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Abstract

Multimedia applications are becoming more and more common. Possible features

such as real-time access to remote data, combining information, and customizing presen-

tations create a large potential for novel uses. On today's computers and networks, how-

ever, resources are still scarce for real-time processing of audio and video. Hence, good

quality of service (QoS) management is necessary. The preferred quality as well as the

appearance of a presentation may be user or task specific. Moreover, resources are shared

among several users in unpredictable ways, requiring adaptation to varying resource avail-

ability.

This thesis describes the architecture of a real-time video and audio player inte-

grating approaches to these requirements. It is based on a QoS model of independent con-

tent, view, and quality definitions [31, 33]. Authors can edit the content of presentations.

Video and audio clips from different servers can be combined. View and quality is con-

trolled in the two dimensions of temporal and spatial resolution. The user can customize

the appearance by adjusting the view parameters of play speed and image size. Indepen-

dently, frame rate and image resolution control the quality. A feedback mechanism

provides automatic adaptation of the frame rate to resource availability.

This prototype demonstrates that advanced quality of service control and support

for complex presentation can be provided and shows the implementation complexity

involved.
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Chapter 1

Introduction

1.1 Multimedia

The performance of today's computers and networks has made multimedia appli-

cations possible. However, they still easily exhaust the available resources. Multimedia

presentations can include static media, such as text and images, as well as continuous

media, such as audio and video. The latter consist of continuous data streams and have

strict timing requirements and high throughput needs. Only sophisticated control and

resource management allows meeting these requirements. Consequently, much multime-

dia research - including this thesis - focuses on continuous media.

These steady data streams need to be transmitted and processed in real time. For

continuous media, late information is useless information. Particularly with video, this

problem is aggravated by the data volume. The amount of information often approaches or

exceeds the available bandwidth of networks or storage devices. The latter must provide

large capacity, often at the price of slow speed. Compression techniques can be used to

relax the throughput requirements. However, decoders need to be implemented in expen-

sive special hardware or consume many CPU cycles, frequently moving the bottleneck to

the CPU. Physically manipulating data before a presentation, for instance downloading an

entire stream, also avoids some of the problems. However, this approach is not possible for

large media items due to storage limitations. Moreover, it provides only slow access to

data and may require processing large amounts of unneeded data, for instance, when

retrieving an entire file while looking for particular information. Because of this combina-

tion of time constraints and bandwidth requirements, resources such as network band-
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width, CPU capacity, or buffer space are still scarce, and must be managed carefully to

avoid information loss and delays.

To control resource management it is necessary to measure and assess presentation

quality. Quality of Service (QoS) here denotes performance characteristics of multimedia

systems. Such characteristics include low level parameters such as throughput, transmis-

sion delay, and reliability as well as higher-level dimensions such as spatial resolution,

frame rate (temporal resolution), and color depth. For continuous media streams, delay jit-

ter and synchronization are important, too. Other elements of QoS include the cost of a

presentation and priorities of different streams.

Like television, conventional applications play at most one video and one audio

stream concurrently. Digital multimedia processing, however, allows composing complex

presentations of several video and audio clips by concatenation and synchronization of

streams. Complex content may become more and more common as users become familiar

with the possibilities it offers. Advanced applications will need to support authoring and

retrieval of such presentations.

In addition to resource scarcity, large multimedia systems have to deal with a dis-

tributed, heterogeneous, and shared environment. These systems are expected to use

machines and networks (such as the Internet) that are shared with other users and conven-

tional applications (such as compilers or word processors), resulting in contention for

resources and, hence, variations in resource availability.

Current approaches address only some of these problems. PC-based applications

can rely on a dedicated environment. They are designed for a particular type of hardware

and operating system. Data is usually accessed only locally.Video-on-demand systems are

distributed. However, they operate on dedicated special purpose hardware. State-of-the-art

video conferencing tools can deal with a distributed, shared, and heterogeneous environ-

ment. They need to process live data with little latency and are specialized for that task.

They do not support complex presentations or control over several QoS dimensions.

1.2 Motivating Examples

This section illustrates examples of advanced uses of multimedia with require-
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ments that are not addressed by most current tools. Such applications need support for

complex presentations composed of several video or audio clips and good control of sev-

eral dimensions of quality such as spatial resolution, frame rate, or synchronization. Given

that resource availability is unlikely to exceed the requirements of multimedia applications

in the near future, QoS control is a useful technique for allowing efficient resource utiliza-

tion. It achieves this goal by specifying appropriate priorities among different ways of

allocating them. Moreover, these systems should be able to operate in an environment with

shared resources. Although it is still hard to meet all these requirements with current hard-

ware limitations, research needs to look forward and prepare for applications like these

that are becoming more and more relevant.

1.2.1 Electronic News Gathering

Increasing storage and network capacities as well as the computational power of

today's computer systems make digital TV production possible. Maier et al. [22] describe

the architecture and functionality of a digital television studio: Media input and output

devices, workstations for editing and control as well as multiple continuous media data-

base servers are connected by a high-bandwidth network, which is linked to a public net-

work. This architecture provides integrated support for functionality implemented by

many dedicated data channels and specialized hardware in analog studios.

Incoming video and audio data is stored in the database. Because it remains immu-

tably stored there, data can be shared easily by several users. Time stamps are included in

the media streams. This labelling allows automatic resynchronization of two streams, typ-

ically video and the corresponding audio.

People composing news presentations need to select the clips to be included from

some source files and combine them. Component clips may include new video and audio

of the topical event, a commentary, an interview with an on-site reporter, archival data pro-

viding some background, and so on. It may be useful to retrieve several streams concur-

rently in order to select to most appropriate one; for instance, an event may have been

captured with several cameras. Editing the news story involves, for instance, concatenat-
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ing data streams, combining video and lip-synchronized audio, merging several video

streams in one picture (e.g. for remote interviews), or adding voice-over narration to back-

ground material. A script describing the presentation in terms of operators such as syn-

chronize, concatenate, or clip is created. The actual data should be included by reference

while editing is underway.

During the editing process a variety of retrieval parameters needs to be supported.

While browsing available source data for appropriate material, the play speed may vary

from fast-forward to single-step. Low resolution can be sufficient for some stages of edit-

ing whereas others require higher quality. Since resources such as the internal network of

the studio are shared by several users, it is necessary not to waste resources for high qual-

ity rendering when it is not needed. Hence, a way of specifying the needed quality of ser-

vice (QoS) is required. Moreover, real-time constraints are harder to meet in a shared

environment.

The link to the public wide-area network provides access to remote data. Material

of other studios, archives, or correspondents all over the world can be used for news pre-

sentations. This type of network does not provide the bandwidth to transfer video data in

production quality in real-time. The clips eventually required for the broadcast in high-

quality have to be slowly downloaded before they can be displayed. While looking for

appropriate material, however, a lot more data needs to be viewed. To do this efficiently,

the news editor requires lower-quality,real-time access to remote material.

1.2.2 Sports

Staehli [31] describes another area of application for advanced multimedia sys-

tems: professional sports, using basketball as an example. Sports events are often recorded

with several cameras and microphones providing multiple viewpoints and sound tracks 1.

Usually, these streams cannot be played back together in a synchronized way unless

expensive TV production equipment is used. Moreover, to many users only the edited ver-

sion with one camera and a mixed sound track is provided.

1. The local NBA team, the Portland Trail Blazers use three microphones and at least three cam-
eras.
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Storing this data digitally has several advantages. A variety of annotations such as

player names or particular actions (goals, assists, and so on) can be added and used for

interactive browsing. Professional sports teams, for instance, could use these features for

evaluating the performance of their players and for studying other teams. Simultaneously

displaying videos from several viewpoints can show details anyone camera angle cannot.

Providing access to all video and audio recordings of an event may create a new

way of watching sports in general. Users may have a small window for every camera and

click on them to select what to see on the main screen. A commentator or statistics can be

provided in additional windows. The continuing game can be displayed concurrently with

a replay. To summarize, the viewer can have access to all information currently only avail-

able to the person editing the TV coverage.

When such complex presentations are transmitted over networks that do not have

abundant bandwidth, specifying the required quality and, hence, resource consumption

becomes necessary. In the example above, the small windows providing additional views

need lower quality than the main window. For displaying action of the actual sports event,

a high frame rate is needed and a lower resolution may be acceptable. A statistics board

should be displayed with high spatial resolution to make it readable, but it needs to be

updated only with a low frame rate. A picture of a commentator may not be important at

all, but nice to have when resources suffice.

1.2.3 Security

Intelligence analysts need to access and communicate information efficiently.

Advanced multimedia systems can facilitate this task. Networked computers can be used

to transmit multimedia data from intelligence analyst to clients, from analyst to analyst,

and from intelligence databases to analysts. If it is necessary to use shared, low-bandwidth

networks to do so, the system has to provide means of specifying for what aspect(s) of pre-

sentation quality the scarce resources should be used. Maier and Walpole [21] give the

assessment of the health of a foreign leader as a detailed example.

To detect changes in complexion and appearance of the leader, the analyst could
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compare recent video clips and images with older ones. This comparison requires good

spatial resolution and color depth. To demonstrate slurred speech in a TV interview the

audio play-back needs to have high fidelity. Stiffness and slowness of movement in a

recent video can only be discerned if the presentation itself has a high frame rate and low

jitter, but a lower spatial resolution may be acceptable. To prove that a supposedly new

recording is actually an old event from a different camera angle, both videos should be

shown concurrently synchronized with each other. The analyst is likely to present this

information to several clients on different sites providing different computer and network

resources that may be shared with other users. Combining the material involved into a pre-

sentation including quality specifications makes sure that the important aspects of every

part are most likely to be perceivable.

Another example is demonstrating that two recordings show the same person in

order to prove that person's identity, for instance. It is necessary to play particular parts of

either video concurrently to facilitate comparison. Also in this case, quality specifications

can help to assign the right priorities: To compare the faces good image quality is required,

to identify characteristic movements common to both recordings a high frame rate is more

important.

1.3 Requirements

The examples above have shown a variety of requirements for this kind of

advanced multimedia application:

· They need to provide a good QoS control. For a video, important QoS dimensions are

spatial resolution, frame rate (temporal resolution), and color accuracy. Delay jitter is

critical for continuous media. If several streams are combined, synchronization is

another category. Moreover, different parts of a presentation may be assigned different

priorities. The user should be able to trade quality in some dimensions for quality in

others.

