows during a Severe Congestion.
(a)Tail-drop Queue, (b) Random-drop Queue

350 350

150 150
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+a])

Figure 5.17: Congestion Signals Experienced by TCP-friendly Flows during a Severe

Congestion. (a) Tail-drop Queue, (b) Random-drop Queue

Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+a])

Figure 5.18 Timeouts Experienced by TCP-friendly Flows during a Severe Congestion.
(a) Tail-drop Queue, (b) Random-drop Queue

To illustrate the relationship between the congestion degree (light to severe) and the

timeouts, we plot the number of timeouts versus a few experiment parameters from

severe congestions to light congestions. The degree of congestion is controlled by the

bottleneck queuing capacity. In our experiment, the bottleneck queue size varies from 10

packets to 40 packets. The degree of congestion changes from severe to light as the queue

size changes.

The resulting timeouts are shown in Figure 5.19 with (a) a tail drop queue case and (b) a

random drop queue case. In both cases, we can see that timeouts rarely happen when

congestion is not severe, as in Scenario-I. The number of timeouts increases dramatically

as the bottleneck buffer becomes smaller. Another point is that more timeouts happen

when the TCP-friendly AIMD (a) uses a large a parameter. This result indicates that

increasing the a parameter of an AIMD flow in the severe congestion case could cause

more congestion to the whole system, even if the AIMD parameters are adjusted in a

TCP-friendly way.

tirneouts -
timeo,

timeouts -
timeouts ~7

Figure 5.19: Timeouts versus congestion levels.
(a) Tail-drop Queue, (b) Random-drop Queue

5.3.2.2 Many Flows

We extend the earlier experiments with only 2 flows to an experiment with 14 flows. The

14 flows are all different TCP-friendly AIMD(a) flows with their a parameters evenly

distributed between 0.2 and 2.8 with an interval of 0.2.

Due to time limitations, we only study the case with light congestion. Since the number

of competing flows increases from 2 to 14, the bottleneck queuing capacity for light

congestion is adjusted to 280 packets accordingly. We divide the experiments into the

cases of using a tail-drop queue and a random-drop queue. The bandwidth share ratios of

all competing flows are presented in Figure 5.20 (a) and (b) for the two queue

management cases. The result ratio is measured by comparing the throughput of a flow to

the average throughput of the AIMD(1,O.S) flow over the 20 rounds of experiments.

The result of many flows is essentially the same as the result of 2 flows. The bandwidth

share ratio is about the same for all 14 flows in the case with a tail drop queue. The

bandwidth share ratio of the same 14 flows is clearly different in the case of a random

drop queue.

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Parameter a of AIMD(a,b) (b=2a/[3+a]) Parameter a of AIMD(a,b) (b=2a/[3+a])

Figure 5.20: Share Ratio of 14 TCP-Friendly Flows during a Light Congestion.
(a) Tail-drop Queue, (b) Random-drop Queue

5.3.2.3 Discussion

The results in this subsection show that the "TCP-friendly" AIMD flows that follow the

Equation (3.1) do not necessarily share bandwidth equally with normal TCP flows. There

are two reasons for this unfairness. One is the difference in congestion experiences, and

the other is timeouts. The former causes unfairness because the Equation (3.1) is derived

based on the assumption of universal congestion signals, and differences on congestion

experience diverge away from this assumption as active queue management is deployed

in routers. The latter causes unfairness because timeouts are not taken into account in

(3.1).

Adjusting the AIMD parameter of an AIMD(a,P) flow to achieve an even share ratio to a

TCP flow is not easy. The impact of AIMD parameters on bandwidth sharing is not static

but changes based on running scenarios, such as the degree of congestion and the queue

management scheme used. Typically the congestion control protocol does not know the

conditions beforehand, and the running scenario may change from time to time.

Therefore, it is difficult to design an AIMD protocol that shares bandwidth evenly in all

conditions.

Indeed, it might not be important for all flows to achieve a perfectly even share with each

other. As shown in the section 5.2.1, the share ratio is not perfect even among identical

TCP flows. Therefore, we move our focus onto adjusting the AIMD parameters to

achieve other share ratios, rather than trying to fine tune the AIMD parameter

relationship for "perfect fairness".

5.3.3 Share among "Un-Friendly" AIMD Flows

The last section has shown that the TCP-friendly AIMD flows do not always get equal

bandwidth with normal TCP flows, especially under the situation of a random drop queue

or under severe congestion. This section discusses the cases of the bandwidth share ratio

of AlMD flows using "non-TCP-friendly" parameters, to check how to achieve a better

fairness condition or other share ratios in various scenarios.

The way we conduct our study is to fix one of the AIMD parameters, and check the

impact of the other AIMD parameter on the bandwidth share ratio. We first look at the

case with a fixed P parameter, and check the impact of the a parameter on the share ratio.

The results are presented in section 5.3.3.1. Then in section 5.3.3.2, we look at the case

with a fixed a parameter, and check the impact of the P parameter.

5.3.3.1 Impact of a parameter

For simplicity, we choose only one fixed P = 0.5 in this experiment. The experiments are

again split into two scenarios: light congestion and severe congestion.

Scenario-I: Light Congestion

In each scenario, we have two cases based on the bottleneck queue management schemes:

tail-drop queue or random drop queue.

(a) Tail-drop Queue

Figure 5.21(a) shows the share ratio between AIMD(a,O.S) and AIMD(1,O.S) in the light

congestion scenario. The result indicates that increasing an AIMD flow's a parameter

does increase its aggressiveness, thus gaining more bandwidth than the flows with a

smaller a parameter.

In our theoretical study of the behavior of AIMD flows, we derived the average

throughput of an AIh4D flow, which is shown in (A2.5). If we assume two AlMD flows

have the same congestion signals, we can get the ratio of the throughput of two flows

from this throughput equation:

With a fixed P parameter, the theoretic result indicates that the share ratio between

AIMD(a, 0.5) and AIMD(1,O.S) should be proportional to the square root of the a

parameter if the loss rate is the same. The share ratio in the light congestion scenario,

shown in Figure 5.21 (a), matches this theoretic prediction well when a is small. To

make a comparison between the bandwidth share ratio presented in this experiment to the

one of TCP-friendly AIMD flows, we enlarge the part of Figure 5.21 where the range is

Oca<3, and present it in Figure 5.22. Figure 5.22(a) shows that the bandwidth share ratio

matches the prediction well in the light congestion scenario with the tail drop queue.

As shown in Figure 5.21(a), the bandwidth share ratio diverges from the prediction when

a becomes larger than 3. The ratio even decreases when the a parameter is more than 10.

The reason is that congestion experiences are no longer the same for the AIMD(1, 0.5)

and AIMD(a, 0.5) when a is large. With a large a , a group of packets (here more than

10) are sent to the network immediately every time the AIMD flow expands its window.

This large burst can potentially cause many packet losses and reduces the effective

bandwidth obtained by the AIMD(a, 0.5) flow. Thus the bandwidth share ratio can not

keep up with the predicted value.

The result of the link utilization in this case is presented in Figure 5.23(a). The link

utilization decreases significantly as a gets larger. The reason for the utilization

decrement is also because of the packet losses caused by the burst.

From the experiment result, we can also see that the total number of congestion signals,

shown in Figure 5.24(a), also increases with the increment of the a parameter and the

aggressiveness.

The results indicate that additional mechanisms, such as self-cloclung and pacing, are

required for deploying AIMD(a,P) flows that have a large a to smooth out the big burst

caused by large a parameters. Without any additional mechanisms to smooth out the

burst, it is better not to use them to produce different bandwidth share ratios, because

they cause high congestion signal rates and reduce link utilization too much.

AIMD(~,o.!!~)/AIMD(I ;b.5) ----!---.
Theoretic Prediction -I;.+--..

- -

- -

I
AIMD(~,o.!!)/AIMD(I ,b.5) +ti--.

Theoretical Prediction -I;------.
- -

-

0 0
0 5 10 15 20 0 5 10 15 20

Parameter a of AIMD(a,0.5) Parameter a of AIMD(a,0.5)

Figure 5.21: Share Ratio Impact of a Parameter. (P = 0.5. Light Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

I
!~IMD(~,O.~)/AIMD(~ ,0.5) t-+-i

I I I

Theoretic Prediction - - - - - -

-
(a)

I I I I I

111

I I I I
!AIMD(~,O.~)IAIMD(~ ,0.5) M

Theoretical Prediction - - - - - -; - -7- - -

- , -
(b)

I I I I I 0 0
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Parameter a of AIMD(a,0.5) Parameter a of AIMD(a,O.5)

Figure 5.22: Share Ratio Impact of small a Parameter. (P = 0.5. Light Congestion)
(a) Tail-drop Queue, (b) Random-drop Queue

0 0
0 5 10 15 20 0 5 10 15 20

Parameter a of AIMD(a,0.5) Parameter a of AIMD(a,0.5)

Figure 5.23: Utilization Impact of a Parameter. (P = 0.5. Light Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

Parameter a of AIMD(a,0.5) Parameter a of AIMD(a,O.5)

Figure 5.24: Congestion Signal Impact of a Parameter. (P = 0.5. Light Congestion)
(a) Tail-drop Queue, (b) Random-drop Queue

(b) Random Drop Queue (DRD + ECN)

The result of light congestion with a random drop queue is presented in Figure 5.21(b) -
5.24(b). The general trend of bandwidth share ratio, the congestion signals, and the

utilities in this case is similar to the one in the tail-drop queue case. The bandwidth share

ratio increases as the a parameter increases, but the number of congestion signals

increases too.

