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Impact of exercise on sleep and glycemic outcomes in adults
with type 1 diabetes: towards predictive models and decision

support systems

Abstract

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pan-
creatic β cells and culminating with absolute insulin deficiency. Intensive insulin therapy is
the standard of care for individuals with T1D, but attaining optimal glycemic control is ex-
tremely onerous and requires multiple daily insulin injections or continuous subcutaneous
insulin infusion by an insulin pump, complemented by frequent monitoring of blood glu-
cose (BG). When compared with endogenous insulin secretion, subcutaneously injected in-
sulin has both delayed action and clearance, this leads to large and dangerous fluctuations in
BG values. These fluctuations can often lead to hypoglycemia and hyperglycemia. Chronic
hyperglycemia leads to long term complications such as retinopathy, neuropathy and cardio-
vascular disease while, acute episodes of hypoglycemia have been associated with coma and
death. Both hypoglycemia and hyperglycemia can often be traced back insulin bolus mistim-
ing, imbalance of the basal or bolus doses, meal related challenges and physical activity (PA).
People with T1D make recurring insulin dosing decisions many times during the course of
the day. Implementation and adherence to this complex and demanding self-treatment in-
sulin regime is quite challenging. Encumbered by the complexity of managing this condi-
tion, majority of this population fails to reach or maintain target glycosylated hemoglobin
values, putting them at increased risk for vascular complications. There is a clear need to pro-
vide these individuals with modern decision support tools to improve chronic disease man-
agement. This project is focussed on addressing the challenges around PA and contributing
towards providing the tools needed to support PA in these individuals.

Clinical practice guidelines strongly recommend PA to individuals with T1D, as regular
exercise is associated with greater life expectancy and a lower frequency of diabetes related
vascular complications. Despite this, majority fail to achieve the recommended levels of PA.
Besides the usual barriers (i.e. lack of time/space, low energy, work etc.) individuals with
T1D list fear of hypoglycemia as an important barrier to engage in PA. During PA there is an
increased risk of hypoglycemia and pronounced glycemic imbalance. Moreover, exercise me-
diated hypoglycemic risk is amplified not only during the bout of exercise but also for many
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hours after. The objective of this dissertation is to both understand the glycemic challenges
associated with physical activity and develop model based decision support systems to assist
these individuals during and after PA . The first step in attempting to create these model
based systems is to understand the challenges faced by these individuals in real world condi-
tions. We designed and conducted a comprehensive pilot study to understand that effects of
PA (resistance training or aerobic exercise) on sleep and nocturnal hypoglycemia.

• The data from the study indicated that individuals with T1D on average lost 70 min-
utes of sleep following aerobic exercise and only lost 27 minutes of sleep following
resistance exercise. We also showed that the odds of experiencing a nocturnal hypo-
glycemic event after any type of exercise was much higher than when compared with
days with no exercise activity.

• Results fromthe study also indicated that theparticipants experienced improvedglycemic
control in the 24 hours after resistance training even though they increased overall en-
ergy consumption during the same period.

• Building on the observations of the challenges with glycemic control during the PA
bouts, a prediction algorithm was developed to identify the risk of hypoglycemia due
to aerobic exercise. This machine learning algorithm achieved an accuracy of 87% at
predicting exercise induced hypoglycemia.

• In an effort to reduce nocturnal hypoglycemia, using the data collected during this
study, an approach was developed to predict the risk of a nocturnal hypoglycemic
episode during sleep. The machine learning algorithm designed to identify this risk
at the start of bed time was able to achieve an accuracy of 85%.
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It is in the nature of a hypothesis when once a man has con-

ceived it, that it assimilates everything to itself, as proper

nourishment, and from the first moment of your begetting

it, it generally grows stronger by everything you see, hear

or understand

Laurence Sterne,

The Life and Opinions of Tristram Shandy, Gentleman

1
Introduction

Type 1 diabetes accounts for less than 10% of all the cases of diabetes in the world [Amer-

ican Diabetes Association, 2017]. Type 1 diabetes (T1D) is a heterogeneous disorder charac-

terized by an immune-mediated destruction of β—cells resulting in the need of a lifetime

of exogenous insulin treatment [Skyler et al., 2016]. Type 2 diabetes is a progressive disor-

der with underlying insulin resistance coupled with the loss of β—cell functionality [Skyler

et al., 2016]. As the healthcare system is overwhelmed by the epidemic of obesity and type 2

diabetes, it tends to conceal the chronic health care challenges and complications associated
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with T1D [Insel et al., 2015, The International Expert Committee*, 2009]. Although it has

been long considered ”juvenile diabetes” a disorder in children and adolescents, this opin-

ion has considerably morphed over the last decade [The International Expert Committee*,

2009, Nowicka et al., 2011]. Many individuals are also diagnosed in adulthood with T1D, left

untreated this condition leads to chronic hyperglycemia [Skyler et al., 2016]. To avoid long

term complications, individuals with T1D need exogenous insulin treatments. In this thesis,

the daily challenges faced with these treatments are discussed and in particular, the struggle

with engaging in physical activity is considered and strategies are proposed to support these

individuals.

1.1 Epidemiology

The incidence and prevalence of T1D varies widely around the globe with highest

prevalence in nordic countries such as Finland, while it is very uncommon in India andChina

[Atkinson et al., 2014]. It has been noted that the difference between the incidences among

the various populations worldwide is greater than 350-fold. As the rates of incidence of T1D

continue to increase, the global incidence could double over the next decade [De Beaufort,

2006]. A plethora of geographical and environmental influences have been attributed to

the increases in incidence but no clear underlying mechanisms have been established [Dane-
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man, 2006]. With low mortality rates among youth with T1D, an increase in incidence has

translated into high prevalence of the disease in the adult populations. In the United States,

the SEARCH for Diabetes in Youth Study identified the prevalence of T1Dwas 2.28/1000 in

youth less than age 20 years[Chiang et al., 2014, Dabelea et al., 2014]. Currently it is estimated

that approximately 3 million individuals (youth and adults) in the U.S. have T1D, and it is es-

timated that the prevalence over last few years has increased by 21% [Dabelea et al., 2014]. As

the clinical onset of T1D follows an acute course inmost cases, requiring the lifelong adminis-

tration of exogenous insulin, along with the monitoring of blood glucose, the challenge is in

both achieving and maintaining tight glycemic control safely as early as possible after disease

onset [Chiang et al., 2014]. IndividualswithT1Dwithpoor glycemic control experience acute

hypoglycemia and long term hyperglycemia [Skyler, 2012]. Severe hypoglycemia is debilitat-

ing and rarely, associated with death. Prolonged hyperglycemia has been associated with a

higher risk cardiovascular complications, dyslipidemia, renal disease and diabetic ketoacido-

sis [Rawshani et al., 2017, Livingstone et al., 2015]. Faced with the difficult task of managing

this chronic condition and the prevalence of acute and longer term complications, individu-

als withT1D experience a sharp reduction in life expectancy of 11.1 years when comparedwith

normal healthy individuals [Livingstone et al., 2015]. The foundational goal of ther disease

management using exogenous insulin therapies is to achieve optimal glycemic control which

could lead to reductions in both long term and short term complications.
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1.2 Disease Pathogenesis

T1D has long been recognized as an autoimmune disorder resulting from the destruc-

tion of pancreatic β cells by T cells of the immune system [Skyler et al., 2016]. The progres-

sive loss of the β-cell mass is driven by various genetic and environmental factors [Campbell-

Thompson et al., 2015, Ferrannini et al., 2005], thatmanifests clinically as hyperglycemia. The

disease is most often diagnosed in individuals, usually presenting with a classic trio of symp-

toms (i.e., polydypsia, polyphagia, polyuria) alongside of overt hyperglycemia [Skyler et al.,

2016]. T1D is a polygenic disease, with disease heritability risk among familymembers [Noble

et al., 2010]. Recent research into the genetic influences on the triggering of islet autoimmu-

nity and disease progression has contributed to the increased understanding of the disease

heritability risk among family members [Törn et al., 2014, Stankov et al., 2013]. TheHuman

Leukocyte Antigen (HLA) complex, provides the greatest contribution (i.e., 50-60%) to the

overall genetic susceptibility of T1D [Cooper et al., 2008, Törn et al., 2014]. Approximately

50 additional genes individually contribute smaller effects on various aspects of the disease

pathogenesis [Cooper et al., 2008, Törn et al., 2014] including immune regulation[Aly et al.,

2006], modified viral responses[Colli et al., 2009] and environmental responses [Sosinowski

& Eisenbarth, 2013].
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Destruction of β cells as a result of the autoimmune response has been associated with

insulitis but the effect on α cells is still being defined [Burrack et al., 2017]. Development

of severe hypoglycemia in a minority of people with T1D has led to speculation that autoim-

mune reaction could be responsible [Farhy & McCall, 2015, Mukherjee et al., 2015] for the

destruction of the α cells. This remains an active area of research to both identify the reasons

for severe hypoglycemia and understanding the impact of the possible regulation breakdown

due to the destruction of the β cell mass [Farhy & McCall, 2015].

1.3 Normal Glucose Homeostasis

Evolutionary hunter-gatherer lifestyle determined the mechanisms regulating glu-

cose homeostasis in healthy humans [Drucker, 2007]. Physiological systems developed to

store energy when food was in abundance and provide the requisite amount of glucose dur-

ing periods of scarcity. With the goal of maintaining a relatively narrow range of circulating

glucose concentrations, insulin and glucagon are the key hormones that facilitate the proper

functioning of these mechanisms [Maggs et al., 2008]. Glucose fluxes are a result of the fol-

lowing primary mechanisms through which these hormones maintain near uniform glucose

concentration:
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• Glycogen Synthesis —Synthesis of the most readily available source of energy in both
the liver and skeletal muscle tissue

• Glycogenolysis — Breakdown of glycogen to provide glucose to the body

• Gluconeogenesis —Non-carbohydrate based glucose production from the liver

• Glucose Uptake —Uptake of glucose by skeletal muscle during high periods of glucose
utilization

• Glycolysis —Metabolism of glucose by adipose and muscle tissues

To understand the interplay between insulin and glucagon, three specific daily situations

are considered:

• Fasting state

• Fed state/ Post-prandial state

• Exercise state

The metabolic effects of each of these states help elucidate the complexity in managing

near normal glucose levels in individuals with T1D and lay the foundations of the objectives

and goals of this thesis.

Fasting State

Near uniform glucose levels are maintained during the fasting state by reducing insulin

concentrations while increasing glucagon concentrations. This insulin:glucagon ratio favors

increased hepatic glucose production through both glycogenolysis and gluconeogensis [Hei-

jboer et al., 2006, Drucker, 2007]. The glucose utilization across the body is reduced and the
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dependency on the non-glucose sources of energy is increased. During short overnight fasts,

the brain accounts for a majority of the glucose utilization. Glucagon increases the release of

glycogen from the liver tomaintain glucose levels, while also promoting the catabolic state re-

sulting in increased fat metabolism (gluconeogenesis). These metabolic adaptions optimally

maintain brain functions while limiting glucose utilization.

Fed state/Postprandial state

Postprandially, rising glucose levels result in an increase of the insulin concentrations

while limiting glucagon secretion. In the fed state, surplus food is converted into glycogen,

fat and protein. The increased insulin:glucagon ratio contributes to the disposal of enteral

or orally consumed glucose surplus by increasing the rate of glycogen synthesis and suppress-

ing hepatic glucose output. Insulin is an anabolic hormone and in the fed state, it increases

uptake of glucose by skeletal muscle and adipose tissue (increasing peripheral uptake) while

also increasing both protein and fat formation [Maggs et al., 2008, Drucker, 2007, Heijboer

et al., 2006].

Post prandial glucose excursions in healthy humans is primarily determined by two fac-

tors —the rate of insulin release from the pancreatic islets of Langerhans (β—cells) in re-

sponse to circulating glucose, and the sensitivity of the target tissues to insulin. The interplay

between these two components determines the overall physiological tolerance of the body to

glucose and its ability tomaintain glucose homeostasis within the normal physiological range.
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Insulin secretion from the β —cells responds, without delay, to any changes in glucose con-

centrationwithin the physiologic range. Thismaintains the glucose levels within the range of

70–150 mg/dL —euglycemia in healthy individuals [Skyler, 2012]. β—cells have the unique

ability to sense the glucose levels and control the release of insulin. There is a close correlation

between the rate of insulin secretion and glucose metabolism [Skyler, 2012]. Though insulin

and glucagon are the key players in the fed state, there are various other glucoregulatory hor-

mones such as ghrelin, glucagon like peptide-1 (GLP-1), etc., that are released in the fed state

in response to an oral glucose load [Skyler, 2012].

Exercise State

Exercise instigates both increased glucoseutilization andhepatic glucoseproduction [Coker

&Kjaer, 2005]. Glycogen stores in themuscle are the primary sources of fuel during the early

stages of exercise, while hepatic glycogenolysis supplies glucose during prolonged exercise.

The neuro-endocrine systems maintain relatively constant circulating glucose levels during

exercise [Camacho et al., 2005]. Hepatic glucose production is increased by the elevated se-

cretion of glucagon and the down-regulation of insulin [Ploug et al., 1984]. Outside of the

exercise state, insulin regulates glucose uptake in muscles, but during exercise, due to the

down regulation of insulin, this glucose uptake is up-regulated by increased translocation of

the glucose transporter isoform 4 (GLUT-4) [Camacho et al., 2005, Ploug et al., 1984].

Different modalities of exercise tend to produce different physiological responses [Loon
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et al., 2001]. In normal physiology, during aerobic exercise, carbohydrate is the preferred fuel

source, while short bursts of high intensity exercises, such as weightlifting or sprinting, elicit

release of muscle and hepatic glycogen stores through greater catecholamine response [Fahey

et al., 2012, Davey et al., 2013a]. Endogenous insulin secretion is also different during these

two types of exercise modalities, with a marked reduction during aerobic activities but no

significant change during high intensity interval training[Loon et al., 2001]. With all forms of

physical exercise, once activity is discontinued, the secretion of glucagon and catecholamines

rapidly decline, the levels of plasma insulin increases and euglycemia is maintained [Coker &

Kjaer, 2005].

In healthy individuals glucose homeostasis is maintained through a complex hormonal

network involving the liver, gut, pancreas, kidneys and the brain. Near-normal glucose lev-

els are maintained following food intake, intense physical activity and long periods of fast-

ing (overnight) [Skyler, 2012]. In normal physiology insulin secretion tends to lower glucose

levels, and glucagon in contrast increases glucose levels.Taking a systems perspective, near-

normal glucose levels are the natural steady state of the system and they are achieved rapidly

post any perturbations such as meals, physical activity or long fasting periods. In individuals

with T1D, this system is disrupted due to the destruction of the β—cells leading to impaired

glucose homeostasis.
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1.4 T1D - Glucose Control

T1D is the result of autoimmune destruction of the β—cells leading to complete insulin de-

ficiency resulting in hyperglycemia and ketoacidosis. Though the rest of the pancreas is rel-

atively preserved, the glucagon secretion from the α—cells is excessive, which accounts for

some of the hyperglycemia of the disease state[Skyler, 2012]. Type 2 diabetes (T2D), on the

other hand, is primarily due to insulin resistance or decreased insulin sensitivity and reduced

compensatory insulin secretion resulting in abnormally high fasting glucose values. Resis-

tance of insulin by many of the large organ bodies and tissues results in increased glucose

production and underutilization[Skyler, 2012, Groop et al., 1993].

1.4.1 Exogenous Insulin Replacement Therapy

Ever since the Nobel prize winning discovery of insulin in 1921, T1D went from being a

death sentence to a chronic condition[Bliss & Purkis, 1982], however, exogenous insulin re-

placement therapy does not provide optimal glycemic control. The findings of the Diabetes

Control and Complications Trial (DCCT), and the following Epidemiology of Diabetes In-

terventions and Complications (EDIC) recommended intensive insulin therapy as the stan-
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dard of care for this population[Control &Group, 1993, Nathan, 2005]. These seminal trials

provided unquestionable evidence of the importance of achieving optimal glycemic control,

critical for reducing the risk of long-term complications associated with T1D, particularly

retinopathy and nephropathy [Nathan, 2005]. Any improvement in glycemic control, as

measured by the decrease in the hemoglobin Ac (HbA1c) to the concentration below 7%, was

associated with similar declines in the relative risk of long-term complications. HbA1c, which

is an estimated measure of the mean plasma glucose concentration over a 120 day period [for

Drugs & in Health, 2015]. Studies in individuals with type 2 diabetes have demonstrated

that achieving near normal HbA1c as soon as the disease is diagnosed has a protective influ-

ence against the development or progression of complications[Holman et al., 2008]. Taking

in aggregate early and optimal glycemic control is necessary to maintain a complication free

life in these individuals. These long term studies also showed that the major limitation of

intensive insulin therapy is hypoglycemia. Hypoglycemia still remains themain side-effect of

insulin therapy and a barrier to reaching optimal glycemic control [Cryer, 2014].

People with T1D require insulin therapy for survival. The goal of insulin therapy is to

match the normal pattern of insulin secretion as closely as possible to optimize glycemic con-

trol while limiting hypoglycemia [Levy, 2017]. There are twomain approaches that are avail-

able to simulate the normal healthy insulin secretion.
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Figure 1.1: T1D is a self managed condition. T1D requires intensive self-management to avoid acute and long-term

health complications. Day to day care is managed by the individual with T1D and not by the physician. In the above

graphic the amount of time diabetes care that is managed by the individual versus the time spent receiving the care

from the physician are shown.

The first approach is continuous subcutaneous insulin infusion (CSII) via an electro-

mechanical insulin pump which constantly infuses fast-acting insulin to mimic basal secre-

tion, along with self-selected insulin boluses for meals, pre-meal glucose values and antici-

pated activity. Basal insulin delivery through insulin pump can be modified in short time

intervals for varying insulin needs through the course of day or night [Levy, 2017].

The alternative therapeutic option available for individuals with T1D is using multiple

daily injections (MDI). A combination of long-acting insulin is delivered to provide basal in-

sulin with separate injections of rapid-acting insulin for meals (prandial doses). This method

relies on ≥ 4 injections daily to provide the necessary insulin therapy. These injections are
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currently available inmany pre-filled injectable pens, as this form of intensive insulin therapy

—MDI —is widely used across the world [Levy, 2017].

Basal-bolustherapy is the broad termunderwhich these two approaches of insulin deliv-

ery approaches are placed. Basal-bolus therapy, along with frequent monitoring of glucose is

termed, open loop control or self-management of T1D.Open loop control involves frequent

insulindose adjustments,monitoring glucose levels regularly andhypoglycemiamanagement.

These tasks are challenging, leading to poor overall compliance with many people with T1D

struggling to achieve glycemic target ofHbA1c <7% [Levy, 2017]. T1D is a predominantly self-

managed condition with individuals taking dosage decisions throughout the day. Figure 1.1

shows how much of the time an average person with T1D visits the physician taking care of

his disease relative the time spent self-managing the condition.

Glycemic outcomes have significantly improved, but achievement of normal glucose lev-

els is still an elusive goal for a majority of people with T1D[Cryer, 2014]. Striving to achieve

euglycemia is associated with an increased risk of hypoglycemia. Despite many advances in

insulin therapies and devices, hypoglycemia still remains the main side-effect of insulin ther-

apy and barrier to achieving glycemic targets [Cryer, 2014]. In the past decade, with the goal

of limiting hypoglycemia while maintaining euglycemia, automated insulin delivery systems
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have been under development and will be discussed in section 1.4.3.

1.4.2 Altered Glucose Homeostasis

Herewe explore the same specific daily situations considered above, tounderstand the counter-

regulatory deficiencies observed in this disease state with the current self-managed care.

Fasting State

As individualswithT1D rely on exogenous insulin delivery, during overnight, when there

is a long period between meals, there could be a situation of either hyperinsulinemia or hy-

poinsulinemia. If the prevailing insulin levels are higher, a sustained stimulus for glucose

uptake by various tissues in the body is in effect while suppressing both gluconeogenesis and

glucagon secretion, resulting in nocturnal hypoglycemia. Independent of hyperinsulinemia,

long standing duration of T1D diminishes the counter-regulatory response to hypoglycemia.

In the case of low levels of circulating insulin concentration, hepatic glucose production con-

tinues unabated while also lowering glucose uptake by skeletal muscles, resulting in hyper-

glycemia.

Fed State

Rising glucose concentrations after a meal are not ideally matched by the subcutaneous

22



delivery of insulin, due to delay of both insulin absorption and insulin action. Thismismatch

creates delayed glucose utilization in the individuals with T1D and results in hyperglycemia

immediately following large meals. The carbohydrate content of the meals is the main deter-

minant of the post-prandial glycemic excursion. If the prevailing insulin levels continue to

be higher after meals, this could precipitate into hypoglycemia.

Exercise State

During exercise, circulating insulin levels couldpotentially increase due to increasedblood

flow and absorption of the injected insulin residing in subcutaneous depots. As the ratio of

the circulating insulin:glucagon levels are not responsive to changes in glucose in individuals

with T1D at the start of exercise, the increase in glucose utilization is not adequately sup-

ported by the hepatic glucose production. During prolonged (≈ 30-45 min) sub-maximal

exercise, the combination of inadequate counter-regulatory response to exercise and elevated

plasma insulin levels may lead to hypoglycemia. The rapidity of the glucose flux during aer-

obic exercise causes many individuals with T1D to experience hypoglycemia. Short periods

of intense exercise tend to produce a greater counter-regulatory response through the cate-

cholamine (adrenaline and noradrenaline) secretion. This tends to result in either a sharp

hyperglycemic excursion or limited change in glucose levels. Thus, exercise state shows the

functional limitations of the current insulin therapies in individuals with T1D.
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1.4.3 Advances in Glycemic control

Self-treatmentbehavior amplifies the imperfect altered glucosehomeostasis. Self-treatment

behaviors such as infrequent monitoring of blood glucose, mistiming of boluses or missing

of meals could lead to large fluctuations in glucose levels. The daily situations listed above

can lead to dangerous situations if there are repeated instances of insulin mistiming or an

imbalance of basal or bolus doses, missing meals or inappropriate meal doses, and exercise.

Taking a systems perspective, the risk of hypoglycemia or hyperglycemia is the culmination

of an altered complex metabolic system, that is constantly perturbed, while being regulated

using a flawed externalmethodology [Cryer, 2016,Monnier et al., 2016]. This causes an asym-

metric risk in people with T1D, a function representing this risk is shown in Figure 1.2. Op-

timization of glycemic control without increasing the risk of hypoglycemia is goal of clini-

cal care[Monnier et al., 2016]. Higher frequency of hypoglycemia leads to impaired hypo-

glycemia unawareness and further reduced counter-regulatory response [Cryer, 2016].

SCYLLAANDCHARYBDIS are two fabled seamonsters in Greekmythology described by

Homer in The Odyssey. They were located close enough to each other that they posed an

inescapable threat to passing sailors, includingOdysseus. Avoiding Charybdis meant passing

too close to Scylla and vice versa. Substitute Scylla for hypoglycemia andCharybdis for hyper-
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Figure 1.2: The asymmetric risk function that is associated with poor glucose regulation; the risk sharply increases

with lower blood glucose levels in hypoglycemia, while only increasing gradually with higher levels of glucose in hy-

perglycemia with a zero risk point set at 140mg/dL. The green zone on the glucose color bar indicates euglycemia.

Adapted [Kovatchev et al., 1998, 2000].
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glycemia. Individuals with T1D experience a constant roller coaster between hypoglycemia

and hyperglycemia. The storms (constant fluctuations of glucose) require the strength of

Odysseus to sail safely toward a complication free life. There are two distinct ways to support

individuals with glycemic control. One of those strategies relies on having a mathematical al-

gorithm take control of dosing choices of insulin while continuously monitoring plasma glu-

cose values. The alternative is providing a decision support system that would alleviate some

of the routine challenges faced by these individuals who are experienced with self-managing

this condition. The goal of this thesis is to contribute various models that would form the

backbone of this decision support framework. As discussed earlier in section: section 1.4.2,

there are three scenarios (fed, fasting and exercise state) in which these models would have

enormous impact, the two states addressed in this thesis are the fasting state and exercise state.

GlucoseMonitoring- only in the last ten years have continuous glucose monitoring sys-

tems (CGM)become available to peoplewithT1D[Garg et al., 2006]. CurrentCGMsystems

use a thin wire that is inserted into the subcutaneous space to measure interstitial glucose lev-

els via the glucose-oxidase reaction. These devices need very few calibrations and accurately

report glucose levels within the same error levels as expected from self-monitoring using a

blood glucose meter (SMBG). The CGM systems provide a readout every five minutes, with

an inherent delay from the plasma glucose concentration ranging between≈ 5 to 15 minutes
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[Keenan et al., 2009]. CGM data provides a complete picture of the current glucose values

within the context of the previous few hours of data. Augmenting the sensor data with an

insulin pump dramatically reduced the HbA1c levels when compared with then standard of

care -multiple daily injection therapy, but wearing the sensor, calibrating the sensor and ser-

vicing the alarmswas an additional burden on the participants[Bergenstal et al., 2011]. Sensor

glucose data provides an added benefit to warn the wearer of impending hypoglycemia or hy-

perglycemia. The glucose data alone tends to be overwhelming to many individuals with

T1D. However, this data coupled with action is what is beneficial to these individuals. A de-

cision support system would use the data from the CGM and suggest the appropriate action

as needed for the given situation. Providing a clear and decisive action to a glucose level is one

of the objectives of this dissertation.

Artificial Pancreas (AP) is the current embodiment of many years of research and in-

cremental improvements in the components to provide a true replacement of the endocrine

functionality lost in individuals with T1D [Thabit & Hovorka, 2016, Kowalski, 2015]. AP

systems combine sensor glucose data from CGMs, with mathematical algorithms, to com-

mand drug delivery pumps to make automated adjustments to insulin/glucagon delivery in

people with T1D. AP systems tend to come in many flavors; some provide partly (hybrid

close loop) or fully automated delivery of insulin (AID systems) alone (single hormone) and
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some systems provide automated delivery of glucagon (dual hormone) to prevent or treat

hypoglycemia when decreasing or suspending insulin delivery alone is insufficient. These sys-

tems provide the synergy required to improve glycemic control while reducing the burden of

self-management. U.S. Food and Drug Administration’s (FDA) decision to make the devel-

opment of closed-loop systems a priority have resulted in rapid advances in this field resulting

in the first commercial closed-loop device recently being approved by the FDA in September

2016 [Voelker, 2016b].

Based on the outcomes of a recently published meta-analysis [Weisman et al., 2017], cur-

rent hybrid control systems should achieve at least 70% of sensor glucose values between 70

and 180 mg/dL with <4% of values <70 mg/dL and a mean glucose of≈155 mg/dL, equiva-

lent to an estimatedHbA1cof 7.0%. These hybridAP systems cannot completely eliminate hy-

poglycemia. Dual hormoneAP systemsprovide the only alternative currently in research that

could lead to the complete elimination of hypoglycemia [Jacobs et al., 2016, 2014, El Youssef

et al., 2011]. A schematic of one such system is displayed in Figure 1.3.

1.5 Hypoglycemia

Definition of hypoglycemia American Diabetes Association (ADA) proposed a bio-

chemical definition of hypoglycemia as a plasma glucose of ≤70mg/dL, with this level de-
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termined based on the secretion of glucagon and adrenaline that occurs around a plasma glu-

cose level of 70mg/dL in healthy individuals [Association et al., 2005]. There are three broad

categories of hypoglycemia based on the severity of the event.

Severe hypoglycemia is defined as an event requiring assistance from another

person to treat the hypoglycemic episode. This situation implies that the individual’s

plasma glucose has fallen too low and has impaired cognitive functionality. Sometimes

these severe hypoglycemic episodes could cause loss of consciousness, seizures or coma

and often require glucagon rescue treatment from the assistant. In people with T1D,

severe hypoglycemic episodes are thought to occur at rates between ≈ 115 —320 per

100 person years [Cryer, 2016, 2014] .

Mild hypoglycemia is defined as an episode where the individual with T1D ex-

periences symptoms suggestive of hypoglycemia and is able to successfully self-treat

the episode. Additionally a sub category of this condition exists known as moderate

hypoglycemia in which the individual is aware of the condition and can self-treat but

experiences severe disruption to the current activity. Both these types of episodes can

also be categorized as Symptomatic hypoglycemia. The rates of mild hypoglycemia vary

widely in this populationwith episodes being recorded at the rate of one or two aweek
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[Diabetes Research in Children Network (DirecNet) Study Group, 2007].

Asymptomatic hypoglycemia is defined as an episode in which the individual

with T1D measures a low blood glucose value but does not experience any of the asso-

ciated symptoms. These are situations when the individual coincidentally checked the

blood glucose values and they were lower than anticipated. Repeated such episodes

could be described as hypoglycemia unawareness.

Causes of hypoglycemia. As described earlier in section 1.4.1, the current insulin thera-

pies are an imprecise way to manage people with T1D. Pharmacokinetic/pharmacodynamic

(PK/PD) rates of the current formulations of insulins do not mimic that of human insulin

or insulin that is already injected in the body does not adequately respond to the changes

in plasma blood glucose levels [Cryer, 2016]. Hypoglycemia is the imbalance between glu-

cose utilization and the amount of glucose generated through digestion and hepatic glucose

production [Cryer, 2016].
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Causes of hypoglycemia in T1D

• Inappropriate insulin injection —e.g. excessive insulin dose, timing issue, wrong in-
sulin formulation.

• Inadequate carbohydrate intake —e.g. missed meal, bed time snack, long fasting peri-
ods such as overnight fast.

• Increased glucose utilization —e.g. exercise.

• Diminished endogenous glucose production—e.g. inappropriate or excessive alcohol
consumption.

• Altered insulin sensitivity —e.g. post exercise periods, weight loss, diet modifications.

• Decrease in insulin clearance —e.g. inadequate renal function.

People with long standing T1D tend to lose to the ability to release glucagon in re-

sponse to hypoglycemia and also inevitably lose their ability to respondwith adrenaline, lead-

ing to increased risk ofmore protracted hypoglycemic episodes [Cryer, 2016]. Repeated expo-

sure to hypoglycemic episodes attenuates the responses and is often associated with impaired

awareness, culminating inHypoglycemia-AssociatedAutonomicFailure (HAAF) [Cryer, 2016].

Hypoglycemia unawareness occurs in roughly 25% of patients with longstanding T1D and

they have an increased risk of severe hypoglycemia (25 fold increase) [Gold et al., 1994, Frier

et al., 1988]. Antecedent hypoglycemia, sleep and exercise cause defective glucose counter-
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regulationby the attenuationof epinephrine responses tohypoglycemia. Everyhypoglycemic

episode induces a response by the body to restore normal blood glucose responses to the

brain. This response creates a pre-conditioning response by the neurons for future hypo-

glycemic episodes and elicits preparation of these cells to utilize alternative fuel sources to

respond to low blood glucose levels. In individuals with T1D, as the hypoglycemia occurs

due to ”non-physiological” situations, higher insulin levels, and limited glucagon response,

the counter-regulatory responses are impaired and the access to alternative fuels is also sup-

pressed. After each subsequent hypoglycemic episode, the counter-regulatory responses are

further depleted and the reaction occurs at a lower glucose level. As antecedent hypoglycemia

has an important role in the pathogenesis of HAAF, rigorous avoidance of hypoglycemia is

crucial to avoid the vicious recurrent iatrogenic hypoglycemia cycle.

1.5.1 Nocturnal Hypoglycemia

Nocturnal hypoglycemia is very common in people with T1D [Allen & Frier, 2003a, Group

et al., 2010]. Many peoplewithT1D experience nocturnal hypoglycemia once or twiceweekly

[Group et al., 2010]. Even in the DCCT study, 43% of episodes of severe hypoglycemia

occurred between midnight and 08:00h [Bode et al., 1996, Group et al., 1991], and 55% of

episodes occurred when individuals were asleep [Group et al., 1991]. Many asymptomatic

episodes of nocturnal hypoglycemia are not reported. Deep sleep tends to attenuate the
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counter-regulatory responses tohypoglycemia resulting in longprotractedhypoglycemic episodes

[Group et al., 2010]. The potential for nocturnal hypoglycemia creates a sense of anxiety and

fear among many of the individuals with T1D [Fidler et al., 2011]. To combat the risk of

nocturnal hypoglycemiamanymaintain higher blood glucose concentrations at bedtime and

tend to consume bed time snacks. During sleep there is attenuation of the sympathoadrenal

response to hypoglycemia and as a result people with T1D are not able to wake up to a hypo-

glycemic event without the aid of an alert system. Furthermore, the dead-in-bed syndrome

accounts for approximately 6% of all deaths in people with T1D under the age of 40 years,

which is probably related to severe nocturnal hypoglycemia [Sovik & Thordarson, 1999].
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Figure 1.4: Schematic representation of the putativemechanisms underlying sleep curtailment and T1D.

Prevailing characteristics that lead to the development of nocturnal hy-

poglycemia [Cryer, 2016, Chow & Heller, 2014]

• Insulin stacking, imprudent insulin dosage or incorrect type of insulin

• Inadequate carbohydrate consumption during dinner or long duration betweenmeals

• Excessive alcohol consumption before sleep leading to diminished hepatic glucose pro-
duction

• Increased exercise activity during the day leading to increased glucose utilization to
replenish depleted glycogen stores

• Diminished counter-regulatory responses due to antecedent hypoglycemic episodes or
sleep

Asnocturnalhypoglycemiahasbeen associatedwithpoorquality of life, andoneof the
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objectives of this thesis was to understand how much sleep is lost during the night as a result

of nocturnal hypoglycemia, identify the risk of nocturnal hypoglycemia and subsequent sleep

loss due to different types of exercise.

Interaction of sleep and T1D. Poor sleep is endemic in our society with more than

30% of the population not sleeping adequately[Larcher et al., 2015]. Specifically, people with

T1D have an unique relationship with both poor sleep the disease burden could alter sleep

duration, and short sleep duration, in turn, could impact disease outcomes. In small con-

trolled studies, adults with T1D were shown to have an altered neuroendocrine sleep archi-

tecture [Jauch-Chara et al., 2008] andmoderate sleep deprivationwas shown to affect insulin

sensitivity [Donga et al., 2010a]. People with T1D with poor glycemic control, represented

by a higher HbA1c, were objectively determined to have short sleep duration (<6.5 hr per

night) compared with patients who slept >6.5 hr a night; poor glycemic control leads to fre-

quent nocturnal hypoglycemia, which in turn leads to sleep disturbances [Borel et al., 2013a].

Schematic in Figure 1.4 shows the complicated underlying mechanisms that exacerbate T1D

due to sleep quality. Little is known about how the variations in daily sleep quality patterns

affect insulin sensitivity or glycemic control in people with T1D. An exploratory research ob-

jective of this thesis was to demonstrate that day to day variations in sleep can lead to changes

in glycemic control.
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1.5.2 Exercise Related Hypoglycemia

Exercise related hypoglycemia is mainly due to the inability of the individuals with T1D to

adequately modulate the exogenous insulin concentrations prior to, and during exercise. As

described earlier, in the section 1.4.2, exercise hypoglycemia also occurs due to the increased

circulation of the subcutaneous insulin depot and the lack of adequate counter-regulatory

response to attenuate the drop in glucose. The imbalance between the glucose utilization

and the glucose production result in either a symptomatic or asymptomatic hypoglycemic

episode. In the Table 1.1, factors that influence hypoglycemia are listed.

Physical exercise protects against a number of disease risks, across all ages in the general

healthy population [Colberg et al., 2016]. Though exercise is highly recommended to indi-

viduals with T1D, the altered metabolic state of exercise and the lack of endogenous counter-

regulatory response put the longer term cardiovascular benefits at odds with the short term

hypoglycemic risk[Colberg et al., 2016, Chu et al., 2011a]. Majority of the individuals with

T1D fail to adhere to exercise recommendations and remain less active than their peers with-

out diabetes [Riddell et al., 2017]. Besides the usual barriers to exercise, people with T1D list

fear of hypoglycemia, and the difficulty in maintaining normal glucose levels after exercise, as

additional hurdles preventing them from engaging in exercise activities [Yardley & Colberg,

2017, Colberg et al., 2016].
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Table 1.1: Factors that can in uence the changes in glycemic control during exercisea

Hypoglycemia Euglycemia Hyperglycemia

No prior alterations to in-
sulin dosage

Adequate adjustment to in-
sulin dosage before the last
meal and hours before the
start of exercise

Complete reduction or elim-
ination of insulin leading to
ketoacidosis

Extended aerobic activity
without carbohydrate sup-
plementation or insulin
reduction

Requisite carbohydrate in-
take prior to and during ac-
tivity

Long durations of insulin
dose elimination

New activity regiment or in-
adequate training

Mild and moderate activity
(≤ 55-60% maximal oxygen
consumption)

Vigorous activity (≥ 80%
maximal oxygen consump-
tion)

Defective counter-
regulatory response
(HAAF)

No HAAF Repeated intermittent
bouts of high intensity
exercise

Symptoms of hypoglycemia
reduced due to exercise

Early detection of symptoms Excessive carbohydrate con-
sumption during or after the
exercise

a Adapted from [Riddell et al., 2017]
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Table 1.2: Bene ts and Risk associated with Exercise in individuals with T1Da

Active Sedentary

Body Composition ↑ ↓

Glycemic Control ↑ / ↓ ↓

Hypoglycemic events ↓ ≃

Hyperglycemic episodes ↑ ≃ ↓

Total daily insulin usage ↑ ↓

Insulin sensitivity ↑ ↓

Blood lipid profile ↑ ↓

Cardiovascular fitness ↑ ↓

Inflammation ↑ ≃ / ↓
≃ No variation
↑ Improvement
↓ Deterioration

a Adapted from [Colberg et al., 2016]
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Individuals with T1Dwho engage in regular exercise experience lower frequencies of dia-

betic complications and a lower cardiovascular risk profile [Riddell et al., 2017]. In Table 1.2,

the benefits and risks associated with exercise in this population are listed. There are a num-

ber of unique challenges faced by individuals withT1D at various stages around exercise: they

need to prepare for exercise bymodifying insulin levels well in advance, taking additional car-

bohydrates at the start of exercise, and/or during while closely monitoring the glucose levels

to prevent any hypoglycemia; and after each session of exercise, they need to be vigilant to

the amplified exercise mediated hypoglycemic risk. Post-exercise related hypoglycemia could

also lead to HAAF.

Although clinical guidelines for reducing this hypoglycemic risk exist, they arequite generic

in nature and not personalized to the individual. General recommendations only consid-

ered a single aspect of exercise such as type of exercise, duration, carbohydrate intake, insulin

dosage, glucose levels, and intensity. Carbohydrate intake recommendations during exercise

are 30 - 60 g of carbohydrates per hour of exercise [Francescato et al., 2015a] but this carbohy-

drate intake does not take the prevailing glucose levels neither exercise intensity nor suggest an

appropriate insulin dosage. Although, guidelines have been improved to include suggested

carbohydrate intake suggestions before, during and after exercise, these suggestions are not

individualized [MacKnight et al., 2009, Gallen et al., 2011]. Tailoring advice to an individual

should be provided on each of following dimensions

• Mode and Type of insulin delivery
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Figure 1.5: Where can decision support be provided. Each arrow indicates, the location where the individual with T1D

has tomake a decision about their care. Decision support system could provide dosage suggestions or the amount

of carbohydrates to be consumed at different points along the day/night. CHO - Carbohydrates, here refers to the

suggestion of carbohydrate/snack ingestion.

• Timing of exercise relative to the meal intake

• Timing of exercise relative to insulin bolus

• Current glucose levels at the start of exercise

• Antecedent Hypoglycemia

• Duration and type of exercise

• Intensity of exercise

With these limitation of the guidelines in mind, we approach to solve this challenge by

creating a holistic mathematical model based approach. A research objective of this thesis is

to provide a model based system that is able to predict hypoglycemia prior to the start of the

exercise event.
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1.6 Objectives

In this section the research objective and goals are listed, along with how those goals were

achieved, within the context of the clinical study conducted. One of the focus of this disserta-

tion is to understand the impact of exercise on sleep and glycemic control in this population.

Firstly, to determine the impact sleep duration during the night following different modali-

ties of exercise bouts. Secondly, to evaluate the impact of different modalities of exercise on

glycemic control during the 24 hr. after each exercise bout. One of the goals of this disserta-

tion is to provide individualswithT1D tools thatwould support various dosing decisions and

improve long term blood glucose control. As described earlier, the altered glucose homeosta-

sis in the fasted state (overnight) and exercise states is exacerbated by inappropriate insulin

dosage choices. To achieve this goal, we conducted a clinical study to identify the challenges

with exercise and nocturnal hypoglycemia. Data collected during the study enabled in the

design and development of machine learning algorithms to provide the necessary decision

support to these unique challenges. In the schematic Figure 1.5 an example of how a decision

support system could function is shown.

• Decision support could be provided in the time before exercise to help the individual
ascertain the appropriate insulin dosage.

• At the start of exercise, the risks associated with the bout could be assessed and eval-
uated based on the intensity of upcoming exercise, amount of insulin present in the
body and various anthropometric features. This risk and the associated action is per-
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sonalized to the individual and the context in which the bout of exercise is being un-
dertaken.

• Based on the glycemic outcome during the exercise, insulin dosing suggestions could
be made by the decision support system.

• Due to the elevated risk of nocturnal hypoglycemia after an exercise bout, both in-
sulin and carbohydrate recommendations could be made to limit of this undesirable
outcome.

The objectives of this dissertation include the following:

1. Determine the effect of differentmodalities of exercise on sleep duration in adults with
type 1 diabetes

2. Determine the effect of differentmodalities of exercise (Aerobic exercise andResistance
training) on glycemic control in adults with type 1 diabetes

3. Develop a new algorithm that can be used to predict hypoglycemia during aerobic ex-
ercise in adults with type 1 Diabetes

4. Develop a new algorithm that can be used to predict nocturnal hypoglycemia predic-
tion in adults with type 1 diabetes

1.7 Chapter Outline

To accomplish the objective of creating a model based decision support system, a compre-

hensive pilot clinical study was conducted. The study protocol is provided in the chapter 9.

The pilot study was named: A randomized, three-way, cross-over study to assess the impact
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of nocturnal hypoglycemia on sleep in adults with Type 1 diabetes. After 1 week of run-in, 10

adults with T1D, who self-managed their glucose levels with their own insulin pump, were

followed for 3 additional weeks, and each of those weeks were randomized to aerobic, resis-

tance or no exercise (control). During each exercise week, participants completed two mon-

itored 45 minute exercise sessions at OHSU. To accomplish the goal of comprehensive data

collection, participants were given a continuous glucose monitor, an activity monitor and a

custom smart-phone app to capture all themeals consumed during the study. The data from

this study forms the basis of the models developed to provide decision support.

Chapter 2: We describe the challenges associated with exercise. On the night following

exercise, we show that subjects in the study experienced significant amount of sleep loss after

aerobic exercise, but not after resistance training. We also quantified the increased odds of

experiencing nocturnal hypoglycemia after a bout of either resistance or aerobic exercise.

Chapter 3: Prevailing epidemiological & experimental evidence has shown that physical ex-

ercise is beneficial in reducing long termcomplications in adultswithT1D.Herewe strengthen

this premise by showing that resistance training, as opposed to aerobic exercise, also provides

favorable glycemic outcomes.
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Chapter 4: Detecting aerobic exercise as early as possible is crucial in the context of AP

systems to prevent exercise related hypoglycemia. In this chapter, we describe how an exercise

detection system was created, tested and validated in a clinical study.

Chapter 5: Wrist-based consumer wearable devices have the ability to measure heart rate

and intensity of activity. In this chapter we describe the accuracy of these devices and the

challenges associated with using these devices in the context of AP systems.

Chapter 6: In this chapter, multiple classification models are presented to predict exercise

related hypoglycemia. A simple heuristic model, that could be used by individuals with T1D,

and a complicated machine model, that could be used by both AP systems and decision sup-

port systems, is validated using clinical data.

Chapter 7: In this chapter, we present a data-driven approach to predict nocturnal hypo-

glycemia at bed time. Using amachine learning approachwedevelop and testmultiple classifi-

cationmodels. The goal of this approach was to proactively prevent nocturnal hypoglycemia.

Chapter 8: In this concluding chapter, exploratory outcomes from the clinical study and

the future directions of this research are presented.

45



1.8 Dissertation Contributions

This thesis presents several contributions to the area of research that are at the intersection of

T1D, exercise, sleep and disease management. These contributions include two basic science

contributions, one device validation and three engineering contributions. These contribu-

tions are discussed in more detail below.

1.8.1 Basic Science Contributions:

In Chapter 2, we present the novel outcomes from the clinical study on the impact of ex-

ercise on sleep in adults with T1D. We showed that on the nights after aerobic exercise in-

dividuals with T1D experienced significant sleep disruption leading to an average sleep loss

of 70 minutes. The average sleep loss after resistance training was more variable with an av-

erage sleep loss of only 27 minutes. The findings from this study clearly demonstrated the

increased likelihood of nocturnal hypoglycemia after exercise. This work has been published

in the journal—Diabetes, Obesity &Metabolism -Diabetes, Obesity &Metabolism, Volume

20, Issue 2, pp. 443-447.

In Chapter 3, we show that exercise interventions in adults with T1D could have a posi-
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tive effect on the glycemic control. We show that there is a significant improvement in the

time in range after resistance training but not after aerobic exercise. The improvement in

the time in range was 14% higher during the 24 hr. after resistance training when compared

with days following no exercise. We also showed that the overall energy consumption after

either type of exercise is significantly higher than when there is no explicit exercise done by

the subjects. We also demonstrated using a random-effectsmodel that even after adjusting for

the increased energy consumption the benefits of resistance training on glycemic control are

maintained. In the past other groups, have speculated that the reason for the lack of improve-

ment in glycemic control after aerobic exercise interventions could be the glycemic variability

associated with increased carbohydrate consumption. In this work, we showed that due to

increased carbohydrate ingestion after exercise and relative imbalance in the insulin dosage

patterns after exercise, the benefits to glycemic control are diminished. This work has been

published in the journal —Canadian Journal of Diabetes. - Canadian Journal of Diabetes,

August, 2018. https://doi.org/10.1016/j.jcjd.2018.08.193.

1.8.2 Device Validation Contributions:

In Chapter 5, we measured in a multi-site clinical study the accuracy of both heart rate

and energy expenditure for two common wrist-worn devices during dynamic activities. We
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showed that both the Fitbit device and the Garmin device were reasonably accurate at mea-

suring heart rate with an overall negative bias. The energy expenditure estimates were found

to correlate poorly with indirect calorimetry. This work extended the knowledge in the area

by validating these devices in non-steady state activities such as e.g., resistance exercises and

high intensity interval training. We demonstrated that these devices perform poorly when

there is a lack of repetitive wrist motions. We also showed the importance of indicating the

onset of activity. This work has been published in the journal —Journal of Medical Inter-

net Research (JMIR mHealth and uHealth). JMIR mHealth and uHealth, March,2018.

https://doi.org/10.2196/10338.

1.8.3 Engineering Contributions:

In Chapter 4, we present an extension of a validated energy expenditure algorithm to be

applied for exercise detection in the context of an artificial pancreas system. Early detection of

exercise and appropriate control system response is an ongoing area of research. We extended

the energy estimation algorithm developed and validated in adolescents using older sensors

to adults using the current generation of sensors. We identified the threshold for detection of

exercise and validated that this identified threshold is appropriate for use with the context of

artificial pancreas systems. In a recently concluded clinical study, the implementation of this
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adapted algorithm successfully detected 95% of the exercise events[Castle et al., 2018a].

In Chapter 6, we present two separate models that could be used to predict hypoglycemia

at start of exercise. While, other groups have identified the risk of hypoglycemia during ex-

ercise, here we present an approach that identifies the risk of hypoglycemia at the start of

exercise using a combination of glucose and activity inputs. This combined with the early

detection of exercise presented in Chapter 4, could used to prevent exercise induced hypo-

glycemia in adults with T1D. We also present a simple heuristic based approach to predict

hypoglycemia related to aerobic exercise. This simple model was able to achieve an accuracy

of 80% at identifying hypoglycemia. The complex machine learning model-random forest

model that was developed using multiple inputs can be used in both artificial pancreas sys-

tems and automated decision support tools. This model was developed and validated using

clinical data collected from multiple studies. This model achieved an accuracy of 87% in the

validation data set. This tool has the potential for reducing the risk of hypoglycemia due to

exercise and could lead to increased adoption of an active lifestyle bymany people living with

T1D. This work has been prepared for publication in Diabetes Technology & Therapeutics.

In Chapter 7, a classifier to detect if an individual with T1D would experience nocturnal

hypoglycemia during sleep is presented. Multiple classificationmodels were built to ascertain
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the risk associated with experiencing a nocturnal hypoglycemic event. The best performing

machine learning algorithm- gradient boosted machine was developed and validated using

the data collected as part of this thesis. Nocturnal hypoglycemia can be detected using cur-

rent continuous glucose monitoring technology, however the alert happens at the time of

hypoglycemia, and the person is oftentimes not awakened by the alert. The work presented

here advances the detection of the hypoglycemic event to before the individual is asleep. This

approach could be used potentially in the context of decision support systems to advise indi-

viduals with T1D about the appropriate course of action at bed time.
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To trace something unknown back to something known

is alleviating, soothing, gratifying and gives moreover a

feeling of power. Danger, disquiet, anxiety attend the

unknown—the first instinct is to eliminate these distress-

ing states. First principle: any explanation is better than

none…The cause-creating drive is thus conditioned and ex-

cited by the feeling of fear…

Friedrich Nietzsche,

Twilight of the Idols and The Anti-Christ 2
The effect of exercise on sleep in adults with

type 1 diabetes

Highlighted in this paper is one the significant challenges associatedwith exercise in adults

with Type 1 diabetes. Post exercise nocturnal hypoglycemia tends to occur during the night

after exercise and in this paperwe showed that on average 70minutes of sleep loss is associated

with aerobic exercise. We also show that the odds of nocturnal hypoglycemia occurring on
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nights after either aerobic or resistance exercise are much higher than previously reported.

Chapter summary

• Adults with T1D on average experience 70 minutes of sleep loss after aerobic exercise

• Sleep loss after resistance exercise is more variable with an average sleep loss of only 27
minutes

• Odds of nocturnal hypoglycemia after aerobic exercise is 5.4 times than on nights fol-
lowing no structured exercise.

