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Abstract 

A Software Feedback Toolkit 
and its Application in Adaptive Multimedia Systems 

Shanwei Cen 

Supervising Professors: Calton Pu and Jonathan Walpole 

As modern computer and network technologies develop, computer systems, especially 

distributed multimedia systems across the Internet, become more and more complex and 

dynamic. Among the problems of complex and dynamic computer systems are heterogene- 

ity and a high degree of dynamics and unpredictability in their environment, the difficulty 

in precise modeling, and potential lack of convergence to desirable stable states. These 

problems call for mechanisms that can control complex and dynamic computer systems 

effectively without relying on insight into their internal structure nor precise models of 

their behavior. Furthermore, such mechanisms should be able to adapt across a wide 

range of possible changes in the heterogeneous software environment. 

Software feedback, a software technique that uses feedback mechanisms similar to those 

in hardware feedback systems such as phase-lock loops, plays an important role in making 

complex and dynamic computer systems adaptive. It already exists in many forms, such as 

network flow and congestion control, clock synchronization between Internet hosts, intra- 

and inter-stream synchronization in distributed multimedia streaming systems, and a d a p  

tation in multimedia presentation quality. However, the existing feedback mechanisms are 

implemented in custom ways. They suffer from arbitrary structure and wasted effort due 

to repeated redesign and re-implementation of logically similar components. 
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To address the issue of building software feedback mechanisms systematically and ef- 

ficiently for complex and dynamic computer systems, in this thesis, we present a software 

feedback toolkit and discuss its application in adaptive multimedia systems. We propose 

a methodology for hierarchical composition of feedback systems on top of simple building 

blocks. We also introduce the concepts of guard-based meta-adaptation, guarded feedback 

components, and dynamic component replugging for composing feedback mechanisms that 

adapt across a wide range of system dynamics based on simple feedback policies with lim- 

ited domains. We implement the toolkit in C++, with a library of building blocks and 

a set of tools for simulation and instrumentation. This software feedback toolkit facili- 

tates the development of highly modular, adaptive and extensible feedback systems, and 

helps the reuse of existing feedback components. Then we demonstrate the application 

of the software feedback toolkit for building adaptive real-time packet rate control mech- 

anisms, network flow and congestion control mechanisms for multimedia streaming, and 

an adaptive real-time distributed video player. 
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Chapter 1 

Introduction 

1.1 Motivations 

As modern computer and network technologies develop, computer systems and applica- 

tions become more and more complex and dynamic. The Internet is a typical example of 

the state of the art. It is a huge network, composed of millions of heterogeneous computers 

connected through a wide variety of network links, and numerous kinds of applications. 

Furthermore, hosts, network links and applications are added or removed constantly. Each 

application can be envisioned as a dynamic system living in an ever-changing environment. 

Problems of complex and dynamic systems include difficulty of modeling them precisely, 

and potential lack of convergence to desirable stable states. There are many reasons why 

a dynamic system may not be able to stabilize on an expected state by itself. Either there 

is disturbance from the environment, or the limit of its structure makes it impossible to 

converge automatically. These problems of dynamic systems call for mechanisms that can 

control them effectively without relying on detailed insight into their internal structure 

nor precise models of their behavior. Furthermore, such mechanisms should adapt quickly 

to changes in the environment. 

Software feedback is a software technique that uses feedback mechanisms similar to 

those in hardware feedback systems, such as phase-lock loops [3, 51. A feedback mecha- 

nism continuously monitors the output of the system under control (the target system), 

compares the result against preset values (goals of the feedback control), and feeds the 

difference back to adjust the behavior of the target system. One beneficial property of 

feedback mechanisms is that they can control complex dynamic systems effectively even 



when they have no, or only partial, knowledge of the target system's internal structure or 

when they do not have a precise model of it. This property suggests that feedback mech- 

anisms could be used in controlling complex dynamic systems that must operate in highly 

complex and unpredictable environment, hence making the dynamic systems adaptive to 

the diverse and ever-changing conditions. 

Software feedback mechanisms already exist in many forms in computer systems. They 

have been used in inter-host clock synchronization, network flow and congestion control, 

quality-of-service control in multimedia presentations, process and thread scheduling, sys- 

tem adaptation, and many other fields. Just a few examples are the flow control mech- 

anisms in TCP [23], the clock synchronization mechanisms in Network Time Protocol 

(NTP) [35], video frame rate control mechanism in Berkeley continuous media player [53], 

feedback-based scheduling in the Synthesis operating system [32]. 

These existing feedback mechanisms are generally implemented in a custom manner, 

and are hard-coded for a particular application in a particular environment. Consequently, 

they suffer from arbitrary structure and wasted effort due to repeated design and imple- 

mentation of logically similar components. Their parameters are usually hard-wired and 

difficult to tune. They also lack the flexibility of easy extension for adaptation to new 

environments. 

On the other hand, various control theories and toolkits already exist, and have been 

successfully used in the development of traditional hardware and embedded control sys- 

tems, including feedback systems. In classical control theories, linear systems theory [3, 51 

provides formal specification and analysis of linear systems, and nonlinear systems the- 

ory [14] helps design nonlinear systems based on various forms of linearization. Modern 

control theories such as fuzzy [34, 671 and neural [16,67] control offer guidelines on dealing 

with dynamic nonlinear systems, though they generally are based only on intuition and 

experience, and lack a rigorous method. There are also toolkits, such as Matlab [60, 611 

and MATRIXx [21], which are based on the above control theories. In these toolkits, there 

are libraries of control-theory conforming components, and tools to help the composition, 

simulation and analysis of control systems. 

The origin and target of the control theories and toolkits in engineering fields are 



feedback-based dynamic control of hardware and embedded systems. The target systems 

have relatively well-defined or understood range of dynamics (or domain). Many of them 

may also be modeled precisely. For example, one of the basic assumptions of (linear and 

nonlinear) control-theory-based feedback mechanisms is that the target system is gradual 

in the transition of its state. In other words, the system state usually does not jump sud- 

denly. Thus gradualness is an important property in the domain of a control-theory-based 

feedback system. Fortunately, hardware and embedded systems usually have this gradu- 

alness in their dynamics for straightforward application of control-theory-based feedback 

mechanisms. As a result, the control theories and toolkits do not need to provide a means 

to handle the case when the actual system dynamics is out of the domain of the feedback 

mechanisms used. In case the dynamics of a target system goes beyond the domain of the 

feedback mechanism, the feedback tends to either suffer from performance degradation or 

to fail without detection. Furthermore, hardware feedback systems are implemented in ca- 

pacitors, inductors and resistors. Embedded systems usually are programmed in low-level 

languages. For these reasons, the existing control-theory-based toolkits do not facilitate 

software implementation of feedback systems in high-level programming languages very 

well. They either do not generate executable code, or the code they generate is tightly cou- 

pled with their run-time environment, making it hard for the generated feedback systems 

to be efficiently incorporated into software systems. 

Computer systems are becoming far more complex and dynamic than traditional hard- 

ware and embedded systems. They are also evolving rapidly in an unpredictable way. For 

example, Internet hosts range from low-end Internet appliances and PC's to workstations 

to mainframe supercomputers. Network links range from phone line at 28.8Kbps, to Eth- 

ernet at 10 or lOOMbps, to fiber links at up to 10G6ps. Some of the Internet hosts are 

also mobile. They may switch between different network interfaces with totally different 

characteristics, such as between wireless PPP and Ethernet, while network applications 

are up and running. Applications with totally different requirements and behavior share 

the same Internet. They include bulk data transfer through FTP, interactive applications 

such as telnet, and real-time multimedia streaming applications. The Internet has been, 

and is still evolving in an unpredictable way. An exponentially-growing number of new 



links and hosts are connected, and new types of applications are created constantly. No 

one can predict what the Internet will look like several years from now. Similarly, typi- 

cal workstation operating systems must support a wide range of tasks, from background 

computational tasks, interactive editors, real-time multimedia applications, and system 

processes, to hard real-time tasks processing hardware interrupts. The mixture of the 

tasks also changes in an unpredictable manner. 

To make software systems survive and work well in highly complex and dynamic com- 

puter environments, and adapt to unpredictable changes, we not only need to make use 

of software feedback mechanisms, but also need to make the feedback mechanisms them- 

selves robust and adaptive. In contrast to a hardware and embedded feedback mechanisms 

that have a domain with the property of gradualness, a software feedback mechanism may 

have a domain with dascontinuity. For example, a streaming video player on a mobile host 

will experience orders-of-magnitude jump in available network bandwidth upon switching 

between wireless PPP and Ethernet interfaces. The feedback mechanism in the player 

for network flow and congestion control should respond to the big jump quickly as well 

as adapting the playback quality to the network bandwidth variation caused by dynamic 

network traffic load. A domain with discontinuity can be seen as a union of multiple 

sub-domains, some of which may have the property of gradualness. Due to the holes 

between the sub-domains, the overall domain is sparse in some sense. A feedback mech- 

anism with a sparse domain has a wide range of dynamics. It should not only work well 

within each sub-domain, but also needs to switch between these sub-domains dynami- 

cally when a jump between the domains happens. The feedback mechanism may need to 

change its parameters or internal structure dynamically in order to perform the switches. 

To reflect the characteristics mentioned here, a feedback mechanism of this type can be 

referred to as a sparse-domain feedback mechanism, a wide-range feedback mechanism, or 

an adaptive-structure feedback mechanism. 

To build software feedback mechanisms efficiently, whenever possible, methodologies 

should be followed for composition from simple components, and software components 

already implemented should be reused to avoid waste of effort. There exists a big gap 



between traditional control theories and toolkits, and the requirements of software feed- 

back mechanisms and their development. This gap explains the fact that though control 

theories and toolkits are popular in the development of hardware and embedded control 

systems, they are unknown to most software engineers, and hardly used in the development 

of any software feedback mechanisms. 

1.2 Contribution of the Thesis Research 

To facilitate the design and implementation of wide-range software feedback systems1, 

this thesis presents a software feedback toolkit. We propose a methodology for composi- 

tion of software feedback systems, and implement a software feedback toolkit prototype 

consisting of a library of basic feedback components and a set of tools for feedback sys- 

tems composition, simulation, and instrumentation. We also demonstrate the application 

of the software feedback toolkit in developing software feedback mechanisms for adaptive 

multimedia streaming applications. The contributions of the thesis research are as follows: 

(1) A methodology for composition of wide-range software feedback systems 

In the proposed methodology, software feedback components export a common interface. 

With this common interface, building blocks can be composed in a uniform way to form 

composite components. Feedback systems are built hierarchically based on existing build- 

ing blocks and composite components. To help build wide-range feedback systems, the 

methodology makes guard-based meta-adaptation (a feedback system changes its own pa- 

rameters or internal structure in order to adapt to wide range of dynamics in the target 

system) explicit, and introduces the concept of a guarded feedback component. A feed- 

back component (or policy) has a domain in which it works well, and an associated set 

of assumptions on applicability, dynamics in input signals, performance and stability. A 

set of guards (each of which is a predicate testing if an assumption is valid or invalid) 

is placed around a feedback component against these assumptions. A guarded feedback 

'since the thesis will be focused on a toolkit for developing software feedback systems, when the 
context does not have ambiguity, terms such as "software feedback systemn, "software feedback", 'Teedback 
system", and "feedback mechanism" will be used interchangeably. 



component is activated, deactivated, re-parameterized (change in parameters) or restruc- 

tured (change in structure through dynamic replacing of one feedback component with 

another) upon triggering of its guards. A feedback system can be composed of multiple 

guarded components, each of which are in effect only when they are applicable. It switches 

between its components through guard-based meta-adaptation actions. 

Guard-based meta-adaptation also helps the application of control theories, especially 

linear systems theory, in the development of wide-range software feedback systems. Con- 

trol theories can be applied in the specification and analysis of feedback systems composed 

of theory-conforming components. Guards are placed around those components to inform 

the upper layer for meta-adaptation in the case the system dynamics exceeds their do- 

mains. 

(2) Software feedback toolkit prototype 

A prototype of the software feedback toolkit is implemented in C++. Base classes are 

defined for feedback components, and a library of building blocks is implemented, including 

various filters, regulators, connectors, etc. The software feedback toolkit has facilities to 

help compose composite feedback components out of building blocks, and to help dynamic 

component replugging. It also contains a set of tools for feedback system simulation, and 

on-line instrumentation. With this toolkit prototype, we demonstrate that the feedback 

composition methodology can be reduced to practice. We provide a detailed design of 

components that others may follow. This toolkit prototype also makes the technology 

proposed in this thesis readily available to software developers. 

(3) Application of the software feedback toolkit for developing wide-range 

feedback mechanisms in adaptive multimedia systems 

In order to demonstrate the feasibility of the software feedback toolkit and to allow eval- 

uation of it, the toolkit is applied in the development of several feedback systems for 

adaptive multimedia applications. In the case of adaptive packet rate control, two types 

of network pipelines are identified, and corresponding feedback policies and their guards 



are designed and implemented. Upon triggering of the guards, appropriate feedback poli- 

cies are plugged in and activated, or deactivated and unplugged, dynamically. Dynamic 

replugging of feedback components makes the packet rate control adaptive to changes in 

network conditions. It also makes it easy to extend the packet rate control feedback when 

new types of networks are identified. 

A media streaming control protocol (SCP) is proposed and implemented. SCP is a rate- 

and congestion-window-based flow and congestion control protocol for real-time streaming 

of multimedia data. The design of SCP follows the methodologies of the software feedback 

toolkit such as hierarchical feedback composition, and guard-based meta-adaptation. The 

building blocks from the toolkit component library are used extensively. The simulation 

and instrumentation tools then greatly help visualizing the behavior of SCP, and facilitate 

tuning-up of policies and parameters. 

Finally, the software feedback toolkit is used to make a distributed real-time MPEG 

video player adaptive. The player is designed to stream video and audio across the Inter- 

net in real-time. The ever-changing available bandwidth and transmission latency of the 

Internet requires that the real-time player be highly adaptive. The feedback-based quality- 

of-service control mechanism, along with the SCP protocol mentioned above, adapts to 

many factors, including client processing speed, server disk bandwidth, network band- 

width, network delay and delay jitter, user preference, etc. The adaptive client-server 

synchronization feedback ensures synchronization between the server and the client in the 

face of changing network and host conditions, and keeps buffering latency minimum while 

ensuring smooth video playback. 

1.3 Structure of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 presents the proposed methodology 

for composition of software feedback systems. In Chapter 3, a prototype implementation 

of the toolkit is described. Next, Chapters 4, 5 and 6 are dedicated to the application of 

the software feedback toolkit in the development of several feedback systems for adaptive 

distributed multimedia applications: an adaptive packet rate control protocol, an media 



streaming flow and congestion control scheme, and adaptive QoS and synchronization 

control feedbacks in a distributed multimedia player. Then Chapter 7 discusses how some 

previous or ongoing projects relate to the research in this thesis. Finally, Chapter 8 

concludes the thesis and discusses some of the interesting research issues we want to 

address in the future. 



Chapter 2 

Software Feedback Composition 

Methodology 

2.1 Introduction 

A feedback system continuously monitors the behavior of the target system being con- 

trolled, compares the actual behavior against a specification of the expected behavior, 

and adjusts the target system accordingly, to ensure that the behavior or performance 

of the target system is within the specification. Figure 2.1 shows the overall structure of 

a feedback system and its interaction with the target system. There are two main func- 

tional components in a feedback system: a filter and a regulator. A filter takes the output 

signal of the target system, which usually contains noise caused by the environment or 

measurement process. It filters out the transient noise and extracts useful information 

reflecting the behavior of the target system. A regulator compares the measured current 

system behavior against a goal specification, and applies control laws to adjust the target 

system accordingly. 

There are many flavors of software feedback systems in terms of complexity and adapt- 

ability. Some are simple, requiring no filter, and a regulator with only minimum func- 

tionality. Others are complex, such as the QoS control feedback for the distributed video 

player to be discussed in Chapter 6. Some target systems have limited dynamics ranges, so 

that the feedback systems do not need to be highly adaptive. Yet others, such as Internet 

applications, are known to have a highly dynamic environment. Furthermore, Internet 
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Figure 2.1: Overall structure of software feedback systems 

applications not only need to work well in the current environment, but also should sur- 

vive in the future. The software feedback mechanisms controlling these complex dynamic 

systems should work well across a wide range of system dynamics. Complexity and adapt- 

ability are two closely related properties. A feedback system is complex mainly because it 

needs to handle many different changing situations. Many software feedback systems are 

complex and adaptive, and call for methodologies in their development. 

In this chapter we propose a methodology for the development of complex wide-range 

feedback systems. First, we model feedback components with a common interface, which 

makes it easy to compose different components. We discuss commonly used building 

blocks, and how simple components are composed hierarchically to form complex compo- 

nents. Next, by making guard-based meta-adaptation explicit and introducing the concept 

of guarded feedback component, we show how complex wide-range feedback systems can 

be composed based on a set of simple feedback policies. A wide-range feedback system is 

composed of multiple guarded component sub-systems. Triggering of a guard changes the 

parameters or state of the guarded component and its relations with the rest of the overall 

feedback system, thus making the structure of the overall feedback system adaptive to 

the dynamic environment. The development of a complex wide-range software feedback 

system follows the proposed methodology by decomposing the feedback into cooperative 

guarded components. Then the components are implemented on top of the building blocks 

provided by the toolkit, and composed to form the whole feedback system. Finally, we 

discuss how to make use of the results of existing control theories to build feedback systems 
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Figure 2.2: Model of software feedback components 

with predictable theoretical properties. 

2.2 Feedback Component 

2.2.1 Feedback Component Model 

A feedback component is modeled as a parameterized message-driven object with a set of 

input and output ports that interface to the outside world. All feedback components, no 

matter what their structures or functionalities are, have a common interface, so that they 

can be composed to form more complex components. The only way an external entity 

manipulates a feedback component is by exchanging messages through its various ports. 

Figure 2.2 shows the model of software feedback components. The elements of this model 

are listed as follows. 

Message A message is a signal with or without an associated set of values. Messages 

flow into, and out of feedback components through various types of input and output 

ports. 

Port A feedback component interfaces with the outside world through a set of 

message input-output ports. A port receives or sends out messages. As shown in 

Fig. 2.2, and to be further discussed below, there are input and output ports for 

feedback messages, parameter ports, state ports and a reset port. 



Message-driven object This object is the body of a feedback component. It re- 

ceives and processes input messages and produces output messages. A feedback 

component object can have internal states, and may expose some of them to the 

outside world through its state ports. It may also have a set of parameters, and 

expose them to the outside through parameter ports. An important difference be- 

tween a state and a parameter of a feedback component is that a state is updated 

by the component itself, while the value of a parameter remains constant unless 

updated by external entities. For example, in a lowpass filter for estimating the 

available bandwidth of a network connection, the recent average bandwidth mea- 

surement is the state, and the time constant of the filter is a parameter. Further 

structure of the component object is not specified in the model, and is up to the 

specific implementation of the model or component. 

Input port A feedback component can have zero or more input ports. Messages 

containing feedback data, also called feedback messages, are passed to a feedback 

component through its input ports. Input ports are asynchronous. They do not 

necessarily receive messages simultaneously, and a message from any input port 

may independently trigger state changes or message output. However, in individual 

components, the input ports can be related to each other or made synchronous 

through explicit programming. 

Output port A feedback component can have zero or more output ports. Feedback 

messages generated by a feedback component are sent to its output ports. Again, 

output ports are modeled as asynchronous, and can be related with each other and 

with the input ports through explicit programming. 

Parameter port A feedback component may expose its parameters to the outside 

for retrieval or update. Each exposed parameter is associated with a bidirectional 

parameter port. When a feedback component receives a message containing a param- 

eter value from one of its parameter ports, it changes the corresponding parameter to 

the value contained in the message. When a component receives a message contain- 

ing a request of parameter value from one of its parameter ports, it sends a message 

containing the current value of the corresponding parameter to the parameter port. 



State port A feedback component may also expose its internal states to the outside 

for retrieval or update. Each exposed state is associated with a bidirectional state 

port. An internal state is retrieved or updated through its corresponding state port 

in a manner similar to that in which a parameter is accessed. 

Reset port Each feedback component has one inbound reset port. Upon receiving 

a message from this port, the feedback component resets its internal states to the 

initial (default) values while keeping its parameters unchanged. 

A feedback component has several stages in its life cycle. During initialization, its 

parameters and internal states are initialized to a default value. During normal operation, 

it receives feedback messages from input ports, processes them, manipulates its inter- 

nal states, and generates output messages. Its parameters are updated upon receiving 

messages from its parameter ports. A message presented to the reset port of a feedback 

component resets its internal states to initial values. If all parameters and internal states 

are exposed, then a snapshot of its parameters and states can be saved and later restored, 

either to the same component instance, or to another instance of a similar type of compo- 

nent. This ability to save and restore parameters and states helps with dynamic replugging 

of feedback policies, which will be discussed later in this chapter. 

2.2.2 Basic Feedback Component 

Basic feedback conaponents, also called building blocks, are those which have simple and 

well-defined functionalities and are unnecessary to further break down into even simpler 

components. Several criteria can be used to categorize feedback building blocks. Based 

on their roles in feedback systems and component composition, there are signal sensors, 

filters, regulators, connectors, and action generators. Depending on its complexity, a 

feedback system may consist of only some, or all of these types of components. A signal 

sensor collects measurements from a target system. A filter extracts information from 

noisy measurements about the parameters, performance or behavior of the target system. 

A regulator applies control laws on its input from filters to make decisions for adjusting the 

target system. A connector routes messages around to help connect feedback components. 



Finally, an action generator adjusts the target system based on decisions made by the 

regulator. Among the above types of components, filters, regulators and connectors have 

a common interface, while signal sensors and action generators may be application specific, 

and may have ad-hoc interfaces to the target system. Similarly, depending on whether 

a feedback component or system conforms to linear systems theory [3, 51 or not, it can 

be classified as either linear or nonlinear. A linear component conforms to linear systems 

theory and is amenable to specification and analysis based on that theory. On the other 

hand, a nonlinear component has nonlinear behavior and cannot be characterized using 

linear theory for specification or analysis. 

One example feedback building block is a simple first-order lowpass filter [5] shown in 

Fig. 2.3(a). This filter is a linear component with one input port, one output port, and a 

parameter port. Taking an input sequence of measurements {v(k)) (k 2 0) and an output 

sequence {y(k)) (k 2 O), the lowpass filter with a parameter R (0 5 R 5 1.0) is defined 

by the following equation. Here we assume an initial condition of y(-1) = 0. 

y(k) = R * u(k) + (1.0 - R) * y(k - 1) where k 2 0 

The output of the lowpass filter is an estimator of the average of its recent inputs. The 

parameter R is an aging factor that specifies how much contribution old values have to 

the average. The filter has a internal state variable to hold to previous output y(k - I),  

but does not export it. 

Another example is a simple biaser shown in Fig. 2.3(b). For each input, it generates 

an output which is the sum of the input and its current parameter value. This biaser is a 

linear component usually used as a regulator. For example, in Chapter 4, we will present 

a packet rate control feedback for lossy networks, which uses a biaser to generate the rate 

at which the server sends packets in the future. 

Figure 2.3(c) gives an example of a switch component with hysteresis. This component 

has one input port, one output port, and two parameters heset and Rset, where < 

RSet. When the input of the switch goes beyond Rset, the switch is turned on. When the 

input goes below it is turned off. When the input is in the range of (&,,,t, Rset), 

the state of the switch stays where it is, which can either be on or off. This component is 



(a) A linear first-order lowpass filter (b) A simple biaser 
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Figure 2.3: Feedback building block examples 

a nonlinear regulator commonly used in temperature control systems. 

Finally, we see an example of a multiplexer in Fig. 2.3(d). This multiplexer has multiple 

input ports, one output port, and no parameter port nor state port. A message received 

from any input port is passed to the output port without processing or delay. 

2.3 Hierarchical Feed back System Composition 

Feedback systems are implemented by composing feedback components in a hierarchical 

manner, as shown in Fig. 2.4. Feedback building blocks live at the bottom of the hierarchy. 

A composite feedback component, which is a composition of simpler components, sits at 

one of the higher levels. A feedback system is a feedback component at the top of the 

feedback composition hierarchy. 

A composite feedback component consists of a set of simpler components (called sub- 

component~) which are either building blocks, or composite components themselves. The 

general structure of a composite component can be seen in Fig. 2.5. The subcomponents 

are composed by connecting their message input and output ports together. An output 

port of a component can either be open, or be connected to one or several message input 
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Figure 2.6: Composite feedback component for estimation of mean and mean deviation 

ports, including input ports, parameter ports, state ports, or reset ports, of other compo- 

nents. When a message is presented at an output port, it is passed to all the connected 

message input ports. Some of the input, output, parameter or state ports are exported as 

ports of the composite component. Reset ports of all the subcomponents are connected 

and exposed as a single reset port of the complex component. 

Glue code, which is specific to each individual component, is also an essential part of 

a composite component, as indicated by Fig. 2.5. In a composite component, there may 

be some parts that are hard or impossible to implement by composing subcomponents. 

One example is the dynamic replugging of subcomponents to be discussed in the next 

section. Implementation of these component-specific parts is an important role of the glue 

code. Further modeling of the various operations performed by the glue code will not be 

explored by this thesis, but is part of the future research. 
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Figure 2.7: Higher-order feedback 

One example of a composite feedback component is a filter for estimating the mean and 

mean deviation of a sequence of measurements. Suppose the raw measurement sequence 

is Mi (i 2 0), then its mean Ai can be estimated by applying a lowpass filter shown in 

Fig. 2.3(a): Ai = lowpass(Mi). The mean deviation is the average of (Mi - Ail, which 

can be gained by using a component to compute the difference, and one for the absolute 

value, and finally a lowpass filter of the same type used for calculating Aim Figure 2.6 

shows the structure of the composite filter. This filter is composed of two lowpass filters 

and two other components. It has one input port for the raw measurements, two output 

ports, one for the mean and the other for the mean deviation. It  also has two parameter 

ports, one for each lowpass filter. 

There is an interesting case of feedback system composition when a feedback compo- 

nent sends messages to the parameter ports instead of the normal input ports of other 

components. In this case the former feedback component does not control the target sys- 

tem directly. Instead, it makes the latter feedback component more adaptive by changing 

its parameters. This case of one feedback component controlling another one is called 

hagher-order feedback, as shown in Fig. 2.7. Higher-order feedback can be found in many 

complex software feedback systems. One example is the TCP flow control protocol, in 

which there is a time-out-and-retransmission mechanism to decide when to retransmit 

packets. The time-out time is set by a lowpass filter that continuously monitors the mean 

and variance of connection round-trip time. 



Another interesting case is that a wide-range feedback system is likely to have a dy- 

namic instead of static structure. Based on the current state of the target system and 

its changes, feedback components may be dynamically plugged into the working feedback 

system and activated, or deactivated and unplugged. This dynamic structural change is 

referred to as dynamic replugging of feedback components and will be further discussed in 

the next section. 

2.4 Guard-Based Meta-Adaptation for Wide-range Feed- 

back System Composition 

As discussed in Chapter 1, computer systems are complex and highly dynamic. Their 

environment also evolves over time. The feedback systems in this environment need to 

work well across a wide range of dynamics, in a domain with discontinuity. On the other 

hand, an individual feedback policy usually has a limited domain. In particular, a control- 

theory-based feedback system usually assumes that the state transition in its target system 

is continuous. It is useful to compose a complex wide-range software feedback system based 

on a set of component feedback systems. A component may be active when the dynamics 

of the target system falls into its domain. When the system dynamics moves from the 

domain of one component to that of another, the overall feedback system takes actions, 

such as switching to the new component, in order to adapt appropriately. 

In this section, we propose an approach to compose wide-range feedback systems with 

component feedback policies (sub-systems). We make guard-based meta-adaptation ex- 

plicit and introduce the concept of guarded feedback component. The domain in which a 

component feedback system works well is identified. It is represented by a set of assump- 

tions, each of which is guarded by placing corresponding guards around the component. 

The overall feedback system is composed of multiple, repluggable, guarded feedback com- 

ponents. Upon triggering of a guard, the overall feedback system changes the parameters 

or the structure of the guarded component, or deactivates and unplugs it, and plugs-in 

and activates a new component. Through dynamic replugging of the components, the 

overall feedback system works across the combination of the domains of the components. 



Thus its domain is the union of those of its components. If there are gaps between the 

component domains, the over-all domain would have the property of discontinuity. We 

explore the possible ways of feedback system meta-adaptation, and discuss the types of 

events that need to be guarded. Much of the terminology used in describing the model 

of guard-based meta-adaptation are borrowed from the Synthetix project [44], which is 

summarized in Section 7.2. 

2.4.1 Guarded Feedback Components and Their Composition 

A feedback component implementing a single function (e.g., feedback policy or filtering 

algorithm) has a domain as a subset of its whole input space, in which it works well. 

This statement is especially true for filters implementing single algorithms and regulators 

enforcing simple feedback policies. If the dynamics of the target system goes beyond its 

domain, the feedback component may suffer performance degradation, have undesirable 

behavior, or simply break and become non-applicable. For example, the lowpass filter 

shown in Fig. 2.3(a) only makes sense if the variation is mostly caused by noise, and the 

true value is either constant, or changes gradually. So its domain can be stated as high- 

frequency noise, actual input keeps constant or changes gradually. If the actual input value 

jumps in big steps, then the tracking accuracy of the filter will be seriously compromised. 

The domain of a feedback component can be represented by a set of assumptions 

concerning the applicability, input signals, performance, or properties such as stability 

and responsiveness. Some of the assumptions are true invariants, which are known to be 

valid all the time, while others are likely to be valid most of the time, but not always. This 

later type of assumption can be referred to as a quasi-invariant. For example, on a specific 

platform, word size, cache size, whether a processor has a FPU, etc., are invariants. On 

the other hand, in a personal computer invironment, it is likely, but not certain, that a file 

is not shared by more than one process. Thus "a file is not shared" is a quasi-invariant. 

To ensure that the quasi-invariants remain valid throughout the time when the feedback 

component is in effect, a set of guards are placed around the component. A guard monitors 

the events that may change the validity of the assumption it guards. Whenever an event 

validates or invalidates an assumption, a guard is triggered, and proper actions are taken 
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Figure 2.8: Guarded software feedback component 

to change either the parameters or internal structure of the guarded components, or to 

activate or deactivate it. These actions are collectively referred to as meta-adaptation 

actions. A feedback component with a set of guards, which may be triggered by events 

and results in meta-adaptation on it is called a guarded feedback component. Figure 2.8 

shows a scenario of this concept. The meta-adaptation of feedback systems based upon 

triggering of guards is referred as guard-based meta-adaptation. The process of composing 

multiple guarded feedback components, each of which has a limited domain, into a wide- 

range feedback system with a domain as a union of that of its components through guard- 

based meta-adaptation is then referred to as multi-domain composition. The resultant 

wide-range feedback system can be called an adaptive-structure feedback system if it has 

dynamically repluggable components as well as adjustable parameters. It  can also be called 

a sparse-domain feedback system if there are gaps between the domains of its components, 

2.4.2 Meta-Adaptation Actions 

Upon triggering one of its guards, a feedback system may adapt in following ways: chang- 

ing component parameters, resetting components, plugging or unplugging components, or 

signalling exceptions to the application. 



Change of Component Parameter Value 

A feedback component changes the values of its parameters upon receiving messages from 

its parameter ports. For example, in the low pass filter shown in Fig. 2.3(a), the value 

of the parameter R can be changed through its parameter port. Component parameter 

value change is a light-weight adaptation with very little overhead. 

Component State Resetting 

A feedback component resets its state to initial default values upon a signal sent to its 

reset port. Resetting is an effective way for a component to discard its no-longer-valid 

state. For example, in the video player to be discussed in Chapter 6, the client is capable 

of switching between PPP and Ethernet interfaces while a playback session is going. Upon 

a switch in network interface, the lowpass filter used for estimation of video display frame 

rate should be reset to discard the no-longer-valid frame-rate estimation. 

Dynamic Component Replugging 

Another way for a feedback system to adapt to new situations is to change its structure 

dynamically. As shown in Table 2.1, there are several ways in which a feedback system 

can change its structure: re-wiring the ports of feedback components, deactivating and 

unplugging existing guarded components from the working system, plugging-in and ac- 

tivating guarded components into the working system, or replacing existing components 

with new ones implementing a different policy. We call this process dynamic component 

replugging. In the adaptive packet rate control feedback in Chapter 4, there are two feed- 

back policies, one to handle packet loss, the other for latency build-up. Each policy has 

a guard detecting if corresponding congestion conditions show up. Upon triggering of a 

guard, the set of components for the corresponding policy are plugged in. If the corre- 

sponding congestion condition no longer exists, the components of a policy are unplugged 
' 

from the working feedback system. 

An alternative to dynamic component replugging is to leave all components plugged 

in all the time, and use a mechanism, such as case-statement, to dynamically determine 

what components to invoke upon each input signal. For example, in the adaptive packet 



I Component unplug I A component is deactivated and disconnected from I 

Case 
Component re-wiring 

Description 
Ports of components are reconnected 

Component plug-in 

I I a different ~olicv. I 

the working feedback system 
A component is connected to the working feedback 

Component replacement 

- - -  - 

Table 2.1: Cases of dynamic component replugging 

system and activated 
An existing component is replaced by a new one with 

rate control feedback in Chapter 4, instead of having two repluggable feedback policies, we 

could have the two policies always plugged in. There would also be two flags indicating 

whether packet-loss or latency-increase has been detected. Each time when the packet 

rate control feedback is invoked, the flags are tested and appropriate policies are invoked 

accordingly. This alternative case-statement approach has several disadvantages. The first 

is that continuous testing of flags upon each invocation results in extra execution overhead. 

Dynamic component replugging eliminates this type of overhead, but introduces overhead 

for replugging of components. Fortunately, in most cases, dynamic component replugging 

only happens very infrequently, and is thus more efficient in execution. The Synthetix 

project [44], to be further discussed in Section 7.2, has demonstrated that in file read( 

system call, dynamic code generation (similar to dynamic component replugging) is more 

efficient than case-statements. Another disadvantage of the case-statement approach is 

that it is inflexible. A case-statement needs to know, during coding time, exactly what 

polices are to be invoked. As a result, dynamically extending a feedback mechanism for 

new situations is impossible. On the other hand, with dynamic component replugging, it 

is easy to extend an existing feedback mechanism, since the feedback mechanism does not 

need to know exactly which policy is being invoked, as long as the potential policies have 

the same interface. 

In our feedback component model, a component exports input, output, parameter 

and state ports. The way external entities explicitly trigger adaptation of the component 

is to send messages to its parameter ports. in a complex component, some parameters 

may associate with its internal structure, changing these parameters actually changes the 



structure, thus performing dynamic replugging of subcomponents. One example is the 

PLL simulator discussed in Section 3.5. In that example, there is a composite filter for the 

PLL policy, which has a parameter associated with a dynamically repluggable component 

to eliminate phase-error residue. If the parameter of the filter is set to zero, the the 

compensator is unplugged, otherwise it stays plugged in. 

Dynamic component replugging is considered heavy-weight adaptation. In its simplest 

form, re-wiring between components is all that is needed. However, components may need 

to be allocated or reclaimed on the fly. In a more expensive case, the code of the new 

component may need to be synthesized at run-time. As discussed in the next section, 

synthesis of the code of linear feedback components is fairly reasonable, because of the 

availability of rigorous specification and predictability in properties of linear feedback 

components. 

The feedback component model proposed in this chapter helps build feedback systems 

with dynamic structure in several ways. First, all feedback components have a common 

interface, so that composition of components is simple and straightforward. Second, each 

feedback component also has a set of ports for accessing its parameters and internal 

states, so that the parameters and state of to-be-unplugged components can be saved, 

and restored in newly-plugged-in components if necessary. For example, suppose a lowpass 

filter is to be replaced by a median filter1. The current state, i.e., the current estimator, 

can be retrieved from the lowpass filter, and restored to the median filter. Thus, the 

median filter can use this value instead of a default value as an initial estimation. 

Exception 

Because software systems are highly dynamic and evolve all the time, it may be the case 

that an originally unexpected event happens and triggers some guards, but the feedback 

system is not designed to handle the new situation yet. In this case, all the assumptions 

on which the whole feedback system is based become invalid, and an exception should 

be signaled to the application for further processing. The application can either take 

'A median filter outputs the median of the recent set of input samples, instead of the average of them. 
See the toolkit user's manual [7] for more information. 



measures outside of the feedback system, or even download a new feedback policy into 

the existing feedback system on demand. Here we envision an open feedback architecture: 

feedback systems are extensible, and have the interface to receive and plug-in new feedback 

components synthesized by external entities. Further investigation of the idea of open 

feedback architectures will not be discussed in the thesis, but is part of the future work. 

We again can use the adaptive packet rate control feedback in Chapter 4 as an example. 

For both the feedback policies used, there is an assumption that the nominal network 

bandwidth is relatively stable, and changes slowly if there are changes, so that the feedback 

can catch up with the bandwidth change. In the current Internet environment, as far as our 

experiments go, it remains true that the available bandwidth averaged along a reasonable 

period of time does not change drastically all the time. But in the future, with the 

deployment of high-speed networks having a high throughput-latency product and more 

dynamic applications competing for the bandwidth, there is a chance that the assumption 

will break, and result in performance degradation in the form of higher-than-expected 

packet loss. To prevent this performance degradation from happening without detection, 

we can have a guard to monitor the packet-loss ratio, and when it becomes too high, to 

signal an exception to the application. The application may then react accordingly. 

2.4.3 Events to  be Guarded 

Having defined a software feedback component, stated all its assumptions, and how the 

feedback component adapts upon validation or invalidation of the assumptions, the next 

step is to find out where to place the guards. Specifically, where the events are generated 

and how to guard against them are usually specific to individual applications and imple- 

mentations. Nevertheless, in this section, we try to identify several areas where events 

may happen, and guards may need to be placed, as shown in Table 2.2. 

Input Signal Properties 

The most obvious place to put guards is on the input signals of a guarded component. 

The magnitude, derivative, continuity, and other properties of the input signals can be 

monitored and guarded when necessary. 



Table 2.2: Types of events which trigger feedback adaptation 

Event 
Input signal property 
Target system parameters 
Feedback performance 
degradation 
Explicit event 

Timer expiration 

Target System Parameter Changes 

Explanation 
Including magnitude and its derivative, continuity, etc. 
Examples are network bandwidth, latency and jitter 
Examples are increase in network data drop ratio 

Explicit action by the user or application, such as change 
in play speed or video picture size 
Used to detect if other events have happened recently 

A software feedback system should be aware of the parameters of its target system and 

adapt when the parameters change. Some parameters are directly embedded in input 

signals to the feedback system. Others may require explicit probing. For example, a 

network connection has parameters including available bandwidth, latency, and jitter. In 

the receiver side, jitter can be directly measured based on the time-stamp sampled when 

packets are received. Latency needs to be probed if the sender and receiver clocks are not 

synchronized. Available bandwidth always needs to be measured explicitly. 

Feedback Performance Degradation 

When the model of a target system on which a software feedback is based is broken, one 

of the symptoms is that the performance of the feedback control degrades. Performance 

degradation may also result from changes in target system parameters, in which case 

the parameters can be measured indirectly through monitoring feedback performance. A 

widely used method to measure available network bandwidth is to inject packets at an 

increasing rate. Monitors at the receiver side then observe how the network reacts. In 

the MPEG player in Chapter 6, the frame rate feedback tries to manage the difference 

between video server send frame rate and client display frame rate, i.e., the frame-drop 

ratio by the video pipeline, within a specified value. However, if the available bandwidth 

of the video pipeline oscillates too quickly and widely, the performance of the frame rate 

feedback will degrade, with the frame-drop ratio exceeding specification. 



Explicit Events 

Operating systems can generate explicit events that feedback mechanisms should not ig- 

nore. For example, a mobile host may switch between different network interfaces (e.g., 

wireless PPP and Ethernet) while network applications are still running. In this case, 

the feedback mechanisms in these applications should take appropriate meta-adaptation 

actions to adapt to the sudden change in network capability. In the streaming video player 

to be discussed in Chapter 6, all the feedback mechanisms - for network flow and con- 

gestion control, presentation quality control and client-server synchronization - intercept 

network interface switching events, and react properly. 