· Users should be able to combine data to form complex presentations. Operators such

as concatenation, synchronization (concurrent presentation), and clipping (selecting

particular parts) of streams need to be supported. Modifications of clips such as chang-
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ing the audio gain, scaling a video image, or including a stream as slow motion are

also useful.

· The content of a presentation can be distributed. Material from different remote serv-

ers may be included by reference in a presentation. During play-back, data must be

retrieved from those locations in real-time.

· During a presentation, the user should be able to change view parameters such as play

speed or image sizes.

· The application should work in large systems such as the Internet. One aspect of this

problem is heterogeneity. There is a variety of operating systems and different types

of network technology, for instance. Even if some of them provided good support for

multimedia requirements, others may not. Hence, the application should not rely on

features of particular computing environments. Moreover, shared resources need to

be used, for instance network bandwidth and CPU cycles on a multiuser machine.

Hence, resource availability may vary considerably.Even so, multimedia presentations

should be possible, even when resources are scarce, and should provide a better qual-

ity, if resources are abundant.

· Network bandwidth and storage capacities will remain scarce resources for some time.

At least for the large amounts of data needed for video compression must be provided.

1.4 Challenges

Today most networks, operating systems, and databases do not support resource

reservation. Hence, it is impossible to determine or negotiate presentation QoS before

playing. While retrieving and displaying data the quality needs to be adjusted to the cur-

rently available resources. Since many resources are shared, the activities of other users

can lead to large and sudden variations in resource availability. Due to these variations,

QoS must be adapted during a presentation as smoothly and quickly as possible.

In simple best-effort approaches every stage - of a video pipeline, for instance -
simply drops data when there are insufficient resources to process it (not enough network

bandwidth, buffer overflow, CPU too busy, and so on). This approach is very inefficient

because all resources used for processing data that is dropped by a later pipeline stage are
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wasted. A more sophisticated form of adaptation is needed.

Supporting complex content presentations and providing the user with control over

view parameters requires a sophisticated system design. The application needs to run sev-

eral video and audio pipelines at a time keeping them synchronized. Starting up and stop-

ping as well as concatenating streams needs to be scheduled during playback. Connections

to the servers of the respective clips need to be managed. In a single presentation, the qual-

ity of component streams can differ considerably,when some data is retrieved from a local

server and some over a congested network.

Transmitting continuous media data in real-time over the Internet does not allow

the use of a reliable protocol such as TCP. Because packets can be lost in the network,

TCP tries to resend them. The resent packets, again, can be lost, and so on. Hence, trans-

mitting a particular piece of data can take arbitrarily long. For continuous media, this

delay is not acceptable. Not only is late data itself useless, but with a reliable protocol it

also delays the delivery of subsequent data, potentially stalling the entire pipeline.

Because of these problems, an unreliable, but fast protocol such as UDP must be used, and

the application must deal with packet loss and out-of-order delivery.

Limited network bandwidth and disk space require compression at least of the

video data. Most compression algorithms are lossy, making QoS management more com-

plicated. Moreover, peculiarities of the technique used have a major impact on the design

of the multimedia application. The MPEG standard for video compression, for instance,

uses inter-frame decoding, such that some frames can only be decoded if surrounding ref-

erence frames are already available. Whenever a reference frame is dropped, all frames

referring to it are useless, too. Any stage of the video pipeline should take these dependen-

cies into account when making dropping decisions.

Because it is necessary for the user to control the trade-offs between several QoS

dimensions, the adjustment of several parameters such as frame rate and image resolution

must be supported. The goal is to find the configuration that provides the best quality pos-

sible using the resources that are currently available - with the notion of best being user

and task specific. Coming close to this goal requires good heuristics. Moreover, even

assessing quality based on a QoS specification is a non-trivial problem, which can be

addressed using a formal error model.
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1.5 Scope of the Thesis

Creating an advanced application with the requirements and problems described

above is a major task that has involved several people in our research group. Richard Stae-

hli [31, 33] defined a way of specifying QoS based on separate content, view, and quality

descriptions. He has implemented a local player for uncompressed video, supporting com-

plex content and user-controlled QoS adaptations. Shanwei Cen [4] has developed a dis-

tributed real-time MPEG video audio player that uses feedback to adapt to resource

availability, but supports only simple presentations.

Based on their results, I have shown that support for advanced multimedia applica-

tions as described in Section 1.2 is feasible even with today's technology by developing an

adaptive, distributed real-time player that supports complex content and user control over

several QoS dimensions. The implementation integrated the additional features in Cen's

player. The combination of requirements cannot simply be realized by a combination of

individual solutions. That is, knowing how to build a distributed player and a complex

content player does not imply knowing how to build a distributed complex content player.

Many problems exist only for the combination: E.g., how to prefetch data for a clip start-

ing up in the middle of a presentation? How to switch quickly between two remote serv-

ers? How to add per-stream controls to the user interface? It was necessary to re-engineer

major parts of the system and design a new architecture.

While we are improving means of QoS control, it is not the subject of this research

to perform the user-related studies to find out which QoS settings are optimal for particu-

lar users and tasks. The development of authoring tools or admission control are beyond

the scope of this thesis, too. Moreover, it does not address video conferencing and multi-

cast scenarios but focuses on the unicast transmission of stored data.

1.6 Outline of the Thesis

The next chapter gives an overview of related work, especially of the QoS model

and the adaptation mechanisms constituting the framework on which the research for this

thesis was based. Chapter 3 describes the architecture of the distributed video audio
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player, providing the basis for the development of an application supporting the advanced

features described above. In Chapter 4, the design and implementation of a new continu-

ous media player are explained. Chapter 5 shows some of the player's performance char-

acteristics. Chapter 6 discusses future work and Chapter 7 summarizes the conclusions of

this research.



Chapter 2

Background

Since resources are still scarce for multimedia applications, it is generally not pos-

sible to provide a quality that is good enough for all users and all tasks at all times.

Because of this limitation, exploring ways of assessing and managing performance of

applications has been a central issue of multimedia research. The following sections give

an overview of the notion of QoS on several levels and how they are related to each other.

After that, the main aspects of resource management are discussed. Implementations of

mechanisms such as admission testing, resource reservation, scheduling, policing, and

controlled adaptivity have been proposed in order to improve the performance of multime-

dia applications. The degree to which performance guarantees can be provided depends on

the system support for these resource management tasks.

Controlling several QoS parameters rather than having them hardcoded in multi-.

media players helps to exploit resources more efficiently by allowing finer adjustment to

the needs of the user. To support compositions of several continuous media streams, pre-

sentation descriptions and synchronization mechanisms are needed. At the end of the

chapter, the MPEG video compression technique and its effect on the design of a player

are discussed.

2.1 Quality of Service

Due to resource scarcity, characterizing the performance of multimedia applica-

tions and hence the notion of QoS, is an important issue. Vogelet al. [39] and Hutchison et

al. [17] give overviews of QoS in distributed multimedia systems. QoS has been discussed

11



12

in the literature on several levels. The following sections categorize them as user-, percep-

tion-, and resource-level QoS.

2.1.1 User-Level QoS

The ultimate goal of a quality notion is to represent the value of a presentation to

the user. User-level QoS is an assessment based on several issues:

User Perception: Can errors in the presentation be perceived by humans? For

example, it is likely that nobody can tell the difference between a video displayed with 50

frames per second and one with 60 frames per second. A single missing frame may not be

realized either and need not imply a reduction of quality. Apteker et al. [1] and Steinmetz

and Engler [35] have studied user assessment of quality.

User Preferences: Does the user care about certain errors? A user may see the dif-

ference between a 20 frames per second video and 10 frames per second, but may be per-

fectly happy with 10 frames per second, particularly when some cost is involved with a

higher frame rate. Another user may feel bothered by a low frame rate, but may not care

about low image resolution. Hence, perceived quality depends on subjective user prefer-

ences.

Task Dependency: What effect do errors have on the usability of a presentation

for particular tasks? Reading figures and tables in an educational video requires a high

spatial resolution but not a high frame rate, whereas it is the other way around for action

videos such as sports. Other task-specific QoS requirements are discussed in Section 1.2

and in the literature [1, 39].

2.1.2 Presentation-Level QoS

Presentation-level QoS is independent of the user as well as of the underlying sys-

tem and devices. It describes the output, not the required resources. A set of QoS dimen-

sions can be defined on the presentation level [31, 33]. For videos, there is for instance

frame rate, spatial resolution, and color depth. Delay jitter is critical for continuous media
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streams. If a presentation consists of several streams, for instance a video and an audio

stream, the accuracy of synchronization is another important characteristic. In contrast to

the actual user perception, QoS can be described easily on this level. A technically literate

user can use these parameters to specify his preferences and requirements. To facilitate

this task, an interface also could provide examples for illustrating the choice [39].

2.1.3 Resource-Level QoS

Resource-level QoS parameters define quality in terms resources for particular

devices, for instance CPU cycles; network throughput, bit error rate, and delay jitter; disk

bandwidth; resolution and colors of the display. In communicating with devices (for mea-

suring or requesting quality) and admission testers a multimedia system needs to use these

dimensions [2, 3, 34,41,42]. They are mostly meaningless to end users.

2.1.4 Mapping between QoS Levels

Any sophisticated QoS management (with or without performance guarantees)

needs a way to assess the quality a resource-level QoS configuration provides. This assess-

ment is necessary to compare and choose among several possible configurations.

The mapping between resource and presentation-level parameters is often not a

problem. For instance, for uncompressed video, the required bandwidth can be calculated

by frame rate times pixel per image (resolution) times color depth. There may be, how-

ever, several ways of providing a particular presentation quality. The use of compression,

for instance, trades CPU capacity for network bandwidth [31].

Assessing a presentation-level QoS specification, that is, mapping the presentation

level QoS parameters to a quality value, needs to somehow take user perception, user pref-

erences, and task requirements into account. Staehli proposes a general QoS model con-

sisting of content, view, and quality specifications [31, 33]. Content describes the output

related to logical space and time as edited by the author of a presentation. The user-defined

view is the ideal mapping of content to output devices and real time. Quality denotes the
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difference between actual and ideal presentation. An error model is used to calculate this

difference. The error in each dimension can be interpreted as a combination of several

error components such as shift, rate, jitter, and synchronization error. Weights for the com-

ponents of all errors can be integrated in the interpretation, allowing calibration of the

quality measurement for particular users and tasks. A multimedia application implement-

ing such an error model does not depend on particular knowledge of user perception,

because new information can be easily included in the error interpretation as it becomes

known. This QoS model provides an overall quality measure that includes the relative

importance of various QoS dimensions and allows the system to assess trade-offs between

several configurations. A prototype architecture named SQUINT shows how this model

can be used to control resource management on a local system.