• Resistance exercise is associated with 7 times higher odds of experiencing nocturnal
hypoglycemia

This work was originally published in 2018 by

Diabetes, Obesity & Metabolism, Volume 20, Issue 2, pp. 443-447

Reprinted with permission

2.1 Abstract

The aim of this pilot study was to investigate the effect of exercise on sleep and nocturnal

hypoglycaemia in adults with type 1 diabetes (T1D). In a 3-week crossover trial, 10 adults with

T1D were randomized to perform aerobic, resistance or no exercise. During each exercise
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week, participants completed 2 separate 45-minutes exercise sessions at an academic medical

center. Participants returnedhome andwore a continuous glucosemonitor and awrist-based

activity monitor to estimate sleep duration. Participants on average lost 70(±49) minutes of

sleep (P= .0015) on nights following aerobic exercise and 27(±78) minutes (P=.3) following

resistance exercise relative to control nights. The odds ratio with confidence intervals of noc-

turnal hypoglycaemia occurring on nights following aerobic and resistance exercise was 5.4

(1.3, 27.2) and 7.0 (1.7, 37.3), respectively. Aerobic exercise can cause sleep loss in T1D possi-

bly from increased hypoglycaemia.

2.2 Introduction

Regular structured physical activity (PA) in adults with type 1 diabetes (T1D) provides phys-

iological and psychological benefits including reduction in macrovascular complications, im-

provement in lipid profiles, increased lean body mass, and enhanced self-esteem[Chu et al.,

2011b]. However, PA is associated with an increased risk of hypoglycaemia that may occur

during, shortly after or even many hours after PA, and the risk of nocturnal hypoglycaemia

can persist for several days[DiabetesResearch inChildrenNetwork (DirecNet) StudyGroup,

2007,McMahon et al., 2007,Wilson et al., 2015]. The risk of nocturnal hypoglycaemia ranges

from 14% to as high as 56% in children and adults[Allen& Frier, 2003b]. Nocturnal hypogly-

caemia increases anxiety levels and is associatedwith a negative effect on the quality of life due
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to its effect on sleepquality andquantity[Allen&Frier, 2003b,Brod et al., 2013a]. While prior

groups have related PA to increased nocturnal hypoglycaemia, no-one has yet quantified the

amount of sleep loss either due to nocturnal hypoglycaemia or due to the increased risk of

nocturnal hypoglycaemia on nights following different types of exercise. While exercise has

been shown to increase sleep duration in people without type 1 diabetes[Youngstedt, 2005],

the effect of exercise in people with T1D is unknown. The purpose of the current study was

to examine the effect of late afternoon PA on nocturnal hypoglycaemia and sleep duration.

We hypothesized that there would be increased nocturnal hypoglycaemia and related sleep

loss after aerobic exercise and also after resistance exercise relative to nights following control

days of no structured PA.

2.3 Methods

In this study, participants carried wearable glucose sensors, actigraphy sensors, their own in-

sulin pump, and a custom-built food-tracking Android smart-phone application that mea-

sured their glucose, PA, insulin, food, and sleep continuously for 4 consecutive weeks. The

first week of the study was a run-in week in which participants became accustomed to the

wearable sensors. After the run-in week, participants performed 1 week of in-clinic aerobic

exercise twice that week, 1 week of in-clinic resistance exercise done twice that week, and 1 con-

trol weekwhen no structured exercise was done by the participants. The order of the aerobic,
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resistance, and control weeks were randomized for each subject.

The Institutional Review Board at the Oregon Health and Science University (OHSU)

approved the study protocol and consent form. Eligibility criteriawere age 21 to 45 years, a du-

ration of type 1 diabetes >1 year, current insulin pumpuse, an absence of diabetes-related com-

plications and participating in PA at least 30 minutes 3 or more times per week. Ten adults

(6F) were recruited (mean± standard deviation (SD): age 33±6 years, BMI 24.4±2.1 kg/m2,

duration of diabetes 18±10 years, HbA1c 7.4%±1%(57±11 mmol/mL), VO2peak 46.8±11.55

mL/kg/min). All participants completed a screening visit, training visit, and 4 structured

exercise sessions.

After providing informed consent, enrolled participants were given a VO2max x test ac-

cording to the standard Bruce Protocol on aMedTrack ST 55 treadmill. Participants returned

on a separate day to be trained in how to use a DexCom G4 or G4 Share CGM (continuous

glucose monitor) system (DexCom, San Diego, CA) and how to use the activity monitor

(ActiGraph wGT3X-BT; ActiGraph, Pensacola, FL). Participants replaced the CGM each

week (at least a day before the exercise visit) and calibrated the sensor at least twice daily us-

ing a Contour Next glucose meter (Ascensia Diabetes Care, NJ). Although participants were

blinded to CGM values, for safety, glucose alerts were set at 55 mg/dL (3.0 mmol/L) and

300 mg/dL (16.7 mmol/L). Hypoglycaemia was defined as CGM values less than 70 mg/dL

(3.9 mmol/L). A 1-repetition maximum (1-RM) test for bench press, leg press and seated row
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was performed to set the exercise intensity (ie, weight lifted) for resistance training sessions.

Participants completed 3 validated sleep questionnaires, the Pittsburgh Sleep Quality Index

(PSQI)[Buysse et al., 1989], the Epworth Sleepiness Scale (ESS) [Johns, 1991] and the Berlin

Questionnaire (BQ) [Netzer et al., 1999]. These were used to assess sleep quality, excessive

daytime sleepiness, sleep apnea risk. Computer randomization was used to determine the

sequence of the exercise and control weeks.

Participants wore ActiGraph wGT3X-BT - a small, lightweight (19 g), triaxial accelerom-

eter with a light sensor on their nondominantwrist for the entire duration of the study. Sleep

was measured using this activity monitor and data were analyzed using the ActiLife software

(ActiGraph) with the Cole-Kripke algorithm [Cole et al., 1992].

2.3.1 Experimental Visits

Subjects participated in 2 sessions of aerobic training during the aerobic exercise week and 2

sessions of resistance training during the resistance week. Participants arrived at the labora-

tory at 4:00 PM for each of the exercise sessions. For both the aerobic and resistance exercise

weeks, the same exercises were performed on 2 separate days with 1 day in between (eg, resis-

tance training session on a Tuesday andThursday). The days onwhich exercise sessions were

conducted were identical for each participant across weeks. All exercise sessions were con-

ducted on weekdays excluding Friday. Control nights were selected to be on the same nights
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as the exercise nights. Resistance exercise sessions included 3 sets of 8 to 12 repetitions(≈ 60-

80% of 1-RM) of 5 different exercises (leg press, bench press, leg extension, leg flexion and

seated row) with a 90-second rest period between exercises and sets (duration≈45min). The

Borg perceived exertion scale was used to estimate fatigue by the participant and with the

goal to not exceed the moderate intensity rating of 12 to 14 for each exercise performed. Aer-

obic exercise consisted of 45 minutes of treadmill exercise (60% of VO2max). The duration

of the exercise intervention was kept consistent for the 2 types of exercise; but the energy ex-

penditure for these 2 types of exercises was not controlled for in this study. Capillary glucose

was checked before the start of the exercise period and immediately after exercise. If the sub-

ject was below 70 mg/dL or above 300 mg/dL, exercise was delayed until glucose returned

to within range. Glucose tablets or juice was provided to treat hypoglycaemia. Each exercise

session was followed by 60 minutes of monitored resting recovery. Participants selected one

of 2 meals to eat during the recovery period and the identical meal was consumed during

subsequent study visits.

All statistical analyses were performed using R-Software [R Core Team, 2017]. A paired

means power analysis was used to carry out sample size power analysis. A total sample size

of 10 achieved 90% power to detect a mean of paired differences of 30 minutes in sleep loss.

This is with an estimated standard deviation of differences of 25 and with a significance level

(alpha) of .05 using a 2-sided paired t-test comparing sleep loss during the weeks of exercise
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interventions with the week without any explicit exercise. Two analyses were done: the first

to assess effect of exercise on sleep duration and the second to assess effect of exercise on oc-

currence of a single hypoglycaemia event in a night. For the first analysis, duration of sleep

after the exercise sessions (resistance and aerobic) was analyzed and compared with the du-

ration of sleep on nights when no explicit exercise was done (control). As each subject had

2 aerobic exercise sessions, 2 resistance sessions, and 2 corresponding control days, we aver-

aged sleep duration, carbohydrate intake, insulin dosed, and time in severe hypoglycaemia

across both nights and compared the average between weeks of exercise interventions with

the week without any explicit exercise. Paired sample t-tests were used to perform pairwise

post hoc comparisons for average of nights between resistance and aerobic interventions rel-

ative to the control. As 2 interventions were compared against a single control, significance

was adjusted to .025. For the second analysis, a randomized mixed effects logistic regression

model with subject as random effect was used to estimate the odds ratio of a single hypogly-

caemia episode occurring on nights (9:00 PM to 9:00 AM) following aerobic and resistance

exercise compared with control nights. For this analysis, each night was used as a binary vari-

able indicating whether a single hypoglycaemia event occurred during that night (9 PM to 9

AM). We further considered the order of the nights as a repeated measure and evaluated the

significance of the order.
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Figure 2.1: A, Average sleep loss (minutes) for each of the intervention weeks as comparedwith the control week.

The dashed line (- - - ) indicates the no change in sleep during the night of observation relative to the control night.

The♢ and the number next to it, indicate themean value of the sleep loss. All but one participant experienced sleep

loss on nights following aerobic exercise. B, Kaplan–Meier plot for hypoglycaemia-free subjects and the incidences

of hypoglycaemia events. The solid line (—) indicates the control nights, the dashed line (- - -) and the dotted line (…)

indicates resistance nights.
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Figure 2.2: Herewe show the CGM sensor and the actigraphy data overlaid. The CGM sensor data are shown as a

solid black line and the actigraphy data are shown below the sensor data, as indicated by the gray squares for sleep and

black squares for being awake. Capillary blood glucose (BG) checks performed by the subject are indicated with a black

triangle. Panels A-B show the aerobic nights, panels C-D show the resistance nights and panels E-F show the control

nights. The dashed line indicates hypoglycaemia at 70mg/dL (3.9mmol/L) and the dotted line indicates severe hypo-

glycaemia at 54mg/dL (3.0mmol/L). Hypoglycaemia events during the nights following aerobic exercise are associated

with sleep loss and can be observed by the change in the actigraphy state. Hypoglycaemia events during the nights

following resistance exercise occur early in the night andwere not associated with sleep loss. And hypoglycaemia did

not occur during control nights
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2.4 Results

All participants completed the full protocol. In this active participant cohort none of the

participants reported sleep issues at baseline with no excessive daytime sleepiness (ESS score

<7), with 2 subjects reporting habitual snoring but no other symptoms of sleep apnea based

on the BQ. Participants had good overall sleep quality (PSQI score <3). The mean (±SD)

sleep duration was 6.8(±0.8) h/night during the control week (weeknights only), 5.6(±1.1)

h/night during nights following aerobic exercise, and 6.4(±1.5) h/night during the nights

following resistance exercise. The 70 minutes of sleep loss on the nights following aerobic

exercise compared with control nights was statistically significant (P = .0015) but the sleep

loss on the nights following resistance exercise compared with control nights was not (P = .3).

Figure 2.1 A shows how all but one participant experienced less sleep on nights following aer-

obic exercise compared with the control week. The average sleep onset latency was 0.5(±1.4)

min/night and the average bedtime was 11:30 PM (±65 minutes) and there was no difference

in either sleep latency or bed time between the different weeks. The percentage of nights in

which at least one hypoglycaemia event occurred (CGM<70mg/dL)was 30%, 65%, and 70%

for nights following control, aerobic, and resistance days. Average insulin on board concen-

tration at bed timewas lower following both aerobic and resistance exercise days as compared

with the control and the reported carbohydrate intake was higher following aerobic and re-
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sistance exercise days as compared with the control (See 2.1). Subjects were more likely to

consume a pre-exercise snack when doing aerobic exercise compared with resistance exercise

(See 2.2). And subjects were more likely to reduce or suspend insulin following aerobic ex-

ercise compared with resistance exercise (See 2.3). Figure 2.1B shows the Kaplan–Meier plot

for the percentage of subjects who remained hypoglycaemia-free on nights following exercise

and control nights. Severe hypoglycaemia (CGM < 54 mg/dL [3.0 mmol/L]) occurred on

8 nights following aerobic exercise as compared with 3 nights on nights following resistance

and 3 nights for control nights. The average percent of time spent in severe hypoglycaemia

was 3.7%(±8.4%), 1.8%(±7.3%), 2.4%(±6.1%) during the nights following aerobic, resistance

and control, respectively. A majority of the hypoglycaemia events for the nights following

the resistance exercise occurred earlier in the night. The odds of hypoglycaemia occurring

increased by 5.4 (1.3, 27.2) on nights after aerobic exercise compared with nights after nonex-

ercise control days and by 7.0 (1.7, 37.3) on the nights following resistance exercise. We did

not observe an order effect on hypoglycaemia in day 1 and day 2 of exercise for either inter-

vention. While nocturnal hypoglycaemia was related to PA (chi-squared = 7.4, P = .025, R2

= 0.30), nocturnal hypoglycaemia was not found to relate with sleep duration in this small

sample size. This may have been due to the substantial variability in the response of the par-

ticipants to hypoglycaemia. For example, some subjects slept through hypoglycaemia while

others treated their hypoglycaemia at night and experienced sleep loss. Figure 2 2.2 shows the
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sensor glucose and the sleep data overlaid for a single subject across the different nights of the

study. This subject experienced multiple hypoglycaemia events during the nights following

aerobic exercise and each hypoglycaemia event caused sleep loss.

2.5 Discussion

This study assessed the effect of structured exercise on sleep duration related to nocturnal

hypoglycaemia in physically active individuals with T1D. Results here also confirm higher hy-

poglycaemia after structured PA. These results indicated that aerobic activity can negatively

affect sleep by reducing total sleep duration on the night following exercise by an average

of 70 minutes. While resistance exercise also led to sleep loss, the effect was less and not sta-

tistically significant in this small sample size. This study may have been strengthened if we

had included a healthy cohort to observe whether stress from PA was a potential confound-

ing factor that may have influenced sleep. However, prior research has shown that in people

without T1D, sleep duration is increased with PA, even in people who do not exercise regu-

larly [Youngstedt, 2005]. All participants in the current study were required to be physically

active and to do regular exercise (minimum of 30 minutes 3 times per week). Aerobic and

resistance exercise are known to impact glycaemic control in different ways, and prior find-

ings indicate that aerobic exercise can lead to sharper drops in glucose levels in people with

T1D [Yardley et al., 2013]. It is currently not known whether this change is because less en-
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ergy is expended during resistance exercise compared with aerobic exercise or if there is some

other mechanism. It has been reported that the increase in catecholamine levels during resis-

tance activities could contribute to increased hepatic glucose production and inhibit insulin-

mediated glucose uptake [Yardley et al., 2013]. While people with T1D may be aware of the

increased risk of hypoglycaemia during PA, immediately after PA and overnight up to 7 to

11 hours later [Pinsker et al., 2016], they may not be aware of the effect on sleep loss. Given

that the interaction between sleep disturbance and T1D is complex and that the loss of sleep

could result in decreased insulin sensitivity on the day after a poor night’s sleep [Donga et al.,

2010b] increased vigilance and improved recommendations for post-exercise insulin delivery

are needed to help overcome nocturnal hypoglycaemia and the associated sleep loss.
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2.6 Supplementary Data

2.6.1 Insulin and Carbohydrate Intake

Week IOB @ IOB @ IOB @ Carbohydrate

start of end of start of Intake (g)

exercise (U) exercise (U) start of bedtime (U)

Control 4.90 4.66 6.17 84.40

Aerobic 4.56 3.75 5.74 121.72 ∗

Resistance 4.68 4.62 4.38∗ 108.83 ∗

Table 2.1: The table details the average on board insulin concentrations (IOB) at different points of time and the re-

ported carbohydrate intake after the exercise bout and before bed time. Paired sample t tests were used to perform

pairwise post hoc comparisons for nights between resistance and aerobic interventions relative to the control. Since

two interventions were compared against a single control, signi cance was adjusted to 0.025. (*p<0.025)

2.6.2 Preparation for Exercise
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Week Percentage of participants Percentage of participants

who consumed a who reduced/suspended

pre-exercise snack (%) basal Insulin (%)

Aerobic Exercise 55 85

Resistance Training 25 40

Table 2.2: The table details how participants prepared for the exercise visit. All participants were aware of the current

insulin and carbohydrate recommendations prior to exercise.

2.6.3 Preparation post Exercise

Week Percentage of participants Percentage of participants

who who reduced/suspended who reduced meal

basal insulin (%) bolus (%)

Aerobic Exercise 55 65

Resistance Training 25 30

Table 2.3: The table details howmany participants changed insulin basal rate post exercise bout and themeal bolus for

the post exercisemeal that was provided.
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Thus the discovery of the barometer transformed physics,

just as the discovery of the telescope transformed astron-

omy…The history of science has its own revolutions, just

like the history of nations …with this significant difference,

that revolutions in science…successfully achieve what they

set out to do.

Vincenzo Antinori, Notizie istoriche,1841

3
Effect of aerobic and resistance exercise on

glycemic control in adults with type 1

diabetes

Physical Exercise interventions in adults with type 1 diabetes (T1D) have not been shown

to have a positive effect on the glycemic control. This has been attributed to excessive carbo-
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hydrate treatments after exercise and relative imbalance in the insulin dosage patterns after

exercise. In this study we show that there is a significant improvement in the time in range

after resistance training but not after aerobic exercise. We also show that the overall energy

consumption after either type of exercise is significantly higher than when there is no explicit

exercise done by the subjects. We also demonstrate using a random-effects model that even

after adjusting for the increased energy consumption the benefits of resistance training on

glycemic control are maintained.

Chapter Summary

• The mean time in range in the 24 hr. following resistance training is 70% vs only 56%
in 24 hr. following no explicit exercise. Themean time in range in the 24 hr. following
aerobic exercise is only 60%.

• The time spent in the hypoglycemic range was not different between either interven-
tions (Resistance or Aerobic)

• Participants reported consuming higher amount of energy after either bouts of exer-
cise.

• Resistance training may improve glycemic control in adults with type 1 diabetes.

• Glucose levels tend to decline less during resistance exercise compared with during aer-
obic exercise.

This work has been accepted for publication in the

Canadian Journal of Diabetes
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3.1 Abstract

Aims: Physical exercise is recommended to individuals with type 1 diabetes (T1D) yet the ef-

fects of exercise on glycemic control have not been well-established. We evaluated the impact

of different modes of exercise on glycemic control in people with T1D.

Methods: In a 3-week randomized crossover trial, 10 adults with T1D who self-managed

their glucose levelswith their own insulin pump (4M, 6 F; age 33± 6 yrs, duration of diabetes

18± 10 yrs, HbA1c 7.4± 1%) were assigned to three weeks of intervention: aerobic (treadmill

at 60%ofVO2max), resistance (8-12 repetitions of 5 upper and lower body exercises at 60-80%

of 1-RM) or no exercise (control). During each exercise week, participants completed two

monitored 45—minute exercise sessions at an academic medical center. For each week of the

studywe analyzed participant’s insulin pump data were downloaded, glucose sensor data was

recorded using a continuous glucose monitor (Dexcom G4) and energy intake was recorded

using a custom smart-phone app including photographs of the meals which were analyzed

post-hoc by a dietitian. The primary outcome was percentage of time in range (glucose >3.9

mmol/L and <=10 mmol/L) for the 24 hours after each bout of exercise or rest during the

control week. The study was registered on ClinicalTrials.gov (NCT:02687893).
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Results: Aerobic exercise caused a mean glucose reduction during exercise of 3.94 ± 2.67

mmol/L while the reduction during resistance was 1.33 ± 1.78 mmol/L (p=0.007). Mean

percentage time in range for the 24 hours fThe mean percentage of time in range following

resistance exercise was significantly greater than during the control period (70% vs. 56%, re-

spectively, P = 0.013) but not following aerobic (60%).

Conclusions: Results from this pilot study indicate that while considering various con-

founders, resistance training could have improvements on glycemic control in this popula-

tion.

3.2 Introduction

In the coming decades the number of patients with type 1 diabetes (T1D) is expected to

triple [Imperatore et al., 2012]. Less than a third of the adults with T1D achieve the target gly-

cated hemoglobin level of lower than 7.0% [Miller et al., 2015b] and amajority are overweight

or obese [Weinstock et al., 2016b,McKnight et al., 2015]. Bohn et al, have recently shown that

less than a fifth of adults withT1Dmanage tomeet physical activity recommendations [Bohn

et al., 2015]. Overweight and obese weight status in individuals with T1D is higher than the

general population and prevalence is rising; this appears to be unrelated to aging and instead

related to lack of physical activity and other clinical factors [Conway et al., 2010]. Currently,
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adults living with T1D are recommended to perform 150 minutes of moderate aerobic, 75

minutes of vigorous aerobic, or a combination thereof, along with resistance training on two

days each week with no more than two consecutive days of no activity [Colberg et al., 2016].

Regular physical activity in individuals with T1D provides many physiological and psycho-

logical benefits including improving body composition, increased cardiorespiratory fitness,

improved endothelial function, and improved blood lipid profile [Quirk et al., 2014, Miller

et al., 2016, Katz et al., 2015]. In addition, exercise also reduces total daily insulin require-

ments, stress and depression while improving the overall sense of well-being and quality of

life [Kennedy et al., 2013, Chimen et al., 2012, Zoppini et al., 2003].

Physical activity has long been associated with improvements in glycemic control in

adults with type 2 diabetes (T2D) [Umpierre et al., 2011]. These improvements have been

shown to be modest when the physical activity was either aerobic or resistance training, but

a combination of both modalities has demonstrated the greatest improvements to glycemic

control in adults with T2D [Sigal et al., 2007]. However, in individuals with T1D, the ef-

fects of physical activity on glycemic control are not clear [Kennedy et al., 2013, Chimen et al.,

2012, Yardley et al., 2014]. Aerobic exercise (endurance-based) is associated with higher fre-

quency (high-repetition) in the muscular contractions under low to medium loads, whereas

resistance exercise (strength-based) imposes a low-frequency, high-load demand on the mus-
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culature [Zierath&Wallberg-Henriksson, 2015]. The consequence of the distinction in these

two modalities, duration and intensity of the type of exercise determines the a wide range

of metabolic responses [MacInnis & Gibala, 2017, Hawley et al., 2014]. During acute exer-

cise bouts, increased glucose uptake is a combination of both insulin-independent metabolic

pathways and increased insulin sensitivity [MacInnis & Gibala, 2017, Hawley et al., 2014].

In people with T1D, this increased glucose disposal, along with the absence of systemic re-

duction of insulin and concurrent increase in glucagon production leads to hypoglycemia

[Yardley et al., 2013, Chimen et al., 2012, Riddell et al., 2017, Jacobs et al., 2016].

Without advancedplanning, these glucose changes are rather challenging tomanage. Noc-

turnal hypoglycemia is common on nights after engaging in physical activity [Reddy et al.,

2017]. Optimizing insulin dosage prior to exercise is challenging for many people with T1D

engaging in physical activity. Insulin dosage changes have to bemade up to 90min before the

start of the exercise [Riddell et al., 2017, Zaharieva et al., 2017] and depending on themodality

(aerobic/resistance training) and intensity of exercise (level of exertion), altering insulin dos-

ing may not result in achieving appropriate glycemic control [Riddell et al., 2017, Zaharieva

et al., 2017]. Another strategy adopted by many individuals to prevent hypoglycemia, is to

maintain blood glucose levels higher during and after exercise by increasing the consumption

of carbohydrates [Francescato et al., 2015b, Ryninks et al., 2015]. While many groups have

highlighted the acute challenges faced by people with T1D during various types of exercise,
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there has not yet been a study showing how exercise impacts glycemic control during longer

periods after exercise is performed [Yardley et al., 2012, 2013, Iscoe & Riddell, 2011]. In this

paper we examine the impact of aerobic exercise and resistance training and related energy

expenditure on glycemic control. We further examine how exercise impacts both insulin dos-

ing requirements along with the amount of dietary intake in a period of 24 hours after a bout

of exercise. We hypothesized that compared with days with no exercise, aerobic exercise and

resistance training would be associated with increased dietary intake and improved glycemic

control. We hypothesized that glycemic control during a period of 24 hours post-exercise

would be improved.

3.3 Methods

3.3.1 Study participants

Ten adults with T1D were recruited to participate in this randomized, three treatment, un-

blinded, single-center crossover study. The inclusion criteria for this study were: adults with

T1D (diagnosis of condition>1 year); age 21—45 years; bodymass index<30 kg/m2; physically

active (≈150 min of moderate physical activity per week or≈60 min of vigorous physical ac-

tivity per week or active at least 3 days a week); currently on an insulin pump; and willing

to perform 45 min of exercise. Sufficiently active was defined as participating in at least 150
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min of aerobic activity at moderate intensity per week for the last six months based on the

guideline by ACSM [American College of Sports Medicine, 2013]. Participants in this study

were active at moderate intensity for 7.3± 4 hr/week. The exclusion criteria included the

following: cardiovascular disease, renal dysfunction or any condition that would preclude

exercise.

The Institutional Review Board at the Oregon Health and Science University (OHSU)

approved the study protocol and consent form. This current paper is a secondary analysis us-

ing the data collected during the study to examine the effect of exercise on sleep in adults

with type 1 diabetes [Reddy et al., 2017]. The study was registered on ClinicalTrials.gov

(NCT:02687893). Informed consent was obtained from every individual.

Characteristic Number =10

Age (years) 34±6

Gender (M/F) 4/6

Duration of diabetes (years) 18±10

Body Mass Index (kg/m2) 25±5

HbA1c (%) 7.4±1.0

HbA1c (mmol/mol) 57±11

VO2max 46.8±11.5

Fat (%) 30±7

Table 3.1: Baseline characteristics of the participants. Continuous data represented asmean±standard deviation.
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3.3.2 Study design

In this pilot study,weperformeda secondary analysis ondata thatwaspreviously published in

Reddy et al. [Reddy et al., 2017], a study which found that exercise impacted sleep on nights

following exercise. A paired means power analysis was used to carry out sample size power

analysis. A total sample size of 10 achieved 90% power to detect a mean of paired differences

of 30 minutes in sleep loss. This is with an estimated standard deviation of differences of

25 and with a significance level (alpha) of .05 using a 2-sided paired t-test comparing sleep

loss during the weeks of exercise interventions with the week without any explicit exercise.

In the current analysis, we hypothesized that glycemic control during a period of 24 hours

post-exercise would be improved. The primary outcome was the percent time in a target

glucose range of between 3.9 and 10 mmol/L during the 24 hours after exercise. Glucose

levels were tracked using a continuous glucose monitor (CGM; Dexcom G4 or G4 Share,

Dexcom, San Diego, CA, USA). Participants were blinded to the sensor glucose readings.

Physical activity and sleep were monitored using an activity monitor (ActiGraph wGT3X-

BT; ActiGraph, Pensacola, FL, USA). Participants managed their own insulin dosage using

their personal insulin pump and a capillary blood glucose meter (CBGmeter, Contour Next

glucose meter; Ascensia Diabetes Care, NJ, USA). Food intake was measured using a custom

built food-tracking Android smart-phone app. A smart-phone (Galaxy S4; Samsung, CA,

USA) loaded with this app was distributed to the participants. The first week of the study
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was a run-in week where participants became accustomed to the wearable sensors. After the

run-in, participants performed in-clinic aerobic exercise twice weekly for one week, in-clinic

resistance training twiceweekly for oneweek, andno structured exercise for one controlweek.

The order of the aerobic, resistance, and control weeks were randomized for each subject.

Block randomization (size of six) with a 1:1:1 ratio was computer generated for the sequence

of the interventions. One of the study coordinators carried out the randomization and the

allocations were revealed at the start of the admission visit.

3.3.3 Study protocol

All participants completed a screening visit, training visit, and four structured exercise ses-

sions. During the screening visit, baseline examinations included assessment of anthropo-

metric data and physical status, determination of basal metabolic rate as well as an incremen-

tal cardiopulmonary exercise test in order to determine VO2max. After providing informed

consent, enrolled participants were given aVO2max test according to the standard Bruce Pro-

tocol on a Medtrack ST 55 treadmill (Quinton, WA, USA). Oxygen consumption was mea-

sured during the VO2max test. The participants wore an air-tight mask (Hans Rudolph Inc.,

MO,USA), which had a gas sensor (Cosmed, Rome, Italy) attached to it, while heart rate was

monitored using a Polar Electro T61 chest heart rate monitor (Polar Inc., Lake Success, NY,

USA). Bruce protocol was used to determine VO2max. Body composition was estimated by
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a dual X-ray absorptiometry (DEXA) scan using a Hologic DiscoveryWi (Hologic, Bedford,

USA, Apex 4.0 software).

Participants returned on a separate day for the training visit, to learn how touse theCGM,

how to use the activity monitor and how to accurately record the food intake. Participants

performed a one-repetition maximum (1-RM) test for bench press, leg press and seated row

during this visit. This was performed to set the exercise intensity (i.e. weight lifted) for re-

sistance training sessions. We chose not to conduct 1RM tests on leg extension and flexion

exercises because they are single joint movements and according to recommended guidelines

should be avoided in favor of multi-joint movements to minimize injury risk during maxi-

mal testing. Rather we estimated training loads for single joint exercises using the multiple

RM approach to determine each participant’s 8RM workload [Haff & Triplett, 2015]. Par-

ticipants replaced the CGM each week (at least a day before the exercise visit) and calibrated

the sensor at least twice daily using the CBG meter. Although participants were blinded to

CGM values, for safety, glucose alerts were set at 3.1 mmol/L and 16.7 mmol/L.

3.3.4 In—clinic exercise sessions

Each participant did 2 sessions ofmonitored aerobic exercise (AE) during the aerobic exercise

week and 2 sessions of monitored resistance training (RT) during the resistance week. Par-
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ticipants arrived at the laboratory at 4:00 pm for each of the exercise sessions. For both the

aerobic and resistance exercise weeks, the same exercises were performed on two separate days

with one day in between (e.g. RT sessions on Tuesday and Thursday). There were at least

48 hours between the exercise visits. Participants were instructed to refrain from formal ex-

ercise 24 hours prior to and 24 hours after their scheduled exercise. Actigraph data collected

during this time was used to confirm that participants complied with this instruction. A

study coordinator also contacted participants on the day following the in-clinic exercise ses-

sion and asked questions about compliance during this phone call. The days of the week on

which exercise sessions were conducted were identical for each participant across weeks. Be-

tween each intervention week there was at least 4 days. All exercise sessions were conducted

on weekdays excluding Friday. During each exercise session, participants were outfitted with

a Zephyr Biopatch (Zephyr Technology, Annapolis, VA, USA) that included a 2 lead ECG

based heart rate monitor and 3—axis accelerometer to continuously monitor heart rate. Re-

sistance exercise sessions, following a brief warm up period, included three sets of 8—12 repe-

titions at 60—80% of 1—RM of five different exercises (leg press, bench press, leg extension,

leg flexion and seated row) with a 90 second rest period between exercises and sets (total du-

ration of 45min). The exercises were chosen to recruit similar volumes of upper and lower

body muscle mass, using machine based exercises to control movement and for safety, rather

than equal numbers of exercises per group. While we allowed participants some flexibility in
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doing 8 to12 reps to enable a tolerable workout, participants generally did not change their

weight load or number of reps during a session. The Borg perceived exertion scale was used

to estimate fatigue and tomaintain amoderate intensity rating of 12—14 for each exercise per-

formed. The duration of each set of exercise and the duration of the rest was closely tracked

using an electronic data capture tool: Research Electronic Data Capture (REDCap), a secure

web-based data capture application hosted at OregonHealth and Science University [Harris

et al., 2009]. AE consisted of 45 min of treadmill exercise (60% of VO2max as determined

by heart rate).Based on the VO2max value obtained during the first visit, the heart rate value

at the 60% VO2max value was calculated and used during the aerobic training visits. During

each exercise training visit, the heart ratewas closelymonitored and treadmill speed and grade

were adjusted to keep the participantsworkrate at 60%VO2max. The duration of the exercise

intervention was kept consistent between both types of exercise; but the energy expenditure

between these two types of exercises was not controlled in this study. Capillary glucose was

checked before the start of the exercise period and immediately after exercise or if the sub-

ject experienced any symptoms of hypoglycemia. Each exercise session was followed by 60

minutes of monitored recovery period. Participants were provided with a pre—selected stan-

dardized meal of approximately 540 calories (23% protein, 47% carbohydrate, and 30% fat)

to eat during the recovery period, the identical meal was provided during all in-clinic exercise

sessions.
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3.3.5 Exercise Energy Expenditure

Energy expenditure (EE) during the exercise period was estimated to understand the differ-

ences between the two types of exercise interventions. Using the data collected during the

VO2max test, a relationship (ordinary least squares linear regression) between the oxygen up-

take and the heart rate data was created.  We used this equation to estimate the amount of

oxygen uptake based on the heart rate data measured during each in—clinic session. EE dur-

ing the continuous aerobic exercise was estimated by the cumulative oxygen uptake during

the exercise period and converting the oxygenuptake to kcal using the standard 1L ofO2 to 5.0

kcal [Vianna et al., 2014, di Prampero& Ferretti, 1999] . To estimate EE during the resistance

training, we used the non—steady state model proposed by Scott et al. [Scott et al., 2014]

and Vezina et al. [Vezina et al., 2014] by considering the oxygen uptake not only during each

bout of exercise(∽ 30 secs) but also during the recovery periods (∽ 90 secs) in between each

bout of resistance training.  Both the recorded exercise EE and recovery EE were converted

to kcal. The EE values during exercise were calculated using the standard conversion of 1L of

O2 to 5.0 kcal, whereas the EE values during recovery were calculated using the non—steady

state conversion of 1L of O2 to 4.7 kcal.
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3.3.6 Nutritional Assessment

All participants were verified to be experienced at carbohydrate counting prior to this study,

by asking if they used carbohydrate counting techniques and had recently been educated

about it. Each participant was provided with an Android study phone preloaded with a cus-

tom foodmeal photography application. All participants were trained on the usage of the ap-

plication and were instructed to take pictures of all of the meals consumed during the study.

Participants were provided with a ruler to be included in the photograph to provide an ap-

proximate sizemeasure for themeal. The custom app provided the ability for the participant

to enter the estimated carbohydrate amount, their CBGvalue at the time of themeal, the type

of meal (breakfast, lunch, dinner, snack or hypoglycemic treatment) and an optional text de-

scription of the meal. Each entry was uploaded to the study database with the date and time

recorded. A trained dietitian analyzed all themeals for each subject on the day of the in-clinic

exercise visit and the day after the exercise visits to estimate the meal contents and quantity

of each meal. The dietitian also analyzed meal data during matched days of the control week.

Energy and macronutrient composition of meals was analyzed with ESHA Food Processor

SQL Software (ESHA Research, Salem, UT, USA [Ahuja et al., 2013].
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3.3.7 Statistical Analysis

Meal intake, exogenous insulin delivery and glycemic controlmetrics were calculated over the

24 hr. period from the end of the exercise to the same time next day. One subject failed to re-

port any meal intake on multiple study days and as such, dietary records were only analyzed

for 9 subjects and they were included in all of the food analyses. We analyzed the relation-

ship between each outcome and the intervention using a randomizedmixed effects regression

model with a random intercept to account for correlation between observations on the same

participant, since two interventions were compared against a single control, significance was

adjusted to 0.025. We included an effect for the day to control for possible carryover effects.

Data are presented as mean ± SD or mean (95% CI). All statistical analyses were conducted

in R (version 3.4.2) [R Core Team, 2017]

3.4 Results

Results below are described in two sections with regards to two endpoints: first during the

in-clinic exercise period and second for the 24 hr. post exercise period.

Ten adults (6 Females / 4Males) withT1Dhad the following baseline characteristics, data

is represented as mean± SD: age 33± 6 yrs, BMI 24.4± 2.1 kg/2, duration of diabetes 18±

10 yrs, HbA1c 7.4± 1%, VO2max = 46.8± 11.6ml.kg−1.min−1, Fat 30± 7%, total daily insulin
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dose 40.99 ± 7.26 units, resting heart rate 62.8 ± 7 beats/min, daily time in moderate to

vigorous physical activity 1.1± 0.7 hours/day.

3.4.1 In—clinic exercise visits

At the start of the exercise bouts there was no difference between the glucose levels (aerobic

exercise (AE): 8.78 ± 3.22 mmol/L vs resistance training (RT) 8.72 ± 3.5 mmol/L) but the

decrease in glucose levels during exercise was significantly different between the two exercise

types. AE caused a precipitous reduction in sensor glucose value over the exercise period

with mean glucose reduction of 3.94 ± 2.67 mmol/L while the reduction in sensor glucose

was smaller during RT with the mean glucose reduction of 1.33 ± 1.78 mmol/L (p=0.007).

By the end of the recovery period (60 min post exercise), the sensor glucose levels were not

statistically different. CGMglucose values during the exercise and recovery periods are shown

in Figure 3.1A. The mean heart rate during the AE bout was 144.6 ± 8 beats/min and the

mean heart rate during the RTbouts was 112.3± 11 beats/min. Additional RT information is

provided in SupplementaryTable 1. The EE during theAE visits was significantly higher than

during the RT visits, with the EE during the AE visits being 429±111 kcal and the EE during

the RT visits being 252 ± 65 kcal (p<0.001). The EE values during the in-clinic visits are

shown in Figure 3.1B. On average the participants had similar glucose and insulin on board

at the start of the exercise interventions. The average insulin on board at the start of the
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Figure 3.1: A: Glycemic response during the in-clinic exercise visits. Sensor glucose data is represented asMean± SE

during the exercise (represented by box) and 60min of recovery:■ resistance training, • , aerobic exercise. ⋆ indicate
the statistically signi cant difference between the two interventions based on the paired sample t-tests (p < 0.05).

B: Box plots with individual points indicating the estimated energy expenditure in kcal during the in-clinic exercise

sessions. EE between the visits was signi cantly different between the interventions. ⋆ indicates the statistically
signi cant difference between the energy expenditure during the two types of interventions based on the paired

sample t-test (p < 0.05)

aerobic exercise intervention was 4.56 ±1 U and the average insulin on board at the start of

the resistance training bout was 4.68±1 U.

3.4.2 24 hr. post exercise in home glycemic control

Mean glucose value for the 24 hr. period was the lowest after RT visits (8.01± 1.94 mmol/L)

as compared with AE visits (8.80 ± 2.17 mmol/L) and during the control week was 9.5 ±

2.7 mmol/L. Mean glucose for the 24 hours post RT visit was 1.39 mmol/L lower than the

mean glucose for the 24hoursmatched controlweek (95%CI -2.25 –0.55, p=0.002, Z= -3.29).

However, themean glucose for the 24 hours post AE visits was only 0.66mmol/L lower than

the 24 hour matched control week and the difference was not significant (95% CI -1.51 – -0.19,
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p = 0.134, Z = -1.53). Adjusting for the total insulin dosage within the random-effects model,

we observed a mean glucose during the 24 hr. period post RT exercise that was 1.03 mmol/L

lower compared with the control week (95% CI –1.90 – -0.17, p = 0.024). But making the

same adjustment for total insulin dosage, the mean glucose during the 24 hr. period post AE

visits was lower than the control week by only 0.40 mmol/L, and the difference was again

not significant (95% CI -1.24 – 0.45, p = 0.39). When Controlling for meal intake on mean

glucose during this period after the RT visits, we observed a lower mean glucose during the

24 hr. period post RT that was less than during the control week by 0.06 mmol/L (95% CI

-0.98 – -1.67, p = 0.036). But making the same adjustment for meal intake, the mean glucose

was slightly lower during the 24 hr. period post AE, but the 1.03 mmol/L decrease post RT

and not significant (95% CI -17.61 – 15.54, p = 0.903). After adjusting for either insulin dosage

or meal intake, the mean glucose was significantly lower after RT but there was no difference

from control after AE visits.

Time in range (% of time with sensor glucose between 3.9 mmol/L and 10mmol/L) over

the 24hr. period after the RT visits was 70.3 ± 15% while the time in range over the 24 hr.

period after the AE visits was 60.5 ± 22%. During the control week, the time in range was

55.7 ± 27%. We observed a statistically significant improvement in time in range of 14.61%

(95%CI 3.50-25.71, p = 0.013, Z = 2.6) for the RT visit compared with the control week, while

the increased time in range after theAE visits was only 4.72% comparedwith the control week
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and the change was not significant (95% CI -6.38-15.83, p = 0.41, Z = 0.8).

During the 24 hr. period after the RT visits the time in hyperglycemia (% of time with

sensor glucose >10 mmol/L) was 23.1 ± 17% and after the AE visits was 32.9 ± 25%. Partici-

pants spent 39.1 ± 28% in hyperglycemia during the same period in the control week of the

study. We observed significant reduction in the time in hyperglycemia by -16% (95%CI -26.69

– -5.32, p = 0.005, Z = -2.94) for the 24 hr. period following RT visits compared with the con-

trol week. The reduced time in hyperglycemia after the AE visits was only -6.25% (95% CI

-16.94 – 4.43, p = 0.258, Z = -1.15) compared with the control week.

The time in hypoglycemia (% of time with sensor glucose≤ 3.9 mmol/L) over the 24 hr.

period after theAE visits was  6.7± 8% andwas 6.5± 10% after theRTvisits, while during the

control week this duration was 5.1± 7%. Subjects did not experience statistically significant

differences in time in hypoglycemia after either AE or RT visits as compared with the control

week of the study.

Table 3.2 shows the summary measures of the 24 hr. glycemic data. Individual markers

of 24 hr. glycemic control are shown in Figure 3.2.

3.4.3 Energy and carbohydrate intake

A total of 112 week days of meal data were analyzed for this study. Participant recorded meal

data was corroboratedwith both the insulin pump bolus data and the corresponding glucose
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Table 3.2: ]

Summary of the average glycemic control, insulin dosage and energy intake for the 24 hr.
period after the exercise visit. Randomized mixed effects regression model with a random
intercept to account for correlation between observations on the same participant was used
to determine the significance of each outcome relative to the intervention. Continuous data
represented as mean±standard deviation, Time in hypoglycemia is shown as median [IQR]

Measures Control Aerobic Exercise Resistance Training

Time in range (%) 55.7± 25 60.5± 22 70.3± 15⋆

Time in hypoglycemia (%) 1.86 [7.15] 3.71 [9.83] 3.63 [6.07]

Time in hyperglycemia (%) 39.1± 28 32.9± 25 23.1± 17⋆

Glucose Mean(mmol/L) 9.5± 2.7 8.80± 2.17 8.01± 1.94⋆

Energy Intake (kcal/day) 1347± 606 1970± 630⋆ 1816± 362⋆

24 hr. Insulin dosage (U) 43.6± 9 40.8± 9 39.8± 9⋆

24 hr. Bolus Insulin dosage (U) 19.2± 10 18.3± 8 15.7± 8⋆

24 hr. Basal Insulin dosage (U) 24.4± 6 22.5± 5⋆ 24.1± 5

⋆ Since two interventions were compared against a single control, significance was adjusted to 0.025. (p
<0.025)

87



Control

Aerobic

4

8

12

16

5 10 8 9 2 7 3 6 1

Subject

M
ea

n 
gl

uc
os

e 
(m

m
ol

/L
)

Mean glucose generally lower following AE

Aerobic Exercise A

Control

Resistance

4

8

12

16

5 9 6 10 8 2 3 7 1

Subject

Mean glucose consistently lower following RT

Resistance TrainingB

Control

Aerobic

0

25

50

75

100

5 8 10 9 1 2 3 7 6

Subject

T
im

e 
in

 r
an

ge
 (

%
) 

Time in range not consistent following AE

C

Control

Resistance

0

25

50

75

100

5 9 6 2 3 8 1 10 7

Subject

Time in range higher for all but 1 subject following AE

D

Control

Aerobic

0

25

50

75

100

5 8 10 9 7 3 2 1 6

Subject

T
im

e 
in

 h
yp

er
gl

yc
em

ia
 (

%
) 

Time in hyperglycemia generally lower following AE

E

Control

Resistance

0

25

50

75

100

5 9 6 8 2 3 10 1 7

Subject

Time in hyperglycemia consistently lower following RT

F

Figure 3.2: Improvements in glycemic outcomes for each study participant are shown in this gure. In the 24 hr. period

following RT, all subjects experience positive reductions in mean glucose value and all but one subject experienced

reductions in time in hyperglycemia and improvement in time in range range comparedwith the control week. But the

same outcomes after AE are not as consistent. In each panel data for each individual subject is shownwith■ indicating

resistance training and • indicating aerobic exercise. Inset in each panel is the numerical difference in the outcome

measured for the intervention represented in the panel.
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sensor data. To account for missing meal data we removed that day’s data from the analy-

sis if either the participant had not reported more than one main meal for the day or if the

total daily estimated consumption was less than 1000 kcals. Nine underreported days from

4 different subjects met the criteria to be deleted from the analysis leaving 103 days of nutri-

ent intake. Participants had a significantly higher amount of energy intake during the 24 hr.

duration after both types of in clinic exercise visits relative to the control days. The average

energy intake was higher after the AE visits and RT visits compared with the control days by

623± 158 kcal (p <0.001) and 468± 145 kcal (p=0.003), respectively. There was a higher need

for hypoglycemic treatments during the 24 hr. period after the AE and RT visits compared

with control days whereby the total carbohydrate intake was higher than the control week by

77± 17 g (p <0.001) for AE and 42± 19g (p=0.02) for RT. Figure 3.3 A shows the differences

in the energy intake during the different weeks of the study.

3.4.4 Twenty-four hour post exercise activity levels

Participants were instructed to refrain from any structured and formal activity during the

24 hr. prior to and 24 hr. after their scheduled exercise or control period. There were no

significant differences in time spent in the moderate to vigorous physical activity (MVPA)

between the three periods. Participants spent 302± 118minutes inMVPAduring the control

period, 305± 92 minutes in MVPA during the 24 hr. period after AE and 275± 96 minutes
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in MVPA after RT (p=NS).

3.4.5 Insulin administration

Insulin dosage data is shown in Table 3.2. Despite an increase in both energy and carbohy-

drate intake, the total insulin dosage during the 24 hr. period, was not significantly higher for

days following either types of exercise visits as compared with the control days. Rather, basal

insulin dosage was significantly lower by 2 ± 0.4U of insulin after the AE visits (p <0.001)

as compared with control days. Insulin usage was lowered by only 0.4 ± 0.5U of insulin af-

ter RT visits compared with the control week (P=0.3). Participants injected significantly less

bolus insulin after the RT visits, a reduction of 3.5 ± 1.5U of insulin (p=0.01) as compared

with control days as opposed to a reduction of only 0.9 ± 2.7U of insulin (p=0.5) after the

AE visits.   Figure 3.3 B shows the differences in the total insulin dosage during the different

weeks of the study.

3.5 Discussion

Physical exercise is a cornerstone of diabetes management, but recent reviews have shown

no clear evidence of glycemic benefit due to physical activity in adults with type 1 diabetes

[Kennedy et al., 2013, Yardley et al., 2014, Jewiss et al., 2017] but a potential improvement in

HbA1c in children and adolescents [Quirk et al., 2014]. The present study highlights that
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Figure 3.3: A: Box plots with individual data points indicating the nutritionist estimated energy intake from themeal

pictures collected during the 24 hr. period after the in-clinic exercise visit during each intervention week. The energy

intake was signi cantly higher during the 24 hr. after the aerobic and resistance training in-clinic sessions, as indicated

by the ⋆ based on the randomizedmixed effects regressionmodel with a random intercept to account for correlation

between observations on the same participant (p<0.025) B: Box plots with individual data points indicating the insulin

dosage downloaded from the insulin pump during the 24 hr. period after the in-clinic exercise visit during each inter-

vention week. The total insulin dosage was signi cantly lower during the 24 hr. after the resistance training in-clinic

sessions, as indicated by the ⋆ based on the randomizedmixed effects regressionmodel with a random intercept to

account for correlation between observations on the same participant ( p<0.025)

RT is a promising strategy that can lead to improved glycemic control, but for AE the results

are not as significant. In this study we demonstrate that during the 24 hr. period after ei-

ther intervention, subjects increased meal intake both to manage hypoglycemic episodes and

increased consumption of post dinner snacks to prevent nocturnal hypoglycemia as was spec-

ulated in Kennedy et al [Kennedy et al., 2013]. We also show that the participants used less

insulin following bothAE andRT exercise interventions, with significantly less bolus insulin

after the RT visits and significant reduction in basal insulin after the AE visits. The decrease

in bolus afterRT could be due to either less correction boluses or reducedmeal related insulin

boluses. We also showed that the drop in glucose duringRT is less comparedwithAE, which
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confirms prior reports [Yardley et al., 2013]. But we also found that the time spent in hypo-

glycemia during the 24 hr. period after either bout of exercise was no different as compared

with the control week. Another insight generated by this study was that EE during AE and

RT are significantly different, with participants during the RT bout expending less energy

compared with AE and then subsequently consuming less food after the exercise compared

with AE.

People with T1D find it challenging to dose insulin appropriately for meals and this be-

comes more challenging when exercise must also be considered as exercise is known to affect

insulin sensitivity for many hours after exercise [Brazeau et al., 2013]. This study further ex-

pands on the published literature by investigating the effects of physical activity (RT andAE)

on glycemic control during the 24 hr. period after the interventionwhile controlling for total

insulin dosed and/or meal intake. These data highlight that individualized physical activity

regimes could augment current insulin therapies to achieve optimal glycemic control. The re-

sponses to exercise are heterogonous in our subjects but most improvement in time in range

was experienced by individuals who spent higher duration of time in the hyperglycemic range

during the control weeks. Engaging in specific strategies to adjust insulin doses andminimize

excessive carbohydrate consumption before, during and after exercise could help improve

glycemic control and prevent dysglycemia.
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Three prior studies on people with T1D have demonstrated that RT could provide im-

provements in HbA1c [Durak et al., 1990, Mosher et al., 1998, Ramalho et al., 2006]. But a

recent non-randomized long term study conducted in 8 adults with T1Dwho participated in

unsupervised recreational training comprised of both AE and RT showed no improvement

in HbA1c [Rissanen et al., 2017]. This inconsistency may have been due to the fact that both

AE and RT exercises were performed during this study. As we show in the current study,

RT showed significant improvement in glycemic outcomes while AE did not. The inconsis-

tencies may also be explained by the fact that these studies have not accounted for varying

meal and insulin intake during the monitoring period, and that metrics beyond HbA1C are

important to consider [Wright &Hirsch, 2017, Agiostratidou et al., 2017]. A regular exercise

regime of RT has been demonstrated to elicit beneficial metabolic responses (reductions in

HbA1c and increased insulin sensitivity) in individuals withT2Ddue to gains inmusclemass

and improved mitochondrial oxidative capacity [Pesta et al., 2017, Mann et al., 2014].