Compared to the tail-drop queue case, the bandwidth share ratio in the random drop

queue case is less close to the prediction when a is small (O<a<3), as shown in Figure

5.22 (b). As a becomes larger in Figure 5.21(b), the bandwidth share ratio diverges away

from the prediction but not as significantly as in the tail-drop queue case. The reason is

that a random drop queue keeps the average queue fill-level low, so that it has a better

tolerance for the burst than the tail drop queue case.

The result in this experiment indicates that a higher bandwidth share ratio can be

achieved in the random drop queue case than in the tail drop case. In the random drop

case, the AIMD(a, 0.5)/AIMD(170.5) ratio is up to 3 and possible higher with a large a,

while the range in the tail-drop queue case the ratio is up to 2 and is likely to have a

smaller than 2 ratio with a large a.

Scenario-11: Severe Congestion

This section briefly explains the bandwidth share experiments for non-TCP-friendly

congestion control protocols under severe congestion.

(a) Tail-drop Queue

The results of the tail-drop queue case are shown in Figure 5.25(a) - 5.28(a). The

bandwidth share ratio still matches well with the predication when a is small (O<a<3).

Once a gets larger, the share ratio of AIMD(a,O.5)/AIMD(1,0.5), shown in Figure

5.25(a), and the link utilization, shown in Figure 5.26(a), both decrease significantly.

Similar to the light congestion scenario, the total number of congestion signals, shown in

Figure 5.27(a), increases as a increases. Differing from the light congestion scenario, the

number of congestion signals of flow AIMD(l,O.5) decreases when a is large. The reason

can be found in Figure 5.28(a), which shows the number of timeouts. When a is large

(a>3), the number of timeouts is significantly different for the two flows, and AIMD(1,

0.5) gets many more timeouts than AIMD(a, 0.5).

(b) Random Drop Queue (DRD + ECN)

The results of the random drop queue case are presented in Figure 5.25(b) - 5.28(b).

Similar to the tail-drop queue case, the bandwidth share ratio, shown in Figure 5.25(b),

diverges from the prediction when a becomes larger. The link utilization is low, and the

total number of congestion signals for both flows increase when a becomes larger. The

bandwidth share ratio with a random drop queue is better than the case with a tail drop

queue in the sense that the share ratio does not decrease when a becomes larger.

I
AIMD(~,o.!!)/AIMD(~ ,0.5) ---.

I

Theoretic Prediction -;=--=--.
- -

- -

- -

0 5 10 15 20
Parameter a of AIMD(a,O.5)

5 10 15
Parameter a of AIMD(a,0.5)

AIMD(~,O.~)IAIMD(I ,6.5) -----&---
Theoretic Predict~on -I=--*-.

- -
-

-

-

-

Figure 5.25: Share Ratio Impact of a Parameter. (P = 0.5. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

0 0
0 5 10 15 20 0 5 10 15 20

Parameter a of AIMD(a,0.5) Parameter a of AIMD(a,0.5)

Figure 5.26: Utilization Impact of a Parameter. (P = 0.5. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

300

250
tn -
6
c g 200

5 .-
C
fn

150
C

8
100

50
0 5 10 15 20

Parameter a of AIMD(a,O.5)
0 5 10 15 20

Parameter a of AIMD(a,0.5)

Figure 5.27: Congestion Signal Impact of a Parameter. (P = 0.5. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

Parameter a of AIMD(a,0.5)
0 5 10 15 20

Parameter a of AIMD(a,0.5)

Figure 5.28: Timeout h p a c t of a Parameter. (P = 0.5. Severe Congestion)
(a) Tail-drop Queue, (b) Random-drop Queue

5.3.3.2 Impact of f3 parameter

In this experiment, we fix the a parameter, and vary the p parameter to check its impact.

The range of valid P parameters is between 0 and 1. For simplicity, we choose a fixed a

=1, and choose a group of AIMD(1, P) flows with the P parameter ranging from 0.1 to

0.9 with an interval of 0.1 between each flow. The experiment is to compare the

bandwidth ratio between AIMD(1,P) with AIMD(1,O.S) when they are competing for the

same bottleneck. The experiment is divided into the light and severe congestion scenario

as before.

Scenario-I: Light Congestion

(a) Tail-drop Queue

As shown in the Figure 5.29 (a), the AIMD(1, P) gets less bandwidth as the P parameter

increases from 0 to 1. According to (5.3), the bandwidth share ratio between AIMD(1, P)

and AIMD(1,0.5) should be proportional to,,/- under the assumption of

universal congestion signals. The result shown in Figure 5.29 (a) shows that the measured

ratio matches the theoretical prediction well in the tail drop queue case. A congestion

signal difference between the two flows can be seen in Figure 5.31(a) when P is small.

The link utilization, shown in Figure 5.30(a), is high and increases slightly when P varies

from 0 to 1.

From this result, we know that controlling the P parameter can control the share ratio

between AIMD(1, P) and AIMD(1, 0.5) in a small range, from 0.5 to 2 times. For the

case of a tail drop queue, we can predict the share ratio using (5.3).

(b) Random Drop Queue (DRD + ECN)

The bandwidth share ratio between AIMD(1, P) and AIMD(1, 0.5), shown in Figure

5.32(b), does not match the predicted ratio in the tail-drop queue case. The range of the

achieved share ratio is from 0.8 to 1.5, and is smaller than the tail-drop queue case. The

number of congestion signals and timeouts in the random drop queue is smaller than the

tail-drop case. Other than that, the results are similar to those of the tail-drop queue case.

From this result, we can see that adjusting P can change the bandwidth share ratio, but the

achievable ratio range is very limited.

1, IAIMD(~ .~)/AIMD{~ ,0.5) Cf--H
Theoretic Prediction - - - - - -

- , -
$. ''t

- \f:.* -
%. 4>, - -f%: -

P-'f--+ -*- - -
- -

(a)
I I I

\ IAIMD(I , ~) /AIMD\I ,o.q L++
, Theoretic Prediction - - - - - -.

- , -

- 5. '.. .. -
%,%. %*. -'T--. g.> -&--. - -+:;;*-* - - -

- - - - - - - -
(b)

I I I

Parameter b of AIMD(1 ,b) Parameter b of AIMD(1 ,b)

Figure 5.29: Share Ratio Impact of the P Parameter. (a = 1. Light Congestion)
(a) Tail-drop Queue, (b) Random-drop Queue

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Parameter b of AIMD(1 ,b) Parameter b of AIMD(1 ,b)

Figure 5.30: Utilization Impact of the P Parameter. (a = 1. Light Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

Parameter b of AIMD(1 ,b) Parameter b of AIMD(1 ,b)

Figure 5.31: Congestion Signal Impact of the P Parameter. (a = 1. Light Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

Scenario-11: Severe Congestion

(a) Tail Drop Queue

In the severe congestion scenario, the bandwidth share ratio between AIMD(1,P) and

AIMD(1,O.S) is still close to the theoretical prediction when using a tail drop queue. It

diverges more compared to the light congestion scenario because the two flows'

congestion signals and timeouts, shown in Figure 5.34 (a) and 5.35 (a), differ more in this

scenario. Other than that, the result is similar to the light congestion scenario.

(b) Random Drop Queue

Compared to the case with a tail drop queue or the light congestion scenario, the

bandwidth share ratio between AIMD(1,P) and AIMD(1,O.S) is less close to the

theoretical prediction. The difference is large when P is far from 0.5. The achieved share

ratio between AIMD(1,P) and AIMD(1,O.S) is in a small range between 1 to 1.5. Other

aspects, such as the link utilization, the congestion signals, and the timeouts are similar to

the tail-drop queue case, except the number of congestion signals and timeouts are

slightly smaller than the tail drop case.

Figure 5.33: Utilization Impact of the $ Parameter. (a = 1. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

,,
; IAIMD(~ ,~) /AIMD\~ ,0.5) W

I

, Theoretic Prediction - - - - - - -

"*,
-

- - i..~, "....
f-,, ..$:;+. .

-3--5.;3.--5 -s -
- - _ - - - - - - - - - - -

(b)
I I I I

2.5

0 2 - .-
C

d
(D -, 1.5

c cn

z 1 -
B
'0
C
a

0.5

0

2.5

0 2 .-
C

'2
6 1.5

6
5 2 1 -
%
2 ' 0.5

0

350 350
I

AIM'D(I,~) L t - - i
AIMD(! 0 5) - X

u, 300 * 300 -
a
C 2
W W

5 5

:, 'AIMD(~ J))/AIMD[~ ,0.5) &-I
: Theoretic Prediction - - - - - - - -

£ ',,
i .