Applications may also explicitly generate events to which software feedback should 

adapt. One example is that in the MPEG video player in Chapter 6, the user can change 

video spatial resolution and play speed through the GUI. Changing the resolution changes 

the number of bits needed to encode the frames, thus effectively changing the available 

network bandwidth in terms of frame rate. The frame-rate feedback adapts to the new 

bandwidth quickly through meta-adaptation, instead of slowly through the steady-state 

frame-rate feedback policy. 

Timer  Expiration 

Timers can also trigger adaptation of feedback systems. Timers are useful in detecting 

if other events have happened recently. Each event of a certain type resets a companion 

timer. If events happen frequently enough, the timer never expires, indicating that the 

condition associated with the events still holds. Otherwise, the timer expires, and triggers 

unplugging of the feedback components that reacts to the condition associated with the 

events. Later, when the event happens again, the unplugged components will be plugged 

back into the feedback system. For example, in the adaptive packet rate feedback in 

Chapter 4, each time the loss of a packet is detected (a packet-loss event happens), the 

feedback system resets a timer, as well as plugging in the packet-loss feedback component 

if it is not plugged-in yet. If the timer has not been reset in a specified period, it expires 

and triggers unplugging of the packet-loss component. 



2.4.4 Discussion 

With the introduction of guard-based meta-adaptation, it becomes easy to build feedback- 

based multi-level adaptation mechanisms for adaptive systems. A mechanism of this type 

consists of a set of guarded feedback components and a meta-adaptation layer, which glues 

the components together through guards and meta-adaptation actions. We will also be 

able to make multi-level performance or stability statements about a multi-level adap- 

tation mechanism. At one (lower) level, we specify the performance or stability domain 

of each guarded feedback component. At another (higher) level, we make statements on 

how the overall adaptation mechanism transfers between the domains. With these multi- 

level performance statements, the policies of an adaptation mechanism can be tailored to 

the preference of individual users or the specific operating environment, and thus yield 

performance better than can be reached by a pure bes t-effort system. 

A good example of multi-level adaptation is the QoS feedback for video resolution and 

frame-rate adaptation discussed in Chapter 6.  This QoS feedback has two levels. At the 

lower level, a frame-rate feedback component maintains the optimal display frame-rate 

that the video player can sustain with the currently available resources. At the higher 

level is a spatial-resolution adaptation policy, which specifies when to stay with the current 

resolution, and when to switch to a higher or lower resolution. Whenever the frame rate 

yielded by the frame-rate feedback is too low, a guard is triggered to switch to a lower 

resolution. If the frame rate is too high, then another guard is triggered to scale up the 

resolution. Otherwise, the video player keeps playing video at the current resolution. With 

this multi-level QoS feedback, the users are able to specify their preference between video 

frame rate and resolution, even though they do not have control on the availability of the 

resources. 

2.5 Composing Software Feedback with Predictable Theo- 

retical Properties 

In the previous sections, we proposed a methodology for building complex and adaptive 

software feedback systems. A complex software feedback system is decomposed into a 



set of cooperative, guarded feedback components, each of which has a domain in which 

it works well. The components are implemented and composed. In many cases, the 

feedback components would be amenable to specification and analysis by control theories, 

especially linear systems theories [3, 5, 6, 14, 671. Control theories can be applied to 

analyze or predict theoretical properties, to specify feedback systems at an abstract level 

or synthesize components from their formal specifications, or to identify guards. Control 

theories also provides a rich set of building blocks. In this section, we briefly describe the 

various control system theories and discuss about how they can be applied in the software 

feedback toolkit. 

2.5.1 Theoretical Properties of Feedback Systems 

The theoretical properties addressed by control theories [3, 5, 6, 14, 671 include formal 

specification, stability, time and frequency response, system composition, etc. Some con- 

trol systems may be specified in mathematical formulas, so that their theoretical properties 

can be clearly seen. The stability of a feedback system concerns whether the output is 

bounded in response to input that is also bounded. The time response of a system answers 

the question of how quickly or sluggishly it responds to changes in its input, and its fre- 

quency response is about how it discriminates the energy of the input at some frequencies 

against others. Finally for some systems, their formal specifications can be derived from 

those of their components, thus their specification and analysis can be simplified. Some 

examples of specification derivation are shown in Figure 2.9. There has also been much 

effort and theoretical results in application of general control theories to various complex 

situations [19, 391. 

In this section, we highlight aspects of various control theories, especially those closely 

related to the software feedback toolkit proposed. Those who are interested in understand- 

ing more details of control theories should refer to relevant texts [3, 5, 6, 14, 19, 39, 671. 

Linear Systems 

Linear systems theories [3, 5, 61 deal with linear control systems. There are two types 

of linear systems: continuous-time and discrete-time. Linear systems can be specified 



formally in various forms. There are differential functions, s-transforms and state space 

equations for continuous-time systems [3], and difference functions, z-transforms and state 

space equations for discrete-time systems [5]. The formal methods make it possible to infer 

the theoretical properties, such as stability, time and frequency responses, right from their 

specifications. Linear systems have the global stability property [5, 61, i.e., a stable linear 

system converges in all of its input space. Linear systems also have properties such as 

composibility of components at the the abstract level, the principle of superposition on 

input signals [5], etc. These properties make linear feedback systems predictable. On 

the other hand, the property of linearity restricts the application of the results of linear 

systems theories in real-life situations, where many problems are inherently nonlinear. 

Discrete-time linear systems theory will be discussed in more detail in the next subsection. 

Nonlinear Systems 

While the stability property of linear systems is always global, the same is not true for 

nonlinear systems. A nonlinear system being stable in the neighborhood of an equilibrium 

point does not necessarily imply any global property. There may indeed be many equilib- 

ria, some stable and others not, in which case there is only a limited region of convergence 

(domain of attractions around any locally asymptotically stable equilibrium). There can 

be nonlinear behaviors such as persistent oscillations (also known as limit cycles), which 

are dynamic rather than static equilibria. Even quasi-stochastic situations may arise de- 

spite the deterministic nature of system equations. This phenomenon is known as chaos 

and is quite prevalent in discrete-time nonlinear systems. In all cases, the behavior of a 

nonlinear system may critically depend on the input applied to it. 

No generally applicable rigorous specification or analysis methods are available for 

nonlinear systems. Nevertheless, there have been guidelines for various types of nonlinear 

systems. Linearization is a very popular means of specification and analysis [14]. A non- 

linear system is linearized around some operating points, and linear control systems are 

designed. During operations, when moving from one operating point to another, appropri- 

ate linear control components are brought into operation, or their parameters are changed 

accordingly. Techniques based on linearization include gain scheduling, adaptive control, 



and variable structure systems [14]. Another means is nonlinear analogy to linear theory, 

such as harmonics analysis [14] as compared to linear transfer functions. Finally, some 

(especially complex) nonlinear systems are analyzed in a totally empirical manner [19], in 

many cases through extensive simulations. 

Fuzzy and Neural Control Systems 

Observing the difficulties in design and analysis of nonlinear systems based on classical 

mathematical methods, there have been developed fuzzy [34,67] and neural [16,67] control 

theories for building nonlinear systems directly, based on intuition and experience instead 

of formal methods. Fuzzy control is based on the idea of fuzzy sets and fuzzy logic, the 

key to which is to develop a framework with imprecision. In a fuzzy set, each member 

is represented by a pair < value, belonging >, with not only the value, but also the 

degree of belonging. Fuzzy sets can be identified by linguistic variables. For example, 

the temperature in a room can be classified as either lou), normal, or high. A specific 

temperature reading, say 75OF, may fall to all the above classifications with certain degrees 

of belonging. In fuzzy logic, operations such as and, or, not take both the value and degree 

of belonging into consideration. In a fuzzy control system, input signals are first fuzzified 

into linguistic variables, and then applied with fuzzy control laws. The output of the 

fuzzy logic are defuzzified back to values for control of target systems. Neural control [67] 

is based on neural networks [16], which are rough analogies of biological neural systems. 

Neural networks are self-learning. They can be trained with a large number of inputs, 

and then used as filters or control laws in control systems. Fuzzy and neural control seem 

more natural in handling complex and imprecise systems, and are more easily understood 

by the practitioners. 

2.5.2 Theoretical Properties of Discrete-Time Linear Systems 

In this section, we discuss the discrete-time linear systems theory in more detail. Then in 

the next two Sections 2.5.3 and 2.5.4, we will discuss how this linear systems theory can be 

used in building feedback systems with predictable properties, and present the phase-lock 

loop, an example linear system, respectively 



A discrete-time linear system [5, 61 can be represented in various forms: difference 

function, summation-convolution, z-transfer function, or state-space equations. Suppose 

the input and output sequences of a discrete-time system are {u(k)) and {y(k)) respec- 

tively, where -oo < k < oo. Then its n-th order difference function is shown below, where 

bi and aj are coefficients (which may or may not vary over time),* and m and n are fixed 

non-negative integers. The current output is a linear combination of the recent history of 

its input and output sequences. 

A discrete-time linear system can also be specified by a state-space equation [5] ,  where 

states are introduced, and the output and next step states are linear combinations of 

current input and state. The coefficients ai and bj determine all the properties of a linear 

feedback system: its stability, time and frequency response, etc. 

Yet another form is a convolution-summation equation [5]. The current output of a 

linear system, y(k) at step k is a polynomial of all its input history with a sequence of 

weighting coefficients {h(i)) (0 _< i < oo): 

A fourth form is called a z-transfer function [5] (or simply called transfer function 

hereafter when there is no confusion). Given a sequence {f (k)), where f (k) = 0 for all 

k < 0, its z-transform is defined as below, where z is a complex variable. 

The set of z in the complex z-plane for which I F(z) I is finite is called the region of 

convergence, while the rest is called the region of divergence. As a matter of fact, virtually 

all sequences of any interest have z-transforms expressible as a ratio of polynomials in the 

variable z [5]. These z-transforms will have zeros (the roots of its numerator polynomial) 

and poles (the roots of its denominator polynomial), and one of the poles will pass through 

21n this section, we only focus on constant coefficient discrete-time linear systems. 



the boundary separating the regions of convergence and divergence. z-transforms have 

properties including linearity, left- and right-shifting, convolution-summation, etc. [5 ] .  

Suppose for a linear system, its initial input and output are all zero, i.e., u ( k )  = 0 

and y(k) = 0 for all k < 0, then its convolution-summation equation can be converted to 

the following transfer function, where U(z), Y(z) and H(z) are the z-transforms of input 

{ ~ ( k ) ) ,  output {y(k)) and coefficient {h(k)) sequences respectively. 

Y (z) = H (z)U (z) 

Discrete-time linear systems bear various theoretical properties, and are amenable to 

formal analysis. First, their stability is global and determined solely by their structure. A 

linear system is stable if its output remains bounded in response to any bounded input, 

and its transfer function tells this right away: all the poles have magnitudes less than one. 

Second, there is the principle of superposition, which states that different components of 

a single input can pass through a linear system independently without interfering with 

each other. If a linear system's responses to the input u1 (k) and u2 (k) are yl (k) and y2(k) 

respectively, then the system's response to the input: 

~ ( k )  = alyl(k) + a2y2(k) 

This principle of superposition is very helpful in the design and analysis of various linear 

filters, which need to discriminate energy of different frequencies in a single input. 

Composition of linear components can be done at the transfer-function level. Suppose 

there are two components with coefficients in z-transform Hr(z)  and H2(z) respectively, 

and the input and output of the overall system are U(z) and Y (z) respectively, then in 

the case of parallel connection as shown in Fig. 2.9(a), we have 

If the components are connected in a cascaded manner (Figure 2.9(b)), then 



(a) Parallel connection (b) Cascaded connection 

(c) Feedback connection 

Figure 2.9: Interconnection of linear components 

Finally, Fig. 2.9(c) shows the case where the two components (forward and backward) 

are connected into a feedback loop. We have the transfer function of the loop as 

Y (z) = H (z) U (z) 

where 

H(Z) = 1 + HI ( r )  H2 (z) 

To make a feedback loop feasible for implementation, it is required that the backward 

component not depend on its present input, i.e., h2(0) = 0, where h2 is the coefficient 

sequence of the backward component. The simplest backward component is a one-step 

time delay unit: H2(z) = Z-l, when the output of the forward component is used for 

feedback directly. 

The time and frequency response of a linear system can be easily seen from its transfer 

function. The time response concerns how fast a system response to changes in its input. 

A responsive system will have all the poles of its H(z) sufficiently smaller than one in 

magnitude. Otherwise it would be sluggish if at least one of the poles of its H(z) is 

close to one in magnitude. Given a sinusoidal input at a certain frequency, a linear 



system would have a gain (the ratio between the magnitudes of the output and input 

signals) and angle (the phase difference between the output and input signals) that are 

determined solely by (the poles and zeros of) its z-transfer function and the frequency 

of the signal. Thus the gain and angle of a linear system at all frequencies consist of its 

frequency response. Because of the important role the poles play in determining the time 

and frequency response of linear systems, their placement in transfer functions is a very 

important part in design and analysis of linear systems, especially linear filters [5]. 

2.5.3 Building Feedback Systems With Predictable Properties in the 
Toolkit 

The results from control theories can be applied in the software feedback toolkit to build 

feedback systems with predictable theoretical properties. Linear theories [5, 61 can be 

applied for formal specification of linear feedback components and systems, and automatic 

generation of linear components. They can also be applied for analysis and prediction 

of theoretical properties. Nonlinear [14], fuzzy and neural [67] control theories provide 

general guidelines for the development of complex software feedback systems, such as the 

methods to decompose a complex system into simpler sub-systems. 

Linear systems theories also provide a set of well-understood and well-behaved building 

blocks, and formal methods of component composition. Example building blocks are 

digital filters such as the first-order lowpass filter as shown in Fig. 2.3(a), high-pass and 

band-pass filters, Notch filters [ 5 ] ,  Butterworth filters [5] with sharp frequency attenuation, 

adaptive Kalman filters [19, 391, integrators, differentiators [5], etc. The composition rules 

shown in Fig. 2.9 help in composing building blocks into more complex components and 

systems at an abstract transfer-function level. 

Since the properties of a linear system are solely determined by its structure and are 

predictable, another application of the linear control theory is to help make stability and 

performance statements about linear feedback components, and place guards around the 

feedback components against the statements made. Though stability is a global property 

for linear systems, a globally unstable system may still be stable for a specific subset of its 

input space. For example, the output of an integrator is bounded for all unbiased periodic 



input signals. Within the domain in which a linear system is stable, it is still possible 

that its behavior and performance are desirable within a sub-domain, and undesirable 

otherwise. In next subsection, we will show that a PLL with only a lowpass filter and a 

VCO (voltage-controlled oscillator) in its feedback loop is stable, but if the speed of the 

reference clock is too large, then the maximum phase error could be undesirably large. 

With the predictability of linear systems, given a linear feedback component, its current 

state and input, it is possible to predict if its output would be unbounded, its performance 

would degrade to an undesirable level, or if its maximum error or time to stabilize to a 

given error bound would exceed preset limits. With this prediction, we then can guard 

the stability or performance of the linear component by placing appropriate guards on its 

input signals, referred to as input guards. These input guards on performance or stability 

have the advantage that they are preventive instead of reactive. They are triggered if the 

performance is going to degrade, or the component is going to experience instability, and 

appropriate action can be taken to prevent these undesirable behaviors from happening. 

These actions include changing the parameters of the working components, or replacing 

one component with another one that works well in the new situation. On the other 

hand, for an unpredictable nonlinear software feedback system, a reasonable way to guard 

performance is to have guards to monitor the performance. The guards will be triggered 

when the performance has degraded to a specified limit, or the feedback has broken. Then 

action can be taken to recover from the already-incurred damages. 

The advantages of input guards come with disadvantages such as complexity and 

inaccuracy. An input guard is built based on the knowledge of its feedback component. 

It effectively contains the model of the component, and thus is complex. An input guard 

predicts future output based on current state and input, effectively assuming that the 

input or is predictable. If the input does not happen as predicted, the prediction made 

by the input guard will be inaccurate, or simply invalid. 

2.5.4 Example: a Phase-Lock Loop 

In this subsection, we discuss a phase-lock loop (PLL), a linear feedback system example. 

Through this example, we show how linear feedback systems and components can be 



specified by transfer functions, and how properties such as stability and time responses 

can be analyzed with the transfer functions instead of going through extensive simulation. 

We also demonstrate how discrete-time linear systems theory can be applied in placing 

input guards on performance of the PLL. 

In a PLL, there is a reference clock and a local clock. The local clock has an adjustable 

speed. It tracks the phase of the reference clock and locks to it through a feedback loop. 

PLLs can be found in many applications. One example is FM radio receivers. Each 

receiver has a PLL in its circuitry. Whenever tuned to an FM radio channel, the PLL 

in the receiver locks on to the carrier frequency of the radio channel, and the modulated 

audio signals are then extracted and played out. 

The overall structure of the PLL is shown in Fig 2.10. The PLL takes in the speed 

of the reference clock, and generates a sequence of phase values of the local clock. The 

reference clock is modeled as an integrator taking a positive input as its speed and produces 

a sequence of incremental phase values. The local clock is a VCO, with its speed controlled 

by an input voltage. Thus the VCO can also be modeled as an integrator with the filtered 

phase difference being its input voltage. The phase difference between the reference and 

local clocks is detected, and passed to a filter composed of a delay unit, a gain unit, and a 

first-order lowpass filter. The filtered phase difference is then fed to the VCO to drive the 

local clock. To make the PLL feasible for implementation, the local clock phase generated 

by the VCO is delayed for one unit of time before being sent to the phase difference 

detector. The delay unit is introduced to model the possible latency in the feedback loop. 

To study the properties of the PLL, we want to see its output in response to a bounded 

input reference clock speed. Since the local clock phase value is monotonically increment- 

ing and unbounded, we take the phase difference between the two clocks instead of the 

local clock phase as the output of the PLL. An unstable PLL may generate an unbounded 

phase difference, indicating the two clocks are out of synchronization. A phase difference 

of zero means the reference and local clocks are phase-locked without phase error. 

The transfer function of the whole PLL can be inferred from that of its components. 

The difference functions and transfer functions of the building bIocks used in the PLL are 

listed in Table 2.3, where a, g, and t are constants. The PLL is a cascaded connection 
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Figure 2.10: The structure of a phase-lock loop 
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Hl(z) = z-t 
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Table 2.3: Transfer functions of the components in the PLL 

Difference function 

y(k) = u(k - t )  

of an integrator (the reference clock) and a feedback loop. While the feedback loop has a 

~ ( k )  = 9 4 k )  
y(k) = au(k) + (1 - a)y(k - 1) 
d k )  = ~ ( k  - 1) + ~ ( k )  

forward part with no component (equal to a unit gain component), and a backward part 

Hz(z) = 9 
H3(z) = - 
H4(z) = 5 

including all components in the loop except for the phase detector. The forward part of 

the feedback loop is equivalent to a unit gain, with a transfer function of Hf(z) = 1. The 

backward part of the feedback loop has a transfer function Hb(z) as defined by following 

formula. 

The transfer function of the whole PLL, H(z) is defined as: 

Hf (2) 
*(') = H4(z) 

1 + Hf ( z )  Hs(z) 

A PLL with a basic configuration has only a VCO in its feedback loop, which is 

equivalent to having t = 0, g = 1 and a = 1 in its transfer function H(z). Putting these 

constants into the equation above, we get the transfer function H(z) = 1. This H(z) 



means a basic PLL is equivalent to a unit gain, with its output phase difference always 

equal to the speed of the reference clock. This PLL is stable, very responsive, and at the 

same time not smooth at all, since any noise in the reference clock would immediately 

be reflected in the local clock. There is always a residual phase difference between the 

reference and local clocks. 

When the gain unit is added to the basic configuration (g # I ) ,  the PLL has a transfer 

function H(z)  = .* with a single pole 1 - g. This PLL is stable when I 1 - g (< 1, 

i.e., 0 < g < 2. It is also over-damped [5 ] ,  with the output phase difference approaching 

its steady-state value monotonically. The closer g is to 0, to more sluggish the PLL is, 

meaning the that PLL will react to speed changes in the reference clock more slowly, while 

the speed changes in the local clock will be smoother. 

When the lowpass filter is added to the basic configuration (0 < a < I),  the transfer 

function of the PLL becomes 

This transfer function has two poles f Jl-ai, indicating that the PLL is stable and 

under-damped, thus its output phase difference will approach its steady-state with de- 

caying sinusoidal oscillation. The smaller the coefficient a is, the more sluggish the PLL 

would be. 

However, when one unit delay is introduced to the basic configuration (t = I), the PLL 

becomes unstable. The transfer function of the PLL is z,f It has two poles $ z t  i, 

the magnitude of both being equal to 1. This result indicates that this PLL with one 

unit latency in its feedback loop is unstable. The basic PLL with any number of units of 

latency in its feedback loop is unstable, and the instability problem can be corrected by 

setting appropriate loop gain (9) and lowpass filtering (a). Analysis of the more complex 

PLL configurations will not be further discussed in the thesis. 

One problem with the PLL configuration above is that there is always a residual phase 

difference between the reference and local clocks. This residue can be compensated for 

by adding a stage of integration in the feedback loop. Unfortunately, simply using an 

integrator would make the PLL unstable. The instability problem could be avoided by 

the addition of a zero in the transfer function of the integrator used. Figure 2.11 shows 
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Figure 2.11: Phase-lock loop with compensation for residual phase error 

the PLL with a phase-difference residue compensator. The gain unit (with a gain of 

g2 E (0 , l ) )  in this compensator controls the effect of integration. The transfer function 

of the compensator is H,(z) = w. The PLL with the basic configuration plus this 

compensator (with g2 = 1) has the following transfer function: 

The transfer function above indicates that the PLL is stable. Furthermore, it is equiv- 

alent to a simple difference filter having a difference function: y ( k )  = u ( k )  - u ( k  - 1). 

As long as the reference clock keeps a constant speed, the phase difference will be zero, 

meaning that the local clock will be precisely phase-locked to the reference clock. It  is 

possible to show that for each PLL configuration with the phase-residue compensator, if 

it is stable, the phase difference will always converge to zero. 

Given a PLL with its current state, and a reference clock speed, it is possible to predict 

the maximum phase difference. With this prediction, we can place an input guard around 

the PLL guarding its performance. The input guard monitors the input reference clock 

speed. It is triggered when performance statement violation is predicted. Appropriate 

actions, such as changing the parameters of the components in the PLL, can then be 

taken to prevent the violation from actually happening. A general case analysis will not 

be given in the thesis. In this paragraph, we show a simple example of computing the 



maximum phase generated by the PLL when the input reference clock speed is a fixed 

value S. In this example, the PLL has a lowpass filter with parameter a = 0.01, so its 

transfer function is 
z(z + (1 - a ) )  - z(z + 0.99) - 

H(z) = z2 - (1 - a) z2 - 0.99 

The z-transform of the input signal is U(z) = S. So the z-transform of the PLL output 

phaser error will be: 

This indicates that the maximum phase error is proportional to input speed S. Further 

analysis shows that the maximum phase error is approximately 10.25. To guard the PLL 

against a phase error a statement such as "maximum phase error not exceed Em,," is 

required. The input guard is simply an assertion: 10.25' < Em,,. 

2.6 Discussion 

In this chapter, we have proposed a methodology for composing wide-range complex soft- 

ware feedback systems from simple components. In the feedback composition method- 

ology, all software feedback components export a common interface. With this common 

interface, building blocks can be composed in a uniform way to form composite compo- 

nents. Feedback systems are built hierarchically based on existing building blocks and 

composite components. To help build wide-range feedback systems, the composition 

methodology makes guard-based meta-adaptation explicit, and introduces the concept 

of guarded feedback component. A feedback component has a domain in which it works 

well, and an associated set of assumptions. A set of guards is placed around a feedback 

component against its assumptions. A guarded feedback component is re-parameterized 

or dynamically replugged upon triggering of its guards. A wide-range feedback system 

can be composed of multiple guarded components, each of which is in effect only when it 

is applicable. 

We also discussed control theories, in particular discretetime linear systems theory 

and its application in composing feedback systems with predictable properties. Linear 

control theories can be applied in formal specification of linear feedback components and 



systems, and automatic code-generation of linear components from their specifications. 

Linear control theories can be applied for analysis and prediction of theoretical proper- 

ties of linear components and systems. They also provide a set of well-understood and 

well-behaved building blocks, and formal methods of component composition. Unfortu- 

nately, in many realistic cases, linearity is an overly-restrictive requirement. Most practical 

feedback systems are complex non-linear ones, many of which have multiple linear sub- 

systems applicable under different conditions. Dynamic replugging of guarded feedback 

components in our feedback composition methodology helps composing simple linear com- 

ponents into complex wide-range feedback systems. Linear systems theories can then help 

in identifying and placing input guards around linear components. Input guards are pre- 

ventive instead of reactive. They have the ability to prevent performance degradation 

or instability from happening, instead of detecting after the undesirable behaviors have 

already happened. For a wide-range complex nonlinear feedback system, though it may be 

composed of linear components, linear systems theories become inapplicable to the spec- 

ification or analysis of the whole feedback system. The use of visualization, simulation 

and online instrumentation is appropriate and necessary in the analysis and performance 

tuning of non-linear feedback systems. 

In the next Chapter (Chapter 3), we will present a software feedback toolkit prototype 

that implements the feedback composition methodology proposed in this Chapter. The 

toolkit prototype implements a component class library that defines the common compo- 

nent interface with base classes, provides facilities for dynamic component replugging, and 

includes a set of building blocks. It also has GUI-based tools for simulation and online 

instrumentation of feedback systems. These tools facilitate performance visualization and 

parameter tuning of feedback systems. 



Chapter 3 

Implement at ion of the Software Feedback 

Toolkit 

3.1 Introduction 

In this chapter, we present a prototype implementation of the software feedback toolkit. 

The prototype shows how the feedback composition methodology, including a common 

component interface and guard-based meta-adaptation operations, can be implemented. 

To make the feedback toolkit technology readily available to software developers, the 

toolkit prototype also provides a library of commonly used building blocks, and a set of 

tools for simulation, and instrumentation of software feedback systems. 

The feedback model proposed in Section 2.2 is object oriented. A feedback compo- 

nent is modeled as a message-driven object with a set of input and output ports. As a 

result, it is natural to have an object-oriented implementation, and to implement feedback 

components as objects, referred to as feedback objects, instead of sub-routines. Using an 

object-oriented implementation, a feedback system is implemented as a network of feed- 

back objects. An object implements the functionality of a feedback component. Objects 

communicate with each other by passing messages through their message ports. Due to the 

repluggable nature of feedback objects, the structures of feedback systems are dynamic. 

To maximize the availability of the software feedback toolkit to software developers, 

the toolkit prototype is implemented in C++. Among many object-oriented programming 

languages, C++ [27] is the most pervasive, having a large developer base. In C++, feed- 

back components can be naturally implemented as classes. Each instance of a feedback 



component is then a C++ object. Message ports can be implemented by member func- 

tions. Passing a message from one component to another can be done by having the former 

invoke a corresponding member function of the latter with the message as a parameter. 

One straightforward way to implement common component interfaces in C++ is through 

derivation of all classes from the same base class. This approach is adopted in the toolkit 

prototype. 

C++ feedback component classes provide two interfaces for composing feedback sys- 

tems. The first is the "normal" operational interface, that passes feedback messages 

between components. The other interface, referred to as a meta-interface, is for dynamic 

component replugging. It supports dynamic component creation, connection, disconnec- 

tion, and destruction. There are several possible ways to connect feedback components: 

input ports can be registered with output ports; output ports can be registered with input 

ports; or there can be a centralized message router that every component uses. In our pro- 

totype, feedback-component instances are C++ objects. Message ports are implemented 

as member functions. Passing a message to a feedback component is done by invoking the 

associated member function of the feedback object. Due to this message-passing mech- 

anism, in our component base-class, connecting an output port of one component to an 

input port of another component is implemented by registering the input port with the 

output port. When a component wants to send a message to one of its output ports, it 

looks up the registration in the output port, and invokes the relevant member functions 

of all registered input ports. 

The C++ feedback components are passive objects, in the sense that an object is 

only a data structure with entry points to its member functions. This execution model of 

passive-objects does not directly support active execution threads. In an application, any 

thread can invoke a object, and invocations from different threads can be in parallel. In 

order for feedback objects to work correctly in multi-threaded environments, it is necessary 

for member functions to explicitly synchronize between accesses from different threads. 

However, thread synchronization is an implementation detail, and does not contribute 

very much to the feedback composition methodology. Fortunately, in all the examples 

and applications given in the thesis, the feedback systems do not need multiple threads. 



Support of multi-threaded execution of feedback systems is not implemented in the current 

version of the toolkit prototype, but is left as part of future work. 

In the rest of this chapter, we describe the C++ prototype of the software feedback 

toolkit. We present the feedback component class library with a component base class, 

a set of building blocks, and a composite base class for composition of components. The 

library provides facilities for guarding and dynamic replugging of feedback components. 

It also implements a set of tools for simulation and instrumentation of feedback systems. 

The use of the software feedback toolkit in implementing and simulating software feedback 

systems is demonstrated through two examples: a linear phase-lock loop and a nonlinear 

flow control feedback system. At the end of this chapter, some issues in the implementation 

of the software feedback systems and the feedback toolkit are discussed further. 

3.2 Software Feedback Component Class Library 

3.2.1 Software Feedback Component Base Class 

Software feedback components are implemented as C++ classes, all of which are derived 

from a common base class. Figure 3.1 shows a simplified version of the base class decla- 

ration. 

The feedback component base class defines a set of public virtual member functions 

implementing input and output ports as defined in Fig. 2.2, and member functions to 

initialize or reclaim component instances (objects). In the current version of the prototype, 

each message flowing through the ports contains a double-precision floating point value. 

In the implementation of the feedback component library, it turns out that most building 

blocks need to access most recent input and output messages and current parameters 

and state values. To simplify the implementation of these building blocks, the base class 

maintains a set of arrays holding the most recent input or output message values and 

current values of exported parameters and states. The virtual member functions defined 

in the base class are as follows: 



class Feedback ( 
typedef double FBDataType; 
typedef struct C . . . )  OutputLinkType; 
enum FBPortType CInputPort, OutputPort, 

ParameterPort , Stateport, Resetport); 
public : 
virtual InputId(int inputPortId, FBDataType message); 
virtual ConnectOutputPortId(int outputPortId, 

Feedback * feedback-component, 
FBPortType portType, 
int portId) ; 

virtual DisconnectOutputPortId(int outputPortId, 
Feedback * feedback-component, 
FBPortType portType, 
int portId) ; 

virtual SetParameterId (int parameterport Id, FBDataType message) ; 
virtual GetParameterId(int parameterPortId, FBDataType &value) ; 
virtual SetStateId(int statePortId, FBDataType value); 
virtual GetStateId(int statePortId, FBDataType &value) ; 
virtual Reset 0 ; 
virtual 'FeedbackO; 

protected: 
virtual Feedback(int numberOfInputPorts, int numberOfOutputPorts, 

int numberOfParameterPorts, 
int numberof StatePorts) ; 

FBDataType input [numberof Inputport sl ; 
FBDataType output [numberOfOutputPorts~ ; 
FBDataType parameter [numberof ParameterPort sl ; 
FBDataType state [numberof StatePortsl ; 
void Output(int outputPortId) ; 

3; 

Figure 3.1: Definition of software feedback component base class 



This function is the constructor of the base class. It initializes instances of the 

component class. It specifies the number of input, output, parameter and state 

ports, and allocates memory for the internal arrays holding values for the ports. 

InputIdo 

This member function implements the input ports of a feedback component. A 

message is sent to an input port inputPortId (E [O. .numberof InputPorts-11) of 

a feedback component by invoking this member function. The message will be saved 

in input CinputPortIdl and processed. Processing of an input message may or may 

not generate output messages. 

SetParameterIdO and GetParameterIdO 

These member functions implement the parameter ports of a feedback component. 

An invocation of SetParameterIdO sends a message to the specified parameter 

port parameterPortId (E LO.. numberOfParameterPorts-11) to set the corre- 

sponding parameter, while Get ParameterId ( ) reads the current parameter values. 

A parameter may be associated with a component's internal structure, in which case 

setting it may cause changes in the structure of the component. 

SetStateIdO and GetStateIdO 

These member functions implement the state ports of a feedback component. They 

allow the exported internal states of feedback components to be accessed. Upon 

each message sent to a state port statePortId (E [O..numberOfStatePorts-11) by 

invoking Set StateId () , the corresponding internal state is updated with the value 

contained in the message. GetStateIdO is invoked to retrieve the current state 

values. 

Reset0 

This member function implements the reset port of a feedback component. It resets 

the internal state of the feedback component back to its initial state by resetting all 

entries in array input [I, output fl and state [I to zero, while keeping the current 

set of parameters unchanged. 

ConnectOutputPortIdO and DisconnectOutputPortId~) 

These member functions implement the output ports of a feedback component. They 



also facilitate dynamic component composition. ConnectOutputPortIdO connects 

the given message input port of the specified feedback component, 

<f eedbackcomponent , portType , port Id> to the identified output port 

outputPort Id (E [O..numberOf OutputPort s- I]) of the current component. If the 

message input port is of of type Resetport, then the portId field is ignored. 

DisconnectOutputPortId() disconnects the specified connection. A connection 

from an output port to a message input port is established by registering the iden- 

tifier of the message input port in the output port. 

a --Feedback () 

This is the destructor of the base class. It deallocates all the memory allocated for 

the internal arrays. 

Besides the virtual member functions above, the base class implements a protected 

member function Output ( i n t  outputPortId), which sends out the message stored in the 

output message array entry output [outputPortId] to all input ports connected to the 

output port number outputPortId. Output ( i n t  outputPortId) can be called in the 

implementation of all feedback components. 

The C++ class implementation of a software feedback component inherits the p rop  

erties and restrictions of the C++ class model. A C++ class is an abstract data type. A 

C++ object is a data structure with entry points to functions for manipulation of the data 

itself. The processing of each message by a member function is inherently synchronous. 

If an output message is generated, it will be sent out by the member function to all the 

connected message input ports by calling the member functions of the objects correspond- 

ing to those input ports. A member function processing an input message returns only 

after all the output messages have been propagated to whatever components they could 

reach. So processing of a message may incur a whole chain of calls to member functions 

of various objects. This implementation of the feedback toolkit also assumes single thread 

execution. Since most of the time, and for all the examples and applications discussed 

in the thesis, single threaded implementation is all that is needed. On the other hand, 

making objects multi-thread safe, and handling all the unlikely synchronization problems 



are non-trivial, and are topics of active research efforts. 

The class inheritance mechanism in C++ can be applied to build the feedback compo- 

nent class hierarchy. Further base classes for different types of software feedback compo- 

nents are derived from the top level base class shown in Fig. 3.1 and other already defined 

base classes. At the leaf level are the classes for actual feedback components. It is required 

that all the feedback component classes have the same public interface as defined by the 

top level base class, except for class constructors which are specific to individual feedback 

components. With this common interface, no matter what different behaviors feedback 

classes have, they can interact with each other in a uniform way. 

Derivation of a feedback component class from the top level base class shown in Fig. 3.1 

involves redefining some or all the virtual member functions, or adding private data struc- 

tures or member functions or both. The class constructor is always extended. The member 

function Input 0 is refined to implement the functionalities of the component. Member 

functions for accessing parameters and states, and resetting the component may also be 

refined. Private structures are introduced as needed to hold hidden internal states, and 

private member functions are defined to facilitate implementation of the functionalities of 

the component. Fig. 3.2 gives the implementation of the first-order lowpass filter shown 

in Fig. 2.3(a), as a class derived from the top level base class. The class constructor 

LowPassFilterO specifies that the lowpass filter has one input port, one output port, 

one parameter port and one state port. It also initializes the filter parameter. For each raw 

value input to the filter, the member function Input Id () updates the smoothed value and, 

by calling an protected member function Output 0, sends the result to all message input 

ports connected to the output port of the filter. Member function SetParameterIdO is 

redefined to check that the parameter received is within the expected range of [O,1.0]. 

3.2.2 Feedback Building Blocks 

A set of basic feedback components have been implemented in the software feedback 

toolkit prototype. These components include filters such as the lowpass filter discussed 

earlier, median, minimum, maximum, average, integrator and difference filters, as well as 

a sifter, which only passes values within specified ranges. There are regulators such as 



class FOLowPassFilter : public Feedback ( 
private : 
public : 
FOLowPassFilter (double p = 1.0) ; 
int Input Id (int id, double value ; 
int SetParameterId(int id, double value) ; 

3 ;  

FOLowPassFilter::FOLowPassFilter(double para) : Feedback(1, 1, 1, 1) 

parameter C01 = para; 
stateC01 = 0; 

3 

int FOLowPassFilter::InputId(int id, double value) 
C 
if (id != 0) return -1; 
input 101 = value ; 
state COl = (1 - parameter [OI ) * state CO] + parameter CO] * value; 
output C01 = state 101 ; 
Output (1 ; 
return 0; 

3 

int FOLowPassFilter::SetParameterId(int id, double value) 
< 
if (id != 0) return -1; 
if (value < 0) value = 0; 
else if (value > 1.0) value = 1 .O; 
parameter C01 = value ; 
return 0; 

1 

Figure 3.2: Implementation of a first-order lowpass filter as a C++ class 



gain and delay units, biasers, quantizers, limiters, etc. There are also various components 

such as mergers and triggers, that are for routing messages through the networks of filters 

and regulators. In the following paragraphs, we explain some of components provided by 

the toolkit library, including a lowpass filter and a gain unit. A list of feedback building 

blocks, especially those used in the applications in the thesis, can be found in Appendix B. 

A complete list of components, including GUI-based components for simulation and in- 

strumentation, are discussed in the toolkit user's manual [7]. 

Figure 3.2 shows the implementation, as a derivation from the top-level base-class in 

Fig. 3.1, of the first-order lowpass filter FOLowPassFilter. The first-order lowpass filter 

has a control function shown in Fig. 2.3(a). The constructor, FOLowPassFilter (double 

para),  defines that the lowpass filter has one input port, one output port, one parameter 

port, and one state port. It also takes a parameter as the time-constant R of the lowpass 

filter. The parameter-setting function, SetParameterId(int i d ,  double value), checks 

that the new time-constant parameter is within the range of [0, 1.01. Finally, the member 

function for the input port, InputId(int i d ,  double value), implements the control 

function of the lowpass filter. It stores the input value to the input port variable input [O] ; 

calculates a new smoothed value based on the input value and the previous smoothed 

value ( s t a t e  CO] ) and saves it in its state variable s t a t e  COI ; and sends the new smoothed 

value out to all down-stream components by storing the value in output [01 and invoking 

Output (1. 

Figure 3.3 gives the implementation of a gain unit as a derivation from the top-level 

base-class. Suppose a gain unit has a gain of g, its input sequence is {~(k)) (k 2 O), and 

its output sequence is {y(k)) (k 2 0), then the gain unit can be described by following 

difference function: 

~ ( k )  = gu(k) 

Since the gain unit is very simple, its implementation contains only inline redefinitions 

of two virtual member functions. The constructor, Gain(doub1e para = 1.01, defines 

that the gain unit has one input port, one output and one parameter port. It take one 

input value, para, as its gain coefficient. The default gain is a unit of 1. The input port 

function, i n t  InputId(int  i d ,  double value), specifies that each input value is saved 



c lass  Gain : public Feedback ( 
public : 

Gain(doub1e para = 1.0) : Feedback(1, 1, 1, 0) < 
parameter [OI = para;  

1 
i n t  InputId(int  i d ,  double value) C 

i f  ( id)  re turn  -1 ; 
input [O] = value ; 
output CO] = parameter [Ol * value; 
Output ( ) ; 
re turn  0;  

Figure 3.3: Implementation of a gain unit as a derivation from the base class 

in input [ O l  and multiplied by the gain. The result is then stored in output COI, and 

distributed to all down-stream components. 

3.2.3 Composite Feedback Components 

A composite feedback component is mainly a composition of simpler components, some of 

which are dynamically repluggable. It may also need glue code to implement component- 

specific behaviors such as dynamic component replugging. To implement the common part 

of composite components, a composite base class, the base class for all composite feedback 

components, is defined in the feedback toolkit. Fig. 3.4 shows a simplified version of the 

definition. The composite base class is derived from the top level base class in Fig. 3.1. 

The structural essence of this composite base class is captured in Fig. 3.5. 

