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ABSTRACT

Prediction and Meaeurement of the
Unwrapped Phase for Speckle
Propagating in Turbulence

Douglas Draper, Ph.D.
Oregon Graduate Institute of Science & Technology, 1992

Supervising Professor: J.F. Holmes

Intensity and wrapped phase characteristics of a signal from speckle pro-

pagating in a vacuum and from a point source propagating in air turbulence

have been studied extensively. The intensity characteristics of a speckle sig-

nal propagating in turbulence have also been studied. Wrapped phase is

phase data that is limited to the principal values of phase defined for a circle.

Additional information about the speckle and turbulence is contained .in the

unwrapped phase which is obtained by extending the wrapped phase beyond

the principal values by mapping them onto an infinite line or by integrating

the signal frequency.

Statistical models for the unwrapped phase of speckle produced by a

laser illuminating a diffuse target and propagating through the atmosphere

are proposed. It is shown that the unwrapped phase can be used to measure

properties of a remote target or the atmosphere. Targets of different rough-

ness can be distinguished at a distance of 1000 meters and target movemen t

and wind activity are easily observable from the unwrapped phase data.

Measurements of unwrapped phase aTe also shown to be capable of sensing

atmospheric turbulence levels from a remote location.

viii



CHAPTER 1

INTRODUCTION

Intensity and wrapped phase characteristics of a signal from speckle pro-

pagating in a vacuuml-7 and from a point source propagating in atmospheric

turbulence8-1& have been studied extensively. The intensity characteristics of

a speckle signal propagating in turbulence have also been studied17,18. Addi-

tional information about the speckle and turbulence is contained in the

unwrapped phase. The unwrapped phase is obtained from the wrapped phase

by extending the phase values beyond their principal values, however, it is

more readily obtained from the signal frequency.

A phase angle is uniquely defined on a circle for its principal value in

the range -7T to 7T radians. On the other hand, frequency has no natural

bound and since phase is the integral of frequency, when the phase is

expressed as a function of time, it can also be defined over an unbounded

domain as shown in figure 1.1. This unbounded representation of phase is

referred to as unwrapped phase and bounded phase is called wrapped phase.

Statistical models for the frequency and unwrapped phase of a speckle signal

propagating in clear air turbulence along with the corresponding one and two

point probability density functions will be presented.

The amplitude and phase effeds -ofspeckle and turbulence can be meas-

ured in an optical remote sensing system where a laser is used as a

transmitter to illuminate a region of space and the back-scattered radiation

from a remote object, called a target, or from particles in the atmosphere is



Figure 1.1 - Unwrapped Phase Compared to Wrapped Phase
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received at the transmitter location. The back-scatter is processed in various

ways to obtain information about the atmosphere or the target. ITthe target

has a diffuse surface with random surface height variations on the order of

the laser wavelength or larger, an interference pattern called speckle is pro-

duced that causes intensity and phase variations at the receiver.

Only a clear air atmosphere having no foreign particles is considered.

and the only back-scatter that is expected is from the remote target.

Nevertheless, the atmosphere will have an additional effect on the received

signal intensity and phase due to air pressure and temperature changes and

the wind that cause refractive index variations in the air and influence t.he

speed and direction of the propagating light.

Speckle

Unlike ordinary light emission, the radiation from a laser is extremely

coherent. Coherence is a property of a propagating wave where the phase of

the wave is highly predictable over relatively long time intervals and dis-

tances. Speckle is caused by the combination of a large number of coherent

waves with different phases. This typically occurs when a laser signal reflects

off of a diffuse surface whjch scatters the laser radiation into separate waves

which interfere with each other.

Variations in the surface height along the diffuse object introduce propa-

gation path changes to the propagating waves causing the phases of the scat-

tered waves to differ. At any receiver location, the scattered waves combine

to produce an intensity that depends on the relative phases of the scatterers.

Figure 1.2 shows the appearance of a speckle pattern at some distance
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Stationary Speckle Pattern

Figure 1.2 - SpecklePattern
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from a diffuse target. The laser source and the object are stationary in space

and time and there is no air turbulence. The light spots represent areas

where there is a high degree of constructive interference between the waves

whereas the dark spots correspond to areas where the waves combine des-

tructively. Areas of intermediate brightness occur for situations of partially

constructive and destructive interference. The contrast of the' speckle is

given by the amount of intensity variation relative to the average intensity of

the pattern. Surface height variations on the order of or greater than the

laser waveJength proou-ce high eontrast speckle patterns.

Speckle is easily verified using a visible wavelength laser in a laboratory

situation by reflecting a laser beam off of a diffuse object such as a sand-

blasted aluminum plate and observing the reflection on a suitable surface

such as a wall. Also, when the laser intensity is low enough so that. reflections

will not cause eye damage, speckle can be safely observed from laser energy

reflected directly off of a wall.

Turbulence

In a typical remote sensing application, the speckle field produced by

reflections from a diffuse target will not be stationary in time or space

because either the transmitter or target will be moving or turbulence and

wind in the atmosphere will cause the beam to wander across different

regions of the target. In addition, refractive index variations due to the t.ur-

bulence and wind will introduce random intensit.y and phase perturbations

that will influence the speckle pattern.

When the turbulence is weak, the primary effect on the laser beam IS
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beam wander. In addition to beam wander, small phase variations will be

added to the propagating wave. If the turbulence is distributed throughout a

long path, even weak turbulence will cause appreciable phase changes at the

receiver. When the turbulence is strong, the wave will scatter into separate

waves which will eventually become incoherent over long propagation dis-

tances.

Consequently, the field observed at a given receiver location will have

random intensity and phase va.riatjons produced by a combination of the tar-

get speckle and the turbulence.

Unwrapped Phase

There are various reasons for wanting to measure the unwrapped phase.

The unwrapped phase represents optical path length variations due to the

effects of turbulence or surface irregularities and movement of the target.

Unwrapped phase changes greater than 21'1"radians are caused by even minor

target movements. They can also be caused by large scale target roughness

or long propagation paths through moderate to strong air turbulence. These

large phase changes may represent vaiid data or unwanted interference. The

wrapped phase represents a distortion of the phase data in either case.

Interestingly, it also turns out that the statistics for unwrapped phase are

considerably less complicated than those for the wrapped phase.

Phase detectors measure wrapped phase and the corresponding

unwrapped phase must be obtained by processing the wrapped phase data.

Phase unwrapping methods are simple in principle, however, when the phase

changes rapidly and randomly as it does in a remote sensing environment, it
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IS very difficult to accurately unwrap the data and sophisticated techniques

are needed. An alternative is to use a frequency detector to measure the fre-

quency. The frequency data is then integrated to obtain the unwrapped

phase.

Summary of Chapters

Chapter 2 presents background information on the one and two point

statistics of wrapped phase for speckle propagating in a vacuum and for a

point source propagating in turbulence. Gaussian unwrapped phase models

are proposed, and using conventional methods for converting unwrapped

phase to wrapped phase, the unwrapped phase probability density functions

are compared with the wrapped phase probability density functions.

The one and two point probability density functions of the unwrapped

phase and frequency for a speckle field propagating in air turbulence are

presented in chapter 3. The statistics are based on a model used by Holmes

and Gudimetla17 to obtain the intensity distribution of high contrast speckle

propagating in turbulence.

In chapter 4, each of two heterodyne systems that were used for remote

sensing are explained and chapter 5 describes the detectors and special data

processing algorithms that were used to obtain and process the experimental

data.

Chapter 6 gives results from experiments at the atmospheric field sit.e

where sandblasted aluminum targets of various roughnesses were used.

These results are compared to the models of chapters 2 and 3. Data on

atmospheric conditions and target properties obtained independently from
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calibrated instruments are used to test the results.

Also in chapter 6, potential applications for using the models and their

statistics are mentioned. These applications range from determining features

of a remote target to obtaining information about atmospheric conditions.

The importance of measuring the unwrapped phase or the frequency is made

clear since many features of the atmosphere or a remote target are indistin-

guishable from the wrapped phase but are evident from unwrapped phase or

frequency measurements.
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CHAPTER 2

MODELS FOR VACUUM SPECKLE AND

A POINT SOURCE IN TURBULENCE

In this chapter, speckle and turbulence effects are treated separately, as

existing literature on the statistics of speckle and turbulence is reviewed and

expanded to include unwrapped phase. The statistics of the speckle field

generated by a laser beam wandering over a diffuse target and its interaction

with turbulence will be of primary concern in later chapters.

The one point statistics will be given followed by the two point stat is-

tics. The one point statistics give the statistics of a single receiver location.

Additional information about' the nature of the speckle and turbulence is

contained in the two point statistics which give jointly statistical quantities

for two different receiving locations.

The probability density functions for the phase will be given, and the

wrapped and unwrapped phase distributions will be compared. It will be

shown that the although the wrapped phase density functions may not be

Gaussian, the unwrapped distributions are Gaussian for either a point source

propagating in clear air turbulence, or when the target producing the speckle

has a Gaussian surface height distribution, for a speckle field in free space.

The corresponding distributions for the amplitude of the received field will be

given in Appendix A.

However, before the statistical distributions are presented, the models

that are used to represent speckle and to characterize the diffuse targets will
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be explained.

2.1 One Point Model for Speckle Phaee

2.1.1 The Phaeor Representation of Fields

The electromagnetic field that propagates from the laser source is

assumed to be monochromatic and therefore a sinusoidal function of the

wave position and of time. It can be described by,

E(s,t)=A(B)~os[k'(s+ct)]=A(s)cos ((k's+wt) )

where E(s,t) and A(s) are vector functions and

15is the vector position of the wave in space

X. is the wavelength

k is the wave vector

k=lkl is the wave number = 2Tr/X.,

c is the (free space) velocity vector of the wave

c=!cl. 3xl08 mJs

v is the frequency of the source=c/x.

w is the radian frequency = 2Trv

(...) . (...) is the scalar product of vectors

and t=time.

In order to simplify various mat.hematical operations on the fields, they

are represented as complex functions of the wave position and of time. This

representation of a sinusoidal wave is commonly called a phasor and is based

on Euler's identity,
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ei9=cosS+i sinS

The phasor representation of the sinusoidal field is then given as,

E(s,t)=A(s)exp (i(k's+wt))

=A(s) (cos(k's+wt)+i sin(k's+wt) )
where i= vCi.

The equation for the radiated field is the real part of the phasor expres-

sIon. The amplitude of the wave is given by A(s) and the phase by the angle

k's.

2.1.2 The Formation of Speckle

The formation of speckle is illustrated in figures 2.1a and 2.1b. The

total field at some point in space results from the sum of a large number of

separate fields representing the reflections from different points on the target

surface. The statistics of the speckle field depend on the model we choose for

the diffuse target. Two slightly different models will be considered. The tar-

get model shown in figure 2.1a assumes that the reflections from the target

are produced by a large number of point sources with a random height distri-

bution. In addition the point sources are randomly located on the target sur-

face. The reflected fields will therefore have random amplitudes and phases.

This target will be referred to as a totally diffuse target.

A second target model is shown in figure 2.1b where there is a flat mir-

ror like background surface at the mean surface height around which the

random point reflectors are situated. Reflections from the flat surface pro-

duce a coherent term that is added to the random phase terms. This target

will be called partially diffuse. Each of these models give a different set of
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Figure 2.1 - Speckle Formation
(a) totally diffuse target (b) partiaHy diffuse target
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statistics, however, their differences are minor in many instances.

Referring to figure 2.1a and assuming the target has a linear reflection

coefficient, each target scatterer will produce an electromagnetic field that

can be represented by the phasor function,

where j is an index number representing a reflect.ed field.

At a given point in space, the vector 8 is fixed so that Aj(8) can be

replaced by the constant Aj and k'8 by the constant <bj. Aj represents the

target amplitude and <bjrepresents the target phase of the jth scattered field.

The electromagnetic field can then be written as,

Ej( t )=Ajei(wt-'-$j)

The fields Ej are identical except for their amplitude and phase which

are random. The field that results from N scatterers is given by,

N N.

E(t)= ~ Ej(t)= ~ Aje1(wt+$j)
j=l j=l

Each of the waves has the same frequency, therefore eiwt can be factored III

the summation with the result,

. N '<1>

E{t)=e1wt ~ Aje1 j
j=l

This represents the phasor equivalent of the total speckle field at some point

in space. At a given instant of time this field is given by,

. N '$
E(A,e)=Ae16= ~ Aje1 j (2.1)

j=l

where the time value is taken as zero for convenience and A and e are ran-

dom variables.
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Alternately (2.1) may be written in the rectangular form

N

E(A,e)=U+iV= ~ Uj+iVj
j=l

where U=Acose is the real and V=Asine is the imaginary magnitude of the

phasor field, Aei6.

The partially diffuse target produces a reflected field that can be

described by,

. N 'cb
E(A,e)=BeJw+ L Aje1 j=(BcosW+U)+i(Bsinw+ V) (2.2)

j=l

Band ware the resultant amplitude and phase respectively that are contri-

buted by the reflections from the coherent background surface.

The targets are assumed to have uniform reflectivity and to be a long

distance from the observation point so that each scattered wave will pro-

pagate about the same distance to the receiver. Therefore, the received

amplitude of each target reflection will be approximately the same, and Aj

will be considered a constant in the summations of (2.1) and (2.2). However,

path length variations will have a significant effect on the value of Q>jwhich

is given by,

4'7T
Q>.=-L.

J A J

where Lj represents the one way path length. Lj will depend on the surface

height2 and location of the jth point reflector. Through changes in Q>j,thE'

path length variations will affect both the resultant amplitude, A, and phase,

a, in (2.1) and (2.2).
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Random Walk Model for Speckle

The formation of speckle is often explained by a statistical random walk

of phasors in the complex plane. The combined speckle field is given by the

the sum of the separate phasors representing each target reflection.

In equation (2.1), let Aj be a constant equal to A/N and <t>j=<t>be a ran-

dom variable with variance (JJ. U and V are random variables with mean

values <U> and <V> and standard deviations (Jr and (Ji for the real and

imaginary fields respectively. These quantities can be obtained from the

characteristic function <Pdefined by,

x

<I>(w)=0( w)+i'¥( w)= < exp(iw<t»> = J exp(iw<t»P cb( <t>)d<t>-x

P cb(<t» is the probability density func~ion of phase for the scattered fields at

the target.

0(w)= < cos(w<t»>

'1'(w)= < sin(w<t»>

which for N random phase values gives19,

<U>=A0(1)
<V>=A'¥(1)

(1;= ~~ (1+0(2)-2&(1))

(Ji2= ~~ (1-0(2)-2'1'2(1))
< > stands for the ensemble average.

(2.3a)

(2.3b)

(2.3c)

(2.3d)

For the case where <t>has an even distribution around a mean value of

zero, '¥(w) will be zero causing <V> to be zero.

Two special cases of the speckle produced by a totally diffuse target will
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now be considered. Figure 2.2a demonstrates a random walk in which the

phase variance of the phasors is very small. This is characteristic of a rela-

tively smooth target. 'When (J'c!> is much smaller than a radian, <t>will also be

much less than one radian, and the small angle relationship,

cose:::::l-~
2

can be used. Consequently,

and

<U>:::::A

<V>:::::Q

(J'i:::::~'(J'c!>«1

(J'r«(J'i

Each phasor has about the same direction and the phasor amplitudes add

together. The amplitude and phase of the resultant phasor is not very ran-

dom.

Figure 2.2b shows a random walk in which the phase variance of the

phasors is very large, characteristic of a rough target. With (J'c!> large com-

pared to 1Tradians, 0(1) and 0(2) will both be small relative to 1. The mean

values < U> and < V> both a.pproach zero and the standard deviations (Tr

and (J'i approach the same value of ..~-. The phasors wander in all direc-v2N

tions and the resultant phasor is equally likely to take on any angle between

-1T and 1T. The phasor amplitudes tend to cancel each other producing a
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Figu~ 2.2 - Random Walk of Phasors in Complex Plane
(a) O'cI>«l (b) O'cI»>l (c) partially diffusetarget
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resultant amplitude of the same order of magnitude as the separate phasor

amplitudes.

In the figure, the average target phase is assumed zero. A non-zero value

would cause a multiplication by a constant phase term, < exp(i<t»>, in (2.1),

and a rotation by < <t>> in the figure.

The partially diffuse target model can also be described by a random

walk. In this case, (figure 2.2c), the random walk is offset by the constant

phase term representing the reflections from the coherent background. Equal

values of O'r and O'i are assumed for the random portion and t!Jin (2.2) is con-

sidered to be zero.

Complex Field Distributions for Totally Diffuse Targets

All of the statistics for speckle are based on the random portion of the

target having a large number of statistically independent scattering surfaces.

Therefore, according to the central limit theorem of statistics, the random

variables U and V will have a jointly Gaussian distribution with respect to

each other. This will be true even if the target surface height distribution is

not Gaussian. Therefore,

where

.:1U=U-<U>

.:1V=V-<V>

0'/=<~U2>
O'i2=<~V2>

<~U~V>
p=
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In the equation, <V> and <V> are the mean values, and (1r and (1j are

the standard deviations of the real and imaginary complex fields and p is the

coefficient of correlation between them.

Vsing the change of variables, I=A2=V2+ y2 and 8=tan-1(V IV), this

probability density function is used to obtain all of the intensity, amplitude

and wrapped phase statistics for the speckle field.

