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Background 

Modern hospitals are increasingly complex entities comprising healthcare teams, working 

in parallel, to provide care for hospitalized patients. The team’s goal of providing 

excellent clinical care to patients is highly dependent upon each team member’s ability to 

communicate efficiently and effectively.1 Unfortunately, as teams and facilities grow in 

size and complexity, communication, which was once predominantly face-to-face, is 

increasingly complex and difficult. Unsurprisingly, faulty communication is frequently 

cited as contributing to medical errors in the modern healthcare setting.2-5 These include 

failed or miscommunications, between nurses and physicians, during transitions in care, 

during assessment and planning, and even extending into interactions with family 

members. Errors during these critical periods of communication have real effects not only 

on the clinical outcomes of care and satisfaction of patients but also impact quality 

measures and increasingly have financial repercussions on hospitals and healthcare 

organizations.6 Yet solutions to improving communication are unclear, especially in the 

setting of increasingly complex and physically expanding healthcare institutions.  This 

means that connecting providers quickly, reliably and at a distance remains a central 

problem in improving communication in healthcare.  

 

Paging systems have served as a long-standing solution to this problem. However, these 

systems have several critical shortcomings when applied to the field of healthcare where 

high-reliability and closed-loop communication are paramount. For this reason, paging 

systems are being phased out in favor of secure text-messaging platforms that offer fuller 

message context, read-status notification and the framework for more effective, closed-



 

loop communication.7,8 Many vendors offer competing but ultimately similar products 

that allow users to use Wi-Fi or cellular networks to log into hospital-owned or personal 

mobile devices and exchange messages or media and place calls between users logged 

into the same institutional ecosystem (Halo Communications, Cincinnati OH; 

TigerConnect, Santa Monica CA; DrFirst, Rockville, MD; Voalte Inc, Sarasota, FL). 

Each product uses various application-, device-, or network-driven approaches to ensure 

that these exchanges are Health Insurance Portability and Accountability Act (HIPAA) 

compliant.9  While it is clear that these new platforms offer advantages over legacy 

paging systems, there is also emerging evidence that secure text-messaging systems are 

subject to new and different vulnerabilities such as silent failures and unrecognized user 

overload, especially when automated systems are leveraged to generate notifications to 

users.10,11  

 

There is a broad body of literature addressing the issue of alert and alarm fatigue for users 

of clinical information systems, as well as the concept of information overload in the 

digital age.12-15 Secure text-messaging serves as yet another potential source of distraction 

for healthcare providers and the introduction of trigger-based or other automated 

notification systems into these communication platforms only exacerbates this risk in the 

absence of monitoring and surveillance.16,17 The current paucity of tools and methods to 

monitor secure-text messaging platforms means that implementation of these systems has 

outpaced our ability to understand these risks in hospital systems. Most work evaluating 

inpatient communication systems has relied on qualitative and workflow methods to 

understand actors and systems involved, with few efforts rigorously examining 



 

quantitative aspects of these systems .3,18-20 Yet, as these secure-text messaging solutions 

mature, they are increasingly data-rich and lend themselves to other approaches for 

developing insight and understanding of inpatient communication systems. In particular, 

the fields of graph theory and network science provide researchers with conceptual 

models and methods to study interconnected systems. Specifically, these approaches to 

interconnected systems grant investigators insight into individual components in a 

connected system, referred to as the nodes, and the connections between these 

components, referred to as the edges. For instance, the number of connections to a node 

may indicate how dependent a connected system is on one particular node. Alternatively, 

the frequency with which paths between two nodes in the system traverse a particular 

node may imply an important gate keeping function for the node in the middle. 

Historically, these fields have been leveraged to provide insight into systems such as the 

world-wide-web to determine which websites are more interesting for users looking 

through search engine results, molecular networks to find key targets for metabolic 

pathways or disease pathology and scholarly citation networks to identify the influence of 

individual authors or manuscripts.21-24 Applied to secure text messaging data, the 

framework of network science allows investigators to examine hospital communication 

networks through the same lens and may offer insight into the nature of communication 

structures, user behavior, and even the network’s ability to tolerate disruption. 

