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ABSTRACT

Prediction and Measurement of the
Unwrapped Phase for Speckle
Propagating in Turbulence

Diouglas Draper, Ph.D.
Oregon Graduate Institute of Science & Technology, 1992
Supervising Professor: J.F. Holmes

Intensity and wrapped phase characteristics of 2 signal from speckle pro-
pagating in a vacuum and {rom a poin{ source propagating in air turbulence
have been studied extensively. The intensity characteristics of 2 speckle sig-
nal propagating in furbuience have also been studied. Wrapped phase is
phase data that is limited to the principal values of phase defined for a circle
Additional information about the speckle and turbulence is contained in the
unwrapped phase which is obtained by extending the wrapped phase bevond
the principal values by mapping them onto an infinite line or by integrating
the signa! frequency.

Statistical models for the unwrapped phase of speckle produced by 2
laser illuminating 2 diffuse target and propagating through the atmosphere
are proposed. It is shown that the unwrapped phase can be used to measure
properties of a remoie target or the atmosphere. Targets of diflerent rough-
ness can be distinguished at a distance of 1000 meters and target movement
and wind activity are easily observable from the unwrapped phase data
Measurements of unwrapped phase are also shown to be capable of sensing

atmospheric turbuience levels from a remote location.

viii



CHAPTER 1

INTRODUCTION

Intensity and wrapped phase characteristics of a signal from speckle pro-
pagating in a vacuum' ™’ and from a point source propagating in atmospheric

turbulence®™

'® have been studied extensively. The intensity characteristics of
a speckle signa) propagating in turbulence have also been studied'”'®. Addi-
tional information about the speckle and turbulence is contained in the
unwrapped phase. The unwrapped phase is obtained from the wrapped phase

by extending the phase values beyond their principal values, bowever, it is

more readily obtained {rom the signal frequency.

A phase angle is uniquely defined op a circle for its principal value in
the range -7 to m radians. On the other hand, frequency has no natural
bound and since phase is the integral of frequency, when the phase is
expressed as a function of time, it can 2lso be defined over an unbounded
domain as shown in figure 1.1. This unbounded representation of phase is
referred to as unwrapped phase and bounded phase is cailled wrapped phase.
Statistical modeis for the frequency and unwrapped phase of a speckle signal
propagating in clear air turbulence along with the corresponding one and two

point probability density functions will be presented.

The amplitude and phase effects of speckle and turbulence can be meas-
ured in an optical remote sensing systern where a laser is used as a
transmitter to illuminate a region of space and the back-scattered radiation

from a remote object, called a target, or from particles in the atmosphere is
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received at the transmitter location. The back-scatter is processed in various
ways to obtain information about the atmosphere or the target. If the target
bas 2 diffuse surface with random surface height variations on the order of
the laser wavelength or larger, an interference pattern called speckle is pro-

duced that causes intensity and phase variations at the receiver.

Only a clear air atmosphere having no foreign particles is considered.
and the only back-scatter that is expected is from the remote target.
Nevertheless, the ztmosphere will have an additional effect on the received
signal intensity and phase due to air pressure and temperature changes and
the wind that cause refractive index variations in the air and influence the

speed and direction of the propagating light.
Speckle

Unlike ordinary light emissiop, the radiation from a laser is extremely
coherent. Coberence is a2 property of a propagating wave where the phase of
the wave is highly predictable over relatively long time intervals and dis-
tances. Speckle is caused by the combination of a large number of coherent
waves with different phases. This tvpically occurs when a laser signal reflects
off of a diffuse surface which scatters the laser radiation into separate waves
which interfere with each other.

Variations in the surface height along the diffiuse object introduce propa-
gation path changes to the propagating waves causing the phases of the scat-
tered waves to differ. At any receiver Jocation, the scattered waves combine

to produce an intensity that depends on the relative phases of the scatterers.

Figure 1.2 shows the appearance of a speckle pattern at some distance
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from a diffuse target. The laser source and the object are stationary in space
and time and there is no air turbulence. The light spots represent areas
where there is a high degree of constructive interference between the waves
whereas the dark spots correspond 1o areas where the waves combine des-
tructively. Areas of intermediate brightness occur for situations of partially
constructive and destructive interference. The contrast of the' speckle is
given by the amount of intensity variation relative to the average intensity of
the pattern. Surface height variations on the order of or greater than the
laser wavelength produce high contrast speckle patterns.

Speckle is easily verified using a visible wavelength laser in a laboratory
situation by reflecting a laser beam off of a diffuse object such as 2 sand-
blasted aluminum plate and observing the reflection on a suitable surface
such as a wall. Also, when the laser intensity is low enough so that reflections
will not cause eye damage, speckle can be safely observed from laser energy

reflected directly off of a wall.
Turbulence

In a typical remote sensing application, the speckle field produced by
reflections {rom a diffuse target will not be stationary in time or space
because either the transmitter or target will be moving or turbulence and
wind in the atmosphere will cause the beam to wander across different
regions of the target. In addition, refractive index variations due to the tur-
bulence and wind will introduce random intensity and phase perturbatjons

that will influence the speckle pattern.

When the turbulence is weak, the primary eflect on the laser beam is



beam wander. In addition to beam wander, small phase variations will be
added to the propagating wave. If the turbulence is distributed throughout a
long path, even weak turbulence will cause appreciable phase changes at the
receiver. When the turbuience is strong, the wave will scatter into separate
waves which will eventually become incoherent over long propagation dis-

tances.

Consequently, the field observed at a given receiver location will have
random intensity and phase variztisps produced by a combination of the tar-

get speckle and the turbulence.
Unwrapped Phase

There are various reasons for wanting to measure the unwrapped phase.
The unwrapped phase represents optical path length variations due to the
effects of turbulence or surface jrregularities and movement of the target.
Unwrapped phase changes greater than 27 radians are caused by even minor
target movements. They can also be caused by large scale target roughness
or long propagation patbhs through moderate to strong air turbulence. These
large phase changes may represent valid data or unwanted interference. The
wrapped phase represents a distortion of the phase data in either case.
Interestingly, it also turns out that the statistics for unwrapped phase are

considerably less complicated than those for the wrapped phase.

Phase detectors measure wrapped phase and the corresponding
upwrapped phase must be obtained by processing the wrapped phase data.
Phase unwrapping methods are simple in principle, however, when the phase

changes rapidly and randomly as it does in a remote sensing environment, it
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is very difficult to accurately unwrap the data and sophisticated techniques
are needed. An alternative is to use a frequency detector to measure the fre-
quency. The frequency data is then integrated to obtain the unwrapped

phase.
Summary of Chapters

Chapter 2 presents background information on the one and two point
statistice of wrapped phase for speckle propagating in a vacuum and for 2
point source propagating in turbulence. Gaussian unwrapped phase models
are proposed, and using conventional methods for converting unwrapped
phase to wrapped phase, the unwrapped phase probability density functions

are compared with the wrapped phase probability density functions.

The one and vwo point probability density functions of the unwrapped
phase and frequency for a speckle field propagating ip air turbulence are
presented in chapter 3. The statistics are based on a model used by Holmes
and Gudimetla'’ to obtain the intensity distribution of high contrast speckle

propagating in turbulence.

In chapter 4, each of two heterodyne systems that were used for remote
sensing are explained and chapter 5 describes the detectors and specizal dats
processing algorithms that were used to obtain and process the experimental

data.

Chapter 6 gives results from experiments at the atmospheric field site
where sandblasted aluminum targets of various roughnesses were used.
These results are compared to the models of chapters 2 apd 3. Data on

atmospheric conditions and target properties obtained independently from



calibrated instruments are used Lo test the results.

Also in chapter 6, potential applications for using the models and their
statistics are mentioned. These applications range from determining features
of a remote target tc obtaining information about atmospberic conditions.
The importance of measuring the unwrapped phase or the {requency is made
clear since many features of the atmosphere or a remote target are indistin-
guishable from the wrapped phase but are evident from unwrapped phase or

gasuurements.
frequency meas 1



CHAPTER 2

MODELS FOR VACUUM SPECKLE AND
A POINT SOURCE IN TURBULENCE

In this chapter, speckle and turbulence effects are treated separately. as
existing literature on the statistics of speckle and turbulence is reviewed and
expanded to inciude upwrapped phase. The statistics of the speckle field
generated by a laser beamn wandering over a diffuse target and its interaction

with turbulence will be of primary concern ip later chapters.

The one point statistics will be given followed bv the two point statis-
tics. The one point statistics give the statistics of a single receiver location.
Additional information about the nature of the speckle and turbulence is

contained in the two point statistics which give jointly statistical quantities

for two different receiving locations.

The probability density functions for the phase will be given, and the
wrapped and unwrapped phase distributions will be compared. It will be
shown that the although the wrapped phase density functions may not be
Gaussian, the unwrapped distributions are Gaussian for either a point source
propagating in clear air turbulence, or when the target producing the speckle
has a Gaussian surface height distribution, for a speckle field in {ree space
The corresponding distributions for the amplitude of the received field will be

given in Appendix A.

However, before the statistical distributions are presented, the models

that are used to represent speckle and to characterize the diffuse targets will
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be explained.
2.1 One Point Model for Speckle Phase

2.1.1 The Phasor Representation of Fields

The electromagnetic feld that propagates from the laser source is
assumed to be monochromatic and therefore a sinusoidal! function of the

wave position and of time. It can be described by,
E(s,t)=A(sjcoslk (s+ct)]=A(s)cos [(k's-%—u)t)]
where E(s,t) and A(s) are vector functions and
s is the vector position of the wave in space
X is the wavelength
k is the wave vector
k='!k! is the wave number = 27/\,
¢ is the (free space) velocity vector of the wave
c=lel = 3x10® m/s
v is the frequency of the source=c/A
w is the radian frequency = 27v
(...) * (...) is the scalar product of vectors
and t{=time.

In order to simplify various mathematica) operations on the felds, they
are represented as complex functions of the wave position and of time. This
representation of a sinusoidal wave is commonly called a phasor and is based

on Kuler’s identity,
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&

e’ =cosB+i sinb

The phasor representation of the sinuscidal field is then given as,
E(s,t)=A(s)exp [i(k‘s+mt)]
=A(s) {cos{k's—rwt)-!—i sin(k'a-i-u)t)]
where i=\/—_1.
The equation for the radiated field is the real part of the phisor expres-
sion. The amplitude of the wave is given by A(s) and the phase by the angle

k's.

2.1.2 The Formation of Speckle

The formation of speckle is illustrated in figures 2.1a and 2.1b. The
total field at some point in space results from the sum of a large number of
separate fields representing the reflections from different points on the target
surface. The statistics of the speckle field depend on the model we choose for
the diffuse target. Two slightly different models will be considered. The tar-
get mode! shown in figure 2.1a assumes that the reflections from the target
are produced by a large number of point sources with a random height distri-
bution. In addition the point sources are randomly located on the target sur-
face. The reflected fields will therefore have random amplitudes and phases.

This target will be referred to as a totally diffuse target.

A second target model is shown in figure 2.1b where there is a flat mir-
ror like background surface gt the mean surface height around which the
random potiat reflectors are situated. Reflections from the flat surface pro-
duce a coherent term that is added to the random phase terms. This target

will be called partislly diffuse. Each of these models give a different set of
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statistics, however, their differences are minor in many instances.

Referring to figure 2.1a and assuming the target has a linear reflection
coefficient, each target scatterer will produce an electromagnetic field that

can be represented by the phasor function,

Ej(s;t)=A(s)exp (i(k'sj-l-u)t)]
where | is an index number representing a reflected field.

At a given point in space, the vector s is fixed so that Aj(s) can be
replaced by the constant A; and k's by the constant &;. Aj represents the

target amplitude and &; represents the target phase of the jth scattered field.

The electromagnetic field can then be written as,

i{wt+b))
Ej(t)=A;e

The fields E; are identical except for their amplitude and phase which

are random. The field that results from N scatterers is given by,

N N i(et-o))
E(t)= T Ej{t)= T Aje
=1

=1
Each of the waves has the same frequency, therefore ! can be factored in

the summation with the result,
N
E(t)=e*' S Aje]d”
=)
This represents the phasor equivalent of the total speckle field at some point
in space. At a given instant of time this field is given by,
N .
E(ﬁ,@):Aeie= > Ajéld)J (2.1)
i=1
where the time value is taken as zero for convenience and A and 8 are ran-

dom variables.
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Alternately (2.1) may be written in the rectangular form
N -
=1
where U=Acosf is the rea! and V==Asinf is the imaginary magnitude of the

phasor field, Ae'®.
The partially diffuse target produces a reflected field that can be
described by,
. N R
E(A,8)=Be"+ T Ae'¥=(Bcosy+U)+i(Bsinw+V) (2.2)
=1
B and ¥ are the resultant amplitude and phase respectively that are contri-

buted by the reflections from the coherent background surface.

The targets are assumed to have uniform reflectivity and to be a Jong
distance from the observation point so that each scattered wave will pro-
pagate about the same distance to the receiver. Therefore, the received
amplitude of each target reflection will be approximately the same, and A;
will be considered a constant in the summations of (2.1) and {2.2). However,
path lepgth variations will have a significant effect on the value of b; which

is given by,

4T
S
where L; represents the one way path length. L; will depend on the surface
beight? and location of the jth point reflector. Through changes in &;. the

path length variations will affect both the resultant amplitude, A, and phase.

8, in {2.1) and (2.2).
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Random Walk Model for Speckle

The formation of speckle is often explained by a statistical random walk
of phasors in the complex plane. The combined speckle field is given by the

the sum of the separate phasors representing each target reflection.

In equation (2.1), let A be 2 constant equal to A/N and ¢;=0d be a ran-
dom variable with variance o . U and V are random variables with mean
values <U> and <V> and standard deviations o, and o, for the real and
imaginary fields respectivelv. These quantities can be obtained from the

characteristic functyon & defined by,

P(w)=Ho)+iV(w)=<exp(iod)>= fexp(iwdp)Pd,(dﬂdd)
Py(d) is the probability density function of phase for the scattered fields at
the target.

Hw)=< cos(wd)}>

V(w)=<sin(wd)>

which for N random phase values gives'®,

<U>=A&1) (2.3a)
<V>=A¥(1) (2.3b)
05:% [1+®(2)—2®2(1)] (2.3¢)
2
oi2=—24§ (1—6(2)—2\?2(1)] (2.3d)

<.....> stands for the ensemble average.

For the case where & has an even distribution around a mean value of

zero, V(w) will be zero causing <V> to be zero.

Two special cases of the specklie produced by a totally diffuse target will
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pow be considered. Figure 2.2a demonstrates a random walk in which the
phase variance of the phasors is very small. This is characteristic of a rela-
tively smooth targe:. When oy is much smaller than a radian, ¢ will also be
much less than one radian. and the small angle relationship,

62
cosB=1——
2

can be used. Consequently,

2

a
@“):1___2‘L
2

2)=1-20]
and
<U>=A
<V>=0

o< —

i \/E‘O-¢‘<<I

¢, << 0g;
Each phasor has about the same direction and the phasor amplitudes add

together. The amplitude and phase of the resuitant phasor is not very ran-

dom.

Figure 2.2b shows a random walk in which the phase variance of the
phasors is very large, characteristic of a rough target. With o, large com-
pared to m radians, &1) and O(2) will both be small relative to 1. The mean

values <U> and <V > beth approach zero and the standard deviations a,

and o; approach the same value of é—:. The phasors wander in all direc-

VN
tions and the resultant phasor is equally likely to take on any angle between

-m and m. The phasor amplitudes tend to cancel each other producing a
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resultant amplitude of the same order of magnitude as the separate phasor

amplitudes.

In the figure, the average targe! phase is assumed zero. A non-zero value
would cause a multiplication by a constant phase term, <exp(id)>, in (2.1).

and a rotation by <& > in the figure.

The partially diffuse target model can also be described by a random
walk. In this case, (figure 2.2¢), the random walk is offset by the constant
phase term representing the reflections from the coherent background. Equal

values of o and g, are assumed for the random portion and W in (2.2) is con-

sidered to be zero.
Complex Field Distributions for Totally Diffuse Targets

All of the statistics for speckle are based on the random portion of the
target having a large number of statistically independent scattering surfaces.
Therefore. according to the central limit theorem of statistics, the random
variables U and V will have a jointly Gaussian distribution with respect to
each other. This will be true even if the target surface height distribution is

not Gaussian. Therefore.

P(U.V)=———\— exp |— L [AU: _ppAUAV  AVE ”(2.4)
20,0V 1-p 2(1-p%) ( o, 0,0; o;
where
AU=1T-<U>
AV=V-<V>
0,2=<AU2>
al=<AV?>
p== <AUAV>

;0
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In the equation, <U> and <V> are the mean values, and o, and g, are
the standard deviations of the real and imaginary complex fields and p is the

coefficient of correlation between them.

Using the change of variables, I=A’=U?+V? and §=tan~'(V/U), this
probability density function is used to obtain al! of the intensity, amplitude

and wrapped phase statistics for the speckle field.

In order to better understand the statistics of the complex field, Uozumi
and Asakura®® have introduced an equiprobability density ellipse that is
defined for the joint probability density function of the complex field quanti-
ties U and V. An equiprobability density ellipse is shown in figure 2.3a for a
typical joint probability density function of the complex fields. The ellipse is
defined by the trajectory along which the joint probability density function

of (2.4) equals 1/\/e_ times the maximum density at the center.

The ellipse is completely defined by the five parameters of the probabil-
ity density function of (2.4), AU, AV, a,, o;. and p. The inclination angle of

the ellipse is given by.

2_ 2

)

2po.o; .
bt Lan |20 | L -1 [2<AUAV>
2 2 9 o

g, —0;

r T

The quantities U and V in addition to being random, are changing with
time at a steady rate due to the term &t that was suppressed when time was
arbitrarily set to zero. This means that the equiprobabilily density ellipse
rotates at w radians per zecend, and at times other than zero can be
described by a coordinate transformation of U and V in figure 2.3a. At cer-

tain instants of time either <U>, <V> or p become zero.
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Figure 2.3 - (a) Equiprobability Density Ellipse and joint density function
(b) with coordinate transformation to uncouple fields
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Referring to figure 2.3b, a coordinate transformation equivalent to a
rotation by the angle
2p0,0; ]

2 2
G, —0j )

with

X=Ucosd+ Vsind
Y=Vcosd—Usind

is used to eliminate p in (2.4) and to obtain the uncoupled real and ima-
ginary fields, X and Y. The coordinate transformation causes <AXAY> in
the new coordipate system to be zero and X and Y are independent. The

probability density function reduces to,

. 1 AX? 1 AY?
P(X.Y)= | —— - = — exp |-
Y] [o Vo exp[ 20, ]] [0 Vo Xp[ 20, ”

X y
2 r2
=——l exp |— AX + AY (2.5)
27,0, 20,2 203,2
where
AX=X-<X>
AY=Y-<Y >

<X>=<U>cosd+<V>sind
<Y >=<V>cosd~<U>sind
o =(0, cos*6—0,%sin?3)/c03(23)
?=(0,’cos’d~0,%sin’8)/cos3(25)

Oy

Note that with the coordinate rotation, the ellipse axes are paralle] to

the coordinate axes and the ellipse is not tilted
The equiprobability density ellipse associated with {2.4) and (2.5) varies
according to properties of the diffuse target and its location relative to the

observation point. A thorough treatment of how the ellipse changes with
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changes in the target phase standard deviation and the position ol the
receiver relative to the optical axis and the distance from the target is given
in references 3,6 aud 20. The standard deviation of target phases is related

to the target surface roughness by''?