2.2 Resource Management

Conventional resource allocation strategies mainly aim at providing fairness

among tasks. Continuous media, however, introduce real-time constraints. In an overload

situation, a fair policy will allocate an equal amount of resources to all tasks, but this share

may be too little for every task, resulting in unacceptable quality for all of them. Because

of these problems, new approaches to resource management have been proposed. They

can be categorized by the level of performance guarantees they provide.

2.2.1 Performance Guarantees

Best Effort

Today's common operating systems such as UNIX and the Internet provide shared

resources with little support for resource management techniques suitable for multimedia

requirements. Hence, most applications have taken a best-effort approach in providing

QoS. They adapt the quality of their presentations to the amount of resources that is cur-

rently available [4, 5, 18, 29]. Commonly, best-effort applications have a simple, one-

dimensional quality model or no notion of quality at all.
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Hard Guarantees

In a guaranteed performance scenario, the user specifies the desired QoS for a pre-

sentation. The system guarantees this quality by reserving resources such as CPU cycles,

memory, network bandwidth, and storage system access and dedicates them to the appli-

cation. If there are insufficient resources for meeting the specification, the system rejects

the request. This approach requires the ability of network and operating system to reserve

resources. A variety of protocols have been proposed for implementing this reservation.

Some are listed in Section 2.2.3.

Soft Guarantees

Guarantees are not necessarily static. Allowing some degree of quality variation

becomes useful if the resource needs of a presentation are not constant. This situation

occurs when the QoS requirements change during a presentation or the effort for providing

a certain level of QoS varies. The latter case is very common when compression algo-

rithms are used. Depending on how well the content of a stream can be compressed the

bandwidth and CPU cycles requirements change. In this case, hard guarantees require

dedication of sufficient resources to meet the maximum need of an application. Often such

a strong commitment is not needed and wasteful [15]. Other approaches use statistical

guarantees or specify a range of acceptable quality parameters [6, 11]. This flexibility

enables the system to reduce quality temporarily in transient overload situations resulting

in more tasks being admitted and in a better resource utilization.

2.2.2 Resource Management Tasks

Several categories for resource management tasks and QoS processing steps have

been identified in the literature [17, 39]. Many combinations of these steps may be useful.

The effects range from statistical performance improvements to hard performance guaran-
tees.

QoS Specification and Mapping

Approaches that monitor quality, or that predetermine resource consumption, need
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a way of obtaining a QoS specification.The interface may simply consist of several sliders

or it may let the user choose from several quality examples. The requirements may be

input on any of the QoS levels described in Section 2.1. If user- or presentation-level are

used, the specification needs to be mapped to the resource-level for communication with

devices.

QoS Negotiation

If guarantees are to be provided, a feasible configuration must be negotiated

between all system components involved. Each of them must check if it has the resources

required to provide the requested quality. For instance, Figure I shows several resources
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network
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Figure 1: Resources in a video pipeline.

that may be needed for a distributed video player:

· Client CPU capacity

· Client buffer space

· Appropriate display

· Server CPU

· Appropriatesourcedata

· Enough network bandwidth

· Sufficient processing capacity and buffer space at the routers.
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Resource Reservation and Admission Testing

If all system layers have sufficient resources to provide the requested QoS, these

resources can be reserved for the application. If there are insufficient resources, the new

task could cause an overload situation. Hence, it will not be admitted, protecting the

already admitted tasks from unacceptable performance deterioration. The user (or applica-

tion) may choose a lower quality and try again.

Because performance guarantees require dedicated resources, admission testing is

necessary to provide them. However, it is also possible to use weaker admission tests that

allow overload situations to a limited extent or for a limited time, resulting in softer guar-

antees. Moreover, policing may be necessary to protect the admitted tasks from each other

as explained below.

Scheduling

To provide guarantees, resources not only need to be reserved but also their use

needs to be scheduled according to real-time constraints. Tasks handling continuous media

streams need to be processed periodically by the CPU. Conventionally, operating systems

do not support such requirements and implement some fair scheduling policy such as

round robin. These scheduling policies can cause multimedia tasks to miss their deadlines

causing low quality, even if there actually are sufficient CPU cycles to process all streams.

This problem can be addressed by using rate-monotonic or earliest-deadline-first schedul-

ing [34]. Split-level scheduling is an advanced technique using lightweight processes [12].

Policing

If it is possible for an application to consume more resources than requested at the

admission test, it can try to obtain resources reserved for other tasks. Policing mechanisms

can be used to detect these violations and react, for instance, by restricting the task's

resource consumption or terminating it.

Monitoring

Most systems that allow QoS to vary implement some kind of monitoring of the

currently provided quality. Based on this information, the user can be notified of quality
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degradation or system components can be adjusted to a changed resource availability, for

instance. Advanced adaptation techniques usually require monitoring.

2.2.3 Proposed Solutions

Protocols

A variety of network protocols for real-time transmission and bandwidth reserva-

tion have been developed. Guarantees can be provided only if all routers on a path through

the network support a protocol, however.

The session reservation protocol SRP in the DASH system [2, 3] processes

resources in two phases. In the first phase, all nodes in the pipeline reserve the resources

involved. If a maximum end-to-end delay is exceeded, the reservation fails. On the other

hand, if the delay is smaller than a target delay, the reservations are relaxed in a second

phase.

The Internet Stream Protocol ST2+ [8] was proposed as an adjunct to IP and can

be accessed by higher-level end-to-end real-time protocols. It supports data streams to sin-

gle or multiple destinations. Before the actual transmission, real-time channels are estab-

lished. During this phase, a resource manager at each host or router reserves CPU, main

memory, and network bandwidth according to QoS specifications.

The Tenet Group developed several protocols. The Continuous Media Transport

Protocol (CMTP) [41] is based on the Real-Time Channel Administration Protocol

(RCAP), a connection administration service, and the Real-Time Internetwork Protocol

(RTIP), a network service providing real-time guarantees in ATM and FDDI networks. As

for QoS, CMTP supports maximum limits of stream delay, delay jitter, granularity of a

data loss, and probability of a data loss.

The resource ReSerVation Protocol (RSVP) [42] is designed to support not only

point-to-point, but also multipoint-to-multipoint applications. Hence, it allows sharing of

data streams. The application that reserves bandwidth is the only one to control the pack-

ets but may allow others to read the stream, too. This approach saves bandwidth in multi-

cast scenarios. The receiver initiates the reservation.
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For defining timing, multicast, and payload information, the Real-Time Transport

Protocol (RTP) [30] is becoming more and more common.

Other Issues

In addition to the CPU and network, management of other resources such as stor-

age access and physical memory also needs to have real-time capabilities [22, 32, 34].

Efficient IPC mechanisms, such as memory-mapped streams [12], are critical to process

large amounts of multimedia data in time. Several integrated systems for providing end-to-

end QoS guarantees such as the Meta-Scheduler [2], the Heidelberg Transport System

(HeiTS) [9, 14], and the Lancaster Quality of Service Architecture (QOS-A) [17] have

been developed. A QOS-Broker has been proposed as a way of encapsulating resource

management [25].

2.3 Advanced Adaptive Mechanisms

The simplest method for adaptive resource management is a greedy best-effort

approach. Presentation tools try to get as close to optimal quality as possible consuming as

many resources as they can get to achieve this goal. This approach does not require any

support by the operating system nor by the network and there is no need to deal with QoS

specifications.

On one hand, this approach can result in an arbitrarily bad presentation. On the

other hand, it aggressively consumes resources in order to provide an often unnecessarily

good presentation [33]. In order to save resources for other applications or to be polite to

others, the user may want to limit his resource consumption and be satisfied with a sub-

optimal, but sufficient quality. A specification of a maximum quality can achieve this goal.

Still, no support by the underlying system is needed to do so. However, the application

must have a QoS specification and monitor the quality currently provided.

Simple best-effort applications adapt their resource consumption in an uncon-

trolled way. In a video pipeline, for instance, buffers overflow,network packets are lost, or

a software decoder cannot handle the data volume, since the CPU is too busy. For informa-

tion that is dropped at a late stage of the pipeline, all resources used for processing it in
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earlier stages are wasted. An overloaded pipeline performs worse than a fully loaded one.

Feedback mechanisms can be used to adapt the rate at which the remote server

sends frames to the rate at which they are eventually displayed [4, 5, 29]. Ideally, no more

frames are fed into the video pipeline than can be processed with the available resources.

Controlling this dynamic adaptation is not a simple task. If adaptation is too slow, varia-

tions in resource availability are not well compensated for. If adaptation is too fast, the

system is susceptible to measuring errors and may overreact or oscillate.

Many applications use some kind of feedback. Often, however, their structure is

specific to the application and their behavior is not well known. Cen et al. [4] have taken a

more systematic approach by using a feedback toolkit for adaptation in their video player.

The toolkit contains several filters and control algorithms [23, 27]. Using well known

components allows the composition of predictable feedback mechanisms based on control

theory.

2.4 Controlling Several QoS Dimensions

For video, the simplest parameter to vary in order to change resource consumption

is the frame rate. Having control over several QoS dimensions provides a more exact way

to specify quality (for guaranteed performance approaches) or to adapt quality (for best-

effort approaches) [9,36, 38]. Such dimensions include spatial resolution, color depth, or

the lossiness of compression algorithms.

If a multimedia application is capable of varying several QoS parameters, it needs

a way of assessing the trade-offs between adjusting in one QoS dimension or another. An

error model [31, 33] as described in Section 2.1 can solve this problem by providing an

overall quality measure based on user perception and preferences. A quality value can be

calculated for QoS configurations, creating a partial order among them. The system can

assess which of two possible configurations is better. Another approach has been proposed

by Thimm and Klas [37]. They describe possible ways of adaptation as a-sets and propose

a heuristic scheme for selecting the most appropriate one, based on resource availability

and user preferences.
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2.5 Complex Presentations

Non-distributed complex multimedia presentations have been used for several

years, for instance for producing educational software. For authoring and playing com-

posed content several description and synchronization mechanisms have been proposed.