- '~ql,.,, -
\ -.
F- --.$,I -

ST?. q--.z -3 - - - - - - - - - - _ - -
(a)

I I I I

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Parameter b of AIMD(1 ,b) Parameter b of AIMD(1 ,b)

Figure 5.32: Share Ratio Impact of the $ Parameter. (a = 1. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

I
AIM'D(I,~) L+-i

AIMD(1,O 5) - X - '
- -

.-
C

W
C

-

(a) I I I (b)
150 I I I 150

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Parameter b of AIMD(1 ,b) Parameter b of AIMD(1 ,b)

Figure 5.34: Congestion Signal Impact of the P Parameter. (a = 1. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

I I
- ~IMD(I ,A)+AIMD(I ,0.5) ~ - - - l -

- -
- -

- -

- -

I I I (b)
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Parameter b of AIMD(1,b) Parameter b of AIMD(1 ,b)

1

0.8
C
0 .-
C

W 0.6 .- - .-
S
Y 5 0.4

0.2

0

1

0.8
C
0 .-
C

W 0.6 .- - .-
S
Y
.E 0.4
A

0.2

0

I
- ~IMD(I ,A)+AIMD~I ,0.5) +-ti -

- -

- -

- -

- -
(a)

I I I

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Parameter b of AIMD(1 ,b) Parameter b of AIMD(1 ,b)

Figure 5.35: Timeout Impact of the P Parameter. (a = 1. Severe Congestion.)
(a) Tail-drop Queue, (b) Random-drop Queue

With the experiment results of the sharing ratio between "unfriendly" AIMD flows, we

conclude the following points. In the tail drop case, the bandwidth share ratio between

unfriendly AIMD(a,P) flows and normal TCP flows matches the predicted behavior

when the parameters of the AIMD(a,P) flows are close to (1,0.5). For a range of Oca<3

and OcPc1, the bandwidth share ratio is very close to the theoretic prediction. For a very

large a, or a very small P, the changes of a and P become less effective for changing the

share ratio. The reason for this reduced effectiveness and the divergence form the

theoretical prediction is because congestion experiences are different between a TCP and

an AIMD(a,P) flow with a large a or a small P. For the random drop queue case, the

bandwidth share ratio does not exactly match to the predicted ratio, but tuning the a and

p parameters can still achieve various share ratios, if the ratios are not too large.

5.3.4 Other Fairness Ratio

In this section, we address the issue of how to create some share ratios other than the

TCP-style fairness. We phrase the question as, how to adjust the AIMD parameters to

achieve a N-to-one share ratio between flows?

We can use the result of the last section to answer this question when all flows have the

same RTT and the bottleneck uses a tail-drop queue. Compared to AIMD(l,O.S), we

know that a ratio of 0.25 to 3 can be achieved by tuning the a or J3 parameter without

adding many congestion signals and timeouts. A wider range of share ratio might be

achieved by tuning both parameters.

While saying that different sharing ratios can be achieved, it is worth mentioning two

constraints. First, the achieved share ratio between two flows is only effective when the

two flows encounter congestions. If there were no congestion, then the two flows would

have a 1:1 throughput ratio. Second, the sharing ratio that can be achieved by tuning the

parameter is coarse and is dependent on running scenarios. Our study of the TCP-friendly

AIMD flows indicates that the queue management scheme and the bottleneck buffer

spaces change the sharing ratio.

With the awareness of these constraints, we go ahead to tune the a and P parameters for

different share ratios. As an example of achieving different ratios, we adjust the

parameters to achieve a uniform fairness that shares bandwidth fairly regardless of the

RTT. This result is shown in the next section.

5.3.4.1 Different RTT

In this section, we address the issue of the effect of different round-trip-times on

bandwidth share, and how to compensate the RTT difference using the adaptive AIMD

congestion control.

Figure 5.36: Network Topology

First, we perform experiments to check the effect of RTT on identical AIMD flows. We

reconfigure our experiment topology, so that we can create AIMD flows with different

RTTs. Figure 5.36 shows the new topology, in which flows to Dl have different RTTs

depending on which source they are from (S1 to S5).

In this network topology, we set the bottleneck link rate to 3MB/S, with a bottleneck

queue size of 50 packets. To check the impact of RTT on bandwidth share ratio, we run 2

identical flows with different RTTs. The RTTs we choose in our experiments vary from

25ms to 100ms.

We first conduct the bandwidth share measurement for AIMD(1,0.5) for different R n s .

We use the throughput of the flow with RTT=5Oms as the reference, and present the

normalized bandwidth share ratios for server RTTs in Figure 5.37 (a) and (b), for the

cases of tail drop queue and random drop queue respectively. Conventionally, TCP

throughput equations, such as (2.1), indicate that a TCP flow's throughput is inversely

proportional to RTT, but these equations are based on the assumption that congestion

signals are independent of the RTI'. In this experiment, the flows that we monitored are

the only contributors to the congestion signals, and congestion signals are not static but

change when RTTs change. According to the measured result in Figure 5.37, the

bandwidth shares obtained by flows are inversely proportional to the square of RTT'.

To show that we can compensate the bandwidth share bias of different RlTs by adjusting

the AIMD parameters, we redo the experiments with flows that adjust their a parameters

according to their RTT. We conduct experiments that only tune the a parameters due to

time limitations. Experiments that tune the J3, or both a and P parameters can be

conducted in a similar way.

We conduct two sets of experiments for tuning the a parameter. One set uses the policy

of tuning a to be proportional to RIT; the other one uses the policy of tuning a to be

proportional to RTT~. If the congestion signals are independent of the flow's RTT, then

the first policy should compensate the RTT difference, according to (2.1). Otherwise, if

the congestion signals are closely dependent on the ATMD flows' parameters, the second

policy should compensate the R'M' difference effectively according to the experiments in

section 5.3.3.

We set the RTT of the reference flow AIMD(1, 0.5) to 50ms. Correspondingly, other

flows7 AIMD parameters are set to AIMD(RTTi50, 0.5) and AIMD([RTTI~O]~, 0.5) for

the two policies respectively.

Our results indcates that the second RTT compensation policy (adjusting a parameters

quadratic to RTT) can achieve an uniform fairness when a is in the range of Ocac3, but

is less effective when a is large (a>3). The experiment results for both policies are

presented in Figure 5.37 for the cases of (a) tail drop queue and (b) random drop queue.

Figure 5.37: Adjusting AIMD parameters for RTT compensations
(a) Tail-drop Queue, (b) Random-drop Queue.

The first policy's compensation(adjusting a proportional to RTT) is less effective in the

tail drop case than the random drop case. Figure 5.37(a) shows that short RTT flows still

get significantly higher bandwidth shares than long RTT flows in the tail drop queue

case. The short RTT flows' advantage on bandwidth ratio is reduced in the random drop

queue case with this policy, although the share ratio is still not close to uniform fairness.

The improvement in the share ratio fairness in the random drop queue is probably

because the number of congestion signals is less than in the tail drop queue case, and they

are more evenly distributed to all the competing flows.

We split the result of the second policy (adjusting a quadratic to RlT) into two parts: one

is the compensation for flows with small RTTs, the other is for flows with large RTTs.

The policy works well for the compensation of flows with small RTTs. Basically, the

compensation is achieved by using a small a to reduce the flow aggressiveness on

bandwidth competition. Results from section 5.3.3 show that the share ratio of AIMD(a,

0.5) versus AIMD(1, 0.5) matches well in the small a case especially in the tail drop

case. In the experiments in this section, the second policy works well in both cases for

small a, and the tail-drop case does a little better than the random drop case. For the

second part when a large a is required to compensate for long RTT flows, the uniform

fairness is not achieved, although the bias against long RTI' flows is reduced. The reason

for this behavior can be explained with the result in section 5.3.3, in which large a AIMD

flows are shown to be less effective in producing the predicted share ratio, and cause high

congestion signals and low link utilizations. We believe mechanisms that smooth out the

bursts of large a flows could help improve the effectiveness of this compensation policy.

In summary, from the results in this subsection, we conclude that uniform fairness can be

achieved by adjusting the AIMD parameters. Other fairness ratios can also be achieved,

but the ratio must not be too large. Otherwise, it will require a or P parameters to be set

to a value that could cause many more congestion signals and timeouts, which degrades

the link utilization. Achieving the preferred share ratio requires a careful selection of a

and p parameters.

5.4 Summary

In this chapter, we conducted experiments to investigate various aspects of the bandwidth

sharing behavior among competing AIMD flows. These aspects are the timescales for

fairness, the bandwidth share ratio among theoretical TCP-friendly AIMD flows, and the

share ratio of un-friendly AIMD flows.

For the notion of fairness, our results show that perfect fairness in terms of

exactly even bandwidth shares does not exist with identical TCP flows. Therefore

it is not feasible to define friendliness as sharing bandwidth exactly equally.

Friendliness should be more properly defined as follows: Flow-X is friendly to

Flow-Y when statistically Flow-X will not get more bandwidth than Flow-Y. We

also study the right measurement timescales for fairness. Our result shows that for

identical TCP flows, larger timescales lead to a better fairness index, but even on

a very large timescale, the flows will not achieve even share. The theoretical limit

cycle of the system provides guidance for the minimum timescales for measuring

average throughput in order to test inter-flow fairness.

Theoretical TCP-friendly AIMD flows share bandwidth fairly with TCP flows in

the tail-drop queue case under light congestion, because tail-drop queues tend to

produce universal congestion signals. With a random drop queue, or with severe

congestion, theoretical TCP-friendly AIMD flows do not share bandwidth fairly

with TCP flows, and the TCP-friendly AIMD flows with a larger a get more

bandwidth than those with a smaller a.

The traditional TCP-friendly fairness and the share ratio prediction in (5.3) are

derived based on the assumption of a universal congestion experience. The

congestion perception actually varies as the AIMD parameter changes.

Furthermore, the different queue management schemes on the bottleneck router

can change a flow's congestion perception. When the parameters of AIMD flows

are close, they are more likely to experience the same congestion signal, thus the

prediction is more accurate at that time. Otherwise, the share ratio diverges from

the prediction.

