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Abstract

A Migratable User-Level Process Package for PVM

Ravindranath Bala Konuru

Oregon Graduate Institute of Science & Technology

Supervising Professors: Steve Otto and Jonathan Walpole

This dissertation studies an approach to supporting efficient processor virtualization

and dynamic load balancing for message-based, parallel programs.

We propose the User-Level Process (ULP) abstraction that can be used to imple-

ment efficient local communication and transparent migration. The viability of ULPs is

demonstrated through UPVM, a prototype implementation of the PVM message pass-

ing interface using ULPs. Typically, PVM programs written in Single Program Multiple

Data (SPMD) style need only be re-compiled to use this package. The design of the pack-

age is presented and the performance analyzed with respect to both micro-benchmarks

and some complete PVM applications.

Finally, we discuss aspects of the ULP package that affect its portability and its

support for heterogeneity, application transparency, and application debugging.
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Chapter 1

Introduction

This thesis is concerned with supporting simple and high performance message-based

parallel computing on Distributed Memory Multiprocessors (DMMPs). A DMMP is

a set of processors, each with its own memory and connected via an inter-connection

network (see Figure 1.1). Each processor considers its own memory to be local, and

that belonging to a different processor remote. Access to remote memory requires the

intervention of the processor local to that memory. Because of this restriction, DMMP

architectures are also called NORMA (No Remote Memory Access) architectures. Each

processor has an operating system (OS) that manages the processes on that processor

and services system calls. By far the most widely used approach to writing programs for

DMMPs is message-based programming. Typically, it involves coding the application

as a group of virtual processors (VPs), each VP sequentially executing its own code

and using message passing calls such as sendO and receiveO for communication and

synchronization.

An example ofthe DMMP architecture is the Intel Paragon, IBM SP2, or any network

of workstations (NOWs). With the advent of high-performance processors and high-

speed networking, NOWs have become an attractive and economical alternative to super-

computers for parallel computing [Tur93, KN93, BBB+93].

An emerging characteristic of modern DMMPs is that they are being used as multi-

user, multi-tasking systems. In this multi-user environment, the number of parallel

applications executing can vary unpredictably and the DMMP nodes themselves may

"belong" to different users (particularly in the case of NOWs). Such an environment

1
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Processor Memory

Interconnection

Network

Processor Memory Processor Memory

Figure 1.1: Distributed memory multiprocessor architecture

raises several difficult problems that limit application performance and overall system

resource utilization.

First, the end-to-end message communication latency on a DMMP is typically large

when compared to that of a local memory access, and can have a significant effect on

application performance. Consider the following commonly accepted application cost

model, in which the program is assumed to alternate between computation and commu-

nication phases and communication takes a time linear in message size, plus a start-up

cost [FJL+88]. Using this model, the program run time is T = tcompute+ tcommunicate

and tcommunicate = ncomm (tstart + lmsgtbyte), where tstart is the message startup-cost, tbyte

is the time per byte transfer over the communication medium, lmsg is the length of the

message, and ncomm is the number of communications. Note that since the processor is

used to execute message startup code, the actual time (tcpu) spent on the processor is

the sum of tcomputeand (ncommtstart). Thus one can rewrite the equation for program

run time as T = tcpu+ ncommlmsgtbyte'

In order to achieve 90% of the peak processor performance, a programmer has to
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divide the application into large partitions for achieving a computation to communication

ratio that is sufficiently high to guarantee tcompute~ 9tcommunicate' Large partitions

result in better processor locality and reduce inter-processor communication. However,

having such large partitions tends to reduce application parallelism and increase overall

application run-time.

If message communication can be overlapped with the application's computation

though, the application run-time is given by the equation

This approach allows the partition size to be reduced until the second term (ncommlmsgtbyte)

dominates. Smaller partitions imply higher application parallelism and can therefore re-

duce overall application run-time.

Second, the distribution of load among allocated processors significantly affects ap-

plication's performance. Assume that an application's computation is equally divided

among these processors. If some of the processors have more load than others, appli-

cation performance is then limited by the computation speed of the processor with the

heaviest load. Schemes to achieve load balancing can be static or dynamic. A static

scheme is one in which the application load is distributed across the allocated processors

based on their load at application startup. However, such schemes are suitable only in

those cases where the application load can be predicted accurately and is executed on

a fixed number of processors. On DMMPs where processors loads are unpredictable,

dynamic load balancing schemes have been shown to be superior to static schemes in

terms of application performance [ISB86].

Third, the use of NOWs introduces the need to manage workstations belonging to

different users. An application belonging to one user should only use the "idle" or un-

utilized cycles of another user's workstation. If the owner requires more cycles of her

workstation, the parallel computation must use fewer cycles, or treat the workstation

as lost and evict the computation from that workstation. In other words, the parallel

computation should be unobtrusive [LLM88]. Workstations can also be lost from a
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parallel computation when there are shutdowns for maintenance or OS upgrades. The

need to deal with evictions such as these, and to utilize newly available workstations

means that parallel applications on NOWs must be able to adapt to changes in in the

number of processors allocated during execution and continue to run efficiently.

a) Initial processor allocation b) Processor fragmentation

c) Processor allocation without remapping d) Processor allocation with remapping

Figure 1.2: Processor fragmentation and use of dynamic reallocation

Finally, preventing fragmentation of DMMP resources is an important issue and can

have a significant impact on application performance. Large DMMPs typically have

multi-hop topologies [NM93]. That is, the communication between two processors can

involve intermediate processors and the physical communication channels are shared.

Such DMMPs, when used over long periods of time by applications with varying levels

of parallelism, can experience processor fragmentation. For example, Figure 1.2 shows a

mesh-based DMMP. After applications 2 and 3 terminate, the available processors in the
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mesh are not localized instead, they are fragmented across the DMMP. If these processors

are allocated to an application, the communication between application's VPs contends

for the shared channels with the communication of other applications. SeeFigure 1.2.(c).

If these applications are long-lived, both application and overall system performance

degrades. This degradation can be especially significant for workstation networks where

it is typical for a single organization to divide its workstation network into sub-nets

connected through gateways or bridges. In such cases, the communication cost increases

significantly with the number of hops (number of gateways crossed). Contention can

be reduced by dynamically reconfiguring the applications on to processors such that

the number of shared channels among applications is minimized. In Figure 1.2.(d), the

shared channels have been reduced to zero.

As will be shown later in this chapter, attempts to resolve these concerns by appli-

cations programmers result in programs that are complicated to write and difficult to

debug. The goal of this thesis is to develop system-level abstractions and software that

shield the application programmer from the complexity of these issues while maintain-

ing high application performance and achieving efficient utilization of system resources.

Specifically, we propose a software layer that:

. Supports virtual processors (VPs) that are simple-to-use and have sufficiently low

overhead to encourage over-decompositionl [VaI90].

. Supports dynamic and application-transparent VP migration.

. Is programming-language independent.

. Supports legacy, process-based, messagepassing with little or no rewriting.

In the following sections, we argue that these features reduce application program-

ming complexity and offer the potential to achieve high performance.

lThe use of more VPs than there are physical processors
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1.1 The case for over-decomposition

Message passing primitives used by applications can be divided into two broad categories:

blocking and non-blocking. For illustrative purposes, a template application written

using blocking primitives is shown in Figure 1.3.(a) and a possible version of the same

program using non-blocking primitives is shown in Figure 1.3.(b). The semantics of these

primitives are adopted from the Intel NX library [Int91]

Begin main_program

read_my _portion_oCdataO;

send(destnId, databuO;

/* The buffer 'databuf can be reused at this point */

perform_computation_on_my _portionO;

receive(destnid. databuO;

/* databuf contains the message from the process *

* having id =destnId */

compute_based_on_received_dataO;

store_resultsO;

exitO;

End main-program

a) Use of blocking primitives

Begin main-program

read_my -POrtion_oCdataO;

poscsend(destnId, databuf, snd_hdl);

/* The contents of databuf are undefined and cannot *

* be used until the function snd_hdlO is executed */

do_computation_nocusin~databufO;

/* Need databuf contents to go further, block on the *

* poscrequest Id returned by poscsend */

block(rqstId);

/* Now databuf can be reused for other purposes */

rqstId =posueceive(destnId, databuf, rcv_hdl);

/* databuf will contain the message from destnId *

* only when rev_hdlO is executed */

do_computation_in-para1leC with_recvO;

Mask_signalsO;

execute_critical_sectionO;

Enable_signaIsO;

/* Need the message from destnId now. So block until *
* the receive has actually completed */

While (rev _nocdone(rqstId» busy _ waitO;

complete_rescoCcomputationO;

store_resultsO;

exitO

End Main_program

b)Possible use of non-blocking primitives

Figure 1.3: Use of blocking versus non-blocking primitives

Consider Figure 1.3.(a). The program reads the input data and sends the contents

of databuf to the VP identified by destnld. The blocking semantics of sendO specify

that databuf can be modified when the program returns from the call and that the
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message sent will always correspond to the contents in databuf at the time of sendO.

The program then performs its computation until it needs data from destnld. It then

invokes the blocking receive primitive receiveO. This call causes the calling process to

block until the message from destnld is received by the underlying operating system

and placed into databuf. After returning from the receive call, the program performs

some computation on databuf, stores the results and exits.

Blocking semantics, in combination with a one-to-one mapping of VPs to processors,

can result in poor processor utilization, thereby degrading application performance. This

under-utilization of processors can occur due to one or both of the following reasons:

. If an application's VPs are not executing in phase, then executing a blocking

receiveO causes a VP to block until a) the corresponding sendO is executed by

the destination VP and b) the message is delivered to the source VP. Even in the

absence of hardware support for communication, the portion of time spent blocking

for event a) to occur is better utilized for computation rather than blindly waiting

for a communication that has not yet occurred.

. If hardware support for communication does exist, then blocking semantics can

result in unnecessary serialization of certain operations and result in a VP being

blocked longer than really needed. For example, because of the communication

hardware, it is possible for a VP to execute on the processor while a message is being

copied into its message buffers by the communication hardware. However, because

of the blocking semantics, the VP has to be blocked until the communication

hardware finishes copying the message into the VP's message buffers.

Thus, to achieve optimal processor utilization, it is essential that the message commu-

nication latency is hidden by overlapping message communication with the application's

computation.

Programming with non-blocking message passing primitives is one way to achieve

this overlap. Typically, non-blocking communication involves posting a request for com-

munication, and using a variety of mechanisms to check for completion of the request.
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The important characteristic is that the VP does not block when it posts a request.

Non-blocking communication is useful with or without the presence of communication

hardware.

In the absence of communication hardware, a VP can at least eliminate the time

spent in a blocking receiveO waiting for the message to arrive. One approach is to poll

the OS for the arrival of the message while performing computation. The VP blocks only

when all further computation is dependent on the receipt of the message. This reduction

in blocking time improves processor utilization and consequently performance.

In the presence of communication hardware, non-blocking sendO and receiveO

can be used such that hardware supported communication can occur in parallel with

computation. This parallelism improves processor utilization and thereby performance.

Figure 1.3.b shows the non-blocking post-8endO, that requests the underlying mes-

sage system to perform the send operation. The VP is then free to continue its computa-

tion in parallel with the send operation until it reaches a point in the control flow where it

needs to reuse databuf for some other operation. At this point, the program executes the

statement block (rqstld), where it waits for the send to complete. The post..reeei ve 0

statement informs the underlying message system that rev..hdl () should be invoked af-

ter the message requested is available in databuf. The program is then free to overlap

its computation with the receipt of data into databuf. This approach is in contrast to

a blocking receive, where a program has to remain blocked for a message to arrive and

then be copied into databuf. Finally, when databuf needs to be accessed, the program

checks for completion of the receive and performs the rest of the computation.

Such a program using non-blocking primitives overlaps its communication with com-

putation, reducing the time spent waiting for completion of message communication,

and consequently improving performance. However, notice the relative increase in the

size and complexity of the program. Because of non-blocking message semantics, vari-

ables and data buffers can change concurrently with program execution as a result of

previously posted, non-blocking requests. To manage this complexity, programmers

may have to protect sections of their code that require sequential access (as shown by



9

Mask-BignalsO and Enable-BignalsO in the example). In short, non-blocking com-

munication can improve performance but results in a significant increase in application

programming complexity [FM92b]

An alternative and a much simpler programming approach for achieving overlap of

communication with computation is to write a program using blocking primitives and

instead of creating one VP per allocated processor, create multiple VPs per processor.

Such a technique is called over-decomposition [VaI90]. When one VP blocks, the un-

derlying VP system simply schedules another VP. This scheduling essentially achieves

an overlap of one VP's communication with another VP's computation. Using over-

decomposition, application programmers can gain the software engineering benefits of

coding with blocking message primitives.

1.2 The case for dynamic and transparent VP migration

System-level support for dynamic and transparent VP migration is a step towards reduc-

ing application programming complexity that stems from explicit management of load

distribution within the application.

The programming complexity due to load-distribution depends on the parameters

considered and the adaptiveness of the load-distribution scheme. The simplest schemes

are static load-balancing schemes that assume that the application is allocated a fixed

set of processors that are dedicated to the application or those for which the load remains

relatively unchanged during application execution.

However, in a multi-user DMMP environment, this approach is not suitable both

for the reasons of functionality and performance. Static schemes do not monitor and

react to execution time events such as changes in processor load and processor owners

requiring more cycles from their respective processors. This lack of adaptiveness in static

schemes may degrade application performance, but more importantly, it is unacceptable

for multi-user DMMPS like NOWs where unobtrusiveness is essential.
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Adaptive load-balancing schemes perform dynamic load distribution based on in-

formation collected at execution time, such as processor, network, memory usage, and

on dynamic changes in processor availability. The programming complexity of these

schemes comes from an inherent need for inter-processor communication for collecting

system information, reaching consensus, signalling and load re-distribution [Zh087].

One way in which adaptive applications can be written is to do some sort of polling for

system status periodically during their execution and respond to any changes in system

status. If the polling is frequent, it improves the application's responsiveness to changes

in system status. However, frequent polling degrades applications performance. On the

other hand, infrequent polling reduces the cost of polling but results in slower reaction

times to changes in system status. Unfortunately, slower reaction times are unacceptable

for NOWs, where unobtrusiveness is essential.

An alternative method of programming the application is to define and establish

asynchronous event handlers for such eviction events. Such an approach is undesirable

as it re-introduces asynchronous programming complexity within the application.

We therefore suggest that transparent VP migration be provided by VP systems.

Such support has the following advantages. First, load-distribution can be achieved by

migrating VPs instead of programmers explicitly writing application-specific code that

redistributes the application's computation among the allocated processors. In other

words, programmers are freed from having to think about load distribution mechanisms.

Second, because the load-distribution scheme is now independent of the application's

data structures and based on VP migration, application programmers are freed from

having to think about load-balancing schemes.

Finally, in conjunction with over-decomposition, a VP system that supports trans-

parent VP migration has the ability to perform better load balancing than one without

over-decomposition. This superiority stems from the fact that a larger number of smaller-

size VPs can be distributed more evenly than a smaller number of large-size VPs. The

underlying VP system can also use transparent migration to perform global resource

management for improving overall system performance.
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In summary, transparent VP migration frees application programmers from the bur-

den of monitoring physical resources and dynamic changes in processor availability. Pro-

grammers can think and code solely in terms of the parallelism within their application.

In addition to reducing the complexity of application programming, the underlying VP

system can use transparent migration for better load-balancing and global resource man-

agement.

1.3 The case for supporting process-based, legacy applica-

tions

There already exists a large body of process-based message-passing applications written

in languages such as FORTRAN and C and extensively used on DMMPs. In addition,

many programming language specific support libraries and tools are available that make

parallel programming an easier task. Requiring the applications to be re-coded to take

advantage of the features of a new VP system can be impractical in many cases. The

application may be too large and complicated or the original application writers may

no longer be available. To support this legacy of existing tools and programs, our

approach must be programming-language independent while supporting process-based

applications.

1.4 Thesis statement and contribution

Our thesis is that message passing systems that support light-weight and transparently

migratable VPs can be used to ease the programming complexity of unobtrusively achiev-

ing high application performance in multi-user DMMP environments.

We examine current approaches to building VP systems and show how they fail to

meet the goals of this research. We define the ULP abstraction, a new kind of VP that

is compatible with the process abstraction. This compatibility allows the wide body

of existing process-based applications and application programmers to use ULPs with

little effort. The most important distinction between a process and a ULP is that, unlike
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a process, a ULP does not define a protection domain. Multiple ULPs of the same

application execute within a shared protection domain and the hypothesis is that this

characteristic leads to an efficient, light-weight VP implementation.

In order to validate our hypothesis, we have built UPVM, a ULP-based prototype

package that supports PVM, a widely used message-passinginterface [GS92]. The perfor-

mance of the ULP-based prototype is evaluated against both micro and application-level

benchmarks and a side-by-side comparison with the standard process-based PVM li-

brary. The comparison shows that ULPs are viable and that light-weight VP support

can be provided in a language-independent, application independent and application-

transparent manner.

While the dissertation addressesthe mechanisms necessary for implementing the ULP

abstraction and migration, it does not deal with the higher-level issues such as policies

for allocation of ULPs to processors, finding idle processors, deciding when and where to

migrate, etc. Neither do we address processor and network failures. These related issues

are addressed elsewhere [GS93, LP93, CK79, HJ86, FZ86, BR94, Bir93].

1.5 Dissertation organization

The remainder of the dissertation is organized as follows. In Chapter 2,we expand on the

basic ideas of light-weight VP systems and identify the set of requirements that they need

to satisfy in order to be used for message-basedparallel computing. We then examine

current approachesto building VP systems with respect to these requirements and show

how they are unsatisfactory. Finally we propose and introduce the ULP abstraction.

Chapter 3 discussesthe generalissuesand guidelinesfor designinga ULP system. In

Chapter 4 the overall design approach is applied to the design of UPVM, a ULP-system

supporting the PVM message passing interface. The implementation of UPVM on a HP

workstation network is discussed in Chapter 5. Performance results and a comparison

with PVM are presented in Chapter 6. Chapter 7 presents related work. Finally, we

conclude and outline the scope for future work in Chapter 8.



Chapter 2

Supportinglight-weight, transparently

migratable VPs

In the preceding chapter, we laid out the foundation for choosing a set of VP system

features for supporting application programmers in multi-user DMMP environments.

In this chapter, we first examine common VP abstractions and general approaches to

implementing them. We then explain the requirements and goals of our research and

argue that these abstractions and VP systems are inappropriate. Finally, we introduce a

new VP abstraction, called the ULP, and discuss how it can be used to meet our research

goals.

2.1 Common VPs and implementation approaches

A variety of virtual processors have been defined in the literature that model different

processor architectures, and depending on the platform on which these VPs are imple-

mented, they offer different trade-offs in functionality versus performance.

With respect to the processor architecture exported, VPs can be categorized into the

following general models :

. UMA: A VP abstracts a processor in a shared memory multi-processor machine

with uniform memory accesstimes. The Sequent Symmetry [LT88]and the Encore

Multimax [Cor87]are examplesof shared memory multi-processors.

13
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. NUMA: A VP abstracts a processor in a shared memory multi-processor with a

non-uniform memory access times. That is, the concept of local and remote mem-

ory is supported such that local memory access time is less than remote memory

access time. The BBN Butterfly [Inc87] is an example of a NUMA multi-processor.

. NORMA: A VP abstracts a processor in a multi-processor with no remote memory

accesses. Communication among VPs can occur only via message passing. The

Intel Paragon, nCube, and NOWs are examples of NORMA multi-processors.

. Hybrid: A VP abstracts a combination of one or more of the architectures above.

A common hybrid architecture is a NORMA multi-processor with each processor

exporting a UMA model. Such an architecture is exhibited by a network of shared

memory multi-processors.

With respect to this classification, a multi-user DMMP can be labeled as a multi-

user NORMA architecture in which it is possible for processor loads and the number of

processors available to change during application execution. One of the main goals of this

research is to hide the complexity of managing this varying number of processors from

applications. This support for hiding implies that a VP system on a multi-user NORMA

platform must be able to migrate VPs transparently based on processor availability.

In the rest of this section, we define and discuss common VP abstractions. For

each abstraction, we identify the processor architecture it models, outline typical imple-

mentation approaches, and discuss the inherent costs and programming complexity of

supporting a dynamic, transparently migratable VP system using that abstraction.

2.1.1 Process

The process abstraction, as implemented by operating systems such as NX [Int91], DE-

MOS/MP [PM83], and early versions of UNIX [RT78], abstracts a NORMA processor

model.

The typical implementation of processes within an OS is as follows. The NORMA

model is realized by mapping the memory of the process as a protected virtual address
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space and thus a process cannot access outside this space. The process address space

contains its code, data, and stack segments. The stack is used for procedure-based

execution of the code segment. In order to simulate the execution of a process, the OS

sets the current processor address context to that of the process and executes the process

code in that context.

In the presence of multiple users, the integrity of the OS has to be preserved so that

the process abstraction is uncompromised. For this purpose, three important issues have

to be taken care of. First, the OS code and data must be protected from inadvertent

or malicious accesses resulting from process execution. Second, there must be way of

regaining control of the processor by the OS so that it can schedule another process.

Third, there should be a controlled method by which processes can invoke the OS to

perform operations such as process creation, termination and IPC.

The protection issue is resolved by placing the OS code and data in a separate

protection domain and with a higher privilege. Process code is always executed at lower

privilege.