Examples are Muse [16], Object Composition Petri Nets [20], MAEstro [10], the MHEG-

model [24], structure-based authoring [13], or a video algebra [40].

With complex presentations synchronization between continuous media streams

becomes an important issue. It is not only necessary to play several streams simulta-

neously (video and lip-synched audio for instance) but also the start-up time of a stream

relative to others is critical. Particularly when retrieving data from more than one remote

server, precise start timing is hard to achieve due to variations in network latency for trans-

mitting the command. Hence, starting streams from different sources simultaneously or

starting a stream at some given time during an ongoing presentation requires the applica-

tion to plan ahead and, for instance, to prefetch the beginning of a stream. Such prepara-

tion for future events can be derived from a description of the presentation content.

If several concurrent continuous media streams are supported, resource manage-

ment becomes more complex, too. The available resources not only need to be split among

quality dimensions, but also among streams. The QoS specification should include the

user's priorities. Compton and Tennenhouse have addressed a similar problem for several

collaborative applications [7].

2.6 MPEG Video Compression

The video playe-rpresented in this thesis uses the MPEG encoding [19]. This lossy

technique uses intraframe as well as interframe compression: Intraframe compression

encodes an image by itself, interframe compression encodes images relative to others

exploiting temporal locality of a video. I-frames are intraframe encoded only, P-frames

depend on the preceding I or P-frame, and B-frames depend on the preceding as well as on

the succeeding I or P frame. The pattern of these frame types is not the same for all

streams,a typicalexampleis IBBPBBPBBPBB.Thesedependencieshavea considerable
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effect on the architecture of an MPEG player. Transmission and display order of frames

are different, because reference frames that are later in presentation order need to be trans-

mitted and decoded earlier than the referring frame. Starting at a random position requires

either starting at I-frames only or transmitting all reference frames required. More impor-

tantly, dropping frames at overloaded pipeline stages and temporal scaling, that is sending

with a lower frame rate than the source file, needs to be done in a sophisticated way. If an

I-frame is dropped, no frame up to the next I-frame can be decoded. Moreover, the MPEG

encoding does not support scaling in other dimensions.

2.7 Summary

To control resource management, a QoS notion is necessary. QoS can be specified

in terms of device parameters (resource level), characteristics of the output (presentation

level), or an assessment modeling the value of a presentation to the user (user level).

Throughout this thesis, most quality notions are expressed at the presentation level. An

error model can be used to interpret a presentation level description and map it to user

level QoS.

Providing good support for the resource management needs of multimedia applica-

tions requires extensions of operating systems and networks by new resource management

features. With support of all stages ofa continuous media pipeline performance guaran-

tees are possible. Since this support is not common yet, however, an adaptive resource

management approach needs to be taken. Feedback mechanisms allow doing this adapta-

tion in a systematic and controlled way improving resource utilization. Applications that

can control several QoS dimensions are capable of adapting their resource consumption in

different ways approximating the needs of the user more exactly.

Supporting presentations that are composed of several streams from possibly dif-

ferent servers requires coordination of timing and resource management among the

streams. Such complex presentations introduce the need of additional synchronization and

prefetching mechanisms.



Chapter 3

Initial Architecture

3.1 Overview

A distributed adaptive video audio player has been developed by Cen. An earlier

version has been presented at the 5th NOSSDAV workshop [4]. The program has been

Client

Figure 2: Player Architecture

implemented in C and ported to several UNIX platforms. The design of this player has

been influenced by the Berkeley Continuous Media Player [28, 29] and uses the same soft-

ware MPEG decoder as that player [26].

The overall architecture is shown in Figure 2. The client receives data from a video

server (VS) and an audio server (AS) via the Internet. The servers may be located at differ-

ent hosts. Of course, they also can be run locally on the same machine as the client. The

data is read from files by the servers. The video data is MPEG-l encoded and is displayed

using the X Window System. Audio is uncompressed (~-law format) and can be output to

AudioFile or native audio devices.

23



24

3.2 Quality of Service

The player differentiates between play speed and frame rate. The user-specified

play speed controls the mapping of video frame sequence numbers to real time using the

client's system clock. The number of frames displayed per second can be varied indepen-

dently, providing a means of quality control. For instance, when playing a video that is

recorded at 30 frames per second at twice the regular play speed, it is not necessarily

played at 60 frames per second. It is rather possible to keep the quality (that is frame rate)

constant and omit every other frame in the source file. That implies, according to Staehli's

QoS model, orthogonality of view (play speed) and quality (frame rate) is supported.

However, time is the only variable QoS dimension. The synchronization between video

and audio is achieved by playing a block of audio samples together with the corresponding

video frame. As described below, feedback mechanisms are used to keep server and client

clocks synchronized. The timing of both streams is controlled by the audio device.

By specifying a desired frame rate, the user can define a maximum quality and

hence limit resource consumption. There are no quality guarantees however, and the frame

rate actually achieved depends on the amount of resources available. Figure 3 illustrates

the mapping of frame numbers to time according to play speed and desired frame rate for

a video recorded with 30 frames per second1. If resources are insufficient not all of these

1. This mapping assumes that there are no inter-frame dependencies. Such dependencies exist for
MPEG and are discussed later.

frames can be displayed, however.

Real time (msec) 0 55 110 165 220 275 330

Play Fram
Speed Rate

100% 30* 11 2 3 4 5 6 7 8 9 10 11

100% I 15

I
3 5 7 9 11

150% I 45* 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

150% I 30 1 2 4 5 7 8 10 11 13 14 16

50%
I 15* 1 2 3 4 5 6

*
The result is the same forhigher frame rates.

Figure 3: Frames over Time
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3.3 Architecture

For every requested connection a main server process on a remote host forks a

child process, a video server (VS) or an audio server (AS). These per-stream processes

operate independently of each other and the main server process. For every stream, there is

a TCP control connection and a UDP data connection. The client sends commands such as

'play', 'rewind', or 'stop' to the servers. When playing, VS and AS periodically read data

from disk, send a packet over the UDP connection, and block for a certain length of time.

The timing can be adjusted by a feedback mechanism as described in the following sec-

tion. Since audio requires little bandwidth compared to video, and gaps in an audio stream

are easily perceived by the user, the player tries to resend lost audio packets once. Tables 2

and 1 give an overview of the protocol between client and servers.

Table 1: Protocol Data Connection

To locate frames in the MPEG video file, VS uses a frame index that includes

frame sizes, frame position in the file, and information about MPEG headers and groups of

pictures. To generate this index, the MPEG stream is parsed the first time it is opened.

Because this parsing can take several seconds, the index is saved on disk for future

accesses. When a video connection is established, the index is loaded into main memory.

Figure 4 shows the architecture in more detail. The client consists of five pro-

cesses: The video buffering (VB) and audio buffering (AB) process receive video and

Data
Connection Video Audio

UDP

data packets position, position,
(to client) frame type, number of samples,

MPEG reference frames, audio samples
videoframe
[Data packets may be chopped into sev-
eralnetworkpackets.]

feedback clock offset (adjust server clock), clock offset,
packets clock rate change, clock rate change,
to server send frame rate, data resend requests

MPEG header request
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Table 2: Protocol Control Connection

audio packets and put them into buffers. The buffering is necessary to remove network jit-

ter. VB also reassembles video frames that have been chopped into several network pack-

ets. The video decoder process (VD) does the MPEG decoding and dithering into images

ready for display. These images are put into another buffer (B2). The buffers are located in

shared memory, allowing data to be passed to other processes quickly. Access is synchro-

nized with semaphores. The user interface process VI maintains the connection to the X

Server. It displays images and manages the user interface. The control process CTR han-

dles the actual timing and releases the video frames from B2 to VI to be displayed. In

addition, it transfers the corresponding audio samples to the audio device. CTR and VI

communicate via sockets, passing frame display commands in one direction, and user but-

ton commands in the other. Global status variables are stored in shared memory and can be

accessed by all processes. Signals are also used as a mechanism for inter-process commu-

nication.

Control
Video AudioConnection TCP

Commands Parameters Reply Parameters Reply
(to server) (to server) (to client) (to server) (to client)

init filename number of filename number of
frames, device infor- samples,. .

mation format infor-Image sIze,
frame pattern mation

close - - - -
connection

play position, - position, -
speed, speed
sendpattern

play speed speed, - speed -

send pattern

fast forward, position, - (hoaudio)
rewind speed 1m

step, position position - (noatidio) ,

stop playing - - - -
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Figure 4: Detailed Architecture

Any stage in the video pipeline can drop frames if resources are insufficient,

· if packets are lost in the network due to congestion,

· if B 1 overflows,

· if the decoder is too slow (insufficientCPU cycles), or

· if the frame is too late when it eventually arrives in B2.

Particularly at the decoder stage, MPEG's inter-frame dependencies require a

sophisticated frame dropping policy. If an I-frame that is 10msec late was dropped by VD,

all subsequent frames referring to it can not be decoded, resulting in a gap of about 400

msec for a common frame pattern. Hence, it is only dropped if it is as much as 400 msec

late. A similar problem exists for the frame rate control mentioned in Section 3.2. Figure 3

shows that not all frames are sent, in order to achieve a lower frame rate. To take frame

dependencies into account, all B-frames are dropped before any P-frames and all P-frames

before any I-frames. Figure 5 shows how send patterns are generated for given frame rates.

For rewinding and fast forwarding only I-frames are used to avoid dealing with these inter-

frame dependencies.