Limited stores of muscle and liver glycogen stores are used as energy substrates during

aerobic and resistance exercise, with the source and relative rate of glycogen depletion depen-

dent upon the type and intensity of training [Egan & Zierath, 2013] . The effects of either

type of modality on glycemic levels can often last for several hours after exercise completion.

As observed in this study, increased energy consumption after both exercisemodalities, could

be a result of needing to replenish glycogen stores. Other studies have shown that glucose up-
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take by the exercisingmusclesmay be enhanced formany hours and often overnight [Iscoe&

Riddell, 2011]. While we strove to have participants performing both aerobic and resistance

training at moderate intensities, it is possible that the relative rates of glycogen depletion and

other sources of depletion (e.g., liver vs. muscle) differed between the two modalities and

could account for some of the variation in glucose dynamics between AE and RT.

This pilot study had a few limitations including a small sample size. We have plans to

replicate this study in a larger number of subjects. Another limitation is that we did not test

other exercise modalities such as intermittent high-intensity interval training or a combina-

tion of both AE and RT, thus our findings here should be interpreted accordingly. We plan

to investigate alternative exercisemodalities in future projects to continue to understand how

exercise impacts glycemic control. Another limitation of the current study is that while we

controlled for the duration and intensity of exercise, we did not control for the energy expen-

diture between the two exercise modalities. It is not possible to simultaneously control for

duration, intensity, and energy expenditure, andwe chose in this study to control for the first

two. In the future, it would be important to study whether these results hold when energy

expenditure ismaintained constant between the exercisemodalities. A further limitationwas

that while more than half of the participants were female, we did not collect information on

the female participants’ menstrual cycle, which is known to impact glucose levels.
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3.6 Conclusion

Resistance training may improve glycemic control in adults with T1D, even when adjusting

for changes in meal intake and changes in insulin dosage after the exercise event. The ben-

efit of aerobic exercise on glycemic control may be tempered by increased amounts of food

consumed during the day following exercise to balance increased energy expenditure.
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3.7 Supplementary Data
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Table 3.3: Summary of the resistance exercises during the resistance training visits. Continuous data represented as

mean±standard deviation

Resistance Exercise Weight lifted (Kg) Perceived Exertion (RPE) Repetitions (reps) Sets % 1-RM

Leg Press 134± 43 13± 1 12± 1 3 68± 10

Bench Press 49± 17 15± 1 12± 1 3 67± 10

Leg Extension 23± 7 13± 2 12± 0 3 NA

Leg Flexion 11± 2 13± 1 12± 0 3 NA

Seated Row 38± 10 15± 1 12± 1 3 70± 10
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The whole of science is nothing more than a refinement of

everyday thinking.

Albert Einstein, A Dictionary of Scientific Quotations.

4
Validation of an exercise detection

algorithm for use in artificial pancreas

systems

Exercise is a cornerstone in the management of type 1 diabetes (T1D). However, exercise

leads to glycemic imbalance that could precipitate hypoglycemia. Fear of hypoglycemia can
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dissuademany individuals from engaging in regular exercise. Artificial pancreas (AP) systems

have beendeveloped to improve glycemic control, however exercise presents a significant chal-

lenge to these systems. Detecting exercise early, and responding appropriately is an ongoing

area of research. In this chapter, a description of the integration of both heart rate and activity

data from a chest worn sensor to estimate energy expenditure in adults is presented. Using an

algorithm, that had been previously developed in a youth cohort, we adapt this algorithm to

a T1D adult cohort. The accuracy of this adapted algorithm is presented here. We also show

the methodology for detecting aerobic exercise and validate the accuracy of this detection al-

gorithm.

Chapter summary

• Early detection of aerobic exercise is critical in the context of AP systems to appropri-
ately respond to the rapid imbalance of glucose dynamics

• We identify the appropriate energy expenditure detection threshold for AP systems to
detect the onset of exercise

• Wevalidate both the energy estimation algorithmand the intensity thresholddetection
for use in a dual hormone AP system
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4.1 Introduction

Clinical practice guidelines strongly recommend regular physical activity for individuals with

type 1 diabetes (T1D) [Colberg et al., 2016]. Regular physical activity is known to enhance

cardiovascular fitness [Tikkanen-Dolenc et al., 2017a], reduce the risk of long term diabetes

related complications [Tikkanen-Dolenc et al., 2017b] and improve blood lipid profile [Rid-

dell et al., 2017], yet many fail to engage in the recommended amount of exercise due to the

fear of exercise related hypoglycemia[Colberg et al., 2016, Ryninks et al., 2015, Brazeau et al.,

2008, Mann et al., 2014]. Individuals with long standing T1D suffer from absolute insulin

deficiency necessitating the need for exogenous insulin delivery [Atkinson et al., 2014]. The

imbalance between the insulin dosage reduction and altered counter-regulatory hormonal

response leads to dysglycemia [Riddell et al., 2017, Cryer, 2014]. Artificial pancreas (AP) sys-

tems are the current state of the art in glucose control [Jacobs et al., 2014, Breton et al., 2017,

Huyett et al., 2017, Turksoy et al., 2013]. In healthy individuals, exercise increases rates of glu-

cose uptake by skeletal muscles while halting the secretion of insulin from the pancreas. In

response to the increased glucose utilization, hepatic glucose production is increased through

glycogenolysis and gluconeogenesis, assisted by the increase in glucagon secretion. This pre-

vents healthy individuals from experiencing hypoglycemia related to exercise [Skyler, 2012,

Coker&Kjaer, 2005]. Dual hormone AP systems, equipped with both insulin and glucagon
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can effectively regulate the reduction in insulin delivery and increase glucagon delivery to

provide the necessary synergy needed to appropriately respond to the challenges of exercise

[Jacobs et al., 2015]. In recentwork,we showed that announcing exercise to the dual hormone

AP is necessary to reduce exercise induced hypoglycemia [Jacobs et al., 2016].

To enjoy the benefits of exercise, individuals with T1D have to plan for exercise as many

as 4 hours in advance by modifying insulin dosage at the prior meal and altering the basal

insulin levels just before, during and after [Riddell et al., 2017]. Many situations before exer-

cise demand additional carbohydrate consumption to prevent hypoglycemia during exercise

[Riddell et al., 2015, Colberg et al., 2016, Riddell et al., 2017,McCarthy et al., 2016b]. Excessive

weight gain is one of the common side effects of exogenous insulin delivery in people with

T1D [Mottalib et al., 2017] andmany engage in exercise to combat this weight gain. The fear

of hypoglycemia during exercise and the challenge of maintaining suitable insulin dosage to

manage eulgycemia is quite cumbersome [Mottalib et al., 2017, McCarthy et al., 2016a]. In

individuals managing glycemic control with an AP system, exercise could be an unforeseen

event encountered by the system. Steady state glycemic control in this situation is hampered

by the slow insulin pharmacokinetics and pharmacodynamics. This inherently places the

single hormone (insulin only) AP systems at a distinct disadvantage when exercise is encoun-

tered. Dual hormone AP systems have the promise to solve this problem by improving the

closed loop control.
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In insulin only AP systems, hypoglycemic events need to be treated with additional car-

bohydrate treatments; glucagon dosage in dual hormone AP systems rely on the release of

stored glycogen stores, from the liver to address the increased glucose utilization need during

exercise. Another challenge faced byAP systemswith exercise is that exercise causes increased

vascular blood flow to the subcutaneous depot of insulin in the body causing increased circu-

lating levels of insulin at the start of exercise. This coupled with the increased sensitivity of

insulin during exercise makes hypoglycemia quite common [McCarthy et al., 2016b].

Riddell et. al laid out the challenges associated with creating an AP system that is capable

of detecting physical activity (PA) and responding appropriately to the different types of ex-

ercise to mimic a normally functioning pancreas [Riddell et al., 2015]. In this chapter, two of

those challenges are addressed:

1. Identifying the appropriate intensity of exercise that would require the AP system to
enter exercise mode.

2. Early detection of exercise using body worn sensors.

4.1.1 Objectives

To overcome the challenges presented by aerobic exercise to individuals with T1D, we identi-

fied the following approaches:

1. Identify the appropriate intensity threshold of exercise at which an AP system needs
to enter exercise mode or activity mode
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2. Create an algorithm using body-worn sensors to detect activity/exercise with high ac-
curacy while maximizing specificity. False detection of exercise is acceptable in an AP
system, as the user could cancel exercise mode if the mode were triggered accidentally
or inadvertently.

In this chapter, we describe how we adapted the Zakeri model [Zakeri et al., 2008] to be

used in a dual hormoneAP system to identify the start of an exercise window. This algorithm

was originally created and validated in adolescents. We adapted this algorithm to be used in

a dual hormone AP system for adults. Here we describe the way in which both heart rate

data and activity data from a single body worn sensor are incorporated into an equation to

estimate energy expenditure. Wealso identify the appropriate intensity of exercise atwhich an

AP system needs to enter exercise mode. A block diagram version of the algorithm is shown

in Figure 4.1. Finally, we validate this approach in adults comparing the estimated energy

expenditure with themeasured energy expenditure from a portable VO2 indirect calorimeter.

Thework shownhere ismainly related to the adaption of the Zakeri algorithm and validation

of the same to indicate if the intensity of the energy expenditure has crossed a pre-determined

threshold.
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Artificial Pancreas Energy Estimation Algorithm

Pre-process raw 
acceleration and 

heart rate data (1 min 
resolution) 

Zakeri algorithm Harris Benedict 
correction

Activity detected

Exercise 
detection 
threshold 

Figure 4.1: A block diagram describing how the Zakeri algorithmwas adapted to be used in the Arti cial pancreas

system.
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4.2 Methods

4.2.1 Devices

Criterionmeasure -Metamax 3B (Cortex, Leipzig,Germany andViasysHealthcare Inc., Yorba

Linda, CA) portable metabolic system was used as a criterion measurement in this study. EE

was estimated from a direct measurement of oxygen consumption and carbon dioxide pro-

duction. This portable metabolic analyzer is widely used as a criterion reference in validation

studies examining EE from wearable monitors [Stahl et al., 2016]. The portable metabolic

system’s volume and gas measurements were calibrated before each study visit.

Measurement device -Heart rate and 3-axis accelerometer data streams are obtained from

a body worn Zephyr Biopatch (Zephyr Technology, Annapolis). The Zephyr Biopatch was

attached across the sternum using ECG leads.

4.2.2 Estimating energy expenditure

Exercise detection is accomplished using a cross-sectional time series modeling approach to

predict the energy expenditure (EE) from both heart rate (HR) and physical activity (PA).

Cross-sectional time series (CSTS) models are used in applications where there is a structure

of correlation between the repeated observations from the same individual. Using a validated
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CSTS model [Zakeri et al., 2008], EE is predicted every minute. The CSTS model selected

involves lag and lead values of HR (beats per min) and PA (counts per min) along with the

various time-invariant covariates such as age (year), sex (M/F), weight (in kg), height (in cm),

minimum HR (beats per min), sitting HR (beats per min) and interactions between the dif-

ferent terms. See equation below for calculating the EE for the current minute.
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EE = −0.0527 ∗HR+ 0.0000935 ∗ PA+

0.000072 ∗ (HR2)− 5.3e7 ∗ PA2+

0.00430 ∗HR(lag1) + 0.0074 ∗HR(lag2) + 0.00514 ∗HR(lead1)+

0.0146 ∗HR(lead2) + 0.000343 ∗ PA(lag1) + 0.000486 ∗ PA(lag2)+

0.00720 ∗ age+ 0.00105 ∗ age2 − 0.123 ∗ sex− 0.0101 ∗ weight−

0.00761 ∗ height− 0.0140 ∗minimalHR− 0.00683 ∗ sittingHR+

0.0000412 ∗ (PA ∗ weight) + 0.000205 ∗ (HR ∗ weight)+

0.000243 ∗ (HR ∗ height)− 0.000452 ∗ (PA ∗ sex)−

0.000672 ∗ (HR ∗ age) + 2.573

(4.1)

The output of this equation is EE in kcal/min. Sex is coded 0 for Male and 1 for Female.

Lag1 and lag2 refer to 1 and 2-min lagged values and lead1 and lead2 refer to 1 and 2-min lead

values.
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4.2.3 Pre-processing Zephyr Biopatch data

HR and PA values are obtained from a body worn Zephyr Biopatch (ZB) and are incorpo-

rated in the above equation to obtain the EE. The values for the HR and PA are obtained

from the ZB every second. The values are averaged over a minute to obtain the HR in beats

per min and PA in counts per min. To incorporate the PA values from a higher frequency

and higher resolution 3 axis accelerometer into an equation designed for a single axis, lower

resolution and lower frequency device, the following translations are performed on each one

second measure of activity:

1. The activity value per second is divided by a value - 0.001663871 to the value of count
[Umukoro et al., 2013].

count = activity/0.001663871 (4.2)

2. This value of count is scaled from a higher resolution to lower resolution by multiply-
ing by 0.064

3. The count value is scaled from a higher frequency of collection (100Hz) to a lower fre-
quency of collection (32Hz) by multiplying by 3.125 and to covert from a 3-axis device
to a 1-axis device the count value is multiplied by 0.6401 [Kelly et al., 2013].

4. This count value is summed over the duration of a minute to obtain the PA in the
required unit- counts per min.

This minute level processed data is passed to the unmodified Zakeri algorithm listed

above Equation 4.1.
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4.2.4 Harris-Benedict Correction

Harris-Benedict correction is intended to correct the EE value from the Zakeri algorithm to

provide an estimation that is applicable for use among an adult cohort. The following steps

were taken to the convert this output from Zakeri to the EE value applicable in the current

implementation.

1. The EE value is converted from kcal/min to a value of metabolic equivalents (METs),
energymeasure is often reported asMETs. AMET is an estimate of intensity based on
the ratio of working metabolic rate to resting metabolic rate. One MET is equivalent
to an oxygen update of 3.5 ml. kg−1. min−1, which represents energy expended at rest
for a reference human. Recently, there has been concern about the accuracy of using
1 MET =3.5 ml. kg−1. min−1 as a proxy value for the resting metabolic rate (RMR)
because of its potential to overestimate measured RMR values that are less than 3.5 ml.
kg−1. min−1 [Kozey et al., 2010, Byrne et al., 2005]. Critics argue that the use of 3.5 ml.
kg−1. min−1 as the RMR reference value to compute METs underestimates the true
energy cost of physical activities obtained when using a measured RMR. To provide
more accurate estimate of the RMR which is considered a measure of an individual’s
level of physical activity, it is necessary to account for personal variation in sex, body
mass, height, and age by dividing the standardMET 3.5ml. kg−1. min−1 by a predicted
RMR, obtained from the Harris-Benedict equation [Harris & Benedict, 1918] using
age, height, body mass, and sex. The resulting MET value is referred to as a corrected
MET value.

2. Harris Benedict resting metabolic rate (kcal/day) for Males = 66.4730 + 5.0033 *
(Height in cm) + 13.7516 * (Weight in kg) – 6.7550 * (Age in yr)
Harris Benedict resting metabolic rate (kcal/day) for Females = 655.0955 + 1.8496 *
(Height in cm) + 9.5634 * (Weight in kg) – 4.6756 * (Age in yr)
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3.

CorrectedMET =
EstimatedMET ∗ 3.5(ml / kg /min)

PersonalizeHarris Benedict RMR(ml /kg /min) (4.3)

4.2.5 Exercise detection threshold

Using the personalized equation described above, we determined the EE threshold of 4METs

for theAP to enter exercisemode. This determinationwasbasedon the analysis of participant

data collected during an in-clinic study [Jacobs et al., 2016]. In-clinic aerobic exercise data

was collected as part of a randomized cross-over study to assess the efficacy of an automated

bi-hormonal (insulin and glucagon) delivery system (ABD) to reduce exercise related hypo-

glycemia [Jacobs et al., 2016]. In this 3 arm crossover trial, 21 adults with T1Dwere randomly

assigned to ABD with exercise dosing adjustment, ABD with no exercise dosing adjustment

and sensor-augmented pump (SAP) therapy. Each visit lasted 22 hours, after an overnight

stay and 2 hours after breakfast, participants performed mild exercise for 45 minutes at 60%

of theirmaximumheart rate on a treadmill, with no pre-exercise snack. Data acquired during

these 22 hours was used to determine the threshold. A subset of the resulting data is shown

in Figure 4.6. During rest or non-exercise periods, EE values were below 4METs and during

the exercise period EE values were above 4 METs. Using this 4 METs cut-off, we were able

to achieve a 97% sensitivity and 98% specificity to detect the exercise periods. This perfor-

mance data is shown in Figure 4.3. Five consecutiveminutes of EE values above 4METswere
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Figure 4.2: A random subset of 12 subjects EE data from the 22 hour in-clinic stay in the hospital is shown here. Ex-

ercise periods show an increased energy expenditure with EE values above 4METswhile during the non—exercise

periods, these EE values were well below 4METs.
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Figure 4.3: Sensitivity and speci city plots of the chosen 4METs threshold. This threshold was arrived using the data

collected during a 22 hour in-clinic study.

required by the AP system to enter exercise mode and change insulin and glucagon dosage.

The adaptions to exercise are described in [Jacobs et al., 2015].

4.2.6 Participants in the validation study

Healthy adults and adults withT1Dwere recruited to participate in the validation of the exer-

cise detection algorithm. Only adults between the ages of 21—45were recruited. Participant’s

characteristics are described in Table 4.1. The experimental protocol conformed to the stan-

dards set by theDeclaration ofHelsinki andwas approved by the Institutional ReviewBoard

at the Oregon Health and Science University (OHSU, Portland Oregon). Participants were
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screened for any cardiovascular complications using a resting ECG test and using a Physical

Activity ReadinessQuestionnaire http://eparmedx.com/. This study recruited 10 adults

(6 females) who all provided informed consent before taking part in the study. Although

adults with T1D participated in this study and glucose levels were monitored, glucose data,

insulin data andhypoglycemic eventswere not analyzed and are not part of this analysis. After

obtaining consent, subjects were fitted with a portable VO2 indirect calorimeter and baseline

resting metabolic rate (RMR) data was collected.

Characteristic Number = 10

Age (years) 30±6

Gender (M/F) 6/4

Healthy/T1D 5/5

Body Weight (kg) 75±7

Height (cm) 174±9

Body Mass Index (kg/m2) 24.5±2

Resting metabolic rate (ml. kg−1. min−1) 3.63±0.4

Table 4.1: TTEA Participant characteristics. Continuous data represented asmean±standard deviation; Resting

metabolic rate (RMR) wasmeasured during the screening visit.

4.2.7 Data collection for the validation study

Participants attended the research laboratory to engage in three blocks of activity, namely:

aerobic, resistance and activities of daily living. Activities of daily living were performed first
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during the visit and the aerobic and resistance blocks were randomized. Subjects were out-

fitted with a portable metabolic unit and a two-lead ECG device —ZB on the chest. ZB

records both HR data and Activity data. This recorded data was transmitted to a Nexus 5

smart phone master controller via Bluetooth. The smart phone was running the algorithm

described in the section 4.2.2 to estimate the EE and if the EE during 5 consecutive minutes

exceed the pre-established threshold, an exercise detection announcement was made. As the

algorithm estimating EE requires both 2min lead and 2min lag values, the algorithm is inher-

ently delayed by >2 min and the exercise detection is only populated every 5 min.

4.2.8 Activities in the validation study

Each study visit beganwith activities of daily living (ADLs). Six ADLwere performed to sim-

ulate daily chores, each activity was performed for 5-15 minutes of duration. These included

sitting on a chair or lying on a bed; washing of dishes and simulated loading and unloading

of a dishwasher; sweeping or vacuuming of a small room; organizing a room or adjusting

furniture in the room; scrubbing of walls and carpet/floor; and self-paced ascending and de-

scending of a flight of stairs. Five minutes of rest was given before and after these activities.

Subjects then transitioned to do aerobic or resistance activities. Aerobic exercises were per-

formed on a treadmill. Subjects walked/ran on the treadmill at three different speeds: 2.0

miles/hour, 3.0 miles/hour and 4.0 miles/hour. Each of these speeds were maintained for
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15 minutes of duration with 10 minutes of rest between each speed. Body weight resistance

training was performed for 20 minutes. Two exercises : straight-leg raises and wall sits were

conducted for 5 minutes each. There was a period of 5 minutes of rest in between each type

of resistance exercise.

A schematic representation of the exercise protocol and data fromone of the participants

showing the data from the criterion measure and the algorithm being tested is shown in Fig-

ure 4.4.

4.3 Results

The results from the validation study are divided into two section, accuracy of the EE esti-

mation algorithm (Modified Zakeri algorithm) and the accuracy of the threshold detection

algorithm (5 consecutive minutes of EE≥ 4 METs).

4.3.1 EE estimation algorithm

The EE estimated by the algorithm was biased higher by a mean of 0.5± 1.8 METs and mean

absolute difference between the estimation and the criterionmeasurewas 1.4± 1.2METs. The

errors in estimation were primarily observed during the transition periods, the estimation

algorithm was inherently delayed by 2 min due to the equation requirement. During the

steady state activities, the errors in the estimation, though biased higher toward the algorithm
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Figure 4.4: EE data is shown here for one study participant. Notice the sharp increases in the criterionmeasured data

during the ADLs, these were situations when the subject was asked to climb stairs. These sharp increases are not

evident in the algorithm estimation.

116



0

2

4

6

8

10

09:00 10:00 11:00 12:00
Time (HH:MM) 

M
ET

s
A

0

2

4

6

8

10

09:00 10:00 11:00 12:00
Time (HH:MM) 

M
ET

s

B

0

2

4

6

8

10

09:00 10:00 11:00 12:00
Time (HH:MM) 

M
ET

s

C

0

2

4

6

8

10

14:00 15:00 16:00 17:00
Time (HH:MM) 

M
ET

s

D

0

2

4

6

8

10

13:00 14:00 15:00 16:00
Time (HH:MM) 

M
ET

s

E

0

2

4

6

8

10

10:00 11:00 12:00 13:00
Time (HH:MM) 

M
ET

s

F

0

2

4

6

8

10

09:00 10:00 11:00
Time (HH:MM) 

M
ET

s

G

0

2

4

6

8

10

11:00 12:00 13:00 14:00
Time (HH:MM) 

M
ET

s

H

0

2

4

6

8

10

09:00 10:00 11:00 12:00
Time (HH:MM) 

M
ET

s

I

0

2

4

6

8

10

12:00 13:00 14:00 15:00
Time (HH:MM) 

M
ET

s

J

Criterion Measure

Estimated Measure

K

ADLs

Resistance 

Aerobic ADLs

Resistance 

Aerobic

ADLs
Resistance 

Aerobic

ADLs

Resistance 

Aerobic

ADLs

Resistance 

Aerobic

ADLs

Resistance 

Aerobic

ADLs

Resistance 

Aerobic ADLs

Resistance 
Aerobic

ADLs

Resistance 

Aerobic

ADLs

Resistance 

Aerobic

Figure 4.5: EE data for each subject participated in the study is shown. There is a bias in the EE estimation by the

algorithm comparedwith criterion device in many of the subjects, but the bias is not similar in each of the participants.

In 8 of the 10 subjects, the estimate EE (orange dots) is higher during the steady state exercises as comparedwith the

criterionmeasure (gray dots).

were consistent for each participant. In Figure 4.5, each subject’s data is shown. EE estimation

by the algorithm is higher in the majority of subjects.

Bland Altman plot showing the EE data during the various activity blocks is show in

Figure 4.7. The error associated with the estimation of the EE across all the subjects is shown

in Figure 4.6.

4.3.2 Accuracy of the threshold detection algorithm

To determine the accuracy of the threshold detection algorithm EE data from each subject

was divided into 5 unique subsets based on the activity namely: ADLs, Resistance exercise,
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and 3 speeds of aerobic exercise: 2.0 miles/hour, 3.0 miles/hour and 4.0 miles/hour. The

threshold detection algorithmwas applied to each of these unique subsets, there were a total

of 50 subsets from 10 subjects.

• For each subset to be considered a true positive (TP) both the criterion measured EE
and the algorithm estimated EE must be above 4 METs for 5 consecutive minutes.

• A subset of data was considered a true negative (TN) if both the criterion measured
EE and the algorithm estimated EE were not greater than or equal to 4 METs for 5
consecutive minutes.

• A data subset was considered a false positive (FP) when the criterionmeasured EE was
less than 4 METs but the algorithm estimated EE was above 4 METs for 5 consecutive
minutes.

• A data subsetwas considered a false negative (FN)when the criterionmeasured EEwas
greater than 4METs for 5 consecutiveminutes but the algorithm estimated EEwas less
than 4 METs for 5 consecutive minutes.

The performance of the detection algorithm for each subject across the different types

of activities is shown in Table 4.2. Activities of daily living and slow steady state walking

were falsely detected as exercise events. In the case of slow walking activity, the bias reported

earlier from the EE estimation algorithm could be responsible for the false detections. The

confusion matrix describing the performance of the EE estimation algorithm is presented in

Table 4.3. The total accuracy of detection was 78%.
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Subject # ADLs Resistance 2mph 3mph 4mph

1 FP TN FP TP TP

2 FP TN FP FP TP

3 TN TN FP TP TP

4 FP TN FP TP TP

5 FP TN FP TP TP

6 FP TN TN TP TP

7 TN TN TN TP TP

8 TN TN TN TP TP

9 TN TN TN TN TP

10 TN TN TN TP TP

Table 4.2: Accuracy of the threshold detection algorithm in each of the subsets of data is presented. There was 50%

false detection during the activities of daily living and during the slowwalking steady state activities.

4.4 Discussion

In this chapter we have shown that an algorithm validated in adolescents and developedwith

older sensors (1-axis accelerometer) was successfully adapted (with 3-axis accelerometers, de-

scribed in section 4.2.3) to be used in a dual hormone AP system for adults. However, we

observed that the EE estimation algorithmwas prone to higher estimation of EE.We also val-

idated that the selected EE intensity thresholdwas successful at detecting the aerobic exercises.

As indicated before, the objectives of this chapter were to identify the appropriate threshold

that would qualify as exercise and present an higher sensitivity approach to detect exercise at
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Criterion EE≥ 4 METs

Positive Negative Total

EE Estimation≥ 4 METs
Positive 21 11 32

Negative 0 18 18

Total 21 29 50

Table 4.3: Confusionmatrix describing the detection of the different type activities by the EE estimation algorithm

combinedwith the detection algorithm.

the expense of specificity. These two objectives were achieved.

Aerobic exercise can lead to rapid changes in glucose concentrations and by allowing the

subject to acknowledge the exercise detection is a conservative approach to overcome the bias

in the energy estimation. Energy estimation and exercise detection is a challenging field and

providing a form of human input is helpful as there are a myriad other activities that were

not tested in this validation protocol.

Exercise naive AP systemswere not able to prevent hypoglycemia during exercise [Breton

et al., 2012] but were able to reduce the risk of hypoglycemia many hours after the exercise

bout. This was followed bymany groups attempting to include sensors to enable early detec-

tion of exercise in the context of AP systems. Breton et al [Breton et al., 2014a] showed that

using only change in HR to detect exercise was beneficial in reducing hypoglycemia during

exercise. In that study they adopted a relative change inHR as amarker for detecting exercise,

though HR is an good marker for detecting exercise levels, HR alone could have some inher-

ent disadvantages for individuals with T1D. It has been shown that many people with T1D
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suffer from autonomic dysfunction [Pop-Busui, 2010], this leads to tachycardia and could

lead to unreliable HR data. Turksoy et al showed that a multivariable adaptive model with

multiple inputs to adjust insulin delivery could improve glucose control in a small sample

size [Turksoy et al., 2013, 2014a], they used a Bodymedia armband sensor that is no longer in

production, leading to limited application potential by other groups.

Stenerson et al undertook a study to identify if adding HR data to accelerometer data

to detect physical activity was necessary and concluded that HR data is not needed to detect

exercise [Stenerson et al., 2014]. They found that in a simulated settingusing an accelerometer

augmented insulin pump suspension algorithm decreased the incidence of exercise induced

hypoglycemia.

Detection of exercise while relying on accelerometers is very dependent on the location of

the sensors and activities such as horse riding or four-wheeling could produce signals that are

not correlatedwith exercise. Using a combinationofbothHRandaccelerometer,Dasanayake

et. al, showed that early detection couldbe accomplishedbefore rapid changes in glucosewere

observed [Dasanayake et al., 2015b], but detection combinedwith intensity of exercise has not

been shown so far. In this work we show a system that is dependent of various anthropomet-

ric features along with HR and PA data could be successfully used to detect activities from

body worn sensor.

Delayed absorption and clearance of insulin action along with lag and error associated
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subcutaneous glucose sensor data during exercise presents a challenge to the current AP sys-

tems using only insulin to manage exercise [Doyle et al., 2014, Cinar, 2017]. As mentioned

earlier AP systems that are only insulin based are at an inherent disadvantage as shut off of

insulin alone in response to detected aerobic exercise has been shown not to prevent hypo-

glycemia [Zaharieva et al., 2017]. The synergy of early detection of exercise with the turn

off of insulin along with the dosing of glucagon in response to rapid drops in glucose is the

panacea needed. This approach mimics the response of a person with healthy functioning

pancreas.

4.5 Conclusions

In this chapter we have shown, that energy expenditure could be estimated using both HR

and PA data obtained from a body worn sensor. We also show that the exercise intensity

threshold thatwas determined tobe safe and could accurately detect 78%of the exercise events

in this validation study.
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Basic research is like shooting an arrow into the air and,

where it lands, painting a target.

Homer Adkins, Nature 312, p.212, 1984

5
Accuracy of wrist-worn activity monitors

during different forms of physical activities

Wrist worn wearable devices are ubiquitous. Currently they are only being used recre-

ationally to track health and fitness. Individuals with type 1 diabetes are at a constant risk

of hypoglycemia and this risk is elevated during and for many hours after exercise. As arti-

ficial pancreas systems become available to control glucose levels in individuals with type 1

125



diabetes, adding a wrist worn wearable device is a logical next step to improve detection of

exercise and prevent exercise related hypoglycemia. In this chapter we discuss the accuracy

of these wrist worn wearable devices and highlight some of the challenges that are associated

with these devices.

Chapter summary

• Comprehensive testing of two popular wrist worn devices in a variety of dynamic, non
steady state and structured activities of daily living was conducted

• During these tests the overall accuracy of heart rate measurement from these devices
was acceptable when compared with the reference standard chest strap

• Per activity energy expendituremeasurements were found to be inaccurate when com-
pared against the gold standard indirect calorimeter.

• We also observed that indicating to the device the type of activity performed vastly
improved the accuracy of heart rate measurements.

This work has been accepted for publication in the

Journal of Medical Internet Research
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5.1 Abstract

Background: Wrist-worn activity monitors are often used tomonitor heart rate (HR) and

energy expenditure (EE) in a variety of settings, including more recently in medical applica-

tions. The use of real time physiological signals to inform medical systems including drug

delivery systems and decision support systems will depend on the accuracy of the signals be-

ing measured including accuracy of HR and EE. Prior studies assessed accuracy of wearables

only during steady state aerobic exercise.

Objective: To validate the accuracy of both HR and EE for two common wrist-worn de-

vices during a variety of dynamic, non steady state activities that represent a variety of physical

activities associated with daily living including structured exercise.

Methods: We assessed the accuracy of both HR and EE for two common wrist-worn de-

vices (Fitbit Charge 2®,Garmin vívosmart®HR+) during dynamic activities. Over a two-day

period, 20 healthy adults (age: 27.5±6.0 yrs; BMI: 22.5±2.3 kg/m2; 11 females) performed a

maximal oxygenuptake test, free-weight resistance circuit, interval training session, and activi-

ties of daily living. Validitywas assessed using aHRchest strap (Polar®) and portable indirect
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calorimetry (COSMED). Accuracy of the commercial wearables vs. research-grade standards

was determined using Bland-Altman analysis, correlational analysis, and error bias.

Results: Fitbit and Garmin were reasonably accurate at measuring HR but with an overall

negative bias. There wasmore error observed during high intensity activities, when there was

a lack of repetitive wrist motion, and when the exercise mode indicator was not used. The

Garmin estimatedHRwith amean relative error (MRE)of -3.3%±16.7while Fitbit estimated

HR with a MRE of -4.7% ±19.6 across all activities. The highest error was observed during

high intensity intervals on bike (Fitbit: -11.4%±35.7; Garmin: -14.3%±20.5) and lowest error

during high intensity intervals on treadmill (Fitbit: -1.7%±11.5; Garmin: -0.5%±9.4). Fitbit

and Garmin EE estimates differed significantly with Garmin having less negative bias (Fitbit:

-19.3% ±29.9, Garmin: -1.6%±30.6, P <0.001) ) across all activities, with both correlating

poorly with indirect calorimetry measures.

Conclusions Two commonwrist-worn devices show goodHR accuracy, with a small neg-

ative bias, and reasonable EE estimates during low to moderate intensity exercise and during

a variety of commondaily activities and exercise. Accuracywas compromisedmarkedlywhen

the activity indicatorwas not used on thewatch orwhen activities involving less wristmotion

such as cycle ergometry were done.
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5.2 Introduction

Consumer-based wrist-worn multi-sensor activity monitors (AMs) have emerged as an in-

creasingly popular way to track various physiological metrics such as heart rate (HR) and

physical activity levels, with the latter being typically expressed in the form of step counts

and/or energy (caloric) expenditure (EE).  Sales of AMdevices have doubled from 30million

units in 2014 to 70 million units in 2017 [Haselton, 2017]. The growth in activity tracking

wearables has been largely drivenby consumer interest inmonitoring, and sometimes sharing,

their own physical activity levels, workouts and total daily EE. In the scientific community,

there is increasing interest in whether AMs may also be used within a healthcare setting to

collect these same data and help patients and healthcare providers better manage weight con-

trol and/or chronic illnesses.  For example, in patients with type 1 diabetes, aerobic exercise

is known to cause steep drops in blood glucose levels while anaerobic exercise can cause glu-

cose levels to rise[Riddell et al., 2017] . Monitoring of patient physical activity levels may be

helpful in implementing insulin and or nutritional strategies to help preserve glucose control

[Zaharieva et al., 2017].  In theory, AMs could help individuals with diabetes better manage

their glucose levels if they could be used in conjunction with implanted continuous glucose

monitors, an insulin pump and a control algorithm to adjust insulin delivery, and perhaps

glucagon delivery, in real time [Jacobs et al., 2015, 2016]. AMs can also can be used within
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algorithm-driven decision support systems to help avert exercise-induced hypoglycemia or

late onset hypoglycemia. Automated insulin delivery systems can potentially modify insulin

dosing in response to AMs to reduce the risk (or severity) of exercise-induced hypoglycemia

in people living with type 1 diabetes [Huyett et al., 2017, Breton et al., 2014b, Turksoy et al.,

2014b, Breton et al., 2017]. For any medical system utilizing an AM, the accuracy of the HR

and EE estimates by the AM is critical as it can influencemedical dosing decisions and patient

outcomes. There are three distinct challenges with using the AMs within medical systems,

namely detecting the onset of the activity, distinguishing the type of the detected activity and

estimating the intensity and duration of the activity, as each of these functions can determine

how medical system may behave. In this paper, we explore the accuracy of HR and EE es-

timates from two popular AMs to determine if the accuracy of these wearables is sufficient

for use withinmedical applications such as automated insulin delivery systems for use within

type 1 diabetes glucose management.

In the earlier models of AMs, only accelerometers were used to estimate EE [Lee et al.,

2014] but in more recent multi-sensor models, photoplethysmography (PPG) is being used

to estimate HR [Bai et al., 2017] and potentially to improve the accuracy in estimating EE

[Chowdhury et al., 2017]. With the inclusion of HR as measured by the PPG sensor and

acceleration as measured by the accelerometers, the accuracy of the estimated EE is expected

to be improved in newermodels.  For example, Zakeri et al. [Zakeri et al., 2008] showed that

130



EE can be estimated using both accelerometry and HR along with several additional patient-

specific parameters such as age, weight and height.  The Zakeri et al. algorithm utilizing

accelerometry and HR to estimate EE, and metabolic equivalents (METs) has been used in

the past to inform anAPduring physical exercise [Jacobs et al., 2015]. In recent studies involv-

ing predominantly aerobic activities, wrist-worn AMs have been shown to have reasonable

accuracy in HR estimation (≈5% error) but a poor estimate of EE where the error was found

to be closer to≈30% [Shcherbina et al., 2017].   In free-living conditions, however, AMs are

worn, typically on the non-dominate wrist, during multiple forms of exercise in non-steady

states, not just aerobic exercise performed at a constant workload or intensity.  For example,

in free-living conditions, some people frequently perform resistance exercise, involving free

weights or their own body weight, while others may perform high intensity interval training

(HIIT), within the same session. In fact, in the diabetes population, patients are encouraged

to performboth resistance and aerobic training andHIIThas recently been recommended by

numerous authors to rapidly improve fitness, body composition and overall glycemic control

[Helal et al., 2017, Wormgoor et al., 2017, Rooijackers et al., 2017, García-García et al., 2015,

Jelleyman et al., 2015].

Presently, there are at least four studies [Boudreaux et al., 2018, Bai et al., 2016, Horton

et al., 2017, Jo et al., 2016] that have investigated the accuracy of wearable devices during resis-

tance exercises and none during HIIT training. Bai et al. [Bai et al., 2016] reported that EE
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measured during an unstructured resistance exercise protocol in which participants selected

exercises and loads was inaccurate across numerous devices. The devices included five wrist-

worn devices (Fitbit Flex, JawboneUp24,Misfit Shine, Nike+ Fuelband SE, and Polar Loop)

and two research monitors (Actigraph GT3X+ on the waist and the BodyMedia Core on the

arm). In this study 52 participants tested seven different devices and the wearable devices had

lower accuracy for EE when compared with a metabolic analysis system. None of the devices

in this study reported HR measures. Horton et al. [Horton et al., 2017] assessed the validity

of HR only using the Polar M600 when compared with a three-lead ECG during both aer-

obic and resistance exercises. The accuracy of the wearable device was reported to be better

during aerobic exercise (92%) as compared with only 35% accurate during the resistance exer-

cises. In this study, participants completed squats, shoulder shrugs, bicep curls, and lunges

with dumbbells at a self-selected weight. Jo E et al. [Jo et al., 2016] reported poor correlation

and HR accuracy in the Fitbit Charge HR device. In this study, subjects completed a short

resistance exercise bout involving resisted arm raises, resisted lunges, and isometric plank. In

a large cohort study, Bourdreaux et al. [Boudreaux et al., 2018] standardized the selection

of the weights utilized during the resistance exercises: two upper body exercises (chest press,

latissimus dorsi pulldown) and two lower body exercises (leg extension and leg curl) among

the subjects using a standardized 10-repmax protocol. Results from this study demonstrated

that HR measured by non-wrist worn devices were relatively accurate while, wrist-worn de-
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vices showedpoor correlations (’R’ < 0.8) and higher error during resistance exercises (MAPE

> 9%). They also showed that the EE measured by the devices was poor with MAPE values

ranging between 43% and 57%.

The primary aim of this study was to examine the accuracy of both HR and EE across a

wide range of dynamic activities including resistance training, HIIT and aerobic training. A

secondary aim was to examine the accuracy when the optional activity mode is not selected

on thewearable. Theremay be timeswhen people exercise, but they do not indicate that they

are exercising; we wanted to determine the accuracy both when they do and do not indicate

that they are exercising.

5.3 Methods

5.3.1 Participants

The experimental protocol conformed to the standards set by theDeclarationofHelsinki and

was approvedby the InstitutionalReviewBoard at theOregonHealth andScienceUniversity

(OHSU, Portland Oregon) and by the Research Ethics Board at York University (Toronto,

Canada). This study recruited 20 healthy adults (11 females; 10 subjects at OHSU; 10 at York

University) who all provided informed consent before taking part in the study. Participants

were screened for any cardiovascular complications using a Physical Activity ReadinessQues-
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tionnaire http://eparmedx.com/.

5.3.2 Study Protocol

Participants attended the research laboratoryon two separate occasions, separatedby 24hours.

Each visit involved simultaneous recordings of HR (beats per minute) and EE (kcals and

METs) from the respective criterion measures during a series of physical activities and struc-

tured exercises. On the first visit, a stadiometer (Seca, model220, Hamburg, Germany) was

used to measure the height to the 0.25 cm (without shoes) and body mass was measured to

the nearest 0.1 kg using a scale (Seca, model 707, Hamburg, Germany) with the participant

dressed in workout clothes. As per the manufacturer’s instructions, age, gender, height and

weight were used to initialize the wearable devices and associated applications. These same

data we also entered to a portable metabolic unit (Cosmed, Rome, Italy). Two wearable de-

vices (one of each brand)were tested at the same time on all participants (one on each forearm

as per manufacturer’s instructions), using a randomized and counterbalanced method. On

each visit, participants undertook two activity blocks (see below for further details) following

setup of the devices and synchronization of all the devices to a single clock before the exercise

protocol commenced.
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5.3.3 Activities

In Visit 1, participants performed two blocks of activity separated by a 30 minute rest period.

In the first block, participants performed a gradedmaximal aerobic exercise test (treadmill or

cycle ergometer, 10 subjects per mode) to volitional exhaustion (i.e. progressive to peak oxy-

gen consumption [VO2peak]). These will be referred to asMAX-T (treadmill) andMAX-C

(cycle ergometer) tests. During MAX-T, each participant began with a 5 min standing rest,

followed by 4min of walking as a warm up (3.0mph, 0% grade for 2min then at 5% grade for

2 min). After the warm up, participants self-selected a comfortable running speed between

4-6mph and subsequently the treadmill inclinewas increased by 2% every 2minutes until the

participant reached volitional exhaustion. At eachworkload stage, participants were asked to

assess their level of physical exertion using the Borg Rating of Perceived Exertion (RPE) 10

point scale[Borg, 1982]. For the participants performing the MAX-C test, each participant

began with a 5 min seated rest followed by 4 minutes of warm up cycling at a moderate ca-

dence (≈50—60 revolutions per minute—rpm) at zero load. After this, cycling cadence was

maintained at 60 RPM and the power output was increased every 2 min by 30 Watts until

the participant reached volitional exhaustion. BorgRPEwas assessed at the end of each 2min

stage. For bothMAX-T andMAX-Cprotocols, thewearables were placed in the appropriate

exercise setting (i.e. running or cycling) and worn on the wrist as per manufacturer’s speci-

fications. Following the exercise test, the participants rested for 30 minutes. In the second
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block of activity on the same day, a resistance circuit workout was performed (2 sets of 8 repe-

tition max of all the major muscle groups). Subjects selected a suitable dumbbell weight that

they could maintain a proper from for 8 repetitions before muscular fatigue.  The following

6 exercises were performed: dumbbell bicep curls, Romanian deadlifts, Bulgarian split squat,

dumbbell bench press, dumbbell shoulder press and dumbbell step ups. After a 20 minute

cool down, participants then left the laboratory.

In Visit 2, performed the next day, participants undertook two new activity blocks. The

first activity block consisted of 28min of routine activities of daily living (ADL)while the sec-

ondblock includedhigh intensity interval training (HIIT) for 27min (includingwarmupand

cool down). SixADLswere performed to simulate daily chores, each of 3minutes of duration.

These included sitting on a chair or lying on a bed; washing dishes and simulated loading and

unloading of a dishwasher; sweeping or vacuuming of a small room; organizing a room or

adjusting furniture in the room; scrubbing walls and carpet/floor; and self-paced ascending

and descending of a flight of stairs. These activities were bookended by two 5minute periods

of seated rest. In the second activity block, participants choose the same exercise mode (i.e.

treadmill, cycle ergometer) as with the peak exercise test. The high intensity activities will be

referred to as HIIT-T (treadmill) and HIIT-C (cycle ergometer). For HIIT-C, participants

were asked to cycle at≈60 rpms for 2 min at a low intensity with low resistance, correspond-

ing to≈30% of their peak power output in watts (as measured duringMAX-C), and then at
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a high intensity (60 rpms), at a power output corresponding to ≈80% of their peak power

output for 2 min, for a total of 5 cycles. For the treadmill intervals, participants were asked

to walk for 2 min at a treadmill speed and slope corresponding to≈30% heart rate reserve (as

measured during MAX-T), and then run/jog at a speed and slope corresponding to ≈80%

of their heart rate reserve for 2 min, for a total of 5 cycles.  This session was completed by a

cool down period of 5 min.

5.3.4 Wearables Devices

Although multiple devices were available to that could provide the relevant exercise metrics,

we chose the following two devices after considerable consideration to the cost of the devices

and ability to integrate with a control system running on an Android platform. Henriksen

et al. provided a detailed review of the many devices that are available and have been tested

over the last few years [Henriksen et al., 2018].

Garmin vívosmart®HR+

The Garmin vívosmart ®HR+ (2016 version, Garmin International Inc, Kansas, USA) is a

multi-sensor activitymonitor that  has an accelerometer, global positioning system (GPS) and

built-in PPG sensor which uses the “Elevate” wrist heart rate technology  to measure heart

rate at the wrist. The frequency at which HR is measured is normally once every 15 seconds

but triggering the ‘device key’ button and setting the wearable to an activity mode (e.g. run)
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increases the frequency at which HR is measured to once per second. EE values are reported

per activity bout in calories, also when the device key is pressed. Garmin provided a special

interface to export data from the device when the ‘device key’ buttonwas not indicated. This

provided a reliable method to download data. The firmware version of the device was 3.20.

Data was exported via bluetooth low energy (BTLE) to the Garmin-Connect App Version

3.17.

Fitbit Charge 2®

TheFitbitCharge 2®(2017 version, Fitbit Inc, California,USA) is amulti-sensor activitymon-

itor which has an accelerometer and built-in PPG sensor which uses the “PurePulse” wrist

heart rate technology to measure heart rate at the wrist . The frequency at which heart rate

is measured varies and depends on the level of activity, the Charge 2 uses SmartTrackTM to

automatically detect and record select exercises, but themanufacturer recommends using the

exercisemenu to improve the ‘precision’ ofHRandEEmeasurements. EE values are reported

per exercise bout in calories. Data were exported via bluetooth low energy (BTLE) to the Fit-

bit App Version 2.35. The firmware version of the device was 22.54.6. Data was downloaded

at the highest resolution through Fitabase (Small Steps Labs, California, USA), a third party

research platform designed to collect data from Fitbit using the developer API. The use of

Fitbit with Fitabase also allows for estimates of metabolic equivalents (METS) for an addi-

tional assessment of the relative energy costs of a given activity, compared to rest, and for the
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determination of estimated oxygen consumption (VO2) expressed in ml O2·kg−1.min−1.

Criterion Measures Heart Rate Criterion Measure Participants wore the Polar H7

(BTLE version, Polar Electro, Kempele, Finland) chest strapHRmonitor, whichwas secured

tightly to ensure skin contact. The data from the PolarH7was transmitted to the Polar A300

(Polar Electro, Kempele, Finland) and the second level data from this device was downloaded

using the Polar FlowApp. Although some studies have shown the limitation of these devices

as compared with the gold-standard electrocardiogram (ECG)measure of heart rate [Henrik-

sen et al., 2018, Horton et al., 2017], these chest basedHRmonitors have been used to inform

glucose control systems of exercise [Breton et al., 2014b, 2017, Dasanayake et al., 2015a].

Energy Expenditure Criterion Measure Cosmed K4b2/ Cosmed K5: Participants wore a

portable indirect calorimeter: Cosmed K4b2 or Cosmed K5 (Rome, Italy), which collected

breathbybreathdata on the ventilatoryparameters (i.e. oxygen consumption [VO2]), EEwas

estimated from the direct measurement of oxygen consumption and carbon dioxide produc-

tion. The units were calibrated prior to each session according to the manufacturer’s instruc-

tions. EE data was downloaded from the cardiopulmonary exercise testing (CPET) Suite.

5.3.5 Statistical Analysis

Statistical analysis was performed separately forHR and EE. Data from the indirect calorime-

try (VO2 and VCO2) served as the reference standard measurement for calculations of EE
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(kcal/min). Data from the Polar HR monitor served as the as the reference standard for HR

(beats-per-minute; bpm). In this analysis for both EE and HR, we analyzed all the data col-

lected fromeachdevice and errorwas calculated as error = device measurement− reference standard

and % relative error (%RE) was calculated as

%RE =
(device measurement− reference standard) ∗ 100

reference standard (5.1)

We also report mean absolute percent error (MAPE) as absolute value of

%MAPE =
abs(device measurement− reference standard) ∗ 100

reference standard (5.2)

Error in HRwas calculated at each measurement of the device and matched in time with the

closest data collected from the reference standard. The frequency of measurement of the de-

vices varied, with the reference standardmeasuring theHR at every second as opposed to the

Fitbit (variable from 1 sec to 15 sec) andGarmin (variable ranged from 5 sec to 60 sec). Pearson

(ρ) correlation coefficients, Concordance correlation and Bland-Altman analysis were used to

assess the mean bias and agreement between the devices and the reference standard. Error in

EEwas only calculated for each activity for the summeddata for the entire activity. Higher res-

olution data for the EE values could not be obtained. All statistical analyses were conducted

in R (version 3.4.2) [R Core Team, 2017] and GraphPad Prism 7 (version 7.0c).
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5.4 Results

All 20 participants recruited for the study completed the procedures. Table 5.1 describes the

participant characteristics.

Characteristic Number = 20

Age (years) 28±6

Gender (M/F) 9/11

Body Weight (kg) 68±11

Height (cm) 173±10

Body Mass Index (kg/m2) 22.5±2

VO2max 48±9

Wrist (cm) 16±2

Race - White 85%

Race - Asian 10%

Race - Native American/Canadian 5%

Table 5.1: Participant characteristics, Continuous data represented asmean±standard deviation. VO2max (maximal

oxygen uptake) wasmeasured at the incremental test to exhaustion.

5.4.1 Heart Rate Accuracy

We analyzed a total of 83,349 simultaneous heart rate pairs of data, whereby a pair is either a

Garmin or a Fitbit measurement compared with the reference standard (Polar chest strap).
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Max Test-T R Resistance HIIT-T ADLsR T R

Max Test-C R Resistance HIIT-C ADLsR T R

Figure 5.1: Two-day study protocol with R indicating the rest periods, and T indicating the transition period between

the different types of activities. Data is shown from 2 different participants wearing all devices in panels A and B.