In order to better understand the statistics of the complex field, Vozumi

and Asakura20 have introduced an equiprobability density ellipse that is

defined for the joint probability density function of the complex field quanti-

ties V and V. An equiprobability density ellipse is shown in figure 2.3a for a

typical joint probability density function of the complex fields. The ellipse is

defined by the trajectory along which the joint probability density function

of (2.4) equals 1/~ times the maximum density at the center.

The ellipse is completely defined by the five parameters of the probabil-

ity density function of (2.4), ~V, ~ V, (1r, (1j, and p. The inclination angle of

the ellipse is given by,

The quantities V and V in addition to being random, are changing with

time at a steady rate due to the term eiwt that was suppressed when time was

arbitrarily set to zero. This means that the equiprobability density ellipse

rotates at w radians per geeond, and at times other than zero can be

described by a coordinate transformation of V and Y in figure 2.3a. At cer-

tain instants of time either <V>, <V> or p become zero.
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Referring to figure 2.3b, a coordinate transformation equivalent to a

rotation by the angle

with

X=Ucos8+ Vsin8

Y= Vcos8- Usin8

is used to eliminate p in (2.4) and to obtain the uncoupled real and ima-

ginary fields, X and Y. The coordinate transformation causes <A~Y> in

the new coordinate system to be zero and X and Yare independent. The

probability density function reduces to,

(2.,) )

where

AX=X-<X>

AY=Y-<Y>

<X>=<U>cos8+<V>sin8

<Y>=<V>cos8-<U>sin8

<1x2= (<1r2cos28-<1i 2sin 28) / cos( 28 )

<1y2=( <1i2COS28-<1r2sin28)/ cos(28)

Note that with the coordinate rotation, the ellipse axes are parallel to

the coordinate axes and the ellipse is not tilted.

The equiprobability density ellipse associated with (2.4) and (2.5) varies

according to properties of the diffuse target and its location relative to the

observation point. A thorough treatment of how the ellipse changes with
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changes in the target phase standard deviation and the position of the

receiver relative to the optical axis and the distance from the target is given

in references 5,6 and 20. The standard deviation of target phases is related

to the target. surface roughness byl,19,

4iT
O'Ib=-O'tA

where O't is the r.m.s. target surface height variation.

(2.6)

Special Cases of Complex Field Distributions

The situations depicted in figures 2.2a and 2.2b represent special cases of

(2.4). In both cases, & and p are zero and (2.4) reduces to (2.5) with X=l'

and Y=V. In figure 2.2a, O'lb< < 1, <V>=O, and O'r< <O'j. The equipro-

bability density ellipse is shown in figure 2.4a where O'r has been made zero

so that the ellipse reduces to a ~traight'line. In reality, this condition requires

that the receiver be in the far-field of the target and also on the optical axis

defined by the laser source and the target. The real component of the com-

plex field is no longer random and the probability density function of (2.4)

simplifies to;

x 1

P(V)= fp(U,V)dV= v'2;O'j-x

A

where O'j= vN 0'Ib

exp(- ;:' ]

In figure 2.2b, 0'1b>> 1, <U> = <V> = 0, and O'r = O'i' The

equiprobability density ellipse reduces to a circle centered at the origin as

shown in figure 2.4b. This situation is referred to as fully developed speckle

and the fields are said to have circularly Gaussian statistics. The probability
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density function of (2.4) becomes,

A

where (J = (Jr = (Jj = '\I2N'

The fully developed speckle case is approached3,5,8 as a limiting condi-

tion when either the target phase deviation, the distance from the receiver to

the target or the receiver distance off the optical axis becomes large.

Figure 2.4c shows the equiprobability density ellipse for the partially

diffuse target of figure 2.2c. As for fully developed speckle, it is also a circle

but is offset by the non-random term, B.

2.1.3 Probability Density for Wrapped Phase

Totally Diffuse Target

The complex field quantities can be used to determine the statistics of

the wrapped phase, but are not capable of predicting the unwrapped phase.

Uozumi and Asakura5 determined the one point probability density function

of the wrapped phase from the joint probability density function of (2.5) and

the substitutions,

and

to be,
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where

-11"<8<11"

T)=ax/ay

T=cos213+,,2sin2~

K= <X>cosl3+,,2<Y>sinr3

,_ K
- a v'2-;x

X=<X>2+,,2<y>2

They evaluated the quantities in (2.7) for a laser focused on a totally

diffuse target with a Gaussian distribution of target scatterers in terms of the

standard deviation of target phases (a <1»' the correlation distance of the tar-

get scatterers (0:), the laser beam waist radius on the target (wo)' the distance

along the optical axis from the target to the receiver and the distance the

receiver is off the optical axis.

Essentially the same result was obtained by Takai, Kadono and

Asakura8, but a more general approach was taken that also included the

image field of the speckle phase. For both cases, when the receiver is on the

optical axis in the far field of the diffraction, the quantities in (2.7) reduce to,

8=0

13=8

X=<U>2
K=<U>cos8

<U> = <X> =Az-1exp(-al/2)
<V>=<y>=O

<1;=(1;= A22 (1+exp( -2al)-2exp( -<1l) )4Nz

2 2 A2 ( (
2
))a. =a =- 1-exp -2a<l>

1 y 4Nz2
(2.8)
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The laser beam waist at the target is normal to the target surface. z is

the distance from the target to the receiver normalized by the Rayleigh range

= 'fTWo2lA, N = (wo/a)2 is the number of scattered fields at the receiver,

and z > > 1.

A similar situation was considered by Uozumi and Asakura20 using a

different approach. They found general relationships for the statistical quan-

tities of (2.7) from the characteristic function of the random variable <t>

representing the phase of the scattered fields assuming N independent target

scatterers. The receiver was assumed to be on the optical axis in the far-field

or Fraunhoffer region of diffraction. They considered other target phase dis-

tributions, however, for a Gaussian distribution of target phases, they

evaluated (2.3a)-(2.3d) as,

<U>=Aexp(-a~/2)
A%

a;= -[I +exp(-2a ~)-2exp( -a ~)I2N
2 A2

[ (
2

Iai =- l-exp -2ad»2N

which except for a factor of zv2 in arand ai and z in < U>, is the same as

(2.9)

(2.8). The factor of z, representing the normalized receiver distance, cancels

when evaluating (2.7), however, the v2 factor causes a slight difference in

the two results.

When ad> is large with respect to 'fT radians, ar and ai approach the

same value of A/v2N and <U> approaches zero. This is the fully

developed speckle case with circular Gaussian fields, and the wrapped phase

is distributed uniformly between -11"and 11"with variance 'fT2/3 .



27

In appendix B, it is shown that when O"l< <vN, equation (2.7) asymp-

totically approaches a Gaussian distribution given by,

1

(

82

]
Pe(9)= ~ exp -=-;-

0"! 21T 20' s

. O'~ O"~
wIth O's = .. c= for (2.9) and O's= ..~ for (2.8).

vN v2N

(2.10)

A quantity called the phase extent can be defined6 for an equiprobability

density ellipse to interpret the speckle phase deviations. Figure 2.5 shows an

equiprobability density eHipse and tbe phase extent of the ellipse. The phase

extent is defined as one half the angle formed by the two lines originating at

the origin of the complex plane that are tangent to the ellipse. The phase

extent is a measure of the speckle phase cbanges.

The pbase extent is given ~s6,

(2.11)

The phase extent is only defined when the argument in the square root

of (2.11) is non-negative or when,

<X>2 <y>2
2 + 2 ~1

O'x O"y

and the ellipse does not encircle the or"igin. This means that the phase

extent is not defined for situations approaching fuJl)"developed speckle.

In the far-field of the diffracted radiation, p = 8 = 0, <Y>=<V>.

<X>=<U>, O"x=O"r, O"y=O"i' and when O'~ < <1, <V>=O, O"r < < O'i

and <U> is much larger than either O"r or O'i' Therefore using (2.9) and
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29

referring to figure 2.4a,

O"i V(1-e -2(1)JJi

tan(2ee)==2 <U> e-ul/2

= Veul(1_e-2ul) Veu1_e-u1
\IN -= ~ c= =V2sinhO"Z/N

Using a power series representation for eX and the small angle formula

for tan e, for small values of 0"<1>'

e==~
e v2N

Using (2.9) the phase extent differs by a factor of v'2 and,

(2.12a)

O'd>
ee== ~ c= (2.12b)

VN

This result shows that when 0"Z< < vN, the phase extent is equivalent

to the standard deviation of wrapped phase.

Partially Diffuse Target

If the target is assumed to be partially diffuse with circular Gaussian

statistics for the random part,

P(U,Y)=~ exp (_ (U_B)2;Ay2
]

(2.13)
21T0" 20"

where B is the constant field value and 0"2 is the total complex field variance

_ .,,2+ .".2- Vr VJ .

The probability density function for the wrapped phase is given by1.21,

-r
Pe(9)= ~ + Y;J;coseexp( -rsin 29)<1>(\l2;cos9 )

21T
(2.14)
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for -1T< a < 1Tand zero otherwise and,

b _y2
1 """2

<1>(b)=v;;: J e dy.21T _00

The parameter r is called the beam ratio parameter given by,

B2r=-
0'2

When r is sma.H the random component dominates and the statistics

(2.14a)

approach circular. In this case (2.14) reduces to a uniform distribution equal

1
to -. On the other hand as r becomes large, the random part becomes

21T

small and it can be shown1 that (2.14) approaches a Gaussian distribution

equal to,

(

a2

]
2 1 ex __

Pa(a)= Y;J;exp( -ra )= 0' V2; P 20'828

1 0'2

where O's2= 2;- = 2B2'

(2.15)

Therefore, for both the totally diffuse target and the partially diffuse

target, the wrapped phase probability density functions vary from a Gaus-

sian function when the target roughness is small to a uniform distribution

when the surface roughness is large. To determine the character of the dis-

tribution for the partially diffuse target, the random term is compared to the

magnitude of the coherent reflection, whereas for the totally diffuse target.

the target roughness is compared to the number of independent scatterers.

The phase extent can also be defined for the partially diffuse target

when B > O'r.Referring to figure 2.4c,
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8.==tan-1 (~ ]=tan-1 (B~ ]
and when r > > 1 is given by 8e=:::a/Bv2 Therefore for large values of r the

phase extent is the same as the standard deviation of the wrapped phase in

(2.15).

2.1.4 Probability Density for Unwrapped Phase

In what follows the wrapped probability density functions of (2.7) and

(2.14) will be shown to compare favorably with a wrapped Gaussian distribu-

tion of the appropriate standard deviation.

An analytical method termed phase wrapping exists22 for obtaining the

probability density function of wrapped phase from the probability density

of unwrapped phase. Figure 2.6 shows (2.7) plotted with N=lO for three

values of target standard deviation. For comparison a Gaussian distribution

is also plotted after it has been wrapped using the relationship23,

(2.16)

and <t>=e+21Tkis the unwrapped phase. The unwrapped phase has a Gaus-

sian distribution given by,

(2.1i)

The figure demonstrates how closely the wrapped Gaussian functions

resemble the distributions of equation (2.7). The values of O's used for the

wrapped Gaussian function were chosen so that the variances of the wrapped
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Gaussian distribution would be the same as the variance of (2.7).

Figure 2.7 plots values of 0"8that produce the wrapped variances of (2.7)

vs. 0"cbfor values of N = 5, 10 and 50. For small and large values of 0"cb, 0"8

is given by,

(2.18a)

(2.18b)

of (2.16)Barakat23 has shown that the wrapped Gaussian distribution

reduces to a Gaussian function for small 0"8and to a uniform distribution for

large 0"8 . It should be noted that the effects of wrapping are insignificant

when 0"l is much smaller than vN .

Figure 2.8 shows (2.14) compared to a wrapped Gaussian function for

three values of r. The figl1re sho"Wsthat (2.14) is also approximately

equivalent to the wrapped Gaussian functions. The values of 0"8used for the

wrapped Gaussian function were chosen to match the variances of (2.14). As

expected, 0"8reduces to 1/V'2; as r becomes large. For small values of r, 0"8is

given by the value of 0"r or O"iof the complex field.

The wrapped phase probability density functions for speckle from a

totally diffuse target, a partially diffuse target and a wrapped Gaussian func-

tion of the appropriate standard deviation have all been shown to be approx-

imately the same. Therefore, Gaussian probability density functions for the

unwrapped speckle phase will be used for either type of target.

'.
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2.2 One Point Models for Turbulence

2.2.1 Background

The atmosphere can have a pronounced effect on the transmission of an

optical signal. This is evident when one considers the way in which clouds,

rain, fog, dust and other disturbances in the atmosphere influence light

transmission. Even what is classified as clean air, having no foreign particles

or water vapor, can have a noticeable effect on light propagation.

The atmosphere contributes attenuation and phase shifts to the pro-

pagating light wave. These effects can be grouped into two categories,

absorption and scattering. Both effects accumulate as the propagation dis-

tance increases so that the atmosphere may have a severe effect for long dis-

tance propagation, even when the atmospheric effects are weak.

Only a clear air atmosphere will be considered in this paper. This will

greatly reduce the scattering and virtually eliminate absorption. Therefore. it

will be assumed that the absorption is zero. The amount of scattering will be

determined by random dielectric constant variations due to density changes.

mixing and movement in the air caused by temperature, pressure and the

wind. The scattering will introduce velocity and path direction changes to

the propagating light which will affect both the amplitude and the phase of

the propagating wave.

On a hot dry day it is easy to see these effects in the visible spectrum of

wavelengths by the quivering of an image such as a highway road sign or

telephone pole seen at a distance. The phase changes introduced by the

atmospheric turbulence causes the light reflected from the object to deviate



3i

in a random manner from its normal path.

These effects are best described by the refractive index variations rather

than the dielectric constant changes in the air. The dependence of the

refractive index on temperature, pressure and wavelength are well docu-

mented12,24.

To help quantify the refractive effects, the clear atmosphere is modeled

as randomly sized volumes of air called eddies. The eddies are approximately

spherical in shape and have nearly uniform refractive index12. However, the

refractive index of neighboring eddies varies randomly due to the density

changes caused by pressure and temperature. These properties are character-

ized by the quantities C~, 10 and Lo' The parameter C~ is the refracth'e

index structure constant, although it is not a constant but varies with space

and time. It is a measure of the strength of the turbulence and gives the

variation of the refractive index between the eddies12,13. Lo is called the

outer scale of turbulence and 10 is the inner scale of turbulence. The outer

scale represents the largest eddy radius that is expected and the inner scale

the smallest radius. The size of any eddy is therefore a random variable that

ranges between 10and Lo'

Each eddy introduces a random amount of refraction and velocity

change to the propagating wave. If the size of an eddy is larger than the

laser beam diameter, the effect of the eddy will be to change the direction

and focus or defocus the beam. Alternately, if the eddies are much smaller

than the beam, they will produce a random phase delay to the wavefront

reducing the coherence of the beam. It is expected that a combination of
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both effects will occur as the propagating beam encounters eddies of all sizes

from the outer scale to the inner scale.

Turbulence Models

To date, there is no single model that provides exact agreement with

experiments in both weak and strong turbulence. Nevertheless, the

unwrapped phase statistics seem to be well described by Gaussian functions

in most cases.

Figure 2.9 is used to show the effects of single scattering where the tur-

bulence is concentrated at a fixed distance from the observation point. The

smaller eddies introduce a random phase shift to the propagating wave and

the larger eddies randomJy deviate the path of the wave. At the observation

point, the received field will be composed of the sum of de-phased field com-

ponents. If the phase shifts introduced by the turbulent eddies are large

enough, an interference effect similar to speckle will be produced.

Single scattering applies to a limited number of situations since it

requires that all of the turbulence be localized in one area. More realistically,

the turbulence is distributed throughout the path from the source to the

receiver. In this case random phase delays will be introduced continuously

throughout the propagation path.

If the turbulence is very weak (C; is small or the path length is very

short), the propagating wave remains coherent when it reaches the receiver.

However, random phase shifts will nevertheless be introduced along the path

that will, for each of the multiple paths taken by the wave, add a random

phase. The statistics that describe this case should also be given by those of
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the single scattering model. However, if the turbulence is not weak, the wave

will lose coherence and another model is needed.

Following Strohbehn13, the propagation path is divided into a number

of turbu]ence areas, and for convenience each area is considered to be larger

than the outer scale in order to insure independence between the areas. Each

turbulence area will introduce an attenuation and phase shift. The accumu-

lated effect of the turbulence on a single wave is given by13,

where Ej

n .
E n Xm+1Wm.= e

J m=l

is a propagation factor representing the accumulated effects of the

(2.19)

turbulence on one of the waves. The incident field phasor is multiplied by Ej

to determine the phasor field received by the jth path.

Xmrepresents the attenuation ana Wm the phase introduced at each tur-

bulence area. Since the multiplication of the exponentials results in the addi-

tion of exponents, the logarithms of the individual fields will add. This means

that the logarithm of the combined field variations can be expressed by,

n

In(Ej)=x+iw= ~ Xm+iWm
m=l

Xmis the ]ogarithm of the amplitude factor and Wm is the phase for the mth

turbulence area. If the path is long compared to the outer scale so that the

number of turbulence area is large, the probability density function of both X

and W will be Gaussian based upon the central limit theorem. W represents

the unwrapped phase since the phase terms in (2.19) are additive.