The main idea in the composite base class is the introduction of port blocks for all 

message ports. A port block has one input port and one output port. It simply passes 

messages through as well as storing the values to an address that is specified during its 

initialization. In a composite feedback component, each message input or output port 

is associated with a port block. These port blocks couple the internal structure of a 

composite component to the outside world, and facilitate dynamic replugging of feedback 

components. An internal subcomponent can be dynamically connected to a message port 



class CompositeFeedback : public Feedback ( 
typedef double FBDataType; 
class Port : public Feedback C 
public : 
Port (double *store = NULL) : Feedback(1,l ,O ,O) C. . .) 
int InputId(int inputPortId, FBDataType message) ( . . . I  

1; 
public : 
Input Id(int inputPortId, FBDataType message) ; 
ConnectOutputPortId(int outputPortId, 

Feedback * f eedback-component , 
PortType portType, 
int portId) ; 

DisconnectOutputPortId(int outputPortId, 
Feedback * feedback-component, 
PortType portType, 
int port Id) ; 

SetParameterId(int parameterPortId, FBDataType message) ; 
SetStateId(int stateport Id, FBDataType message) ; 
Reset 0 ; 
-CompositeFeedbackO ; 

protected: 
CompositeFeedback (int numberof Inputports , int numberof OutputPorts , 

int numberof Parameterports , int numberof StatePorts) ; 
Feedback * inputPortBlock [numberof InputPortsl , 

* outputPortBlock [tnumber~fOutputPortsl, 
* parameterPortBlock [numberOfParameterPortsl, 
* resetPortBlock; 

Figure 3.4: Definition of the composite software feedback component base class 
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Figure 3.5: Composite software feedback component structure 

of the composite component by linking to its corresponding port block, or unplugged by 

disconnecting the links to the port block. The dynamic replugging of the subcomponents 

is transparent to the external world. An input port receives input messages from the 

corresponding input port of the composite component, records the values, and distributes 

them to connected internal subcomponents. An output block holds all the connections 

from the corresponding output ports of the composite component to other components, 

and passes output messages from internal subcomponents to all established connections. A 

parameter port block passes a parameter message from its corresponding parameter port 

to all connected subcomponents. Finally, the reset port block distributes reset signals 

from the reset port of the composite component to all internal subcomponents. 

Besides the introduction of port blocks, several public virtual functions in the top 

level base class are redefined by the composite base class. The object constructor is 

extended to allocate and initialize all the port blocks, and the destructor is extended to 

undo the work. InputIdO directs input messages to the specified input port blocks. 

ConnectOutputPortId( 1 and DisconnectOutputPort I d 0  connect or disconnect a link 

from an output port block to a message input port. SetParameterIdO directs parameter 

messages to parameter port blocks. SetStateIdO directs state messages to state port 

blocks. Finally, and Reset 0 directs reset signals to the reset port block. 

If a composite feedback component has all its functionalities implemented by putting 



a set of subcomponents together, its class definition can be a simple derivation from the 

composite base class by merely extending the class constructor and destructor. The con- 

structor allocates and initializes all the subcomponents, and connects them with each other 

and with port blocks properly. The destructor then reclaims the internal subcomponents. 

Glue code is needed for the class definition of a composite feedback component if it 

involves operations such as component-specific functionalities or dynamic component re- 

plugging, which could not be implemented by mere composition of subcomponents, or 

retrieving parameters and accessing states distributed among the subcomponents. Cur- 

rently, glue code exists as extensions to the virtual member functions. 

3.2.4 Example: Implementat ion of a Mean Deviation Filter 

As an example of composite feedback component implementation, Fig. 3.6 presents an 

implementation of the mean deviation filter shown in Fig. 2.6 of Chapter 2. The C++ 

class definition of this filter is a simple derivation of the composite base class. It uses 

four existing building blocks provided by the toolkit: two lowpass filters, a merger with 

two input ports, and a component for computing absolute value. The class definition 

for the composite filter only extends the constructor and destructor of the composite 

base class. The extended constructor allocates -the four internal subcomponents and links 

them together and to the appropriate port blocks. The destructor deallocates all the four 

internal subcomponents. No links need to be removed during destruction, since all the port 

blocks and the composite components will be deallocated by the destructor. However, this 

-deallocating-without-disconnecting is not the case for dynamic replugging. If a component 

is dynamically unplugged, all inbound connections from the outside should be removed. 

If the unplugged component will be reused in the future, all outbound connections should 

also be removed. Otherwise accesses to already-reclaimed memory segments can occur, 

resulting in undefined program behavior such as a memory fault. 



class MeanDeviationFilter : public CompositeFeedback i 
public : 
MeanDeviationFilter 0 ; 
'MeanDeviationFilter 0 ; 

private : 
Feedback *lpfilterl, *lpfilter2, *merger, *abs; 

1 ;  
MeanDeviationFilter::MeanDeviationFilter() 

: CompositeFeedback(1, 2, 2, 0) ( 
// Initialize internal subcomponents 
lpfilterl = (Feedback *) new FOLowPassFilter; 
lpfilter2 = (Feedback *) new FOLowPassFilter; 
merger = (Feedback *) new Merger(2, "+-"I ; 
abs = (Feedback *) new Abs; 
// Connect subcomponents to each other and to port blocks 
inputPortBlock[O]->ConnectOutputPortId(O, lpfilterl, InputPort, 0); 
inputPortBlock LO] ->Connect0utputPortId(0, merger, InputPort, 0) ; 
lpf ilterl->Co~ect0utputPortId(O, outputPortBlockC1l, InputPort, 0 )  ; 
lpf ilter1->C0~e~t0~tp~tP0rtId(0, merger, InputPort, 0) ; 
merger->Connect0utputPortId(O, abs , InputPort, 0) ; 
abs->Connect0utputPortId(O, lpf ilter2, InputPort, 0) ; 
lpf ilter2->Co~ect0utputPortId(O, outputPortBlockCO1 , InputPort, 0) ; 
parameterPortBlock[Ol->ConnectOutputPortIdO, lpfilterl, 

ParameterPort, 0) ; 
parameterPortBlock[lI->Connect0utputPortIdO, lpfilter2, 

ParameterPort, 0) ; 
resetPortBlock->Connect0utputPortId(0, lpfilterl, ResetPort, 0); 
resetPortBlock->Co~ect0utputPortId(0, lpfilter2, ResetPort, 0); 

1 
~eanDeviationFi1ter::MeanDeviationFilter C 
delete abs; 
delete lpfilterl; 
delete lpfilter2; 
delete merger ; 

3 

Figure 3.6: Implementation of a mean deviation filter as a composite feedback component 



Figure 3.7: An example of directed graph of feedback components 

3.2.5 Issues in Composition of Feedback Components 

______--. 
: Other I - 

Control and Data Flow in Feedback Graphs 

When a set of software feedback components are composed, we effectively get a directed 

graph of feedback components, referred to as a directed feedback graph. The nodes of 

the graph are the feedback components. A link from one node to another is established 

by connecting an output port of the former to an input port of the latter. The directed 

feedback graph has a dynamic structure, since nodes and links can be created or destroyed 

dynamically. Figure 3.7 shows an example feedback graph with five components. In this 

graph, component 1 has three input ports and two output ports. A message sent to its 

input port 0 does not generate output messages, while a message sent to its input port 

1 or 2 generates a message to its output port 0 or 1, respectively. Each of components 

2, 3 and 4 has one input port and one output port, and each input message generates 

one output message. Component 5 has two input ports and one output port. A message 

received on its input port 0 is absorbed within the component, while a message from input 

port 1 generates one output message. The parameters of components 2 and 4 are set by 

the output from components 5 and 3 respectively. 

As discussed in Section 3.2.1, the C++ implementation of feedback components is 

single-threaded and synchronous. With these implementation properties, the control flow 

in a feedback graph represents a set of feedback component invocation trees, each of which 

is rooted from a message input port. Suppose in the feedback graph shown in Fig. 3.7, 

the links from each output port are established in bottom-up order, then there are three 

component invocation trees associated with the three input ports of component 1. These 

o - .  
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Figure 3.8: Feedback component invocation trees rooted from the input ports of compo- 
nent 1 



trees are shown in Fig. 3.8 (a), (b) and (c). In a feedback component invocation tree, each 

link represents a call to a member function of the destination component. A left-right, 

bottom-up search of a tree gives the order in which the feedback components are invoked. 

Feedback Component Invocation Loop 

Directed loops of feedback component invocation may be formed in a feedback graph. 

Upon receiving a message from the previous node, each node in a loop may generate at 

least one message to the next one. Loops result in component invocation trees of infinite 

depth. In the C++ implementation model, a loop is equivalent to a (direct or indirect) 

recursive function call, and the recursion is formed dynamically by linking the components 

together. If feedback messages flow in a loop infinitely, what we get is an infinitely long 

chain of function calls, which causes the application to crash due to limited memory space 

for function-call stack. Attention should be payed to avoid accidental loops. To reduce 

the chance of error, though the model does not impose any restriction, it is recommended 

that a feedback component, upon reset or update of its parameters or states, does not 

generate messages. 

However, all feedback systems by nature work in loops. They bring target systems 

into stable states through iterations. In simulation, it is usually necessary to build a 

closed loop of feedback components, and have feedback messages flow inside infinitely, to 

see if or how the feedback loop converges. In this case, feedback component invocation 

loops can be prevented by introducing a decoupling component, or decoupler, in the 

feedback loop. A simple decoupler is the trigger described in Appendix B and in the 

toolkit users manual [7]. It has two input ports, one for data input and the other for a 

triggering signal input, and one output port. The most recent input message is latched 

in trigger. Whenever a signal is received from its signal input, trigger passes the latched 

input message to its output port. As shown in Fig. 3.9, trigger can be incorporated as a 

node in a feedback loop. This loop is driven by some external triggering signals sent to 

trigger's signal input. Each triggering signal pushes the feedback loop through a single 

iteration step, and the result is held in trigger until another signal arrives for next step. 

For example, in both the PLL and flow control feedback simulators to be discussed later 



Figure 3.9: Implementation of feedback loops with the toolkit-based feedback components 

in this chapter, decouplers, which are used to break the loops, are introduced. In the PLL 

loop (Section 3.5), the phase difference detector works as a decoupler: it computes and 

outputs a phase difference whenever the reference clock inputs a phase value. The phase 

difference is taken by the filter to control the VCO, which computes the next-step phase 

of the local clock. The next-step phase value is then held until next-step phase values 

comes from the reference clock. In the flow control feedback loop (Section 3.6), a tr igger 

serves as a decoupler. 

Limitations Imposed by the Implementation 

There are some limitations the single-threaded and synchronous C++ implementation 

imposes on the kinds of software feedback systems that can be easily implemented. In 

order to make feedback components asynchronous, explicit programming for (re-)ordering 

the feedback messages is necessary. If feedback components need to be implemented as 

separate threads, or need to reside on different hosts, external mechanisms are necessary 

for implementing inter-process communication and synchronization. To introduce delays 

in components, we will need to rely on external timers or periodic invocation (polling) 

of the components to identify time. Fortunately, as demonstrated by the applications in 

the later chapters in this thesis, even for distributed feedback systems, it is usually the 

case that the toolkit-based feedback components can be placed within a single thread, 

and the whole feedback system is implemented with these components plus some simple 

application-specific mechanisms. 



3.3 Implementation of Guard-Based Meta-Adaptation 

Guard-based meta-adaptation involves elements such as guarded feedback components, 

guards, and dynamic component replugging operations. A guarded feedback component 

needs to be repluggable. All feedback components derived from the base classes in Sec- 

tion 3.2 can readily be used as guarded components, since all of them are already re- 

pluggable, and can be dynamically created, plugged in, unplugged, or destroyed. Guards 

are used to detect events and trigger meta-adaptation. They can either be implemented 

as feedback components, or simply as glue code in composite components. For dynamic 

component replugging, feedback components need to be dynamically created and plugged 

into the active system, or unplugged and destroyed. Since all feedback components are 

repluggable, dynamic replugging operations are simple, and can be implemented as glue 

code in composite components that manage repluggable components. In a multi-threaded 

environment, when replugging operations can happen in parallel with "normal" feedback 

operations, synchronization needs to be implemented explicitly. In future versions of the 

feedback toolkit in which feedback components can be synthesized dynamically at run- 

time, a centralized dynamic component synthesizer-and-replugger may be needed. In a 

feedback system with guard-based meta-adaptation, during feedback operation, events 

from the target system are intercepted in an application-specific manner, and are passed 

to the feedback system through its input or parameter ports, where they are checked by 

guards and may initiate meta-adaptation in the form of either parameter change or dy- 

namic replugging of feedback components. Events may also trigger exceptions that signal 

to the application. 

3.3.1 Implementation of Guards 

In the simplest form of guards, aspects of the internal structure of a composite component 

are exposed through its parameter ports. The outside world manipulates its internal 

structure directly by sending messages to its parameter ports. One example is in the 

PLL simulation to be discussed later in this chapter. The composite filter in the PLL in 

Section 3.5 has a dynamically repluggable compensator and a corresponding parameter 



port. The compensator is unplugged whenever the parameter is set to zero, otherwise it 

is plugged in. 

Guards cal also be implemented by feedback components such as filters. For example, 

in the receiver side of a UDP network connection without packet reordering problems, 

the assumption of "no packet loss" can be guarded by a difference filter that takes in 

the sequence numbers of packets received. Whenever a packet is lost, the output of 

the difference filter is greater than one, signalling the invalidation of the assumption. The 

guard for packet-loss feedback in the adaptive packet flow control feedback to be discussed 

in Chapter 4 is based on this technique. 

3.3.2 Dynamic Replugging of Feedback Components 

The C++ class implementation of software feedback components provides facilities for dy- 

namic component replugging. Instances of a component class are dynamically initialized 

and reclaimed by its class constructors and destructors respectively. Links are estab- 

lished or removed through component class member functions Connect OutputPort Id (1 

and Disconnect OutputPort Id ( 1. The parameters and states of a feedback component 

can be set or saved, by accessing by its parameter and state ports. 

Dynamic replugging of guarded feedback components can be performed either eagerly 

or lazily [15]. A component can be plugged in or unplugged eagerly by its guards each 

time the guards are triggered. The PLL simulation in Fig. 3.10 shows an example of 

eager replugging of the compensator component. Eager component replugging involves 

potential overhead if a component is replugged frequently without being actually invoked. 

On the other hand, a component may also be replugged lazily. Its guards, when triggered, 

only set appropriate flags. Each time the composite feedback component containing the 

repluggable component receives an input message that may invoke it, the flags are checked, 

and the component is replugged when indicated. The adaptive packet flow control feedback 

in Chapter 4 contains two feedback policies, the dynamic replugging of both of them 

is performed lazily. Lazy component replugging involves overhead in processing input 

messages in order to check relevant flags, and to possibly replug the components. How 

to perform dynamic replugging of feedback components, either eagerly or lazily, involves 



trade-offs between implementation complexity and performance. In the case of multi- 

threaded implementation, dynamic replugging also involves trade-offs in complexity is 

synchronization between different operations such as guarding, component replugging and 

normal operations [15]. 

One operation that should be avoided is the unplugging of an active feedback compo- 

nent. As discussed previous Section 3.2.5, a feedback component graph may have several 

component invocation trees, each of which may have one or more component invocation 

chains. In a feedback component invocation chain, a component in a later stage should not 

directly unplug another one in an earlier stage. Instead, the component in the later stage 

should set a flag for lazy replugging later, either at the end of the current invocation, or 

during the next invocation. For example, Fig. 3.8(b) shows a invocation tree with a chain 

of three components. In this chain, component 4 should not unplug component 3 by itself, 

otherwise the application may invoke a feedback component which has been reclaimed, 

resulting in undefined behavior. 

3.3.3 Signalling Exceptions to the Application 

One way for applications to receive events (including exceptions) is through callback func- 

tions. An application registers callback functions with underlying system for the events 

it is interested in. Whenever an event happens, all callback functions registered for the 

event are invoked. Thus the applications are notified, and any necessary reactions can be 

performed. 

The feedback toolkit prototype implements a simple exception component for excep- 

tion signalling through callback functions. As described in the toolkit user's manual [7], 

an exception component takes the address of a callback function during initialization. It 

has a single input port, and no output or parameter ports. Whenever a message is re- 

ceived by the exception object, the callback function is invoked with the value of the input 

message as its argument. Other components can be connected to this exception compo- 

nents. Whenever an component detects an exception, it sends out a message containing 

an exception code to the exception component. 



3.4 Simulation and Instrumentation Tools 

The feedback toolkit prototype provides a set of special feedback components for simula- 

tion of feedback systems as well as on-line instrumentation in real-life applications. These 

components include Motif-based graphical user interface (GUI) components such as the 

parameter setting panel, timer panel, control panel, and oscilloscope, as well as various 

signal generators and components for file input and output. Though these components 

have special functionalities, they still bear the same interface as normal feedback com- 

ponents. So interaction between these components and the rest of feedback systems are 

simple and clean. These components can be readily linked to the feedback systems to be 

simulated or instrumented directly. This section briefly describes some of the components. 

A more detailed description can be found in the toolkit user's manual [7]. 

3.4.1 GUI Components 

The parameter setting panel sets parameters of other feedback components and controls 

the display of other GUI panels. There are two parts in the parameter panel GUI: a 

set of scales for setting numerical parameters, and a number of normal or toggle buttons 

for sending signals to or setting on-off parameters of other components. Each parameter 

corresponds to a pair of input and output ports. A parameter can be set by user actions 

on the corresponding scale or button as well as upon receiving input messages from its 

corresponding input port. Each time a parameter is set, an output message is generated to 

the corresponding output port, and the current parameter value is reflected in the panel (in 

the case of the scales or the toggle buttons). The parameter panel has a single parameter 

port, receiving a message from which toggles the display state (shown or hidden) of the 

panel. 

The timer panel generates timing signals, and is useful in simulation. Through its 

GUI, the user can start, stop or step the timer, as well as set the timing interval. 

The control panel is used to set parameter values of other feedback components, to 

toggle the display state of other GUI components, and to control simulation processes. 

Figure 3.11 shows the GUI of control panel for the PLL simulator. The control panel is 



basically a combination of a parameter setting panel and a timer panel, plus a reset button 

issuing signals to reset other feedback components, and an ezit button for terminating 

the whole application. The control panel is the module that initializes the Motif and X 

run-time environment, and drives the processing of Motif and X events received by all GUI 

panels. Thus the control panel must be used whenever other Motif-based components are 

needed. 

The oscilloscope panel (scope) displays one or more channels of data in real-time. 

Figure 3.12 shows the scope panel for the PLL simulator. The user has the choice of 

either external timing from one of the data channels, or internal timing. The scope has 

a timer panel for adjusting the internal timing, and a parameter panel for setting the 

bias and range of all the data channels. The display state of the scope can be toggled by 

sending messages to its parameter port. 

3.4.2 Components for File Input and Output 

There are two file 1/0 components: InputFromFile for reading from files, and 

OutputToFile for writing to files. An InputFromFile component is initialized with a 

file name from which double precision floating point numbers are read. It has one input, 

one output, and one reset port. Upon receiving an input message, the next data item, if 

available, is read from the file and output to all connected input ports. A message to its 

reset port rewinds the file pointer to the beginning. An OutputToFile is also initialized 

with a file name. All data received from its input port is written to the file, and a reset 

signal discards all the data already in the file. The associated data files are closed upon 

destruction of the InputFromFile and OutputToFile components. 

3.4.3 Components for Signal Generation 

The feedback toolkit prototype implements components to generate sequences of signals 

for simulations. There are components generating sinusoid waves, square waves, random 

numbers, etc. A signal generation component has one input, one output and a number 

of parameter ports. Signal generators are triggered by signals from sources such as timer 

panels. The signal range, and the period in the case of periodic signals, can be set 
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dynamically through its parameter ports. 

3.5 Example: Phase-Lock Loop Simulation 

lg2Rtset 

To demonstrate the application of the software feedback toolkit in composition and sim- 

ulation of software feedback systems, we have built a simulator of the phase-lock loop 

discussed in Section 2.5.4. The simulator is implemented using the building blocks pro- 

vided by the feedback toolkit. Through simulation, the theoretical results reached in 

Section 2.5.4 are verified, and the dynamics of the PLL with various configurations is 

visualized. 

: 

3.5.1 Simulator Structure 

............................................................................................................................... 

The structure of the PLL simulator is shown in Fig. 3.10. The PLL implemented has the 

same structure as that shown in Fig. 2.10 of Section 2.5.4. The reference clock is driven 

by a trigger component, which generates a message containing the clock speed upon each 

triggering signal. The phase difference detector and unit delay are implemented as a 

single merger component, with the "+" input as the trigger. All other components in the 

feedback loop except for the VCO are packed in a single composite filter component. 

The phase residual compensator in the composite filter component is dynamically 



repluggable. When parameter g2 of the composite filter is set to zero, this compensator 

is unplugged. On the other hand, whenever gz becomes non-zero, it is plugged into the 

composite filter. 

The input guard on phase error discussed at the end of Section 2.5.4 is implemented 

in the simulator. This input guard takes the speed of the reference clock ST as its in- 

put, and phase error limit Emax as its parameter. When the assertion 10.21Sr < Emax 

(Section 2.5.4) fails, this input guard is triggered and prints out a warning message. This 

input guard assumes no delay (t = 0), unit gain, g = 1, no phase residual compensation 

(g2 = 0) and strong lowpass filtering (a = 0.01). Its triggering is accurate only when 

the parameters are set as mentioned. For simplicity however, these assumptions are not 

guarded. For comparison, a similar simple performance guard is also implemented. These 

guards are disabled when the error limit Emax is set to zero, so that they are not triggered 

during experiments for other purposes. 

The scope displays four channels of simulation data in real-time. In Fig. 3.10, from top 

to bottom, these channels are reference clock speed (calculated by applying a difference 

filter on the reference clock phase sequence), local clock speed (a difference filter is also 

used), phase difference between reference and local clocks, and composite filter component 

output. 

The control panel for this PLL simulator is shown in Fig. 3.11. Through the control 

panel, the user can view and adjust all the parameters of the PLL including reference clock 

speed, feedback loop delay, gain, phase residual compensator gain, and phase error limit 

for the guards. The user can also reset the PLL, and control the process of simulation 

through the control panel. 

3.5.2 Simulation Results 

The stability results reached in Section 2.5.4 are verified by simulation. The basic con- 

figuration, in which the feedback loop effectively consists of only the VCO, has a unit 

gain. The output phase difference is always the same as the reference clock speed. The 

addition of the phase-error residual compensator changes the basic configuration into a 

difference filter, with the output phase difference always being the derivative of the input 
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Figure 3.11: Screen dump of the control panel used in the PLL simulator

reference clock speed. Lowpass filtering makes the veo speed change smooth, with the

convergence of the PLL always being accompanied by decaying oscillations. Smaller-than-

1 gain smoothes out the veo's tracking of reference clock changes, and the convergence

is monotonic. However, in the steady state, the phase-error residue is proportional to the

inverse of the gain, the smaller the gain is, the larger the residue becomes. Adding a

non-zero delay in the feedback loop of the basic configuration makes the PLL unstable,

with its output phase difference unable to converge.

The simulation also clearly illustrates the dynamics of the PLL with different config-

urations. Figure 3.12(a) shows a snapshot of the scope for an experiment with an basic



(a) Instability behavior with delay of 1 and 2
and non-constant reference clock speed

68

(b) Stable PLL with long latency and low gain,
lowpass filtering and phase difference compen-
sation

Figure 3.12: Oscilloscope snapshots showing the dynamics of PLLs

PLL except that the feedback loop delay is non-zero. This experiment starts with feed-

back loop delay t = 1 and reference clock speed S = 1. The PLL is unstable, but the

output phase difference is still a constant equal to S. Later, when S changes to 2, the

instability of the PLL shows up as an oscillation in its output. The oscillation is persistent

.even when S changes back to 1. Finally, when feedback-loop delay t changes to 2, the

PLL output quickly goes unbounded. This experiment shows that the phenomena of the

instability of linear systems is manifold. An unstable system may generate unbounded

output, or persistent oscillation (limit cycles), or it may also generate output that appears

to converge.

PLLs with long feedback loop delay can still be made stable by setting other parameters

appropriately, though we will not prove this claim formally. Figure 3.12(b) shows the scope

snapshot for an experiment, in which the PLL has a long feedback loop delay of t = 13.

It also has parameters gain 9 = 0.1, lowpass filtering a = 0.5, and phase error residual



compensation g2 = 0.01. The scope snapshot shows that there is a latency before the 

feedback loop begins to react the input reference clock speed. The PLL converges to a 

steady state where the output phase difference is 0, but the convergence is a very slow 

process. Simulation shows that when long latency is involved, the gain of the PLL should 

be kept to a low level, otherwise the PLL becomes unstable. This property may limit 

the application of this simple PLL in situations where long round trip latency cannot be 

avoided, e.g., in long-haul networks with many hops or with satellite links. 

To demonstrate the effect of the input and performance guards, we set the parameters 

of the PLL as appropriate ( t  = 0, g = 1, g2 = 0 and a = 0.01), and enable both guards. 

The experiment shows that these two guards are either both triggered or neither triggered. 

Furthermore, in the case when they are triggered, the input guard is always triggered at 

the beginning, while the performance guard is alway triggered a number of steps later, 

when the phase error excesses the limit. For example, in one experiment, the reference 

clock speed is set as S = 1 and the phase error limit as Em,, = 10. The input guard is 

triggered at step 1, while the performance guard is triggered at step 11. The preventive 

nature of the input guard leaves a chance for the PLL to take measures to avoid the 

performance degradation problem from occurring. 

3.6 Example: Flow-Control Feedback Simulation 

Simulation becomes an even more important means in understanding nonlinear software 

feedback system properties such as stability, performance, and responsiveness, as well as 

for tuning-up performance. In this section, we demonstrate the simulation of a simple 

nonlinear feedback system that controls the flow of multimedia data through an idealized 

pipeline. 

3.6.1 The Flow Control Feedback 

In client-server style applications for adaptive real-time multimedia streaming, such as the 

MPEG video player to be discussed in Chapter 6, a typical codguration consists of a set 

of media pipelines. Each of the pipelines is composed of stages including a server, network 
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Figure 3.14: A data packet rate model for multimedia data pipelines 

links, and a client. Media data flow from the server through stages to the client. The 

pipeline stages can drop data independently in the case of overload, and no effort is made 

to retransmit lost data. Feedback-based mechanisms are used to dynamically control the 

flow, in order to limit packet-loss ratio while sufficiently exploiting the available bandwidth. 

Figure 3.13 shows a simple and idealized model of the scenario above. The data pipeline 

is modeled as a piece-wise linear function, as shown in Fig. 3.14, with two parameters: 

nominal bandwidth B and latency D. If at time (step) k, the rate of data input to the 

pipeline is u(k) (> O), and the output data rate is y(k), then the model function is defined 

as below, where P is the name of the function. For an input data rate up to the nominal 

bandwidth, the pipeline drops no data. Otherwise the pipeline only outputs data at rate 

of B. We assume that all excessive data are dropped randomly and evenly. 

u(k - D) if u(k - D) 5 B 
g(k) = P(u(k - D)) = { 

B otherwise 

The feedback mechanism controls the data input rate of the pipeline to limit data loss. 



It simply tries to keep the input data rate higher than the output rate, with the difference 

close to a rate-incremental constant A. The current pipeline output rate y(k) is sampled, 

optionally processed by a lowpass filter, then used to compute the next-step pipeline input 

rate. The feedback control can be modeled with the following equation: 

3.6.2 Simulator Structure 

The simulator for the feedback-based flow control loop is shown in Fig. 3.15. The feedback 

loop is composed of two composite components, one for the pipeline and the other for the 

feedback policy, as well as a trigger. The pipeline is in turn a composition of a delay 

unit and a component computing y(k) = P(u(k)) .  It receives and processes next-step 

input data rates. After D units of delay, both the input and output rates are generated 

by the pipeline. The composite component implementing the feedback policy contains a 

lowpass filter and biaser. The trigger holds next-step input rate values, and sends them 

to the pipeline upon each signal from the timer of the control panel. It is reset at the 

beginning of each simulation to an initial state where its data output prior to the first 

input is always zero. Thus all simulations start with an initial input data rate of zero. All 

four parameters, pipeline nominal bandwidth B, delay time D, lowpass filter parameter cu 

and rate constant A, can be adjusted through a control panel. The scope panel displays 

three channels of data, the current pipeline output rate, the input rate that generates the 

current output rate, and next-step input rate. 

3.6.3 Simulation Results 

It is intuitive that the flow control feedback without pipeline latency would be stable, 

with a steady state in which the input and output data rates are close to the nominal 

bandwidth of the data pipeline. Simulations suggest that this intuition is actually valid. 

In one experiment, we configure the feedback loop so that no pipeline latency nor lowpass 

filtering exists (basic configuration). We also use the rate incremental A = 1.0 and start 

with a pipeline nominal bandwidth B = 30. Figure 3.16(a) shows a snapshot of the scope 

for this experiment. The snapshot indicates that the pipeline output linearly increases 
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Figure 3.15: Structure of the flow control feedback simulator 

to 30 and then oscillates. Then we set the nominal bandwidth B to a higher level, and 

the feedback linearly traces the change, this time the limit cycle is missing. Later B is 

set back to around 30 (30.8 in the experiment), and packet drop occurs, but the feedback 

quickly reacts to yield the new bandwidth again. Generally, the flow control feedback 

with the basic configuration (no pipeline latency nor lowpass filtering) is stable, most of 

the time with limit cycles oscillating around the nominal bandwidth of the pipeline. The 

magnitude of the limit cycles is determined by the data rate incremental A. The feedback 

is responsive in tracking changes in nominal pipeline bandwidth. 

The simulation also reveals several effects of the lowpass filter to the flow control 

feedback, and shows that the longer the lowpass time constant (by setting a smaller 

parameter value a), the stronger the effects are. Firstly, no matter what time constant it 

has, lowpass filtering effectively curbs the limit cycles. Secondly, lowpass filtering tends to 

make the feedback less responsive, taking longer to track changes in nominal (available) 

bandwidth. The result is that when available bandwidth increases, more time is needed 

to detect and make use of it. On the other hand, if the available bandwidth decreases, 

more time is also needed for the pipeline input rate to follow, causing increased data loss. 

In practice, the same sluggishness makes the feedback more robust in the case when the 

variation in measurement of pipeline available bandwidth is caused by measurement noise 
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(b) Basic configuration except for long
pipeline latency

Figure 3.16: Oscilloscope snapshots showing the dynamics of the flow control feedback

instead of actual changes in nominal bandwidth.

One concern about the latency in the pipeline is that it may cause oscillation or

instability, especially if not enough damping is applied. The simulation demonstrates

that the instability problem does not exist. The latency increases the likelihood of limit

cycles, and makes the feedback more sluggish. But with all the parameter combinations

simulated, the feedback always eventually converges to the neighborhood of the pipeline

nominal bandwidth B, sometimes with limit cycles. Figure 3.16(b) shows the result of

an experiment in which the flow control has the same basic configuration as that for the

experiment shown in Fig. 3.16(a), except that the latency is set to 8. The first segment is

the steady state for B = 30. Then B is set to around 40, and the feedback reacts to the

change more slowly. Then B is set back to around 30 again (29.6 in the experiment), and

it can be seen that it takes several steps before the feedback reacts to the change, causing

packet drops for a longer period (8 steps in this experiment).
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3.7 Discussion

3.7.1 Feedback System Implementation with the Toolkit

We envision a design space of software feedback systems as shown in Fig. 3.17. The

design space has several dimensions, such as complexity, adaptability, and execution speed.

Different feedback systems have different requirements and stay at different positions in

the design space. Feedbacks such as those used in Synthesis for adaptive scheduling [32]

are invoked very frequently, and need to be highly optimized for execution speed. Some

feedbacks, such as TCP flow control [23], are complex. They need complex and fine-tuned

filters and control laws to ensure system stability and satisfactory performance. There

are also feedback systems that need to be highly adaptive. They need to work well in

multiple situations, some of which may not even be known before their development. The

adaptive packet rate control feedback in Chapter 4 falls into this category. In many cases,

complexity and adaptability are closely related. A feedback system is complex mainly

because it needs to handle multiple cases, and the need for a feedback to work in multiple

situations makes it complex.

Like other software systems, feedback systems can be implemented in one of several

ways as shown in Fig. 3.18. Each way has pros and cons in criteria such as modular-

ity, software reuse, extensibility, execution speed, etc. First, a feedback system could be
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Figure 3.18: Software feedback implementation approaches and their properties 

implemented from scratch as a single ad-hoc monolithic module. For complex feedback 

systems, this approach has known deficiencies: it is neither modular nor extensible, pro- 

vides no software reuse, and is hard to implement and maintain. But if implemented right, 

their execution performance can be highly optimized. Second, existing non-parameterized 

components could be used. Modularity and software reuse are enhanced. The code may 

not be optimized for execution performance, but powerful compile-time optimization tech- 

niques are readily applicable. Third, existing parameterized components could be used 

in building complex feedback systems. Modularity, software reuse and extensibility are 

pushed further. But the potential difficulty in compile-time optimization increases, since 

the adjustable parameters are not amenable to constant folding, upon which many opti- 

mization techniques are based. Finally, dynamic replugging of feedback components can 

be incorporated. With this last approach, modularity and software reuse are maintained, 

and extensibility is maximized. But optimization for execution speed is even harder, be- 

cause the interaction between feedback components can be dynamic, and is stored in data 

structures. Compile-time optimization cannot help in reducing the overhead of crossing 

the boundaries of dynamically-linked modules. 

The proposed feedback toolkit approach helps the design and implementation of com- 

plex wide-range software feedback systems, as indicated in Fig. 3.17 and Fig. 3.18. It 

provides methodologies and tools to decompose a complex feedback system into guarded 

subsystems, and then implement the feedback system by composition of existing building 

blocks. It also provides tools for simulation and instrumentation. In the case when high 

execution performance is critical, a feedback system can still be designed, implemented 
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Table 3.1: Execution speed of the original and manually optimized PLL component on an 
lOOMHz Pentium Notebook 

and tuned with the toolkit, and then reimplemented for actual application for higher 

performance. 

3.7.2 Execution Performance of Toolkit-Based Feedback Systems 

The feedback toolkit helps the development of complex wide-range feedback systems, possi- 

bly in exchange of some overhead in execution speed of the feedback systems implemented. 

The toolkit adopts a general feedback component model. Feedback components may have 

adjustable parameters. The interactions between components are dynamic, and stored 

in data structures (C++ objects). Modern compiler technologies are powerful enough 

to fold constants in expressions and program control flows, and to remove cross-module 

interpretation overhead when constants are involved. But not enough run-time optimiza- 

tion efforts have been made, such that programs with dynamic values and interactions 

can be effectively incrementally optimize incrementally at run-time. Thus, even though 

the feedback components are implemented as C++ classes, there is still much room to 

improve their execution performance through compile-time and run-time optimizations. 

As an example to show the execution overhead of the toolkit approach, we re-implemented 

the PLL filter component in the PLL simulator (shown in Fig. 3.10) as a single class, de- 

rived from the Feedback base class. The re-implemented PLL filter component has a 

zero-delay, unit gain, lowpass filter parameter 0.1, and a unit gain in its compensator. 

Efforts are paid to optimize the execution speed of the re-implemented PLL component. 

Table 3.1 shows a comparison of the execution times of the original (the one used in the 

PLL simulator in Section 3.5) and re-implemented PLL components on a lOOMHz Pen- 

tium notebook running LINUX. This table shows that the manual optimization improves 

the execution speed more than 20 times. Different experiments on different platforms 

may yield different numbers, but we expect that the speed difference will be of similar 

magnitude. 



On the other hand, the toolkit-based implementation of feedback systems unveils new 

opportunities of dynamic run-time optimization. When a variable keeps the same value 

for a long time, optimization similar to compile-time constant folding can be applied. 

If the dynamic interaction between modules is stable, execution speed can be increased 

through cross-module optimization (similar to compile-time function inlining) to elimi- 

nate interpretation overhead involved in crossing of module boundaries, or even to merge 

modules. Run-time optimization is much more complicated than the compile-time ver- 

sion, since dynamic code generation and replugging are involved. Especially in the case 

when the variable or interaction may change, the optimized code needs to be guarded, 

and unplugged when the assumptions on which the optimized code is based are no longer 

valid. One important part of the Synthetix project [44] is to explore run-time optimization 

opportunities with a technique called optimistic incremental specialization. There are also 

other projects, such as the Scout project (361, on dynamic code generation and run-time 

optimization. But these research efforts are mainly focused on run-time constant folding 

within individual modules. Run-time cross-module optimization has not been addressed 

except in special contexts such as network protocol stacks [36]. Aggressive run-time op- 

timization of the toolkit-based software feedback systems is part of our future research 

work [43]. 

3.7.3 Alternative Toolkit Implementation Approaches 

The software feedback components in the toolkit prototype are implemented as single- 

threaded C++ objects. An alternative is a multi-threaded implementation, which can be 

achieved by making all the feedback component C++ classes and objects multi-thread safe. 

In a multi-threaded environment, a feedback component can be accessed by more than one 

thread. Its ports become inherently asynchronous, and it becomes necessary to explicitly 

ensure the synchronization among the access by different threads, and between dynamic 

component replugging and normal feedback message processing. Synchronization and 

concurrency control is a difficult issue, especially when dynamic replugging of components 

is involved. In Synthetix, a method consisting of a set of primitives has been proposed to 

link operating system code dynamically [15]. 



The software feedback components implemented as C++ objects are passive objects. 

A component is a data structure associated with some member functions for manipulation, 

and the various ports are represented by the member functions. Alternatively, feedback 

components could be implemented as active objects. Each feedback component is a thread 

of execution, or a set of threads (especially for composite components). Components are 

composed through inter-process communication channels. This implementation model is 

also called communicating sequential process (CSP) [25]. An interesting parallel program- 

ming language OCCAM [25] was designed based on CSP, and has been implemented on 

Transputer networks [64]. This concept of active threads maps more directly than the 

passive object to our feedback component model. But unfortunately, for various reasons, 

the CSP programming paradigm has not become as popular as C/C++. As a result an 

CSP-based implementation of the software feedback toolkit would be less pervasive. 



Chapter 4 

Adaptive Packet-Rate Control Base on 

the Feedback Toolkit 

In this chapter, we demonstrate how the toolkit can be applied in the development of 

wide-range feedback systems with a non-trivial example: a feedback system for adaptive 

real- time packet-rate control. Following the guidelines from the toolkit, the packet-rate 

control feedback is composed of two guarded component policies through guard-based 

meta-adaptation. The whole feedback system is then implemented as a hierarchical com- 

position of feedback components, most of which come from the toolkit class library. Fi- 

nally, the simulation and instrumentation tools are used to visualize the effects of the 

feedback and to tune its parameters. We also briefly analyze the feedback policies for the 

interaction between multiple packet transmission sessions sharing the same network link. 

4.1 Introduction 

A typical scenario for adaptive real-time distributed multimedia applications, as shown in 

Fig. 4.1, has a media server and a media client connected through a data packet network 

such as the Internet. The media server either fetches compressed and stored media data, 

or captures and compresses a live media source. It packs the compressed media data 

into-packets, and paces them out to the network. The client receives data packets from 

the network, and decompresses and renders them in real time. Due to the real-time 

requirements, packets lost in the network or other stages of the media pipeline from 

the server to the client are not retransmitted. The resources in the server, client, and 

especially in the network, are shared by all types of applications, and their availability 



Figure 4.1: A scenario of real-time distributed multimedia applications 

changes dynamically. To ensure that the application adapts to the changes, feedback is 

used to continuously monitor the presentation quality observed at the client, and adjust 

the sending packet rate at the server accordingly. 

In this chapter, we focus on a client-side rate-based feedback that adapts the rate 

at which the server sends packets based on changes in network conditions. The client 

continuously monitors metrics such as received packet rate and packet transmission latency 

(from the server to the client), and determines the future packe-rate sent from the sender. 

This next-step rate is then sent to the server as a limit on the rate at which future packets 

are sent. The goal of the feedback is to maximize the utilization of network bandwidth 

while avoiding congestion. 

A packet network connection consists of a number of network links connected through 

routers and switches, each of which receives and stores packets from the previous link, and 

forwards them to the next one. Such a network connection can roughly be modeled as a 

pipe with parameters such as bandwidth, transmission latency and (aggregate) internal 

buffer size. When network congestion occurs, the internal buffer fills up, causing increased 

latency, and eventual packet-loss. 

