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ABSTRACT 
 

Despite incredible advances in cancer treatment in recent years, precision 

oncology faces many ongoing challenges in selecting the best treatment for each 

patient. First, we have yet to untangle the mechanisms by which many of our drugs 

act, especially with regards to the targets (receptors) to which they bind in the 

human body. To this aim we present the Cancer Targetome, which collects drug-

target interactions for FDA-approved cancer drugs and proposes an evidence 

framework for the supporting information accompanying each drug-target 

interaction. This framework enables us to prioritize drug-target interactions 

according to the strength of supporting evidence and then select the interactions 

for which we have the most confidence. Second, we have much to learn about how 

individual gene-level mutations affect a patient’s overall response to drug 

therapies. Here, we take a pathway perspective on patient mutational burden in 

acute myeloid leukemia (AML) and show that this allows us to capture meaningful 

associations with drug sensitivity (or drug resistance). Importantly, these 

relationships are not necessarily captured when considering only the gene-level 

perspective. We further investigate the relationship between pathway mutational 

burden and drug response through factor graph modeling, which allows us to infer 

the impact of gene mutations on pathway signaling. In parallel, we model drug 

binding on these same pathways using quantitative binding assay information from 

the Cancer Targetome. This work is foundational for future efforts for combining 

both patient mutation and drug information into a unified model to help guide 

selection of the best therapy for each cancer patient.  
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CHAPTER 1. INTRODUCTION 

 Modern cancer treatment is centered on the paradigm of targeted 

therapies, or cancer drugs that interact with biological targets (receptors) specific 

to cancer cells. Beginning with the drug imatinib, the first targeted therapy 

approved in 2001 and a break-though treatment for chronic myeloid leukemia 

(CML), targeted therapies have ushered in the promise of treating cancers based 

on alterations unique to cancer cells and not present in normal or healthy cells 

[1,2]. Imatinib, or Gleevec, was the first in a class of drugs known as kinase 

inhibitors and works by binding to the target kinase ABL1 portion of the BCR-ABL 

fusion protein, caused by a chromosomal fusion known as the Philadelphia 

chromosome. This chromosomal event is the driving cause behind CML and 

results in the BCR-ABL protein being turned continually “on” in cancer cells [2,3]. 

The advent of targeted therapies presented a game-changer for cancer 

therapies, which traditionally are cytotoxic (cell-killing) and thus kill both healthy 

and normal cells, resulting in severe side effects for the patient [1]. At present, 

over a hundred targeted therapies are currently FDA-approved for cancer 

treatment, with many more under development.  

 However, despite many successful targeted therapies, cancer treatment 

today faces a new set of pressing challenges. Two critical challenges include 

lack of patient response to therapy and cancer relapse, or re-occurrence, 

following treatment [1]. In the first scenario, many patients do not respond to 

standard-of-care therapies for their cancer types, and may not necessarily 

possess any biomarkers, or genetic alterations, that we currently can match with 
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an appropriate targeted therapy. In the second scenario, patients may exhibit an 

initial (often strong) response to therapy but then experience cancer relapse and 

often exhibit resistance to cancer drugs. In recent years it has come to light that 

this resistance may be due to the tumor harboring multiple sub-clones of cancer 

cells (tumor heterogeneity), each with distinct aberrations that can contribute to 

resistance [1,4]. Combination of therapies have been hailed as a way to 

overcome these challenges, by targeting multiple aberrations or pathways at 

once to overcome drug resistance or address tumor subclonal populations.  

In order to meet these challenges in precision cancer treatment, we 

require an improved mechanistic understanding of both how cancer drugs 

interact with targets and how individual patient genetic aberrations affect this 

process. While it has become well-accepted in recent years that cancer drugs 

can and often do interact with multiple targets [5,6], characterization of such 

drug-to-target relationships is often lacking. In particular, finding target 

information across all known targets for any particular drug presents as a 

daunting endeavor that requires substantial manual effort and reconciliation 

across sources [7]. Current efforts in cancer biology, genetics, and bioinformatics 

require that we have a working knowledge of these drug-target interactions that 

is accessible and accompanied by transparent supporting information. In 

particular, we must have an understanding of both primary and secondary targets 

for our drugs if we are to pursue a more complete understanding of drug 

mechanistic action. Building upon drug-to-target relationships, we must translate 

this information to the biological context of cellular pathways, or groups of 
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functionally interacting molecular entities. By moving to a pathway context, we 

can begin to think about the ‘scope’ or reach of our drugs and begin to ask 

questions about the potential druggable space for particular cancers. This is 

especially key if we are to meet the challenge of drug resistance, which can be 

mediated at the pathway level through compensatory pathway signaling [1]. 

 In addition to improving our mechanistic understanding of drug action, we 

require improved knowledge of how individual patient aberrations, such as gene 

mutations, effect this process and the overall resulting effect on patient response 

to a drug. Traditionally, pharmacogenomics approaches have studied 

relationships between gene-level aberrations and drug response. But given the 

challenges we face, we must begin to also translate this knowledge into a 

biological pathway context. Patient genetic mutations represent a profile of 

dysregulation, and through mapping to pathways, we may be able to create a 

bigger, more connected picture of dysregulation. This framework allows us to 

consider the impact of multiple mutations, in the same pathway or across 

pathways, and the interplay with drug action, all in the context of biological 

pathways. In this manner, we are working towards frameworks that incorporate 

both individual patient mutations and targeted therapy mechanisms to create the 

most effective match between patient and therapy. 
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Statement of Aims 

Specific Aim 1. Create an Evidence-Based Framework for Assessing Drug-

Target Interaction Data. We will create an evidence-based framework for 

evaluating existing drug-target interactions for FDA-approved cancer drugs. This 

framework will allow for a critical appraisal of the evidence supporting each drug-

target interaction, such as literature references and experimental binding assays. 

This framework will enable us to assess drug-target interactions in a manner that 

reflects both confidence in supporting evidence and applicability of the interaction 

to drug research pipelines.  

 

Specific Aim 2. Use Pathway-Based Analysis and Modeling to Characterize 

Somatic Mutation Intrinsic Perturbation and Drug-Targeted Extrinsic 

Perturbation, in Acute Myeloid Leukemia Patient Samples. We will map 

somatic mutation information for acute myeloid leukemia patient samples from 

the BeatAML Consortium to pathways and investigate the relationship between 

pathway-level dysregulation and drug response. Using probabilistic graphical 

modeling, we will model the impact of somatic mutations on pathways and also 

the impact of drug-target binding on pathways. We will use these models to 

better understand the relationship between patient-level pathway impact and 

drug response and make recommendations for developments for a unified model 

of mutation and drug pathway impact. 
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Background 

Aim 1 Background 

In recent years, it has become apparent that the one-drug-to-one-target 

model of paradigm of drug binding is much too simplified to accurately capture 

how many of our current pharmaceutical drugs work. In reality, drugs are 

chemical compounds capable of binding to many different protein targets or 

receptors in the human body, and each of these targets has the potential to elicit 

different changes at the cellular and overall physiological level [8,9]. This 

phenomenon is known as drug polypharmacology or drug promiscuity and it has 

gradually come to light as the rule rather than the exception for many of our 

current pharmaceutical drugs [10,11]. 

Drug polypharmacology has implications for almost every area of drug 

research and development [11,12]. Instead of viewing drug-target binding as a 

selective process whereby a drug binds to a particular target to elicit a particular 

cellular response (and ultimately a therapeutic effect), we are now beginning to 

think of drug-binding as a process that occurs across a range or profile of targets, 

each capable of causing different physiological effects once bound. One or more 

of these targets may be those that we have traditionally thought of as “primary” 

targets, or those that are responsible for eliciting a therapeutic response. 

However, non-primary targets (often referred to as “secondary” or “off-targets”) 

can also be responsible for additional physiological effects, such as those that we 

often think of as side effects.  
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For instance, the well-known hERG channel is an off-target that when 

bound can result in severe adverse cardiac events. The U.S. Food and Drug 

Administration (FDA) now requires that drug candidates be screened against 

hERG and show no binding activity as part of the FDA approval process [12,13]. 

We note here that off-targets do not necessarily have to result in adverse 

physiological effects – they can certainly also result in positive side effects or 

even contribute to the overall therapeutic efficacy of a drug [11,14]. Drug binding 

across multiple targets also has implications for drug resistance, drug-drug 

interactions, and combination therapies. Drug polypharmacology is also 

particularly relevant to research on novel or repurposed therapeutics, where 

information regarding additional drug targets may lead to an alternative or “off-

label” use of a drug.  

However, while we have begun to recognize that many of our small 

molecule drugs exhibit polypharmacology, the true extent of this phenomenon is 

poorly characterized. In particular, there is disagreement in the literature as to the 

number of targets we might expect (on average) for any given drug. Some 

estimates indicate that every drug binds to two or three targets, while some 

estimates indicate that the number is much closer to six or seven [6,15,16]. Such 

estimates appear to vary drastically depending on the data source used for drug-

target interactions. For instance, Mestres et al. (2008) demonstrated that the 

degree of drug polypharmacology can increase drastically with the amount of 

drug-target interaction data that is included in a network [6]. Using only drug-

target interaction data from the database DrugBank, the authors showed that 
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drugs have an average of 1.7 protein targets. However, including binding data 

from the literature into the network increased the average number of targets per 

drug to 2.7, and further including of predicted target interactions increased the 

average number of targets per drug to 6.3 [6]. More recent work on drug-disease 

networks using drug-target interaction data from the latest version of DrugBank 

has estimated an average of 3.5 targets per drug [17]. Despite the lack of 

agreement on the extent and range of polypharmacology exhibited by drugs, 

there is strong evidence that many of our drugs bind to more than one target, i.e. 

exhibit polypharmacology.  

There has been limited work regarding the extent of drug promiscuity that 

occurs across target gene families. While some drugs target multiple proteins 

that are very similar (with regards to biological sequence or structure), drug 

promiscuity can also involve targets that are structurally dissimilar [18]. In a 

widely cited work, Paolini et al. (2006) found that while the majority of 

pharmaceutical drugs are active against protein targets originating from the same 

gene family, a quarter of all promiscuous compounds were found to be active at 

protein targets spanning different gene families.  However, elsewhere it has been 

proposed that estimates of drug promiscuity across target families likely depend 

on the type of binding assay measured [16]. Hu et al. (2013) found that using 

IC50 binding assay measurements resulted in much higher estimates of drug 

promiscuity than those obtained using Ki binding assay measurements. 

However, the authors postulate that this may be a bias inherent in the screening 

pipeline; IC50 assays are often used much earlier in the pipeline while Ki assays 
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are often used to confirm more well-supported hits. Thus it may be expected that 

the larger number of compound-target pairs tested in IC50 screens would result 

in higher estimates for promiscuity compared to Ki measurements [16]. In a more 

focused analysis on Ki assay results only, the authors found that out of a total of 

12,159 compounds with Ki measurements, approximately 36% of compounds 

were active against multiple targets from the same family while only 2.4% of 

compounds were active against targets spanning families [16]. 

Thus, while drug polypharmacology has been identified a crucial issue for 

drug research and development, it nonetheless remains a relatively 

underexplored area of research. Knowledge of additional targets for a drug 

(beyond a primary target) is potentially of high value for many types of drug 

research projects, especially those that concern drug side effects, drug 

resistance, or drug combinations. Given the potential impact this knowledge 

could have on decisions in such research projects it is critical that we begin to 

accommodate complete targeting profiles for drugs into our research pipelines. 

That is, in addition to binding information for so-called “primary” targets, we also 

need information on drugs for so-called “secondary” or “off” targets. The question 

now arises as to whether our current resources for drug-target interaction 

information accommodate this emerging polypharmacology paradigm of drug 

action.  

In order to incorporate complete targeting profiles for drugs into research 

pipelines, there are several critical pieces of information that we must have. We 

use the term “complete” here to refer to profiles that reflect the current knowledge 
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base of drug-target information, dispersed across many resources. In reality, 

knowledge of a drug’s complete targeting profile would require the infeasible task 

of testing drugs against all currently known human proteins. First, we require 

drug-target interaction information spanning multiple targets. Second, we must 

have some way of quantifying the strength of the interaction between a drug and 

each of its targets. Traditionally such an interaction is assessed using binding 

data, such as IC50 (half maximal inhibitory concentration) values or Ki (inhibition 

constant) values. IC50 values measure the concentration of a drug required to 

induce approximately a 50% inhibition of some measured response (such as 

enzymatic activity, activity of a competitive inhibitor, cellular growth, or cellular 

proliferation). Ki values also represent the concentration required for 50% 

inhibition. However Ki values are theoretically assay independent and more 

accurate than IC50 values [16]. These pieces of information constitute minimum 

requirements for assessing drug-target interactions across multiple targets.   

 In Chapter 2, we will explore two public repositories for high throughput 

drug screening data, PubChem Bioassay and ChemBank [19–21]. These 

resources contain the results from screens testing tens of thousands to hundreds 

of thousands of compounds for activity, usually against one biological target or 

receptor of interest [22,23]. Thus they are potentially a huge resource for mining 

for information about compound-target interactions to facilitate future drug 

development and repositioning projects. We will highlight case examples (one 

from PubChem and one from ChemBank) and discuss data quality and 

normalization issues. In particular, we address data accessibility issues (lack of 
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raw activity results and strong batch effects) and discuss the implications for re-

use of the data.  

 By comparison, public resources for drug-target interaction data are 

generally one of two types: resources that are at least partially manually curated, 

or secondary resources that aggregate binding data from other sources. In 

general, they usually do not directly contain assay results from experiments. 

Instead, they contain citations or citations and reported binding assay values as 

mined from publications or the resources that directly house assay results. These 

resources vary in their coverage of compounds (approved drug, investigational 

drug candidates, or chemical-tool compounds) and targets, the supporting 

evidence supplied for interactions, and the level of curation provided. These 

resources will be reviewed extensively in Chapter 3 and key issues with this data 

will be addressed.  

 In Chapter 3, we will also present our work for Aim 1 in aggregating 

cancer drug-target interaction information across public resources and introduce 

an evidence framework for the supporting evidence of each drug-target 

interaction. Collectively known as the Cancer Targetome, these aggregated drug-

target relationships and evidence framework allow for prioritization and triage of 

drug-target interaction information in an empirical and evidence-driven manner. 

We explore how this allows for characterization of drug-target interactions and 

assessment of targets with stronger evidence, both in type of assay and strength 

of binding value. In particular, we will discuss the contribution of different types of 

evidence and highlight the complementarity of different assay binding types. For 
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the first time, this framework allows for characterization of uncertainty in the drug-

target interaction space, a key aspect for rigorously assessing drug-target 

interaction data in research applications.  

 To translate the drug-target interaction and supporting evidence 

framework of the Cancer Targetome into a biological pathway context, we will 

map target interactions to biological pathways in Reactome. Reactome is a 

comprehensive, open-access database of biological pathways. Pathways are 

hierarchical collections of biological entities, with the bottom-most (or most 

detailed) level being biochemical reactions, and scaling up to broader parent 

groupings of pathways by function [24,25]. As part of this mapping, we will 

introduce and explore the concepts of ‘light’ and ‘dark’ pathways. Briefly, light 

pathways are those harboring a target of an approved cancer drug, while dark 

pathways are currently not targetable by any approved cancer drugs. This 

framework allows us to assess the scope or reach of current FDA-approved 

cancer drugs from a pathway perspective and will be critical in the pursuit of 

combinations of therapies to combat drug resistance. We will return to the 

concept of ‘druggable’ pathways in Chapter 4 when we apply our probabilistic 

graphical modeling approach to model drug-impacted pathways for a select set 

of cancer drugs. 
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Aim 2 Background 

Acute Myeloid Leukemia  

Acute myeloid leukemia (AML) has seen little improvement in treatment 

and overall survival in the last forty years [26]. Notably, AML exhibits 

considerable heterogeneity across patients, where some cases are characterized 

by large chromosomal rearrangements but many cases possess mutations at the 

individual gene level [26,27]. The Cancer Genome Atlas (TCGA) found that AML 

is characterized by a smaller number of gene mutations compared to other 

cancers in adults, with an average of 13 gene mutations per patient and only 5 of 

these being found recurrent in the cohort [28]. Canonical AML mutations occur in 

FLT3 (internal tandem duplications (ITD) or tyrosine kinase domain (TKD) 

mutations), NPM1, CEPBA, DNMT3A, TET2, IDH1, IDH2, KRAS, NRAS, KRAS, 

TP53, and c-KIT [26,29]. The majority of AML cases are de novo malignancies, 

occurring in patients who were previously healthy. Alternative types of AML can 

occur in patients with other hematological diseases or as a result of prior 

treatment (therapy-related AML) [26]. Standard-of-care treatment for AML is the 

‘7+3’ regimen of cytarabine and anthracycline. While some success has been 

found in treating AML with targeted therapies, such as FLT3 inhibitors, (e.g. 

sorafenib, midostaurin, crenolanib, and  quizartinib), STAT inhibitors, and 

IDH1/IDH2 inhibitors, for many patients, an initial response to a single-agent 

therapy will be followed soon after by cancer relapse [26]. 

 In Chapter 4, our Aim 2 work on mutation impacted pathways and patient 

drug response on will leverage AML patient somatic mutation and drug screening 
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data from the BeatAML Consortium [30]. This consortium was a multi-year and 

multi-institution effort to collect AML patient samples and conduct extensive 

genetic, clinical, and drug screening data [30]. In Aim 2, we will use paired 

sample mutation data from 187 patient samples with de novo acute myeloid 

leukemia. A subset of these samples are accompanied by drug screening data, 

in which samples have been tested against a panel of drugs [31]. We note that 

the combination of both mutational aberrational information and functional drug 

screening data for this cohort of patients is critical to enable a more in-depth 

assessment of the relationship between genetic alterations and overall patient 

drug response [30–32]. 

Previously, in Chapter 3, we cast drug-target interactions into a pathway 

perspective to provide biological context. Supported by the evidence framework 

of the Cancer Targetome, this enabled us to assess whether biological pathways 

are potentially ‘druggable’. Translating drug-target mechanistic information to the 

pathway perspective is critical for moving cancer targeted therapies into 

combination treatment; many drug resistance mechanisms in cancer are 

mediated at the pathway level [1,33]. Complementary to our work in Chapter 3 

on the Cancer Targetome characterizing drug-target interactions, targeted 

pathways, and supporting levels of evidence, we also pursue a pathway 

perspective for individual patient mutation aberrations. In Chapter 4, we map 

mutations from de novo AML patient samples to biological pathways and 

investigate the relationship between pathway-level dysregulation and drug 

response. Given the heterogeneity, especially many mutations that are low 
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frequency, and the need for improved therapies, there is a need for improved 

biomarkers to guide treatment, and understanding to inform combination 

strategies.  

 

Pathway-Based Analysis and Modeling 

For mapping to pathways, we will use the Reactome Pathway database 

[24,25]. By mapping mutations to these pathways, we can begin to understand 

the effect of mutations in terms of greater, overarching biological functions. In 

particular, we can aggregate multiple mutations to the same pathway and get an 

idea of pathway mutational load, and group samples together based on shared 

dysregulated pathway signaling, even if the mutated genes are not shared 

amongst samples. Additionally, this opens the door for assessment at the level of 

patterns of share dysregulated pathways, rather than patterns (i.e. clustering) of 

shared mutated genes.  

Traditionally, investigation of mutation and drug response has been 

restricted to the relationship between mutational or chromosomal aberrations as 

biomarkers and drug response [34]. In work by Iorio et al. (2016), the relationship 

between pathway-level aberrations and drug response was investigated for 

cancer cell lines and a wide range of functional events (CFEs) [34]. In Chapter 4, 

we use a similar ANOVA assessment to investigate pathway-level dysregulation 

and drug sensitivity or resistance. Briefly, when samples with pathway 

dysregulation have a significantly different mean AUC than samples without 

dysregulation, there is a relationship between the pathway response.  
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However, to interrogate the relationship between pathway dysregulation 

and drug response, we require a modeling framework that can capture the 

impact of a mutation on a pathway and thus model differing effects of mutations 

on a pathway based on the gene which is affected. In this work, we use 

functional impact score to represent the impact of a gene mutation, which include 

PolyPhen, SIFT, and Variant Effect Predictor [35,36]. These scores predict the 

impact of particular SNP on a gene. They each provide a continuous measure 

between 0 and 1 that reflects how deleterious the mutation is predicted to be. For 

PolyPhen, higher numbers are more deleterious (0 being no effect and 1 being 

deleterious) while for SIFT, lower numbers are more deleterious (0 being 

deleterious and 1 being no effect).  