This describes the turbulence effect on the wavefront of a single ray of

light. Since the rays are being deflected randomly by the larger eddies, the
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field received at any location is the sum of a large number of such randomly

phased waves. For this reason, the phasor that represents the received field

will be the sum of a large number of terms like (2.19) plus a constant term

representing the unscattered part of the field. Therefore,

N

E=B+ ~ Ej
j=l

This should produce a speckle type effect when the turbulence is weak

and each wave is relatively coherent. Strong turbulence, however, should

lessen the interference effects and the total received field will be an average of

all of the received fields. For strong turbulence or long path lengths, a

saturation effect for the intensity has been noticed experimentally13. At

saturation the intensity variation at the receiver is a maximum and in fad

may decrease slightly as the turbulence gets stronger13. This effect can be

explained by the loss in coherence of the received fields and occurs when the

variance of \jJ is of the order of or greater than 11'2.

A different approach has been taken by Andrews and Phillips18. They

use a model that takes into account non-uniform statistical fluctuations that

have been observed in intensity measurements for both localized and distri-

buted turbulence. Their model simulates two different frequency scales that

are observed in the data.

2.2.2 Probability Density for TurbuJence Phase

Single Scattering

If the turbulence is weak or the turbulence is localized, the single

scattering model can be used. The statistics for turbulence will be the same
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as those for speckle from a partially diffuse target. Therefore, the complex

field at the receiver will be composed of a constant term, assumed to be real.

representing the portion of the wave that is unscattered and a zero mean

random term due to the random refractive index variations of the turbulent

eddies. If the random term is circularly Gaussian with variance (J'2, the pro-

bability density function of the wrapped phase is given by (2.14)13,

-r

P e(e)= ~ + v;j;coseexp( -rsin 28)<1>CV~cose)21T

In this case the beam r.atio parameter is given by,

(2.14)

Is
r=- (2.14b)

(J'2

where Is represents the intensity of the field in the absence of turbulence, and

(J'2 is the total variance of the real or imaginary fields as determined by the

strength of the turbulence.

The value (J'2can be found from the variance of the intensity using1,

or,

2 (J'I(J' --
- V(1+2r)

For weak turbulence r is large and (2.14) approaches a Gaussian distribution

given by,
~

Pe(e)= V r/ 'iTexp(-re2)

When the turbulence is strong, r is small and (2.14) approaches a uniform

distribution. Of course, the single scattering model will most likely not be

valid in this case.
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Multiple Scattering

It is assumed that the prDbability density functiDn fDr the unwrapped

phase is Gaussian for boOthsingle Dr multiple scattering. MDSt .of the evi-

dence suggests that the unwrapped phase is Gaussian whether the received

field is cDmpDsed .of the sum .of cDherent Dr partially cDherent fields Dr results

frDm the prDduct .of fields with a Gaussian distributiDn .of the phase \11m' In

fact, it has already been shDwn that the distributiDns .of (2.7) and (2.14) are

essentially wrapped Gaussian distributiDns. TherefDre, the prDbability den-

sity functiDn .of unwrapped ph~ fDr a pDint SDurce prDpagating thrDugh tur-

bulence is given as,

1

[

(~_~O)2

]
P ~(~)= v;: exp - 2

CT~ 27i' 2CT~

where ~ is the unwrapped phase and ~o is the mean phase.

(2.20)

ToO determine CT~, an equatiDn fDr the cDvariance .of phase at tWD

receiver IDcatiDns fDr a pDint SDurce with tWD different wavelengthslO is used.

If .only a single receiver IDcatiDn is cDnsidered, the cDvariance reduces toOthe

variance and cDnsidering .only a single wavelength, the equatiDn reduces toO

CT~=0.1321T2k2LJKdK(K2+L;2)-1l/8exp( _K2 /K~)
o

1

xJ duC;(u)cDs2[u(l-u)K2L/2k]
o

(2.21)

where

L = distance between the SDurce and receiver

z = distance frDm SDurce

u = z/L = nDrmalized distance frDm SDurce
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Km=5.92/lo

k = 2-rr/'A

K = spatial frequency variable

In (2.21) the von Karman turbulence spectrum is assumed.

For horizontal paths of only a few kilometers, and at a wavelength of

10.6 J.1.m,C; does not change appreciably over the length of the path and a

path averaged value can be used. If Lo > > 10, exp( _K2 /K~)::::;1 for all

values of K that significantly affect the integral. A]so if ~ is small com-

pared to Lo then the second integral is approximately equal to one for all

significant values of K. In this case the integration reduces to,

x

a ~::::;0.1321T2k2LC;fKdK(K2+L;2rll/8
o

(2.22)

and

a ~::::;O.0792-rr2k2LC;L:/3

Lo»]0

~«Lo

(2.23)

Equation (2.23) allows for the determination of phase variance for a point

source propagating through turbulence from the values of outer scale of tur-

bulence, path length, wavelength and C;. The inner scale of turbulence is

not needed if it is small compared to the outer scale. Typical values of Lo

and 10 are 1 meter and }, mmimeter respectively. Considering a path length

of 1 km and and C02 laser with 'A = 10.6 micrometers, the above conditions

for integration are met. When these conditions are not met, the integrals in

(2.21) can be evaluated numerically. The equivalent of (2.22) and (2.23) was
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also obtained by Flatte'25 using both the von Karman and Kolgomorov tur-

bulence spectrums and by Fante28 using the Kolgomorov spectrum.

2.3 Two Point Models for Speckle and Turbulence Phase

2.3.1 Probability Density for Speckle Phase

In this section two point models for the unwrapped phase of speckle and

turbulence will be presented. In the first section, speckle propagating in a

vacuum will be considered, and in the next section a point source propagat-

ing in turbulence win be covered.

The probability density function for the sum or difference of two Gau~-

sian random variables is also Gaussian. Using the Gaussian models of

unwrapped phase for the one point c~se, the probability distribution of phase

differences for the unwrapped phase will be a Gaussian function of the pha~e

difference between the two points.

Given that the density of phase <1>1at point xl and <1>2at point x2 are

(2.24)

and

1 '.

[

(<1>2- J.l2)2

]
Pcb2(<1>2)= V9 exp - 2a s 2~ 2as2 I

then the two point density funct.ion of phase differences will be2l

(2.2.5)

(2.26)

where the mean phase
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If the receiver separation is small compared to the target distance from

the receivers, the variables <t>land <t>2can be assumed stationary in the wide

d 2 2 2
sense an CJ'8J =CJ' 82 =CJ' 8 .

Therefore,

Assuming the correlation coefficient of phases defined as,

then CJ'~8 is given by,

(2.27)

Considerable difficuJty was experienced in obtaining an analytical

expression for the correlation coefficient of speckle. A correlation function

for the general case of partially developed speckle from a totally diffuse tar-

get was never obtained due to the complexity of the two point joint density

function of the complex field amplitudes. Instead, the analysis of the two

point phase statistics is divided into two parts.

The first part involves only fully developed speckle where the joint pro-

bability density function of the wrapped phases at two points has already

been found1,.c,21and depends on the mutual coherence function of the fields.

The phase covariance and phase correlation coefficient functions are deter-

mined from the joint probability density function of wrapped phase, and the

conditional probability density function for the phase at one point condi-
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tioned on the phase at the second point will be compared to a wrapped

Gaussian function.

Next, the work of Wang7 is used to estimate the value of (1~8 in equa-

tion (2.26) from the phase extent of tbe complex fields when the receiver is in

the far-field of diffraction and the target phase deviation is smal!. It is also

shown that when the phase deviation is small, the square root of ,the correla-

tion coefficient of ,phase differences is approximately equal to the correlation

coefficient of the imaginary fields at the two receiver points. In determining

the phase extent and correlation coefficient, the conditional probability den-

sity function of speckle phase at one point given the value of the int.ensity

and phase at a second point is used.

Fully Developed Speckle

The joint probability density function of wrapped phase at two points

for the special case of fully developed speckle, has been determined1.21 from

the fourth-order probability density function of the jointly Gaussian complex

fields, U 1V 1U2V2' It is a function of the difference in the phases of the two

points and the complex coherence factor and is given by,

P(81,82)= 1-1 JL12 (1_~2)-3/2
(
~sin-1~+~+ v' 1_~2

]4~2 2

where J.Lis the complex coherence factor defined by,

(2.28)

.
<EIE2>

J.L= _ / exp( -i~)
<11><12>

.
<Il>=<EIEl> .
<I2>=<E2E2 >
~= IJ.LIcos(~6-"')

(2.28a)
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A9=92-9}

E} and E2 are the complex fields at points 1 and 2 respectively. Both 8} and

92 lie in the primary interval -'TI' to 'TI'.

The conditional probability density function of the phase 8} at point 1

given the phase 92 at point 2 is related to the probability density function of

phase differences by,

p(e2Ie.)=p(e},e2)/p(ed

Both P(61) and p(e2) are uniform and equal to 1/2'T1'so the conditional

distribution becomes,

P(9,le,)= 1-~~ I' (1_~')-3/' [~Sin-1~+"': +v' 1-~' ] . (2.29)

The parameter I~ I depends on the separation distance between the two

receiver points1 and can be determined after the parameters of the beam and

the target are specified. When there is no separation, I~I is one and (2.29)

becomes the impulse function,

P(92 le)=8(92-e1-~)

centered at~. As the separation becomes large, I~I approaches zero, and

(2.29) becomes a uniform distribution with a value of 1/2'T1'.

p(e2 Ie) depends on 92-9} and not on 6} or 92, Therefore (2.29) will

also represent the probability density function of the phase difference.

In order to use equation (2.27), an unwrapped phase correlation

coefficient for the probability density function of unwrapped phase difference

must be obtained. The correlation coefficient for the wrapped phase is

defined as,
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V <e1e2> \,/ <91e2>
Pe= - V; (2.30)O'e 'fT/ 3

where 'fT/V"J is the standard deviation of the one point wrapped phase, and

the mean values of 91 and 82 Are considered to be zero. The covariance of

phase is defined by the integral,

11' 11'

<9192>= J J 9192P(91,92)d81d82

which has been evaluated21 as,

(2.31)

using tbe relationship,

where

2 _ Ia 2
0' ~e- < U2-81I >

[

1T2 1 ::r I I 2n

]
=2 --1Tsin-1, ~ I+(sin-11 ~ I)2__ 2: ~ 2

3 2 n=1 n

was determined21 from (2.28). Using (2.31), PI!is plotted vs I~I in figure 2.10.

(2.31a)

Donati and Martini4 use the same joint probability density function of

wrapped phase given in (2.28) to obtain an expression for the conditional

variance of 82 given the value of 81 as,

(2.31 b)

which is exactly (2.31a) divided by two. They also determine the conditional

variance of 82 conditioned on the intensity and the phase at receiver point

one.



0.25 0.50 0.75 1.00

mutual coherence factor

Figure 2.10 - PhMe Correlation Coefficient v~. Coherence Factor (fully developed ~peckle)

<:l1
a

1.00
P
h
a
5
e 0.75

c
0
r 0.50
r

e
1

a
t
i
0
n



51

It is difficult to relate the expressions for the wrapped correlation

coefficient and wrapped variances to the case of unwrapped phase. The vari-

ance of unwrapped phase difference given in (2.27) requires both a value for

the correlation coefficient and the unwrapped standard deviation of phase,

the latter of which can be any value greater than about 11'radians for fully

developed speckle. A comparison of (2.29) with a wrapped Gaussian distri-

bution is shown in figure 2.11 for three different values of I j.ll . The values of

the Gaussian standard deviation used for wrapping are shown in figure 2.12

and were chosen 50 that the wrapped Gaussian and (2.29) would have

approximately the same shape and size. Also in figure 2.12 the square root of

equations (2.13a) and (2.31 b) are shown. The variance of phase was numeri-

cally calculated from (2.29) for several: values of I j.ll and is indistinguishable

from equation (2.31 b).

The probability density function of (2.29) does not match the wrapped

Gaussian function well except where the distributions are both approximately

uniform. Nevertheless, Gaussian functions of appropriate standard deviation

can be found that agree reasonably well after phase wrapping. The major

problem in order to use the Gaussian unwrapped probability density function

to approximate (2.29) is to find the appropriate standard deviation of phase

difference. .A!3already mentioned, the standard deviation depends on both the

value of unwrapped standard devjation and unwrapped correlation

coefficient. This problem has not yet been solved.

Partially Developed Speckle

The phase extent of the equiprobability density ellipse for the condi-
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tional probability density function of the complex field quantities U2,V 2 at

one point given the complex field quantities U1,V1 at a second point can be

used to estimate the variance of the phase difference between the points.

If a totally diffuse target is illuminated by a Gaussian beam at its waist

and the observation points are in the far-field, the real and imaginary fields

are un correlated, p in (2.4) is zero, and the one-point and two-point probabil-

ity density functions have been shown by Wang7 to be,

(2.33)

and

where

~U1=U1-<U1> ~U2=U2-<U2> ~V1=V1-<V1> ~V2=V2-<V2>

<Tr]2=<~ul> <Tr22=<~U:> <Ti,2=<~vl> <Ti22=<~vi>

"'ir represents the correlation coefficient of the real components of the

two fields and "'ii represents the same for the imaginary parts.
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Dividing (2.34) by (2.33) gives the conditional probability density func-

tion of the fields at point 2 given the field at point 1 which simplifies7 to,

- (2.35)

where

a
<U>=<U2>+'Yr2(V~coSel-<UI> )

ar.
a r2

=<U2>+'Yr-(U1-<U1> )
a r.

aj h aj
<V> ='Yj~ '\, I1sinel ='Yj~ VIa. a.I) I)

ar= V(1-'Y;)ar2

a.= Y' (l-'V.2 )a.I 'I 12

are the conditional mean and standard deviations of the real and imaginary

values of complex field at location 2 conditioned on the intensity and phase

angle of the field at location 1 and,

U1=~cos81 and V1=~sin81 U2='\II;cos82 and v2='\/i;sine2

The qu~ntities in the above equations are evaluated7 as,
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1 -(12/2 / -2x2
(J. =-7TW cxe Ii> V h +h e 2

12 2 0 + -

1 (12/2Y 2x2
(Jrl="27Twocxe - Ii> h+-h_e I

1 _(12/2Y -2x2(7. =-7rW ae "'" h +h e J
1) 2 0 + -

2 (12 /2 X2

<UI>=7Twoe- Ii> e- I

2 (12 / 2 X2
<U2>=7Twoe- Ii> e- 2

<VI>=<V2>=O

where

Xl is the normalized distance in the receiver plane from the optic axis to

receiver 1

X2 is the normalized distance in the receiver plane from the optic axis to

receiver 2

The normalizing distance is >-..L/7TWoand L is the distance from the tar-

get to receiver number 1.

N=(wo/cx)2 is the number of independent scatterers, where Wo is the

beam waist of the laser on the target, (Jd> is the target phase deviation. 0: IS

the correlation length of the target scattere~ defined by

[

-IX2-XI12

jp(~x)=exp cx2

and X is the transverse distance along the target surface.
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The phase extent for the conditional density function is given by (2.11)

as,

(2.11a)

ellipse for the conditional probability density function of (2.35).

The above relationships for the conditional density functions are

extremely involved, and are valid only for the special case of the far-field of

observation. A general case for partially developed speckle has not been

found. In order to simplify the equations further, assumptions consistent with

the far-field of observation will be made.

In the far field, <V2> = <VI> = 0 in (2.35) and the probability

density ellipses for either location 1 or 2 have a large offset along the real

axis. They also have a larger imaginary than real width (see figure 2.4a).

Consequently VI and V2 will be small compared to VI and V2 respectively,

about one unless ~x is extremely large, <V> can be considered zero and

<V> can be approximated by <V2>. Equation (2.11a) will therefore

reduce to,
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Therefore, ar and ai are both small compared to <V2> and,

ai/=- 1 /2-rrw oo.a dJV 1+e -2xZ

<V2 > ~-rrw;e-xz

'Yi=:::.e-tlxZ/2

When the approximation, tane=:::.e for small angles is used equation

(2.11a) further reduces to,

(2.11b)

Figure 2.13 shows equation (2.11a) vs. ~x for Xl equal to a and 1.0 and

three values of adJ. In the figure, N= 100 and the shaded areas represen t

values of VI and VI within the probability density ellipse of figure 2.4a. The

approximation of equatjon (2.11b) is also shown in the figures. When

adJ«l the conditions of figure 2.4a apply and ge~(J'tIfor the one point pro-

bability density function. The wrapped and unwrapped density functions are

approximately the same and a tls will given approximately by (2.11b).