Based on the ratio of bandwidth and buffer size, network connections may show dif- 

ferent symptoms upon congestion. A connection composed of fast links such as Ethernet 

or ATM has a large bandwidth-to-buffer-size ratio that congestion will cause the internal 

buffer to overflow before an increase in transmission latency becomes significant and easily 

observed. Such a network connection has the congestion symptom of packet-loss, and can 

be referred to as a lightly-bu#ered network connection. On the other hand, a network 



connection such as a PPP link has a much smaller bandwidth-to-buffer-size ratio. For ex- 

ample, the PPP server at OGI's CSE department provides more than 50K bytes of buffer 

for each 28.8Kbps PPP link. For a network connection with the above PPP link, in the 

presence of congestion, the latency would increase from millisecond level up to 15 seconds 

before packets are dropped by the PPP server. This significant increase in latency can 

be easily detected and packet-loss can be avoided with appropriated flow control. This 

later type of network connection is referred to as a heavily-buflered network connection. 

Some other network connections may have a mid-ranged bandwidth-to-buffer-size ratio, 

and show both symptoms simultaneously of congestion. 

In order for the multimedia applications shown in Fig. 4.1 to work well with all types of 

network connections, the packet-rate feedback needs to react to both network congestion 

symptoms. Following the methodologies in the software feedback toolkit, we propose the 

feedback as a composition of two repluggable guarded component policies: packet-loss 

feedback and latency feedback. The packet-loss feedback policy responds to packet loss, 

and adjusts the server packet sending rate so that the packet-loss rate is maintained at a 

preset level. The latency feedback policy reacts upon detection of a significant increase 

in packet transmission latency, and controls the packet sending rate to keep the latency 

at a specified leveI. When the network is congested, if packet loss is detected, then the 

packet-loss feedback policy is activated. If significant increase in transmission latency is 

detected, then the latency feedback policy is activated. In the case where both feedback 

policies are active, the lower of the packet rates generated by the two component policies 

is used by the media server. When no feedback policy is active, no limit is imposed on 

the rate at which the server sends packets. 

In the rest of this chapter, we first present the architecture of the packet-rate feed- 

back control, including the two feedback policies for lightly-buffered and heavily-buffered 

network connections, and meta-adaptation of the feedback upon various events. Then we 

describe the implementation of the feedback system, in which the two feedback policies 

are implemented as repluggable guarded feedback components. Upon detection of the 

respective congestion symptoms, the policies are dynamically plugged into the feedback 

system through meta-adaptation actions. Finally we show some experimental results, and 



briefly analyze of the interaction between pakcet transmission sessions using either of the 

feedback policies. 

4.2 Packet-Rate-Control Feedback Architecture 

4.2.1 Feedback Policy for Lightly-Buffered Network Connections 

We assume that a lightly-buffered network connection can be modeled as shown in Fig. 3.14, 

with a nominal (available) bandwidth B. When the server sends packets at a rate no more 

than B, no packet is dropped. Otherwise, the receive packet rate remains at B and all 

excessive packets are dropped. 

The packet-loss feedback policy keeps the server sending packet at a rate close to the 

nominal bandwidth B by maintaining a preset rate of packet-loss. The policy is simple 

and similar to the flow-control feedback discussed in Section 3.6. It traces the network 

available bandwidth B through iterations. At each step, the client measures the current 

client receive packet rate, and generates a next-step server send rate as the measured 

received rate plus a constant rate-incremental coefficient. 

Suppose at step k, the estimation of the current client receive rate is ,Gk, and the 

packet-rate incremental coefficient is A, then the next-step server sending rate XkS1 is: 

4.2.2 Feedback Policy for Heavily-Buffered Network Connections 

The goal of the latency feedback policy is to maintain the overall network buffer-fill level 

(or buffering latency)' close to a preset target value. The buffering latency of a packet 

can be measured as the transmission latency of the packet less the minimum transmission 

latency of the connection.' The feedback also maintains the target buffer-fill level through 

'The buffer-fill level is the number of packets buffered inside the network. It can be measured by 
buffering latency - the time a packet spends in the network buffers. So buffer-fill level and buffering 
latency are used interchangeably. 

'The latency of a packet transmitted when the network connection is otherwise quiet. The minimum 
latency of a packet consists of the processing time in the hosts, switches and routers, plus the propagation 
latency on the network links. 



iterations. At each step, the current buffer-fill level as well as client-received packet rate 

are measured, and the next-step server sending rate is calculated and sent to the server. 

Suppose the preset target buffer-fill level is F, and the sampling interval (the length of 

each feedback iteration step) is T.3 Also suppose that at step k ,  the server sending rate is 

X k  (enforced since the beginning of step k) ,  the client received rate estimation is bk, and 

the buffer-fill level estimation is .jlk (both estimated at the end of step k ) ,  then the goal of 

the latency feedback policy is to come up with a next-step server sending rate Xk+l, with 

the hope that at the end of step k + 1, the buffer-fill level reaches the target F: 

From the equation above, the following formula for the next-step server sending rate 

Xk+1 can be deduced: 

This formula is not feasible, since the next-step server sending rate Xk+l depends on 

the next-step client received rate / I k S l ,  which is not available yet at the beginning of step 

k + 1. However, the changes in available available bandwidth are usually gradual. It is 

reasonable to assume that bk is a good approximation of fik+l. With this assumption, we 

get the following control law for the latency feedback policy: 

In practice, a constant K (0 < K 5 1) may introduced, and a limit R may be set on 

how much Ak+l can deviate from pk. Also it does not make sense to have a negative server 

sending rate. Application of all these modifications results in following practical control 

law: 

F - ?k 
Xk+l = max(bk + nin(rnax(K-, -R), R), 0) T 
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Figure 4.2: Meta-adaptation of the packet rate feedback: the states and their transition 

4.2.3 Events and Meta-Adaptation 

Several events associated with the network connection congestion conditions are guarded 

by the packet-rate control feedback. When a guarded event happens and triggers a guard, 

the feedback performs meta-adaptation actions to activate or deactivate the two feedback 

policies. The following are the four events to be guarded: 

1. Packet loss - A packet-loss event happens whenever a gap between the packet 

currently received and the previous one is detected. 

2. No more packet loss - This event is the expiration of a packet-loss timer. The timer 

is initialized with a given duration, and is reset upon each packet-loss event. If it 

is not reset within the specified duration, it expires, indicating that packets are no 

longer being dropped. 

3. Latency higher than specification (latency event) - This latency event is raised 

upon receiving a packet if the current buffering latency is greater than the specified 

target value. 

4. Latency stays within specification - This event is the expiration of a latency timer. 

Similarly to the packet-loss timer, the latency timer is initialized with a duration, 

reset upon each latency event, and expires if not reset within the given duration. 

3To simplify the problem, we assume that T is significantly larger than the packet transmission latency, 
thus the latter can be ignored in the design and analysis of the latency feedback. 
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Figure 4.3: Packet rate control feedback overall structure, where floating components are 
d ynamically-repluggable 

Depending on whether the network connection is congested and the symptoms detected, 

the packet rate feedback is in one of the following four states: (1) both policies inactive; 

(2) packet-loss feedback policy active; (3) latency feedback policy active; and (4) both 

policies active. Transitions between these states are triggered by the four events above, 

as shown in Fig. 4.2. 

4.3 Implementation of the Feedback System with the Feed- 

back Toolkit 

4.3.1 Overall Structure 

With an overall structure shown in Fig. 4.3, the packet-rate control feedback is imple- 

mented as a composite feedback component. It has a number of sub-components, includ- 

ing feedback policies, packet rate and latency estimators, and policy triggers (guards). 

The un-connected components, including the components of the two feedback policies and 

the two estimators are repluggable. Replugging of these components depends on the con- 

gestion symptoms as detected by the triggers (guards), and is performed by the replugger. 

The following list of components are contained in the packet-rate feedback. Most of 



them will be discussed further in the following subsections. 

1 .  LatFBtl-igger - Component for detection of increase in packet-transmission latency 

and triggering of latency-feedback policy (guard). 

2.  LossFBtrigger - Component for detection of packet-loss and triggering of packet- 

loss-feedback policy (guard). 

3. LatEst - Buffer-fill level (packet-buffering latency) estimator. It estimates latency 

caused by buffering in the network connection. 

4.  RateEst - Client-received packet-rate estimator. 

5. LatFB - Packet-latency feedback-policy component. 

6 .  LossFB - Packet-loss feedback-policy component. 

7. MinMux - A multiplexer that outputs the smaller of the two input values. This 

component is used to select the next-step server-sending packet-rate when both the 

latency and packet-loss feedback policies are active. 

8.  Replugger - Glue code for dynamic replugging of the feedback-policy-related com- 

ponents. 

The packet-rate feedback system has following four input ports. 

1. Di f f T S  - The difference between the client and server timestamps associated with 

packets. To detect packet-loss or transmission latency, every data packet carries 

an incremental sequence number and a server timestamp (the server time when the 

packet was sent). It is assumed that the clocks of the server and the client run 

at the same speed, so that the latency estimation can be based on the difference 

between server and client timestamps. Upon arrival of each packet at the client, a 

client timestamp is recorded, and the difference between it and the server timestamp 

carried in the packet is sent to this input. The feedback monitors this input to 

determine the replugging of the components related to the latency feedback policy, 

and uses the input sequence to estimate the buffering latency. 

2. SeqNum - Sequence number. Upon receipt of each packet, the sequence number 

the packet carries is sent to this input. The feedback monitors this input to de- 

tect packet-loss, and triggers replugging of the packet-loss feedback policy related 



components. 

3. ClientTS - Client timestamp. For each packet received by the client, its arrival 

time is fed to this input port. The client timestamp sequence is used to estimate 

the client-received packet-rate, as well as for invoking the replugger for synchronous 

component replugging. 

4. TimeOut - Time out signal. The client generates a time-out signal if it does not 

receive a packet in a sufficiently long period. This signal is used by the replugger 

for replugging of the various components. 

The packet-rate feedback has a single output port PktRate for the next-step server- 

sending packet-rate. 

In order to provide the applications the flexibility in tuning the packet-rate feedback 

to suit their specific environments, the feedback system exports the following parameters. 

For each component plugged into the feedback system, its parameter ports are connected 

to that of the packet-rate feedback system with the same names. 

1. LlpPara - Parameter of the lowpass filter in the latency estimator component; 

0 < LlpPara 5 1. 

2. K - Constant coefficient of the latency feedback policy; 0 < K < 1. 

3. F - Target buffering latency (buffer-fill level in terms of seconds) of the latency 

feedback policy. 

4. R - Limit on packet-rate adjustment range for the latency-feedback policy. 

5. A - Packet rate-incremental coefficient for the packet-loss-feedback policy. 

6. OutTime - Timeout time for feedback policy unplugging. The components of a 

feedback policy are unplugged if the associated congestion symptom is not detected 

in a period of time given through this parameter port. In our implementation of 

the packet-rate feedback, the same parameter OutTime is used for both policies. 

Alternatively, in a different implementation, the two policies to have separate and 

different parameters. 

7. T - Period length of a feedback iteration step. 
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Figure 4.4: Latency-increase-detection component of the packet-rate feedback 

8. RlpPara - Parameter of the lowpass filter in the client-received packet-rate estima- 

tor, 0 < RlpPara 5 1. 

4.3.2 Detection of the Increase in Network Buffering Latency 

The latency-increase-detection and latency-feedback-policy trigger component LatFBtrig- 

ger is a composite feedback component composed of several building blocks from the 

feedback toolkit component library. It has a structure shown in Fig. 4.4. LatFBtrigger 

inputs a sequence of timestamp difference values, and calculates the minimum latency. 

Then it subtracts the minimum latency from the raw latency (input value) to get an esti- 

mation of the buffering latency. If this buffering latency is greater than the target buffering 

latency F, then a flag 1atFBtriged is set, signalling the replugger for possible plugging 

of the latency-feedback-policy-related components. The resulting buffering latency is also 

output for latency estimation by the latency estimator LatEst. 

Assuming that the server and client clocks run at the same speed, even though the 

two clocks may have a (constant) phase difference, the estimation of the buffering la- 

tency, as output by LatFBtrigger, is still valid. For each packet received, its timestamp 

difference has the following four components: (1) server-client clock phase difference, (2) 

network-connection minimum transmission-latency, (3) network buffering latency, and (4) 

timestamp sampling noise. Assuming that the client and server are highly responsive, 

then factor (4) can be ignored. For a typical network connection, the first two factors 

are constant. Since we assume that the phase of the clocks in the client and server might 

not be synchronized, it is not easy to measure each of the first two factors individually. 

Fortunately, the timestamp difference of a packet transmitted through an otherwise quiet 

network connection is the sum of the first two factors. Furthermore, this measurement can 
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be approximated by the minimum of the whole sequence of the timestamp difference mea- 

surements. Thus LatFBtrigger is able to produce an estimation of the buffering latency 

by subtracting the minimum latency from the raw timestamp difference. 

I 
\------..--------------------------------a 

4.3.3 Detection of Packet Loss 

The component for detection of packet-loss and triggering of packet-loss-feedback-policy 

is also a composite feedback component. Its structure is shown in Fig. 4.5. It is composed 

of three building blocks. The difference filter outputs the gap between the current and 

the previous packets. The sifter passes the gap only when it is greater than or equal to 

2, which indicates that one or more packets have been lost. Upon receiving this packet- 

loss signal, the store component sets a flag ZossFBtrzged, informing the Replugger of the 

congestion condition. 

4.3.4 Estimation of Client Receive Packet Rate 

The client-received packet-rate estimator RateEst is shown in Fig. 4.6. For each packet 

received, it computes the time elapsed between the previous and the current packets, 

inverts it to get a raw packet-rate, and applies a lowpass filter to get an average packet- 

rate. Finally, a building block TineGate is used to control when to enable the output of 

the estimations. 

The period of iteration steps of the packet-rate feedback is controlled by TimeGate. At 

the beginning of each step, TimeGate is disabled, while the packet-rate and buffer-fill level 

are being estimated. These estimation processes last until the TimeGate is enabled after 

a period of time specified through its parameter T. At this moment, the packet-rate and 
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buffer-fill-latency estimations are passed to the two feedback policy components, which 

generate a next-step server-sending packet-rate. 

4.3.5 Estimation of Buffering Latency 

- -  - - - - - - 

The buffering-latency estimator LatEst is simply a lowpass filter from the feedback toolkit 

component library. It inputs a sequence of raw buffering-latency estimations, filters out 

the transient noise, and generates a sequence of smoothed estimations. 

It should be noted that the output of the buffering latency estimator does not actu- 

ally reflect the current buffer-fill level. Instead, it reflects the buffer-fill level when the 

recently received packet was buffered by the network. Depending on the recent server 

sending packet rate, the current buffer-fill level may be higher or lower than the estimate. 

Fortunately, the latency-feedback policy should still be stable if the feedback step interval 

is much larger than the buffering latency, though a rigorous proof will not be given in the 

thesis. 

4.3.6 Packet-Loss-Feedback Policy Component 

.. - - - 

The packet-loss-feedback policy component LossFB inputs a packet-rate estimation, and 

applies the packet-loss-feedback policy control law, as represented by Equation 4.1, to 

generate a next-step server-sending packet-rate. 

.. - - - * I  



4.3.7 Lat ency-Feedback Policy Component 

The latency-feedback policy component LatFB takes two inputs: the buffering-latency 

estimation and packet-rate estimation. When a rate estimation is available, LatFB con- 

verts the buffering latency (seconds) into buffer-fill level (packets) by multiplying it by 

the packet-rate estimation. It also converts the target buffering latency F into a target 

buffer-fill level in terms of number-of-packets. LatFB then applies the latency-feedback- 

policy control law, as represented by Equation 4.2, to calculate a next-step server-sending 

packet-rate. 

4.3.8 Packet-Rate-Feedback States and Dynamic Policy Replugging 

Depending on whether the feedback policies are plugged in or not, the packet-rate feedback 

system is in one of the following four states, as indicated by two flags LatFBon and 

lossFBon. These states correspond to the ones shown in Fig. 4.2. 

LatFBon = 0, lossFBon = 0 - Neither of the two feedback policies is plugged in. 

Figure 4.7(a) shows the components active in this state. 

LatFBon = 1, LossFBon = 0 - The latency feedback policy is plugged in. Fig- 

ure 4.7(b) shows the components active in this state. 

LatFBon = 0, lossFBon = 1 - The packet-loss feedback policy is plugged in. 

Figure 4.8(a) shows the components active in this state. 

LatFBon = 1, lossFBon = 1 - Both the packet-loss and latency feedback policies 

are plugged. As shown in Fig. 4.8(b), in this state, all component are plugged in 

and active. 

The replugger performs dynamic feedback-policy replugging. It maintains four flags 

latFBtriged, lossFBtriged, LatFBon and lossFBon. Taking the latency feedback policy 

as an example, ZatFBtriged indicates whether it is triggered, and ZatFBon indicates if it is 

currently plugged in. When the replugger is invoked upon receiving a signal from the input 

ports ClientTS or Timeout, if a feedback policy has been triggered, then the replugger 

tries to plug in the components of the policy (if not plugged yet) and associates the current 

timestamp with the triggered policy. On the other hand, if a plugged-in policy has not 
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(b) Latency feedback policy plugged in 

Figure 4.7: The states of the packet-rate feedback system (part 1) 



(a) Packet-loss feedback policy plugged in 

(b) Both feedback policies plugged in 

Figure 4.8: The states of the packet-rate feedback system (part 2) 



been triggered for a period of time specified by the parameter OutTime, the timer expires, 

and the policy is unplugged. At the end of each invocation of the replugger, ZatFBtriged 

and ZossFBtriged are cleared, so further triggering of the two feedback policies can be 

detected. 

4.4 Experimental Results 

To test the packet-rate feedback system developed in this chapter, a test program has 

been built, and experiments carried out. The test program has two components: a server 

(sender) and a client (receiver). Upon request from the user at the client, a session 

between the server and the client, with a TCP control channel and UDP data channel, is 

established, and dummy UDP packets of a specified size are transmitted from the server 

to the client in real time. The packet-rate feedback at the client monitors the packets 

received, and triggers the feedback policies to adjust the rate at which the server sends 

packets. Through a client-side GUI based on the control panel from the feedback toolkit 

class library, the user can view and set the packet size, the maximum packet-rate, as well 

as all the parameters used by the rate-control feedback. The user can also enable or disable 

the feedback. Statistics on the packets received by the client, such as raw and minimum 

latency, packet intervals, and gaps can be viewed on a scope panel also from the toolkit 

component library. 

Experiments have been performed with two machines at the CSE Department of OGI: 

lemond (an HP RA-RISC 9000 running HPUX) as the server and anquetil (a Pentium 

notebook running LINUX) as the client. The configuration is shown in Fig. 4.9. Two 

types of network links are tested: 28.8Kpbs PPP and 2Mbps WaveLAN. The PPP is a 

typical heavily-buffered network, introducing more than 15 seconds of latency before any 

packets are dropped, while the WaveLAN is a typical lightly-buffered network. In the PPP 

configuration, two Ethernet hops are also involved, but due to their lOMbps bandwidth 

and millisecond level latency, their effect on the experiments can be ignored. 
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Figure 4.9: Configuration for packet-rate feedback experiments 

4.4.1 Experiments Over PPP 

A set of experiments have been performed over the 28.8Kbps PPP network link. In these 

experiments, packet size is set to 400 bytes, and the minimum interval at 75 milliseconds 

(equivalent to a maximum rate of 13.3 packets/second, or 42.7Kbps). The following 

feedback parameter settings are used: LlpPara = 0.2, K = 0.94, F = 0.4 second, A = 1.0 

packets/second, OutTime = 60 seconds, T = 2.0 seconds, and RlpPara = 0.01. Values of 

most of the parameters are set through cycles of trial-and-tune. 

Figure 4.10(a) shows a snapshot of the scope panel of an experiment with a single 

session through the PPP link. This snapshot contains the statistics of the initial phase 

of the session. All the four data lines shown in the scope are in units of milliseconds. 

Among the two straight lines, the lower one is for the smoothed interval between packets 

received, and the upper one for the minimum latency. The rough curve is for the raw 

packet latency (the difference between client and server timestamps), and the smoother 

one for the smoothed packet latency. The buffering-latency measurements over time are 

also plotted in Fig. 4.10(b). The experiment demonstrates that when congestion in the 

heavily-buffered PPP network link causes an excessive increase in buffering latency, the 

latency feedback policy is triggered, and, through iterations, brings the buffering latency to 

the neighborhood of the target value. As shown in Fig. 4.10(a), at the end, the raw latency 

is 1383ms, and the minimum latency is 950ms, so the buffering latency is 1383 - 950 = 

433ms, close to the target F = 0.4second. 

To observe how multiple sessions with the latency feedback policy share the same PPP 
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Figure 4.10: Results of a single-session experiment across the 28.8Kbps PPP link

link, experiments with two sessions have also been performed. Both sessions have servers

on lemond, and clients on anquetil. They also have the same parameter settings as above.

In all these experiments, the session started earlier always eventually backs off completely,

while the later session takes all the available bandwidth. An analysis, to be described later

in Section 4.5.1, reveals that the latency feedback policy is inherently unfair in sharing

network bandwidth. This issue will be addressed further in Chapter 5.

4.4.2 Experiments Over WaveLAN

LAN with the proposed packet-rate feedback.

Experiments have also been carried out to test. the transmission of packets over the Wave-

To make the feedback fit better with

the characteristics (higher bandwidth, lower latency) of WaveLAN, in these experiments,
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Figure 4.11: Results of a single-session experiments across the WaveLAN link

packet size is set to 1469 bytes,4 no limit is imposed on maximum packet-rate, and the

feedback step interval T = 0.2 second. All other parameters have the same values as in

the PPP experiments.

The first experiment is with a single packet-transmission session from lemond to an-

quetil. Figure 4.11(a) shows a snapshot of the scope containing the statistics of the initial

phase of the session. To accommodate all the samples in the scope window, scales dif-

ferent than that in the PPP experiment are used. Thus, the curves in the two snapshots

should not be compared for absolute values. Also, the values of the latest samples of the

channels are not shown on the scope, since otherwise the performance of the session will

be adversely affected. This snapshot shows three curves, with the brightest for the raw

4IP packet size = 20 + 8 + 1469= 1497B is the MTU (maximum tranport unit) of Ethernet interface
of the server lemond.



latency, the dimmest for the raw gaps between packets received, and the other for the av- 

erage client-received packet-rate. The packet-gap measurements over time are also plotted 

in Fig. 4.11(b). In this experiment, the buffering-latency is not even close to the target 

value, so the latency-feedback policy is always dormant. Since the server initially sends 

packets at its maximum capacity which is larger than what the Wavepoint can sustain, ac- 

cording to the packet-gap curve, soon after the session starts, the buffer in the Wavepoint 

overflows, and packet-loss feedback is activated. The feedback tracks the client-received 

packet-rate, and at the end of first feedback step, sends the first feedback packet to the 

server to slow down its packet rate. From then on, the packet-loss feedback policy keeps 

exploiting the available bandwidth by maintaining a specified level of packet drop. 

Unlike the latency feedback policy, the packet-loss feedback policy is stable and fair 

in sharing network bandwidth between multiple session. In all the experiments with two 

packet-loss feedback sessions sharing the same WaveLAN link, after they stabilize, the 

two sessions are able to split the WaveLAN bandwidth roughly evenly. These experiments 

confirm the result of a theoretical analysis to be explained in Section 4.5.2. 

4.5 Analysis of the Interaction Between Multiple Sessions 

The experiments in the previous section indicate that multiple packet-transmission sessions 

with latency-feedback do not share the same network link in a stable and fair manner, 

while multiple packet-loss feedback sessions do. In this section, analytical explanations 

are given to explain why this is the case. 

4.5.1 Interaction Between Sessions with Latency Feedback 

Suppose there are two latency feedback sessions A and B sharing the same heavily-buffered 

network link, and they have target buffer fill levels Fa and Fb respectively. Since A and 

B share the same buffers inside the network, they should have the same buffering latency 

(buffer-fill level) 7 (ignoring the all estimation errors). But in reality, any estimation will 

inevitably include some errors, so we assume that the buffering latency estimations for A 

and B are 9, = 7 - e,, ?b = 7 - eb respectively, where e, and eb are estimation errors. 



We study the following two cases for the interaction between the two sessions. 

Case 1: Suppose the two sessions have different target buffer fill levels (suppose Fa > Fb), 

but their buffer-fill level estimation errors can be ignored (e ,  = eb = 0). There are the 

following three states associated with bandwidth sharing in this case: 

1 .  7 5 Fb < Fa - The buffering latency is lower than the targets of both sessions A 

and B. So both sessions increase their packet rates, and cause 7 to increase. 

2. Fa < Fa 5 y - The buffering latency is higher than the targets of both sessions A 

and B. So both sessions reduce their packet rates, and cause to decrease. 

3. Fb < 7 < Fa - The buffering latency is lower than A's target Fa, but higher than 

B's target Fb. SO A increases its packet rate, but B decreases its one. 

If the current state is 1, then 7 will keep increasing until state 3 or 2 is entered. 

Similarly, if the current state is 2, then 7 will keep decreasing until state 3 or 1 is entered. 

In theory, there are two possibilities: either the sessions eventually converge to state 3, 

or they never converge, and keep jumping among the three states. If sessions A and B 

converge to state 3, in this state, session A would keep increasing its packet rate, and B 

would keep reducing its rate until it backs off completely. If they do not converge, then 

the bandwidth partitioning between these two sessions would be unstable and oscillating 

all the time. As demonstrated by all the experiments performed, we believe that multiple 

competing sessions will always converge to state 3, and eventually one session will take all 

the bandwidth, and the others will back off completely. 

Case 2: Suppose sessions A and B have a common target buffer-fill level (Fa = Fb), but 

they have different buffer-fill-level estimation errors (suppose ea < eb so .jl, > Tb). In this 

case, there are the following three states. 

1 .  Tb 'b <a 5 Fa = Fa - The buffer-fill level estimations of both sessions A and B are 

lower than their common target. So the two sessions increase their packet rates, and 

cause y to increase. 

2.  Fb = Fa 5 h < qa - The buffer-fill level estimations of both sessions A and B are 

higher than their target. So the two sessions reduce their packet rates, and cause 7 

to decrease. 



3. q b  < Fb = Fa < - Sessions A's estimation is higher than the common target, 

but session B's estimation .jb is lower. In this state, session B increases its packet 

rate, while session A decreases its one. 

This case is very similar to the previous case. The two sessions A and B will either 

converge to state 3, in which session A eventually backs off completely, leaving session 

B to take all the available bandwidth, or the session will jump among the states, and 

get an unstable and oscillating bandwidth partitioning. Our experiments also showed the 

competing sessions tend to converge to state 3. 

The two sessions A and B might be able to share network bandwidth only if e, - eb = 

Fb - Fa. In this case, the two sessions either both increase, or both decrease their packet 

rates. Unfortunately, even in this case, the sharing is not well-defined 

It is also infeasible to reach a strict relationship (e ,  - eb = Fb - Fa) between two 

measurement errors (including sampling noise), which by definition are somewhat random. 

The experiments in Section 4.4.1 for multiple packet transmission session with latency 

feedback policy fall into case 2. The two sessions have the same feedback parameters. 

But the session started first (A) has a lower buffer-fill-level estimation, thus backs off 

completely. To explain the situation, we notice that A starts with an otherwise quiet 

network link, thus it has a minimum estimation error e,. When session B starts, the 

network b e e r  is already filled with packets from session A, and the network buffer may 

never become empty again. This residue in buffering causes have some residual effect in 

the estimation of the minimum transmission latency, and leads to a larger estimation error 

eb. The relation, e, < eb, means that session A, the one which starts first, will always 

back off. 

4.5.2 Interaction Between Sessions with Packet-Loss Feedback 

Suppose that the two sessions A and B sharing the same lightly-buffered network link 

have packet-rate incremental coefficients A, and Ab respectively for their packet loss 

feedback policies, and that the total available bandwidth of the shared network link is p. 



Also suppose that there is a steady state in which sessions A and B have client-received 

packet-rates pa, pb and server-sending packet-rates A,, Xb, respectively. We have following 

observations: 

1. The aggregate link bandwidth is the sum of the two sessions: 

2. The control policy for session A is: 

Xa = Pa + Aa 

3. The control policy for session B is: 

Thus we have an aggregate packet-rate X input to the shared network, and aggregate 

packet-loss rate p as, defined by the following formulas: 

The above formula for p shows that it is wholly defined by the parameters, and is 

independent of any transient state. Assuming that the shared network drops packets from 

different connections evenly (which is the case for most existing networks), then both 

sessions A and B should also have the same packet drop rate p. So we have following 

formulas for the server-sending packet-rate for each session: 

The formulas above indicate that in the steady state, the two sessions share the network 

stably, and the bandwidth a session takes from the shared network is proportional to 

its packet-rate incremental coefficient. Though not further investigated in the thesis, we 

believe that the steady state actually exists, and the sessions converge to it. 



4.6 Discussion 

This chapter demonstrates how the methodologies and components in the software feed- 

back toolkit are used in the development of an adaptive real-time packet-rate-control 

feedback system. The proposed feedback has multiple repluggable policies, which are ac- 

tivated or deactivated when triggered by associated events. The implementation of the 

feedback system makes extensive use of the components in the toolkit library. The experi- 

mental results indicate that the packet-rate feedback adapts to different types of networks 

well. 

Though the proposed packet-rate feedback is highly adaptive, some shortcomings pre- 

vent it from being readily used in serious applications such as streaming video and audio 

players. As discussed in Section 4.5.1, the latency feedback policy has problems shar- 

ing network bandwidth between multiple sessions. Both feedback policies are rate-based. 

Their lowpass filtering in packet rate estimation needs time to detect change in packet- 

rate, so they are not responsive enough to network congestion. Also both policies rely 

on negative acknowledgement, with which the server only reduces its packet rate when 

requested by the client. These types of policies may fail in the presence of severe net- 

work congestion, when the request to reduce the packet rate cannot get through to the 

server. In Chapter 5, we propose a rate- and congestion-window-based streaming control 

scheme, which overcomes all of the problems mentioned above as well as being adaptable 

to different network conditions. 



Chapter 5 

SCP: Flow and Congestion Control For 
Internet Media Streaming 

5.1 Introduction 

The real-time distribution of continuous audio and video data via streaming multimedia 

applications accounts for a significant, and expanding, portion of the Internet traf6c. 

Many research prototype media players have been produced, including the Berkeley MPEG 

player [52], the OGI (Oregon Graduate Institute) distributed video player [lo], the Vosaic 

player [12], and the Mbone tools [33]. Over the past year, many industrial streaming 

media players have also been released, such as the Netscape streaming video plug-ins [37], 

RealAudio 1421 and Vxtreme [63]. It is expected that real-time media streaming t r a c  

will increase rapidly, and will soon make up a significant portion of the total Internet 

bandwidth. 

The key characteristics of such real-time streaming applications are the potential for 

high data rates, and the need for low and predictable latency and latency variance. Un- 

fortunately, the Internet is characterized by a great diversity in host processing speed and 

network bandwidth, wide-spread resource sharing, and highly dynamic workload. The 

Internet is also currently a best-effort network, without any facility for resource reserva- 

tion or Quality-of-Service (QoS) guarantees. Consequently, Internet-based applications 

experience large variations in available bandwidth, latency and latency variance. For a 

streaming application to survive in this highly dynamic Internet environment, feedback- 

based adaptation and robustness in the presence of data loss are necessary. For example, 



streaming media players can preserve the real-time play-out of their data by adaptively 

sacrificing other presentation quality dimensions such as the total reliability, video frame 

rate, spatial resolution and signal-to-noise ratio. Through feedback-based adaptation, 

streaming applications can dynamically discover the currently available bandwidth, and 

scale the media in one or more of these quality dimensions to fully utilize that bandwidth. 

To mask short-term variations in the available bandwidth or end-to-end latency, players 

typically buffer data at the sender or receiver or both. Reliability through indefinite data 

retransmission is not desirable, since streaming applications can often tolerate some degree 

of data loss, but can not usually tolerate the delay introduced by the retransmission of 

lost data. 

Successful adaptation relies on accurate and reliable discovery of the currently available 

network bandwidth. Bandwidth discovery can be achieved through flow and congestion 

control mechanisms. It is important for such mechanisms to be "good network citizens". 

That is, they should not allow an undue amount of traffic to be generated, congesting the 

network, and causing other network traffic to back-off unfairly. Similarly, they should be 

sensitive to increases in network congestion, and should respond to them by backing-off. 

Without this behavior, their potential to generate very high data rates could cause serious 

congestion in the Internet, and perhaps another Internet congestion collapse [la, 231. 

Consequently, such mechanisms must operate in harmony with TCP [23], which is the 

base for the currently dominant FTP [41] and Web/HTTP [I] tr&c. They should ensure 

that multiple streaming sessions share the network among themselves and with other non- 

streaming traffic in a fair manner. Finally, they should attempt to minimize latency and 

maximize the smoothness of the streaming data. 

There have been several approaches proposed in the literature, such as receiver-initiated 

rate-based feedback [12, 521, RTP [54] with rate-based feedback [4], sender-initiated rate- 

based congestion control [30], TCP [23], TCP minus retransmission [22], etc. Unfor- 

tunately, they fail to have one or more of the properties described above. Rate-based 

feedback [4, 12, 521 is inherently sluggish in reacting to network congestion (due to its 

time- or state-based rate estimation), and has the danger of failure in the presence of se- 

vere congestion (due to its negative acknowledgement, where the sender reduces the packet 



rate only when told by the receiver). Sender-initiated rate-based schemes [30] avoid the 

danger of failure, but still have a sluggish rate-estimation process. TCP [23] has been 

known to be a good citizen, and enables bandwidth sharing between multiple sessions, 

but its infinite retransmission results in wasted network bandwidth (by retransmitting 

late data) and highly unpredictable latency and jitter. TCP's throughput is inherently 

jerky due to its repeated process of window-size increase until packet loss, followed by 

exponential back-off. While removing the retransmission from TCP [22] eliminates the 

associated bandwidth waste and latency unpredictability problems, the burstiness in data 

throughput still remains. 

We have proposed SCP (Streaming Control Protocol) [ll], a unicast' streaming flow 

and congestion control scheme that has the properties described above. Similar to the 

congestion control in TCP, SCP employs sender-initiated congestion detection through 

positive acknowledgement, and uses a congestion-window-based policy to back-off expo- 

nentially. During the start-up phase, SCP uses a TCP-style slow-start policy2 to quickly 

discover the available network bandwidth. The similarities of SCP congestion control 

to that of TCP make SCP as robust and as good a network citizen as TCP, and en- 

able the two of them to share the Internet fairly. But unlike TCP, when the network is 

not congested, SCP invokes a combined rate- and window-based flow control policy that 

maintains smooth streaming with maximum throughput and low latency. While TCP re- 

peatedly increases its congestion window size, causes packet loss, and backs off, SCP tries 

to maintain an appropriate amount of buffering in the network for sufficient utilization of 

available bandwidth, but no more than that. SCP also ensures fair and stable partitioning 

of network bandwidth between multiple streams. SCP does not retransmit data lost in the 

network, thus it avoids the associated unpredictability in latency and wasted bandwidth. 

Streaming sessions also have unique properties not identified in non-real-time sessions, 

such as limited source data rate (e.g., a typical MPEGl video stream has a maximum 

'There are two types of streaming: unicast and multicast. A unicast stream is sent from a single sender 
to a single receiver, while a multicast stream can be simultaneously received by multiple receivers. Because 
of this fundamental difference, unicast and multicast streaming need to be treated differently in flow and 
congestion control as well as in many other aspects. 

2The slow-start policy in TCP starts with a congestion-window size of 1 and increases the window size 
exponentially until congestion is detected 



data rate of around 1.5Mbps) and pauses in the middle due to user interaction (e.g., when 

the user hits a "pause" button). SCP is designed to handle these characteristics properly. 

SCP also has mobility awareness [20]. A mobile host may dynamically switch between 

network interfaces connecting it to different networks with different properties, such as 

link speed, latency and workload. For example, while in an active video conferencing 

session, a notebook may be un-docked, thus switching from Ethernet to wireless PPP, or 

docked and switched back to Ethernet. Upon mobility events such as switching between 

different network interfaces, SCP's internal states and parameter estimators can be reset. 

Then the slow-start policy is invoked to quickly discover the capacity of the new network 

connection. 

SCP is an excellent application of the software feedback toolkit. It is a sophisticated 

wide-range feedback system with several repluggable feedback-based policies for different 

network conditions. Upon events signalling changes in network and session conditions, 

meta-adaptation actions are performed to switch between the policies. SCP requires the 

estimation of packet round-trip time (RTT) and data rate, which can be easily imple- 

mented with the building blocks provided by the toolkit. The tools in the toolkit can help 

in online instrumentation of the performance of SCP, and in parameter tuning. 

This chapter focuses on the design and implementation of SCP following the software 

feedback toolkit approach, as well as an evaluation of SCP's performance through Internet 

experiments. In Section 5.2, we present the design of SCP as a set of guarded feedback 

policies, which are plugged together through events and guard-based meta-adaptation. An 

analysis of the bandwidth sharing between multiple SCP sessions is given in Section 5.3. 

Next, in Section 5.4, we describe the implementation of SCP, which makes use of the 

building blocks in the feedback toolkit component library. Then in Section 5.5, we discuss 

experimental results, which demonstrate the performance of SCP, and its ability to share 

network bandwidth between multiple SCP and TCP sessions. Finally, in Section 5.6, we 

summarize the work presented in this chapter. 



5.2 SCP Streaming Control Architecture 

In this section, the SCP streaming control architecture is designed following the method- 

ologies in the software feedback toolkit. SCP is composed of a set of feedback-based 

congestion-window-size adjustment policies, each of which has a domain (network condi- 

tion) in which it is applicable. When triggered by events indicating changes in network 

condition, these policies are activated or deactivated by SCP through guard-based meta- 

adaptation actions. Firstly, the scenario of an SCP streaming session and the internal 

states and parameter estimators used are described. Then the overall streaming control 

architecture is presented. Finally more detailed descriptions of the individual policies and 

the transition between them upon the events are given. 

5.2.1 Real-Time Media Streaming with SCP 

A unicast streaming scenario with SCP consists of a media sender and a media receiver, 

linked by a network connection, as shown in Fig. 4.1 in Section 4.1. SCP resides at the 

sender side. Media packets are streamed in real-time from the sender to the receiver. Each 

packet carries, among other fields, an incremental sequence number. For each packet, SCP 

records the time when it is sent, and starts a separate timer. The receiver acknowledges 

each packet received with an ACK carrying the sequence number of the data packet. In 

this section, we assume that all the packets are transmitted by the network in-order. 

The network may drop or duplicate packets, but will not reorder them. Thus a gap in 

sequence number between two ACKs received back-to-back indicates packet loss. This 

assumption will be relaxed in the actual implementation, discussed in Section 5.4. Based 

on the reception of ACKs and timer expiration events, the sender adjusts the size of 

its congestion window to control the flow and hence avoids network congestion. SCP 

maintains the following internal state variables and parameter estimators. 

state - The current state: paused, slourStart, steady, or congested. Each state 

corresponds to a specific network and session condition and a flow and congestion 

control policy. 



a next - The sequence number of the next packet to send. It is incremented by 1 

after sending each packet. 

acked - The sequence number of the latest packet whose ACK was received or 

whose timer has expired. 

WL - The size of the congestion window (number of packets). 

W = next - (acked + 1) - The number of outstanding packets (sent but not 

acknowledged). When W < Wl, the congestion window is open, and more packets 

can be sent, otherwise it is closed. 

W,, - The threshold of Wl for switching from the slow-start policy to the steady- 

state policy. 

Tbtt - Estimator of the base RTT (round-trip time), the transmission RTT of a 

packet sent when the network is otherwise quiet. 

TTtt - Estimator of the recent average RTT. 

BTtt - Estimator of the standard deviation of the recent RTT. 

a & - Estimator of the timer duration, the time a timer lasts from its initialization 

until it expires. 

P - Estimator of the packet rate - the rate at which ACKs are received. 

As long as the congestion window is open, the sender streams packets at a rate no 

more than 3, instead of bursting them out in chunks, so as to improve smoothness in 
Tbrtt 

streaming. Whenever an ACK is received, or a timer expires, the congestion window size 

Wl is adjusted using a policy determined by the current state. 

a ACKi is received. If i > acked (i > acked + 1 indicates a gap in ACK), then 

acked t i, estimators Tbrtt, Trtt, D , ~ ~ ,  are updated, all un-expired timers for 

packets up to and including i are reset, and Wl is adjusted. If i <= acked, ACK; is 

a duplicate and is ignored. 

a The timer for packet i (i > acked) expires The un-expired timers for all packets 

up to a are reset,3 and Wl and 6% are adjusted. 