 In Chapter 4, we will use an adaptation of factor graph approach 

implemented originally in PARADIGM [37], and assess the impact of patient-level 

mutations on pathway signaling. To provide background, probabilistic graphical 

models (PGMs) are a broad class of models that utilize core concepts from graph 

theory to represent complex probability distributions [38]. One type of PGM is the 

factor graph, which is a bipartite graph containing two types of nodes: variable 

nodes and factor nodes (Figure 1) [39]. Factor graphs are a generic way of 

representing probabilistic graphical models, as both directed and undirected 

models can be formulated as a factor graph. One advantage to using a factor 

graph representation is that it makes the factors or relationships between 

variables very apparent [40]. Factor graphs lend themselves well to describing 

biological signaling networks, as biological entities (such as genes or proteins) 
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can be described using variable nodes while relationships between such entities 

can be captured using factor nodes. Additionally, factor graphs can also 

accommodate cycles, which is useful for applications to biological networks, as 

will be discussed below [37–39,41]. This is in contrast to Bayesian networks, 

which cannot accommodate cycles in the graph structure. 

 

Figure 1. Example Factor Graph. A factor graph is a bipartite network consisting of variable 
nodes (circles) and factor nodes (squares). Factor nodes describe the relationships between 

variable nodes. Figure adapted from Kschischang, et al. (2001) [39]. 
 

Factor graphs have successfully been used to integrate different types of 

genomic data for prediction of pathway activity in individual patients. In their 

factor graph approach known as PARADIGM, Vaske et al. (2010) used variable 

nodes to represent biological entities such as proteins, RNA, and DNA . Factor 

nodes were used to describe the relationships (or influence) between these 

entities. In their work, the authors made use of additional “observed” nodes to 

attach genomic data such as mRNA expression data and copy number variation. 

Using message passing algorithms, the influence of observed data was 

propagated to additional hidden nodes throughout the graph representing unseen 

or unmeasured biological entities in each pathway. The authors applied their 

approach to the analysis of glioblastoma and breast cancer genomic data and 

showed that significantly up or down-regulated entities could be used to cluster 
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similarly impacted samples and thereby distinguish between multiple subtypes of 

glioblastoma as well as the four canonical subtypes of breast cancer [37]. 

We will use a modified version of the PARADIGM method to model 

mutational impact on pathway signaling. Similar to PARADIGM’s pathway impact 

score, we use the average log odds of entity belief states to measure the impact 

of a mutation on a pathway. We will investigate the impact of different AML de 

novo mutations on overall pathway impact and the relationship with drug 

sensitivity or resistance using the accompanying drug panel results.   

In parallel, we will also investigate the impact of drug-target binding across 

targets within a pathway. For those drugs that are in both the Cancer Targetome 

and the BeatAML drug screening panel, we will retrieve high confidence (Level III 

binding assay supported) target interactions. The Cancer Targetome data will be 

used to assign the impact of drug-target binding at relevant nodes in the 

pathway, which will then be propagated to neighboring nodes via message 

passing. This will allow us to investigate the impact of drugs on pathways. Using 

these two independent modeling approaches (mutation impact and drug impact), 

we will explore how to unite these pieces of information to better understand 

patient level drug response. We will also make recommendations for future 

modeling iterations towards an eventual unified model of mutation and drug 

response. 

The probabilistic graphical modeling framework offers several advantages 

to other modeling approaches for tackling such a problem. Using a factor graph 

approach for such a task will allow us to probabilistically model both mutation 
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impact and drug-target binding impact across multiple nodes in the graph. Using 

factor nodes, we can encode the relationships between mutation and gene or 

drug and target in a probabilistic manner to (respectively) reflects the functional 

impact of mutations or higher confidence drug-target interactions. In this way, we 

can capture a more accurate picture of drug binding across multiple targets and 

thereby represent drug polypharmacology in our computational model. Secondly, 

by representing biological entities (such as proteins that neighbor drug targets) 

using a factor graph approach, we can incorporate topological information into 

our model that provides value over solely using a binary indication of mapped 

versus unmapped genes. Lastly, the factor graph approach allows us to create a 

patient-specific model of impacted pathways for each patient sample. Such a 

model can then be used for a personalized approach to understanding somatic 

mutational profiles, drug binding, and overall drug response in patients. 
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CHAPTER 2. CHALLENGES IN SECONDARY ANALYSIS OF HIGH 

THROUGHPUT SCREENING DATA 

Abstract 

Repurposing an existing drug for an alternative use is not only a cost effective 

method of development, but also a faster process due to the drug’s previous 

clinical testing and established pharmacokinetic profiles. A potentially rich 

resource for computational drug repositioning approaches is publicly available 

high throughput screening data, available in databases such as PubChem 

Bioassay and ChemBank. We examine statistical and computational 

considerations for secondary analysis of publicly available high throughput 

screening (HTS) data with respect to metadata, data quality, and 

completeness.  We discuss developing methods and best practices that can 

help to ameliorate these issues.  

	

Introduction 

Despite increasing investment in drug research and development in recent 

years, the pharmaceutical industry has seen limited results in the form of novel 

marketable drugs[43]. Attention has recently turned to drug repositioning, or 

finding new uses for already developed drugs. Drug repurposing is particularly 

attractive due to its simplified timeline; while the traditional drug discovery 

process can take between ten and seventeen years to bring a drug to production, 

repurposing a drug can take as little as three to twelve years depending on the 
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drug’s previously established chemical properties.[44] In several cases, 

repurposing has provided enormous benefit to patients with previously limited 

treatment options, such as the repositioning of thalidomide to treat multiple 

myeloma, or bromocriptine for Type 2 diabetes. Other well-known repositioning 

successes include Wellbutrin as Zyban for a smoking cessation aid, Minoxidil for 

hair loss, and Viagra (sildenafil) for erectile dysfunction.[43–45]   

A potentially valuable resource for drug repositioning efforts is publicly 

available high throughput screening (HTS) data.[22] A primary strategy for drug 

discovery, the automated high throughput screening process allows for the 

activity of hundreds of thousands of chemical compounds to be tested 

simultaneously.[23] Compounds are screened against a particular target 

compound, typically a receptor or enzyme implicated in a disease, and are 

declared active if their results differ from the majority of the test compounds. 

However, it is well known that there are several common sources of variation 

within high throughput screens, both technological, such as batch, plate, and 

positional (row or column) effects, and biological, such as the presence of non-

selective binders, which can result in false positives and negative bioactivity 

results.[22,23,46–48] These problems are can be resolved through pre-

processing, standardization and normalization methods, which include the z-

score, percent inhibition, and median-based methods among others.[23,49,50] 

Results from high throughput screening projects, primarily from academic 

institutions, are often made available through public databases such as NCBI 

PubChem Bioassay and ChemBank. [22] The PubChem Bioassay database 
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contains the results of high throughput screens for the biological activities of 

molecules cross-listed in PubChem Substance and Compound.[20,51] Each 

PubChem assay has a unique assay identifier (AID). Assay data sets usually 

contain compound information, accompanying readout (for example, recorded 

fluorescence emission), activity score, activity outcome, and the mean values of 

minimum and maximum control wells for each plate in the assay. Activity scores 

and outcome are defined in the assay description, which typically explains the 

threshold used  to declare a particular compound active.[20] The actual raw HTS 

data is not included in PubChem, however, and therefore there is no information 

on batch, plate, or within-plate position for each screened compound.  

The Broad ChemBank database also contains the results of small 

molecule screens, as well as the raw datasets from screening centers. Each 

assay in ChemBank therefore contains not only compound information and 

accompanying readout, but also batch, plate, row, and column annotation for 

each screened compound. Additionally, each assay is conducted twice, so assay 

datasets contain replicate fluorescence readings.[21]  

Given the common sources of variation known to affect high throughput 

screening data, it is crucial that the quality of a particular bioassay is evaluated 

before its results are used in further research efforts. For instance, researchers 

interested in using bioactivity information from databases such as PubChem and 

ChemBank for computational repositioning methods must first be convinced of 

the reliability of the screens in these databases.[47] Issues in assay quality can 

result in false positive or false negative bioactivity results, affecting which 
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compounds are considered for potential repositioning.  Here, datasets from both 

PubChem and ChemBank are evaluated to quantify the advantages and 

limitations of each repository as well as to investigate common sources of 

variation such as batch, plate, and positional effects. This analysis is 

representative of a typical investigation of HTS data that would be conducted 

before utilizing this data in further computational repurposing efforts. Overall, the 

problems encountered here illustrate some of the key barriers to effective 

secondary use of publicly available high throughput screening data in order to 

realize the full potential of these datasets. 

 

Methods 

In this study, exploratory analysis was conducted on representative bioassay 

datasets from PubChem and ChemBank to examine data completeness, 

particularly in the context of data pre-processing and addressing technical 

sources of variation. Additional data was obtained directly from the original 

screeners of the highlighted PubChem study to complete the exploratory data 

analysis and allow for comparable assessments to the ChemBank study.  

 

PubChem Example 

The PubChem CDC25B (AID 368) dataset contains the results from 

approximately 65,222 compounds and controls of a primary screen against the 

target CDC25B. CDC25 is a protein tyrosine phosphatase cell cycle regulator, 

and of three existing isoforms, two are oncogenic and have been found to be 
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overexpressed in a variety of human tumors. The goal of this screen was to find 

potential inhibitors for the CDC25B isoform.[52] The CDC25B dataset contained 

the following attributes: PubChem Substance ID, PubChem Compound ID, 

activity score, activity outcome, database URL, comment field, raw fluorescence 

intensity, calculated percent inhibition, mean of minimum control well signals (by 

plate), mean of maximum control well signals (by plate), calculated z-factor, and 

assay run date. Exploratory data analysis was conducted to evaluate the overall 

distribution of fluorescence intensity, percent inhibition, minimum control well 

means, maximum control well means, and calculated z’-factors. However, no 

further analysis could be performed for this dataset in the form available from the 

PubChem database, given the lack of plate level data such as batch number, 

plate number, and row and column information for each well. 

 

Full PubChem Example 

 The full CDC25B dataset, including plate-level annotation, was obtained 

directly from the PMLSC screening center and contained results from 

approximately 83,711 compounds and controls across 218 384-well microtiter 

plates. In addition to PubChem Compound ID, raw fluorescence emission, 

calculated percent inhibition, mean minimum signal, mean maximum signal, 

calculated z-factor, and run date, this dataset also included assay batch, plate ID, 

row, column, well number, and well annotation. This information enabled further 

exploratory data analysis such as evaluation of fluorescence intensity distribution 

by well type and across plates and batches. Heatmaps were created for 
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individual plates to check for positional effects. The mean signal to background 

ratio and percent coefficients of variation for the minimum and maximum control 

wells were also calculated. Based on the exploratory data analysis, percent 

inhibition was chosen as the most appropriate normalization method, which was 

also the method chosen by the original screeners when processing the dataset. 

[23,52]  

 

ChemBank Example  

The ChemBank BRAF dataset contains the results from approximately 41,088 

compounds and controls of a primary screen to find an inhibitor of the BRAFV600E 

mutant. The BRAF gene plays an important role in the mitogen-activated 

signaling pathway and in particular, the BRAFV600E mutation has been implicated 

in melanoma, papillary thyroid carcinoma, and colorectal cancer.[53] The BRAF 

dataset is composed of seven different assays, each with two replicates. Given 

limited assay description and annotation provided, each of the seven assays was 

evaluated separately. First, correlation of raw fluorescence intensity between the 

two replicates was assessed for each of the seven assays, and if present, any 

outlying data points were investigated at the plate level. Next, exploratory data 

analysis was conducted for each assay to assess the overall distribution of 

fluorescence intensity, background-subtracted values, and calculated z-score. 

This analysis included histograms, boxplots, and quantile-quantile plots for 

individual replicates and statistical indices of the combined data, as appropriate.  
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Results 

PubChem Example 

Overall, the distribution of fluorescence intensity across all compounds in the 

CDC25B dataset is strongly skewed right, while the distribution of percent 

inhibition across all compounds is strongly skewed to the left. The distribution for 

the range between the mean minimum and mean maximum control wells is 

slightly skewed bimodal (See Supplementary Material S1) The distribution of z’-

factors across all compounds is fairly skewed to the left and appears to be 

slightly bimodal. Boxplots of z’-factor by run date reveal strong variation by date 

(Figure 1).  

   

                              (A)                                                     (B) 

Figure 1. Distribution of Z’-factors for PubChem CDC25B dataset. (A) 
Histogram depicting distribution of calculated z’-factors. (B) Boxplots by run date 
for calculated z’-factors.  

 
It is noted that the compounds run in March 2006 have much lower z’-

factors than the remaining compounds, run in August and September 2006. 

Additionally, the compounds run on September 13th, 2006 exhibit a much wider 
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range of z’-factors than compounds run on any other dates, while compounds run 

on September 29th, 2006 exhibit a much narrower range. Given that the z’-factor 

is a commonly used measure of assay quality, plates with a such divergent z’-

factors should be examined for possible errors and batch effects.  Here, 

however, further investigation into the sources of this variation could not be 

conducted due to the lack of plate level annotation available through the 

PubChem Bioassay database. If the metadata had been available, it would then 

be possible to attempt to correct for batch and technical sources of variation.  

 

Full PubChem CDC25B example 

 Histograms of fluorescence intensity by well type (compound, 50% 

inhibition, minimum, and maximum) for the full CDC25B dataset show that the 

distribution of fluorescence intensity across all wells is somewhat normal with a 

strong peak. The distributions of fluorescence intensities for compound wells and 

maximum control wells are slightly skewed right, while the distributions of 

fluorescence intensities for minimum and 50% inhibition control wells are more 

strongly skewed to the right (See Supplementary Material S2 Fig 1 and 2). 

Fluorescence intensity appears to vary widely by both batch and run date as well 

as by plate within respective batches (See Supplementary Material S2 Fig 3-8). 

No apparent positional effects were detected by visual examination of heatmaps 

for each of the 218 plates in the dataset.   

Following a recently proposed decision process for HTS data processing, 

percent inhibition was chosen as the most appropriate method of normalization, 
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due to the fairly normal distribution of fluorescence intensity, lack of row and 

column biases, a mean signal to background ratio greater than 3.5, and percent 

coefficients of variation for both the minimum and maximum controls wells less 

than 20% [23] (See Supplementary Material S2 Table 1). This appeared to 

successfully normalize the data by batch, date, and across plates within each 

batch and reproduced the original analysis (See Supplementary Material S2 Fig 

9-16). It is important to note that it would not be possible to successfully evaluate 

this data set with regard to pre-processing and normalization without the plate 

level annotation.  

ChemBank Example 

There was a large range with regard to correlation of fluorescence intensity 

between replicates: 0.436-0.910 (Table 1).  Scatterplots further illustrate the high 

variability among some replicates (Figure 2). This allows easy identification of 

signal discrepancies. For example, the bottom of the scatterplot for assay 

1110.0002, it is easy to detect a set of mock treatment wells (in red) where signal 

was present in replicate A, but not in replicate B. Similarly, the upper left-hand 

corner of the scatterplot for assay 1110.0003 shows a replicate specific cluster of 

compound treatment wells. The outlying data points in assay 1110.0002 were 

found to be confined to one plate, 1110.0002.Base. The outlying data points in 

assay 1110.003 were similarly located on a single plate, 1110.0003.2340.  
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Table 1. Correlation Coefficients for Fluorescence Intensity Replicate A vs 
Fluorescence Intensity Replicate B, by Assay, ChemBank BRAF dataset.  
 

Assay 

Number 

1110.000

1 

1110.000

2 

1110.000

3 

1110.000

4 

1110.000

5 

1110.000

6 

1110.000

7 

Correlatio

n 

0.436 0.536 0.906 0.910 0.902 0.869 0.846 

 

Examination of the well-plate layout for 1110.0002 allowed identification of 

an obvious positional effect in the upper six rows of the plate (Figure 3). 

Similarly for 1110.0003, the corresponding well-plate layout illustrated a clear 

positional effect along the bottom two rows of the plate. 
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Figure 2. Scatterplots for Correlation of Fluorescence Intensity Between Replicates A and 
B. Correlation between replicates of Assay 1110.0001- 1110.0007. Blue indicates compound-
treatment wells, red indicates control wells.    

 



	

	 30	

 

Figure 3. Well Plate Layouts for Selected BRAF Assays. (Left) Replicate B of Base Plate for 
Assay 1110.0003. (Right) Replicate A of Plate 2340 for Assay 1110.0003. Darker wells indicate 
decreased fluorescence. 

 

Overall, each of the seven assays in the BRAF dataset showed fairly different 

distributions for fluorescence intensity, background-subtracted values, and 

calculated z-scores (See Supplementary Material S3), further reiterating the role 

of exploratory data analysis to examine model assumptions prior to downstream 

analysis.   
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Boxplots of the fluorescence intensity by plate were then examined. It was 

noted that the signal varies considerably across plates, both within and across 

each of the seven assays. (Replicate A shown in Figure 4). Beginning with assay 

1110.0003 in replicate A, it is apparent that within each assay, fluorescence 

intensities steadily increase with each successive plate that is run before 

dropping down at the beginning of the next assay. In the absence of timestamps 

for each plate, it was assumed that increasing plate numbers indicate passage of 

time. However, without that appropriate metadata, it is not possible to determine 

the actual source of variation, again limiting the ability to correctly model batch or 

temporal effects.  

 

Figure 4. Raw Fluorescence Intensity by Plate, Across All Assays, Replicate A, ChemBank 
BRAF dataset. Each boxplot depicts the fluorescence values of the wells of one plate. Colors 
indicate assay “Name”, which may or may not be synonymous with batch.   
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Discussion 

Both repositories examined provide excellent opportunities for secondary 

analysis of public HTS data. However, we have noted several issues that need to 

be addressed in order to realize their full potential.  Most notably, the lack of 

actual raw data, and therefore plate level annotation for bioassays in PubChem 

BioAssay prevents rigorous analysis of data quality. As illustrated above, initial 

exploratory analysis of the limited CDC25B dataset (as obtained from PubChem) 

reveals potential quality issues, such as variation by run date. These issues 

cannot be fully investigated, however, without knowledge of batch and plate 

numbers and row and column positioning for each tested compound. The 

complete CDC25B dataset, obtained directly from the screeners, allowed for 

more in-depth investigation of sources of variation, which in turn allowed for more 

appropriate pre-processing and normalization recommendations to be made. It 

would not have been possible to evaluate the dataset solely from the data and 

annotation made available through the PubChem database. 

Another issue for researchers seeking to extract assay information from 

PubChem is the lack of description for the particular readouts used in assays. 

While the PubChem assay discussed in this paper provided a full description of 

the fluorescence emission readout, many assays do not necessarily include this 

level of information.  It is also important to note that the issues discussed here 

are likely extensible to other databases, such as ChEMBL, which contain 

bioactivity information from selected PubChem Bioassays.[54] 
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The ChemBank database is currently the only publicly available bioassay 

database that requires the inclusion of plate level annotation in their datasets. 

While this information is crucial for secondary analysis, the value of the datasets 

in ChemBank is negatively impacted by the lack of assay annotation and 

description. For instance, the BRAF dataset was composed of seven different 

assays, but it was unclear how these differed from one another, if at all. From the 

assay descriptions, it appeared that only the first assay differs in its biological 

components, but there was no additional information as to why the remaining six 

assays were conducted separately.  Additionally, while we might expect strong 

correlation between replicates for each assay, several assays exhibited 

exceptionally poor correlation, which casts doubt on the overall quality of the 

screening data. Furthermore, the lack of date or timestamps for the ChemBank 

data makes it impossible to confirm temporal batch effects, limiting one to data 

visualization by plate, with an assumption that plate order corresponds with time, 

as done in Figure 4.  