 

For example, the very structure of an inpatient communication network rebuilt using 

messaging logs, i.e., who talks to whom, can grant us insight into inherent characteristics 

of the communication network itself. Let us assume that our communication network 



 

comprises nodes, or individuals communicating with others in the secure-text network, 

and edges, or a connection between different users as evidenced by a message between 

them in the underlying data (fig. 1). Most real-world networks in the information age are 

not formed through random edge generation between nodes but rather demonstrate 

patterns of connections to highly connected nodes, called hubs, that play a critical role in 

the function of these types of networks.25 For example, a random inpatient 

communication network would consist of users sending messages at random to other 

users rather than sending purposeful, directed messages to key members of the 

communication network. Investigating this non-random structure of inpatient 

communication networks has the potential to draw out characteristics of the network 

which can lend actionable insight for users within the system and supervisors of the 

system. However, there is little precedent for converting inpatient communication data 

into network models let alone actionable information.  

 

This project was conceived to build the foundation for future work in this domain, by 1) 

creating a robust and flexible data pipeline to clean and transform data from a secure text 

messaging database into network models which will enable 2) utilizing network-specific 

analysis to (a) identify the characteristics of the inpatient communication network, (b) 

understand key users and roles within the communication network, and (c) help 

understand vulnerable users and populations and the impact of emerging automated 

messaging systems on the communication network of a hospital system.  

 

 



 

Methods 

Cincinnati Children’s Hospital Medical Center (CCHMC) is a tertiary academic pediatric 

medical center with 628 inpatient beds. Inpatient clinical work at CCHMC is largely unit-

based, meaning that patients admitted to a subspecialty service reside primarily on that 

subspecialty’s home unit. Health providers staffing each team might include resident or 

midlevel providers (Nurse Practitioner or Physician Assistant) in addition to supervising 

attending physicians. Overseeing hospital-wide operations is a hierarchy of physician and 

nursing leadership with the latter assuming responsibility for hospital flow (admissions, 

transfers, discharges, bed capacity, etc.) and active mitigation of issues that arise on the 

unit. The local secure text-messaging environment is provided by Voalte (Voalte, Inc. 

Sarasota, FL) and includes institutional devices (both mobile and desktops) running the 

VoalteOne application and personal devices running the VoalteMe application. 

 

Messages sent via the Voalte ecosystem are stored on a central enterprise server 

administered by Voalte Inc. A query to return individual messaging data including 

sending user, receiving user and message timestamp was run on the CCHMC’s 

messaging database. Notably, data provided for the study was free of any message 

content. The reasoning for this decision was twofold: 1) message content was 

unnecessary for the purposes of this foundational work, 2) given the exploratory nature of 

this work, maintaining privacy and security for users and the system was deemed 

paramount.  

 



 

The data, received in Microsoft excel .xlsx format was imported into a Python pipeline 

within a Jupyter Notebook using the Pandas library, message timestamps were converted 

to date/time format and the data was sorted and counted in aggregate, by individual user 

and by sender/receiver pairs to arrive at quantitative analysis of the message logs (fig. 

2).26-28 A network model was then built using the NetworkX library for Python with each 

user ID representing a node and a message between two users forming an edge (fig. 2).29 

For this initial exploratory work an undirected, unweighted model, an undirected 

weighted model and a directed model were utilized. These models were leveraged to 

generate quantitative data about the network (including aggregate number of unique 

senders, recipients, sender/recipient pairs and network specific metrics for users within 

the network such as degree distributions), messages exchanged within the network 

(messages per user, regression analysis of messages received per messages sent) and 

network specific metrics such a degrees distribution (i.e. characterizing the number of 

connected nodes for each node in the network), page rank (i.e. a measure of “importance” 

of a node arrived at by examining ingoing and outgoing connections from a given node), 

betweenness centrality (i.e. how “centrally” a node is located within the graph), hub and 

authority scores (again, examining ingoing and outgoing connections from a given node 

to determine functional roles in a network). Finally, NetworkX, Matplotlib and Seaborn 

libraries were utilized to produce visualizations of quantitative data, such as density plots 

of users by messages sent and received, linear regression of users by messages sent and 

received, histogram and log-scale of degrees distribution and two network maps.30,31 

 

 



 

Results 

The data retrieved from the Voalte Inc system included message sent from 00:00 on 

3/30/2018 to 20:38 on 4/22/2018. Over the course of this timeframe, 4327 unique users 

sent 499999 messages to 4413 unique recipients, and both senders and recipients were 

translated as nodes into the network model. These messages generated 109363 unique 

sender/receiver combinations which were translated into edges in the network model. The 

bulk of sender/receiver pairs exchanged well under 50 messages with the most active pair 

of users sending and receiving 356/452 messages to one another (fig 3.).  