31t is possible for a timer started earlier to ?main running after another one started later has expired, 
because the timer-expiration-time estimation rto changes over time. 



5.2.2 Overall Architecture 

The observations on which SCP is based are similar to those discussed in Section 4.1. 

Excessive packets in the round-trip network connection (from the sender to the receiver, 

then back to the sender) fill up the buffers inside the routers and switches, and increase in 

RTT. When too many packets are held inside the network, network buffers can overflow, 

and packets are dropped. The amount of buffering is affected by all the real-time streaming 

and non-real-time data transfer sessions sharing the network. 

To adapt the streaming to the changing network conditions, SCP tries to quickly find 

out how much buffering is appropriate for maximum throughput while avoiding over- 

buffering, or buffer overflow and resultant packet-loss, which is the optimal network con- 

dition for media streaming. As SCP runs, it keeps pushing the appropriate number of 

additional packets into the network connection to maintain the optimal condition, and 

traces the changes in available bandwidth closely. SCP reacts immediately when network 

congestion is detected. To ensure smooth streaming, SCP paces out packets, instead of 

bursting them out as long as the congestion window is open. Based on the current condi- 

tion of the network and the streaming session under control, SCP is in one of four states: 

slozuStart, steady, congested or paused. Each state is associated with a specific network 

and streaming session condition (the domain) and a policy for congestion window size 

adjustment, as listed in Table 5.1. 

The domain of each state (policy) is guarded against events indicating when the domain 

is entered or left. Upon these events, meta-adaptation actions are taken by SCP to 

update its internal states and to switch to a new state (and associated policy). There are 

events indicating whether an SCP session is paused or active, and whether the available 

network bandwidth has been discovered, whether the network is congested. SCP also 

manages explicit events such as network interface switches. Table 5.2 lists the events, 

their categories, the states (domains) guarded against the events, and the meta-adaptation 

actions taken. Figure 5.1 then shows how SCP transfers between its states upon the events. 

If multiple events happen simultaneously, the event listed first in Table 5.2 takes priority. 

After initialization, SCP stays in the paused state until the sender requests sending a 
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not discovered yet. 
slovStart 

being fully utilized. 

condition (domain) 

Available bandwidth 

gested. 

- - 

paused I No outstanding packet 
I in the network. 

Congestion window adjustment policy 

SCP opens the congestion window exponentially 
(relative to elapsed time) by increasing the win- 
dow size by one upon the receipt of each ACK. 
SCP maintains appropriate amount of buffering 
inside the network to gain maximum throughput, 
avoid excessive buffering or buffer overflow, and 
trace the changes in available bandwidth. 
SCP backs off multiplicatively by halving the 
window size. Persistent congestion results in ex- 
ponential back-off. 
When a new packet is sent, SCP shrinks the win- 
dow size and invokes slow-start policy. 

Table 5.1: SCP states, their associated network conditions (domains), and feedback- based 
congestion window size adjustment policies 

Category Events 

Mobility indi- 
cation 
Network 
becomes 
congested 
Bandwidth 
becomes fully 
utilized 
Session be- 
comes paused 

Guarded 1 SCP Meta-adaptation ac- 

Network interface switch 

timeout; gap in ACKs 

RTT significantly long 
( ~ ~ t t  > K T ~ ~ ~  where 
K > 1); wl 2 WSS 
No more outstanding 
packet (W = 0) 

Session be- 
comes active 

A new packet is sent 

states 
all states 

steady, the congested state. 
congested 

t ions 
Resets and enters the 

slowStart, 
paused state. 
Backs off and and enters 

steady, 1 
slowstart, Enters the paused state. 

( and enters the slowstart 

congested 
paused 

I state. 

Shrinks the window size 

Table 5.2: Events and SCP meta-adaptation actions 
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Figure 5.1: SCP state transition diagram 



packet. Upon this request, SCP enters the slowstart state, and invokes the slow-start 

policy to quickly open up the congestion window and detect available bandwidth. This 

process does not end until either the network becomes congested, or the congestion window 

is sufficiently big. i.e., RTT is sufficiently long, or Wl hits threshold W,,. In the latter 

case, SCP enters the steady state, in which it streams out packets smoothly, and traces 

changes in bandwidth availability closely. At any time if network congestion is detected, 

SCP backs off by shrinking the window size in half. After each back-off, SCP stays in 

the congested state until the effects of the new, halved window size can be observed. 

Persistent congestion triggers exponential back-off. Whenever all already-sent packets 

have been acknowledged and no more packets are pending for streaming, SCP becomes 

idle and enters the paused state. Later when a new packet is to be sent, SCP becomes 

active again. It shrinks its congestion window size based on the length of the time it 

stayed idle, and enters the slowStart state. At any time, whenever an event indicating a 

network interface switch is received, SCP resets itself, discards all the existing estimations 

and internal states, and re-starts afresh with a slow-start policy to quickly adapt to the 

new and possibly totally different network environment. 

5.2.3 Initialization 

Upon initialization, SCP sets acked = 0, next = 1, W = 0, Wl = 1 and W,, = L,, 

where L, defines an absolute limit on how big the congestion window size can grow. Tbtt, 
ett and Ijrt t  are all set to oo. The estimator % is set to an initial default value. After 

initialization, SCP enters the paused state. Later, sending the first packet brings SCP to 

the slowStart state. 

5.2.4 Slow Start 

The slow-start policy is invoked after initialization or when SCP resumes from a pause. 

Its goal is to quickly open up the congestion window and detect the available network 

bandwidth. The congestion-window size Wl is incremented by 1 upon each ACK received 

in-order. As a result, Wl increases exponentially since it is doubled in each each RTT 



period of time. SCP leaves the slozvStart state when any one of following events h a p  

pen, indicating either the bandwidth has been fully utilized, or the network has become 

congested: 

Network congestion - A timer for a pending packet expires, or a gap in ACK is 

detected. At this moment, SCP performs back-off, and enters the congested state. 

Available bandwidth utilized - The congestion window threshold is hit (Wr > W,,), 

or the RTT becomes significantly longer than the base RTT (Trtt >= K ? ~ ~ ~ ,  where 

K > 1 is an RTT threshold coefficient). Upon either of these two events, SCP enters 

the steady state. 

The session becomes idle - All packets are acknowledged and no new packet is 

pending for streaming, SCP enters the paused state. 

5.2.5 Steady-State Smooth Streaming 

By pushing an appropriate number of extra packets to keep the right amount of pres- 

sure, the steady-state policy maintains an optimal amount of buffering inside the network 

connection. This pressure enables sufficient utilization of the available bandwidth while 

avoiding excessive-buffering and resultant sluggishness in response to user actions. In the 

steady state, estimation of ACK rate + is enabled. Whenever a new i estimation is avail- 

able, Wl and W,, are adjusted according to Equations 5.1 and 5.2, where WA is a constant 

referred to as window-size incremental coefficient. This policy is similar to the packet-loss 

feedback policy presented in Section 4.2.1, but here the congestion-window size, instead 

of the streaming data rate, is what is controlled. 

The idea behind the flow-control Equation 5.1 above is that SCP assumes that P is an 

approximation to the actual network available bandwidth, and calculates the bandwidth- 

delay product of the network connection when buffering is kept minimum: i x Tatt. This 

product is the amount of data SCP should keep pending (sent but not acknowledged) 

inside the network in order to maintain maximum throughput with minimum buffering. 



Since the network is shared and highly dynamic, the available bandwidth for the session in 

question changes. If SCP just keeps i x ~~~t amount of data pending, when the available 

bandwidth decreases, 7' would decrease, thus SCP would trace the change by reducing the 

amount of pending data. Unfortunately if the available bandwidth increases, there is no 

way for SCP to detect that. To solve this problem, SCP pushes WA amount of extra 

pending data. When the available network bandwidth increases, releasing the extra data 

buffered by the network results in an increase in packet rate 5,  which in turn results in 

a larger amount of pending data as defined by the increased Wl to keep up the pressure. 

Wa determines how quickly and aggressively SCP can adapt to the increase. 

Though at the beginning P may not be a reliable estimate of the actual available band- 

width, if a stable state exists, the policy will eventually converge to it though iterations. 

If the current P is lower than the available bandwidth, the extra pressure by WA will 

increase it. Otherwise, if ? is higher than the available bandwidth, the increasing number 

of packets buffered inside the network connection will increase the RTT and result in a 

reduced i, and thus a smaller amount of data pending. Eventually, i will converge to the 

actual available bandwidth, and w, + and TTtt will stabilize. As discussed in the previous 

paragraph, later, when network conditions such as available bandwidth or RTT change, 

the steady state policy traces the changes closely. 

The steady state lasts until either a gap in ACK is detected, or a timer expires, which 

indicates network congestion. When either event happens, SCP performs back-off and 

enters the congested state. SCP also enters the paused state if the session becomes idle 

and there is no new packet to send. 

5.2.6 Exponential Back-off Upon Network Congestion 

Whenever network congestion is detected, as triggered by events such as gap in ACK, or 

timer expiration, SCP backs off by reducing its congestion window size in half: 



The data rate estimator .i. is no longer valid and so is reset and disabled. If the back-off 

is triggered by the expiration of a timer, this triggering may be an indication that the 

existing timer duration z is too short, so z is also doubled. With this exponential 

decrease in congestion window size and exponential increase in timer duration, in the case 

when the network is so congested that no packet can get through, SCP would back off 

exponentially until it virtually stops sending any further packets, thus giving a chance for 

the network to recover quickly. The process of exponential increase in 6% stops when the 

arrival of a new ACK results in a new estimation. 

After each back-off, future packets will be streamed with the new congestion window 

size, but there may still be packets pending inside the network. Loss of these packets does 

not reflect correctly the result of back-off, and thus should be ignored. The congested 

state is designed so SCP waits until the effect of the halved congestion window size is 

observed before taking further actions. After each back-off, SCP is put into the congested 

state, where the rate estimator i; and further back-off are disabled until the first packet 

sent in the current congested state is acknowledged, found lost or times out. If the first 

packet is acknowledged, then SCP enters the steady state, otherwise another round of 

back-off is initiated. 

If all packets are acknowledged, and there are no more packets to send, the SCP session 

becomes idle and enters the paused state. 

5.2.7 Pause When No Packet to Send 

Every real-time streaming session has a finite data rate, and there may not be data to 

send when the congestion window is open. Also, a user may want to pause a streaming 

session temporarily in the middle, such as when he or she presses a "pause" button. If 

the sender has no data to send for a while, W eventually decreases to 0. At this moment, 

the streaming session becomes idle, and SCP enters the paused state. 

When an SCP session is paused, the bandwidth previously used by this session will 

gradually be taken by other sessions. So when the streaming resumes at a later time, it 

should start with the slowstart state at a reduced congestion window size. Currently, 

an ad-hoc policy is adopted to half the congestion window in every T~~~~ amount of time 



elapsed in the paused state. Suppose SCP enters the paused state at time pauseTimel 

and resumes to the sEowStart state at time resumeTame, the congestion window size is 

reduced as: 

new Wr t- Wl 
(resurneTime - pause~ime)  /Tbrtt 

5.2.8 Reset Upon Network Interface Switch 

When either end of an SCP streaming session has its network interface switched, the 

route from the sender to the receiver is changed, and the new connection usually goes 

through links with totally different capacities (e.g., when switching between Ethernet and 

wireless PPP). Upon each network interface switch event, all the current estimations of 

the network condition become invalid, and SCP can be reset. The reset operation sets 

acked = next - 1 (to ignore all pending ACKs), W = 0, Wl = 1, W,, = L,, and resets all 

the estimators. After reset, SCP enters the paused state, and stays there until there is a 

new packet to send, at which time it invokes the slow-start policy to quickly discover the 

bandwidth of the new connection. 

5.3 Analysis of Bandwidth Sharing Between SCP Sessions 

With the steady-state policy stated in Equation 5.1, it is possible for multiple SCP sessions 

to share network links in a stable manner. In this section, we analyze a simple case, in 

which two sessions with the same packet size share a single network link. Both sessions 

send packets at the maximum rate, whenever the congestion window is open. 

Suppose in a steady state, session A has estimations i;,, ~ b t t , ,  Tr',tt,, and Wla = 

f,Thtta + Wa. Session B has +b, fbttb, Trttb, and Wlb = fj,Tbrttb + Wa. Since A and B 

share the same network link, we can make the following observations: 

1. The aggregate packet rate Fl of the network link is the sum of the two sessions: 

PI = Fa + fb.  

2. The base-RTT estimator is the actual link base RTT Tbrttl plus some estimation 

error: Thtta = Tbrttr + ea and Tbttb = Thttl + eb. When Tktt is estimated as the 

minimum of the past RTT measurements of a session, the main component of the 



estimation error is the residual buffering - packets of other sessions and this session 

preventing the network buffers from becoming empty. A less important component 

is sampling noise. 

3. Sessions A and B have the same RTT estimation (when the sampling noise can be 

ignored): T~~~~ = TTttb = Trttl. Furthermore, the number of packets sent by a session 

in one RTT equals its congestion window size. Thus the packet rate ratio of A and 

B equals the ratio of their window size: 

Combining observations (1) and (3)) it is clear that there is a single solution for ia and ib. 

The session with a larger residual buffering tends to have a larger error E, and thus gets 

a larger portion of the bandwidth. In a special case where the two sessions have the same 

base RTT estimation (e. = eb), we have 6 = ib = P, indicating that the two sessions 

split the network bandwidth evenly. 

The analysis above shows that, when multiple sessions share the same set of network 

links and the variation in residual error diminishes, bandwidth sharing is stable and is 

determined by factors such as WA, Wl and Thtt. What the analysis also indicates is that 

bandwidth sharing can be controlled by setting these factors explicitly and appropriately. 

5.4 Implementation of SCP 

An SCP package has been implemented as a layer on top of UDP. It is implemented 

as a C++ class derived from composite base-class in component library of the software 

feedback toolkit. The implementation makes use of the building blocks in the feedback 

component class library for the estimators. The feedback-based policies for adjustment of 

congestion-window size are built as repluggable feedback components. In this section, we 

discuss the implementation of the parameter estimators and streaming control policies. 

We also discuss issues in the implementation, such as packet reordering by the network. 



5.4.1 Estimation of Parameters 

Round-Trip Time Estimation 

To measure the RTT of individual packets, for each packet sent, SCP records, in a table 

called packetTable, its sequence number and the time when it is sent (sending timestamp). 

Whenever an ACK is received, SCP measures the current time (receiving timestamp), 

and uses the sequence number in the ACK to look up in packetTable the time when the 

corresponding data packet was sent. SCP calculates the RTT as the difference between 

the two timestamps. The memory space requirement for packetTable is limited, since 

at any time, it needs only W entries to keep the most recent W packets sent but not 

acknowledged, and each entry contains only a sequence number and a timestamp. W is 

never larger than the constant L, 

The base RTT Tbrtt7 average RTT Trtt, RTT standard deviation brtt, and timer dura- 

tion % are estimated based on the history of the raw RTT measurements of the current 

streaming session. Implemented by a minimum filter from the toolkit library, Thtt is es- 

timated as the minimum of all the past RTT samples (the whole history). There are two 

factors that may affect the accuracy of this estimator: residual buffering in the network 

and route change. Firstly, if before a streaming session starts, the network links are al- 

ready busy, and the buffers inside the routers and switches never become empty during the 

session, then due to the residual buffering, the ?htt estimation is longer than the actual 

transmission round-trip time. Secondly, routing in the Internet is dynamic; the route from 

a sender to a receiver may change over time. If the route for a session becomes shorter in 

base RTT, the fktt estimator is able to trace the change. However, if the route becomes 

longer in base RTT, the output of the estimator ~ h t t  would be shorter than the current 

actual base RTT. This problem can be solved if the minimum filter for Tbrtt only looks 

back into a limited-depth history instead of the whole one. Fortunately, Paxson has shown 

that route changes are infrequent events in the Internet [40]. 

The average RTT Trtt and base RTT Ijrtt estimators are implemented as a single mean 

and deviation composite feedback filter shown in Fig. 3.6 in Section 3.2.4. The Trtt and 

Ijrtt estimations are done in a way similar to that in TCP [23]. The Trtt is the result of 
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Figure 5.2: Implementation of the SCP packet-rate estimator 

applying a lowpass filter to the sequence of raw RTT measurements. D,M is a lowpass 

filtering of the difference between Trtt and the raw RTT measurements. 

Timer duration 3 is also estimated similar to that in TCP. [23], which proposed a 

formula % = iirtt + 41jrtt This estimator may work well in the TCP implementation in 

BSD systems, in which coarse-grain 500ms clock resolution is used for timers and RTT 

measurements. However, in our implementation with lOms clock resolution, the above 6% 
estimator results in timers being too sensitive to jitter in RTT. Timers for many ACKs 

expire though these ACKs are not actually lost and will be received soon. This premature 

timer-expiration is our experience as well as an observation in LINUX's implementation 

of TCP4. To avoid this problem of too-early false timer expiration, the LINUX TCP 

implementation modifies the estimator to be: 

This estimator also works well in our SCP implementation, and thus is adopted. The % 
estimator is implemented as a feedback building block with two input ports (Trtt and D,M) 

and one output port (6%). Its input ports are connected to the two output ports of the 

RTT mean and deviation estimator composite feedback component. 

Packet-Rate Estimation 

To estimate the packet rate F used by the steady-state policy, whenever an ACK is received, 

SCP samples the current time, and computes the interval between the current ACK and 

the previous one. One simple and straightforward F estimator would be to apply a lowpass 

- -  - 

4 ~ o r  detailed information, please see comments around line number 860 in file net/ipv4/tcp-input. c 
of the LINUX version 2.0.18 source code (621. 



filter on the raw interval measurement seq , and invert the resultant smoothed interval 

to get an average packet rate. However, roperty of the packet-switched Internet is 

that it is asynchronous, and packets pac smoothly by the sender may arrive at the 

receiver in clumps. The interval betwee ckets received within each chunk is much 

shorter than the sending interval, and mes close to zero. This clumping effect 

means that even though SCP paces o , the ACKs may arrive in clumps, thus 

resulting in distortion in the estimati ed by the simple rate estimator above. 

On the other hand, for an SCP stre , there are never more than congestion- 

window-size (Wl) number of packet he network during any round-trip time 

period Trtt. Averaging no fewer measurements would eliminate the 

grouping effect completely. Thus acket-rate estimator is to compute 

the average of at least Wl most r samples, apply a lowpass filter to 

smooth out the average interval, oothed interval for average packet 

rate. Figure 5.2 shows the packet lemented as a composite feedback 

component built with several buil e toolkit component library. This 

rate-estimator component takes t from the output of the feedback 

policy components as the numb , and the other for the lowpass 

filter. 

5.4.2 Implementation of the ~eeddack Policies 

The component feedback polices used in S C ~  are simple, and are activated or de-activated 

through guard-based meta-adaptation. We pack each of them into a repluggable 

feedback building block. The output (Wl) policy is also wired to the 

Wl parameter port of the packet-rate estim 

5.4.3 Implementation Issues 

Handling Packet Reordering 

The IP protocol used by the Internet is nectionless and best-effort. IP packets may 

be dropped, duplicated or reordered. architecture as described in Section 5.2 

deals with ACK loss and duplication but it assumes that ACKs are received 



in order. Though packet reordering is usually not a problem in LAN environments, it 

actually happens in long-haul Internet connections. For example, we have often observed 

the phenomena of packet reordering in our experiments between hosts at OGI and Georgia 

Institute of Technology. In the presence of packet reordering, a gap in ACK does not 

necessarily mean that packets have been dropped, thus leaving room for SCP to speculate. 

SCP can be aggressive, assuming that the missing ACKs are just late, and wait until the 

timers for the missing ACKs expire before backing off. Or SCP can be conservative, 

assuming that the missing ACKs are lost, and back off immediately. SCP can also be 

adaptive. In this case it assumes temporarily that the missing ACKs are lost, backs off, 

but hopes that they are actually just late, and hence also saves the current state (including 

the congestion window size WI) ,  and continues rate estimation. Later, if the ACKs turn 

out to just be late, then the saved state is restored. The aggressive approach is less 

responsive to network congestion and may have problems that prevent the network from 

recovering from serious congestion quickly. The conservative approach will experience 

seriously sub-optimal performance in the presence of packet reordering. On the other 

hand, the adaptive approach responds to potential packet drop immediately, and will not 

affect streaming performance much if the the missing ACKs are received soon. 

SCP takes the adaptive approach. It maintains a table called ackTable to record 

whether individual ACKs have been received or not. Upon each back-off action, just 

before the triggering event (timer expiration or ACK gap) is processed, acked, next, Wl 

and the current state in state (which could be slmStart ,  steady or congested) are saved 

in variables saved-acked, saved-next, saved-W1, and sauedstate respectively. So these 

variables actually save the state just before the most recent back-off action was taken. 

The back-off is caused by the absence of some ACKs with sequence number between 

savedacked + 1 and acked inclusive. When a late ACK (whose sequence number is no 

larger than acked) is received while SCP is in the congested state, SCP checks ackTable 

to see if all the ACKs with sequence number from saved-acked + 1 to acked have been 

received. If the answer is positive, then it restores the saved previous state (except if the 

previous state is congested, when SCP transfers to the steady state instead of restoring 

to congested). 



The size of ackTable is limited, with no more than L, entries. At any time, no more 

than (acked - (saved-acked + 1) + 1 = acked - saved-acked) entries need to be recorded. 

The current acked value is smaller than saved-next, which is the next at the time SCP 

entered the congested state (acked < saved-nezt), otherwise another round of back-off 

should have been initiated, and the saved-* variables should have been updated. So we 

have (acked - saved-acked) 5 (saved-next - saved-acked). Furthermore, (saved-next - 

saved-acked) should be no larger than saved-Wl, which is in turn no more than L,. As a 

result, it is certain that ackTable needs to accommodate the ACK status of no more than 

L, contiguous data packets. 

Congestion-Window Adjustment at the Beginning of the Steady State 

In some cases, the performance of SCP's steady-state policy, as described in Equation 5.1, 

can be further improved. Firstly, in the steady-state policy, there is a constant window-size 

incremental coefficient WA. This WA defines how many extra data packets are maintained 

outstanding inside the network. It also effectively sets a limit on the minimum congestion 

window size to WA. This limit remains in place even when the optimal window size 

may be smaller than WA. In this case SCP would cause continuous network congestion. 

Secondly, since the steady-state window size relies on the ACK rate estimation F ,  it is 

desirable for P to be smooth. But a smooth P estimation would require a lowpass filter 

with a small coefficient (long time constant), thus requiring a long time to react. This 

long estimation-time means that a t  the beginning of SCP's steady state, no rate estimation 

will be generated, and the congestion window size will remain unchanged, even though 

the network condition is changing. Having a smaller-than-ideal window size for a long 

time hurts the streaming throughput significantly. To improve the performance of SCP 

in these two cases, each time after SCP enters the steady state, it invokes a TCP-style 

policy to increase the window size additively, It stays with the TCP-style policy until the 

congestion window size becomes no less than the minimum window size (equal to WA) 

and ACK-rate estimation is available. The steady-state policy defined by Equation 5.1 is 

invoked afterwords. At any time, if network congestion is detected, SCP performs back-off 

immediately. 



Congestion Window Adjustment for Low-Data-Rate Sessions 

Every real-time streaming session has a bounded data rate. It is possible that when SCP 

is in the slozoStart state, for a long period of time, the rate of a session is lower than 

the available bandwidth (so that no packet is dropped) but is big enough to keep the 

session active so that the paused state is not entered. In this case, the session will stay 

in the slowStart state, since no events triggering the transition to other states (increase 

in latency, packet loss, or stream pause) will happen. As a result, the congestion window 

size will be increased quickly to the limit L,, which is usually big. On the other hand, 

only a small number of packets are outstanding. If at a later time there is a big burst 

of packets (due to variation in stream data rate), they will all be sent out back-to-back, 

potentially causing heavy packet loss. To prevent this situation, in the slowstart state, 

SCP increases Wl only when the congestion window is sufficiently full, and shrinks it if it 

is almost empty. 

5.5 Experimental Results 

To evaluate the performance of SCP, the test program used in Section 4.4 for testing the 

adpative packet-rate-control feedback has been extended to support SCP streaming as 

well as TCP and raw UDP. It is also extended to read experiment scripts and parameter 

settings from text files, and collect statistics in files for analysis. The control panel in the 

test program has been extended to display and set the parameters relevant to SCP, and 

the scope panel extended to display SCP congestion window size (which is carried in all 

data packets). 

The network configuration for the experiments is shown in Fig. 5.3. We have two LANs, 

one at the OGI CSE department, and the other at Georgia Institute of Technology (Georgia 

Tech), connected through the long-haul Internet with almost 30 hops. At the OGI side, 

there are four hosts on a lOBaseT subnet (subnet 1): one lOOMhz notebook PC running 

LINUX, called anquetil, one 166Mhz desktop PC also running LINUX, called bartali, and 

two HP 9000 HPUX workstations, called lemond and smoo. The notebook anquetil also 

has a 28.8Kbps PPP link, and can be optionally connected to another lOBaseT subnet 



Figure 5.3: Network configuration for the SCP experiments 

(subnet 2). On a third lOBaseT subnet (subnet 3) are two Sun SPARC's workstations 

yellow and blue, both running SunOS 4.1.3. These 3 subnets are connected through a 

CISCO 7000 router, as part of the OGI CSE department LAN. At the Georgia Tech side, 

there are two workstations on two different subnets: virgo and lennon, both of which are 

Sun SPARC running SunOS 4.1.3. The link connecting the OGI network to the Internet is 

a 1.5Mbps T1 line. This configuration covers typical types of Internet connections: PPP, 

LAN (same subnet, and with a single router), and WAN. Network interface switches in 

mobile environment can be simulated by having the notebook anquetil switch between its 

Ethernet and PPP interfaces. 

Experiments have been performed to evaluate the performance of SCP in various 

network configurations. We evaluate SCP's efficiency, ability to stream smoothly and 

maintain low latency, reaction to network congestion, and bandwidth sharing between 

multiple SCP or TCP sessions. 

For all the experiments, unless stated explicitly, the following parameter values are 

used: steady-state congestion-window-size incremental-coefficient Wa = 3, RTT thresh- 

old coefficient K = 2, rate-estimator lowpass-filter parameter a = 0.1, data packet size 
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Figure 5.4: Performance of single SCP and TCP sessions over PPP 

1472B5, and a limit on congestion window size L, = 43.6 These parameters are not 

necessarily optimal for all network configurations, but they seem to yield satisfactory per- 

formance in all the experiments conducted across the network shown in Fig. 5.3. The size 

of TCP and UDP/SCP socket sending and receiving buffers are set up to 64KB for better 

throughput. 

5.5.1 Experiments Across a PPP Link 

The first set of experiments are between anquetil as the receiver and lemond as the sender 

across the 28.8Kbps PPP link with an MTU of 1500B. 

First, single TCP and SCP sessions are played. For the SCP sessions, the receiving data 

rate is 2.24pktls = 26.9Kbps, which is close to the 28.8Kbps PPP link speed. Figure 5.4(a) 

shows the packet-rate-over-time of an SCP session and a TCP one. It shows the raw packet 

rate (inverse of packet interval) versus the session time (the time relative to the beginning 

of the session). Figure 5.4(b) shows the buffering delay7 of these two sessions. After a 

5 1 ~  packet size = 20 + 8 + 1472 = 15008 which is the Ethernet MTU. 1472B is the UDPITCP payload 
size, including the SCP header (in the case of SCP), the various fields carried in the packet, followed by a 
randomized data. 

'The value of 43 FZ m, where 1.5KB is the Ethernet MTU, and 64KB is the maximum UDP/TCP 
socket buffer size for many UNIX systems. 

'The time T from when the sender SCP or TCP accepts a packet until the receiver gets it, minus the 
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startup phase, the SCP session yields a smooth packet rate, and utilizes the bandwidth 

sufficiently. The TCP session has a similar data rate, except for the periodical downward 

spikes, which are caused by packet loss (by the PPP  server) and retransmission. However, 

the SCP and TCP sessions maintain different levels of buffering inside the network. The 

SCP session has a steady-state buffering delay at about 1.2 second, while the TCP session 

pushes the buffering delay up to 16 seconds (which corresponds to a full and periodically 

overflowing buffer in the PPP server) and stays there. Different TCP implementations 

have very different behaviors over PPP. SunOS TCP has a steady-state behavior similar 

to that of HPUX TCP, but a much worse start-up phase. LINUX TCP seems to have 

introduced some techniques for the PPP  case to manage the buffering. It pushes the delay 

to a maximum of 7 seconds, and reduces to about 3 seconds in its steady state. 

Figure 5.5 shows the smoothed8 packet rate of three SCP sessions, when two of them 

are played simultaneously from bartali to anquetil across the PPP link. It can be seen 

that the two competing sessions eventually reach a stable share of the PPP bandwidth. 

This experiment also shows the effect of the residual buffering error in the base RTT 

estimation on bandwidth sharing. The base RTT estimation of the long session has a 

residual buffering caused by the first short session, thus it gets a bigger share of the 

transmission latency estimated as  the minimum of all the T's in the whole session. 
'The smoothing is done by applying a lowpass filter with a = 0.1 to the raw data. The value a = 0.01 

is used for dl non-PPP packet rate figures. 



bandwidth. The second short session then gets a residual buffering error caused by the 

long session, and also gets a bigger portion of the PPP bandwidth. Further experiments 

show that if the start times of two competing SCP sessions are close enough, they will 

split the bandwidth evenly. 

Experiments have also been carried out to play one SCP session and one TCP session 

simultaneously across the PPP link. Since SCP controls the amount of network buffering, 

the bandwidth partition depends on how aggressive a specific TCP implementation is. 

For sessions from bartali to anquetil the packet rates are 0.6pktls for SCP and l .7pkt /s  

for TCP. HPUX and SunOS TCP implementations are more aggressive. When SCP and 

TCP sessions are played from lemond to anquetil, virtually all bandwidth is taken by the 

TCP session. These results as well as the long latency of a single TCP connection over 

PPP imply that TCP is generally too aggressive for streaming across PPP. TCP traffic 

should be prevented from competing against streaming sessions for PPP bandwidth. 

5.5.2 Experiments On a Single Subnet 

All the single SCP sessions played from bartali to araquetil across subnet 1 yield smooth and 

stable throughput of about 700pktls = 8.4Mbps. The buffering delay of these sessions, 

which is mainly caused by MAC-level back-off and host processing latency, is kept within 

4ms.  For comparison, individual TCP sessions yield less smooth 670 N 680pktls and up 

to 40ms of buffering delay. These results indicate that SCP is efficient, smooth, and has 

low latency. 

When two sessions, either two SCP sessions, or one SCP and one TCP, or two TCP 

sessions, are played simultaneously from bartali to smoo and from anquetil to lemond 

respectively across subnet 1, in all cases, the two sessions are able to share the Ethernet, 

but they are all very jerky, with highly variable throughput (100pktls to 700pktls)  and 

buffering delay (up to 0.8 second). SCP also drops packets. This result is to be expected 

and is caused by MAC-level exponential back-off and retransmission failure upon collision. 

Not much can be done by SCP or TCP to eliminate the problem except for explicitly 

limiting the data rate at the sender side. 
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Table 5.3: Results of single TCP and SCP sessions across a single router 

5.5.3 Experiments Across a Single Router 
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To evaluate the performance of SCP streaming across a single router, anquetil is moved 
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to subnet 2, and experiments are performed. Table 5.3 shows the configurations and the 
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overall performance of the experiments. Figure 5.6 shows the smoothed packet rate of 

1 

two simultaneous SCP sessions. These experiments were done in a late evening when the 

network is lightly-loaded. 

A single SCP session yields a lower throughput than a single TCP session, but has a 

significantly lower buffering delay. One possible reason for SCP having a lower bandwidth 

is that SCP maintains a lower level of buffering, thus has more chance of getting empty 

buffers and idle links. 

Figure 5.6 shows that when two SCP sessions are competing for the output port of 

the single router, they are able to share the bandwidth in a stable manner. To under- 

stand why there is a packet rate difference between the two sessions, a closer look at the 

statistical data shows that the two sessions have the same steady-state congestion-window- 

size of 5, but they have a different RTT. When played separately, the RTTs for sessions 

bartali-blue and anquetil+yellow are around 15ms and 22ms respectively. When played 

simultaneously, they are around 22ms and 35ms respectively. The difference in RTT may 

be caused by the difference in host CPU speeds and other factors, and results in uneven 

bandwidth partitioning. This difference does not mean that the SCP is unfair. 

When an SCP session is competing against a TCP session, they are still able the share 

the bandwidth. But SCP's steady-state control of network buffering make it less aggressive 
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than TCP and hence it gets a significantly smaller amount of the bandwidth. 
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5.5.4 Experiments Across the Internet 

To evaluate the performance of SCP across the long-haul Internet, SCP and TCP sessions 

are played between hosts at OGI and Georgia Tech. There is no way to control the 

Internet. Nevertheless, there are still times, such as midnights and weekends, when the 

network is relatively lightly loaded, and times such as weekdays when it is heavily loaded. 

As shown in Fig. 5.7, when the network is lightly loaded, SCP is able to stream 

smoothly, and to exploit the network bandwidth sufficiently. From time to time, there 
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is still network congestion and packet lossg, causing SCP to back off. Otherwise, SCP's 

steady-state rate- and window-based flow control policy maintains a stable congestion 

window size of about 18 packets, a stable throughput of about 115pkt/s(z 11.4Mbps, close 

to the 1.5Mbps T1 line speed), and low buffering delay. On the other hand, as  shown in 

Fig. 5.8, single TCP sessions have much jerkier throughput, and long and unpredictable 

buffering delays (up to 4 seconds). 

Two simultaneous SCP sessions are able to share the bandwidth in a fair manner. 

In our experiment, two competing SCP sessions, lennon+anquetil and virgo+bartala, are 

played across the lightly loaded Internet. The ratio of the average bandwidth between 

the two sessions goes from 7 : 4 to 1 : 1. The buffering delay for the sessions are kept 

mostly below 100ms. Figure 5.9 shows the packet rates of two simultaneous SCP sessions. 

Random packet drop in routers upon congestion causes competing sessions to back-off 

randomly, but on average the bandwidth sharing is fair, and the throughput is not too 

jerky. 

SCP and TCP sessions across the long-haul Internet share the network bandwidth 

more evenly than when across a single router. Figure 5.10 shows the packet rate of two 

simultaneous SCP and TCP sessions. The two competing sessions, SCP: lennon+anquetil 

and TCP: vkrgo+bartali, produce a throughput ratio around SCP5 : TCP4. While TCP 

sessions have long latency, the buffering delay of the competing SCP sessions are still 

below lOOms for most packets. 

During busy weekdays, it is more obvious that SCP yields smoother throughput and 

lower and more consistent delay than TCP, while still operating in harmony with the 

latter. The performance results of single SCP and TCP sessions from wirgo and bartali 

are shown in Fig. 5.11. In each session, 1000 1469B-sized packets were streamed. Due 

to the difference in throughput, the two sessions lasted different amount of times. The 

network is so congested that even "ping virgo" from bartali shows up to 10% packet loss. 

SCP sessions consistently get about 14pktls with buffering delayf0 below 100ms. SCP 

 he gaps in ACK is shown in Fig. 5.7(d), which also shows that there is an out-of-order packet. In 
this case, Wl is halved but restored before any packet is sent, thus the back-off is not shown in Fig. 5.7(c)) 

1°1n a busy network when the buffers in routers are never empty, buffering delay actually reflects the 
variations in buffering delay. 
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sessions observed up to 10% loss in ACKs. Due to the heavy packet loss and frequent 

retransmission, TCP sessions get only 2 to 6pkt/s, with delay up to 70 seconds, and the 

throughput is very jerky. A delay of 70 seconds is simply not acceptable to any streaming 

applications! 

5.5.5 Experiments with Network Interface Switching 

To evaluate SCP's ability to adapt to different network connections upon the event of 

network interface switch, both the PPP and Ethernet interfaces of the notebook anquetil 

are activated, and SCP sessions are played from bartali to anquetil through either the 

PPP or the Ethernet link. Since the version of LINUX running on the notebook anquetil 

does not support IP  level hot-swapping, switching between the PPP  and LAN interfaces is 

simulated by a utility that reconfigures the default IP route, and sends a HUP (hung-up) 

signal to the receiver of the on-going streaming session. The test program is extended so 

that whenever the receiver receives a HUP signal, it re-establishes the control and data 

connections to the sender, and optionally resets the SCP state on the data connection, 

and continues the session from where it was interrupted. 

In our experiment, upon network switch, SCP is able to adapt to network changes 

quickly and utilize the available bandwidth right away, with or without being reset. When 

switching from Ethernet to PPP, buffering in the PPP dial-in server rises quickly to a level 

and stabilizes at it. When switching from PPP back to Ethernet, the high bandwidth is 

utilized instantly. The reason for this behavior is that the same congestion window size, 

around 5 packets, is optimal for both the PPP and the Ethernet link. If the network switch 

is between a PPP link and a WAN connection such as the one between OGI and Georgia 

Tech, with an optimal congestion window size of 18 packets (Fig. 5.7(c)), we expect that 

reset on SCP would make a difference. The slow-start policy following the reset helps 

figure out the new window size quickly. Otherwise, upon switching either the PPP  server 

buffering would be unnecessarily high or overflow, or it would take a long time for SCP's 

steady-state policy to increase the congestion window size from 5 to 18. 

However, our experiments show that resetting SCP helps keep the parameter estima- 

tions accurate. The base RTT for a 1500B packet over Ethernet is less than lms, but it 



is about half a second across a PPP link. If SCP is not reset, the base RTT estimation 

would stay at less than 1 millisecond after switching from Ethernet to PPP. According 

to the SCP steady-state policy in Equation 5.1, the severe under-estimation of base RTT 

would result in the calculated congestion window size much lower than it should be. A 

reset solves this problem by resetting the base RTT estimator and discarding the no-longer 

invalid estimation. Fortunately, in our experiments, the minimum steady-state congestion 

window size of WA = 3 is sufficient for exploiting the network bandwidth of both PPP 

and Ethernet LAN, so the under-estimation does not hurt the throughput much. We ex- 

pect that the severe under-estimation would hurt throughput of a WAN session seriously, 

in which a big congestion window size is required for sufficient utilization the network 

bandwidth. 

5.6 Discussion 

In this chapter, we have presented SCP, an effective flow- and congestion-control scheme 

for real-time media streaming applications. SCP eliminates the unpredictability in la- 

tency caused by retransmission of lost packets. It uses positive acknowledgements to 

detect network congestion, and rate- and window-based policies to control the streaming 

flow effectively. During the start-up phase, SCP employs a slow-start policy to open the 

congestion window quickly. When the network is not congested, SCP's rate- and window- 

based policy ensures smooth streaming, sufficient use of the network bandwidth and low 

latency. It also enables a stable sharing of network bandwidth between multiple streams. 

Upon detection of network congestion, SCP backs off exponentially. SCP has mechanisms 

to handle the limited data rate and possible pauses in streaming. With the ability to reset 

its internal state and parameter estimators, SCP also has mobility awareness. Upon a 

network interface switch, such as between PPP and Ethernet, SCP can be reset, thus its 

invalidated states and estimations are discarded, and the slow-start policy is invoked to 

adapt to the new network environment quickly. 

The SCP flow-control policies are designed and implemented with the software feed- 

back toolkit. SCP is composed of guarded feedback policies for slow-start, steady-state, 



congestion and traffic pause. The domains for these policies, associated events and guards, 

and meta-adaptation actions upon each event are identified. During a streaming session, a 

policy is invoked whenever the network condition falls into its domain. Switches between 

the guarded policies are triggered by the events indicating changes in network conditions. 

The estimators for various parameters and the policies are then implemented as feedback 

components. Building blocks from the feedback component class library are used whenever 

possible to expedite implementation. The tools in the toolkit then help instrumentation 

of the performance of SCP in real applications, and parameter tuning. 