In the next section the correlation coefficient of phase differences will be

shown to be approximately equal to the square root of the correlation

coefficient for the imaginary fields when the target phase deviation is small.
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The correlation coefficient of phase differences is found from the covariance

of phases at the two receiver points. Therefore,

2 <<t>1<t>2>
p~-

ul
where the mean phases are assumed zero and

When ad> < < 1, and in the far-field, the one point unwrapped and

wrapped phase have been shown to be essentially the same (see figure 2.4a)

and that tan$===<t>==V!U.Therefore,

The real and imaginary fields in (2.34) are not correlated, therefore,

<<i>1<t>2>==
0: 0::: :Ie :c

I IVIV2P(VI,V2)dVldV2I I -LP(VI,U2)dVldU2
-~-:IC -:lC-:ocV IV 2

(2.36 )

As noted previously, when ad>< < 1, ~V1 and ~U2 are small compared

to <VI> and <V2> respectively. Therefore the second integrals in (2.36)

reduce to 1!<V1><V2>. Consequently,

Therefore,

2 <<t>1<t>2> _ <V1V2>
Pd>= 2 - 2

ad> <VI> <V2>acb

Since the correlation coefficient of the imaginary fields is given by,

(2.37)
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<VIV2>
'Vi=

(]. (].
I) 12

and the random variables <PI and <P2are assumed zero mean and stationary

in the wide sense. Therefore, (1l = <<f>2> which for small <f>can be con-

V2 <V2>
sidered equal to < ---+> :::: 1 _ since the real field values are considered

VI <VI>

to be constant. Therefore,

2 <vi>
(1 -
cb-<vi> - <vi>

Substituting (2.38) in the denominator of (2.37) and letting

(2.38)

2_Pcb- 'Vi (2.39)

Figure 2.14 shows 'Vivs. ~x when (]cbis equal to or less than 0.1 for two

values of Xl' This figure can be used to predict the correlation coefficient of

unwrapped phases when the target phase standard deviation is small com-

pared to one.

2.3.2 Probability Density for Turbulence Phase

The phase structure function for turbulence has been studied exten-

sivelyS-I8 and is a measure of the strength of turbulence. One way to meas-

ure the structure function is to measure the variance of phase difference. As

for the one point statistics of turbulence phase, the probability density func-

tion of the unwrapped phase difference for a point source propagating

through clear air turbulence is assumed to be a Gaussian function and is

given by,
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1

[

(~~_~~o)2

]
y;;: exp - 2

U AJL 2'7T 20' ~JL

where the variance8 of phase difference is given by,

(2.40)

0'1JL=2.92k2LC~~x6/3 (2.41)

~~o is the mean turbulence phase difference and ~x is the receiver

separation.

Using (2.41), the value of C; can be determined for a given path length

of turbulence by measuring the variance of phase difference at a known

receiver separation.

Some of the literature suggests that the probability density function of

phase differences is not always Gaussian. Reference 14 compares histograms

of phase difference measurements to Gaussian, exponential and one dimen-

sional K distributions. The distributions tend toward bilateral exponential

for small separations and Gaussian for large separations and higher moments

of the measured distributions agree well with the moments of the K distribu-

tion for all separations. It is also suggested in the paper that the distribu-

tions tend toward Gaussian as the ratio of outer to inner scales of turbulence

increases. These observations, however, are based on measurements in a res-

tricted region of heated air rather than through a long path of natural tur-

bulence.



63

CHAPTER 3

PROBABILITY DENSITY FUNCTIONS FOR UNWRAPPED PHASE

AND FREQUENCY OF SPECKLE IN TURBULENCE

The speckle intensity pattern in the presence of turbulence and wind

moves around in a random fashion due to temporal changes of the turbulent

eddies which cause the beam to wander over the diffuse target. In addition.

the wind and turbulence alter the speckle statistics and contribute an addi-

tional amplitude and phase modulation to the received field.

Following chapter 2, the unwrapped phase probability density functions

for both speckle propagating in a vacuum and for a point source propagating

in turbulence are assumed to be Gaussian. In order to account for the com-

bined effect on the received phase of speckle propagating in turbulence, the

turbulence is introduced into the speckle by allowing the mean value of the

speckle phase to be modulated by the phase fluctuations of a point source

propagating in turbulence.

The probability density function of the unwrapped phase is then found

by integrating the marginal density function for the unwrapped speckle

phase multiplied by the probability density function of unwrapped phase for

a point source propagating through turbulence. This model is based on the

model presented by Holmes and Gudimetla17 for determining the probability

density of the intensity for speckle propagating in turbulence (see appendix

A).
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In using the unwrapped phase with a Gaussian distribution, the results

need not be limited to optically rough targets and will include all degrees of

target roughness. In this way differences can be seen between the distribu-

tions produced by different targets in varying turbulence conditions even

when the r.m.s. roughness of the target approaches or exceeds one

wavelength or the strength of the turbulence approaches or exceeds the

saturation value.

3.1 The Probability Density Function of Phase

Assume a laser beam incident upon a diffuse target and a receiver

located at some distance away in a clear air turbulent medium. Each of the

separate reflected fields produced by the diffuse target will be delayed or

advanced according to refractiye index variations caused by turbulence and

wind. The variation in travel time about the mean travel time for any field

component will depend on the refractive index variations along its path.

Since the travel time is directly proportional to unwrapped phase, the mean

value of the unwrapped speckle phase will also be proportional to the refrac-

tive index.

The model assumes that the mean value of the probability density func-

tion for speckle is modulated by the turbulence in the same manner as the

phase from a point source would be modulated. Therefore the conditional

probability density function of unwrapped phase given the mean value of

speckle phase can be expressed as

1

(

19>-j.L)2

]P ...(<t>1)= .. r exp - 2<12'" ~ <1 V 211" 88

(3.1)
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where O's = the standard deviation of unwrapped phase at the receiver of a

speckle field in free space, J.Lis the mean value of speckle phase, and <t>is the

combined phase due to speckle and turbulence.

The probability density function of unwrapped phase for a point source

propagating through turbulence is given by,

(2.20)

where 0' = the standard deviation and J.Lo= the mean value of phase at

the receiver of a point source propagating through turbulence. Using equa-

tion (3.2) in (3.1), the unwrapped phase probability density function for

speckle propagating through turbulence is given by,

x

-x

x

l

2

_ 1 f dJ.Lexp -(<b-J.L)
2 'iT0' sO' -x 20' II

which reduces to,

(3.2)

or

(3.3)

where

(3.4)
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The model suggests that the combined unwrapped speckle/turbulence

phase perturbations are Gaussian, additive and independent when the target

characteristics and the turbulence effects are both Gaussian. The probability

density function can then be found from the variance for target speckle and

turbulence separately from the relationships given in chapter 2.

3.2 The Probability Density Function of Phase Difference

The probability density function of the sum or difference of two Gaus-

sian random variables is also Gaussian. In chapter 2 the two point probabil-

ity density function of unwrapped speckle phase was proposed as,

(2.26)

(2.2i)
is the standard deviation of phase difference

Us is the one point standard deviation of unwrapped speckle phase. The

correlation coefficient is given by,

For a point source propagating in turbulence the distribution of phase

differences is also Gaussian, and in chapter 2 was given as,

(2.40)

where

(2.41)
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is the variance of phase difference and ~x is the separation between the two

points.

Using the same methods already used for treating speckle propagating in

turbulence,

1

[ ~ ]p cb(~<!>I~.,.)= y;; exp - 2
(j ~s 271' 2(j ~s

and the probability distribution for the two point unwrapped

(3.5)

phase

differences for a speckle field propagating in turbulence is,

oc

-or:

Using equation (2.40) in (3.5)

(3.6)

where

(j _ [IT 2 + IT 2 ]1/2
~- v~s v~.,.

and ~~o is the mean turbulence phase difference. In this case (j~s refers to

the standard deviation of phase differences for a speckle field in free space

and u~.,. refers to the same for a point source propagating through tur-

bulence.

3.3 The Probability Density Function of Frequency

If the frequency of the received field is a function of time, its statistics

are closely related to the unwrapped phase statistics since the frequency is

the derivative of the unwrapped phase. Based on the special property that

linear operations on a Gaussian random variable produce statistics that
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remain Gaussian, the probability density function of frequency will be a

Gaussian random variable as long as the probability density of unwrapped

phase is Gaussian. Therefore if the unwrapped probability density of phase

is,

1

(

<t>2

]
P cb(<t»= V? exp -~

(1 cb 21T 2(1 cb

then the probability density function for the frequency is given by,

(3.7)

1

(

V2

]
Pv(v)= V? exp --(1 211' 2(1~v

h
. h f f °

h
. I h .

d d<t>/dt
were v IS t e requency 0 t e signa at t e receiver an t' =

21T

(3.8)

Both (1cb and (1v can be found from their respective auto-covariance

functions. The auto-covariance function of a variable x that is a random

function of t, is itself a function of t and is given by the expected value of

the product of x at one value of t with x at a different value of t. Therefore.

RX(t,T) = <x(t)X(t+T» and T can take plus or minus values.

For the special case where x is a stationary random variable, the auto-

correlation function is not a function of t and Rx(t,T) = Rx(T).

The auto-covariance, <x(t)X(t+T> reduces to the variance, <x(t)2> as

T approaches zero so,

(1 := < x( t )2> - < x( t ) > 2

To obtain (1v from (1cbthe second derivative of the auto-covariance function i

of <t>is found using,

(3.9)
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and

R<t>(T)= < <1>(t )<1>(t+T) >. (3.10)

Then the limit of Rv is evaluated for T approaching zero.

This approach can be taken with the numerical data from the phase or

frequency detectors used in the experiments. Using the unwrapped phase

data a suitable averaging interval over time is used to obtain the autocorrela-

tion function as a function of T. Then the second derivative of the autocorre-

lation function is computed numerically. Finally the limit of the autocorrela-

tion function is taken to arrive at the value of (]t" An inverse process can be

used to obtain the phase variance from the frequency variance.

Another technique for relating the variances of the phase and the fre-

quency is by use of the Four~er tran~form. The power spectral density is

related to the autocorrelation function of a random variable by its Fourier

transform,

x
1

f
.

8x(w)=- R<t>(T)e-1WTdT
21T -x

The Fourier transform of the derivative of a function is

(3.11)

w times the

transform of the function, therefore since w = d<1>/dT,

w28<t>( <1»

81'(w)= .., (3.12)
41T

Using this relationship the variances of the frequency and phase are related

by w2 and,

(3.13)

In the equations, w represents the transformed variable T.
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Here again, using numerical methods, the autocorrelations can be found

from the experimental data and from these the power spectrums are

obtained.

These methods can be used for converting between the statistics of

unwrapped phase and the statistics of frequency for both one and two point

measurements.
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CHAPTER 4

EXPERIMENTAL SYSTEM DESCRIPTION

Two different optical heterodyne systems were used to obtain the experi-

mental data. The primary system made use of a single laser which provided

both the transmitter and the local oscillator signals. Acousto-optic modula-

tors produced the frequency shifts needed for the heterodyne frequency. In

the other system the transmitter and local oscillator functions were provided

by different lasers. Unfortunately it was not possible to obtain the necessary

phase synchronization between the two lasers for phase or frequency meas-

urements. Nevertheless both systems are reported here since the potential

exists for improving the phase control of the two laser system. Each system

has its own merits as to system cost, complexity and optical isolation

between the transmitter and local oscillator beams.

Before each system is described in detail, the use of a heterodyne system

to measure amplitude, phase and frequency information will be explained.

4.1 The Heterodyne System

Heterodyne systems have been used for electronic communication and

measurement applications for many years. Some common examples are

radio, television, radar and spectrum analyzers. From the early years of

radio, with the advent of the superheterodyne receiver, heterodyne systems

have provided a convenient method for channel selection and improved signal

reception in the presence of background noise. Additionally, heterodyne sys-
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tems allow coherent detection so that the instantaneous values of amplitude,

phase and frequency of a signal can be received. More recently the invention

of the laser has allowed heterodyne systems to operate at optical frequencies.

An optical heterodyne system is shown in figure 4.1. The local oscillator

and transmitter provide optical signals with constant amplitude and fre-

quency. The transmitter frequency is offset from the local oscillator frequency

by a fixed amount, the heterodyne frequency. The received field has an

amplitude, frequency and phase that vary according to the propagation path

and the characteristics of a remote target. Using a beam splitter, the received

field is combined with the local oscillator field at the optical detector to pro-

duce an output voltage or current that, within the frequency response limits

of the detector, is proportional to the instantaneous value of the power con-

tained in the combined fields.

The local oscillator field can be described by,

(4.1)

and the received field by,

(4.2)

Ao and 90 represent the instantaneous amplitude and phase respectively

of the local oscillator field and Ar and 9r the corresponding quantities for the

received field. Both fields are assumed to have the same polarization. Since

the optical detector responds to the power of the total field, it's output is

proportional to the square of the inddent field. Neglecting a proportionality

constant due to detector responsivity and mirror losses, the detector voltage

is given by,
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(4.3)

which expands to

v d=A;cos2So+A{cos2Sr+2AoArcosSocosSr (4.4)

The angle S can be written in terms of the angular velocity of the wave,

where w=dejdt, W=21TV,and v is the instantaneous frequency of the signal.

Ao and eo can be considered constants, and if for the moment the effects of

the atmosphere and the remote target are neglected, eo and Sr can be

replaced by wot ant wrt respectively.

Substituting the trigonometric identity 2cosAcosB=cos(A+B)+cos(A-B)

in each of the terms of (4.4), the first two terms give a constant (d.c.) term

and cosine terms at twice the frequency of the local oscillator and received

frequencies. The third term in the equation produces a component at the

sum of these two frequencies and another at the difference of the frequencies.

The sum frequency and the double frequencies are optical frequencies well

beyond the response capabilities of the detector as well as any electronic pro-

cessing instrumentation and are not received. But the difference frequency is

within the frequency limits of the system as long as the local oscillator and

transmitter frequencies are adjusted appropriately. Therefore the d.c. and

the difference frequency terms are the only components of the fields that are

received. The d.c. component is removed by electronic filtering so that thE'

received voltage is given by,

(4.5)

The angle So-Sr represents the instantaneous phase of the received field

and AoAr represents the instantaneous amplitude.
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In practice a phase reference must be used for the phase detector. The

phase detector measures the phase difference between the received phase and

this reference. The phase reference is provided by the electronic oscillat.ors

that determine the transmitted and local oscillator frequencies and is

equivalent to the phase angle 9o-9x=21T(Vo-Vx)t where Vx is the transmitted

frequency, Vo the local oscillator frequency and both Vo and Vx are constant

values. Subtracting this reference phase angle from the received phase in

(4.5), the phase detector output voltage is proportional to 9x-er' This

represents the instantaneous phase introduced by propagation of the optical

signal from the transmitter to the receiver.

The phase received at a single location or the phase difference of two

received signals at different locations can be measured. When the phase

difference is measured, the reference phase for the phase detector is provided

by one of the received signals. Each heterodyne signal has the same lora I

oscillator and transmitter so that the phase measured by the detector is

9r2-9rl where the subscripts 1 and 2 refer to the two different receiver loca-

tions.

The phase was a.lso measured indirectly by measuring the frequency t',

In this case the phase was obtained by integration of the frequency data since

9 is given by J21Tvdt. For one point measurements, V=Vx-Vr and for two

point measurements v = vr2-vrS' As wiJ1be explained in the next chapter,

two point frequency measurements were not made due to limitations in the

frequency detector.
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4.2 The Single Laser System

Figure 4.2 shows a diagram of the single laser system27. A single C02

laser is used for both the transnlltted output and the local oscillator.

Acousto-optic modulators (AOM) driven by RF generators at 39.95 MHz and

40.05 MHz produced a heterodyne frequency of 100 kHz. Two modulators

were used so that stray optical reflections from the transmitter beam would

be at the wrong .frequency to produce false signals at the detector. This

method28 produced a high degree of optical isolation between the transmitted

and received signals. Beam splitters (B.S.) were used to reduce the power of

the local oscillator signal for the sensitive liquid nitrogen cooled HgCdTe opt-

ical detectors.

A 3x beam expander was used to increase the radius and reduce t.he

divergence of the laser beam. A half-wave plate was used to rotate the laser

polarization from vertical to horizontal. The transmitter beam was further

magnified by a ratio of 5x and a quarter wave plate was used to obtain a cir-

cularly polarized transmitted beam.

A two-inch mirror was used to direct the returning radiation through an

a-focal telescope onto a pair of detectors. The telescope consisted of two

lenses of focal lengths 25.4 and 6.2 cm giving a magnification of 4.1. The low

magnification was needed to lessen angle of arrival fluctuations which in turn

demanded large detector areas. The detectors were photoconductive detect.ors

which have an advantage of Ia.rge size and low cost. They were 2mm x 2mm

in dimension placed side by side 0.1mm apart in a single dewar. This gave an

effective spacing of 8.6mm between the detectors. The detectors were posi-
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tioned close to the focal plane of the imaging lens where the image is least

dependent on the incidence angle.

A pinhole placed at the common focus of the lenses in the telescope, lim-

ited the field of view of the detectors and also helped cancel spherical aberra-

tions. The 5x beam expander on the LO path provided a collimated beam

several times larger than the detector area, resembling a plane wave on the

detector surfaces. Another quarter-wave plate was used on the LO beam so

that it would also have circular polarization.

Details concerning the single laser optical heterodyne system can be

found in the PhD dissertation of F. Amzajerdian27.

4.3 The Two Laser System

A two laser optical heter<;>dynesystem has an inherent isolation between

the transmitter and local local oscillator. Transmitter feed-through from

optical reflections can theoretically be eliminated if the system locks onto the

signal return from a remote target rather than part of the transmitted signal

since the transmitter and local oscillator will have no common optical ele-

ments. Consequently, maximum optical isolation between the transmitter

and local oscillator is provided. In addition, since the return signal rather

than the transmitted signal is used for control, the system may be useful for

long ranges where laser drift causes the transmitted and return frequencies to

be radically different and beyond the frequency range of the receiver. In

order to use the two laser system to make intensity measurements, a method

was needed to synchronize the frequencies of the two lasers. Furthermore, if

frequency or phase data was desired, the phases of the two lasers must be
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locked.