 

The bulk of individual users sent and received fewer than 250 messages over the time 

period (fig 4, 5). However, there were clear outliers to this trend with 18 and 14 users 

sending and receiving over 1000 messages respectively over the time period. Three users 

stood out even from this group of outliers sending and receiving 2230/2853, 2519/3081 

and 2710/3283 respectively. A simple linear regression was performed to investigate the 

correlation between number of messages sent and number of messages received per user. 

The model demonstrated a Pearson’s correlation coefficient of 0.95 and p <0.001. The 

slope of the model was 0.935 (fig. 5).  

 

When translated into a network model by assigning each sender and receiver as a node 

and a message between the two as a graph, the resulting graphs had 4442 nodes, or 

unique users sending and/or receiving messages, and 59913 edges, or messages between 

each user in the network. There were three distinct, or unconnected, networks identified 

in the model. One large, highly interlinked network that contained the vast majority of 



 

users (4433 nodes/59899 edges) and two unconnected networks comprising a smaller 

number of users that interacted only within the smaller group (7 nodes/13 edges and 2 

nodes/1 edge respectively). The majority of nodes, or users, share an edge with fewer 

than 50 other nodes or, have fewer than 50 degrees (fig 7).  

 

When plotted on log scale, the degree distribution of the fraction of users or nodes in the 

network follows a power law whereby the degree distribution varies by an exponent, 

commonly referred to as the gamma exponent, which implies that this communication 

system resembles a scale-free network (fig 8).  

 

Figure 9 shows two side-by-side visual representations of the primary communication 

network comprised of 4433 nodes and 59899 edges. One representation is unweighted, 

showing a uniform red color for each edge between nodes. The comparison displays a 

color along the red spectrum that corresponds to the weight, or number of messages 

between users, for each edge.  

 

Table 1 shows the top ten users, masked by provider role, ranked by four metrics: 

betweenness centrality, page rank, hub score and authority score.  

 

 

Discussion 

The network model of secure text-messaging data reveals the complexity of an inpatient 

communication network at a large academic medical center even though the data spans 



 

less than a month’s time. Over the course of approximately 23 days, 499999 messages 

were generated with 109363 unique connections between individuals in our inpatient 

system. Figures 4 and 5 demonstrate the asymmetry in user-specific activity with the vast 

majority of individuals over the course of the timeframe studied exchanging a small 

number of messages with other users.  However, there were a clear cohort of outliers as 

evidenced by fig. 5. The identities of these outliers fell into three main thematic buckets: 

1) generic users (residents, charge RNs) residing at the center of busy acute care areas 

where multiple users utilize the same login on a continual basis, 2) manager of patient 

services (MPS) who are nursing personnel responsible for coordinating patient flow, 

nursing staffing and situational awareness throughout the inpatient wards and 3) health 

unit coordinators (HUC) who serve as unit-based managers of flow and communication. 

The group of generic users presents both an interesting dilemma and potential insight. 

The artificial grouping of multiple users through the generic login means that these 

“outliers” are not truly individuals within the communication system but multiple 

individuals sharing a device or login. Thus, the metrics such as aggregate messages are 

not comparable to other true individual users. However, the aggregate data and network 

metrics may be more representative of the role these individuals fill when utilizing these 

generic logins. The combining of multiple users to represent a role may, in fact, be a 

more appropriate approach to answer some questions, particularly those that are role- or 

unit-oriented. The linear regression model’s slope of 0.935 indicates there is a nearly 1:1 

correlation between messages sent and received. Further deviation from a slope of 1 

might indicate that users are receiving more system-wide or broadcasted messages from 

system administrators, more messages from automated systems or that 



 

messaging/communication patterns have shifted to more “FYI” messages or less frequent 

user reply to received messages. 

 

Network analysis of this data reveals a dense, highly connected central network 

organized around key users described above with two outlying, disconnected networks. 