47
G¢=Tot (26)

where o, is the r.m.s. target surface height variation.
Special Cases of Complex Field Distributions

The situations depicted in figures 2.2a and 2.2b represent special cases of
(2.4). In both cases, & and p are zero and (2.4) reduces to (2.5) with X=U
and Y=V. In figure 2.2a, 0, << 1. <V>=0, and g,< <o;. The equipro-
bability density ellipse is shown in figure 2.4a where o, has been made zero
so that the ellipse reduces to a straight-line. In reality, this condition requires
that the receiver be in the far-field of the target and also on the optical axis
defined by the laser source and the target. The real component of the com-
plex field is no longer random and the probability density function of (2.4)

simplifies to;

S V2
P(V)= [P(U,V)}dV=" ! exp [—2—]

—x

A
where g,= T\jod}

In figure 2.2b, 04>> 1, <U> = <V> = 0, and o, = o;. The
equiprobability demsity eilipse reduces to a circle centered at the origin as
shown in figure 2.4b. This situation is referred to as fully developed speckle

and the fields are said to have circularly Gaussian statistics. The probability
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density function of (2.4) becomes,

+2 7'2
P(U,V)= ! exp [—M]

where 0 = 0, = o0, = A
— ST U T o
2N

The fully developed speckle case is approached®®® as a Jimiting condi-
tion when either the target phase deviation, the distance from the receiver to

the target or the receiver distance off the optical axis becomes large.

Figure 2.4c shows the equiprobability density ellipse for the partially
diffuse target of figure 2.2¢c. As for fully developed speckle, it is also a circle

but is offset by the non-random term, B.
2.1.3 Probability Density for Wrapped Phase

Totally Diffuse Target

The complex field quantities can be used to determine the statistics of
the wrapped phase, but are not capable of predicting the wnwrapped phase.
Uozumi and Asakura® determined the one point probability density function
of the wrapped phase from the joint probability density function of (2.5) and
the substitutions,

JI=FEE =A?=X?+Y?

and

B=8-%=tan"'(Y/X)
to be,

2
20,

pe(e)=51ﬂ; [1+gv§exp(g2)[1+erf(g)]]exp [_—X—] (2.7)
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where

-
1')=Ux/0'y
T== c0528+1‘|23in28
k=< X>cos3+1° <Y >sinf

K

§=
O, V21
y=<X> 0 <y >?

They evaluated the quantities in (2.7) for a laser focused on a totally
diffuse target with a Gaussian disiribution of target scatterers in terms of the
standard deviation of target phases (04}, the correlation distance of the tar-
get scatterers (a), the laser beam waist radius on the target (w,), the distance
along the optical axis from the target to the receiver and the distance the
receiver is off the optical axis.

Essentially the same result was obtained by Takai, Kadono and
Asakura®, but a more general approach was taken that also inctuded the
image field of the speckle phase. For both cases, when the receiver is on the
optical axis in the far field of the diffraction, the quantities in (2.7) reduce to.

8=0
=0
x=<U>?
k=< U>cosb

<U>=<X>=A1"‘exp(—0}/2)
<V>=<Y>=0

ol=cl= AQA {i+-exp(—2crdz,)——2exp(~od2))}
ANg A
2
ol=0l= 4;:22 {1~exp(—20d2)}] (2.8)
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The laser beam waist at the target is normal to the target surface. 1z is
the distance from the target to the receiver normalized by the Rayleigh range
= 7w, /A, N = (w,/a)? is the number of scattered fields at the receiver,
and z > > 1.

0 «
using a

A similar situation was considered by Uozumi and Asakura’
different approach. They found general relationships for the statistical quan-
tities of (2.7) from the characteristic function of the random variable &
representing the phase of the scattered fields assuming N independent target
scatterers. The receiver was assumed to be on the optical axis in the far-field

or Fraunhoffer region of diffiraction. They considered other target phase dis-

tributions, however, for a Gaussian distribution of target phases. they

evaluated (2.32)-(2.3d) as,

<U>=Aexp(-02/2)
Al
ol="—|1+exp(—202)~2exp(-0{)]
2N
2 A’ 2
a; _—_K[I—exp(—‘}!ocb)] (2.9)
which except for a factor of V2 in o, and o; and 2z in <U>>, is the same as
(2.8). The factor of z, representing the normalized receiver distance, cancels

when evaluvating (2.7), however, the \/5 factor causes a slight difference in

the two results.

When o4 is large with respect to w radians, ¢, and o; approach the
same value of A/V2N and <¥U> approaches zero. This js the fully
developed speckle case with circular Gaussian fields, and the wrapped phase

is distributed uniformly between - and w with variance TT2/3 :
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In appendix B, it is shown that when al< <\/IG, equation (2.7) asymp-

totically approaches a Gaussian distribution given by,

1 { -8’
Po(8)= ~on exp l‘ZoQ (2.10)
8 X 8

o o
with o, = \/% for (2.9) and o, = T/é—;' for (2.8).

1

A quantity called the phase extent can be defined® for an equiprobability
density ellipse to interpret the speckle phase deviations. Figure 2.5 shows an
equiprobability density ellipse and the phase extent of the ellipse. The phase
extent is defined as one half the angle formed by the two lines originating at
the origin of the complex plane that are tangent to the ellipse. The phase

extent is a measure of the speckle phase changes.

The phase extent is given 258,

\/<X> 203+ <Y> 203—(0,0}.)2

<X>'+<Y>*-0l-0}

1o

6e=%tan— (2.11)

The phase extent is onlv defined when the argument in the square root

of (2.11) is non-negative or when.

T 2 2
<X>P <Y>?

2 T 9 =1
(o oy

and the ellipse does not encircle the origin. This means that the phase

extent is not defined for situations approaching fully developed speckle.
In the far-field of the difiracted radiation, p = 8§ = 0, <KY>=<V>.
<X>=<U>, o,=0,, 0,=0j, and when g, <<1, <V>=0, g, << 0;

and <U> is much larger than either o, or o;. Therefore using (2.9) and



Figure 2.5 -

Phase Extent of Equiprobability Density Ellipse
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referring to figure 2.4a,

V(1—e %N

o
tan(26,)<2 =
3D( e) <LT> e_né/Q
/ 2 2 2 2
\/ ea¢(1__e—20b] \/ ecrd,_e—ué5 \/— ;
= Vi = v =V 2sinho i /N

Using a power series representation for e* and the small angle formula

for tan 6, for small values of gy,

Os

e 2.12
ee \/QN ( a)
Using (2.9) the phase extent differs by a factor of V2 and,
o
0~ —— (2.12b)
VN

This result shows that when o£< < VN, the phase extent is equivalent

to the standard deviation of wrapped phase.
Partially Diffuse Target

If the target is assumed to be partially diffuse with circular Gaussian

statistics for the random part,

P(U, V)=

~ exp (_ (C-B)*+AV? ] (2.13)

20 202
where B is the constant field value and o? is the total complex field variance

2 2
= 0o, + 05.

The probability density function for the wrapped phase is given by"“,

Po(0)= e’ +V r/ﬂcoseexp(~rsin26)®(\/E;cose) (2.14)

27
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for -m < 6 < 7 and zero otherwise and,

b -y
1 2
O(b)=——— | e ° dy.
277 _f:a:
The parameter r is called the beam ratio parameter given by,
B?
1':—2 (2.143)

o

When t is small! the random component dominates and the statistics

approach circular. In this case (2.14) reduces to a uniform distribution equal

to QL On the other hand as r becomes large, the random part becomes
i

small and it can be shown' that (2.14) approaches a Gaussian distribution

equal to,
o 2 1 b’ 3
pa(8)=Vr/wexp(—16)=———exp |- — 2.15
01 =V mesplortf)=—mesp [ | 215)
2
wbere052=i= G,.
2r 2B°

Therefore, for both the totally diffuse target and the partially diffuse
target, the wrapped phase probability density functions vary from a Gaus-
sian function when the target roughness is small to a uniform distribution
when the surface roughness is large. To determine the character of the dis-
tribution for the partially diffuse target, the random term is compared to the
magnitude of the coherent reflection, whereas for the totally diffluse target.

the target roughness is compared 1o the number of independent scatterers.

The phase extent can also be defined for the partially diffuse target

when B > o,. Referring to figure 2.4¢,
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—. —1]0i - o
B.=tan ! [§]=tan ! [m]
and when r > > 1 is given by Betc/B\/E Therefore for large values of r the

phase extent is the same as the standard deviation of the wrapped phase in

(2.15).

2.1.4 Probability Density for Unwrapped Phase

In what follows the wrapped probability density functions of (2.7) and
(2.14) will be shown to compare favorably with a wrapped Gaussian distribu-

tion of the appropriate standard deviation.

An analytical method termed phase wrapping exists?? for obtaining the
probability density function of wrapped phase from the probability density
of unwrapped phase. Figure 2.6 shows (2.7) plotted with N=10 for three
values of target standard deviation. For comparison a Gaussian distribution

is also plotted after it has been wrapped using the re]ationship23

1 x —!6+21'r}(!2
Py(8)= os\/Ewk_E_e [ 207 ] (2.16)

and b=0+2wk is the unwrapped phase. The unwrapped phase has a Gaus-

sian distribution given by,

1 —¢’ _
Py(d)= ~an exp [ oo ? J (2.17)

s ! [\ 3

The figure demonstrates how closely the wrapped Gaussian functions
resemble the distributions of equation (2.7). The values of o, used for the

wrapped Gaussian function were chosen so that the variances of the wrapped
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Gaussian distribution would be the same as the variance of (2.7).

Figure 2.7 plots values of o, that produce the wrapped variances of {2.7)
vs. 04 for values of N = 5, 10 and 50 . For small and large values of 04, o,

is given by,

ostoé/\/ﬁ, c£<<\/§ {(2.18a)
g, <0y, o§>>\/-l\-l (2.18Db)

Barakat?® has shown that the wrapped Gaussian distribution of (2.16)
reduces to a Gaussian function for small o, and to a uniform distribution for
large o, . It should be noted that the effects of wrapping are insignificant

when o is much smaller than VN .

Figure 2.8 shows (2.14) compared to 2 wrapped Gaussian function for
three values of r. The figure shows that (2.14) is also approximately
equivalent to the wrapped Gaussian functions. The values of o, used for the
wrapped Gaussian function were chosen to match the variances of (2.14). As
expected, o, reduces to 1/\/2_r as r becomes large. For small values of 1, o, is

given by the value of o, or o of the complex field.

The wrapped phase probability density functions for speckle from a
totally diffuse target, a partially diffuse target and a wrapped Gaussian func-
tion of the appropriate standard deviation have all been shown to be approx-
imately the same. Therefore, Gaussian probability density functions for the

unwrapped speckle phase will be used {or either type of target.
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2.2 One Point Models for Turbulence

2.2.1 Background

The atmosphere can have a pronounced effect on the transmission of an
optical signal. This is evident when one considers the way in which clouds,
rain, fog, dust and other disturbances in the atmosphere influence light
transmission. Even what is classified as clean air, having no foreign particles

or water vapor, can have a noticeable effect on light propagation.

The atmosphere contributes attenuation and phase shifts to the pro-
pagating light wave. These effects can be grouped into two categories,
absorption and scattering. Both effects accumulate as the propagation dis-
tance increases so that the atmosphere may have a severe effect for long dis-

tance propagation, even when the atmospheric eflects are weak.

Ogrly a clear 2ir atmosphere will be considered in this paper. This will
greatly reduce the scattering and virtually eliminate absorption. Therefore. il
will be assumed that the absorption is zero. The amount of scattering will be
determined by random dielectric constant variations due to density changes.
mixing and movement in the air caused by temperature, pressure and the
wind. The scattering will introduce velocity and path direction changes to
the propagating light which will affect both the amplitude and the phase of

the propagating wave.

On a hot dry day it is easy to see these effects in the visible spectrum of
wavelengths by the quivering of an image such as a highway road sign or
telephone pole seen at a distance. The phase changes introduced by the

atmospheric turbulence causes the light refiected from the object to deviate



in a2 random manner from its normal path.

These effects are best described by the refractive index variations rather
than the dielectric constant changes in the air. The dependence of the
refractive index on temperature, pressure and wavelength are well docu-

mented’®?*,

To help quantify the refractive eflects, the clear atmosphere is modeled
as randomly sized volumes of air called eddies. The eddies are approximately
spherical in shape and have nearly uniform refractive index!?. However, the
refractive jndex of neighboring eddies varies randomly due to the density
changes caused by pressure and temperature. These properties are character-

ized by the quantities CZ, 1, and L, The parameter C? is the refractive

o
index structure constant, although it 1s not a constant but varies with space
and time. It is a measure of the strength of the turbulence and gives the
variation of the refractive index between the eddies'®!®. L, is called the
outer scale of turbulence and |, is the inner scale of turbulence. The outer
scale represents the largest eddy radius that is expected and the inner scale
the smallest radius. The size of any eddy is therefore a random variable that
ranges between |, and L,.

Each eddy introduces a random amount of refraction and velocity
change to the propagating wave. If the size of an eddy is larger than the
laser beam diameter, the eflect of the eddy will be to change the direction
and focus or defocus the beam. Alternately, if the eddies are much smaller

than the beam, they will produce a random phase delay to the wavefront

reducing the coherence of the beam. [t is expected that a combination of
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both effects will occur as the propagating beam encounters eddies of all sizes

from the outer scale to the inner scale.
Turbulence Models

To date, there is no single model that provides exact agreement with
experiments in both weak and strong turbulence. Nevertheless, the
unwrapped phase statistics seem to be well described by Gaussian functions

i most cases.

Figure 2.9 is used to show the eflects of single scattering where the tur-
bulence is concentrated at a fixed distance from the observation point. The
smaller eddies introduce a random phase shift to the propagating wave and
the larger eddies randomly deviate the path of the wave. At the observation
point, the received field will be composed of the sum of de-phased field com-
ponents. If the phase shifts introduced by the turbulent eddies are large

enough, an interference effect similar to speckle will be produced.

Single scattering applies to a limited number of situations since it
requires that all of the turbulence be localized in one area. More realistically,
the turbulence iz distributed throughout the path from the source to the
receiver. Io this case random phase delays will be introduced continuously

throughout the propagation path.

If the turbulence is very weak (CZ is small or the path length is very
short), the propagating wave remains coherent when it reaches the receiver.
However, random phase shifts will nevertheless be introduced along the path
that will, for each of the multiple paths taken by the wave, add a random

phase. The statistics that describe this case should also be given by those of
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the single scattering model. However, if the turbulence is not weak, the wave

will lose coherence and another mode! is needed.

Following Strohbehn’®. the propagation path is divided into 2 number
of turbulence areas, and for convenience each area is considered to be larger
than the outer scale in order to insure independence between the areas. Each
turbulence area will introduce an attenuation and phase shift. The accumu-

lated effect of the turbulence on a single wave is given by!®,

> X m i
Ej= 1__] e ® " (‘2.19)
m=])
where E; is & propagation factor representing the accumulated effects of the
turbulence on one of the waves. The incident field phasor is multiplied by E;

to determine the phasor field received by the jth path.

X Tepresents the attenuation and ¢, the phase introduced at each tur-
bulence area. Since the multiplication of the exponentials results in the addi-
tion of exponents, the logarithms of the individual fields will add. This means
that the logarithm of the combined field variations can be expressed by,

L n L}
In(E))=x+iv= 3 Xm+iVpy
m=1
Xm 15 the logarithm of the amplitude factor and Y, is the phase for the mth
turbulence area. If the path is long compared to the outer scale so that the
number of turbulence area is large, the probability density function of both x
and  will be Gaussian based upon the central limit theorem. W represents

the unwrapped phase since the phase terms in (2.19) are additive.

This describes the turbulence effect on the wavefront of a single rayv of

light. Since the rays are being deflected randomly by the larger eddies, the
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field received at any location is the sum of a large number of such randomly
phased waves. For this reason, the phasor that represents the received field
will be the sum of a large number of terms like (2.19) plus a constant term
representing the unscattered part of the field. Therefore,

N

j=1

This should produce a speckle type effect when the turbulence is weak
and each wave is relatively coherent. Strong turbulence, however, should
lessen the inter{erence effects and the total received field will be an average of
all of the received fields. For strong turbulence or long path lengths. a
saturation effect for the intensity has been noticed experimenta]]y”. At
saturation the intensity variation at the receiver is 2 maximum and in fact
may decrease slightly as the turbulence gets stronger'®. This effect can be
explained by the loss in coherence of the received fields and occurs when the

variance of { is of the order of or greater than >.

A different approach has been taken by Andrews and Phillips'®. Thev
use a mode) that takes into account non-uniform statistical fluctuations that
have been observed in intensity measurements for both localized and distri-
buted turbulence. Their model simulates two different frequency scales that

are observed in the data.

2.2.2 Probability Density for Turbulence Phase

Single Scattering

If the turbulence is weak or the turbulence is localized, the single

scattering mode] can be used. The statistics for turbulence will be the same
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as those for speckie from a partially diffuse target. Therefore, the complex
field at the receiver will be composed of a constant term, assumed to be real.
representing the portion of the wave that is unscattered and a zero mean
random term due to the random refractive index variations of the turbulent
eddies. If the random term is circularly Gaussian with variance o?, the pro-
bability density function of the wrapped phase is given by (2.14)"?,

o7
27

In this case the beam ratio parameter is given by,

+V r/*ncos(-lexp(—rsinQB)(D(\/Z_rcosﬁ) (2.14)

Po(8)=

I
r=—32 (Q.l4b)
g

where I, represents the intensity of the field in the absence of turbulence, and
o? is the total variance of the real or imaginary fields as determined by the

strength of the turbulence.

The value o can be found from the variance of the intensity using'.

of=0c*(1+2r)

or,

)

V(1+2r)
For weak turbulence r is large and (2.14) approaches a2 Gaussian distribution

2

given by,

pe(8)="\r/mexp(—r6?)
When the turbulence is sizong. 1 is small and (2.14) approaches a uniform
distribution. Of course, the single scattering mode] wijll most likely not be

valid in this case.
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Multiple Scattering

It is assumed that the probability density function for the unwrapped
phase is Gaussian for both single or multiple scattering. Most of the evi-
dence suggests that the unwrapped phase is Gaussiap whether the received
field is composed of the sum of coherent or partially coherent fields or results
from the product of fields with a Gaussian distribution of the phase Y. In
fact, it has already been shown that the distributions of (2.7) and (2.14) are
essentially wrapped Gaussian distributions. Therefore, the probability den-
sity function of unwrapped phase for a point source propagating through tur-

bulence is given as,

9
1 (ii—llo)
P (W)=————exp|-—7F7— (2.20)
ol Op_-\/QTr 203

where u is the unwrapped phase and pg4 is the mean phase.