The issue of regaining control is achieved by scheduling a hardware timer interrupt

before executing the process code. Thus, even if the process code contains an infinite

loop, the timer interrupt transfers control to the OS interrupt-handling code that can

then schedule and dispatch a new process for execution.

The OS invocation issue is resolved by providing processes with access to special

procedure calls called system calls. System calls typically cause a hardware trap to

occur that causes a change in execution privilege to that of the OS. Code within the OS

that is associated with the hardware trap is then executed. In this way, the OS code can

now execute in the context of the process. Typically a kernel stack is also allocated by

the OS to each process and it is this stack that is used by OS code to execute system

calls on behalf of the process. Since a process stack is used for executing the process

code, a switching of stacks occurs during the execution of a system call.

In order to preserve the abstraction of a dedicated processor on a real shared pro-

cessor, the OS implements context switching for processes. This operation potentially
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involves updating the processor memory management hardware (TLB, mapping regis-

ters, cache) in addition to saving and restoring the register state. When to perform

context switching and which process to schedule is decided by a scheduling strategy that

is implemented within the OS.

Given this OS implementation of the process abstraction, several observations can

be made regarding the complexity and cost of process-related operations. First, all

process-related operations need to invoke the OS via system calls. Thus on system-

call invocation, OS processes incur the overhead of switching privilege and protection

domains, switching stacks, and potential copying between protected address spaces. Be-

cause processes are protected from one another, IPC between processes even on the same

hardware (local IPC) requires OS intervention. Typically, IPC requires copying the mes-

sage first into OS space and then copying it into the destination process. Although,

certain virtual memory mapping techniques reduce the need for actual message copying,

they are not always applicable [YJR+S7].

Second, since the process abstraction and scheduling is implemented within the OS,

it is typically not possible to customize the process abstraction or the scheduling policy

to the individual needs of applications. Thus an application may incur overhead because

of certain features of the process implementation, even though it does not need them.

Third, because of the various cost factors discussed above, context switching also

becomes expensive enough that application programmers using processes on a NORMA

multi-processor resort to using non-blocking communication primitives for overlapping

communication with computation instead of using the much simpler over-decomposition

technique.

Finally, given this process abstraction, transparent migration of processes among

processors is relatively simple for both shared memory and NORMA multi-processors.

On a shared-memory multi-processor, saving the register context of the process on its

kernel stack and handing over the process data structure to the destination processor is

sufficient to achieve process migration.

On a NORMA multi-processor however, since each processor implements its own
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virtual address space, the execution context of a process must be captured and explicitly

sent over the network to the destination processor. Because the process execution state

is clearly captured by the protected address space and the register context, it is easy

to see that process state transfer can be achieved in a relatively simple manner. Once

the process state is transferred from the source processor to the destination processor,

it is as if the process had never executed on the source processor. That is, there are no

residual dependencies [D091] resulting from the migration.

Modern operating systems, to support a notion of shared memory among processes,

have extended the process abstraction to abstract a hybrid NORMA multi-processor

with some amount of shared memory [CHKS86, SUN88, LMKQ89]. In the sequel, this

process abstraction that exports this hybrid model is referred to as the hybrid process

and the simpler process abstraction that exports a NORMA model as a pure process.

To support the hybrid process abstraction, modern operating systems provide system

calls, in addition to those for pure processes, via which processes can typically create

shared memory of certain size and map it into their address spaces [LMKQ89]. Accesses

to the shared memory does not require OS intervention. Thus, processes can either

perform IPC using system calls or communicate directly through the shared memory.

Synchronization primitives are also provided by the OS so that processes can coordinate

their shared memory accesses.

Many of the statements made about pure process implementations are still valid for

hybrid process implementations. Operations such as process creation, termination, non-

shared memory communication, context switching and scheduling are implemented in

the OS and require the process to invoke system calls. Thus this approach also incurs

the overhead of crossing protection domains for VP operations. Further, implementation

of scheduling policy and the process abstraction in the OS precludes customization by

applications.

The cost of shared memory accesses depends on whether the OS implements the

hybrid process abstraction on UMA multi-processor or NORMA multi-processor hard-

ware. On a UMA multi-processor, once the shared memory is mapped, accesses to it do
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not require OS intervention and thus communication via shared memory will always be

faster than communicating with the cooperating process via system calls. Also, trans-

parent migration of hybrid processes within a UMA multi-processor is similar to that of

pure processes, since shared memory is globally accessible to all processors of the UMA

multi-processor.

On a NORMA multi-processor, however, supporting shared memory across proces-

sors requires software support, because there is no physically shared memory between

the processors. The OS can implement a software support layer known as distributed

shared memory (DSM) across processors [NL91]. The OS dynamically manipulates page

protections and reacts to protection faults to implement the shared memory abstraction.

In other words, the DSM layer transforms the NORMA multi-processor essentially into

a shared memory multi-processor. Thus transparent re-mapping for hybrid processes is

much more complicated than for the pure processes and the performance of the shared

memory abstraction depends on the efficiency of the DSM layer and memory access

patterns of the processes that use shared memory.

2.1.2 Threads

Threads are simply the abstractions of processors in a UMA multi-processor and thus

exports a UMA model of computation. In this model, programs are written as a collection

of VPs, all executing and communicating in the context of the same shared memory.

Thread abstractions have been implemented at both OS and user level [ABB+86,

RAA+88, Doe87, FM92b]. Typical implementation of a thread in an OS is as follows.

Each thread is defined by its processor register state, a stack that is used to execute

application code, and the address space in which it executes. Several threads can share

the same address space. In order to simulate thread execution, OS code first checksif the

current address space is that of the thread. If it is, the OS loads the processor register

set and the program counter with the corresponding register values from the thread's

context. Such a load operation results in the thread's execution in the appropriate

address space. Thus context switching among threads that belong to the same address
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space does not need to update the memory management hardware and can typically

achieve at least an order of magnitude improvement in performance over that of processes

[ALBL91]. However, it does require OS intervention to save and restore registers and

execute the scheduler code.

Also, just as in the process implementation, the combination of a protected OS, hard-

ware interrupts and system calls are used to preserve the integrity and the functionality

of the OS. For all thread operations such as thread creation, suspension, resumption,

and termination, the OS has to be invoked through system calls. In addition, thread

scheduling and context switching is implemented within the OS. Thus the cost of crossing

protection domains (for system calls and context switching) and the lack of customiz-

ability exist for OS implementation.

However, unlike a pure process, threads communicate entirely through shared mem-

ory without requiring OS intervention. This use of shared memory makes local commu-

nication costs the same as that of memory accesses.

The complexity of supporting transparent migration depends on the underlying hard-

ware. On UMA or NUMA hardware, transparent migration is similar to that of processes:

save the register state of the source processor on the thread's kernel stack, set the mem-

ory management hardware of the destination processor to the thread's address space and

load the processor registers from the thread's kernel stack.

On the other hand, NORMA hardware requires more support from the as. Like the

support required for transparent re-mapping of hybrid processes on NORMA hardware,

the OS must provide DSM so as to export a shared memory multi-processor abstraction

to thread-based applications. Just as in the case of hybrid processes, the performance of

the thread application on NORMA multi-processors is directly related to the efficiency

of the DSM implementation and the access patterns of threads.

In order to reduce OS intervention, threads have been implemented at the user level,

outside the OS, and have shown an order-of-magnitude improvement in performance

over their OS counterparts [MSLM91]. Thus all thread operations can be performed

without OS intervention. The scheduling policy is customizable because it is part of
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the user-level thread library. User-level thread libraries have been built that schedule

user-level threads on one or more OS VPs [FM92b, BLL88, PKB+91].

Since user-level threads execute on VPs provided by the OS, thread migration deals

with the problem of moving the execution of a user-level thread from one OS VP to

another. Given an OS that exports a UMA or NUMA model to applications, migrating

user-level threads is similar to that of migrating an OS thread from one processor to

another on a shared-memory multi-processor.

The disadvantage of user-level thread libraries is that they can be corrupted by

errant thread execution. However, since the libraries are outside the OS, the damage is

restricted to the address space in which the errant thread executed.

Another disadvantage of user-level approaches is the potential integration problems

with the as. Typically, the OS is unaware of the multiple user-level threads executing

above its VPs. It is therefore possible for an entire set of user-level threads to be blocked

because of page fault or I/O calls of one user-level thread [ABLL92, MSLM91]. We will

revisit integration problems in Chapter 7.

Modern operating systems have extended the thread abstraction to model NORMA

multi-processors with UMA nodes. In this hybrid model, parallel computation is viewed

as groups of threads communicating through shared memory within the group and using

explicit messages for inter-group communication. In the sequel, threads that export this

hybrid model will be referred to as hybrid threads and those that export a pure UMA

model as pure threads.

Hybrid threads have been implemented by the OS and by user-level libraries above the

as. The OS implementation is essentially the same as that of pure threads except that,

in addition, message communication between threads is implemented and system calls

are provided to perform IPC. Thus all thread operations except intra-thread-group com-

munication incurs the overhead of crossing protection and privilege domains. Further,

the thread abstraction and scheduling is not customizable because of the implementation

in the OS.
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Transparent migration of hybrid threads can be discussed under two cases: a) migrat-

ing threads within a group and b) migrating threads between groups. Within a thread

group that follows the UMA model, transparent migration is similar to that performed

for pure threads. However, transparently migrating between different groups is not pos-

sible. Since each thread group belongs to a different UMA processor, thread groups

have distinct address spaces. Since threads in this model are tied to an address space,

migrating between address spaces does not make sense.

Hybrid threads are also supported by user-level libraries to reduce OS-entry costs.

The same performance, complexity and OS integration arguments as for pure user-level

threads apply here.

2.1.3 Language-based VPs

In addition to the approaches above for implementing VPs that are language indepen-

dent, languages or run-time systems have been proposed and implemented that either

define new kinds of VPs or integrate familiar abstractions such as process or thread into

the language or the run-time system. In this section, some representative approaches

are discussed.

High Performance FORTRAN (HPF) [For93] is a data-parallel language that provides

a master-slave, UMA model of computation. In this model, a HPF program essentially

executes as a sequential program except during the execution of a parallel construct. At

this point, multiple VPs are allocated to the application and execute the computation

specified within the parallel construct in parallel. The same instruction stream is used

by all the VPs. The program data is globally accessible to all VPs and thus these VPs

are essentially threads. The number of threads required and the data alignment and

distribution needed can be specified explicitly by applications. The compiler, for reasons

of performance and functionality, may use different techniques to map the computation

model to target hardware.

Data Parallel C (DPC) [HAJLQA91], in contrast, exports a master-slave, NUMA,

SIMD model of computation. In this model, a DPC program consists of sequential
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and parallel parts, the sequential part executing on the master VP and the code in the

parallel portion is executed by all the slave VPs. Each slave VP has its own memory, and

access time for local memory is smaller than that for accessing the memory of another

VP (either slave or master). Thus the DPC VPs are essentially threads on a NUMA

multi-processor, with one thread having different functionality than all the other threads.

The number of VPs and the data decomposition required by the program is specified

at compile time. The language has been implemented quite efficiently on both UMA

and NORMA multi-processors. Further, the SIMD model has been used to implement

transparent re-mapping across NORMA multi-processors with heterogeneous processors.

Amber [CAL+89], COOL [LAJ91], and Emerald [RTL+91, Ju189] are distributed

object-based systems and export a NORMA model of computation because of the prop-

erties of data encapsulation and message-based invocation exhibited by objects. The

VPs defined by these systems are essentially threads that invoke methods on objects in a

shared object space. All the implementations are user-level and all VPs of an application

that are executing on one UMA processor are located in a common protection domain.

Thus, compared to communication between VPs that are in separate protection domains

on the same UMA processor, communication between VPs in these object based systems

exhibits at least an order of magnitude improvement in performance. Also, in all the

three systems, the unit of migration is an object or a collection of objects. Any threads

currently executing within the migrating objects are also migrated to the destination as

a byproduct of object migration.

2.2 Our Goals and Requirements for VP systems

In the context of the discussion above, the goal of our research is to reduce paral-

lel programming complexity by providing applications with a VP system that exports

a dedicated, NORMA multi-processor model of computation and efficiently maps this

model on to a multi-user, NORMA multi-processor with dynamically varying number of

available processors. Further, the mapping must be realized in a language-independent
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manner. In this section, we first present the functionality requirements imposed on VP

systems by these research goals. Second, the performance criteria for evaluating VP sys-

tems are discussed. Finally, we match the requirements and performance criteria with

VP systems discussed so far and argue that these systems are inappropriate.

2.2.1 Functionality Requirements

First, because one of our goals is to support existing parallel applications that obey a

NORMA computation model, the VP system must support processes and message-based

IPC between these processes.

Second, in order to provide a dedicated multi-processor of user-definable size, the VP

system must support multi-programming of processes on the target platform. In other

words, it must support over-decomposition.

Third, because the processor availability on the target platform can vary dynamically,

the VP system, in order to supported a dedicated multi-processor model, must support

application-transparent migration of processes. In other words, the VP system must

be able to migrate processes away from a processor when it is declared unavailable and

utilize newly available processors.

Finally, this functionality must be provided in a language-independent manner so that

the VP system can be also used by existing parallel applications written in conventional

programming languages such as FORTRAN, C and C++ with little effort.

2.2.2 Performance Goals

We divide the performance goals that a VP system should satisfy into static and dynamic

cases. The static case is when the migration mechanism in unused. Thus the static case

focuses on the overhead incurred by over-decomposition. The dynamic case is when the

migration mechanism is exercised.

To encourage programmers to over-decompose their applications, the overhead in-

curred for over-decomposition should ideally be zero. Our goal is to provide a VP system

that has a performance and overheads at least comparable to that of thread abstractions
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that are implemented outside the as. Naturally, such a goal implies that the VP system

should perform better than an OS-based implementation of the process abstraction. To

satisfy this goal, at least the following sub-goals should be satisfied. First, the code in a

VP should run at the same rate, when selected, as in a regular as process. In particular,

very little additional overhead should be incurred during normal course of operations.

Also, an ensemble of VPs should have similar blocking characteristics to OS-processes.

That is, the blocking of one VP should not interfere with the execution of another.

A VP migration mechanism can be used for load-balancing, global resource man-

agement, or for unobtrusive computing on multi-user NORMA multi-processors with

individually owned processors (i.e., workstation networks). Of these goals, unobtrusive

computing makes the most severe demands on the migration mechanism. First, the VP

system should be responsive to processor eviction events. Second, the VP migration

mechanism should be fast so that VPs are off-loaded from a processor that is declared

unavailable.

When there is a conflict between performance and being unobtrusive, the VP system

should favour unobtrusiveness. Thus, the primary performance metric of the VP system

in the dynamic case is a measure of its unobtrusiveness and overall migration cost.

The unobtrusiveness cost can be divided into its three distinct components:

1. The time elapsed from the instant a migration event is sent to the VP system

to the time it detects the migration event. This cost should be in the order of

milliseconds.

2. The time elapsed between detection of the event and the instant the VP system

actually begins migrating a VP. This cost should be in the order of milli-seconds.

3. The time spent in "off-loading" a VP. The VP state is queued for transfer and not

necessarily arrived at the destination. This cost typically depends on the the speed

of memory copy on the target processor, so our goal for the off-loading time to be

close to the memory copying speed of the processor.
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The overall migration cost is the time elapsed from the instant a migration event

was received at the source node to the instant a VP is received and put on a scheduling

queue at the destination node. Thus migration cost is always greater than or equal to

unobtrusiveness cost. We require that the migration cost to be be proportional to the

size of the VP state and close to the bandwidth limitations of the underlying network.

2.2.3 Matching VP systems with the requirements and goals

In view of our requirements, thread based systems cannot be used for this research as

they do not export a NORMA model of computation. The object-system approaches

offer a NORMA model and map VPs to NORMA platforms efficiently. However, to take

advantage of their capability, applications have to be written in the language supported

by the system. This approach violates the language-independence requirement.

The process abstraction appears to be the right abstraction to use and VP systems

that implement the process abstraction (Le., operating systems and message passing

libraries such as PVM, TCGMSG (GBD+93, Har91] that offer a restricted interface to

OS processes) satisfy the research requirements. However, these VP systems do not

evaluate well with respect to the performance goals. Because of the high over-head

of system calls, context switch, and local communication, OS-supported processes are

undesirable. With respect to these attributes, thread abstractions mapped to user level

offer the best performance but unfortunately do not export a NORMA computation

model.

2.3 Our approach

This dissertation presents an approach that combines the low-overhead and multi-threading

benefits of user-level implementations of threads with the migration capability and pro-

gramming model of processes. To this end, a new VP abstraction, the User-Level Process

(ULP), is defined. Like a thread, a ULP defines a register context and a stack. However,

ULPs differ from threads in that they also define a private data and heap space. ULPs
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differ from processes in that their data and heap space is not protected from other ULPs

of the same application. That is, ULPs do not define a protection domain.

Figure 2.1: ULP System

From the application programmer's perspective, ULPs look like as processes. Con-

sequently, existing message-based, parallel applications that use processes as their VPs

can use ULPs with little modification. From the ULP library's perspective, there are

potentially many ULPs per as process. (See Figure 2.1.) All ULPs within a single as

process are scheduled by the ULP library code that also resides in that process. This

means that operations such as ULP context switching and scheduling do not require as

intervention. From the perspective of the as, there is only one process per application

on any given processor. In this way, the parallel programmer's notion of "processor" is

virtualized, while maintaining the efficiency of one as process per physical processor.

The ULP library implements memory management, scheduling and context switching

for the ULPs and the VP interface that applications must use in order to use the library.

An essential part of the VP interface is the message-passing interface that is used by

applications for IPC. ULPs must communicate with each other only via this message

passing interface. Thus, because of the explicit nature of this communication, a ULP's

address space and context is clearly isolated from that of other ULPs. Because of this
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isolation, a ULP's migratable state can be easily identified and migrated without the

danger of inadvertently causing memory inconsistencies.

os processes

High Vinual address

Process VU"tual Address

reserved reserved Space

Low Vinual Address

Hostl r Host2 I. Hosl3

Figure 2.2: Per-Application, network-wide, virtual address space partitioning

A potential problem with migration concerns pointers in the application program.

That is, if a ULP is relocated to a different place in the address space of a process, pointers

might have to be modified. To eliminate the need for this, the mapping of a ULP to a

set of virtual addresses is made unique across all the processes of the application. For

example, consider an application that is decomposed into 5 ULPs across 3 processes, one

process per host. (See Figure 2.2.) If ULP4 is allocated a virtual address region VI on

Host 3, then VI is also reserved for ULP4 on all the other hosts which may be targets for

migration of ULP4, even though it is not currently present on them. Thus, when ULP4

is migrated from Host 3 to Host 1, it is moved into its reserved slot in the application

process on Host 1. Thus no pointers need to be modified. A similar approach is used in

the Amber system [CAL+89].

In the rest of this section, we expand on the brief introduction to the ULP approach

and discuss several criteria that must be considered in designing and developing a ULP-

based system. For each of these criteria, we supply the rationale and point out the
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research constraints that led to its inclusion.

2.3.1 ULP Programmingmodel

For process-based applications to use a ULP-based system with little to no effort, the

programming model exported by a ULP-based system should be that of a process-based

programming model. In other words, writing applications that make use of ULPs should

be similar to that of writing message-passing applications that make use of OS processes.

For this purpose, we require a ULP system to satisfy the following properties.

First, each ULP should provide for variables that are global to all code in the ULP

address space, local or automatic variables that exist for the duration of procedure calls,

and locally scoped static variables. It should be possible for ULPs to have the same

name for a global variable without causing an addressing conflict. That is, each ULP

must have a distinct mapping of the global variable name to a memory location.

Second, ULPs should be able to allocate and deallocate memory dynamically and

this memory should be private to the ULP.

Finally, when a ULP executes a blocking ULP system call which cannot be satisfied

immediately, the ULP system is expected to block the current process and schedule the

next runnable ULP, if any. The policy that dictates which ULP is considered "next"

is not part of the ULP programming model. The only requirement is that ULPs of

the parallel application eventually execute. That is, ULP scheduling must not result in

starvation.

From the definition of a ULP, it is easy to see that first two properties are exhibited

by any system that faithfully implements the ULP abstraction. Like processes, ULPs

define an address space and a single thread of control. Just as with OS processes, ULPs

do not impose restrictions on languages used by programmers to write their applications.

However, application programmers need to be aware of certain critical differences

between the ULP definition and processes as implemented by current operating systems.

First, unlike processes, ULPs do not define a distinct protection domain. It is possible

for two or more ULPs of an application to execute within a single protection domain.
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The rationale here is that VPs of the same parallel application are cooperating with

each other and do not need a protection domain between them unless for bug isolation.

The same rationale is used by thread-based programming models, and we see no reason

why it cannot be extended to ULPS that belong to the same parallel application. Since

the cost of switching protection domains during VP system calls, context switch and

local IPC is avoided, there is better potential for performance than in a process-based

approach. Programmers using ULPs must be aware that the incorrect execution of one

ULP can corrupt the data of another ULP. Note that ULPs of different applications are

still protected from one another.

Second, ULPs are targeted for parallel computing and support a location-independent,

special-purpose interface when compared to an interface supported by a general purpose,

OS-based process implementation. Programs must use only the interface implemented

by a ULP library for doing their computation and communication. The rationale for this

restriction is that OS processes are general purpose and carry a lot of state that is not

necessary for most parallel applications. Further, OS processes allow certain operations

that are location-dependent that complicates process migration [BLL91, D091]. Thus,

special-purpose interfaces can result in reducing the size of a ULP's state and simplify

the task of ULP migration.