Most users within the larger, central network were connected via message to fewer than 

50 other users throughout the time period of the study, but again the outliers (those 

connected to 150 or more users) were notable for the roles highlighted above. The degree 

distribution of the network resembles that of a scale-free network, or a network with 

many nodes with few links and few nodes with many links, which helps us understand 

the nature and function of our institution’s inpatient communication network. This 

confirms a prior suspicion that the communication network is, like our unit-based 

structure, dependent on highly centralized actors that serve as hubs within clinical units 

and operational efforts. While the scale-free nature of our communication network is 

highly efficient and centralized, this also renders it particularly vulnerable to disruption 

should any of the critical hubs lose connectivity, become task-fixated or otherwise 

incapacitated. This knowledge can be applied to our current understanding of users and 

specific roles to enhance operational efficiencies and to create contingency 

communication/workflow plans should hubs within the network fail at critical moments. 

One example of building fault tolerance into the communication network is to establish 

role redundancy or processes to offload communication/roles during critical periods that 

might render the communication system more resilient to failure. For instance, the role of 

flow coordinator or PICU resident might be purposefully split during peak hours where 



 

relying on one point of contact risks leading to user overload. This division of labor 

during periods of high volumes of communication would not only build fault tolerance 

into the system but allow these previously overwhelmed roles to spend more time and 

attention to communicating effectively with other members of the team.   

 

Network specific metrics such as betweenness centrality, page rank, hub score and 

authority score all reinforce the general inference from basic quantitative analysis that the 

roles mentioned above (Resident, MPS and HUC) serve as important hubs within the 

inpatient communication system. It is important to note that these metrics, calculated 

using the system at-large are likely missing the granularity of the same analytical 

approach applied to meso- and micro-systems within the communication network. While 

a few users operate at the system level, bridging communication gaps between multiple 

units and communicating with unit directors, the system-wide analysis may overlook 

critical roles in these smaller, more enclosed systems.  

 

This work is subject to a number of limitations. First and foremost, given the highly 

variable staffing models in an inpatient system, more longitudinal data would help further 

establish/cement patterns of communication in the network. While these data are 

analyzed in bulk, more specific analysis looking at user burden over shift times, or 

between different shifts (i.e. night vs day, week vs. weekend), might grant insight into 

user burden over discrete work periods as is common for nursing shifts and, increasingly, 

inpatient physician shift work. This would require joining the messaging dataset with 

existing employee scheduling data or automated inference of shifts based on user activity 



 

over certain periods of time. Joining this data with other data streams/sources would 

augment insights even more. For instance, while the data are currently based on user ID 

within our network, associating user type, role or location might lead to additional 

discovery and insight into the different activities, structures and functions of communities 

within the inpatient system. Filling in this missing metadata would assist in providing 

granular insight into the system, allowing investigation into smaller subsystems of the 

hospital and the differences between communication, structure and function between 

them. While this may be possible from the underlying messaging data with the use of 

regular expressions and natural language processing to extract metadata from each 

message, the message metadata are not ideal for several reasons. First, it is user curated in 

that users assign themselves to roles and locations when signing into the ecosystem. 

While users are not free to choose any combination of role and location, many have 

multiple choices which may or may not reflect the true state of their location and role in 

the inpatient system. Second, the metadata are duplicative in that one user may be signed 

in under multiple roles and locations according to the metadata. These challenges were 

deemed out of scope for this foundational work. This role/location limitation, combined 

with the lack of message content means that the insights from our network model are 

limited to sender, user and timestamp. Furthermore, it is likely that system engagement is 

variable across the inpatient system and this messaging data is only part of the 

communication system in full. While this dataset grants us more quantitative and visual 

insight than previously available for inpatient communication systems, there are multiple 

other avenues in which inpatient teams can communication such as pagers, public 

announcements and, even the old-fashioned way: face-to-face. A more comprehensive 



 

study would thus require integration of other datasets, such as paging data, PA logs, 

employee location/role information, defined shift hours for all roles in the hospital and 

dates for resident/provider rotation between services or floors, in addition to extensive 

observational data.  

 

Future applications of this work include more rigorous inclusion of metadata and time-

series analysis that incorporates longer timeframe for the data and examines how the 

communication network changes over time based on location, role and other factors. 