To determine o,. an equation for the covariance of phase at two
receiver locations for a point source with two different wavelengths'® is used.
If only a single receiver location is considered, the covariance reduces to the

variance and considering only a single wavelength, the equation reduces to

2
I

=0.13277k’L [KAK (K2 +L s %)™ %exp(-K? /K 2)
0

x}duC:(u)cosz[u(l—u)KZL/Qk] (2.21)
0
where
L = distance between the source and receiver
2 = distance {rom source

u = z/L = normalized distance from source
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Ko=5.92/1,
k = 27/x
K = spatial frequency variable
In (2.21) the von Karman turbulence spectrum is assumed.

For horizontal paths of only a few kilometers, and at a wavelength of
10.6 pm. C,f does not change appreciably over the length of the path and a
path averaged value can be used. If L, >> |, exp(—K?*/K2)=1 for all
values of K that significantly affect the integral. Also if VIn is small com-
pared to L, then the second integral is approximately equal o one for ail

significant values of K. In this case the integration reduces to,

aﬁtoA132n2k?ch}}<dK(K2+L;2)—“/° (2.22)
and 0
o 2=0.07927"k*’LCILE® (2.23)
Ly>> 1,
VIr<<L,

Equation (2.23) allows for the determination of phase variance for a point
source propagating througbh turbulence from the values of outer scale of tur-
bulence, path length, wavelength and C,f. The inner scale of turbulence is
not needed if it is small compared to the outer scale. Typical values of L,
and |, are 1 meter and 1 millimeter respectively. Considering a path length
of 1 km and and CO, laser with A = 10.6 micrometers, the above conditions
for integration are met. When these conditions are not met, the integrals in

(2.21) can be evaluated numerically. The equivalent of (2.22) and (2.23) was
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also obtained by Flatte 2° using both the von Karman and Kolgomorov tur-

bulence spectrums and by Fante?® using the Kolgomorov spectrum.
2.3 Two Point Models for Speckle and Turbulence Phase

2.3.1 Probability Density for Speckle Phase

In this section two point models for the unwrapped phase of speckie and
turbulence will be presented. In the first section, speckle propagating in a
vacuum will be considered, and in the next section a point source propagat-

ing in turbulence will be covered.

The probability density function for the sum or diflerence of two Gaus-
sian random variables is also Gaussian. Using the Gaussian models of
unwrapped phase for the one point case, the probability distribution of phase
differences for the unwrapped‘pbase will be a Gaussian function of the phace

difference between the two points.

Given that the density of phase ¢, at point x, and &, at point x, are

2
1 (b;—ny) .
Py (d,)= exp |— (2.24)
d)l( 1) O_SI\/ETT 205 ‘2
and
2
1 (da—1te) \
P, (b,)=——~—exp |- —— (2.25)
d)i( 2) 0‘52-\/57[ 203’2
then the two point density funciion of phase differences will be?!
1 Ad—Ap)?
Paa(Ad)=——/—exp —1¢—2&L (2.26)
O s 2m 2(TAs

where Ad=d¢,—d; is the phase difference, Ap=p,—p, is the mean phase
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difference and 0i,=0, *+0, "—2<{b;—p,)(dy—ny)> .

If the receiver separation is small compared to the target distance from

the receivers, the variables ¢, and &, can be assumed stationary in the wide
sense and 0, ‘=0, =0 }.
1 2

Therefore,

<(d;—u))dy—py)>

ol

o'§$=‘20'3~2<(¢>1—;_L1)(d)2—p_2)>=‘2052 1~
Assuming the correlation coefficient of phases defined as,

s <(dy=p ) by—uy)>
Po= -

then o,, is given by,

UA!=05\‘/2(1—pd2>) (2.27)

Conciderable difficulty was experienced in obtaining an abalytical
expression for the correlation coefficient of speckle. A correlation function
for the general case of partially developed speckle from a totally diffuse tar-
get was never obtained due to the complexity of the two point joint density
function of the complex field amplitudes. Instead, the analvsis of the two

point phase statistics is divided into two parts.

The first part involves only fully developed speckle where the joint pro-
bability density function of the wrapped phases at two points has already

d'%2 and depends on the mutual coherence function of the fields.

been foun
The phase covariance and phase correlation coefhicient functions are deter-
mined from the joint probability density function of wrapped pbase, and the

conditional probability density function for the phase at one point condi-



tioned on the phase at the second point will be compared to a wrapped

Gaussian function.

Next, the work of Wang’ is used to estimate the value of g,, in equa-
tion {2.26) from the phase extent of the complex fields when the receiver is in
the far-field of diffiraction and the target phase deviation is small. It is also
shown that when the pbhase deviation is small, the square root of the correla-
tion coefficient of phase differences is approximatelv equal to the correlation
coefficient of the imaginary Belds at the two receiver points. In determining
the phase extent and correlation coefficient, the conditional probability den-
sity function of speckle phase at one point given the value of the intensity

and phase at a second point is used.
Fully Developed Speckle

The joint probability density function of wrapped phase at two points

for the special case of fully developed speckle, has been determined??! from

the fourth-order probability density function of the jointly Gaussian complex
fields, U,V,U,V,. 1t is a function of the difference in the phases of the two

points and the complex coherence factor and is given by,

P(oy8a)= G (1-B") /" |psin B+ TR+ V1-p | (228)
ni
where ( is the complex coherence factor defined by,

<E,E, >
L= L2 exp(—iy) (2.28a)
V> <>
<I,>=<EE, >
<l,>=<E,E; >

B= I icos(AB8—)




48

E, and E, are the complex fields at points 1 and 2 respectively. Both 6, and

8, lie in the primary interval —m to 7.

The conditional probability density function of the phase 8, at point 1
given the phase 8, at point 2 is related to the probability density function of

phase differences by,

P(8,!4 )=P(9,,8,)/P(6,)
Both P(#,) and P(8,) are uniform and equal to 1/27 so the conditional

distribution becomes,

12 ,
f’(ﬁz’e.)=1_—2112*—(1—(3?)’“-’2 Bsin“l3+12§+ V1-p? (2.29)

The parameter |p! depends on the separation distance between the two
receiver points’ and can be determined after the parameters of the beam and
the target are specified. When there is no separation, Iu' is ope and (2.29)
becomes the impulse function,
P(ez ! e,)=6(82_91_‘1’)

centered at {. As the separation becomes large, I approaches zero. and
(2.29) becomes a uniform distribution with a value of 1/27.

P(8,14,) depends on 6,—8, and not on 8, or B,. Therefore (2.29) will
also represent the probability density function of the phase difference.

In order ts use equation {2.27). an unwrapped phase correlation
coefhicient for the probability density function of unwrapped phase difierence

must be obtained. The correlation coefficient for the wrapped phase is

defined as,
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V<8,8,>  \V<8,8,>
p = =
? o 'rr/\/g

where ‘n/\/g is the standard deviation of the one point wrapped phase, and

(2.30)

the mean values of 6, and 8, are considered to be zero. The covariance of
phase is defined by the integral,

m T

<6,8,>= [ [6,8,P(8,,8,)d0,do,

which has been evaluated® as,

- : IV
<8,0,>=msin™ i —(sin"! Il )2+ %E _n?L (2.31)
using the relationship,
2 9 1'1‘2
< i0;—6,1 > =2(< 8> —<0,0,>)=2 —3-—<e29,>
where
Oae=<18,—0, *>
2 x |2D
=2 TT?—Trs.in'l|pu-+—(sin"1|p.!)2—% < ll2 (2.31a)
s=1 D

was determined?! from (2.28). Using (2.31), py is plotted vs ip! in Bgure 2.10.

Donati and Martini* use the same joint probability density function of
wrapped phase given in (2.28) to obtain an expression for the conditional
variance of 6, given the value of 6, as,

2

T o o | !20
092'e]=7—ﬂ'51n l?}.L!+(S]l’1 lip!)Q— H

- (2.31b)

x
<
L
p=1 D

1
2
which is exactly (2.31a) divided by two. They also determine the conditional

variance of 6, conditioned on the intensity and the phase at receiver point

one.
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It is difficult to relate the expressions for the wrapped correlation
coefficient and wrapped variances to the case of unwrapped phase. The vari-
ance of unwrapped phase difference given in (2.27) requires both a value for
the correlation coefficient and the unwrapped standard deviation of phase.
the latter of which can be any value greater than about 7 radians for fully
developed speckle. A comparison of (2.29) with a wrapped Gaussian distri-
bution is shown in figure 2.11 for three different values of | !. The values of
the Gaussian standard deviation used for wrapping are shown in figure 2.12
and were chosen so that the wrapped Gaussian and (2.29) would have
approximately the same shape and size. Also in figure 2.12 the square root of
equations (2.13a) and (2.31b) are shown. The variance of phase was numeri-
cally calculated from (2.29) for several values of !pi and is indistinguishable

from equation (2.31b).

The probability density function of (2.29) does not match the wrapped
Gaussian function well except where the distributions are both approximately
uniform. Nevertheless, Gaussian functions of appropriate standard deviation
can be found that agree reasonably well after phase wrapping. The major
problem in order to use the Gaussian unwrapped probability density function
to approximate (2.29) is to find the appropriate standard deviation of phase
difference. As already mentioned, the standard deviation depends on both the
value of wunwrapped standard deviation and unwrapped correlation

coefhicient. This problem has not yet been solved.
Partially Developed Speckle

The phase extent of the equiprobability density ellipse for the condi-
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tional probability density function of the complex field quantities U, V, at
one point given the complex field quantities U;,V, at a second point can be

used to estimate the variance of the phase difference between the points.

If a totally diffuse target is illuminated by a Gaussian beam at its waijst
and the observation points are in the {ar-field, the real and imaginary fields
are uncorrelated, p in (2.4) is zero, and the one-point and two-point probabil-

itv density functions have been shown by Wang’ to be,

. AU?  AV!
P(U;, V)= exp |— = + (2.33)
2—"01'10-1[ 0!:2, Gi?,
and
P(U,,V,,Up Vo)= (2.34)
i { AUE 2y,AUlAU2 AU
- +
2ma, 0.,V (1-v,) [ ol 0,0y, al
1 AVZ  yAVAV,  AV]
X exp |— ; -2 +—
Q‘noijci?\/(l—yl 2(1-v}) oy, 9,93, oy,
where

AU=U-<U > AUp=Up-<Up> AV =V -V > AV, =V <V >
0“2——-<AU12> or22=<AU§> 0;!2=<AV12> 0122=<A\-’22>
v,=<AU,AU,; > /{0, 0,.)
Yi=<AVAV,> [{oy,0))
vy, represents the correlation coefficient of the real components of the

two fields and +; represents the same for the imaginary parts.
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Dividing {2.34) by (2.33) gives the conditional probability density func-

tion of the fields at point 2 given the field at point 1 which simplifies’ to,
P(U21\72 !L‘JUV‘)

(U=<U>) (V=< V)
exp |—— +

- )
2110'1.0'3 2 a, 0;

where

a —
<U>=<Up>+y,—(Vcosh,—< U, >)
a

T

01’9 -
=<U2>+‘Yrc_(l‘l_<Ul>)

g

U.n .
<V>=v,—\ 1,808, =v;— V,
Gi; i
0r=‘\/ {I_YrQ)O
o=V (1-y{)o

are the conditional mean and standard deviations of the real and imaginary

Ty

i

values of complex field at location 2 conditioned on the intensity and phase

angle of the field at location 1 and,
Ul=\/ITCOSGI and Vl=\/1_lsin6, U2=\/Ec0582 and \72=\"/I_25in82

ST . . 7
The quantities in the above equations are evaluated’ as,

y,:e_é;—Q h,—h_e 2%
Vb, —b_e )b, —b_e")
S ar’ h,+h_e B
\/(h++h_e‘2"’)(h++h_e‘“=’)

1 —al/? %
o, =—mw.ae h,—h_e °°
T 2 [3} +
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2 2
B a ~2%3
TTW e h.+h_e

—aii2\/ -2x?
ae” 7 h,—h_e ™

2x|'"

3
I

q
I
=
4

o

=
I
=
4

,.
(NI SN PSS

—o2/ _ -
w e 0TV b +h_e

G

—of,-"?e-x?

<U;>=mnwle
2

—oﬁ/‘2e-x§

<Upy>=mwge
<V >=<V,>=0

where

X, is the normalized distapnce in the receiver plane from the optic axis to
receiver 1
X, is the normalized distance in the receiver plane {rom the optic axis to

receiver 2
and AX=xyX; .

The normalizing distance is A\L/mww, and L is the distance {rom the tar-

get to receiver pumber 1.

N=(w,/a)? is the number of independent scatterers, where w, is the
beam waist of the laser on the target. o, is the target phase deviation. a is

the correlation length of the target scatierers defined by

—Ixe—x1!"
p(Ax)=exp [*ﬁ

and x 1s the transverse distance along the target surface.
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The phase extent for the conditional density function is given by (2.11)

1] Verstoisavstol—(o,0))
g,=—tan |2 r . 2
2 <US'+<V>*—g’—ay

(2.112)

In (2.112), 8,, <U>, <V>, o, and o, refer to the equiprobability density

ellipse for the conditional probability density function of (2.35).

The above relationships for the conditional density functions are
extremely involved, and are valid only for the special case of the far-field of
observation. A general case for partially developed speckle has pot been
found. In order to simplify the equations further, assumptions consistent with
the far-field of observation will be made.

In the far field. <V,> = <V,> = 0 in (2.35) and the probability
density ellipses Jor either location 1 or 2 have a large offset along the real
axis. They also have a larger imaginary than real width (see figure 2.4a).
Consequently V, and V, will be small compared to U, and U, respectively,
AU, << <U;> and AU,< < <U,>. Therefore, noting that vy, and +y; are
both less than or equal to one and the ratios 0, /o, and oy /o; will both be
about one unless Ax is extremely large, <V > can be considered zero and
<U> can be approximated by <U,>. Equation (2.112) will therefore

reduce to,

V <Uy>tol—(0,0)?

2 2

Mo
2
<U2> —0, _01

1
8,=—tan
¢ 2

If in addition o4 is small compared to one, 0, << 0oy, and g, <<y



57

Therefore, o, and o are both small compared to <U,> and,

<Up>t) 2 <Up>
When 04, << I, h*=h =0}, and if Ax < < x; or Xy,

9?2
o, =1 J2mw 00, Y 1+e”

- ~ 2 ~x?
<U,>=mw e
~ —Ax?{2
Yi~e ’

where Xy T Xy = X

When the approximation, tan8=8 for small angles is used equation

(2.112) further reduces to,

acy v (1+e_2’?)( 1 we_‘ﬁ’?)

8,~ M-
¢ E PAR
9 2 j,"IQ
~ JobX [ex“ (2.11b)
2 N '

Figure 2.13 shows equation {2.11a) vs. Ax for x, equal to 0 and 1.0 and
three values of o,. In the figure. N=100 and the shaded areas represent
values of U; and V,; within the probability density ellipse of figure 2.4a. The
approximation of equation (2.11b) is also shown in the figures. When
04 < <1 the conditions of figure 2.4a apply and 6,=0c, for the one point pro-
bability density function. The wrapped and unwrapped density functions are

approximately the same and o,, will given approximatelv by (2.11b).

In the next section the correlation coefficient of phase differences will be
shown to be approximately equal to the square root of the correlation

coefficient for the imaginary fields when the target phase deviation is small.



DM ct XD

+3@c-X (@

. OlO llTTlIlllITTTTI1]1]]T‘I1"l]1111[T]TTT1T1II1I1T[IT

0.2

.005 -
L 0.01 _
. OOO 111) |1u||1“l-HJ.‘,:;—H!;;anx‘rr{]r17rllrt
0.00 0.10 0.20 0.30 0.40 0.50
delta x
(a) x1=0
.010
- O -
i 0.1 ]
.005 -

OOO ’i‘f"ilfiiij_xry'i)IlTI)]I! /AN EENYSESENEEENNE|

0.00 0.10 0.20 0.30 0.40 0.50

delta x
(b) x1=1.0

Figure 2.13 - 6, and eqn. 2.11b vs. Ax,



59

The correlation coefficient of phase differences is found from the covariance

of phases at the two receiver points. Therefore,

, | <yby>
Y=
T4

where the mean phases are assumed zero and

x x

<byby>= [ [ &,0:P(d),d,)db,dd,

—_—T—x

When 04 << 1, and in the far-field, the one point unwrapped and

wrapped phase have beer shown to be essentially the same (see figure 2.42)

and that tand=d=V /1. Therefore,

U, U, fff—‘*-P (U}, V,.Up,V,)dU,dV,dU,d V,

V x
< by >= <——>=f

r—

The real and imaginary fields in (2.34) are not correlated, therefore,

<o <1>2>:
[ [V V,P(V,.Vy)aV d\QI f T U P(U,,U,)dU,dU, (2.36)
o x ——x 2

As noted previously, when g4 < < [, AU, and AU, are small compared
to <U;> and <U,> respectively. Therefore the second integrals in (2.36)

reduce to 1/ <U;> <U,>. Consequently,

b dy>= - } }V V,P(V,,V,)dV,dV <ViVe>
PR Ui U, 20 R PRI c Ul s < Uy >
Therefore,
, <dyb,> <V, V,> )
Po= T 2 (2.37)
T <Uy><Uz>o0y

Since the correlation coefhicient of the imaginary fields is given by,
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<V, Vy>
Y=
UiJU'

1z

and the random variables ¢, and &, are assumed zero mean and stationary

in the wide sense. Therefore, 02 = < &®> which for small ¢ can be cop-

b
. Vi L <Vi> .
sidered equal to < —— > =-———— since the real field values are considered

to be constant. Therefore,

<Vi> Ui,2
olE == (2.38)
<Ul>  <Ul>

Substituting (2.38) in the denominator of (2.37) and letting <U,>=<U;>

and o; =0, .
2 1

pI=, (2.39)

Figure 2.14 shows vy; vs. Ax when o, is equal} to or less than 0.1 for two
values of x,. This figure can be used to predict the correlation coefficient of
unwrapped phases when the target phase standard deviation is small comn-

pared to one.

2.3.2 Probability Density for Turbulence Phase

The phase structure function for turbulence has been studied exten-

8-18 3nd is a measure of the strength of turbulence. One way to meas-

sively
ure the structure function is to measure the variance of phase difference. As
for the one point statistics of turbulence phase, the probability density func-
tion of the unwrapped phase difference for a point source propagating

through clear air turbulence is assumed to be a Gaussian function and is

given by,
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?
1 (Ap—App)
P (Ap)y=——F—exp |-———5 (2.40)
. UA;.L 2m QUA}AQ
where the variance® of phase difference is given by,
03, =2.92k’LCIAX (2.41)

Apg is the mean turbulence phase difference and Ax is the receiver

separation.

Using (2.41), the value of Cf can be determined for a given path length
of turbulence by measuring the variance of phase diflerence at a known

receiver separation.