A simple and inexpensive method for frequency synchronizing the two

lasers was used2G. The system could track frequency changes of several hun-

dred megahertz that were caused primarily by frequency drift of the lasers.

Phase synchronization could not be achieved so the two laser system was not

able to provide phase or frequency measurements. The length transducer in

the laser cavity was used for frequency control of the LO laser. The length

transducer was intended for dither stabilization to prevent frequency drift

away from the laser peak output level.

The two laser optical heterodyne system is shown in figure 4.3. The

return signal from the remote target was combined with the local oscilJat.or

using a beam splitter and dire<;ted ontc> the optical detector. The signal from

the optical detector represents both the signal input to the receiver and the

controJ signal used for frequency synchronization of the local oscillator. A

5MHz heterodyne frequency was selected although other frequencies were also

used.

The lasers used in the system were tunable by means of a diffraction

grating which was adjusted with a micrometer dial. The cavity length trans-

ducer was a piezoelectric transducer on which the rear laser mirror was

mounted. An electrical signal applied to the transducer varied the laser fre-

quency in response to the changing cavity length. After the two lasers were

brought to the same spectral emission line by manually adjusting the

diffraction grating, the system maintained control by detecting any frequency

change from the desired heterodyne frequency and applying a correcting vol-
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tage to the length transducer.

The signal from the optical detector was amplified and the frequency

detected using a frequency demodulator. The detected signal represents an

error signal proportional to the difference between the desired and actual

receiver frequencies. The signal was amplified to provide a large amount of

control loop gain in order to minimize the frequency drift and maintain small

errors in the heterodyne frequency. Special electronic compensation was

needed to achieve a stable system. The compensation problem was compli-

cated by the resonant response of the piezoelectric length transducer. The

transducer had a prominent resonant peak which severly limited the fre-

quency response of the control system and made it difficult to achieve a large

control loop gain. This problem was solved through a compensation method

described below and stable control was achieved with a control loop gain of

120 dB.

The measured laser response to electrical control inputs as a function of

control frequency is shown in figure 4.4 Of particular interest is the pro-

nounced resonance at 3.4 kHz evidenced by the extreme increase in ampli-

tude response and phase shift at this frequency. The response is that of a

second order system with a damping ratio of about 0.025. Beyond the peak

at 304kHz, the curve falls off rapidly and response is lost to higher freql1en-

cies. For this reason, even with stable control conditions, any disturbances in

laser emission wavelength at rates higher t.han the resonant frequency were

uncontrollable. The inability to control these high frequencies resulted in fre-

quency modulation or FM noise added to the heterodyne signal. Therefore
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FM noise caused by inherent laser instability or external disturbances such as

vibrations could not be removed by the system if the FM rate was above the

3.4 kHz response of the length transducer.

The heterodyne signal was observed using an oscilloscope and a spec-

trum analyzer. The FM noise varied from 5 kHz to 50 kHz representing

0.1% to 1% of the 5 MHz heterodyne frequency. Reduction of the FM noise

in this frequency range would require a control element having a frequency

response extending beyond the 3.4kHz range of the internal length trans-

ducer.

A notch filter at 3.4 kHz was added to minimize the effects of the trans-

ducer resonance. In addition, a compensation network with a double pole at

4Hz and a zero at 100 Hz was also needed for stability. The maximum con-

trol loop gain that could be achieved with this compensation was 120 dB.

With a loop gain of 120 dB, the theoretical steady state error to a unit input

change of frequency is 10-&. Laser frequency drift is mainly due to tempera-

ture variations. The lasers drift 900 MHz per degree C and were controlled

to within plus or minus 0.1 degree C by water cooling. A 0.1 degree change

in temperature represents a 90 MHz change in laser frequency. Frequency

drift was measured over a period of three hours using a control loop gain of

60 dB. The 5 MHz heterodyne frequency drifted less than 50 kHz. With a

loop gain of 120 dB the corresponding drift would be only about 50 Hz or

less than one part per million of the expected laser frequency drift of 90

MHz. Assuming the electronic control system has the necessary dynamic

range, the lasers can maintain control as long as they do not drift outside
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their free spectral range of about 500MHz.

Using this method of control the heterodyne signal does not follow slow

frequency shifts which might be needed for instance to determine target yelo-

city. Nevertheless, the output of the frequency detector does provide infor-

mation about the frequency of the return signal.

Attempts were made to phase lock the heterodyne frequency of the two

lasers to a stable reference oscillator by controlling the frequency of one of

the lasers, however, these attempts were unsuccessful. It is felt that a combi-

nation of the inability of the laser transducer to respond above 3.4 kHz and a

practical limit to the lock in range of the control loop prevented phase lock-

ing. The large amount of FM noise produced phase errors beyond the 271'

range of the phase detector used in the phase locked loop. The loop gain

could be reduced to lessen the FM noise, however, this prevented sufficient

loop gain for stable phase locking. Successful phase locking of two C02

lasers in a much more complicated heterodyne system has been reported3o.

Stable frequency control at a loop gain of 120 dB was demonstrated in a

field environment using a diffuse target at 80 meters from the lasers. The tar-

get generated an almost fully developed speckle pattern at the receiver. The

average speckle contrast ratio was measured to be 0.7, and the average

received power level was about 10-12 watts.

The combined effect of speckle and atmospheric turbulence resulted in

large fluctuations in the amplitude and phase of the received optical signa I.

These fluctuations caused the optical signal to go below the background noisE'

level for short durations in the order of several milliseconds. Even with this
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temporary loss of signal, the system maintained frequency control. Occasion-

ally when the return signal was lost for longer periods, such as when an

object interrupted the beam, reacquisition of control was required by adjust-

ing the diffraction grating. It may be possible to alter the electronic fre-

quency compensation to allow longer periods of signal loss, but for situations

where the beams may be interrupted for lengthy periods, some system for

automatic signal acquisition would be needed.
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CHAPTER 5

PHASE AND FREQUENCY DETECTORS

In this chapter, the methods used to pro~ss the phase and frequency

detector data are described. In order to obtain unwrapped phase information

from the phase detector, a method was needed to place the measured phase

data in the appropI'i.at~ 2'Ti' segment of the infinite line that represents

unwrapped phase. In theory there is no exact way to do this because a given

point on a circle representing a wrapped phase value could be placed in any

one of an infinite number of 2'Ti'segments of the line. The best that can be

done is to predict where the phase should be from past, present or future

data points.

If the range of the expected unwrapped phase variations is known ahead

of time, unwrapped phase can be obtained directly from the phase detector

data without unwrapping by using frequency dividers to divide the phase

before it is measured so that it always stays within a range of 2'Ti'. Another

alternative to unwrapping the phase is to measure the frequency instead of

the phase and integrate the frequency data. The integral of frequency

represents unwrapped rather than wrapped phase.

Figure 5.1 shows the instrumentation that was used to measure phase

and frequency. The weak heterodyne signals received from the HgCdTe

detectors were amplified with amplifiers tuned to 100 kHz. When the phase

difference was measured, both received signals were applied to the phase

detectors. This is shown for the switch in position 1 in the figure. .A13will be



100kHz
Amplifier

HgCdTe
Detector 1

100kHz
Amplifier

HgCdTe
Detector 2

AOM A
f1

TK-SO
Tape
drive

100kHz

Mixer

PDP11/73
Computer

1

2

Dual
Phase

Detectors

AID
Board

Figure 5.1 - Instrumentation Used to Measure Phase and Frequency

87



88

explained later, usually two separate phase detector outputs were recorded.

When frequency dividers were used, they were placed before the phase detec-

tors. When frequency detectors were used, they replaced the phase detectors.

With the switch in position 2, the phase at a single point was measured.

A reference phase angle was generated using the electrical signals that supply

the frequency shifts to the acousto-optic modulators (AOM) used to produce

the heterodyne frequency. The electrical signals were applied to an electronic

mixer to produce the 100 kHz heterodyne reference signal for measuring

phase and only one amplifier output was used.

The detector outputs were digitized with analog to digital converters

(AID) and recorded on a magnetic tape drive (TK-50) using a PDP 11li3

computer.

5.1 0-27T Phase Detector

A phase detector is limited by its dynamic range which is given by the

range of phase values that it can measure. Typically the response is from 0

to 27Tradians, although with added complexity, detectors that respond to 47T

and beyond can be made. A simple 0 to 27Tphase detector that was initially

used to measure phase data is shown in Figure 5.2.

In order to remove amplitude fluctuations, the 100 kHz heterodyned sig-

nals were clipped by the phase locked loops (PLL) to produce square waves.

A bistable multivibrator (MV) and tow pass filter (LPF) averaging circuit

were used to produce a phase detector response that was linear from 0 - 27T

radians or 0 - 360 degrees.
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The phase detector response is shown in figure 5.3. .As with any 2'TT

phase detector, there is a transition zone at the discontinuity in the response

curve where 0 meets 360 degrees. The transition zone provides inaccurat.e

output and complicates the task of unwrapping the phase data.

In order to unwrap the phase data, each time the phase detector makes

a transition from 360 degrees back to 0 or from 0 to 360 degrees, a constan t

value representing 360 degrees must be added or subtracted depending on

the direction of the transition. When the phase changes rapidly and ran-

domly it is very difficult to determine when a transition is made. For exam-

pIe a phase change from 359 degrees to 1 degree could be interpreted as an

increase of 361 - 359 = 2 degrees or a decrease of 359 - 1 degree = 358

degrees. In the first case, 360 degrees should be added to current and future

phase data values, but in the second case there should be no correction.

Based solely on these two data points, the logical choice is to select the

smaller change (less than 180 degrees), in this case the 2 degree change.

The 0-2'TTphase detector was used to unwrap the phase by measuring

the magnitude and direction of the change from one data value to the next.

and as explained above, 271 was added or subtracted to the data when the

change was greater than 'TTradians. However, the width of the transition

zone, which can be several degrees wide in a practical detector, caused

erroneous outputs near the discontinuity and slowed the rate of transition

through the discontinuity. This increased the number of unwrapping errors.

Acceptable results were obtained by this method only when the wrapped

phase was changing slowly. More involved phase unwrapping algorithms
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have been proposed31,32 that may improve the unwrapping process when a

single phase detector is used, however, the methods that are described below

using two detectors eventuaUy jed to acceptable results.

In order to lessen the unwrapping problems created by the transition

zone, two separate phase detectors were used. The response of each detector,

Va and Vb' was shifted in phase by 'TTradians with respect to the other as

shown in figure 5.4, A thresho1d at -Vm and + Vm' equivalent to a range of

'TTradians, was set for each detector. When one of the detector outputs was

within the threshold limits the other detector output would be outside the

limits, and the transition zone could theoretically be avoided.

The algorithm used to unwrap the two phase detector outputs is

described by the flow chart given in ',figure 5.5. The algorithm selected Va

when its value was between -Vm and Vm and switched to Vb when outside

these limits. In this way the discontinuity was avoided, and the number of

unwrapping errors was reduced. In order to compensate for the switch from

Va to Vb' when Va was greater than Vm' 'TTradians was added, and when Va

was less than -V m' 'TTwas subtracted. A similar correction was made for a

switch from Vh to Va" The algorithm kept track of the number of 'TTcorrec-

tions to add or subtract as the output switched back and forth between Va

and Vb' The rate at which the phase is sampled of course must be high

enough that there is less than 'TTradians of phase change between samples in

order to accurately unwrap the phase,

Although this reduced the number of unwrapping errors, there were

situations when both detector outputs were in their transition zone at the
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same time. This happened when the detectors were near the threshold limits.

While one detector was within the threshold limits the other was slightly out

of the limits. If the phase stayed near the threshold for several data samples,

the detectors typically made several transitions through the threshold area

causing occasional unwrapping errors.

6.2 O-iT Phase Detector

Another type of phase detector that had a linear response for only iT

radians was used to avoid the transition zone problem. Two separate detec-

tors were also required in order to unwrap the phase data, but in this case

the responses were shifted by iT/2 radians with respect to each other. As

shown in figure 5.6, each detector was implemented with a logical AND gate

and LPF averaging circuit. .The inputs were amplified and clipped with

PLL's to produce square waves. Each PLL was adjusted so that a 90 degree

phase relationship would exist between the two phase detectors.

The phase detector response is is shown in figure 5.7. The phase detec-

tor response alternated between a positive slope and a negative slope every iT

radians. The desirable feature of this phase detector is that, unlike a zero to

2iT ph~ detector, there are no discontinuities in the response. Phase data

was measured and processed in two steps. First, two equivalent zero to 2iT

wrapped phase detector responses like the ones shown in figure 5.4 were cal-

culated (rom the two zero to iT phase detector outputs using the algorithm,
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if V2<0 then

V =-V 1-Va m

The wrapped phase data was then unwrapped using the same digital process-

ing algorithm that was used for the two 0 to 211"detectors described by the

flow chart given in figure 5.5.

The advantage to using the 0 - 11"detectors was that the discontinuities

would be narrow as shown in figure 5.4 rather than wide as shown in figure

5.3. However, if the phase shift between the two detectors is not exactly 90

degrees, there will be a finite width to the transition zone of the equivalent 0

- 211"detectors and unwrapping problems similar to those with the other

phase detectors will occur.

5.3 Frequency Dividers

If the maximum number of phase unwrappings that are required is

known, then the 100 kHz heterodyne frequency can be reduced by a set.

amount using frequency dividers, and the unwrapping problem can be

avoided. The phase wiIJ be divided at the same ratio, and unwrappings will

not be necessary as long as the unwrapped phase never exceeds the division

ratio times 211"radians. Disadvantages of this method are that the resolution

of the phase measurement is .also reduced by the division ratio, a good est i-

mate of the maximum phase change is required prior to the experiment, and

very large phase errors will occur when the signal is temporarily obscured by

noise. Without the frequency dividers, the noise produced only a temporary
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loss of data and no permanent phase errors were added.

Phase data was taken using frequency dividers with division ratios from

4 to 256. Examples of data taken at division ratios of 32 and 128 are shown

in figure 5.8a and b respectively. Phase errors due to noise occurred at ran-

dom and resembled magnified unwrapping errors equivalent to several multi-

ples of 211".In addition, with the divide by 32 circuit, the phase occasionally.
exceeded the 32 times 21Tphase detector limit causing additional errors.

The origin of the phase errors is described in what follows. Considering

a bistable multivibrator used to divide the frequency and the phase by a f3("-

tor of two, one complete period of the input represents a half period of the

output. If one cycle is missed at the input, a 180 degree phase shift is

artificially added to the data. The error will occur each time one detector

suffers a loss of signal for an odd number of cycles of the input and the other

for an even number of cycles. Frequency division by amounts other than two

causes the same problem and an unknown number of phase errors, which

appear as step changes in phase, are accumulated in the unwrapped data.

The errors can represent extremely large phase values especially when large

division ratios are used.

The problem was corrected by using a more complicated frequency

divider that employed a phase locked loop with a frequency multiplier in the

loop. The controlled oscillator in the loop was multiplied in frequency and

locked in phase with the incoming signal frequency. The controlled frequency

was used as the frequency divided output and was synchronous with the

input as long as the loop was locked. Schematics of the frequency divider
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with the phase locked loop are provided in Appendix D.

6.4 Frequency Detectors

Phase data was also obtained by recording the received frequency and

numerically integrating the data to obtain phase. Phase unwrapping was not

needed since frequency data is continuous within the dynamic range of a fre-

quency detector. The frequency detector must be extremely linear, have very

little drift, and have good sensitivity so that a resolvable output for very

small frequency changes is provided. A detector that meets these require-

ments (figure 5.9) consists of a monostable multivibrator with a pulse dura-

tion time slightly less than the repetition period of the heterodyne signal.

The average of the multivibrator pulses is directly proportional to the instan-

taneous frequency value. The output was digitized and recorded on the mag-

netic tape. The integration of the frequency data can be done before or after

the data is recorded. Because large phase angles were accumulated by the

optical signals, it was only practical to integrate the data after it was

recorded. Simple rectangular or trapezoidal integration algorithms were used.

The only significant problems encountered with this detector werf' a

very slow drift in the output due to pulse duration time variability and

matching the response curves when two detectors were needed for phase

difference measurements. These problems were not serious when measuring

the frequency at one point since only one detector was used and very slow

frequency changes were not measured due to the limited recording times.

However, measuring the phase difference between two receivers was not possi-

ble using frequency detectors because the two detectors could not be matched
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well enough. Any differences in their response represented a frequency error.

When the frequency data from each detector was subtracted and integrated,

the desired phase difference information in the data was totally obscured by

the integrated frequency detector errors. Unless a technique is developed for

measuring the frequency difference directly, or the frequency detectors can be

more closely matched, the frequency method is not suited for phase difference

measurements.

One-point frequency and phase data were taken at the same time in

order to compare the unwrapped phase produced by each. Figure 5.10 shows

the integrated frequency and the unwrapped phase versus time. The

differences between them is most likely due to the inabilit.y of the phase

unwrapping algorithm to correctly unwrap the occasional rapid and large

phase changes between sample points.
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CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, the results of phase and frequency measurements using

an optical heterodyne system in the open atmosphere with sandblasted

aluminum targets wiJ] be reported. The tests were performed at an atmos-

pheric field site near St. Paul, Oregon using the single laser system. The two

laser system was operated only at the OGI facility and did not provide phase

or frequency data.