Note, Garmin devices were worn by the participants here in two different modes, one with the activity mode indicated

(Garmin) and the other without (Garmin: No Button). Panel A shows the data during the cycle ergometer tests and

Panel B shows the data from the treadmill tests. Data in panel-A highlights the error observed during higher intensity

exercises where wrist movement was less pronounced during cycle ergometer testing. Panel B shows treadmill results

when the Garmin, Fitbit and Polar data are very closely matched across the exercise types.
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There were a total of 61,499 pairs for the Fitbit heart rate data, 18,317 pairs of heart rate

data from Garmin (with the activity mode indicated) and 3,533 pairs of heart rate data from

Garmin with no button press (activity mode not indicated). We analyzed data collapsed

across all activities and also looked at accuracy during each individual activity. There was no

difference in accuracy between the twodeviceswhen the activitymodewas indicated (Garmin

and Fitbit). The overall performance was significantly worse if the activity mode was not in-

dicated on the Garmin device compared to when activity mode was indicated (P <0.001).

Figure 5.1 shows results of the HR data across both sessions for two subjects. Both panels

show that when the activity mode is not indicated, there is less accuracy and also a distinct

phase shift whereby the Garmin: No Button trace appears to be shifted in time relative to the

Polar. This shift in time is a minor contributor to the inaccuracy within the HIIT activities.

The majority of error was from devices failing to track during dynamic activities.

For HR data collected with the activity mode indicated, a systematic negative bias was

observed across all three devices, the mean relative error (%RE)±SD for the Fitbit device on

the pooled data was -4.71%±19.63, the mean %RE±SD for the Garmin (with activity mode

initiated) was -3.33%±16.67 and themean %RE±SD for the Garmin (with activity mode not

initiated) was -5.47%pm22.79 (comparing the Garmin devices with activity mode indicated

vs not indicated. P <0.001) MAPE±SD for the Garmin and Fitbit was 10.79% ±13.14 and

11.33%±16.71 respectively. Mean HR measures for each activity were pooled and compared
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with the reference standard, this data is shown in Table 5.2.

The lowest mean error in measuring HR was observed during the HIIT-T (Fitbit: -

1.7%±11.5, Garmin: -0.5%±9.4), while the highest error was observed on both HIIT-C (Fit-

bit: -11.4%±35.7, Garmin: -14.3%±20.5) and during MAX-C (Fitbit: -16.4%±21.6, Garmin:

-9.3%±17.0). Figure 5.2 shows the variability between andwithin activities. When the activity

mode of the wearables are activated (panels A and B), median % relative errors are within the

5% error threshold for both devices. When the activity mode is not activated, as observed in

panel C, themedian % relative error significantly exceeds the 5% threshold across many of the

activities.

The correlation between theHR values on the wearables and our reference standard was

best duringMAX-T (Fitbit 0.94,Garmin : 0.94), while poor correlation between theHRval-

ues was observed during the HIIT-C (Fitbit: 0.46, Garmin: 0.71). The relative error across

the collapsed data for the activities with repetitive motion (Treadmill Tests) was observed to

be significantly lower at -1.6%± 9.6 when compared with activities with no repetitive motion

(Ergometer tests) at -12.25%±19.3 (P < 0.001). Scatterplots between the simultaneous mea-

sures across all the activities are shown in Figure 5.3.

Bland-Altman plots indicated that all three devices underestimate the HR when com-

pared with the reference standard as indicated in Figure 5.4 . The variability between these

devices was comparable. However, the wearable devices tended to have significantly higher

144



−60

−30

0

30

60

M
A

X
−T

M
A

X
−C

R
es

is
ta

nc
e

H
IIT

−T
H

IIT
−C

A
D

Ls

P
er

ce
nt

ag
e 

E
rr

or
 r

el
at

iv
e 

to
 c

rit
er

io
n

FitbitA

−60

−30

0

30

60

M
A

X
−T

M
A

X
−C

R
es

is
ta

nc
e

H
IIT

−T
H

IIT
−C

A
D

Ls

P
er

ce
nt

ag
e 

E
rr

or
 r

el
at

iv
e 

to
 c

rit
er

io
n

GarminB

−60

−30

0

30

60

M
A

X
−T

M
A

X
−C

R
es

is
ta

nc
e

H
IIT

−T
H

IIT
−C

A
D

Ls

P
er

ce
nt

ag
e 

E
rr

or
 r

el
at

iv
e 

to
 c

rit
er

io
n

Garmin: No ButtonC

Figure 5.2: : Percent relative error (% RE) in HR across all the activities in this protocol from all the devices tested.

Percent Error is calculated as%error = devicemeasurement− reference standard ∗ 100/reference standard. The
box-whisker plots indicate the error along with the 25% quantile, median -50% quantile, 75% quantile marked in each

box plot Gray horizontal dashed lines indicated the 5% error threshold and the dotted lines indicate the 10% error

threshold. When the activity is indicated both Garmin and Fitbit devices, median% relative errors were within the 5%

error threshold. When the activity is not indicated as observed in panel: C, themedian% relative error signi cantly

exceed the 5% threshold across many of the activities.

error when the HR signal transitioned quickly and at higher intensity.

There was a generally small but significant impact of the wrist side worn (i.e. left vs right)

on the percent absolute relative error. Using a t-test, the error was higher on the right hand vs.

the left hand for the MAX-T (6.6% vs. 5.1%, P <0.001), HIIT-T (6.72% vs. 5.85%, P = .002),

and ADLs (13.33% vs. 11.17%, P <0.001). While the error was higher on the left hand vs. the

right hand for resistance (15.0% vs. 13.5%, P <0.001) and MAX-C (9.53 vs. 2.97%, P <0.001).
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Figure 5.3: Scatter plots showing simultaneous heart ratemeasurements from the reference standard criterion device:

Polar chest strap comparedwith the AMs, across all the activities that were tested in this study. Panel: A shows the

correlation plot comparing the Fitbit and the Polar, Panel: B shows the correlation plot comparing the Garmin (with

activity indication) and the Polar and Panel: C shows the correlation plot comparing the Garmin (with no activity

indication) and the Polar.
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Figure 5.4: Bland-Altman plots showing simultaneous heart ratemeasurements from the reference standard criterion

device: Polar chest strap comparedwith the AMs, across all the activities that were tested in this study. Different col-

ors in this gure indicate each of the activity that was tested. Mean heart rate is shown on the x-axis and the difference

between the simultaneously measured heart rate is on the y-axis. The gray dotted line indicates themean difference

(bias) between themeasurement and the gray dashed lines indicate the limits of agreement (mean± 2*SD ). Panel: A

shows the Bland-Altman plot comparing the Fitbit and the Polar, Panel: B shows the Bland-Altman plot comparing the

Garmin (with activity indication) and the Polar and Panel: C shows the Bland-Altman plot comparing the Garmin (with

no activity indication) and the Polar.
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5.4.2 Energy Expenditure

Because of the limitation on the Garmin Connect application, EE data could only be com-

pared at a very low resolution, namely at each activity block (e.g. ADL, HIIT-C or HIIT-T).

Both Fitbit andGarmin performed reasonably well in estimating task-specific EE, when look-

ing at the group as a whole, but considerable error was noted for some of the activity blocks.

Fitbit and Garmin EE estimates differed significantly with Garmin having less negative

bias (Fitbit: -19.3%±29.9, Garmin: -1.6%±30.6, P <0.001). Table 5.3 shows the activity block

(task) level data for both devices while Figure 5.6 shows the boxplot errors when compared

with the Cosmed indirect calorimeter.

MAPE±SD for Garmin and Fitbit was 27.0%± 21.8 and 25.1%± 17.3, respectively. The

lowest mean error in measuring EE was observed during ADL (-8.8%± 29.2) for Fitbit and

MAX-C (-4.5% ± 25.3) and HIIT-T (-4.7% ± 29.3) for Garmin. The highest error was ob-

served during MAX-C (-39.1% ± 30.6) and HIIT-C (-41.9% ± 31.3) for Fitbit and resistance

(21.0%± 35.7) for Garmin. Figure 5.6 shows the %RE in EE for Fitbit and Garmin during all

pooled treadmill and pooled cycle ergometer activities as scattered dot plots.

Both Fitbit and Garmin demonstrated negative bias when activities were performed on
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the treadmill (Fitbit: -15.1%± 13.5, Garmin: -7.4%± 30.1, P = 0.18). For activities performed

on the ergometer, both devices displayed a negative bias, but there was significantly higher

mean error on Fitbit compared to Garmin (Fitbit: -40.5% ± 30.2, Garmin: -7.9% ± 27.6, P

<0.001).

Figure 5.7 shows the absolute percent error in EEduring each activity as box-whisker plots

for Fitbit and Garmin, compared to Cosmed- derived EE. Garmin was significantly more ac-

curate than Fitbit at estimating EE during MAX (Fitbit: 31.5% ± 21.5, Garmin: 22.9% ±

16.8, P = 0.047) and all ergometer activities (Fitbit: 42.7%± 26.8, Garmin: 22.8%± 16.6, P

= 0.03). Fitbit was significantly more accurate than Garmin at estimating EE during ADL

(ADL: 20.9%± 21.8, Ergometer: 42.7%± 26.8, P = 0.02) and all treadmill activities (Tread-

mill: 16.9% ± 10.9, Ergometer: 42.7%± 26.8, P = 0.003) compared to all activities performed

on the cycle ergometer.

5.4.3 Spurious Heart Rate measurements

During the early phase testing of these devices, it was discovered that these devices would

produce spurious HR measurements during periods of non-wrist use, such as when devices

were stored in a backpack during commute. PPG sensors use a light source, commonly a
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Figure 5.5: Percent relative error (%RE) in energy expenditure (EE) across different exercisemodalities for Fitbit (A)

and Garmin (B). Negative bias in estimating EE is apparent across exercisemodalities. The horizontal lines represent

themean. ⋆P<0.05. #P<0.0001 compared to Garmin.
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Figure 5.6: Percent relative error (%RE) in energy expenditure (EE) during the VO2peak test (MAX) and high intensity

interval training (HIIT) on the treadmill (A) and cycle ergometer (B) for Fitbit and Garmin. Negative bias in estimating

EE is demonstrated by both devices during bothmodes of exercise, with the greatest mean error displayed by Fitbit

duringMAX andHIIT performed on the cycle ergometer. The horizontal lines represent themean. #P<0.0001
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Figure 5.7: Absolute percent error in energy expenditure (EE) across different exercisemodalities for Fitbit and

Garmin. Each box-whisker plot consists of a box that extends from the 25% to the 75% quantile, with a line in the

middle of the box representing themedian (50% quantile). Each box has error bars that extend to the 5% and 95%

quantiles, with outliers displayedwith open circles. The P values listed on the right side display the difference in abso-

lute percent error for EE between Fitbit and Garmin during each activity. ⋆P<0.05. ⋆⋆P<0.01.

group of light emitting diodes to illuminate the tissue of the wrist, and theHRmeasurement

is based on the differential reflectionof the light asmeasuredby the photodetector in response

to the pulsatile nature of the blood perfusion in the superficial vessels. Under these working

principles, if there is no light reflection from the surface, we suspected that the devises reports

HR measurements even if they are not “on body” (i.e. spurious results). We performed a

simple laboratory experiment to confirm this. Using a standard bench top variable speed

laboratory nutator (Fisher Sci # S06622) we simulated 3D wrist rotating motion at a fixed

speed (22 rpm) and we recorded spurious HR results from both of the test devices. The data

and the experimental picture are shown in Figure 5.8.
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Figure 5.8: Spurious heart rate as reported by the devices, when not being worn by an individual. The experimental

setup is provided in the inset.

5.5 Discussion

This study examined the accuracy of two commonwrist-worn, consumer-grade activitymon-

itors for estimating HR and EE during a variety of non-steady state activities. Similar to pre-

vious studies [Chowdhury et al., 2017, Wang et al., 2017, Dooley et al., 2017, Stahl et al., 2016,

Wallen et al., 2016], we found reasonable accuracy in HR and EE estimations for these two

devices under certain exercise conditions. Our findings are also in agreement with prior work

looking at HR and EE estimates across many different devices [Shcherbina et al., 2017, Abt

et al., 2018], however these two prior studies took measurements only at steady state condi-

tions once heart rate had stabilized. recent review by Bunn et al. [Bunn et al., 2018] showed

that energy expenditure was generally underestimated by PA devices and that heart rate mea-
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surements were generally more accurate at rest or on a cycle ergometer as compared with

treadmill. Dondzila et al. [Dondzila et al., 2018] also looked at the Fitbit Charge HR and

found that with aerobic exercise under laboratory conditions, the Fitbit ChargeHRunderes-

timated theHR comparedwith a Polar chest strap, with higher error at slower speeds. Jo et al.

[Jo et al., 2016] compared the Basis Peak and the Fitbit ChargeHRwith ECG and also found

a negative bias of HR with respect to ECG measurements (-4.9 bpm for the Basis and -12.7

bpm for the Fitbit). In results presented in the current paper, HR and EEmeasured by both

theGarmin and Fitbit devices during the resistance exercise were similar to themeasurements

reported by Boudreaux et al. [Boudreaux et al., 2018]. Although, the resistance exercises were

different, the intensity of the exercises was similar.

There are three novel contributions from this study. First, we report HR accuracy in these

AMs inmodes not tested previously (e.g., activities of daily living, and high intensity interval

training). Second, we show that HR accuracy measured by these AMs is acceptable during

low intensity activities and high intensity activities with repetitive wrist motion but that HR

accuracy is poorer when there is no repetitive wrist motion and when any activity is at a high

intensity (i.e. ≥ 70% ofmaximal aerobic capacity). Prior research has suggested that PPG sen-

sors used tomeasure theHR is liable to poor accuracy during activitieswith increasedphysical

exertion or activities involving repetitive contractions of forearm skeletal muscles [Rafolt &

Gallasch, 2004, Allen, 2007, Spierer et al., 2015]. It has been suggested that during activities
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involving sustainedmuscle contractions or higher intensity exercises, the contact between the

device’s PPG sensor and skin is increased leading to a disruption in the signal quality and caus-

ing poor quality data [Allen, 2007, Spierer et al., 2015]. Third, we show thatHR, asmeasured

by theGarmin, is significantly improvedwhen the device is in the activitymode setting. Since

theHRmeasurement algorithm is proprietary to Garmin, we do not knowwhy the accuracy

is worse when activity mode is not indicated. It appears that the watch uses different HR

measurement algorithms depending on the activity mode selected. It may be that the activity

mode algorithms implement less smoothing than the non-activity mode algorithm and are

thereby designed to respond faster to rapid heart rate changes.

While both AMs showed reasonable accuracy in HR, we did see differences between the

two AMs in EE estimates across all activities and both AM devices correlated poorly with

indirect calorimetry measures of EE. It is unclear why we found poor estimation of the EE.

 EE values are dependent on many anthropometric characteristics of the subject as well as

the HR measurements [Zakeri et al., 2008]. We assume that the EE estimations provided

by these devices are also utilizing this information but these calculations are proprietary. Ac-

cording to the manufacturers, Fitbit’s EE estimate includes both active calories and the basal

metabolic rate (BMR), whereasGarmin only reports active calories without BMR. Evenwith

the inclusion of BMR inEE estimates, Fitbit still displayed a greater negative bias duringmost

activities compared toGarmin. If EE estimates byGarmin included BMR, there would likely
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be greater accuracy in the EE values reported by these devices. At the time of testing, these

AMs provide different ways to indicate the various types of activity, such as running, station-

ary bike, strength training and “other” but there is not a clear indication for activities such

as HIIT. Perhaps this is the reason for the high error rate recorded during these types of ac-

tivities. As these consumer devices are constantly improved by the respective companies, the

algorithms estimating EE should be improved or personalized to provide more accurate esti-

mates. As these wearables transition from consumer reporting tools to clinical monitoring

devices, a higher level of accuracy and precision is required. Clearly, the algorithms running

on these wearables that estimateHR and EE are proprietary and can changewithoutwarning

from the manufacturers, which poses further challenges for those wanting to integrate these

devices into medical products. The onus of integrating these devices and assessing the level

of accuracy and precision needed to make drug dosage decisions rests in the hands of those

designing and evaluating medical algorithms.

Integrating these AMs into medical systems such as type 1 diabetes decision support sys-

tems or automated drug delivery systems in the future will require high fidelity data both

from the HR signal and the EE estimates. The findings from this study point to shortcom-

ings that could arise in both detecting activity and distinguishing the type of activity based

on the HR signal.  While the mean error of the HR measurement was within the accept-

able range for both devices, the range of the error was wider than anticipated. This issue and
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the inaccuracies associated with the EE data could lead to issues with estimating the intensity

of the activity accurately. Additionally, short non-steady state exercises such as a 10 second

maximal sprint have been shown to limit the rapid change in glucose response [Davey et al.,

2013b], but findings from this study indicate that detecting these quick non-steady exercises

might be challenging for AMs to capture. WWe found spurious HR measurements when

the AM device is not worn on the wrist. Integration of these devices into a life supporting

drug delivery systemmust account for an on- wrist / off-wrist detection algorithm, which are

currently not a part of the AMs evaluated. Another feature that could be integrated with

further evaluation into a medical system is the exercise detection that is available on these de-

vices. The Garmin device performed better when the exercise type was indicated through a

button press on thewatch. Future versions of these wearables are integrating automated exer-

cise detection and this is an area that should be further researched in terms of accuracy Lastly,

if physical activity data are to be properly incorporated into medical systems including real-

time drug delivery systems, access to the data in near real time (e.g. every 5 minutes) would

be important.  In the automated insulin dosing scenario, decisions would need to be made

at the onset of exercise to prevent exercise-induced hypoglycemia. Currently, neither of these

watches provide real-time access to their data streams. An approach to overcome some of the

challenges associated with exercise detection and accuracy of detection would be to alert the

individual before exercise dosing decisions aremade. Effective integration of AMs is an active
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area of research in the medical community, and the findings from this study point to both

the abilities and challenges associatedwith real-timemonitoring and integrating intomedical

systems.

5.6 Limitations

Our study has a limitation in that we only tested two popular consumer grade devices. The

choice was based on the ubiquity of these sensors in the market, affordability, and potential

to be easily integrated into existing medical system architectures through, for example, an

API. Our current data and interpretations may be limited as we did not account for the skin

color in our study. It has been reported that skin color could influence the accuracy of the

HR measurement [Shcherbina et al., 2017] and future studies should report the Fitzpatrick

skin tone scale to account for this limitation. Another limitation of our study is that exercise

was conducted in a laboratory setting as opposed to the real world. However, we attempted

to capture several real-world activities of daily living tominimize this limitation, though these

activities were also recorded within a lab. It would be important to do further investigations

in real world settings to corroborate our results. Another limitation was that heart rate mea-

surements from the wearable devices were not compared against a true gold standard such as

ECG.
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5.7 Conclusions

We conducted a thorough assessment of two of the most popular low-cost consumer wrist-

worn activity monitors during multiple exercise modalities and during daily activities. We

found that in steady state activities and during low intensity activities theHRmeasurements

were within acceptable error range (5%) but less accurate during higher intensity more dy-

namic activities that do not involvewristmotion. The EE estimates provided by these devices

were inaccurate during all activities.
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Table 5.2: Pooled Heart Rate data from all the tested devices for each of the different blocks of activities performed by

the subjects in the study. Variousmetrics of interest are reported in the table.

Measures Fitbit Garmin Garmin+No Button
Max Test (Treadmill): Progressive exercise to volitional fatigue

No of pairs # 7127 2037 476
Device mean± SD 129.6±38 139.6±37.3 112.2±38.2
Criterion mean± SD 137.2±40.9 144.7±36.5 122.3±45.5
Mean difference± SD -7.6±13.6 -5.1±13.0 -10.1±21.5
% Mean Relative Error± SD -4.8±10.3 -3.3±9.6 -5.9±16.6
% Mean Absolute Error± SD 7.3±11.8 5.8±8.4 14.5±10.1
Concordance correlation (95 %CI) 0.92 (0.92-0.93) 0.93 (0.92-0.93) 0.84 (0.82-0.87)
Pearson’s correlation (ρ) 0.94 0.94 0.88

Max Test (Ergometer): Progressive exercise to volitional fatigue
No of pairs # 6375 1705 444
Device mean± SD 101.4±31.2 115.5±34 91.5±21.3
Criterion mean± SD 125.3±32.7 128.9±33.3 120.3±34.1
Mean difference± SD -23.8±33.4 -13.4±25.6 -28.8±27.8
% Mean Relative Error± SD -16.4±21.6 -9.3±17.0 -20.6±18.2
% Mean Absolute Error± SD 17.9±32.3 11.8±15.3 22.9±15.2
Concordance correlation (95 %CI) 0.36 (0.34-0.37) 0.66 (0.62-0.68) 0.34 (0.29-0.39)
Pearson’s correlation (ρ) 0.46 0.71 0.58

Resistance Exercise
No of pairs # 17420 5215 1200
Device mean± SD 105.9±21.2 112.9±17.7 91.8±15.6
Criterion mean± SD 114.4±21.4 119.5±20.1 104.6±19.4
Mean difference± SD -8.5±14.4 -6.5±17.5 -12.8±17.4
% Mean Relative Error± SD -6.9±12.0 -4.2±14.2 -10.7±14.9
% Mean Absolute Error± SD 9.8±12.1 10.6±10.4 15.0±10.7
Concordance correlation (95 %CI) 0.72 (0.71-0.72) 0.54 (0.52-0.56) 0.40 (0.37-0.45)
Pearson’s correlation (ρ) 0.88 0.9 0.53

Daily chores and activities of daily living
No of pairs # 14883 3605 738
Device mean± SD 101.8±20.5 104.0±22.0 104.5±20.8
Criterion mean± SD 98.6±20.8 100.2±21.8 98.2±17.0
Mean difference± SD 3.3±15.2 3.9±17.4 6.3±18.0
% Mean Relative Error± SD 3.3±16.5 5.6±19.5 7.4±19.4
% Mean Absolute Error± SD 11.4±11.2 13.0±13.2 14.0±15.4
Concordance correlation (95 %CI) 0.72 (0.71-0.73) 0.68 (0.66-0.69) 0.52 (0.47-0.57)
Pearson’s correlation (ρ) 0.73 0.69 0.56

Treadmill: Intermittent high intensity exercise
No of pairs # 8105 3315 482
Device mean± SD 129.7±28.0 138.8±26.9 125.7±38.1
Criterion mean± SD 133.2±30.6 139.9±26.3 120.0±35.4
Mean difference± SD -3.5±14.4 -1.2±11.9 5.7±33.5
% Mean Relative Error± SD -1.7±11.5 -0.5±9.4 8.9±33
% Mean Absolute Error± SD 8.5±10.0 9.0±6.0 25.0±23.3
Concordance correlation (95 %CI) 0.87 (0.87-0.88) 0.90 (0.89-0.91) 0.58 (0.52-0.63)
Pearson’s correlation (ρ) 0.88 0.9 0.59

Ergometer: Intermittent high intensity exercise
No of pairs # 7589 2440 193
Device mean± SD 110.6±31.2 110.9±30.3 100.4±26.6
Criterion mean± SD 127.0±25.7 131.2±25.3 131.2±24.2
Mean difference± SD -16.4±27.2 -20.3±28.9 -30.8±27.4
% Mean Relative Error± SD -11.4±35.7 -14.3±20.5 -22.5±19.8
% Mean Absolute Error± SD 16.0±24.4 26.0±17.6 25.0±13.4
Concordance correlation (95 %CI) 0.47 (0.45-0.48) 0.37 (0.34-0.39) 0.24 (0.16-0.32
Pearson’s correlation (ρ) 0.56 0.47 0.42
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Table 5.3: Pooled Energy Expenditure data for the different blocks of activities undertaken during the study. Data is

shown for each activity type. Sample size, mean± sd of each of themeasured device, mean± sd of the difference be-

tween the devicemeasurement and the reference standard, themean relative difference± sd (%), themean absolute

difference± sd (%) and the correlation between themeasures.

Measures Fitbit Garmin
Max Test (Treadmill): Progressive exercise to volitional fatigue

N # 10 6
Device mean± SD 192.1±47.2 216.5±55.3
Criterion mean± SD 237.3±72.5 260.5±77.2
Mean difference± SD 45.2±44.4 -44.0±90.1
% Mean Relative Error± SD -17.0±14.6 -11.4±33.7
% Mean Absolute Error± SD 19.4±11.0 28.8±17.2
Pearson’s correlation (ρ) 0.81 0.11

Max Test (Ergometer): Progressive exercise to volitional fatigue
N # 10 6
Device mean± SD 133.6±77.6 207.0±48.7
Criterion mean± SD 225.3±74.7 231.4±76.5
Mean difference± SD -91.7±87.2 -24.4±63.9
% Mean Relative Error± SD -39.1±30.6 -4.5±25.3
% Mean Absolute Error± SD 43.5±23.0 18.9±16.2
Pearson’s correlation (ρ) 0.35 0.56

Resistance Exercise
N # 20 16
Device mean± SD 130.2±46.2 179.8±56.8
Criterion mean± SD 153.1±45.5 155.2±47.8
Mean difference± SD -22.9±44.0 24.6±56.6
% Mean Relative Error± SD -12.9±29.7 21.0±35.7
% Mean Absolute Error± SD 27.7±15.9 35.7±19.7
Pearson’s correlation (ρ) 0.54 0.43

Daily chores and activities of daily living
N # 20 18
Device mean± SD 103.5±38.2 100.6±23.4
Criterion mean± SD 114.4±25.7 114.8±27.0
Mean difference± SD -10.9±39.4 -14.3±28.2
% Mean Relative Error± SD -8.8±29.2 -10.6±19.3
% Mean Absolute Error± SD 20.9±21.8 17.0±13.7
Pearson’s correlation (ρ) 0.29 0.38

Treadmill: Intermittent high intensity exercise
N # 10 9
Device mean± SD 211.1±57.0 226.9±58.1
Criterion mean± SD 246.6±71.9 249.7±75.6
Mean difference± SD -35.5±34.6 -22.8±61.7
% Mean Relative Error± SD -13.1±12.7 -4.7±29.3
% Mean Absolute Error± SD 14.5±10.9 25.0±13.4
Pearson’s correlation (ρ) 0.88 0.60

Ergometer: Intermittent high intensity exercise
N # 10 9
Device mean± SD 128.2±60.4 205.8±76.4
Criterion mean± SD 232.8±44.2 234.9±46.4
Mean difference± SD -104.6±83.8 -29.1±80.2
% Mean Relative Error± SD -41.9±31.3 -11.2±30.8
% Mean Absolute Error± SD 41.9±31.3 26.7±17.0
Pearson’s correlation (ρ) -0.26 0.22

a Energy expenditure was aggregated from each device and compared with the criterion measure for each
individual activity block 160



The purpose of models is not to fit the data, but to sharpen

the questions

Samuel Karlin, R. A. Fisher Memorial Lecture, Royal

Society, 1983

6
Prediction of Hypoglycemia during Aerobic

Exercise in adults with Type 1 Diabetes

Fear of hypoglycemia is one of the main barriers to physical activity for individuals with

type 1 diabetes. In this chapter we develop a simple heuristic based approach to predict hy-

poglycemia related to aerobic exercise. We also developed a complexmachine learningmodel

that could be used in automated systems. Reducing the risk of hypoglycemia due to exer-
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cise could potentially increase the adoption of an active lifestyle by people living with Type 1

Diabetes.

Chapter summary

• This study is the first one to propose a simple heuristic based tool that could predict
and prevent exercise related hypoglycemia

• The validated simple heuristic based approach using current glucose value and the ex-
pected exercise heart rate could be used to predict hypoglycemia with an accuracy of
≈ 80%

• For an automated control system, we provide a validated machine learning approach
that uses many of the different anthropometric features along with the insulin on
board data to predict hypoglycemia with an accuracy of≈ 87%

This work has been prepared for submission to the

Journal of Diabetes Science and Technology

6.1 Abstract

Background

Fear of exercise related hypoglycemia is a major reason why people with type 1 diabetes (T1D)

do not exercise. There is no validated prediction algorithm that can predict hypoglycemia at
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the start of aerobic exercise.

Methods

Wehave developed and evaluated two separate algorithms to predict hypoglycemia at the start

of exercise. Model 1 is a decision tree andModel 2 is a random forestmodel. Bothmodelswere

trainedusing ameta-data set based on 154 observations of in-clinic aerobic exercise in 43 adults

with T1D from 3 different studies that included participants using sensor augmented pump

therapy, automated insulin delivery therapy, and automated insulin and glucagon therapy.

Both models were validated using an entirely new validation data set with 90 exercise obser-

vations collected from 12 new adults with T1D.

Results

Model 1 identified two critical features predictive of hypoglycemia during exercise: heart rate

and glucose at the start of exercise. If heart rate was greater than 121 bpm during exercise and

glucose at the start of exercisewas less than 182mg/dL, it predicted hypoglycemiawith 79.55%

accuracy. Model 2 achieved a higher accuracy of 86.7% using additional features and higher

complexity.

Conclusions
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Models presented here can assist people with T1D to avoid exercise related hypoglycemia.

The simple Model 1 heuristic can be easily remembered (the 180/120 rule) and Model 2 is

more complex requiring computational resources making it suitable for automated artificial

pancreas or decision support systems.

6.2 Introduction

AmericanDiabetes Association guidelines strongly recommend physical activity (PA)

to individuals with type 1 diabetes (T1D) [noa, 2017]. Regular PA in these individuals is as-

sociated with increased cardiorespiratory fitness[McCarthy et al., 2016a] leading to improved

blood lipidprofiles[Lumb, 2014] and reduction in long termcardiovascular disease risk [Pierre-

Louis et al., 2014]. During PA individuals with T1D have an increased peripheral insulin

sensitivity due to the upregulation of the expression of glucose transporter type 4 [Dohm,

2002, Younk et al., 2011, Goodyear & Kahn, 1998] and an impaired counter-regulatory hor-

monal response [McMahon et al., 2007] creating an imbalance of hepatic glucose produc-

tion and glucose utilization often resulting in exercise-induced hypoglycemia [Riddell et al.,

2017]. The increased likelihood and fear of hypoglycemia during exercise and formany hours

afterward[Reddy et al., 2017, Chimen et al., 2012] discourages a majority of people with T1D
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from engaging in regular PA. In individuals with T1D, early hypoglycemic symptoms tend

to be masked during PA, resulting in cases of more severe hypoglycemic episodes [Younk

et al., 2011]. A recent consensus statement [Riddell et al., 2017] provides guidelines and rec-

ommendations on adjusting insulin and consuming carbohydrates prior to exercise to avoid

hypoglycemia. However, many people with T1D have difficulty following these recommen-

dations and still report exercise-induced hypoglycemia [Pinsker et al., 2016]. Many people

with T1D do not understand the complex interplay between insulin kinetics and dynamics

and exercise intensity and so they tend to consume extra carbohydrates either before or dur-

ing exercise, which can result in worse glucose control [Pinsker et al., 2016, Yardley & Sigal,

2015, Cryer, 2016].

There are multiple options for people with T1D to manage their glucose under normal

every-day conditions and also during exercise. These therapies can be divided into two cat-

egories, open loop and closed loop therapies. Open loop therapies require the person with

T1D to measure their glucose either through finger-stick measurements or through contin-

uous glucose monitors (CGM) and dose insulin themselves. Many of people with T1D use

multiple daily injection (MDI) therapy to control their glucose levels [Pickup, 2012]. Ap-

proximately 40% of people with T1D use insulin pumps that deliver a constant insulin level

throughout the day [Pickup, 2012]. Closed-loop systems that automate the delivery of in-

sulin have recently become commercially available to help people with T1D better manage
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their glucose [Voelker, 2016a]. These so-called artificial pancreas (AP) systems are comprised

of a CGM, an insulin pump and a control algorithm that automates the delivery of insulin

in response to the sensed glucose [Thabit et al., 2015].Glucagon can also be included as an

additional hormone to help avoid hypoglycemia [Russell et al., 2014, Jacobs et al., 2014].

More recently, various research groups including our group have reported success at in-

tegrating PA into the AP [Jacobs et al., 2016, Breton et al., 2014b, Jacobs et al., 2015, Turk-

soy et al., 2014b, Stenerson et al., 2014]. Within the context of AP systems, there are two

distinctive challenges with incorporating PA characteristics into the control algorithm. The

system must accurately detect that exercise has occurred. And second, the AP system must

respond to the exercise event by either adjusting dosing of insulin and optionally glucagon

in response to the exercise event or recommend a behavior change such as consumption of

a carbohydrate. With the advent of accurate, wearable physical activity sensors [Shcherbina

et al., 2017], incorporating activity data from accelerometers and heart rate data have enabled

detection of PA and incorporation of exercise metrics into AP systems to better enable the

avoidance of exercise-induced hypoglycemia [Jacobs et al., 2016, Breton et al., 2014b, Jacobs

et al., 2015, Turksoy et al., 2014b, Stenerson et al., 2014, Dasanayake et al., 2015a]. Once ex-

ercise is detected, AP system can reduce or shut-off insulin [Turksoy et al., 2014b, Breton

et al., 2014b]. Second, the system can recommend consumption of carbohydrates to avoid

hypoglycemia during or after exercise [Stenerson et al., 2014, Taleb et al., 2016]. And lastly,
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the system can suggest increased glucagon dosing [Jacobs et al., 2016]. AP systems have been

shown to reduce time in hypoglycemia, but they not have been effective at preventing hypo-

glycemia altogether. In this paper, we present two new prediction algorithms with different

levels of complexity to identify the risk of hypoglycemia at the start of exercise.

6.3 Materials and Methods

6.3.1 Participants

Data was compiled from 3 separate randomized clinical studies into 244 exercise observa-

tions from 55 adults with T1D (22 men, 33 women; weight:76±15 kg; age:33±6 years). De-

mographic information is listed in table 6.1. The clinical trial information for each of these

three clinical studies can be accessed at, Study 1: NCT02241889, Study 2: NCT02687893, and

Study 3: NCT02862730. Each of these studies were conducted at the clinical research centre

at Oregon Health and Science University (Portland, Oregon). Each study was approved by

the Institutional Review Board and informed consent was obtained from each subject before

any data was collected.
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Characteristic Number =55
Age (years) 33±6

Gender (M/F) 22/33
Duration of diabetes (years) 18±9

HbA1c (%) 7.5±0.9
Body Weight (kg) 76±15

Height (cm) 173±9
Body Mass Index (kg/m2) 25±5

VO2max 41±11

Table 6.1: Clinical and Demographic characteristics of the subjects in the clinical studies. Continuous data represented

asmean±standard deviation.

6.3.2 Data collection protocols

Study 1

In-clinic aerobic exercise data were collected as part of a randomized cross-over study to assess

the efficacy of an automated dual-hormonal (insulin and glucagon) AP system to reduce exer-

cise related hypoglycemia [Jacobs et al., 2016]. In this 3 arm crossover trial, 21 adults withT1D

were randomly assigned to AP with exercise dosing adjustment, AP with no exercise dosing

adjustment and sensor-augmented pump (SAP) therapy.Participants performed mild exer-

cise for 45 minutes at 60% of their maximum heart rate (30%-50%VO2max)on a treadmill,

with no pre-exercise snack. A total of 63 exercise observations were used from this study.
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Study 2

In-clinic aerobic exercise data was collected as part of a study designed to assess the impact of

nocturnal hypoglycemia on sleep in patients with T1D [Reddy et al., 2017]. In this 3-week

crossover trial, 10 adults with T1D were randomized to perform aerobic, resistance or no ex-

ercise. During each exercise week, participants completed two separate 45-minute exercise

sessions. Participants managed their glucose levels using a BG meter and insulin pump ther-

apy and performedmoderate aerobic exercise for 45minutes at 60% of their VO2max at 4pm.

Twenty exercise session observations were used from this study.

Study 3

In-clinic aerobic exercise data were collected as part of a study designed to assess the efficacy

of a dual hormone AP with exercise detection vs. either single hormone AP with exercise

detection, a predictive low glucose suspend system (PLGS) form of therapy or SAP therapy

[Castle et al., 2018b]. In this 4 arm crossover trial, 20 adultswithT1Dwere randomly assigned

to each of the study arms. Each study arm lasted 4 days, with 2 in-clinic exercise visits on the

first and last day of the study. Participants performed moderate exercise for 45 minutes at

60% of their VO2max on a treadmill. A total of 161 exercise session observations were used

from this study.
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6.3.3 Data processing and feature extraction

The algorithms that we developed detect the likelihood of hypoglycemia (<70 mg/dl) at the

start of exercise. The algorithms were designed to notify a person with T1D immediately at

the beginning of exercise if there is a high likelihood that theywill becomehypoglycemicwith-

out a change in their behavior (e.g. consumption of a rescue carbohydrate). In this way, we

used the time point at the start of exercise of each exercise observation tomake a prediction of

hypoglycemia during the exercise event. If the algorithmpredicted subsequent hypoglycemia

and if the person subsequently became hypoglycemic during exercise, this was counted as a

true positive, whereas if they did not experience hypoglycemia during exercise, it was counted

as a false positive. The feature vector for the prediction algorithms utilized anthropometric

data, physiologic data at the start of exercise, glucose data at the start of exercise, and insulin

data at the start of exercise. All of the features can be obtained within the first five minutes of

exercise. The exercise features included a heart rate estimate and an estimate of metabolic en-

ergy expenditure (MET) during the first fiveminutes of exercise. The energy expenditurewas

estimated using a validated linear regressionmodel [Zakeri et al., 2008] that was personalized

based on characteristics of an individual (weight, height, sex, and age) [Harris & Benedict,

1918]. The insulin features include the insulin on board at the start of exercise in units [Tof-

fanin et al., 2013, Jacobs et al., 2014] and the total daily insulin dosage (TDI) in units/day. The

glucose feature included the capillary blood glucose (CBG) or sub-cutaneous sensor glucose

170



(SG) at the start of exercise. In addition, there was a feature for whether glucagon was used

within the therapy and expressed as a 1 for usage of glucagon, and a 0 if it was not used. All

the features can be found in Table 6.2.

Anthropometric Exercise Intensity Insulin Glucose
features features features features

Sex (encoded Exercise Insulin on board Blood glucose (CBG)
as 0 for male heart rate (bpm) at start of value at start

and 1 for female) exercise (Units) of exercise (mg/dL)
Weight (kg) Energy Expenditure Average daily Glucagon

(METs) dosage (Units/day) (encoded as 0 for
insulin only and

1 for dual hormone)
Height (cm)

Body mass index
(kg/m2)

Table 6.2: Features computed from each observation. Features included anthropometric, exercise, glucose and insulin

features.

6.3.4 Predictive Models

Wedeveloped two predictivemodels: one decision tree classificationmodels and one random

forest (RF) classifier. We undertook a supervised machine learning approach to learn the

structure of the trees and the RF from the data.

Model 1:

Decision trees are one of the most popular machine learning approaches for the task of clas-

sification [Wu et al., 2008]. One of the main reasons for this popularity is the visual repre-
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sentation of the model in a simple decision tree format with the underlying ability to track

and evaluate every part of the decision making process. A second reason for their success is

that they are capable of determining nonlinear relationships between the predictors [Christo-

pher, 2016]. Decision Tree Models are predictive models that consist of a root node, chance

nodes and terminal nodes. Root node represents the highest node. The root node splits the

data into two mutually exclusive sets; the chance nodes represent descriptive attributes and

the terminal nodes represent the final classification. The structure of a decision tree is a hi-

erarchy of branches. Each decision rule is a path traversed from the root node through the

chance nodes ending at a terminal node. These pathways are represented as ‘if-then’ rules. A

decision tree is grown in a recursive fashion, by selecting a conjunction over one feature that

results in purer subset. A pure node is one which has all the data correctly classified. Purity

is measured according to the Gini’s diversity index. A pure node has a Gini index of 0, if

there are any misclassifications, the Gini index is positive, minimization of the Gini index is

the criterion to minimize the probability of misclassification. Many elegant algorithms for

building decision treemodels have been introduced and applied to real life problems. CART

[Breiman et al., 1984] is one of the best known programs for constructing decision trees. An

implementation of CART called the rpart package in the R environment was used to build

this type of model [Therneau et al., 2015].
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Model 2

A random forest classifier (RF) is an ensemble of randomized decision trees. RF is highly

adaptive to the data and is able to account for correlation and interactions among features.

Each decision tree is grown nondeterministically using a two-stage randomization process.

Each tree is learned from a random sample of training observations and a second layer of ran-

domization is introduced at the node level when growing the tree. Rather than splitting a

node using all variables, at each node of a tree, the RF selects a random subset of variables,

and only those variables are used as candidates to find the best split for the node. This two-

step randomization is designed to decorrelate trees so that the ensemble will have low vari-

ance. RF was chosen amongst the many machine learning classification algorithms because

it has a number of advantages namely: (i) feature selection is greedy (the greedy optimiza-

tion is a tree building recursive approach that splits the data at each node, while optimizing

the desired result) and encompassed during the training phase, and noninformative features

are reliably ignored; (ii) it can represent both nonlinear and multimodal functions ; (iii) it

is a type of ensemble learning, which makes it more robust to noise than an individual tree.

The importance of each feature to the RF classifier can be calculated by iteratively holding

out each feature and calculating the change in accuracy of the resulting classifier [Breiman,

2001]. Predictions generated by each tree in the forest are aggregated and the final model pre-

diction (i.e., hypoglycemia or not) is based on the majority vote. An implementation of this
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approach called the randomForest [Liaw et al., 2002] and caret[Kuhn et al., 2014, Kuhn &

Johnson, 2013] packages within the R environment were used to build this model.

6.3.5 Training and validation data sets

• Model training: A total of 154 observationswereused todevelop twopredictivemodels

• Model validation: A total of 90 observations (independent)were used to validate these
two models.

6.3.6 Model 1 data set

Data collection protocol Training set Validation set
(Hypoglycemia/ (Hypoglycemia/
Avoidance of Avoidance of
hypoglycemia) hypoglycemia)

SAP Study 1, Study 2 & Study 3 58 (21/37) 22 (13/9)
PLGS Study 3 – 22(14/8)
Total 58 (21/37) 44(27/17)

Table 6.3: The source of the observations used to develop and validate the simple decision treemodel is shown in the

table. The number of observations that were determined to be hypoglycemic are indicated in the table.SAP: Sensor

Augmented Pump therapy, PLGS: Predictive LowGlucose Suspend therapy.

6.3.7 Model 1:

This model was developed with the intention of creating a simple rule of thumb algorithm

that could be easily remembered and used by individuals with T1D at the start of PA. To
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train the appropriate model for this scenario, we used the observations that were collected

from studies 1-3 when these individuals were administering their own care otherwise known

as open loop care (OLC) or SAP. Table 6.3 shows a breakdown of the datasets used for de-

velopment and validation of the model. A total of 58 observations were used to train and

test this model. To learn this model, 10 different models were fit on a randomly selected set

of 90% of the observations and tested on the remaining 10%. This 10 fold cross-validation

was conducted during the training phase. To minimize the complexity, a grid search was per-

formed while tuning the complexity measure (cp). The best model with the highest accuracy

and with minimum complexity was selected from this process.

6.3.8 Model 2 data set

Data collection protocol Training set Validation set
(Hypoglycemia/ (Hypoglycemia/
Avoidance of Avoidance of
hypoglycemia) hypoglycemia)

SAP Study 1, Study 2 & Study 3 58(21/37) 22 (9/13)
PLGS Study 3 18 (10/8) 22 (8/14)
SH Study 3 18 (11/7) 22 (8/14)
DH Study 1 & Study 3 60 (18/24) 24 (4/24)
Total 154 (60/94) 90 (29/61)

Table 6.4: The source of the observations used to develop and validate the RFmodel. SAP: Sensor Augmented Pump

therapy, PLGS: Predictive LowGlucose Suspend therapy, SH: Single Hormone, DH: Dual Hormone.
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6.3.9 Model 2:

An RF model was developed to be used by AP systems to prevent exercise-induced hypo-

glycemia. To train the appropriate model for this scenario, we used all the available 154 ob-

servations that were collected from studies 1-3. The RF model was also trained and tested

using the 10-fold cross validation generating 10 different models. Themodel with the highest

accuracy was determined to be the best model. selected from this process. The complexity of

the RF model is controlled by four hyper-parameters. These hyper-parameters are number

of trees (ntree), number of variables included in each tree (mtry), depth of the tree (interac-

tions between the independent variables) and row sample ( number of samples used to train

each tree). These four hyper-parameters were optimized using a grid search. We investigated

ntree = 25, 50, and 100; mtry from 2 up to the maximum number of variables in increments

of 2; max depth = 2, 4, 6, 8, and 10; row sample of 30%, 50% and 90%. The chosen optimal

RF model had the hyper parameters: ntree = 25, mtry = 8, max depth = 6 and row sample

fraction of 0.90 (90% of the data points were used to train each tree).

The performance of the models were assessed using the prediction accuracy, area under

the ’receiver operating curve’ (AUC), sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV) and balanced accuracy. PPV represents the probability of

hypoglycemia when the model output predicts to be hypoglycemia while NPV is the proba-

bility of not having a hypoglycemic episode when euglycemia is predicted by the model. The
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training and validation datasets were imbalanced in nature, that is the number of events of

hypoglycemia are not equal to the number of events of euglycemia after exercise. Consider-

ing the prediction accuracy could be misleading about the generalization of the performance

of the model. The balanced accuracy metric is defined as the average accuracy obtained on

either class. If the model performs equally well on either class, balanced accuracy reduces to

the conventional accuracy but in cases of poor model performance on an imbalanced set, the

balanced accuracy could be lower. All these statistical analyses, including the preprocessing

to compute the inputs and specific implementation of the statistical learning methods, were

performed using R-software (www.r-project.org) [RCore Team, 2017]. Models were trained,

tuned, cross-validated and validated using the ”party” [Strobl et al., 2007], “randomForest”

[Liaw et al., 2002] and “caret” [Kuhn& Johnson, 2013, Kuhn et al., 2014] packages within R.

This trained model is available from the author.

6.4 Results

The RF model (Model 2) performs better than the decision tree (Model 1) across all accuracy

metrics . The performance of the individual models on the training data set are in Table 6.5.

Table Table 6.5 shows that on the training data set the RF model with higher complexity

performs better on all the metrics accuracy, sensitivity, specificity, PPV also known as pre-

cision, NPV and balanced accuracy. The simple heuristic model is shown in Figure 6.1. In
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Heart rate during
exercise< 120 bpm

Glucose at start of ex-
ercise≥ 182mg/dL

Avoidance of
hypoglycemia

Hypoglycemia Avoidance of
hypoglycemia

No
Yes

No Yes

Figure 6.1: Simple decision tree with only 2 branches. This heuristic approach could be used by individuals with type

1 diabetes in conjunction with current exercise recommendations to prevent hypoglycemia. CBG: Capillary blood

glucose value.

Figure 6.2 a sub selection of 4 critical features are depicted and also shows how the data sepa-

rates between these classes.

Classifier Number Accuracy Sensitivity Specificity Positive Negative Balanced Area
of (%) (%) (%) Predictive Predictive Accuracy Under
features value value (%) the curve

Simple model 2 79.31 66.67 86.49 0.74 0.82 76.58 0.78
RF Model 8 97.40 95.00 98.94 0.98 0.97 96.97 0.99

Table 6.5: Performance of the different classi ers, results are shown for the 10 fold cross-validation on the develop-

ment data set of 154 observations.

The performance of themodels on the validation data set is in Table 6.6. Table 6.6 shows

that the performance of the simple heuristic model, has an accuracy of 80% using only 2

features, while the more complex RF model achieved an accuracy of 87% on the validation

data set. The simple model was validated on 44 observations of the OLC data from study 3

whereas the RF model was validated on 90 observations from study 3.
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Figure 6.2: A: The relationship between exercise heart rate in beats per min and the observed hypoglycemia in the

training set shows a clear separation between the two classes. B: The relationship between glucose at the start of ex-

ercise and the observed hypoglycemia in the training set shows lower glucose values at the start of exercise increases

likelihood of hypoglycemia during the exercise bout. C: The relationship between energy expenditure inMETs and the

observed hypoglycemia in the training set shows higher intensity of exercise as measured by the increase in energy

expenditure leads tomore hypoglycemia. D: The relationship between insulin on board at the start of exercise and the

observed hypoglycemia in the training set shows there is no clear distinction in this feature.
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Classifier Number Accuracy Sensitivity Specificity Positive Negative Balanced Area
of (%) (%) (%) Predictive Predictive Accuracy Under
features value value (%) the curve

Simple Model 2 79.55 82.35 77.78 0.70 0.88 80.07 0.79
RF Model 8 86.67 82.76 88.52 0.77 0.92 85.64 0.94

Table 6.6: Performance of both classi ers, results here are for the validation data set.

Classifier Number Accuracy Sensitivity Specificity Positive Negative Balanced Area
of (%) (%) (%) Predictive Predictive Accuracy Under
features value value (%) the curve

SH 22 90.91 87.5 92.86 0.88 0.93 90.18 0.91
DH 24 79.17 25.00 90.00 0.33 0.86 57.50 0.93
PLGS 22 81.82 87.50 78.57 0.70 0.92 83.04 0.81
SAP 22 94.45 88.89 100 1.0 0.93 94.44 0.87

Table 6.7: Performance of the RFmodel across the different therapies in the validation set. SAP: Sensor Augmented

Pump therapy, PLGS: Predictive LowGlucose Suspend therapy, SH: Single Hormone, DH: Dual Hormone.

6.5 Discussion

The hypoglycemia prediction algorithms performed well across a large and diverse data set

from people with T1D undergoing a variety of glycemic management therapies during ex-

ercise. The exercise events used for training and evaluation took place at different times

throughout the day (morning, afternoon and late afternoon), under different pre-exercise

carbohydrate ingestion scenarios (breakfast, lunch and before dinner), and under early post-

prandial and late postprandial conditions. The performance of the models during training

indicated that the time of day did not impact the accuracy of the models. We provide both a

simple rule based decision tree model for individuals with T1D to use as a rule of thumb (the

180/120 rule) and also a more complex RF model that automated AP and decision support

systems may use.
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As recently been suggested in the exercise consensus statement [Riddell et al., 2017], only

under cases of unexplained hypoglycemia and ketone levels are 1.5 mmol/L is exercise con-

traindicated. Figure 2 shows that exercise intensity, exercise heart rate and blood glucose at

the start of exercise are themost important variables that can be used for the prediction of hy-

poglycemia. We also tried other features such as resting heart rate and heart rate reserve but

the performance of the models did not improve with these additional features. early post-

prandial and late postprandial conditions. The performance of the models in training set,

indicated that the time of day did not impact the accuracy of the models. We provide both

a simple rule based decision tree model for individuals with T1D to use as a rule of thumb

and also a more complex RF model that AP systems could use. Figure 6.2 shows that exer-

cise intensity, exercise heart rate and blood glucose levels at the start of exercise are the most

important variables that can be used for the prediction of hypoglycemia. We also tried other

features such as resting heart rate and heart rate reserve but the performance of the models

did not improve with these additional features.