2.3.2 Programming interface

The programming interface to a ULP system can be an existing interface such as TCGMSG,

P4, PVM, or NX so that existing applications can be supported, or it can be newly de-

fined which implies that applications need to be written to take advantage of the interface.

For example, for this dissertation, we chose to implement a ULP system that supports

the PVM programming interface.

The only constraint imposed on a programming interface is that the interface be

location-transparent. Message passing must be the only means of communication be-

tween ULPs. In other words, the applications must have been designed as a set of VPs
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that communicate via location-transparent message passing only and cannot share mem-

ory. This constraint has the advantage that a) a ULP state is clearly delineated from

that of other ULPs b) the explicit ULP communication through message passing allows

for clear identification of interaction between ULPs and c) the communication end-points

remain valid across ULP migration. These characteristics lead to a simple scheme for

ULP migration. See Chapter 3 for more details.

It is possible that an existing interface may have some location-dependent attributes.

In this case, the ULP system supports only that portion of the interface that is location-

independent. Some changes to application code may be necessary so that the code

does not use any of the location-dependent aspects of the programming interface. For

example, PVM interface allows applications to specify a target host for task creation.

Since such a specification conflicts with global resource management and transparent

migration, PVM applications are expected to be modified so that they do not specify a

location for task creation.

2.3.3 Supporting transparent ULP migration

Migrating a ULP involves capturing the ULP state on the source node, transferring the

ULP state from the source to the destination, and continuing the ULP execution at the

destination node. The state of a ULP is defined by its individual context and its mes-

sage context relative to other ULPs of the application. The individual context is its text,

data, heap, and stack segments and its register state. Because of the machine-dependent

nature of this context, ULP migration is constrained to occur among homogeneous pools

of processors only. That is, once a ULP is created on a processor, it is constrained to mi-

grate among processors of identical architecture. Heterogeneous, language-independent,

transparent VP migration is still an open issue (see section 7.3) and is not addressed by

this research.

Note that when a ULP migrates, in addition to resuming it at the right program

counter value, all messages destined for this ULP should be received and in a way that

does not violate the ordering semantics of the message passing interface. No messages
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should be lost as a result of migration.

2.4 Summary

The goal of this research is to realize a language-independent, VP system that provides

applications with a dedicated NORMA multi-processor model of computation while ex-

ecuting on a multi-user NORMA multi-processor with dynamically varying number of

available processors.

Current implementation of processes, threads and language-based VP approaches

are not suitable either with respect to the functionality requirements or with respect

to the performance goals we expect of VP systems. A new VP abstraction called ULP

is therefore introduced that combines the potential performance benefits of user-level

threads with the programming model of processes.



Chapter 3

ULP System Design

This chapter discusses the general issues in designing a ULP-based system and suggests

an overall design approach for satisfying the functional requirements and performance

goals mentioned in Chapter 2. In presenting the approach, we discuss the design alter-

natives considered, the implications for implementation, and rationale for our choices.

The rest of this chapter is divided into three sections based on issues that deal with

a) supporting and managing ULPs within an as process (Section 3.1), b) mapping VP

interfaces on top of these ULPs (Section 3.2), and c) migrating ULPs in an application-

transparent manner (Section 3.3).

3.1 Supporting and managing ULPs within OS processes

A ULP system must be able to support multiple ULPs within an as process with low

overhead. This low overhead in turn implies that a ULP system must be able to access

and manipulate the address space of the process efficiently. The most efficient mode of

such access is when the ULP system executes within the same protection domain as the

application process. The ULP system is therefore designed to be a library since it is a

simple, efficient and portable method of achieving this goal. In this section, we explain

and discuss the various issues of implementing the ULP abstraction in a library outside

the as.

32
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3.1.1 Library initialization

Library initialization deals with determining which portions of process virtual address

space to use to support ULPs, creating the ULP library's internal data structures, setting

up handlers for migration, and converting the initial thread of control of the OS process

into the first executing ULP of the application. If the application is allocated more

than one processor and the number of ULPs to create initially is known at application

startup, then the initialization is also responsible for creating an OS process on each of

the allocated processors and creating ULPs within these processes. Since many of these

tasks need to be performed before executing application code, program executables need

to be created such that at program startup, control is transferred to the ULP library.
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Figure 3.1: Determining usable address space

The available address space within an OS process is the set of virtual addresses that

can be used by the application (that is, those which are not reserved by the operating

system). An example scenario is shown in Figure 3.1. The ULP library should use this

space not only for allocating ULPs but also for its own internal use. Note that for a ULP

to be migratable from a process on one processor to a process on another processor, the

virtual addresses used by the migrating ULP must be available for application use in the
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destination process. In other words, ULPs should be allocated only to virtual address

ranges that are available across all processes. We refer to this subset as the usable virtual

address space (see Figure 3.1). For a given pool of homogeneous processors, the usable

address space is fixed irrespective of their availability and is assumed to be communicated

to the ULP library from an external source. (See Chapter 4.) This usable address space

becomes the global memory pool from which address space is allocated to ULPs. Note

that the access to this pool must be globally consistent. Thus, allocating ULPs from

this global memory pool ensures that ULPs can be migrated freely to any processor in

the homogeneous processor pool. Note that since ULP migration is possible only among

homogeneous processors, ULPs of different processor pools can have overlapping ranges

of virtual addresses.

Also note that the focus here is on providing mechanisms in the ULP library and

leaving issues regarding policy to be realized by higher-level policy modules. It is assumed

that the policy information is made available to the ULP library by some means. (See

Chapter 4.) Thus decisions such as determining the number of ULPs to create initially,

the number of processors to allocate and the mapping of ULPs to processors must be

communicated to the ULP library.

In order to support and manage ULPs, the ULP library maintains several data struc-

tures. The main data structures are the ULP descriptor table, ULP run and wait queues,

the library heap from which dynamic memory request of the library are serviced, and

a process descriptor that contains address space layout of the host process. Once all

these ULP library data structures are initialized and ULPs have been created, the bulk

of initialization is complete. At this point, the ULP library must prepare itself to receive

requests to migrate and accept migrating ULPs. Since these requests need to be handled

as quickly as possible, the ULP library must establish asynchronous handlers for these

requests. In other words, the handlers are invoked immediately when the requests arrive

even when the process is not executing in the ULP library. The exact details of how

these handlers are registered and invoked depends on the underlying operating system

and the communication interface used by ULP librarySee details of our implementation
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in Chapter 5. The final task of initialization is transferring control to the ULP scheduler

to dispatch the first ULPs of the application for execution.

In summary, the ULP library initialization involves the following steps:

1. One OS process is created for each processor allocated to the application, then

each instance of ULP library goes through the remaining steps given below.

2. Determine the usable virtual address space within the application processes for

creating ULPs and ULP library data structures. As mentioned earlier, this infor-

mation is assumed to be made available to the ULP library by some means.

3. Initialize the ULP library data structures and create ULPs.

4. Register asynchronous handlers for migration events.

5. Transferring control to the ULP scheduler.

3.1.2 ULP creation

Since a ULP is similar to a process, some of the issues in creating a process apply to

ULPs. To create a process, an OS generally has to load the code and data segments of

the corresponding program, allocate a stack, set up the space for the heap, and initialize

the process register and stack state. A ULP library also needs to go through similar

steps to create a ULP, however, there are some significant differences.

OS loads the code and data segments of a process into portions of physical address

space. In contrast, a ULP library loads the code and data segments of a ULP into

portions of virtual address space within a OS process.

In the case of a process, the OS has the freedom to use any region of the physical

address space for loading the process code and data segments. All the OS has to do is

to set up the memory translation hardware such that virtual addresses generated by an

executing process is translated to the right physical addresses.

In contrast, the ULP library may not always have the freedom of using any region

of the process virtual address for loading the ULP's code and data segment. If the code
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Figure 3.2: machine code with fixed virtual addresses

segment contains fixed virtual addresses, then loading the segment blindly into the pro-

cess virtual addresses space can result in erroneous execution. This problem is illustrated

by the code segment in Figure 3.2. The addresses OxFOOO,OxF004, etc., are virtual ad-

dresses. Note that the branch instruction has an absolute virtual address (OxFFFO) as

its destination. Irrespective of where the code segment is loaded into a process address

space, it will always generate the virtual address OxFFFOas the destination of the branch

instruction. Thus, this code segment will execute correctly only if it is loaded beginning

from the virtual address OxFOOOin the process virtual address space.

A similar situation arises with absolute virtual addresses in the code segment that

refer to the data segment. Loading a data segment into a different virtual address region

other than where the code segment expects can result in erroneous execution.

This problem with dynamic loading is not new and has been addressed in different

ways [JuI88, Sab90]. One approach is to modify at load time the absolute virtual ad-

dresses in the code based on the virtual address at which the code is loaded. For the

example in Figure 3.2, if the code is loaded at location Oxl000 instead of OxFOOO,the

address OxFFFO in the code can be modified to OxlFFO. This approach corrects the refer-

ences in the code segment however, notice that we have actually modified code. On some

processor architectures that have a separate instruction and a data cache, modifications

to instruction stream are treated as data modifications and result in the instructions

being placed in the data cache. Therefore, it might be necessary to flush this 'data' out
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of the data cache before the code segment can be executed.

Although this approach is conceptually simple, the implementation needs to han-

dle all possible types of branch instructions for the target processor and is hence non-

portable. Another problem with this approach is that it is not conducive to code sharing

among ULPs that use the same program code but operate on different data. To use the

same code segment with multiple data segments, the absolute virtual address references

to the data segment in the code segment would have to be changed on every context

switch. Thus, sharing in this approach is expensive and impractical. Instead of sharing,

multiple copies of the same program code can be maintained in different text segments

that differ only in the data addresses used.

Another approach is to compile the program in such a way that all data references

are relocatable. That is, some means of indirection is used to access data. Typically,

the indirection is through a dedicated register. Thus if multiple ULPs share the same

program code and access different data, all the ULPs can share a single text segment and

on a ULP context switch (discussed later in this chapter), the indirection register needs

to be changed so that it points to the beginning of the data segment of the new ULP.

Thus this approach is useful for implementing an SPMD style application where all the

ULPs share the same code segment but operate on different data segments. However,

this approach has the limitation that code segments are not relocatable and thus cannot

be loaded freely into the process address space. Such a restriction creates problems

for supporting true program parallelism, that is ULPs having different text and data

segments.

Finally, true program parallelism can be supported by make both code and data

position-independent by using compilers to generate position-independent code (PIC).

This approach is used to implement shared libraries on modern operating systems [Sab90].

PIC allows the code and data segments to be loaded anywhere in the virtual address space

and the indirection approach described above can be extended to handle the switching

of code segments.

Any one.of the approaches can be used by a ULP system depending on the application
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domain. We do not suggest any particular approach.

So far we have talked about the issues of assuring that a loaded ULP accesses its own

data and code correctly. However, there are more issues to be resolved. Since there is

only one instance of the ULP library per process, all unresolved code and data references

in the ULP text segment and exported by ULP library must be resolved. Examples of

such references are the functions in the message passing interface implemented by the

ULP library. This dynamic linking can be done at load-time or when the unresolved

function is invoked by a ULP during its execution.

Note that the approaches discussed above do not address the problem of one ULP

generating illegal address references due to buggy code and accessing or corru pting an-

other ULP's address space. As stated in the introduction to the ULP approach, we

consider all ULPs to be part of a single application and inter- ULP protection is not a

security issue. However, inter-ULP protection is useful in fault isolation and debugging.

Approaches to achieving protection are discussed under related work (Chapter 7).

A brief note on memory allocation. Since each ULP requires its own heap, the ULP

library needs to provide its own version of memory management routines (for example,

such as mallocO, freeO, and reallocO). These routines should be written such that

they allocate from the global memory pool and keep track of the memory allocated on a

per-ULP basis. Since the memory is allocated from the global pool, addresses allocated

to one ULP will not overlap with the addresses allocated to another ULP at any instant

of time.

3.1.3 Scheduling and context switching

Scheduling cost is pure overhead and should be kept to the minimum so that most of

the CPU cycles are used in executing application code. In order to have low overhead,

the scheduler should be invoked only when the currently executing ULP cannot execute

further. The rationale for such a non-preemptive policy is that all the ULPs belong to

the same parallel application and thus time spent in handling timer interrupts is better

spent in executing application code. Software timer-interrupt handling outside the as
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is extremely expensive when compared to hardware timer-interrupt handling within the

OS. Also, since ULPs of a parallel application communicate with each other, the commu-

nication can potentially reduce the skew that may occur because of the non-preemptive

scheduling. Further, using a simple non-preemptive scheduling policy rather a sophisti-

cated preemptive policy has been shown to be sufficient for most parallel computations

[VR88]. For these reasons, the ULP library is expected to implement non-preemptive

scheduling of ULPs except when it receives a ULP migration event. In the event the

currently executing ULP is to be migrated, then the ULP library, to maintain unobtru-

siveness, can preempt the ULP and migrate it to the destination processor.

The presence of a non-preemptive scheduler implies that the ULP scheduling code

should be invoked within the ULP library only under one of the following cases:

1. the executing ULP terminates

2. the executing ULP invokes a blocking message passing primitive or a blocking I/O

primitive that cannot be satisfied immediately.

3. there is no currently executing ULPs and one or more ULPs are runnable.

4. the ULP execution causes a page fault.

It is clear that the ULP library cannot afford to let the OS process block because of

of one ULP's execution, otherwise other runnable ULPs within the OS process cannot

be scheduled during this time. Case 1 above is trivial to handle since ULP termination

is not a blocking operation. On ULP termination, the control passes back into the ULP

library which then has to schedule the next runnable ULP or wait for Case 3 to occur.

Note that Case 3 can also occur if the currently executing ULP has been migrated.

For handling Case 2 and Case 4, the ULP library requires different extents of support

from the underlying OS. The OS must provide one or more ways of transforming the

blocking primitive executed by a ULP into a non-blocking request and one or more ways

of checking the status of completion of the request. The ULP library can then provide

ULP programmers with primitives with blocking semantics and map these primitives into
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non-blocking requests at the as level. If the request cannot be satisfied immediately,

the non-blocking primitives return with an error. The ULP library can then insert the

executing ULP on a blocked queue and schedule the next runnable ULP. Eventually,

when it is known that the request is complete (via the OS-provided mechanisms), the

ULP library can make the blocked ULP runnable and insert it on the run queue. Thus,

the ULPs are provided with semantics of blocking primitives while the ULP library itself

uses non-blocking and associated primitives to multiplex among several ULPs. In this

way, the ULP library is similar to an as that context switches to other VPs when one

VP has to blocked for I/O and uses hardware interrupts to recognize that I/O can be

performed and eventually reschedules the blocked VP for execution.

Case 4 however requires much more sophisticated form of support from the as. Note

that in Case 2, all primitives invoked by a ULP are trapped by the ULP library and

so it therefore has no problem in performing operations discussed above. In contrast, a

page fault is typically transparent to as processes and this transparency in turn means

that the ULP library has no knowledge of the occurrence of the page fault. Thus, even

though there may be runnable ULPs within the process, the OS has no knowledge of

these user-level entities and blocks the process that caused the page fault, swaps in the

required page into physical memory, updates the memory management mappings, and

reschedules the process for execution. This integration problem between as and abstrac-

tions implemented at user-level has been observed and solutions for better integration

have been proposed [ABLL91, MSLM91]. These solutions essentially provide a way to

communicate events in the as such as a page fault to the user-level library. Availability

of the support described in these solutions in the as will allow a ULP library to switch

to another ULP on a page-fault event. In the absence of such support, there is nothing

that can be done within the ULP library.

The ULP context switching mechanism itself can be separated into two distinct

components: saving the state of the current ULP and loading the state of the new

ULP. To improve performance, the ULP system can specialize the context-switch code

based on the different execution states of a ULP. At least the following cases should be
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handled:

. If the new ULP has never run before, there are very few registers to 'restore' and

hence the number of registers loaded for the new ULP can be minimized.

. The ULP context switch code can take advantage of non-preemptive scheduling

and the fact that most operating systems on modern RISe architectures define

procedure calling conventions such that only a subset of the register set need be

saved and restored. That is, saving the state of a ULP involves saving a subset of

the processor registers and restoring the same set for the new ULP.

However if the ULP has been preempted for migration, no specialization is possible.

The entire register state of a ULP needs to be stored and transferred to the destination

processor. In this case, at the destination, the context switch code should recognize that

it is a preempted and migrated ULP and load its entire register state. Luckily, this case

only ever follows a migration that is at least an order of magnitude more expensive than

context switch and thus the switching cost is relatively negligible.

3.2 Mapping VP interfaces on to ULPs

VP interfaces used for message-based parallel programming consist of a set of functions

to perform message passing. In addition, the VP interface may also define functions that

deal with creation and control of VPs, a set of functions to perform file and terminal

I/O, etc. The VP creation and control functions must be mapped to the core ULP

functionality discussed earlier in this chapter. In this section, we discuss a) the mapping

of communication end-points of message passing interfaces on to ULPs, b) the interaction

of message-passing semantics with ULP scheduling, c) supporting file and device I/O for

ULPs and d) the effect of VP interfaces on the implementation complexity of ULP

systems.
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3.2.1 Mapping the communication end-points of the VP interface

Typically, message-passing interfaces use VP identifiers (VPIDs) as the end-points of

communication. For example, a message send primitive specifies the destination VPID

as one of the arguments to the VP system. However, it is also possible for message passing

interfaces to use an abstraction called a Port for communication [ABB+86, RAA+88].

A port is essentially a queue of messages and offers a level of indirection between a VP

and the ports it acts upon. A single VP may have many ports on which it can receive

messages. In a port-based message-passing interface, a port identifier (PORTID) is used

as the destination of a message.

Whatever the type of the destination identifier (DID), the ULP library must support

the message passing interface at the ULP-Ievel and map the DID to a <destination

processor#, as process identifier> pair followed by enough information to identify the

DID uniquely within the destination as process.

3.2.2 Message-passing semantics and ULP scheduling

The conditions under which a ULP must be blocked depends on the semantics defined

by the message passing interface used by the application. For illustrative purposes,

consider the MPI message passing interface, which defines a wide variety of blocking and

non-blocking communication primitives [MPIf93a, MPIf93b]. Note that there are other

message passing models such as active messages [vECGS92] that are neither equivalent

nor subsumed by the MPI model. The intent of this section is give a flavour for the

interaction between message-passing semantics and scheduling.

MPI defines blocking and non-blocking message semantics for both send and receive

operations. Each of these semantics has multiple variations. We first present the se-

mantics for the blocking operations followed by those for non-blocking operations. For

instructional purposes, we use the term user buffer to denote a buffer in a VP's address

space that is the source or destination of a send or receive operation. The term system

buffer denotes a buffer within the underlying system to which a VP has no direct access.
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Preserving the semantics for blocking send and receive :

Blocking send: A blocking send can be executed in one of four different modes:

buffered, synchronous, standard or ready. In the buffered mode, the block-

ing send returns after the message is copied from the user buffer into a system

buffer. The send operation is decoupled from the receive operation. Thus, a

ULP executing this type of send must not be preempted by the scheduler.

In the synchronous mode, the send operation blocks until a matching receive

operation is posted. This mode allows communication to be implemented

with a minimum number of message copies and with no intermediate buffering

within the ULP library. Note that the scheduler must block the sending ULP

if no matching receive has been posted.

In the standard mode, a send operation may result in message buffering or

might result in blocking the sending ULP until a matching receive has been

posted. In other words, a standard send operation can be implemented as

a buffered or synchronous send by the ULP library. Since the synchronous

mode of the send primitive is cheaper, the ULP library should implement the

synchronous-mode send for the the standard-mode send.

In the ready mode, the send operation can be initiated only if a matching

receive is already posted. The MPI standard does not define the outcome

when a matching receive is not already posted, other than specify that it is

erroneous. The ULP system must implement a sensible error-handling scheme

for such an event.

Blocking receive: There is only one semantics for a blocking receive: the receive

operation returns after the message has been stored into the user buffer. If the

message is already present in the system buffers, the message is copied into

the specified user buffer and the call returns. Otherwise, the ULP executing

the blocking receive primitive must be blocked until the requested message

arrives and has been transferred into a user buffer in the ULP's data space.
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Preserving semantics for non-blocking send and receive:

Non-blocking communication allows a VP to continue execution in the presence of

a potential blocking operation. In general terms, a VP posts a communication_start

request the allows communication to happen potentially in parallel with the VP's

computation. The VP can check for the completion of the request through a

communication_complete primitive.

This non-blocking communication implies that the ULP library needs to invoke the

ULP scheduler only on the execution of a communication-complete primitive, and

block the executing ULP only under certain conditions. Some of these conditions

are discussed below in the context of non-blocking send and receive primitives.

Non-blocking send In MPI, a nonblocking "send-start" primitive can use the

same four modes as the blocking send primitive: buffered, synchronous, stan-

dard and ready and the behaviour of these primitives is explained below.

All the variants of non-blocking send, with the exception of the ready-mode

send, should always complete successfully irrespective of the execution state

of other VPs or whether the user buffer has been copied into a system buffer.

Therefore in the case of buffered, synchronous and standard modes of send,

an explicit "send-complete" call must be executed by the ULP to assure that

the corresponding non-blocking send has completed and the user buffer is free

for reuse.