Correspondence with PubChem confirmed that PubChem Bioassay does 

not require plate level annotation in uploaded datasets to the BioAssay database. 

It is also noted that there is no way to query for which, if any, datasets include 

this level of annotation (Personal communication with PubChem). ChemBank 

also confirmed that the “AssayName” field is used by depositors in different 

ways: it can be used for biologically different assays or batches of similar assays. 

Currently, there is no method of querying for datasets to identify those for which 

particular descriptive information/metadata are included (Personal 
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Communication with ChemBank). These issues affect not only the general 

usability of the databases, but in particular hinder a larger-scale systematic 

quality analysis of HTS assays. The analysis presented here was restricted to 

one assay from each database primarily due to difficulties in accessibility and 

poor annotation.  

Issues such as these in turn stymie the usage of high throughput 

screening data in further research efforts such as computational repositioning 

efforts requiring bioactivity information. There is the potential for improved data 

standards and development of best practices for data dissemination to improve 

the quality and reusability of the data in these repositories. At a minimum, the 

inclusion of metadata such as plate and well-level annotation will enable a more 

thorough secondary analysis of HTS data. Additional oversight to ensure 

descriptor fields for assays are completed may also encourage assay re-use. 

With respect to cost-benefit analysis, the potential for re-use of the data via 

secondary analysis far outweighs any costs due to additional data standards or 

metadata requirements, as the metadata has already been generated. Further 

impact in time/resources for depositing additional metadata can easily be 

mitigated by automation. One example of methods to facilitate the reporting of 

this metadata is a recently proposed method to first extract workflows directly 

from screening data in PubChem and then use the workflows to organize data 

within screening projects. [55]  

Addressing these issues in the research community and in the 

requirements for submission to these repositories could improve the re-use of 
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these data sets.  A PubMed search for “PubChem” results in only 263 articles, 

and the more specific “PubChem BioAssay” pulls up only 51 articles. Querying 

for “ChemBank” returns even fewer articles, with only 17 results.  For 

perspective, searching “GEO” brings up approximately 8480 results for Gene 

Expression Omnibus. While both PubChem BioAssay and ChemBank are fairly 

young databases and more expansive mining efforts using their datasets may 

still be yet to come, the annotation and data quality issues in both databases 

cannot be ignored as a potential barrier to dissemination. Expanded datasets as 

well as more rigorous quality standards are necessary to ensure the public data 

is truly accessible and re-usable. 
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CHAPTER 3. AIM 1: EVIDENCE-BASED PRECISION ONCOLOGY WITH THE 

CANCER TARGETOME 

Abstract 

A core tenet of precision oncology is the rational choice of drugs to interact with 

patient-specific biological targets of interest, but it is currently difficult for 

researchers to obtain consistent and well-supported target information for 

pharmaceutical drugs. We review current drug–target interaction resources and 

critically assess how supporting evidence is handled. We introduce the concept of 

a unified Cancer Targetome to aggregate drug–target interactions in an evidence-

based framework. We discuss current unmet needs and the implications for 

evidence-based clinical omics. The focus of this review is precision oncology but 

the discussion is highly relevant to targeted therapies in any area. 

 

Introduction 

Precision Oncology Requires Rigorous Drug–Target Information 

The advent of precision oncology (see Glossary) is often hallmarked 

with the development of the targeted therapy imatinib to treat BCR–ABL1-

positive chronic myeloid leukemia (CML) [3]. Over time, the term precision 

oncology has evolved to include the use of genetic biomarkers to guide 

treatment selection as well as to refer to the emerging paradigm of treating 

cancer in a mutation-centric manner over a histology-centric manner [56–58]. 

However, the promise of precision oncology has been dimmed with the 

realization that only a small number of genetic variants in cancer are currently 
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actionable with approved drugs [56,59]. Much of the work focused on expanding 

what is considered to be actionable in cancer genomics has focused on the 

characterization of cancer-associated and driver genes and prioritization of these 

candidates for therapeutic intervention [60–63]. However, any endeavor to 

expand the actionable space and thereby expand patient treatment options 

requires that we have a working knowledge of the interactions between drugs 

and their biological targets. 

As illustrated in Figure 1 (Key Figure), drug–target interactions play an 

integral role in many different precision oncology applications. Clinical trials for 

cancer therapies are at the forefront of design and methodology development 

[64]. Newly emerging trial designs include umbrella trials, in which patients with 

the same type of cancer are assigned to different treatment arms according to 

key genetic variants [65,66], and basket trials, in which patients are assigned to 

treatment based on genetic variant but irrespective of cancer type [67,68]. Both 

of these trial designs rely on drug–target interaction information. Computational 

and predictive modeling approaches to predict drug response or anticipate 

adverse drug reactions require both primary and secondary target information for 

a complete picture [11,14,69–71]. Drug repurposing, or finding alternative uses 

for existing drugs, often makes use of secondary or so-called ‘off-target’ binding, 

where a drug binds to a target other than the one it was designed for [43,72]. 

Lastly, designing combinatorial drug treatment for a patient based on multiple 

genetic variants requires knowledge of drugs interacting with targets affected by 

each of those genetic variants [8]. Each of these examples requires knowledge of 
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the biological targets that a drug may potentially interact with, but the specific 

context of a precision medicine application will dictate more or less rigorous 

requirements for the strength of supporting evidence for a drug–target 

interaction. Because this information can directly impact drug or target 

prioritization decisions and ultimately affect treatment options for patients, it is 

imperative that researchers have access to drug–target interaction information 

with clear literature and experimental evidence. 

Historically, the scope of the approved drug–target interaction space has 

been difficult to pin down precisely. Since the first characterization of the 

druggable genome [73,74] nearly 20 years ago, estimates of the number of 

biological targets for approved drugs have varied with both the definition of the 

target and the scope of data collection [7,75–79]. The realization that many 

currently approved drugs display polypharmacological or non-selective 

behavior [15] has added another layer of complexity to characterization of the 

drug–target interaction space. 
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Figure 1. Key Figure. Precision Oncology Applications Rely on Drug–Target Interaction 
Information. (A) Umbrella clinical trial with multiple treatment arms. Patients are assigned to 
different treatment arms in a clinical trial according to their genetic alterations. Drug treatments in 
each arm are determined according to interactions between drugs and priority genomic variants 
in tumors. (B) Predictive modeling (e.g., predicting drug response or adverse drug reactions). 
Patient genomic data is used with in silico drug treatment simulation to predict which patients will 
respond beneficially (or adversely) to particular drug treatments. (C) Repurposing a drug for 
alternative therapeutic use. Drug binding information at additional or ‘secondary’ targets can be 
used to repurpose a drug for a secondary therapeutic indication. (D) Combinatorial drug 
treatment. A combination of drugs is chosen for a patient using his or her genetic variant 
information and prioritization of variant-related targets according to known interactions with 
existing drugs. 
 

Current public informatics resources for drug–target interaction information 

do not reflect a strong and consistent understanding of cancer drug binding 

across multiple targets. While the broader drug–target interaction space in the 

public domain faces the limitation of sparsity (only so many drug–target 

interaction pairs have been tested), there is a plethora of drug–target interaction 
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and bioactivity information that is available but currently underutilized by the 

precision oncology research community. Hurdles to using this information include 

the need for aggregation across resources, unclear reference lineage, and 

differing types of supporting evidence. These challenges pose significant barriers 

to researchers looking to critically assess existing target annotations for a 

particular drug and this task quickly becomes intractable as the number of drugs 

of interest increases. 

 

Current Resources for Drug–Target Interactions 

Here we briefly review resources and databases for drug–target 

interaction information (Table 1). Current resources for drug–target interaction 

data can be broadly categorized into two types: drug centric and bioactivity 

centric. Resources such as DrugBank, the Therapeutic Targets Database, and 

KEGG Drug contain drug–target annotations supported by literature evidence 

and are subject to manual curation but currently do not incorporate experimental 

binding activity evidence [80–84]. Other resources, such as the International 

Union of Basic and Clinical Pharmacology/British Pharmacological Society 

(IUPHAR/BPS) Guide to PHARMACOLOGY, include manually curated 

experimental binding activities with drug–target annotations [85]. The Drug Gene 

Interaction Database aggregates drug–target annotations across multiple 

sources, allowing the user to see the parent sources and total literature reference 

count per drug–target interaction, but does not currently include binding activity 

evidence [86]. Other resources that provide experimental binding evidence for 
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target annotations for approved drugs and/or clinical trial drugs include 

DrugCentral, Pharos, SuperTarget, and STITCH [63,87–89]. Open Targets is a 

recently released academic–industry collaborative resource that includes drug–

target interaction information, but is currently more focused on enabling target 

validation efforts [90]. While all of these resources allow multiple targets per drug, 

differing standards for target inclusion can result in discrepant target annotations 

across resources [16]. 

Bioactivity databases such as ChEMBL, BindingDB, and PubChem 

Bioassay aggregate chemical compound experimental binding activity 

information through manual extraction or text mining from the literature and other 

bioactivity databases [91–95]. These resources offer differing coverage with 

respect to compounds, targets, and interactions due to differences in data scope, 

collection methods, and curation [96–98]. 

While bioactivity databases offer a wealth of potential compound–target 

information due to large-scale collection of high-throughput screening results 

[51], they do not directly provide drug–target interaction annotation and it is 

therefore up to the user to determine an appropriate binding activity threshold 

when collecting and assessing experimental binding activity data. This presents 

its own challenge, as the choice of an appropriate activity threshold depends on 

the biological context of the problem. To determine the bioactivity of compounds, 

the threshold of 10 000 nM (10 µM) is often used, but a much stricter threshold of 

100 nM or under is more appropriate when requiring interactions to be relevant to 

drug binding [15,99]. Paolini et al. (2006) required the best activity across assay 
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types (IC50, EC50, Ki, and Kd) to be less than 10 000 nM in their analysis of global 

pharmacological space [15]. Similarly, Koutsakas et al. (2013) used a bioactivity 

threshold of 10 000 nM to obtain a balance between chemical space coverage 

and the inclusion of weakly active compounds [100]. This bioactivity threshold 

has been used by others in target prediction methods [101,102] or the analysis of 

drug–target annotations [103], while other groups have used more conservative 

bioactivity thresholds across assay types (1000 nM) [104] in target prediction or 

used only a single assay type (Kd < 3000 nM) in calculating selectivity measures 

[105]. Finan et al. (2017) used a threshold of 100 nM on ChEMBL bioactivity data 

(across all assay types) to supplement target annotation found in company 

pipelines and the literature for approved and clinical trial drugs [106]. The Pharos 

platform, which presents data from the Target Central Resource Database (and 

uses a Target Development Level scheme to group targets based on level of 

study and association with small-molecule bioactivity), uses bioactivity thresholds 

based on target family-specific cutoffs [63]. 

 
Table 1. Databases for Drug-Target Interactionsa 

 
Database (URL) Description Year est. Version 

(release 
date)  

Drug/ 
compound 

Target 
inclusion 
criteria 

Supporting 
evidence 

License Refs 

DrugBank 
https://www.drug

bank.ca/ 

Drug 
database 
including 
FDA-approved 
small 
molecules, 
FDA-approved 
biotech drugs, 
nutraceuticals, 
and 
experimental 
drugs 

2006 5.0.7 
(07/06/17
) 

A, Cl, N, W Manual PubMed Public for 
non-
commerci
al useb 

[79,8
0] 

Therapeutic 
Targets 

Database 

Includes 
therapeutic 
protein and 
nucleic acid 
targets, 

2002 4.3.02 
(08/25/11
) 

A, Cl Manual PubMed No license 
indicatedc 

[81] 
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http://bidd.nus.e
du.sg/BIDD-

Databases/TTD 

targeted 
disease 
condition, 
pathway 
information, 
and drug 
interactions 

Site 
updated 
09/10/15 

IUPHAR/ 
BPSd 

http://www.guide
topharmacology.

org/ 

Expert-
curated 
resource for 
pharmacologic
al, chemical, 
genetic, 
functional, and 
pathophysiolo
gical data on 
targets of 
approved and 
experimental 
drugs 

2013 2017.4 
(05/23/17
) 

A, Cl Manual PubMed, 
US patent, 
Bindingselecte

d 

Database 
ODble, 
contents 
are CC-BY 
SA 3.0f 

[84] 

DGIdbg 
http://dgidb.geno

me.wustl.edu/ 

Integrated 
from 13 
primary 
sources for 
‘druggable 
genome’, 
genes with 
known drug 
interactions or 
genes that are 
potentially 
druggable 

2013 3.0 
(06/30/17
) 

A, Cl Manual External 
DB, 
PubMed 

GNU 
General 
Public 
License 
V3 

[85] 

Open Targets 
https://www.targ
etvalidation.org/ 

Informatics 
platform for 
target 
validation with 
extensive 
evidence 
associating 
targets and 
diseases 

2016 3.2.0 
(07/27/17
) 

A, Cl All External DB 
(ChEMBL) 

Public [89] 

Pharos 
https://pharos.ni

h.gov/idg 

Contains 
druggable 
human protein 
targets as part 
of the NIH 
Illuminating 
the Druggable 
Genome 
project; also 
includes target 
information for 
full human 
proteome 

2016 Uses 
4.6.2 of 
Target 
Central 
Resourc
e 

A, Cl, L Threshold Bindingselecte

d 
CC BY-SA 
4.0h 
Internation
al 

[62] 

DrugCentral 
http://drugcentral

.org/ 

Drug 
compendium 
of structure, 
bioactivity, 
regulator, 
pharmacologic
al action, and 
indication 
information for 
active 
pharmaceutic
al ingredients 
approved by 
FDA, EMA, 
and PMDA 

2016 9.4 
(04/25/17
) 

Ai Threshold Bindingselecte

d 
CC BY-SA 
4.0 
Internation
al 

[86] 
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SuperTarget 
http://insilico.cha
rite.de/supertarg

et/ 

Web-based 
warehouse 
that integrates 
drug-related 
information 
with 
indication, 
adverse 
effect, 
metabolism, 
and gene 
ontology 
terms for 
target proteins 

2008 NA A, L All External 
DB, 
PubMed, 
Bindingall 

CC BY-
NC-SA 
3.0j US 

[87] 

STITCH 
http://stitch.embl.

de/ 

Aggregates 
protein–
chemical 
interactions 
from both 
experimental 
and manually 
curated 
evidence 

2008 5.0 
(2016) 

A, L All External 
DB, 
PubMed, 
Bindingall 

CC BY-
NC-SA 
4.0k,l 

[88] 

KEGG Drug 
http://www.geno

me.jp/kegg/drug/ 

Drug 
information for 
approved 
drugs from 
Japan, USA, 
and Europe 

2010 04/03/17 Ai Manual NA KEGG 
Medicus 
publicly 
availablem 

[82,8
3] 

BindingDB 
https://www.bindi

ngdb.org/ 

Experimentall
y determined 
binding 
affinities for 
protein–ligand 
complexes, 
extracted from 
scientific 
literature, 
selected 
databases, 
and US 
patents 

2000 08/01/17 A, Cl, L All External 
DB, 
PubMed, 
Bindingall 

CC BY 
3.0n,o 
USA 

[91] 

ChEMBL 
https://www.ebi.a

c.uk/chembl/ 

Large-scale 
bioactivity 
database with 
information 
manually 
extracted from 
medicinal 
chemistry 
literature 

2011 23 
(05/17) 

A, Cl, L All External 
DB, 
PubMed, 
Bindingall 

CC BY-SA 
3.0 

[90] 

PubChem 
BioAssay 

https://pubchem.
ncbi.nlm.nih.gov/

# 

Repository for 
results of 
high-
throughput 
screening 
experiments 
for small 
molecules and 
RNAi 

2004 NA A, Cl, L All External 
DB, 
PubMed, 
Bindingall 

Public 
domainp 

[92,9
3] 

 
aDatabase name and URL, year established, current version (release date, as available on 
August 4, 2017), drug/compound (A, approved drug; Cl, clinical trial/investigational drug; N, 
nutraceutical/natural product; L, ligand; W, withdrawn), target inclusion criteria [Manual, manual 
curation involved; Threshold, activity threshold applied; All, all targets listed (applicable to 
bioactivity databases)], supporting evidence (PubMed ID; Bindingselected, selected binding values 
for drug–target interaction; Bindingall, all binding values for drug–target interaction reported; 
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External DB, parent source database as applicable), and database license. License information 
reflects most recent information in publication or from database websites on August 4, 2017. 
bDrugBank Open Data datasets (subset of full database) available under Creative Commons 
CCO 1.0 International License. 
cAll rights reserved. 
dIUPHAR/BPS Guide to PHARMACOLOGY. 
eOpen Data Commons Open Database License. 
fCreative Commons Attribution-ShareAlike 3.0. 
gDrug–Gene Interaction Database. 
hCreative Commons Attribution-ShareAlike 4.0. 
iApproved drug in Japan (PMDA), USA (FDA), and Europe (EMA). 
jCreative Commons Attribution-NonCommercial-ShareAlike 3.0. 
kCreative Commons Attribution-NonCommercial-ShareAlike 4.0. 
lFor chemical–protein interaction information. 
mAcademic users require subscription for FTP access; commercial users require subscription 
through Pathway Solutions. 
nCreative Commons Attribution 3.0. 
oData sourced from ChEMBL is CC BY-SA 3.0. 
pData supplied by contractors or non-federal government entities or employees may be subject to 
copyright. However, PubChem listed as (ODbL) at https://www.healthdata.gov/dataset/pubchem. 
 
 

Methods 

The Need for a Unified Cancer Targetome 

While there are many resources for drug–target interaction and compound 

bioactivity data, it remains an enormous task to collect, assess, potentially 

reconcile, and make informed decisions about putative drug–target interactions. 

This challenge is illustrated by a recent comprehensive analysis of all FDA-

approved drugs that curated all efficacy drug targets (as defined by Santos et al. 

(2016)) through an extensive search of both prescribing information and the 

scientific literature [7]. There is a critical need for aggregation of drug–target 

information in a framework that allows assessment of the supporting evidence for 

each interaction. 

We aggregate drug–target interaction and bioactivity data for FDA-

approved antineoplastic drugs from four publicly available resources and 

introduce a framework for categorization of the type of evidence supporting each 
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interaction to create a unified Cancer Targetome. Briefly, we selected these four 

resources in an effort to obtain representative coverage of the drug–target 

interaction space that is both publicly available and widely used by the research 

community. DrugBank is a popular resource for drug and drug–target data that is 

used widely by pharmacy and medicinal researchers, clinicians, educators, and 

the public [81]. The Therapeutic Targets Database offers extended coverage of 

biological targets [107]. The IUPHAR/BPS Guide to Pharmacology utilizes expert 

manual curation and rigorously requires experimental binding evidence from a 

primary source for all drug–target interactions [85]. However, the IUPHAR/BPS 

Guide to Pharmacology typically provides only one experimental binding assay 

value for each drug–target interaction, so we also included an aggregated 

bioactivity database (BindingDB) in our collection efforts for the Cancer 

Targetome. BindingDB provides wide coverage of binding assay data by 

aggregating across the scientific literature as well as from other bioactivity 

resources such as ChEMBL and PubChem [92]. Across four resources 

(DrugBank, the Therapeutic Targets Database, the IUPHAR/BPS Guide to 

Pharmacology, and BindingDB), we retrieved a total of 137 drugs and 658 

targets participating in a total of 6385 unique drug–target relationships. We 

emphasize that the number of unique drug–target relationships should not be 

regarded as an estimate of actual drug–target binding space, as many of these 

relationships are supported by experimental binding values that reflect very weak 

binding. DrugBank provided the highest coverage of drugs participating in drug–

target relationships while BindingDB provided the highest coverage of targets 
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participating in drug–target relationships (Figure S1 in the supplementary 

information online). BindingDB also provided the highest coverage of unique 

drug–target relationships, which can be interpreted as drug–target interactions 

that have been experimentally tested but are not necessarily ‘true’ drug–target 

binding events. 