3.4 Feedback

As mentioned above, any overloaded pipeline stage can drop video frames. While

VD takes MPEG frame dependencies into account, in the network and VB this dropping is

done randomly and may result in high burstiness and jitter. Moreover, all resourcesused
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frame
rate send pattern

1.5
2.5
5.0
10.0
15.0
20.0
30.0

I I I-----------
I I I I I-----------
I--P I--P I--P I--P I--P--------
I--P--P--P--I--P--P--P--I--P--P--P--I--P--P--P--I--P--P--P--
I--PB-P--PB-I--PB-P--PB-I--PB-P--PB-I--PB-P--PB-I--PB-P--PB-
I-BP-BP-BP-BI-BP-BP-BP-BI-BP-BP-BP-BI-BP-BP-BP-BI-BP-BP-BP-B
IBBPBBPBBPBBIBBPBBPBBPBBIBBPBBPBBPBBIBBPBBPBBPBBIBBPBBPBBPBB

Figure 5: MPEG frame send patterns

earlier in the pipeline for processing data that is dropped at a later pipeline stage are

wasted. For instance, a frame that is dropped by the control process, because it arrives too

late in B2, has already consumed disk bandwidth, memory, and CPU on the server, net-

work bandwidth, as well as client memory and CPU cycles for decoding. A software feed-

back mechanism is used to adapt the rate at which the server sends frames to the rate at

which frames are actually displayed. In this way, the player can adjust to dynamically

changing resource availability without relying on any additional information about

resources and bottlenecks. Figure 6 shows the mechanism: The raw display frame rate is

passed through a low-pass filter in order to remove high-frequency noise. The control

algorithm then adjusts the server frame rate when necessary.

r - - - - SYstemunCIercontrol-- - - - - .,

I ~ ~I
Internet ~ :

Fd L - - - ~"- --1- - - - - - fF:- - J

Frd raw display frame rate

Fd filtered display frame rate

Fu user-specified frame-rate

Ft target frame rate

Figure 6: QoS control Feedback [4]

A second feedback mechanism is used for synchronization between client and

server clocks. The system clocks of both machines are not synchronized across the Inter-
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net. A difference between the clock rates can make them drift apart, causing the client

buffers eventually to become empty or overflow.A temporary skip or stall of either clock

can change the buffer fill level permanently. Moreover, the fill level of the client's input

buffer B I should not be higher than needed for removing network delay jitter, because

buffering reduces responsiveness to user controls. These problems are addressed by con-

trolling the amount of time the server works ahead of the client in order to compensate for

transmission delays. As shown in Figure 7, the current (raw) workahead time can be

derived from the client's system clock and the time stamps of received packets. Transient

noise is again removed by a low-pass filter before passing the data to the control algo-

rithm. Simultaneously, the variation of the work-ahead time is monitored providing a mea-

sure of the current network jitter. This data again is used to adapt the target server work-

ahead time: the more the server works ahead, the higher the client's buffer fill level, and

the more jitter can be compensated for. For the audio pipeline a similar mechanism is

used.

Ttswa

,r - - - - SYstemunoercontrol
I

I . kJiimiit.0lienv I- - I

Ts- -, Tc
Trswa

Ts server time

T c client time

Trswa raw server work ahead time

Tswa server work ahead time

Jnet network jitter

Ttswa target server work ahead time

Figure 7: Synchronization Feedback [4]

3.5 Summary

This distributed player allows real-time retrieval of continuous media across the

Internet. As a means of view and quality control, play speed and frame rate can be con-
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trolled independently of each other. For video compression the MPEG standard is used.

This format introduces inter-frame dependencies that need to be taken into account by

frame rate control and frame dropping policies. Synchronization between client and server

clock as well as dynamic quality adaptation is implemented by feedback mechanisms.

This player was used as the starting point for this thesis research. It has been

extended and modified to add support for variable spatial dimension and complex content

presentations.



Chapter 4

Design

4.1 Introduction

Cen's player provided the starting point for integrating QoS control in the spatial

dimension and the capability of playing presentations composed of several streams. The

first extension was support for multiple spatial resolutions. Initially, the size of the output

image changed with the spatial resolution. Subsequently, these two parameters were

decoupled to allow the user to choose an arbitrary size for the output image, and switch

resolution independently of it. For composing presentations two main operations are

needed: synchronizing parallel streams and concatenating streams. The implementation of

these features required significant changes to the player's architecture. Moreover, for both

operations, a means for prefetching had to be added to synchronize stream start events

with the rest of the presentation. A simple description language is used for authoring these

complex presentations.

The following sections describe the architectural design changes required to sup-

port these features. The last section of this chapter explains some implementation details

such as the structure of-C++ objects and buffer management used.

4.2 Multiple Resolutions

To adapt quality better in accordance with the preferences of the user, control over

spatial resolution was added in addition to control over temporal resolution. Since MPEG-

1 does not provide several quality levels for one source file, separate files for different res-

31
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olutions are used, as shown in Figure 8. A configuration file at the server side is used to

specify that a set of files are actually the same movie at different resolutions. The video

server checks that the lengths and frame patterns of all files are the same. When changing

the resolution, the server simply switches to another source file. To locate the position of a

particular frame in a file, index tables are used. They are generated once and stored on disk

for future accesses. These tables allow random access to frames while searching for a

position in the video clip, fast forwarding, and skipping frames while playing. When a

video with multiple resolutions is initialized, the indices of all files are loaded into main

memory. This approach allows a quick switch by simply using another file and another

index for locating a particular frame.

/---......
\

I~ i '--/ - '--/ - '--/ I
Iuteruet

8-- ~ I

hig~ I~ I CTR ~resolutioh / \ J~--~ ~ /

Figure 8: Multiple Resolutions

To update the state of the MPEG decoder, the MPEG header with the new resolu-

tion information is sent. Since this new header can be lost in the network, the decoder

could try to apply an obsolete header to new data. Hence, the old header has to be invali-

dated causing the new one to be requested from the server and resent if lost. To do so, the

client needs to be informed of the resolution switch. Using the control connection for this

task would require some kind of synchronization between the control and data stream: It is

necessary to find out at what frame a change notification takes effect. To avoid this prob-

lem, size information is sent over the data connection with every video frame.

Currently, the resolution is manually controlled by the user through buttons that

can increase or decrease it, or a pop-up menu to select a particular resolution directly.

Future versions should include this QoS dimension in the player's automatic adaptation

mechanism.

Storing the same content several times at the server is a very simple way of provid-

ing scaling without support by the compression algorithm. Providing files with four reso-
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lution steps is possible with about twice as much disk space as having the highest

resolution only. The same approach can also be used for other ways of scaling. Some

MPEG decoders, for instance, allow encoding at a specified bandwidth. Hence, providing

MPEG files encoded for different bandwidths also works with the implemented technique.

4.3 Variable Image Size

The player allows the size of the video output to be different from the resolution in

the source file: the images can be scaled. This feature enables the user to control better

how he wants to see a presentation. Image size is a second variable view parameter in

addition to play speed. Moreover, only because the current resolution is independent of the

output window size, changing the resolution really is a means of quality control. Without

scaling, a resolution switch would alter video image size, changing not only the quality

but the entire appearance of the presentation. Figure 9 illustrates several combinations. As

shown in Table 3, view and quality can be controlled orthogonally in the spatial as well as

in the temporal dimension.

high resolution
large image
no scaling

low resolution
large image
scaling

Figure 9: Resolution and Image Size

low resolution
small image
no scaling
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Table 3: Orthogonality of View and Quality

The scaling is currently optimized neither for performance nor for image quality.

. The implementationis simplya linear projection.This scalingstep is added in the VD

process between the decoding and dithering of the image. Note that dithering consumes

about as much CPU capacity as decoding. The resource consumption for dithering

depends only on the size of the output image and is not reduced by choosing a lower qual-

ity, that is, a lower resolution.

The dithering algorithms as well as B2 containing the final images must be able to

change image size dynamically. As a convenient way for the user to control the image

size, videos are displayed in windows on their own. The window size can simply be

changed using the window manager. The player monitors these changes and adjusts the

scaling accordingly. Figure 10 shows that video output and control panel are in separate

windows, in contrast to the old version.

Previously: One Window Now: Resizable Video Window and
per-stream resolution control menu

Figure 10: Interface for Variable Image Size

VIew quality

temporal play speed frame rate

spatial image size resolution
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4.4 Multiple VideoStreams

For complex presentations, synchronized playback of several streams is necessary.

To implement this feature, several instances of the entire video pipeline must be created,

as Figure 11 demonstrates. This capability required a major restructuring of the previous

architecture shown in Figure 12. The VI process needed to be split into a part for manag-

Figure 12: Previous Architecture

ing the control panel and a per-stream part (VP) handling the video output window. The

VB and VD processes as well as the buffers Bland B2 were made replicable. Global vari-

ables had to be changed to variables local to the pipeline module. Since 'fork' copies the

entire address space, and hence even global variables, replication of VB and VD could

have taken advantage of this property. To provide a better program structure, however, all

processes have been encapsulated in modules, as will be discussed in Section 4.9. More-
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over, the removal of global variables allows replicating the modules even if threads are

used rather than processes. This property should facilitate porting the player to systems

that support multithreading. Restructuring the status variables in shared memory and the

CTR processwas a major task. All variablesand piecesof code had to be separatedin a

per-stream part, that is replicated for every pipeline, and a part controlling the overall pre-

sentation. CTR has been completely reengineered using a uniform stream abstraction for

video as well as audio streams.

The timing control had to be changed, too. Time used to be measured in terms of

frame serial numbers and driven by a periodic timer interrupt. When several video streams

with potentially different frame rates are supported, this approach is not possible any

more. The player's notion of time is now measured in terms of milliseconds from presen-

tation start at normal play speed. The mapping between this logical time and the real time

measured by the system clock depends on the actual play speed. Timed events such as dis-

playing of a frame or playing a block of audio samples are managed by an alarm clock

module using event list scheduling. The clock blocks the control process until the next

event needs to be processed. The time-out parameter of the Unix system call select is

used to implement this timer. Commonly the accuracy of this mechanism is 10 millisec-

onds. In comparison, the time between display events at a rate of 30 frames per second is

33 milliseconds. Hence, at high frame rates the granularity of this timer is a significant

source of jitter. More system support is needed to provide a higher quality.

. There is no need to explicitlydeal with synchronizationwhileplaying.All frame

display events are controlled by the system clock of the client machine. Hence, the syn-

chronization error between two streams is at most the sum of their timing errors. The

server clocks are kept synchronized with the client by the feedback mechanism described

in Section 3.4. Figure 13 shows a presentation with three synchronized video streams

showing a basketball game from different camera angles.