If the communication mode is synchronous, buffered or standard, execution of

a send-complete call should result in blocking the executing ULP if a matching

receive is not posted or lack of adequate buffer space in the VP system space.

In contrast, the ready-mode send does not require buffering or blocking. The

send operation can be initiated only if a matching receive is already posted.

If it is, the send operation is performed and call should return successfully to

the ULP. Otherwise, the call should simply return with an error status.
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Non-blocking receive The non-blocking receive-start call registers a message re-

ceive request with the underlying ULP system. A ULP should not be blocked

for this call. This call can return before a message is fully received into the

user receive buffer. A receive_complete call confirms that the data has been

received into the receive buffer. If the requested message is not yet received

or available in user space, the executing ULP must be blocked by the ULP

library.

Notice that scheduling framework discussed above specifies when a ULP should be

blocked or not. However, it does not specify the policy for scheduling another runnable

ULP. A particular design can choose a policy of its choice.

The only exception to the purely non-preemptive scheduling scheme is due to the

ULP library's requirement to support unobtrusive computation. If the global scheduler

sends a migration event to the ULP library while a ULP is executing, the ULP cannot

be allowed to continue execution until it blocks. In this case, the ULP library needs the

information about which ULPs to migrate and their destinations. It is assumed that this

information is made available asynchronously to the ULP library by an external global

scheduler entity. The ULP library simply implements the mechanism for transparent

migration. If the list of ULPs to be migrated contains the preempted ULP, then the

ULP library, after off-loading the specified ULPs, should schedule the next runnable

ULP on its run queue.

3.2.3 Handling I/O

VP interfaces do not typically define an interface of their own. Instead, they use the

interface supplied by the underlying OS. I/O can be classified as file I/O and terminal

I/O. Operating systems provide operations that include open, read, write and close. Both

blocking and non-blocking versions of these operations are typically supported. Since

these operations are implemented as system calls, an application incurs high overhead

when making a large number of reads and writes that involve small numbers of bytes.
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To alleviate this problem, modern operating systems typically provide memory-mapped

I/O. That is, once a file or device has been opened for reading or writing, the capability

returned by the OS can be used to map the opened resource into user address space.

Thus instead of read and write system calls, the application can read and write bytes

into memory without OS intervention.

Non-blocking I/O is complicated to program and introduces complexity into appli-

cations and this introduction is not desirable with respect to the goals of this research.

Memory-mapped I/O is relatively simple to use however, maintaining the semantics of

memory-mapped I/O in the presence of migration and on conventional NOWs is a diffi-

cult task [D09!]. If a ULP maps a device into its address space on one processor and is

migrated to another processor, to maintain the semantics of memory-mapped I/O, the

ULP library has to provide something similar to DSM. As discussed in Chapter 2, such

a DSM could result in performance degradation. We therefore suggest that the ULP

system should not support memory mapped I/O and of the basic file and device I/O

interface (open, read, write, close, etc), only those operations that exports blocking se-

mantics should be supported. Thus programmers are expected to code their ULPs using

blocking message primitives and I/O primitives. When one ULP executes a blocking

primitive that cannot be satisfied immediately, the ULP is blocked by the ULP system

and the next runnable ULP is scheduled. Further, I/O executes correctly irrespective

of the location of a ULP or its migration. In other words, I/O is both location and

migration transparent.

3.2.4 Providing a single system image

The single system image (SSI) issue is typically regarded as the property of a software

system to create the illusion in the minds of the users that the entire network of processors

is effectively a single system, rather than a collection of distinct machines [Tan95]. Based

on this definition, the following statements can be made regarding VP systems that

support SSI:
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. Any VP can communicate with any other VP in the system irrespective of the

destination VP's location.

. Irrespective of the processor location of a VP, calls made to the VP system exhibit

the same behaviour.

. If a VP's location is changed transparently to the application, this migration will

not affect the behaviour of the parallel application except perhaps in performance.

. All resources, such as files and devices, that are accessible to a VP on one processor

are accessible to all VPs of the application on all processors via the same resource

identifiers. In other words, all resources in the system including VPs are uniquely

addressable.

. If additional facilities such as signals, timers, memory-mapped I/O are supported,

then the interface defined to use these facilities exhibits the same behaviour irre-

spective of VP location and migration.

Thus the complexity of developing such a VP system that provides a SSI is dependent

on the number of different abstractions defined by its VP interface and the SSI properties

of the target platform on which the VP system is being implemented. If the target

platform has almost non-existent SSI properties (such as NOW running UNIX), then

the VP system has to support SSI for the VP interface entirely at user-level. If the VP

interface defines a number of abstractions and facilities, then completely supporting a

SSI is an extremely difficult task. This complexity is the reason why process migration

systems that have been implemented at user-level, instead of supporting the entire OS

interface, define a special-purpose VP interface for which they provide SSI [LLM88,

NR94, WZAL93]. However, if the target platform supports SSI (such as a NOW running

the Sprite operating system [D09!]), then implementing SSI on top of the OS-provided

abstractions becomes a much simpler task.

We therefore suggest that ULP libraries should adopt the approach taken by other

user-level systems. That is, offer a SSI with respect to a VP interface that is customized
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to the application domain. Such an approach simplifies the VP system at the same time

improving its portability.

3.3 ULP Migration

In order to be useful for unobtrusive computing, ULP migration should satisfy two cri-

teria. First, migration should be responsive, that is, the latency between the instant a

migration event is sent to the ULP library to the instant the ULP library invokes the mi-

gration mechanism should be as small as possible (in the order of milliseconds). Second,

the ULP migration mechanism should be efficient, that is, the time taken to transfer

ULP state of certain size should be close to the transmission time on the underlying

network. For example, transferring 1 MB of ULP state on a 10 Mb/sec (1.25 MB/sec)

ethernet network should be close to 0.8 seconds.

3.3.1 Responding to migration events

To be responsive, a ULP library should register asynchronous message handlers as dis-

cussed in Section 3.1.1. These handlers allow the ULP library to be interrupted and

the ULP relocation (migration or receipt) messages to be handled asynchronously to the

execution of application code.

Asynchronous handling of migration events can cause inconsistencies if shared and

writable data structures exist between code executed during normal execution and that

executed by the invocation of the migration-event handler. One approach to avoid in-

consistencies is to control the execution of these critical sections of code that manipulate

shared data structures via semaphores, locks, etc. A critical section is any code segment

within the library that includes a transition into an inconsistent state. An example is

the manipulation of ULP run queue. A code fragment is given in Figure 3.3. Suppose

the function unextO is being executed within ULP library and the program counter is

at the beginning of statement 82. Further suppose that the ULP library now contains a

ULP of uid = 2. If ULP library is at interrupted before executing 82 and the migration
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VIp* unext(VIpq *q)
{

VIp* u = uget( q, VLP-ANY); /* 81 */
return u; /* 82 */

}

Figure 3.3: Critical section

message includes ULP 2, then the migration handler will not be able find ULP 2 on

any queue. Although it might still be possible to recover from such errors, it leads to

complicated code that is difficult to debug. Therefore, if the ULP library is in a critical

section, migration should be deferred to the point when the library leaves the critical

section.

Note that application program code does not contain any critical sections because

it obeys the NORMA model of computation. Assuming that an application spends has

a reasonably high computation to communication ratio, a ULP library should, in most

cases, handle migration messages immediately.

3.3.2 Choosing a migration protocol

After receiving an asynchronous migration event, a ULP library then has to migrate the

ULP[s] within its process to the destination host[s]. Different mechanisms for migration

have been proposed and implemented. Some of the mechanisms are implemented within

the OS and, with very few restrictions, transparently migrate OS processes [PM83, AF89,

The86, Dou90, Zay87]. Implementing migration within the OS has the advantage of

direct access to the entire process state. Further, techniques such lazy paging can be

implemented with small cost and can significantly improve initial process migration time

[Dou90, Zay87]. In the case of a ULP library, the mechanism is implemented at the user

level for portability and availability.

Because ULP applications obey a NORMA programming model, ULP migration can

be achieved by migrating the ULP's text, data, stack, heap, register context and guaran-

tee that no messages for the migrating ULP are lost, while preserving message ordering



50

semantics. Within this scope, a migration mechanism can be designed as one with or

without residual dependencies [Dou90). A migration mechanism exhibits residual de-

pendencies if a source host on which the ULP executed previously continues to serve

the ULP even after the ULP has migrated to a different host. For example, message

forwarding by the source host after a ULP has migrated to another host is a residual

dependency that is due to the migration protocol. Residual dependencies can also occur

due to a VP interface that offers a per-processor view of resources. File naming in typical

UNIX environments is an excellent example. There are times when one user has differ-

ent home directories on different workstations. If these workstations are harnessed for

parallel processing, then upon ULP migration, requests to open files still need to be sent

to the source node to interpret the pathname specified. Residual dependencies therefore

may effect the source host's performance and consequently fail to be unobtrusive for the

host workstation owner. It is left to the ULP system designers to choose and implement

a migration protocol that is most suitable for their computing environment.

A ULP migration protocol can be divided into four major stages.

1. Receiving asynchronous migration events from global scheduler: The global sched-

uler (GS) (see Section 4.3) is expected to send a migration message directly to

the process containing the ULP to be migrated. If the ULP library is in a critical

section as described above, migration should be deferred to the point when the

library leaves the critical section.

2. Reaching a consistent state: The ULP library should reach a consistent state with

regards to messages such that no messages are lost and future messages destined

for the migrating ULP are received in a proper manner at the destination. The

details of how this state is reached are dependent on the message-passing semantics

and a particular migration-protocol design. In Chapter 4, we present how this step

is performed for UPVM.

3. ULP state transfer: The ULP state, consisting of text, data, stack, heap, register

context, its current execution state, and messages not yet received by the ULP, is
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From as: migrate ULPO to Host 2
Move some or all of ULPO context into

reserved space in Host 2

UUB UUB UUB

ULPO

ULPI ULPI

Host I Host 2

1. Migration Event 3. State transfer

Inform Host 2 to

receive ULPO Possible residual dependency

Host2
prepares
toaccept
ULPO

ULPO
continues
execution
in Host 2

2. Migration Preparation 4. Resume ULPO

Figure 3.4: Stages in migrating ULPO from Host 1 to Host 2

sent to the target process. The ULP library in the target process receives the ULP

state and places the ULP in its allotted set of virtual address regions.

4. Resuming ULP execution: The ULP is placed in the appropriate scheduler queue

(run queue or blocked queue) so that it will eventually execute. Depending on the

migration protocol, this stage might involve sending special control messages to

other instances of the ULP library or involve the source node of the migrated ULP

because of residual dependencies.

3.4 Summary

In this chapter, we discussed the major issues involved in designing a ULP system. The

first issue is that of creating and managing ULPs within OS processes. We suggest that

ULP system should be designed as a library that is linked to the application program.
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When the application is executed, the ULP library code is executed before any of the

application code. This initialization code uses the information supplied by the user and

external entities such as a global scheduler in determining the number of ULPs to be

created initially, the number of processors allocated initially, the mapping of ULPs to

processors and the usable address space within the OS process within which the ULPs

need to be allocated. A variety of approaches can be used to create ULPs and ULP

system designers are free to choose an approach depending on the application domain.

Finally, as suggested by other researchers, we suggest that simple non-preemptive ULP

scheduling be employed because of a) the high cost of implementing preemptive ULP

scheduling, b) the fact that all ULPs belong to the same application, and c) inter-ULP

communication tends to reduce the skew in the execution of ULPs.

Second, we discussed the issues involved in mapping a VP interface on to ULPs

and the effect of target platforms on the complexity of implementing a ULP library.

Essentially, the communication end-points of the VP interface should be mapped on to

the communication end-points of the underlying OS with some additional protocol. The

interplay between message passing semantics and scheduling should be respected and is

illustrated by the example on MPI.

As regards to I/O, VP interfaces do not typically define an interface of their own.

Instead, they use the interface supplied by the underlying OS. We suggest that the ULP

system support that subset of the file and terminal I/O interface that exports blocking

semantics. Given a VP interface, the complexity of implementing a single system image

(SSI) is directly related to the number of different abstractions the VP interface defines

and inversely related to the SSI properties of the target platform. So we suggest that

the VP interface be customized to the application domain so that the complexity of the

ULP library is reduced at the same time improving the library's portability.

Finally, we discussed the design of the migration mechanism with respect to unob-

trusiveness and migration protocols. We suggest that a combination of asynchronous

handlers and protected critical sections is the solution for quick detection of migration

events. Migration protocols may cause residual dependencies and it is up to the the ULP
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system designers to choose a protocol that suits their application domain.

With these design issues, possible approaches, and general suggestions in mind, a

ULP library for the PVM message passing interface has been designed and is the subject

of the next chapter.



Chapter 4

UPVM Design

In this chapter, we apply the general approach to ULP system design described earlier to

the design of UPVM, a ULP-based package that supports the Parallel Virtual Machine

(PVM) message-passing interface [GBD+93].

The rest of this chapter is organized as follows. Section 4.1 introduces PVM. We

then specify, in Section 4.2, the restrictions we impose on PVM applications in UPVM.

Section 4.3 presents the design of UPVM, assuming that all PVM applications are SPMD

and the number of ULPs needed by the application is known at application startup.

Finally, in Section 4.4, we remove these assumptions and discuss how the static, SPMD

UPVM design can be extended to handle dynamic, program parallelism.

4.1 PVM

The PVM message-passing interface is designed to permit a network of heterogeneous

UNIX computers to be used as a single, large parallel computer. The PVM interface is

implemented by the PVM system, which consists of a daemon process (pvmd) that runs

on each workstation, and a run-time library (pvmlib) that contains the PVM interface

routines. (See Figure 4.1.) The pvmd is responsible for VP creation and control. VPs in

PVM are Unix processes (called tasks) linked with the pvmlib. Each task has a unique

task identifier (tid) that defines the end points of task-to-task message communication

and this is the only means of communication among VPs. Thus, PVM exports a NORMA

computation model using OS process as its VPs. In this section, we present a brief

54
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overview of the PVM interface as is relevant for UPVM design.

Tl TZ T3

PVMLffi

Remote Msg

Hardware I f lianiware

Figure 4.1: PVM system

The PVM interface can be divided into those that deal with task management and

those that deal with message communication. The main process management function

pvm...spawnO creates a PVM task. It takes as arguments the name of an executable

program, the arguments to be passed to the program, and where to spawn the program.

Thus it is possible in PVM not only to dynamically create tasks but also to specify

the location or processor architecture on which a task should execute. This function

returns a task identifier (tid), which as explained earlier, defines an end point of message

communication.

The PVM interface supports the concept of message buffers that are expected to be

available within the PVM library. Further, the library is expected to define a default

send buffer and a default receive buffer. These default buffers act as implicit arguments

to some of the functions defined in the PVM interface. Tasks can refer to buffers by

their buffer identifiers (BIDs) only and not by their addresses.

Sending a message has four steps in PVM: 1) allocate and initialize a PVM buffer, 2)

make the PVM buffer the default send buffer, 3) Marshall the data values to be sent into

the default send buffer (this operation is referred to as packing in PVM terminology),
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and 4) send the message in the default send buffer to one or more tasks.

A PVM buffer can be allocated and initialized by calling pvm...mkbufO and the

buffer can be made the default send buffer by calling pvm..setsbufO. Packing routines

convert the machine dependent representation of data types into their machine indepen-

dent representation and insert them into the default send buffer. PVM provides one

packing routine for each scalar data type in C and FORTRAN. Finally, the completed

(or packed) buffer is sent to another task by calling pvm..sendO or to multiple tasks

by calling pvm...mcastO.

A message can be received by calling the blocking receive primitive pvm...recvO.

The BID of the buffer containing the received message is returned to the application.

Further, this buffer is made the default receive buffer. The application then "unpacks"

the message by calling suitable unpacking routines that act upon the default receive

buffer and perform the converse of the packing operations: they convert the message

contents in the machine independent representation to the machine representation of the

receiving host. A receive primitive can be invoked to accept the first message received,

or a message from a specified tid, or a message with a specified tag, or a combination

of tid and tag.

Further, applications are provided the guarantee that messages sent by one task to

another are received in the same order that they are sent. PVM applications typically

take advantage of this message ordering semantics and therefore any alternative software

that implements the PVM interface must maintain the same semantics.

4.2 Restrictions on PVM applications

Recall that the goal of our research is to map a dedicated NORMA multiprocessor model

on to a NORMA multiprocessor with dynamically varying number of available processors.

Such a goal can be achieved only if the exported VP interface is location-transparent.

Otherwise, the very purpose of supporting transparent migration is defeated.

The PVM interface, as it is currently defined (PVM 3.2), contains functions and
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argument options that make processor locations of VPs visible to application code. The

call pvm..spawnO, as mentioned earlier, allows the application to specify a host for the

execution of one or more of its tasks.

The other function that breaks location transparency is pvm_configO, which re-

turns the task-to-processor mapping for all the tasks belonging to the application. In

standard PVM, the application can assume that these mappings are static and remain

valid through the lifetime of its execution. However in UPVM, these mappings may not

be static due to transparent migration. Although the PVM interface specification does

not make any statements about the validity of the information, there is a possibility that

applications may make use of the location information. For example, based upon stale

configuration information, it is possible for an application to assume that one of its tasks

still executes on a processor and request for a task-spawn on the same processor even

though the processor is no longer available and the application's task has been migrated

to another processor. In order to avoid such problems, we explicitly forbid the use of

the information obtained from pvm_configO in performing location-dependent actions.

Also, in order to facilitate an incremental presentation of UPVM's design, we impose

two additional restrictions on PVM applications for the moment. First, applications are

assumed to have be written in an SPMD (Single Program Multiple Data) style. That is,

the application is coded as a single program and is instantiated into multiple VPs. Figure

4.2 shows an SPMD program in C as an example. The master process uses pvm..spawn

to create clones of itself and distributes data to the clones. Each clone does the same

computation on the received data partition and sends the results to the master. The

master also does the same computation as the clones. It then receives the results from

the clones and does a final processing step and exits. Thus, all the VPs of the application

use the same code even though they execute different parts of it.

Second, the applications are assumed to exhibit static parallelism, that is, the num-

ber of VPs required by the parallel application must be specified at application startup.

In Section 4.4, we discuss extending the UPVM design to support both program and dy-

namic application parallelism. That is, applications can consist of VPs that use distinct
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#include "pvm3.h"
int mytid, parenUid, clone_tid[NPROC];
int data[NPROC * CHUNKSIZE];
int nprocs =NPROC - 1;

main(int argc, chau argvO)
{

int 1;
int sum=O;

int psum=O;
mytid = pvm..mytidO;
parenLtid =pvm_parentO;
if ( parent_tid ==PvmNoParent) {

pvm..spawn(argv[O], &argv[l], 0, "", nprocs, &clone_tid[I]);
send_data_to_clonesO;
do-computation(data, mytid);
receiveJesults.irom-clonesO;
process_resultsO;

}
else {

receive.irom-parentO;
do_computation(data, mytid);
sendJesults_to_parentO;

}
pvm-exitO;

}

Figure 4.2: Example of an SPMD program

code segments and data segments and these VPs can be dynamically spawned.

4.3 Design of UPVM

The overall design of UPVM is summarized in the Figure 4.3. Each PVM task that

was mapped to an OS process in vanilla PVM is now mapped to a ULP in UPVM. All

ULPs of an application on a processor execute in the context of a single OS process. The

ULP library in conjunction with the PVMD, supports the PVM interface and imple-

ments memory management, context switching, scheduling and a transparent migration

mechanism for the ULPs. The PVMDs are used for task creation and control. The
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GS in the figure represents the local representative of a global scheduler to which the

UPVM library interfaces. The GS manages the processor pool. It services requests for

allocation of new processors, monitors parameters such as processor load, network load,

and user activity, and may order applications to migrate their ULPs, either to preserve

unobtrusiveness or for load balancing, To perform ULP migration, the mapping of ULPs

to processors is also maintained with the GS. Since GS is the processor pool manager, it

also maintains information about each processor in the processor pool. Thus, it can de-

termine the usable virtual address space among a set of processors in the processor pool.

This information is communicated to the UPVM library during the library initialization

before ULP creation.

/
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Figure 4.3: UPVM design

To implement the PVM interface, the ULP library does not invoke the OS unless it

is an operation that cannot be performed within the context of the ULP library. An

example of such an operation is a pvm-sendO to a ULP that is located within a different

process on a different processor.

In the case of inter-ULP communication among the ULPs (local IPC), the ULP

library exploits the fact that these ULPs are within the same UNIX process and optimizes

the communication. Recall that PVM interface defines the concept of buffers within the
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library.

In vanilla PVM, a pvm...sendO is implemented above the as IPC and consequently

for local IPC, it incurs the overhead of invoking the as,the copying of the buffer into the

as and from the as into the buffer in the destination process. In contrast, in UPVM,

a local IPC is handled by handing over the library buffer to the destination ULP, thus

eliminating all extra copying. For this hand-off to work correctly in presence of multiple

ULPS performing IPC, the UPVM library maintains a level of indirection between the

buffer identifiers visible to the ULPs and the real buffer identifiers within the UPVM

library and uses a reference counting scheme for garbage collection. (See Section 4.3.6.)

When a ULP invokes a blocking primitive such as pvm-I"ecvO or blocking I/O

call, the ULP library maps the blocking primitive to a non-blocking version within the

library so that the entire as process does not block because of one ULP's execution.