The bandwidth share ratio of un-friendly AIMD flows is close to the theoretic

prediction when their parameters are close. For example, compared to

AIMD(l,O.S), AIMD(a, P) flows that have a very large a or a very small P tend

to create more congestion signals and timeouts, and thus degrade link utilization.

By carefully tuning the a and /3 parameters, AIMD flows can achieve different

share ratios.

The study of this chapter can be extended in many ways. We only investigated a small

group of a and P parameters; one further study could try to cover all combinations of a

and p parameters, and study bandwidth share behavior with TCP and other AIMD flows.

Another potential work is to look at the share ratio when groups of different AIMD flows

compete with each other, and the number of flows in each group are not necessarily

equal.

On a final note, most of the experimental results, such as the result of the bandwidth

share ratio of TCP-friendly flows with a random drop queue in 5.3.2 and the result of the

impact of a and p on the share ratio of unfriendly AlMD flows in 5.3.3, match the

theoretical study and simulation results from the Simulink simulation in Chapter 4.

Hence, these results verify the results of the analytic model presented earlier in this

thesis. At the same time, results from 5.3.3 and 5.3.4 also show the impact of different

congestion signal perception on flows. A mathematical model that quantifies the

relationship between the AIMD parameters and the experienced congestion signals and

timeouts could help polish and complement the analytical model presented here.

Chapter 6

Related Work

Different aspects of congestion control behavior have been extensively studied during the

last decade. These studies can be classified as theoretical either modeling, simulation, or

system works. Theoretical modeling focuses on the key factors and algorithms of

congestion control and predicts their behavior under various network parameters. A

theoretical modeling work make general statements about congestion control behavior by

making simplifying assumptions about the target system and the environment if operates

in. Low-level details that distinguish one implementation of an algorithm from another

are often ignore. In contrast, system works tend to focus on the details, such as the

performance of a particular protocol implementation in a particular environment.

Simulation studies are usually a compromise between these approaches. In this chapter

we first discuss related theoretical research, then move on to discuss simulation studies

and system works.

6.1 Theoretical Studies

In this section, we first summarize the previous theoretical studies on modeling the

bandwidth sharing dynamics, and then a few theoretical models for TCP congestion

control. Since the theoretical study in this thesis uses the feedback control theory, we also

summarize some feedback control related work in computer systems.

6.1.1 Mathematical Modeling of the Bandwidth Sharing Dynamics

The dynamics of bandwidth sharing have been a research focus for more than two

decades. It has attracted more researchers in recent years because of the development of

multimedia applications in the Internet, which, due to their real-time requirement, are

sensitive to various aspects of the transmission rate. The common goal of these modeling

works is to verify dynamic aspects, such as link utilization and the fairness, of various

congestion control algorithms. Chiu and Jain [CJ89] study the bandwidth sharing

dynamics of a few algorithms using the phase plot approach, and conclude that the AIMD

algorithm is the best one in terms of a good fairness and a fast convergence to fairness.

Their study assumes synchronized congestion signals. Recently, Misra et al. [MGTOO,

CHM+02] use a stochastic fluid model for N homogenous TCP-controlled sources, and a

PI control model for the active queue management. They approximate the aggregated

TCP behavior with linear control functions. Their result shows that the model can predict

the long-term aggregated rate behavior accurately. Similarly, the work by Baccelli and

Hong using a max-plus algebra [BHOO] presents an analytical study of the average

throughput and system stability by linearizing the TCP congestion control.

The state space model in this thesis is also an analytical study of the bandwidth sharing

dynamics among congestion controlled flows. The dynamic aspects include stability,

fairness, and throughput over various timescales. The technique used in the state space

model is similar to the one used in [CJ89], but we extend it to asynchronous congestion

signals with different feedback delays. This state space model differs from other

modeling work by its nonlinear approach. In the study of stability, it predicts the position

of the system trajectory and its convergence rather than using the classic stability theory

for linear systems. Compared to the linear approach, the advantage of our approach is that

it lets us predict the per-flow behaviors in the short-term, and thus lets us study the

interaction between the AIMD parameters and their congestion experiences. In contrast,

the linear models [BHOO, MGTOO, CHM+02] are only good at predicting the aggregate

behavior of many flows over large timescales.

6.1.2 Models for the TCP Congestion Control

Recently researchers have proposed a significant number of analytic models to

characterize TCP performance in terms of round-trip-time and packet loss rate [MSM97,

PFTK98, PFT99, FF99, YR99, and NSTOO]. They share the same goals as our TCP

modeling work. First, to achieve a better understanding of how TCP performance is

affected by various network parameters, and second to help the design of new TCP-

friendly congestion control protocols.

These TCP models focus on characterizing bulk transfer throughput with TCP. The

results of these models are often TCP throughput equations with round-trip-time and

packet loss rate as inputs. However, they differ from each other by their assumptions and

simplifications of TCP congestion stages. Mathis et al. [MSM97, FF991 focus on TCP

steady state and ignore timeout. Padhye et al. [PFTK98, PFT991 adjust the result of

Mathis et al. by taking timeouts into account. Yeon et al. [YR99] extend Mathis's

throughput equation into a differentiated services network.

Our state space control model for AIMD TCP congestion control differs from these

models in two major ways. First, all existing models focus on the long-term average

throughput as the TCP performance metric, while our model is used to address their short

term rates and buffering delays. Cardwell et al. derived a latency model [NSTOO] for

TCP. However, the latency they defined in the model is the average time to deliver a

certain amount of data in one TCP connection, which is more of a goodput metric than a

metric for delay constraints. Second, our control model exposes the impact of AIMD

parameters on the congestion experience, while all existing models assume the same

congestion experience for all flows independent of their AIMD parameters.

6.1.3 Feedback Control Analysis of Computer Systems

The modeling work in this thesis is influenced by some previous work on feedback

control systems in networks, operating systems, and adaptive applications.

In network research, the TCP congestion control protocol is heavily studied using

control-theoretical approaches [JK88, RA02, S901. In addition, linear feedback control

was used to design other congestion control protocols. For example, Keshav applied

linear feedback control and fuzzy logic control to design the packet pair congestion

control [K91], assuming networks all perform fair queueing scheduling. He describes the

congestion control with discrete differential equations, and proves packet pair congestion

control is stable.

In operating system research, feedback control analysis has been applied to CPU resource

management. Real-rate adaptive CPU schedulers [SGG+98] use feedback mechanisms to

adjust CPU allocation so that processes maintain their application-specified progress rate.

A similar idea is applied to the resource management of end-host network interface

bandwidth [LWM+Ol]. Feedback control is also used to manage other OS resources

[SMM98, RMP+99]. For example, Semke et al. use feedback control to automatically

tune the memory allocation for TCP flows in one system to achieve high overall

throughput.

In adaptive application research, especially in research on multimedia applications,

feedback control analysis has been widely used. Multimedia applications have periodic

resource requirements with tight jitter bounds. However, the resource requirement of the

application varies from time to time, and at the same time the available resource varies

because it is usually shared among multiple applications. This periodic requirement and

the variance of both requirements and resources make multimedia applications ideal for

feedback based control analysis. For example, multimedia applications, such as

distributed streaming media players [C97, JE96, WKC+97], have been built based on

feedback control systems that perform application-level QoS-adaptation.

The theoretical study in this thesis is also applying control theory to adaptive congestion

control. The model for the AIMD TCP is based on control theory. It uses a hybrid control

system model presented in the literature, rather than a linear control model, and hence

differs from the traditional feedback control work listed above, which are mainly linear

feedback control systems.

6.2 Network Simulations

While network technologies keep evolving, many aspects of the network behaviors are

poorly understood. Due to the network's complexity, simulation plays a vital role in

attempting to characterize how different facets of the network behave, and how a few

parameter adjustments might affect the network's properties.

A number of network simulations have been developed in order to study various aspects

of network behaviors. According to the detail produced in the simulations, these

simulations can be divided into three levels: packet level, flow level and aggregate level.

Packet and aggregate level simulations have been developed for years and are widely

used in the research community today. The most widely used network simulation is

Network Simulator [NS], which is a packet level network simulator. NS is a multi-

protocol simulator that implements most of the protocols used in today's Internet. NS

models reality at the packet level. Simulated nodes and links process packets according to

their headers except the packets do not need to carry real payloads. A packet level

simulation enables us to study the protocol details, such as the hand-shakes of a

connection setup, the reactions to packet loss and retransmissions etc. Ideally, it also

supports the study of the aggregate behavior of many flows by simulating all of their

packets. However, simulating a large number of flows over a large timescale using NS is

extremely CPU intensive. Both the experiment setup and the result collections are very

time consuming.

Aggregate level simulations approximate the behaviors of a group of flows with a

mathematical model, such as the one by Misra et al. [MGTOO]. Aggregate level

simulations model a group of flows as one fluid, and the simulation complexity does not

increase as the number of flows increases. Therefore, it is more efficient to predict the

aggregated behavior of a large number of flows in a large timescale. On the other hand,

aggregate level simulation can not provide as many details as packet level simulations do.