Since overall correlation between messages sent and received is approximately 1:1, 

surveillance of the communication system for deviation in this correlation might reveal 

an emerging burden of automated messages from trigger-based systems like Vigilanz 

(Vigilanz Corp. Chicago, IL). While these types of systems grant large medical centers 

the ability to monitor clinical information systems and alert providers in real time, they 

also carry high risks for centers that incorrectly implement or over-implement automated 

solutions that put frontline providers at risk for information/communication overload. 

There is also intriguing promise in utilizing these messaging data streams for anomaly 

detection whereby established messaging patterns are compared to current state, 

surveilling for signals that providers in one clinical area are interacting with the network 

in anomalous fashion perhaps indicating a cry for help in an escalating or emergent 

situation. Lastly, given the insights we are able to glean regarding the structure and 

hierarchy of the communication network, supply-chain optimization methods might be 

applicable to these systems to help users navigate complex communication networks to 

find the right recipient for their message. 



 

 

 

Conclusion 

Secure text-messaging systems represent an increasingly popular vehicle for 

communication in inpatient medical centers. The data generated by these systems 

represent a promising opportunity to characterize and understand the form and function 

of communication in complex inpatient systems. This insight has the potential to inform 

the practice of frontline providers, oversight by operational actors and innovative 

approaches to many other potential applications such as surveillance of automated 

notifications or situational awareness. More work is needed to combine messaging data 

with other data streams such as role and location data to fully leverage this potential. 

 

  



 

Figures and Tables 

 

Figure 1. Graphical representation of programmatic translation from message log data 

into network model.  

 

Figure 2. Illustration demonstrating analysis pipeline. 
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Figure 3. Histogram of of messages per unique sender/receiver combinations in the 

available messaging data.  

 

 

Figure 4. Hex plot + histogram of messages sent and received per user. Darker blue 

means higher density of users. 

 

 



 

Figure 5. Scatter plot of messages sent and received per user with overlying linear 

regression model. 

 

Figure 7. Histogram of degrees for each user. 

 

Figure 8 Log scale plot of degrees distribution for users.  

 

 



 

 

Figure 9. Two plots demonstrating the inpatient communication network over the course 

of the time period studied. Edge color for graph on the left is proportional to edge weight 

i.e. darker red means more messages between the two users connected. Graph color on 

the right is uniform per edge. 
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Table 1: Individual’s user type ranked by network-specific metrics. MPS = Manager of 

Patient Services, HUC = Health Unit Coordinator, Generic = single login for role that 

multiple users assume over course of timeperiod 

 Betweenness 

Centrality 

 Page Rank  Hub Score  Authority Score 

1. Generic Resident 

Login 

0.0218 
 

1. Generic Resident 

Login 

0.00207 
 

1. Generic RN 

Login 

0.00255 
 

1. MPS 0.00245 
 

2. MPS 0.0204 
 

2. Generic Resident 

Login 

0.00179 
 

2. MPS 0.00254 
 

2. Generic RN Login 0.00239 
 

3. MPS 0.0171 
 

3. Generic Resident 

Login 

0.00163 
 

3. MPS 0.00249 
 

3. MPS 0.00235 
 

4. Generic RN Login 0.0168 
 

4. MPS 0.00124 
 

4. HUC 0.00229 
 

4. RN 0.00222 
 

5. MPS 0.0161 
 

5. HUC 0.00123 
 

5. RN 0.00229 
 

5. MPS 0.00213 
 

6. Generic Resident 

Login 

0.0161 
 

6. Generic RN Login 0.00119 
 

6. HUC 0.00226 
 

6. MPS 0.00213 
 

7. Generic Resident 

Login 

0.0156 
 

7. RN 00107 
 

7. MPS 0.00222 
 

7. MPS 0.00205 
 

8. Generic RN Login 0.0123 
 

8. Generic RN Login 0.00105 
 

8. MPS 0.00217 
 

8. MPS 0.00204 
 

9. MPS 0.0122 
 

9. Generic APRN 

Login 

0.00105 
 

9. RN 0.00209 
 

9. RN 0.00198 
 

10. RN 0.0119 
 

10. MPS 0.00104 
 

10. MPS 0.00208 
 

10. Generic Resident 

Login 

0.00186 
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