People with T1D are advised to consume approximately 10 g of carbohydrate if their glu-

cose at the start of exercise was less than 124 mg/dL [Riddell et al., 2017]. We compared the

performance of this consensus statement guideline on our validation data set in the OLC

data set (same data set used to validate the simple heuristic model), we found that this guide-

line had an accuracy of 72% at predicting hypoglycemia and only prevented 6 cases of hy-
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poglycemia while 11 cases of hypoglycemia were missed. DeBoer et al. [DeBoer et al., 2017]

recently showed that adding a HR signal can be used inform of physical activity, in their ap-

proach, when the HR exceeds 125% of the resting heart rate and they employ a hypoglycemia

predictive algorithm to indicate the risk of hypoglycemia at the start of exercise. Their con-

trol to range AP controller [Breton et al., 2014b], this controller indicates the risk of hypo-

glycemia if in the next 30 minutes after the detection of exercise the forecasted glucose value

is less 140mg/dL, they predict hypoglycemia would occur. We compared the performance of

this control to range prediction algorithm in our RF model validation data set, the accuracy

of this model was 69% on our data set. Using this predictive threshold approach, out of 90

total observations evaluated, there were 7 false negatives and 20 false positives. Turksoy et al.

[Turksoy et al., 2014b] described amethod for predicting hypoglycemia using amultivariable

ARMAX model that included exercise metrics as an input. Their real-time prediction algo-

rithm was able to achieve a sensitivity of 81.5% and a specificity of 65.7% while predicting 30

minutes in advance on 14 people with T1D under free-living conditions. In comparison, our

random forest algorithm achieved a sensitivity of 82% and a specificity of 78%. However, it’s

difficult to compare the two algorithms as the test scenarios were quite different.

Ourwork had some limitations. All exercise sessionswere conducted in a controlled inpa-

tient environment; therefore, future trials in real-life settings will be needed to confirm our

results. All bouts of exercise were limited to aerobic exercise at varying intensities (30-60%
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of VO2max) and the duration of exercise is between 30 and 45 minutes. Another limitation

is that the algorithm requires HR data 5 minutes into the start of the activity and if hypo-

glycemia is predicted, the individual will have to stop exercise and treat the predicted hypo-

glycemia. A variant of this approach is being explored whereby we use past HR data as the

input to the algorithm to anticipate future HR during exercise. Additional scenarios such as

longer or higher intensity exercise will need to be tested to further evaluate our results. As

shown in Table 6.7, the performance of the RFmodel is good across all forms of AP therapy;

this could be further improved with a therapy specific model in the future.

In conclusion, the validated models shown here provide evidence that exercise-induced

hypoglycemia can be accurately identified and possibly prevented in a majority of the cases.

This work represents a promising step forward to encourage individuals with T1D to engage

in PA with reduced fear of exercise-induced hypoglycemia.
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6.6 Supplementary Data

6.6.1 RF model

The RF model with all its component trees is shown. All trees traversed at the same time till

an end node is reached.

Tree [[1]]
"Weight..kg. > 68.8 & CBGExStart < 98 & CBGExStart < 129.5 => 0"

Tree [[2]]
"Weight..kg. < 58.45 & CBGExStart > 98 & CBGExStart < 129.5 => 0"

Tree [[3]]
"exerciseStartIOB < 5.385 & HR..bpm. > 123 & CBGExStart > 129.5 => 0"

Tree [[4]]
"HR..bpm. < 149.5 & Weight..kg. < 68.8
& CBGExStart < 98 & CBGExStart < 129.5 => 1"

Tree [[5]]
"HR..bpm. > 149.5 & Weight..kg. < 68.8 &
CBGExStart < 98 & CBGExStart < 129.5 => 0"

Tree [[6]]
"Weight..kg. > 96.3 & Weight..kg. > 58.45 &
CBGExStart > 98 & CBGExStart < 129.5 => 0"

Tree [[7]]
"HR..bpm. < 113 & Height.cm. < 185.9 &

HR..bpm. < 123 & CBGExStart > 129.5 => 0"

Tree [[8]]
"exerciseStartIOB < 5.545 & Height.cm. > 185.9 &
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HR..bpm. < 123 & CBGExStart > 129.5 => 0"

Tree [[9]]
"exerciseStartIOB > 5.545 & Height.cm. > 185.9 &
HR..bpm. < 123 & CBGExStart > 129.5 => 1"

Tree [[10]]
"correctedMETs > 9.405 & Weight..kg. < 96.3 & Weight..kg. > 58.45 &
CBGExStart > 98 & CBGExStart < 129.5 => 0"

Tree [[11]]
"Sex1 > 0.5 & HR..bpm. > 113 & Height.cm. < 185.9 &
HR..bpm. < 123 & CBGExStart > 129.5 => 0"

Tree [[12]]
"correctedMETs < 6.4 & exerciseStartIOB < 7.4276 &
exerciseStartIOB > 5.385 & HR..bpm. > 123 & CBGExStart > 129.5 => 0"

Tree [[13]]
"HR..bpm. > 143 & exerciseStartIOB > 7.4276 &
exerciseStartIOB > 5.385 & HR..bpm. > 123 & CBGExStart > 129.5 => 0"

Tree [[14]]
"Height.cm. < 160.45 & correctedMETs < 9.405 &

Weight..kg. < 96.3 & Weight..kg. > 58.45 &
CBGExStart > 98 & CBGExStart < 129.5 => 0"

Tree [[15]]
"CBGExStart < 164.5 & Sex1 < 0.5 & HR..bpm. > 113 &
Height.cm. < 185.9 & HR..bpm. < 123 & CBGExStart > 129.5 => 0"

Tree [[16]]
"CBGExStart > 164.5 & Sex1 < 0.5 & HR..bpm. > 113 &
Height.cm. < 185.9 & HR..bpm. < 123 & CBGExStart > 129.5 => 1"

Tree [[17]]
"exerciseStartIOB < 6.946 & correctedMETs > 6.4 &
exerciseStartIOB < 7.4276 & exerciseStartIOB > 5.385 &
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HR..bpm. > 123 & CBGExStart > 129.5 => 1"

Tree [[18]]
"Sex1 < 0.5 & HR..bpm. < 143 & exerciseStartIOB > 7.4276 &
exerciseStartIOB > 5.385 & HR..bpm. > 123 & CBGExStart > 129.5 => 0"

Tree [[19]]
"Sex1 > 0.5 & HR..bpm. < 143 & exerciseStartIOB > 7.4276 &
exerciseStartIOB > 5.385 & HR..bpm. > 123 & CBGExStart > 129.5 => 1"

Tree [[20]]
"exerciseStartIOB < 5.11 & Height.cm. > 160.45 &
correctedMETs < 9.405 & Weight..kg. < 96.3 & Weight..kg. > 58.45 &
CBGExStart > 98 & CBGExStart < 129.5 => 1"

Tree [[21]]
"HR..bpm. < 137.5 & exerciseStartIOB > 6.946 &
correctedMETs > 6.4 & exerciseStartIOB < 7.4276 & exerciseStartIOB > 5.385 &
HR..bpm. > 123 & CBGExStart > 129.5 => 1"

Tree [[22]]
"HR..bpm. > 137.5 & exerciseStartIOB > 6.946 &
correctedMETs > 6.4 & exerciseStartIOB < 7.4276 & exerciseStartIOB > 5.385 &
HR..bpm. > 123 & CBGExStart > 129.5 => 0"

Tree [[23]]
"Sex1 < 0.5 & exerciseStartIOB > 5.11 & Height.cm. > 160.45 &
correctedMETs < 9.405 & Weight..kg. < 96.3 & Weight..kg. > 58.45 &
CBGExStart > 98 & CBGExStart < 129.5 => 0"

Tree [[24]]
"CBGExStart < 115 & Sex1 > 0.5 & exerciseStartIOB > 5.11 &
Height.cm. > 160.45 & correctedMETs < 9.405 & Weight..kg. < 96.3 &
Weight..kg. > 58.45 & CBGExStart > 98 & CBGExStart < 129.5 => 1"

Tree [[25]]
"CBGExStart > 115 & Sex1 > 0.5 & exerciseStartIOB > 5.11 &
Height.cm. > 160.45 & correctedMETs < 9.405 & Weight..kg. < 96.3 &
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Weight..kg. > 58.45 & CBGExStart > 98 & CBGExStart < 129.5 => 1"
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Figure 6.3: Kernel density representation of post exercise hypoglycemia and euglycemia as function of both exercise

heart rate and glucose values at the start of exercise. The data represented here is from a free living study - data set

2, individuals were very accustomed to aerobic exercise and prepared for the activity according to the best available

recommendations, yet experienced hypoglycemia.

6.6.2 Contour plot

To gain some intuition about the relationship between the exercise heart rate and the glucose

at the start of the exercise, the following contour plot was created. The plot in Figure 6.3

shows the relationship that higher exercise heart rates and low glucose levels could lead to

hypoglycemia due to aerobic exercise. Higher heart rates during exercise and higher glucose
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levels might have additional variables that could be responsible for hypoglycemia during ex-

ercise.
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History cannot create laws with predictive power. An un-

derstanding of the past might help in the present insofar as

it broadens our knowledge of human nature, provides us

with inspiration or a waring, or suggests plausible, though

always fallible arguments about the likely possibilities of

certain things happening under certain conditions. None

of this, however, comes anywhere near the immutable pre-

dictive certainty of a scientific law.

Richard Evans, In Defense of History 7
Nocturnal hypoglycemia prediction in

adults with type 1 diabetes

Nocturnal Hypoglycemia is one of the most serious adverse effects of current exoge-

nous insulin based diabetes therapy and the factor that limits achieving optimal glycemic

control in people with type 1 diabetes (T1D). Overnight is the longest interval betweenmeals,

blood glucose checks and also the time of increased insulin sensitivity. Sleep attenuates many
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of the counter-regulatory responses to hypoglycemia leading tomany of these episodes being

undetected and often leading to extended duration of hypoglycemia at night. Many of the

available solutions are reactive to the event of hypoglycemia. In a decision support system

the solution needs to be proactive. Based on the premise that nocturnal hypoglycemia could

be predicted, we propose a machine learning approach to predict nocturnal hypoglycemia

before the individual retires to bed for the night.

Chapter summary

• Nocturnal hypoglycemia is commonplace in self-managed individuals with T1D on
intensive insulin therapies.

• The risk of overnight hypoglycemia is greater in individuals who exercise regularly. In
this chapter using data collected in active individualsmanaging their ownglucose levels
under normal living conditions, we propose a machine learning approach to predict if
they will experience nocturnal hypoglycemia.

• The balanced error associated with accurate prediction of nocturnal hypoglycemia or
not was≈ 15% using the best machine learning approach.

• The variables of highest importance as indicated by the machine learning approaches
such as mean glucose in the past 24 hours and insulin on board at the time of bedtime
closely reflect the findings of both clinical recommendations and finding from obser-
vational studies.
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7.1 Introduction

Diabetes self-management in people with T1D is challenging. Maintaining optimal glycemic

control requires precise adjustment of insulin dosing while frequently monitoring glucose

values [Atkinson et al., 2014]. Insulin dosagemodifications have to bemade for varying levels

of food intake, exercise, sleep, illness and other variables, while countering the slow pharma-

cokinetics and pharmacodynamics of insulin therapy [Atkinson et al., 2014]. One of the se-

vere side-effects of inadequate adjustments to the insulin dosing is iatrogenic nocturnal hypo-

glycemia [Cryer, 2016](iatrogenic nocturnal hypoglycemia is the side effect of the treatment

associated with dynamic nature of the insulin pharmacokinetics). Nocturnal hypoglycemia

is defined as an episode of hypoglycemia (measured glucose <70mg/dL) that occurred while

the person was asleep. TheMajority of the recorded severe hypoglycemic (requiring external

assistance) episodes occur during sleep [Cryer, 2014, 2016, Group et al., 1991]. Nocturnal hy-

poglycemia tends to be asymptomatic andunder reportedwith<30% episodes being detected

by individuals with T1D [Woodward et al., 2009]; due to the attenuation of the counter-

regulatory responses during sleep. Nocturnal hypoglycemic episodes are widespread in this

population, with only 3% of the participants in a large observational cohort study having hy-

poglycemia free nights [Group et al., 2010]. Nocturnal severe hypoglycemic episodes have

been associated with seizures, coma, and morbidity [Dahlquist & Källén, 2005]. Nocturnal
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hypoglycemic episodes adversely impact quality of life, leading to poor cognitive functional-

ity, poor sleep quality, and fatigue the following day [Jauch-Chara et al., 2007, Brod et al.,

2013b].

Recurring episodes of hypoglycemia lead to reduced recognition of the symptoms, and

this leads to the reduced counter-regulatory response to protect against hypoglycemia, and

this in-turn leads to impaired awareness, and culminates in hypoglycemia-associated auto-

nomic failure (HAAF) [Cryer, 2016]. It is therefore paramount for people with T1D to avoid

hypoglycemia. Continuous glucosemonitoring (CGM) can be used to help people withT1D

avoid hypoglycemia by sounding an audible alert if hypoglycemia is detected [Bode et al.,

2004]. CGM can also be used in conjunction with sensor augmented pump (SAP) therapy

by turning down or shutting off insulin if a hypoglycemic episode is detected. Both these

approaches have successfully helped people with T1D reduce time spent in hypoglycemia

[Choudhary et al., 2016, Beck et al., 2017, Bergenstal et al., 2013]. There are some challenges

associated with both of these approaches. Hypoglycemia alerts using the CGM requires the

user to respond to these alarms and to take appropriate action. The onus of the response falls

on theuser of the system[Wong et al., 2014]. ManyCGMusers complainof alarm fatigue and

manydonotwake up to respond to these alarms [Raccah et al., 2009, Buckinghamet al., 2005,

Wong et al., 2014]. On the other hand, some users respond to the predictive alerts from SAP

therapy by taking in additional carbohydrates resulting in hyperglycemia. Consuming addi-
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tional carbohydrates coupled with insulin shut-off can lead to hyperglycemia. In both these

cases, users experience disturbed sleep resulting in poor sleep quality. Both these approaches

require the user to react to the situation. In this chapter we propose an approach that is more

proactive in nature. This approach involves predicting the nocturnal hypoglycemia episode at

bedtime and suggesting either an ingestion of a complex carbohydrate snack or an appropri-

ate reduction of the overnight insulin dosage. Another approach that uses a similar proactive

approach is the closed loop control system, or artificial pancreas system using, either a single

hormone predictive model to reduce hypoglycemia [Weisman et al., 2017] or with the use of

a dual hormonal system [Jacobs et al., 2016].

Based on prior studies and prevailing knowledge, the following characteristics have been

associated with nocturnal hypoglycemia [Cryer, 2016, Chow & Heller, 2014]. These include

incorrect insulin dosing leading to insulin stacking or use of an incorrect type of insulin, inad-

equate carbohydrate intake or long duration between meals, excessive alcohol consumption

before bed leading to diminished hepatic glucose production, exercise during the day leading

to increased glucose utilization to replenishdepleted glycogen stores, anddiminished counter-

regulatory responses due to antecedent hypoglycemic episodes or sleep.

We hypothesized that using machine learning approaches we could created a nocturnal

hypoglycemia prediction algorithm that could be applied before the bedtime.
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7.2 Methods

7.2.1 Data acquisition

Ten adults with T1Dwere recruited to participate in this randomized, three treatment, open,

single-center crossover study. The inclusion criteria for this study were: adults with T1D (di-

agnosis of condition >1 year); age 21—45 years; body mass index <30 kg/m2; physically active

(≈150min ofmoderate physical activity perweek or≈60min of vigorous physical activity per

week or active at least 3 days a week); currently on an insulin pump; andwilling to perform 45

min of exercise. The exclusion criteria included : cardiovascular disease, renal or hepatic dys-

function, hypertension, congenital heart disease, use of adrenergic blocking agents, ongoing

acetaminophen use, history of severe hypoglycemia during the past 12months, or a condition

that would preclude exercise. Participant’s anthropometric and performance characteristics,

as well as diabetes-specific data, are shown inTable 7.1. Subjects were recreationally active and

physically fit (VO2max = 46.8± 11.6 ml.kg−1.min−1) and had no electrocardiogram or blood

pressure abnormalities.

The InstitutionalReviewBoardat theOregonHealth andScienceUniversity (OHSU)

approved the study protocol and consent form. This current paper is a secondary analy-

sis using the data collected during a study that examined the effect of exercise on sleep in
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adultswith type 1 diabetes [Reddy et al., 2017]. The studywas registered onClinicalTrials.gov

(NCT:02687893). Informed consent was obtained from every individual.

Characteristic Number =10
Age (years) 34±6

Gender (M/F) 4/6
Duration of diabetes (years) 18±10
Body Mass Index (kg/m2) 25±5

HbA1c (%) 7.4±1.0
HbA1c (mmol/mol) 57±11

VO2max 46.8±11.5
Fat (%) 30±7

Table 7.1: Baseline characteristics of the participants. Continuous data represented asmean±standard deviation.

During this study, we collected participants’ glucose levels every 5 min, physical activity

using a wrist mounted actigraph, insulin dosage, food intake and sleep duration were con-

tinuously measured over the course of four consecutive weeks. Glucose levels were tracked

using a continuous glucose monitor (CGM; Dexcom G4 or G4 Share, Dexcom, San Diego,

CA, USA). Physical activity and sleep were monitored using an activity monitor (ActiGraph

wGT3X-BT; ActiGraph, Pensacola, FL, USA), movement data were acquired at the rate of

80Hz. Participants managed their own insulin dosage using their personal insulin pump

and a capillary blood glucose meter (CBGmeter, Contour Next glucose meter; Ascensia Dia-

betes Care, NJ,USA). Food intakewasmeasured using a custombuilt food-trackingAndroid

smart-phone app. A smart-phone (Galaxy S4; Samsung, CA, USA) loaded with this app was

distributed to the participants. The first week of the study was a run-in week where partici-

pants became accustomed to the wearable sensors. After the run-in, participants performed
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in-clinic aerobic exercise twice weekly for one week, in-clinic resistance training twice weekly

for one week, and no structured exercise for one control week. The order of the aerobic, re-

sistance, and control weeks were randomized for each subject. Block randomization (size of

six) with a 1:1:1 ratio was computer generated for the sequence of the interventions. A total of

249 nights of glucose data were collected for this analysis. In this data set 29.3% of the nights

the subjects experienced nocturnal hypoglycemia.

7.2.2 Feature extraction

We designed a machine learning algorithm to classify in advance whether a person with T1D

would become hypoglycemic at night while they slept. The hypothesis was that we could

predict the nocturnal hypoglycemia at the time the participant retired to bed based on the

features from this data set described in section 7.2.1. The features are broadly classified into 4

types

• Glucose features

• Insulin features

• Meal features

• Activity features

Glucose features were calculated for four different time windows namely, 2hr before

bedtime, 6hr before bedtime, 12hr before bedtime and 24hr before bedtime. The features
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Glucose Insulin Meal Acitivity
features features features features

Mean glucosea Insulin on board Type of meal eaten Total number
of stepsb

Standard deviationa Time since the Carbohydrate amount Time spent
last bolus in MVPAb

Coefficient of variationa Last Bolus amount Time since
the last meal

Time in rangea Overnight
Time in hypoglycemiaa basal rate
Time in hyperglycemiaa
Glucose value at bedtime
Glucose value 15 min

before bedtime
Slope of glucose at bedtime

Table 7.2: Features computed from each observation.
a Thesemetrics were calculated for four different timewindows, 2hr before bedtime, 6hr before bedtime, 12hr before

bedtime and 24hr before bedtime.
b Thesemetrics were calculated for three different timewindows, 2hr before bedtime, 6hr before bedtime and 12hr

before bedtime.

that were calculated were mean, standard deviation, coefficient of variation, % of time spent

in range (glucose value >70mg/dL and≤180 mg/dL), % of time spent in hypoglycemia (glu-

cose value≤70mg/dL) and%time inhyperglycemia (glucose value>180mg/dL).Additional

features were calculated just before bedtime, thesewere glucose value at bedtime, trend in glu-

cose as indicated the average slope over the past 15 minutes before bedtime and glucose value

15 minutes before bedtime. In total there were 27 glucose features. These are shown in Ta-

ble 7.2. In Figure 7.1 a subset of these features are shown. Conventional wisdom dictates that

antecedent hypoglycemia results in future hypoglycemia and lower glucose mean values re-

sult in more episodes of hypoglycemia [Cryer, 2016]. The data shown in Figure 7.1 supports

this expectation.
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Figure 7.1: A subset of the glucose features are shown here. Nocturnal hypoglycemia episodewas coded as 1 and if

there was no nocturnal hypoglycemia the night was coded as 0.
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Insulin features were extracted from the data set are shown in Table 7.2. In Figure 7.2 a

subset of these features are illustrated. Included is insulin on board (IOB) at bedtime, which

serves to indicate insulin stacking, due to the slow rate of absorption and the variable rate of

action, some individuals could experience nocturnal hypoglycemia. Both time since the last

bolus and amount of the last bolus were included in the feature set, but were only consid-

ered if the last bolus was within the last 6hr before bedtime. The last insulin feature was the

overnight insulin basal rate. There were a total of 4 insulin features in the data set.

Meal features collected using the smartphone app were included in the data set, shown

in Table 7.2. These features were self-reported features by the subjects in the study. Subjects

indicated the type of the meal at each meal entry, before bedtime these entries were either,

dinner, snack or hypoglycemic treatment. The carbohydrate amount and the time when the

last reportedmeal were consumedwere included in the data set but only formeals consumed

within the last 6hr before bedtime. In Figure 7.2 a subset of these features are shown.

Activity features measured using the actigraph were extracted for 3 different time peri-

ods: 2hr before bedtime, 6hr before bedtime and 12hr before bedtime. The metrics included

the number of total steps as counted by the actigraph and% of time spent inmoderate to vig-

orous physical activity (MVPA). MVPA is defined as the activity where the estimated MET
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Figure 7.2: A subset of the insulin &meal features are shown here. The size of themeal is indicated by the size of the

dot in panels C anD. These features were created to take into account the variability associated with the amount and

type of meals eaten and the amount of insulin dosed before bedtime. Nocturnal hypoglycemia episodewas coded as 1

and if there was no nocturnal hypoglycemia the night was coded as 0.
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Figure 7.3: A subset of the activity features are shown here. As activity during the day is associated with increased

insulin sensitivity and increased risk of nocturnal hypoglycemia, these features were created to understand their

impact. These features were created to be usedwithin amachine learning algorithm. Although, they do not appear

to be discriminating between these features the combination of these features with other features could be used to

distinguish between the outcome of interest. Nocturnal hypoglycemia episodewas coded as 1 and if there was no

nocturnal hypoglycemia the night was coded as 0.

value is greater than 3METs. Any activity involving substantial movement like walking, run-

ning etc. are considered asMVPA.MVPA is a surrogate for identifying active individuals. A

subset of the activity features are shown in Figure 7.3.
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7.2.3 Machine learning models

With the objective to determine if a nocturnal hypoglycemia event would occur during sleep,

we designed 4 unique machine learning classifiers. Many machine learning approaches ex-

ist to solve a classification problem. Each algorithm uses a different approach to accomplish

this objective. Here we selected approaches that had an advantage when the predictors to

the algorithmweremixed in nature (continuous numerical variables and categorial variables)

[Friedman et al., 2001, Nasrabadi, 2007]. We split the 249 observations into 3 datasets: 80%

formodel development (60% for training and 20% for testing) and 20% formodel validation.

Each model was trained using a 10-fold cross validation process. We used a nested cross vali-

dation approach, with the outer cross validation loop splitting the 60% of the training data

into training and testing folds, and the inner loop was used to identify the model. The train-

ing results are based on the cross validated data. The average performance of this model is

reported below.

We selected the following 4 machine learning algorithms.

• Logistic Regression: This is a common technique used for binary outcomes. Itmodels
the log odds ratio of the outcome class as a linear combination of the predictors. As
many of the predictors are co-linear we employed a penalized regression approach to
minimize this.

• Naïve Bayes: Naïve Bayes is a supervised learning approach for classification which is
based on the Bayes’ theorem [Friedman et al., 2001]. Naïve Bayes assumes that for
a class of the outcome, all incoming variables are independent of each other (naïve
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assumption). Naïve Bayes have been shown to outperform many more complicated
algorithms in smaller data sets but performance diminishes in larger data sets.

• Random Forest (RF) : Random Forests use an ensemble classification approach. The
underlying principle of a random forest is to build multiple decision trees and use a
majority wins approach to arrive at the final classification. To build multiple trees, the
predictors are randomly selected and partitioned, this approach is known as bagging.
RandomForest approaches are fast to train, can findunderlyingnon-linear connection
and are very robust to overfitting [James et al., 2013, Breiman, 2001].

• Gradient Boosted Machine (GBM) : Gradient boosted machine is also based on deci-
sion trees, but uses different approach to buildmultiple decision trees known as boost-
ing. Unlike bagging, wheremultiple independentmodels are built (in random forests),
boosting adds on the existing model while minimizing the error. This approach can
limit both error and bias [James et al., 2013].

Development of these algorithms and the validation was completed using the R frame-

work [R Core Team, 2017] with the help of the following library packages caret [Kuhn et al.,

2015] and h2o [Aiello et al., 2016]. Eachmodel’s hyper parameters were determined by using a

grid search. To evaluate themodels we used the area under the receiver operator curve (ROC)

metric (AUC) and the % error predicted by the models. The ROC curve plots the true posi-

tives against false positives, by selecting different thresholds, the model could be designed to

produce more false positives (less specific) or conversely more true positives (more sensitive).

We chose an optimal threshold based on the F1—Optimal threshold, defined as

F1 = 2 ∗ true positive
2 ∗ true positive+ false positive+ false negative (7.1)
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Figure 7.4: Receiver operating characteristic curves (ROC) curves showing the performance of the logistic regression

model, naïve bayesmodel, the random forest model and the gradient boostedmachinemodel in predicting nocturnal

hypoglycemia on the development dataset. The curves indicate that other than the naïve bayesmodel, all the other

models perform similarly on the development set.

This threshold gives equal importance to both precision and recall, its harmonic mean of

both, using this thresholdoptimizes both sensitivity and specificity culminating in thehighest

area under the curve (AUC) [Lipton et al., 2013].

7.3 Results

7.3.1 Training results

Table 7.3 shows the receiver operating characteristic analysis of the different models on the

training data set. Both GBM and RF outperform the other algorithms in the development
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dataset. Figure 7.4 shows the ROC curves for all the algorithms.

Model AUC (SD) Accuracy (SD) (%)
Random Forest 0.75 (0.07) 0.77 (0.06)

Gradient Boosted Machine 0.74 (0.07) 0.76 (0.09)
Naïve Bayes 0.74 (0.09) 0.77(0.08)

Logistic Regression 0.65 (0.11) 0.68(0.14)

Table 7.3: The cross validation results on the training dataset are shown here for each of the classi ers. Area under

the ROC curve and the accuracy of themodels on the cross validated data set are shown for eachmodel as themean

(standard deviation)

7.3.2 Validation results

Table 7.4 shows the receiver operating characteristic analysis of the different models on the

validation data set. RF model, GBM and the naïve bayes had the best performance in the

validation dataset based on the area under the ROC curve. Figure 7.6 shows the ROC curves

for all the algorithms on the validation dataset. While all the models had similar AUC value,

the GBM model is considered the best model based on the sensitivity, specificity and error

metrics.

Model AUC Sensitivity Specificity Error (%) Accuracy (%)
Random Forest 0.85 0.67 0.88 0.19 0.81

Gradient Boosted Machine 0.88 0.89 0.79 0.15 0.85
Naïve Bayes 0.85 0.67 0.91 0.18 0.81

Logistic Regression 0.81 1 0.55 0.30 0.7

Table 7.4: Comparison of model performances on the development dataset. Logistic regression is very sensitive at

identifying the hypoglycemic episodes but is also increases the false positives, GBM and naïve bayes have identical

error rates but the GBMmodel is more sensitive towards the identi cation of the nocturnal hypoglycemic episodes

without many false positives.
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Mean glucose over the last 12 hr (mg/dL)

Standard deviation of the  
glucose over the last 12 hr (mg/dL)

Rate of change in 15 min glucose  
before bedtime (mg/dL/dt)

Duration of hypoglycemia in the last  
24 hr (min)

Glucose value at bedtime (mg/dL)

Standard deviation of the  
glucose over the last 24 hr (mg/dL)

Duration of hyperglycemia in the last  
12 hr (min)

Total steps in the last 12 hr (steps)

Amount of CHO is the last meal (g)

Last meal type

Figure 7.5: The top 10 risk factor variables for the algorithms are listed in descending order of effect size based on the

selection frequency in both the random forest model and the gradient boostingmachinemodels.
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Figure 7.6: Receiver operating characteristic curves showing the performance of the logistic regressionmodel, naïve

bayesmodel, the random forest model and the gradient boostedmachinemodel in predicting nocturnal hypoglycemia

on the validation dataset.

7.4 Discussion

Wehave developed a proactive approach to predicting nocturnal hypoglycemia in adults with

T1D. In the past, various approaches have been taken to predict hypoglycemia using statis-

tical approaches [Cameron et al., 2008, Dassau et al., 2010, Daskalaki et al., 2012] and time

series based approaches [Eren-Oruklu et al., 2010, 2012, Turksoy et al., 2014a]. Both of these

approaches were designed to predict the hypoglycemic event in the near future such as <1

hr These approaches are reactive in nature and they require the the individual to act on the

alarm. Due to the diminished sympathetic drive during sleep in individuals with T1D, the
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compliance to treatment or the response to alarms is poor [Buckingham et al., 2005]. In a

recent studyWilson et al. [Wilson et al., 2015] found that HbA1c%, exercise, bedtime glucose

level and antecedent hypoglycemia were the factors associated with nocturnal hypoglycemia.

They were not able to determine any clear guidelines based on their findings. In the analy-

sis presented here, we come to similar conclusions, the average glucose level indicating the

level of glycemic control is the most important variable to predict nocturnal hypoglycemia.

We also, show that glucose at bedtime along with IOB at bedtime and activity during the

day that is closer to bedtime could provide an indication that nocturnal hypoglycemia could

occur. A variable importance showing the top 10 important features is show in Figure 7.5

The results from our analysis show that there are some potentially modifiable character-

istics the individual could perform to prevent hypoglycemia such as decrease overnight basal

dosage or consume additional balanced snack with reduced insulin bolus. These approaches

can alleviate the fear of hypoglycemia in people with T1D and reduce disruptions to sleep

[Brod et al., 2013a]. Another benefit of these models is they could prevent excessive snacking

at bedtime [Desjardins et al., 2012, Matejko et al., 2015]

The limitation of this analysis is the small number of participants in the study. This led

to the problem of data leakage between the development dataset and the validation dataset.

A large diverse dataset from future studies are needed to further validate these models.
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7.5 Conclusion

We developed nocturnal hypoglycemia prediction models using the latest machine learning

methods. These models performed reasonably well given our small dataset. We demonstrate

that several modeling approaches good prediction of nocturnal hypoglycemia. However, a

large diverse dataset and additional validation studies are needed before successfully deploy-

ing thesemodels in clinical care. Results from thesemodeling approaches could be critical for

people self managing T1D.
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7.6 Supplementary

In this section, the models that have been designed and built will be clearly presented. Each

model presented here is shown in java language. The models and the coefficients shown here

illustrate the complexity of the models.

7.6.1 GBM model

import java.util.Map;
import hex.genmodel.GenModel;
import hex.genmodel.annotations.ModelPojo;

@ModelPojo(name="GBM_grid_0_AutoML_20180903_125524_model_6", algorithm="gbm")
public class GBM_grid_0_AutoML_20180903_125524_model_6 extends GenModel {
public hex.ModelCategory getModelCategory() { return hex.ModelCategory.Binomial; }

public boolean isSupervised() { return true; }
public int nfeatures() { return 40; }
public int nclasses() { return 2; }

// Names of columns used by model.
public static final String[] NAMES = NamesHolder_GBM_grid_0_AutoML_20180903_125524_model_6.VALUES;
// Number of output classes included in training data response column.
public static final int NCLASSES = 2;

// Column domains. The last array contains domain of response column.
public static final String[][] DOMAINS = new String[][] {
/* glucosevalue_mean_12h */ null,
/* glucosevalue_sd_12h */ null,
/* glucosevalue_cv_12h */ null,
/* glucosevalue_euglycemia_12h */ null,
/* glucosevalue_hypoduration_12h */ null,
/* glucosevalue_hyperduration_12h */ null,
/* glucosevalue_mean_24h */ null,
/* glucosevalue_sd_24h */ null,
/* glucosevalue_cv_24h */ null,
/* glucosevalue_euglycemia_24h */ null,
/* glucosevalue_hypoduration_24h */ null,
/* glucosevalue_hyperduration_24h */ null,
/* glucosevalue_mean_2h */ null,
/* glucosevalue_sd_2h */ null,
/* glucosevalue_cv_2h */ null,
/* glucosevalue_euglycemia_2h */ null,
/* glucosevalue_hypoduration_2h */ null,
/* glucosevalue_hyperduration_2h */ null,
/* glucosevalue_mean_6h */ null,
/* glucosevalue_sd_6h */ null,
/* glucosevalue_cv_6h */ null,
/* glucosevalue_euglycemia_6h */ null,
/* glucosevalue_hypoduration_6h */ null,
/* glucosevalue_hyperduration_6h */ null,
/* activity_max_2h */ null,
/* activity_max_6h */ null,
/* activity_max_12h */ null,
/* steps_max_2h */ null,
/* steps_max_6h */ null,
/* steps_max_12h */ null,
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/* meal_g */ null,
/* meal_type */ GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_31.VALUES,
/* durationtime */ null,
/* lastbolus */ null,
/* durationtime_bolus */ null,
/* iobBed */ null,
/* overnightiir */ null,
/* glucose_at_bed */ null,
/* glucose_15min */ null,
/* slope_at_bed */ null,
/* hypoglycemiayn */ GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_40.VALUES

};
// Prior class distribution
public static final double[] PRIOR_CLASS_DISTRIB = {0.6987179487179487,0.30128205128205127};
// Class distribution used for model building
public static final double[] MODEL_CLASS_DISTRIB = {0.6987179487179487,0.30128205128205127};

public GBM_grid_0_AutoML_20180903_125524_model_6() { super(NAMES,DOMAINS,"hypoglycemiayn"); }
public String getUUID() { return Long.toString(-5730843662682393344L); }

// Pass in data in a double[], pre-aligned to the Model's requirements.
// Jam predictions into the preds[] array; preds[0] is reserved for the
// main prediction (class for classifiers or value for regression),
// and remaining columns hold a probability distribution for classifiers.
public final double[] score0( double[] data, double[] preds ) {
java.util.Arrays.fill(preds,0);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_0.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_1.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_2.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_3.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_4.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_5.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_6.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_7.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_8.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_9.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_10.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_11.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_12.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_13.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_14.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_15.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_16.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_17.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_18.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_19.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_20.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_21.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_22.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_23.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_24.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_25.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_26.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_27.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_28.score0(data,preds);
GBM_grid_0_AutoML_20180903_125524_model_6_Forest_29.score0(data,preds);
preds[2] = preds[1] + -0.841200280519085;
preds[2] = 1./(1. + Math.min(1e19, Math.exp(-(preds[2]))));
preds[1] = 1.0-preds[2];
preds[0] = hex.genmodel.GenModel.getPrediction(preds, PRIOR_CLASS_DISTRIB, data, 0.04004928118629542);
return preds;

}
}
// The class representing training column names
class NamesHolder_GBM_grid_0_AutoML_20180903_125524_model_6 implements java.io.Serializable {
public static final String[] VALUES = new String[40];
static {
NamesHolder_GBM_grid_0_AutoML_20180903_125524_model_6_0.fill(VALUES);

}
static final class NamesHolder_GBM_grid_0_AutoML_20180903_125524_model_6_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "glucosevalue_mean_12h";
sa[1] = "glucosevalue_sd_12h";
sa[2] = "glucosevalue_cv_12h";
sa[3] = "glucosevalue_euglycemia_12h";
sa[4] = "glucosevalue_hypoduration_12h";
sa[5] = "glucosevalue_hyperduration_12h";
sa[6] = "glucosevalue_mean_24h";
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sa[7] = "glucosevalue_sd_24h";
sa[8] = "glucosevalue_cv_24h";
sa[9] = "glucosevalue_euglycemia_24h";
sa[10] = "glucosevalue_hypoduration_24h";
sa[11] = "glucosevalue_hyperduration_24h";
sa[12] = "glucosevalue_mean_2h";
sa[13] = "glucosevalue_sd_2h";
sa[14] = "glucosevalue_cv_2h";
sa[15] = "glucosevalue_euglycemia_2h";
sa[16] = "glucosevalue_hypoduration_2h";
sa[17] = "glucosevalue_hyperduration_2h";
sa[18] = "glucosevalue_mean_6h";
sa[19] = "glucosevalue_sd_6h";
sa[20] = "glucosevalue_cv_6h";
sa[21] = "glucosevalue_euglycemia_6h";
sa[22] = "glucosevalue_hypoduration_6h";
sa[23] = "glucosevalue_hyperduration_6h";
sa[24] = "activity_max_2h";
sa[25] = "activity_max_6h";
sa[26] = "activity_max_12h";
sa[27] = "steps_max_2h";
sa[28] = "steps_max_6h";
sa[29] = "steps_max_12h";
sa[30] = "meal_g";
sa[31] = "meal_type";
sa[32] = "durationtime";
sa[33] = "lastbolus";
sa[34] = "durationtime_bolus";
sa[35] = "iobBed";
sa[36] = "overnightiir";
sa[37] = "glucose_at_bed";
sa[38] = "glucose_15min";
sa[39] = "slope_at_bed";

}
}

}
// The class representing column meal_type
class GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_31 implements java.io.Serializable {
public static final String[] VALUES = new String[5];
static {
GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_31_0.fill(VALUES);

}
static final class GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_31_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "Breakfast";
sa[1] = "Dinner";
sa[2] = "Hypo-Treatment";
sa[3] = "Lunch";
sa[4] = "Snack";

}
}

}
// The class representing column hypoglycemiayn
class GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_40 implements java.io.Serializable {
public static final String[] VALUES = new String[2];
static {
GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_40_0.fill(VALUES);

}
static final class GBM_grid_0_AutoML_20180903_125524_model_6_ColInfo_40_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "0";
sa[1] = "1";

}
}

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_0 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_0_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_0_class_0 {
static final double score0(double[] data) {
double pred = (data[0 /* glucosevalue_mean_12h */] <113.74505f ?

(data[29 /* steps_max_12h */] <6516.5f ?
(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <-0.103125f ?

1.0657818f :
-0.7155963f) :
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1.6595745f) :
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <42.773438f ?

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.9402575f ?
(data[13 /* glucosevalue_sd_2h */] <8.285334f ?

1.1845403f :
(data[30 /* meal_g */] <14.5f ?

0.47198907f :
(Double.isNaN(data[35]) || data[35 /* iobBed */] <6.8186946f ?

-0.7155963f :
(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <72.75862f ?

-0.7155963f :
0.23447199f)))) :

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <50.531685f ?
(data[39 /* slope_at_bed */] <0.0052083335f ?

1.1845403f :
-0.45168847f) :

1.6595745f)) :
(data[19 /* glucosevalue_sd_6h */] <34.161568f ?

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <47.170982f ?
-0.7155963f :
0.23447199f) :

-0.7155963f)));
return pred;

} // constant pool size = 54B, number of visited nodes = 13, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_1 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_1_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_1_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <166.3868f ?
(Double.isNaN(data[18]) || data[18 /* glucosevalue_mean_6h */] <120.54174f ?

(data[32 /* durationtime */] <-38.983074f ?
(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <0.016666668f ?

(Double.isNaN(data[29]) || data[29 /* steps_max_12h */] <7626.5f ?
0.8157593f :
0.56614226f) :

0.1400794f) :
-0.31659308f) :

0.9158068f) :
-0.6456969f) :

(data[33 /* lastbolus */] <1.1762695f ?
(data[13 /* glucosevalue_sd_2h */] <16.790081f ?

(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-42.466408f ?
1.0762519f :
0.2117871f) :

(!Double.isNaN(data[31 /* meal_type */]) && (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?
-0.68074274f :
-0.60540515f)) :

(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT1, 32, 0, data[31])) ?

(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <228.5f ?
(data[0 /* glucosevalue_mean_12h */] <150.53966f ?

(data[30 /* meal_g */] <30.5f ?
-0.9089511f :
(data[20 /* glucosevalue_cv_6h */] <25.930895f ?

-0.78588736f :
-0.6099812f)) :

(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <2.375f ?
(data[34 /* durationtime_bolus */] <-179.97f ?

-0.6974717f :
(data[19 /* glucosevalue_sd_6h */] <31.02986f ?

-0.6126338f :
-0.60540515f)) :

-0.24779576f)) :
(data[36 /* overnightiir */] <0.98945314f ?

0.38137528f :
(data[9 /* glucosevalue_euglycemia_24h */] <41.01968f ?

-0.6529074f :
-0.60540515f))) :

0.8148489f)));
return pred;

} // constant pool size = 92B, number of visited nodes = 20, static init size = 60B
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// {00101000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {20, 0, 0, 0};
// {00100000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT1 = new byte[] {4, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_2 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_2_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_2_class_0 {
static final double score0(double[] data) {
double pred = (data[6 /* glucosevalue_mean_24h */] <113.64919f ?

(Double.isNaN(data[26]) || data[26 /* activity_max_12h */] <23.135271f ?
(data[7 /* glucosevalue_sd_24h */] <14.9841175f ?

-0.33325255f :
0.5354709f) :

(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <-0.06523438f ?
0.62976676f :
0.8458738f)) :

(data[37 /* glucose_at_bed */] <108.0f ?
(data[14 /* glucosevalue_cv_2h */] <17.34687f ?

(data[14 /* glucosevalue_cv_2h */] <9.047145f ?
0.14126037f :
-0.6252244f) :

(data[24 /* activity_max_2h */] <18.44293f ?
-0.23338082f :
(data[8 /* glucosevalue_cv_24h */] <39.43888f ?

0.74289095f :
0.6142552f))) :

(data[8 /* glucosevalue_cv_24h */] <21.71203f ?
0.27949747f :
(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <17.8125f ?

(data[23 /* glucosevalue_hyperduration_6h */] <1.5625f ?
0.036838926f :
(data[1 /* glucosevalue_sd_12h */] <31.899368f ?

-0.7043954f :
(data[20 /* glucosevalue_cv_6h */] <21.238947f ?

(data[18 /* glucosevalue_mean_6h */] <200.00275f ?
0.30034876f :
(Double.isNaN(data[26]) || data[26 /* activity_max_12h */] <33.828667f ?

-0.55622643f :
-0.621461f)) :

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <103.69445f ?
(data[30 /* meal_g */] <20.5f ?

(Double.isNaN(data[33]) || data[33 /* lastbolus */] <2.68f ?
(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <28.831259f ?

-0.5551157f :
-0.62474704f) :

-0.6987715f) :
(data[12 /* glucosevalue_mean_2h */] <140.552f ?

-0.58523655f :
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <23.805737f ?

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <38.361675f ?
(data[13 /* glucosevalue_sd_2h */] <17.108839f ?

-0.5574834f :
-0.55753577f) :

-0.5554328f) :
-0.5659506f))) :

-0.1550865f)))) :
0.1783242f))));

return pred;
} // constant pool size = 98B, number of visited nodes = 24, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_3 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_3_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_3_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <164.89093f ?

(data[27 /* steps_max_2h */] <636.5f ?
(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <191.5f ?
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(data[24 /* activity_max_2h */] <11.54625f ?
(data[39 /* slope_at_bed */] <-0.575f ?

0.083931476f :
-0.5577079f) :

(data[21 /* glucosevalue_euglycemia_6h */] <58.219177f ?
-0.31454435f :
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <2.1982758f ?

0.502395f :
0.7135911f))) :

0.75036967f) :
(data[19 /* glucosevalue_sd_6h */] <24.879976f ?

(data[10 /* glucosevalue_hypoduration_24h */] <2.0544982f ?
-0.40199775f :
(data[32 /* durationtime */] <-133.96875f ?

0.67938834f :
(data[14 /* glucosevalue_cv_2h */] <11.475167f ?

0.2957871f :
0.5844513f))) :

(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <31.588776f ?
(data[19 /* glucosevalue_sd_6h */] <30.327747f ?

(data[27 /* steps_max_2h */] <971.5f ?
-0.61140585f :
-0.59488136f) :

(data[33 /* lastbolus */] <1.4609375f ?
-0.53964883f :
-0.5634821f)) :

(data[37 /* glucose_at_bed */] <103.5f ?
0.60004956f :
-0.33767956f)))) :

(data[19 /* glucosevalue_sd_6h */] <28.379675f ?
-0.60782653f :
(data[19 /* glucosevalue_sd_6h */] <36.15081f ?

0.4765615f :
(data[28 /* steps_max_6h */] <2840.5f ?

(Double.isNaN(data[12]) || data[12 /* glucosevalue_mean_2h */] <198.53f ?
-0.5368019f :
-0.25056273f) :

(Double.isNaN(data[33]) || data[33 /* lastbolus */] <2.9601562f ?
(data[11 /* glucosevalue_hyperduration_24h */] <42.906574f ?

-0.5661104f :
(Double.isNaN(data[11]) || data[11 /* glucosevalue_hyperduration_24h */] <63.728374f ?

(data[23 /* glucosevalue_hyperduration_6h */] <28.219177f ?
-0.53611445f :
-0.531684f) :

-0.5431898f)) :
(data[17 /* glucosevalue_hyperduration_2h */] <70.5f ?

-0.58706844f :
-0.5478326f))))));

return pred;
} // constant pool size = 102B, number of visited nodes = 25, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_4 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_4_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_4_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <166.3868f ?
(data[28 /* steps_max_6h */] <2004.0f ?

0.5923866f :
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-151.00885f ?

-0.28919107f :
(data[32 /* durationtime */] <-63.949345f ?

(Double.isNaN(data[28]) || data[28 /* steps_max_6h */] <3329.5f ?
0.56960225f :
0.5585489f) :

(data[33 /* lastbolus */] <1.6046875f ?
-0.18572918f :
0.47388846f)))) :

-0.5357479f) :
(data[30 /* meal_g */] <38.5f ?

(data[20 /* glucosevalue_cv_6h */] <12.123333f ?
-0.58184946f :
(data[13 /* glucosevalue_sd_2h */] <18.453413f ?
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(Double.isNaN(data[25]) || data[25 /* activity_max_6h */] <31.951979f ?
(data[10 /* glucosevalue_hypoduration_24h */] <5.0605536f ?

0.6389321f :
(data[13 /* glucosevalue_sd_2h */] <14.514651f ?

-0.17540412f :
0.5969708f)) :

(data[5 /* glucosevalue_hyperduration_12h */] <19.008621f ?
0.40421215f :
-0.5445896f)) :

(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <219.5f ?
(data[26 /* activity_max_12h */] <21.776667f ?

-0.5746998f :
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <2.73f ?

(data[12 /* glucosevalue_mean_2h */] <130.249f ?
-0.5301737f :
(data[39 /* slope_at_bed */] <0.2f ?

-0.5183239f :
-0.5224585f)) :

-0.54130894f)) :
(data[37 /* glucose_at_bed */] <265.0f ?

0.59103966f :
-0.5608653f)))) :

(data[19 /* glucosevalue_sd_6h */] <35.99534f ?
(data[13 /* glucosevalue_sd_2h */] <15.626877f ?

-0.5347398f :
-0.5628806f) :

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <39.931435f ?
(data[34 /* durationtime_bolus */] <-100.29896f ?

-0.52346605f :
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.796875f ?

-0.52198184f :
-0.51904154f)) :

-0.53590864f))));
return pred;

} // constant pool size = 102B, number of visited nodes = 25, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_5 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_5_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_5_class_0 {
static final double score0(double[] data) {
double pred = (data[6 /* glucosevalue_mean_24h */] <113.64919f ?

(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-30.277637f ?
(Double.isNaN(data[24]) || data[24 /* activity_max_2h */] <18.586592f ?

(data[33 /* lastbolus */] <1.199961f ?
0.54220986f :
0.56689763f) :

0.29462606f) :
-0.06221227f) :

(data[2 /* glucosevalue_cv_12h */] <25.17628f ?
(data[24 /* activity_max_2h */] <21.074629f ?

(data[5 /* glucosevalue_hyperduration_12h */] <32.421875f ?
0.39202836f :
-0.52965945f) :

(data[26 /* activity_max_12h */] <21.677896f ?
-0.5541437f :
(Double.isNaN(data[12]) || data[12 /* glucosevalue_mean_2h */] <150.84032f ?

-0.53240126f :
-0.5213022f))) :

(data[2 /* glucosevalue_cv_12h */] <25.920105f ?
0.47346082f :
(data[37 /* glucose_at_bed */] <105.5f ?

(data[11 /* glucosevalue_hyperduration_24h */] <10.304931f ?
-0.35792717f :
(data[29 /* steps_max_12h */] <10094.0f ?

0.55139965f :
(data[32 /* durationtime */] <-110.855f ?

-0.09552748f :
0.35670495f))) :

(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <17.8125f ?
(data[34 /* durationtime_bolus */] <295.5224f ?

(data[26 /* activity_max_12h */] <20.765f ?
(data[15 /* glucosevalue_euglycemia_2h */] <12.5f ?

-0.16156901f :
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0.39632577f) :
(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <66.40536f ?
(data[20 /* glucosevalue_cv_6h */] <21.238947f ?

-0.52949804f :
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <20.197895f ?

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <5.586207f ?
(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <26.180922f ?

-0.51095706f :
-0.5119032f) :

-0.51472175f) :
-0.517296f)) :

(data[21 /* glucosevalue_euglycemia_6h */] <75.0f ?
-0.53089523f :
-0.52027416f)) :

0.11359749f)) :
-0.5587279f) :

0.22317293f)))));
return pred;

} // constant pool size = 107B, number of visited nodes = 25, static init size = 30B
// {00110000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {12, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_6 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_6_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_6_class_0 {
static final double score0(double[] data) {
double pred = (data[0 /* glucosevalue_mean_12h */] <113.74505f ?