The network simulation in this thesis is a flow level simulation. It describes each flow as

a fluid according to the differential equations in the state-space model. We choose to

model the system behavior at the flow level because our research focus is the bandwidth

sharing behaviors of each individual flow. Ignoring the packet level details dramatically

reduces the number of states in the state-space model, so that we can describe the system

trajectory in the state space. It's hard to capture the flow level dynamics with NS

simulation because of the noise and randomness introduced by packet level details. Our

flow level simulation differs from the aggregate level simulation by the fact that we still

keep the information about per flow rate behavior, and thus can study the interactions

between a flow's A I M . parameters and its congestion experiences. The aggregate level

simulations target only the global average behaviors of many flows, and ignore the per-

flow behavior.

6.3 System Works: TCP-friendly Congestion Control Protocols

To the study of the bandwidth sharing dynamics, the most closely related system work is

the research on building TCP-friendly congestion control protocols. TCP-friendliness is

proposed for new transport protocols to incorporate proper end-to-end rate adjustments

that are "friendly" to TCP traffic and hence achieve the "fairness" that TCP flows achieve

now. However, research on TCP-friendliness so far has not produced a clear result about

how closely new end-to-end rate management should mimic TCP's behavior in order for

it to be considered TCP-friendly. The major intuitive notion now for TCP-friendliness is

that the new protocol should obtain "in average" the same bandwidth as a TCP flow

along the same path. Note, however that its short-term transmission rate might be

different from TCP's. We have shown in this thesis that even identical TCP flows won't

share bandwidth evenly over short timescales.

Although the notion of TCP-friendliness is vague, numerous TCP-friendly congestion

control protocols [BMP94, CPW98, FF99, FHPJOO, LPK+OO, LRC99, PKTK99,

RHE99a, ROYOO, TCPF, and YLOO] have been proposed for multimedia streaming

applications. These TCP-friendly protocols can be divided into two categories, AIMD-

based, and Equation-based TCP-friendly congestion control. AIMD-based TCP-friendly

congestion control [LPK+OO, RHE99, YLOO] uses TCP's AIMD algorithm directly.

Hence, it linearly probes available bandwidth and multiplicatively reacts to congestion,

but decouples reliability control from congestion control. Some AIMD-based protocols

[LPK+OO, YLOO] statically adjust the parameters of the AIMD algorithm that controls the

pace of increment and decrement to get the desired rate behavior, for example, to produce

a smoother rate. Equation-based TCP-friendly congestion control protocols [FF99,

FHPJOO, LRC99, PKTK991 are based on TCP throughput equations derived from TCP

models [MSM97, PFTK98, PFT99, FF99, YR99, and NSTOO] that have been mentioned

in section 6.1. These models relate a TCP flow's throughput to its RTT and packet loss

rate. Instead of doing AIMD style probing, equation-based protocols monitor RTT and

packet loss rate, and use a throughput equation to determine the rate that a flow should

sustain. They then directly limit the output rate of the flow to this target rate. The

advantage of the Equation-based approach is that it can produce a smoothed output rate.

However, its TCP-friendliness is based on the accuracy of the throughput equation it

uses, and the time scale of this is still under intense research.

The study of bandwidth dynamics in this thesis is limited to AIMD algorithms, and we

have shown that congestion experiences, such as congestion signals and timeouts, vary as

AIMD parameters change. However, the study of sharing behavior of non-AIMD flows is

equally important. Readers can imagine more significant changes of congestion

experiences when the competing flows are between TCP and non-AIMD flows. Study of

the dynamic behaviors of these protocols is one of our areas of future work.

We end this section with a briefly summary of two non-AIMD TCP-friendly congestion

control algorithms: the Binomial congestion control algorithm and the TCP-Friendly Rate

Control (TFRC) algorithm.

Binomial Congestion Control Algorithm

AIMD-based algorithms make the window adjustment proportional to the current

window size. Binomial algorithms [BBOl] generalize AIMD-based algorithms by

extending the adjustment with nonlinear order of the current window size.

A binomial congestion control algorithm uses the following control rules:

Increase: w (~ + R I T) = w (~) + ~ / w ' (~) a > 0 (6.4)

Decrease: W (t + 6) t W (t) - p ~ ' (t) O < P < l

The notations used in (6.4) are same as those in (2.2) except for the introduction of two

other parameters k and 1. W is still the window size, and RTT is the round-trip-time. As

with an AIMD-based algorithm, a binomial congestion control protocol also must

constrain its parameters to be TCP-friendly. In addition to the same constraint (2.2) on

a and p , it requires k+l =I.

In Binomial algorithms, a and P have the same effect on the smoothness and

responsiveness as in AIMD algorithms. Since parameters k and 1 are limited by k+l=l,

their impacts can be shown on one of them: a smaller value of 1 leads to a smoother rate

and a low responsiveness.

TCP-Friendly Rate-based Congestion Control (TFRC)

TFRC is an equation-based congestion control protocol. Instead of adjusting the

transmission rate based on individual congestion signals, TFRC responds to the average

time interval of congestion signals.

In order to make a rate-based congestion control TCP-friendly, it uses TCP throughput

equations, such as (2.1), to determine its transmission rate as a function of packet loss

rate, packet size, and round-trip-time. A typical rate-based TCP-friendly congestion

control protocol is TFRC [FHPJOO, HPEWOI]. In general, TFRC's congestion control

mechanism works as follows:

1) The receiver measures the loss event rate and feeds this information back to the

sender.

2) The sender also uses the feedback messages to measure the RTT.

3) The loss event rate and RTT are then fed into TFRC's throughput equation, giving

the acceptable transmission rate.

4) The sender then adjusts its rate to the calculated rate.

The dynamics of TFRC are sensitive to how the measurements are performed and

applied. An important parameter of TFRC is the number of history events used to

calculate the lose rate. Generally, TFRC(k) refers to the protocol that only uses the most

recent k events to calculate the loss rate. Since TFRC7s average throughput is controlled

by the equation, changing k won't affect its TCP-friendliness. Most recent work

[FHPJOO, HPFWOl] recommends TFRC(6). Generally, using a larger k would make

TFRC smoother but less responsive.

TFRC is proposed to produce a smooth rate behavior rather than TCP, such that TFRC

can server better for multimedia applications than TCP. TFRC achieves its smoothness

by trading its responsiveness. This trade-off can be controlled by the parameter k. Similar

smoothness and responsiveness trade-off can be done by tuning the AIMD parameters as

shown in this thesis.

Chapter 7

Conclusions and Future Work

We conclude this dissertation with a summary of the thesis work, and then enumerate a

few research problems that can be addressed in future work.

7.1 Summary of Contributions

This dissertation presented a state-space model and some real world experiments for

studying the bandwidth competition between flows using AIMD-based congestion

control protocols.

We modeled the bandwidth competition among competing flows by using their rate and

the bottleneck queue fill-level as the key state variables in the state-space model. In this

model, we defined the dynamic stability as a limit cycle of the system state trajectory.

Early research has shown that the bandwidth competition of a system that has multiple

AIMD-based flows is stable under synchronized congestion signals. In this dissertation,

we showed that the system is stable even with asynchronous universal congestion signals.

We built simulations based on the state-space model. Both the model and simulation only

covered the AIMD algorithm used in the steady state of the TCP congestion control

protocol. They did not cover the MIMD-based Slowstart algorithm. We used simulations

to study the fairness of bandwidth competition among AIMD flows. While the TCP-

friendly constraint on AIMD parameters is derived under the assumption of synchronous

congestion signals, our simulations with random congestion signals that are proportional

to the transient transmission rates of flows showed unfriendliness among "TCP-friendly"

AIMD flows.

We compared the output from the simulations to the results from real-world experiments

of bandwidth competition. The real-world experiments were conducted with an adaptive

AIMD congestion control protocol that was built by us to produce AIMD flows with

various parameters. AIMD parameter values dominate the behavior of congestion control

protocols when congestion is light. The experiment result with a random drop queue

showed that "TCP-friendly" AIMD flows do not share bandwidth evenly. The more the

AIMD parameters of two flows differ, the more unevenness occurred in the bandwidth

shares. This experiment result matched the output from our simulation. In the experiment

with a tail drop queue, the "TCP-friendly" AIMD flows are more likely to get even

shares. The reason is that a tail-drop queue causes universal congestion signals to both

competing flows, and thus matches the assumption of the derivation of AIMD parameter

constraint.

Our real-world experiments also covered the case of severe congestions, and the results

showed that timeouts play an important role in determining the bandwidth share. Flows

with different AIMD parameters experience different numbers of timeout events. Flows

with a large a and a large P got more timeouts on average. This result indicates that an

extension to the model and simulation with MIMD algorithms and the events that switch

between AIMD and MIMD algorithms are very important to fully capture the bandwidth

competition in various real-world conditions.

In addition to building the state-space model and verifing the model with real-world

experiments, the dissertation also made the following contributions:

b e investigated the possibility of achieving different fairness paradigms by tuning

AIMD parameters. In particular, we showed that by tuning AIMD parameter, we can

achieve uniform fairness that is un-biased to flows with different RTTs. However, our

experiment results also showed that the range of the achieved share ratio is limited. When

the preferred share ratio between a TCP and an AIMD flow is more than two times, the

link utilization begins to degrade and eventually the technique becomes in-effective.

7.2 Future Work

In this section, we identify several future research problems that follows on from this

dissertation.

7.2.1 Stochastic Stability

The study of stability in the state-space model relies on a precise description of the stable

position of the system states in the state space. This method works well for the case with

universal congestion signals. However, with non-universal congestion signals caused by

contiguous random events, the system state won't stay on the theoretical limit cycle, but

will reside in a region around it, during the steady state. With the introduction of such

random events, the study based on the state-space model can only be performed using

simulations.