To assess the strength of supporting evidence for collected drug–target 

interactions, we develop a three-level evidence scale. Evidence Level I, II, or III is 

assigned to drug–target relationships retrieved from a database with no 

additional supporting information, with supporting literature information, or with 

supporting literature information and at least one reported experimental binding 

value, respectively. Experimental binding values may be reported as Kd, Ki, IC50, 

or EC50 assay values. Because drug–target information is aggregated across 

multiple databases, each unique drug–target relationship may have different 

types of supporting evidence reported across all four databases and therefore 

can be associated with multiple evidence levels. 

 

Results 

 As we require increasing levels of supporting evidence for drug–target 

relationships, we see an overall decrease in the coverage of drugs, targets, and 

unique relationships, as expected (Figure 2). In the Level III evidence tier, we can 

further threshold according to the numeric value of reported experimental binding 

activities. This allows us to triage experimentally tested drug–target relationships 
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to those that have been reported with a binding value that is potentially relevant 

for drug and target binding having clinical impact. 

 

Figure 2. Cancer Targetome Aggregated Counts for Drugs, Targets, and Unique 
Interactions by Evidence Level. Drugs are FDA-approved antineoplastic drugs (total 137), 
uniquely identified using the National Cancer Institute Thesaurus [108] targets are unique human 
UniProt Accession IDs (total 658), and interactions are unique relationships (total 6385) between 
one drug and one target. Counts are colored by supporting evidence level: Level I indicates 
database annotation only; Level II indicates database and literature reference annotation; Level III 
indicates database, literature, and experimental binding value annotation. Level III Exact refers to 
annotation of a binding value with an exact (“=”) binding value reported rather than “<” or “>”. 
Thresholds on Level III binding activities were applied at 10 000 nM, 1000 nM, and 100 nM. 
 

We demonstrate how the Cancer Targetome framework allows the filtering of 

aggregated drug–target relationships to obtain those meeting particular evidence 

criteria. For instance, to obtain an estimate of drug–target interaction space for 

which there is strong experimental evidence to support nanomolar binding 

interactions (e.g., relevant to clinically achievable doses for a given drug) we can 

require Level III evidence and further threshold to reported binding affinities of 
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less than 100 nM, which produces a total of 529 unique drug–target interactions. 

Interestingly, of these 529 putative drug–target binding interactions, the majority 

are reported by only one database, with only a quarter of these putative binding 

interactions reported by two or more databases (Figure S2A in the 

supplementary information online). Within this set of putative interactions, we can 

also examine the ‘best’ or minimum experimental binding affinity value reported 

for each unique drug–target interaction and the database that is responsible for 

contributing this value. While the majority of such minimum assay values are 

contributed by BindingDB, the IUPHAR contributes the minimum assay value for 

approximately 50 interactions (over 10%) (Figure 2B in the supplementary 

information online). This example highlights the benefit of aggregation across 

multiple sources to provide the research community with a more comprehensive 

resource for precision oncology. 

 

Protein Kinase Inhibitors Are Highly Experimentally Tested Against Targets 

The majority of antineoplastic drugs have been experimentally tested 

against fewer than 20 protein targets. This sparsity of the publicly available drug–

target interaction space has been discussed by others [6] and represents a key 

limitation for efforts by the research community to assess drug promiscuity, or 

binding to ‘secondary’ targets. However, a small set of drugs (all protein kinase 

inhibitors) have been experimentally tested with more than 300 targets (Figure 

S3 in the supplementary information online), providing us with several examples 

of drugs with extensive binding data with which we may assess potential target 



	

	 50	

interactions and provide recommendations for future drug–target interaction 

curation efforts. 

This meets expectations given the enormous resource commitment to 

targeting kinases in oncology following the breakthrough drug imatinib [2]. For 

instance, Davis et al. (2011) performed an extensive and comprehensive 

analysis of kinase inhibitor selectivity including both approved and 

investigational-stage drugs [105,109]. Experimental binding results for select 

approved cancer drugs from their analysis are included in our aggregated 

resource due to our data collection from the bioactivity database BindingDB. 

Among this set of highly tested kinase inhibitors, we see variation in the number 

of interacting targets for each drug (Figure S4 in the supplementary information 

online). As we threshold the experimental binding evidence to stronger binding 

affinities (10 000 nM, 1000 nM, 100 nM), we see that some drugs have a small 

number of targets meeting strong binding affinity criteria, such as afatinib, 

imatinib, and lapatinib, while other drugs have a seemingly high number of 

targets, such as bosutinib, crizotinib, dasatinib, and sunitinib. Due to the high 

number of experimentally tested targets for this subset of drugs, we can perform 

deeper data-quality analysis and, in particular, investigate the contributions of 

different experimental binding activity types. 

 

Imatinib and Vandetanib Use Cases 

We highlight two use cases for the drugs imatinib and vandetanib. Both of 

these drugs are protein kinase inhibitors and have extensive binding activity 
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information available across a large number of targets. Using the Cancer 

Targetome evidence framework, we assess the experimental evidence 

supporting target binding for imatinib and vandetanib at the strict threshold of 

100 nM. In Figure 3A we show all targets for imatinib with experimental binding 

evidence under 100 nM. While there are a total of 14 targets with assay evidence 

under 100 nM, the tyrosine protein kinase ABL1, the canonical target of imatinib 

[2,31,110], notably has low-nanomolar assay evidence across all four binding 

assay types (Kd, Ki, IC50, and EC50). For Kd, Ki, and IC50 assay evidence, ABL1 

has multiple low-nanomolar assay values, which lends more confidence to ABL1 

being a biological target of the drug imatinib. Furthermore, for each of the four 

binding assay types, ABL1 has either the lowest or second-lowest assay value 

for target interactions with imatinib (Figure 3A). The case of imatinib serves as an 

example where evidence for the canonical ‘primary’ target can be seen in 

experimental binding data. In the cases where a target other than ABL1 occupies 

the best or close to the best assay value [epithelial discoidin domain-containing 

receptor 1 (DDR1), platelet-derived growth factor alpha (PDGFRA), and platelet-

derived growth factor beta (PDGFRB)], there is binding assay support from only 

one or two of the binding assay types rather than all four binding types as in the 

case of ABL1. 

 

In Figure 3B we show all targets for vandetanib with experimental binding 

evidence under 100 nM. In total there are 26 unique targets meeting these 

criteria but we see a striking discordance in the type of binding assay support 



	

	 52	

available for these targets. Experimental Kd values indicate that ABL1, the 

mast/stem cell growth factor receptor Kit (KIT), receptor-interacting 

serine/threonine protein kinase 2 (RIPK2), the epidermal growth factor receptor 

(EGFR), and the proto-oncogene tyrosine protein kinase receptor Ret (RET) 

have very-low-nanomolar experimental evidence. Experimental IC50 values 

indicate that vascular endothelial growth factor receptor 2 (KDR or VEGFR2), 

EGFR, vascular endothelial growth factor receptor 1 (FLT1), and the proto-

oncogene tyrosine protein kinase Src (SRC) all have evidence for interaction at a 

very-low-nanomolar level. According to Kd assay evidence, EGFR is strongly 

supported as a target (multiple low-nanomolar assay values), while according to 

IC50 assay evidence KDR is strongly supported as a target. For vandetanib, no 

EC50 binding assay values and no Ki binding assay values under 100 000 nM 

were available.  

Interestingly, vandetanib is considered to be a dual KDR and EGFR 

inhibitor or, in some cases, a multiple kinase inhibitor for EGFR, KDR, and RET 

[2,111,112]. A literature search reveals that, while originally designed to inhibit 

KDR, vandetanib exhibited additional activity with EGFR in preliminary lead 

candidate stages [112]. These results prompted further testing that established 

vandetanib as inhibiting EGFR in mouse cells, human cancer cells, and seven 

human cell lines lacking the target KDR [113]. This example highlights the rich 

contextual information for drug–target interactions that is currently not captured in 

drug–target interaction or bioactivity resources. 
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Figure 3. (A) Imatinib target interactions under 100 nM. Colored by target; bin width, 1 nM. 
Imatinib has experimental binding evidence for 14 different targets under 100 nM. ABL1 stands 
out as it has many low-nanomolar assay results and occupies the best or second-best assay 
value for each binding assay type. (B) Vandetanib target interactions under 100 nM. Colored 
by target; bin width, 1 nM. Vandetanib has experimental binding evidence for interactions with 26 
different targets under 100 nM. Kd and IC50 assay evidence provides strong support for different 
targets for vandetanib [epidermal growth factor receptor (EGFR) and KDR, respectively]. 
Vandetanib does not have any targets supported by EC50 assay evidence and does not have any 
targets supported by <100 000-nM Ki assay evidence. 
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Next Steps for Drug–Target Interaction Evidence Curation 

A unified Cancer Targetome framework provides researchers with access 

to cancer drug–target relationships from the public domain that are accompanied 

by a transparent literature and experimental binding evidence lineage. The 

proposed evidence framework allows researchers to prioritize drug–target 

relationships according to the evidence criteria that are best suited to their 

research aims. Transparent and well-evidenced drug–target interactions will 

enable higher confidence and more informed decision making in the prioritization 

of drugs and targets in precision oncology efforts. 

However, examining the factors needed for the creation of the Cancer 

Targetome reveals critical unmet needs. In particular, the vandetanib use case 

highlights the need for binding assay metadata. While we were able to retrieve 

and assess experimental binding affinities between vandetanib and many 

biological targets, we must also consider the information that is not captured in 

this process. Namely, we are currently unable to capture metadata such as the 

cell line used in experimental binding assays, the tumor or non-tumor status of 

the cell line, and whether the cell line is derived from patient cells. The availability 

of this metadata would allow further tiering of drug–target binding evidence to aid 

target prioritization. For instance, the category we have proposed for 

experimental binding evidence (Level III) could be further subdivided into tiers 

indicating whether the interaction has been tested in non-cancer cells, cancer 

cells, or cells that are patient derived. Further tiering could be used to capture 
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metadata indicating whether other targets were knocked down or remained 

functional during the experimental binding assay for the target of interest. This 

metadata is invaluable for the prioritization of drug–target binding information in 

precision oncology, where it is critical to know whether experimental evidence 

was obtained using cancer or non-cancer cell lines. 

 

Mapping Drug–Target Interactions to Pathways 

Given the dysregulation that can occur in multiple pathways in cancer, 

there has been increasing attention and effort dedicated to targeting cellular 

pathways, particularly through the use of combination drug therapies [8,114]. We 

conducted a simple pathway analysis to assess the targeted pathway coverage 

of approved cancer drugs. Briefly, we mapped all targets participating in drug–

target relationships to Reactome pathways using increasingly strict supporting 

evidence requirements. Reactome is a comprehensive open-source pathway 

resource widely used by the research community [24]. Cellular pathways in 

Reactome are organized in a hierarchical manner allowing smooth pathway 

navigation and improved integration with external data resources. We designate 

those biological pathways containing one or more drug targets as ‘light’ or 

potentially targetable by approved antineoplastic drugs. Conversely, biological 

pathways containing no drug targets are ‘dark’ or currently out of scope for 

approved antineoplastic drugs. While a considerable portion of pathways 

(approximately 60%) are light to antineoplastic drugs when we consider any type 

of supporting evidence for drug–target interactions, this should be considered the 
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most liberal estimate of potentially targetable pathways (Table 2). A more 

reasonable estimate is obtained when we require drug–target relationships to be 

supported by experimental binding evidence with a reported assay value of less 

than 100 nM. This estimate indicates that there is strong evidence for approved 

antineoplastic drugs targeting approximately 39% of Reactome pathways. 

Depending on the distribution of key molecular aberrations for a given patient 

among the light and dark pathways, the evidence-based curation as presented 

and envisioned herein will refine the selection of therapeutics and in some cases 

could dramatically limit therapeutic options. We highlight the NOTCH signaling 

pathway in Box 1, which contains several dark child pathways. Dark pathways 

that are currently out of scope for FDA-approved cancer drugs represent areas 

for future cancer therapeutics development. 

Table 2. Light Pathways of the Cancer Targetome, by Supporting Evidence 
Level 
 

Evidence level 

required 

Number of 

unique targets 

Number of light 

pathways 

Total number 

of pathways 

Percentage 

light pathways 

Levels I, II, III 658 1214 2008 60.46% 

Levels II, III* 651 1213 2008 60.40% 

Level III 558 1139 2008 56.72% 

Level III Exact 511 1091 2008 54.33% 

Level III Exact, 

threshold < 100 nM 

246 790 2008 39.34% 

All unique targets involved in drug–target relationships (supported by indicated evidence levels) 
were mapped to Reactome pathways. The number of unique targets in the set of drug–target 
relationships is shown in the second column. A pathway is considered light if it contains at least 
one drug target. 
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Box 1. Pathway Example: NOTCH Signaling 

Dark pathways are of particular interest for future drug discovery and 

development efforts as they are currently outside the scope of approved cancer 

agents. We highlight the NOTCH signaling pathway, which is light at the topmost 

hierarchical level but contains several dark child pathways (Figure I). 

Dysregulated NOTCH signaling has been implicated in breast, prostate, lung, 

head and neck, and central nervous system cancers as well as T cell leukemia 

and has thus been identified as a therapeutic target of interest [115–117]. Three 

of the five child pathways of NOTCH signaling are currently dark to cancer drugs 

(Signaling by NOTCH2, Signaling by NOTCH3, and Signaling by NOTCH4). We 

highlight the light child pathway Pre-NOTCH Expression and Processing in the 

figure inset, which shows that there are two drugs potentially interacting with two 

targets in this pathway. Arsenic trioxide putatively interacts with the transcription 

factor AP-1 (JUN) (UniProt P05412) and G1/S-specific cyclin D1 (CCND1) 

(UniProt P24385) while vinblastine sulfate putatively interacts with JUN.  

However, all three of these drug–target relationships have Level II 

evidence only, as there is no accompanying experimental binding evidence. 

Therefore, if we assess light pathway coverage while requiring at least 

experimental binding evidence for drug–target interactions, this nested pathway 

goes dark. We use this example to illustrate that the classification of a particular 

pathway as light or dark to approved cancer drugs is directly impacted by the 



	

	 58	

strength of supporting evidence for the drug–target interactions involving the 

pathway of interest. 

Figure I. Signaling by the NOTCH Pathway. Signaling by NOTCH is a light or potentially 
targetable pathway when considering drug–target relationships supported by any level of 
evidence. Main figure: Of the five child pathways in Signaling by NOTCH, two are light (gold) and 
three are dark (blue) to current approved antineoplastic drugs. Inset: The light child pathway Pre-
NOTCH Expression and Processing contains two targets, JUN and CCND1, that are putatively 
targeted by antineoplastic drugs. This pathway is light when drug–target interactions of Level II 
evidence are included but goes dark when Level III evidence is required. 
 

Discussion 

We foresee the possibility that these analyses will allow weighting of the 

level, extent, and type of evidence to guide the prioritization of drugs moving to 

the clinic, for better synchronization of preclinical promise and patient benefit. 

Recently, attention has been drawn to the need for evidence quantification of 

patient-specific alterations in tumors to guide decisions about actionable 

therapies [5]. A similar characterization of evidence is also needed for drug–
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target and drug–pathway interactions if we hope to unite drug–target information 

with patient-specific information and develop targeted therapies (Box 2; see 

Outstanding Questions). In particular, evidence characterization frameworks 

accommodate the inherent uncertainty in the targetome space due to multiple 

types of supporting evidence. 

Given the recent attention and dedication of resources to the investigation 

of understudied areas of the druggable genome by the NIH Illuminating the 

Druggable Genome Consortium, we believe this work will be of current interest to 

the larger precision medicine community. This has implications for other 

therapeutics areas of interest with respect to guided investigation into 

understudied and underdeveloped therapeutic drugs, targets, and pathways. 

 

Box 2. Mapping Evidence Levels to Precision Oncology Applications 

The appropriate level of evidence to require when including drug–target 

interactions in precision oncology applications will be heavily context dependent. 

In Figure 1 we detailed several examples of precision oncology applications that 

have a key dependency on drug–target interactions. For applications that are 

exploratory or hypothesis generating in nature, such as computational and 

predictive modeling (Figure 1B), the use of drug–target interactions supported by 

Level I or Level II will often be appropriate. Such applications would benefit from 

casting a wider net of drug–target interactions so that all options can be explored. 

Similarly, exploratory work geared towards drug repurposing (Figure 1C), such 

as the inclusion of FDA-approved drugs on a screening panel for an indication 
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other than the drug’s primary one, may also benefit from liberal evidence 

requirements that allow the investigation of all possibly relevant drug–target 

interactions. While additional Level III experimental binding evidence would lend 

support to these interactions being potentially relevant for human physiology, this 

will always not be necessary at the discovery stage. Applications involving the 

planned use of a drug in a patient, however, will require (at a minimum) rigorous 

Level III experimental binding assay evidence. These applications could include 

off-label use of a drug, design of combination therapies (Figure 1D), or the 

inclusion of an already-approved drug in a clinical trial for an alternative 

indication (Figure 1A). In these examples choice of therapy may be driven by a 

patient’s particular molecular aberrations if there is substantial evidence that 

those aberrations can be targeted by an existing pharmaceutical therapy. The 

requirements for evidence supporting such drug–target interactions must be very 

rigorous – meaning very-low-nanomolar binding evidence for a drug–target 

interaction, ideally across binding assay types and from multiple, independent 

sources. As mentioned in the text, experimental metadata (such as cell line 

information) will also be necessary for rigorous evaluation and prioritization of 

drug–target interactions. For clinical applications of drugs in patients, we 

emphasize that drug–target interaction evidence (even rigorously supported 

evidence) is intended to supplement but never to replace an oncologist’s or 

tumor board’s expertise and recommendations. We envision the use of this 

information as one line of evidence among the many that are evaluated by 

medical experts when deciding the best course of action for a patient. 
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CHAPTER 4. AIM 2: A TARGETOME-PATHWAY PERSPECTIVE ON DRUG 

RESPONSE FOR TARGETED THERAPIES IN ACUTE MYELOID LEUKEMIA 

 

Abstract 

To meet current challenges in precision cancer treatment, we require a 

mechanistic understanding of drug targeted therapies and their interaction with 

patient genetic alterations. Investigating the association between aberrational 

pathways and drug response in de novo acute myeloid leukemia patient samples 

from the Beat AML Consortium reveals many significant pathway-level 

associations with drug sensitivity or resistance. We note these are driven by 

mutations in a spectrum of genes within the pathway, and therefore are potentially 

missed when considering only single gene interactions with drug response. To 

further understand how these intrinsic mutational perturbations result in drug 

sensitivity or resistance, we use a probabilistic graphical modeling framework to 

model pathway impact. Complementary to this, we model extrinsic drug 

perturbations on these pathways using quantitative drug-target binding information 

from the Cancer Targetome to model impact downstream. We will discuss our 

developments on the development of a unified framework of intrinsic and extrinsic 

perturbation modeling for rigorous in silico hypothesis generation and testing to 

facilitate future drug combination screening recommendations.   
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Introduction 

While targeted therapies have revolutionized cancer treatment with the 

ability to target specific genetic aberrations, challenges such as tumor 

heterogeneity and intrinsic drug resistance often result in lack of patient drug 

response or cancer relapse [1,33]. In particular, response to single-agent 

targeted therapies is often temporary and soon eclipsed by drug resistance [29]. 

In light of these challenges, combination therapies offer the potential of targeting 

multiple genetic aberrations at once to tackle tumor subclonal populations or 

overcome resistance mechanisms [33]. However, in order to rationally design 

combination therapies, we require a mechanistic understanding of single agent 

targeted therapies and their interaction with patient genetic alterations.  

Traditionally, pharmacogenomics approaches investigate associations 

between gene-level mutations and drug sensitivity or resistance [34]. To capture 

the effect of mutations across multiple genes, we pursue a pathway-based 

perspective on mutational aberrations. Pathway-based analysis and modeling 

frameworks enable us to aggregate multiple mutations to signaling pathways and 

construct sets of shared dysregulated pathways across patients [37]. 