Some of the literature suggests that the probability density function of
phase differences is not always Gaussian. Reference 14 compares histograms
of phase difference measurements to Gaussian, exponential and one dimen-
siopal K distributions. The distributions tend toward bilateral exponential
for small separations and Gaussian for large separations and higher moments
of the measured distributions agree well with the moments of the K distribu-
tion for all separations. It is also suggested in the paper that the distribu-
tions tend toward Gaussian as the ratio of outer to inner scales of turbulence
increases. These observations, however, are based on measurements in a res-
tricted region of heated air rather than through a long path of natural tur-

bulence.
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CHAPTER 3

PROBABILITY DENSITY FUNCTIONS FOR UNWRAFPPED PHASE
AND FREQUENCY OF SPECKLE IN TURBULENCE

The speckle intensity pattern in the presence of turbulence and wind
moves around in a random fashion due to temporal changes of the turbulent
eddies which cause the beam to wander over the diffuse target. In addition.
the wind and turbulence alter the speckle statistics and contribute an addi-

tional amplitude and phase modulation to the received field.

Following chapter 2, the unwrapped phase probability density functions
for both speckle propagating in a vacuum and for a point source propagating
in turbulence are assumed to be Gauséian. In order to account for the com-
bined effect on the received phase of speckle propagating in turbulence. the
turbulence is introduced into the speckle by allowing the mean vajue of the
speckle phase to be modulated by the phase fluctuations of a point source

1

propagating in turbulence.

The probability density function of the unwrapped phase is then found
by integrating the marginal density function for the unwrapped speckle
phase multiplied by the probability density function of unwrapped phase for
a point source propagating through turbulence. This mode! is based on the
mode! presented by Holmes and Gudimetla’’ for determining the probability
density of the intemsity for speckle propagating in turbulence (see appendix

A).
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In using the unwrapped phase with a Gaussian distribution, the results
need not be limited to optically rough targets and will include all degrees of
target roughness. In this way differences can be seen between the distribu-
tions produced by different targets in varying turbulence conditions even
when the r.m.s. roughness of the target approaches or e_xceeds one
wavelength or the strength of the turbulence approaches or exceeds the

saturation value.

3.1 The Probability Density Function of Phase

Assume a laser beam incident upon a diffuse target and a receiver
located at some distance away in a clear air turbulent medium. Each of the
separate reflected fields produced by the diffuse target will be delayed or
advanced according to refractive index variations caused by turbulence and
wind. The variation in travel time about the mean travel time for any field
component will depend on the refractive index variations along its path.
Since the travel time is directly proportional to unwrapped phase, the mean
value of the unwrapped speckle phase will also be proportional to the refrac-
tive index.

The model assumes that the mean value of the probability density func-
tion for speckle i3 modulated by the turbulence in the same manner as the
phase {rom a point source would be modulated. Therefore the conditional
probability density function of unwrapped phase given the mean value of

speckle phase can be expressed as



where 0, = the standard deviation of unwrapped phase at the receiver of a
speckle field in free space, p is the mean value of speckle phase, and ¢ is the

combined phase due to speckle and turbulence.

The probability density function of unwrapped phase for a point source

propagating through turbulence is given by,

2
1 ~(L—H,)
P,(u)=——F—exp|——— (2.20)
. 0“\//511' 20ﬁ
where o, = the standard deviation and p, = the mean value of phase at

the receiver of a point source propagating through turbulence. Using equa-
tion (3.2) in (3.1), the unwrapped phase probability density function for

speckle propagating through turbulence is given by,

Pyld)= [Pyl(d)! P ()dp

x 2
] —(d—p)?  (B=po)
=——— [dp ex — (3.2)
2mo0, _fx e 20} 20! ‘
which reduces to,
P ((b)_ 1 ex _ (d)_l-"o)Q
¢ _QTI'(U!2+03)1'/2 P 2(032-4-0‘3)
or
1 (d)_p'o)Q ]
P.(d)= ex [——*“— 3.3)
o(d) oVon p 2g? (
where

o=[o2+c ' (3.4)
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The model suggests that the combined unwrapped speckle/turbulence
phase perturbations are Gaussian, additive and independent when the target
characteristics and the turbulence effects are both Gaussian. The probability
density functicn can then be found from the variance for target speckle and

turbulence separately from the relationships given in chapter 2.

3.2 The Probability Density Function of Phase Difference

The probability density function of the sum or difference of two Gaus-
sian random variables is also Gaussian. In chapter 2 the two point probabil-

ity density function of unwrapped speckle phase was proposed as,

1 (Ad—Ap)? _
Pao(dd)=—""r—exp [— ¢ > ] (2.26)
UAS g 2'74' 20A5

where Ad = by-d, , Ap = po-p, and

(2.27)

s the standard deviation of phase difference

o, is the one point standard deviation of unwrapped speckle phase. The

correlation coefhcient is given by,

s <(d—p)(dy—n,)>
Ps=— 02

For 2 point source propagating in turbulence the distribution of phase

differences is also Gaussian, and in chapter 2 was given as,

1
P (Ap)=————exp |- 2.40
s ) O'A;L\/Q_‘; ( )

where

0}, =2.92k’LCAxS/ (2.41)
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is the variance of phase difference and Ax is the separation between the two

points.

Using the same methods already used for treating speckle propagating in

turbulence,

1
P¢,(A<b 3 Ap}= \/517 exp [

2
T As 20 4,

_1M>_—Ag)i] (2.5)

and the probability distribution for the two point unwrapped phase

differences for a speckle field propagating in turbulence is,

P‘b(Ad)): f Pé(A(b) ! AuPu(Au)dAPL

Using equation (2.40) in (3.5)

1 (AdD_AP-o)Q
P,(Adb)=—F—exp |-————— 3.6)
¢ ) GA‘\/ETF 20'§ (

where
2 2 112
GA=lUAs+UAp.] ’
and App is the mean turbulence phase difference. In this case o,, refers to
the standard deviation of phase differences for a speckle field in free space

and o, refers to the same for a point source propagating through tur-

bulence.

3.3 The Probability Density Function of Frequency

If the frequency of the received field is a function of time, its statistics
are closely related to the unwrapped phase statistics since the frequency is
the derivative of the unwrapped phase. Based on the special property that

linear operations on a Gaussian random variable produce statistics that



68

remain Gaussian, the probability density function of frequency will be a
Gaussian random variable as long as the probability density of unwrapped
phase is Gaussian. Therefore if the unwrapped probability density of phase

is

Pd&(d))=—\l/_ exp ——d°22 (3.7)
(oY 2m 2U¢
then the probability density function for the frequency is given by,
1 v?
P =—0exp |— 3.8
= p[ o ] (3.)
dd/dt

where v is the frequency of the signal at the receiver and v = ”
T

Both o4 and o, cap be found from their respective auto-covariance
functions. The auto-covariance functjon of a variable x that is a random
function of t, is itself a function of t and is given by the expected value of
the product of x at one value of t with x at a different value of t. Therefore.

R,(t.1) = <x(t)x(t+71)> and 7 cap take plus or minus values.

For the special case where x is a stationary random variable, the auto-

correlation function is not a function of t and R (t,7) = R (7).
The auto-covariance, <x{t}x(t+7> reduces to the variance, <x(t)?> as
T approaches zero so,
oy=<x(t)'>—<x(t)>*
To obtain o, from o, the second derivative of the auto-covariance function’
of & 1s found using,

d?R4(7)

4m'R (1)=—
) dr’



69

and

Ry(7)=<d(1)d(t+7)>. (3.10)

Then the limit of R, is evaluated for 1 approaching zero.

This approach can be taken with the numerical data from the phase or
frequency detectors used in the experiments. Using the unwrapped phase
data a suitable averaging interval over time is used to obtain the autocorrela-
tion function as a function of 7. Then the second derivative of the autocorre-
lation function is computed numerically. Finally the limit of the autocorrela-
tion function is taken to arrive at the value of o,. Ab inverse process can be

used to obtain the phase variance from the frequency variance.

Another technique for relating the variances of the phase and the fre-
quency is bv use of the Fourier trapsform. The power gpectral density is
related to the autocorrelation function of a random variable by its Fourier
transform,

1 p —jwT
Sy(w)=== [ Ry{r)e dr (3.11)
27 -
The Fourier transform of the derivative of a function is w times the
transform of the function, therefore since o = dd/dx,

’S

)_w o(®)

w|=
4’

Using this relationship the variances of the frequency and phase are related

(3.12)

Y

by w? and,

2 P S"{w) iwr
O'¢=21T -wTe dw (3]3)

In the equations, w represents the transformed variable 7.



Here again, using numerical methods, the autocorrelations can be found
from the experimental data and from these the power spectrums are
obtained.

These methods can be used for converting between the statistics of
unwrapped phase and the statistics of frequency for both one and two point

measurerments.
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CHAPTER 4

EXPERIMENTAL SYSTEM DESCRIPTION

Two different optical heterodyne systems were used to obtain the experi-
mental data. The primary system made use of a single laser which provided
both the transmitter and the local oscillator signals. Acousto-optic modula-
tors produced the frequency shifts needed for the heterodyne frequency. In
the other systemn the transmitter and local oscillator functions were provided
by different lasers. Unfortunately it was not possible to obtain the necessarv
phase synchronization between the two lasers for phase or frequency meas-
urements. Nevertheless both systems are reported here since the potential
exists for improving the phase control of the two laser system. Each system
has its own merits as to system cost, complexity and optical isolation

between the transmitter and local oscillator beams.

Before each system is described in detail, the use of a heterodyne system

to measure amplitude, phase and frequency information will be explained.

4.1 The Heterodyne System

Heterodyne systems have been used for electronic communication and
measurement applications for many years. Some common examples are
radio, television, radar and spectirum analyzers. From the early years of
radio, with the advent of the superheterodyune receiver, heterodyne systems
have provided a convenient method for channe! selection and improved signal

reception in the presence of background noise. Additionally, heterodyne sys-
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tems allow coherent detection so that the instantaneous values of amplitude,
phase and frequency of 2 signal can be received. More recently the invention

of the laser has allowed heterodyne systems to operate at optical frequencies.

An optical heterodyne system is shown ip figure 4.1. The local oscillator
and transmitier provide optical signals with constant amplitude and fre-
quency. The transmitter frequency is offset from the local oscillator frequency
by a fixed amount, the heterodyne frequency. The received field bas an
amplitude, frequency and phase that vary according to the propagation path
and the characteristics of a remote target. Using a beam splitter, the received
field is combined with the local oscillator field at the optical detector to pro-
duce an output voltage or current that, within the frequency response limits
of the detector, 1s proportional to the instantaneous value of the power con-

tained in the combined fields.

The local oscillator field can be described by,

E,=Aco030, (4.1)

and the received fieid by,
E,=A, cosf, (4.2)
A, and 6, represent the instantaneous amplitude and phase respectively
of the local oscillator field and A, and 8, the corresponding quantities for the
received field. Both fields are assumed to have the same polarization. Since
the optical detector responds to the power of the total field, it's output is
proportional to the square of the incident Geld. Neglecting a proportionality
constant due to detector responsivity and mirror losses, the detector voltage

is given by,
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Vy= [AOCOSOO-!-A_,cosBr]Z (4.3)

which expands to
Vd=A°2c0526°+A,2c0526r+2A°A,c0580c039, (4.4)
The angle 6 can be written in terms of the angular velocity of the wave.
where w=d6/dt, w=2wv, and v is the instantaneous frequency of the signal.
A, and 8, can be considered constants, and if for the moment the effects of
the atmosphere and the remote target are neglected, 8, and 6, can be

replaced by w,t ant w,t respectively.

Substituting the trigonometric identity 2cosAcosB=cos(A+B)+cos(A-B)
in each of the terms of (4.4), the first two terms give a constant (d.c.) term
and cosine terms at twice the frequency of the local oscillator and received
frequencies. The third term in the equation produces a component at the
sum of these two frequencies and another at the difference of the frequencies.
The sum frequency and the double frequencies are optical frequencies well
bevond the response capabilities of the detector as well as any electronic pro-
cessing instrumentation and are not received. But the difference frequency is
within the frequency limits of the system as long as the Jocal oscillator and
transmitter frequencies are adjusted appropriately. Therefore the d.c. and
the difference frequency terms are the only components of the fields that are
received. The d.c. component is removed by electronic filtering so that the
received voltage is given by,

Vy=A,A,cos(6,—8,) (4.5)

The angle 6,—6, represents the instantaneous phase of the received field

and A A, represents the instantaneous amplitude.



In practice a phase reference must be used for the phase detector. The
phase detector measures the phase difference between the received phase and
this reference. The phase reference is provided by the electronic oscillators
that determine the transmitted and :ocal oscillator frequencies and 1is
equivalent to the phase angle 8, —8,=2m(v,—v )t where v, is the transmitted
frequency, v, the local oscillator frequency and both v, and v, are constant
values. Subtracting this reference phase angie from the received phase in
(4.5), the phase detector output voltage is proportional to 8,—8,. This
represents the instantanecus phaee introduced by propagation of the optical
signal from the transmitter to the receiver.

The phase received at a single location or the phase difference of two
received signals a2t different locations can be measured. When the phase
difference is measured, the reference phase for the phase detector is provided
by one of the received signals. Each heterodyne signal has the same local

oscillator and transmitter so that the phase measured by the delector is

8,,—6, where the subscripts 1 and 2 refer to the two different recejver loca-
tions.

The phase was also measured indirectly by measuring the frequency 1.
In this case the phase was obtained by integration of the frequency data since
8 is given by f?ﬂvdt. For one point measurements, v=v,—v, and for two
point measurements v = v, —v, . As will be explained in the next chapter,
two point frequency measurements were not made due to limitations in the

{requency detector.



4.2 The Single Laser System

Figure 4.2 shows a diagram of the single laser system”. A single CO,
laser 1s used for both the transmitted output and the local oscillator.
Acousto-optic modulators (AOM) driven by RF generators at 39.95 MHz and
40.05 MH2 produced a heterodyne frequency of 100 kHz. Two modulators
were used so that stray optical reflections from the transmitter beam would
be at the wrong frequency to produce false signals at the detector. This
method?® produced a high degree of optical isolation between the transmitted
and received signals. Beam splitters (B.S.) were used to reduce the power of
the local oscillator signal for the sensitive liquid nitrogen cooled HgCdTe opt-

ical detectors.

A 3x beam expander was used to increase the radius and reduce the
divergence of the laser beam. ‘A half-wave plate was used to rotate the laser
polarization from vertical to horizontal. The transmitter beamn was further

magnified by a ratio of 5x and a quarter wave plate was used to obtain 2 cir-

cularly polarized transmitted beam.

A two-inch mirror was used to direct the returning radiation through an
a-focal telescope onto 2 pair of detectors. The telescope consisted of two
lenses of focal lengths 25.4 and 6.2 cm giving a magnification of 4.1. The low
magnification was needed to lessen angle of arrival fluctuations which in turn
demanded large detector areas. The detectors were photoconductive detectors
which have ap advantage of large size and low cost. They were 2mm x 2mm
in dimension placed side by side 0.1mm apart in a single dewar. This gave an

effective spacing of 8.6mm between the detectors. The detectors were posi-
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tioned cloge to the focal plane of the imaging lens where the image is least

dependent on the incidence angle.

A pinhole placed at the common focus of the lenses in the telescope. lim-
ited the field of view of the detectors and also helped cancel spherical aberra-
tions. The 5x beam expander on the LO path provided a collimated beam
several times larger than the detector area, resembling a2 plane wave on the
detector surfaces. Another quarter-wave plate was used on the LO beam so

that it would also bave circular polarization.

Details concerning the single laser optical heterodyne system can he

found in the PhD dissertation of F. Amzajerdian?’.

4.3 The Two Laser System

A two laser optical heterodyne system has an inherent isolation between
the transmitter and local local oscillator. Transmitter feed-through from
optical reflections can theoretically be eliminated if the svatem locks onto the
signal return from a remote target rather than part of the transmitted signal
since the transmitter and local oscillator will have no common optical ele-
ments. Consequently, maximum optical isolation between the transmifter
and local oscillater is provided. In addition, since the return signal rather
than the transmitted signal is used for control, the system may be useful for
long ranges where laser drift causes the transmitted and return {requencies to
be radically difierent and beyond the frequency range of the receiver. In
order to use the two laser system to make intensity measurements, a method
was needed to synchronize the frequencies of the two lasers. Furthermore, if

frequency or phase data was desired, the phases of the two lasers must be



locked.

A simple and inexpensive method [or frequency synchronizing the two
lasers was used?®. The system could track frequency changes of several hun-
dred megahertz that were caused primarily by frequency drift of the lasers.
Phase synchronization could not be achieved so the two laser system was not
able to provide phase or frequency measurements. The length transducer in
the laser cavity was used for frequency contro! of the LO laser. The length
transducer was intended for dither stabilization to prevent frequency drift

away from the laser peak output level.

The two laser optical heterodyne system is shown in figure 4.3. The
return signal from the remote targel was combined with the local oscillator
using a beam splitter and directed ontd the optical detector. The signal from
the optical detector represents both the signal input to the receiver and the
control signal used for frequency svnchronization of the local oscillator. A
SMH:z heterodyne [requency was selected although other frequencies were slso

used.

The lasers used in the system were tunable by means of a diffraction
grating which was adjusted with a micrometer dial. The cavity length trans-
ducer was a piezoelectric transducer on which the rear laser mirror was
mounted. An electrical signal applied to the transducer varied the laser fre-
qQuency in response to the changing cavity length. After the two lasers were
brought to the same specira) emission Jine by manually adjusting the
diffraction grating, the system maintained control by detecting any frequency

change from the desired heterodyne {requency and applying a correcting vol-
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tage to the length transducer.

The signal from the optical detector was amplified and the frequency
detected using a frequency demodulator. The detected signal represents an
error signal proportional to the difference between the desired and actual
receiver frequencies. The signal was amplified to provide a Jarge amount of
control loop gain in order to minimize the {requency drift and maintain small
errors in the heterodyne frequency. Special electronic compensation was
needed to achieve a stable system. The compensation problem was compli-
cated by the resonant response of the piezoelectric length transducer. The
transducer had a prominent resonant peak which severly limited the fre-
quency response of the control system and made it difficult to achieve a large
contro) loop gain. This problem was solved through a compensation method

described below and stable contro! was achieved with a2 control loop gain of

120 dB.

The measured laser response to electrical control inputs as a function of
contro) frequency is shown in figure 4.4 Of particular interest is the pro-
nounced resopance ai 3.4 kHz evidenced by the extreme increase in ampli-
tude response and phase shift at this frequency. The response is that of a
second order system with a damping ratio of about 0.025. Beyond tbe peak
at 3.4kHz, the curve falls off rapidly and response is lost to higher frequen-
cies. For this reason, even with stable control conditions, any disturbances in
laser emission wavelength at rates higher than the resonant frequency were
uncontrollable. The inability 1o control these high frequencies resulted in fre-

quency modulation or FM noise added to the heterodyne signal. Therefore
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FM noise caused by inberent laser instability or external disturbances such as
vibrations could not be removed by the system if the FM rate was above the

3.4 kHz response of the length transducer.