Both simulations and real-world experiments indicate that system states after

disturbances are still converging to the theoretical limit cycle in the case with universal

congestion signals. The system is not unstable in the sense that the state does not become

unbounded. The notion of stochastic stability in the control theory is exactly for this

situation that the system state is in a region rather than a singular point or a limit cycle

during the steady state. Therefore, we expect to extend the bandwidth competition model

presented in this thesis to a stochastic state-space model. Some of the bottleneck queue

management schemes, such as random drop queue, can be naturally modeled as a

stochastic process. The bandwidth fairness monitored in experiments also shows

stochastic behavior. How to capture and predict these behaviors accurately from a

theoretical model is one of the future research directions identified in this dissertation.

7.2.2 Dynamic Congestion Control Adaptations

One goal of the research in this dissertation is to provide a flexible congestion control

protocol that can fit to a wide range of applications. The adaptive AIMD congestion

control protocol provides a framework for building various congestion control protocols.

How to adjust the parameters is up to the requirements of applications, however, the

adjustment is likely to be dynamic for applications that are running over heterogeneous

networks. How to dynamically adapt the AIMD parameters or even switch to different

congestion control algorithms, such as MIMD, is still under investigate. Ideally, a

feedback control loop would be constructed with the application exposing some

information to a controller, which would conduct adjustments based on the monitored

result. We would like to extend the framework in this thesis to build this automatic

control for a few application examples so that they can work well in a wide range of

network conditions.

Bibliography

[AP99] Mark Allman, Vern Paxson. "On Estimating End-to-End Network Path Properties",
In Proceeding of ACM SIGCOMM 1999, pp.263-274,1999.

[APS99] Mark Allman, Vern Paxson, and Wright Stevens. "TCP Congestion Control",
Request for Comments 2581, Internet Engineering Task Force, 1999. Available at
http://www .ietf.org/rfc/rfc258 1. Viewed: October 2002.

[B91] William L.Brogan. Modem Control Theory. Published by Prentice-Hall. 3rd edition.
1991.

[BBOl] D. Bansal and H. Balakrishnan. "Binomial Congestion Control Algorithms", In
Proceedings of IEEE INFOCOM 2001, v.2, pp.63 1-640,2001.

[BCC+98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V.
Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.
Wroclawski, L. Zhang. "Recommendations on Queue Management and Congestion
Avoidance in the Internet". Request for Comments2309, Internet Engineering Task
Force, 1998. Available at http:Nwww.ietf.org/rfc1rfc2309. Viewed: October 2002.

[BBFSOI] Deepak Bansal, Hari Balakrishnan, Sally Floyd and Scott Shenker. "Dynamic
Behavior of Slowly-Responsive Congestion Control Algorithm7'. In Proceedings of
ACM SIGCOMM 2001, pp.263-274,2001.

[BHOO] Francois Baccelli, Dohy Hong. "TCP is Max-Plus Linear". In Proceedings of ACM
SIGCOMM 2000, pp.219-230,2000.

[BLMOI] John Byers, Michael Luby, and Michael Mitzenmacher. "fine-Grained Layered
Multicast", In Proceedings of IEEE INFOCOM 2001, v.2, pp. 1143-1 151,2001.

[BMP94] L. S. Brakmo, S. W. O'Malley, and L. Peterson. "TCP Vegas: New Techniques for
Congestion Detection and Avoidance". In Proceedings of ACM SIGCOMM 1994,
pp.24-35, 1994.

[C86] Peter A.Cook. Nonlinear Dynamical Systems. Published by Prentice-Hall. 1986.

LC971 Shanwei Cen. "A Software Feedback Toolkit and its Application in Adaptive
Multimedia Systems". Ph.D Thesis Dissertation. Oregon Graduate Institute, 1997.

[CJ89] Dah-Ming Chiu and Raj Jain. "Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks". Computer Networks and ISDN
Systems v.17, pp.1-14, 1989.

[CPW98] Shanwei Cen, Calton Pu, and Jonathan Walpole. "Flow and Congestion Control for
Internet Streaming Applications". In Proceedings of Multimedia Computing and
Networking, pp.250-254, 1998.

[FF99] Sally Floyd, and Kevin Fall. "Promoting the Use of End-to-End Congestion Control
in the Internet" IEEE/ACM Transactions on Networking, August 1999. Available at
http://www .aciri.org/floyd/papers.htrnl. Viewed: August 2000.

[FH99] S. Floyd, and T. Henderson. 'The newReno Modification to TCP's Fast Recovery
Algorithm", Request for Cornments2582, Internet Engineering Task Force, 1999.
Available at http://www.ietf.org/rfc/rfc2582. Viewed: October 2002.

[FHPOO] Sally Floyd, Mark Handley, and Jitendra Padhye. "A comparison of equation-based
congestion control and AIMD-based congestion control." Under submission.
Available at http://www.aciri.org/tfrc. Viewed: August 2000.

[FHPJOO] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer. "Equation-based
Congestion Control for Unicast Applications." In Proceedings of ACM SZGCOMM
2000, pp.43-56, August 2000.

[FJ93] S. Floyd and V. Jacobson, "Random early detection gateways for congestion
avoidance", IEEEIACM Transactions on Networking, v. 1, pp.397-413, August 1993.

[FKSS97] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G.Shin.
"Understanding TCP Dynamics in an Integrated Services Internet". In Proceeding of
the 7th Internation Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV 97), pp.279-290, 1997.

[FKSS99] W. Feng, D. Kandlur, D. Saha, K. Shin, "Blue: A New Class of Active Queue
Management Algorithms" U. Michigan CSE-TR-387-99, April 1999.

[FLKP99] Wu-chi Feng, Ming Liu, B. Krishnaswami, A. Prabhudev. "A Priority-Based
Technique for the Delivery of Stored Video Across Best-Effort Networks" in
Proceedings of Multimedia Computing and Networking (MMCN) 1999. Available at:
http://www.cis.ohio-state.edu/-wuchi/pubs.html. Viewed: October 2002.

[Fp] Flowpair: A flow aggressiveness test tool. Flowpair's web page available at
http://tcpradar.sourceforge.net. Viewed: August 2002.

[FR99] Wu-chi Feng, J. Rexford. "Performance Evaluation of Smoothing Algorithms for
Transmitting Prerecorded Variable-Bit-Rate Video" in IEEE Transactions on
Multimedia, v. 1, num.3, pp.302-33 1, 1999.

[GKLW02] A.Goel, C. Krasic, K. Li, and J. Walpole. "Supporting Low Latency TCP-Based
Media Systems", in Proceedings of the Tenth International Workshop on Quality of
Service. Available at http://www.cse.ogi.edu/-ashvin. Viewed: October 2002.

1~911 Raj Jain. The Art of Computer Systems Pe$omzance Analysis. published by John
Wiley & Sons Inc, 1991.

[JE96] S. Jacobs and A. Eleftheriadis. "Providing Video Services over Networks without
Quality of Sevice Guarantees". In Proceedings of World Wide Web Consortium
Workshop on Real-time Multimedia and the Web, 1996. Available at
http://www.ee.columbia.edu/-eleft/papers/iwqos97.ps. Viewed: October 202.

[JK88] Van Jacobson, and Michael J. Karels. "Congestion Avoidance and Control". In
Proceedings of ACM SIGCOMM 1988, pp.3 14-329, 1988.

[K9 1 1 Srinivasan Keshav. "A Control-Theoretic Approach to Flow Control". In
Proceedings of A CM SIGCOMM 1991, pp.3- 16, 199 1.

[KWLGOI] Charles Krasic, Jonathan Walpole, Kang Li, and Ashvin Goel. 'The Case for
Streaming Multimedia with TCP". in the 8th International Workshop on Interactive
Distributed Multimedia Systems 2001, Lancaster, UK, September 2001. Also
published in Springer Verlag's Lecture Notes in Computer Science Series LNCS
2158, pp. 213-218,2001.

[KW99] Charles Krasic and Jonathan Walpole. "QoS Scalability for Streamed Media
Delivery", OGI CSE Technical Report CSE-99-11, 1999.

[Linux] Linux Kernel Source. Available at http://www.linux-kernel.org. Viewed: August
2002.

[LKW+Ol] Kang Li, Charles Krasic, Jonathan Walpole, Molly Shor, and Calton Pu, "The
Minimal Buffering Requirements of Congestion Controlled Interactive Multimedia
Applications", in the 8th International Workshop on Interactive Distributed
Multimedia Systems 2001, Lancaster, UK, September 2001. Also published in
Springer Verlag's Lecture Notes in Computer Science Series LNCS 2158, pp.181-
192,2001.

[LPK+00] K.W. Lee, R. Puri, T. Kim, K. Ramchandran and V. Bharghavan, "An Integrated
Source Coding and Congestion Control Framework for Video Streaming in the
Internet". In Proceedings of ZEEE INFOCOM 2000, v.2, pp.747-756,2000.

[LRC99] L. Vicisano, L. Rizzo, and J. Crowcroft. 'TCP-like Congestion Control for Layered
Multicast Data Transfer". In Proceedings of IEEE INFOCOM 1999, v.3, pp.996-
1003,1999.