Experiments have been conducted to stream packets over typical network configura- 

tions, including PPP, a single subnet, across a single router (LAN), and across the long- 

haul Internet (WAN). The experiments demonstrated that SCP is able to stream data 

packets smoothly in all the configurations. The buffering delay of the stream is low and 

predictable. Multiple SCP streams are able to share the network bandwidth in a stable 

and in many cases fair manner. SCP streams are also able to share the network band- 

width with TCP streams across the same network links. These properties of SCP make it 

a promising protocol for real-time multimedia streaming across the Internet. The experi- 

ments also revealed that the residual buffering error in the base RTT estimation plays a 

significant role in determining the network bandwidth partitioning among multiple SCP 

sessions sharing the same network links. Thus minimizing the base RTT estimation error 

is an important part of future work. 



Chapter 6 

An Adaptive Real-Time Distributed 

Video Player 

6.1 Introduction 

This chapter presents an adaptive MPEG video player [lo] for streaming compressed dig- 

ital video and audio in real-time across the Internet. The Internet is characterized by 

great diversity in host processing speed and network bandwidth, the lack of a common 

clock, and wide-spread resource sharing. Consequently, the availability of resources such 

as network bandwidth and host CPU cycles changes dynamically and unpredictably. Sim- 

ilarly, parameters such as network latency and latency variation also change rapidly. With 

the emergence of mobile computing, the Internet is becoming even more dynamic. The 

bandwidth and latency of a mobile link may change significantly after each relocation. A 

mobile host may have its network interfaces switched dynamically, e.g., from Ethernet to 

wireless PPP  or vice versa, causing network bandwidth and latency to change by several 

orders of magnitude. 

To ensure that the video player works well in this highly dynamic environment, it is 

necessary for it to be adaptive. This adaptability is realized through extensive use of 

software feedback mechanisms for quality-of-service (QoS) control and client-server syn- 

chronization, as well as the use of SCP, a media streaming protocol described in Chapter 5. 

The feedback toolkit methodology and components greatly help the design and implemen- 

tation of the QoS and synchronization feedback mechanisms in the player. 

This chapter focuses on the design, implementation and experimental evaluation of 
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Figure 6.1: Architecture of the real-time adaptive distributed video player

the QoS and synchronization feedback mechanisms used in the player. A more detailed

description of the player can be found in [10]. In the rest of this chapter, first the archi-

tecture of the player is briefly described. Then the design and implementation of the QoS

control feedback is presented. Next, a section is devoted to the client-server synchroniza-

tion feedback. Finally, experimental results are given to demonstrate the effectiveness of

the feedback mechanisms used in the player.

6.2 System Architecture

The distributed video player has a client-server style architecture as shown in Fig. 6.!.

It has a video server, an audio server and a client connected through a TCP lIP network

(Internet). The video and audio servers store and retrieve compressed digital audio and

video clips. The client is further composed of a video decoder-renderer, an audio decoder-

renderer, and a controller. Reliable TCP connections are used for control messages be-

tween the video and audio servers and the client controller, while SCP connections are

employed for streaming video and audio data from the servers to the client and for shipping

feedback messages in the reverse direction. The video player supports VCR-style oper-

ations, such as play, speed change, random positioning, fast-forward and fast-backward.
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Figure 6.2: GUI of the real-time adaptive distributed video player

Through its graphical user interface (GUI) as shown in Fig. 6.2, the user can initialize

the player with specified video and audio clips, start or stop playback sessions, change

the playback speed, perform fast-forward or fast-backward, etc. The user can also specify

preferences on video quality, such as trade-off between video resolution and frame rate,

through a parameter panel of the GUI. This panel is displayed with a click on 'Para'

button on the GUI.

During a playback session, video frames are fetched by the video server from its storage,

streamed in real-time at a given speed through the network, and buffered, decoded and

rendered by the client. Similarly, audio samples are fetched by the audio server, streamed

through the network, and buffered, decoded and rendered by the client. The video server,

video network connection, and video decoder-renderer form a video pipeline, within which

the video frames flow. Similarly, an audio pipeline is also formed to process audio samples.

Several reasons make it advantageous for the player to support separate pipelines for



video and audio, instead of a single pipeline for multiplexed audio-and-video streams. The 

resource requirements for streaming video and audio are significantly different. Video usu- 

ally consumes much more resources than audio. The users may have different requirements 

on video and audio quality. When there are not sufficient resources, different policies are 

needed to gracefully degrade video and audio quality. In particular, when resources are 

scare, the users may want to reduce the video quality first, or even disable one of the 

video and audio pipelines. The current version of the player supports MPEGl video and 

p-law audio streams. A clip can contain video only (video clip), audio only (audio clip), 

or both video and audio (video-and-audio clip). MPEGl video streams have variable bi- 

trates, with average bitrates ranging from 500Kbps to 2Mbps. MPEGl video streams 

also require powerful CPUs for software decoding. In contrast, ylaw audio has a 8bit 

sample size and a sample rate of 8000 samples-per-second. Very little CPU time is needed 

to convert 8bit p-law samples into 16ht linear audio values. In the case of insufficient 

resources, such as network congestion or client CPU overload, many users will prefer to 

reduce the video quality first. 

In the prototype player, synchronization between the video and audio streams is re- 

alized by a sequence-number-based mechanism implemented in the client [lo]. A video 

stream consists of a sequence of video frames, each of which is tagged with a sequence 

number. An audio stream consists of a sequence of audio samples. We assume that, in 

a video-and-audio clip, the video and audio streams are recorded strictly synchronously. 

We refer to a contiguous subsequence of audio samples corresponding a video frame as 

an audio block. Therefore, there is a one-to-one correspondence between video frames 

and audio blocks. During real-time playback of a video-and-audio clip, the controller in 

the client synchronizes the video and audio streams by rendering video frames and audio 

blocks in pairs. Per-pipeline client-server synchronization feedback mechanisms are then 

used to maintain appropriate buffer-fill-levels at the client side for individual pipelines. 

As a research prototype, the main purpose of the adaptive video player is for investigat- 

ing the adaptation mechanisms for presentation quality and client-server synchronization. 

Since MPEGl video imposes a much bigger challenge than p-law audio, most effort has 

been payed in designing, implementing and experimenting feedback mechanisms for the 



video pipeline. For the audio pipeline, client-server synchronization is implemented, but 

quality adaptation in the face of insufficient resources is left for investigation in the future. 

In the rest of this chapter we will focus only on the video pipeline. 

In our video player, video streams can be played at variable speed. Play speed is a 

parameter indicating how fast the video is played relative to the speed at which the video 

was recorded (normal speed). For example, we can have the play speed at 0.5, 1.0, or 2.0 

times the normal speed. When the normal speed is known in terms of frames-per-second 

(fps), e.g., 30fps for NTSC video, then the play speed can also be represented in frames- 

per-second (fps). For NTSC video, 0.5, 1.0, or 2.0 times the normal speed correspond 

to 15 f ps, 30 f ps and 60 f ps, respectively. The client of our video player renders a video 

stream in real-time at a given speed by mapping its logical time (defined by video frame 

sequence number) into its system time (real time, in seconds). Suppose the system time 

at which fiame(i) is displayed is T,, and the current play speed is Pfps,  then the time 

at which frame(i + 1) is played is Ti+1 = Ti + h. The video server also maps the video 

stream's logical time into its own system time during the retrieval and streaming of video 

frames. It is possible that the clocks in the server and client are not synchronized. This 

problem will be addressed by a synchronization feedback mechanism described later in 

this chapter. 

The video player plays video with multiple spatial resolutions. A source video clip 

may be compressed into multiple MPEG files at different resolutions. These files are 

treated as components of the same video stream, referred to as a multi-resolution video 

stream. During a playback session of a multi-resolution video stream, based on the current 

resource availability and the user preference, the player selects the appropriate resolution 

automatically and dynamically. 

In the case that a stage1 in the video pipeline becomes overloaded, it independently 

drops excessive frames, either randomly, or based on the local information it has gained 

from the video frames already processed. One metric to measure the actual QoS level of a 

video playback session is display frame rate - number of frames-per-second displayed by 

'The source (sewer) stage is an exception. As to be further discussed in Section 6.3, the server drop 
video frames intelligently. 
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Figure 6.3: Feedback systems in the real-time adaptive distributed video player 

the client. Display frame rate should not be confused with play speed, which can also be 

specified in frames-per-second. A valid display frame rate is always equal to or lower than 

the current play speed, and the difference between them is the aggregate frame drop rate 

caused by all the stages. For example, Suppose in a playback, the play speed is P f p s ,  

and the display frame rate is F f p s  (0 < F < P), then the frame drop rate is (P - F )  fps ,  

and + 100% of all frames are dropped by the player. 

The user can express a preference on various aspects of the video quality. Example 

user preferences express trade-offs between video spatial resolution, frame rate (timing 

resolution) and signal-to-noise ratio, parameters such as acceptable maximum or minimum 

frame rates, or even trade-offs between video quality and costs. In the prototype player, 

the user can specify the maximum display frame rate, and the trade-off between spatial 

resolution and frame rate. The latter is accomplished by specifying a scale-up frame rate 

threshold and a scale-down frame rate threshold. When the display frame rate passes the 

scale-up threshold, the player switches to the next higher resolution. Similarly, when the 

player can not meet the scale-down threshold, it switches to the next lower resolution. The 

player does not reserve resources to enforce guarantees on video quality. Instead, through 

the feedback mechanisms for video quality and client-server synchronization, it preserves 

real-time playback while accommodating the user preferences with the currently available 

resources in a best-effort and adaptive manner. 

As shown in Fig. 6.3, the video player effectively adapts to changes in the network 



and client-server hosts through extensive use of toolkit-based software feedback mecha- 

nisms. SCP, the media streaming protocol described in Chapter 5, is used in the network 

connection from the server to the client to ensure efficient streaming of the video data 

and avoid network congestion. Above SCP, the player employs two end-to-end feedback 

mechanisms: QoS feedback to select the appropriate video resolution and frame rate; and 

client-server synchronization feedback to minimize client-side video data buffering while 

ensuring that the buffer does not under-flow. 

The video player has mobility awareness [20]. Different types of network interfaces 

and links, such as such as Ethernet, WaveLAN, and wired or wireless modem links, have 

totally different characteristics such as link bandwidth and transmission latency. For 

example, a typical wireless modem link has a bandwidth of 9.6Kbps, while the bandwidth 

of an Ethernet link is lOMbps or even 100Mbps. The speeds of these two types of links 

are different by three orders of magnitude. A mobile host may have multiple network 

interfaces of different types. When it is moved from one environment to another, such 

as being docked or un-docked, while still connected to the network, dynamic switching 

between interfaces happens, and results in sudden and large changes in available bandwidth 

and network latency. In some cases, such as when switching between PPP and Ethernet, 

the IP  addresses or subnet number also needs to be changed. 

The player uses mobility indication events to trigger meta-adaptation operations of 

the feedback mechanisms. For example, upon receipt of an event indicating a switch in 

network interfaces during a playback session, the player re-establishes the control and 

data connections between the client and the servers and continues the playback session 

from where it was interrupted. Upon these events, all the feedback mechanisms, including 

SCP, the QoS feedback and the synchronization feedback, perform meta-adaptation to 

reset themselves to discard no-longer valid states, and then switch to slow-start policies to 

quickly figure out the new network parameters such as bandwidth, latency and variation, 

and adapt the video quality to the new network environment. 



6.3 Adaptive QoS Control Feedback 

In this section, we discuss the QoS feedback which controls the video quality. The QoS con- 

trol feedback is an end-to-end mechanism that adapts the video resolution and frame rate 

to the currently available resources as well as user preferences. It continuously monitors 

the rate at which the client displays video frames, and accordingly adjusts the resolution 

and the rate at which the video server streams frames in the future. Since the feedback is 

from the ultimate sink to the ultimate source of the video pipeline, it adapts to the avail- 

ability of all resources used by all the pipeline stages. The feedback also reacts to user 

actions and other explicit events, such as network interface switches, using guard-based 

meta-adaptation. 

6.3.1 Video Pipeline QoS Model 

As shown in Fig. 6.1, the video pipeline, with which the QoS feedback works, includes the 

video server, the network connection and the video client. Each stage may be a sequence 

of finer-grain sub-stages. For example, the server may have two processes, one fetching 

frames from disks, and the other pacing the fetched frames out to the network. Similarly, 

the client may have separate processes for decoding, dithering and displaying video frames. 

During a playback session, video frames are streamed in real-time from the server, 

through the network, and buffered, decoded and rendered by the client. If the server needs 

to drop video frames, either when it observes network congestion or when instructed by 

the client through the QoS feedback, it drop frames intelligently. It only sends out a P or 

B frame2 if all the reference I or P frames are already sent out. If any stage except for the 

server is overloaded, it independently drops all the excessive frames, either randomly, or 

based on the local knowledge it has gained from the video frames already processed. No 

dropped frames are retransmitted. The server and client have their own clocks, and stream 

out or render frames according to their own timing reference. Due to the client-server clock 

*An MPEG video stream consists of a sequence of I, P or B frames. An I frame, called intra-coded 
frame, is self-contained. A P frame, called predictive frame, contains the diierence between the frame it 
encodes and a past I or P reference frame. A B frame, called bidirectional frame, contains the difference 
between the frame it encodes and the interpolation between two reference I or P frames (one in the past 
and one in the future). 



asynchrony and latency introduced by the server and network stages, a frame may already 

be late when it arrives at the client. These late frames are also dropped by the client. 

To avoid this problem, the server works ahead of the client for an appropriate amount of 

time, and a client-side buffer is used to hold the frames coming from the network before 

decoding and rendering. It is the job of the synchronization feedback, further discussed 

in Section 6.4, to ensure that the server work-ahead time is as small as possible, with the 

condition that the client-side buffer does not underflow. 

For a video pipeline with the behavior above, the bandwidth of the bottleneck stage 

in terms of frame rate defines the effective bandwidth of the whole video pipeline. The 

pipeline model for the QoS feedback is similar to that shown in Fig. 3.14 of Section 3.6. 

Since the data units processed by the video pipeline are video frames that are variable in 

size and decompression processing overheads, only average effective bandwidth is mean- 

ingful. Furthermore, the effective bandwidth is associated with video stream parameters 

such as spatial resolution and compression ratio, so it may change after each switch in 

resolution or change in play speed, and the video player needs to react accordingly. 

6.3.2 The QoS Control Feedback Policies 

The goal of the QoS control feedback policies is to make the best use of the currently 

available resources in the video pipeline in accordance to user preferences, which include 

a maximum frame rate and a trade-off between video resolution and frame rate. There 

are two policies, one for frame rate adaptation, and the other for resolution adaptation. 

Frame-Rate Adaptation Policy 

The frame-rate adaptation policy detects and traces the effective bandwidth of the pipeline 

as well as conforming to the user-specified maximum frame-rate. This policy is similar to 

the packet-loss feedback policy discussed in Section 4.2.1. It keeps a preset rate of frame 

dropping in the pipeline, and works through iterations. At each step, the policy measures 

the current display frame-rate, and generates a target server-streaming frame-rate for 

the next step - the next-step server-streaming frame-rate - by adding an incremental 

coefficient to the current display frame rate. However, if the resultant rate is greater than 



the user-specified limit, then the latter is used instead as the next-step server streaming 

frame rate. 

Suppose that the frame rate incremental coefficient is A, and the user-specified maxi- 

mum frame rate (limit) is ymaz. Also suppose that at step k, the measured display frame 

rate is Tk, then the next-step server streaming frame rate Xk+1 is: 

Spatial-Resolution Adaptation Policy 

The resolution adaptation policy implements the user preference on the trade-off between 

spatial resolution and frame rate. Suppose a multi-resolution video has N predefined 

resolutions, denoted in ascending order of resolution as S(1), . . . , S(N). In the prototype 

video player, users specify their resolution preferences by a pair of parameters: scaleup 

frame rate threshold (high water mark) yup and scale-down frame rate threshold (low water 

mark) 'ydovrn (ydown < yup). The resolution-adaptation policy works through iterations. 

At step k, depending on the current resolution Sk = S(i) and measured display frame rate 

Tk, the policy takes one of the following three actions to set the next-step resolution Sk+1: 

1. If i < N and Tk 2 yup, then scale up: Sk+1 = S(i  + 1). 

2. If i > 1 and Tk 5 <down, then scale down: Sk+1 = S(i - 1). 

3. Otherwise, no switch in resolution is performed: Sk+l = Sk = S(i). 

After each resolution switch, the effective bandwidth of the pipeline at the new reso- 

lution is not immediately known. One way to predict it is based on the current pipeline 

bandwidth estimation and the ad-hoc relationship between pipeline effective bandwidth 

and resolution in the context of the video stream in question. This prediction involves 

mapping from user-level QoS to resource requirements [57], and is complicated. A much 

simpler way, which is used by the resolution-adaptation policy in the video player proto- 

type, is to detect the new effective bandwidth by injecting frames at a high enough rate 

to the pipeline. After scaling down, the policy assigns a next-step server streaming frame 

rate Xk+l t qk, while after scaling up, Xk+1 t ymaz. In our video player, this approach 



does not cause network congestion, since SCP is used underneath this QoS feedback for 

network flow and congestion control. 

To prevent the resolution adaptation policy from oscillating between neighboring res- 

olutions, it is necessary to introduce some hysteresis. This hysteresis implies that the gap 

between y d w n  and yup should be large enough so that, if a video pipeline has an effective 

bandwidth of yup at resolution Si, its effective bandwidth at resolution should be 

larger than ?do,,. How to set ^Idown and yUp SO that hysteresis exists is related to the 

specific MPEG compression format and parameters used, as well as the video content 

itself, and will be further exploited in the future. 

Interaction between t h e  Two Policies 

The frame-rate adaptation policies can be viewed as a guarded feedback component with 

the resolution policy as a guard on its performance (display frame rate). At each iteration 

step k, the estimated display frame rate qk is applied to the resolution policy, which 

determines if the display frame rate is out of the range specified by the user. If either 

the higher or lower frame rate water mark is crossed, the guard is triggered, and meta- 

adaptation action is performed by the resolution adaptation policy to change the video 

resolution, and to send a high next-step frame rate to the server in order to quickly 

re-detect the pipeline effective bandwidth at the new resolution. Only in the absence 

of a invocation of the resolution policy, the frame-rate adaptation policy is invoked to 

compute a next-step server-send frame-rate based on the current display frame rate. The 

final output of the overall QoS feedback mechanism consists of a next-step resolution Sk+l 

and frame rate X k + l .  

6.3.3 The QoS Control Feedback Architecture 

The QoS (resolution and frame-rate) control feedback policies adapt video quality to 

changes in the availability of various resources. Time-based lowpass filtering is needed 

in estimation of display frame rate. Upon radical changes in pipeline conditions such as 

available bandwidth, it will take a while before the policies detect the changes and react. 

Thus the combined QoS feedback policies assume a domain with the property of continuity 
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Table 6.1: Events guarded by the QoS feedback and meta-adaptation actions 

in the transition of video pipeline conditions. On the other hand, radical changes (jumps) 

in pipeline conditions can happen as a result of explicit events caused by the client, such 

as switches in client network interfaces or changes in play speed. The dynamics of the 

video pipeline can be viewed as a domain composed of multiple sub-domains with gaps 

between them. All the sub-domains are continuous and associate with the same combined 

QoS feedback policies, except that they have different state values. In order for the overall 

QoS feedback to react quickly to jumps in pipeline conditions, events indicating the jumps 

are guarded, and trigger meta-adaptation by the overall QoS feedback, to detect the new 

conditions and update the state of its feedback policies. 

The QoS feedback adapts to the explicit events in the form of guard-based meta- 

adaptation. Guards are placed around the feedback policies to guard for these events. 

When a guard is triggered, the feedback reacts by changing parameters or updating its 

states. Table 6.1 shows the events guarded and the meta-adaptation actions taken upon 

detection of them. Upon a change in play speed or a switch in network interface, the frame 

rate estimation and feedback policies are reset, and the server is requested to stream at a 

high frame rate so as to quickly detect the new and unknown pipeline effective bandwidth. 

This high frame rate will not cause network congestion due to the SCP protocol used. 

Upon a network interface switch, SCP for the client-server connection is also reset, so that 

the new network bandwidth is quickly determined by the slow-start phase which follows. 



Figure 6.4: States of the QoS feedback and their transitions 

Taking into consideration the QoS feedback iteration and meta-adaptation, the feed- 

back has the following four states. 

1. idle The QoS feedback is in this state when there is no active playback session. 

2. reset This state is transient. After reset, the feedback enters state estimation. 

3. estimation In this state, the client-display frame-rate is being estimated. 

4. action At the end of each step, the QoS feedback enters this state, and sends a 

feedback message with the next-step resolution and frame-rate to the video server. 

This state is also transient. After each action, the feedback enters the reset state. 

Transitions among these states upon the events are shown in Fig. 6.4. In this figure, dotted 

double ovals represent transient states. Normal states are shown as solid single ovals. 

6.3.4 Implementation of the QoS Control Feedback 

Overall Structure 

The QoS feedback is implemented as a composite feedback component built on top of 

various building blocks from the software-feedback-toolkit component-library. With an 

overall structure shown in Fig. 6.5, it has a display-frame-rate estimator, a component 

implementing the two QoS adaptation policies, an action component to generate feedback 

messages, as well as two gates (Gate1 and Gate2, both of which are timeGate from the 

component library) for meta-adaptation and feedback state transition. Upon display of 



each frame, the time when the frame is displayed is input to the QoS feedback component. 

When Gatel is open, frame display time samples are passed to the rate estimator for 

estimation of the average display frame rate. Later when Gate2 is open at the end of 

each iteration step, the estimation is passed to the policy component, which produces 

the next-step resolution and frame rate. Finally the action component sends feedback 

messages to the video server. The QoS feedback exports several parameters, such as the 

parameter for the frame-rate estimator, delays for the two gates, the resolution scale-up 

and scale-down frame rate thresholds, frame rate limit, etc. Via the parameter ports, the 

application is able to specify the user preference, and to adapt the feedback to its current 

environment. Upon detection of explicit events, meta-adaptation is done through changing 

the parameters, controlling the delay components and resetting the whole feedback. 

Estimation of Display Frame R a t e  

The display frame rate estimator is a composite feedback component with a structure 

shown in Fig. 6.6. It takes in the display time of each frame, computes the interval 

between the current frame and the previous one with a difference filter, applies the raw 

interval measurements to a lowpass filter to get an average interval, and inverts it into an 

average display frame rate. The parameter of the lowpass filter is exported for adjustment. 

The QoS Feedback Policy Component 

The QoS feedback policy component is itself a composite feedback component, shown in 

Fig. 6.7. The average display frame rate is input to the resolution policy sub-component 

ResolutionPolicy, which implements the resolution adaptation policy described in Sec- 

tion 6.3.2. If resolution adaptation happens, ResolutionPolCcy generates the next-step res- 

olution and frame rate, and does not invoke the frame rate adaptation policy. Otherwise, 

it generates a next-step resolution equal to the current one, and passes the average display 

frame rate through to the rate adaptation policy sub-component, Ratepolicy. Ratepolicy 

implements the frame-rate adaptation policy stated in Section 6.3.2 with two building 

blocks. Since it is not feasible to implement continuous adjustment on the server stream- 

ing frame rate, the next-step frame rate generated by either of the policies is quantized at 
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Meta-adaptation and state transition of the QoS feedback is performed by manipulating 

its parameter ports and reset port. During initialization, all the parameters are specified, 

and the feedback is reset. After that, upon display of each frame, a raw display frame rate 

measurement is sent to the input port of the QoS feedback. Components Gatel, Gated 

and Action control the transition between different states. After a specified delay, Gate1 



opens, pushing the feedback into the estimation state. After another delay, Gate2 enables, 

transferring the state to action. At this moment, the feedback action component sends 

out a feedback message and resets it, transferring its state to reset. At any time upon 

detection of either a speed change or a network interface switch, the QoS feedback is also 

reset immediately. 

Delay component Gate1 is used to accommodate the non-zero round-trip-time (RTT) 

from the client to the server and back. After each feedback message is sent, it will take 

some time before the effect of the feedback action can be propagated back to the client, 

and there may already be frames in the pipeline at different resolutions. These frames 

will be passed through the pipeline, and rendered at the client, but should be ignored by 

the QoS feedback. Otherwise, inaccurate measurements may be generated and inaccurate 

actions may result, such as variable-speed playback, fast-forward, fast-rewind, and random 

positioning. Through its parameter port, Gate1 is dynamically set with a delay long 

enough to cover the RTT. 

Changing the delay time of the delay component Gate2 changes the interval of interac- 

tion steps, and thus the responsiveness of the feedback, thus helps make the video player 

more adaptive. For example, in a playback session, if the video display frame rate is high, 

then it needs only a short time to get a reliable frame rate estimation. On the other hand, 

if the display frame rate is very low, due to either thin network links, or a slow client, 

then a longer time is needed before a reliable frame rate estimation can be generated. 

In another example, upon explicit events such as switching from Ethernet to PPP, the 

'amount of resources (in our example the network bandwidth) reduce in several orders of 

magnitude, the player is required to detect the change and reduce the video resolution and 

frame rate quickly in order to avoid excessive network congestion. Otherwise the player 

would become virtually stalled while PPP is slowly shipping large-sized frames. In all 

these cases, the player can be made adaptive by giving an appropriate Gate2 delay time. 



Figure 6.8: The video pipeline of the player concerning client-server synchronization 
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that no frames arrive late at the client. It also adapts the amount of buffering to changes 

in pipeline conditions. The feedback reaches its goal by synchronizing the clock of the 

video server to that of the client, and maintaining an appropriate amount of time that the 

server works ahead of the client. 

6.4.1 Video Pipeline Synchronization Model 

As far as client-server synchronization is concerned, the video pipeline can be viewed as one 

with the server (source) and client (sink) having independent clocks, and with a buffer in 

the front of the client, as shown in Fig. 6.8. Other than this single client-side buffer, little 

buffering is provided between other neighboring stages or sub-stages. During a playback 

session, video frames are streamed in real-time along the video pipeline stages. The video 

server begins streaming frames upon receipt of a request from the client containing a start 

position and play speed. It streams out video frames at the given play speed (frame rate) 

according to its local real-time clock. Each frame is tagged with an incremental sequence 

number, and a frame dropped by the server results in a gap in the sequence number. The 

server can be viewed as having a logical clock that is reset at the beginning of a playback 

session, and then runs at the current play speed. At each tick a next frame is tagged with 

the current clock value (sequence number) and sent out to the network, or dropped as a 



result of QoS feedback. The client also has a logical clock mapped to its own local real- 

time clock. After sending the request to the server, the client waits until the client-side 

buffer fills up to a specified level, then resets and starts its logical clock at the current 

playback speed. At each tick of its clock, the client reads video frames from its buffer, 

drops all the late frames (whose sequence number are smaller than the logical clock value), 

and renders the current frame (whose sequence number equals the logical clock value) if 

it is available in the buffer. In the rest of this chapter, when there is no confusion in the 

context, "clock" is simply used in the place of either real-time clock or logical clock. 

Since the server and client (real-time) clocks are independent, the server logical clock 

may become late compared to that of the client due to their rate mismatch or clock drift, 

resulting in buffer underflow. In this case, some or all frames will already be late when 

they arrive at the client and will be dropped, causing degraded video quality. If the server 

(logical) clock is too far ahead of the client one, the fill level of client-side buffer will be 

too high, or the buffer may even overflow. Excessive buffering results in the player being 

sluggish in response to user actions such as speed changes, and causes excessive memory 

consumption. Buffer overflow results in packet drops and reduced video quality. Other 

events, such as changes in workload and switches in network route or interface, result in 

either gradual or radical changes in the latency or latency variation of the video pipeline 

stages, especially the network. These events also cause changes in the buffer-fill level, or 

in the amount of buffering required. 

The synchronization problems above can be solved by adjusting the server logical clock 

in terms of rate and phase. The client can request the server to skip a certain number of 

frames, or stall for a given number of frames of server time. It can also ask the server to 

stream out frames at a slightly faster or slower play speed, while keeping the client-side 

play speed unchanged. Phase adjustment causes the buffer-fill level to jump, while rate 

adjustment makes it change gradually. Since the adjustments cause a frame with a certain 

sequence number to be streamed earlier or later, they can be viewed as adjustments to 

the server logical clock. In the video player, it is the responsibility of the client-server 

synchronization feedback to adjust the server logical clock based on the observation of 

the difference between the server and client's logical clocks. The goal is to maintain an 



optimal target buffer-fill level, and adapt it to changes in the video pipeline conditions. 

6.4.2 The Synchroniza t ion  Feedback Policies 

The synchronization feedback has two policies: a target buffer-fill level adaptation policy 

to determine the optimal buffer-fill level, and a server clock adaptation policy to adjust 

the server logical clock to maintain the target buffer-fill level. 

Target Buffer-Fill-Level Adaptation Policy 

The target buffer-fill level is determined by the magnitude of variation (or jitter) in the 

actual buffer-fill level. The more variation presents, the more buffering is needed to reduce 

the chance of buffering underflow. An exponential adaptation policy is adopted for 

adjusting the target buffer-fill level. Suppose the current target buffer-fill level is A, and 

the buffering variation estimation is E ,  then the new target level Anew is defined by following 

formula: 
2~ i f c > X o r e < i  

Anew = 
X otherwise 

With this policy, the target buffer-fill level is always greater than the buffer variation 

level. Each time the target level changes, it either at least doubles (in the case of an 

increase) or at least halves (in the case of a decrease). The policy maintains that $ < e < A, 

and implements a hysteresis to prevent the target value from oscillating. This hysteresis 

occurs because after each adjustment, the new target is two times the current buffering 

variation. Therefore, the variation needs to be either doubled or halved before another 

adjustment happens. 

Server Clock Synchronization Policy 

The server clock synchronization policy is similar to the phase-lock loop discussed in 

Section 2.5.4 and Section 3.5, which adjusts the VCO based on the phase difference between 

it and the reference clock. However, since the goal for the policy here is to maintain the 

target buffer-fill level instead of a strict synchronization between the server and client 

clocks, the deviation of the actual buffer-fill level from the target level instead of the clock 



phase difference is used to control the server clock. Also in the video player, it is sufficient 

to keep the actual buffer-fill level in the neighborhood of the target level instead of having 

the former converge to the latter exactly. To avoid the overhead associated with the 

periodic and frequent feedback actions as in the PLL, low and high water marks around 

the target level are introduced. The synchronization policy is invoked only when the low 

or high water mark is crossed. With these two water marks, in a stable environment, it 

is possible that after a start-up period, the synchronization feedback policy does not need 

to be invoked at all. 

The synchronization policy adjusts the rate and phase of the server logical clock when 

the buffer-fill level hits either of the two water marks. Suppose that the low water mark, 

target buffer-fill level and high water mark are Xl, X and Ah respectively, and minimum 

interval between feedback actions is T (to accommodate the client-server RTT). Also 

suppose that the current feedback step starts at time t o  with a initial buffer-fill level fjo. 

Beginning at time t + T,  the estimated buffer-fill r j  is continuously compared against the 

two water marks. When either X1 or Ah is crossed at time tl , the server logical clock rate 

and phase is adjusted as follows. 

1. Phase: if f j  5 X 1 ,  then the server clock skips X - XI amount of time. Otherwise if 

7j 2 Ah,  the clock stalls for Ah - X amount of time. 

2. Rate: adjust the clock rate by -=. A negative value means acceleration, and a 

positive one means deceleration. 

The goal of this policy is to bring the buffer-fill level close to the X immediately after 

the feedback action, as well as to match the server logical clock rate to that of the client 

clock. Similar to the PLL, as long as T is sufficiently longer than the client-server RTT, 

the synchronization feedback will be stable and will maintain its target buffer-fill level 

independent of the actual RTT. Though a formal analysis will be be given in the thesis. 

Interaction Between the Two Policies 

The target buffer-fill level adaptation policy and the server clock synchronization policy 

work together to form a high-order feedback mechanism, with the former performing 



meta-adaptation on the latter by changing its parameters. The target buffer-fill level X is 

determined by the target level policy based on its estimation of the variation in buffering, 

and is used to calculate the high and low water marks Xi and Ah. A simple way to get the 

high and low water marks, as used in the prototype player, is to have Xi = $ A  and Ah = $A.  

The target level X and the two water marks Xi and Ah are then taken as parameters by 

the server clock synchronization policy. 

6.4.3 The Synchronization Feedback Architecture 

Similar to the QoS feedback, the synchronization feedback also reacts to explicit events 

in the form of guard-based meta-adaptation. The combined synchronization feedback 

policies expect a domain with continuity in pipeline state transition. On the other hand, 

the overall synchronization feedback has a domain composed of multiple continuous sub- 

domains. But there are gaps between these sub-domains. Upon events indicating jumps 

in network condition, the synchronization feedback performs meta-adaptation actions to 

change the parameters or state of the feedback policies. The events guarded and the 

meta-adaptation actions are listed in Table 6.2. Upon each change in play speed, the 

speed of both the server and client logical clocks is updated. The latency and variation 

estimators are reset, and the feedback starts a new iteration step. A switch in network 

interface results in a new client-server network connection with unknown and perhaps 

totally different properties, so the synchronization feedback is reset upon this event. All 

the previous estimations and calculations become invalid and are ignored. The meta- 

adaptation mechanism in the feedback also detects the possible overflow and underflow in 

the client buffer, and compensates by adjusting the server clock phase. 

To represent the different stages in feedback policies and meta-adaptation, the syn- 

chronization feedback has following three states. 

1. idle The feedback is in this state when there is no active playback session. 

2. reset This state is transient. After reset, the feedback enters the estimation state. 

3. estimation In this state, the buffer-fill level and variation are being estimated. 

4. action At the moment when the buffer-fill level hits either water mark, the 



I Event I Meta-ada~tation action 

I I previous states. Buffer underflow or overflow is also I 

- .--- 

Session start 
Session stop 
Playback speed change 

Network interface switch 

I I compensated upon radical change in network proper- I 

the feedback is initialized. 
The feedback is stopped. 
The buffer-fill level and variation estimator are reset, 
and the feedback starts a new iteration step. 
The feedback is reset to ignore the no-longer-valid 

I ties. 

Table 6.2: Events guarded by the client-server synchronization feedback and meta- 
adaptation actions 

Figure 6.9: States of the synchronization feedback and their transitions 



synchronization feedback enters this state and sends a phase and rate adjustment 

message to the server. This state is also transient, since after a feedback action, the 

feedback returns to the reset state. 

Transition between these states is triggered by events such as crossing of the high and low 

water marks, feedback actions, as well as explicit events, as shown in Fig. 6.9. 

6.4.4 Implementation of the Synchronization Feedback 

Overall structure 

Similar to the QoS feedback, the synchronization feedback is implemented as a composite 

feedback component on top of various building blocks from the toolkit component library. 

With a structure shown in Fig. 6.10, it consists of a lowpass filter for average buffer-fill level 

estimation, a buffering variation estimator, and components for the two feedback policies. 

Each time a video frame is received by the client, the current buffer-fill level is calculated 

and input to the feedback component. When TzmeGate is open, samples are passed along 

the various components for estimation of buffer-fill level and variation, and invocation 

of the two policies. Several parameters, including the delay time and the lowpass filter 

parameters, are exported to the application for adjustment. Meta-adaptation is performed 

on the feedback component by updating its parameters and resetting it. 

Estimation of Buffer-Fill Level 

Literally, buffer-fill level means the amount of data in a buffer, either in terms of the 

number of bytes or in terms of the number of video frames. In our video player, the sizes 

of different MPEG frames differ greatly. F'rame count reflects more accurately the timing 

and hence is better. But this measurement is still not the best for the real-time video 

player, in which the buffer-fill level is expected to accurately reflect the amount time the 

server works ahead of the client. One drawback is that when the buffer underflows, the 

frame count of zero does not correctly reflect the amount by which the server clock is late. 

Furthermore, the stages of the real-time player, including the server and the network, 

may drop frames, in which case the number of frames in the client-side buffer does not 
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Figure 6.11: Implementation of the synchronization-feedback buffer-fill-level-variation es- 
timator 

correspond to the actual phase difference between the client and server clocks. 

To avoid the drawbacks above, upon receiving each frame by the client, the buffer- 

fill level is measured as the time difference between the frame being displayed and the 

frame being received. This measurement is obtained by calculating the sequence number 

difference between the two frames, and multiplying it by the frame interval (the inverse of 

play speed). With this measurement, buffer underflow results in a negative measurement, 

and a large absolute value indicates that the server clock is well behind the client one. 

Frames dropped by the server or client do not reduce the accuracy of the measurement. 

Since the buffer-fill level measures the difference between the server logical-time and the 

client logical-time, it can also be viewed as the server work-ahead time as observed by the 

client. 

The average recent buffer-fill level, or server work-ahead time, is estimated through a 

simple lowpass filter building block with an adjustable parameter. 

Estimation of Buffering Variation 

There are several alternative approaches to measuring variation [23, 291. Conventional 

measurements include the variance and standard deviation, and have solid mathematical 

properties. Unfortunately, they involve costly computations such as calculation of squares 

and square roots. A cheaper alternative is mean deviation, which is the average of the 

absolute difference between the raw sample and the mean. The latter is usually a good 

approximation of the standard deviation, and is used in the player. 

The buffering variation is measured by the van'ation estimator as the mean deviation 

of the input buffer-fill level sample sequence. As shown in Fig. 6.11, the estimator is 



composed of three building blocks. It takes in the raw and average buffer-fill levels, 

computes the difference, gets the absolute values, and passes them to a lowpass filter for 

the final smoothed variation estimation. 

Calculation of the Target Buffer-Fill Level 

The target policy component implements the target buffer-fill level policy. It has a state 

port, through which the initial target level can be set, and the current target level can be 

saved or restored by the application in the case of meta-adaptation. To account for the 

latency incurred by the client stage, and to prevent the buffer from overflowing, minimum 

and maximum target levels are specified through the two parameter ports. These two 

limits set the output range of the target policy component. 

Adjustment to the Server Clock 

The sync policy component implements the synchronization policy, and generates feedback 

messages to the server when the current buffer fill level hits either of the water marks. 

It receives target level updates from the target policy component, and updates the high 

and low water marks accordingly. In the video player, the server logical clock jumps in 

terms of number of frames, and its rate is represented as an inter-frame interval (inverse 

of play speed). Thus the sync policy component keeps the current frame interval as part 

of its internal state, and exports it through its state port. Through this state port the 

application can specify the initial frame interval during initialization or upon speed change 

events. 

Upon each feedback action, if the synchronization policy yields an exceptionally large 

server clock rate adjustment, such as > 5%, then it is actually ignored, and only a phase 

adjustment is performed. The original synchronization policy in Section 6.4.2 adjusts both 

the server clock phase and rate on each feedback action, except for when explicit events 

are detected. The underlying assumption is that, except for when explicit events happen, 

the change in buffer-fill level is caused by client-server clock drift and is gradual. But 

in practice, some events not caused directly by the client, such as switches in the route 

of the network connection between the server and the client, also result in jumps in the 



buffer-fill level. Since computer clocks are driven by crystals, the rate difference between 

any two of them should lie in a small range (such as f 5 1%). Whenever a big difference 

in clock rate is detected (such as > 5%),  it is likely that there are jumps in the buffer-fill 

level during the current estimation period, thus the rate adjustment is invalid and should 

be ignored. Only the phase adjustment part is sent to the server. 

To ensure that the video stream is smooth when the server clock phase is adjusted, 

when the server receives a request to skip frames, it does not actually skip the given 

number of frames. Instead, it speeds up its logical clock at a rate much larger than any 

possible clock drift rate (such as 20% higher than normal rate), until the requested number 

of extra frames have been streamed out. This speed-up causes the client-side buffer to fill 

up gradually until it crosses the low water mark and approaches the target level. During 

this speed-up period, the synchronization feedback may react repeatedly by requesting 

to skip a decreasing number of frames, but the rate adjustment is ignored since it is too 

high to be considered clock drift. The server clock will not be over-compensated, since the 

server does not accumulate the phase adjustment requests. With this scheme, if further 

implicit events happen, their effects are also compensated appropriately. 