The heterodyne signal was observed using an oscilloscope and a spec-
trum analyzer. The FM noise varied from 5 kHz to 50 kHz representing
0.1% to 1% of the 5 MHz heterodyne frequency. Reduction of the FM noise
in this frequency range would require a control element having a frequency
response extending beyond the 3.4kHz range of the internal length trans-

ducer.

A notch filter at 3.4 kHz was added to minimize the eflects of the trans-
ducer resonance. In addition, a compensation network with a double pole at
4Hz and 2 zero at 100 Hz was also needed for stability. The maximum con-
trol loop gain that could be achieved with this compensation was 120 dD.
With a loop gaip of 120 dB, the theoretical steady state error to a unit input
change of frequency is 107%. Laser frequency drift is mainly due to tempera-
ture variations. The lasers drift 900 MHz per degree C and were controlled
to within plus or minus 0.1 degree C by water cooling. A 0.1 degree change
in temperature represents 2 90 MHz change in laser frequency. Frequency
drift was measured over a period of three hours using a control loop gain of
60 dB. The 5 MH:z heterodyne frequency drifted less than 50 kHz. With a
loop gain of 120 dB the corresponding drift would be only about 50 Hz or
less than one part per million of the expected laser frequency drift of 90
MHz. Assuming the electronic control system has the necessary dvnamic

range, the lasers can maintain control as long as they do not drift outside
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their free spectral range of about 300MHz.

Using this method of control the heterodyne signal does not follow slow
frequency shifts which might be needed for instance to determine target velo-
city. Nevertheless, the output of the frequency detector does provide infor-

mation about the frequency of the return signal.

Attempts were made to phase lock the heterodvne frequency of the {wo
lasers to a stable reference oscillator by controlling the frequency of one of
the lagers, however, these attempts were unsuccessful. It is felt that 2 combi-
nation of the inability of the laser transducer to respond above 3.4 kHz and a
practical limit to the lock in range of the control loop prevented phase lock-
ing. The large amount of FM noise produced phase errors beyond the 2%
range of the phase detector used in the phase locked loop. The loop gain
could be reduced to lessen the FM n'oise, however, this prevented sufficient
loop gain for stable phase locking. Successful phase locking of two CO,

lagers in a much more complicated heterodyne system has been report.ed‘w.

Stable frequency control at a loop gain of 120 dB was demonstrated in a
field environment using a diffuse target at 80 meters from the lasers. The tar-
get generated an almost fully developed speckle pattern at the receiver. The
average speckle contrast ratio was measured to be 0.7, and the average

received power level was about 1072 watts.

The combined eflect of speckle and atmospheric turbulence resulted ip
large fuctuations in the amplitude and phase of the received optical signal.
These fluctuations caused the optical signal to go below the background noise

level for short durations in the order of several milliseconds. Even with this
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temporary loss of signal, the system maintained frequency control. Occasion-
ally when the return signal was lost for longer periods, such as when an
object interrupted the beam. reacquisition of control was required by adjust-
ing the diffraction grating. If mey be possible to alter the electronic fre-
quency compensation to allow longer periods of signal loss, but for situations
where the beams may be interrupted for lengthy periods, some system for

automatic signal acquisition would be needed.
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CHAPTER b

PHASE AND FREQUENCY DETECTORS

In this chapter, the methods used to process the phase and frequency
detector data are described. [n order to obtaip unwrapped phase information
from the phase detector, 2 method was needed to place the measured phase
data in the appropriate 2w segment of the infinite line that represents
unwrapped phase. In theory there is no exact way to do this because a given
point on a circle representing a wrapped phase value could be placed in anv
one of an infinite number of 27 segments of the line. The best that can be
dope is to predict where the phase should be from past, present or future

data points.

If the range of the expected unwrapped phase variations is known ahead
of time, unwrapped phase can be obtained directly from the phase detector
data without unwrapping by using frequency dividers to divide the phase
before it is measured so that it always stays within a range of 2w. Another
alternative to unwrapping the phase is to measure the frequency instead of
the phase and integrate the frequency data. The integral of frequency

represents unwrapped rather than wrapped phase.

Figure 5.1 shows the instrumentation that was used to measure phase
and frequency. The weak heterodvne signals received from the HgCdTe
detectors were amplified with amplifiers tuned to 100 kHz. When the phase
difference was measured, both received signals were applied to the phase

detectors. This is shown for the switch in position 1 in the figure. As will be
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explained Jater, usually two separate phase detector outputs were recorded.
When frequency dividers were used, they were placed before the phase detec-

tors. When frequency deiectors were used, they replaced the phase detectors.

With the switch in position 2, the phase at a single point was measured.
A reference phase angle was generated using the electrical signals that supply
the {requency shifts to the acousto-optic modulators (AOM) used to produce
the heterodyne frequency. The electrical signals were applied to an electronic
mixer to produce the 100 kHz heterodyne reference signal for measuring

pbase and oniy one amplifier output was used.

The detector outputs were digitized with analog to digital converters
(A/D) and recorded on a2 magpetic tape drive (TK-50) using 2 PDP11/73

computer.

5.1 O0-2w Phase Detector

A phase detector is limited by its dynamic range which is given by the
range of phase values that it can measure. Typically the response is from 0
to 2w radians, although with added complexity, detectors that respond to 4=
and beyond can be made. A simple 0 to 27 phase detector that was initially

used to measure phase data is shown in Figure 5.2.

In order to remove amplitude fluctuations, the 100 kHz heterodyned sig-
nals were clipped by the phase locked loops (PLL) to produce square waves.
A bistable multivibrator (MV) and fow pass filter (LPF) averaging circuit
were used to produce a phase detector response that was linear from 0 - 27

radians or 0 - 360 degrees.
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The phase detector response is shown in fgure 5.3. As with apy 2w
phase detector, there is a transition zone at the discoptinuity in the response
curve where 0 meets 360 degrees. The transition zone provides inaccurate

output and complicates the task of unwrapping the phase data.

In order to unwrap the phase data, each time the phase detector makes
a transition from 360 degrees back to 0 or from 0 to 360 degrees, a constant
value representing 360 degrees must be added or subtracted depending on
the direction of the transition. When the pbase changes rapidly and ran-
domly it is very difficult to determine when a transition is made. For exam-
ple a phase change from 359 degrees to 1 degree could be interpreted as an
increase of 361 - 359 = 2 degrees or a decrease of 359 - 1 degree = 358
degrees. In the first case , 360 degrees should be added to current and future
phase data values, but in the secon;l case there should be no correction.
Based solely on these two data points, the logical choice is to select the

smaller change (less than 180 degrees), in this case the 2 degree change.

The 0-27 phase detector was used to unwrap the phase by measuring
the magnitude and direction of the change from one data value to the next.
and as explained above, 27 was added or subtracted to the data when the
change was greater than = radians. However, the width of the transition
zone, which can be several degrees wide in a practical detector, caused
erroneous outputs near the discontinuity and slowed the rate of transition
through the discontinuity. This increased the number of unwrapping errors.
Acceptable results were obtained by this method only when the wrapped

phase was changing slowly. More involved phase unwrapping algorithms
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have been proposed®!*? that may improve the unwrapping process when a
single phase detector is used, however, the methods that are described below

using two detectors eventuzlly led to acceptable results.

In order to lessen the unwrapping problems created by the transition
zone, two separate phase detectors were used. The response of each detector,
V, and V), was shifted in phase by = radians with respect to the other as
shown in figure 5.4. A threshold at -V and +V, equivalent to a range of
7 radians, was set for each detector. When one of the detector outputs was

within the threshold limits the other detector output would be outside the

limits, and the transition zone could theoretically be avoided.

The algorithm used to unwrap the two phase detector outputs is
described by the Bow chart given in-figure 5.5. The algorithm selected V,
when its value was between -;\fm and V_ and switched to V, when outside
these limits. In this way the discontinuity was avoided, and the number of
unwrapping errors was reduced. In order to compensate for the switch {from

V, to Vy,, when V, was greater than V_, w radians was added, and when V,

m:*

was less than —V_ . 7 was subtracted. A similar correction was made for a

m’
switch from V), to V. The algorithm kept track of the number of 7 correc-
tions to add or subtract as the output switched back and forth between V,
and V,. The rate at which the phase is sampled of course must be high

enough that there is less than ™ radians of phase change between samples in

order to accurately unwrap the phase.

Although this reduced the number of unwrapping errors, there were

situations when both detector outputs were in their transition gone at the
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same time. This happened when the detectors were near the threshold limits.
While one detector was within the threshoid Jimits the other was slightly out
of the limits. 1f the phase stayed n=ar the threshold for several data samples,
the detectors typically made several transitions through the threshold area

causing occasional unwrapping errors.

5.2 O-m Phase Detector

Another type of phase detector that had a Jinear response for only =
radians was used to avoid the transition zone problem. Two separate detec-
tors were also required in order to unwrap the phase data, but in this case
the responses were shifted by /2 radians with respect to each other. As
shown 1p figure 5.6, each detector was implemented with a logical AND gate
and LPF averaging circuit. The inputs were amplified and clipped with
PLL’s to produce square waves. Each PLL was adjusted so that a 90 degree

phase relationship would exist between the two phase detectors.

The phase detector response is is shown in figure 5.7. The phase detec-
tor response alternated between a positive slope and a negative slope every w
radians. The desirable feature of this phase detector is that, unlike a zero to
27 phase detector, there are no discontinuities in the response. Phase data
was measured and processed in two steps. First, two equivalent zero to 2w
wrapped phase detector responses like the ones shown in figure 5.4 were cal-

culated {rom the two zerc to m phase detector outputs using the algorithm.
if V,>0 or V,=0 then
V3=V1+VD

Vy=V;-Vp



Figure 5.6 ~ O-m Phase Detector
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it V,<0 then
Ve =-V-V

The wrapped phase data was then unwrapped using the same digital process-
ing algorithm that was used for the two 0 to 27 detectors described by the

flow chart given in figure 5.5.

The advantage to using the 0 - 7 detectors was that the discontinuities
would be narrow as shown in figure 5.4 rather than wide as shown in figure
5.3. However, if the phase shift between the two detectors is not exactly 90
degrees, there will be a finite width to the transition zone of the equivalent 0
- 27 detectors and unwrapping problems similar to those with the other

phase detectors will occur.

5.3 Frequency Dividers

If the maximum number of phase upnwrappings that are required is
known, then the 100 kHz heterodyne frequency can be reduced by a set
amount using frequency dividers, and the upwrapping problem can be
avoided. The phase will be divided at the same ratio, and unwrappings will
not be necessary as long as the unwrapped phase never exceeds the division
ratio times 27 radians. Disadvantages of this method are that the resolution
of the phase measurement is also reduced by the division ratio, s good esti-
mate of the maximum phase change is required prior to the experiment, and
very large phase errors will occur when the signal is temporarily obscured by

noise. Without the frequency dividers, the noise produced only a temporary
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loss of data and no permanent phase errors were added.

Phase data was taken using frequency dividers with division ratios from
4 to 256. Examples of data taken at division ratios of 32 and 128 are shown
in figure 5.8a and b respectively. Phase errors due to noise occurred at ran-
dom and resembled magnified unwrapping errors equivalent to several muiti-
ples of 2mw. In addition, with the_divide by 32 circuit, the phase occasionally

exceeded the 32 tumes 27 phase detector limit causing additiopal errors.

The origin of the phase errors is described in what follows. Considering
a bistable multivibrator used to divide the frequencv and the phase by a fac-
tor of two, one complete period of the input represents a half period of the
output. If one cycle is missed at the input, a 180 degree phase shift is
artificially added to the data. The error will occur each time one detector
suffers a loss of signal for an odd number of cvcles of the input and the other
for an even number of cycles. Frequency division by amounts other than two
causes the same problem and an unknown number of phase errors, which
appear as step changes in phase, are accumulated in the unwrapped data.
The errors cap represent extremely large phase values especially when large

division ratios are used.

The problem was corrected by using a more complicated frequency
divider that employed a phase locked loop with a frequency multiplier in the
toop. The controlled oscillator in the loop was multiplied in frequency and
locked in phase with the incoming signal frequency. The controlled frequency
was used as the frequency divided output and was synchronous with the

input as long as the loop was locked. Schematics of the frequency divider
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with the phase locked loop are provided in Appendix D.

5.4 Frequency Detectors

Phase data was also obtained Ly recording the received frequency and
numerically integrating the data to obtain phase. Phase unwrapping was not
needed since frequency data is continuous within the dynamic range of a {re-
quency detector. The frequency detector must be extremelyv linear, have very
little drift, and have good semsitivity so that 2 resolvable output for very
small {requency changes 1s provided. A detector that meets these require-
ments (figure 5.9) consists of a monostable multivibrator with a pulse dura-
tion time slightly less than the repetition period of the heterodvne signal.
The average of the multivibrator pulses is directly proportional to the instan-
taneous frequency value. The output was digitized and recorded on the mag-
netic tape. The integration of the frequency data can be done before or after
the data is recorded. Because large phase angles were accumulated by the
optical signals, it was only practical to integrate lhe data after it was

recorded. Simple rectangular or trapezoidal integration algorithms were used.

The only significant problems encountered with this detector were a
very slow drift in the output due to pulse duration time variability and
matching the response curves when two detectors were needed for phase
difierence measurements. These problems were not serious when measuring
the {requency at ome poinf since only one detector was used and very slow
frequency changes were not measured due to the limited recording times.
However, measuring the phase difference between two receivers was not possi-

ble using frequency detectors because the two detectors could not be matched
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well enough. Any differences in their response represented a frequency error.
When the frequency data from each detector was subtracted and integrated,
the desired phase difference information in the data was totally obscured by
the integrated frequency detector errors. Unless a technique is developed for
measuring the frequency difference directly, or the {requency detectors can be

more closely matched, the frequency method is not suited for phase difference

measurements.

One-point frequency and phase data were taken at the same time in
order to compare the unwrapped phase produced by each. Figure 5.10 shows
the integrated frequency and the unwrapped phase versus time. The
differences between them is most likely due to the inability of the phase
unwrapping algorithm to correctly unwrap the occasional rapid and large

phase changes between sample points.
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CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, the results of phase and frequency measurements using
an optical heterodvne system in the open atmosphere with Isandblasted
aluminum targets will be reported. The tests were performed at an atmos-
pheric field site near St. Paul, Oregon using the single laser system. The two
laser system was operated only at the OGI facility and did not provide phase

or {requency data.

Data taken at the St. Paul facility are compared with the models for
unwrapped phase and frequency given in chapters 2 and 3. The data indi-
cale kow measurements of the unwrapped phase difference at receiver points
with an efective spacing of 8.6 millimeters can be used to distinguish
between targets of different roughness at 2 range of 1000 meters. The data

also indicate that the unwrapped phase and phase difference received from

the remote target can predict turbulence levels in the atmosphere.

Unwrapped phase rather than the wrapped phase was used exclusively
and was obtained from either frequency or wrapped phase data as explained
in chapter §. Unwrapped phase was needed because the small speckle phase
variations caused by microscopic farget roughness were obscured by phase
variations greater than 2w that were produced by target motion and macro-
scopic target surface irregularities. Phase variations due to turbulence were
sometimes greater than 27 and could not be measured with the wrapped

phase. The speckle phase variations and the phase wvariations due to
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turbulence could be extracted from the unwrapped phase using a combina-

tion of high pass and low pass filtering.

In the first sectior, vhe problem of separating the effects of speckle and
turbulence in the phase data will be explained and the need for data filtering
will be justified. Next, parameters of the experiment that predict the vari-

ance of the measured phase will be summarized.

Following that, the standard deviation of unwrapped phase difference
versus the r.m.s. target surface roughness will be reported from the results of
Peacock®®. Histograms of the unwrapped phase data will be shown to resem-
ble Gaussian functions after the data is filtered to extract speckle phase vari-
ations. These results will be supplemented by showing the dependence of
unwrapped phase deviations on errors that resulted from unwrapping the
phase data and on the cut-off frequency that is used to filter the data. Com-

parisons will be made to phase deviation predictions given in chapter 2.

Next, the standard deviation of the unwrapped phase obtained from fre-
quency data and filtered to extract the turbulence phase variations measured
at one receiver point will be compared to calibrated atmospberic turbulence
levels and the predictions of chapter 2. Histograms of unwrapped phase
filtered to extract turbulence variations will also show a close resemblance to
a Gaussian function. Filtered unwrapped phase difference data wil! also be

compared to measured turbulence levels.

6.1 Data Filtering

Most of the results to follow depend on selecting an acceptable method

for filtering the phase or frequency data. The data are affected by both
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macro-scopic and microscopic target features, temperature variations and on
the target motion. Microscopic target surface variations cause speckle and
occur on a scale of about the same order of magnitude as the laser
wavelength. Microscopic surface variations were produced by sandblasting or
flame spraying the aluminum targets to make them diffuse. Macroscopic tar-
get. variations vary on a scale much larger than the laser wavelength and
were caused by non-uniform target thickness and surface curvature in the
targets. Phase changes due to microscopic effects extend to relatively high
frequencies, however, the macro-scopic features produced only low frequency
phase changes. Two other effects, target motion and slow variations in the
refractive index of the atmosphere caused by changes in the air temperature,
produced phase variations only at low frequencies, Target motion was due to
an inability to fasten the target tight enough to prevent the wind from

deflecting the target.

Figure 6.1 shows macro-scopic eflfects in the unwrapped phase data.
Unwrapped phase data is shown before and after the target was supported
by tightly cinched wires. Phase oscillations due to wind activity exciting the
natural damped oscillation of the target can be seen in each trace. The
tightening of the target had two major effects on the osciliations. The first
effect was to reduce the amplitude of the oscillations {rom more thap 32
cycles (200 radians) peak to peak to less than 8 cycles (50 radians) peak to
peak. The second effect was to increase the frequency of oscillations from

about 5 Hz to 20 Hz.
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The very low frequency phase changes are due to macro-scopic target
features and also on refractive index changes in the atmosphere caused by
temperature gradients. The phase change over a path length of 2000 meters.
representing the two way coptical path, was calculated to be 1120 radians per
degree centigrade. Therefore a temperature change of only 0.1° represents a

phase change of 100 radians.

Two different methods were used to filter out the eflects of the oscilla-
tions and the macro-scopic target characteristics in the data. In one method.
a digital Fourier transform (DFT) of the data points was generated. Data
points of the spectrum were altered according to the flter characteristic

desired. Then an inverse DFT was generated to obtain the filtered data.

When data lengths were longer than 2500 points it was difficult to per-
form a DFT. For these cases a running point average was subtracted from
the data to produce a high pass filter characteristic that had 2 more gradual

roll off than with the DFT method.

A major problern in filtering the data was the choice of appropriate
cut-off frequencies. To help select the cut-off frequencies, the frequency bands
covered by the speckle and turbulence data were estimated. Both speckle

and turbulence data theoretically extend to d.c.

Figure 6.2 shows typical spectra of the one-point unwrapped phase and
two-point phase difference. The majority ¢! the phase information is at low
frequencies. This is especially true of the one-point data. The normalized
power spectrum for the phase of a point source propagating through a tur-

bulent atmosphere assuming a Von Karman spectra of C,f is given by®!,
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where Vo is the transverse wind speed, L, is the outer scale of turbulence
Vo
and { is the frequency. oL represents the high frequency cut-off. The
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laser height above the ground was about 1 meter and is an estimate of the
outer scale. Therefore, the high frequency cut-off is less than 1 Hz for wind
speeds up to 10 meters/sec. Consequently, the phase variations due to tur-

bulence are concentrated at frequencies below the target motion frequency.