[LSWOl] Kang Li, Molly H. Shor, and Jonathan Walpole. "Modeling the Effect of Short-term
Rate Variations on TCP-Friendly Congestion Behavior". In Proceedings of American
Control Conference 2001, v.4, pp.3006-3012,2001.

[LWM+Ol] Kang Li, Jonathan Walpole, Dylan McNamee, Calton Pu and David Steere. "A Rate-
Matching Packet Scheduler for Real-Rate Applications". In Proceedings of
Multimedia Computing and Networking (MMCN) 2001. pp.49-6 1, January 2001.

[MATLABIMatlab 5.3 (Release 11): The language of Technical Computing, by Mathworks, Inc,
1999.

[MGTOO] Vishal Misra, Wei-Bo Gong, Don Towsley. "A Fluid-based Analysis of a Network of
AQM Routers Supporting TCP Flows with an Application to R E D . In Proceedings
of ACM SIGCOMM 2000. pp. 15 1-160,2000.

[MMFR96]Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. "TCP
Selective Acknowledgement Options". Request for Comrnents2018, Internet
Engineering Task Force, 1996. Available at http://www.ietf.orgIrfc/rfc2018. Viewed:
October 2002.

[MSM97] Matthew Mathis, Jeffrey Semke, and Jamshid Mahdavi. "The Macroscopic Behavior
of the TCP Congestion Avoidance Algorithm7'. ACM Computer Communication
Review, v.27, num.3, pp.67-82, 1997.

[NIST] NISTNet: a Network Emulation Package. NISTNet's web page is available at
http://snad.ncsl.nist.gov/itg/nistnet/. Viewed: August 2002.

[NSl ns: UCBILBNWINT Network Simulator (Version 2). NS version 2 is available at
http://www-mash.cs.berkeley.edu/ns/ns.html. Viewed: August 2002.

[NSTOO] Neal Cardwell, Stefan Savage, and Thomas Anderson. "Modeling TCP Latency". In
Proceedings of IEEE INFOCOM 2000, v.3, pp. 1742-175 1,2000.

[P991 V. Paxson, "End-to-End Internet Packet Dynamics", IEEE/ACM Transactions on
Networking, v.7, num.3, pp.277-292, June 1999.

[PAD+99] V. Paxon, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens, K. Lahey, J.
Semke, and B. Volz. "Known TCP Implementation Problems", Request for
Comments 2525, Internet Engineering Task Force, 1999. Available at
http://www.ietf.0rg/rfc/rfc2525. Viewed: October 2002.

[PFOl] Jitendra Padhye, and Sally Floyd. "On Inferring TCP Behavior". In Proceedings of
ACM SIGCOMM 2001, pp.287-298,2001.

[PJT99] Jitendra Padhye, Victor Firoiu, and Don Towsley. "A Stochastic Model of TCP Reno
Congestion Avoidance and Control". Technical Report CMPSCI 99-02, University of
Massachusetts.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley and Jim Kurose. "Modeling TCP
Throughput: A Simple Model and its Empirical Validation". In Proceedings of ACM
SIGCOMM 1998, pp.303-3 14, 1998.

[PKTK99] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. "A model based TCP-friendly rate
control protocol". In Proceedings of the Ninth International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDA V) 1999,
pp.137-151, 1999.

[RA02] Priya Ranjan, Eyad H.Abed, "Bifurcation Analysis of TCP-RED Dynamics", in
Proceedings of the American Control Conference, 2002. Available at:
http://www.glue.umd.edu/-priya/home/mywork.html. Viewed: October 2002.

[RFBOl] K. Ramakrishnan, S. Floyd, and D. Black. 'The Addition of Explicit Congestion
Notification (ECN) to IP", Request for Comments 3 168, Internet Engineering Task
Force, 2001. Available at http://www.ietf.org/rfc/rfc3168. Viewed: October 2002.

[RHE99a] R. Rejaie, M. Handley, and D. Estrin. "An End-to-End Rate-Based Congestion
Control Mechanism for Realtime Streams in the Internet". In Proceedings of IEEE
INFOCOM 1999, v.3, pp. 1337-1345, 1999.

[RHE99b] R. Rejaie, M. Handley, and D. Estrin. "Quality Adaptation for Congestion Controlled
Video Playback over the Internet". In Proceedings of ACM SIGCOMM 1999, pp. 189-
200, 1999.

[RMP+99] Dan Revel, Dylan McNamee, Calton Pu, David Steere, and Jonathan Walpole.
"Feedback Based Dynamic Proportion Allocation for Disk U O . OGI Technical
Report CSE-99-001.

[ROYOO] Injong Rhee, Volkan Ozdemir, and Yung Yi. 'TEAR: TCP emulation at receivers -
flow control for multimedia streaming". Technical Report is available at
http:/ /www.csc.ncsu.edu/eos/users/r/rhee/expotepage. Viewed: August
2001.

IS901 Scott Shenker. "A Theoretical Analysis of Feedback Flow Control". In Proceedings
of ACM SIGCOMM 1990, pp. 156-165, 1990.

[SIMU] State-space based MATLAB Simulink Simulation. Available at
http://www.cse.ogi.edu/-kangli/simulink.htrnl. Viewed: August 2002.

[SLW+OO] Molly H. Shor, Kang Li, Jonathan Walpole, David C. Steere, and Calton Pu.
"Appication of Control Theory to Modeling and Analysis of Computer Systems". In
Proceedings of the Japan-USA-Vietnam Workshop on Research and Education in
Systems, Computation and Control Engineering, HoChiMinh City, Vietnam, June 7-
9,2000. Available at: http://www.cse.ogi.edu/-kangli. Viewed: October 2002.

[SMM98] Jeffrey Sernke, Jamshid Mahdavi, and Matthew Mathis. "Automatic TCP Buffering
Tuning". In Proceedings ofACM SIGCOMM 1998, pp. 315-323, 1998.

[SGG+98] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu and
Jonathan Walpole. "A Feedbackdriven Proportion Allocator for Real-Rate
Scheduling", In ACM Operating System Review, Proceedings of Operating Systems
Design and Implementation (OSDI), Special Issue- Winter 1998, Page 145-228, 1998.

[TCPFJ The TCP-Friendly Website. Web page is available at
http://www.psc.edu/networking/tcp~friendly.ht. Viewed: August 2002.

[VOO] A. Veres, 'The Chaotic Nature of TCP Congestion Control", in Proceedings of ZEEE
INFOCOM 2000, v.3, pp. 17 15-1723,2000.

[WKC+97] Jonathan Walpole, Rainer Koster, Shanwei Cen, Crispin Cowan, David Maier, Dylan
McNamee, Calton Pu, David Steere and Liujin Yu, "A Player for Adaptive MPEG
Video Streaming Over The Internet," in Proceedings 26th Applied Imagery Pattern
Recognition Workshop AZPR-97, SPIE, Washington DC, October 15-17, 1997.

[WLG97] R.Wegenkitt1, H.Loffelmann, and E.Groller, "'Visualizing Dynarnical Systems of
Higher Dimensions," in IEEE Visualization 97 Conference in Phoenix, AZ. Software
related to "Visualization of Complex Dynamical Systems" is available on
http://www.cg.tuwien.ac.at/research/vis/dynsys. Viewed: September 2001.

[WS95] Gary R. Wright, and W. Richard Stevens, "TCP/IP Illustrated Volume 2, The
Implementation", Addison-Wesley Publishing Company, 1995.

[YLOO] Yang Yang, and Simon Lam. "General AIMD Congestion Control" In Proceedings
of International Conference on Network Protocols (ICNP) 2000, Osaka, Japan, Nov
2000. Available at h t tp: / /www.cs .utexas .edu/usersf l~echReports . Viewed:
September 2001.

[YR99] Ikjun Yeom, and A. L. Narasirnha Reddy. "Modeling TCP Behavior in a
Differentiated Services Network". TAMU ECE Technical Report, May 1999.
Available at http://ee.tamu.edu/-reddy/papers/index.html. Viewed: September 2000.

Appendix A1

Proof of Dynamic Stability

Theorem-1:

When multiple AIMD flows compete for a constant available bandwidth R, the system

state, under the assumption of synchronized back ofl(with a common backward delay BD

and a common forward delay FD), and packet conservation, converges to a limit cycle

that passes through the point P = [r , , r, , . . . , r, , B] ~ , in which

where

Here, BD is the backward feedback delay, FD is the forward delay, MSSi is the packet

size of flow i, Rm is the round-trip-time of flow i, (ai,fl) is the AZMD parameter, and

these parameters must satisfy the following constraint:

R
1 <

i=, pi R T T , ~ (BD + F D)

When all the flows have the same AZMD parameters, MSS, and Rm, they get equal

bandwidth share.

We argue in Theorem-1 that the given limit cycle is stable. The proof of Theorem-1 is in

3 steps. First, we prove that system trajectories starting at any point would have a series

of cross points with the plane jZ=B in the state-space. Second, we prove the trajectory

starting from the point stated in Theorem-1 comes back to the same point, and thus it is a

limit cycle. Third, we prove the crossing points of a trajectory with the plane converge to

the point P in the Theorem-1. We present each step as follows:

... T j 4 3

f Congestion
f Signals

Bottlenec
............. FD Buffer

Figure A 1.1 : A Flow's Rates and Delay

In this step, we prove that, for any starting state X = [r , , r, ,- - - , r, , fllT , the system

trajectory starting from X intersects planefl=B again and again.