Meta-adaptation and Feedback State Transition 

Meta-adaptation and feedback state transition are implemented through manipulation of 

the parameters, state and reset ports of the synchronization feedback component. The 

parameters, such as the lowpass filter parameters and limits on target buffer-fill level, can 

be set at any time through the parameter ports. During initialization, the feedback is reset, 

and the target buffer-fill level and frame interval are set to default values. After a specified 

time, TzmeGate opens, and buffer-fill level samples are passed to various components for 

buffer level and variation estimation as well as target buffer-fill level calculation. Whenever 

the sync policy component detects that the buffer-fill level hits either water mark, it takes 

a feedback action by sending clock adjustments to the server, and resetting TzrneGate 

and filters for buffer-fill level and variation estimation. Resetting these sub-components 

brings the feedback to a new iteration step. After each change in playback speed, the 

feedback component is reset, and a new frame interval derived from the new play speed 



is set through its frame-rate interval state port. The current target buffer fill level is 

preserved by reading from its state port before reset, and writing back to the state port 

afterwards. After each switch in the network interface, the feedback is reset with a default 

target buffer-fill level, since the existing target level is no longer valid. 

Similar to the Gate1 in the QoS feedback (Fig. 6.5),  TimeGate in the synchronization 

feedback defines a minimum interval between feedback actions to accommodate the non- 

zero client-server round-trip time. Upon each feedback action or explicit event, the gate 

is closed for a certain amount of time as specified through its parameter until the effect 

of the feedback action reaches the server and propagates back to the client. 

6.5 Experimental Results 

6.5.1 Player Configuration for the Experiments 

A prototype of the adaptive distributed MPEG video player has been implemented [8],  

and experiments have been conducted to evaluate the QoS and synchronization feedback 

mechanisms. In the prototype, the control channels between the server and the client 

are reliable TCP connections, while the data channels, including both the server-to-client 

direction for data streaming and the client-to-server for feedback message, can either be 

raw UDP, SCP, or TCP. As shown in Fig. 6.12, the configuration for the experiments 

has a lOOMHz Pentium PC notebook anquetil as the client, and two other workstations, 

lemond and virgo as servers. The server lemond, an HP 9000/712 running HP-UX, is a 

file server at the CSE department of OGI. The connection between Iemond and anquetil 

can be a lOMbps Ethernet link or a 28.8Kbps PPP link. The workstation virgo is a SUN 

Sparc running SunOS residing at Georgia Institute of Technology (Georgia Tech), more 

than 20 Internet hops away fiom the client. 

Two video clips are played in the experiments. These clips are from the same video 

source, and compressed at different resolutions. The lower-resolution clip has a resolution 

of 256 x 192 pixels, and the higher-resolution one has a resolution of 128 x 96 pixels. Both 

clips are compressed at 30 frames-per-second ( f p s ) ,  with MPEG picture group pattern 

IBBPBBPBBPBB. The size of individual video frames in these two clips are plotted in 
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Figure 6.12: Configuration of the adaptive distributed video player for the experiments

Figure 6.13: The size of individual video frames in the two video clips played in the
experiments

Fig. 6.13 (a) and (b) respectively. It can be seen from these two figures that in each clip,

the frames roughly fall into two groups based on their size. The group with smaller frame

size is composed mainly of B frames, and the group with bigger size is mostly I and P

frames. Some statistics of the frame sizes of the clips are listed in Table 6.3. These two

clips can be played individually, or can be combined to form a single multi-resolution clip.

These video clips stored on the local server Lemond are each about 5 minutes long (9259

frames). But the remote server virgo only holds the first 2 minutes of each clip, due to a

limited disk quota.



Table 6.3: Frame size (in bytes) statistics of the video clips used in the player experiments 

6.5.2 Video Playback Performance Metrics 

Ave. 
fr. size 

586 
2376 

Resolution 
128 x 96 
256 x 192 

There are several performance metrics associated with a video playback session: client- 

side buffer-fill level, video resolutions, frame rates sent by the server or displayed by the 

client, frame-drop ratio by the network and client stages of the video pipeline, and video 

smoothness. The client-side buffer-fill level measurement reflects the performance of the 

client-server synchronization feedback. Comparing the average buffer fill level of play- 

back sessions with networks of different latency variation levels reveals how effectively 

the synchronization feedback associates the target buffer-fill level with the latency vari- 

ation. Through figures of buffer-fill-level over time, the feedback's reaction to buffer-fill 

level variations, clock drift and other events can be observed clearly. By comparing the 

display frame rate and frame-drop ratio between playback sessions with or without the 

feedback mechanisms enabled, the effect of the feedback mechanisms on improving video 

quality and resource usage can be evaluated. Finally, display-frame-rate-over-time figures 

of playback sessions give insight into the dynamics of the pipeline conditions and feedback 

mechanisms. 

Display frame rate is a important measurement of the user-observed video quality of 

a playback session. However, the display frame rate alone is not sufficient for accurate 

description of the video quality. Consider two playback sessions of the same video stream 

at the same play speed and having the same display frame rate. If one drops frames 

more evenly than the other, the former will be smoother than the latter, and may be 

considered "better" with respect to video quality. Hence, we need a metric to quantify 

this smoothness aspect of the video playback quality. 

One smoothness measurement is based on presentation jitter as proposed by Staehli [58]. 

In our player, we assume that the mapping from the logical time of a video stream to the 

B frames I frames P frames 
max 
1265 
3934 

min 

538 
2589 

rnax 
2585 
10425 

min 

90 
2021 

ave 
429 
1644 

ave 
1065 
4531 

max 

2850 
8598 

min 
25 
39 

ave 

846 
3612 



system time of the client is precise [lo]. All the frames that are displayed are displayed 

on time, and all late frames are dropped. Based on this assumption, we define the pre- 

sentation jitter in terms of logical display time (video-frame sequence number). Consider 

a video stream consisting of a frame sequence F = ( fl, f2, . . . f,), and a playback session 

displaying a subsequence D = (fd,, fd,, . . . , fd,), where for all jdj E D, fdj E F (i.e., 

1 < d j  5 n), and for all 1 < j < m, d j  < dj+1. At each logical display time i (1 < i < n), 

frame fi E F is expected to be displayed. But since fi may be dropped by the video 

pipeline, the player may actually still be displaying an earlier frame3 instead of fi. Sup 

pose the actually displayed frame is fd, (the kth frame in the display subsequence D), then 

we have dk _< i (the frame displayed is either the expected one or an earlier frame) and 

dk+l > i (the next frame in the display sequence D is a future frame). We can calculate 

the logical time error ei = i - dk (the staleness of the frame being displayed relative to the 

expected one), and produce an error sequence E : (el, en,. . . en). The smoothness S of a 

playback session is then defined as the standard deviation of the error sequence E from 

that of the perfect playback session that drops no frame and thus has an E of all zeros. 

For example, suppose we have a video stream with a frame sequence F = (f 1, j2, f3, j4, f5). 

One playback session displays a subsequence D = (fl ,  f3, f5). Then the error sequence of 

this playback session is E = (0,1,0,1, O), and its smoothness measurement is 

This definition of S has some favorable properties. It only relates to frame-drop rate, 

and is independent of the play speed and frame rate themselves. A playback with a 

smaller value of S can generally be considered being smoother. A perfect playback in 

which no frame is dropped has S = 0. Though this smoothness measurement is somewhat 

ad-hoc4, and no proof of its formal property is available, we can still see that: (1) adding 

3 ~ n  our video player, a frame remains being displayed in the video window until updated by a new 
frame. 

4 ~ e  introduce this ad-hoc S because no other standard and widely accepted smoothness measurement 
has been identified. 



a frame to an existing display frame sequence results in a display sequence with lower 

S value; and (2) moving one frame in an existing display frame sequence towards the 

center between its two neighbors results in a display sequence of lower S value. Suppose 

frame sequence F = ( f l r  f 2 , .  . . , f9), and there are two playback sessions with display 

frame sequences Dl and D2, and smoothness S1 and S2 respectively. In the first case, if 

D2 = (fll  f3, f5, f7,  f9) is the result of adding an additional frame f5 to Dl = (fly f3, f7, fg ) ,  

then we have (S2 = $) < (Sl = t ) .  In the second case, Dl = (fir f3, f4, f7, f9) and 

0 2  = (fir f3, f5, f7, f9) have thesame frames except for asingleone: f4  E Dl and fs E Dz, 

the frame f5 in D2 is more evenly spaced than the frame f4 in Dl. In this case, we also 

have (S2 = 3) < (a = q). 

6.5.3 Experiments Across the Local Area Network 

Experiments have been conducted with the server lemond and the client anquetil connected 

through the Ethernet LAN. In these experiments, the server and the network have enough 

resources to handle all the frames requested. The client CPU, due to its insufficient 

processing speed to decode MPEG frames in software, becomes the weakest stage of the 

video pipeline. 

To see how the QoS feedback improves video playback quality and saves resources, an 

experiment is carried out, in which the 256 x 192 clip is played multiple times at play 

speeds ranging from 5fps to 50fps. In the playback sessions in this experiment, and in 

all other playback sessions discussed in this chapter, no limit on frame rate is specified. 

The play speed is increased from 5 fps to 50 fps at steps of 5 fps. We can see when the 

client is saturated, and how the QoS feedback reacts upon overload. Figure 6.14(a) shows 

the average server-sent and client-display frame rates for all the sessions. Figure 6.14(b) 

shows the smoothness measurements of these sessions. From Fig. 6.14(a), we can see that 

for play speeds up to 15fps, the client is able to decode and render all the frames, so the 

QoS feedback makes no difference. But from speed 20fps, the client becomes overloaded 

and begins to drop frames. Without the QoS feedback, the server and the network will 

continue to send frames at the full frame rate, and excessive ones are received and dropped 

by the client. At the play speed of 50 fps, more than 73% of total frames are dropped, thus 
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Figure 6.14: Video quality comparison between playbacks with QoS feedback enabled and 
disabled, in the LAN environment 

wasting a lot of server, network and client resources. In contrast, when the QoS feedback 

is enabled, it monitors the pipeline congestion condition, and controls the rate at which 

the server streams out frames. The QoS feedback is able to keep the frame drop ratio 

within lo%, and generally yields higher frame rates due to less resources being wasted at 

the client. Figure 6.14(b) shows that the QoS feedback also in general results in smoother 

playbacks. 

The synchronization feedback is able to adapt the client buffer-fill level to the video 

pipeline latency and variation, as well as compensating clock drifts and reacting to other 

events. Since the latency and jitter of the pipeline from lemond to anquetil through the 

LAN is low, on all the playback sessions, the target buffer-fill levels are kept around 4 

frames (130 milliseconds), which is the minimum number of frames to keep all the sub- 

stages in the client busy. In the experiment configuration, the clock rates of lemond and 

anquetil are almost identical. To see how clock drift is compensated, the server logical 

clock is adjusted so that it runs initially 0.4% slower than that of the client, and the 

128 x 96 clip is played twice, once with the synchronization feedback on and once with it 

off. Figure 6.15 shows the buffer-fill level of the two playback sessions over time. For the 

session without the synchronization feedback, the buffer-fill level keeps decreasing, and at 
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Figure 6.15: Server clock drift compensation by the synchronization feedback, LAN ex- 
periment 

some time around frame number 1500, it falls below zero. Beyond this point the player 

stalls since all the frames are late when they arrive at the client5. In the other session, in 

which the synchronization feedback is enabled, the feedback reacts to the clock drift by 

adjusting the server clock phase and rate accordingly to keep the buffer-fill level around 4 

frames. 

6.5.4 Experiments Over PPP 

When lemond and anquetil are connected through a PPP instead of an Ethernet link, due 

to PPP's low link bandwidth (28 .8Kbps) ,  the bottleneck of the video pipeline shifts from 

the client to the network connection. Also due to PPP's low link bandwidth, the time 

for streaming video frames of different size differs greatly. For example, a minimum-sized 

frame ( 2 5 B )  in the 128 x 96 clip takes about 10 milliseconds, while a maximum-sized frame 

( 2 8 5 0 8 )  takes about 1  second. The maximum-sized frame in the 256 x 192 clip has 104258  

5To avoid a totally stalled video, in the prototype player, there is a "no-drop" option. When this option 
is selected, the player plays a late frame if there is no other more recent frames available in the client. 
So when the server is running behind the client, instead of seeing no video at all, the user will still see a 
"sluggish" one. In this case, however, the player fails to maintain a real-time playout guarantee on all the 
frames. This option is used for all the experiments in this section. In a playback session, if the server runs 
behind the client for some time, the smoothness S measurement value is better (smaller) than it should be. 
This smaller S is because some frames are displayed later than the times as indicated by their sequence 
number (logical time). 



and takes about 4 seconds. Long client-side buffering time is needed to accommodate this 

large variation in latency. Another property of PPP (at least for the PPP service at CSE 

OGI) is that the PPP  servers have relatively large (more than 10 seconds) buffer space 

for individual links. The resultant large buffering delay imposes a great challenge to the 

feedback mechanisms employed in the video player. 

The SCP protocol plays an important role in preventing excessive buffer build-up, 

and eventual frame drop. Without SCP, the pressure from the server as maintained 

by the QoS feedback would build up the PPP buffer until it overflows and frames are 

dropped by the PPP server. Then the QoS feedback reacts by reducing the frame rate, 

which eventually empties the buffer. This repeated process of buffer build-up, frame drop, 

and buffer emptying leads to an unstable video frame rate. To make the problem even 

worse, to the synchronization feedback, the significant latency changes caused by large 

buffering variations look just like client-server clock asynchrony as caused by clock drifts 

or other factors. Thus it can be falsely triggered, and can accelerate the server when 

the buffer builds up, and can slow the server down when the buffer empties. This false 

synchronization action coupled with the long buffering latency can cause the server work- 

ahead time to oscillate wildly. 

To evaluate the performance of the feedback mechanisms over the PPP link, the 

128 x 96 resolution video clip is played at normal speed (30fps) five times in each of 

the configurations with SCP, the QoS feedback or the synchronization feedback enabled 

or disabled. The configurations experimented are (1) udp-qos-sync - none of the three 

feedback mechanisms are used; (2) udp+qos+sync - the QoS and synchronization feed- 

back mechanisms are enabled, but raw UDP instead of SCP is used; (3) scp-qos+sync - 

SCP and the synchronization feedback mechanisms are enabled, but the QoS feedback is 

disabled; and (4) scp+qos+sync - all three feedback mechanisms are enabled. Table 6.4 

shows the configurations, and the mean and variance of the average server-sent and client- 

display frame rates, the smoothness and the average buffer-fill level (server work-ahead 

time) of the five playback sessions in each of the configurations6. Figure. 6.16(a) shows 

61n the table, for server-sent and client-display frame-rate, and smoothness, the mean and variance of 
the (average) measurements from the five sessions are shown. But for server work-ahead time, it is possible 



Configuration 11 udp-qos-sync I udp+qos+sync 1 scp-qos+sync 1 scp+qos+sync 
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Table 6.4: Configuration and performance results of playback sessions across a 28.8Kbps 
PPP link 
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Figure 6.16: Video quality comparison between playbacks when UDP or SCP is used, 
across the PPP  link 

the display framerate of one session in each of the two configurations udp+qos+sync and 

scp+qos+sync. The frame-rate samples are gained by applying the display time of of all 

displayed frames in a playback session to the frame-rate estimator shown in Fig. 6.6, with 

a parameter of 0.02. Figure 6.16(b) shows the the buffer-fill levels (server work-ahead 

time) of these same two sessions over time. 

In the first configuration udp- qos-sync, none of the feedback mechanisms are enabled, 

so the server streams out all the frames at an average data rate of 586 x 30 x 8 = 141Kbps. 

With a link speed of only 28.8Kbps, the PPP server randomly drops over 80% of the input 

packets, as well as introducing more than 10 seconds of latency. Even worse, since frames 

for the client to measure the work-ahead time (in terms of number of frames) when each individual frame 
is displayed (this is not true for other measurements by their definitions). So in the table we show the 
mean and variance of all the raw measurements from all the five sessions. This measurements reflects more 
precisely the fluctuation in server work-ahead time within a session. 



larger than 1500B (MTU of the PPP link) are fragmented by the video server into several 

packets, and the decoding of B and P frames relies on the availability of their reference I or 

P frames, most of the packets and P or B frames that made it to the client were dropped 

by the client frame reassembler or decoder. As a result, the video shown on the screen is 

an extremely jerky and unstable one (smoothness S having mean 116 and variance 18.1) 

with an average frame rate of only about 0.4 f ps, as shown in Table 6.4. 

With the use of the QoS and synchronization feedback mechanisms, in configuration 

udp +qos +s ync, the video playback quality improves significantly. The video displayed is 

much smoother and stabilizes at a much higher frame rate of about 2.4fps (Table 6.4). 

The main reason for this improvement is that the server streams at only about 4.4fps1 so 

the PPP server drops relatively few packets, and most packets arrive at the client and can 

be reassembled into frames, decoded and displayed. However, not all problems are solved 

by the QoS and synchronization feedback mechanisms. As shown in Table 6.4, the display 

frame rate of the sessions are lower than that when SCP is used (2.36fps versus about 

2.8 fps), and the smoothness S is much higher (18.8 versus about 9), indicating unstable 

playback. As shown in Fig. 6.16(b), the interaction between the QoS and synchronization 

feedback causes the buffer-fill level to fluctuate wildly. This fluctuation is also reflected 

in Table 6.4 by the below-zero average work-ahead time -96.7 and the huge variance of 

170. It can be seen from Fig. 6.16(a) and (b) that the QoS feedback yields periods in a 

playback session with noticeably different frame rates. The display frame rate is generally 

higher when the buffer is being filled up (server work-ahead time is decreasing), and lower 

when the buffer is being emptied. 

SCP, working with the synchronization and QoS feedback mechanisms, greatly helps 

optimize video playback quality and resource usage. As shown in the last two configura- 

tions of Table 6.4, virtually all the frames streamed out by the server are passed along the 

video pipeline to the video screen. All the measurements, including the server-sent and 

display average frame rates, the smoothness, and the average server work-ahead time are 

very stable (indicated by the small variance). The display frame rate and buffer-fill level 

for the first playback session in the scp+qos+sync, as shown in Fig. 6.16(a) and (b), indi- 

cate that both the frame rate and buffer-fill level in these configurations are stable. Careful 



readers may notice that in Fig. 6.16(a), in the session with configuration scp+qos+sync, 

there are two places around frame number 4500 and 7500 where the display frame rate 

drops significantly. Comparing this display-frame-rate figure against the frame size plot 

in Fig. 6.13(a), it is clear that these drops in display frame rate are a result of larger I and 

P frames around those two positions. 

Comparing the results of the last two configurations in Table 6.4, it can be seen that the 

two configurations scp-qos+sync and scp+qos+sync yield very similar resource usage and 

video quality. The results to some extent indicate that the QoS feedback results in slightly 

lower server-send and client-display frame rates, but a slightly smoother video (lower 

smoothness S). A student-t test (explained in Appendix A) on these results shows that the 

performance difference between the two configurations are statistically insignificant. The 

student-t values for the server send frame rate, client display frame rate and smoothness 

S are 0.722, 0.612 and 0.226 respectively. But for two sets, each with 5 samples, to 

have a different mean at 90% confidence, the student-t value should be no smaller than 

to.go,g = 1.40. A plausible reason that the results are similar is that even without the QoS 

feedback, the video server still sees, with the help of SCP, the bottleneck network stage, 

and drops frames selectively (e.g., making sure that a P or B frame is not sent if not all its 

reference frames are already sent). Since the PPP link is not shared, and has a hard link 

bandwidth limit, the video quality is mainly determined by the bandwidth of the PPP 

link. To explain the potentially lower frame rate and lower S (smoother video) caused 

by the QoS feedback, it can be seen that when the QoS feedback is enabled, the server 

will get a next-step frame rate from the client, and plans frame dropping accordingly in 

advance. This scheduled frame dropping may result in a smoother video than simply 

dropping frames that are already late. On the other hand, due to the wide variation in 

MPEG frame sizes as shown in Fig. 6.13, scheduled frame dropping may result in less 

utilization of the PPP link when sizes of the frames are small, and thus lower video frame 

rate. 

Table 6.3 also shows that the playback sessions with QoS feedback enabled 

(scp+qos+sync) have a higher average server work-ahead time than that when the QoS 

feedback is disabled (scp-qos+sync) (27.6 versus 35.5). We believe that this difference is 



actually not significant. The synchronization feedback computes target work-ahead time 

in an exponential manner and brings the actual work-ahead time close to the target. Un- 

less the difference in the average work-ahead time is large (at least a factor of two), it 

should not indicate any significant difference in actual pipeline latency jitter. 

6.5.5 Experiments Across the Long-Haul Internet 

Experiments over the long-haul Internet are presented in this section. In these experi- 

ments, the player has the remote Georgia Tech workstation virgo as the server and anquetil 

as the client, and is configured with various combinations of feedback mechanisms. The 

256 x 192 resolution video is streamed from virgo to anquetil across more than 20 Inter- 

net hops. The experiments are performed during rush hours on a busy weekday, when 

the Internet is highly congested, so that the network is the bottleneck in the pipeline. 

Otherwise, the client would still be the bottleneck and we would have results similar to 

those in the LAN case. The experimental results show that SCP is a better protocol than 

TCP for real-time video streaming7 and that SCP and the QoS feedback work together 

to improve the video quality. The results also show that the synchronization feedback is 

able to maintain a higher average buffer-fill level to cope with the larger latency variation 

than in the LAN case. 

Unlike for the LAN, the long-haul Internet environment is characterized by properties 

such as a high degree of dynamics, unpredictability and uncontrollability. An Internet con- 

nection is composed of many network links and routers belonging to completely different 

entities, and the player shares these links and routers with many other network sessions. 

Thus the bandwidth availability is highly dynamic and unpredictable. Furthermore, with- 

out coordinating all the parties using the Internet, there is no way to control the sharing. 

As a result, it is impossible to repeat an experiment in the same environment. If the 

network environment changes too rapidly, the results of individual experiments (playback 

'Even though UDP with the QoS feedback may yield a better video quality, it does this by sacrificing 
all other TCP connections sharing the same links. Since the QoS feedback has time-based estimation 
and does not do exponential back-off, it is more aggressive than TCP, and will drive all the sharing TCP 
connections to back-off when network bandwidth is scare. Thus UDP is not an appropriate protocol for 
video streaming across the shared Internet. It is unfair to compare the playback performance between 
UDP and SCP or TCP. 



sessions) may not be able to clearly demonstrate the effectiveness of the feedback mech- 

anisms. In this case, statistical analysis can be used. A video clip is played repeatedly a 

sufficient number of times, with the feedback to be evaluated being enabled or disabled 

alternately. Then the mean and variance of the performance measurements of the play- 

back sessions with each of the two configurations are calculated, and compared against 

each other to see whether their difference is statistically significant or not (Appendix A). 

In the following sections, we discuss the experiments performed to evaluate the feed- 

back mechanisms and the results. 

SCP versus TCP Network Connections 

SCP is designed for real-time media streaming across the Internet, while TCP is for reliable 

data transfer and is not appropriate for streaming. TCP's inappropriateness for streaming 

is partially due to its infinite retransmission, which results in wasted bandwidth (for 

retransmitting late data), lower throughput, and higher and more unpredictable latency. 

To see the advantage of SCP over TCP, the 256 x 192 video clip is played repeatedly for 

20 times, with both the QoS and synchronization feedback mechanisms always on, and 

TCP and SCP connections used alternatively. The performance results of the experiment, 

as shown in Fig. 6.17 (a), (b), (c) and (d), demonstrate that SCP is a clear winner over 

TCP, except in frame drop ratio due to TCP's reliability. According to Fig. 6.17(a), (b) 

and (c), in most of the sessions, SCP yields significantly higher display frame rate, better 

smoothness, and a lower buffer-fill level. Figure 6.17(d) indicates that SCP improves 

the playback performance while successfully keeping the frame-drop ratio reasonably low 

(within 15%). From these figures, some abnormalities can also be observed, such as 

significantly lower display frame rate and higher buffer-fill level in SCP session 1 (Fig. 6.17 

(a) and (c)). We believe these are just indications of large variations in the Internet 

conditions. 

The Effect of QoS Feedback 

An experiment has also been conducted to show that the QoS feedback improves the 

video playback quality. In this experiment, the 256 x 192 resolution video clip is played 
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continuously 20 times, with the QoS feedback enabled and disabled alternately. In all 

the playback sessions, SCP and the synchronization feedback are used. The performance 

of the individual sessions including display frame rate, smoothness and frame-drop rate 

are shown in Fig. 6.18(a), (b) and (c). Table 6.5 shows the sample mean and variance 

of these measurement of the two sets of playback sessions. This table also contains the 

results of the student-t tests, assuming a confidence coefficient of 0.9 (Appendix A) ,  on the 

difference between the means when the QoS feedback is enabled or disabled. We are sure 

that the network is the bottleneck, since the display frame-rate measurements shown in 

Fig. 6.18(a) are significantly lower than those in the LAN case shown in Fig. 6.14(a). But, 

in both the LAN and long-haul Internet experiments, the same client is used. Furthermore, 

experiments with raw UDP network connections and the QoS feedback disabled show the 

remote server is able to send frames at full rate. 

From the figures and the table, we can see that the QoS feedback improves significantly 

on smoothness and the packet drop ratio, but the display frame rate is hardly afTected. 

Similarity in display frame rates indicates that the QoS feedback is able to sufficiently 

exploit the network bandwidth, since the other configuration, in which the server streams 

frames as quickly as possible, should have sufficiently exploited the network bandwidth. 

The smoother video and lower frame-drop ratio means that the QoS feedback can improve 

the video quality and resource usage with the limited network bandwidth. One reason 

for this result is that the server, based on the next-step frame rate provided by the QoS 

feedback, is able to schedule frame dropping in advance. This scheduled frame dropping 

should result in a smoother streaming as well as less packet drop in the network connection. 

This effect of the QoS feedback on the smoothness of video playback sessions across the 

long-haul Internet is similar to, and more significant than, that of the QoS feedback on 

video playbacks across PPP, as discussed in Section 6.5.4. The QoS feedback is able to 

improve video smoothness and reduces the packet-drop ratio while exploiting the network 

available bandwidth sufficiently. 
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Resolution Adaptation 

When a multi-resolution video clip is played, the resolution adaptation policy in the QoS 

feedback also adapts the resolution to the amount of resources available in the video 

pipeline, which in the Internet experiments is usually the network available bandwidth. 

To demonstrate the effect of resolution adaptation, the two video clips are combined into 

a multi-resolution clip, and streamed from virgo across the Internet to anquetil. Since it 

is not easy to catch a period in which the available bandwidth of the network connection 

changes drastically from time to time, in our experiment, UDP packets are sent from 

anquetil to the virgo and back at a certain rate to create an certain amount of background 

traffic. Figure 6.19 shows the display frame rate of a playback session. In this experiment, 

the resolution adaptation policy is set to scale up when frame rate is close to 30fps, and 

to scale down at 7fps. F'rom the figure, it can be seen that the playback session starts 

with the higher (256 x 192) resolution. At about frame number 700, the background 

traffic is injected, so the frame rate goes down. After a while the resolution policy detects 

the quality degradation and switches to the lower (128 x 96) resolution. At about frame 

number 1400, the background traffic is removed. From then on, the display frame rate 

tends to increase slowly, though the random Internet packet drop still causes big variations. 

At about frame number of 1800, the display frame rate goes up to close to 30fps and the 

player switches back to the higher resolution. Later at about frame number 3000, the 

background traffic is injected again and triggers another round of resolution switching. 

The Effect of Synchronization Feedback 

With the network latency from server virgo and client anquetil being more than 100 mil- 

liseconds, and a variation much higher than in the LAN environment, the synchronization 

feedback maintains the average client buffer-fill level around 12 frames (0.4 second), as 

indicated by the SCP sessions in Fig. 6.17(c). However, due to the high degree of dynamics 

of the Internet, occasionally, the latency variation can become much higher than usual, 

and the synchronization feedback reacts by increasing the target and actual buffer-fill lev- 

els to close to one second. When the buffer-fill level measurements of the TCP sessions 



Figure 6.19: Display frame rate of a video playback session with resolution adaptation, 
across the long-haul Internet 

in Fig. 6.17(c) are examined, we discover that the buffer-fill levels for these sessions are 

around 20 frames (0.7 second), which higher than that of the SCP sessions. This result is 

due to the higher latency and greater variation caused by TCP's data retransmission. 

6.5.6 Experiments with Network Interface Switching 

Experiments have also been carried out to test how SCP, the QoS and synchronization 

feedback mechanisms react with meta-adaptation operations upon a client-side network 

interface switch between PPP and Ethernet. In these experiments, the local host lernond 

serves as the video server, and anquetal as the client. The client anqvetil is configured 

to have both the PPP and Ethernet interfaces active. During a playback session, an ex- 

ternal utility is used to switch anquetirs default route between the PPP and Ethernet, 

and send a signal to the active player client after each switch. Upon receiving a network 

interface switch signal, the player client re-establishes both the control and data connec- 

tions to the video server, resets SCP, and performs meta-adaptation to have the QoS and 

synchronization feedback mechanisms quickly adapt to the explicit event8. 

'The reason for using an external utility to simulate an interface switch and to notify the relevant 
application is due to the lack of IP-level plug-and-play in LINUX, the operating system on client anquetil. 
1;-a fully plug-and-play platform, we would expect that the network cards can be removed or inserted 
while the IP stack is active. Then the IP stack is reconfigured, and the active applications are notified 
automatically through some kind of signalling mechanism. 
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Figure 6.20: Video resolution and display frame rate, and server work-ahead time, of 
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Figure 6.21: Video resolution and display frame rate, and server work-ahead time, of a 
playback session with an interface switch. Meta-adaptation on the feedback mechanisms 
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The video resolution and display frame rate and server work-ahead time of an example 

playback session are shown in Fig. 6.20(a) and (b). In this session, the player starts with 

the Ethernet interface. The higher resolution (256 x 192) video is played at about 15 fps, 

and the server work-ahead time is kept at within 5 frames. At about frame number 1400, 

the network is switched from Ethernet to PPP. With this switch, the network bandwidth 

suddenly drops from lOMbps to 28.8Kbps. Since the 256 x 192 resolution is still being 

played, which according to Table 6.3 has an average I frame size of 4531B, the frame 

rate drops down to below 1 fps (Fig. 6.20(a)) and the transmission latency increases to 

more than two seconds. As shown in Fig. 6.20(b), the long network latency results a 

server work-ahead time of about -60 frames. After a few frames are played, the QoS 

and synchronization feedback mechanisms detect the performance degradation, and react 

by switching to the low resolution video, and advancing the server clock value. With 

these feedback actions, the video display frame rate goes up to about 3 fps, and the server 

work-ahead time quickly increases to around 30 frames (one second). After a while, at 

about frame number 3200, the network is switched back to Ethernet. The feedback mech- 

anisms are reset again upon this event to re-detect the new environment. The sudden 

big increase in network bandwidth results in the low resolution video being played at full 

30 fps  (Fig. 6.20(a)), and the transmission latency being reduced to a few milliseconds, 

as reflected by the big upward jump in server work-ahead time (Fig. 6.20(b)). With the 

greatly improved playback performance, the QoS and synchronization feedback mecha- 

nisms react much faster than when switching from Ethernet to PPP. The video resolution 

is scaled up to 256 x 192, and the server work-ahead time lowered down to about 5 frames. 

At about frame numbers 4600 and 7400, the network is again switched to PPP and back 

to Ethernet, respectively. According to Fig. 6.20(a) and (b), the QoS and synchronization 

feedback mechanisms also react quickly to adapt the playback performance to the new 

network conditions. 

For comparison purposes, the prototype video player is implemented with an option 

to disable meta-adaptation operations upon a network interface switch. The player still 

re-establishes the control and data channels between its client and server. However, the 



feedback mechanisms simply inherit their previous states. We played the same multi- 

resolution video clip once with the meta-adaptation turned off. The video resolution, frame 

rate and server work-ahead time over time are shown in Fig. 6.21(a) and (b), respectively. 

Comparing Fig. 6.21 against Fig. 6.20, while no obvious difference can be seen when 

switching from Ethernet to PPP, since the bandwidth of PPP is so low that it needs a long 

time before it can be correctly detected anyway, the meta-adaptation makes the speed of 

adaptation much faster when switching from PPP to Ethernet. Figure 6.21 (a) shows that 

it takes the steady-state QoS feedback mechanism a long time (120 seconds) to increase 

the display frame rate from 2 fps to 30fps and finally switch to the higher resolution. This 

sluggishness is because that the QoS feedback only increases the server-sent frame rate 

additively if the video pipeline is not overloaded. The additive increase in frame rate makes 

the QoS feedback a good network citizen, but at the same time means a slow adaptation 

in the increase in resource availability. Figure 6.21 (b) shows that after switching from 

P P P  to Ethernet, the server work-ahead time reduces exponentially, instead of jumping 

directly to the right value. This result is due to the exponential adjustment on server 

work-ahead time by the synchronization feedback, plus the (sluggish) lowpass filtering in 

the estimation of the average buffer-fill level and variation. 

6.6 Discussion 

In this chapter, a real-time adaptive distributed MPEG player is described, with a focus on 

the design, implementation and experiments of the QoS and client-server synchronization 

feedback mechanisms. Due to the dynamic behavior and unpredictability of the Internet, 

the feedback systems need to be highly adaptive, adapting to changes in environment 

parameters such as network bandwidth, transmission latency and variation, and host pro- 

cessing power, as well as reacting to explicit events including playback speed change and 

network interface switches. The software feedback toolkit greatly helps the development 

of these complex QoS and synchronization feedback mechanisms. The feedback toolkit 

methodology is followed to decompose the feedback mechanisms into components policies, 

to identify the events, and to place the guards. In the implementation of the feedback 



mechanisms, many components are taken from the toolkit component library. The instru- 

mentation tools then help in visualizing the feedback effects in real-time, and tuning the 

parameters. 

Extensive experiments have been conducted to evaluate the SCP, QoS and synchro- 

nization feedback mechanisms of the player in several types of network configuration, 

including Ethernet LAN, PPP, long-haul Internet and network interface switching be- 

tween PPP and Ethernet. The experimental results show that feedback improves the 

video playback performance and resource usage in all the environments. The feedback 

mechanisms also react quickly to events such as network interface switches, and adapt the 

playback quality accordingly. 



Chapter 7 

Related Work 

The software feedback toolkit is part of the Synthetix project, which is based on the 

earlier Synthesis project. The Synthesis project applied techniques such as run-time code 

synthesis (specialization) and software feedback to improve the execution performance and 

adaptability of operating systems. The Synthetix project investigated frameworks to apply 

the Synthesis techniques systematically to build adaptive systems. The software feedback 

toolkit provides a framework for using the software feedback techniques. Other research 

work related the software feedback toolkit include toolkits based on control theories, and 

existing feedback systems for network flow and congestion control, clock synchronization 

between Internet hosts, and intra- and inter-stream synchronization and QoS adaptation 

in streaming multimedia applications. These existing feedback systems serve as potential 

applications of the software feedback toolkit, for systematic design, software reuse, and 

improvement in performance and extensibility. 

7.1 Synthesis: Feedback-Based Adaptive Scheduling 

The Synthesis operating system [31, 32, 461 is an efficient implementation of fundamen- 

tal operating system services through techniques such as run-time code synthesis and 

feedback-based fine-grain scheduling. Through run-time code synthesis, frequently-used 

kernel routines are optimized by creating specialized versions of their executable code at 

run-time, when new opportunities for optimization become known. The feedback-based 

fine-grain scheduling performs frequent scheduling actions and policy adjustments, result- 

ing in an adaptive and self-tuning system that provides effective support for real-time 



multimedia applications. 

The concept of software feedback was first identified in Synthesis, and is used for fine- 

grain adaptive scheduling of interdependent jobs such as threads in a pipeline [32]. Each 

pipeline consists of multiple threads as stages, coupled by their input and output queues. 

Data elements such as audio samples are passed along the pipeline stage-by-stage, and 

processed at each stage. Information such as the length of a (stage) thread's input and 

output queues, which is local to the thread, reflects the thread's progress relative to other 

stages in the same pipeline. The CPU quantum and scheduling frequency of a thread 

reflect its execution speed. When a thread's input or output queues are too full or too 

empty respectively, the thread is falling behind. Conversely, when a thread's input or 

output queues are too empty or too full, respectively, the thread is running too fast. The 

feedback-based fine-grain scheduling of each thread uses the thread's local information to 

adjust its execution speed. It continuously monitors the length of its input and output 

queues, and changes its CPU quantum or scheduling frequency accordingly. Due to the 

run-time code synthesis, Synthesis enjoys fast interrupt processing, fast context switching 

and low thread-dispatching overhead. Furthermore, feedback-based scheduling of a thread 

only uses its local information and thus is simple and fast. As a result, the scheduling 

of each thread can be invoked frequently, so as to track the thread's needs at a fine 

temporal granularity. Though the feedback-based fine-grain scheduling of each thread 

uses only the thread's local information, interaction between the schedulers through the 

inter-stage input-output queues brings all schedulers together. Through this interaction, 

the threads in a pipeline eventually reach a dynamic equilibrium, in which all threads 

get an appropriate share of the CPU, the length of all the queues are maintained at 

appropriate levels, and data flows in the pipeline smoothly. In the feedback-based fine- 

grain scheduling, filters such as lowpass filters, differential filters and integrator filters 

are used to avoid potential oscillation, to speedup convergence, and to improve tracking 

accuracy. 

Based on the work in Synthesis, Pu and Fuhrer envisioned a toolbox approach to 

feedback-based scheduling in a position paper [45]. The proposed toolbox would contain 

a set of standard and relatively simple components with well-defined performance and 



functionality characteristics. A filter design tool would be used for interactive filter spec- 

ification, composition, and generation. Simulation packages would then used to evaluate 

the behavior and performance of the generated filters and feedback systems. 

In this thesis we investigated and extended the idea of the toolkit approach to software 

feedback, and presented a composition methodology and an implementation of the feed- 

back toolkit. We proposed a methodology for the design of complex wide-range feedback 

systems through hierarchical composition and guard-based meta-adaptation, We then im- 

plemented the toolkit using C++ base classes for implementing new building blocks and 

composing complex component, a library of feedback components, and a set of tools for 

simulation and on-line instrumentation. We also demonstrated how the feedback toolkit 

can be used in building adaptive multimedia systems. The software feedback toolkit de- 

scribed in the thesis provides a framework for applying software feedback techniques of 

Synthesis to building adaptive systems. These techniques were previously used only by 

"artists" or "craftsmen" who could build on-of-a-kind systems. But with the help of the 

toolkit, they can be used by ordinary "engineers". 

7.2 Synthetix: Optimistic Incremental Specialization for Adap- 

tive Systems 

The Synthetix project [38] investigates the application of optimistic incremental special- 

ization, a technique for generating specialized code optimistically for system states that 

are likely to occur but not certain, to build high-performance adaptive operating systems. 

Synthetix is a follow-on from Synthesis [31]. It extends the results of the latter with 

a conceptual model of specialization, the idea of incremental and optimistic specializa- 

tion, application of the idea in commercial operating systems [44], and a set of tools for 

automating the specialization process [38]. 

With optimistic incremental specialization, operating systems are optimized incremen- 

tally whenever opportunities are identified, both at compile-time and at run-time [44]. 

This contrasts to the traditional approach that operating systems are optimized statically 

for a single "common case" (which may not actually be a real common case in specific 



situations) at coding or compile time. Traditionally, program specialization, also called 

partial evaluation, is a program transformation process aimed at customizing a program 

based on parts of its input [13]. In essence, program specialization consists of constant 

propagation and folding, and can be applied to programs that exhibit interpretation. 

However, it can be generalized to include arbitrary computations that help improve the 

performance of a software system in specific conditions. Operating systems exhibit a wide 

variety of invariants - assertions which stay valid for a long time or even for the lifetime 

of the systems. Example invariants are word size, cache size, whether a processor has 

a FPU, whether a file being manipulated is on local disk or NFS-mounted, etc. These 

invariants may become known either at compile-time (such as word size), or at various 

stages during run-time (such as location of a file, known when it is opened). Given a list of 

invariants (available statically at compile-time or dynamically at run-time), it should be 

possible to apply compile- or run-time specialization (optimization) to generate specialized 

code. Repeated dynamic application of specialization is called incremental specialization. 

While many invariants stay valid throughout the life cycle of an operating system, there 

are also many assertions which are likely, but not certain, to be true for a long period 

of time (during run-time). For example, it is likely, but not certain, that files will not 

be shared concurrently. This type of assertion is called a quasi-invariant. Specialization 

based on these most-of-the-time-valid quasi-invariants should also improve system per- 

formance. Correctness can be preserved by guarding every place where quasi-invariants 

may become invalid. A guard is a predicate testing whether the guarded quasi-invariants 

holds or not. For example, a guard can be placed in the open system call to test whether 

the file being opened is being accessed by other processes concurrently. When a guard is 

triggered indicating that a quasi-invariant becomes invalid, the guarded specialized code 

should be replaced by another version that does not exhibit the specialization based on the 

invalidated quasi-invariant. This process of dynamically replacing one version of code with 

another version is called dynamic replugging. The overall repeated process of specialization 

based on quasi-invariants is referred to as optimistic incremental specialization. 