(data[29 /* steps_max_12h */] <6516.5f ?
(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <-0.103125f ?

0.21177642f :
-0.5307201f) :

(Double.isNaN(data[29]) || data[29 /* steps_max_12h */] <8580.0f ?
0.52210087f :
0.5346764f)) :

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <86.52344f ?
(data[3 /* glucosevalue_euglycemia_12h */] <37.00905f ?

(data[6 /* glucosevalue_mean_24h */] <188.37563f ?
-0.5290477f :
(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <233.33104f ?

(data[19 /* glucosevalue_sd_6h */] <42.432934f ?
-0.5131825f :
(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <5.586207f ?

-0.50694424f :
-0.50908685f)) :

-0.5198914f)) :
(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <227.0f ?

(data[6 /* glucosevalue_mean_24h */] <126.14403f ?
0.40302724f :
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.03125f ?

(data[14 /* glucosevalue_cv_2h */] <12.737163f ?
0.4511684f :
(data[33 /* lastbolus */] <0.6f ?

-0.52535444f :
-0.1372657f)) :

(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <17.573294f ?
(data[0 /* glucosevalue_mean_12h */] <145.14621f ?

-0.5287336f :
(data[1 /* glucosevalue_sd_12h */] <44.390923f ?

-0.517955f :
(data[18 /* glucosevalue_mean_6h */] <164.75342f ?

-0.50881356f :
-0.51434183f))) :

(Double.isNaN(data[32]) || data[32 /* durationtime */] <-137.565f ?
-0.5217726f :
0.35680598f)))) :

(data[19 /* glucosevalue_sd_6h */] <50.841522f ?
0.5221545f :
0.08766776f))) :

(data[14 /* glucosevalue_cv_2h */] <14.545072f ?
-0.51973224f :
-0.5314539f)));
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return pred;
} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_7 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_7_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_7_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(data[38 /* glucose_15min */] <77.5f ?
(data[16 /* glucosevalue_hypoduration_2h */] <17.96875f ?

-0.51914024f :
0.27616876f) :

(data[35 /* iobBed */] <7.8719025f ?
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-214.32669f ?

-0.2806206f :
(data[22 /* glucosevalue_hypoduration_6h */] <3.4246576f ?

0.5258473f :
0.27251917f)) :

0.52777755f)) :
(data[20 /* glucosevalue_cv_6h */] <12.112848f ?

-0.54491615f :
(data[13 /* glucosevalue_sd_2h */] <18.464144f ?

(data[33 /* lastbolus */] <1.1876953f ?
(data[10 /* glucosevalue_hypoduration_24h */] <0.42171282f ?

0.5340834f :
0.2715803f) :

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <17.24606f ?
(data[18 /* glucosevalue_mean_6h */] <110.36087f ?

0.2379495f :
(data[0 /* glucosevalue_mean_12h */] <155.80931f ?

-0.515047f :
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <2.4913495f ?

-0.50849915f :
-0.50584775f))) :

0.46354914f)) :
(data[9 /* glucosevalue_euglycemia_24h */] <51.02725f ?

(data[6 /* glucosevalue_mean_24h */] <188.15817f ?
0.303746f :
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <2.8710938f ?

(data[32 /* durationtime */] <-117.1125f ?
-0.50629574f :
-0.50448656f) :

-0.5108274f)) :
(data[33 /* lastbolus */] <2.9171875f ?

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <41.204285f ?
(!Double.isNaN(data[31 /* meal_type */]) && (GenModel.bitSetIsInRange(32, 0, data[31])
&& !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

-0.51748323f :
(data[20 /* glucosevalue_cv_6h */] <26.74035f ?

-0.5105624f :
-0.50689995f)) :

-0.16264087f) :
(data[8 /* glucosevalue_cv_24h */] <30.095692f ?

-0.51521724f :
-0.52227485f))))));

return pred;
} // constant pool size = 99B, number of visited nodes = 23, static init size = 30B
// {00111000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {28, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_8 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_8_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_8_class_0 {
static final double score0(double[] data) {
double pred = (data[6 /* glucosevalue_mean_24h */] <113.64919f ?

(Double.isNaN(data[26]) || data[26 /* activity_max_12h */] <23.135271f ?
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.2144922f ?

0.37909308f :
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-0.34291226f) :
(data[29 /* steps_max_12h */] <7925.0f ?

0.510291f :
0.5169041f)) :

(data[11 /* glucosevalue_hyperduration_24h */] <5.859375f ?
-0.52035385f :
(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <33.992188f ?

(data[39 /* slope_at_bed */] <-0.15625f ?
(data[18 /* glucosevalue_mean_6h */] <114.50407f ?

0.3656158f :
(data[10 /* glucosevalue_hypoduration_24h */] <0.9299308f ?

(data[28 /* steps_max_6h */] <3003.5f ?
-0.50726223f :
0.40606532f) :

(data[33 /* lastbolus */] <5.37f ?
(data[0 /* glucosevalue_mean_12h */] <150.4f ?

-0.51268756f :
(data[27 /* steps_max_2h */] <941.5f ?

-0.50810975f :
-0.503588f)) :

(data[22 /* glucosevalue_hypoduration_6h */] <6.849315f ?
0.13735494f :
0.39097974f)))) :

(data[0 /* glucosevalue_mean_12h */] <130.82198f ?
-0.51562643f :
(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <87.5f ?

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <76.89655f ?
(data[7 /* glucosevalue_sd_24h */] <40.020557f ?

-0.5172812f :
(data[21 /* glucosevalue_euglycemia_6h */] <25.479452f ?

-0.50967073f :
(data[35 /* iobBed */] <3.1207273f ?

-0.062239874f :
(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <172.10173f ?

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <33.31586f ?
(data[34 /* durationtime_bolus */] <-79.36f ?

-0.50724006f :
-0.50582546f) :

-0.50451344f) :
(data[39 /* slope_at_bed */] <0.31f ?

-0.5058638f :
-0.5033274f))))) :

0.17163533f) :
0.3395154f))) :

0.4074096f)));
return pred;

} // constant pool size = 98B, number of visited nodes = 24, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_9 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_9_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_9_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.6815867f ?

(data[5 /* glucosevalue_hyperduration_12h */] <17.578125f ?
(data[34 /* durationtime_bolus */] <-18.061785f ?

(data[26 /* activity_max_12h */] <21.160051f ?
-0.52100617f :
(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <-0.428125f ?

-0.3666991f :
-0.51071304f)) :

0.068348005f) :
(data[6 /* glucosevalue_mean_24h */] <138.12387f ?

0.43082637f :
(data[7 /* glucosevalue_sd_24h */] <53.577633f ?

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <50.231842f ?
(data[35 /* iobBed */] <3.9995463f ?

0.20392895f :
(data[14 /* glucosevalue_cv_2h */] <9.765392f ?

-0.5108957f :
(data[37 /* glucose_at_bed */] <162.0f ?

0.03321405f :
-0.50487024f))) :

(data[11 /* glucosevalue_hyperduration_24h */] <36.25649f ?
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-0.11462482f :
0.48704466f)) :

(data[30 /* meal_g */] <19.5f ?
-0.5080096f :
(data[37 /* glucose_at_bed */] <177.5f ?

(data[29 /* steps_max_12h */] <7553.5f ?
-0.5026296f :
-0.50672907f) :

(data[35 /* iobBed */] <4.6476936f ?
-0.5019801f :
(data[19 /* glucosevalue_sd_6h */] <51.580303f ?

-0.50328696f :
-0.5024925f))))))) :

(Double.isNaN(data[33]) || data[33 /* lastbolus */] <0.19335938f ?
-0.36333466f :
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <43.448277f ?

(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <206.5f ?
(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <144.0f ?

(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <-0.05f ?
(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <81.48789f ?

(data[27 /* steps_max_2h */] <778.5f ?
0.50550276f :
0.5112307f) :

0.5176105f) :
(data[21 /* glucosevalue_euglycemia_6h */] <75.34247f ?

0.3727385f :
-0.12277547f)) :

-0.50730026f) :
0.51704824f) :

(data[12 /* glucosevalue_mean_2h */] <190.41672f ?
-0.509889f :
-0.5030017f))));

return pred;
} // constant pool size = 106B, number of visited nodes = 26, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_10 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_10_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_10_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(data[27 /* steps_max_2h */] <417.5f ?
-0.33801267f :
(data[25 /* activity_max_6h */] <20.268984f ?

0.5133793f :
(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <31.587234f ?

(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <24.265097f ?
(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-55.48828f ?

0.50617164f :
0.11036229f) :

-0.37535813f) :
0.50784403f))) :

(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-419.0885f ?
(data[14 /* glucosevalue_cv_2h */] <14.545072f ?

-0.50424004f :
-0.5094721f) :

(data[20 /* glucosevalue_cv_6h */] <12.123333f ?
-0.51078564f :
(data[13 /* glucosevalue_sd_2h */] <18.464144f ?

(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <80.47145f ?
(data[26 /* activity_max_12h */] <23.407421f ?

0.40232572f :
(Double.isNaN(data[28]) || data[28 /* steps_max_6h */] <5327.5f ?

(data[11 /* glucosevalue_hyperduration_24h */] <28.99654f ?
0.27239665f :
(data[1 /* glucosevalue_sd_12h */] <46.153202f ?

-0.5037858f :
-0.5023832f)) :

-0.50526285f)) :
0.47248113f) :

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <9.137931f ?
(data[0 /* glucosevalue_mean_12h */] <148.30043f ?

-0.50650114f :
(data[20 /* glucosevalue_cv_6h */] <16.601404f ?
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0.19805045f :
(Double.isNaN(data[36]) || data[36 /* overnightiir */] <0.99f ?

(data[14 /* glucosevalue_cv_2h */] <16.22754f ?
-0.5018931f :
(data[23 /* glucosevalue_hyperduration_6h */] <32.876713f ?

-0.5050437f :
-0.5031584f)) :

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <49.37931f ?
(data[1 /* glucosevalue_sd_12h */] <75.29912f ?

-0.5009402f :
-0.5013269f) :

-0.50210977f)))) :
0.25758022f)))));

return pred;
} // constant pool size = 94B, number of visited nodes = 23, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_11 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_11_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_11_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(data[38 /* glucose_15min */] <77.5f ?
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <0.90234375f ?

-0.43832564f :
(data[16 /* glucosevalue_hypoduration_2h */] <17.96875f ?

-0.5038577f :
0.50378907f)) :

(data[29 /* steps_max_12h */] <5031.0f ?
0.5088338f :
(Double.isNaN(data[2]) || data[2 /* glucosevalue_cv_12h */] <28.1719f ?

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <24.464357f ?
0.23308995f :
-0.5048436f) :

0.5060716f))) :
(data[34 /* durationtime_bolus */] <310.6796f ?

(data[20 /* glucosevalue_cv_6h */] <12.123333f ?
-0.50651497f :
(data[13 /* glucosevalue_sd_2h */] <18.464144f ?

(Double.isNaN(data[36]) || data[36 /* overnightiir */] <0.9640625f ?
(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <180.0f ?

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <78.75862f ?
(Double.isNaN(data[36]) || data[36 /* overnightiir */] <0.84375f ?

-0.50321996f :
0.15410532f) :

0.5056014f) :
0.5078157f) :

(data[0 /* glucosevalue_mean_12h */] <159.6041f ?
-0.5028116f :
-0.09871907f)) :

(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <216.5f ?
(data[23 /* glucosevalue_hyperduration_6h */] <9.375f ?

-0.5054513f :
(data[24 /* activity_max_2h */] <14.16775f ?

-0.5026066f :
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <26.214544f ?

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <59.83394f ?
(data[26 /* activity_max_12h */] <33.081f ?

-0.5018574f :
-0.5013168f) :

-0.5008081f) :
-0.502567f))) :

(data[37 /* glucose_at_bed */] <259.0f ?
0.38718647f :
(data[36 /* overnightiir */] <0.99f ?

-0.5038568f :
-0.5016001f))))) :

-0.506269f));
return pred;

} // constant pool size = 94B, number of visited nodes = 23, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_12 {
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public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_12_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_12_class_0 {
static final double score0(double[] data) {
double pred = (data[39 /* slope_at_bed */] <-1.0958658f ?

(Double.isNaN(data[26]) || data[26 /* activity_max_12h */] <36.9641f ?
(data[34 /* durationtime_bolus */] <-62.004166f ?

0.41754833f :
0.5054537f) :

-0.4137485f) :
(data[32 /* durationtime */] <-16.498241f ?

(data[6 /* glucosevalue_mean_24h */] <97.32963f ?
(data[15 /* glucosevalue_euglycemia_2h */] <93.75f ?

0.23599428f :
0.5041961f) :

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <84.940735f ?
(data[5 /* glucosevalue_hyperduration_12h */] <11.206897f ?

0.50351435f :
(Double.isNaN(data[30]) || data[30 /* meal_g */] <33.5f ?

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <27.117758f ?
(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <40.236973f ?

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <14.9433155f ?
(data[34 /* durationtime_bolus */] <-81.575f ?

0.46300372f :
-0.32900077f) :

0.4934058f) :
(Double.isNaN(data[24]) || data[24 /* activity_max_2h */] <31.852375f ?

-0.5030661f :
0.27940875f)) :

(!Double.isNaN(data[31 /* meal_type */])

&& (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?
-0.5022787f :
(data[21 /* glucosevalue_euglycemia_6h */] <45.0f ?

0.2849713f :
-0.50105613f))) :

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <41.952526f ?
(data[37 /* glucose_at_bed */] <143.5f ?

(Double.isNaN(data[2]) || data[2 /* glucosevalue_cv_12h */] <33.05269f ?
-0.50115216f :
-0.503363f) :

(data[28 /* steps_max_6h */] <2656.5f ?
-0.50167495f :
(data[11 /* glucosevalue_hyperduration_24h */] <42.448097f ?

-0.50116426f :
(data[27 /* steps_max_2h */] <959.5f ?

-0.50075907f :
-0.50051785f)))) :

0.09169875f))) :
(data[29 /* steps_max_12h */] <9879.5f ?

-0.5047404f :
-0.28416017f))) :

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <9.38847f ?
(data[29 /* steps_max_12h */] <7757.5f ?

-0.50226486f :
-0.07584474f) :

-0.5074863f)));
return pred;

} // constant pool size = 107B, number of visited nodes = 25, static init size = 30B
// {00001000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {16, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_13 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_13_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_13_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <11.243985f ?

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <14.139952f ?
(data[30 /* meal_g */] <16.5f ?

(data[33 /* lastbolus */] <1.1601562f ?
(data[20 /* glucosevalue_cv_6h */] <18.233637f ?
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0.50390965f :
0.2089639f) :

(Double.isNaN(data[30]) || data[30 /* meal_g */] <11.0f ?
-0.50229466f :
0.27613866f)) :

(data[39 /* slope_at_bed */] <-1.3328125f ?
0.34300637f :
(Double.isNaN(data[35]) || data[35 /* iobBed */] <9.239983f ?

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <31.796003f ?
(data[18 /* glucosevalue_mean_6h */] <129.07603f ?

(!Double.isNaN(data[30]) ?
-0.50318974f :
-0.5014265f) :

(Double.isNaN(data[25]) || data[25 /* activity_max_6h */] <32.406666f ?
(data[14 /* glucosevalue_cv_2h */] <10.012941f ?

-0.5018256f :
-0.5009772f) :

(Double.isNaN(data[29]) || data[29 /* steps_max_12h */] <10584.0f ?
-0.50088054f :
0.15291734f))) :

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <5.017301f ?
(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <40.83285f ?

(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <34.70456f ?
(data[19 /* glucosevalue_sd_6h */] <54.181156f ?

-0.5009861f :
-0.5005251f) :

-0.01571241f) :
-0.50141436f) :

(data[9 /* glucosevalue_euglycemia_24h */] <62.906574f ?
-0.18611601f :
0.453796f))) :

(data[29 /* steps_max_12h */] <7208.0f ?
-0.50080794f :
0.35469738f)))) :

-0.50415033f) :
(data[26 /* activity_max_12h */] <21.036253f ?

(data[39 /* slope_at_bed */] <-0.23489584f ?
0.19200046f :
-0.41774845f) :

(Double.isNaN(data[12]) || data[12 /* glucosevalue_mean_2h */] <125.00571f ?
(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <25.428082f ?

0.5030569f :
0.50145227f) :

-0.13209057f)));
return pred;

} // constant pool size = 96B, number of visited nodes = 24, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_14 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_14_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_14_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <42.72461f ?

(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <35.734814f ?
(data[30 /* meal_g */] <14.5f ?

(data[24 /* activity_max_2h */] <14.211679f ?
-0.31434932f :
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.2159375f ?

(data[10 /* glucosevalue_hypoduration_24h */] <4.622621f ?
0.5027038f :
0.50143373f) :

0.12533747f)) :
(data[37 /* glucose_at_bed */] <100.5f ?

(data[6 /* glucosevalue_mean_24h */] <125.66477f ?
0.50215113f :
-0.16334455f) :

(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

(data[39 /* slope_at_bed */] <-0.93541664f ?
-0.5024322f :
(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-256.195f ?

(data[24 /* activity_max_2h */] <25.6805f ?
-0.50070196f :
-0.50135756f) :
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(data[12 /* glucosevalue_mean_2h */] <143.788f ?
(data[11 /* glucosevalue_hyperduration_24h */] <34.99135f ?

0.33878052f :
-0.5007494f) :

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <44.31475f ?
-0.50091094f :
-0.5004211f)))) :

0.21570161f))) :
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-256.23358f ?

-0.11571656f :
(Double.isNaN(data[29]) || data[29 /* steps_max_12h */] <10429.0f ?

0.502357f :
0.4625998f))) :

(Double.isNaN(data[35]) || data[35 /* iobBed */] <10.065324f ?
(data[7 /* glucosevalue_sd_24h */] <53.25983f ?

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <47.170982f ?
-0.5006058f :
0.32201195f) :

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <49.752155f ?
(data[36 /* overnightiir */] <0.984375f ?

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <2.3275862f ?
-0.50052375f :
-0.5009212f) :

(Double.isNaN(data[30]) || data[30 /* meal_g */] <25.5f ?
(data[8 /* glucosevalue_cv_24h */] <38.272873f ?

-0.5005811f :
-0.5004282f) :

-0.5003069f)) :
-0.5012537f)) :

-0.5015246f));
return pred;

} // constant pool size = 107B, number of visited nodes = 25, static init size = 30B
// {00110000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {12, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_15 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_15_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_15_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(data[39 /* slope_at_bed */] <-0.49941406f ?
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <11.366647f ?

0.5017337f :
0.40434512f) :

(data[27 /* steps_max_2h */] <431.5f ?
-0.5018612f :
(data[4 /* glucosevalue_hypoduration_12h */] <2.2898707f ?

0.50180304f :
(Double.isNaN(data[15]) || data[15 /* glucosevalue_euglycemia_2h */] <78.125f ?

(data[2 /* glucosevalue_cv_12h */] <31.878674f ?
0.5011606f :
-0.0319303f) :

-0.41597083f)))) :
(data[33 /* lastbolus */] <1.1762695f ?

(data[13 /* glucosevalue_sd_2h */] <16.790081f ?
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <32.88793f ?

0.5015976f :
0.12286387f) :

(data[0 /* glucosevalue_mean_12h */] <156.13103f ?
-0.5009873f :
-0.5003481f)) :

(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

(data[7 /* glucosevalue_sd_24h */] <50.79935f ?
(data[18 /* glucosevalue_mean_6h */] <127.16952f ?

-0.5018174f :
(data[14 /* glucosevalue_cv_2h */] <5.999349f ?

-0.50096095f :
(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <47.933933f ?

(Double.isNaN(data[28]) || data[28 /* steps_max_6h */] <4457.5f ?
(data[21 /* glucosevalue_euglycemia_6h */] <69.863014f ?

-0.5003241f :
-0.500428f) :
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-0.5004679f) :
-0.50069314f))) :

(data[7 /* glucosevalue_sd_24h */] <53.342255f ?
0.38913694f :
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <5.827068f ?

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <85.96978f ?
(data[6 /* glucosevalue_mean_24h */] <179.61453f ?

-0.500826f :
(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <270.5f ?

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <76.59628f ?
(data[32 /* durationtime */] <-156.49417f ?

-0.5004207f :
-0.5002997f) :

-0.50056887f) :
-0.50024503f)) :

-0.10843132f) :
0.3602407f))) :

0.45662224f)));
return pred;

} // constant pool size = 107B, number of visited nodes = 25, static init size = 30B
// {00100000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {4, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_16 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_16_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_16_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <83.5f ?
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-63.257065f ?

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <77.95258f ?
(data[29 /* steps_max_12h */] <7473.5f ?

0.19970343f :
-0.41053632f) :

0.5009977f) :
-0.29474983f) :

(Double.isNaN(data[15]) || data[15 /* glucosevalue_euglycemia_2h */] <95.89844f ?
(data[22 /* glucosevalue_hypoduration_6h */] <9.631849f ?

0.5012241f :
0.5005711f) :

0.05182803f)) :
(data[33 /* lastbolus */] <1.1762695f ?

(data[13 /* glucosevalue_sd_2h */] <16.790081f ?
(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-42.466408f ?

0.5010863f :
-0.0041915313f) :

(data[0 /* glucosevalue_mean_12h */] <156.13103f ?
-0.5005983f :
-0.50021106f)) :

(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

(data[0 /* glucosevalue_mean_12h */] <115.47829f ?
-0.5012445f :
(data[7 /* glucosevalue_sd_24h */] <50.70252f ?

(data[18 /* glucosevalue_mean_6h */] <123.06421f ?
-0.5007923f :
(data[14 /* glucosevalue_cv_2h */] <6.149991f ?

-0.5005523f :
(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <47.933933f ?

(Double.isNaN(data[36]) || data[36 /* overnightiir */] <0.965f ?
-0.500273f :
-0.5001939f) :

-0.50042015f))) :
(data[7 /* glucosevalue_sd_24h */] <54.09911f ?

0.28478476f :
(data[6 /* glucosevalue_mean_24h */] <162.81142f ?

0.31072497f :
(data[26 /* activity_max_12h */] <23.727f ?

0.018775383f :
(data[6 /* glucosevalue_mean_24h */] <178.5711f ?

-0.5005408f :
(data[30 /* meal_g */] <44.5f ?

(data[21 /* glucosevalue_euglycemia_6h */] <30.0f ?

226



-0.5003489f :
-0.5002136f) :

(data[13 /* glucosevalue_sd_2h */] <19.566267f ?
-0.5002484f :
-0.5001605f)))))))) :

0.39697757f)));
return pred;

} // constant pool size = 107B, number of visited nodes = 25, static init size = 30B
// {00100000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {4, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_17 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_17_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_17_class_0 {
static final double score0(double[] data) {
double pred = (data[0 /* glucosevalue_mean_12h */] <113.74505f ?

(data[29 /* steps_max_12h */] <6516.5f ?
(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-37.128548f ?

0.17187291f :
-0.4377197f) :

(data[39 /* slope_at_bed */] <-0.103125f ?
0.50040054f :
0.500883f)) :

(data[5 /* glucosevalue_hyperduration_12h */] <5.1757812f ?
-0.50088394f :
(data[6 /* glucosevalue_mean_24h */] <133.38052f ?

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <11.072198f ?
0.47584075f :
-0.13083652f) :

(Double.isNaN(data[32]) || data[32 /* durationtime */] <-252.4888f ?
(data[37 /* glucose_at_bed */] <139.5f ?

-0.5007931f :
(data[7 /* glucosevalue_sd_24h */] <41.595966f ?

0.222872f :
(data[36 /* overnightiir */] <0.915f ?

-0.50043786f :
(data[35 /* iobBed */] <3.6218734f ?

-0.045792703f :
(data[11 /* glucosevalue_hyperduration_24h */] <46.53979f ?

-0.5002866f :
(data[11 /* glucosevalue_hyperduration_24h */] <63.75f ?

-0.50008976f :
-0.5001829f)))))) :

(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <43.900864f ?
(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <195.5f ?

(data[37 /* glucose_at_bed */] <107.5f ?
0.3101877f :
(data[20 /* glucosevalue_cv_6h */] <23.381826f ?

0.342494f :
(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <1.9178082f ?

-0.5001779f :
-0.5004893f))) :

0.42564583f) :
(Double.isNaN(data[36]) || data[36 /* overnightiir */] <0.95625f ?

(Double.isNaN(data[15]) || data[15 /* glucosevalue_euglycemia_2h */] <42.5f ?
-0.5004048f :
-0.5002096f) :

(data[12 /* glucosevalue_mean_2h */] <211.472f ?
-0.50021905f :
0.27759248f)))))));

return pred;
} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_18 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_18_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_18_class_0 {
static final double score0(double[] data) {
double pred = (data[30 /* meal_g */] <16.0f ?
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(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.2890625f ?
(data[21 /* glucosevalue_euglycemia_6h */] <56.054688f ?

(data[32 /* durationtime */] <-112.358986f ?
0.32659617f :
-0.500492f) :

(data[3 /* glucosevalue_euglycemia_12h */] <76.5625f ?
0.5006823f :
0.4449142f)) :

(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-65.259865f ?
(data[37 /* glucose_at_bed */] <111.0f ?

0.5005321f :
-0.50019586f) :

-0.46636355f)) :
(data[39 /* slope_at_bed */] <-1.0876954f ?

(data[26 /* activity_max_12h */] <30.111422f ?
0.5005594f :
-0.16391927f) :

(data[26 /* activity_max_12h */] <29.24712f ?
(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <59.00655f ?

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <3.6206896f ?
(data[15 /* glucosevalue_euglycemia_2h */] <50.0f ?

-0.5003994f :
(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-190.37083f ?

-0.500125f :
-0.5002122f)) :

(data[27 /* steps_max_2h */] <735.5f ?
-0.41361624f :
-0.50068325f)) :

(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <36.71875f ?
-0.50011975f :
0.33016035f)) :

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <10.994269f ?
(data[20 /* glucosevalue_cv_6h */] <23.691334f ?

(data[30 /* meal_g */] <34.5f ?
0.41280687f :
(data[18 /* glucosevalue_mean_6h */] <169.46233f ?

0.019507648f :
-0.5001569f)) :

(data[38 /* glucose_15min */] <92.5f ?
-0.50064677f :
(data[37 /* glucose_at_bed */] <116.5f ?

0.39335033f :
(Double.isNaN(data[30]) || data[30 /* meal_g */] <36.5f ?

(data[27 /* steps_max_2h */] <1500.5f ?
-0.50029784f :
-0.5001469f) :

(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <36.873104f ?
-0.5000626f :
-0.500126f))))) :

0.39902276f))));
return pred;

} // constant pool size = 102B, number of visited nodes = 25, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_19 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_19_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_19_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <102.0f ?

(data[27 /* steps_max_2h */] <417.5f ?
-0.27280065f :
(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <120.573044f ?

(Double.isNaN(data[34]) || data[34 /* durationtime_bolus */] <-150.75111f ?
0.5004074f :
(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <90.77287f ?

0.20263265f :
0.5002763f)) :

(data[1 /* glucosevalue_sd_12h */] <46.147953f ?
-0.25389126f :
0.40756106f))) :

(data[28 /* steps_max_6h */] <1943.5f ?
(data[37 /* glucose_at_bed */] <168.0f ?

-0.5004006f :
-0.5001287f) :
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(data[33 /* lastbolus */] <1.1876953f ?
(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <16.918856f ?

(data[26 /* activity_max_12h */] <20.99052f ?
0.16624887f :
0.50035447f) :

(data[19 /* glucosevalue_sd_6h */] <47.0994f ?
-0.5001918f :
-0.50005794f)) :

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <44.822983f ?
(data[1 /* glucosevalue_sd_12h */] <35.84552f ?

(data[30 /* meal_g */] <36.5f ?
-0.50029f :
-0.500107f) :

(data[12 /* glucosevalue_mean_2h */] <123.2275f ?
0.17733435f :
(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <229.5f ?

(data[6 /* glucosevalue_mean_24h */] <160.05121f ?
(data[30 /* meal_g */] <40.5f ?

-0.50023735f :
-0.5001241f) :

(Double.isNaN(data[24]) || data[24 /* activity_max_2h */] <42.5725f ?
(!Double.isNaN(data[31 /* meal_type */])
&& (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

-0.5000713f :
(data[32 /* durationtime */] <-85.4f ?

-0.5000609f :
-0.50004077f)) :

-0.50013435f)) :
(Double.isNaN(data[28]) || data[28 /* steps_max_6h */] <3973.5f ?

-0.5001229f :
0.3288608f)))) :

0.31000453f))));
return pred;

} // constant pool size = 99B, number of visited nodes = 23, static init size = 30B
// {00111000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {28, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_20 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_20_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_20_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <65.5f ?

0.4111263f :
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <0.19335938f ?

(data[21 /* glucosevalue_euglycemia_6h */] <83.39844f ?
-0.5004082f :
-0.19519041f) :

(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <34.0625f ?
(data[6 /* glucosevalue_mean_24h */] <126.41735f ?

(data[8 /* glucosevalue_cv_24h */] <16.801165f ?
-0.18278933f :
(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <10.506466f ?

(data[27 /* steps_max_2h */] <670.0f ?
0.50015885f :
0.5002071f) :

0.24329509f)) :
(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <230.0f ?

(data[19 /* glucosevalue_sd_6h */] <33.610146f ?
(data[37 /* glucose_at_bed */] <121.5f ?

-0.5002894f :
(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <72.5f ?

-0.50014246f :
0.20298213f)) :

(data[19 /* glucosevalue_sd_6h */] <36.84132f ?
0.25350875f :
(data[37 /* glucose_at_bed */] <100.5f ?

0.22005932f :
(data[0 /* glucosevalue_mean_12h */] <148.12965f ?

-0.5001401f :
(data[38 /* glucose_15min */] <138.0f ?

-0.5001271f :
(Double.isNaN(data[28]) || data[28 /* steps_max_6h */] <4473.5f ?

(data[12 /* glucosevalue_mean_2h */] <152.264f ?
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-0.500103f :
(data[14 /* glucosevalue_cv_2h */] <7.655429f ?

-0.5000591f :
-0.5000391f)) :

(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <200.5f ?
-0.50003123f :
-0.50004405f))))))) :

(data[38 /* glucose_15min */] <264.5f ?
0.3930645f :
(data[24 /* activity_max_2h */] <21.914f ?

0.175668f :
-0.50013113f)))) :

0.4296529f)));
return pred;

} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_21 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_21_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_21_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <65.5f ?

0.3179808f :
(data[38 /* glucose_15min */] <77.5f ?

(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <22.03125f ?
-0.5002594f :
0.070987366f) :

(data[37 /* glucose_at_bed */] <100.5f ?
(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.2357422f ?

0.5002034f :
(data[27 /* steps_max_2h */] <821.0f ?

-0.2828984f :
0.3505293f)) :

(data[26 /* activity_max_12h */] <17.184687f ?
-0.5002606f :
(data[33 /* lastbolus */] <1.1382812f ?

(data[14 /* glucosevalue_cv_2h */] <12.677206f ?
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.723183f ?

0.50021267f :
0.13083415f) :

(data[0 /* glucosevalue_mean_12h */] <157.60103f ?
-0.5000916f :
-0.5000468f)) :

(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

(data[0 /* glucosevalue_mean_12h */] <141.98103f ?
(data[33 /* lastbolus */] <3.84875f ?

-0.5001486f :
-0.5000468f) :

(data[29 /* steps_max_12h */] <5485.5f ?
0.3435047f :
(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <48.615917f ?

(data[6 /* glucosevalue_mean_24h */] <190.8166f ?
0.29052603f :
(!Double.isNaN(data[31 /* meal_type */]) && (GenModel.bitSetIsInRange(32, 0, data[31])
&& !GenModel.bitSetContains(GRPSPLIT1, 32, 0, data[31])) ?

-0.5000565f :
(data[32 /* durationtime */] <-48.179165f ?

(data[0 /* glucosevalue_mean_12h */] <211.38448f ?
-0.50002396f :
-0.5000181f) :

-0.50003797f))) :
(Double.isNaN(data[2]) || data[2 /* glucosevalue_cv_12h */] <37.82503f ?

(data[27 /* steps_max_2h */] <818.0f ?
-0.032995407f :
(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <159.80276f ?

-0.500087f :
-0.50004333f)) :

-0.50012815f)))) :
0.4018596f))))));

return pred;
} // constant pool size = 104B, number of visited nodes = 23, static init size = 60B
// {00100000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {4, 0, 0, 0};
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// {00011000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT1 = new byte[] {24, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_22 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_22_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_22_class_0 {
static final double score0(double[] data) {
double pred = (data[0 /* glucosevalue_mean_12h */] <113.74505f ?

(data[29 /* steps_max_12h */] <6516.5f ?
(Double.isNaN(data[39]) || data[39 /* slope_at_bed */] <-0.103125f ?

0.17343776f :
-0.5002079f) :

(data[34 /* durationtime_bolus */] <-127.59261f ?
0.5001443f :
(data[32 /* durationtime */] <-71.3776f ?

0.5000714f :
0.5001156f))) :

(data[38 /* glucose_15min */] <77.5f ?
-0.33240512f :
(data[2 /* glucosevalue_cv_12h */] <25.223671f ?

(data[7 /* glucosevalue_sd_24h */] <35.132504f ?
0.031106627f :
(data[1 /* glucosevalue_sd_12h */] <33.389736f ?

-0.50015426f :
(!Double.isNaN(data[31 /* meal_type */]) && (GenModel.bitSetIsInRange(32, 0, data[31])
&& !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

-0.5001058f :
-0.5000321f))) :

(data[37 /* glucose_at_bed */] <106.0f ?
(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <74.07327f ?

0.5001747f :
0.08432197f) :

(Double.isNaN(data[27]) || data[27 /* steps_max_2h */] <1193.5f ?
(Double.isNaN(data[38]) || data[38 /* glucose_15min */] <229.5f ?

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <9.33391f ?
(data[10 /* glucosevalue_hypoduration_24h */] <0.4666955f ?

0.24483794f :
(data[6 /* glucosevalue_mean_24h */] <171.66904f ?

(data[35 /* iobBed */] <9.812287f ?
-0.50005543f :
-0.50002974f) :

(data[28 /* steps_max_6h */] <3003.5f ?
-0.50002223f :
-0.5000151f))) :

0.3214088f) :
(data[30 /* meal_g */] <34.5f ?

0.47647592f :
0.09825668f)) :

(Double.isNaN(data[33]) || data[33 /* lastbolus */] <2.9171875f ?
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <5.813149f ?

(Double.isNaN(data[33]) || data[33 /* lastbolus */] <2.35f ?
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-103.73333f ?

-0.50003016f :
-0.50001186f) :

0.050189827f) :
-0.500086f) :

-0.5000832f))))));
return pred;

} // constant pool size = 103B, number of visited nodes = 24, static init size = 30B
// {10011000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {25, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_23 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_23_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_23_class_0 {
static final double score0(double[] data) {
double pred = (data[37 /* glucose_at_bed */] <65.5f ?

0.2432203f :
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(data[30 /* meal_g */] <16.5f ?
(data[13 /* glucosevalue_sd_2h */] <5.0741577f ?

(data[34 /* durationtime_bolus */] <-35.55078f ?
0.16064617f :
-0.32155356f) :

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <24.583225f ?
(Double.isNaN(data[36]) || data[36 /* overnightiir */] <0.9640625f ?

(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <131.44928f ?
(data[35 /* iobBed */] <2.6521332f ?

0.50004965f :
0.5000755f) :

0.5001127f) :
0.15648788f) :

(data[11 /* glucosevalue_hyperduration_24h */] <48.4375f ?
-0.5000441f :
-0.5000091f))) :

(data[38 /* glucose_15min */] <95.5f ?
(Double.isNaN(data[29]) || data[29 /* steps_max_12h */] <10553.5f ?

-0.15019262f :
-0.50015f) :

(data[37 /* glucose_at_bed */] <105.5f ?
0.4444485f :
(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <218.5f ?

(data[29 /* steps_max_12h */] <6993.5f ?
(data[19 /* glucosevalue_sd_6h */] <30.105078f ?

-0.5001452f :
(data[4 /* glucosevalue_hypoduration_12h */] <1.1034483f ?

-0.5000484f :
-0.500025f)) :

(data[18 /* glucosevalue_mean_6h */] <120.11233f ?
0.38388357f :
(Double.isNaN(data[25]) || data[25 /* activity_max_6h */] <39.0975f ?

(Double.isNaN(data[25]) || data[25 /* activity_max_6h */] <34.74277f ?
(data[30 /* meal_g */] <37.0f ?

-0.5000331f :
(data[3 /* glucosevalue_euglycemia_12h */] <48.689655f ?

-0.5000083f :
-0.5000178f)) :

0.0844022f) :
(data[27 /* steps_max_2h */] <1771.5f ?

-0.5000997f :
-0.5000238f)))) :

(data[36 /* overnightiir */] <0.984375f ?
(data[37 /* glucose_at_bed */] <249.0f ?

0.50012f :
0.19148846f) :

(data[11 /* glucosevalue_hyperduration_24h */] <49.13495f ?
-0.50004834f :
-0.50002027f)))))));

return pred;
} // constant pool size = 102B, number of visited nodes = 25, static init size = 0B

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_24 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_24_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_24_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[23]) || data[23 /* glucosevalue_hyperduration_6h */] <89.01367f ?

(data[37 /* glucose_at_bed */] <66.0f ?
0.500175f :
(data[18 /* glucosevalue_mean_6h */] <80.22916f ?

0.3179499f :
(data[38 /* glucose_15min */] <79.5f ?

(data[24 /* activity_max_2h */] <18.354765f ?
-0.500096f :
0.059064325f) :

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.642857f ?
(data[30 /* meal_g */] <16.5f ?

(data[30 /* meal_g */] <9.0f ?
(data[25 /* activity_max_6h */] <28.044584f ?

0.28559756f :
-0.5000762f) :

(data[7 /* glucosevalue_sd_24h */] <47.75769f ?
0.50006527f :
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0.068949f)) :
(data[23 /* glucosevalue_hyperduration_6h */] <8.630137f ?

(data[38 /* glucose_15min */] <112.5f ?
-0.5000742f :
-0.50002897f) :

(data[23 /* glucosevalue_hyperduration_6h */] <16.39726f ?
0.20948823f :
(data[8 /* glucosevalue_cv_24h */] <22.904896f ?

-0.5000616f :
(Double.isNaN(data[35]) || data[35 /* iobBed */] <8.755725f ?

(data[5 /* glucosevalue_hyperduration_12h */] <36.172413f ?
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-112.05f ?

-0.5000286f :
-0.50001544f) :

(data[33 /* lastbolus */] <1.775f ?
-0.50000596f :
(Double.isNaN(data[30]) || data[30 /* meal_g */] <36.0f ?

-0.50001687f :
-0.50001097f))) :

0.13385212f))))) :
(data[37 /* glucose_at_bed */] <100.5f ?

(data[35 /* iobBed */] <4.819405f ?
0.5000327f :
0.5000886f) :

(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <221.5f ?
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <18.026133f ?

(data[6 /* glucosevalue_mean_24h */] <123.39377f ?
0.50004196f :
-0.500026f) :

-0.50008214f) :
0.41154367f)))))) :

-0.5001979f);
return pred;

} // constant pool size = 98B, number of visited nodes = 24, static init size = 0B
}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_25 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_25_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_25_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <42.72461f ?

(data[37 /* glucose_at_bed */] <66.0f ?
0.50010616f :
(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <46.909264f ?

(data[2 /* glucosevalue_cv_12h */] <18.533737f ?
(Double.isNaN(data[32]) || data[32 /* durationtime */] <-79.3625f ?

0.02855975f :
0.50007975f) :

(data[38 /* glucose_15min */] <80.5f ?
-0.5000735f :
(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

(data[33 /* lastbolus */] <1.65f ?
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <12.365022f ?

(data[15 /* glucosevalue_euglycemia_2h */] <87.5f ?
0.18046528f :
0.5000456f) :

(Double.isNaN(data[32]) || data[32 /* durationtime */] <-216.635f ?
-0.5000352f :
0.30616432f)) :

(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <29.61562f ?
(data[27 /* steps_max_2h */] <598.5f ?

(data[20 /* glucosevalue_cv_6h */] <28.052368f ?
0.38048625f :
-0.50001734f) :

(data[38 /* glucose_15min */] <139.5f ?
-0.50005615f :
(data[19 /* glucosevalue_sd_6h */] <31.470278f ?

(data[27 /* steps_max_2h */] <1017.5f ?
-0.50003076f :
-0.5000161f) :

(data[26 /* activity_max_12h */] <28.003f ?
-0.5000141f :
-0.22711767f)))) :
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0.423052f)) :
0.4607132f))) :

0.50005704f)) :
(Double.isNaN(data[30]) || data[30 /* meal_g */] <52.5f ?

(data[1 /* glucosevalue_sd_12h */] <41.049263f ?
-0.5000401f :
(data[19 /* glucosevalue_sd_6h */] <34.545635f ?

0.3819203f :
(data[11 /* glucosevalue_hyperduration_24h */] <46.172146f ?

-0.5000319f :
(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <226.8942f ?

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <77.11449f ?
(data[30 /* meal_g */] <28.0f ?

-0.5000103f :
-0.5000055f) :

-0.5000029f) :
-0.50001603f)))) :

-0.50011057f));
return pred;

} // constant pool size = 107B, number of visited nodes = 25, static init size = 30B
// {00100000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {4, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_26 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_26_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_26_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <17.96875f ?

(data[38 /* glucose_15min */] <77.5f ?
-0.5000667f :
(data[37 /* glucose_at_bed */] <100.5f ?

(Double.isNaN(data[33]) || data[33 /* lastbolus */] <1.9382813f ?
0.50005573f :
-6.479969E-4f) :

(data[20 /* glucosevalue_cv_6h */] <12.123333f ?
-0.5000445f :
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <13.585295f ?

(data[30 /* meal_g */] <39.5f ?
(data[33 /* lastbolus */] <1.13f ?

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.048443f ?
0.5000322f :
0.27799582f) :

(Double.isNaN(data[37]) || data[37 /* glucose_at_bed */] <211.5f ?
(!Double.isNaN(data[31 /* meal_type */]) && (GenModel.bitSetIsInRange(32, 0, data[31])
&& !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

-0.5000201f :
-0.1762604f) :

0.34096798f)) :
(data[29 /* steps_max_12h */] <7532.5f ?

-0.50002176f :
(Double.isNaN(data[35]) || data[35 /* iobBed */] <5.2883754f ?

-0.5000027f :
-0.50000805f))) :

(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <67.701126f ?
(data[13 /* glucosevalue_sd_2h */] <24.281105f ?

0.21486251f :
(data[10 /* glucosevalue_hypoduration_24h */] <2.283737f ?

-0.5000115f :
(data[3 /* glucosevalue_euglycemia_12h */] <35.724136f ?

-0.50000393f :
-0.5000073f))) :

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <36.97244f ?
(data[14 /* glucosevalue_cv_2h */] <16.811161f ?

-0.5000168f :
(Double.isNaN(data[30]) || data[30 /* meal_g */] <22.5f ?

-0.50001293f :
-0.0687599f)) :

-0.5000326f)))))) :
(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <84.08203f ?

(data[35 /* iobBed */] <7.3915796f ?
(data[39 /* slope_at_bed */] <-0.098958336f ?

0.5000243f :
0.50006056f) :
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-0.15781838f) :
-0.1406575f));

return pred;
} // constant pool size = 99B, number of visited nodes = 23, static init size = 30B
// {00111000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {28, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_27 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_27_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_27_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <17.96875f ?

(data[38 /* glucose_15min */] <77.5f ?
-0.5000404f :
(data[37 /* glucose_at_bed */] <76.5f ?

0.39260137f :
(data[13 /* glucosevalue_sd_2h */] <5.062178f ?

-0.50003016f :
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.8659167f ?

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <1.875f ?
(data[30 /* meal_g */] <19.5f ?

(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <38.23486f ?
0.46223572f :
-0.5000058f) :

(Double.isNaN(data[24]) || data[24 /* activity_max_2h */] <29.306f ?
(Double.isNaN(data[29]) || data[29 /* steps_max_12h */] <11285.5f ?

(data[7 /* glucosevalue_sd_24h */] <42.50865f ?
-0.5000183f :
(Double.isNaN(data[28]) || data[28 /* steps_max_6h */] <3567.5f ?

-0.50000834f :
-0.50000376f)) :

0.042911448f) :
(!Double.isNaN(data[31 /* meal_type */]) && (GenModel.bitSetIsInRange(32, 0, data[31])
&& !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

-0.5000051f :
0.4041722f))) :

(data[37 /* glucose_at_bed */] <110.5f ?
-0.5000286f :
(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <176.51765f ?

(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <145.56793f ?
-0.5000068f :
-0.5000125f) :

(data[30 /* meal_g */] <36.0f ?
-0.5000041f :
-0.5000019f)))) :

(Double.isNaN(data[4]) || data[4 /* glucosevalue_hypoduration_12h */] <9.6875f ?
(data[22 /* glucosevalue_hypoduration_6h */] <2.7739725f ?

0.28707802f :
0.46854356f) :

(data[27 /* steps_max_2h */] <699.0f ?
0.22613588f :
-0.5000191f)))))) :

(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <81.93359f ?
(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <162.19724f ?

(data[34 /* durationtime_bolus */] <-139.56302f ?
0.50003767f :
0.5000151f) :

-0.17547119f) :
-0.18121824f));

return pred;
} // constant pool size = 99B, number of visited nodes = 23, static init size = 30B
// {11110000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {15, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_28 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_28_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_28_class_0 {
static final double score0(double[] data) {
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double pred = (Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <42.72461f ?
(data[37 /* glucose_at_bed */] <66.0f ?

0.500024f :
(data[3 /* glucosevalue_euglycemia_12h */] <53.515625f ?

0.4713258f :
(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <46.909264f ?

(data[2 /* glucosevalue_cv_12h */] <18.533737f ?
(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <16.984798f ?

-0.04051298f :
0.5000211f) :

(data[38 /* glucose_15min */] <83.5f ?
-0.5000235f :
(data[37 /* glucose_at_bed */] <108.5f ?

(data[8 /* glucosevalue_cv_24h */] <26.75983f ?
-0.22898614f :
0.50001806f) :

(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <81.55709f ?
(data[35 /* iobBed */] <3.8463848f ?

(data[22 /* glucosevalue_hypoduration_6h */] <3.4246576f ?
0.40595567f :
-0.33621907f) :

(data[20 /* glucosevalue_cv_6h */] <22.740105f ?
(data[28 /* steps_max_6h */] <3429.5f ?

-0.50001585f :
-0.50000596f) :

(data[9 /* glucosevalue_euglycemia_24h */] <58.78893f ?
-0.18944043f :
(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <46.786995f ?

-0.5000065f :
-0.5000032f)))) :

(Double.isNaN(data[31 /* meal_type */]) || !GenModel.bitSetIsInRange(32, 0, data[31])
|| (GenModel.bitSetIsInRange(32, 0, data[31]) && !GenModel.bitSetContains(GRPSPLIT0, 32, 0, data[31])) ?

-0.2593573f :
0.5000149f))))) :

0.5000139f))) :
(data[37 /* glucose_at_bed */] <110.0f ?

-0.5000293f :
(data[1 /* glucosevalue_sd_12h */] <41.049263f ?

-0.5000102f :
(data[7 /* glucosevalue_sd_24h */] <53.25983f ?

0.27649784f :
(data[11 /* glucosevalue_hyperduration_24h */] <48.194202f ?

-0.50000805f :
(data[1 /* glucosevalue_sd_12h */] <59.831177f ?

-0.5000052f :
(data[20 /* glucosevalue_cv_6h */] <25.93867f ?

-0.5000026f :
(data[1 /* glucosevalue_sd_12h */] <78.011375f ?

-0.5000014f :
-0.50000066f))))))));

return pred;
} // constant pool size = 103B, number of visited nodes = 24, static init size = 30B
// {10111000 00000000 00000000 00000000}
public static final byte[] GRPSPLIT0 = new byte[] {29, 0, 0, 0};

}

class GBM_grid_0_AutoML_20180903_125524_model_6_Forest_29 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += GBM_grid_0_AutoML_20180903_125524_model_6_Tree_29_class_0.score0(fdata);

}
}
class GBM_grid_0_AutoML_20180903_125524_model_6_Tree_29_class_0 {
static final double score0(double[] data) {
double pred = (data[26 /* activity_max_12h */] <15.480027f ?

0.35618952f :
(data[20 /* glucosevalue_cv_6h */] <11.512289f ?

(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <8.909869f ?
-0.091129825f :
-0.5000198f) :

(data[19 /* glucosevalue_sd_6h */] <17.288477f ?
0.5000112f :
(data[18 /* glucosevalue_mean_6h */] <98.16781f ?

-0.37089744f :
(data[18 /* glucosevalue_mean_6h */] <105.80982f ?

0.49520588f :
(data[6 /* glucosevalue_mean_24h */] <116.73014f ?

0.5000081f :
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(Double.isNaN(data[32]) || data[32 /* durationtime */] <-239.0f ?
(data[37 /* glucose_at_bed */] <100.5f ?

-0.5000147f :
(data[23 /* glucosevalue_hyperduration_6h */] <34.52055f ?

(data[2 /* glucosevalue_cv_12h */] <25.575167f ?
-0.5000085f :
(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <40.07081f ?

(data[26 /* activity_max_12h */] <29.69875f ?
-0.50000286f :
-0.50000143f) :

-0.50000477f)) :
(data[19 /* glucosevalue_sd_6h */] <42.939747f ?

0.24208917f :
(data[6 /* glucosevalue_mean_24h */] <195.96211f ?

-0.5000043f :
-0.5000019f)))) :

(Double.isNaN(data[32]) || data[32 /* durationtime */] <-39.545f ?
(data[37 /* glucose_at_bed */] <100.5f ?

0.35308588f :
(data[30 /* meal_g */] <33.5f ?

(data[39 /* slope_at_bed */] <-0.64666665f ?
-0.5000059f :
(data[13 /* glucosevalue_sd_2h */] <26.948784f ?

0.45413077f :
-0.106991306f)) :

(Double.isNaN(data[23]) || data[23 /* glucosevalue_hyperduration_6h */] <62.671234f ?
(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <2.7739725f ?