Figure A l . l shows a single flow within a bandwidth sharing system (Figure 3.3).

Because of the forward delay FD, the AIMD flow i7s input rate rir to the bottleneck buffer

is not exactly the output rate ri of the flow i, but ri delayed by a time interval FD.

Fill Level

Sum of all the transmission rates in
the vector [r,, rz, . . . ~ N I 0

Figure A1.2: The System State Migration as Multiple Rounds. (A dotted
line indicates the state transition between two points on fl=B)

As the result of the forward and backward delays, the system state migration in the state

space is illustrated in Figure A1.2. In this figure, we assume that i) the system is started

from a point P' in the plane fl=B and, in addition, the sum of the rate of all flows

N

5-, is less than the bottleneck link rate R. Here r i - ~ is the output rate from flow i at
i= l

N

point P ', ii) before these rate values propagate to the buffer, the rate qlp, is larger than
i=l

N

R. Therefore, the buffer fill-level keeps at B before the rate C q - , , propagates to the
i=l

buffer. This period is FD, and the system state is indicated by the trajectory between P'

and X!

After this period, the buffer fill-level starts to decrease because the input rate to the buffer

N N

is now Cr,* - .. = Cr,-,. , and is smaller than R according to the assumption. Since the
i=l i=l

a, x MSS, .
rate increment per flow is a positive value, and always larger than a non-zero

R V . ~

amin x MSS~,,
constant

2 , in which afi,=min[al, a,, . . ., aN], MSSmin=min[M~S1, MSS2, ...,
RTT,,

MSS,], and RTT,,=FD+BD+B/R. Thus we know that the input rate to the buffer keeps

increasing, and after a while, the input rate to the buffer is equal to R.' In Figure A1.2,

this system state is indicated by point Y! The time takes the system to migrate from X'to

N ai x MSS,
Y'is (~ - ~ r , - , .) l C

i=l ~q~

After the system state passes point Y', the buffer fill-level starts increasing until the fill-

level reaches its limit B. The fill-level increasing period Y' 2' is symmetric to the fill-level

N ai x MSSi
decreasing period XrY', and thus takes the same time period (R - 5-,.)I C

i=l 1 R n i 2 .

' Notice here that the total input rate to the buffer is =R, however, the total output rate of the flows is C I;:?, C l;_r
>R,

because the input rate to the buffer . , is a delayed value of kcy- .

A buffer overflow event is generated at point Z'. After the backward delay BD, the

congestion signal is propagated to all the AIMD flows, and then causes a system state

jump from Q'to P'! At state P': the system is back to a similar condition to point P'.

N

Point P "is similar to point P' because i) the sum of the output rate 1;- ,.. is guaranteed
i=l

to be less than R. Otherwise all the flows rate will keeps backing off until the total rate is

less than the bottleneck, according to the packet conservation rule of the congestion

N

control; and ii) the input rate to the buffer <-F is still higher than R before the flows'
i=l

rates at PNpropagate to buffer. Since Point P"is similar to point P', the system keeps

repeating the above process again.

As further proof, we divide the system migration along a trajectory into multiple rounds.

The system state from any point would go across the plane fl=B followed by a state-

jump. We let the state-jump be the end of each round. Thus, each round starts with a state

just after a backing off upon a congestion signal, and ends with the state jump on the next

congestion signal.

To verify that the trajectory starting from the point P in Theorem-1 is a limit cycle, we

need to prove that the trajectory comes back to P.

From the parameter constraint (A1.3), we can have

From the definition of point P in (Al. I), we can have

and combined with the definition of R ' in (A1.2), we have

N

From (A1.5) and (A1.7), we know that zq < R. Therefore, for the state of point P, we
i=l

N

have q-, < R and thus, according to (3.8), although point P is on the planefl=B, there
i=l

are no immediate state transitions from point P. According to Step-I, we know eventually,

the system state will come back to planefl=B again and again. Let us assume the very

next state on plane fl=B before backing off is Q=[rl-Q,, ~ Z Q ,
T ..., rNg] . According to the

state migration procedure in Step-I, the time period for the system migrate from P to Q is

And the position of point Q can be calculated based on (Al.l), and (A1.8)

According to (A1.9), after the state jump happened on point Q, the state after the jump is

exactly point P. Therefore, the specific trajectory described in the Theorem-1 is a closed

and passing through point P. This proves that the system trajectory with P on it is a limit

cycle. The period of the limit cycle once is equal to TP-~, which can be written as

If all flows have the same a parameters a n d p parameters, we have

As defined in Step-I, each round starts with a state just after a backing off upon a

congestion signal, and ends with a state jump on the next congestion signal. We compare

the distance of the system state at the beginning of every round to the point P in

Theorem- 1 . If the distance is converging to zero, it indicates that the system state vector

is approaching the limit cycle. Furthermore, we know if the system state ever reaches the

above limit cycle, it will stay on it, unless there is noise to cause the system state to leave

the limit cycle again.

We assume that the system states of the flows start from a random initial condition

P =[r; +4,5 t-g,.. ;rN + ~ L , f l ~ , and the system states arrive at

P" = [r, +A,", r2 +A:, . - ., rN +A", B]' after one more round. The position of the system is

represented in a way to emphasize the distance from the one state to the point

P = [r , , r, , . .-, rN , 131T . If we can prove that the distance A: on each dimension becomes

smaller and smaller, then we know that the system state gets closer to P.

Aca;,' The way we prove the distance becoming small is to prove the ratio i=, is always
N

less than a constant that is smaller than one. To prove this, we first derive the following

relationship between A: and A:

To derive the relationship, we have

" 2 - p i
and since R'= - (r, + A)), we have

j=1 1-p ,

a, MSS,
r, + ~ l = (l - p ~) [r , +A: + x (r - A)] (A1.13).

R n i 2 , a, MSSi j.1 1 - pj

Since A: and A; are independent of ri, we have

a, MSS,
Let A, = , and rewrite the above equation as

R ~ T , ~

Because 0 < p < 1, we can have the following relationship from (A1.15):

(Al. 14).

C(A;)'
Thus we proved that '=' 2 (rnin[pl,p2 ,..., p,]-1)' < 1 when 0 < p < 1, which

indicates that the distance to the limit cycle becomes smaller as time goes by. Therefore,

we know that the product of that formula with the next formula, etc., will result in the

product of various numbers that are all less than one. As time goes to infinity, the

distance to the limit cycle approaches zero. Thus, the limit cycle is stable.

Appendix A2

GAIMD Throughput and Buffer Requirement

A.2.1 Average Throughput of a GAIMD Congestion Control

For a flow that uses GAIMD algorithm described in (2.2), we can estimate its throughput given

its packet loss probability p.

Rate

4 - Transmission Rate

Time
t 1 tz

Figure A2.1: Throughput Derivation for an AIMD flow

Figure A2.1 illustrates the flow's rate oscillations along the time, assuming the flow's packet

losses are evenly distributed along the time. Because of these periodic packet losses, the flow's

congestion window shows a saw-tooth pattern. We assume the flow's congestion window size

reaches W upon the arriving of every packet loss event, and backing off to (1-P)W after the event.

Thus, the flow's rate keeps oscillating between W/R7T and (1-P)W/RTT.

Since a GAlMD flow increase its window size by a*MSS per RTT, the time for the flow's

congestion window increasing from fi W to W can be derived by:

The total amount of data sent out during this time (t2-t,) is indicated by the area of the shaded

region abcd, which can be derived as:

Since one packet of every Area(abcd)/MSS amount of packets is lost and the packet loss

probability is p, we can have

1 Area(abcd) 2~ - /?'
W 2 - - - - -

P MSS ~ & S S

Thus, we have

x MSS

W = r

Finally, the average throughput of the flow can be derived by:

For TCP with AIMD parameter a=1 and P=%, its throughput can be expressed as

If an GAIMD flow wants to have the same average throughput as TCP when they share the same

RTT, packet size MSS, and packet losses rate p, the GAIMD flow's a and P parameters have to

satisfy the following equations:

which can be further simplified as

A.2.2 Buffer Requirement of a GAIMD Congestion Control

The rate of a GAlMD flow varies because of its way probing bandwidth and making congestion

avoidance. Once the transmission rate is lower than the receiver play out rate, users will perceive

the transmission rate oscillations unless there is receiver side data buffering. Receiver side

buffering is a popular way to tolerant this rate oscillation. The amount of receiver-side buffering

is needed for the transmission rate to catch up the playing out rate.

Figure A2.1 shows a GAIMD flow with a playing out rate R. We assume the GAIMD flow's

transmission rate periodically varies from (1-f3) * W / RTT to WIRTT.

Since the playing out rate can not be higher than the average the transmission rate, (Otherwise, it

will run out the receiver side buffer), the playing out rate is limited by:

W W
R = (-+(I-P)-112

R17T RTT

With this playing out rate, the required data buffering size to avoid receiver side buffer underflow

is equal to the area of triangle abc in Figure 2.1, which is:

Since playback rate R is equal to the average of the transmission rate, we have

2 w=- R x RTT , and the receiver-side buffering is
2 - P

1
Aabc = - P x(----)~ x R' x R T T ~

2aMSS 2-p

Biographical Note

Kang Li received his B.S. from the computer science department in Tsinghua University,

Beijing China, 1995. He joined Oregon Graduate Institute in 1997. f i s research interests

include network congestion control, network measurement, operating systems, and

multimedia applications.