Aggregation of mutations to pathways provides a perspective on intrinsic or 

mutational perturbation that considers multiple aberrations per patient sample as 

well as shared pathway-level dysregulation across patient samples.  

 In this aim, we focus on an application to understanding patient response 

to targeted therapies in acute myeloid leukemia. Acute myeloid leukemia (AML) 

has seen little improvement in treatment and overall survival in the last forty 
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years [26,29,118]. Notably, AML exhibits considerable heterogeneity across 

patients, where some cases are characterized by large chromosomal 

rearrangements but the majority have mutations in individual genes [26,27]. AML 

is also characterized by a fairly low number of gene mutations per patient when 

compared to other cancers [28]. Given the heterogeneity of mutations observed 

in AML patient, especially for low frequency mutations, there is a need for 

improved understanding of how patient mutation profiles affect overall response 

to targeted therapies [28,119]. Pathway-based approaches are therefore an 

attractive potential avenue for understanding more about AML mutational 

architecture and how it affects drug response. In particular, improved 

understanding will help to facilitate the development of combination strategies for 

treatment of AML. 

Here, we take a pathway perspective on patient mutational aberrations in 

de novo acute myeloid leukemia. We show that aggregation of mutations to 

functionally defined pathways in Reactome [24,25] allows us to capture 

associations between pathways and drug response. This pathway view reveals 

more information about targeted therapy response than what is necessarily 

obtained from drug-single gene relationships. Building on these findings, we 

introduce a modeling framework, built on probabilistic graphical modeling 

principles, to model mutational pathway impact [37,38]. We demonstrate that this 

framework models pathway impact in a manner that reflects both functional 

impact of a mutated gene and the topology of the impacted pathway. In parallel, 

we use this framework to also model drug pathway impact. Previous work with 
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the Cancer Targetome leverages information about cancer drugs and their 

targets in an evidence-based empirical manner and allows us to consider drug 

binding across multiple targets [120] (Chapter 3). 

  With this pathway modeling framework, we introduce a way to interrogate 

the effect of intrinsic mutation perturbation and extrinsic drug perturbation on 

biological pathways. We can use this information to begin to tease apart the role 

these perturbations play in overall patient drug response and ask targeted 

questions for further analysis and bench testing. We explore modeling coverage 

and provide recommendations for adapting this modeling framework to handle 

both mutation and drug pathway impact in the future.  We then explore future 

directions for joining mutation impacted and drug-impacted pathways in the 

modeling framework to guide concerted efforts to understand drug response in 

AML. 

 

Methods 

BeatAML Patient Samples 

This analysis uses patient mutation and drug screen data from the BeatAML 

Consortium [30]. For a total of 187 samples for patients with de novo AML, 

mutations from whole exome sequencing were used (paired samples, 

tumor/normal). The following thresholds on mutation functional impact were 

required: PolyPhen >0.25, SIFT <0.50, or an indication of ‘HIGH’ from Variant 

Effect Predictor (VEP). If there was no PolyPhen, SIFT, or ‘HIGH’ indication, then 

‘moderate’ or ‘modifier’ were also allowed for mutations. Accompanying drug 
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screening data was available for 108 of  187 AML de novo patient samples 

[30,31].  

 

Mapping to Reactome Pathways  

Gene mutations for 187 AML De Novo patient samples were mapped to 

Reactome [25] pathways using gene symbols for entities in each pathway. A total 

of 461 Reactome pathways were used, of which 363 contained AML de novo 

mutated genes.  

 

Pathway Enrichment by Gene 

To assess pathway enrichment by gene, a hypergeometric test was used to 

assess whether the number of genes mutated in each pathway (across all 187 

AML de novo samples) was greater than the number of genes expected to be 

mutated in each pathway at random. The resulting p-values were corrected using 

the Benjamini-Hochberg or False Discovery Rate multiple testing correction 

method [122]. 

 

Pathway Enrichment by Sample 

To assess pathway enrichment by number of samples, we conducted a series of 

permutation tests. First, for each sample, we tallied the observed number of 

mutated genes. Then, we randomly drew that same number of genes from the 

set of all possible pathway genes. Assigning these genes to their respective 

pathways created a sample-to-gene-to-pathway mapping. This was repeated 
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10,000 times to create a distribution of the expected number of samples with 

genes mutated for each pathway. Then, for each pathway, we assessed how 

extreme the observed number of samples mapped was when compared to the 

distribution of expected number of samples mapped. P-values were corrected 

using the Benjamini-Hochberg method for correcting for False Discovery Rate 

[122].  

 

ANOVA Analysis for Pathway Mutational Status and Drug AUC 

For each pathway and drug interaction with at least 2 mutated samples, ANOVA 

analysis was conducted to assess if there was a difference in mean drug AUC 

between two groups: samples with mutation(s) in the pathway, and samples 

without mutation(s) in the pathway. Resulting P-values were corrected for 

multiple testing using the Benjamini-Hochberg [122] method. For effect size, 

Cohen’s D was calculated as follows:  

 

Cohen’s D = (mean1 – mean2) / (sqrt (sd1^2 + sd2^2 ) 

 

Creation of Factor Graphs from Reactome Pathways 

For a total of 431 biochemical Reactome pathways, a factor graph model was 

constructed for each pathway. Factor graphs are bipartite graphs with two types 

of nodes: variable nodes and factor nodes [38,39]. Pathways are converted in the 

following manner, pathway entities become ‘variable’ nodes, and factor functions 

(or factor nodes) designate the relationship between variable nodes [37]. Factor 
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functions can also be interpreted as ‘compatibility’ functions, which indicate the 

respective state probabilities for a variable based on its neighbors. Then, within 

each factor graph model, every variable node where a gene is specified (‘gene’ 

nodes) are extended with an additional factor function and a ‘protein’ node 

[37,41,123]. These ‘protein’ nodes become the anchors for which we will attach 

either mutation or drug information.  

 

Belief Propagation (Message Passing) on Factor Graphs  

Briefly, we explain how we conduct message passing using loopy belief 

propagation [38,39] on each pathway factor graph with no observed sample or 

drug information. This is to establish the baseline, or null perturbation states for 

nodes in the factor graph in the absence of any patient mutation or drug 

information. For each factor graph, we first initialize messages (of 1.0) for all 

factor nodes. Then, we randomize the order of factors and variables for message 

propagation throughout the graph. When every node has both an incoming and 

an outgoing message, then at each node we calculate the ‘beliefs’, or associated 

probabilities that the node is in either state 0 or state 1.  This is a vector that 

specifies the belief or probability that the node is in either state, where the vector 

contents sum to 1 [38,39]. For instance, a node with the vector [0.33, 0.67] would 

mean that there is a 33% probability that the node should be in the 0 

(unperturbed) state and a 67% probability that the node should be in the 1 

(perturbed) state. We conduct message passing iteratively until ‘convergence’ of 
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entity belief states (no change in the estimated final probabilities for each node), 

or we reach the maximum iteration (set to 250) without reaching convergence. 

 

Pathway Stability Assessment 

Because loopy belief propagation is not guaranteed to converge, and may 

converge to different state configurations, we conducted extensive stability 

analysis. For each pathway factor graph, we ran the null perturbation run 1000 

times. Then, we clustered the null perturbation run results into groups, where 

group membership requires the same state configuration across all nodes in the 

pathway. Pathways were designated as ‘stable’ if we achieved the same 

configuration state at least 950/1000 runs. A ‘stable’ configuration means that for 

multiple runs, every node in the pathway reached the same state assignment 

probabilities (<0.001 difference). Pathways were considered ‘not stable’ if they 

did not meet this criteria, or alternatively, if no convergence at all could be 

reached for the pathway, as in the case of pathways with a very large number of 

loops in the graph, they were designated as ‘no convergence’. Out of 431 

pathway factor graphs, 291 were found to be stable according to these criteria 

and used for further analysis in mutation and drug impact analysis.  

 

Probabilistic Graphical Model with Mutation Data and Calculation of Pathway 

Impact 

For each sample, mutation data is loaded onto the set of pathway factor graph. 

For every mutated gene, the functional impact score is encoded into the factor 
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function specifying the impact at the protein node. The table below specifies the 

conversion between functional impact score and factor function. The factor 

function for each protein node must specify the belief that the protein is in state 0 

(no impact) and the belief that the protein is in state 1). For example, a mutated 

gene with a PolyPhen functional impact score of 0.99 would have a 

corresponding factor function encoded as [0.01, 0.99]. This indicates that our 

belief that the protein is in the perturbed state is 0.99 while our belief that the 

protein is in the unperturbed state is 0.01 (Table 1). 

 

Table 1. Factor node encoding of mutational impact according to functional 
impact (PolyPhen, SIFT, or Variant Effect Predictor (VEP) scores).  
 
Functional Impact Type Functional Impact Score Factor Function [State 0, State 1] 

PolyPhen X [1-X, X] 

SIFT Y [Y, 1-Y] 

VEP = High NA [0.0002, 0.9998] 

VEP = Moderate NA [0.50000,0.50000] 

 

Mutation information is loaded on the appropriate protein nodes, in all pathways 

where the protein node is a member. Thus, one mutated gene may actually have 

impact on several pathways. Message passing (loopy belief propagation) is then 

run for each pathway, independently, to calculate the beliefs at each node. 

Overall pathway impact is calculated by comparing the beliefs at each node in 

the pathway factor graph to the beliefs calculated from the null perturbation run.  

 

For each entity, we calculate the odds of impact for perturbation as follows: 
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Log Odds = Log10( [Belief State 1 Mutation/ (1- Belief State 1 Mutation) ] / 

            [Belief State 1 Null / ( 1- Belief State 1 Null) ]) 

 

Thus for each pathway, we have an odds score for each entity. Then, for each 

pathway, we summarize overall pathway impact by averaging the log odds score. 

Lastly, we average over only designated ‘output’ entities in the pathway, where 

‘output’ entities are designated as such by Reactome biochemical pathway 

annotation. 

 

Probabilistic Graphical Model with Drug-Target Interaction Data 

Here, instead of calculating pathway impact for each sample, we calculate 

pathway impact for each drug. For each of the 32 drugs on the BeatAML 

screening panel and in the Cancer Targetome, we load drug-target interaction 

information onto the pathway graphs. Similar to the methods used in the pathway 

modeling for mutation data, we specify factor functions for ‘protein’ nodes 

wherever we load drug-target information. Factor functions are specified 

according to the strength of the drug-target binding assay data obtained in the 

Targetome (Table 2). For this analysis, these relationships were naively set so 

that lower nanomolar interactions results in higher impact on target nodes. For 

each drug-target interaction pair, we used the best (lowest) possible assay 

binding value present in Targetome. Future sensitivity analysis is needed to tune 

these factor functions and assess more quantitatively the relationship between 

factor node impact and overall drug impact on the pathway. 
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Table 2. Factor node encoding of drug impact according to drug-target 
interaction binding assay evidence from the Cancer Targetome. 
 

Drug-Target Interaction 

 Best Assay Evidence 

Factor Function  

[State 0, State 1] 

>10,000nM [0.999, 0.001] 

1000-10000nM [0.250, 0.750] 

100-1000nM [0.150, 0.850] 

10-100nM [0.050, 0.950] 

1-10nM [0.025, 0.975] 

<1nM [0.001, 0.999] 

We conduct message passing for each pathway factor graph with the drug-target 

interaction information loaded into factor functions, and then calculate the overall 

pathway impact score in the same manner as for mutation pathway impact.   

 

PGM Modeling Coverage and Assessment 

For modeling coverage assessment, we took the set of all significant drug-

pathway associations from the ANOVA analysis conducted with the simple 

pathway mapping (see Section ‘ANOVA Analysis for Pathway Mutational Status 

and Drug AUC above’). For these drug-pathway interactions, we assessed the 

mutational pathway impact score from the modeling approach. Note that for each 

drug-pathway interaction, we used the average mutation pathway impact score 

across all mutated samples. For those drug-pathway interactions where we were 

able to conduct drug-impact pathway modeling, we also assessed the drug 

pathway impact score. We created coverage graphs that show the ANOVA 
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significant drug-pathway interactions in light of both the mutation impact pathway 

scores and the drug impact pathway scores.  

 

Results 

AML De Novo Mutations and Pathway Coverage 

This analysis uses acute myeloid leukemia patient samples collected as 

part of the BeatAML Consortium [30]. All patient samples used in this analysis 

are paired tumor and normal samples for de novo AML. For a total of 187 de 

novo acute myeloid leukemia patient samples, gene mutation information was 

mapped to Reactome pathways. We required mutations to have a functional 

impact score meeting at least one of the following thresholds: PolyPhen > 0.25, 

SIFT<0.50, a Variant Effect Predictor category of ‘High’, or either ‘Moderate’ if no 

other fields were provided. Out of 431 total Reactome pathways subject to 

analysis, 363 included mapped de novo AML mutations. Table 3 shows the 

number of mutated genes in each functional impact category and in total. The 

term ‘high prevalence’ refers to those genes mutated in more than 5 samples in 

this cohort.   
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Table 3. Gene Mutations for 187 AML De Novo Patient Samples, by Variant 
Impact and Pathway Coverage to Reactome Pathways.  
 

 Samples (n=187) AML Mutated Genes 

(n=1654) 

Pathways 

(n=431) 

Variant 

Category 

# 

Samples 

with 

Variants 

# 

Samples 

Mapped 

# 

Mutated 

Genes 

Total 

# 

Mutated 

Genes 

Mapped 

% 

Mutated 

Genes 

Mapped 

in 

Category 

% 

Mutated 

Genes 

Mapped 

of Total 

(1654) 

# 

High 

Prevalence 

Genes 

# 

High 

Prevalence 

Genes 

Mapped 

# 

Pathways 

with 

Mutations 

PolyPhen 

>0.25 

177 166 822 438 53.28 26.48 14 14 318 

SIFT 

<0.50 

182 174 1237 644 52.06 38.93 14 14 351 

PolyPhen 

OR 

SIFT 

182 174 1280 663 51.80 40.08 14 14 255 

HIGH 

IMPACT 

*No 

PolyPhen 

or SIFT 

172 153 308 161 52.27 09.73 12 9 199 

MODERATE 

*Overlaps 

PolyPhen 

and SIFT 

186 179 1405 727 51.74 43.95 14 14 359 

All Variants 187 184 1654 850 51.39 51.39 25 21 363 

 

From a pathway perspective, we find that the majority of pathways have 

approximately 1-20 samples mapped, with a small number of pathways having 

between 20 and 50 samples mapped, and a few outlying pathways with over 50 

samples (Figure 1A). Within each pathway, between 1 and 15 genes are mutated 
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for the majority of pathways, with a few pathways containing over 30 mutated 

genes across the cohort (Figure 1B). From a sample perspective, we find that 

most samples map to between 1-45 pathways, with a few samples mapping to 

more than 45 pathways.  

 

	 	

	

Figure 1. A.  Pathway Coverage by Number of Samples Per Pathway, for 187 AML De Novo 
Patient Samples. B. Pathway Coverage by Number of Mutated Genes Per Pathway, for 187 
AML De Novo Patient Samples (187). C. Number of Pathways Per AML Per Sample, for 187 
AML De Novo Patient Samples. Gene mutations for 187 AML de novo samples mapped to 363 
total Reactome pathways.  
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AML is well established as being extremely heterogeneous across 

patients. Known gene mutations of impact for this disease include FLT3, NPM1, 

DNMT3A, IDH2, and TET2 among others [29]. When taking a pathway mapping 

approach, it is critical to consider coverage of key mutations by pathways. While 

Reactome is the most comprehensive pathway database, not all cancer-related 

genes will currently be curated due to limitations in our pathway understanding of 

these entities [25]. We assessed the top mutated genes in our cohort of de novo 

AML patient samples for coverage by Reactome pathways. Out of the 25 genes 

mutated in five or more patient samples, we mapped 21 to Reactome pathways 

(Figure 2). The four unmapped genes are WT1, BCOR, PHF6 and MXRA5. 

Overall we achieve a very high coverage of key mutations for our cohort of de 

novo AML patient samples.  

By aggregating gene mutations to pathways, we are grouping multiple 

mutations together into sets of functionally interacting entities. This approach 

allows us to aggregate mutations for a single patient to pathways as well as 

across patients. In particular, it allows us to assess AML mutations from a 

perspective of shared dysregulated pathways. Given the heterogeneity in AML, 

this may allow us to collect together mutations in seemingly disparate genes into 

a smaller number of functionally connected pathways or sets of pathways.  
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Figure 2. Pathway Coverage for Top Mutated Genes in 187 AML De Novo Patient Samples. 
Genes shown in figure are mutated in at least five AML patient samples. Blue indicates genes 
mapped to one or more Reactome pathways, red indicates genes not mapped to Reactome 
 

We examine pathway coverage for AML de novo mutations by number of 

samples and genes simultaneously (Figure 3). The bubble plot in Figure 3 shows 

that top pathway with respect to number of samples mapped include: ‘Chromatin 

organization’, ‘TP53 Regulates Transcription of Cell Cycle Genes’, ‘Other 

Interleukin Signaling’, ‘Transcriptional regulation by the AP-2 (TFAP2) family of 

transcription factors’, ‘Neutrophil degranulation’, ‘Nucleosome assembly, 

‘Transcriptional Regulation by RUNX3’, ‘Signaling by SCF-KIT’, ‘Signaling by 

FGFR1’, ‘Signaling by MET’, and ‘Signaling by PDGF’. Top pathways with 

respect to number of mutated genes mapped include ‘Chromatin organization’, 

‘Neutrophil degranulation’, ‘Generic Transcription Pathway’, ‘Deubiquitination’, 
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‘Ion channel transport’, ‘Keratinization’, and ‘Class I MHC mediated antigen 

processing and presentation’. While such assessment provides an estimate of 

coverage, we note that some of the pathways with a large number of mutated 

AML de novo genes are very large pathways at baseline (for instance, Generic 

Transcription pathway), and would likely have a large number of genes mapped 

for most disease states. For this reason, we are interested in investigating 

pathways that show enrichment for AML de novo-specific mutations.  

 

 

Figure 3. Pathway Coverage for Gene Mutations in 187 AML De Novo Patient Samples. Size 
of circle indicates number of samples in cohort mapped to pathway.  
 

Pathway Enrichment Analysis 

Pathway Enrichment by Gene 

We conducted pathway enrichment for the mutated genes of the AML de 

novo patient samples cohort. Pathways enriched for mutated genes are those 

pathways with a higher number of mutated genes than would be expected by 
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chance. Overall, we found three pathways to be significantly enriched for 

mutated genes, after correcting for multiple testing: ‘Chromatin organization’ 

(FDR < 0.05) ‘Collagen biosynthesis and modifying enzymes’ (FDR < 0.10), ‘and 

‘Sumolyation of DNA damage response and repair proteins’ (FDR < 0.10) (Figure 

4). Thus, for only three pathways do we find that the number of genes mutated in 

the pathway is higher than what we would expect to find by chance.  

 

Figure 4. Pathway Enrichment by Gene for 187 AML De Novo Patient Samples. Enriched 
pathways passing multiple testing (Benjamini-Hochberg (BH) procedure, FDR<0.10 or FDR<0.05) 
are shown in red and labeled by name.  
 

 

Pathway Enrichment by Sample 

Alternatively, we can also conduct pathway enrichment from a sample-centric 

perspective. For this analysis, we assess which pathways have a higher number 

of samples mapped than we would expect at random. By taking a sample-centric 
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perspective for pathway enrichment, we can identify pathways with many 

samples who may share a small subset of mutated genes or pathways with many 

samples that do not share mutated genes. In both of these cases, such pathways 

would be of interest for understanding AML de novo dysregulated pathways, but 

may not have a large enough number of overall mutated genes to qualify as 

enriched from the gene perspective. This analysis reveals over 40 pathways that 

are significantly enriched with respect to the number of samples per pathway 

(Figure 5). This is likely due a small number of genes that are mutated with high 

frequency in the cohort of patient samples.   