Data taken at the St. Paul facility are compared with the models for

unwrapped phase and frequency given in chapters 2 and 3. The data indi-

cate how measurements of the unwrapped phase difference at receiver points

with an effective spacing of 8.6 miHimeters can be used to distinguish

between targets of different roughness at a range of 1000 meters. The data

also indicate that the unwrapped phase and phase difference received from

the remote target can predict turbulence levels in the atmosphere.

Unwrapped phase rather than the wrapped phase was used exclusively

and was obtained from either frequency or wrapped phase data as explained

in chapter 5. Unwrapped phase was needed because the small speckle phase

variations caused by microscopic target roughness were obscured by phase

variations greater than '21Tthat were produced by target motion and macro-

scopic target surface irregularities. Phase variations due to turbulence werE>

sometimes greater than 21T and could not be measured with the wrapped

phase. The speckle phase variations and the phase variations due to
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turbulence could be extracted from the unwrapped phase using a combina-

tion of high pass and low pass filtering.

In the first section, the problem of separating the effects of speckle and

turbulence in the phase data will be explained and the need for data filtering

will be justified. Next, parameters of the experiment that predict the vari-

ance of the measured phase will be summarized.

Following that, the standard deviation of unwrapped phase difference

versus the r.m.s. target surface roughness will be reported from the results of

Peacock33. Histograms of the unwrapped phase data will be shown to resem-

ble Gaussian functions after the data is filtered to extract speckle phase vari-

ations. These results will be supplemented by showing the dependence of

unwrapped phase deviations on errors that resulted from unwrapping the

phase data and on the cut-off frequency that is used to filter the data. Com-

parisons will be made to phase deviation predictions given in chapter 2.

Next, the standard deviation of the unwrapped phase obtained from fre-

quency data and filtered to extract the turbulence phase variations measured

at one receiver point will be compared to calibrated atmospheric turbulence

levels and the predictions of chapter 2. Histograms of unwrapped phase

filtered to extract turbulence variations will also show a close resemblance to

a Gaussian function. Filtered unwrapped phase difference data will also be

compared to measured turbuJence levels.

6.1 Data Filtering

Most of the results to follow depend on selecting an acceptable method

for filtering the phase or frequency data. The data are affected by both
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macro-scopic and microscopic target features, temperature variations and on

the target motion. Microscopic target surface variations cause speckle and

occur on a scale of about the same order of magnitude as the laser

wavelength. Microscopic surface variations were produced by sandblasting or

flame spraying the aluminum targets to make them diffuse. Macroscopic tar-

get variations vary on a scale much larger than the laser wavelength and

were caused by n~>n-uniform target thickness and surface curvature in the

targets. Phase changes due to microscopic effects extend to relatively high

frequencies, however, the macro-scopic features produced only low frequency

phase changes. Two other effects, target motion and slow variations in the

refractive index of the atmosphere caused by changes in the air temperature,

produced phase variations only at low frequencies. Target motion was due to

an inability to fasten the target tight enough to prevent the wind from

deflecting the target.

Figure 6.1 shows macro-scopic effects in the unwrapped phase data.

Unwrapped phase data is shown before and after the target was supported

by tightly cinched wires. Phase oscillations due to wind activity exciting the

natural damped oscillation of the target can be seen in each trace. The

tightening of the target had two major effects on the oscillations. The first

effect was to reduce the amplitude of the oscillations from more than 32

cycles (200 radians) peak to peak to less than 8 cycles (50 radians) peak to

peak. The second effect was to increase the frequency of oscillations from

about 5 Hz to 20 Hz.
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The very low frequency phase changes are due to macro-scopic target

features and also on refractive index changes in the atmosphere caused by

temperature gradients. The pbase change over a path length of 2000 meters,

representing the two way optical path, was calculated to be 1120 radians per

degree centigrade. Therefore a temperature change of only 0.10 represents a

phase change of 100 radians.

Two different methods were used to filter out the effects of the oscilla-

tions and the macro-scopic target characteristics in the data. In one method,

a digital Fourier transform (DFT) of the data points was generated. Data

points of the spectrum were altered according to the filter characteristic

desired. Then an inverse DFT was generated to obtain the filtered data.

When data lengths were longer t~an 2500 points it was difficult to per-

form a DFT. For these cases a running point average was subtracted from

the data to produce a high pass filter characteristic that had a more gradual

roll off than with the DFT method.

A major problem in filtering the data was the choice of appropriate

cut-off frequencies. To help select the cut-off frequencies, the frequency bands

covered by the speckle and turbulence data were estimated. Both speckle

and turbulence data theoretically extend to d.c.

Figure 6.2 shows typical spectra of the one-point unwrapped phase and

two-point phase difference. The majority of the phase information is at low

frequencies. This is especially true of the one-point data. The normalized

power spectrum for the phase of a point source propagating through a tur-

bulent atmosphere assuming a Yon Karman spectra of C~ is given by34,



3500
3000

r
a 2500

~ 2000
a 1500
n
s 1000

500

o
0.0

109

15.0

r 12.5

~ 10.0
; 7 5a .

n . 5.0
s

1.0 2.0 5.03.0 4.0

HZ

(a) Phue Data

500 1000 1500 2000 2500

Hz .

(b) Phue Difl'erence Data

Figure 6.2 - Typical Spectra of Unwrapped Phase Data



110

( ]

6/3
< <l>2(f)> -2 VT 1

2 =(5.56xlO) -

( ( ]

2

]

4/3 (6.1)
<<I> > 21TLo 2 VTf+ -

21TLo

where VT is the transverse wind speed, Lo is the outer scale of turbulence

V
and f is the frequency. -.l... represents the high frequency cut-off. The

21TLo

laser height above the ground was about 1 meter and is an estimate of the

outer scale. Therefore, the high frequency cut-off is less than 1 Hz for wind

speeds up to 10 meters/sec. Consequently, the phase variations due to tur-

bulence are concentrated at frequencies below the target motion frequency.

A low pass filter with a cut-off frequency set slightly below the target

motion frequency was used to extract turbulence information from the phase

data. A high pass filter was also needed to remove very low frequencies since

a finite sample length prevented data from extending to d.c. The cut-off fre-

quency was chosen to be approximately ten times the reciprocal of the max-

imum time of a data set. This gave a reasonable average of low frequency

data within any set. Five pole filters producing 100 dB per decade attenua-

tion characteristics were used to achieve good selectivity since the desired

information was contained in a narrow band of frequencies.

Speckle frequencies cover a much wider band of frequencies extending to

relatively high frequencies. The highest speckle frequency can be estimated

by determining the minimum time for a change in the speckle pattern at the

receiver. The minimum time depends on the rate of beam wander on the

target and the target correlation length and can be estimated by dividing the

correlation length by the transverse wind speed. The highest frequency will
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be the reciprocal of this time. Typical limiting values for correlation length

and a wind speed are 50f.Lmand 5 meters/second respectively. However,

when taking data for the purposes of measuring the speckle, the wind was

usually less than 1 meter/second so data rates greater than 20 kHz were not

expected.

The maximum available sampling rate was 7.15 kHz, and the highest

recorded frequency was set accordingly to 4 kHz. Therefore, some high fre-

quency speckle information was lost. The sampling rate was slightly less

than the Nyquist rate of twice the highest frequency, so a small amount of

aliasing is expected. To extract the speckle information, a 10 point running

average was subtracted from the unwrapped phase difference data. This

simulated a high pass filter with a cut-off frequency of about 114 Hz. The

cut-off frequency had to be set well above the target motion frequency since

the running point average filter was not very selective.

A sample of the unwrapped phase data before it was filtered is given in

figure 6.3a. It is evident from the figure that it was impossible to eliminat.e

all of the unwrapping errors. The target motion and macro-scopic target

variations caused rapid and violent phase changes which made phase

unwrapping very difficult. Unwrapping errors were attributed to an

insufficient sampling rate and the inability to take simultaneous samples of

both phase channels. Figure 6.3b shows the same data set after phase

changes greater than 11' radians between adjacent samples were removed.

Since the standard deviation of speckle phase was expected to be less than 1

radian, changes greater than 11'radians represent more than three standard
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deviations from expected phase deviations. This did eliminate most unwrap-

ping errors, however, more complicated algorithms for unwrapping the phase

data or for correcting the unwrapping errors may be more effective in

preventing unwrapping errors.

Slightly larger phase variances due to speckle and turbulence might be

expected than is shown by the data due to the loss of information in the

filtering process. On the other hand the inability to remove unwanted phase

variations may in fact produce phase variances larger than expected. Conse-

quentIy, some of the conclusions that can be drawn from the data are

compromised by the uncertainty of the origin of the phase variations because

of imperfect filtering. Nevertheless the indications are that the filtering was

able to separate the various effects reas'onably well.

6.2 Laser Beam Properties and Target Parameters

Figure 6.4 summarizes the laser beam propagation to the target. The

target was situated 1 km from the laser source and receiver. A 3x and lOx

beam expander were used to produce an overall laser beam expansion of 30x

and a beam radius of 36 millimeters at the exit lens of the transmitter. The

laser beam size was adjusted at the lOx beam expander to produce a max-

imum average signal level at the receiver. Maximum receiver level is

achieved when the beam diameter on the target is a minimum27. Originally

it was thought that adjustment of the beam expander could produce a waist

of the laser beam at the target.

However, it was subsequently determined that it was impossible to pro-

duce a waist at the target under the conditions of the experiment. The
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conditions that would be necessary to produce a minimum radius at the tar-

get were calculated. The minimum beam radius at the target was found to be

93.6 millimeters when the beam was focused at a distance of 130 meters from

the beam expander.

Sandblasted aluminum targets of differing surface roughness were used

to test the ability to distinguish surface Toughness by phase difference meas-

urements. 30,16 and 8 grit sandblasted aluminum targets were produced and

measured for r.m.s. surface roughness and surface correlation length using a

calibrated laboratory profilometer33. After taking some of the data, the 30

grit target was coated with a flame spray in order to produce a rougher sur-

face than was possible by sandblasting. The rougher surface made it difficult

to measure with the profilometer, and although the surface roughness was

measured, the correlation length could 'not be measured. A fifth target, called

a standard target, was permanently situated at the field site and could not be

measured. It's surface roughness is estimated to be on the order of the 30

grit target roughness. Table 6.1 summarizes the results of the measurements

made using the profilometer.

R.M.S. roughness varied from 4.8 J1m for the 30 grit target to 39.5 J1m

for the flame-sprayed target. The phase standard deviations represented by

the surface roughness measurements are computed using equation (2.6) from

chapter 2 giving a phase deviation range of 3 to 24 radians at the laser

wavelength of 10.6J1m. Correlation Jengths ranged from 42.9 J1m to 96.4 J1m

for all of the targets except for the flame sprayed target which was not meas-

ured.
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Table 6.1
from Peacock (33)

Target
R.M.S.

Correlation
Surface

Type Height Length

(Jl m) (Jlm)

30 Grit 4.8 42.9

16 Grit 8.1 50.0

8 Grit 12.2 96.4

Flame 39.5
Sprayed
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6.3 Phase Difference Measurement of Speckle

Figure 6.5a shows a typical example of phase difference data before the

phase is unwrapped and figure 6.5b shows a histogram of the data. Large

transitions across the boundaries of the phase detector occur frequently. The

histogram shows two distinct peaks where the phase makes the transitions.

These transitions are due to macro-scopic target characteristics and to the

wind causing the target to vibrate and produce large phase changes. These

large phase transitions dominate the wrapped phase data and microscopic

target characteristics of the data are hardly noticeable. Consequently,

wrapped phase distributions are not very revealing of target characteristics

and are useless in distinguishing between targets of different roughness. .

On the other hand if the phase is"unwrapped and appropriately filtered,

the histograms are approximately Gaussian and the variance depends on the

roughness of the target. In figure 6.6a, unwrapped and filtered phase

difference data is shown for the standard target. In figure 6.6b, a histogram

of the data in figure 6.6a is shown along with a Gaussian curve with a stan-

dard deviation of 0.02 radians. In the figures, a running point average was

subtracted from the unwrapped phase data to implement the high pass filter-

ing necessary to extract the speckle phase variations from the macro-scopic

effects.

Varianc.e of Phase Difference versus Target Roughness.

Peacock33 has shown that differences in surface roughness of sandblasted

aluminum targets can be distinguished from the high pass filtered unwrapped

phase difference measured remotely at a distance of 1000 meters. Figure 6.7
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summarizes his results. The highest recorded frequency was 4 kHz. Each set

of data contained 25,000 data points for a data set length of 3.5 seconds. A

10 point running average of the unwrapped data was subtracted in order to

produce a high pass filter characteristic of about 114 Hz cut-off. The data

was taken on two different days. On the first day the 30,16 and 8 grit sand-

blasted aluminum targets were used. Then the 30 grit target was converted

to a flame sprayed target and data was taken on the 8 grit 16 grit and flame

sprayed targets.

The phase variances plotted in figure 6.7 were obtained from Gaussian

functions that represented the data. A histogram of the filtered data points

was constructed, and because the histograms did not resemble a Gaussian

curve for large phase values,. values -having a magnitude larger than 0.38

radians were removed from the histograms and a Gaussian curve was selected

that produced the minimum average deviation from the histogram. It is the

Gaussian curve's standard deviation that is plotted in the figure. It should

be pointed out that in producing the results of figure 6.7, unwrapping errors

like the ones shown in figure 6.3a were not removed from the filtered

unwrapped phase data. Reference 33 has details of these methods.

Using the data recorded on the second day of tests, the standard devia-

tion of the filtered unwrapped phase data after the unwrapping errors were

removed as shown in figure 6.3b, produced standard deviations slightly

higher than in figure 6.7. The filtered data was used directly without con-

structing histograms truncated to fit Gaussian curves but was high pass

filtered in the same way. This suggests that the truncation of the histograms
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leading to figure 6.7 had a similar effect as the removal of unwrapping errors

and lends more credibility to the data in figure 6.7.

In order to emphasize the need for proper filtering of the data, standard

deviations of the unwrapped phase before being filtered is shown in figure 6.8

as a function of target phase deviation. Extremely large phase deviations are

experienced which for the most part are due to the target motion and the

phase unwrapping errors that result from these large phase changes. In one

set of data where the wind speed was virtually zero, the phase deviation was

the smallest, even though the target surface was the roughest.

6.4 Comparison of Speckle Phase Measurements and Theory

It was difficult to predict the expected phase difference variations for the

conditions of the atmospheric field site. The relationships given in chapter 2

that predict speckle phase and phase difference apply to special cases that do

not accurately fit the experimental conditions.

The phase extent for the conditional probability density ellipse of the

complex fields at one point given the complex field at a second point predicts

the phase difference standard deviation when the phase extent is small. In

this case the phase extent is approximately equal to the standard deviation of

phase differences and is valid when the observation point is in the far-field of

the diffuse target. With a laser beam waist radius of 33.4 mm, the Rayleigh

range is 300 m, and for a target range of 1000m, the receiver is in the far-

field.

Unfortunately, the theory applies only to the case where the laser waist

appears at the target, producing a wave with no curvature on the target.
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The laser waist was calculated to be 870 meters in front of the target so that

the beam would be diverging at a half-angle of about 0.1 milliradian with a

radius of curvature of about 975 meters by the time it reaches the target. In

the theoretical formulation, the waist radius along with the target surface

correlation length determines the effective number of scatterers on the target.

If the laser waist radius is assumed to be at the target, the number of

scatterers would be incorrectly calculated in the formulation.

However, the correlation coeffident of the real components of the com-

plex fields at the two receiver points h'r) and the corresponding correlation

coefficient of the imaginary components h'i) do not depend on the number of

target scatterers and only depend on the receiver separation, the off-axis dis-

tance of the receiver and the standard deviation of target phases.

When 'Vr and 'Vi are both equal to one, the fields are completely corre-

lated and the phase extent is zero. This indicates zero variance of phase

difference. When the correlation coefficients are both zero, the fields are

uncorrelated and the phase difference variance is the same as the phase vari-

ance at either point. In chapter 2 it was shown that for small phase vari-

ances, the correlation coefficient of phase differences is approximately equal

to~.

The correlation coefficients are plotted in figure 6.9 versus the standard

deviation of target phase using a receiver separation of 8.6 millimeters. a

laser waist radius of 33.6 millimeters and a total path length of 1870 meters

equal to the distance from the laser waist to the target plus the distance from

the target to the receiver. The correlation coefficients are shown for the on-
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axis case and also for cases where the receiver is off the optical axis of the

laser. The figure shows a high degree of correlation between both the real

and the imaginary fields for all but very small target phase deviations. When

the receiver is slightly off-axis the correlation coefficients are about the same

value and approximately one for all target phase deviations. Consequently,

the phase difference standard deviations are expected to be much smaller

than the phase deviations at either point.

The expected phase deviation at either receiver point was predicted

assuming the receiver was in the far-field of the target. In this case the single

point standard deviation of phase is (jd,/VN, where N is the number of

scatterers and (jd, is the standard deviation of target phase. Using a beam

radius of 93.6 millimeters on t.he target and a target correlation distance of

100 J..Lm,the expected single point phase standard deviation is (Jd,/936 or 25

milliradians for the flame sprayed target. The single point standard devia-

tion of the speckle phase was measured from integrated frequency data

recorded with the flame sprayed target. The data was filtered using a 5 pole

high pass filter with a cut-off frequency of 200 Hz to remove the large phase

oscillations of the target motion and other low frequency effects not associ-

ated with speckle. The speckle phase deviation was measured in 8 sets of

data with and average value of 56.9 milliradians. The standard deviat.ion of

the measurement was 46.3 milliradians. When the largest and smallest meas-

urements were eliminated, the average and standard deviations were 48.6

milliradians and 24.4 milliradians respectively.