(data[37 /* glucose_at_bed */] <147.5f ?
-0.50000215f :
-0.5000029f) :

-0.5000052f) :
0.14990143f))) :

-0.5000073f))))))));
return pred;

} // constant pool size = 94B, number of visited nodes = 23, static init size = 0B
}
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7.6.2 Random Forest Model

import java.util.Map;
import hex.genmodel.GenModel;
import hex.genmodel.annotations.ModelPojo;

@ModelPojo(name="rf_covType2", algorithm="drf")
public class rf_covType2 extends GenModel {
public hex.ModelCategory getModelCategory() { return hex.ModelCategory.Binomial; }

public boolean isSupervised() { return true; }
public int nfeatures() { return 27; }
public int nclasses() { return 2; }

// Names of columns used by model.
public static final String[] NAMES = NamesHolder_rf_covType2.VALUES;
// Number of output classes included in training data response column.
public static final int NCLASSES = 2;

// Column domains. The last array contains domain of response column.
public static final String[][] DOMAINS = new String[][] {
/* glucosevalue_mean_12h */ null,
/* glucosevalue_sd_12h */ null,
/* glucosevalue_cv_12h */ null,
/* glucosevalue_euglycemia_12h */ null,
/* glucosevalue_hypoduration_12h */ null,
/* glucosevalue_hyperduration_12h */ null,
/* glucosevalue_mean_24h */ null,
/* glucosevalue_sd_24h */ null,
/* glucosevalue_cv_24h */ null,
/* glucosevalue_euglycemia_24h */ null,
/* glucosevalue_hypoduration_24h */ null,
/* glucosevalue_hyperduration_24h */ null,
/* glucosevalue_mean_2h */ null,
/* glucosevalue_sd_2h */ null,
/* glucosevalue_cv_2h */ null,
/* glucosevalue_euglycemia_2h */ null,
/* glucosevalue_hypoduration_2h */ null,
/* glucosevalue_hyperduration_2h */ null,
/* glucosevalue_mean_6h */ null,
/* glucosevalue_sd_6h */ null,
/* glucosevalue_cv_6h */ null,
/* glucosevalue_euglycemia_6h */ null,
/* glucosevalue_hypoduration_6h */ null,
/* glucosevalue_hyperduration_6h */ null,
/* glucose_at_bed */ null,
/* glucose_15min */ null,
/* slope_at_bed */ null,
/* hypoglycemiayn */ rf_covType2_ColInfo_27.VALUES

};
// Prior class distribution
public static final double[] PRIOR_CLASS_DISTRIB = {0.6987179487179487,0.30128205128205127};
// Class distribution used for model building
public static final double[] MODEL_CLASS_DISTRIB = {0.6987179487179487,0.30128205128205127};

public rf_covType2() { super(NAMES,DOMAINS,"hypoglycemiayn"); }
public String getUUID() { return Long.toString(8136500264882979517L); }

// Pass in data in a double[], pre-aligned to the Model's requirements.
// Jam predictions into the preds[] array; preds[0] is reserved for the
// main prediction (class for classifiers or value for regression),
// and remaining columns hold a probability distribution for classifiers.
public final double[] score0( double[] data, double[] preds ) {
java.util.Arrays.fill(preds,0);
rf_covType2_Forest_0.score0(data,preds);
rf_covType2_Forest_1.score0(data,preds);
rf_covType2_Forest_2.score0(data,preds);
rf_covType2_Forest_3.score0(data,preds);
rf_covType2_Forest_4.score0(data,preds);
rf_covType2_Forest_5.score0(data,preds);
rf_covType2_Forest_6.score0(data,preds);
rf_covType2_Forest_7.score0(data,preds);
rf_covType2_Forest_8.score0(data,preds);
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preds[1] /= 9;
preds[2] = 1.0 - preds[1];
preds[0] = hex.genmodel.GenModel.getPrediction(preds, PRIOR_CLASS_DISTRIB, data, 0.4444444444444444);
return preds;

}
}
// The class representing training column names
class NamesHolder_rf_covType2 implements java.io.Serializable {
public static final String[] VALUES = new String[27];
static {
NamesHolder_rf_covType2_0.fill(VALUES);

}
static final class NamesHolder_rf_covType2_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "glucosevalue_mean_12h";
sa[1] = "glucosevalue_sd_12h";
sa[2] = "glucosevalue_cv_12h";
sa[3] = "glucosevalue_euglycemia_12h";
sa[4] = "glucosevalue_hypoduration_12h";
sa[5] = "glucosevalue_hyperduration_12h";
sa[6] = "glucosevalue_mean_24h";
sa[7] = "glucosevalue_sd_24h";
sa[8] = "glucosevalue_cv_24h";
sa[9] = "glucosevalue_euglycemia_24h";
sa[10] = "glucosevalue_hypoduration_24h";
sa[11] = "glucosevalue_hyperduration_24h";
sa[12] = "glucosevalue_mean_2h";
sa[13] = "glucosevalue_sd_2h";
sa[14] = "glucosevalue_cv_2h";
sa[15] = "glucosevalue_euglycemia_2h";
sa[16] = "glucosevalue_hypoduration_2h";
sa[17] = "glucosevalue_hyperduration_2h";
sa[18] = "glucosevalue_mean_6h";
sa[19] = "glucosevalue_sd_6h";
sa[20] = "glucosevalue_cv_6h";
sa[21] = "glucosevalue_euglycemia_6h";
sa[22] = "glucosevalue_hypoduration_6h";
sa[23] = "glucosevalue_hyperduration_6h";
sa[24] = "glucose_at_bed";
sa[25] = "glucose_15min";
sa[26] = "slope_at_bed";

}
}

}
// The class representing column hypoglycemiayn
class rf_covType2_ColInfo_27 implements java.io.Serializable {
public static final String[] VALUES = new String[2];
static {
rf_covType2_ColInfo_27_0.fill(VALUES);

}
static final class rf_covType2_ColInfo_27_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "0";
sa[1] = "1";

}
}

}

class rf_covType2_Forest_0 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_0_class_0.score0(fdata);

}
}
class rf_covType2_Tree_0_class_0 {
static final double score0(double[] data) {
double pred = (data[24 /* glucose_at_bed */] <102.0f ?

(data[5 /* glucosevalue_hyperduration_12h */] <4.1015625f ?
(data[13 /* glucosevalue_sd_2h */] <4.7859807f ?

(data[26 /* slope_at_bed */] <-0.025520833f ?
0.0f :
(data[1 /* glucosevalue_sd_12h */] <11.957706f ?

0.0f :
1.0f)) :

0.0f) :
(data[25 /* glucose_15min */] <71.5f ?

1.0f :
(data[9 /* glucosevalue_euglycemia_24h */] <37.890625f ?

1.0f :
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(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <76.98276f ?
0.0f :
(data[3 /* glucosevalue_euglycemia_12h */] <80.280174f ?

1.0f :
0.0f))))) :

(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <47.93317f ?
(data[6 /* glucosevalue_mean_24h */] <135.54955f ?

(data[19 /* glucosevalue_sd_6h */] <24.293444f ?
(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <99.11099f ?

0.0f :
1.0f) :

(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <131.1784f ?
1.0f :
0.0f)) :

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <7.686797f ?
(data[0 /* glucosevalue_mean_12h */] <155.98965f ?

1.0f :
(data[11 /* glucosevalue_hyperduration_24h */] <17.1875f ?

0.0f :
(data[19 /* glucosevalue_sd_6h */] <34.925198f ?

(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <27.913588f ?
1.0f :
(data[24 /* glucose_at_bed */] <245.0f ?

0.0f :
1.0f)) :

1.0f))) :
(data[5 /* glucosevalue_hyperduration_12h */] <43.782326f ?

0.0f :
1.0f))) :

0.0f));
return pred;

} // constant pool size = 86B, number of visited nodes = 21, static init size = 0B
}

class rf_covType2_Forest_1 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_1_class_0.score0(fdata);

}
}
class rf_covType2_Tree_1_class_0 {
static final double score0(double[] data) {
double pred = (data[12 /* glucosevalue_mean_2h */] <109.666565f ?

(data[0 /* glucosevalue_mean_12h */] <114.34782f ?
(data[8 /* glucosevalue_cv_24h */] <16.680094f ?

(Double.isNaN(data[2]) || data[2 /* glucosevalue_cv_12h */] <17.869484f ?
0.0f :
1.0f) :

0.0f) :
(data[2 /* glucosevalue_cv_12h */] <28.38684f ?

1.0f :
(data[15 /* glucosevalue_euglycemia_2h */] <64.0625f ?

1.0f :
0.0f))) :

(data[0 /* glucosevalue_mean_12h */] <160.56003f ?
(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <58.536533f ?

(data[24 /* glucose_at_bed */] <100.5f ?
(data[26 /* slope_at_bed */] <-0.7375f ?

0.0f :
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <23.706896f ?

1.0f :
0.0f)) :

(data[14 /* glucosevalue_cv_2h */] <13.611138f ?
(data[6 /* glucosevalue_mean_24h */] <114.24109f ?

0.0f :
(Double.isNaN(data[25]) || data[25 /* glucose_15min */] <225.5f ?

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <40.5938f ?
(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <34.139248f ?

(data[3 /* glucosevalue_euglycemia_12h */] <83.74138f ?
(data[12 /* glucosevalue_mean_2h */] <130.364f ?

0.0f :
1.0f) :

1.0f) :
0.0f) :

1.0f) :
0.0f)) :

1.0f)) :
0.0f) :
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(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <89.0625f ?
(data[19 /* glucosevalue_sd_6h */] <34.80089f ?

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <53.872135f ?
(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <49.4957f ?

1.0f :
0.0f) :

1.0f) :
1.0f) :

0.0f)));
return pred;

} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B
}

class rf_covType2_Forest_2 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_2_class_0.score0(fdata);

}
}
class rf_covType2_Tree_2_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <40.283203f ?

(data[26 /* slope_at_bed */] <-1.267448f ?
0.0f :
(data[12 /* glucosevalue_mean_2h */] <87.388985f ?

(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <33.518837f ?
(data[12 /* glucosevalue_mean_2h */] <75.69926f ?

(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <111.936745f ?
(data[13 /* glucosevalue_sd_2h */] <2.9456162f ?

0.0f :
1.0f) :

0.0f) :
0.0f) :

(data[20 /* glucosevalue_cv_6h */] <8.843141f ?
0.0f :
(Double.isNaN(data[26]) || data[26 /* slope_at_bed */] <1.4385417f ?

1.0f :
0.0f))) :

(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <54.04567f ?
(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <4.5793686f ?

(data[8 /* glucosevalue_cv_24h */] <20.973873f ?
(data[25 /* glucose_15min */] <118.0f ?

1.0f :
0.0f) :

(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <86.84931f ?
1.0f :
(data[14 /* glucosevalue_cv_2h */] <8.825355f ?

(Double.isNaN(data[7]) || data[7 /* glucosevalue_sd_24h */] <55.903435f ?
0.0f :
1.0f) :

(Double.isNaN(data[11]) || data[11 /* glucosevalue_hyperduration_24h */] <51.45329f ?
1.0f :
0.0f)))) :

(Double.isNaN(data[24]) || data[24 /* glucose_at_bed */] <209.0f ?
(data[12 /* glucosevalue_mean_2h */] <108.538086f ?

0.0f :
(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <21.191038f ?

1.0f :
(data[9 /* glucosevalue_euglycemia_24h */] <65.0f ?

0.0f :
1.0f))) :

0.0f)) :
0.0f))) :

(data[0 /* glucosevalue_mean_12h */] <186.67998f ?
(data[7 /* glucosevalue_sd_24h */] <39.223354f ?

(data[24 /* glucose_at_bed */] <141.5f ?
1.0f :
0.0f) :

1.0f) :
1.0f));

return pred;
} // constant pool size = 98B, number of visited nodes = 24, static init size = 0B

}

class rf_covType2_Forest_3 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_3_class_0.score0(fdata);
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}
}
class rf_covType2_Tree_3_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <17.96875f ?

(data[24 /* glucose_at_bed */] <146.0f ?
(data[6 /* glucosevalue_mean_24h */] <112.54994f ?

(data[6 /* glucosevalue_mean_24h */] <77.45204f ?
1.0f :
0.0f) :

(data[1 /* glucosevalue_sd_12h */] <37.551792f ?
1.0f :
(data[23 /* glucosevalue_hyperduration_6h */] <12.5f ?

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <81.25f ?
(data[9 /* glucosevalue_euglycemia_24h */] <56.47059f ?

0.0f :
1.0f) :

0.0f) :
(data[6 /* glucosevalue_mean_24h */] <136.88281f ?

0.0f :
(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <14.79452f ?

(data[14 /* glucosevalue_cv_2h */] <5.295242f ?
(data[12 /* glucosevalue_mean_2h */] <215.09f ?

0.0f :
1.0f) :

1.0f) :
0.0f))))) :

(data[19 /* glucosevalue_sd_6h */] <35.092766f ?
(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <28.84006f ?

1.0f :
(data[26 /* slope_at_bed */] <-0.025520833f ?

0.0f :
(data[13 /* glucosevalue_sd_2h */] <23.16093f ?

0.0f :
1.0f))) :

(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <56.8229f ?
1.0f :
0.0f))) :

(Double.isNaN(data[11]) || data[11 /* glucosevalue_hyperduration_24h */] <44.140625f ?
(data[16 /* glucosevalue_hypoduration_2h */] <25.9375f ?

0.0f :
(data[22 /* glucosevalue_hypoduration_6h */] <11.943493f ?

1.0f :
(Double.isNaN(data[2]) || data[2 /* glucosevalue_cv_12h */] <35.804344f ?

(data[26 /* slope_at_bed */] <-0.0875f ?
0.0f :
1.0f) :

0.0f))) :
1.0f));

return pred;
} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B

}

class rf_covType2_Forest_4 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_4_class_0.score0(fdata);

}
}
class rf_covType2_Tree_4_class_0 {
static final double score0(double[] data) {
double pred = (data[19 /* glucosevalue_sd_6h */] <24.804222f ?

(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <163.11523f ?
(Double.isNaN(data[26]) || data[26 /* slope_at_bed */] <-0.025520833f ?

(data[8 /* glucosevalue_cv_24h */] <14.156527f ?
(data[6 /* glucosevalue_mean_24h */] <96.86535f ?

0.0f :
1.0f) :

0.0f) :
(Double.isNaN(data[25]) || data[25 /* glucose_15min */] <114.5f ?

(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <123.188416f ?
1.0f :
0.0f) :

0.0f)) :
1.0f) :

(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <2.0507812f ?
(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <70.703125f ?

(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <27.620132f ?
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(data[20 /* glucosevalue_cv_6h */] <20.053566f ?
(Double.isNaN(data[23]) || data[23 /* glucosevalue_hyperduration_6h */] <82.8125f ?

(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <15.198825f ?
(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <172.05675f ?

(data[12 /* glucosevalue_mean_2h */] <164.616f ?
0.0f :
1.0f) :

0.0f) :
1.0f) :

1.0f) :
1.0f) :

(data[3 /* glucosevalue_euglycemia_12h */] <52.784256f ?
1.0f :
0.0f)) :

(data[12 /* glucosevalue_mean_2h */] <147.05782f ?
(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <93.75f ?

1.0f :
(data[9 /* glucosevalue_euglycemia_24h */] <73.4375f ?

0.0f :
1.0f)) :

(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <20.3125f ?
(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <33.13635f ?

(Double.isNaN(data[12]) || data[12 /* glucosevalue_mean_2h */] <158.88f ?
(Double.isNaN(data[12]) || data[12 /* glucosevalue_mean_2h */] <154.005f ?

0.5f :
0.0f) :

1.0f) :
0.0f) :

0.0f))) :
(data[1 /* glucosevalue_sd_12h */] <42.24404f ?

1.0f :
(Double.isNaN(data[0]) || data[0 /* glucosevalue_mean_12h */] <171.40987f ?

0.0f :
1.0f))));

return pred;
} // constant pool size = 102B, number of visited nodes = 25, static init size = 0B

}

class rf_covType2_Forest_5 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_5_class_0.score0(fdata);

}
}
class rf_covType2_Tree_5_class_0 {
static final double score0(double[] data) {
double pred = (data[0 /* glucosevalue_mean_12h */] <113.74505f ?

(data[18 /* glucosevalue_mean_6h */] <83.70256f ?
(data[1 /* glucosevalue_sd_12h */] <16.223387f ?

0.0f :
(data[10 /* glucosevalue_hypoduration_24h */] <16.02779f ?

1.0f :
(data[13 /* glucosevalue_sd_2h */] <12.521653f ?

1.0f :
0.0f))) :

0.0f) :
(data[24 /* glucose_at_bed */] <109.0f ?

(data[14 /* glucosevalue_cv_2h */] <17.463612f ?
(data[19 /* glucosevalue_sd_6h */] <23.105293f ?

0.0f :
1.0f) :

(data[1 /* glucosevalue_sd_12h */] <45.656586f ?
(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <41.542072f ?

0.0f :
1.0f) :

0.0f)) :
(data[12 /* glucosevalue_mean_2h */] <102.91578f ?

(Double.isNaN(data[6]) || data[6 /* glucosevalue_mean_24h */] <167.00487f ?
0.0f :
1.0f) :

(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <82.03125f ?
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <64.0625f ?

(data[19 /* glucosevalue_sd_6h */] <34.30703f ?
(data[3 /* glucosevalue_euglycemia_12h */] <45.0f ?

0.0f :
(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <67.32758f ?

(data[11 /* glucosevalue_hyperduration_24h */] <25.916956f ?
0.0f :
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1.0f) :
1.0f)) :

(Double.isNaN(data[14]) || data[14 /* glucosevalue_cv_2h */] <41.81591f ?
1.0f :
(data[14 /* glucosevalue_cv_2h */] <55.89962f ?

0.0f :
1.0f))) :

1.0f) :
(Double.isNaN(data[13]) || data[13 /* glucosevalue_sd_2h */] <15.17529f ?

(data[1 /* glucosevalue_sd_12h */] <35.305485f ?
1.0f :
0.0f) :

1.0f)))));
return pred;

} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B
}

class rf_covType2_Forest_6 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_6_class_0.score0(fdata);

}
}
class rf_covType2_Tree_6_class_0 {
static final double score0(double[] data) {
double pred = (data[0 /* glucosevalue_mean_12h */] <113.74505f ?

(data[14 /* glucosevalue_cv_2h */] <4.622035f ?
(data[18 /* glucosevalue_mean_6h */] <64.87045f ?

0.0f :
1.0f) :

(Double.isNaN(data[24]) || data[24 /* glucose_at_bed */] <295.5f ?
(Double.isNaN(data[25]) || data[25 /* glucose_15min */] <127.5f ?

0.0f :
(data[25 /* glucose_15min */] <134.5f ?

1.0f :
0.0f)) :

1.0f)) :
(data[25 /* glucose_15min */] <131.5f ?

(Double.isNaN(data[3]) || data[3 /* glucosevalue_euglycemia_12h */] <84.765625f ?
(Double.isNaN(data[23]) || data[23 /* glucosevalue_hyperduration_6h */] <39.511986f ?

(Double.isNaN(data[26]) || data[26 /* slope_at_bed */] <0.10520833f ?
(data[20 /* glucosevalue_cv_6h */] <28.797375f ?

(Double.isNaN(data[19]) || data[19 /* glucosevalue_sd_6h */] <25.694437f ?
(data[25 /* glucose_15min */] <84.0f ?

(data[11 /* glucosevalue_hyperduration_24h */] <26.314878f ?
0.0f :
1.0f) :

0.0f) :
1.0f) :

0.0f) :
(data[8 /* glucosevalue_cv_24h */] <20.378706f ?

0.0f :
(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <85.0f ?

1.0f :
0.0f))) :

1.0f) :
1.0f) :

(data[3 /* glucosevalue_euglycemia_12h */] <36.328125f ?
1.0f :
(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <55.078125f ?

(Double.isNaN(data[16]) || data[16 /* glucosevalue_hypoduration_2h */] <11.71875f ?
(data[20 /* glucosevalue_cv_6h */] <13.647609f ?

(data[8 /* glucosevalue_cv_24h */] <27.845322f ?
1.0f :
0.0f) :

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <103.79689f ?
(Double.isNaN(data[17]) || data[17 /* glucosevalue_hyperduration_2h */] <60.5f ?

1.0f :
(Double.isNaN(data[21]) || data[21 /* glucosevalue_euglycemia_6h */] <70.0f ?

1.0f :
0.0f)) :

(data[24 /* glucose_at_bed */] <247.0f ?
1.0f :
0.0f))) :

0.0f) :
(data[24 /* glucose_at_bed */] <160.5f ?

1.0f :
0.0f)))));
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return pred;
} // constant pool size = 106B, number of visited nodes = 26, static init size = 0B

}

class rf_covType2_Forest_7 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_7_class_0.score0(fdata);

}
}
class rf_covType2_Tree_7_class_0 {
static final double score0(double[] data) {
double pred = (Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <40.283203f ?

(data[19 /* glucosevalue_sd_6h */] <16.996605f ?
(data[20 /* glucosevalue_cv_6h */] <11.378832f ?

(data[14 /* glucosevalue_cv_2h */] <3.337877f ?
0.0f :
(data[25 /* glucose_15min */] <81.5f ?

1.0f :
(data[12 /* glucosevalue_mean_2h */] <97.055f ?

0.0f :
1.0f))) :

0.0f) :
(Double.isNaN(data[8]) || data[8 /* glucosevalue_cv_24h */] <44.711872f ?

(data[14 /* glucosevalue_cv_2h */] <5.205743f ?
(Double.isNaN(data[24]) || data[24 /* glucose_at_bed */] <185.5f ?

0.0f :
1.0f) :

(data[26 /* slope_at_bed */] <-1.3166667f ?
(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <34.139248f ?

0.0f :
1.0f) :

(Double.isNaN(data[5]) || data[5 /* glucosevalue_hyperduration_12h */] <24.89224f ?
(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <5.7534246f ?

1.0f :
(data[9 /* glucosevalue_euglycemia_24h */] <84.34256f ?

(data[20 /* glucosevalue_cv_6h */] <25.452454f ?
0.0f :
1.0f) :

1.0f)) :
(data[25 /* glucose_15min */] <100.5f ?

(data[20 /* glucosevalue_cv_6h */] <23.053308f ?
1.0f :
0.0f) :

(data[1 /* glucosevalue_sd_12h */] <37.7562f ?
0.0f :
1.0f))))) :

(data[10 /* glucosevalue_hypoduration_24h */] <3.2709775f ?
1.0f :
0.0f))) :

(Double.isNaN(data[9]) || data[9 /* glucosevalue_euglycemia_24h */] <53.808594f ?
1.0f :
(data[2 /* glucosevalue_cv_12h */] <30.711731f ?

(Double.isNaN(data[23]) || data[23 /* glucosevalue_hyperduration_6h */] <58.984375f ?
1.0f :
0.0f) :

1.0f)));
return pred;

} // constant pool size = 90B, number of visited nodes = 22, static init size = 0B
}

class rf_covType2_Forest_8 {
public static void score0(double[] fdata, double[] preds) {
preds[1] += rf_covType2_Tree_8_class_0.score0(fdata);

}
}
class rf_covType2_Tree_8_class_0 {
static final double score0(double[] data) {
double pred = (data[23 /* glucosevalue_hyperduration_6h */] <0.7324219f ?

(data[10 /* glucosevalue_hypoduration_24h */] <2.248797f ?
1.0f :
(Double.isNaN(data[22]) || data[22 /* glucosevalue_hypoduration_6h */] <17.78949f ?

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <34.130287f ?
0.0f :
1.0f) :

(data[4 /* glucosevalue_hypoduration_12h */] <13.510237f ?
1.0f :
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(Double.isNaN(data[25]) || data[25 /* glucose_15min */] <127.5f ?
(Double.isNaN(data[12]) || data[12 /* glucosevalue_mean_2h */] <74.5625f ?

0.0f :
1.0f) :

1.0f)))) :
(data[18 /* glucosevalue_mean_6h */] <168.03767f ?

(Double.isNaN(data[10]) || data[10 /* glucosevalue_hypoduration_24h */] <14.55585f ?
(data[13 /* glucosevalue_sd_2h */] <7.733978f ?

0.0f :
(data[24 /* glucose_at_bed */] <102.0f ?

(data[0 /* glucosevalue_mean_12h */] <124.7958f ?
1.0f :
0.0f) :

(data[6 /* glucosevalue_mean_24h */] <108.82942f ?
0.0f :
(Double.isNaN(data[18]) || data[18 /* glucosevalue_mean_6h */] <159.77911f ?

1.0f :
(data[19 /* glucosevalue_sd_6h */] <39.46657f ?

0.0f :
1.0f))))) :

0.0f) :
(data[8 /* glucosevalue_cv_24h */] <21.71203f ?

(Double.isNaN(data[1]) || data[1 /* glucosevalue_sd_12h */] <43.950314f ?
1.0f :
0.0f) :

(data[20 /* glucosevalue_cv_6h */] <15.249098f ?
(Double.isNaN(data[20]) || data[20 /* glucosevalue_cv_6h */] <14.807876f ?

1.0f :
0.0f) :

1.0f))));
return pred;

} // constant pool size = 78B, number of visited nodes = 19, static init size = 0B
}
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7.6.3 Logistic Model

import java.util.Map;
import hex.genmodel.GenModel;
import hex.genmodel.annotations.ModelPojo;

@ModelPojo(name="GLM_model_R_1535384470614_26844", algorithm="glm")
public class GLM_model_R_1535384470614_26844 extends GenModel {
public hex.ModelCategory getModelCategory() { return hex.ModelCategory.Binomial; }

public boolean isSupervised() { return true; }
public int nfeatures() { return 27; }
public int nclasses() { return 2; }

// Names of columns used by model.
public static final String[] NAMES = NamesHolder_GLM_model_R_1535384470614_26844.VALUES;
// Number of output classes included in training data response column.
public static final int NCLASSES = 2;

// Column domains. The last array contains domain of response column.
public static final String[][] DOMAINS = new String[][] {
/* glucosevalue_mean_12h */ null,
/* glucosevalue_sd_12h */ null,
/* glucosevalue_cv_12h */ null,
/* glucosevalue_euglycemia_12h */ null,
/* glucosevalue_hypoduration_12h */ null,
/* glucosevalue_hyperduration_12h */ null,
/* glucosevalue_mean_24h */ null,
/* glucosevalue_sd_24h */ null,
/* glucosevalue_cv_24h */ null,
/* glucosevalue_euglycemia_24h */ null,
/* glucosevalue_hypoduration_24h */ null,
/* glucosevalue_hyperduration_24h */ null,
/* glucosevalue_mean_2h */ null,
/* glucosevalue_sd_2h */ null,
/* glucosevalue_cv_2h */ null,
/* glucosevalue_euglycemia_2h */ null,
/* glucosevalue_hypoduration_2h */ null,
/* glucosevalue_hyperduration_2h */ null,
/* glucosevalue_mean_6h */ null,
/* glucosevalue_sd_6h */ null,
/* glucosevalue_cv_6h */ null,
/* glucosevalue_euglycemia_6h */ null,
/* glucosevalue_hypoduration_6h */ null,
/* glucosevalue_hyperduration_6h */ null,
/* glucose_at_bed */ null,
/* glucose_15min */ null,
/* slope_at_bed */ null,
/* hypoglycemiayn */ GLM_model_R_1535384470614_26844_ColInfo_27.VALUES

};
// Prior class distribution
public static final double[] PRIOR_CLASS_DISTRIB = null;
// Class distribution used for model building
public static final double[] MODEL_CLASS_DISTRIB = null;

public GLM_model_R_1535384470614_26844() { super(NAMES,DOMAINS,"hypoglycemiayn"); }
public String getUUID() { return Long.toString(8410346840176237949L); }

// Pass in data in a double[], pre-aligned to the Model's requirements.
// Jam predictions into the preds[] array; preds[0] is reserved for the
// main prediction (class for classifiers or value for regression),
// and remaining columns hold a probability distribution for classifiers.
public final double[] score0( double[] data, double[] preds ) {
final double [] b = BETA.VALUES;
for(int i = 0; i < 0; ++i) if(Double.isNaN(data[i])) data[i] = CAT_MODES.VALUES[i];
for(int i = 0; i < 27; ++i) if(Double.isNaN(data[i + 0])) data[i+0] = NUM_MEANS.VALUES[i];
double eta = 0.0;
for(int i = 0; i < CATOFFS.length-1; ++i) if(data[i] != 0) {
int ival = (int)data[i] - 1;
if(ival != data[i] - 1) throw new IllegalArgumentException("categorical value out of range");
ival += CATOFFS[i];
if(ival < CATOFFS[i + 1])
eta += b[ival];
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}
for(int i = 0; i < b.length-1-0; ++i)
eta += b[0+i]*data[i];
eta += b[b.length-1]; // reduce intercept
double mu = hex.genmodel.GenModel.GLM_logitInv(eta);
preds[0] = (mu >= 0.052591955044923075) ? 1 : 0; // threshold given by ROC
preds[1] = 1.0 - mu; // class 0
preds[2] = mu; // class 1
return preds;

}
public static class BETA implements java.io.Serializable {
public static final double[] VALUES = new double[28];
static {
BETA_0.fill(VALUES);

}
static final class BETA_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = -0.013707173131013849;
sa[1] = -0.03798041080396817;
sa[2] = 0.13794737336523416;
sa[3] = -0.009491023547385008;
sa[4] = -0.16988214245841735;
sa[5] = 0.0;
sa[6] = -0.03172014134222759;
sa[7] = -0.014302257168059773;
sa[8] = 0.020597557831554154;
sa[9] = -0.03447810954346673;
sa[10] = 0.05356434938373296;
sa[11] = 0.0;
sa[12] = -3.4611092284985405E-4;
sa[13] = 0.024571748213283517;
sa[14] = -0.03423947636608629;
sa[15] = 0.010393352783109025;
sa[16] = 0.048970806900177355;
sa[17] = 0.0;
sa[18] = -0.008744644096987601;
sa[19] = 0.033987459448643766;
sa[20] = -0.09847440525161656;
sa[21] = -0.002483989662090961;
sa[22] = 0.031142290432524724;
sa[23] = 0.0;
sa[24] = -0.01754157164782352;
sa[25] = 0.01894412396804537;
sa[26] = 0.0;
sa[27] = 8.296256441250145;

}
}

}
// Imputed numeric values

static class NUM_MEANS implements java.io.Serializable {
public static final double[] VALUES = new double[27];
static {
NUM_MEANS_0.fill(VALUES);

}
static final class NUM_MEANS_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 155.72773223217942;
sa[1] = 49.83066948234612;
sa[2] = 31.115098496192296;
sa[3] = 62.30163862365385;
sa[4] = 6.425943177224359;
sa[5] = 31.272418199512824;
sa[6] = 156.81807960961544;
sa[7] = 51.78002922948719;
sa[8] = 32.28791512861539;
sa[9] = 62.07524673239744;
sa[10] = 6.259626447032053;
sa[11] = 31.665126820730777;
sa[12] = 158.6970726495513;
sa[13] = 22.283216435788464;
sa[14] = 15.396368267826924;
sa[15] = 60.86217948717951;
sa[16] = 7.0865384615384635;
sa[17] = 32.05128205128205;
sa[18] = 155.19373834666652;
sa[19] = 41.61468235509615;
sa[20] = 26.56044911215385;
sa[21] = 60.99874023953207;
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sa[22] = 7.798779416871797;
sa[23] = 31.20248034362179;
sa[24] = 158.35897435897428;
sa[25] = 158.14743589743583;
sa[26] = 0.014102564108974354;

}
}

}
// Imputed categorical values.

static class CAT_MODES implements java.io.Serializable {
public static final int[] VALUES = new int[0];
static {
}

}
// Categorical Offsets
public static final int[] CATOFFS = {0};

}
// The class representing training column names
class NamesHolder_GLM_model_R_1535384470614_26844 implements java.io.Serializable {
public static final String[] VALUES = new String[27];
static {
NamesHolder_GLM_model_R_1535384470614_26844_0.fill(VALUES);

}
static final class NamesHolder_GLM_model_R_1535384470614_26844_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "glucosevalue_mean_12h";
sa[1] = "glucosevalue_sd_12h";
sa[2] = "glucosevalue_cv_12h";
sa[3] = "glucosevalue_euglycemia_12h";
sa[4] = "glucosevalue_hypoduration_12h";
sa[5] = "glucosevalue_hyperduration_12h";
sa[6] = "glucosevalue_mean_24h";
sa[7] = "glucosevalue_sd_24h";
sa[8] = "glucosevalue_cv_24h";
sa[9] = "glucosevalue_euglycemia_24h";
sa[10] = "glucosevalue_hypoduration_24h";
sa[11] = "glucosevalue_hyperduration_24h";
sa[12] = "glucosevalue_mean_2h";
sa[13] = "glucosevalue_sd_2h";
sa[14] = "glucosevalue_cv_2h";
sa[15] = "glucosevalue_euglycemia_2h";
sa[16] = "glucosevalue_hypoduration_2h";
sa[17] = "glucosevalue_hyperduration_2h";
sa[18] = "glucosevalue_mean_6h";
sa[19] = "glucosevalue_sd_6h";
sa[20] = "glucosevalue_cv_6h";
sa[21] = "glucosevalue_euglycemia_6h";
sa[22] = "glucosevalue_hypoduration_6h";
sa[23] = "glucosevalue_hyperduration_6h";
sa[24] = "glucose_at_bed";
sa[25] = "glucose_15min";
sa[26] = "slope_at_bed";

}
}

}
// The class representing column hypoglycemiayn
class GLM_model_R_1535384470614_26844_ColInfo_27 implements java.io.Serializable {
public static final String[] VALUES = new String[2];
static {
GLM_model_R_1535384470614_26844_ColInfo_27_0.fill(VALUES);

}
static final class GLM_model_R_1535384470614_26844_ColInfo_27_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "0";
sa[1] = "1";

}
}

}
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7.6.4 Naïve Bayes

import java.util.Map;
import hex.genmodel.GenModel;
import hex.genmodel.annotations.ModelPojo;

@ModelPojo(name="NaiveBayes_model_R_1535384470614_26879", algorithm="naivebayes")
public class NaiveBayes_model_R_1535384470614_26879 extends GenModel {
public hex.ModelCategory getModelCategory() { return hex.ModelCategory.Binomial; }
public boolean isSupervised() { return true; }
public int nfeatures() { return 27; }
public int nclasses() { return 2; }

// Names of columns used by model.
public static final String[] NAMES = NamesHolder_NaiveBayes_model_R_1535384470614_26879.VALUES;
// Number of output classes included in training data response column.
public static final int NCLASSES = 2;

// Column domains. The last array contains domain of response column.
public static final String[][] DOMAINS = new String[][] {
/* glucosevalue_mean_12h */ null,
/* glucosevalue_sd_12h */ null,
/* glucosevalue_cv_12h */ null,
/* glucosevalue_euglycemia_12h */ null,
/* glucosevalue_hypoduration_12h */ null,
/* glucosevalue_hyperduration_12h */ null,
/* glucosevalue_mean_24h */ null,
/* glucosevalue_sd_24h */ null,
/* glucosevalue_cv_24h */ null,
/* glucosevalue_euglycemia_24h */ null,
/* glucosevalue_hypoduration_24h */ null,
/* glucosevalue_hyperduration_24h */ null,
/* glucosevalue_mean_2h */ null,
/* glucosevalue_sd_2h */ null,
/* glucosevalue_cv_2h */ null,
/* glucosevalue_euglycemia_2h */ null,
/* glucosevalue_hypoduration_2h */ null,
/* glucosevalue_hyperduration_2h */ null,
/* glucosevalue_mean_6h */ null,
/* glucosevalue_sd_6h */ null,
/* glucosevalue_cv_6h */ null,
/* glucosevalue_euglycemia_6h */ null,
/* glucosevalue_hypoduration_6h */ null,
/* glucosevalue_hyperduration_6h */ null,
/* glucose_at_bed */ null,
/* glucose_15min */ null,
/* slope_at_bed */ null,
/* hypoglycemiayn */ NaiveBayes_model_R_1535384470614_26879_ColInfo_27.VALUES

};
// Prior class distribution
public static final double[] PRIOR_CLASS_DISTRIB = {0.6987179487179487,0.30128205128205127};
// Class distribution used for model building
public static final double[] MODEL_CLASS_DISTRIB = null;

public NaiveBayes_model_R_1535384470614_26879() { super(NAMES,DOMAINS,"hypoglycemiayn"); }
public String getUUID() { return Long.toString(3427226973201094506L); }

// Pass in data in a double[], pre-aligned to the Model's requirements.
// Jam predictions into the preds[] array; preds[0] is reserved for the
// main prediction (class for classifiers or value for regression),
// and remaining columns hold a probability distribution for classifiers.
public final double[] score0( double[] data, double[] preds ) {
java.util.Arrays.fill(preds,0);
double mean, sdev, prob;
double[] nums = new double[2];
for(int i = 0; i < 2; i++) {
nums[i] = Math.log(NaiveBayes_model_R_1535384470614_26879_APRIORI.VALUES[i]);
for(int j = 0; j < 0; j++) {
if(Double.isNaN(data[j])) continue;
int level = (int)data[j];
prob = level < 27 ?
NaiveBayes_model_R_1535384470614_26879_PCOND.VALUES[j][i][level] : 2.0/(NaiveBayes_model_R_1535384470614_26879_RESCNT.VALUES[i] + 2.0*NaiveBayes_model_R_1535384470614_26879_DOMLEN.VALUES[j]);
nums[i] += Math.log(prob <= 0.0 ? 0.001 : prob);
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}
for(int j = 0; j < data.length; j++) {
if(Double.isNaN(data[j])) continue;
mean = Double.isNaN(NaiveBayes_model_R_1535384470614_26879_PCOND.VALUES[j][i][0]) ? 0 :
NaiveBayes_model_R_1535384470614_26879_PCOND.VALUES[j][i][0];

sdev = Double.isNaN(NaiveBayes_model_R_1535384470614_26879_PCOND.VALUES[j][i][1]) ? 1 :
(NaiveBayes_model_R_1535384470614_26879_PCOND.VALUES[j][i][1] <= 0.0 ? 0.001 : NaiveBayes_model_R_1535384470614_26879_PCOND.VALUES[j][i][1]);

prob = Math.exp(-((data[j]-mean)*(data[j]-mean))/(2.*sdev*sdev)) / (sdev*Math.sqrt(2.*Math.PI));
nums[i] += Math.log(prob <= 0.0 ? 0.001 : prob);

}
}
double sum;
for(int i = 0; i < nums.length; i++) {
sum = 0;
for(int j = 0; j < nums.length; j++) {
sum += Math.exp(nums[j]-nums[i]);

}
preds[i+1] = 1/sum;

}
preds[0] = hex.genmodel.GenModel.getPrediction(preds, PRIOR_CLASS_DISTRIB, data, 0.9876869799180799);
return preds;

}
}
// Count of categorical levels in response.
class NaiveBayes_model_R_1535384470614_26879_RESCNT implements java.io.Serializable {
public static final int[] VALUES = new int[2];
static {
NaiveBayes_model_R_1535384470614_26879_RESCNT_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_RESCNT_0 implements java.io.Serializable {
static final void fill(int[] sa) {
sa[0] = 109;
sa[1] = 47;

}
}

}
// Apriori class distribution of the response.
class NaiveBayes_model_R_1535384470614_26879_APRIORI implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_APRIORI_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_APRIORI_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 0.69375;
sa[1] = 0.30625;

}
}

}
// Conditional probability of predictors.
class NaiveBayes_model_R_1535384470614_26879_PCOND implements java.io.Serializable {
public static final double[][][] VALUES = new double[27][][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_0 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 168.47963169550462;
sa[1] = 40.51991584016765;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_1_0 implements java.io.Serializable {
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static final void fill(double[] sa) {
sa[0] = 126.15417815765956;
sa[1] = 33.58755934170002;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_0_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_1 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 54.14583358666971;
sa[1] = 24.032112960554976;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 39.823161240404254;
sa[1] = 23.190642579547514;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_1_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_2 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 31.691636749119258;
sa[1] = 10.670449924549747;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 29.778020420255313;
sa[1] = 12.827708310833376;

}
}

}
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static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_2_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_3 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 57.38690287908257;
sa[1] = 24.27239928556295;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 73.69964279723403;
sa[1] = 17.088352575587127;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_3_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_4 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 4.7959506487339425;
sa[1] = 6.731345203481973;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 10.206138615638299;
sa[1] = 13.35192337292417;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_4_0_1.VALUES;

}
}
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}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_5 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 37.817146472550476;
sa[1] = 25.311119757248058;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 16.094218587574463;
sa[1] = 16.660988706082364;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_5_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_6 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 169.50366681926607;
sa[1] = 37.413918241567345;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 127.39831352765957;
sa[1] = 32.54470783938334;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_6_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_7 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0.fill(VALUES);

}
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static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 55.62921211302751;
sa[1] = 20.88777749416829;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 42.85320084000001;
sa[1] = 23.178317173841112;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_7_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_8 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 32.410689866000006;
sa[1] = 8.840510235745544;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 32.00318222702127;
sa[1] = 12.949858108707815;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_8_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_9 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_0_0 implements java.io.Serializable {
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static final void fill(double[] sa) {
sa[0] = 58.13674849343121;
sa[1] = 21.790215449433035;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 71.20921073340423;
sa[1] = 15.92911242145302;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_9_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_10 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 4.086672985293578;
sa[1] = 5.972348481340193;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 11.299029156170215;
sa[1] = 10.695138789576683;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_10_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_11 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 37.77657852140367;
sa[1] = 23.26472503372256;

}
}

}
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static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 17.491760110659573;
sa[1] = 16.68994222221169;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_11_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_12 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 174.26385321100912;
sa[1] = 71.25187729701327;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 122.5953900708511;
sa[1] = 55.28828726743979;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_12_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_13 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 23.85911254347706;
sa[1] = 14.742848108629635;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_1_0 implements java.io.Serializable {
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static final void fill(double[] sa) {
sa[0] = 18.62847865412766;
sa[1] = 15.518783833412;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_13_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_14 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 15.266200285000005;
sa[1] = 10.689880086431565;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 15.698247206723408;
sa[1] = 12.668521891311176;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_14_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_15 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 57.357798165137616;
sa[1] = 38.95760348354487;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 68.98936170212765;
sa[1] = 32.70960658013482;

}
}

}
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static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_15_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_16 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 3.376146788990826;
sa[1] = 11.510694697658257;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 15.691489361702128;
sa[1] = 26.425356974161026;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_16_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_17 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 39.26605504587156;
sa[1] = 40.27007026680284;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 15.319148936170214;
sa[1] = 27.941792279338195;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_17_0_1.VALUES;

}
}
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}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_18 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 169.195299733211;
sa[1] = 54.13374289562525;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 122.72203215234046;
sa[1] = 41.832735572103935;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_18_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_19 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 46.11852364892661;
sa[1] = 24.182091004071207;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 31.16960360982978;
sa[1] = 21.93602005082283;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_19_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_20 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0.fill(VALUES);

}
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static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 27.7891805263578;
sa[1] = 12.459358726974067;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 23.71083796006383;
sa[1] = 11.338592404328056;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_20_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_21 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 56.541410079477075;
sa[1] = 29.13673283631885;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 71.33595273838296;
sa[1] = 27.081913620483416;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_21_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_22 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_0_0 implements java.io.Serializable {
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static final void fill(double[] sa) {
sa[0] = 5.2532361442477065;
sa[1] = 10.33133615700786;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 13.702273389553191;
sa[1] = 21.835541422397;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_22_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_23 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 38.205353776412835;
sa[1] = 31.0117831255226;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 14.96177387182979;
sa[1] = 21.55427233876713;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_23_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_24 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 172.78899082568807;
sa[1] = 74.95851610681142;

}
}

}
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static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 124.8936170212766;
sa[1] = 68.01669681282971;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_24_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_25 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 169.77981651376146;
sa[1] = 73.71483565919632;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_1_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 131.17021276595744;
sa[1] = 66.92835856636954;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_25_0_1.VALUES;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_26 implements java.io.Serializable {
public static final double[][] VALUES = new double[2][];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0.fill(VALUES);

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_0 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_0_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_0_0 implements java.io.Serializable {
static final void fill(double[] sa) {
sa[0] = 0.2006116207798165;
sa[1] = 1.6603211403835296;

}
}

}
static class NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_1 implements java.io.Serializable {
public static final double[] VALUES = new double[2];
static {
NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_1_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_1_0 implements java.io.Serializable {
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static final void fill(double[] sa) {
sa[0] = -0.4184397162553191;
sa[1] = 1.8304299607369323;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0 implements java.io.Serializable {
static final void fill(double[][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_26_0_1.VALUES;

}
}

}
static final class NaiveBayes_model_R_1535384470614_26879_PCOND_0 implements java.io.Serializable {
static final void fill(double[][][] sa) {
sa[0] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_0.VALUES;
sa[1] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_1.VALUES;
sa[2] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_2.VALUES;
sa[3] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_3.VALUES;
sa[4] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_4.VALUES;
sa[5] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_5.VALUES;
sa[6] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_6.VALUES;
sa[7] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_7.VALUES;
sa[8] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_8.VALUES;
sa[9] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_9.VALUES;
sa[10] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_10.VALUES;
sa[11] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_11.VALUES;
sa[12] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_12.VALUES;
sa[13] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_13.VALUES;
sa[14] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_14.VALUES;
sa[15] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_15.VALUES;
sa[16] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_16.VALUES;
sa[17] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_17.VALUES;
sa[18] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_18.VALUES;
sa[19] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_19.VALUES;
sa[20] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_20.VALUES;
sa[21] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_21.VALUES;
sa[22] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_22.VALUES;
sa[23] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_23.VALUES;
sa[24] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_24.VALUES;
sa[25] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_25.VALUES;
sa[26] = NaiveBayes_model_R_1535384470614_26879_PCOND_0_26.VALUES;

}
}

}
// Number of unique levels for each categorical predictor.
class NaiveBayes_model_R_1535384470614_26879_DOMLEN implements java.io.Serializable {
public static final double[] VALUES = null;

}
// The class representing training column names
class NamesHolder_NaiveBayes_model_R_1535384470614_26879 implements java.io.Serializable {
public static final String[] VALUES = new String[27];
static {
NamesHolder_NaiveBayes_model_R_1535384470614_26879_0.fill(VALUES);

}
static final class NamesHolder_NaiveBayes_model_R_1535384470614_26879_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "glucosevalue_mean_12h";
sa[1] = "glucosevalue_sd_12h";
sa[2] = "glucosevalue_cv_12h";
sa[3] = "glucosevalue_euglycemia_12h";
sa[4] = "glucosevalue_hypoduration_12h";
sa[5] = "glucosevalue_hyperduration_12h";
sa[6] = "glucosevalue_mean_24h";
sa[7] = "glucosevalue_sd_24h";
sa[8] = "glucosevalue_cv_24h";
sa[9] = "glucosevalue_euglycemia_24h";
sa[10] = "glucosevalue_hypoduration_24h";
sa[11] = "glucosevalue_hyperduration_24h";
sa[12] = "glucosevalue_mean_2h";
sa[13] = "glucosevalue_sd_2h";
sa[14] = "glucosevalue_cv_2h";
sa[15] = "glucosevalue_euglycemia_2h";
sa[16] = "glucosevalue_hypoduration_2h";
sa[17] = "glucosevalue_hyperduration_2h";
sa[18] = "glucosevalue_mean_6h";
sa[19] = "glucosevalue_sd_6h";
sa[20] = "glucosevalue_cv_6h";
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sa[21] = "glucosevalue_euglycemia_6h";
sa[22] = "glucosevalue_hypoduration_6h";
sa[23] = "glucosevalue_hyperduration_6h";
sa[24] = "glucose_at_bed";
sa[25] = "glucose_15min";
sa[26] = "slope_at_bed";

}
}

}
// The class representing column hypoglycemiayn
class NaiveBayes_model_R_1535384470614_26879_ColInfo_27 implements java.io.Serializable {
public static final String[] VALUES = new String[2];
static {
NaiveBayes_model_R_1535384470614_26879_ColInfo_27_0.fill(VALUES);

}
static final class NaiveBayes_model_R_1535384470614_26879_ColInfo_27_0 implements java.io.Serializable {
static final void fill(String[] sa) {
sa[0] = "0";
sa[1] = "1";

}
}

}
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Todo es comenzar á ser venturoso

(To be lucky at the beginning is everything)

Miguel De Cervantes, Don Quixote

8
Future Directions

Fromthis dissertation three important conclusions can be drawn. The first is that phys-

ical activity produces mixed outcomes in people with type 1 diabetes (T1D). During a bout

of activity, they could experience hypoglycemia. The impact of this bout of activity is not

limited to the duration of exercise but extends for many hours afterward. In the medium

term 4-8 hr period, these individuals may experience both symptomatic and asymptomatic

hypoglycemia. We quantified the odds of experiencing nocturnal hypoglycemia and found it

to be greatly elevated in this cohort. Exercise in the late afternoon has been shown to cause

266



over an hour of sleep loss in the case of aerobic exercise and less than half hour of sleep loss in

the case of resistance training.

The secondbroad conclusion is that in the longer term—24hr, the outcomes on glycemic

control improve significantly after resistance training, an increased time in range of ≊ 14%

was experienced. We can also conclude that the energy intake after exercise is different after

each type of exercise and could be related to the energy expended during the bout of activ-

ity. Due to the complexity involved in dosing for the meals after exercise and the increased

amounts of hypoglycemic-treatments that have to be consumed, the benefits of aerobic exer-

cise are diminished. This was clearly presented for the first time and showed the complexity

of managing T1D after physical exercise.

The third broad conclusion is that real life data couldbeused todevelopmachine learning

approaches to prevent exercise induced hypoglycemia and nocturnal hypoglycemia in people

with T1D.Using a personalizedmachine learning approach to predict exercise-induced hypo-

glycemia, we developed and validated amachine learningmodels that can achieve a prediction

accuracy >87%. We also presented a simple heuristic model that individuals with T1D will

find very easy to remember to helpmitigate the fear of hypoglycemia around exercise. We also

present a proactive approach to prevent the common side-effect of nocturnal hypoglycemia

by demonstrating the use of various clinically acknowledged risks factors can estimate the risk

of nocturnal hypoglycemia in free living conditions.
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All the above conclusions along with the underlying dataset provide a rich data structure

that can be used to further build and develop decision support systems to widely benefit

people with T1D.

In the following sections future directions of this work are presented.

The impact of sleep and glycemic control is an area that needs to be explored further.

Sleep duration has been associated as a determinant of insulin sensitivity, in people with type

2 diabetes. In addition, various aspects of diabetes could be linked to increased prevalence

of sleep disturbances. Impaired sleep and T1D might potentiate each other in some patients,

thereby creating a negative vicious circle. Optimizing sleep duration and sleep quality could

therefore be considered as a potential therapeutic target to improvemetabolic control in peo-

ple with T1D. In section 8.1 this is further explored.