Playing of several audio streams is currently not supported. In contrast to video

with an output window for each stream, multiple audio streams would need to be merged

and put to a single output device.
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Figure 13: Presentation with Three Video Streams

4.5 Start-up latency

A problem introduced by distributed complex content is compensating for differ-

ent start-up latencies. When a stream starts playing, a command is sent to its server

through the TCP control connection. The server then starts sending the data at the speci-

fied frame rate. If there is only one stream, there is no problem: The client timer can sim-

ply be started, when the first data packet arrives.

client timer 2 3 4 5 6 7 8 9 10 11

output

received

If there are several streams, they may have different latencies and this procedure

does not work any more. Because late video frames are still displayed unless there are

more recent ones, an ostrich approach can be considered: Ignore the problem, send the
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commands and start the timer at the same time.

client timer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

received

output

received

output

After a few seconds the synchronization feedback mechanisms would speed up the

server clocks to catch up with the client timer. However, the streams would be unsynchro-

nized during that time. Moreover, audio behaves differently. Samples need to be continu-

ously transferred to the audio device. If the data is not there yet, silence samples are

played. Whereas late video frames still can be used, late audio samples cannot. That

means that with the approach described above audio samples would be played only once

the feedback synchronizes the streams. Because that can take a few seconds, the approach

is unacceptable.

Ideally, the sending of commands and starting the timer should be scheduled so

that the streams really start together.

client timer 2 345 6 7 8 91011

output

received

output

received

This approach, however, requires knowing the latency in advance. Obtaining a reli-

able latency estimate by pinging the server or similar mechanisms is inappropriate,

because in a congested network the variations are too big. This effect probably is caused

by the use of a reliable protocol for the commands: It is not predictable how often the

command packet needs to be resent. A protocol other than TCP may back-off less and

reduce the problem, but not solve it.

Another method has been used for synchronizing audio and video in the previous

architecture and has been adopted for the general case of multiple streams. The commands
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are sent at once and the timer is started when data of all streams has arrived:

client timer 2 345 6 7 8 9 10 11

output

~~>L4;iiiliZTJ.1~~~~ "III"1IIII...............
~at~~y~J IfI..

11I1

received

received

output

During the time before the client timer is started the buffers of streams with low

latency are filled. If buffers overflow, data will be lost. This effect is unlikely, however,

because the synchronization feedback is active during that time. The client clock does not

advance yet whereas arrival of new packets indicates the progress of server time. Hence,

the feedback mechanism slows down the server and tries to synchronize both clocks.

While the server clock is not halted completely, the mechanism reduces chances of a

buffer overflow significantly and works well in practice.

4.6 Concatenation

Besides playing synchronized streams, concatenating streams is the other basic

feature needed for complex presentations. The component streams may be retrieved from

different servers with potentially different latencies to the client.

Two simple solutions for switching between streams are possible: The first is sim-

ply to reinitialize the video pipeline with a connection to the server of the second stream.

This procedure, however, takes too long and would result in a large gap in the output

stream. The second possibility is replicating the entire pipeline for concatenated streams,

too. At the time for the switch, the second pipeline is ready and can start quickly. This

approach is too wasteful of resources. Because some presentations may concatenate many

short streams, many pipelines would be needed, each of them consisting of three processes

and two large buffers. Moreover, a way of joining the pipelines to one output window

would have to be found. The approach implemented is somewhere between these two

alternatives. For all streams to be concatenated the connection to the server, including the

VB process, is maintained during the entire presentation. Having all connections ready
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allows quick switching between them. The rest of the pipeline is not replicated. All VB

processes write to the same B 1buffer, as shown in Figure 14.

".-----------.......
\
I
I

1'-/ Q JUi), \:.J '-../ I
/

Figure 14: Concatenation

The access of several VBs to B 1 needs to be synchronized. An initial solution was

to use signals to deactivate and reactivate the VB processes. Implementing the merging in

B 1 turned out to be a more robust solution. The buffer simply accepts only data from the

active VB process and ignores (drops) data from inactive ones. This mechanism can be

implemented transparently to the VB processes.

The timing of the switches between streams is driven by the CTR process. An

additional control structure maintains the concatenation-related data and sends the appro-

priate commands to the respective servers.Not only play commands, but also fast forward,

rewind, or position must be directed to the right stream.

The video pipeline has to deal with data of several streams, which may be encoded

with different characteristics such as different resolutions and frame rates. The end of the

pipeline may still process frames of the first stream whereas the beginning already deals

with the second stream. Hence, stream dependent information cannot simply be main-

tained in global status variables, but is now associated with every frame in the pipeline. In

this way, every stage can detect a change of parameters and adapt its local state accord-

ingly at the right time.

Concatenation of audio streams has been implemented in the same way.
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4.7 Prefetching

Concatenation introduced a timing problem, too. Although the connections of all

streams are kept open and ready, the latency after sending the play command remains,

resulting in a gap in the output stream:

client timer 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream 1 received '....
stream 2 received 'Latency

output ___._
Ideally, again, it would be best to schedule the sending of the command ahead by

precisely the latency period in order to achieve a smooth transition. Notice that - while

playing - the data arrives some time before it is displayed, providing a certain buffer fill

level that allows the player to eliminate delay jitter.

client timer 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream 1 received 1.._.
stream 2 receivedtatenc~

output __B.

Because the precise latency is not known, it is not possible to schedule the start

command the exact amount of time ahead. The same problem occurred for synchronized

start-up. In practice, sending the start command a constant time before the actual switch

yields useful results.

client timer 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream 1received

stream 2 received

output -..--
This way of prefetching produced two additional requirements for the architecture.

It must be possible to communicate with servers other than those which are currently play-

ing. Moreover, as can be seen in the previous figure, it must be possible to receive data of
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several streams concurrently. In the current implementation, the feedback mechanism is

not active while prefetching, causing prefetched data always to be sent at full frame rate.

Again, the control structures in CTR had to be split in one part containing all infor-

mation related to a particular connection and another part representing the state of the rest

of the pipeline. The per-connection parts can communicate with their server independently

of other stages of the pipeline allowing to send prefetched play commands while a differ-

ent stream is being played. Buffer B 1 has become a double buffer: It has a list of frames

for the active and one for the prefetched stream as shown in Figure 15. Frames are added

to the respective list according to the VB process that is delivering them. Obsolete frames

from a VB process that is neither active nor prefetching are simply dropped.

."....-----------....
\
I
I

I
\ -------""'-----

Figure 15: Prefetching

This approach allows the prefetching of only one stream at a time and does not

work well if clips are shorter than the latency. For the current implementation, however,

considerable changes of the control and buffer structure would be necessary to allow

prefetching an arbitrary number of streams in parallel.

4.8 Complex Presentations

In addition to multiple and concatenated streams, two other features for complex

presentation were implemented: gaps and clips. Before, after, or between concatenated

streams, gaps can be added. This functionality is integrated in the CTR module that con-

trols concatenation. The gap is handled as a dummy stream. The other feature is playing

clips. That is, only part of a stream can be selected, which is very useful in authoring pre-
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presentation = (audio Ivideo)+ A presentation consists of one or
more audio and video streams that
are played simultaneously.
Currently, only one audio stream
is possible.

video = video stream

[posi tion x-pos y-pos] optional window position
audio = audio stream

stream = ([gap] file)+ A stream is a sequence of clips.
Optionally, there may be gaps
between clips.

gap =
file =

gap msec

file server-host file

[offset offsecmsec]
[length length_msec]
[speed speed...]Jercent]

offset in the source file

length of the clip
default speed relative to recording
speed

Figure 16: Presentation Description Language

sentations. A clip is described by its length and its offset from the beginning of the source

file, both in terms of time. A possible extension could allow selecting also a spatial subpart

of the images.

The presentations are defined by a simple language that is described in Figure 16.

The author must compose the presentation as a synchronization of a concatenation of

streams. This restriction is inconvenient. Support of an arbitrary mixture of synchroniza-

tion and concatenation operators would be helpful to authors, but is beyond the scope of

this thesis.

4.9 Implementation

The complexity of the presentations supported is reflected in the internal structure

of the player. For every component of a presentation, separate processes and control struc-

tures are needed. Splitting the program in a per-stream, a per-pipeline, and an overall con-

trol part required some reengineering of the previous architecture.
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The processes are encapsulated in modules. Wrapping them up in C++ objects

helped to define clear interfaces. Global variables in shared memory are now logically part

of modules and can be accessed only through module functions. "Static" variables are

integrated in objects. This restructuring has several advantages: The program has become

more readable and complexity has been broken down, facilitating maintenance and further

enhancements. It is now possible to create several instances of modules as needed. The use

of threads rather than processes becomes possible.

StreamCTR
CTR

1

1

1
VConn

is superclass of
~

uses

Figure 17: Object Hierarchy

The control process CTR has been restructured using C++ objects, as shown in

Figure 17. The overall control CTR handles a list of pipelines that process synchronized

streams. A pipeline can be a simple video (VCTR)or audio (ACTR)pipeline, or a concate-

nation of streams (CatCTR). VCTRor ACTRhave exactly one active connection (VConn

or AConn) plugged into the pipeline. CatCTR is a wrapper around a pipeline of either

type maintaining in addition a list of connections, which can be plugged into the actual

pipeline to switch between concatenated streams. Having a uniform stream (ClipCTR)

and connection (Conn) abstraction made it possible to deal with a concatenation of video
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streams in the same way as with a concatenation of audio streams.

Synchronizing the access to buffers has been complicated by stream switches.

Waiting for a full or empty buffer slot was implemented by counting semaphores. This

method worked because there was exactly one process putting frames into the buffer and

exactly one taking frames out. When switching between concatenated streams the control

process now causes obsolete data to be dropped, acting as an additional consumer and

hence interfering with this simple access pattern. Implementing the buffers as monitors

with condition variables for 'full' and 'empty' solved this problem. Moreover for B1 a

generic memory management mechanism had to be implemented to allow parallel access

of several VB processes and variable frame sizes.

4.10 Summary

This player provides control over temporal as well as spatial resolution. The use of

several files encoded with different quality allows spatial scaling even if the compression

algorithm does not support extracting data at different quality levels from one source file.

In addition to the feedback mechanism that automatically adjusts the frame rate to the cur-

rent resource availability, the user can now choose between multiple resolutions to control

quality. Having more than one variable quality dimension provides several ways of adapt-

ing to the current resource availability. Choosing the one best for the user maximizes

achievable quality.

Independently of these quality parameters, the user can change the view by choos-

ing play speed and image sizes. For decoupling the resolution at the source file and the

output image size a scaling step was added between decoding and dithering of video

frames.