The other special case that predicts the expected phase difference stan-
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dard deviations assumes that the one point speckle phase is fully developed

so that the complex field at each receiver point is circularly Gaussian. In this

case the phase difference variations should have no dependence on the target

phase deviations which we know not to be the case. In the far-field, the one

point fields are not circularly Gaussian, so this formulation does not apply.

It is concluded that some change in the model is needed to predict the

phase difference variations from the experiment. However, the high fre-

quency unwrapped phase difference deviations are clearly dependent on the

target phase deviations and the target surface roughness.

6.5Measurements of Turbulence Phase

The unwrapped phase data should be able to predict the atmospheric

turbulence levels. Unfortunately, the macrostructure of the target and the

target motion interfere. The microsurface roughness is not a problem for

measuring turbulence since these irregularities produce high frequency effects.

These macro-surface irregularities in the surface profile produce much 10wE'r

frequencies 'and along with the effects of target motion, interfere with the

turbulence phase measurement.

Nevertheless, various filtering methods were used that appeared to

extract turbulence information from the. phase and frequency data. Figure

6.10 shows the relationship between the standard deviation of integrated fre-

quency as a function of the measured turbulence levels. Target motion and

macro-scopic target effects were attenuated using a low pass filter and a high

pass filter was used to average out the low frequency data. Five pole filters

with an attenuation of 100 dB per decade were used for both the high pass
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and low pass filter. The 3 dB cut-off frequencies were 0.5 Hz and 5 Hz.

Each data set represents 30 seconds of data and 2500 data points. Figure

6.11 shows a typical histogram of the filtered unwrapped phase showing a

close resemblance to a Gaussian curve with a standard deviation of 10 radi-

ans also shown in the figure.

The data in figure 6.10 show reasonably good agreement with theory.

The square root of equation (2.23) is plotted along with the data assuming an

Lo value of 1 meter. A factor of 2 is included in the equation to account for

the two way path. Three out of the eleven sets used to construct figure 6.10

had extremely large phase variances well above the norm of the other sets. A

linear regression of the other eight points is shown in the figure. Extremely

large phase jumps which can not be explained by normal atmospheric effects

were experienced in the three sets that were excluded. They are possibly the

result of some unusual laser activity such as a loss of coherence due to mode

shifting in the laser.

Two point unwrapped phase measurements should also show a depen-

dence on turbulence levels. Phase difference measurementsO.14.33.34 have

already been shown to agree with the theoretical predictions of (2.41), how-

ever, in these instances phase differences were measured over a one way path

rather than with reflections from a remote diffuse target.

Figure 6.12 shows the standard deviation of unwrapped phase difference

as a function of measured turbulence level compared to the curve predict.ed

by the square root of equation (2.41). 5-pole low and high pass filters were

also used to remove unwanted effects in the data. Since the sample lengt.hs
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for the unwrapped phase data were only 4.2 seconds, the high pass cut-off

frequency was raised to 2 Hz.

6.6 Applications of Unwrapped Phase Measurement

Figure 6.1 dramatically shows the effects that the motion of the target

had on the received unwrapped phase and figure 6.7 indicates how surface

roughness can be determined from the unwrapped phase. It seems obvious

that measurements of unwrapped phase will be useful in determining certain

features of a remote target and its motion. Information about target motion

and vibration can be obtained directly from the unwrapped phase or from

the power spectra of unwrapped phase or frequency36,38. It may also be pos-

sible to determine the wind activity from the unwrapped phase since the

wind can produce the target motion. It should be emphasized again that the

frequency or unwrapped phase is necessary for this. The wrapped phase con-

tains virtually no information about the target or the atmosphere unless the

total phase deviations from all sources combined is less than about 1 radian.

It seems very likely that the measurement of unwrapped phase will be

useful in determjnjng vibration frequencies and eccentricity of rotating shafts

or machinery from a remote location. The phase of a laser is extremely sen-

sitive to minute propagation path changes and has already been used to

measure optical surface characteristics in a laboratory environment37-40 and

in the atmosphere35.
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APPENDIX A

AMPLITUDE STATISTICS

In this appendix, the amplitude and intensity probability density func-

tions for the speckle and turbulence models of chapters 2 and 3 will be

presented. Most of the intensity distributions were taken directly from the

literature, and and in several cases they were converted to the corresponding

amplitude probability density functions. For the two point functions and also

for the case of speckle combined with turbulence, only fully developed

speckle is considered.

One Point Probability Density Function of Speckle Amplitude

Totally Diffuse Target

The one point amplitude and intensity statistics of speckle in a vacuum

are based on the joint Gaussian probability density function of (2.5). Using

the change of variables defined by I = A2 = X2 + y2 and e = tan-1(y IX),

Uozumi and Asakura5 give the probability density function of intensity to be,

(A1)

where

which reduces2 to,
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p(I)= n 1 exp

[

_1.
( (

2-+2-
]

1+1.
(

<X>2 + <y>2
]

] ]
4 U 2 u.2 2 U 2 U 2r 1 r y

X (r.<Sl)I,,(S,)+2D~lI,.(sl)I,.(s,)cos(2n!l) ] (A2)

where

and

In(s) is a modified Bessel function of order n

At the on axis point in the.far field of diffraction,

<U>=<X>=z-lexp( _u2 d>/2)
<V>=<y>=o

2 2 exp( -2u2 d»8-
u r =U x 24Nz

2 2 exp( -2u2 d»8+
Ui =Uy= 24Nz

where

oc U 4n

8 = ~ d>
- n=l (2n)(2n)!

x U 2(2n+1)

8 _ ~ d>
+- 0=1 (2n+l)(2n+l)!

In this case, (AI) and (A2) reduce3 to,
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(A3)

where

Is=<U>2 is the mean field squared or the mean intensity

CTris the variance of the real component and

CTiis the variance of the imaginary component of the field

Using the change of variable, I=A2 in (A3) and multiplying by

dI/ dA=2A, the probability density function for amplitude becomes,

p(A)=~exp
[

_1.
[ [

~+~
]
A2+~Is

] ]CTrCTI 4 CTr CTi CTr

X (10(01)10(0,)+2};, 1.(0,)1.(0,) ]
(A4)

and

Fully Developed Speckle

For the fully developed speckle case, <U>=O, CTr= CTi= CT.Conse-

quently, s} = S2= 0 and (A4) reduces to,

(A5)
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Equation (A5) is the Rayleigh distribution. The corresponding density func-

tion of intensities is given by the negative exponential distribution,

1

(

-I

]p(I)= _T_ exp <I>
where <I> is the mean value of intensity = (J'2.

(A6)

Partially Diffuse Target

For the case of a partially diffuse target, with circular Gaussian statistics

for the random portion, the probability density function of amplitudes is

described by the Rice-Nakagami distribution1,21

(A7)

where

10 is a modified Bessel function of zero order.

B is the constant mean value of the complex field amplitude

is the combined variance of the real and imaginary components of the

random part of the field.

The beam ratio parameter is defined by,

(2.14a)

where Is is the intensity of the coherent component, and <In> is the

mean intensity of the random part.

As (J' becomes very large relative to B, circular Gaussian statistics are

approached and the amplitude distribution reduces to the Rayleigh
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distribution given by (A5) and the intensity distribution becomes the nega-

tive exponential distribution of (A6).

Alternately as a approaches zero, the distribution approaches a delta

function occurring at the amplitude B. This situation corresponds to a per-

fectly smooth target.

Interestingly, (A4) also reduces to the Rice-Nakagami distribution of

(A7) with a beam ratio parameter of I8/2a; when ar and ai are equal and

Is= < U> 2 is not equal to zero. However, it can be seen from equations

(2.3c) and (2.3d) that when the target is totally diffuse with acb large relative

to 'iT, the speckle phases have an even distribution, ar and ai are equal and Is

equals zero. This is the fully developed speckle case and the amplitude is

described by the Rayleigh distribution of (A5). Therefore, the totally diffuse

target will never produce the Rice-Nakagami distribution for amplitudes if

the target surface has an even distribution of target surface heights except

for the special case of a Rayleigh distribution produced by fully developed

speckle.

One Point Probability Density Function of Turbulence Ampli-

tude

Single Scattering

For the case of single scattering, the probability density of amplitudes is

well described by13 the Rice-Nakagami distribution of (A7), where the beam

ratio parameter is defined by (2.14a).

Multiple Scattering
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For multiple scattering, assuming a single propagating path, since the

probability density function for X = In A is Gaussian, the distribution for

the logarithm of the amplitude will also be Gaussian and13,

(A8)

or

P(lnA)= 1 exp
(
__(lnA- <;nA> )2

]<TlnA'.12; 2<TlnA

By a change of variable and multiplying by dlnA/ dA, the probability

(A9)

density function for the amplitude is found to be,

P(A)= 1 exp
(
_JlnA-<;nA> )2

]
(AlO)

A<TlnA'.I2; 2<TlnA

The intensity distribution will also be lognormal13 and can be obtained

using the variable substitution l=A2 in (AlO) or In I = 2 In A in (A9). Using

the latter substitution in (A9) and multiplying by dlnA/dlnl = 1/2 gives,

[

(Inl -<lnA»2

]
P(lnl)= Iv?: exp - 2 2

2<TlnA 21T 2<TlnA

= 1 exp
(
_Jlnl-2<~nA> ).:.

]
(All)

2<TlnA'.12; 8<TlnA

Multiplying (All) by dlnl/dl = 1/1 or alternately using the substitution

I = A2 in (AID) and multiplying by dA/dI = ~ and using the substitution2A .

I=A 2 gives,

[

(lnl -<lnA»21 2
p(I)= exp -

2I<TlDA'.12; 2<TlDA
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= 1 exp
(

__(1nI-2<lnA> )2

]2I<TlnAv2; 8<T~

Defining <T1nI=2<TlnAand using <lnI> = 2<lnA>, (All) and (A12)

(A12)

can be rewritten as,

P(lnI) (A13)

and

p(I)= 1 exp
(
_JlnI-<;nI> )2

]I<TlnIv2; 2<T1nI

where <T1nIis the standard deviation of the logarithm of I and <In I> is

(A14)

the mean value of the logarithm of 1.

The log amplitude variance is given by8,1l,13 as,

<T;=<T2lnA=0.124C;k7/8Lll/8 (A15)

for a spherical wave. For a plane wave, <T2x is given by (A15) with the con-

stant 0.124 replaced by 0.307, and for the beam wave case, the constant

varies between these values depending on the propagation distance.

Multiple Paths to Receiver

For multiple paths adding together at the receiver location, the complex

field will be,

N

E=B+ L Uj+iVj
j=l

where B is the unscattered portion of the field which is assumed to be

(A16)

real. Each Uj and Vj will have a distribution described by the lognormal dis-

tribution, and the resultant amplitude and intensity distributions are

expected to also be lognormal.
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Two Point Amplitude Statistics

Two Point Amplitude Statistics for Fully Developed Speckle

Two point statistics of speckle amplitude and intensity have been found

for the case of fully developed speckle in a vacuum. The joint probability

density function of intensities is given byl,

Ij.LI can be written as,

f
I j.LI=

V <II> <12>
and f is the mutual coherence (unction-defined by,

.
f=<EI,E2 >

EI and E2 are the complex field values at points 1 and 2 respectively.

< > denotes the ensemble average and * the complex conjugate.

Using the change of variables, II=A; and I2=A; the corresponding two

point density function for amplitudes becomes,

(A18)

is either zero or one, the equation reduces to expected results. For instance if

I j.LI is zero, there is no correlation between the two intensities and the inten-

sities are independent. For this case the density functions reduce to,
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(A19)

and

pA(A1,A2)=p A(A1)pA(A2)=

2A1

[

Ai

]

2A2

[

Ai

]
-exp -- -exp --
ui ui ai ui

On the other hand if I~ I is one, there is perfect correlation between the two

(A20)

intensities and the density functions become,

(A21)
and

(A22)

Two Point Amplitude Statistics of Turbulence

The joint probability density function for the intensities at the two

receiver points for a point source propagating in turbulence is given byl8,

M-l

4(1112) 2 MM+l

P(I1,!2)= M-l M+l (A23)- -
f(M)Pa 2 (1-Pa)«I1><I2» 2

With the change of variable A= vI,

16AIA2(AIA2)2M-2MM+1
P(A1,A2)= ).6-1 M+l (A24)-- -

f(M)Pa 2 (l-Pa)( <II > <12» 2

where M=<x>2 / a; and <x>= the mean value and a; = the variance

of intensity and Pa is the complex coherence factor for a point source pro-

pagating in turbulence.
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For a plane wave propagating in turbulence r is shown by to be13,

when

vU:«Ax

Ax is the separation distance between the two receivers and L is the

length of the path.

Amplitude Statistics for Fully Developed Speckle inTurbulence

The probability density function of intensity for fully developed speckle

propagating in turbulence has been determined by Holmes and Gudimetla17

to be,

M-l
1/2

P,(I)=2 ( <~> ] ~(~) KM-1(2 ( <~> IJ] (A26)

Substituting I = A2 for I in (2) and multiplying by dI/dA gives,

and

PA(A)=2 ( <~> ] ~~; KM-1(2( <~> A' j"}A
which equals

or

PA(A)=4( <:r ] r1:) KM-1(2A( <:r rJ (A29)
M has been replaced by <x> /u: in selected places.
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The Two Point Probability Density Function of Amplitude

for Fully Developed Speckle in Turbulence

The two point density of amplitudes can also be obtained from the

equivalent density function for intensities using the same variable change.

The joint density function of intensities for fully developed speckle at two

points has been determined by Holmes, GudimetIa, and ElliotlS to be,

M-l

4(1112) 2 MM+l
p a,s(I1,I2)= M+1 (A30)M-l -

f(M)Pa-r- (1-Pa)(1-Ps)M «II> <12» 2
S+N

oc oc (I I ) 2 MS+NpSpN
~ ~ 12 saX ~ £.J

N=OS=O ---
f(N+1)f(N+M)f2(S+1)(1-Pa)S+N(1-ps)S+N «II> <12» 2

[ [

MIl

]

1/2

] [ [

MI2

]

1/2

]
X KS-M-N+l 2 KS-M-N+l 2

<I1>(1-Pa)(1-ps) <I2>(1-Pa)(1-ps)

where M and Pa have the same meaning as before, Ps is the complex coher-

ence factor for speckle in a vacuum and K is a Bessel function. Substituting

A for I in (A30) and multiplying by the Jacobian IJ I= IdIijfdAtj I gives,

M-l

16AIA2(Af Ai) 2 MM+l-
M

M+l
1 -

f(M)PaT-(l-Pa)(l-Ps)M «Af> <Ai» 2
S+N

oc oc (A 2A 2) 2 MS+NpSpN
~ ~ 1 2 s a

X £.J £.J S+N

N=OS=Of(N+l)f(N+M)f2(S+1)(1-Pa)S+N(1-ps)S+N«Af> <Ai> ) ~

X KS-M-N+' [2 ( <Af>~:.)(l-P') r I KS-M-N+l [2 ( <M>:;.)(l-P,)r
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and (A31)

16A~ArMM+1
p AIfA2(A1,A2)=

M-l ---

f(M)Par-(I-Pa)(I-Ps)M «Af> <Ai» 2
or:: :x: (A A )S+NMS+Np SpN

XLL 12 sa
N=O S=O -

f(N+l)f(N+M)r2(S+I)(I-Pa)S+N(I-ps)S+N «A[> <Ai» 2

X KS-M-N+l (2Al ( <Ai>(l~Pa)(l-P.) t'] KS-M-N+l(2A' ( <A1>(l~Pa)(l-P.) t']
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APPENDIX B

DERIVATION OF THE WEAK SCATTERER VARIANCE

Uozumi and Asakura20 have shown that the probability density function

for wrapped speckle phase in the far diffraction field on the axis normal to a

diffuse target assumed to have a Gaussian distribution of discrete scatterers is

given by

where

-71"<:8<71"

~=cos2e+'T)2sin2e

,_ <U>cos8
- O"~r

'T)=O"r/O"i

<U>=Nexp(-O"l/2)

0";=(N /2)[1 +exp( -20" l)-2exp( -0" l)]

O"i2=(N/2)[I-exp( -20" l)]

N = number of scattered fields at the receiver

0"d>= standard deviation of target scatterers

<U> and O"rare the mean and standard deviation of the real part of the

complex field representing the speckle and O"iis the standard deviation of the

imaginary part. The mean value of the imaginary part and the correlation

coefficient between the real and imaginary fields are both zero under the

stated conditions.
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Using the series approximation eX= 1+X+X2/2+X3/3!+x./4!+ ,

<U>2 =~
[

(1-O'l/2+0':/8-0':/48+..f

]
2 2 4 1 2 4

/
8/O'r O'eI> -O'eI>+70'cb12-O'eI>4+ . . .