Current population-basedmethods for assessingdietary intake, including food frequency

questionnaires, food diaries, and 24-h dietary recall, are limited in their ability to objectively

measure food intake. Digital photography has been identified as a promising addition to

these techniques. We explored this approach in people with T1D. In section 8.2 the meal

intake data collected from the study conducted as part of this dissertation is shown. Prelimi-

nary analysis of this data is shown here. Implementing modern computer vision approaches

to identify themeals andprovide an appropriate insulindosagewouldprovide amuchneeded

technological approach to the challenge of meal time insulin dosage.
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An example of an early version of a decision support tool is presented in section 8.3. In

this early version of a tool that is currently under development, we provide an example of how

insulin dosage can be modified based on past experiences. If an individual experienced noc-

turnal hypoglycemia after a previous exercise bout a reasonable therapeutic approach would

be to reduce the insulin dosage for the next time, this tool optimizes the amount by which

insulin dosage could be reduced. This approach of reinforcement learning could provide

foundation for robust decision support tool.
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Chapter summary

• Based on the study data collected, we show a promising relationship between day to
day variations in sleep and glycemic control. Days after subjects slept longer (>6.5 hr),
they spent more time in range. This relationship is of particular importance to people
with T1D, sleep duration could potentially impact insulin dosage choices.

• We also showused a novel approach to acquiremeal intake data from the cohort in this
study. Collecting detailed meal data in form of images and type of meals consumed by
the participants could be used to provide automated meal insulin bolus recommenda-
tions in the context of a decision support system. Analyzing pastmeal glycemic perfor-
mance could be used to detect problem meals and respond with the appropriate meal
dose for the next occasion.

• An early version of a decision support tool is shown here, this tool is designed to help
with estimating adequate reductions in the insulin dosage to improve glycemic out-
comes after an individual with T1D has engaged in aerobic exercise.

8.1 Sleep duration and glycemic outcomes

More than a third of the adult population reports habitual short sleep of less than 7 hours

a night[Liu, 2016]. Disrupted sleep patterns have been attributed to obesity, insulin resis-

tance and hyperglycemia in adults with type 2 diabetes[Panel et al., 2015]. These disruptions

in sleep are a result of either sleep restriction, sleep loss or sleep fragmentation. However,

the impact of sleep disruptions or sleep loss in adults with type 1 diabetes (T1D) is not well
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understood. Subjective analysis has reported that people with T1D report poor sleep qual-

ity when compared with a healthy cohort [Van Dijk et al., 2011]. Nocturnal hypoglycemia

and/or glycemic variability are common during sleep and could cause regular sleep fragmen-

tation resulting in poor sleep quality [Jauch-Chara et al., 2008, Brod et al., 2013b]. Less than

a third of adults with type 1 diabetes (T1D) achieve the prescribed target glycated hemoglobin

level lower than 7.0% andmany are overweight or obese [Weinstock et al., 2016a,Miller et al.,

2015a]. Partial sleep restriction in healthy adults and adults with T1D has been shown to have

negative impact on the insulin sensitivity [Donga et al., 2010a]. These findings suggest that

sleep loss could result in poor glycemic control. Since, sleep is a potentially modifiable risk

factor for glycemic control, as part of a secondary analysis we evaluated the impact that sleep

duration had on the daily glycemic control in adults with T1D in a pilot study [Reddy et al.,

2017].

8.1.1 Analysis

We studied 10 adults with T1D who self-managed their glucose levels with their own insulin

pump (4M, 6 F; age 33 ± 6 yrs, duration of diabetes 18 ± 10 yrs, HbA1c 7.4 ± 1%). We assessed

a total of 235 nights while participants lived under normal conditions. Sleep was estimated

using wrist-worn actigraphy (Actigraph). None of the participants reported clinical sleep

issues at baseline and participants had good overall sleep quality (Pittsburgh Sleep Quality
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Figure 8.1: A: The relationship between glycemic control and sleep duration. Mean glycemicmetrics across the nights

of short/long sleep duration are shown here. B: Incremental changes in sleep duration and its impact on the glycemic

control metrics is shown here. Glycemic control on the days following longer sleep duration is better but really long

duration >8 hr showed a decrease in the time in range, suggesting an inverted-U shaped relationship.

Index score <3; score range 0-21). The primary outcome for this analysis was percentage of

time in range (glucose >=70mg/dL and <=180 mg/dL) for the 24 hours after each night of

sleep, asmeasured using a continuous glucosemonitor (DexcomG4). We divided the data in

half based on sleep duration using a 6.5 hour cut-off to define short vs. longer sleep periods.
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8.1.2 Results

Under the premise, that each night of sleep restriction could have an impact on the glycemic

control the next day, we considered each night as an independent unit without considering

the subject interaction. The mean percent of time in range following short sleep was sig-

nificantly less than after long sleep nights (53.1% vs. 66.5%, respectively, two sample t-test,

P<0.001). The mean percent of time in hyperglycemia (sensor glucose >180 mg/dL) follow-

ing nights of short sleep was higher than after the nights with longer sleep (42% vs. 26.8%, re-

spectively, P<0.001). Themeanpercent of time in hypoglycemia (sensor glucose <70mg/dL)

following nights of short sleepwas not significantly different from the nights with longer sleep

(4.9% vs. 6.8%, Figure 8.1 A). We also observed an inverted-U shaped relationship between

sleep duration and the percentage time in euglycemia Figure 8.1 B. The results observedwhile

considering each night of sleep independent of the subject leads to the same conclusions that

were drawn by other in the field that poor sleep can be associated with poor glycemic con-

trol[Reutrakul et al., 2016].

As subject and sleep duration cannot be considered independent, we considered a ran-

domized mixed effects model treating each subject as a random effect. Longer sleep duration

resulted in an increase of 3.23 ± 2.9% of increase in the time in range. This effect was not

significant in this small cohort. Each subject’s relationship between sleep duration and the

time in range are shown in Figure 8.2. The mean total daily insulin use (U/day) following
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Figure 8.2: Subject level relationship between duration of sleep and the variability in glycemic control. The hetero-

geneity among the subjects and their respective sleep duration versus time in range is shown here. We observed that

four subjects show the pattern that increased sleep duration is related to better glycemic control, while four others

showed the opposite relationship andwith no relationship between sleep and next-day glycemic control apparent for

two subjects.
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short sleepwas significantly higher than after long sleep nights (42.5 vs. 38.6, respectively, two

sample t-test, p=0.002). In studies looking at people with T1D and judging glucose control

as measured by the HbA1c short sleep was associated with poor glycemic control [Chontong

et al., 2016, Borel et al., 2013b], but here we show that under normal living conditions, day

to day variations in sleep duration could have an impact on daily glycemic control as well.

However, the relationship is variable among the subjects studied Figure 8.2.

8.1.3 Conclusions

The day to day variations in sleep and glycemic control relationship has clinical importance

for these individuals, as the amount of exogenous insulin dosage may need to be modified

to improve glycemic control on a daily basis. The results presented here need to be consid-

ered within the context of the growing evidence [Chontong et al., 2016, Borel et al., 2013b,

Larcher et al., 2016, Denic-Roberts et al., 2016, Reutrakul et al., 2016] that indicates that poor

sleep is associated with poor glycemic control and poor control may bemediated by the phys-

iological impact of sleep loss [Donga et al., 2010b] leading to changes in insulin sensitivity.

The diurnal pattern of insulin sensitivity has been shown to be different and specific to each

individual with T1D [Hinshaw et al., 2013]. Our results provide an opportunity for future

studies to determine the feasibility for optimizationof sleep as a novel behavioral intervention

to improve glycemic control or incorporate the duration of sleep as a modality to determine
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insulin dosage recommendations.

8.2 Digital Photography for Meal Tracking

TheQuantityofcarbohydrates (CHO) in ameal is themajor nutritional determinant

of postprandial glucose levels [Bell et al., 2015]. Accurate estimation of CHO at every meal is

critical to limit postprandial glucose excursions in individuals with T1D. Estimates of CHO

are necessary to calculate pre-meal insulin bolus amounts [Elleri et al., 2013, Grant & Kirk-

man, 2015]. Inaccuracies in the estimation of CHO content of the meal leads to increased

glycemic variability [Brazeau et al., 2013]. Many people with T1D find this task very chal-

lenging [Brazeau et al., 2013] but the precision of CHO counting has been associated with

improved glycemic control [Mehta et al., 2009]. The first step to understanding the daily

fluctuations in the glycemic control is to understand the variations in the meal data.

Reliability associated with self-reporting of meal intake information is quite imperfect.

Current self-reporting techniques involve either filling daily intake forms or using a 24 hr

recall method, both of these approaches have been shown to have serious under-reporting is-

sues associated with them. Some recent approaches have involved using digital photography

to assistwith self-reportingwithmixed success [Park et al., 2018]. IndividualswithT1D inour

studywere trained in carbohydrate counting and employed carbohydrate counting to admin-
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ister insulin boluses for meals. The quantity of carbohydrates cause the biggest fluctuation

in the postprandial glucose levels [Brazeau et al., 2013, Bell et al., 2015]. As part of this dister-

ation work, we created a research tool with the ability to track meals with a smartphone app.

This application was distributed to the study participants. For each meal that was tracked, a

photograph of the meal was taken along with a short description of the meal, the estimated

carbohydrate amount, the glucose values from the glucosemeter, the locationwhere themeal

was consumed, the type of the meal and how the subject was feeling at the time of the meal.

Each of these entries were collected and transmitted securely from the phone to a server for

storage. A registered dietician estimated the macro nutrient value of these pictures post-hoc.

The app screen is shown in Figure 8.3. Subjects were also provided with a ruler to be placed

in the photograph to help with size estimation.

8.2.1 Observations

Here we show the observations from 1220 meals that were collected during the course of this

study. The data presented here is raw data collected from each of the meal data recorded

from the app. The meal intake data revealed some interesting details. We observed that the

medium amount of carbohydrate reported per meal by the subjects in the study was only 24

grams of carbohydrate. The distribution of the carbohydrate amount in themeal intake data

is shown in Figure 8.4. We also analyzed the average daily carbohydrate intake among the
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Figure 8.3: Main screen for the data collection of themeal.
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Subject# ID Mean daily carbohydrate (g)± SD
9001 113.79± 37.64
9002 162.20± 68.70
9003 159.14± 58.88
9004 75.80± 35.52
9005 94.32± 81.92
9006 157.00± 73.25
9007 57.12± 17.69
9008 152.26± 50.70
9009 134.18± 45.12
9010 171.72± 104.02

Table 8.1: Mean daily reported carbohydrate intake

participants of the study, this data is shown in Figure 8.5 and Table 8.1. The average daily

intake of carbohydrate across all the subjects with standard deviation (SD) was 127.75± 40.3

g. As participants provided additional details for each meal consumed during the study, we

were able to analyze the content and descriptions of the meals consumed by the subjects in

the study. A word cloud showing the most common descriptions of the meals is shown in

Figure 8.6.

We were the first to deploy this type of data collection in this cohort and the quality of

data collected during the study was high. Using the knowledge gained from this app devel-

opment, deployment, ease of data collection, and the type of data we collected, an improved

version of this app is being deployed in a large scale study to understand the impact of exercise

in glycemic outcomes. The data from this meal analysis is being used to develop a machine

learning approach to create an image recognition system that would predict the glycemic re-

sponse to the meal to suggest an appropriate insulin dosage. To identify the type of food or

carbohydrate amount in the picture, the subject provided descriptions are also being used.
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8.3 Decision support tools to help people with T1D

The ultimate goal of this dissertation was to be able to provide individuals with T1D a tool

they could consult with to guide them to achieve improved glycemic control. The daily self-

management of T1D is exhausting to many people with T1D. Many people with T1D fail

to achieve the target glycemic control. Hybrid closed loop systems that have recently been

approved provide an alternative to managing this disease with improved glycemic outcomes.

Artificial pancreas systems with dual hormones that are currently in development offer an-

other alternative to improve glucose control. Decision support systems to aid in the appro-

priate choices of insulin dosing and carbohydrate intake provide a necessary alternative to aid

these individuals with their dosage decisions.

Decision support system-Daily dose, currently in development at OHSU is being de-

signed using the data collected as part of this dissertation. The machine learning tools that

were developed as part of this dissertation to identify the risk of hypoglycemia due to exer-

cise and the risk of nocturnal hypoglycemia before bed time are being implemented in the

decision support system. Also in development is an approach to ”replay” retrospective data

from an individual while modifying the insulin dosage choices. Using an approach espoused

by Patek et al. [Patek et al., 2016] glucose data from a sensor, insulin dosage data and meal
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Figure 8.7: Simulation of the individual’s glucose trace using the simple oral glucoseminimal model (SOGMM) and

representing the error between themodel and the empirical data.
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Figure 8.8: Simulating the response of the individual to a reduced dose of insulin. The hypoglycemic events could be

prevented if the individual reduced the post exercise dosage by 30%.
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intake information is ”fed” back into a mathematical representation of the glucose insulin

dynamic system to calculate the error between the model and the true empirical glucose data.

This error, termed ”net effect”, represents themismatch between the physiologicalmodel and

the true data. This approach allows for the reproduction of the true glucose data collected

from the participant. Using this approach the insulin dosage could be adjusted to ”replay”

the response of the individual as described by the mathematical equations. In Figure 8.7 an

example of this approach using themathematical model with the addition of the error associ-

ated with themodel is shown. With the data represented in amathematical form, a variety of

insulin dosage modifications could be applied to simulate the individual’s response to these

modifications. In Figure 8.8 an example of this approach is shown. In this example, an indi-

vidual with T1D after exercise experiences nocturnal hypoglycemia due to increased insulin

sensitivity. Adjusting the dose of insulin by 30% before bed time could prevent these noc-

turnal hypoglycemic events. In the example, the glucose data is fit to the model up to the

point when the exercise is completed (200 min) and the model is estimated for the period

after that. The insulin dosage is modified for the period after the exercise, to ascertain the

appropriate dosage that would provide the maximum benefit as determined by the dose that

would prevent nocturnal hypoglycemia.

In this dissertaion we demonstrate the challenges associated with exercise in individuals
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with T1D. We showed that these individuals could have hypoglycemic events due to exercise

and also experience nocturnal hypoglycemia during the night following exercise. We demon-

strate the aerobic exercise could cause significant sleep loss in these individuals. We showed

that resistance training could improve glycemic control in the 24 hr. following exercise. With

the goal towards providing decision support systems, we developed machine learning tools

that could be used to estimate the risk of both exercise induced hypoglycemia and nocturnal

hypoglycemia. We hope this work contributes in the reduction of hypoglycemic episodes ex-

perienced by in these individuals and encourages more individuals with T1D to engage in an

active lifestyle.
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PROTOCOL TITLE: A randomized, three-way, cross-over study to assess the impact of nocturnal 
hypoglycemia on sleep in patients with Type 1 diabetes.

STUDY SITE: Oregon Health Science University
3181 SW Sam Jackson Park Rd
Portland, OR 97239

 

FUNDING: M.J. Murdock Charitable Trust 
 

PRINCIPAL INVESTIGATORS: Peter Jacobs PhD
 

CO-INVESTIGATORS: Jessica R. Castle MD
Joseph El Youssef MBBS
 

Background:
Growing evidence provided by many observational studies has established a strong link between 
decreased sleep duration and poor glucoregulation. Sleep deprivation and poor sleep quality induce 
insulin resistance and decrease glucose tolerance in healthy individuals. However, the influence of poor 
sleep quality on glycemic control of patients with Type 1 diabetes mellitus (T1DM) is unknown. Persistent 
sleep deprivation among patients with T1DM has been reported, and this sleep loss can be attributed in 
part to nocturnal hypoglycemia. Nocturnal iatrogenic hypoglycemia is a limitation of current intensive 
insulin therapies. Although severe hypoglycemia is associated with adverse events such as seizures and 
death, less severe nocturnal hypoglycemia has been linked to broad range of adverse consequences [1], 
both acutely [2,3] and long term [4]. Hypoglycemia stimulates the sympathetic nervous system as a stress 
response, leading to the stimulation of the hypothalamic–pituitary–adrenal axis (HPA). This results in a 
counter regulatory hormone cascade, which elicits an excessive cortisol secretion, which is known to 
cause sleep disturbance and could impair glucose homeostasis after the hypoglycemic event [5]. The 
hyperinsulinemia in T1DM patients promotes HPA hyperactivity as well [6], which is also associated with 
impaired sleep quality by leading to sleep fragmentation, decreased slow wave sleep and shortened 
sleep duration [7]. Sleep disturbances due to nocturnal hypoglycemia can exacerbate HPA axis 
dysfunction, adversely affecting the sleep–wake cycle. Another impact of poor sleep is the deterioration 
on insulin sensitivity the following day, it has been shown that reduction in sleep can reduce insulin 
sensitivity by as much as 20% [8,9] and this further exacerbates the cycle of poor glycemic control.  Brod 
et al.[10,11] reported on a multinational survey of the consequences of non-severe nocturnal 
hypoglycemia, and found that among the participants who awoke to treat a hypoglycemic event, the 
average time to return to sleep was over an hour, and some did not return to sleep at all that night.

Regular exercise has been shown to improve glycemic control, reduce cardiovascular risk factors, lower 
insulin requirements, improve lipid profiles, decrease cardiovascular disease risk, improve endothelial 
function, delay onset and/or progression of peripheral neuropathy and increase self-reported quality of life 
in patients with T1DM [12]. However, the risk of hypoglycemia increases considerably during and after 
exercise [13]. Increased glucose utilization occurs during exercise and increased insulin sensitivity occurs 
both during and after exercise [14,15]. As a result, many patients with T1DM avoid physical activity, in 
order to avoid the unpleasant symptoms associated with hypoglycemia. A handful of recent short exercise 
studies indicated that anaerobic forms of exercise (weight lifting, sprinting and so forth) may reduce this 
risk [16, 17].
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A better understanding of the antecedents of nocturnal hypoglycemia (iatrogenic, exercise, diet, etc.), its 
impact on sleep and the effect on glycemic control the following day could both improve routine clinical 
diabetes management and help inform the ongoing development of closed-loop insulin delivery systems.
 
The pilot study described within this protocol is designed to obtain and analyze data listed below:

 Subcutaneous blood glucose data from the continuous glucose monitor (CGM)
 Capillary blood glucose data from the blood glucose meter
 Daily insulin dosage data from the insulin pump
 Daily activity and sleep data from the activity monitor containing a 3-axis accelerometer and an 

ambient light sensor. The daily activity patterns will be analyzed in the context of location using 
the location data from the phone. 

 Daily food intake using a photographic diet diary using an app on the phone.

The goal of the study is to understand the impact of nocturnal hypoglycemia on sleep. 

Specific Objectives:
Primary Objectives:

● To measure the sleep patterns of patients with T1DM during weeks that include exercise events 
as compared to a week without exercise. 

● To measure the changes in insulin requirements in patients with T1DM during weeks that include 
exercise events as compared to a week without exercise. 

Secondary Objective:
● To measure the changes to insulin sensitivity during the nights with sleep loss compared with 

insulin sensitivity during nights with undisturbed sleep.
 
Study Hypothesis:
We propose that the nocturnal hypoglycemia causes loss of sleep in patients with T1DM after moderate 
exercise as opposed to days with no explicit exercise.
 
Endpoints
Primary Endpoints: (Time duration: From start of exercise till morning - 7am)

● Percent of time with sensed glucose <70 mg/dl
● Percent of time with sensed glucose between 70 – 180 mg/dl
● Loss of sleep as measured by time spent awake after sleep onset (WASO)

 
Secondary Endpoints: (Time duration: Entire study duration)

● Glycemic variability during the different treatment weeks
● Duration of sleep in patients with T1DM
● Sleep quality metrics such as time in bed (TIB), sleep start, sleep duration, sleep onset latency 

(SOL), total sleep time (TST), sleep efficiency (SE), number of wake bouts (# WB), mean wake 
bout time (MWBT), number of sleep bouts (# SB) and mean sleep bout time (MSBT).

● Number of carbohydrate treatments to treat hypoglycemia
● Daily carbohydrate intake
● Daily insulin intake
● Daily activity level
● Percent of time with sensed glucose <50 mg/dl
● Percent of time with sensed glucose >180 mg/dl
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● Percent of time of capillary blood glucose (CBG) <70 mg/dl.  Time with CBG <70 mg/dl defined as 
from the time the CBG is <70 mg/dl until the next CBG that is ≥70 mg/dl. Each time interval is 
summed and divided by the total time interval and expressed as a percentage.  

● Percent of time of CBG between 70 – 180 mg/dl.
● Percent of time of CBG <50 mg/dl
● Percent of time of CBG>180 mg/dl

 

Study Type
This is a single center, randomized, three treatment, open, crossover trial designed to compare the sleep 
loss resulting from hypoglycemia during the weeks with days of aerobic exercise, resistance training and 
no explicit activity.  
 
Study Population
Study population will be adults with type 1 diabetes, ages 21 – 45 years of age. Older subjects are 
excluded due to higher risk of unrecognized coronary artery disease. Younger subjects are excluded as it 
is appropriate to assess safety first in the adult population. 14 subjects will be recruited to participate in 
studies.
 
Power Analysis
A Paired Means Power Analysis was used to carry out a sample size power analysis. A total sample size 
of 14 achieves 95% power to detect a mean of paired differences of 30 minutes in sleep loss.  This is with 
an estimated standard deviation of differences of 25 and with a significance level (alpha) of 0.05 using a 
two-sided paired t-test comparing sleep loss during the weeks of exercise interventions with the week 
without any explicit exercise.
 
Protocol Summary:
 
The study duration is 4 weeks long, during which subjects will undergo a 1 week run-in period followed by 
3 randomized weeks of observational study.  During the 1 week  run-in period, subjects will familiarize 
themselves with the CGM and the other data collection procedures. Following the run-in week, the 
subject will be randomized to a specific order of observation weeks. The three observation weeks are a 
resistance training week, an aerobic exercise week and a control week with no explicit exercise.  During 
the observation weeks, there will be 4 interventions planned, two during both the aerobic exercise  and 
the resistance training week. See Schematic below for details. During both the aerobic exercise week 
intervention visits, subjects will exercise for ~45 minutes on a treadmill and during the resistance training 
week, subjects will perform strength training exercises for 1-3 sets per exercise at a weight that can be 
lifted for 8–12 repetitions (~60-80% of 1-repetition max).  The duration of the resistance training period is 
expected to be ~45min. Subjects will continue to perform daily activities during each of the weeks.
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Schematic of Study

Figure 1(a) is an example of the proposed timeline for the study in which the control week with no 
exercise is followed by a week during which monitored resistance training is performed for 2 days of the 
week as shown in figure 1(b). Both the resistance training and aerobic exercise weeks follow a similar 
time course, the subject performs the exercise visits on the 3rd and 5th day of the week, with at least 5 
days between the next set of exercise visits.

During each week, the subject will wear one subcutaneous DexcomTM G4 or DexcomTM G4 Share 
continuous glucose monitoring (CGM) system, one activity monitor- ActiGraph wGT3X-BT or ActiGraph 
GT9X, one insulin pump (subject’s own pump) and one Samsung Galaxy S4 phone loaded with two 
applications- meal memory and moves. We also plan to include an optional innovative non-contact load 
cell system for detecting movements, breathing rates and heart rates of the subjects during sleep. The 
CGM system will provide sensed glucose data every 5 minutes. The CGM data will be blinded to the 
patient to prevent any abrupt changes in behavior. The accuracy of the sensed data will be obtained by 
reference measurements of capillary blood glucose. The activity monitor will be secured on the dominant 
wrist and uses an accelerometer to collect movement data at a high frequency (80Hz). The activity 
monitor measures both motion and ambient light, this data would be used to determine the various sleep 
quality measures. A non-contact load cell system may also be utilized to determine sleep quality 
pertaining to the subjects’ vital signs such as breath rate and heart rate. This system consists of an 
aluminum plate with four load cells (or pressure sensors) on one side attached to a small computer hub. If 
used, this system will be placed under the mattress of the subject’s bed and will be left there for the 
duration of the study. The load cells employ a subjects’ change in pressure and weight distribution during 
sleep to detect breathing and heart rate. De-identified data from the load cells will be aggregated in the 
connected computer hub, which then wirelessly transmits the data to a password protected cloud server 
(Google). All data gathered would then be organized and transferred to OHSU’s secure storage space: 
Box by research staff included in this study.  The subject’s insulin dosage information from the pump will 
be downloaded for data analysis purposes. The subject’s daily meal intake (photographic log and note 
diary) and daily movement pattern information will be downloaded from the phone. During the 4 exercise 
intervention visits, subject’s heart rate, accelerometry information from the torso and oxygen consumption 
measured breath by breath may be collected for data analysis purposes.
 

1(a) 1(b)
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In order to try to minimize risks, all exercise interventions will be conducted by trained research study 
personnel. An on-call investigator will be available at all times during the intervention visits. The study 
investigators also retain the authority to modify any aspects of the protocol at his/her discretion if he/she 
believes the subject’s safety is a concern.  
 
Subject Criteria
Inclusion Criteria:

1. Diagnosis of type 1 diabetes mellitus for at least 1 year.
2. Male or female subjects 21 to 45 years of age. 
3. Physically active on a regular basis, i.e. at least 3 days of physical activity per week.
4. Physically willing and able to perform 45 min of exercise (as determined by the investigator after 

reviewing the subjects activity level)
5. Current use of an insulin pump.
6. Willingness to follow all study procedures, including attending all clinic visits.
7. Willingness to sign informed consent and HIPAA documents.

 
Exclusion Criteria:

1.  Female of childbearing potential who is pregnant or intending to become pregnant or breast-
feeding, or is not using adequate contraceptive methods. Acceptable contraception includes birth 
control pill / patch / vaginal ring, Depo-Provera, Norplant, an IUD, the double barrier method (the 
woman uses a diaphragm and spermicide and the man uses a condom), or abstinence.
2.  Any cardiovascular disease, defined as a clinically significant EKG abnormality at the time of 
screening or any history of: stroke, heart failure, myocardial infarction, angina pectoris, or coronary 
arterial bypass graft or angioplasty. Diagnosis of 2nd or 3rd degree heart block or any non-
physiological arrhythmia judged by the investigator to be exclusionary.
3.  Renal insufficiency (GFR < 60 ml/min, using the MDRD equation as report by the OHSU 
laboratory).
4.      Impaired liver function, defined as AST or ALT ≥2.5 times upper limit of normal, according to 
OHSU laboratory reference ranges. 
5.  Hematocrit of less than or equal to 34%.
6.  History of severe hypoglycemia during the past 12 months prior to screening visit or 
hypoglycemia unawareness as judged by the investigator.
7.  Adrenal insufficiency.
8.  Any active infection.
9.  Known or suspected abuse of alcohol, narcotics, or illicit drugs (except marijuana use).
10.   Seizure disorder.
11.   Active foot ulceration.
12.   Severe peripheral arterial disease characterized by ischemic rest pain or severe claudication.
13.   Major surgical operation within 30 days prior to screening.
14.   Use of an investigational drug within 30 days prior to screening.
15.   Chronic usage of any immunosuppressive medication (such as cyclosporine, azathioprine, 
sirolimus, or tacrolimus).
16.   Bleeding disorder, treatment with warfarin, or platelet count below 50,000.
17.   Insulin resistance requiring more than 200 units per day.
18.   Need for uninterrupted treatment with acetaminophen.
19.   Current administration of oral or parenteral corticosteroids.
20.   Any life threatening disease, including malignant neoplasms and medical history of malignant 
neoplasms within the past 5 years prior to screening (except basal and squamous cell skin cancer).
21.   C peptide level of ≥0.5 ng/ml
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22.   Any concurrent illness, other than diabetes, that is not controlled by a stable therapeutic 
regimen.
23.   Beta blockers or non-dihydropyridine calcium channel blockers.
24.   A positive response to any of the questions from the Physical Activity Readiness Questionnaire. 
25.   Any chest discomfort with physical activity, including pain or pressure, or other types of 
discomfort.
26.   Any clinically significant disease or disorder which in the opinion of the Investigator may 
jeopardize the subject’s safety or compliance with the protocol.

 

Subject Recruiting:
Subjects will be recruited from OHSU clinics, from flyers to be posted in approved places at OHSU, or 
from the OHSU Subject Recruitment website.  Records from OHSU Harold Schnitzer Diabetes Clinic 
patients may be screened to find potential subjects. Subjects will also be recruited from a list of subjects 
who participated in past OHSU studies, past studies involving Drs. Castle or El Youssef and from the 
OHSU diabetes research registry. 

Non-English speaking subjects will not be recruited since this protocol will require use of devices and 
mobile software (Dexcom G4 Share, moves and meal memory) that do not have non-english versions 
available yet for users. 
 
Up to 50 subjects may be screened in this study. Goal enrollment is 14 subjects, two blocks of seven 
patients. Up to four subjects will be replaced if needed, with a total enrollment of up to 18 subjects.
 
Withdrawal Criteria
The subject may withdraw at will at any time or at the discretion of the Investigator.
 
A subject must be withdrawn if the following applies:

1. Hypoglycemia during the treatment period posing a safety problem as judged by the investigator.
2. Hyperglycemia during the treatment period posing a safety problem as judged by the investigator.
3. Protocol deviation having influence on efficacy or safety data as judged by the Investigator.
4. Substantial and repeated non-compliance with trial procedures.
5. Pregnancy.
6. Intention of becoming pregnant.

 
Visit Procedures
Screening (Visit 1)
Screening will take place within 12 weeks prior to the first sensor insertion and training visit (Visit 2). All 
screening visits, will take place at OHSU’s Oregon Clinical Translational Research Institute (OCTRI) or at 
the Harold Schnitzer Diabetes Health Center. Upon arrival and prior to any procedures, the consent form 
will be signed.  A copy of the consent/authorization form will be given to the subject. The original will be 
kept for the source document.
 
Study personnel will review medical history, and medications. Height, weight, pulse, waist and hip 
circumference will be measured (mean of 3 measures) in a standing position to the nearest 0.1 cm using 
a non-stretchable tape over the unclothed abdomen at the top of the iliac crest and over the underwear at 
the largest circumference around buttocks, respectively and blood pressure will also be obtained.  A study 
investigator will perform a physical examination, excluding breast and pelvic exams.  Females of 
childbearing potential will take a urine pregnancy test, which must be negative to participate. A venous 
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blood sample will be taken for the following tests: hemoglobin A1C, complete blood count, complete 
metabolic set (including creatinine, liver set, and electrolytes), and c-peptide.  An EKG will be performed.  
A study investigator will assess inclusion/exclusion criteria and review the subject’s medical record for 
clarification as needed.  A three-digit subject ID number will be assigned to the subject.  

Subjects may undergo VO2max testing for cardiorespiratory fitness and the DEXA scan at the end of this 
screening visit if all inclusion criteria are met, and no exclusion criteria are met, with the exception of 
blood test results, which may not be immediately available. Research study personnel will be present 
during the VO2max testing for cardiorespiratory fitness. Research study personnel will assist the subject 
in locating the different labs where the tests are being performed. Additional CBG samples will be taken 
immediately before and after completion of the VO2max test.   Subjects will be given 15-20 grams of 
carbohydrates for CBG values of <70 mg/dL at any point during the screening visit.  CBG values will be 
reviewed by an investigator and subjects will be given juice and the VO2max test will be delayed by 
approximately 1 hour for CBG values of <80 mg/dL. Heart rate and accelerometry data may be optionally 
collected from the subject during the screening visit. 

Subjects living within the Portland, who agree to sleeping alone on their bed at home may be offered the 
option of being monitored with the no-contact sleep monitoring system described above. Research staff 
will help with the in-home installation and dismantling of the system near the start and end dates of the 
study respectively. 

Also, participants who have completed the study or already started the study will not be asked to consent 
to the addition of this device. Only participants who have not yet started the study or who have been 
screened but not yet started will be re-consented or given the option of this device being added to their 
study.
 
VO2max testing for cardiorespiratory fitness
VO2max testing will take place at the Human Performance Lab, which is located within OHSU and is 
attached to the main hospital. A code cart is on site within the Human Performance Lab and a code team 
is available by page at all times. Subjects will be asked to fast before the screening visit for 3 hours.  A 
capillary blood glucose (CBG) will be obtained and measured by a Contour Next glucose meter and 
recorded after consenting. Prior to measurement of any blood samples, the meter will undergo quality 
control testing with two different glucose levels, one high and one low, and both values must fall within the 
accepted range for a meter to be used. After the CBG is obtained, the study investigator may adjust the 
subject’s basal insulin rate as necessary in preparation for VO2max testing to avoid hypoglycemia. This 
testing is expected to last about 30 min.
 
DEXA for Bone Mineral Density, Body Composition and Body Fat Distribution:
Whole body and regional skeletal bone mineral density/content, whole body composition (total lean and 
fat mass and skeletal mineral content) and body fat distribution will be measured using Dual Energy X-ray 
Absorptiometry (DEXA) scans. A trained technician in OHSU’s Body Energy and Composition Core or 
OHSU School of Nursing Health and Human Performance Lab will perform DEXA scans. Measurements 
will be made using a Lunar/GE iDXA Densitometer (GE Healthcare, Wauwatosa, WI) or Hologic 
Discovery WI and are expected to take 15-30 minutes. Actual scan time is less than 10 minutes.

Study procedures training visit and sensor insertion visit (Visit 2)
After arrival at the OHSU School of nursing or OHSU OCTRI or Harold Schnitzer Diabetes Health Center 
clinic, women of childbearing potential will receive a urine pregnancy test. This test must be negative 
before further participation is allowed. 
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Subjects will undergo the one repetition maximum (1-RM) to accurately assess the maximal muscle 
strength during this visit. 

Muscle strength (1-RM):
Muscle strength testing will take place at the Human Performance Lab, which is located within OHSU 
School of Nursing building. Three distinct exercises, leg press, bench press and seated row will be 
evaluated to ascertain the maximal muscle strength of the subject. Lower extremity muscle strength will 
be measured with the 1-repetition maximum (1-RM) for leg press and isokinetic dynamometry of the lower 
extremity. Upper body chest muscle strength will be measured with 1-RM, for the bench press. Back and 
shoulder muscle strength including the erector spinae, middle and lower trapezius, rhomboids, latissimus 
dorsi, teres major and minor, posterior deltoid and the infraspinatus will be measured with 1-RM for the 
seated row. The 1-RM test is a safe and effective means of evaluating strength, even in populations that 
have never lifted weights before.  The 1-RM is the most commonly used technique for measuring maximal 
strength in adult populations. The 1-RM test will be conducted according to the American College of 
Sports Medicine protocols by trained personnel. After the CBG is obtained, the study investigator may 
adjust the subject’s basal insulin rate as necessary in preparation for 1-RM testing to avoid hypoglycemia 
or hyperglycemia. If CBG value is > 300 mg/dl, the subject may be managed at the discretion of the 
investigator. Serum ketones will also be checked. If serum ketones are ≥ 0.6 mM, the test may be halted 
and insulin therapy will be guided by the onsite investigator. Subjects will be given 15-20 grams of 
carbohydrates for CBG values of <70 mg/dL at any point during the visit.

Each subject will be fitted with one DexcomTM G4 or DexcomTM G4 Share CGM system. The wire glucose 
sensor is sterile and commercially available from DexcomTM and will be used for single use only as 
directed by the manufacturer.  The sensor will be inserted into the subcutaneous tissue of the abdomen 
or flank by study personnel after appropriate preparation of the abdominal skin as per the manufacturer’s 
directions. The sensor expires after 7 days of use, the subject will be trained by the study personnel on 
how to the use the sensor insertion device and also how to insert the wire glucose sensor. The subject 
will be trained on how to use and calibrate the CGM system. The CGM system will be calibrated at home 
according to the manufacturer’s directions. Subjects will be clearly instructed to use capillary glucose 
levels, not sensed glucose values, for the purpose of managing their diabetes at home.  The sensed 
glucose values will be blinded to the subject, the subject will not know these values to manage their 
diabetes at home. The CGM alarms will be activated: 55mg/dL for hypoglycemia and 300mg/dL for 
hyperglycemia. Subjects will be given a Contour Next meter for measuring their capillary blood glucose in 
order to calibrate the Dexcom sensor prior to the study. Subjects will be instructed to change the wire 
glucose sensor in a sterile fashion weekly and follow the instructions available from the manufacturer 
DexcomTM on the proper insertion of the wire glucose sensor. Subject may be given the documentation 
provided by the manufacturer DexcomTM on the proper use of the glucose sensor and the sensor insertion 
device. Subjects will be instructed to discontinue the use of acetaminophen for the duration of the study.

The subject will also be asked to check his/her CBG before driving to the clinic and to bring a snack in the 
car in case hypoglycemia does occur (in which case, the subject must park and treat the hypoglycemia).
 
During this visit, the subject will also complete a training course on how to photographically record the 
diet diary, how to use the activity device, how the keep the devices charged and understand the proper 
use of the devices for the duration of the study. The first week of the study will be a run in period, to 
acclimatize the subject with the various devices and the procedures the subject is expected to perform. 
The subject will need to demonstrate competency in operating the devices before beginning the research 
study. During this visit, the subject may be asked to fill the questionnaires located in the appendix A of 
this protocol. The duration of this study visit is expected to be approximately 2 hours. 
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Study procedures follow-up (Visit 3)
The study procedures follow-up visit will be conducted by phone call to the subject at the phone number 
obtained during screening, to determine the general status of the subject after the study procedures.  The 
subject will be contacted 48 hours (+/- 24 hours) after visit 2 of the study takes place.
 
2 Hour Intervention Visits (Visits 4, 6, 8 & 10)
These study visits will occur approximately 1 week after the sensor insertion visit (Visit 2). There are 2 
visits during both the resistance training week and aerobic exercise weeks. After the last 2 hour 
intervention visit (either week), a washout period will be 5 days from the day of admission to the research 
center until the start of the next admission. Subjects will be asked to avoid vigorous activity within the 24 
hours prior to all intervention visits. The subject will arrive at the exercise facilities at approximately 4pm.
A capillary blood glucose (CBG) will be obtained and measured by a Contour Next glucose meter and 
recorded. Prior to measurement of any blood samples, each meter will undergo quality control testing with 
two different glucose levels, one high and one low, and both values must fall within the accepted range 
for a meter to be used. A new meter will be used for each subject and all CBG testing will be done on a 
Contour Next glucose meter.  When they arrive, subjects will be given 15-20 grams of oral carbohydrate if 
the CBG reading is less than 70 mg/dl. CBG values > 300 mg/dl will be managed at the discretion of the 
investigator with a correction bolus.  Serum ketones will also be checked. If serum ketones are ≥ 0.6 mM, 
the study will be halted and insulin therapy will be guided by the on-call investigator. At the start of each 
intervention visit, subjects may be fitted with an accelerometer, heart rate monitor and a mobile indirect 
calorimetry system.

Aerobic Exercise Week visits
Subjects will exercise at a fixed intensity level to a target heart rate (±10%) based on the heart rate 
achieved at 60% of their VO2max determined at screening.  This protocol will allow the exercise to be 
graded according to each participant’s relative capacity.  The speed and grade of the treadmill will be 
adjusted by trained research personnel with a goal of keeping participants within their target heart rate 
range for the entire 45 minutes. Study personnel will monitor the heart rate and the sensed glucose of the 
subject during the exercise. Each exercise session will be followed by 60 min of monitored resting 
recovery.
 
Resistance Training Week Visits:
Subjects will perform multiple-joint exercises with slow to moderate lifting velocity, for 1-3 sets per 
exercise at a weight that can be lifted for 8–12 repetitions (~60-80% of 1-repetition max). The exercises 
may include leg press, bench press, leg extension, leg flexion and seated row. Subjects will perform the 
exercises through the full range of motion. Between each set of repetitions, there would be a 2 minute 
rest period. The duration of the exercise testing would be approximately 45 minutes. 
Study personnel will monitor the heart rate and the sensed glucose of the subject during the exercise.  
Each exercise session will be followed by 60 min of monitored resting recovery.
 
During the exercise period, there will be defined rules for stopping exercise, including:

1. If the subject feels unwell,
2. If the subject develops hypoglycemic symptoms, such as excessive sweating, shaking/tremors, 

palpitations, feelings of dread or panic, light-headedness, nausea, difficulty concentrating or the 
like.

3. If the subject develops chest pain/pressure,
4. If the subject develops undue shortness of breath (SOB),
5. Signs of poor perfusion: light-headedness, confusion, ataxia, pallor, cyanosis, nausea, or cold 

and clammy skin
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6. If the maximum heart rate of the subject (MHR) is exceeded,
7. For patient preference.

 
If the exercise is stopped prematurely, the duration of exercise will be noted by the study personnel and if 
the subject is deemed safe to participate in future visits, the exercise will be stopped after that same time 
duration for subsequent visits. If capillary blood glucose is < 70 mg/dl at any point during the exercise 
period, the subject will treat with carbohydrates and delay completion of exercise until blood glucose rises 
above this level. 
 
Discharge Procedures
The accelerometer, heart rate monitor and the indirect calorimetry device will be removed from the 
subject. A capillary blood glucose value will be taken immediately prior to discharging the subject. 
Subjects will be given oral carbohydrate for values below 85 mg/dl, and will be given an insulin bolus if 
deemed appropriate by the investigator for values above 300 mg/dl. The research on-call physician may 
consult with the subject regarding appropriate insulin dosing for the remainder of the day. Subjects may 
also be given a predetermined chosen meal after each exercise visit. 

If installed the non-contact load cell equipment will be dismantled from the participants home at the end of 
the study. 
 
Study intervention follow-up (Visits 5, 7, 9 &11)
The study intervention follow-up visit will be conducted by phone call to the subject at the phone number 
obtained during screening, to determine the general status of the subject.  The subject will be contacted 
the next day after each exercise intervention of the study takes place. If necessary, an on-call investigator 
will be notified and will consult with the subject via phone or in person.

Study completion visit (Visit 12)
Subjects will return to OHSU OCTRI or Harold Schnitzer Diabetes Health Center clinic after the 
completion of the 3 week study period. Subjects will return all the sensors, the smartphone and may 
complete a questionnaire about the experience. Subject’s insulin pump data will be downloaded at this 
visit.  

Cleaning and Disinfecting
All devices will be cleaned and disinfected between subjects. If the heart rate monitor is a chest strap, it 
will be disinfected through OHSU Sterile Processing where they hand wash the straps and use CIDEX 
OPA to sterilize.  The belt/carrier, smartphone, Dexcom G4 or G4 Share receiver and transmitter, the 
heart rate device, and activity monitor device watch bands are cleaned by study personnel.  Study 
personnel who are disinfecting units will wash hands thoroughly and wear gloves.  All items will undergo 
intermediate-level disinfection using SANI-CLOTH AF3 Germicidal disposable wipes. The disinfectant will 
be applied and allowed to air dry.  Study personnel will dispose of gloves as biohazard waste and wash 
their hands immediately after completing disinfection. After disinfection, when the units are completely 
dry, they will be placed in a sealed bag labeled with the cleaning method, date and initials of study 
personnel that performed the disinfection.
 

Confidentiality and Protection of Human Subjects
RISKS and BENEFITS
Risks: The risks of the protocol procedures are considered minor. It should be noted that an investigator 
skilled in the treatment of diabetes mellitus will be immediately available during intervention visits.



Protocol 2015.001       IRB#15228 Version Date 1/26/2016

11

 
Risks from exercise include falls, sprains, bruises, very low risk of bone fractures and head trauma.  The 
likelihood of significant harm is quite low. In order to try to minimize risks, all testing will be conducted by 
trained personnel. Precautions to make the exercises as safe as possible have been taken. There is a 
minimal risk that the participant may feel a change in the firmness under the mattress when utilizing the 
non-contact load system for sleep analysis as this device will be placed under the subject’s mattress. 
 
Benefits: The subject may not directly benefit from being in this study; however, their participation may 
help to advance automated insulin and glucagon delivery technology.
 
Monitoring Entity:
Monitoring is described in a separate Data Safety Monitoring Plan uploaded as part of this submission.

Data Collection:
Subject privacy will be protected by using a three digit identifying number to code study documents. Study 
staff will record data required by the protocol onto the Case Report Forms (CRF). Case report forms 
(CRF) for this study will be entered into REDCAP, a clinical research electronic data repository housed at 
Oregon Health Science University and administered by the Oregon Clinical and Translational Research 
Institute (OCTRI).  Investigators and research coordinator will verify that the procedures are conducted 
according to the approved protocol. All paper source documents will be kept in a locked cabinet for a 
minimum of five years. Original, completed CRF’s will be kept with the PI in a designated repository. All 
data from CRF’s will subsequently be entered into the authorized electronic REDCAP database.

Non-contact load cell data collected during overnight periods, will be aggregated by a computer hub 
(Odroid) that will be mounted underneath the bed. The Odroid computer will relay the de-identified data 
over a secure link to a password protected cloud server (Google Drive and Amazon Web Server) and 
then saved to Box. Only research staff will have access to this data server.

Recording of Data:
Investigators and staff will record data collected during the clinical trial on the CRF’s. Case report forms 
(CRF) for this study will be entered into REDCAP, a clinical research electronic data repository housed at 
Oregon Health Science University and administered by the Oregon Clinical and Translational Research 
Institute (OCTRI). The REDCAP CRFs will include:

1. Screening form
2. Sensor Insertion Visit form
3. 2 hour intervention visit
4. Follow up Telephone Update form
5. Adverse Event form
6. Serious Adverse form
7. Concomitant Medications
8. Note to File

 
The Principal Investigator may authorize other personnel to make entries in the CRF.
 
Monitoring Procedures:
This protocol is written in accordance with the principles established by the 18th World Medical Assembly 
General Assembly (Helsinki, 1964) and amendments and clarifications adopted by the 29th (Tokyo, 
1975), 35th (Venice, 1983), 41st (Hong Kong, 1989), 48th (Somerset West, South Africa, 1996), 52nd 
(Edinburgh, 2000), 53rd (Washington, 2002), 55th (Tokyo, 2004), and 59th (Seoul, 2008) General 
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Assemblies.  The investigator will ensure that the study described in this protocol is conducted in full 
conformance with those principles, the protocol, current FDA regulations, ICH Good Clinical Practices 
(GCP) guidelines, Good Laboratory Practices (GLP) guidelines, local ethical and regulatory requirements, 
including the Federal Food, Drug and Cosmetic Act, U.S. applicable Code of Federal Regulations (title 
21), any IEC requirements relative to clinical studies. Should a conflict arise, the investigator will follow 
whichever law or guideline affords the greater protection to the individual subject. Unanticipated problems 
will be detected by reviewing descriptions of known or foreseeable adverse events and risks in the IRB-
approved research protocol and the current IRB approved consent form, any underlying disease or 
conditions of the subject experiencing the adverse event, and a careful assessment of whether the 
adverse event is related or possibly related to the subject’s participation in the study.
 
Triggers for reporting unanticipated problems are seizure, hospitalization, death or any other occurrence 
considered serious by the PI. If studies in two subjects are stopped for severe hypoglycemia or severe 
hyperglycemia, then the entire study will be halted. In addition, if there is any unexpected event such as 
death or patient hospitalization, the studies will be stopped until the root cause is evaluated.

Any adverse event and/or unanticipated problem (UP) will be reported to the PI and medical monitor 
immediately by one of the investigators. One of the investigators will always be on-call during the studies 
and will write up a description of the adverse event/unanticipated problem. All unanticipated problems will 
be reported to the IRB within five calendar days.  A summary of all UP's and adverse events will be 
submitted with the continuing review. 

 
Confidentiality Procedures:
To protect confidentiality, standard institutional practices will be followed as described in the OHSU Information 
Security and Research Data Resource Guide (http://ozone.ohsu.edu/cc/sec/isg/res_sec.pdf) to maintain the 
confidentiality and security of data collected in this study. Study staff will be trained with regard to these 
procedures. Upon enrollment, subjects will be assigned with a three-digit code that will be used instead of their 
name, medical record number or other personally identifying information. The key associating the code and the 
subjects personnal identifying information will be restricted to the PI and study staff. The key will be kept secure 
on a restricted OHSU network drive in a limited access folder.  

Electronic files for data analysis will contain only the subject code.  Access to data/specimens is restricted to study 
personnel and requires OHSU ID/password authentication. Paper files will be stored in locked filing cabinets in 
restricted access offices at OHSU.  Electronic data is stored on restricted drives on the OHSU network or stored on 
encrypted computers as well as on the web-accessible REDCap database housed on an OHSU secure server. User 
passwords will be changed every 3 months and a firewall will be enabled at all times.  After the study, source 
documents will be maintained at the participating clinical center (or offsite record storage facilities) 2 years after a 
marketing application is approved for our group's artificial pancreas/decision support device since the data from 
this study will be included in future software revisions or discontinuance of pursuit of marketing approval.   At the 
end of the study, an electronic copy of the database will be provided on a CD for long-term storage under lock.
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Devices 

ActiGraph wGT3X-BT

Dexcom Continuous Glucose Monitoring System which includes Sensor, Sensor Receiver and 
Sensor Transmitter
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Samsung Galaxy S4 Smart phone

Contour Next EZ Blood Glucose Meter Abbott Precision Xtra Meter
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Appendix A : Questionnaires
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Subject post study survey:
Please circle your answer below.
5 = extremely helpful, 4 = very helpful, 3 = somewhat helpful, 2 = slightly helpful, 1 = not at all 
helpful

 How satisfied were you with the study? 

Not helpful at all 1 2 3 4 5  (extremely helpful)

 How do you rate the usability of the app?

Not helpful at all 1 2 3 4 5  (extremely helpful)

 Do you think you would like more training on carb estimation? 

Yes No

 Would you like an application that would suggest changes to basal and bolus dosing 
based on the photos taken of past and current meals?

Yes No

 Would you like an application that would suggest changes to basal and bolus dosing 
based on your past or anticipated exercise? 

Yes No
 Would you like an application that would suggest changes to basal and bolus dosing 

based on your past or anticipated sleep?
Yes No

 Would you like an application that would suggest changes to lifestyle decisions such as 
exercise, sleep, and nutrition based on your past glycemic control?

Yes No
5 = extremely satisfied, 4 = very satisfied, 3 = somewhat satisfied, 2 = slightly satisfied, 1 = not 
at all satisfied

 How satisfied are you with your current diabetes therapy? 

Not satisfied at all 1 2 3 4 5  (extremely satisfied)

Please include any additional comments regarding the areas of you would like more decision 
support on:
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