A low pass hlter with a cut-off frequency set slightly below the target
motion frequency was used to extract turbulence information from the phase
data. A high pass filter was also needed to remove very low frequencies since
a finite sample length prevented data from extending to d.c. The cut-ofl {re-
quency was chosen to be approximately tep times the reciprocal of the max-
imum time of a data set. This gave a reasonable average of low {requency
data within any set. Five pole filters producing 100 dB per decade attenua-
tion characteristics were used to achieve good selectivity since the desired

information was contained in a parrow band of frequencies.

Speckle frequencies cover a much wider band of {requencies extending to
re]ative;y high frequencies. The highest speckle frequency can be estimated
by determining the minimum time for a change in the speckle pattern at the
receiver. The minimum time depends on the rate of beam wander on the
target and the target correlatjon length and can be estimated by dividing the

correlation length by the transverse wind speed. The highest frequency will
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be the reciprocal of this time. Typical limiting values for correlation length
apd a wind speed are 50um and 5 meters/second respectively. However.
when taking data for the purposes of measuring the speckle, the wind was
usually less than 1 meter/second so data rates greater than 20 kHz were not

expected.

The maximum available sampling rate was 7.15 kHz, and the highest
recorded frequency was set accordingly to 4 kHz. Therefore, some high fre-
quency speckle information was lost. The sampling rate was slightly less
than the Nyquist rate of twice the highest {requency, so a small amount of
aliasing 1s expected. To extract the speckle information, & 10 point running
average was subtracted from the unwrapped phase difference data. This
simulated a high pass filter with a cut-off frequency of about 114 Hz. The
cut-off frequency had to be set well above the target motion frequency since

the running point average filter was not very selective.

A sample of the unwrapped phase data before it was filtered is given in
figure 6.32. It is evident from the figure that it was impossible to eliminate
all of the unwrapping errors. The target motion and macro-scopic target
variations caused rapid and violent phase changes which made phase
unwrapping very difficult. Unwrapping errors were attributed to an
insufficient sampling rate and the inability to take simultaneous samples of
both phase channels. Figure §.2b shows the same data set after phase
changes greater than m radians between adjacent samples were removed.

Since the standard deviation of speckle phase was expected to be less than 1

radian, changes greater than = radians represent more than three standard
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deviations from expected phase deviations. This did eliminate most unwrap-
ping errors, however, more complicated algorithms for unwrapping the phase
data or for correcting the unwrapping errors may be more effective in

preventing unwrapping errors.

Slightly larger phase variances due to speckle and turbulence might be
expected than js shown by the data due to the loss of information in the
filtering process. On the other hand the inability to remove unwanted phase
variations may in {fact produce phase variances larger than expected. Conse-
quently, some of the conclusions that can be drawn from the data are
compromised by the uncertainty of the origin of the phase variations because
of imperfect filtering. Nevertheless the indications are that the filtering was

able to separate the various effects reasonably well.

8.2 Laser Beam Properties and Target Parameters

Figure 6.4 summarizes the laser beam propagation to the target. The
target was situated 1 km from the Jaser source and receiver. A 3x and 10x
beam expander were used to produce an overall laser beam expansion ol 30x
and a beam radius of 36 millimeters at the exit lens of the transmitter. The
laser beam size was adjusted at the 10x bearn expander to produce a max-
imum average signal level at the receiver. Maximum receiver level is
achieved when the beam diameter on the target is a minimum?®’. Originally

it was thought that adjustment of the beam expander could produce a waist

of the laser beam at the target.

However, it was subsequently determined that it was impossible to pro-

duce a waist at the target under the conditions of the experiment. The
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conditions that would be necessary to produce a minimum radius at the tar-
get were calculated. The minimum beam radius at the target was found to be
03.6 millimeters when the beam was focused at a distance of 130 meters from

the beam expander.

Sandblasted aluminum targets of diflering surface roughness were used
to test the ability to distinguish surface roughness by phase difference meas-
urements. 30,16 and 8 grit sandblasted aluminum targets were produced and
measured for r.m.s. surface roughness and surface correlation length using a
calibrated laboratory profilometer®3. After taking some of the data, the 30
grit target was coated with a flame spray in order to produce a rougher sur-
face than was possible by sandblasting. The rougher surface made it difficult
to measure with the profilometer, and although the surface roughness was
measured, the correlation length could not be measured. A fifth target, called
a standard target, was permanently situated at the field site and could not be
measured. It’s surface roughness is estimated to be on the order of the 30
grit target roughness. Table 6.1 summarizes the results of the measurements

made using the profilometer.

R.M.S. roughness varied from 4.8 pm for the 30 grit target to 39.5 um
for the flame-sprayed target. The phase standard deviations represented by
the surface roughness measurements are computed using equation (2.6) {from
chapter 2 giving a phase deviation range of 3 to 24 radians at the laser
wavelength of 10.6pm. Correlation lengths ranged from 42.9 pm to 96.4 um
for all of the targets except for the lame sprayed target which was not meas-

ured.



Table 6.1

from Peacock (33)

R.M.S. .
Target Surfasée Correlation
Type Helght Length

(Lm) (m)
30 Grit 4.8 42.9
16 Grit 8.1 50.0
8 Grit 12.2 96.4
Flame 39.5 —
Sprayed
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8.3 Phase Difference Measurement of Speckle

Figure 6.5a shows a typical example of phase difference datz before the
phase is unwrapped and figure 6.5b shows 2 histogram of the data. Large
transitions across the boundaries of the phase detector occur frequently. The
histogram shows two distinct peaks where the phase makes the transitions.
These transitions are due to macro-scopic target characteristics and to the
wind causing the target to vibrate and produce large phase changes. These
large pbase transitions dominate the wrapped phase data and microscopic
target characteristics of the data are hardly noticeable. Consequently.
wrapped phase distributions are not very revealing of target characteristics

and are useless in distinguishing between targets of different roughness.

On the other hand if the phase is unwrapped and appropriately filtered.
the histograms are approximately Gaussian and the variance depends on the
roughness of the target. In figure 6.6a. unwrapped and filtered phase
difference data is shown for the standard target. In figure 6.6b, a histogram
of the data in figure 6.62 is shown along with a Gaussian curve with a stan-
dard deviation of 0.02 radians. In the hgures, a running point average was
subtracted frem the unwrapped phase data to implement the high pass filter-
ing necessary to extract the speckle phase variations from the macro-scopic

effects.
Variance of Phase Difference versus Target Roughneas.

Peacock®® has shown that differences in surface roughness of sandblasted
aluminum targets can be distinguished from the high pass filtered unwrapped

phase difference measured remotely at a distance of 1000 meters. Figure 6.7
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summarizes his results. The highest recorded frequency was 4 kHz. Each set
of data contained 25,000 data points for a data set length of 3.5 seconds. A
10 point running average of the unwrapped data was subtracted in order to
produce a high pass filter characteristic of about 114 Hz cut-off. The data
was taken on two different days. On the first day the 30,16 and 8 grit sand-
blasted aluminum targets were used. Then the 30 grit targel was converted
to a Hame sprayed target and data was taken on the 8 grit 16 grit and flame

sprayed targets.

The phase variances plotted in figure 6.7 were obtained from Gaussian
functions that represented the data. A histogram of the filtered data points
was copnstructed, and because the histograms did pot resemble a8 Gaussian
curve for Jarge phase values, values -having a magnitude Jarger than 0.3R
radians were removed from the histograms and a Gaussian curve was selected
that produced the minimum average deviation from the histogram. It is the
Gaussian curve’s standard deviation that is plotted in the figure. It should
be pointed out that in producing the results of figure 6.7, unwrapping errors
like the ones shown in figure 6.32 were not removed from the filtered

unwrapped phase data. Heference 33 has details of these methods.

Using the data recorded on the second day of tests, the standard devia-
tion of the filtered unwrapped phase data after the unwrapping errors were
removed as shown in figure 6.3b, produced standard deviations slightly
higher than in figure 6.7. The filtered data was used directly without con-
structing histograms truncated to fit Gaussian curves but was high pass

filtered in the same way. This suggests that the truncation of the histograms
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leading to figure 6.7 had a similar effect as the removal of unwrapping errors

and lends more credibility to the data in figure 6.7.

In order to emphasize the need for proper filtering of the data, standard
deviations of the unwrapped phase before being filtered is shown in figure 6.8
as a function of target phase deviation. Extremely large phase deviations are
experienced which for the most part are due to the target moti§n and the
phase unwrapping errors that result from these large phase changes. In one
set of data where the wind speed was virtually zero, the phase deviation was

the smallest, even though the target surface was the roughest.

8.4 Comparison of Speckle Phase Measurements and Theory

It was difficult to predict the expected phase difference variations for the
conditions of the atmospheric field site. The relationships given in chapter 2
that predict speckle phase and phase difference apply to special cases that do

not accurately fit the experimental conditions.

The phase extent for the condjtional probability density ellipse of the
complex fields at one point given the complex field at a second point predicts
the phase difference standard deviation when the phase extent is small. In
this case the phase extent is approximately equal to the standard deviation of
phase differences and is valid when the observation point is in the far-field of
the diffuse target. With a laser bearn wajst radius of 33.4 mm, the Rayleigh
range is 300 m, and for a target range of 1000m, the receiver is in the far-

field.

Unfortunately, the theory applies only to the case where the laser waist

appears at the target, producing a wave with no curvature on the target.
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The laser waist was calculated to be 870 meters in front of the target so that
the beam would be diverging at a half-angle of about 0.1 milliradian with a
radius of curvature of about 975 meters by the time it reaches the target. In
the theoretical formulation, the waist radius along with the target surface
correlation length determines the effective number of scatterers on the target.
If the laser waist radjus is assumed to be at the target, the number of

scatterers would be incorrectly calculated in the formulation.

However, the correlation coefficient of the real components of the com-
plex fields at the two receiver points (y,) and the corresponding correlation
coefficient of the imaginary components (vy;) do not depend on the number of
target scatterers and only depend on the receiver separation, the off-axis dis-

tance of the receiver and the standard deviation of target phases.

When vy, and +y; are both equal to one, the fields are completely corre-
lated and the phase extent is zero. This indicates zero variance of phase
difference. When the correlation coefficients are both zero, the fields are
uncorrelated and the phase difference variance is the same as the phase vari-
ance at either point. In chapter 2 it was shown that for small phase vari-
ances, the correlation coefficient of phase differences is approximately equal
to \/\T)

The correlation coefficients are plotted in figure 6.9 versus the standard
deviation of target phase using a receiver separation of 8.6 millimeters. a
laser waist radius of 33.6 millimeters and a total path Jength of 1870 meters
equal to the distance from the laser waist to the target plus the distance from

the target to the receiver. The correlation coefficients are shown for the on-
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axis case and also for cases where the receiver is off the optical axis of the
lagser. The figure shows a high degree of correlation between both the real
and the imaginary fields for all but very smazll target phase deviations. When
the receiver is slightly off-axis the correlation coefficients are about the same
value and approximately one for all target phase deviations. Consequently.
the phase difference standard deviations are expected to be much smalier

than the phasé deviatjons at either point.

The expected phase deviation at either receiver point was predicted
assumning the receiver was in the far-field of the target. In this case the single
point standard deviation of phase is 0d>/\/§, where N is the pnumber of
scatterers and o4 is the standard deviation of target phase. Using a beam
radius of 93.6 millimeters on the target and a target correlation distance of
100 pm, the expected single point phase standard deviation is 04/936 or 25
milliradians for the flame sprayed target. The single point standard devia-
tion of the speckle phase was measured from integrated frequencyv data
recorded with the flame sprayed target. The data was filtered using a 5 pole
high pass filter with a cut-off frequency of 200 Hz to remove the large phase
oscillations of the target motion and other low frequency eflects not associ-
ated with speckle. The speckle phase deviation was measured in 8 sets of
data with and average value of 56.9 milliradians. The standard deviation of
the measurement was 46.3 milliradians. When the largest and smallest meas-
' urements were eliminated, the average and standard deviations were 48.6

milliradians and 24.4 milliradians respectively.

The other special case that predicts the expected phase difference stan-
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dard deviations assumes that the one point speckle phase is fully developed
3o that the complex field at each receiver point is circularly Gaussian. In this
case the phase difference variations should have no dependence on the target
phase deviations which we know not to be the case. In the far-field, the one

point fields are not circularly Gaussian, so this formulation does not apply.

It 3s concluded that some change in the model is needed to predict the
phase difference variations from the experiment. However, the high fre-
quency unwrapped phase difference deviations are clearly dependent on the

target phase deviations and the target surface roughness.

8.5 Measurements of Turbulence Phase

The upwrapped phase data should be able to predict the atmospheric
turbulence levels. Unfortunately, the "macrostructure of the target and the
target motion interfere. The microsurface roughness is not a problem for
measuring turbulence since these irregularities produce high frequency eflecis.
These macro-surface irregularities in the surface prefile produce much lower
frequencies and zlong with the effects of target motion, interfere with the

turbulence phase measurement.

Nevertheless, various fltering methods were used that appeared to
extract turbulence information from the phase and frequency data. Figure
6.10 shows the relationship between the standard deviation of integrated fre-
quency as a function of the measured turbulence levels. Target motion and
macro-scopic target effects were attenuated using a low pass filter and a high
pass filter was used to average out the low frequency data. Five pole filters

with an attenuation of 100 dB per decade were used for both the high pass
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and Jow pass filter. The 3 dB cut-ofl frequencies were 0.5 Hz and 5 Hz.
Each data set represents 30 seconds of data and 2500 data points. Figure
6.11 shows a typical histogram of the fAltered unwrapped phase showing a
close resemblance to a Gaussian curve with a standard deviation of 10 radi-

ans also shown in the figure.

The data in figure 6.10 show reasonably good agreement with theory.
The square root of equation (2.23) is plotted along with the data assuming an
L, value of 1 meter. A factor of 2 is included in the equation to account for
the two way path. Three out of the eleven sets used to construct figure 6.10
had extremely large phase variances well above the norm of the other sets. A
linear regression of the other eight points is shown in the figure. Extremely
large phase jumps which can not be explained by normal atmospheric effects
were experienced in the three sets that were excluded. They are possibly the
result of some unusual laser activity such as a loss of coherence due to mode

shifting in the laser.

Two point unwrapped phase measurements should also show a depen-

0.14,33,34 have

dence on turbulence levels. Phase difference measurements
already been shown to agree with the theoretical predictions of (2.41). how-
ever, in these instances phase differences were measured over a one way path

rather than with reflections from a remote difluse target.

Figure 6.12 shows the standard deviation of unwrapped phase difference
as a function of measured turbulence level compared to the curve predicted
by the square root of equation (2.41). 5-pole low and high pass filters were

also used to remove unwanted effects in the data. Since the sample lengths
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for the unwrapped phase data were only 4.2 seconds, the high pass cut-off

frequency was raised to 2 Hz.

8.8 Applications of Unwrapped Phase Measurement

Figure 6.1 dramatically shows the effects that the motion of the target
had on the received unwrapped phase and figure 6.7 indicates how surface
roughness can be determined from the unwrapped phase. It seems obvious
that measurements of unwrapped phase will be useful in determining certain
features of 2 remote target and its motion. Information about target motion
and vibration can be obtained directly from the unwrapped phase or from

35,38 1t may also be pos-

the power spectra of unwrapped phase or frequency
sible to determine the wind activity from the unwrapped phase since the
wind can produce the target motion. It should be empbasized again that the
frequency or unwrapped phase is necessary for this. The wrapped phase con-

tains virtually no information about the target or the atmosphere unless the

total phase deviations from all sources combined is less than about 1 radian.

It seems very likely that the measurement of unwrapped phase will be
useful in determining vibration frequencies and eccentricity of rotating shafts
or machinery from a remote location. The phase of a laser is extremely sen-
sitive to minute propagation path changes and has already been used to

37-40

measure optical surface characteristics in a Jaboratory environment and

- in the atmosphere®®.
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APPENDIX A

AMPLITUDE STATISTICS

In this appendix, the amplitude and intensity probability density func-
tions for the speckle and turbulence models of chapters 2 and 3 will be
presented. Most of the intensity distributions were taken directly from the
literature, and and in several cases they were converted to the corresponding
amplitude probability density functions. For the two point functions and also
for the case of speckle combined with turbulence, only fully developed

speckle is considered.
One Point Probability Density Function of Speckle Amplitude
Tbta.lly Diffuse Target

The one point amplitude and intensity statistics of speckle in 2 vacuum
are based on the joint Gaussian probability density fupction of (2.5). Using
the change of variables defined by 1 = A? = X* + Y? and 8 = tan™'(Y/X),

Uozumi and Asakura® give the probability density function of intensity to be,

214t
r 1 (N
= e’’df Al
| (A1)
where
2 .2 -2 92
| [ cos 28 L Sin S - <X~2?~cosﬁ+ <Y2> siné 1724 <Z>&>2 4 <\>2
20, 20, Oy ay 20, 20

which reduces? to,
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tanQ=0<Y> /0'3,2 <X>

and
I (s) is a modified Bessel function of order n

At the on axis point in the.far field of diffraction,

<U>=<X>=1"texp(-0%;/2)
<V>=<Y>=0
, exp(—202,)S_

0',2=cx 4Nz?
o4 exp(-20%)S,
=0y = 4Nz?
where
4n
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2, (20)(20)
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In this case, (Al) and (A2) reduce® to,
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X [10(81)10(52%“2 g) In(31)1n(82)] (A3)

where

Is= < U>?is the mean field squared or the mean intensity
o, is the variance of the real component and
0, is the variance of the imaginary component of the field

Using the change of variable, I=A’ in (A3) and multiplying by

dl/dA=2A, the probability density function for amplitude becomes,

A2+%Is]]
[¢2

C.T;
r

A 1 1 1
A)= exp [—-— | |—+—
p( ) ri [ 4 [[Ur2 0i2

x {zﬁ{s;uo(s?m 1 (s, )L (sy)

n=}

and

Fully Developed Speckle

For the fully developed speckle case, <U>=0, 0, = g; = 0. Conse-

quently, s, = s, = 0 and (A4) reduces to,

p(A)=2exp [—jj—] (A3)
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Equation (A3) is the Rayvleigh distribution. The corresponding density func-

tion of intensities is given by the negative exponential distribution,

<I> <I>

where <I> is the mean value of intensity = o

1 -1
p(l}=— Texp [—] (A6)
Partially Diffuse Target

For the case of a partially diffuse target, with circular Gaussian statistics
for the random portion, the probability density function of amplitudes is

described by the Rice-Nakagami distribution!?!

where
I, is 2 modified Bessel function of zero order.
B is the constant mean value of the complex field amplitude
0’2=0'r2+6_-\2“‘—"20‘r2=20'12
is the combined variance of the real and imaginary components of the

random part of the field.
The beam ratio parameter is defined by,
r=1/<1 >=B/o’ (2.14a)
where I, is the intensity of the coherent component, and <I;> is the

mean intensity of the random part.