Optimistic incremental specialization has been successfully used to specialize a variety 

of OS components [44]. A set of tools (collectively referred to as the specialization toolkit) 



has also been built for automatic identification and placement of the guards for a given 

set of quasi-invariants, generation of specialized code, and dynamic replugging [38]. 

The software feedback toolkit is part of the overall Synthetix project. Firstly, the 

overall goal of Synthetix is to investigate frameworks for building adaptive systems with 

techniques previously required great talent and creativity to apply. The two techniques we 

focused on - program specialization for improvement of execution performance and soft- 

ware feedback for system adaptability - both originated from the Synthesis project [31]. 

The software feedback toolkit provides a framework for application of software feedback, 

while the specialization toolkit provides a framwork for program specialization. Secondly, 

the software feedback toolkit is an application of the idea of optimistic incremental spe- 

cialization in the context of software feedback systems. Software feedback can be seen as 

one form of specialization that specializes the policies used in a software system based on 

the specific conditions observed, whereas the specialization toolkit emphases removal of 

interpretations from the code. The concepts of invariants, guards and dynamac replugging 

play an important role in the methodologies for software feedback composition. Also, the 

feedback toolkit provides a framework for applying software feedback techniques to build- 

ing adaptive systems. Thirdly, the feedback systems built on top of the building blocks 

from the toolkit usually contain a lot of cross-module interpretation, thus are potentially 

excellent targets for application of the specialization toolkit. Finally, it is also possible to 

use feedback-based techniques to identify quasi-invariants for dynamic specialization. For 

example, a lowpass filter can be used to monitor the recent pattern of access to a file, to 

see if the access is mostly sequential. If a value 1 is used for a sequential access and 0 is 

used for non-sequential access, then the closer the lowpass filter output is to 1, the more 

likely the access is sequential. If the filter output passes a given threshold, it is likely that 

specializing the file access code for the case of sequential access would increase execution 

speed. 



7.3 Toolkits Based On Control Theories 

Several commercially available toolkits, such as Matlab [59] and MATRIXx [21], support 

building control systems based on control theories such as linear systems theory [3, 51, 

nonlinear systems theory [14], fuzzy [34, 671 and neural [16, 671 control. They provide 

various predefined building blocks from control theories, GUI-based tools for control sys- 

tem composition, simulation and analysis, and generation of the code of the constructed 

control systems. The target applications of these control- theory-based toolkits are tradi- 

tional hardware or embedded control systems. Taking Matlab [59] as an example, it has 

toolboxes for linear and nonlinear, continuous and discrete control, robust control, fuzzy 

logic, and neural control, etc. Each toolbox consists of building blocks as well as utilities 

for simulation and analysis. Matlab has a GUI-based environment called Simulink for 

graphical design, simulation and prototyping of continuous and discrete systems. It  also 

has facilities to generate C, C++ or Ada code of the control systems from proprietary 

script- or GUI-based representations. 

While control-theory-based toolkits are convenient and powerful in building adap- 

tive hardware and embedded systems, several factors limit their applicability in building 

adaptive systems in highly dynamic computer environment where unpredictable radical 

changes are a common case. Hardware and embedded systems are usually well-defined 

and have predictable dynamics. The transition of their state is gradual, thus satisfies the 

continuity assumption of control-theory-based feedback systems. As a result, the feedback 

systems architecture supported by the toolkits does not provide sufficient means for meta- 

adaptation of the feedback systems themselves when system dynamics goes beyond the 

originally expected domain, or when jumps in system state happen. Traditionally, these 

toolkits are for design, simulation and analysis of hardware and embedded control systems. 

The designed control systems are then re-implemented in hardware, or in a low-level lan- 

guage in the case of embedded systems. Though latest versions of these toolkits began to 

generate code in C, C++ or Ada, the generated routines are tightly coupled with their run- 

time environments, or sub-optimized in execution performance. These limitations explain 

why they are not popular among software engineers. On the other hand, the software 



feedback toolkit proposed in thesis is designed specially for use in highly dynamic and 

unpredictable software systems. The hierarchical feedback composition and guard-based 

meta-adaptation in our toolkit methodology facilitate the development of highly sophis- 

ticated wide-range feedback systems. The software feedback systems are implemented 

directly as C++ classes, and can be easily incorporated into software systems. 

7.4 Existing Software Feedback In Adaptive Systems 

Software feedback already exists in many forms in adaptive software systems. It is used 

for flow and congestion control [2, 4, 17, 23, 26, 30, 47, 55, 661, synchronization between 

Internet hosts [35], intra- and inter-stream synchronization in distributed multimedia sys- 

tems [28, 48, 49, 50, 511, and multimedia presentation QoS adaptation [22, 24, 52, 531. 

Software feedback has been used extensively in network flow and congestion control. 

TCP [2, 231 adjusts its congestion window size based on acknowledgements from the re- 

ceiver to control data flow and avoid network congestion. It also continuously estimates 

the mean and variance of the round trip time (RTT) in order to adapt its retransmission 

timer to changing network conditions. Several other rate-based feedback flow and conges- 

tion control schemes have been proposed [4, 17, 26, 30, 551. Some other schemes simply 

turn the source data flow on/off based on feedback from the routers, switches or receivers 

indicating network congestion [47, 661. Several of the schemes have also been analyzed 

theoretically with control and queuing theories [17, 26, 47, 55, 661. 

Software feedback also plays an important role in synchronization between Internet 

hosts, between the server and client of a multimedia stream, and between multiple media 

streams. The Network Time Protocol (NTP) [35], a protocol for clock synchronization 

between Internet hosts, has been widely deployed. On each host, this protocol uses var- 

ious filters to identify a reliable remote time (reference clock) server and to estimate the 

frequency and phase error between the local clock and the reference clock. A phase-lock- 

loop (PLL) is then implemented to synchronize the local clock to the chosen reference 

clock. The PLL is parameterized to handle a broad range of clock drift. Feedback based 



techniques have also been proposed for intra- and inter-stream synchronization in dis- 

tributed multimedia streaming systems. Examples are the schemes proposed by Rangan 

in [48, 49, 50, 511 and that by Little and Ghafoor [28]. 

In multimedia streaming applications, software feedback has been used for effective dy- 

namic control of the presentation quality. Jacobs and Eleftheriadis proposed an Internet 

video system architecture [22] in which the media pump at the server adapts the media 

quality (bit rate) to the available bandwidth through a technique called dynamic rate shap- 

ing. In Rowe's continuous media player [52, 531, Vosaic [12], and commercial streaming 

video players such as VXtreme [63], the video quality (usually video frame rate) presented 

to the user is continuously monitored by the client, and the measurements are fed back to 

the server to adjust the rate at which it streams out future video frames. In Jeffay's rate- 

based execution abstraction [24], Synthesis-style feedback-based scheduling [31] is used to 

allow multimedia application processes to adapt their pattern of execution based on the 

availability of resources. 

While all the mechanisms above for system adaptation are based on software feedback, 

they are generally implemented in a custom manner, and hard-coded for particular appli- 

cations. These feedback mechanisms are potential applications of the software feedback 

toolkit, which will help in systematic design, rapid prototyping, software reuse, simulation 

and instrumentation. As a demonstration of how the software feedback toolkit facilitates 

the development of adaptive systems, the design and implementation of SCP, a multime- 

dia streaming flow and congestion control protocol, and a highly adaptive streaming video 

player have been presented in the thesis. 



Chapter 8 

Conclusions and Future Work 

8.1 Summary of the Contribution 

In this thesis, we have presented a software feedback toolkit and its application in adap- 

tive multimedia systems. We proposed a methodology for hierarchical composition of 

complex feedback systems on top of simple building blocks, and introduced the concept 

of guard-based meta-adaptation for building wide-range feedback systems. We described 

an implementation of the toolkit in C++, with a library of components as C++ classes, 

and a set of tools for simulation and instrumentation. This software feedback toolkit pro- 

vides a framework for development of feedback mechanisms in adaptive software systems. 

It facilitates the building of highly modular, adaptive and extensible feedback systems, 

and helps the reuse of existing feedback components. Then we showed how the software 

feedback toolkit is used to in the construction of adaptive real-time packet-rate control 

and flow and congestion control mechanisms for multimedia streaming, and an adaptive 

'real-time distributed video player. 

8.1.1 A Methodology For Software Feedback System Composition 

In the software feedback toolkit, a complex feedback system is composed hierarchically 

from building blocks. To facilitate the hierarchical feedback composition, all feedback 

components export a common interface. Each component has a set of standard ports for 

feedback signal input and output, parameter change, internal state retrieval and update, 

and component reset. With this common interface, different feedback components, no 



matter what functionalities they have, can be connected in a uniform way. Feedback sys- 

tems can be built hierarchically out of existing building blocks and less complex composite 

components, which in turn are recursively composed of even simpler components. 

The concepts of guard-based meta-adaptation, guarded feedback component, and dy- 

namic component replugging are introduced for developing wide-range feedback systems 

used in highly dynamic computer environment in which unpredictable radical change in 

system state is a common case. An individual feedback policy (or algorithm) has a lim- 

ited domain in which it is applicable. On the other hand, software systems, especially 

distributed multimedia systems across the Internet, have an unprecedented level of dy- 

namics. These highly dynamic systems need to employ different feedback policies in dif- 

ferent situations, and need to react properly and responsively in the face of unpredictable 

system state jumps. To facilitate development of complex wide-range feedback systems 

out of simple individual feedback policies, we make guard-based meta-adaptation explicit, 

and introduce the concept of guarded software feedback components. A wide-range feed- 

back system is composed of multiple feedback policies, each of which is implemented as 

a guarded feedback component. The domain of the overall feedback system is the union 

of that of all the participating components. The domain of a guarded feedback compo- 

nent is guarded against events signaling that it is entered or left. Upon triggering of 

the guards, meta-adaptation actions are taken to switch from one feedback component 

to another one, in order to adapt to the changed environment. There are several types 

of meta-adaptation actions: light-weight parameter change or state reset on the active 

feedback policy components, heavy-weight replugging of existing policy components with 

new ones, or exceptions signalling to the application when the environment is out of the 

domain of the whole feedback system. 

Guard-based meta-adaptation facilitates the application of control theories in software 

feedback systems. Feedback policies based on control theories, such as linear systems 

theory, are well defined, but have limited domains. With guard-based meta-adaptation, 

a wide-range feedback system can have multiple repluggable components implementing 

different linear policies, each of which is dynamically invoked when it is applicable. Though 

the linear components are simple, the overall feedback system can be powerful and highly 



adaptive. 

8.1.2 Implementation of the Software Feedback Toolkit 

A prototype of the software feedback toolkit has been implemented in C++, with a compo- 

nent class library and a set of tools for simulation and instrumentation. In the component 

class library, base classes are defined for feedback components (in general) and composite 

feedback components. These base classes define a common interface consisting of a set 

of public member functions implementing the input, output, parameter, state and reset 

ports. They also implement methods for dynamic component replugging. The library 

provides a set of building blocks including various filters (lowpass filter, average median 

filter, integrator, difference filter etc.), regulators (gain unit, delay unit, biaser, etc.), and 

connectors (trigger, multiplexer, etc.). To facilitate feedback system simulation and in- 

strumentation, the toolkit implements tools such as GUI-based control panel, parameter 

panel, oscilloscope, as well as signal generators and various components for file access. All 

the tools have the same interface as regular feedback components, thus they can easily be 

connected to the feedback systems to be simulated or instrumented on-line. 

The contribution of the software feedback toolkit prototype has several aspects. The 

prototype demonstrates that the feedback-composition methodology can be reduced to 

practice. It  provides a detailed design of components that others may want to follow. The 

toolkit prototype also makes the technology developed in the thesis directly available to 

software developers. 

8.1.3 Application of the Toolkit in Adaptive Multimedia Systems 

The software feedback toolkit has been used in the development of several feedback mecha- 

nisms for adaptive multimedia applications, such as an adaptive packet rate control mech- 

anism, a network streaming flow and congestion control protocol, and feedback systems 

in a distributed adaptive video player for dynamic control of video quality and synchro- 

nization between clients and servers. These applications demonstrate the feasibility of the 

software feedback toolkit in developing adaptive systems. 

The first application of the software feedback toolkit is for adaptive packet rate control 



in real-time multimedia streaming. The target scenario is a server-client style unicast- 

media-streaming application, in which feedback is used at the client side to continuously 

monitor the quality of packet reception, and determine the rate at which the server sends 

future packets. Two types of network connections are identified: heavily buffered and 

lightly buffered. Heavily buffered connections have deep buffers in routers and switches. 

Upon network congestion, they show significant increase in delay before any packets are 

dropped. On the other hand, lightly buffered connections experience packet drop before 

a significant increase in packet delay can be detected. The rate control feedback system 

consists of two policies: a packet-latency feedback policy for heavily buffered network 

connections, and a packet-loss feedback policy for lightly buffered ones. These policies 

are implemented as repluggable guarded feedback components. Based on the network 

congestion events (packet-loss or increase in network delay), one or both of the policies 

are plugged into the feedback system dynamically. When both policies are active, the lower 

of the packet rates generated by the two policies is used by the server. Guarded feedback 

policies and dynamic replugging make the packet rate feedback adaptive to a wide range 

of network characteristics, and extensible when new network types are identified. 

The feedback toolkit has also been applied in the development of SCP, a rate- and 

congestion-window-based flow- and congestion-control protocol for adaptive real-time mul- 

timedia streaming applications. SCP is designed to be TCP-friendly, while optimized for 

streaming applications. SCP consists of four guarded feedback policies corresponding to 

different network and streaming conditions (system state sub-domains): slow-start, steady- 

state, exponential back-off, and stream-pause. In the start-up phase, the slow-start policy 

is invoked to discover the available network bandwidth quickly. When the network is con- 

gested, the exponential back-off policy makes sure that the network is able to recover from 

the congestion quickly. When there is no congestion, SCP invokes the steady-state policy 

to maintain an appropriate amount of buffering inside the network connection, in order to 

sufficiently exploit available network bandwidth while keeping a low network latency level, 

as well as tracing the changes in network condition closely. After a pause in the stream, 

SCP shrinks its congestion window size and invokes the slow-start policy to detect the 



already-changed network condition. The feedback policies are guarded against events sig- 

nalling changes in network conditions and switches between the sub-domains. Upon these 

events, SCP performs meta-adaptation by dynamically switching between its feedback 

policies. SCP has built-in mobility awareness. Upon switches in the network interface, 

which may result in orders-of-magnitude change in network bandwidth and latency, SCP 

resets the state of all its estimators and invokes the slow-start policy to discover the new 

network environment quickly. Following the feedback systems composition methodology, 

SCP is designed in a highly modular and extensible manner. With the building blocks 

and tools in the toolkit, prototyping is accelerated, and performance instrumentation and 

fine-tuning are made easy. Internet experiments showed that SCP meets it design goals 

very well. 

Finally, the software feedback toolkit greatly helps the development of the QoS and 

synchronization feedbacks in an adaptive real-time server-client style distributed stream- 

ing video player. SCP is used for flow and congestion control on the network connection 

between the server and the client. In addition, the player has two feedback systems for 

QoS control and client-server synchronization respectively. The QoS feedback takes the 

user-specified preference between video spatial resolution and frame rate, and adapts the 

video quality level to the available server disk bandwidth, network bandwidth, and client 

CPU processing power. Composed of high-order feedback and repluggable components, 

both the synchronization feedback and the QoS feedback are themselves highly adaptive. 

The synchronization feedback synchronizes the clock of the server to that of the client 

so as to maintain a minimum level of client-side buffering while ensuring smooth video 

playback. The buffering level is adapted to the network jitter level as observed by the 

synchronization feedback. In the presence of mobility events such as switches in network 

interfaces, the player adapts through guard-based meta-adaptation. SCP resets its state 

and switches to the slow-start policy. The QoS feedback requests the server to send at 

a high frame rate to discover the new pipeline bandwidth quickly. The synchronization 

feedback resets its estimators in order to discard invalid pipeline delay jitter and target 

buffer level estimations. As demonstrated by the Internet experiments, the three feed- 

back systems (SCP, QoS and synchronization) collectively make the video player highly 



adaptive, and robust in the highly dynamic and unpredictable Internet environment. 

8.2 Future Work 

A significant amount of work has been done on the software feedback toolkit. However, the 

research is far from being complete, a number of interesting ideas in all aspects (methodol- 

ogy, implementation and application) of the toolkit are to be further explored in the future. 

In fact, the thesis work and other research in the Distributed Systems Research Group 

(DSRG) of the Department of Computer Science and Engineering, Oregon Graduate In- 

stitute have inspired two new projects which started recently in the group. The first one is 

"Microfeedbacks for Adaptive Resource Management" [43], for further investigation of for- 

mal specification and automatic code-generation of high-performance wide-range software 

feedback systems. The other one is "Systemic Quality of Service Support for Adaptive Dis- 

tributed Systems" [65],  for specification of multimedia presentation QoS requirements, and 

automatic generation of appropriate feedback systems for adaptive resource management. 

In the software feedback composition methodology, a more detailed model is to be 

developed for the specification of guards and meta-adaptation operations such as dy- 

namic component replugging and exception processing. A high-level rigorous specification 

language is desirable for specification of feedback components and their composition. Ex- 

ecutable code of feedback components then can be generated from their high level specifi- 

cations. In particular, to facilitate the incorporation of control theories into the toolkit, a 

control-theory-friendly language is preferable for the specification of control-theory-based 

components and their composition. With a high-level specification language, it is ex- 

pected that the properties (behaviors and performance) of many feedback components 

can be expressed or deduced in a somewhat formal manner. 

In the software feedback toolkit prototype, more building blocks are to be implemented, 

especially those from control theories. It is possible to borrow many building blocks 

from control-theory-based toolkits such as Matlab and MATRIXx. More sophisticated 

tools for simulation, instrumentation and theoretical analysis are needed. A GUI-based 

software feedback studio (development environment) is also to be developed. With the 



studio, the users can define building blocks and compose feedback components in graphical 

form, and perform simulations. Feedback components in graphical form or in high level 

specification language would be automatically translated to C++ code by a code generator. 

During run-time, we would like to have a run-time code optimizer, similar to the Synthetix 

specialization tools, to eliminate the interpretation caused by dynamic composition of 

the feedback building blocks, so as to improve execution performance. Also, we are in 

the process of reimplementing the feedback toolkit in Java, in a multi-threaded and 

distributed environment. 

For the application of the software feedback toolkit in adaptive multimedia systems, 

we are developing methods for translating QoS requirements into feedback systems for 

adaptive resource management. With a specification of the QoS requirements from the 

user, it is possible to determine the resources needed to produce the desirable presentation 

quality, the user's preference, and the adaptation actions to take when not sufficient re- 

sources are available. With this information, it is possible to select a set of well-understood 

and well-behaved feedback components and compose feedback systems which have the ex- 

pected properties, and adapt the playback quality to the changes in available resources in 

a way consistent with the QoS specification. 

It is also interesting to evaluate, through experiments, the adaptation mechanisms in 

our adaptive video player and that in other streaming video players, especially commercial 

ones such as Vxtreme [63], Real Video and Real Audio players [42], and Netscape streaming 

video players [37]. Some metrics that could be used for evaluation include: the dimensions 

and ranges of video quality a player can adapt; the ability to avoid network congestion; 

the response time on user-actions such as  starting and pausing a stream, the response 

time in the presence of big jumps in available network bandwidth; the ability for multiple 

playback sessions to share network links; and the ability to live in harmony with TCP 

traffic. In Chapter 6, we have shown that our player is able to adapt the video quality 

across wide ranges in both the frame rate and spatial resolution dimensions. Our player 

is responsive to both user actions and drastic changes in network bandwidth. The use 

of SCP effective avoids network congestion, makes multiple playback sessions share the 

network bandwidth in a fair manner, and enables the player to live with TCP. 



Bibliography 

[I] BERNERS-LEE, T., FIELDING, R., AND NIELSEN, H. Hypertext transfer protocol 

- HTTPll.0. Internet RFC 1945, http : //ds . internic .net/ds/rf c-index. html, 
May 1996, [September 11, 19971. 

[2] BRAKMO, L. S., ET AL. TCP Vegas: New techniques for congestion detection and 
avoidance. In SIGCOMM794 (August 1994), pp. 24-35. 

[3] BROGAN, W. L. Modern Control Theory. Quantum Publishers, Inc., 1974. 

[4] BUSSE, I., DEFFNER, B., AND SCHULZRINNE, H. Dynamic QoS control of multi- 

media applications based on RTP. computer Communications, 19 (January 1996), 

49-58. 

[5] CADZOW, J.  A. Discrete-Time Systems: A n  Introduction with Interdisciplinary Ap- 

plications. Prentice-Hall, Inc., 1973. 

[6] CADZOW, J. A., AND MARTENS. Discrete- Time and Computer Control Systems. 

Prentice-Hall, Inc., 1974. 

[7] CEN, S. Software feedback toolkit prototype user's manual. Department of Com- 

puter Science and Engineering, Oregon Graduate Institute of Science and Tech- 

nology. http: //cse . ogi. edu/DISC/projects/synthetix/FBT-manual .ps, August 

1997, [September 11, 19971. 

[8] CEN, S. Software of a distributed real-time MPEG video player. Department of Com- 

puter Science and Engineering, Oregon Graduate Institute of Science and Technology. 

http : //cse . ogi . edu/DISC/projects/synthetix/Player/, August 1997, [Septem- 

ber 11, 19971. 

[9] CEN, S., Pu, C., STAEHLI, R., COWAN, C., AND WALPOLE, J. Demonstrating the 

effect of software feedback on a distributed real-time MPEG video audio player. In 

Proceedings of the Third ACM International Multimedia Conference and Ezhibition 

(San Francisco, CA, November 1995), pp. 239-240. 



[lo] CEN, S., Pu, C., STAEHLI, R., COWAN, C., AND WALPOLE, J. A distributed real- 

time MPEG video audio player. NOSSDAV795, Lecture Notes in  Computer Science 
1018 (1995), 151-162. Springer-Verlag, 1995. 

[11] CEN, S., Pu, C., AND WALPOLE, J. Flow and congestion control for internet 

multimedia streaming applications. Tech. Rep. CSE97-003, Department of Computer 

Science and Engineering, Oregon Graduate Institute of Science and Technology, June 

1997. 

[12] CHEN, Z., TAN, S.-M., CAMPBELL, R. H., AND LI, Y. Real time video and audio in 

the World Wide Web. In Fourth International World Wide Web Conference (Boston, 

Massachusetts, December 1995), pp. 15-27. 

[13] CONSEL, C., AND DANVY, 0. Tutorial notes on partial evaluation. In In Proceedings 

of ACM Symposium on Principles of Programming Languages (Charleston, South 

Carolina, January 1993), pp. 493-501. 

[14] COOK, P . A. Nonlinear Dynamical Systems. Prentice-Hall International ( U K )  Ltd., 

1986. 

[IS] COWAN, C., ANTREY, T., KRASIC, C., Pu ,  C., AND WALPOLE, J .  Fast concurrent 

dynamic linking for an adaptive operating system. In Proceedings of the International 

Conference on Configurable Distributed Systems (Annapolis, Maryland, May 1996), 

pp. 108-115. 

[16] DAYHOFF, J. E. Neural Network Architectures: an Introduction. Van Nostrand 

Reinhold, 1990. 

[17] FENDICK, K. W., RODRIGUES, M. A., AND WEISS, A. Analysis of a rate-based 

control strategy with delayed feedback. In Proceedings of SIGCOMM792 (August 

1992), pp. 136-147. 

[18] FLOYD, S., AND FALL, K. Router mechanisms to support end-to-end conges- 

tion control. Network Research Group, Lawrence Berkeley National Laboratory. 

f t p :  //f t p .  ee . l b l  . gov/papers/collapse . ps, February 1997, [September 11,19971. 

[19] GOODWIN, G .  C., AND SIN, K .  S. Adaptive Filtering Prediction and Control. 

Prentice-Hall, 1984. 

[20] INOUYE, J., CEN, S., Pu, C., AND WALPOLE, J .  System support for mobile multi- 
media applications. In NOSSDA V797 (May 19-21 1997), pp. 143-154. 



[21] INTEGRATED SYSTEMS, INC. MATRIXx family technical specification. 

h t t p  : //www . isi . corn /Products/MATRIXx/ Techspec/toc . html, 1997, [September 

11, 19971. 

[22] JACOBS, S., AND ELEFTHERIADIS, A. Adaptive video applications for non-&oS 

networks. In International Workshop on Quality of Service797 (Columbia University, 

New York, May 1997), pp. 161-166. 

[23] JACOBSON, V. Congestion avoidance and control. In SIGCOMM'88 (August 1988), 

pp. 79-88. 

[24] JEFFAY, K . , AND BENNETT, D. A rate-based execution abstraction for multimedia 

computing. In Proceedings of NOSSDAV'95 (April 1995), pp. 67-77. 

[25] JONES, G. Programming in OCCAM 2. Prentice-Hall International, 1988. 

[26] KESHAV, S. A control-theoretic approach to flow control. In SIGCOMM'SI (Sept. 

1991), pp. 3-16. 

1271 LIPPMAN, S. B. C++ Primer 2nd Edition. Addison-Wesley Publishing Company, 

1991. 

[28] LITTLE, T .  D. C., AND GHAFOOR, A. Multimedia synchronization protocols for 

broadband integrated services. IEEE Journal on Selected Areas in  Communication, 

9, 9 (Dec. 1991)) 1368-1382. 

[29] LJUNG, L., AND SODERSTROM, T .  Thwry and Practice of Recursive Identification. 

MIT Press, 1993. 

[30] MAHDAVI, J. ,  AND FLOYD, S. TCP-friendly unicast rate-based flow control. In 

end2end mailing list, f t p  : //f t p  . i s i  . edu/end2end, January 1997, [September 11, 

19971. 

(311 MASSALIN, H. Synthesis: An Eficient Implementation of Fundamental Operating 

System Services. PhD thesis, Graduate School of Arts and Science, Columbia Uni- 

versity, 1992. 

[32] MASSALIN, H., AND Pu,  C. Fine-grain adaptive scheduling using feedback. Com- 

puting Systems 3, 1 (Winter 1990)) 139-173. 

[33] MCCANNE, S., AND JACOBSON, V. vic: a Flexible Framework for Packet Video. 

In Proceedings of the Third ACM Conference and Exhibition (Multimedia '95) (San 

Francisco, California, November 1995), pp. 51 1-522. 



[34] MCNEILL, F. M., AND THRO, E. fizzy Logic: a Practical Approach. Boston: AP 

Professional, 1994. 

[35] MILLS, D. L. Network time protocol (version 3) specification, implementation and 

analysis. Tech. rep., University of Delaware, 1992. DARPA Network Working 

Group Report RFC-1305, h t t p :  / /ds . i n t e r n i c  .net /ds/rf  c-index. html, March 

1992, [September 11, 19971. 

[36] MOSBERGER, D., PETERSON, L. L., BRIDGES, P. G., AND O'MALLEY, S. Analysis 

of techniques to improve protocol processing latency. In SIGCOMM'96 (October 

1996), pp. 73-84. 

[37] NETSCAPE COMMUNICATIONS CORPORATION. Netscape plug-ins: Audio/video. 

http://home.netscape.com/comprod/products/navigator/version2.0/ 

plugins/audio-video . html, 1997, [September 11, 19971. 

[38] OREGON GRADUATE INSTITUTE, DEPARTMENT OF COMPUTER SCIENCE AND EN- 

GINEERING. The Synthetix Project at OGI. Oregon Graduate Institute of Sci- 

enceandTechnology,http://wvw.cse.ogi.edu/DISC/projects/synthetix/,1994- 

1997, [September 11, 19971. 

[39] PAPOULIS, A. Probability, Random Variables, and Stochastic Process. McGraw-Hill, 

Inc., 1991. 

[40] PAXSON, V. End-to-end routing behavior in the Internet. In SIGCOMM'96 (Stanford 

University, California, August 1996), pp. 25-38. 

[41] POSTEL, J . ,  AND REYNOLDS, J. File transfer protocol. Internet RFC 

0959, h t t p  : / /ds . i n t e r n i c  .net  /ds/rf  c-index . html, October 1985, [September 11, 

19971. 

[42] PROGRESSIVE NETWORKS. HTTP versus RealAudio client-server streaming. 

h t t p  : //vuv . realaudio.  com/help/content/http~vs~a . html, 1996, [September 

11, 19971. 

[ 4 3 ] P ~ ,  C. Microfeedbacks for adaptive resource management. 

http://vuv.cse.ogi.edu/DISC/projects/microfeedback/microfeedback.html, 

March 1997, [September 11, 19971. 

[44] Pu, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C., INOUYE, J . ,  

KETHANA, L., WALPOLE, J. ,  AND ZHANG, K. Optimistic incremental specializa- 

tion: Streamlining a commercial operating system. In SOSP'95 (Copper Mountain 
Resort, Colorado, December 1995), pp. 314-324. 



[45] Pu, C., AND FUHRER, R. M. Feedback-based scheduling: a toolbox approach. In 

Fourth Workshop on Workstation Operating Systems (October 1993), pp. 124-128. 

[46] Pu, C., MASSALIN, H., AND LOANNIDIS, J .  The synthesis kernel. Computing 

Systems, 1,  1 (Winter 1988), 11-32. 

[47] RAMAKRISHNAN, K. K., AND JAIN, R. A binary feedback scheme for congestion 

avoidance in computer networks. ACM Tkansactions on Computer Systems, 8, 2 

(May 1990), 158-181. 

[48] RAMANATHAN, S., AND RANGAN, P.  V. Adaptive feedback techniques for synchro- 

nized multimedia retrieval over integrated networks. IEEE/ACM Zhnsactions on 

Networking, 1 ,  2 (April 1993), 246-260. 

[49] RAMANATHAN, S., AND RANGAN, P.  V. Feedback techniques for intra-media conti- 

nuity and inter-media synchronization in distributed multimedia systems. The Com- 

puter Journal 36, 1 (Feb. 1993), 19-31. 

[50] RANGAN, P. V., RAMANATHAN, S., AND SAMPATHKUMAR, S. Feedback techniques 

for continuity and synchronization in multimedia information retrieval. ACM Thns- 

actions on Information Systems, 13, 2 (April 1995), 145-176. 

[51] RANGAN, P .  V., RAMANATHAN, S., VIN, H. M., AND KAEPPNER, T. Techniques 

for multimedia synchronization in network file systems. Computer Communications 
Journal 16, 3 (Mar. 1993), 168-176. 

[52] ROWE, L. A., ET AL. MPEG video in software: Representation, transmission and 

playback. In Symposium on Elec. Imaging Sci. and Tech. ( S a n  Jose, California, 

February 1994), pp. 15-26. 

[53] ROWE, L. A., AND SMITH, B. C. A continuous media player. In Proceedings of the 

3rd International Workshop on Network and Operating System Support for Digital 

Audio and Video (San Diego, California, November 1992), pp. 376-386. 

[54] SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JACOBSON, V. 

RTP: A transport protocol for real-time applications. Internet RFC 1889, 
h t t p  : //ds . i n t e rn ic  .net/ds/rf c-index.htm1, January 1996, [September 11, 

19971. 

[55] SHENKER, S. A theoretical analysis of feedback flow control. In Proceedings of 
SIGCOMM'SO (September 1990), pp. 156-165. 



[56] SPIEGEL, M. R. Theory and Problems of Probability and Statistics. McGraw-Hill, 

Inc., 1975. 

[57] STAEHLI, R. Quality of Service Specification for Resource Management in  Multimedia 

Systems. PhD thesis, Department of Computer Science and Technology, Oregon 

Graduate Institute of Science and Technology, January 1995. 

[58] STAEHLI, R., WALPOLE, J., AND MAIER, D. Quality of service specification for 

multimedia presentations. Multimedia Systems, 3, 5/6 (November 1995), 251-263. 

[59] THE MATHWORKS, INC. Matlab product tour. 

h t t p :  //m .mathworks. com/products . html, 1997, [September 11, 19971. 

[60] THE MATHWORKS, INC. The Student Edition of MATLAB Version 4 User's Guide. 

Prentice-Hall, Inc., 1995. 

[61] THE MATHWORKS, INC. The Student Edition of SIMULINK User's Guide. Prentice- 

Hall, Inc., 1996. 

[62] TORVALDS, L. LINUX kernal source code version 2.0.18. 

http://www.kernel.org/pub/linux/kernel/v2.O/linux-2.O.18.t~.gz7 

September 1996, [September 11, 19971. 

[63] VXTREME, INC. Vxtreme streaming video player. h t t p  : //www . vxtreme . corn, 1997, 

[September 11, 19971. 

[64] WACHSMANN, A., AND WICHMANN, F. OCCAM-light: A multiparadigm program- 

ming language for transputer networks. Tech. Rep. tr-rf-93-005, U-Gesamthochschule 

Paderborn, CS, April 93. 

[65] WALPOLE, J .  Systemic quality of service support for adaptive distributed systems. 

h t t p  : //wuv. cse . ogi . edu/DISC/pro jects/qos/QoS . html, March 1997, [September 

11, 19971. 

[66] WANG, Y .  T., AND SENGUPTA, B. Performance analysis of a feedback congestion 

control policy. In Proceedings of SIGCOMM'91 (September 1991), pp. 149-157. 

[67] WHITE, D. A., AND SOFGE, D. A. Handbook of Intelligent Control: Neural, Fuzzy 
and Adaptive Approaches. Multiscience Press, Inc., 1992. 



Appendix A 

Test of Significance of the Difference 
Between Two Experiments 

In this Appendix, we briefly explain a method to test if the difference between the means 

of two experiments is statistically significant. Please refer to Spiegel's textbook [56] for a 

more detailed explanation. 

Suppose that there is a set of measurement samples for each of the two experiments. 
The measurements of the two experiments have normal distributions. Set 1 (for experiment 

1) has nl samples, a sample mean ml and a sample variance ST. Set 2 (for experiment 2) 

has n2 samples, a sample mean 622 and a sample variance s;. Also suppose that fil < fiz. 
We want to test if the real means of these two experiments, 71 (for experiment 1) and 772 

(for experiment 2) are significantly different, with confidence coefficient y (0 < y 5 1) or 
confidence level S = 1 - 7. We have higher confidence when 7 is closer to 1. 

We have two hypothesis: Ho : 711 = 712, and Ha : 71 < 72. The hypothesis 71 > 212 
does not make sense since we already have fil < m2. We will see if Ho is rejected with a 

confidence level S. If Ho is rejected, we would be about y confident that the difference in 

means is significant. 

To test the hypothesis, we compute: 

Where 

v = (nl - 1) + (n2 - 1) = nl + n2 - 2 
is the aggregate degree of freedom for the two sets. A set of n samples has a degree of 
freedom equal to (n - I), since given the sample average and any (n - 1) samples, the only 
remaining sample can always be calculated, and thus is not free. 

Next, we compute following student-t value: 



Finally, we compare the above t against t,,, - a student-t value looked up in Appendix 

D on page 346 of Spiegel's textbook [56].  If t < t,,, then Ho holds and 711 = 772 with -y 

confidence, otherwise ql < 772. 



Appendix B 

Building Blocks in the Software Feedback 
Toolkit Component Library 

In this Appendix, we give a list of control-related building blocks implemented in the 

software-feedback-toolkit component library. The building blocks include various filters, 

regulators, and connectors. A complete list of all the feedback components implement in 
the toolkit library, including all the GUI-based panel components, can be found in the 

toolkit user's manual [7]. 

For each component, we describe its constructor and port configuration, and discuss 

its control function. All the filters and regulators listed in this Appendix have one input 

port and one output port and a reset port. Some may also have parameter or state ports. 

For these components, we assume that the input and output sequences are {u(k)) and 

{y(k)) respectively, where k is an integer, and for all k < 0, u(k) = 0 and y(k) = 0. 

B.l Filters 

Dif f erenceFilter 0 

Diff erenceFilter generates the difference between the two most recent input samples. 

It has one input port, one output port, and one state port. It implements a difference 

function shown below. 

The exported state variable holds the most recent input value. 

IntegratorFilter (1 

IntegratorFilter generates the integration (sum) of all past input samples. It has one 

input port, one output port, and one state port. It implements a difference function shown 



below. 

y(k)  = u ( k )  + y(k - 1) for all k  2 0  

The exported state variable holds the most recent output value. 

FO~owPassFilter (double a = 1.0) 

FOLowPassFilter applies a first-order lowpass filtering algorithm on its input samples. It 

has one input port, one output port, one parameter port, and one state port. It implements 

a difference function shown below, with a time-constant coefficient a (0  5 a 5 1.0). 

The exported state variable holds the most recent output value. The parameter a is 

exported through the parameter port. Its initial value is set by the constructor, with a 

default value of 1.0. 

B.2 Regulators 

Abs generates the absolute values of its input samples. It has one input port and one 

output port, and implements a difference function shown below. 

Biaser adds a constant, B,  to its input sequence to generate its output sequence. It 

has one input port, one output port, and one parameter port. It implements a difference 

function shown below. 

y(k) = u(k)  + B 

The parameter B is exported through the parameter port. Its initial value is set by the 

constructor, with a default value of 0. 

Delay buffers its input samples a certain units of time before outputting them. The units 

of time to delay is specified by the integer part of a parameter D ( [ D l ) ,  where D  > 0. 

Delay implements a difference function shown below. 



The parameter D is exported through the parameter port. Its initial value is set by the 

constructor, with a default value of 0. 

Gain multiplies each of its input samples with a gain, G, to generate its output samples. It 

has one input port, one output port, and one parameter port. It implements a difference 

function shown below. 

y(k) = Gu(k) 

The parameter G is exported through the parameter port. Its initial value is set by the 

constructor, with a default value of 1.0. 

Inverter  0 

Inver ter  inverts each of its input samples to generate its output sequence. It has one 

input port and one output port. It implements a difference function shown below. 

Limiter(doub1e L = MAXDOUBLE) 

Limiter limits the magnitude (absolute value) of the samples it passes to be no more 

than L, where L 2 0. It has one input port, one output port, and one parameter port. It 

implements a difference function shown below. 

The parameter L is exported through the parameter port. Its initial value is set by the 

constructor, with a default value of MAXDOUBLE (00). 

Quantizer quantizes its input samples with a stepwidth of S, where S 2 0. It has one 
input port, one output port, and one parameter port. It implements a difference function 
shown below. 

The parameter S is exported through the parameter port. Its initial value is set by 
the constructor, with a default value of 0.0. 



B.3 Connectors 

Merger(int N = 2 ,  char * P = "+-") 

Merger merges all its input sequences into a single output sequence. It has N input ports 

and one output port. The number of input ports, N ,  is specified by the 'first parameter 

in its constructor, with a default value of 2. The second parameter of the constructor, P, 

specifies the way the input sequences are merged. P is a character streaming containing 

N '+'s or '-'s. Thus each input port corresponds to a sign '+' or '-'. P has a default 

value of "+-". The most recent samples presented to input ports other than the first 

one (input port 0) are latched in input array input [I. Whenever input port 0 receives a 

sample, it also latches the sample. Besides, Merger sums up all the latched samples for all 

input ports into an output sample. If an input port corresponds to a '-' in P, then the 

corresponding input value has its sign changed before being summed. Following equation 

shows the operations Merger performs upon a input from its input port 0. 

i< N 
output I01 = (f )input [il 

i=O 

Merger with the default parameters can be used to connect components into feedback 

loops. Figure 3.10 in Section 3.5 shows an application of Merger in a PLL simulator. 

Trigger is an analogue to a latch circuit, which latches all its input signals until a trigger 

happens. It has N + 1 input ports and N output ports. The parameter N (N > 1) is 

specified by the constructor, with a default value of 1. Among the input ports, port 0 
through N - 1 are data ports, and port N is a trigger port . The samples presented to 

input ports 0 through N - 1 are latched. When a signal is received the trigger port (input 

port N), all the latched samples on input port 0 through N - 1 are sent to output port 0 

through N - 1 respectively. 

Trigger is useful in implementing feedback simulators. It has been used in the flow 

control feedback simulator shown in Fig. 3.15 of Section 3.6. 
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