 
Figure 5. Pathway Enrichment by Sample for 187 AML De Novo Patient Samples. Enriched 
pathways passing multiple testing (FDR<0.05) are shown in red and labeled by name. Pathways 
stacked to the right-most part of the graph all have the same adjusted p-value due to the 
correction method used.  
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Assessing the Relationship Between Pathway Mutational Status and Drug 

Response 

Grouping mutations into functionally related pathways may shed insight 

into shared dysregulated pathways among AML de novo patients. In particular, 

we are interested in whether shared dysregulation at the pathway level can 

inform our understanding of drug sensitivity and resistance to targeted therapies. 

Here, we investigate the relationship between pathway mutation status and drug 

sensitivity or analysis. For pathways and drug combinations, we conduct an 

ANOVA analysis between pathway mutation status and drug AUC. To do so, we 

group samples according to pathway mutation status (yes or no), and then 

assess whether there is a difference in the mean drug AUC between the two 

groups. If the mean drug AUC is higher for the group with pathway mutations, 

then that pathway is associated with resistance to the drug, while if the mean 

drug AUC is lower for the group with pathway mutations, then that pathway is 

associated with sensitivity to the drug.  

Our analysis finds many significant pathway and drug associations for 

drug sensitivity and resistance. In Figure 6 each point on the volcano plot 

represents one pathway and drug interaction, where size indicates the number of 

samples with a pathway mutation, and color indicates significance after multiple 

testing correction (blue indicates FDR<0.05). On the right-hand side of the pot, 

significant associations represent relationships between pathway mutational 

status and higher drug AUC, or drug resistance. On the left-hand side of the plot, 
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significant associations represent a relationship between pathway mutational 

status and lower drug AUC, or drug sensitivity.  

Figure 6. Pathway-Level Analysis Reveals Significant Associations with Drug Sensitivity or 
Resistance in 108 De Novo Acute Myeloid Leukemia Patient Samples. For each drug and 
pathway combination, Analysis of Variance (ANOVA) was conducted to compare the mean drug 
AUC between samples with mutations in pathway and samples without mutations in pathway. A 
negative Cohen’s D indicates samples with mutation in pathway have a lower mean drug AUC 
and are more sensitive, while a positive Cohen’s D value indicates samples with mutation in 
pathway have a higher mean drug AUC and are more resistant. Adjusted P-values are FDR 
corrected.  Blue indicates adjusted p-value is significant at FDR<0.05. Circle size indicates the 
number of samples with one or more gene mutations in pathway. 

 

All significant pathway and drug interactions shown in blue in the above 

plot are collected in Table 4 and Table 5, for sensitive and resistance interactions 

respectively. A total of 22 pathways were found to have sensitive interactions 

with 29 different drugs. Notably, for sensitive interactions we found sunitinib, 

quizartinib, sorafenib, barasertib, and cabozantinib as high-ranking drugs to 

interact with the pathway ‘Other Interleukin Signaling’. These drugs are all 

inhibitors for the FLT3 protein, a receptor tyrosine kinase, which is contained in 

the pathway ‘Other Interleukin Signaling’ and has critical mutations for AML 
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[26,29]. Given that these are established drug and gene relationships, we would 

expect that we would still be able to detect this association through the pathway 

which contains FLT3. Thus, these associations serve as a form of positive 

control, indicating that our analysis of pathway and drug interactions is on target.   

For resistance pathway and drug interactions, we found a total of 11 

pathways to have resistant interactions with 4 different drugs: pazopanib, NVP-

ADW742, vatalanib, and the combination of inhibitors sorafenib and 

panobinostat. In particular, we will highlight the interaction between the inhibitor 

NVP-ADW742 and the pathway ‘Signaling by SCF-Kit’ (Figures 7-8). We note 

that 6 pathways found to be sensitive to drugs were also involved in resistance 

interactions (with other drugs).  
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Table 4. Significant Sensitive Pathway and Drug interactions from ANOVA for 
Pathway Mutational Status and Drug AUC.  

No. Pathway Drug P-Value Adjusted  
P-Value 

Cohen’s D N 
Samples 
Without 
Pathway 
Mutation 

N 
Samples 

With 
Pathway 
Mutation 

1 Other interleukin 
signaling 

Sunitinib 8.49E-08 0.000790933 -1.197337354 68 33 

2 Other interleukin 
signaling 

 

Quizartinib 
(AC220) 

1.82E-07 0.001233017 -1.389363685 62 27 

3 RUNX1 and 
FOXP3 control 

the development 
of regulatory T 
lymphocytes 

(Tregs) 

Cediranib 
(AZD2171) 

1.55E-07 0.001233017 -2.27580135 86 3 

4  Response to 
elevated platelet 
cytosolic Ca2+ 

Crizotinib (PF-
2341066) 

2.83E-07 0.001595138 -1.4037121 91 9 

5 Other interleukin 
signaling 

Sorafenib 4.70E-07 0.002129022 -1.086528905 68 34 

6 NGF signalling 
via TRKA from 

the plasma 
membrane 

SCH-772984 1.00E-06 0.002336443 -1.469648831 58 17 

7 Neddylation XAV-939 1.42E-06 0.003025776 -1.317386852 84 7 
8 NGF signalling 

via TRKA from 
the plasma 
membrane 

Selumetinib 
(AZD6244) 

2.99E-06 0.005569156 -1.251232736 74 16 

9 trans-Golgi 
Network Vesicle 

Budding 

AGI-6780 3.22E-06 0.005846631 -4.884025013 60 2 

10 Other interleukin 
signaling 

Barasertib 
(AZD1152-

HQPA) 

4.19E-06 0.007265732 -1.007475474 59 32 

11 Transport of bile 
salts and 

organic acids, 
metal ions and 

amine 
compounds 

Cediranib 
(AZD2171) 

4.17E-06 0.007265732 -1.577362731 85 4 

12 Other interleukin 
signaling 

Cabozantinib 4.58E-06 0.007521686 -1.097564784 58 30 

13 trans-Golgi 
Network Vesicle 

Budding 

AUS-131 8.70E-06 0.012714891 -2.694703306 66 2 

14 Mitochondrial 
translation 

Vismodegib 
(GDC-0449) 

1.01E-05 0.014130477 -0.873878647 89 2 

15 MyD88 cascade 
initiated on 

plasma 
membrane 

PHT-427 1.15E-05 0.015630027 -1.216068452 86 2 

16 The citric acid 
(TCA) cycle and 

respiratory 
electron 
transport 

SJB-66 1.45E-05 0.018537723 -5.549692943 21 2 

17 trans-Golgi 
Network Vesicle 

Budding 

AGI-5198 1.47E-05 0.018537723 -3.021425285 58 2 

18 trans-Golgi 
Network Vesicle 

Budding 

Azacytidine 1.58E-05 0.01960412 -4.684935281 65 2 

19 Other interleukin 
signaling 

AZD2811(Aurora) 1.68E-05 0.019940597 -1.701590469 22 13 
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20 Response to 
elevated platelet 
cytosolic Ca2+ 

AZD6378 (ATR) - 
Cytarabine 

1.74E-05 0.02028672 -2.810100932 31 4 

21 Fc epsilon 
receptor 
(FCERI) 
signaling 

SCH-772984 2.07E-05 0.022973975 -1.274693654 58 17 

22 B-WICH 
complex 
positively 

regulates rRNA 
expression 

KU-55933 3.38E-05 0.024530131 -1.365876592 88 5 

23 DAP12 
interactions 

CI-1040 
(PD184352) 

2.68E-05 0.024530131 -1.135491645 76 16 

24 DAP12 
interactions 

Selumetinib 
(AZD6244) 

2.25E-05 0.024530131 -1.152269676 74 16 

25 Gastrin-CREB 
signalling 

pathway via 
PKC and MAPK 

SCH-772984 2.76E-05 0.024530131 -1.29186204 60 15 

26 Gastrin-CREB 
signalling 

pathway via 
PKC and MAPK 

Selumetinib 
(AZD6244) 

3.66E-05 0.024530131 -1.13103076 75 15 

27 NGF signalling 
via TRKA from 

the plasma 
membrane 

CI-1040 
(PD184352) 

2.87E-05 0.024530131 -1.132874844 76 16 

28 Signaling by 
ERBB4 

Selumetinib 
(AZD6244) 

3.66E-05 0.024530131 -1.13103076 75 15 

29 SIRT1 
negatively 

regulates rRNA 
expression 

KU-55933 3.21E-05 0.024530131 -2.510439983 91 2 

30 Striated Muscle 
Contraction 

KU-55933 3.21E-05 0.024530131 -2.510439983 91 2 

31 Signaling by 
ERBB2 

Selumetinib 
(AZD6244) 

3.69E-05 0.024575577 -1.101780723 73 17 

32 Signaling by 
NODAL 

H-89 3.80E-05 0.024877089 -1.498419899 89 4 

33 Other interleukin 
signaling 

Foretinib (XL880) 4.57E-05 0.029593817 -0.951578827 60 32 

34 Response to 
elevated platelet 
cytosolic Ca2+ 

Roscovitine 
(CYC-202) 

4.68E-05 0.029823878 -0.944915185 84 9 

35 DAP12 
interactions 

Trametinib 
(GSK1120212) 

5.00E-05 0.030286586 -1.202634091 80 17 

36 NoRC negatively 
regulates rRNA 

expression 

KU-55933 4.85E-05 0.030286586 -1.30689706 89 4 

37 Signaling by 
ERBB2 

SCH-772984 4.95E-05 0.030286586 -1.217110007 59 16 

38 TAK1 activates 
NFkB by 

phosphorylation 
and activation of 

IKKs complex 

Motesanib (AMG-
706) 

4.97E-05 0.030286586 -2.210843772 90 2 

39 NGF signalling 
via TRKA from 

the plasma 
membrane 

Trametinib 
(GSK1120212) 

5.07E-05 0.030431519 -1.2019734 80 17 

40 NCAM signaling 
for neurite out-

growth 

Selumetinib 
(AZD6244) 

5.25E-05 0.0305911 -1.040831622 73 17 

41 Fc epsilon 
receptor 

Trametinib 
(GSK1120212) 

5.80E-05 0.033258662 -1.161293816 78 19 
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Table 5. Significant Resistant Pathway and Drug Interactions from ANOVA Analysis for 
Pathway Mutational Status and Drug AUC.  
 

No. Pathway Drug P-
Value 

Adjusted P-
Value 

Cohen’s D N Samples 
without 

Pathway 
Mutation 

N Samples 
with 

Pathway 
Mutation 

1 NGF signalling via 
TRKA from the 

plasma 
membrane 

Pazopanib 
(GW786034) 

8.00E-
07 

0.002129022 1.535636359 76 20 

2 Signaling by 
ERBB2 

Pazopanib 
(GW786034) 

4.90E-
06 

0.007624316 1.446350125 77 19 

3 Signaling by 
PDGF 

NVP-ADW742 1.03E-
05 

0.014219381 1.308613728 65 22 

4 NCAM signaling 
for neurite out-

growth 

Pazopanib 
(GW786034) 

1.37E-
05 

0.018254285 1.285165561 76 20 

5 Gastrin-CREB 
signalling 

pathway via PKC 
and MAPK 

Pazopanib 
(GW786034) 

1.45E-
05 

0.018537723 1.395731366 78 18 

6 Signaling by 
ERBB4 

Pazopanib 
(GW786034) 

1.69E-
05 

0.019940597 1.347271878 77 19 

7 NGF signalling via 
TRKA from the 

plasma 
membrane 

Sorafenib - 
Panobinostat 

2.35E-
05 

0.024530131 1.793740632 28 8 

8 DAP12 
interactions 

Pazopanib 
(GW786034) 

3.55E-
05 

0.024530131 1.269104134 77 19 

9 Signaling by 
FGFR1 

NVP-ADW742 3.81E-
05 

0.024877089 1.269215689 67 20 

10 Signaling by SCF-
KIT 

NVP-ADW742 4.85E-
05 

0.030286586 1.148568855 64 23 

11 C-type lectin 
receptors (CLRs) 

Pazopanib 
(GW786034) 

5.17E-
05 

0.03054905 1.151816387 75 21 

12 Signaling by 
FGFR4 

NVP-ADW742 5.16E-
05 

0.03054905 1.270037362 68 19 

13 NGF signalling via 
TRKA from the 

plasma 
membrane 

Vatalanib 
(PTK787) 

6.53E-
05 

0.036059593 1.32873851 77 16 

14 NCAM signaling 
for neurite out-

growth 

Vatalanib 
(PTK787) 

7.58E-
05 

0.040313089 1.293988723 76 17 

 
 

(FCERI) 
signaling 

42 Fc epsilon 
receptor 
(FCERI) 
signaling 

Selumetinib 
(AZD6244) 

6.41E-05 0.035670112 -1.045382639 72 18 

43 Other interleukin 
signaling 

Pelitinib (EKB-
569) 

6.41E-05 0.035670112 -1.002252862 60 29 

44 trans-Golgi 
Network Vesicle 

Budding 

XAV-939 6.34E-05 0.035670112 -1.281467926 89 2 

45 Other interleukin 
signaling 

17-AAG 
(Tanespimycin) 

6.74E-05 0.036946074 -0.932015658 61 30 

46 Neddylation H-89 7.45E-05 0.03993543 -1.122094255 86 7 
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When we examine individual significant pathway and drug associations, 

we find that they are driven by a spectrum of genes that are mutated within the 

pathway. For instance, the interaction between ‘Signaling by SCF-KIT’ and the 

inhibitor NVP-AD1742 is a significant pathway association (adjusted p-value = 

0.03) with drug resistance (Figure 7). Examining the 23 samples with mutated 

genes in this pathway reveals a total of 8 different genes that are mutated. 

Genes mutated in multiple samples include NRAS (9 samples NRAS alone, 2 

with KRAS), PTPN11 (5 samples) and KRAS (2 samples KRAS alone, 2 with 

NRAS). Additionally, we also observe mutations in CBL, JAK2, KIT, and 

STAT5B. In Figure 7 we can see that the AUC for samples with these mutations 

are grouped together fairly closely and are much higher compared to the bulk of 

the AUC values for samples with no mutations in this pathway. Notably, for each 

of these genes there is a small number of samples mutated, and therefore we 

would not necessarily be able to assess whether there is an association between 

gene mutational status and drug sensitivity or resistance, as described below.  
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Figure 7. Aberrational Pathway Status of Signaling by SCF-KIT is Associated with 
Increased Resistance to the Inhibitor NVP-ADW742. Samples are plotted according to 
whether they have a mutation in the pathway ‘Signaling by SCF-KIT’ and corresponding area 
under the curve (AUC) for the investigational stage drug NVP-ADW742. Color in right-hand 
boxplot indicates mutated gene(s) for sample. 
 

 

Figure 8. NVP-ADW742 and Gene Associations. Inhibitor by gene associations for full cohort of 
AML patient samples, paired and tumor only mutation samples, not restricted to AML de novo. 
Volcano Plot generated in Vizome, by Daniel Bottomly, Dr. Beth Wilmot, and Dr. Shannon 
McWeeney. 



	

	 89	

 

Associations between drug AUC for the inhibitor NVP-ADW742 and 

mutated genes are shown in Figure 8. While NRAS and KRAS have an 

association with drug resistance for this inhibitor, we can see that the other 

genes belonging to the pathway ‘Signaling by SCF-KIT’ do not appear to be 

significantly associated with resistance to this inhibitor. For example, the gene 

PTPN11 was mutated in 5 patient samples and does not appear to be 

significantly associated with resistance when considered as a single gene.  

The pathway perspective allows us to aggregate multiple mutations 

together and find associations between drug response and the pathway unit. 

Such associations may be missed when considering only single gene 

interactions and drug response.   

 

Modeling Pathway Impact with Probabilistic Graphical Modeling Framework 

Given that we have identified significant interactions between pathway-

level dysregulation and drug sensitivity or resistance, we now want to investigate 

the relationship in a more mechanistic manner. We want to be able to consider 

the impact of individual gene mutations, and develop a corresponding measure 

of impact. In this way, we can start to assess how mutations in the same pathway 

are similar or different, and what the respective effects will be on drug response.  
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Mutational Impact on Pathways 

Summary of Mutation Impacted Pathways, Cohort Level 

To further investigate how individual gene-level mutations impact pathway 

signaling, we leverage a probabilistic graphical modeling framework to model 

pathways from Reactome and the resulting impact of gene-level mutations. This 

work is an adaptation of pathway impact modeling as proposed in the 

PARADIGM computational framework [37] and leverages a suite of graphical 

model construction from Reactome pathways and accompanying message 

passing algorithms developed in Java by Wu et al. (2014) [121].  

For 187 AML de novo samples, we modeled the mutation impact on 291 

Reactome pathways [25]. Each pathway in Reactome is converted into a factor 

graph representation, where nodes are biological entities (e.g. proteins) and 

factor functions describe the relationships between nodes. Each node can be in 

one of two states: (0) not impacted or (1) impacted. For each of these states, the 

node has an associated probability of occupying the state, hence the term 

probabilistic graphical modeling. For each pathway factor graph, a null 

perturbation run of message passing is conducted with no observed mutations. 

This establishes the baseline belief states for each entity in the pathway in the 

absence of any individual patient sample information. Then, for each patient 

sample, mutation information is loaded onto the corresponding protein node and 

factor functions designates the impact on the nodes in relation to the mutations’ 

functional impact score. The message passing algorithm ‘loopy belief 

propagation’ [38], is used to propagate the effect of the impact throughout the 
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rest of the pathway. For each pathway entity, we can then calculate the log odds 

the entity being in the impacted state for the mutation run compared to being in 

the impacted state for the null run. This provides a per-entity impact score. 

Averaging the entity-level scores across all entities in the pathway produces a 

pathway-impact score, or average log odds of mutational impact. This score is 

used in following figures and discussion of PGM pathway impact. Here we note 

that while a total of 431 pathways were first transformed into factor graph 

representations, only 291 of these pathways were found to be “stable” during the 

null perturbation run, i.e., convergence of belief states was reached during 

message passing on the pathway factor graph without patient mutation 

information. See Methods section on PGM Pathway Stability Assessment for 

further discussion of pathway stability analysis.  

 

Top Mutation Impacted Pathways in De Novo AML 

In Figure 9, we show the top mutation impacted pathways by degree of 

impact and number of samples (Figure 9). Across the cohort of AML de novo 

samples, we see that some pathways are impacted in high number of samples, 

while other pathways are highly impacted but for a small number of samples. For 

instance, the pathway ‘Neutrophil degranulation’ is impacted in approximately 60 

samples, and on average samples have a log odds mutation impact of about 4.0. 

Other pathways with a high number of samples mutated include: ‘Signaling by 

Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)’, ‘Generic Transcription 

Pathway’, ‘Other Interleukin Signaling’, ‘Ion Channel Transport’, and ‘Regulation 

of RUNX1 Expression and Activity’. Pathways with a high average log odds 
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impact (across samples) include: ‘G alpha (q) signaling events’, ‘G alpha iii 

signaling events’, ‘Post translational protein phosphorylation’, and ‘Transcription 

of DNA Repair Genes’. 

 

 

Figure 9. PGM Mutation Impacted Pathways for 187 AML De Novo Samples. Circle size 
indicates number of samples with pathway impacted.  
 

Variability in Sample Mutational Pathway Impact 

 However, representing pathway impact as an average across samples 

does not reflect all the information available. In particular, we would expect that 

samples harboring different gene mutations would have different pathway impact 

scores for the sample pathway. In Figure 10, we show the top mutation-impacted 

pathways (requiring at least 5 samples with impact in the corresponding 

pathway) ordered by the variability across impacted samples. Here we can see 

that pathways such as ‘Interleukin-2 family signaling’, ‘Signaling by SCF-KIT’, 

‘NCAM signaling for neurite out-growth’, ‘Amyloid fiber formation’, ‘Interleukin-6 
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signaling’, and ‘RET Signaling’ show a large range between the minimum and 

maximum pathway impact calculated across samples. In contrast, the pathway 

‘Neutrophil degranulation’, which is impacted in almost 60 samples, shows very 

low variability, as most samples exhibit pathway impact between a log odds 

impact of 3.75 and 4.5.  