Complex presentations are supported. It is possible to concatenate streams as well

as play several streams simultaneously, with streams being retrieved from potentially dif-

ferent servers. For concatenation it is necessary to switch quickly between succeeding

streams. To achieve this goal, several sources are dynamically re-connected to a continu-

ous media pipeline. Several pipelines are needed for playing synchronized streams. A

modular program structure facilitates separating per-stream processes and control struc-
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tures from stream-independent parts of the program. A shared timer in the client keeps the

pipelines synchronized with each other, and a feedback mechanism keeps the servers syn-

chronized with the client. Varying network latencies make it hard to synchronize the start

time of streams with the rest of a presentation. The presentation description is used to ini-

tiate prefetching that hides the start-up delay.



Chapter 5

Performance

Control over the spatial QoS dimension in addition to the temporal dimension is

supposed to improve QoS management. Several experiments show the effect of both

parameters on key resources. All experiments are done with one Basketball video at differ-

ent resolutions. Because MPEG bandwidth and decoding times depend on the content of

the video, the quantitative results may differ for other clips. The given examples, however,

are sufficient to provide some insight to the effects and problems involved.

5.1 Resource Consumption

We want to control resource consumption by the quality parameters of resolution

and frame rate. In our environment and player configuration, client CPU and network

bandwidth have shown to be scarce resources, and other bottlenecks have rarely been

observed. Hence, this experiment investigates the effect of both quality parameters on

these two resources.

For measuring CPU consumption it is sufficient to look at the VD process, since all

computationally intensive tasks, that is decoding, scaling, and dithering, are done there. A

one minute video clip has been run for a set of frame rates and three spatial resolutions.

The image has not been scaled, but was displayed at the size corresponding to the resolu-

tion. For each run the CPU time consumed by VD has been queried using the clock

function of Unix. Figure 18 displays the results. As the CPU time approaches 60 seconds,

which is the real time available for displaying a one-minute clip, higher frame rates

become impossible, because frames would be dropped. To complete the graph even so, the
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Figure 18: CPU consumption per frame rate and resolution at normal play speed

same experiment has been run at 20% of the normal play speed. It is shown in Figure 19.

To facilitate comparison of the graphs the frame rate is given relative to normal play

speed. Actually, it was 0.5 to 6 frames per second in the slow speed experiment.

The figures show that frame rate and resolution can be used to control resource

usage trade-offs. With 30% of the CPU for instance, you can get low resolution at 30

frames per second, medium resolution at 6 frames per second, or high resolution at 3

frames per second.

In the same experiment the average bandwidth for the one minute clips has been

measured, as shown in Figure 20. Also for network capacity, resolution and frame rate can

100

"'0

80s::
0

u 60



49

20

128x96 -+-
256x192 -+-
320x240 -it-
real time

140

120

40

o
o 5 25 3010 15 20

Frame Rate (frames/second)

Figure 19: CPU consumption per frame rate and resolution at slow play speed

be traded for each other. At 300 kb per second, for instance, 4 frames per second can be

played at high resolution, 7.5 frames per second at medium resolution, or full frame rate at

low resolution with only about half of the bandwidth used. High bandwidth, however,

could not even be utilized, because the CPU becomes the bottleneck. Note that the band-

width graphs consist of three linear parts. These sections are caused by the send pattern of

MPEG frames: At 1, 1.5, and 2.5 frames per second only I-frames are sent, at 5, 7.5, and

10 frames per second P-frames are added, and B-frames are included for higher rates.!

1. The send pattern mechanism is explained in Section 3.3. The example in Figure 5 shows the
frame pattern used in this experiment.
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Figure 20: Bandwidth per frame rate and resolution
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5.2 Adaptation with two Quality Dimensions

The feedback mechanism provides automatic fine-grained adaptation of the frame

rate. Resolution changes are rather coarse grained and are currently controlled by the user.

The following graphs show how these two mechanisms interact. Each figure represents

one presentation. The rate at which frames are sent is shown as well as the rate at which

frame are displayed. Because time information about display events contains a lot of

noise, the average time between the last 25 display events is used to generate the latter

graph. At the times indicated in the figures the resolution was changed by the user. The

feedback then adapted the frame rate to the new resource requirements.
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Figure 22: Adaptation, CPU scarce, with scaling

The presentations in Figures 21 and 22 have been retrieved from a server on the

same machine as the client. In this case, the client CPU becomes the bottleneck. In Figure

21, the video image is not scaled, that is the output image size is changed together with the

resolution. The graphs clearly show that each resolution allows a different frame rate, and

that the feedback quickly adjusts to the new conditions. The feedback mechanism usually

adapts in .5 frarnes-per-second steps. After resolution switches it is temporarily sped up to

simply drop to the current display frame rate or to explore higher rates until the pipeline

becomes overloaded.

Ideally a change of quality should not affect the appearance of the presentation,
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that is in this case, the image size should remain the same. This feature has been activated

for Figure 22. The decoded images have been scaled to a size of 320x240 regardless of the

resolution. The adaptation works is in this case, too. The client CPU resources required for

scaling and rendering, however, reduce the possible frame rates significantly. Not only

quality, but also view has a considerable impact on CPU consumption. Section 5.3 pro-

vides a closer look at this problem.
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Figure 23: Adaptation, bandwidth limited to 300 kb/s

In Figure 23 network bandwidth is the bottleneck. The output image is not scaled,

because it would make the CPU the scarcest resource in most cases. To simulate the net-
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work bottleneck, the server has still been run locally but a bandwidth limiter has been
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used. This limiter is implemented at the server. It monitors the bandwidth at which the

server sends. Every time a packet is to be sent, the limiter checks whether the current

bandwidth exceeds300 kb/s. If that is the case,the packet is simply dropped with a 50%

chance instead of being sent, simulating network contention. Dropped packets cause the

current bandwidth to decrease. If it drops below 300 kb/s the next packet will be sent again

without a chance of being dropped. Figure 24 shows the resulting relation of sent to

100 200 300 400 500 600

Requested Bandwidth (kb/s)

Figure 24: Simulated Network Contention

requestedbandwidth.The low resolutionis not affectedby this limitation, but the frame

rates for medium and high resolutionare reduced.Whereas a CPU bottleneckcauses

frames to be droppedby the decoder considering MPEGframe dependencies,the band-

width limiter as well as a real congested network does not take them into account. If an 1-

frame is dropped, all dependent frames cannot be displayed either. This behavior causes a

higher burstiness.

The same experiment has been run over the Internet. The remote server has been

located at the Universityof Kaiserslautern,Germany,20 hops away from the client at

OGI. On this link out-of-order delivery of UDP packets can occur, which requires the

player to reorder them. Moreover, frames may have to be split into several UDP packets. If
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Figure 25: Adaptation, remote server in Germany, uncongested network

one of them is lost in the network, the entire frame must be dropped. This dependency

makes larger frames more sensitive to packet loss. I-frames, for instance, are more likely

to be dropped than B-frames, but the latter cannot be decoded without their reference

frames, anyway. Hence, the player performs quite badly if the network is overloaded, and

it depends heavily on the adaptation to prevent this situation. Network congestion and

player performance vary a lot. Hence, the three graphs presented are not necessarily repre-

sentative, but they are examples that demonstrate some effects that occur when playing

over the Internet.

The graph in Figure 25 shows an almost ideal performance. This presentation was

40
I

displayed frame rate -
sent frame rate ---

35 t

resolutiop changes -

320x240

I

256x192

I

128x96
I

256x192
I

320x240

30 r
I
I

II: I I

25
"'t:I
t:: IL I I r
0
U
Q) II. I rtf.)
.... 20Q)
0-
tf.)
Q)a

..;: 15 to,.
"1 1

"1 1
"1_

10



56

40

35

displayed frame rate -
sent frame rate ---

resolutionchanges-

320x240

30 L- ,
256x192 128x96 256x192 320x240

5

o
o 50 100 150 200 250

time (seconds)

Figure 26: Adaptation, remote server in Germany, congested network

recorded on a Saturday morning when there was little load on the network. Only some

temporary frame rate drops differ from the local case. The graphs in Figure 26 and 27

weremeasuredon a weekdayon a congestednetwork.Figure26 showsthat the start-up at

the high resolutioncauses seriousproblems.Theplayerstallsfor as much as40 seconds.

Several factors contribute to this behavior:

· The server starts sending with the full frame rate causing an overload situation.

· At start-up, the player prefetches the beginning of the video clip. During this prefetch-

ing, the frame rate feedback is not active, and frames are still sent at 30 frames per sec-

ond.

.
Since I-frames consist of many network packets and are more likely to be dropped, it
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can take some time before the first frame can be decoded at all.

· The feedback is data driven. Whenever a frame is displayed, the display frame rate is

compared to the server frame rate. If there is no frame displayed at all, however, the

feedback will not take any action.

· The player's simple packet reordering mechanism can delay the delivery of frames and

introduce high burstiness.
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Figure 27: Adaptation, remote server in Germany, congested network

For the low resolution 30 frames per second are usually possible even if the net-

work is busy. After switching to the low resolution in Figure 26, the mechanism errone-

ously assumes to be already in a stable state after the change and tries only slowly to
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increase the frame rate. In Figure 27, the high rate is achieved after start-up, but after the

resolution change at 200 seconds, adaptation fails entirely, that is, the frame rate does not

increase at all after switching to the low resolution. This problem shows that the reaction

to resolution changes needs to be better integrated with the feedback. Another factor may

be that the available bandwidth is not static even if the competing traffic is not changing.

The player's UDP packets may cause competing TCP traffic to back off increasing its own

bandwidth share.
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5.3 View Impact on CPU Consumption

As Figure 21 has shown, CPU consumption depends not only on resolution but

also on image size. To measure this effect, a 10 second clip has been played with different

image sizes. The play speed was 20% to allow all frames to be displayed without over-

o
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Figure 28: CPU consumption and image size for different resolutions

In Figure 28 the CPU times are shown for three resolutions and six image sizes of

the clip. The x-axis is labeled with the image width, with the height being always 3/4 of

the width. The CPU consumption increases significantly with the image size. At normal

loadingthe CPU.
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Figure 29: CPU consumption and image size for different tasks

play speed, only the lowest resolution with the two smallest image sizes could be dis-

played at 30 frames per second. The largest image with the highest frame rate could not

even be managed at 20% speed, which is at five times the CPU capacity.