As o becomes very large relative to B, circular Gaussian statistics are

approached and the amplitude distribution reduces to the Rayleigh
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distribution given by (A5) and the intensity distribution becomes the nega-

tive exponential distribution of (A6).

Alternately as o approaches zero, the distribution approaches a delta
function occurring at the amplitude B. This situation corresponds to a per-

fectly smooth target.

Interestingly, (A4) also reduces to the Rice-Nakagami distribution of
(A7) with a beam ratio parameter of 1,/20,” when o, and oy are equal and
I,=<U>? is not equal to zero. However, it can be seen from equations
(2.3c) and (2.34d) that when the target is totally diffuse with o large relative
to 7, the speckle phases have an even distribution, o, and oy are equal and I,
equals zero. This is the fully developed speckle case and the amplitude is
described by the Rayleigh distribution of (A5). Therefore, the totally diffuse
target will never produce the Rice-Nakagami distribution for amplitudes if
the target surface has an even distribution of target surface heights except
for the special case of a Rayleigh distribution produced by fully developed

speckle.

One Point Probability Density Function of Turbulence Ampli-

tude
Single Scattering

For the case of single scattering, the probability density of amplitudes ic
well described by!'® the Rice-Nakagami distribution of (A7), where the beam

ratio parameter is defined by (2.14a).

Multiple Scattering
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For multiple scattering, assuming a single propagating path, since the
probability density function for x = In A is Gaussian, the distribution for

the logarithm of the amplitude will also be Gaussian and*?,

exp [_M] (A8)

1
Ply)=———
b0 o, Vom 20’3

X
or

(lnA— <InA>)? ] (A9)

2054

P(lnA)= ;\/Q—exp [—

TN

By a change of variable and multiplying by dlnA/dA, the probability

density function for the amplitude is found to be,

P(A)

L —exp [— (nA-<loA>) ] (A10)

- Aam\/ 2T 201311\
The intensity distribution will also be lognormal'® and can be obtained
using the variable substitution I=A” in (A10) or In T = 2 ln A in (A9). Using

the latter substitution in (A9) and multiplying by dInA/dInl = 1/2 gives,

(%—<lnA>)2

P(lnI):#exp -
™

2000 2(7]1‘&
2
_ 1 exp _ (Il 2<21nA>) (AL1)
Ojpa ¥ 27
2 InA 2 80]_nA

Multiplying {A11) by dlnl/dI = 1/7 or alternately using the substitution

I =A%in (A10) and multiplying by dA/d] = 2—;: and using the substitution

I=A? gives,
. (%—(lnA>)2
p(l)= exp |—
( oy, V2m 20 4
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1 . [_ (lnl-2<1nA> ) ] (A12)

=——"7—¢6Xp
2IUIDA v QTI'

Defining o1y=20),4 20d using <Inl> = 2<InA>, (All) and (A12)

80a

can be rewritten as,

1 (lnl—<Inl>)?
P(lal)=——7—exp |- A13)
(o] Oppr v 2m [ 201 ] (
and
1 (In]— < InI>)?
p{l=——F—exp |- Al4)
0 loy Ven [ 20k (

where oy, is the standard deviation of the logarithm of I and <in I> is
the mean value of the logarithm of 1.

The log amplitude variance is given by ag

0 2=g?, ,=0.124C2Kk"/°L/® (A15)
for a spherical wave. For a plane wave, 02x is given by (Al5) with the con-
stant 0.124 replaced by 0.307, and for the beam wave case, the constant

varies between these values depending on the propagation distance.
Multiple Paths to Receiver

For multiple paths adding together at the receiver location, the complex

field will be,

N
E=B+ 3 U;+iV; (A16]
=1

where B is the unscattered portion of the field which is assumed to be
rezl. Each U; and V; will have a distribution described by the lognormal dis-
tribution, and the resultant amplitude and intensity distributions are

expected to also be lognormal.
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Two Point Amplitude Statistics
Two Point Amplitude Statistics for Fully Developed Speckle

Two point statistics of speckle amplitude and intensity have been found
for the case of fully developed speckle in a vacuum. The joint probability

density function of intensities is given by!,

I,+1, ]
exp |—
1, 1,) <I>(1-1p!?) 21u! VI, ] (A17)
pi(ly,L5)= 7
Rt <I>1—1pi?) <I>(1—Ipl?)

where p is the mutual coherence factor defined by (2.282). The magnitude of

! can be written as,

lpi=
V<> <>

and [ is the mutual coherence function defined by,
I=<E,E,>
E, and E, are the complex field values at points 1 and 2 respectively.
< > denotes the ensemble average and * the complex conjugate.

Using the change of variables, ;=A} and I,=A; the corresponding two

point density function for amplitudes becomes,

[ A4 Al
exp |—
<I>(1—1p1?)
<I>H1=1w1?)

Pa(A),Ay)=4A A, (A1R)

21wl A A,
Iy —

Under the limiting conditions where the complex coherence factor |p!
js either zero or one, the equation reduces to expected results. For instance if
w1 is zero, there is no correlation between the two intensities and the inten-

sities are independent. For this case the density functions reduce to,
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exp | -—— -
P < 1P 1T <

pi(Ly,L)=pi(1,)p(L,)= > (A19)
<I>
and
PA(Aer2)=PA(A1)PA(A2)=
2A Al |2A A2
21 exp __1? 22 exp ——-32- (A20)
81 o8 o) Oy

On the other hand if I Wi is one, there is perfect correlation between the two

intensities and the density functions become,

PI(11>I2)=91(11)6(I2”11) (A21)

and
PA(ALAL)=DA(A))3(Ay—A) {A22)

Two Point Amplitude Statisticsa of Turbulence

The joint probability density function for the intensities at the two

receiver points for a point source propagating in turbulence is given by',

M-
4(1112) 2 MM-i-l
P(Il‘12)= M—1 M1 (A23)
FMp, * (1=p)(<I><L,>) 7
With the change of variable A=\/I_,
16A, A (A A,) MMM
P(A1!A2)= M—1 Mo (‘AQAI)

M, * (I=pd(<L><L>)
where M=<x>? / 0,2 and <x>= the mean value and of = the variance

of intensity and p, is the complex coherence factor for a point source pro-

pagating in turbulence.



For a plane wave propagating in turbulence I' is shown by to be!?,

I'=I,exp(—1.47C2k*LAx/%)[1-0.805(Ax/L,)/?|

when

VAL << Ax
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(A25)

A, is the separation distance between the two receivers and L is the

length of the path.

Amplitude Statistics for Fully Developed Speckle in Turbulence

The probability density function of intensity for fully developed speckle

propagating in turbulence has been determined by Holmes and Gudimetla!’

to be,

M-1

= 1/2
o[ M1 M
Pil)=2 [ <x> ] (M) Ky [2 [ <x> I] ]

Substituting I = A® for I in (2) and multiplying by dI/dA gives,

PA(A)=P}(A%)(2A)

and

M

PA{A)=2
AA)=2| =

M 1/2
A? ]2A
<x>

AM—l
2
P M- [

which equals

M | AM M)
PA(A)=4[ JHM)KM“ [QA[<X>] ]

or

M 1/2
i (e 5]

X

M has been replaced by <x> /gl in selected places.

(A26)

(A27)

(A28)

(A29)
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The Two Point Probability Density Function of Amplitude

for Fully Developed Speckle in Turbulence

The two point density of amplitudes can also be obtained from the
equivalent density function for intensities using the same variable change.
The joint density function of intensities for fully developed speckle at two

points has been determined by Holmes, Gudimetla, and Elliot*® to be,

M1
Pa,s(ll)IQ)’__ M1 M+1 (A30)
CMp, 7 (1=p)(1—p M (<> <> ]
54N
- - I.1 2 MS+N S N
% E 2 ( 1 2) Ps Ps
N=0 $=0

84N
T(N+DI(N+M)THS+1)(1=p,) S TN (1—p,) SN (<11> <I,> ] :

MI, 1/2 M, 1/2
ML <> (1-pa)(1—p0) STMINT <Bs opad(1-py)
where M and p, have the same meaning as before, p, is the complex coher-

ence factor for speckle in a vacuum and K is a Bessel function. Substituting

A for Tin (A30) and multiplying by the Jacobian !JI=1dl;/dA;;! gives,
PA])AQ(AI ,A2)=P%,(A12A22)(4A1A2)
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16A,A,(AZAZ) 2 MMH!
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MA 2
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and (A31)
16 AMA MMM
Paa, (AL Ag)= v
r Mirhl _ _ M A2 A2 2
Me, © (1-pa)(1—0,)" [ <A > <A;>
= x (A1A2)S+NMS+NpsSpaN
LD S+N

N=0 §=0
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M 1/2 M 1/2
x Ko _wo 2A Ke_ 2A
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APPENDIX B

DERIVATION OF THE WEAK SCATTERER VARIANCE

Uozumi and Asakura?® have shown that the probability density function
for wrapped speckle phase in the far diffraction field on the axis normal to a
diffuse target assumed to have a Gaussian distribution of discrete scatterers is

given by

2
Pe(6)=—j— [1+§\/;exp(§2)[l+erf(§)'|]exp [— <2b> ] (B1)

of
where

— LIl
‘r=c0528+n251n26

[= <U>cosb
o Vor
T}=0'r/0'i
<U>=Nexp(—02/2)
o/ =(N/2)[1+exp(~204)~2exp(~0 )|
o' =(N/2)[1-exp(-203)]

N = number of scattered fields at the receiver

04 = standard deviation of target scatterers

<U> and o, are the mean and standard deviation of the real part of the
complex field representing the speckle and o; is the standard deviation of the
imaginary part. The mean value of the imaginary part and the correlation
coefficient between the real and imaginary fields are both zero under the

stated conditions.
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Using the series approximation e* = I+x+x2/2+x%/3!4x*/4!+...... ,

1—03,-1-70;/12—0’3/4-% ce

2 2
n'=(o 2){
(o4 ( 1—0i+204/3-08/3+ < -

<U>? N | (~0l/2+04/8-05/48+...)

20} cs | 1—02+70i/12—al/4+ - - -

= VN/7 r l—ci/2+0£/8—0§/48+ S cost
o4 \/l—ci+7o$/12—0’£/4+ S

For valuesof o4y << 1,

. \/.TT
(= —NLcose

2

O
n'=04/2
<U>’ N
20 _0;

os
~r=cosze+-5—sin29

As long as o£<<\/l<T , zeta will be large compared to one, so the first term

in (B1) can be ignored and erf({) can be approximated by one. In that case

2
cos'B
N N -1
cos(B)V N/2n ( T )
Py(0)= s, exp | y
TgT l T4

cos(6)VN/2n [ -N sin’f
cos’y+ }

exp
0 |cos?0+(a2/2)sin0)*/? 202 (02/2)sin%e
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and with 04 < < 1,7 = cos’® so that

VN /924 —N
Po(8)= A 2; exp I\;tanQO
0 4C0s 0 204

Using the small angle approximations for tan 8 and cos 8 and the fact that
the numerator converges to zero faster than the denominator as 8 approaches
/2. when odz, < < N, the function becomes vanishingly small for values of B
> 30'(5/\/;1 and the functiop can therefore be approximated by the Gaussian

function,

Po(8)= L exp =6’
° 03\/511 20}
where
In the other extreme when 04 >>12and 0f >> N, n = 1,7 = 1 and.

{ and <U> are both nearly zero. Therefore,

Pg(6)=1/27 -8l
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APPENDIX C

Computer Proceasing Codes

Fortran 77

1. Program for reading the TK50 mag tape
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(s}

program tk50program

T4t e D ARALEP P PP L A AR A NOER ATV RGO NPRPYPSFRAAR B TA TP
Originated by Li-Bo Sur

Edited by Todd Cloninger. Doug Draper and John Peacock
Last Mod:fied: Sept 1891

RREE PSR ER TR R OATRNAP R P IR ACRERRARCTAR Py AT ARREYANFOPLAORD R

TBIS VERSION WRITES WRAPPED PHASE, UNWRAPPED PHASE OR
INTEGRATED FREQUENCY DATA TO THE DISK. INCLUDES INSITU DATA
ACCOMODATES UP TO THEREE CHANNELS OF DATA

NOTE that nr is used for number of recerds in main program
but as a data interval in some subroutines

PROGRAM SUMMARY

MAIN —----- program control
SUBROUTINE (sk) --- gkip ahead
SUBROUTINE (rw) --- rew:nd
SUBROUTINE (db) --- display s block of daza
SUBROUTINE (tp) ~-- copy Or process data from tape
SUBROUTINE (tph) --- process phase data
SUBROUTINE (tf) --- process fregquency data

OO0 0DDO0O000O0DDANOAANO0Oa0NANNDONNRD

integer tlu,tcesr,bn,fn,n
comRor is6n, bn,kk
Jogical eoff ,errf,eotf
character op*2

character devname+i$S
character+30000 B

write: = w»)
write(*,*} > This program copies dazs from a TKSOD tape to ',
C’a file in your’
write(#* =) ’‘directory that can be graphed.’
1011 write(e*,*)
writet», )

1 format(
_lox".I.IDI.l...."‘.l.l"!I..""‘.."l‘ﬂl‘.‘lﬁl‘ﬁ'/‘
-10x"’ e COMMAND LIST v/,
-10x'» *'/,
-10x’'= sk: skip nr records 2/
-10x"» Iw: rewind tape >/,
-10x"« db: display a header or block of data 2/,
-10x'* td: copy or process data from tape *
-10x'¥ en: exit progras * s,

_10x'\..DtnIttﬂtQlttnoo.dtlltntoih!i.a..ltl“nlhnunt')

2000 continue
tlua2
16En=10003

. 4 of ch/line ix the text
kke?72

« davice name
devname=’/dev/nratd’

d bn {8 the record size in bytee
bna2048
write(+«,1500) devname,bn,kk
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10¢0

33

828

145

155

format{x, 'The device name is ',al5,’,the buffer size is ‘,15
1,',",i14,'ch/line’)

itoestopen (tlu,devname,.falsge.)

print®,’ito=",ito

istmetstate (tlu,fn,rn,errf, ecff,eotf,tcer)
print*,tlu=',tluv, ‘tecer=",tcer

print*,‘errf=",errf, 'ecff=’',eoff, 'eotf=",e0tf
continue

print+ . 'Input op(rwv,skx,db,td,en), nr,(format 82,1i4)’
read(5,33,err=1000) op,nr

format({a2,id)

if (nr.eq.0) nr = 1

write(+, )

if (op.eq.‘db’') call db (tlu.,B)

if (op.eqgq.’rw') call rw (tlu)

if (op.eq.’sk’) call sk (tlu,B,nr)

if (op.eq.’td’) call td (tlu,B,nr)

if (op.eg.’?’) go to 1011

if (op.ne.’en’') go to 1000

ics=trcloseitlu)

write{«,«)

write{=,6=)

write(+,*)’Program Terminated! °’
write(«~,+)

etop

end

TP T ARA PSP O F AR EPRUP AN PR R P AV P AU P AT R ARG P NP REPOIT RO UGG P W

sukroutine sk (tlu,B,nr)

integer bn,fn,rn

common isen, bn,kk

character Be(») -

integer tlu,tcsr

logical eoff, errf,eotf

do 134 i=1,nr

1rd=tread(tlu,B{l:bn))

ist=tstate (tlu.fn,rn,errf, ecff,ectf, tcsr)
iggn=iggn+l

print+*,’block number is‘,rn,'fn=',fn,’ errf=",errf,’ @0ffs’ ecf?
if (errf) go to 144

continue

printe*,’block number is’',rn, fne’ , fn,’' ,errfe’ errf, ' ,ecff~' e0ff{
go to 145

continue

itcwtclose(tlu)

print=*,’{tc=’,itec

ist=tscate (tlu,fn,rn,errf,eocff, eotf, tcsr)
print*,tlum=’ tlu,’'tcsr=’, tcer
printe,'errf=’,errf, ‘eoffa’ ecff, ‘eotf=-",e0tf
{ito=topen {(tlu,devname,.falsge.)
printe,’ito=‘ ,ito

igt=tstate (tlu,fn,rn,errf, eoff, eotf,tcer)
print+*, ‘tlu=s’, tlu,’'tcere’' tear
printe,‘errfs=’,errf, "ecffa’ ,eoff,’eotf=',eotf
continue

return

end

e bdlduandaanddetRdestivuAaNtRasdfrtRecedronsnennRpReRNdodw

subroutine rw (tlvu)
integer tlu,tcsr,fn,rn
common {esn, bn,kk
logical ecff,errf,eotf
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2004

20

21
22

irw=trewin (tlu)

print#,’'irwe’ irw

igtetstate (tlu,fn,In,errf,ecff,eotf tcer)
igsn=0

print*,'errf=' errf,issn=",i58n

print+s,'you are at the beginning of the tape,i{ssn=', igsn,’

return
end

RPFA T IR U R EEARERAPIE P L F 2O TP O RRPEVPWIUN IR FTASP AP P ERRNT PR TR R RS

subrouvtine 4db (tlu,B)

integer tlu,tcer,bn,fn,rn,1,3,n,.1inul
common isEn, bn,kk

logical eoff,errf eotf

character B¥(¥)

character cnul®*l,cti*2

eguivalence (cnul,inul)

egquivalence (cti,ifc)

inul=0

do 67 kp=1,50000
B{kp:kp)=cnul
continue

print*,'Tnis option displays 2 header block’
printe,'or 1 block of data from the tape.’

irdetreadi2,B(i1:bn})
iBSN=185Nn+1
write(«,2002) (B(y:3+1),3=1,16,2)
write(*,2002) {(B{16+3:3+17),j=1,16,2)
write(*,2002) (B{32+j:3+33),j=1,16,2)
nadg
ctimB{1:2) .
if (ifc.ne.0) go to 20
do 17 i=1,17
wratel(«,2004) (Bin+j:n<jel),j=1,16,2)
n = np <« 16
continue
go to 22
do 21 1=1,17
write(*,2002) (B{nej:n+j+l;,3=1,16,2)
ne=n-=+ 16
continue
continue
format(x,8i6}
format(x,3282)
istwtstate {tlu,fn,rn,errf, eoff, eotf, tecsr)

print*, ‘record addrese is ’,rn,’', errfe’ errf,’ ,ecffes’ ecff

return
end

Rl e k2R eadi et nadPd e d vt RdRelRAaPPPRPEdApadd W

subroutine td (tlu,B,nr)

dizpension h(175000)

integer tlu,tcsr,bn,fn,rn,dcnum,inul , ifc
integer dcnum) ,dcnum2,h

real 4t,.t

common issn, bn,kk

logical eoff,errf,eorf

charscter Be(es) , ofilnam*l5, o0filnael*l5,ofi{linam2vls

character ofilnam3«i5,0p*3
character cti®2, cnul+l
equivalence {cti,i€c)
equivalence (enul,{nul)
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ftNa' ,rn
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1201

11

18

1?