 

Figure 10. PGM Mutation Impacted Pathways for 187 AML De Novo Patient Samples, by 
Variability in Pathway Impact. Ordering pathways by variability highlights the range of pathway 
impact inferred within sets of samples with dysregulation in the same pathway. Pathways shown 
are impacted for at least 5 AML de novo patient samples. 
 

Pathway Impact by Mutated Gene 

Examining mutational impacted pathways from a by-gene perspective 

allows us to assess the contribution of mutations in individual genes to overall 

pathway impact. Assessing the pathways impacted in at least 10 samples from 

this perspective reveals three key trends.  
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First, in some pathways, we see that there are one or two genes that 

(when mutated) result in a much higher pathway impact than other genes. By 

capturing this, our modeling framework allows us the potential for investigating 

the impact of mutations in different genes on the same pathway. In Figure 11, we 

show the mutational impact for 48 samples with mutations in the pathway 

‘Signaling by SCF-KIT’. Three samples with mutations in the gene KIT stand out 

as having a much higher overall pathway impact (3.5-4.0). KIT is much further 

upstream in this pathway than many of the other mutated genes (JAK2, STAT5B, 

NRAS, KRAS, etc.) and thus a mutation affecting KIT is propagated throughout 

the rest of the pathway. Mutations in JAK2, STAT5B, and PTPN11 (with the 

exception of one sample) have moderate impact when compared to KIT (log 

odds: .75-1.25). By comparison, the genes KRAS and NRAS are some of the 

most downstream genes in the pathway, so mutations in these genes have a 

much smaller impact (less than 0.25) due to a small number of downstream 

entities being affected.  

Figure 11. SCF-
KIT Pathway 
Impact Ascross 
48 AML De 
Novo Samples. 
Each circle 
represents one 
AML de novo 
sample with the 
respective 
pathway 
impacted. Color 
indicates genes 
mutated for that 
sample in 
pathway.   
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In another example (Figure 12), we see that mutations in TP53 have a 

high impact on the pathway ‘TP53 Regulates Transcription of DNA Repair 

Genes’ compared to other mutated genes.  In this pathway, TP53 is a central 

component, and thus mutations in the pathway propagate to many other entities. 

By comparison, the genes CCNH, ATM, and GTF2F1 are much more distal 

entities and have a small impact on the pathway when mutated. 

  

 

Figure 12. TP53 Regulates Transcription of DNA Repair Genes Across AML De Novo 
Samples. Each circle represents one AML de novo sample with the respective pathway 
impacted. Color indicates genes mutated for that sample in pathway.  	

 

Second, in some pathways, based on observed mutations in AML de novo 

samples, there is a slight difference in the impact incurred by mutations in 

different genes, but no single gene stands out as more strongly impactful on the 

pathway than others. For instance, in Figure 13A, the pathway ‘Signaling by 

Type1 Insulin-like growth factor 1 receptor (IFG1R)’, there is a slight increase in 

impact caused by genes but no genes that when mutated cause a much larger 
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pathway impact. This same trend is repeated for the pathways ‘Degradation of 

the extracellular matrix’, and ‘Neutrophil degranulation (Figure 13 B and C)’. We 

note that it is possible that other genes may be more impactful (to the pathway) 

when mutated, but we do not observe any such gene mutations in our particular 

cohort of AML de novo paired samples.  
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Figure 13. A. Pathway Impact for Samples with Dysregulation in ‘Signaling by Type 1 
Insulin-like Growth Factor 1 Receptor (IGF1R). B. Pathway Impact for Samples with 
Dysregulation in ‘Degradation of the extracellular matrix’. C. Pathway Impact for Samples 
with Dysregulation in ‘Neutrophil degranulation’. Each circle represents one AML de novo 
patent sample. Color indicates mutated genes for that sample in the pathway. Co-occurring 
mutations for the same sample are indicated. 

 

Third, in some cases we are able to see evidence that the probabilistic 

graphical modeling framework can potentially capture cumulative mutational 

impact of multiple co-occurring mutations. For a select few impacted pathways, 

where a few samples actually have co-occurring mutations, we can see that the 

resulting pathway impact is higher than for the samples with only one of the 

mutations alone. For instance, for the pathway ‘Regulation of RUNX1 Expression 

and Activity’ (Figure 14A), we have a sample with both RUNX1 and CCND3 

mutated that shows much higher pathway impact than samples with only RUNX1 

mutated. However, we note that our cohort does not currently include samples 

with only CCND3 mutated, which would allow us to assess if the co-occurrence 

of mutations in RUNX1 and CCND3 truly result in a higher impact that either 
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gene mutation alone. In another pathway, ‘Mitotic Telophase/Cytokinesis’ (Figure 

14B), samples with mutations in PDS5B, SMC1A, RAD21, STAG2, or SMC all 

have an overall pathway impact around 1.0. We have one sample for each of the 

following co-occurring mutations sets: PDS5B and SMC3, SMC3 and STAG2, 

RAD21 and SMC3, which in all cases have a higher pathway impact than 

samples with only one of the mutations in the set.  

	

	

Figure 14. A. Pathway Impact for Samples with Dysregulation in ‘Regulation of RUNX1 
Expression and Activity’. B. Pathway Impact for Samples with Dysregulation in ‘Mitotic 
Telophase and Cytokinesis. Each circle represents one AML de novo patent sample. Color 
indicates mutated genes for that sample in the pathway. 
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However, we note that the examples discussed here for increased 

pathway impact for co-occurring mutations are each for only one sample and 

require further investigation with larger sample sizes. In particular, we note the 

opportunity here for further computational modeling, especially simulation of 

gene mutations to assess cumulative impact of more than one gene mutation in 

the same pathway. Given both the sparsity of mutations in AML de novo samples 

and the overall heterogeneity across cohort samples, this is encouraging for 

future efforts with this type of modeling. In particular, this showcases the potential 

for using this framework for use cases where samples have multiple co-occurring 

mutations in the same pathway, or cases where co-occurring mutations are 

known to confer a difference in drug response.  

 

Mutated Gene Impact – Across Pathways 

 We can also look at how the impact of a mutated gene on a pathway 

differs by pathway, as many of the mutated AML genes belong to multiple 

curated pathways in Reactome. Here we required that genes be mutated in at 

least 3 samples, for a total of 29 genes. For each gene, we assess pathway 

impact across all pathways in which that gene is a member. We highlight several 

examples where the gene belongs to more than one pathway but has very 

different impact on each pathway. We note that many of the high frequency 

mutated genes are curated to only one pathway.  

 In Figure 15, we show a TP53-centric plot which highlights the pathway 

impact of gene mutations in TP53 across all pathways in which TP53 has 
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membership. For the nine total pathways, 6 pathways show relatively low impact 

when TP53 is mutated: ‘Regulation of TP53 Activity through Phosphorylation’, 

‘Transcriptional regulation by RUNX3’, ‘PTEN Regulation’, TP53 Regulated 

Transcription of Cell Death Genes’, ‘Protein Folding’, and ‘DNA Double Strand 

Break Response’. By comparison, the pathways ‘Pre-Notch Expression and 

Processing’, ‘TP53 Regulates Transcription of DNA repair Genes’, and 

‘Regulation of TP53 Activity through Association with Co-factors’ show much 

higher impact.  

 

Figure 15.  Impact Across Pathways for the Gene TP53. Each circle represents one AML de 
novo patent sample. Color indicates mutated genes for that sample in the pathway. Co-occurring 
mutations (in same pathway) indicated when applicable. 
 
 
 In another example (Figure 16), we show a PTPN11-centric plot which 

highlights the impact of a PTPN11 gene mutation on each of the 13 different 

pathways containing PTPN11. When PTPN11 is mutated, the pathways ‘RET 

Signaling’ and ‘Costimulation by the CD28 family’, ‘Prolactin receptor signaling’ 
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and ‘Regulation of RUNX1 Expression and Activity, and ‘Interleukin-3,5 and GM-

CSF signaling’ are more highly impacted that pathways such as ‘Netrin-1 

signaling’ or ‘Interferon gamma signaling’.  

	

Figure 16.  Impact Across Pathways for the Gene PTPN11. Each circle represents one AML 
de novo patent sample. Color indicates mutated genes for that sample in the pathway. Co-
occurring mutations indicated when applicable. 
 
 
 There are several reasons why we might expect the pathway impact of a 

gene to differ according to pathways. If the gene is one of the primary functioning 

entities of that pathway (i.e. the pathway is actually curated around relationships 

that all involve the gene), then we would expect a higher overall pathway impact 

to result from mutations in the gene. If the gene is less involved in the pathway 

(for example, it is involved in one reaction very downstream in the pathway), then 

we would expect an overall much lower resulting pathway impact. For instance, 

for the gene TP53, it’s involvement in the pathway ‘Transcriptional Regulation by 

RUNX3’ is fairly minor, and thus overall has a very low impact on the pathway. 

Additional reasons include connectedness of the pathway, as curation in 
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Reactome is an ongoing process and some pathways may have entities that are 

very well connected to each other while some pathways may be much more 

linear in their signal processing. Future work in this area can include a more 

robust assessment of a gene’s impact on pathway and its location in pathway. 

This could include assessment of a node’s connectivity, for instance, and 

correlation with pathway impact.   

   

Drug Impact on Pathways 

Summary of Drug Impacted Pathways, Across 32 BeatAML and Cancer 

Targetome Drugs 

 In addition to modeling the impact of individual patient mutations on 

pathways, we also want to be able to model the impact of drug application on 

pathways. To this end, we use the same modeling framework to model a set of 

drug-impacted pathways. We then discuss considerations for uniting drug-

impacted pathways with mutation-impacted pathways to better understand 

patient-specific drug sensitivity and resistance.  

 For 32 drugs included on the BeatAML drug screening panel, we had 

target information in the Cancer Targetome [120]. We note that the majority of 

drugs used on the drug screening panel are investigational-stage and therefore 

not included in the Cancer Targetome, which currently covers only FDA-

approved cancer drugs. For each drug, target binding assay information from the 

Targetome was used to model drug-target binding relationships. For this 

modeling work, we required drug-target evidence to be Level III and have a 
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minimum reported binding assay value <10,000nM, across any type of binding 

assay (IC50, EC50, Ki, or KD). For each drug-target relationship, the best or 

minimum reported assay value was used to represent the relationship. In the 

factor graph, drug-targeted nodes were set to a level of impact in accordance to 

the strength of minimum binding assay value retrieved from the Cancer 

Targetome (Table 5, Methods). Modeling drug impact on pathways in such a 

manner allows us to investigate in a more mechanistic manner the downstream 

activity of drug-target binding. Furthermore, by explicitly modeling drug-binding 

across multiple targets, we are able to take a truly polypharmacological, or multi-

target perspective on drug binding. Additionally, we represent drug-target 

relationships in a way that reflects the strength of binding assay evidence. Thus, 

we are representing drug-target interactions within the pathway model in an 

empirical-driven manner. 

Similar to the summary measure used for mutation-impacted pathways, 

we summarize each drug-pathway relationship with a single pathway impact 

score, which is the average log odds of pathway impact across all pathway 

entities. In Figure 17, we show the drug-impacted pathways, across the full set of 

drugs. Towards the top of the figure, we can see those pathways that are 

targeted by a large number of drugs, such as RAF/MAP kinase cascade (22), 

Signaling by ERRBB2 (18), NGF signaling via TRKA from the plasma membrane 

(18), and Signaling by SCF-KIT (18).  Towards the bottom of the figure are 

pathways impacted by only a small number of drugs. Moving right on the graph 

shows us those pathways which have a high average log odds drug impact 
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(across drugs). This figure provides a summary overview of impacted pathways 

when considering the full set (32) of drugs on the BeatAML Panel for which we 

have information in the Cancer Targetome.  

Figure 17. PGM Drug-Impacted Pathways for 32 BeatAML Panel Drugs Found in Cancer 
Targetome. Each point represents a drug-impacted pathway. Point size indicates the total 
number of drugs impacting the pathway. 
 

Drug-Impacted Pathways 

For each pathway, we can explore which drugs target pathway members 

and the resulting overall pathway impact. For example, in Figure 18 we show an 

overview of the pathway ‘Interleukin-3,5 and GM-CSF signaling’, which has a 

total of 16 drugs interacting with pathway members. For seven of the drugs, the 

overall average pathway log odds impact is around 1.0, while the rest of the 

drugs have a much higher average log odds impact, between 3.5 and 4.0.  

 To further explore individual drug-target relationships within this pathway, 

we can plot pathway impact showing the contribution of individual targets. In 

Figure 19, we show the same pathway, ‘Interleukin-3,5 and GM-CSF signaling’, 
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this time with all drug-targeted pathway members shown on the Y-axis. In this 

plot, drugs are shown across all targets in the pathway with which they interact. 

For instance, the drug ruxolitinib is shown in magenta and targets JAK3, FYN, 

HCK, and LYN, and has an overall average log odds impact of about 1.25. The 

drug idelalsib, shown in teal, targets PIK3CD, PIK3CB, and PIK3CA and has an 

overall average log odds impact of about 1.35, plotted in Figure 16. The drug 

dasatinib, shown in olive green, has a much higher impact on the pathway then 

the previous two drugs and targets a total of 8 targets in the pathway (TEC, 

JAK2, JAK3, YES1, SYK, FYN HCK, LYN).  

 

 

Figure 18. Overview for Drug-Impacted Pathway, ‘Interleukin-3,5 and GM-CSF signaling’. 
Drugs interacting with the pathway are shown as single points, plotted according to the pathway 
impact score.  
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Figure 19. By-Target Plot for Drug-Impacted Pathway, ‘Interleulin-3,5 and GM-CSF 
signaling’. For each drug, all targets genes are shown. Color indicates drug.  
 

Uniting Mutation Pathway Impact and Drug Pathway Impact to Better 

Understand Patient Drug Response 

Our work in parallel arms for modeling mutational impact and modeling 

drug impact is ultimately directed towards a future unified model of both mutation 

and drug impact together. In Figure 20, we again show the mutation impacted 

pathways of the AML de novo cohort, only now we also show the modeled drug 

impact for each pathway. This allows us to assess both the mutation and the 

drug impact for important pathways in the AML de novo cohort.  
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Figure 20. Uniting Mutation Pathway Impact and Drug Pathway Impact. Bubble plot shows 
mutationally impacted pathways for 187 AML de novo patient samples. Size indicates number of 
samples with pathway impacted. Color indicates the strength of drug impact for that pathway from 
the modeling. 
 

 Here we will highlight one example, for the pathway ‘G alpha (q) signaling 

events’. This pathway is involved in GPCR signaling, which has important 

implications for cancer development, in particular with cancer stem cells [121]. A 

total of 12 AML de novo samples have mutations in this pathway. In Figure 21, 

we show the resulting pathway impact for each of these samples, all which have 

very high average log odds pathway impact. We note that all the samples have 

mutations in different genes in this pathway, again highlighting the strength of the 

pathway approach to aggregate samples with different gene mutations into 

potentially functionally related groups (as shown in Figures 7 and 8 in section 

‘Assessing the Relationship Between Pathway Mutational Status and Drug 

Response’).  



	

	 108	

Figure 21. Pathway Mutation 
Impact for samples with 
mutations in ‘G alpha (q) 
signaling’. Mutation pathway 
impact for 12 AML de novo samples 
with mutations in the pathway ‘G 
alpha (q) signaling). Color indicates 
mutated gene.  
 

 

 

 

 

In Figure 22, we show the targets of three drugs putatively interacting with 

the pathway ‘G alpha (q) signaling’: bortezomib, idelalisib, and sorafenib. We 

note that all three drugs have high inferred impact on the pathway according to 

the modeling. 

 

Figure 22. Bortezomib, Idelalisib, and Sorafenib Have High Impact on Pathway ‘G alpha (q) 
signaling events’. Drug targets for each drug are designated by color.  
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To further explore the relationship between high mutation impact and high 

drug impact for this pathway, we examine the resulting drug screen data for 

samples with mutations in ‘G alpha (q) signaling’. In Figure 23, we show the AUC 

distributions for bortezomib, idelalisib, and sorafenib, with color indicating those 

samples harboring a mutation in the pathway ‘G alpha (q) signaling events’ and 

therefore found to have inferred pathway impact in the PGM mutation modeling. 

Three samples have a very low AUC for Sorafenib, three samples have a very 

low AUC for Idelalisib, and two samples have a fairly low AUC for Bortezomib. In 

Figure 24, we show the AUCs for these samples across all three drugs, 

bortezomib, idelalisib, and sorafenib. 
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Figure 23. A.  Bortezomib AUC distribution for AML de novo samples (6 samples with 
mutations in ‘G alpha (q) signaling events’). B. Idelalisib AUC distribution for AML de novo 
samples (5 samples with mutations in ‘G alpha (q) signaling events’).  C. Sorafenib AUC 
distribution for AML de novo samples (7 samples with mutations in ‘G alpha (q) signaling 
events’). Color indicates samples with a mutation in the pathway ‘G alpha (q) signaling’ and have 
inferred pathway impact from PGM mutation impact modeling. 
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Figure 24. By sample plot of drug AUC for Bortezomib, Idelalisib, Sorafenib. Color 
indicates drug. All available drug screen data for these patients across these three drugs is 
shown in plot. 

 

 This assessment illustrates how we might begin to unite modeling results 

for both mutation and drug impacted pathways to better understand individual 

patient level drug response. Here, we looked at an example of pathway with both 

high mutation and high drug impact. This presents one possible way to prioritize 

impacted pathways of interest for the AML de novo cohort. However, additional 

work in this direction requires several considerations. Firstly, when evaluating 

patient samples and their drug response, we also need to consider whether well-

known mutations (such as FLT3 or NPM1) associated with drug response are co-

occurring for the patients. This is especially critical for mutations already known 

to be associated with patient drug response.  This information is not currently 

shown explicitly in our figures as we are modeling each pathway and its mutated 

genes independently from other pathways. Secondly, for pathways of particular 
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interest, we need to more closely examine the pathway diagrams and take into 

consideration the location of mutated genes and directionality of graph 

connections. This phase of work would ideally be conducted more closely with 

experimental biologists to prioritize pathway of interest with strong biological 

connection to AML.  

 

Assessment of Modeling Coverage with Respect to Significant Pathway 

and Drug Associations 

Here we provide assessment of our impact modeling coverage with 

respect to both mutation and drug-impacted pathways. First, we examine the 

pathway and drug interactions found to be significant from the ANOVA analysis 

(previously described) in light of their inferred mutation pathway impact. These 

interactions represent relationships in which pathway dysregulation is found to be 

associated with either drug sensitivity or response. In Figure 25, we show these 

interactions plotted by their average pathway mutational impact. Overall, many of 

these associations actually have relatively low mutation pathway impact (under 

1.0). We note that many of these associations involve the pathway ‘Other 

Interleukin Signaling’ which is home to the gene FLT3. We know FLT3 to be a 

critical gene mutation for AML, so an internal check for our modeling would be to 

expect that this gene mutation results in pathway impact. However, the pathway 

‘Other Interleukin Signaling’ is currently poorly connected and thus even when 

FLT3 is strongly impacted, propagation is minimal to the rest of the pathway 

factor graph.  
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Figure 25. Significant Pathway and Drug Associations from ANOVA Analysis, by Pathway 
Mutational Impact. All plotted points represent pathway and drug interactions found to be 
significant in ANOVA described previously in section ‘Assessing the Relationship Between 
Pathway Mutational Status and Drug Response’ (FDR<0.05). 

 

Next we consider both mutation impacted and drug impacted pathways. In 

Figure 26, we show all pathway and drug interactions tested in the ANOVA 

(described previously) where the drug is included in Cancer Targetome. 

Significant pathway and drug interactions are colored in blue, and pathways that 

are inferred to be pgm drug impacted are shown in red. Pathway-drug 

interactions found to be significant (from ANOVA) and also to be drug-impacted 

are shown in purple. From this perspective, we can see that several of our 

ANOVA hits involve pathways that are both PGM mutation-impacted and PGM 

drug impacted. A total of six ANOVA significant pathway and drug interactions 

that are also drug-impacted according to pathway modeling. In other words, 

these drug-pathway associations were found to be significantly associated in our 
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cohort of AML de novo patient samples and are also found to be impacted 

according to our pgm drug impacted pathway modeling. For a total of five 

ANOVA significant interactions, we did not find that they were drug-impacted 

according to pathway modeling. So, while these drug-pathway associations 

appear to be significantly associated in our cohort of samples, our modeling work 

does not currently indicate those pathways to be drug impacted. 	