The CPU consumption for the medium resolution is split up in Figure 29. The

decoding time depends on the resolution, whereas scaling and dithering increase with the

image size. Although recent optimizations have shown that the scaling algorithm can be

made about three times faster, scaling and dithering have considerable costs. The view of a

presentation - not only its quality - has an effect on resource consumption.



Chapter 6

Future Work

6.1 Automatic Adaptation of Resolution

Currently image resolution can only be controlled manually by the user whereas

the feedback mechanism adapts only the frame rate automatically. It is desirable to include

all variable QoS dimensions in an automatic adaptation mechanism and to assess the

trade-offs between them based on an error model. To do so, resolution switching needs to

be integrated with the frame-rate-control feedback. Adding control over additional QoS

dimensions such as color depth would allow us to provide better quality to the user in

adapting to resource availability.

6.2 The Cost of Quality

A multimedia system that controls several QoS dimensions and uses several

resources needs to have some way of relating QoS and resource requirements. An adaptive

application needs to find the configuration with the best quality given the resources avail-

able, whereas for resource reservation it is desirable to find the configuration with the least

resource requirements for a specified quality. Either problem requires a comparison of

configurations with respect to the quality they provide as well as the amount of resources

they consume. The value of a presentation needs to be related to its cost.

Staehli [31] uses his QoS model and error interpretation to evaluate the quality. In

his player he uses simple heuristics to estimate the effect of QoS dimensions on resource

consumption. One heuristic is that every dimension contributes equally to resource con-
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sumption and another that resource requirements are higher for presentations with higher

quality. To implement an advanced automatic adaptation policy it is necessary to find out

if these heuristics are appropriate for a distributed player and if better ones can be found.

6.3 Error Model Extension

The error model presented by Staehli assumes a uniform quality for all streams. In

general however, different parts of a presentation may have different quality requirements

as mentioned in the examples of Section 1.2. Moreover, in a distributed player the

resources available for different streams may vary a lot, resulting in errors varying among

streams even if the quality specifications are uniform. Hence, the error model needs to be

extended to include per-stream QoS specifications. The quality of a presentation can be

calculated as some function of the quality values of all streams, perhaps a mean.

A potential problem is starvation. For instance, if there are two streams and frame

rate is the only variable QoS dimension, displaying a frame of stream A could require

fewer resources than a frame of stream B. Using a mean as the quality measure of the

entire presentation in this scenario, playing stream A with 30 frames per second and

stream B with none at all would provide better quality than playing both streams with 10

frames per second, which is likely to be more desirable. Including uniformity in the over-

all quality measure may solve this problem.

6.4 Feedback for Multiple Streams

Currently the adaptation is controlled by per-stream feedback mechanisms that

work independently of each other. This behavior may result in a random resource distribu-

tion among streams. An error model extended for multiple stream specifications would

provide a desirable quality ratio between streams based on user specifications. A coordi-

nated adaptation mechanism should aim at achieving this ratio. However, different

resource availability may require different of adaptations. Let us assume we have two

streams with stream A being twice as important as stream B. If both streams come from
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the same source, that is they share all resources, the adaptation should achieve a 2:1 qual-

ity ratio. However, if stream A comes from a remote server over a low-bandwidth link and

B is local, it does not make sense to needlessly degrade stream B's quality in order to keep

it half as good as stream A's. The adaptation should rather present stream A with the best

possible quality and spend the rest of the CPU on stream B. In general, this decision

requires knowledge about how much of the resources is shared between streams. For the

network, this information is difficult to obtain. It would be necessary to find out what frac-

tion of the connections is shared between two remote servers. It is desirable to find a feed-

back solution that can yield useful results despite these problems.

6.5 Better Feedback Adjustment to Events in the Player

The feedback mechanism adjusts dynamically to resource availability, adapting to

changes caused by other users that share resources as well as by the player itself. In gen-

eral, this adaptation is done carefully and rather slowly to avoid oscillation. Hence, adapta-

tion to a substantial change can take several seconds. This performance could be improved

for the events caused by the player itself, such as change of resolution or play speed,

switch between concatenated streams as well as end of a stream or start of an additional

one. In complex presentations a variety of such events occur frequently. The presentation

description can give the feedback mechanism additional information for a faster reaction,

for instance by speeding up the adaptation rate temporarily or by using heuristics about the

effect of the change.

6.6 Improved Presentation Authoring

The current restriction on composing presentations should be relaxed. Only syn-

chronization of concatenation of streams is currently supported. An arbitrary combination

and nesting of these operators is desirable. Staehli [31] proposed a normalization algo-

rithm that could be used to transform a description to the currently supported form.

Moreover, it would be useful to include presentations in other presentations.
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Accessing content descriptions from remote sites rather than having to have them at the

client would be another improvement. Supporting synchronized playing and mixing of

several audio streams would add a helpful feature, too.

6.7 Integration with Admission Testing

For use in an environment that supports admission testing, an appropriate interface

between player and admission tester must be provided. As mentioned in Section 6.2, a

way of estimating the resource consumption of a clip is necessary. This QoS mapping

would allow calculating resource-level requirements such as network bandwidth or CPU

consumption from the content information and the quality parameters of a stream. The

varying needs of a complex content presentation make this problem more complicated.

The resource requirements can be submitted to an admission tester.

Most user commands, such as 'Play' or 'Rewind', would invoke the admission

tester. 'Stop' could release the resources, whereas 'Pause' could keep them, guaranteeing

that resumption of the presentation is possible. Changes in view or quality parameters

change the resource consumption, and hence require readmission. There are several ways

of reacting to a failed admission test. For instance, the user could be simply informed of

the failure or the range of a quality slider could be restricted to an achievable value.

6.8 Prefetching for Interactive Use

Currently, prefetching is only used to ensure that the starting times of streams are

synchronized with the rest of a presentation that is being played. The player reacts to user

commands with a delay, which is the time it takes to request, to transmit and to decode the

data needed. Maintaining prefetched data based on the current position in the presentation

would allow immediate play start or display of the next frame when single-stepping. Pro-

viding a quick reaction to arbitrary changes of the position slider requires a sophisticated

approach.



Chapter 7

Conclusions

This thesis has described the architecture of a multimedia player integrating sup-

port for advanced adaptive QoS control, complex presentations, and real-time transmis-

sion of continuous media streams from several remote servers.

Providing more flexibility in three QoS aspects of content, view, and quality opens

new ways of watching multimedia presentations beyond the TV-like features we are used

to. Authors are no longer confined to one video image and may present more information,

allowing the viewer to observe the combination of different streams as well as simply to

choose the most interesting one. Support for presentations with distributed components

eliminates the need to download multimedia content before viewing enabling quick access

for authoring and retrieval. Customizable view parameters allow users to adapt presenta-

tions to their needs. Lastly, multi-dimension quality control based on an error interpreta-

tion helps using resources efficiently. Hence, effective presentations can be achieved at

low cost. The examples in Section 1.2 have shown that there is a need for these features.

There is a potential for many other uses once users get familiar with the new possibilities.

7.1 QoS Model

The design of this player is based on the model of independent content, view, and

quality notions. While the model has been used before to control resource requirements of

a local player, this research has shown that it is also applicable and useful for controlling

and structuring distributed and adaptive multimedia applications. Keeping content, view ,

and quality orthogonal in accordance with the model, however, may require some addi-
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tional implementation effort and cause run-time overhead. To achieve independence of

view and quality in the spatial dimension, for instance, an additional scaling step was

required. Moreover, while resource consumption ideally corresponds to the quality param-

eters and is independent of the view, this assumption does not hold in general. While the

assumption is true in our player in the temporal dimension, it is false in the spatial dimen-

sion: Frame rate affects resource requirements while play speed does not, whereas resolu-

tion and image size affect CPU consumption to a similar extent.

7.2 Control over Multiple Quality Dimensions

Control over several quality dimensions can improve resource utilization, that is

provide more quality per resource. In the current implementation, temporal as well as spa-

tial resolution are variable. Because resource consumption can be controlled by both

parameters, there are several ways of adapting to the current resource availability. Choos-

ing the one best for the user maximizes achievablequality. The adaptation currently works

semi-automatically: the user manually controls resolution while a feedback mechanism

adjusts the frame rate to the amount of resources available.

This infrastructure can be used to integrate both dimensions in an automatic adap-

tation technique based on an error interpretation for assessing the possible QoS configura-

tions. To do so, the application needs to know what quality configurations are achievable.

Hence, it needs to be able to reliably estimate the resource requirements of every configu-

ration. The experiments with two quality dimensions (frame rate and resolution) and two

resources (bandwidth and client CPU) described in Chapter 5, particularly Figure 19 and

20, have shown that changes of quality parameters affect each resource in a different way,

with the respective bottleneck resource determining what quality changes are possible.

That changing a quality parameter can shift the bottleneck makes it even harder to model

resource consumption accurately.
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7.3 Complex Distributed Content

The development of this player has shown that presenting complex distributed con-

tent is possible. Two important operators for composing presentations are concatenation

of sequential streams and synchronization of concurrent streams. In the current implemen-

tation, these operators can be applied to streams from different remote servers, allowing

the content of a presentation to be distributed. It is necessary to ensure synchronization of

several streams that are being played at the same time as well as synchronization of start-

up and end of streams with the rest of a presentation. While the particular mechanisms

needed for supporting complex content largely depend on the underlying single-stream

architecture, it is very likely for the resulting player to be more than a simple extension of

the single-stream case. In developing our system several architecture-specific problems

were encountered.

In our player, the server sends frames at a certain rate after receiving a play com-

mand. Once the transmission has started, a feedback mechanism ensures client-server syn-

chronization. Scheduling the start of a stream, however, is hard. Unpredictable latencies in

communication with the server do not allow scheduling the sending of the command some

time ahead in a way that would make sure that the data arrive on time. In practice it works

well to start the server some constant time ahead and prefetch data, but this approach does

not work always. The latency still may be larger than the constant time used.

For playing several streams (with potentially different characteristics such as frame

rate or resolution) in parallel, it is necessary to carefully separate per-stream structures

from stream-independent structures, with structures including variables, buffers, windows,

and processes. In our architecture, an entire video pipeline is replicated for every stream.

The streams share a control part interacting with the user and providing a common timer.
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