If the blocking primitive cannot be satisfied immediately, the ULP is put on a blocked

queue, and the scheduler is invoked to dispatch the next runnable ULP for execution.

To handle asynchronous events such as completion of I/O, availability of a new mes-

sage, and a signal to migrate one or more ULPs, the ULP library registers event handlers

with the as. Depending on as support, another possible asynchronous event is a page

fault. Although page faults are caused by code execution and thus defined as synchronous

events from the perspective of as, with respect to the ULP library page faults are asyn-

chronous because of their unpredictability. Based on the event that occurred, the as
will invoke the appropriate handler that had been registered. The handlers may read a

message from the as buffers, change a ULP state from blocked to runnable, migrate a

ULP or invoke the ULP scheduling code.

Also, for the purposes of transparent ULP migration, ULP library establishes and

maintains disjoint ULP address spaces across all processes of the application. That is,

a ULP address space is reserved across all processes of the application even though at

any instant, it can exist in one of those processes only. Simply put, moving ULP from

one reserved space to another results in migration. This disjoint address space approach

resolves the problem of handling pointers in the ULP address space but as discussed in
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in Chapter 2, does not deal with heterogeneity.

The rest of this section gives a detailed description of the UPVM design. Specifically,

we present the various data structures, details of UPVM library initialization, ULP

scheduling and context switching, details of how the different functions of the PVM

interface are supported, the optimization of local IPC and finally the details of ULP

migration.

4.3.1 PVM independent objects and protocols

This section describes the main data structures that are used in ULP management and

are not particular to UPVM. These are the ULP descriptor (ulpd), the ULP library

descriptor (libd), the heap descriptor (Heap), and the OS process descriptor (procdesc).

ULP descriptor

A ulpd as the name suggests, is used for maintaining information about a ULP. There

is one ulpd descriptor per ULP executing within an application and it has the structure

shown in Figure 4.4.

A ULP is identified by its Uid which is unique within a parallel application. Uvpid is

the identity of the OS process (PID) within which the ULP is currently resident. When

a ULP migrates, uvpid changes to the PID of the destination OS process. The stkbeg

and udatbeg identify the beginning of the stack and data segments of this ULP within

the process address space. Dynamic memory is provided through the uheap object. The

structure of the uheap object is implementation-dependent. The only requirement is

that at any instant of time, a set of memory addresses either belongs to the free pool or

is allocated to only one ULP within the parallel application.

Uentry contains the entry point to the code executed by this ULP. For SPMD appli-

cations, uentry of all ULPS will be identical and will point to the main of the application

program. Uexi t is used to initialize the return frame of the ULP stack. If a ULP returns

from mainO, then this initialization causes the code at the label specified by uexit to

be executed. The idea is that this code terminates the ULP cleanly. Uargc and uargv



struct ulpd {

Ulpid
VPid
Stack
Data

Heap
Vaddr
Vaddr
int
char**

UlpState
Event
MachineContext
int
int
int
Btab

Ulpmq
struct ulpd*

struct ulpd*

uid;

uvpid;
ustack;

udatbeg;

uheap;
uentry;
uexit;

uargc;

uargv;
ustate

uev;

uregs;
uislocal;

uismigrating;

umiglock;
ubtab;

umsgq;
urlink ;

ullink;

};
typedefstructulpd Ulp;
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/* ULP id */

/* as VP in which the ULP executes */

/* ULP's stack */

/* ULP's data segment */

/* ULP's heap */

/* ULP's code entry pt, e.g. main() */

/* code label to jump on ULP exit */

/* ULP's argc ... */
/* and argv: command line arguments */

/* ULP's current execution state */

/* Reason why the ULP is blocked */

/* Processor register context */

/* true, false, unknown */

/* true, false */

/* for protecting critical sections */

/* for PVM buffers */

/* Queue of PVM messages */

Figure 4.4: ULP descriptor

are used to imitate command-line argument passing provided to processes by most op-

erating systems. Ustatespecifies the current state of the ULP. A ULP can be in a

running, ready-to-run, blocked, migrated, or terminated state. When a ULP is blocked,

uev identifies the event for which the ULP is blocked. On a context switch, the machine

state of the processor is saved in uregs.

Uislocal identifies whether the ULP is local or remote and is used in implementing

inter-ULP communication. (See the algorithms for supporting pvm-sendO and pvm-

recvO.) If the ulp is remote then uvpid identifies the host process in which the ULP

resides. Thus, if the application consists of N processes, there are N ulpds for each ULP.

At any instant of time, only one ulpd of a ULP is marked local and all other ulpds of

the ULP are marked remote.

The variable Uismigrating is set during the time the ULP is being migrated. Umiglock
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Table 4.1: Functions exported by a ULP object

is set when migration cannot be done and reset when migration is permitted.

The data structures ubtab and umsgq within the ULP descriptor directly relate to

supporting the PVM interface and are discussed in Section 4.3.3. For now, just note that

ubtab maintains information regarding PVM buffers accessible to the ULP and that the

ULP message queue umsgq contains messages destined for the ULP but not yet requested

by the ULP.

The main functions exported by a ULP descriptor are given in table 4.1 along with a

brief description. Their use will be discussed when discussing UPVM initialization and

supporting the PVM interface.

Library descriptor

The library descriptor is the central object of UPVM and its structure is shown in

Figure 4.5. Every object of UPVM can be accessed through this descriptor. There is

one such data structure for each instance of the UPVM library. In other words, if an

application comprises N OS processes excluding the daemons, there are N Libd data

structures, one per OS process.

Ltab and llenfields in Libd are the ULP table and its size respectively. The ULP

table is essentially an array of ULP descriptors. At any instant of time, a ULP can be

active and local in only one ULP table.

Function prototype Description

Ulpid ucreate (Ulpid) Create ULP with given Ulpid
void uterminate (Ulpid) Mark ULP as terminated

UlpState. ugetstate (Ulpid) Return ULP's execution state

void usetstate (Ulpid, UlpState) Set ULP state to UlpState
void uload (Ulpid) Load machine context of ULP

void usetvpid (Ulpid, VPid) Set host VPid of given ULP
int uislocal (Ulpid) Check if ULP is local

void usetlocal (Ulpid) Mark the ULP local

void usetremote (Ulpid) Mark the ULP non-local

char .umalloc (Bytes) Like malloc (3C) but acts on per-ULP heap
char .urealloc (char., Bytes) Like realloc (3C) but acts on per-ULP heap
void ufree (char.) Like free (3C) but acts on per-ULP heap



struct libd {

Ulp*
int

Ulpq
Ulpq
Ulp*
int

Heap
Procdesc

int
VPtab
int
int

}
typedef struct libd

ltab;

lien;

lrunq;

lwtq;

lcurulp;

lmyvpid;
lheap;

lproc;
lnvps;

lvpids;

lmiglock;

lmigsigs;
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/* ULP table */

/* number of ULPs */

/* ULP run queue */

/* ULP wait queue */

/* currently running ULP */

/* the VPID of host as process */

/* for ulibspacemanagement */
/* attributes of the unix process */

/* No. of application processes */

/* and their vpids */

/* migration is OK if lmiglock == 0 */

/* No. of migration events pending */

Libd;

Figure 4.5: Library descriptor

Lrunq contains ULPs that are ready to run and lwtq contains ULPs that are blocked

within this process waiting for some event to occur. Lcurulp denotes the currently

executing ULP within the process. On a context switch (Section 4.3.5), lcurulp is

updated to point to the new ULP.

Lnvps denotes the number of as processes comprising this application and the PIDs

of these processes is maintained in the 1vpids.

Lheap identifies the heap exclusively for the use of the ULP library. ULP executes dy-

namic memory allocation requests made in the context of ULP library result in memory

being allocated through this structure.

Lproc is used to store attributes that describe the process in which ULPs are created.

Mainly it contains information regarding the address space layout of the process and the

memory regions that can be used for ULP allocation. This structure is described later

in this section.

Imiglock. Imigsigs, are used in providing an interruptible yet re-entrant commu-

nication interface to an external ULP scheduler.
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Table 4.2: Interface to a heap object

The heap

A heap provides the interface shown in Table 4.2. A heap is first initialized with the

block of memory it is supposed to manage. hmallocO, hfreeO and hreallocO are

similar in behaviour to mallocO, freeO and reallocO respectively, except that they

operate on the heap object instead of on an implicit process-wide heap. GethminO

and gethmaxO return the lowest and highest memory address respectively that is cur-

rently allocated from this heap. These functions are used in ULP migration to avoid

unnecessary data transfers. (See Section 4.3.7.)

The process descriptor

A process descriptor contains information regarding OS process address space availability

and direction of stack growth. The intersection of the available address space of all

the application processes determines the usable address space from which ULPs can

be allocated. Performing this intersection allows ULPs to freely migrate from one OS

process to another. The direction of stack growth determines how a ULP's stack frame

is initialized prior to the ULP's execution. The structure of this descriptor as well as its

interface is implementation dependent and are discussed in Chapter 5.

Library-library protocol

Since UPVM is designed as a user-level library, it needs to invoke host operating system

for performing communication among ULPs at different sites and to perform I/O.

Function prototype Description
void hinit(Heap* hp, Vaddr hbeg, int hlen) Initialize named heap
void* hmalloc(Heap*, Bytes) allocate memory from heap
void* hrealloc(Heap*, char*, Bytes) reallocate memory from heap
void hfree(Heap*, void*) free memory to the heap
void hdisplay(Heap*, unsigned int) Display heap map and usage
unsigned hleft(Heap*) number of byes bytes unused in the heap
Vaddr gethmin(Heap*) the lowest address used in the heap
Vaddr gethmax(Heap*) the highest address used in the heap



66

Table 4.3: Library-to-library protocol

Since the OS does not know of ULPs, a protocol must be built on top of OS com-

munication primitives to communicate between the ULP libraries. Since it is not known

until a pvm-sendO is invoked where a particular PVM buffer has to be sent, a fixed

4-word protocol descriptor is always made part of each message. The first word identifies

the type of message and the rest of the fields qualify the message type. The different

message types possible are shown in Table 4.3. A '-' indicates that the field is unused

for that message type.

For local IPC, the packed buffer is simply handed over to the destination ULP. For

remote IPC, the OS primitives are invoked to send the packed buffer to the remote

process. Notice that there are two kinds of messages between any two instances of the

ULP library. The end-points of some of the messages are the libraries themselves. No

part such a message reaches a ULP. ULPJ..IBALIVE is one such example. ULP -SEND

and ULP -11SGFWD are examples of those messages that have ULPs as their end-points.

In both cases, the ULP library must parse an incoming message to identify the type of

the message. We will revisit the protocols when discussing the details of supporting the

PVM interface in Section 4.3.6.

Message Type Field-l Field-2 Field-3

ULP _CONFIGQ - - -
ULP _CONFIG No. of ULPS - -
ULP-STATUSQ ULPid - -
ULP-STATUS ULPid - -
ULP-SEND DestnULP SourceULP -
ULP-11SGFWD DestnULP SourceULP -
ULP-SIGNAL Destn Ulpid Source ULP Signal #
ULP-EXIT ULP id - -

ULP-LIBALIVEQ Source VP id - -
ULP-LIBALIVE Source VP id - -
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4.3.2 UPVM Initialization and address space layout

The steps involved in initializing and laying out a UPVM application address space is

simpler in UPVM than those presented for the general design framework. The simplicity

results from supporting only those applications that are written in SPMD style and for

which the number of VPs is known at application startup.

Before any application code gets executed, control is first transferred to the initial-

ization code in the UPVM library. The initialization code performs the following steps:

1. Determine how many processors to allocate initially to the application. A process

is created on each of the processors.

Each instance of the library then goes through the following steps.

2. Determine how many ULPs to create. This number is made available to the library

as a command-line argument.

3. Determine the locations and extent of OS process address space available in the

process.

4. Among the ranges of virtual addresses available, select those ranges that are avail-

able within the OS processes of the application. These ranges are used in ULP

allocation and this selection ensures that a ULP created within one process can be

moved to any other process. Create a memory pool containing these usable ranges.

This memory pool is kept globally consistent. In other words, at any instant of

time, a range of addresses can be allocated to only one process of the application.

5. From the global memory pool, allocate space for the library use ulibspace. This

space is located at the same place for each OS process and is used for ULP man-

agement (ULP table, scheduling queues, etc) and for implementing the message

passing interface.

6. Create ULPs: Creation involves two steps: determining where to create the ULP

and the actual creation of the ULP. The where information is again a policy matter.
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The library assumes the presence of a ULP allocation module that makes these

decisions. Since the application is SPMD and the text is shared among all ULPs,

the actual ULP creation involves allocating 'sufficient' memory for the data and

stack segments of the ULP from the global memory pool and setting up the ULP's

initial execution context (setting up the stack frame, initializing the data segment,

and initializing the ULP descriptor in the ULP table).

7. Register handlers for asynchronous migration events: These handlers are invoked

when a migration event is raised by an external module such as a global scheduler.

8. Schedule the first runnable ULP from the run queue.

Initialization is completed at this point.

4.3.3 Objects specific to supporting PVM

In order to optimize local IPe while exporting the concept of PVM buffers to applica-

tions, UPVM defines two main objects: Btab and Gbdesc. Both these objects provide

information related to PVM buffers. However, each offers a different view of the infor-

mation. The Gbdesc object maintains a process-wide view of PVM buffers and provides

the interface shown in Table 4.4. The buffer IDs used to access the Gbdesc object are

global buffer IDs or gbids. Given a gbid, there can only be one PVM buffer within the

entire process with that id.

On the other hand, bptab is used to provide a per-ULP, local view of PVM buffers by

providing local buffer ads or Ibids to ULPs. There is one Btab object per ULP named

ubtab.

Bptab contains information about the mapping of each allocated Ibid to a gbid. In

addition, associated with each libd is the ULP's view of the encoded and decoded state

of the buffer.

More than one Ibid can be mapped to the same gbid. The reference count associated

with a gbid denotes the number of Ibids that are mapped to that gbid. The accessto
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Table 4.4: Interface to Gbdesc object

Table 4.5: Operations on a Btab object

bptab is through the interface given in Table 4.5. How these objects are initialized and

interact with each other is discussed in Section 5.

4.3.4 Scheduling

The state transition diagram of a ULP in UPVM is given figure 4.6. A ULP is created

in the state Unlnit. When the ULP is scheduled to run, its state changes to Running.

A ULP's Running state changes only under the following conditions:

. a ULP invokes a blocking communication primitive such as pvm.-recv or a blocking

I/O call that cannot be completed immediately, or a page-fault event has been

sent to the ULP library indicating that the currently executing ULP has caused a

page fault and cannot execute further. In this case the ULP state is changed to

Blocked and the ULP is put on the blocked queue (lwtq). The ULP remains in

that state until the requested operation is completed or, in the case of a page fault,

until the OS informs the ULP library that the faulted page has been swapped into

memory. Then the ULP state is changed to Runnable and the ULP is moved to

Function prototype Description
Bufid gnewO Allocate new buffer and new buffer id

void gfree(Bufid globaLbid) Free buffer and buffer id

void ginitref(Bufid globaLbid) Initialize ref. count of the buffer

int gincref(Bufid globaLbid) Increment ref. count of the buffer

int gdecref(Bufid globaLbid) Decrement ref. count of buffer

Function prototype Description
Bufid btbid..new(Btab*) Allocate a new buffer id

void btbidJ"ree(Btab*, Bufid ubid) Free buffer id

void btsetgbid(Btab*, int ubid, int gbid) set ubid-gbid mapping
int btgetgbid(Btab*, int ubid) get gbid bound to ubid
int btgetsgbid(Btab*) get gbid bound to default send buffer
int btgetrgbid(Btab*) get gbid bound to default recv buffer
int btgetsbid(Btab*) get local, default, send buffer id in
int btsetsbid(Btab*, int ubid) set local, default, send buffer id
int btgetrbid(Btab*) get local, default, receive buffer id
int btsetrbid(Btab*, int ubid) set local, default, recv. buffer id
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the run queue lrunq.

. a ULP terminates. The ULP state is changed to Exited.

. UPVM receives an asynchronous migration message to migrate a set of ULPs to

another processor. If the current ULP needs to be migrated, its status is changed

to Running+Migrating during its migration. At the destination processor its state

is changed to Runnable and it is put on the run queue. Note that a ULP at the

time of migration can be in the run queue or the blocked queue. Defining migration

state as a qualifier to the actual execution state of ULPs helps in preserving the

ULP state across migration.

Figure 4.6: ULP state transition diagram

Note that in all the three cases above, the currently executing ULP is no longer

able to continue execution. Thus a new runnable ULP, if available, must be scheduled.

UPVM performs one of the following operations:
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1. If the currently executing ULP invoked a pvm...recvO call that cannot be com-

pleted immediately and the source ULP specified in the blocking receive is runnable

and located on the same processor, then the source ULP is next scheduled for ex-

ecution (hand-off scheduling [Bla90]). Otherwise go to Step 2.

2. If there are runnable ULPs on the run queue, select the one at head of the queue

and dispatch the ULP for execution.

3. If all ULPs of the application have terminated, then perform the application exit

protocol to terminate the parallel application.

4. Otherwise, block within UPVM waiting for receipt of new messages or events.

4.3.5 Context switch

The context switch operation is divided into two parts: saving the state of the currently

executing ULP and loading the register context associated with the new ULP.

In the absence of migration, context switching occurs only when a ULP terminates

or executes a blocking call. In the former case, ULP state is not saved. In the latter case,

the register state is saved by the function int usave (void). This function is expected

to take advantage of the procedure calling conventions of the host platform to optimize

the save time. (See Chapter 5 for context-switch optimization on the HP workstations.)

However, to migrate a ULP that was preempted, the entire register context of the

ULP must be saved. The exact method used to save is implementation dependent.

We assume that the migration mechanism saves the complete register context of the

pre-empted ULP.

Loading the context of a ULP is achieved through the function void uload (Ulpid

id). Uload is customized to the state of the runnable ULP. If a ULP is going to execute

for the first time, then the function asm_ustartO is called, which loads only a mini-

mal set of registers (stack pointer, pc, and argument registers). If the ULP is marked

runnable, then the function asm_uloadO is called that makes use of the procedure call-

ing conventions of the target architecture to perform the load. If the ULP is marked
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Table 4.6: Functions to load ULP state

"migrated while running" then the function asm_ufullLoadO is called to load the entire

register set. The three load functions are summarized in Table 4.6.

4.3.6 Realizing the PVM interface

In this section we show how different functions of the PVM interface are realized in

terms of the data structures and functions described in the previous sections. We will

use an example execution scenario of UPVM objects, shown in Figure 4.7, for illustrative

purposes. The figure shows the per-process Libd object, which contains all the different

UPVM objects accessible in this process. In this example, the Libd object contains 3

ULP objects (ULP 0, ULP 2, ULP 5), the Gbdesc object, a ULP run queue, ULP wait

queue, and a heap object for use by the Libd object. Note that each ULP object in

turn contains a Btab object, a ULP message queue object, and a heap object. The

Gbdesc object contains three process-wide message buffers P1, P2 and P3. The number

corresponding to Rc underneath the buffers indicates current reference count for the

buffers. An Rc of 2 indicates that the two local bids are mapped to the same process-

wide message buffer. In the example, ULP O's lbid of 1 and ULP l's lbid of 1 are both

mapped to the same process-wide buffer Pl.

Enrolling into the PVM environment: pvm-Dlytid

This function enrolls the ULP into PVM on the first call and returns the uid of the

ULP on every call. In UPVM, the ULPs are already created during initialization. This

function simply returns the allocated uid of the executing ULP. For example, if ULP 0

executed pvm-DlytidO, then a zero is returned.

Name Description
void asm_ustart (VIp *u) load registers for first ever

execution of a ULP.
void asm_uload (Ulp *u) load only the registers necessary to preserve

procedure calling conventions
void asm_ufullLoad (Ulp *u) load the entire context of the ULP



73

l ffi]l "~
I ffil '

~
l m'

~--- ,ULPO --- ,ULP2 --- , ULPS
2 P3_ 2 P3_ 2 P3 _
3 - - - _ - I MsgQ 3 - - - L. MsgQ 3 - - - ~ J MsgQ

10caIDrab local Drab localDrab
ULP's heap ULP'sheap ULP's heap

P2 kf1;"~~
Rc=l

process-widc PVM buffcrs

( Gbdcsc: object)

P3

ULP run queuc
6.ii\'~

,/ , .,. Libruy Heap ( !heap)
"

<,',' ,', , ,./ i~ , ULP wait queue

~ per-process Libd object

Figure 4,7: An example object execution scenario in UPVM

Allocating message buffers: pvm mkbuf

The Pvm mkbufO creates a new message buffer and returns the bufid of the buffer.

To support this functionality, the function gnew (encoding) is first invoked on the

Gbdesc object to create a new message buffer. Upon buffer creation, GnewO returns

a buffer identifier (gbid) that is unique within the process. A per-ULP buffer identifier

(Ibid) is then created by invoking btbid-newO on the Btab of the ULP that executed

pvm mkbufO. A mapping is then established between Ibidand gbid by invoking

btsetgbidO on the ULP's Btab. Finally, the global buffer's reference count is initialized

to the number of mappings to it that currently exist.