 

Figure 26. Pathway Impact Modeling Coverage with Respect to Mutational Impact, Drug 
Impact, and ANOVA Significance for Cancer Targetome Drugs Only. Blue indicates pathway 
and drug interaction was found to be significant (FDR<0.05). Red indicates pathway and drug 
interaction was found to be impacted from drug pathway modeling. Purple indicates pathway and 
drug interaction was both significant and found to be impacted in drug pathway impact modeling. 
Plot restricted to only those drug-pathway interactions where the drug is found in Cancer 
Targetome (drug-pathway interactions for 32 drugs in total).  
 

Overall, this assessment provides areas for improvement for our modeling 

framework. For instance, we should expect to be able to model FLT3 mutations 
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as having a very high impact on their pathway, ‘Other Interleukin Signaling’, but 

as curated, this pathway is more of a collection rather than a well-connected set 

of signaling entities. When we layer on the drug-impacted pathways, we find that 

approximately half of the significant ANOVA relationships involve pathways that 

are drug-impacted according to the modeling framework. The drug-pathway 

interactions that were found to be significant from the ANOVA analysis for the 

cohort of AML samples but not found to be drug impacted from the modeling 

work present case examples to investigate further in an effort to understand the 

underlying mechanism. Additionally, we also note that there are many drug-

pathway interactions that were found to have both a high pathway mutation 

impact and a high pathway drug impact, but did not come up as significant from 

the ANOVA analysis. Thus, even while mutation and drug impact modeling might 

indicate that these pathways are impacted, they are not necessarily associated 

with a meaningful different in drug AUC (in our cohort of AML samples) and thus 

did not pass significance in the ANOVA analysis.  This work could be continued 

in modeling efforts that integrate both mutation and drug impact pathway 

modeling together. 

 

Discussion 

 Targeted therapies for cancer precision treatment face immense 

challenges, such as drug resistance and decreasing efficacy, commonly resulting 

in patient cancer relapse [1]. Moving forward, we must integrate both individual 

patient mutational information and drug mechanistic information to better 



	

	 116	

understand response to targeted therapies and ultimately select the best 

treatment option for each patient. In particular, the field is moving to combination 

therapies as an effective strategy for combating resistance [1], but rationally 

designing combination therapies necessitates a much deeper mechanistic 

understanding of patient drug response than what we currently have. By taking a 

pathway perspective on mutational impact and the associated relationship with 

drug response, our work here significantly expands upon traditional 

‘pharmacogenomics’ approaches that typically consider relationships between 

one biomarker gene or gene mutation and one drug.  

Mapping mutations in AML de novo samples to pathways allows us to 

aggregate mutations across multiple genes into sets of functionally interacting 

entities. This allows us to assess patients from a view of shared dysregulated 

pathways that encompasses multiple genes, rather than one gene alone. In this 

way, we can group together more patients than what would have been possible 

using a single-gene as a biomarker. This approach yielded many significant 

associations between pathways and drug response. In particular, we recapitulate 

known associations such as between the FLT3 gene and FLT3 inhibitors 

(sorafenib, quizartinib, etc.), which serve as an indicator that pathway 

approaches preserve known signal between one gene and one drug 

relationships. When we examine these associations individually, we find that a 

spectrum of genes in the pathway often drives these relationships with drug 

response. For example, the association between the inhibitor NVP-ADW742 and 

the pathway ‘Signaling by SCF-KIT’ is driven by a number of genes, most of 
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which are present in a small number of samples when considered individually. 

Because of this small sample size (at the cohort level), an association between a 

single gene and an inhibitor may not be apparent, or pass multiple testing. Thus, 

the pathway aggregation approach allows us to group together samples at the 

pathway level and still capture meaningful information about associations with 

drug response.  

 However, with the simple mapping approach and ANOVA assessment, we 

cannot delve in deeper beyond a gene’s status as mapped or not mapped to a 

particular pathway. In order to investigate the effect of mutations in particular 

genes on a pathway, we used probabilistic graphical modeling to propagate the 

effect of a gene mutation to further entities in the pathway. This approach 

allowed us to model the impact of mutated genes on a pathway, including when 

multiple genes within a pathway are mutated. Overall, our approach for modeling 

patient mutational impact on pathway takes into account both the functional 

impact of gene-level mutations and also the topology of the pathway. For several 

examples shown, mutations in the same genes result in differing levels of impact 

on pathways. In some cases, this is because the affected genes may occupy 

different locations in the pathways to which they belong. Additional future work to 

address the relationship between pathway location and inferred pathway impact 

will allow more rigorous assessment of this characteristic.  Additionally, the 

functional impact (captured by variant effect prediction algorithms) dictates the 

strength of the impact at the mutated gene node in the pathway model. Higher 

functional impact results in more propagation to the pathway and larger overall 
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impact. This approach allows us to consider both the location of the mutated 

gene (within the pathway) and the estimated functional impact of the harbored. 

Both of these aspects allow us finer grained detail than a simple pathway 

mapping approach, as conducted earlier. 

One of the challenges we faced in evaluating the modeling approach with 

respect to drug sensitivity was limited sample size. For a given pathway, we have 

a small number of samples with mutations mapped to that pathway, and an even 

smaller subset of samples for each gene mutated. This makes assessing (in a 

statistically rigorous way) difficult. We conducted a correlation analysis 

(correlation effect size only, no correlation significant test) between pathway 

mutational impact and drug AUC to investigate if there was a correlation between 

magnitude of pathway impact and drug AUC. While some associations were 

found to have a high correlation, the sample sizes were very small (less than 10 

samples), and thus we did not proceed further, i.e. conducting correlation 

significance tests. 

In parallel, we also apply our probabilistic graphical modeling framework to 

model drug impact on pathways, which provides deeper insight beyond a binary 

mapping of drug-targets to pathways. Mapping drug-targets to pathways in binary 

manner (mapped/not mapped) essentially treats all targets as equal. This doesn’t 

allow us to distinguish between drugs that may very weakly interact with a 

pathway and drugs that may very strongly interact with a pathway. Our previous 

work developing the Cancer Targetome has demonstrated that drug-target 

interactions are supported by a wide range of strength of binding assay evidence, 
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and that some drug-target relationships are much stronger (lower nanomolar) 

than others. Thus it is critical that our framework captures this range of binding 

evidence in the way we model drug-target interactions. Our modeling framework 

very uniquely allows us to represent drug-target binding relationships in a 

quantitative manner (through encoded factors), where strength of a drug-target 

relationship reflects the strength of its supporting binding assay evidence. We 

note that the factor functions for our drug-impact modeling were naively set 

(hard-coded according to thresholds in binding assay values from Cancer 

Targetome). This area presents an opportunity for further work, i.e. sensitivity 

analysis of drug-target node factor functions and the resulting effect on pathway 

impact. Future work could include defining more appropriate functions to map 

between binding assay values and factor nodes. However, this work presents 

originality in drug-pathway modeling by representing drug-target relationships in 

a quantitative and evidence-based manner. In this way, we hope to better 

represent the nature of drug’s pharmacological interaction, or targeting across 

multiple biological entities, as we know many drugs are highly promiscuous, i.e. 

kinase inhibitors.  

 Given that only 32 drugs were in both the BeatAML drug screen and the 

Cancer Targetome, we were limited in coverage for drugs tested for the AML 

patient samples. Future work with the Cancer Targetome to expand to 

investigational drugs will greatly increase coverage for modeling efforts and allow 

more investigation into the computational modeling efforts for drug pathway 

impact. Additionally, expansions of the Cancer Targetome to all drugs (i.e. FDA-
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approved drugs from therapeutic domains outside cancer) would open 

opportunities for drug repurposing efforts, where drugs could be matched to 

patient samples based on pathway impact and repurposed to use as treatment 

for cancer.  

 From our assessment of modeling coverage, we can make 

recommendations for next steps for the probabilistic graphical modeling 

approach. Three key areas for future modeling efforts are: 

1. Curation and connectedness of pathways. Not all pathways in 

Reactome are extensively curated or contain very well-connected 

biological entities. In some cases, this may represent the current state of 

our knowledge for particular pathways, while in other cases these 

pathways may be updated in upcoming releases. In particular, given the 

importance of FLT3 in AML, having pathways with FLT3 as a member that 

are extensively connected will greatly aid future modeling efforts. In our 

data, the pathway ‘Other Interleukin Signaling’ which contains FLT3, came 

up in a high number of drug-pathway associations, which is to be 

expected for drugs that are FLT3-inhibitors. However, our pathway-impact 

modeling for this pathway has a fairly low mutational impact (when 

compared to all mutation impacted pathways) due to the lack of 

propagation in the relatively unconnected pathway.  

2. Stability of pathways. The loopy belief propagation algorithm is not 

guaranteed to converge, and our modeling efforts reflect that about a third 

of the Reactome pathways used did not converge to a stable 
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configuration. For these pathways, we were unable to pursue either 

mutation or drug-impact modeling. Our stability assessment found that 

many of these pathways contain a large number of loops. In the future, it 

may be possible to slightly modify these pathways without invalidating 

their biological behaviors so that they can converge as represented by 

factor graphs.  

3. Relationship with drug sensitivity. Our modeling coverage assessment 

highlighted that approximately half of the significant drug-pathway 

relationships found through ANOVA analysis were both mutation pathway 

impacted and drug pathway impacted. However, overall we saw fairly low 

pathway mutation impact for these hits, when compared to the full range 

of mutational pathway impact. This could be addressed in future modeling 

efforts and we should address whether some pathways have an artificially 

inflated high mutation impact score due to their relative size.  

Future iterations of the modeling framework will explore how we summarize 

pathway impact. Our approach here for summarizing pathway impact was to 

average the log odds impact across all entities in the pathway to get an average 

pathway score. This is a reasonable first pass-measure, but in using the average 

we suffer a loss of information. In the future, we can explore further ways of 

quantifying the impact across entities in a pathway. For instance, it may be 

important to be able to differentiate between when a small number of entities are 

highly impacted versus when large number of entities are only moderately 

impacted. Another option would be to break down very large pathways into sub-
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pathways or neighborhoods for further analysis. With our current approach, our 

pathway impact score is reflective of the average impact across all pathway 

entities. Additional modifications could include adding weights for entities based 

on prior evidence or knowledge that they are impactful/have an effect on the 

pathway.  

Currently, by creating a separate factor graph representation for each 

pathway, our modeling approach assumes that pathways are independent of one 

another. So a pathway that is strongly impacted does not propagate this pathway 

to another, even if they have shared members. Biologically, we know that this 

assumption is very weak as biological pathways are highly connected and often 

share membership of key entities, resulting in pathway crosstalk. A future 

direction for this work would be to unite pathways into a large model (a network 

of pathways) that allow pathway impact to actually be propagated to downstream 

or cross-talking pathways. 

 One of the most promising future extensions of this work is the application 

to both mutation pathway impact and drug impact simultaneously. An integrated 

modeling framework with both types of information (mutation and drug) would 

allow us to make very specific predictions about patients and drug response 

based on their mutational profiles. The vision with this type of modeling would be 

to be able to match patients with the most appropriate drug based on their 

mutational signatures across pathways. In the future, the modeling framework 

proposed here could be modified so that pathway factor graphs are loaded with 

both mutation and drug information, and the resulting pathway impact score 
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obtained would be for patient-specific drug response. Such extensions will very 

critically require that we have additional information about the interaction 

between drug-target binding and specific mutations, and could possibly benefit 

from formulation of the factor graphs with three states per node rather than two, 

allow us to capture both up and down-regulated states. 
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CHAPTER 5. DISCUSSION 

Given the challenges facing precision cancer treatment today, such as 

limited therapy response, drug resistance and cancer relapse, there is a need to 

improve our mechanistic understanding of both how drugs work and how 

individual gene alterations affect this process. In this dissertation, we have made 

several key contributions to these aims. First, we have produced a framework for 

handling and prioritizing drug-target interaction data that allows for prioritization 

in an evidence-based manner. Second, we have developed a pathway modeling 

framework and applied it to understanding the pathway-level impact of somatic 

mutations and the pathway-level impact of drug application.   

Our mechanistic understanding of cancer drugs is often very limited – and 

while it has become accepted that many drugs bind to multiple targets, 

characterization of these targets in a rigorous and evidence-backed manner has 

been lacking [5,6]. Our work in Aim 1 introducing the Cancer Targetome provides 

a framework for aggregating and evaluating drug-target interactions for cancer 

drugs [119]. Such a framework is critical for tasks leveraging drug-target 

interaction information, for as we showed, target designation is not a 

straightforward task. We demonstrated how to use this framework to assess the 

strength of evidence supporting drug-target interactions, and in particular looking 

at all targets supported for a particular drug. We further demonstrated the 

importance of considering multiple binding assay types (IC50, KD, Ki, EC50), as 

they often offer complementary information about targets. This work is impactful 

because it provides a way for researchers (both computational and experimental) 



	

	 125	

to explore drug-target interaction data in a way where supporting evidence is 

clear and transparent. In this way, the Cancer Targetome framework is working 

to elucidate the uncertainty that has up to this point been intertwined with drug-

target interaction information. 

 Given that different binding assay types offer differing information about 

drug-target relationships, the question arises about how to best prioritize 

supporting evidence in application. Further work is needed to develop methods of 

weighting different assay types and evidence backed by multiple sources and to 

apply these methods computationally in applications such as drug panel 

development, drug combination design, and in combating drug resistance. 

Additionally, while the framework developed here allows for evidence-based 

prioritization of public domain drug-target interaction data, there are very clear 

biases in the collected data with regards to drugs and targets. For instance, there 

is a lot of data on kinase inhibitors due to extensive kinase screens, while other 

drugs have information for only a small number of targets. Applications of this 

data and framework much therefore keep in mind the information that we do not 

currently have, for instance – the drug-target interactions not yet tested or 

available in public resources.  

 Future expansions for the Cancer Targetome include expansion to all 

FDA-approved drugs and investigational stage drugs. Drug interactions spanning 

many therapeutic domains will greatly improve the applicability and usefulness of 

the Targetome framework for researchers both in the cancer domain and in other 

therapeutic areas. With regards to data collection, we note that of the resources 
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used for the Targetome in Aim 1, DrugBank, IUPHAR/BPS, and BindingDB each 

contributed unique content (drug or target coverage) not contained in the other 

resources. Therapeutic Targets Database (TTD), however, provided minimal 

unique content and ultimately only contributed Level I evidence-supported drug-

target interactions due to the lack of linkage between interactions and supporting 

reference. Thus future work will likely not continue to mine TTD for interactions. 

Expansions to additional resources will likely improve drug coverage, as many of 

these resources mine information from different sets of journals. In particular 

resources such as ChEMBL, which houses curated bioactivity data for a wide 

range of compounds, would likely prove beneficial for increasing Level III-

supported interaction coverage. We also note the considerable effort undertaken 

by the Illuminating the Druggable Genome (IDG) Consortium, an NIH-led effort to 

characterize understudied yet potentially therapeutically relevant entities in the 

genome [62,124,125]. Future work for Cancer Targetome could also leverage the 

extensive work by IDG, in particular their use of target levels, which indicate the 

level of study associated with a particular target (clinical level, research level, or 

chemical tool level). 

Mapping drug-target interactions and their evidence levels to Reactome 

pathways allows us to put drug-target relationships into greater biological 

context. This perspective is critical in our efforts to move toward combination 

therapies, which need to be strategized at the pathway-level to overcome cancer 

resistance mechanisms. Light pathways, or potentially druggable pathways, can 

be leveraged in drug panel development and drug combination design, while 
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dark pathways pose as areas for future research in developing new compounds. 

Our work in Aim 1 focused solely on FDA-approved cancer drugs, but future work 

to bring in all FDA-approved cancer drugs and investigational stage drugs would 

provide a more accurate perspective of light and dark pathways. In particular, this 

would open up avenues for repurposing non-oncology drugs into the cancer 

domain for use.  

 We build upon the pathway perspective in Aim 2, where we pursue a 

pathway modeling framework for both patient somatic mutation impact and drug 

impact. In this aim, we focus on application to the disease acute myeloid 

leukemia, which is in desperate need of improved therapies and is characterized 

by extreme heterogeneity of patient mutational profiles. To demonstrate the 

applicability of pathway approaches, we first show that aggregating patient 

mutations to pathways captures association between some pathways and drug 

response. Importantly, these associations are driven by many mutated genes 

within the pathway. This means that analysis considering only one gene and one 

drug at a time is likely missing these relationships. This analysis at the pathway 

level captures important information about mutation and drug response 

interactions and furthermore offers additional information than what is available 

from analysis at the gene-level. 

We pursue further mechanistic understanding with our probabilistic 

graphical modeling framework. In parallel, we model both pathway impact of 

somatic mutations and the pathway impact of drug-target binding. For somatic 

mutation information, we demonstrated that this framework captures both the 
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functional impact of a mutation and also the positional impact of the gene based 

on pathway topology. For drug-target impacted pathways, we also show that this 

framework captures the strength of the drug-target interaction and the positional 

impact of the target gene based on pathway topology. The ability to encode drug-

target interactions into this modeling framework is powered by the Cancer 

Targetome, as Level III-supported drug-target interactions are accompanied by 

quantitative assay binding values. For both the functional mutation impact and 

drug-target interaction binding values, we are able to incorporate these into the 

probabilistic graphical modeling framework through the use of factor functions, 

which describe the impact due to mutation or drug-binding at a particular gene 

node.   

Modeling coverage assessment allows us to make recommendations for 

the next iteration of modeling. In particular, we assess pathway modeling for both 

mutation and drug impact with respect to significant pathway and drug 

associations from the earlier ANOVA analysis. We found that overall, mutational 

pathway impact is fairly low, which may point to the need for further refinement of 

pathway modeling. In particular, several of the pathway-drug associations that 

were found to be significant from ANOVA analysis involve pathways that are 

fairly unconnected (like ‘Other Interleukin Signaling’) and therefore propagation is 

limited, resulting in a lower overall pathway impact. Secondly, coverage of drugs 

in the BeatAML screening panel and the Cancer Targetome was limited to 32 

drugs in total. This limits the amount of investigation for drug-impacted pathways. 

However, when we restricted our assessment to these drugs only, we found that 
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6 out of 11 significant drug-pathway associations are for pathways that are 

predicted to be drug impacted by the modeling approach. Thus the drug 

modeling framework also appears to be promising with regards to coverage of 

impacted pathways in a manner that is meaningful to associations found in the 

acute myeloid leukemia cohort.  

  Future work with the modeling framework and acute myeloid leukemia 

cohort will expand analysis of AML de novo samples to include both paired 

samples and tumor only sample (no paired normal sample). This will allow us to 

investigate whether pathway-drug associations found in this analysis hold in the 

larger cohort. More specific analyses could include subgrouping based on 

canonical AML mutation types (for instance, FLT3_ITD, NPM1, DNTM3A) and 

investigation of pathway impact by these subtypes.  

 Overall, our work sets the stage for more rigorous and quantitative 

modeling work for understanding drug sensitivity and resistance in patients 

based on their unique mutational profiles. Our work with the Cancer Targetome 

in Aim 1 provides a framework for drug-target interaction that is evidence-based 

and easily harnessed in modeling efforts, as shown in Aim 2, where is it is used 

in parallel with models for patient mutational impact. This framework captures 

both strength of impact (for mutation and targets) as well as pathway topology 

and captures meaningful drug-pathway associations found through other 

analyses. Future work will focus on the application of this framework to efforts to 

improve understanding of patient subgroup drug response and be used for 

treatment development. In particular, future efforts will focus on uniting the 
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patient mutation impact and drug impact modeling frameworks to further 

understand how individual patient’s mutational profiles affect their response to 

targeted therapies. In the long term, we aim to be able to predict sensitivity and 

resistance for patients based on sample mutational information and use this to 

guide the best course of treatment.  
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