inul=0

do €7 kp=1,50000
B(kp:kp)=cnul
continue

format(alh)
t = 0.0
{ml
yrd=tread/2 ,B(l:bn))
iagneiggn+l
ctiaB(1:2)
if (ifc.eq.0) go to 19
idata=0
do 11 3j=17,32,2
cti=Bl{j:j+1)
idatarsidata+ifc
continue
jdata=0
do 9 j=33,48,2
ctimB{j:3+1)
jdatasjdata+ifc
continue
wind = float((idata /B8-2048)%25.6/2047)
tigan = float((jdata/8-2048)+5.1175/2047)

get sampling interval (usec)
cti=B{5:86)

convert to millisec
dtesjifc,/1000.0
printe«,’'The sample time (dt) in me ie’
write(6,*) dt

print*,’' the maximum number of data points’

prant=*,’

print*,’ of the nag library routine for fft’

print~
printe, ‘number of channels =7’
cead(5,*) ichan
printe*, 'data interval per channel (msec)=?'
prints, ' !
print+*,’interval must be a multiple of the pumber’
print*,’ocf channels times the spample time’
read(5,*) samtim
print*, 'maximum timpe(sec)=?"'
read(S,*) tmax
nresgamtim/dt
mr=tmax*1000/dt
go to 5
ird=tread(2,B(1:bn))
issneigsnsl
cti=B(l:2)
if (ifc.eq.0.and.ichan.eqg.3) i=i-1
1¢ (ifc.eq.0) go to 19
do 17 '{=49,2048,2
cti=B({j:jel)
hii)=ifc
{af+]
continue
{if (i.lt.mr) go to 1B

printe, Type tf {f you want to integrate frequency data‘’
printe,'Type tph if you want to unwrap phase data’
printe,’Type tc if you want to copy data to a file’
read(5,*) op

if (op.eg.’tc’) qgo to 333

if (op.eq.'tf’) call tf (h,mr,nr,dt,samtim,wind,signa)

that can be filtered is 2500 due to limitations’



158

if (op.eq.’tph’) call tph (b,sr,nr,dt,samtim,wind,sigms)
go to 400

333 print=,’This option copies data from tape to your directory’
330 writel=,»)
2003 format(’Do you want to copy 1,2 or 3 channels? (1,2 or 3) '$)
write(*,2003)
read(=*,*,err=s330) dcnum
if (dcnum.eq.l) go to 3000
if (denum.eg.2) go to 4000

printe,’'Input filename for writing ch 1 (< 16 char.)’
read(*,1201) ofilnaml

printe*, ’ Copying frop tape to: ',ofilnaml

open (9,file=ofilnaml,status="unknown‘)

rewind 9

print*, "Input filename fcr writ:ing ¢h 2 (¢ 16 char.}’
read(*,1201: ofilnam?

printe*,’ Copying froe tape to: ',ofilnam2
open (8,file=ofilnam2,statug=’'unknovwn')
rewind 8

print<¢,’Iinput filename for writing ch 3 (< 16 char.}’
read(*,1201) ofilnam3

print*,’ Copying from tepe to: ’,ofilnam3

open (7,file=cfilnax3,status="unknown’)

rewaind 7

do 15 j=1,mr,nr
write{9,2002) t,h(j)
write{8,2002) tedt, hij+1}
write(7,2002) t«dt=2.0;h{)-2"
t=t+dt*nr ’
18 continue
go to 200

3000 contanue

2001 format('Which data channel do you want to copy? (1,2 or 3) '$SI
write(*,2001)
read(*,¢ err=3000) dcnum
if ((dcnum.ne.l}.and.(dcnum.ne.2).and.dcnum.ne.3) go to 30C0

print*, ‘Input filensme for writing (< 16 char.)’
read{*,1201) ofilnam

print®*,’ Copying froe tape to: ‘,ofilnam

open (9,fileepfilnam,status="unknown’)

rewind ¢

13 do 14 j=1,mr,nr
write($9,2002) t,h{jedcnum-1)
tat+dtenr
14 continue
go to 200

4000 continue
2004 format{’which two channels do you want to copy? ‘$)

print *, ’'Enter e&ach channel separated by a space’
write(*,2004)
read(*,*,arr=3000) dcnuml,dcnum2
1f ({(dcnuml.ne.l).and.(dcnuml.ne.2).and.dcnuml.ne.3) go to 400¢
{f ({dcnumZ.ne.l).and.(dcnum2.ne.2).and.dcnum2.ne.3) go to 4000
print*,'Input filename for writing’,dcnuml,’< 16 char.'’
read(*,1201) ofilnaml
print*,’ Copying from tape to: ‘,ofilnam]
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c
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open (9,file=cfi1lnaml,status='unknown’)
rewing 9

printe*,’Input filename for writing',dcnum2,’< 16 char.’
read{*,1201) ofilnam2

print*,’ Copying from tape to: ‘,ofilnam2
open (8,file=ofilnam2,statugs unknown’)
rewind 8

do 16 j=1,mr,nrt

write(9,2002) te+dt*(dcnumi-1),hij+decnuml-1)
write(B,2002) t+dt®(dcnum2-1),h(j+«decnum2-1)
tat+dte*nr

continue

continue
format(x,%8.2,i6)
1st=tstate (tlu,fn,rn,ecrf,eo0ff,eotf,tcsr)

print>, ‘block number 15 ’,rrn,', ercf=",ercf,’' ecff=’, eoff
close (7)

close (8)

¢lose (9)

continue

return

end
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subroutine tph (h,mr,nr,dt,samtim,wind,sigma)
This subroutine takes » phase vs time signal generated by :he
phase detector (new ?/88) and unwraps the 2 volt signal to
a 4v signal.

Writen by John Peacock 8-2-B88 and Doug Draper

dimension phil(50000),ph12(¢(50000),h(50000)
dimeneion x(5%000C,,t(50000)

integer chl,ch2,phil,.phi2,h,dcnuml,decnum?
real t,x,pi

character ofilnam*1$

format (als)

pi=3.14156927

This part of the program uses the two channels of phase data
that vary between 0 to 2.5 volts (or 0 te pi) and are 90
degrees out of phase. The data is then converted to

produce two channelg of phase data that range from 0 to 2p!
{or 0 to 5 velts) and are 180 degrees (pi) out of phase.

continue

format(’Which two channelt do you want to procese? ‘S

print =, 'Enter each channel(l,2 or 3) separated by & mpace’
write(*,2004)

cedpd(*,*,err=4000) dcnuerl,dcnum?

i¢ ((dcnumi.ne.l).and.(dchuml.ne.2).and.dcnuml.ne.3) go to 400C
if ((dcnum2.ne.l).and.(dcnum2.ne.2).and.dcnum2.ne.3) go to 4000

format(x,£8.2,16)

do 30 {=],mr,nr
chl=h(iedcnual-1)
ch2sh{iedcnum2-1)

convention {5 each channel goes between 0 to 2.5 volte or
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digitally 2048 to 3072.

Eowever the detector may not be

160

completely acurate £6 the values may go over or under by

a little bit.

if (ch2 .le. 2560) then
phil(i)= chl+1024

{f (phil(i)
elge

gt. 4096) phil(i)=403%6

phil(i})= -chl+1024+4096

iE (phil(i)
end if

1t. 2048) phil(i)=204¢8

if (ch2 .gt. 256C: then
phi2ii)= -chl~+4096+2048

1f (phi2(i)
else

phi2(i)= chl

1€ tphi2(i)
end {f

continue

gt. 4096) ph12(i)=409¢

L1t. 2048) phi2ri)=2048

This part of the program unwraps the data into intervals

greater than two pi.

c=0

n=0

tx=0

dc 200 isl,mr,nr

if (phil(i}.gt.3584) go to 1?0
tf (phil(i).2t.2560) go to 180
if (phi2(i).gt.3584) go to 160
if (phi2(i}.1t.2560) go to 163

if (c.eq.1) go to 165
h(i)=phil(1)

go to 150
if (c.eq.
go to 168
nensl1

goc to 168
1€ (c.eqg.l) go to 267
go to 168
h{i}=phi2ii)

go to 130

nen-1

h(i)ephil(i)

c=0

go to 190

if (c.eq.l) go to 175
nenel

h{i}=phi2 (i)

cw)

go to 150

if (c.eq.1) go to 175
nen-1

go to 175
h(i)=h(i)en*1024
continue

1} go to 162

index=(i~lenr'/nr

tonvert phase data to radians

and re-indsx arcay
x{indesi=float({(h(i1)-2048))/2048.02°pi

txetx«gamtin

t(index)=tx

continue
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printe¢, ’'Type 2 if you want unwrapped phase data’
prints>, 'Type 0 if you do not’
read (*,*) iphase
if (iphase.ne.2) go to 1000
print*, 'Enter the number of data points to skip’
print*, ’in phase data file. Type 1 if none skipped.’
read (5,=) iskap
printe, ’'Tota) unwrapped output filename (< 16 char.)’
read (*,20) ofilnam
open (9,file=ofilnam,status="unknown’')
- wTite corrected data in file
o express phase in radians
write(9,*) ofilnam,wind,sigma
do 201 i=],mr/nr,iskip
write{(9,600) t(3i),x{i)
201 continue
6C0 formaz(lx,£8.2,2x,£25.4)

close(l)
close(2)
close(9}
1000 continue
return
end
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subroutine tf (h,mr,nr,dc,samtim,wind,sigma)

c This subroutine integrates freguency data and provides
c integrated data and statistics of integrated dats.

resi x{5000C)
integer h{50000),iskip
integer {,m,},dcnum, npts,mr,nr,3j, k,ifreq
real ave,s,t,factor, dt,samtinm, p:
character filename=l5

10 format(alb)

60 format(lx,£8.2,2x,£15.4)
parameter (pi=3.141%8927)

330 write{s,®)
print*, 'Type 2 if you want to copy integrated freguency da:ta-
print*, ‘Type 0 if you do not’
read (+,*) ifregq

3000 continue

200} format({’Which data channel do you want to process? (1,2 or 3| 'S}
write(+,2001)
read(%,*,err=3000) dcpum
if ((dcnum.ne.l).and.{(dcpum.ne.2).and.dcnum.ne.3) go to 300C

if (ifreqg.ne.2) go to 4000
print*,'Input filename for writing (< 16 char.)’
read(*,10) filename ’
print#*,’ Copying from tape to: '",filename
open (9,file=filename,status=’unknown’)
print®,’Input V/RHz sensitivity of frequency detector’
read*, factor
print«, “Znter the number of data points to skip’
printe*, ‘in freguency data file. Type 1 {f none skipped.’
read (5,4) {skip -
rewind %
write(9,*) filename,wind,sigma
4000 continue
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print*, ‘factor=', factor
factorsS000/factor/2048
prints, ‘factor=’, factor
npts=mr/nr
s=0
t=gdt
u=0
1=
do 100 jel,mr,nr
weh | Jdcpum~1l.na
continue
ave=m/Npts
do 200 k=1,mr,nT
l=leld
seh(k+dcnum-1)-ave+s
x{Y)=g*samtime2*pi*factor /1000
continue
if (ifreg.ne.2) go to 1000
do 400 i=l,npts,iskip
write{(9,60) t,x(1)
tetrsamtim*iskip
continue
continue

return
end

AP U P AT TR ARV R D P NP PSR A Y P VU T A NAERNNRADP P P P OTRINQRRT PRI E P TOEUTRSD S

terresRUREREURAET OFD R end of program SRR URPRenspARAVIRNPTRPLIASS
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Computer Processing Codes

Fortran 77

2. Program for filtering the phase or frequency
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c
program filter
real yl25350)
double precasinn x(2800),8( 2800,z (2500
real t,pr,hz,hz2
integer n,i,j,k,npts,Pnps,Pnpsd2
real dfreqg,haghfactor,lowfactor,polenum
integer 1,3,k
integer ifail
parameter (pi=s3.1415627)
opent3,filee’filtered.data’,status~’'new’)
erwrva pzxpling time (ms)
samtim=12
nptse 2500
reasas tmax= 30 BecC
Pnpe=npts
Pnpsd2 = Pnps/2
dfreq = l/(saptim*l.0e-3*Pnps)
[ AR AR A SRR NNEREWEERENN read data file tYHO AR OGP AP AIRA R RRORV IR PV RE YT
do 25 1=1,npts
reacd {l,*,end=26! t,y(1)
2% continue
26 continue
PEF T ETRIENANLI AR L R AR Phﬂse filtering RN EFREERE N A RN RN RN R WE SRR A
evwess high pass cut-off frequency
hz=0.%
e low pass cut-off freguency
hz2=5%.0
PLPPFNRPPRAEINCLPARRNR DR n pole flevr. TETASPRP RIS RIRCEUDRIACTAPST L P P OEE R

polenum=5.0

fn=polenum
highfactor=sgqrt(2-2**(l/polenum))

hz=hz/highfacror
lowfactor=sgrt(2+«+*{l/polenum)-1}

hz2eshz2/lowfactor

veewy getting FYT R TRy

do 35 i=l,npts
x(i)ay(i)
35 continue

ifail =0
write(2,*) 'ifaila‘,ifail
call cOffaf(x,k,s,ifail)}
printe, 'ifaile’, ifail
abrsese n pole filtering e

do 7500 l=),n
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sveseesr nigh pass filtering rever
a=hz
am2epiny
x(1)=0
g(1l})=0
do 1503 j=2, Pnpsd2
denom=a**2+(2*pi*(j-1)sdfreq)**2
z(j)={2*pin(j-1}+dfreqie*2/denom
1533 tontinue
do 200! j=Pnps, Pnped2+l -1
denom=23**2«(2°p1* Pnps-j+lisdfreg)*n2
t(j)e{2*pi* (Pnpe-Jj+l)*dfreg)*a /denom
2001 continue

do 1504 3§=2, Pnped2
x{j)=x(j)l*z{j)-x{Pnps+2-j)*z(Pnps+2-7)
1504 continue
do 2002 j=Pnps,Popsd2+1,-1
x({J)=x{J)*z(Pnps+2-7 ) +x(Pnps~2-3)*z2(3)
2002 tontinue

sassren  1pw page filtering wwase

a=hz?
am2v*piea
do 1507 3=2, Pnpsd?l
denomma**2+(2*pi*(j-1)*dfreqi**2
z({j)=a**2/denonm
1507 continue
do 2004 j=Pnps,Pnpsd2«],-1
denom=a**"2+{2“pi*(Pnps-j+l}«dfreg)e*2
z(j)=(-2"pi*(Pnpe-j+1)=dfreq)*a/denom
2004 continue ,

do 1508 j=2, Pnpsd2
x{3)=x(3)*2(j)-x{Pnps+2-3)*z(Pnps+2-7)
1508 continue
do 200% y=Pnps,Pnped2+]1,-1
x 5)Yex{(j)*2!Pnpe+2-j)exiPnps+2-3)*z(3)
200¢ continue

750¢C continue
2o getting inverse FFT »rwve

ifail =0

call cO6gbf(x,k,ifail)
write(*,*} ‘1fajil=w’', ifasl

cal) cO6fbf(x.k,s,ifail)
write(*,*) ’'ifail="' ifnil

do 35 {=1,npts
write(3,*) gamtim=i, x(1i)
3¢S continue
close (3)

end
tehRactanasRRbovERRAS end of program teatsssdtar R e AL OQRNARS
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APPENDIX D

Schematics of Phase Detectors



o2}

*

+5V 0-2 1
s 3|—1 Phase Detector
nnel
11 Ve Ki (each channel)
i2
01 e
CLK1
MC 78L0OS
| 13
5V
Qi * Voltage +15 V
Ri 1 Regulator
2 T
D.1uF
+5V
14 10 |_l
J1 K1 Low Pass
9 " 2 Filter
Q1 N and — Out
CLK1 (9) (8) Amplitude
Scaler
(@)
R1
1/6 74HCO4
6 Inverier
(pins 9.8 tor second channel)
74L873
Dual J-K
Flip-Flop
1,92 from divider circutt gutput
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O-nx
Phase Detector
(each channel)

MC 78L05
5V
* Voltage 15V
J_ Regulator
O1uF
+5V
14
1 Low Pass
L ERP 3 - : 2 Filter
) : : and — QOut
D2 1) (9) (8) Amplitude
(13) Scaler
7 7
v
1/4 74L800 1/6 74HCO4
NAND Gate Inverter
(pins 12.13.11 for second channel) (pins 9.8 for second channel)

»

@I, @2 fromdivider circuit output



SIGNAL CONDITIONER

01 10k

PHASE LOCKED LOOP

100k Hz AMPLHFIER

Notes:

1. Pins 2,3 reversed for 180° phase shift

2. 0 - 2w detector adjusted for:
90° between pins 2,5, each detector

0 - n detector adjusted for:

67.5° between pins 2,5, detector 1, &,
112.5° between pins 2,5, detector 1, ¢,
112.5° between pins 2,5, detector 2, &,
67.5° between pins 2,5, detector 2, ¢,

3. To divider circuit

e

LM58S
-5V°"L Yoo %
™ e
o 12 510pF
4| vcoou AN o5V
vcom Voo [19,8v
2 et om cl 9 Ph.”*“.;h‘
T lvco Ti'l'-. [ ] AN/
Cortrol 1k mzok
— i
0,001 cw
i
0.047 820
It
| L
0.001
[+ ]
+5V
Resistors in ohms
Capachtors in uF

691



DIVIDER CIRCUIT

+5V
Jumoers 8 BIT
umpe Note3 FREQUENCY DIVIDER
:;05 B 7415393
[.]
I 1 ~/ 14
v CP(1) VCC
: —ol 21 MR(1)  CP(2) F2—Pin6Q3(1)
2oL 3 laomy MRE) 2
Noted 2 4 11 = N=
A o 4 —o-0 Q1(1)  QO(2) 00— 32
o o 8 oo 5 az) 01 Ho—o-o— 64
- 16 —o- o 6 loay Q22 | 9 oo 128
7 8
INVERTER —— GND Q3(2) ——o--0— 256
1/6 74HCO4 =
4
Note Pin 13 CP(2)
Noten:
3. To signal conditioner circuit N
4. >
5.

Alternate pin #’s for 2nd, 3rd & 4th phase detectors
N=1 for 200 kHz output
N=2 for 100 kHz output
N=4 for 50 kHz output

0LT



LOW PASS FILTER
and
AMPLITUDE SCALER

20k
+15V o—_—.N\Af—O-15V

oftset CW {14¢ 1
01 L
1M :
10k
1/2 LF353 VVv
100k
6 -
= 1 - -+
Bk,
Input o—"WWVv + fow 1/2 LF353
T 0001 2Kg-o
33k

Resistors in ohms
Capacitors in uF

TiL



Doltage Requlators
for Phase Detector
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N : + 5D
15y in EM?805CT out o
* +
© LM7905CT —O
107, = +| 15

capacitors in pF
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APPENDIX E

Schematic of Frequency Detectors



DUAL FREQUENCY DETECTORS

MONO- STABLE MY

MC 145288 12 LF353
e I R =128 1% film
‘_FT 1 18 C -47med ong |

3 14— UT

"> 4 13 3.0k Qo
5 12j———cr | VBTIHCO4 l
a "
7
[:]

I = I Rasistors in ohms
1 1 Capacitors In uF
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