For example, suppose that ULP 5 invoked pvm mkbufO (Figure 4.7). Then the

invocation of gnewO creates a new buffer with an id, say P4. A unused Ibidin ULP

3 is then allocated by calling btbid_newO. Looking at ULP 3's btab, let us suppose

that the Ibidreturned is 3. Then invoking btsetgbidO sets the third row of the ULP



74

Table 4.7: Packing functions in the PVM interface
I Name

int pvm..pkbyte F:hai*xp, int nitem, int stride)
int pvm..pkcplx ( char *xp, int nitem, int stride)
int pvm..pkdcplx ( char *xp, int nitem, int stride )
int pvm..pkdouble ( char *xp, int nitem, int stride )
int pvm..pkfloat ( char *xp, int nitem, int stride)
int pvm..pklong ( char *xp, int nitem, int stride)
int pvm..pkshort ( char *xp, int nitem, int stride)
int pvm..pkstr ( char *xp )

3's btab to P4. Finally the reference count of P4 is set to one, the number of mappings

that currently exist to the buffer, by calling ginitrefO.

As described later in this section, maintaining a per-ULP view of "real" message

buffers simplifies some of the problems associated with optimizing local IPC among

ULPs.

Packing routines (pvm_pk*)

The packing routines pack data into the default send buffer in a machine-independent

format. A different packing routine is available for each available data type. For the C

language, the routines provided by the PVM interface are shown in Table 4.7.

The packing functions are supported as follows. First, they find the process-wide

buffer identifier gbid that corresponds to the Ibid of the default send buffer of the ULP.

The gbid is then used in packing ni tern number of the given type into the corresponding

buffer. The stride is used to choose the next item from the given array xp. That is, a

stride of one is equal to choosing first ni tern items from xp, a stride of two corresponds

to choosing every alternate item from xp, and so on. If the size of the data is larger than

the size of the buffer, the routines allocate memory from the library heap before doing

the packing. Thus buffers are contiguous conceptually but are realized as a linked list of

contiguous segments.
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Table 4.8: Unpacking functions in the PVM interface
'~~ I

int pvm_upkbyte ( char *xp, int nitem, int stride)
int pvm_upkcplx ( char *xp, int nitem, int stride)
int pvm_upkdcplx ( char *xp, int nitem, int stride)
int pvm_upkdouble ( char *xp, int nitem, int stride)
int pvm_upkfloat ( char *xp, int nitem, int stride)
int pvm_upklong ( char *xp, int nitem, int stride)
int pvm_upkshort ( char *xp, int nitem, int stride)
int pvm_upkstr ( char *xp )

Unpackingroutines: (pvm_upk*)

The unpacking routines perform the reverse operation of the packing routines. (See

table 4.8.) They unpack data from the default receive buffer and place it starting from

address (xp) with a stride of stride.

Because of the way local communication is designed, it is possible in UPVM for

multiple ULPs to refer to the same message buffer. This potential buffer sharing is the

reason why we chose to maintain the current unpacking state on a per-ULP basis within

the btab object. The unpacking state refers to the number of data items that have

already been unpacked from a message buffer by a ULP. Unpacking routines look at this

state to figure which data items to unpack next, in a manner similar to that of a readO

operation on a file that uses the file pointer to figure out where to perform the next

read. Thus on a unpacking routine invocation, the ULP's view of the buffer's unpacking

status is first accessed. Based on this state, the unpacking is performed, and the new

unpacking state for this buffer is updated.

Sending messages: pvm..$end

Pvm..$end (uid, msgtag) sends the message in the default send buffer to the ULP

with the specified uid. Msgtag is used to label the content of the message. The length

of the message sent is implicitly equal to the size of the default send buffer. On return

from the call, the default send buffer can be re-used to pack and send more messages.

The send buffer retains its contents across successive calls to pvm..$endO as long as the
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buffer is not explicitly freed by the ULP.

When a ULP invokes pvm...sendO, the uid is first examined to check if the destina-

tion ULP is within the same address space. If so, a message-descriptor is created and put

on the destination ULP's message queue. This message descriptor identifies the source-

ULP, the gbid of the process-wide message buffer, the message type, and the length of

the message. The reference count of gbid is incremented to record that one more ULP

can potentially access gbid. If the destination ULP already executed a pvm-recvO

for this message and is blocked in the lwtq, that ULP is unblocked and put on the run

queue. Note that no actual copying of the message is performed.

In contrast, if the ULP is remote, the ULP communication has to be wrapped as

communication between processes since the as has no knowledge of ULPs. The wrapping

affect is achieved by attaching a ULP library-to-library protocol header with values

corresponding to the ULP ...sEND entry in Table 4.3 to the ULP's message, and invoking

an OS-provided communication primitive to send the message to the remote destination.

Note that the destination argument to this OS's send primitive will be the PID within

which the destination ULP executes.

Releasing a message buffer: pvmJreebuf

pvm...freebuf (int bid) frees the message buffer associated with the specified buffer

identifier. However in UPVM, the bid passed to pvmJreebufO is not a process-wide

identifier but a local buffer identifier. To support this function, the gbid associated

with this bid is first obtained (btgetgbid (ULPs Btab, bid). The reference count

associated with gbid is then decremented. If the count is zero, the memory associated

with the buffer is returned to libheap. Otherwise, the buffer is retained in the Gbdesc

object. Finally, the local buffer identifier, bid, is returned to the invoking ULP's Btab.

Receiving messages: pvm-recv

Pvm-recv (uid, msgtag) blocks the ULP until a message with the label msgtag has

arrived from the uid. Pvm-recvO then places the message in a new default receive
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buffer and returns the buffer id of this new buffer. Either one of these parameters can

be wild cards.

In UPVM, it is possible for messages to a ULP to arrive before a pvm-recvO is

invoked by that ULP. Thus, when a pvm-recvO is invoked by a ULP, the ULP's message

queue Ulpmq is first checked to determine if a message that matches the arguments has

already arrived. If the match succeeds, a new local buffer identifier (lbid) is allocated

from the ULP's ubtab, the gbid specified in the message descriptor is mapped to the

lbid, and the lbid is made the ULP's new active receive buffer.

If there is no match, the ULP's wait descriptor is updated and the ULP is put on

the wait queue. Control is then handed over to the UPVM scheduler.

Exiting from the PVM environment: pvm_exit

Pvm_exitO removes the invoking process from the PVM environment. After returning

from the call, the ULP can continue to execute just like any other serial process. However,

it cannot use the PVM interface until it re-enrolls itself into the UPVM environment by

calling pvm-IIlytidO.

This function is supported by qualifying the ULP state as Upass, that is, alive but

not participating. This state is orthogonal to the states shown in Figure 4.6 and not

integrated into the diagram due to space considerations. For example, a ULP can be in

a state Running and Upass simultaneously or it can be Blocked (on an I/O) and Upass

simultaneously. When a ULP invokes the PVM interface when it is qualified by the state

Upass, the calls simply return an error.

Creating a new ULP: pvm-spawn

For static, SPMD parallelism, this function is essentially a null operation. In section 4.4,

we will discuss the design of this function to support dynamic ULP creation in the

context of program parallelism.
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4.3.7 ULP migration

Because residual dependencies can affect the performance of a host processor and con-

sequently fail to be unobtrusive to the host's owner, the ULP migration mechanism in

UPVM is designed to have no residual dependencies. The migration protocol is divided

into four major stages. (See Figure 4.8.)

1. Migration event. The global scheduler (GS) sends a migration message directly to

the process containing the ULP to be migrated. The process is interrupted and

control is transferred to the migration handler mighdlO within the ULP library.

The migration handler checks if the library is within a critical section. If the ULP

library is in a critical section, migration is deferred to the point when the library

leaves the critical section. Otherwise, the library reads the migration message,

determines which ULPs to migrate, and prepares for ULP migration.

From GS: migrate ULPO to host 2
Move ULPO context into

reserved space in host 2

host 1 host2

1. Migration Event 3. State transfer

Infonn other hosts of pending migration,

Flush messages in transit to ULPO

Host2
prepares
toaccept
ULPO

ULPO
continues
execution
in host 2

2. Message Flushing 4. Re-start

Figure 4.8: Stages in migrating ULPO from host! to host2
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2. Message flushing. This step ensures that ULPs send all their future messages

destined for the migrating ULP to the new destination processor and no in-transit

messages are dropped during migration. To achieve this step, a "ULP-migrating"

message is broadcast from the source host to all the other hosts allocated to the

application. The ULP library on the source waits on a barrier equal to N, where

N is one fewer than the number of hosts allocated to the application. Receipt of

one "ULP-migrating" acknowledgement message from each of the N hosts allows

the blocked ULP library to fall through the barrier and goes to the next step in

migration. This barrier scheme relies on the assumption that the receipt of the

"ack" message from a host implies that all previous messages from the host have

been received. If inter-OS communication primitives do not provide this ordering

semantics, then the UPVM library would have to building a message ordering layer

on top of the OS primitives and use this layer for message communication.

Given that the ordering semantics are available, the messages received up until the

fall through the barrier are packaged up with the ULP state. All future messages

to the migrating ULP are now directly to the new destination.

3. ULP state transfer. The ULP state, consisting of text, data, stack, heap, register

context and messages as yet un-received by the ULP, is sent to the target UPVM

library. To optimize the heap transfer, the functions gethminO and gethmaxO

are used to obtain the smallest and the largest heap address being used. Only

the data within these bounds is transferred. The target UPVM library receives

the ULP state and places the ULP in its allotted set of virtual address regions.

Further, the messages in the ULP state are added to the front of the message queue

at the destination processor so as to preserve PVM message ordering semantics.

4. Restart. The ULP is placed in the appropriate scheduler queue (run queue or

blocked queue) so that it will eventually execute. Since the hosts allocated to the

application already know the new location of the ULP, no further communication

related to ULP migration is needed.
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4.4 Supporting program and dynamic parallelism

Program parallelism allows parallel application to be made up of ULPs that differ in

their code segments. Dynamic parallelism allows an application to control the degree of

application parallelism at run-time. Thus providing the support for dynamically spawn-

ing ULPs in UPVM and removing the SPMD constraint is sufficient to accommodate

the two kinds of parallelism.

To provide this support, it is clear that the static, SPMD version of UPVM design

needs to be extended. However, as can be seen from closer examination, the issues of

managing, scheduling and realizing the PVM interface remain unchanged. Mainly, only

two areas of UPVM design need to be revisited: supporting a dynamic pvm..spawnO

and ULP migration.

Supporting a dynamic pvm..spawnO in turn maps to dynamic ULP creation. There-

fore many of the issues, approaches and trade-offs discussed in Chapter 3 apply here.

In terms of the ULP interface, ucreateO needs to take in additional arguments: an

executable file name and a list of program arguments. The ucreateO function goes

through one of the following steps:

. If the file has already been loaded in the context of another ULP, allocate memory

from the global memory pool and load the data segment. Then perform the same

initialization steps as those described for ULP initialization in the SPMD, UPVM

design.

. If the file has not been loaded before, then determine the extent of the code and

data segments and allocate sufficient memory from the global memory pool. Load

the code segment and dynamically link the code with the functions exported by

the UPVM library interface. Then load the data segment and initialize the ULP.

ULP migration in the presence of dynamic spawning of ULPs cannot assume that the

code segment is present in the destination process because of some other ULP. The ULP

migration protocol needs to be extended to check for the presence of code and transfer
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the code segment only if the code segment is absent at the destination.

Further, the ULP restart may become more complicated if the code segment is mi-

grated. If the UPVM library exists at the same addresses on all processors, then ULP

restart reduces to that of the SPMD, UPVM design. Otherwise, the migrated ULP's

code segment needs to be re-linked at the destination with the UPVM library. In our

approach, we chose load the UPVM library at the same addresses on all processors so as

to reduce the restart cost.

4.5 Summary

This chapter described the design of UPVM, a ULP system that supports the PVM

message passing interface. The interface has certain location-dependent aspects that are

not supported by UPVM because they break location transparency which is essential for

supporting transparent migration. The design of UPVM was presented incrementally.

Temporarily assuming that applications were SPMD and exhibited static parallelism,

the design discussed the objects needed irrespective of the VP interface supported, the

PVM-specific structures needed to efficiently support local communication, and ULP

scheduling. Further, we showed how the PVM interface can be realized using the data

structures and the scheduling infrastructure. ULP migration was then presented assum-

ing an SPMD model. Because the code was the same for all ULPs, the code segment

need not be transferred during ULP migration for SPMD applications.

We then extended the SPMD, UPVM design to handle program and dynamic paral-

lelism. Extensions are mainly in ULP creation and migration. ULP creation must now

be able to dynamically load and link to ULP code segments. In migrating a ULP, the

ULP code segment may need to be transferred if the code segment is not available at the

destination. We avoid the potentially re-linking at the restart stage of ULP migration by

loading the UPVM library at exactly the same addresses within all OS processes. In the

next chapter, we use the UPVM design presented here as the basis for the implementation

of our UPVM prototype.



Chapter 5

UPVM Implementation on HP
workstations

This chapter describes a prototype implementation of UPVM on a network of HP 9000

series 700 workstations and is divided into two major sections. The first section presents

relevant details of the HP workstation and software used to develop the UPVM prototype.

The second section describes the main details of the UPVM implementation.

5.1 The implementation platform

The implementation platform was network of HP 9000 series 700 workstations running

the HP-UX version 9.03 operating system. In order to implement UPVM, the following

major issues had to be resolved:

. How can multiple ULPs be created within the context of a HP-UX process on the

HP workstations?

. How can distribution and remote communication be achieved?

For ULP creation, certain characteristics of the HP workstation need to be well

understood. These characteristics are discussed in Section 5.1.1.

For achieving distribution and remote communication, two options were considered.

One was to use UNIX sockets and remote execution features such as rsh and rexecO.

The other option was to use the standard PVM library released from Oak Ridge National

82
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Figure 5.1: Process virtual address space layout in HP-UX 9.0

Laboratory (ORNL). The PVM library was chosen because it simplified UPVM devel-

opment. Relevant aspects of the PVM library implementation are discussed in Section

5.1.2.

5.1.1 HP 9000/700 series workstations

The HP 9000 series 700 workstations are based on the PA-RISC 1.1 processor [Hew90]

and run the HP-UX 9.0.3 operating system.

To determine where ULPs can be created, the usable virtual address space of the

process has to be determined. (Recall discussion in Section 3.1.1.) The virtual-address

space layout of a HP-UX process is shown in Figure 5.1.

The PA-RISC processor architecture defines a global 64-bit address space that can

be accessed using short (32-bit) and long (64-bit) pointers. UNIX processes normally use

short pointer addressing. In this mode, the highest-order two bits of the 32-bit address

denote the space register that supplies up to 32 bits that form the higher word of the

64-bit address. In other words, there are up to 232 4-GB address spaces possible.

Process code space

-------
Allocatable manory

---------------
Process stack

For kemel use

For system calls 8Dd
UNIX shared memory
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Thus as shown in Figure 5.1, the 32-bit address space of a UNIX process can be

divided into 4 quadrants. The text segment is allocated in the first quadrant. The user

data segment and stack are allocated in the second quadrant. The kernel stack of the

process is allocated in the third quadrant. System call entry points and shared memory

segments are allocated in the fourth quadrant.

On the HP workstations, the process stack grows towards higher addresses. Thus

the stack can grow from stackbegin up to and not including Ox80000000. The value of

stackbegin on HP-UX 9.0.3 is Ox7b033000.

The HP-UX linker defines two variables _data-Btart and end that have special

significance. The variable _data-Btart contains value that denotes the beginning of

the process data segment. The address of the variable end identifies the end of the

data segment. In the figure, Data_end refers to the address of the end variable. Thus the

memory addresses between Data_end and stackbegin are essentially available to UPVM

libra.ry for ULP and memory allocation.

The HP-UX compilers generate code that references data relative to a base register

called the data pointer (dp) register. As described later, this indirection is used in

the UPVM implementation to support the notion of separate data regions for multiple

ULPs executing in a single process address space.

Although the processor defines 32 genera.l purpose registers and 32 floating point

registers, not all of them need to be saved on procedure calls. The procedure calling

conventions divide the register sets into caller-save and callee-save registers. Knowledge

of these registers is used in optimizing the ULP context-switch.

5.1.2 The PVM system

The PVM system from ORNL is built as a layer above the operating system and on a

network of UNIX workstations uses sockets and remote execution facilities of UNIX to

implement the PVM interface.

As mentioned in Chapter 4, the PVM system consists of a daemon process (pvmd)

that runs on each workstation, and a run-time library (pvmlib) that contains the PVM
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interface routines (Figure 5.2). The pvmd is responsible for VP creation and control.

VPs in PVM are Unix processes (called tasks) linked with the pvmlib. Each task has a

unique task identifier (tid) that defines the end points of task-to-task communication.

~TCP

occ...;> UDP

Figure 5.2: PVM implementation structure

To support the PVM interface, the code in pvmlib implements buffer management

and communicates with the pvmd and other PVM tasks. Since the UPVM library has to

support the same interface, most of the PVM system has been reused in the context of

UPVM. In other words, a UPVM system has the structure shown in Figure 5.3. While

the pvmds are used unchanged, applications now have to link to upvmlib instead of

pvmlib.

Host2

PVMtask

~TCP

occ...;> UDP

..

...'" eo.-..

Ditecl

Figure 5.3: UPVM implementation structure

In developing upvmlib itself, most of the pvmlib code was directly reused. However,

because of certain assumptions in the pvmlib code, some portions of pvmlib were modified

so that pvmlib worked in the context of UPVM. We discuss these assumptions and our
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modifications in Section 5.2.3.

5.2 UPVM implementation

For the development of the prototype, two assumptions were made regarding PVM ap-

plications that greatly simplified the implementation while still allowing us to verify our

ideas about ULPs.

First, applications are assumed to have be written in an SPMD (Single Program

Multiple Data) style. That is, the application is coded as a single program and is in-

stantiated into multiple VPs. This assumption simplified the design of context switching

among ULPs and ULP migration.

Second, the applications are assumed to exhibit static parallelism, that is, the number

of VPs required by the parallel application must be specified at application startup. This

assumption simplified the problem of ULP creation.

This section is organized as follows. Application compilation is discussed in Sec-

tion 5.2.1. Details of UPVM initialization and creating the global virtual address space

are given in Section 5.2.2. The modifications to pvmlib for use in the context of mul-

tiple ULPS are discussed in Section 5.2.3. Context switching details are presented in

Section 5.2.4. Finally, ULP migration is described in Section 5.2.5.

5.2.1 Compiling applications

For PVM applications that are SPMD and exhibit static parallelism, no changes are

required to the source code to compile the applications with UPVM. By static parallelism,

we mean that the number of virtual processors used by the application is either a fixed

constant or a variable number that is known at application startup.

To initialize UPVM code before application execution, upvmlib defines its own mainO

and then calls the application's mainO. To prevent linking errors, the application's

mainO is renamed to MainO.

Since ULPs have distinct heaps, the standard memory management routines provided
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by the OS that assume a single, process-wide heap cannot be used directly. We need to

trap all calls to memory management routines and execute the required operation on the

right heap. A simple source-level renaming of all memory management routines is not

enough since the standard C library contains routines that call mallocO internally. So

upvmlib supplies its own version of mallocO and other memory management routines

that are linked to the application program.

However, for applications that are not SPMD and exhibit variable parallelism, source

modifications cannot be avoided. PVM applications that are non-SPMD have to be con-

verted first into their SPMD counterparts. In most cases the process is straightforward

and includes writing a single wrapper main program, changing the mainO of each of

the independent programs into function names, and compiling all the program files into

a single executable.

Also, PVM applications that can spawn a variable number of tasks must be modified

such that the number of tasks spawned can be determined and specified as a ULP system

argument at application startup.

5.2.2 Initialization and address space layout

A UPVM application is executed by typing

application name [application arguments] [ULP system arguments]

The ULP system arguments provide the initialization code with the number of pr~

cessors (nvps) to use, the number of ULPs (nulps) to create on these processors, the

size of the virtual address space required (vspace), and the size of the space within this

vspace for message handling and storage. Currently, the mapping of ULPs to processes

is a compile-time option for upvmlib. Thus, upvmlib can be compiled so that it maps

the given number of ULPs in an interleaved or blocked manner on to the OS processes

created.

At application startup, control is first transferred to the mainO in the UPVM initial-

ization code via /lib/ crtO. o. The initialization code spawns nvps tasks using pvmlib
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Figure 5.4: ULP layout

code. Each task has the same text segment as the original process (SPMD) and all of

them go through the identical steps. Note that as far as the pvmds are concerned, the

tasks spawned are PVM tasks.

The UPVM initialization code in each of these PVM tasks has information on the

configuration of the virtual machine and the host from which the application was started

is recognized as a home node. The initialization code in each of these PVM tasks then

allocates the specified virtual address space vspace using sbrkO, determines which

ULPs to allocate in that process, and creates and initializes the libddescriptor. This

initialization is followed by the creation of ULPs (ucreate) and the ULPs are placed on

the ULP run queue. Each ULP occupies a unique, per application, network-wide virtual

memory region as shown in Figure 5.4. The figure shows an application divided into 4

ULPs on 2 processors, 2 ULPs per processor. Note that each ULP occupies a unique
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set of virtual memory regions. These regions comprises the data segment, stack segment

and the heap space of the ULP.

In addition to the space used by the ULPs, there is a certain amount of virtual

address space that is used by upvmlib itself. This space(ulibspace) (Figure 5.4) contains

various ULP tables, memory management data structures and ULP scheduling queues.

The same region of virtual address space is used by all the instances of the upvmlib

(one per physical processor). This space is not migratable. Note that the code region

is shared among all the ULPs within a UNIX process. This sharing is possible as the

application is SPMD and the code generated by the hp-ux compilers makes all data

references through a designated register called the datapointer (gr27). Simply stated,

sharing of the same code can be accomplished by switching the datapointer register to

point to the data segment of the ULP being scheduled.

When a ULP is created certain variables in its data segment are initialized to point

to data structures within the ulibspace. These variables can be thought of as type

constant since, once initialized, they are modified neither by upvmlib nor the applica-

tion. Examples of such variables are pointers to ULP tables, ULP run queue, ULP

blocked queue, etc. These variables allow the ULP library to access its data structures

irrespective of the ULP currently scheduled.

The space labeled msgspace is used by upvmlib for receiving and sending PVM

messages. Since there are multiple ULPs per PVM task, additional information is added

to each PVM message so that the message can be de-multiplexed into the current ULP

receiving queue in the receiving PVM task.

Once the ULPs are created, the initialization code in each of the PVM tasks sets up

signal handlers for handling migrate events that can be sent from the global scheduler

(GS). The signal is symbolically SIGMIG.

Finally, control is transferred to the ULP scheduler. Each ULP scheduler then picks

the first available ULP from its run queue and dispatches them for execution. It is at

this point the application code gets executed.
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Except for this initialization step, which is pre-determined, the upvmlib code is in-

voked during the application execution only under the following conditions.

. A PVM function is invoked.

. A memory management routine is invoked.

. A SIGMIG asynchronously interrupts the host PVM task in which upvmlib has

registered migration handlers.

The implementation does not handle page faults because HP-UX does not inform

upvmlib about such events. The Support for I/O is under development. (See future

work in Chapter 8.)

5.2.3 Invoking pvrnlib routines within upvrnlib

For code reuse and ease of implementation, upvmlib reuses most of the pvmlib code

distributed by ORNL. As shown in Figure 5.3, the upvmlib code can be conceptually

thought of as two layers of code: a ulplib layer implemented on top of the vanilla pvmlib

code. Implementation-wise however, it was not so simple.

Pvmlib has been designed and implemented to execute within the context of a single

UNIX process. The code contains assumptions that the library a) executes within the

context of a single data segment and b) only one thread of control is executing within

the library at any instant of time.

In the upvmlib environment, the pvmlib code can be invoked from multiple ULPs.

Since each ULP has a different data segment, executing the pvmlib code in the ULP's

context would cause inconsistencies in the pvmlib's data structures. For example, since

there are multiple instances of a global variable (one per ULP context), accessing the

global variables from pvmlib from different contexts can yield different values.

Thus for pvmlib code to work correctly in the ULP environment, a separate data

segment is allocated for the execution of upvmlib. Specifically, on the invocation of

a PVM function, the dp register is changed to point to this data segment, the pvmlib
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routine is executed, and the original value of dp is restored after the completion of the call.

Having such a data segment results in all of the pvmlib data structures being consistent

and up-to-date. In the figure 5.4, ulibspace identifies this data segment. In terms of

instruction counts at user level, executing upvmlib in its own data segment requires three

instructions more than that of executing a simple procedure call to upvmlib, which does

not require a switching of data segments.

Another minor integration issue deals with the PVM default send and receive buffer

identifiers as implemented by pvmlib. These buffer identifiers are defined as global

variables in pvmlib and are used by the PVM packing, unpacking, send and receive

routines. Since each ULP has its own default send and receive buffers, these global

variables are changed at every ULP context switch to the values of the default send and

receive buffer ids of the new ULP. The costs of saving these buffer ids is included in the

performance analysis of context-switching in the next chapter.

5.2.4 Context switch

Recall from Chapter 4 that context switching is implemented by the functions us-

aveO and uloadO which in turn call the specialized machine-dependent functions

asm_ustartO and asm_uloadO, asm_ufullLoadO, and asm_usaveO depending on

a ULP's execution state. Such specialization offers the best potential for performance.

This sections presents the implementation of these machine dependent functions below.

The function asm_ustartO simply initializes the stack-pointer register, data-pointer

register, the argument registers, and the return-pointer register based on the informa-

tion in the ULP's descriptor and branches to the address contained in uentry. For C

programs, uentry will be main. This function is called the very first time a ULP begins

to execute.

Asm_uloadO restores only the callee-save registers (gr3-gr18, frO-fr3, fr12-fr21).

Since in the common case, ULP context switching occurs voluntarily, the invocation of

the context-switching code is treated as a normal procedure call by the compiler and

obeys the procedure calling conventions described in the HP Precision Architecture 1.1
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manual [Hew90). Hence the need to restore the callee-save registers. Asm_usaveO does

the converse.

Finally, asm_ufullLoadO is used in the case when a ULP has migrated while it was

running on another processor. It loads all the 31 general registers and 32 floating point

registers.

5.2.5 Migration mechanism

A ULP executing on the UNIX platform has access to the entire system-call interface.

In our prototype implementation, we support transparent migration for those processes

that use only the PVM interface. UNIX specific functions such as signals, resource usage

timers, getpid, etc, are not supported for PVM applications.

All policy issues related to detecting migration points and destination nodes for

migration are assumed to be handled by a global scheduler (GS) entity. The migration

protocol essentially follows UPVM's design and is divided into four major stages:

1. Migration event. The migration of a ULP is triggered by a migration signal from

the GS since it is a simple way of interrupting a UNIX process. Unfortunately one

cannot convey additional information apart from the signal itself. Therefore the GS

also sends a migration (ULP -MIG) message to the PVM task in which the ULP is

located. The ULP -MIG message contains the UID of the ULP and the destination

to which the ULP is to be migrated. ULP migration is handled totally within

the upvmlib and pvmds are unaware of this migration. Upon receipt of a SIGMIG

signal the process is interrupted and control is transferred to the migration handler

mighdlO within the ULP library. The migration handler checks if the library is

within a critical section. If the ULP library is in a critical section, migration is

deferred to the point when the library leaves the critical section. Otherwise, the

library reads in the migration message and prepares for ULP migration.

2. Message flushing. Recall that in the UPVM's design, an assumption was made that

the underlying communication interface used by the PVM library provided message
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ordering on a per-node basis. By using pvmlib as the underlying communication

interface, the ordering semantics were achieved for free since pvmlib provides such

ordering semantics.

3. ULP state transfer. The entire ULP state, consisting of data, stack, heap, register

context and messages not yet received by the ULP, is sent to the target process

by using packing and send routines defined by pvmlib. The upvmlib in the target

process receives the ULP state using receive and unpacking routines provide by

pvmlib and places the ULP in its allotted set of virtual address regions.

4. Restart. It is exactly the same as described in UPVM design.

5.3 Summary

In this chapter, we presented the implementation details of UPVM on a network of HP

9000 series 700 workstations running HP-UX 9.0.3 operating system. The implementa-

tion runs correctly under the restriction that a global scheduler sends a ULP migration

request to a UPVM library only after the previous request is completed. We are currently

working on removing this bottleneck.

Several simplifications were made in the prototype development to focus on the val-

idating the idea of ULPs rather than building a full-fledged system. First, only SPMD

PVM applications were supported. Second, only static parallelism was supported. Third,

the number of processors and the required virtual address space were made available as

command-line arguments which the user typed in, rather than upvmlib communicating

with the GS in order to determine the number of available processors. Finally, the global

scheduling environment was imitated by a small GS program, which when run, sent the

specified process a SIGMIG signal and a migration message specifying which ULPs to

migrate and their destinations. Thus, we were able to test the unobtrusiveness and mi-

gration cost of the ULP system without requiring the development of an infrastructure

for scheduling mechanisms and policy. The scheduling policy and mechanisms are being

investigated. in a related research project by our group [CCG+95].
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UPVM is implemented such that PVM tasks that have migrated all their ULPs away

do not consume CPU. The tasks remain blocked waiting for a message from the GS.

In the next chapter, we evaluate the performance of the UPVM implementation with

respect to both micro-benchmarks and PVM applications.



Chapter 6

PerformanceAnalysis

The performance of the UPVM package is analyzed in two ways. We first present the

results of micro-benchmarks for context switch, local communication, and remote com-

munication. The goal is to ascertain the costs of the primitive operations provided by

UPVM. We then analyze two applications: a ring communication application that is

communication bound, and a two-dimensional grid-based Laplace solver that is compu-

tation bound. Finally, the migration performance of UPVM is analyzed by benchmarking

a neural-network classifier application.

6.1 Benchmarking environment

Because of limited resources, all experiments were conducted on two HP series 9000/720

workstations that were otherwise idle, connected over a 10Mb/see Ethernet. Each of

the workstations has a PA-RISC 1.1 processor, 64 MB main memory, and is running the

HP-UX 9.03 operating system.

6.2 Micro-benchmarks

6.2.1 Context switch

The context switch benchmark measures the average time taken for one VP (an OS

process or ULP) to yield to another of the same kind over 10,000 yields. For comparison

purposes, the cost of executing a null procedure call on the HP-UX workstation is 0.65

95
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micro-seconds. Table 6.1 gives the context switch cost of ULPs and as processes, both

in absolute time and as a ratio to null procedure call cost. Figure 6.1 shows a bar chart

of the context-switching costs.

Table 6.1: Context switch costs (absolute and relative)

Isolating the process context switch cost in a portable manner is extremely difficult,

since there is no equivalent of a yield-to-another-process system call on UNIX. Our

solution to this problem was to use Ousterhout's context switch benchmark [Ous90]. In

this case, we calculate half the time taken by two UNIX processes to alternately read

and write one byte from a pair of pipes. This implies that the UNIX process switch

cost given in table 6.1 includes the cost of reading and writing one byte from a pipe in

addition to the true process switch costs. However, even if we consider only half of the

observed process switch costs, the ULP switch is still more than an order of magnitude

faster.

The ULP package performance can be attributed to two factors. First, since the

ULPs are within the same as process, performing system calls is not necessary to yield

to another ULP. Second, the ULP package employs hand-off scheduling, which eliminates

the latency in scheduling the destination ULP.

6.2.2 Local communication

The local communication benchmark measures the round-trip message communication

cost between two VPs, averaged over a large number of trips ( > 1000). The cost of

packing and unpacking the message is included in this cost. The benchmark is compiled

and linked with the PVM library and then with UPVM, yielding two different executa-

bles. In the case of PVM, the local communication cost measured is between two UNIX

processes on the same node. In the case of UPVM, the cost measured is between two

Type Cost (micro-seconds) Ratio
ULP switch 4.74 7.30

UNIX switch 195.00 300.46
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Figure 6.1: UNIX process versus ULP context switching

ULPs that are executing within the same UNIX process. The numbers shown in Ta-

ble 6.2 and plotted in Figure 6.2 are half the round-trip cost. We assume that this cost

closely approximates the one-way communication cost.

Table 6.2: Local communication costs

The local communication cost of UPVM is around an order of magnitude better than

that of PVM. This improvement can be attributed to two factors: the low ULP context

switch costs, and optimized message passing that takes advantage of the shared address

space (as described in Chapter 3). In other words, local ULP communication avoids

Message size(bytes ) PVM(ms) UPVM(ms)
0 1.40 0.12
1 1.42 0.12

512 1.61 0.14
1000 1.85 0.14

10000 6.55 0.39
100000 47.36 5.55
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the cost of system call invocation, process context switch, message-buffer copy from the

source process into the OS, and message-buffer copy from the OS into the destination

process.

6.2.3 Remote communication

The remote communication benchmark is the same program that was used for bench-

marking local communication. In this case, the VPs are allocated on different nodes.

Again, the costs reported are averaged over 1000 communications. Since UPVM uses

PVM for remote communication and treats PVM as a black box as much as possible, we

expected a marginal increase in the cost of the remote communication when comparing

UPVM to the vanilla PVM.

As seen from Table 6.3 and Figure 6.3, remote communication costs in UPVM are

about 3.5 %, 3% and 1% higher than that of PVM for lK, 10K and lOOKmessage sizes

respectively. The overhead is due to a combination of per-ULP buffer table operations,

the reference-counting mechanism, a locality check, and some run-time debugging code.

Communicationcost (ms)
- PVM

7. - UPVM

6

5

4
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1
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Figure 6.2: Local communications costs
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Table 6.3: Remote communication costs

Figure 6.3: Remote communication costs

6.3 Application Benchmarks

In this section, the performance of two PVM applications is analyzed. We chose these

applications to examine the two extremes of communication: the ring application per-

forms almost no computation and is always performing communication, and the two-

dimensional parallel grid solver with high computation and very little communication.

6.3.1 Ring

The ring program creates a specified number of VPs that then perform ring communi-

cation using small (one-integer data item) messages. The time measured is the average

Message size(bytes ) PVM(ms) UPVM(ms)
0 2.65 2.80
1 2.63 2.80

512 3.35 3.50
1000 4.01 4.15

10000 17.06 17.60
100000 144.70 146.36

Communicationcost (ms) - PVM

21T
- UPVM
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time taken by a message to go once around the ring.

The first experiment measures the ring program performance when all VPs are allo-

cated on a single node. The results are shown in Table 6.4 and plotted in Figure 6.4.

Since all VP communication is local, the order of magnitude improvement in UPVM per-

formance over PVM is in line with the local communication and context-switch results.

Table 6.4: Ring on one node

The second experiment examines the performance effects of two VP-to-processor al-

location strategies, interleaved and block-decomposed. In the interleaved (Intlv) scheme,

the application VPs are distributed over two processors such that every inter- VP commu-

nication is remote. In other words, VPs that are "neighbours" in the ring are allocated to

different processors. Thus, this allocation is a worst-case scenario in UPVM since there

is no possibility for optimizing local communication. In contrast, the block-decomposed

(Blk) allocation scheme takes advantage of the ring communication pattern. The ring

of VPs is cut in the middle and the two parts are allocated to the different processors.

Thus, irrespective of the degree of VP decomposition, only two remote communications

are needed in sending a message once around the ring, and all other communications

will be local to the processors.

As expected, the performances of ring on PVM and UPVM are comparable for the

interleaved scheme. (See Table 6.5.) However, UPVM performs significantly better than

PVM for the block-decomposed scheme whenever there are more number of VPs than

there are processors. (See Table 6.5 and Figure 6.5 that plots the block-decomposed

scheme.) Specifically, UPVM performs at least twice as well as PVM for 8 or more VPs.

# VPs PVM(ms) UPVM(ms)
2 2.55 0.26
4 5.64 0.56
6 8.42 0.82
8 11.16 1.15

10 14.35 1.33
14 21.50 1.90
20 32.86 2.87
24 42.85 3.50
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Figure 6.4: Ring on a single node

This improvement is due to UPVM's gains from its local communication optimizations

as the number of VPs in each block increase. Thus, a suitable VP allocation scheme is

a critical factor for UPVM in achieving high performance.

6.3.2 Laplace grid solver

The Laplace 2-dimensional grid solver (LGS) uses the Gauss-Jacobi method for solving a

128x128 grid. The grid is distributed to the application VPs along the column dimension

using block decomposition. For example, if the application is decomposed into two VPs,

each VP gets a 128x64 grid. Each VP "sweeps" over its portion of the grid 10 times doing

an averaging operation at each point of its grid and then performs a pair-wise exchange

with its neighbouring VP to update its border-element strip. After 5000 sweeps,the
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Table 6.5: Ring on two nodes

application terminates. For the 128x128 grid, the border-element strip is 512 bytes (128

floating point numbers) long. Since there are 500 border-strip communications, the total

number of messages during this application execution is equal to (N - 1) .2.500, where

N is the number of VPs.

Table 6.6 and Figure 6.6 show the results for LGS executing on one processor. For

comparison, the performance of the sequential LGS is 2.79 Mflops. The main thing

to note is that the performance is comparable for a small number of VPs since the

application has a large computation-to-communication ratio. However, as the number

of VPs increases, so does the number of local messages as calculated from the formula

above. This accounts for the performance improvement of UPVM over PVM for larger

numbers of VPs. For example, at 11 VPs, PVM performance has degraded by about

16%, while UPVM has degraded by only about 8%.

Table 6.7 and Figure 6.7 show the results of the application running on two processors.

The VPs are block-allocated, that is, VPs operating on neighbouring portions of the grid

are allocated to the same processor. Thus, remote communication is reduced to one pair-

wise exchange of border strips, once per 10 sweeps.

As expected, PVM performs better in the two-VP case, since all communication

is remote. However, we see that UPVM performs better than PVM for all other cases.

PVM has a performance degradation of about 21% and 23% for 5 and 11 VPs respectively.

For UPVM, the degradation is about 17.1% for 5 VPs and 17.9% for 11 VPs.

#VPs PVM(ms) UPVM(ms)
lntlv Blk lntlv Blk

2 4.82 4.82 5.01 5.01
4 9.76 7.86 10.27 5.19
6 14.64 10.82 15.08 6.14
8 21.75 14.01 20.34 6.40

10 26.28 17.06 25.59 7.21
14 36.86 23.48 35.67 7.69
20 52.88 33.66 51.30 8.95
24 64.86 41.86 60.88 9.73
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Figure 6.5: Ring on two nodes with blocked allocation of VPs

Note the different performance trends of odd and even number of VPs in Table 6.7

and Figure 6.7. The performance of the even-numbered VPs is decreasing while that of

odd-numbered VPs is increasing as we go down the table. The reason for this behaviour

is the load imbalance between the two processors. The thr~ VP case has the worst

performance in both systems because it has the most imbalance in load. As the number

of VPs increase, the amount of imbalance decreases in the odd case, thus improving the

performance.

For the case of even number of VPs however, the application is always load balanced.
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Table 6.6: LGS on one node

Table 6.7: LGS on two nodes

Thus performance degrades with the increasing overhead of supporting additional VPs.

In summary, UPVM supports over-decomposition much better than PVM.

6.4 Migration performance

Since the main goal ofUPVM is to achieve unobtrusive and efficient parallel computation,

we use three basic measures in characterizing its performance. These are:

1. Inherent method overhead. How much overhead does an application incur when

using UPVM as compared to using a straightforward implementation (Le., standard

PVM) when no migration takes place? That is, what is the overhead of UPVM in

the quiet case?

# VPs PVM (Mflops) UPVM (Mflops)
2 2.75 2.79
3 2.68 2.69
4 2.63 2.68
5 2.57 2.67
6 2.54 2.66
7 2.50 2.65
8 2.45 2.59
9 2.42 2.58

10 2.38 2.58
11 2.34 2.56

#VPs PVM (Mflops) UPVM (Mflops)
2 5.19 5.02
3 3.84 3.93
4 4.84 4.96
5 4.10 4.30
6 4.75 4.94
7 4.15 4.32
8 4.44 4.63
9 4.11 4.41

10 4.41 4.63
11 3.99 4.26
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2. Obtrusiveness. What is the time taken from the instant a migration event was

received to the instant the application is "off" the processor? That is, what is

the impact on workstations owners when they want their workstation back and

computation has to be moved away from their workstations?

3. Migration cost. What is the time taken from the instant the migration event is

received to the instant the migrated unit of work is integrated back into the parallel

job? That is, what is the impact on the parallel computation?

~ethod overhead

The overhead incurred by an application during normal execution can be attributed to

the three factors: 1) the cost of avoiding potential re-entrancy problems in the library, 2)

the mapping of application tids into actual tids for message communication and 3) the

mapping of of the pvm...recvO on to non-blocking functions within UPVM such that it

does not block the entire ULP library while being able to react to migration events. (See

chapter 4.) In addition, UPVM adds extra information for remote messages that result

in marginally slower remote communication than PVM. Thus, the overheads incurred by

Mftops
I - PVM - UPVM

3.0

2.5

2.0

1.5
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Number of VPs

Figure 6.6: Laplace grid solver on single node
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Figure 6.7: Laplace grid solver on two nodes

UPVM can be examined by comparing its performance to UPVM when an application is

divided into as many VPs as there are processors. Since the ring program has almost no

computation, the overhead of UPVM is not masked by any computation. The execution

times of the ring program using PVM and UPVM have been shown earlier and are

reproduced for convenience in Table 6.8. UPVM overhead increases by 0.19 ms, which is

3.9% increase over using PVM. This increase is an artifact of the current implementation

and we expect that a UPVM implementation directly on top of OS will reduce overheads

to comparable to that of vanilla PVM.

PVM (ms)
4.82

UPVM (ms)
5.01

Table 6.8: UPVM overhead over PVM

Obtrusiveness

For measuring obtrusiveness and migration costs in UPVM, we bench marked a neural-

network classifying application called "Opt". Opt based on conjugate-gradient opti-

mization [BC89] and is generally employed as a speech classifier utilizing large (500KB
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to 400MB) training sets as input. Opt works by applying an initial neural net to a series

of floating point vectors called exemplars (representing digitized speech sound) so that

a gradient is found. This gradient is then used to modify the neural net, training it.

This process is repeated until error values pass a threshold or a predetermined number

of iterations has been performed.

For our tests, we used a parallel version of Opt (PVM-<>pt). PVM-<>pthas one master

VP and 2 slave VPs, one on each machine with data equally distributed among the slaves.

The master VP computes a new gradient from partial gradients computed by the slaves,

applies this gradient to the neural net, and broadcasts the new net to the slaves. The

slave VPs apply the new net to the exemplars to get a new partial gradient for the next

cycle.

Since the package supports only SPMD applications, an SPMD version of the PVM_opt

was created. The SPMD Opt program retains the same structure as PVM-<>ptin that

one of the VPs exclusively functions as the master and the rest of the VPs execute as

slaves.

The obtrusiveness cost measured in this experiment is the time it takes from when a

migration event is received to when all the state of the migrating ULP is off-loaded from

the source host. Migration was caused by a simple GS program that sent a migration

signal and a migration message to the specified PVM task. The migration message

specified the slave ULP as the migration victim.

Table 6.9 and Figure 6.8 show the obtrusiveness costs for various data sizes. For

comparison, two more items are shown. First, the cost of using TCP lIP for the various

data sizes is shown in order to establish the lower bound for minimum transfer times

possible on the underlying network. Second, the ratio of obtrusiveness cost to TCP lIP

cost is given to show how well UPVM does against this lower bound. The obtrusiveness

cost increases almost linearly with the data size, from 1.10 seconds for 0.3 MB and

4.24 seconds for 2.9 MB. The migration cost, as expected, is slightly higher but closely

parallels the obtrusiveness cost.

Also, as .the data size increases, the time to transfer data becomes a more prominent
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factor in the overall obtrusiveness cost. Thus, the ratio of obtrusiveness cost to TCP lIP

cost decreases, since obtrusiveness cost is the sum total of time spent in the ULP migra-

tion protocol and the time spent in transferring data over the network. This behavior is

shown by the fifth column in Table 6.9.
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Table 6.9: UPVM: Obtrusiveness and Migration costs
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Figure 6.8: UPVM migration performance for Opt

However, notice a disturbing trend in the TCP lIP and the ULP obtrusiveness costs.

As the data sizes increase, the curves diverge. Such behaviour is apparently incorrect,

Input Data Obtrus. Migr. TCP Ratio
Size cost (sec) cost (sec) cost (see) (obtr ITCP)

0.3MB 1.10 1.18 0.27 4.07
0.5MB 1.32 1.42 0.47 2.81
1.0 MB 1.91 1.98 0.92 2.08
1.6 MB 2.55 2.67 1.40 1.82
2.1 MB 3.19 3.28 1.88 1.70
2.9MB 4.24 4.47 2.51 1.69
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given that data transfer times dominate at larger data sizes. This divergence is an

artifact of UPVM's implementation. Currently, ULP data and state is transferred over

the network by first packing the data and state into buffers similar to that done by PVM

applications and then transmitting it using send routines similar to those provided by

the standard PVM library. Packing routines essentially result in copying the entire data

and ULP state twice, and as data sizes increase, the effect of memory accesses and cache

misses increase the cost of ULP state transfer relatively more than simple TCP lIP that

does not perform this double copy. Hence, the curves diverge.

Migration cost

As in the case of obtrusiveness, the migration costs in UPVM increase almost linearly

with the data size, with 1.18 seconds for 0.3 MB and 4.47 seconds for 2.9 MB. (See

Table 6.9 and Figure 6.8.)

Again, as with the obtrusiveness costs, the cost of using PVM packing, unpacking,

and send calls in UPVM increase with the training set size. Thus for larger data sizes,

the cost of migrating a ULP also diverges slightly from that of obtrusiveness costs. Our

next version of UPVM will use a direct TCP connection and should eliminate the double

copying costs, thus reducing the cost of both obtrusiveness and migration.

Note that during ULP migration, the source and destination OS processes are execut-

ing within the ULP library to perform the ULP migration. This execution implies that

other ULPs within the source and destination OS processes cannot execute during this

time. ULPs within other processes of the parallel application are free to continue and

execute and communicate with each other during the ULP migration. There is a small

cost incurred by each process that deals with responding and sending a ULP-migration-

ack message to the source process. However, there is a possibility for the entire parallel

application to block if ULPs in all the processes are waiting on one or more ULPs in the

source or the destination OS process to execute and send a message.
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6.5 Summary

The UPVM prototype has demonstrated an order of magnitude performance improve-

ment over PVM for the communications on the same node. Over-decomposed applica-

tions, for which the amount of remote communication can be controlled, also perform

better with proper allocation of ULPs to processors. This has been shown by both the

ring and Laplace benchmarks.

However, UPVM is still constrained by its remote communication performance. Ap-

plications that use broadcasts among VPs cannot be over-decomposed without increasing

the number of remote communications. Considering the current implementation, these

broadcasts will result in large overheads. In our future work, we plan to optimize remote

communication along with several other portions of the UPVM prototype.

ULP migration cost is almost linear in the size of the ULP state and even with

our un-optimized data transfer scheme, achieves about 60% utilization of the maximum

possible bandwidth of the underlying network for data sizes greater than 2.1 MB. Finally,

we believe that ULP migration can be further optimized by eliminating the double-copy

problem described in the previous section.

The experiments in this chapter do not expose the scalability of the migration mecha-

nism and are part of our future plan. However, the scalability of the migration mechanism

based on the remote communication benchmark and the migration results. Given an idle

network, the lower bound on the ULP migration cost when N processors are involved can

be given by the relation: Tmc = T2p+2 *Trc20* (N -2), where T2p is the ULP migration

cost in the two processor case, and Trc20is the cost of one-way remote communication of

a twenty-byte message. Twenty-bytes is the size of the migration and acknowledgement

messages in the current implementation.

Another feature of over-decomposition that has not been exposed is the overlap of

computation with communication. All experiments show that applications using PVM,

with one task per node, have better performance than using over-decomposition using

UPVM. The reason for better PVM performance is a combination of the high message
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startup overhead to achieve communication and the idleness of network. Because of the

high startup cost there is less potential for overlapping computation with computation.

Further, because the network was idle, the one VP-per-processor PVM programs did not

spend as much time blocking for a message as they would on a heavily loaded network.

In such cases, we expect an over-decomposed application using UPVM to perform better

than a one-task-per-processor decomposition using PVM.



Chapter 7

Discussion and Related Work

The idea of user-level processes is one approach to the problem of providing light-weight

over-decomposition and transparent migration for message based parallel applications.

However, there are several issues that need to be considered when implementing, porting,

programming, or determining the applicability of UPVM. This chapter discusses some

of the main issues.

7.1 OS support for performance

The problems of supporting programming abstractions at user-level are well explored

in the literature [MSLM91, ABLL92]. Operating systems manage processes or threads,

and do not know about abstractions implemented at user-level. This "mismatch" can

result in performance degradation of applications. For example, because the OS does

not know about ULPs, a page fault incurred by one ULP blocks the entire OS process,

even if other ULPs are ready to run within that process. The same situation occurs for

blocking I/O operations.

However, these problems have been addressed in the context of user-level, thread-

based systems using scheduler activations [ABLL92], first-class user-level threads [MSLM91]

and new types of signals in the Solaris operating system [PKB+91].

The scheduler-activation approach is designed for efficient implementations of user-

level abstractions on shared-memory multiprocessors. The approach requires changes

to the OS such that it communicates aliOS-level events such as page-faults, processor

112
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preemption, and blocking due to I/O. The user-level library registers the event-handler

code that should be used by the OS in its up-calls. Each up-call results in the event-

handling code being called with a different stack and, with the proper design of the

handler, it is possible to handle multiple events simultaneously. The OS however always

has complete control over the system resource management. Thus a user-level library,

as described in UPVM's design, can make use of these events in scheduling of user-level

abstractions.

The first-class user-level thread approach is another alternative towards integration

with the OS. In this approach, the OS and the user-level library communicate through

shared memory for efficiency and the OS uses a signal-like mechanism to inform the

user-level library of system events. To avoid preemption during critical sections, the

user-level library sets a flag within the shared memory that consequently delays kernel

preemption from the processor. Although this approach violates the notion that the

OS is the manager of resources, it makes sense on a NUMA multi-processor because

pre-emptive migration of user-level abstractions is expensive.

Solaris provides additional signals that inform application programs of some OS

events. However, there is much room for better integration. We believe that this attempt

for better integration from a commercial operating system is a trend indicating that fu-

ture commercial operating systems will provide more support for integrating user-level

abstractions.

7.2 Supporting a general-purpose ULP

ULPs have been designed specifically to support message-based scientific computing.

Consequently, general-purpose operations permitted by their OS counterparts are not

supported. For example, true preemptive scheduling and interfaces for forking, sockets,

signals, and resource-usage timers are not supported.

Although this functionality could be supported by ULPs, it would add significant
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overhead for those applications that do not need this full generality and add more com-

plexity to ULP migration. At the limit, supporting all functionality would require a

re-implementation of the OS at user-level. One consequence would be poor portability

and an inability to support true VP virtualization because of incompatibility among the

various OS interface and a lack of a single system image.

For these reasons, we suggest that a specialized application interface be used for

scientific computing that is much narrower than a general purpose OS interface. Appli-

cations operating within this specialized environment can obtain the benefits of location

independence, transparent migration and dynamic load balancing that are essential for

shared workstation networks. There is ongoing work here at OGI, Carnegie Mellon Uni-

versity, Oak Ridge National Laboratory, and University of Tennessee at Knoxville to

define such an interface, called the Concurrent Processing Environment (CPE) interface,

for PVM-based parallel applications [BDG+93].

7.3 Migration

ULP migration is designed to work between workstation architectures that are binary

compatible. Heterogeneity is possible, but restricted, in the ULP environment. An

application can be executed such that some of its workstations are of say, architecture

A and others are of architecture B. The ULP system then maintains two virtual address

spaces, one for architecture A, and one for architecture B and allows the migration of

ULPs among the same architecture. Maintaining separate address space for different

processor pools allows for ULPs that are created on one architecture to have overlapping

addresses with the ULPs created on a different architecture.

Migrating processes across heterogeneous architectures in a language independent

and application-transparent manner is extremely difficult. Processors of different archi-

tectures can vary in the instruction set, number of registers, type of registers, the size

of addresses, etc. To migrate a process to a workstation of different architecture, the

process address space as well as its stack and register context needs to transformed to
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an equivalent execution context on the target architecture. Different types and sizes of

register sets between the processors imply there is no simple mapping of the register

context. Another problem is dealing with pointers not only in the address space but

also on the stack. Pointers are not always traceable in a language-independent manner

and mishandling these pointers can change the behaviour of the migrated process, thus

violating the fundamental rule of transparent migration.

To support heterogeneous migration, several approaches have been proposed in lit-

erature. Some approaches require programming in a particular language [HAJLQA91,

TH92], others, such as the DOME environment [BSS94], require the application to explic-

itly identify the data that should be preserved across migration. However these methods

are not applicable in the context of our research due to need to provide transparent

migration of VPs while not constraining the user to anyone programming language or

environment.

Even within a binary-compatible pool of processors, shared libraries present yet an-

other problem for migration. These libraries are shared read-only by multiple executing

processes on a workstation. When a process starts executing, a dynamic linkage table

within the user process is initialized by the dynamic loader so that process can access

these shared libraries. If the operating systems on different processors map the shared

libraries at different regions because of difference in the size of physical memory avail-

able, this difference in mapping can cause migration problems. Upon migration, on a

call to a shared library routine, the dynamic linkage table is examined. Finding the

location initialized, the call is transferred to the address found in the location. Since the

shared libraries are mapped differently, this transfer can result in incorrect execution.

Although conceptually simple to correct, the location, structure, and the manipulation

of the the dynamic linkage table is operating-system specific and adds complexity to

migration. Because of these problems, we restrict the scope of migration currently to

statically linked programs.
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7.4 Portability

Three portability issues have been considered while designing the ULP package. One

issue is porting the ULP package to different architectures. The second issue is that of

supporting SPMD versus task parallelism. Finally, we considered supporting a message-

passing interface other than PVM.

For porting to a new architecture, the instruction set, register architecture, accessi-

bility of these registers to user-level code, and the procedure-calling conventions of the

as need to be understood. These conventions determine the general and floating point

registers that must be saved and restored in a ULP context switch. Since ULPs are laid

out in distinct regions of a process virtual address space, the virtual memory layout, as

defined by the OS, must also be taken into account.

To support SPMD applications only, it is sufficient to have a compiler on the target

workstation capable of generating instructions that access data relative to a user acces-

sible general register (such as DP). Since text is shared among all ULPs in an SPMD

application, a ULP context switch simply becomes the act of saving and restoring this

DP register, in addition to the general register context.

On the other hand, extending support to task parallelism requires more effort. The

compiler on the target workstation must be able to generate position-independent code

so that the object code can be loaded into any virtual address region within a process.

Furthermore, the operating system must provide an interface to dynamically load and

link code and data modules into an existing virtual address space.

The concept of ULPs is clearly applicable to process based applications using message-

passing interfaces other than PVM. The ULP creation, control, context switch, schedul-

ing, memory allocation, file access, and a portion of the migration mechanism are all

independent of the message-passing interface. Thus, for supporting a ULP package for

another message-passing interface, only the inter-ULP communication and a portion of

the migration mechanism needs to be rewritten.
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7.5 Protection and Debugging

One potential source of difficulty is that the ULP system does not provide protection

between the local VPs of an application. This lack of protection means that the execution

of multiple ULPs within the same process can cause unexpected side-effects.

A more practical problem is that operating system utilities such as debuggers and

profilers that work on processes do not recognize ULPs. Thus, debugging an application

using ULPs is difficult. Similarly, profilers have problems understanding the control flow

within a multi-threaded process.

Since UPVM provides the same interface as PVM, a simple approach (from the

UPVM developer's perspective) is to debug and profile PVM applications as normal

UNIX processes. Once the application is debugged, it can then be compiled with UPVM.

In fact, this was the approach we adopted in running PVM programs on UPVM.

Another approach is to use the mprotectO(2) system call in altering the protections

of ULP address spaces on every context switch. This approach is impractical since

the cost of altering protections at user-level would be at least an order of magnitude

more than a process context switch, defeating the very purpose of creating a user-level

abstraction.

A much more attractive approach is Software Fault Isolation (SFI) [WLAG93], where

code is modified while ULP loading to achieve a sand-boxing effect. Because of this sand-

boxing, memory accesses during code execution do not go outside the bounds specified

at the modification time. Further, the overall behaviour of the code remains unchanged.

Execution times of the modified code are only slightly more expensive compared with

that of the original code. Integrating this approach with UPVM is certainly an item in

future work.



Chapter 8

Conclusions and Future Work

Efficient utilization of multi-user DMMPs, such as workstation networks, require message-

based parallel applications to overlap their communication with computation, perform

dynamic load balancing based on the variations in processor load, and at the same remain

unobtrusive to workstation owners. Without proper system-level support, application

programmers have to deal with these issues, which results in complicated application

code that is difficult to debug.

To insulate application programmers from many of these programming complexities,

this thesis focused on system-level solutions that are application and language indepen-

dent. Because of the wide body of process-based legacy applications, we placed a further

constraint that the system-level solutions must be able to support these applications

with few or no changes to application code.

We made a case that a light-weight, transparently migratable VP system, in com-

bination with over-decomposition of parallel applications, can maintain unobtrusiveness

while achieving high performance through dynamic load balancing and overlap of com-

munication and computation.

The general goals for a VP system were then transformed into a list of functionality

requirements and performance criteria with which we examined current VP systems. We

showed how existing approaches are inappropriate and we defined a new light-weight,

migratable VP abstraction called the user-level-process (ULP).

We discussed the general issues in designing ULP systems and applied the resulting
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framework to the design of UPVM, a ULP-based package to support the PVM message-

passing interface.

To demonstrate the viability of ULPs and the UPVM design, a prototype UPVM

package was implemented on a network of HP 9000 series 700 workstations. The perfor-

mance of the prototype was analyzed with respect to both micro and application-level

benchmarks and a side-by-side comparison was made with the standard process-based

PVM library. The comparison shows that the context switch and local IPC costs in

UPVM are at least an order of magnitude better than the PVM library. UPVM per-

forms better than PVM whenever there are more VPs than there are processors. ULP

migration has negligible run-time overhead during the absence of any migration. For a

data size of about 3 MB, ULP migration takes 4.41 seconds on a pool of two processors,

which is around 60% of the bandwidth possible on a ethernet network using TCP lIP.

The migration results are especially encouraging since the optimizations to the migration

mechanism are yet to be implemented.

Comparing the functionality and performance of UPVM with the list of functional-

ity requirements and performance goals, the following statements can be made about

UPVM:

. The UPVM prototype provides support for message-based IPC and transparent

migration for PVM applications that are based on the process model. However the

applications can currently be only SPMD and have to exhibit static parallelism. As

discussed in Chapter 4, this is only a restriction in the prototype and it should be

possible to extend UPVM to support more general parallelism. Thus we conclude

that the functionality requirements have been satisfied.

. UPVM performs better than the process-based PVM library whenever there are

more VPs than there are processors. Thus we conclude that the minimum goals

for UPVM performance have been met.

. We argue that UPVM has context switch performance that is comparable to a

user-level thread implementation because UPVM needs to switch only one more
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register in addition to that of a user-level thread switch.

. Local IPC costs in UPVM will always be at least as expensive as a local IPC among

user-level threads because threads can share memory directly while ULPs cannot.

. The overhead caused by the presence of migration in UPVM is negligible, as shown

by the performance of the Laplace grid solver. Hence UPVM meets the performance

goal for low-overhead.

. The time to respond to a migration event for the benchmark shown was in the

order of milliseconds, which satisfies the responsiveness goal. However, responsive-

ness may not always be as good in the UPVM prototype. If UPVM is in a critical

section, then the ULP library must defer ULP migration until it leaves from the

critical section. In the prototype, message send and receive operations are imple-

mented within critical sections. Since messages can be arbitrarily long, the time

spent in the critical sections is effectively unbounded. However, since applications

are expected to spend more time in computation than in communication, we expect

this case to occur infrequently in the UPVM prototype. We conclude that with

further modifications to the UPVM library, the time spent in critical sections can

be made smaller and the response goals can be achieved.

. Obtrusiveness cost and migration cost are almost linear in the size of ULP state.

Further, the un-optimized migration cost in the order of a few seconds for 3 MB

of data. In this case, we conclude that we have achieved our performance goal for

ULP migration.

. As shown by the over-decomposed Laplace and ring benchmarks, the mapping of

ULPs to processors is a critical factor for application performance.

. Applications using PVM, with one task per node, have better performance than

using over-decompositionusing UPVM. The reason for better PVM performance is

a combination of the high messagestartup overheadto achievecommunication and
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the idle network. Because of the high startup cost there is less potential for over-

lapping computation with computation. Further, because the network was idle,

the one VP-per-processor PVM programs did not spend as much time blocking for

a message as they would on a heavily loaded network. On such heavily-loaded net-

works, we expect an over-decomposed application using UPVM to perform better

than a one-task-per-processor decomposition using PVM.

Also, the source code for UPVM has been made available to the NEXUS research

group at the California Institute of Technology.

8.1 Future work

The UPVM prototype can be extended in many ways:

Limiting the use of swap space: As currently implemented, UPVM allocates the

sum-total of the ULP address spaces on all workstations irrespective of the presence of

ULPs on those workstations. Because of this allocation strategy, the swap partitions of

the workstations are under-utilized and, more importantly, interfere with workstation

use. Resolving this limitation is the first priority.

Supporting I/O: The UPVM prototype exhibits the problems of typical user-level

VP implementations with regards to I/O. A blocking I/O call made by one ULP blocks

the entire process. However, within the current framework, UPVM can be extended in

a straightforward manner to map blocking I/O primitives in terms of non-blocking I/O

primitives.

Integration with global scheduler (GS): Currently, UPVM's interface with the

global scheduler is primitive and a global scheduling environment is still missing towards

realizing a practical, unobtrusive computing environment.

UPVM's interface with the GS should be extended and UPVM itself modified such

that determining the number of processors to initially use, the virtual address space

available, etc, are requested from the GS instead of the user typing them as command-

line arguments.



122

The GS environment should consist of efficient mechanisms to monitor parameters

such as processor load, network load and user activity and backed by a scheduling policy

that makes decisions based on the values of these parameters. Work is on-going to

developing this infrastructure in a related research project here at OGI [CCG+95].

Supporting program and dynamic parallelism: Supporting such a functionality

requires the prototype to be modified to support dynamic ULP creation from different

program executables. Further, the prototype needs to be integrated with the GS as dis-

cussed above so that it can take advantage of new processors and perform unobtrusively.

Also, there is a lot of scope for experimenting with different ways of program compilation

and the resultant effects on dynamic loading, ULP context switching, and portability of

the UPVM prototype.

Supporting inter-ULP protection: In this regard, the software fault isolation

approach is very attractive. Specifically, it does not require OS intervention and the

overhead is certainly more acceptable than the mprotectO approach discussed in the

previous chapter. We plan to look into ways of integrating the sand-boxing ideas into

UPVM.

Optimizing migration: The migration mechanism that is currently using pvmlib

routines for packing and sending ULP state can be replaced by a mechanism that uses

TCP lIP sockets directly. As explained in Chapter 6, such an approach should eliminate

the double-copying problem that exists currently and bring the migration performance

closer to that of TCP lIP.

Multi-processor support: The UPVM prototype is implemented for uniprocessors

and can be extended to provide support for shared-memory multiprocessors. Related

research [BLL88, FM92a, CAL+89] can be used to perform this extension.

Porting to other architectures: We plan on porting the UPVM prototype to the

SPARC architecture. Because of the SPARC's register windows, not all execution state

is directly available at user-level, and this lack of availability makes context switching

tricky. However, user-level threads have been implemented on the SPARC [Kep91] and

we plan to use this research as our starting point.
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