For values of O'eI>< < 1 ,

- vNiT
,= 2 cose

O'eI>

,,2=0'l/2
<U>2_~

20' 2 - 0' 4r cb

0'2
T=COS2e+ ~sin2e

2

As long as 0'l<<vN , zeta will be large compared to one, so the first term

in (B1) can be ignored and erf(') can be approximated by one. In that case

Pe(6)=~(e)VN/21T
[

N( cos2e -1

]
<1 7'/2 exp 7 )cb 4O'eI>
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and with crd! < < 1, ,. = cos2e so that

Using the small angle approximations for tan 9 and cos e and the fact that

the numerator converges to zero faster than the denominator as e approaches

1'f/2, when cr: < < N, the function becomes vanishingly small for values of e

> 3crd!/VN and the function can therefore be approximated by the Gaussian

function,

where

crs=crd!/VN

In the other extremewhencrd!> >1 and cr: > > N, " = 1," = 1 and,

, and <U> are both nearly zero. Therefore,
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APPENDIX C

Computer Processing Codes

Fortran 77

1. Program for reading the TK50 mag tape
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c
program tkSOprogram

c
c *** ***.***.*.
c Originatedby ~i-So Sur.
c Edited br To6d Cloninger,Doug Draper and John Peacock
cLast "odlfied:S~~t 1991
c -.---...-....................................-...........
c
c
c THIS VERSION WRITES WRAPPED PBASE, UNWRAPPEDPHASE O~
c INTEGRATEDFREQUENCYDATA TO THE DIS~. INCLUDESINSITU DATA
c ACCO"ODATESUP TO THREE CHANNELSor DATA
c
c NOTE that nr is used for number of recordsin main program
c but as a data intervalin some subroutines
c
c PROGRAM SU~RY
c KAIN program control
c SUBROUTINE (sk) --- skip ahead
c SUBROUTINE (rw) --- rewind
c SUBROUTINE (db) --- display a block of data
c SUB~OUTINE (tp) --- copy or processdata from tape
c SUBROUTINE (tph)--- processphase data
c SUBROUTINE(tf) --- process frequencydata
c
c

integer tlu,tcsr,bn,fn,rn
C0880n iSBn, bn,kk
logical eoff,errf,eotf
character op*2
character devname*lS
character*SOOOO B

Wtltel",*)
write(*,*)
C'a file in
write(*,*)
write(*,*)
write(*,l)

This program copies data from a T~SO tape to "
your'
'directory that can be graphed.'

1011

1 format(
-lOx' '/,
-lOx'* COftKANDLIST *'1,
-lOx'* *'1,
-lOx'* ak: akip nr records *'1,
-lOx'* rw: rewind tape *'1,
-lOx'* db: display a header or block of data *'1,
-lOx'* td: copyor processdata fromtape *'1,
-lOx'* en: exit program *'1,
-lOx'***************..*.******..****************..**')

2000

*

continue
tl u-2
1.an-10000
. of ch/line ia the text

kk-n
device na.e

devna.e-'/dev/nr.tO'
bn ia the record size in bytes

bn-2048
write(*,lSOO} devname,bn,kk

*

*
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1500 foraat(x,'The device n.ae is ',alS,',the buffer size is ',is
l,',',i4,'chjline')
ito-topen (tlu,devnaae,.false.)
print*,'ito-',ito
ist-tstate (tlu,fn,rn,errf,eoff,eotf,tcsr)

print*,'tlu-' ,tlu,'tcsr-' ,tcsr
print*,'errf-',errf,'eoff-' ,eoff,'eotf-' ,eotf

100D continue
print*,'Input op(rv,sk,db,td,en),nr,(foraat a2,i4)'
read(S,33,err-1000) op,nr

33 fora.t(a2,i4)
if (nr.eq.O) nr - 1
write(*,*)
if (op.eq.'db') call db (tlu,B)
if (op.eq.'rv') call rv (tlu)
if (op.eq.'sk') call sk (tlu,B,nr)
if (op.eq.'td') call td (tlu,B,nr)
if (op.eq. '1') go to 1011
if (op.ne.'en') go to 1000

ics-tclose(tlu)
828 vrite(*,*)

vrite(*,*)
vrite(*,*)'Program Terminated!
vrite(*,*)
stop
end

c .***..*.*.****..***********************.**************...

subroutine sk (tlu,B,nr)
integer bn,fn,rn
common issn, bn,kk
character B*(*)
integer tlu,tcsr
logical eoff,errf,eotf
do 134 i-l,nr
ird-tread(tlu,B(l:bn»
ist-tstate (tlu,fn,rn,errf,eoff,eotf,tcsr)
issn-issn+l

c print*,'block number is',rn,'fn-',fn,',errf-',errf,',eoff-',eoff
if (errf) go to 144

134 continue
pr int* , ,block nuaber is', rn, , fn-' , fn, , ,er rf-' ,er r f , , ,eof f-' ,eof f

go to 145
144 continue

itc-tclose(tlu)
print*,'itc-',itc
ist-tstate (tlu,fn,rn,errf,eoff,eotf,tcsr)
print*,'tlu-',tlu,'tcsr-',tcsr
print*,'errf-',errf,'eoff-',eoff,'eotf-',eotf
ito-topen (tlu,devna.e,.false.)
print*,'ito-',ito
ist-tatate (tlu,fn,rn,errf,eoff,eotf,tcsr)
print*,'tlu-',tlu,'tcsr-',tcsr
print*,'errf-',errf,'eoff-',eoff,'eotf-',eotf

145 continue
return
end

c **.......................................................-

subroutine rw (tlu)
integer tlu,tcar,fn,rn
co..on issn, bn,kk
logical eoff,errf,eotf
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ir""-tre""in (tlu)

print*,'ir",,-' ,ir""
ist-tstate (tlu,fn,rn,errf,eoff,eotf,tcsr)
issn-O
print*, 'errf-',errf,'issn-',issn
print*,'you are at the beginning of the tape,iaan-',iaan,' rn-',rn
return
end

c *.

c

20

subroutine db (tlu,B)
integer tlu,tcsr,bn,fn,rn,i,j,n,inul
coamon issn, bn,kk
logical eoff,errf,eotf
character B*(*)
character cnul*1,cti*2
equivalence (cnul.inul)
equivalence (cti,ifc)

inul-O
do 67 kp-l,50000
B(kp:kp)-cnul

67 continue

print*,'~his option displays a header block'
print*,'or 1 block of data from the tape.'

16

ird-tread(2,B(1:bn»)
is.n-issn...l
""rite(*,2002)
""rite(*,2002)
""rite(*,2002)
n-48
cti-B(1:2)
if (ifc.ne.O) g~ to 20
do 17 i-l,17
""rite(*,2004) (B(n...j:n+j+l),j-l,16,2)
n - n + 16

continue

go to 22
do 21 i-l,17
""rite(*,2002) (B(n+j:n+j+l),j-l,16,2)
n - n + 16

continue
continue
format(x,8i6)
foraat(x,32a2)
ist-tstate (tlu,fn,rn,errf,eoff,eotf,tcsr)
print*,'record address is ',rn,', errf-',errf,',eoff-',eoff
return
end

(B(j:j+l),j-l,16,2)
(B(16+j:j+17),j-l,16,2)
(B(32...j:j+33),j-l.16.2)

17
18
20

21
22

2002
2004

......-...................................................
aubroutine td (tlu,B,nr)
diaenaion h(l75000)
integer tlu,tcar,bn,fn,rn,dcnum,inul,ifc
integer dcnual,dcnua2,h
real dt,t
coaaon iaan, bn,kk
logical eoff,errf,eotf
character B*(*),ofilnaa*lS,ofilnacl*lS,ofilnaa2*15
character ofilnaa3*15,op*3
cbaracter cti*2, cnul*l
equivalence (cti,ifc)
equivalence (cnul,inul)
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inul-O
do 67 kp-l,SOOOO
B(kp:kp)-cnul

67 continue

1201 format(a1S)
t - 0.0
i-1
ird-tread(2,B(1:bn»)
iaan-iasn+1
cti-B(1:2)
if (ifc.eQ.O) go to 19
idata-O
do 11 j-17,32,2
cti-B(j:j+l)
idata-idata+ifc

continue

jdata-O
do 9 j-33,4B,2
cti-B(j:j+1)
jdata-jdata+ifc

continue
wind - float«idata/B-204B)"2S.6/2047)
sigma - float«jdata/B-204B)"S.117S/2047)

11

9

" get aamp1ing interval (usee)
cti-B(S:6)
convert to millisec

dt-ifc/1000.0
print",'The sample time (dt) in ms is'
write(6,") dt

print",' the maximum number of data points'
print",' that can be ~iltered is 2S00 due to limitations'
print",' of the nag library routine for fft'
print"

print",'number of channels a?'
read ( S, ") i chan

print",'data interval per channel (msec)-?'
print",' ,
print",'interval must be a multiple of the number'
print",'of channels times the sample time'
read(S,") samtim
print",'maximum time(sec)-?'
read(S,") tmax
nr-samtim/dt
mr-tmax"1000/dt
qo to 5
ird-tread(2,B(1:bn»
iS5n-iaan+1
cti-B(1:2)
if (ifc.eq.O.and.ichan.eQ.3) i-i-1
if (ifc.eq.O) go to 19
do 17 "j-49,2048,2
cU-8( j: j+l)
h( i )-ifc
i-i+1
continue
if (i.lt.ar) go to 18

"

18

S

17
19

print-, 'Type
print-,'Type
print-, 'Type
read(S,*) op
if (op. eq. ' tc' )

if (op .eq. ' tf, )

tf if you want to integrate frequency data'
tph if you want to unwrap phase data'
tc if you want to copy data to . file'

go to 333
call tf (h,mr,nr,dt,samtim,wind,aigma)



333
330
2003

IS

3000
2001
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if (op.eq.'tph') call tph (h,ar,nr,dt,samtim,wind,siqma)
go to 400

print*,'This option copies data from tape to your directory'
write(*,*)
foraat('Do you want to copy 1,2 or 3 channels? (1,2 or 3) '$)
write(*,2003)
re.d(*,*,err-330) dcnum
if (dcnua.eq.1) go to 3000
if (dcnum.eq.2) go to 4000

print*,'Input filen.me for writing ch 1 « 16 char.)'
read(*,1201) ofilnaml
print*,' Copying from tape to: ',ofilnaml
open (9,file-ofilnaml,status-'unknown')
rewind 9

print*,'Input filenam~ for writing ch 2 « 16 char'.)'
read(*,1201) ofilnam2
print*,' Copying froe tape to: ',ofilnam2
open (8,file-ofilna.2,status-'unknown')
rewind 8

print*,'Input filename for writing ch 3 « 16 char.)'
read(*,1201) ofilnam3
print*,' Copying from tape to: ',ofilnam3
open (7,file-ofilnam3,status-'unknown')
rewind 7

do IS j-l,.r,nr
write(9,2002) t,h(j)
write(B,2002) t+dt,h(j+l)
write(7,2002) t+dt*2.0;h(j+2)
t-t+dt*nr '

c:ontinue

go to 200

continue
format('Which data channel do you want to copy? (1,2 or 3) '$)
write(*,2001)
read(*,*,err-3000) dcnum
if «dc:num.ne.l).and.(dc:num.ne.2).and.dcnum.ne.3) go to 3000

print*,'Input filename for writing « 16 char.)'
read(*,1201) ofilnam
print*,' Copying froa tape to: ',ofilnam
open (9,file-ofilnam,status-'unknown')
rewind 9

13 do 14 j-l,.r,nr
write(9,2002) t,h(j+dcnua-l)
t-t+dt*nr

14 continue
90 to 200

4000
2004

continue
foraat('Which two channels do you want to copy? '$)
print ., 'Enter each channel separated by a space'
write(*,2004)
read(.,.,err-3000) dcnua1,dcnua2
if «dc:nual.ne.l).and.(dcnua1.ne.2).and.dc:nual.ne.3) 90
if «dcnua2.ne.l).and.(dcnua2.ne.2).and.dcnua2.ne.3) 90
print.,'Input filena8e for writing',dcnual,'< 16 char.'
read(.,1201) ofilnaal
print*,' Copying fr08 tape to: ',ofilnam1

to 4000
to 4000
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open (9,file-ofilnaal,status-'unknown')
rewind 9

print*,'Input filenaae for writing',dcnum2,'( 16 char.'
read(*,1201) ofilnaa2
print*,' Copying froa tape to: ',ofi1nam2
open (8,file-ofilnaa2,status-'unknown')
rewind 8

do 16 j-1,ar,nr
write(9,2002) t+dt*(dcnum1-1),htj+dcnuml-1)
write(8,2002) t+dt*(dcnum2-1),h(j+dcnum2-1)
t-t+dt*nr

16 continue

200 continue
2002 foraat/x,f8.2,i6)

ist-tstate (tlu,fn,rn,errf,eoff,eotf,tcsr)
print*,'block number is ',rn,', errf-',errf,',eoff-',eoff
clon (7)
close (8)
close (9)

400 continue

return
end

cc-e...-..--..-..-.-.............--.........................-.........
subroutine tph (h,mr,nr,dt,samtim,wind,sigma)

c This subroutinetakes a phase vs time signal generatedby the
c phase detector (new 7/88) and unwrapsthe 2 volt lignal to
c a 4v signal.
c
c Writen by John Peacock8-2-88 and Doug Draper
c

dimension phil(50000),phi2(50000),h(50000)
dimension x(50000),t(50000)
integer chl,ch2,phil,phi2,h,dcnuml,dcnum2
real t,x,pi
character ofilnam*15

20 format (a15)
pi-3.1415927

c
c This part of the program uses the two channels of phase data
c that vary between 0 to 2.5 volts (or 0 to pi) and are 90
c degrees out of phase. The data is then converted to
c produce two channels of phase data that range from 0 to 2pi
c (or 0 to 5 volts) and are 180 degrees (pi) out of phase.

4000 continue
2004 foraat('Which two channels do you want to process? '$)

print *, 'Enter each channel(1,2 or 3) separated by a space'
vrite(*,2004)
read(*,*,err-4000) dcnual,dcnum2
if «dcnua1.ne.1).and.(dcnual.ne.2).and.dcnuml.ne.3) go to 4000
if «dcnua2.ne.1).and.(dcnum2.ne.2).and.dcnua2.ne.3) go to 4000

2002 fora.t(x,f8.2,i6)

do 30 i-1,ar,nr
ch1-h(i+dcnua1-1)
ch2-h(i+dcnua2-l)

c conventionis each channelgoes between 0 to 2.5 volts or
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c digitally 2048 to 3072. Bowever the detector lIaynot be
c cOllpletelyacurate 10 the valuel lIaygo over or under by
c a little bit.

if (ch2 .le. 2560) then

phil(i)- chl+1024
if (phil Ii) .gt. 4096) philli)-4096

elle
philli)- -chl+1024+4096
if (phil Ii) .It. 2048) phil(i)-2048

end if

if (ch2 .qt. 2560) then
phi2\i)- -chl+4096+2048
if (phi2(i) .gt. 4096) phi2(i)-4096

elae
phi2Ii)- chI
if (phi2 Ii) .It. 2048) phi2 (i )-2048

end if
30 continue

c This part of the program unwraps the data into intervals
c greater than two pi.

160

162

163

165

167
168

170

175

180

190
100

..

..

200

c-o
n-O
tx-O
do 200 i-l,mr,nr

if Iphilli).gt.3584) go
if Iphilli).lt.2560) go
if Iphi2Ii).gt.3584) go
if Iphi2(i).lt.2560) go
if (c.eg.l) go to 165
hi i )-ph i 1 ( i )

go to 190
if (c.eg.l) go to 162
go to 168
n-n+l
go to 168
if Ic.eg.l) go to 167
go to 168
h ( i ) -ph i 2 ( i )

go to 190
n-n-l
h(i)-phil(i)
c-O
go to 190
if (c.eg.l) go to 175
n-n+l
h(i )-phi21 i)
c-l
90 to 190
if (c.eg.l) 90 to 175n-n-l
90 to 175
b(i)-h(i)+n*1024
continue

to 170
to 180
to 160
to 163

index-(i-l+nrltnr

co~v.rt ph.~e data to radians
and re-iDdea acray

a(inde%}-floa~«(h(i\-2048»/2048.0*2*pi
tJl:-t1t+t.a.till
t.(lncSex)-tx

continue
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1000

print*, 'Type 2 if you want unwrapped phase data'
print*, 'Type 0 if you do not'
read (*,*) iphase
if (iphase.ne.2) go to 1000

print*, 'Enter the nuaber of data points to skip'
print*, 'in phase data file. Type 1 if none skipped.'
read (5,*) iskip
print*, 'Total unwrapped output filename « 16 char.)'
read (*,20) ofilnam
open (9,file-ofilnaa,status-'unknown')

write ~orrected data in file
express phase in radians

write(9,*) ofilnam,wind,sigma
do 201 i-l,ar;nr,iskip

write(9,600) t(i),x(i)
continue
format(lx,f8.2,2x,f15.4)

close(l)
cl~se(2)
close(9)
continue

return
end

*
*

201
600

c * e...
subroutine tf (h,mr,nr,dt,samtim,wind,sigma)

c This subroutine integrates frequency data and provides
c integrated data and statistics of integrated data.

real x(SOOOO)
integer h(SOOOP),iskip
integer i,m,l,dcnum,npts,mr,nr,j,k,ifreq
real ave,s,t,factor,dt,samtim,pi
character filename*lS

10 format(alS)
60 format(lx,f8.2,2x,flS.4)

parameter(pi-3.141S927)

330 write(*,*)
print*, 'Type 2 if
print*, 'Type 0 if
read (*,*) ifreq

you want to copy integrated frequency data'
you do not'

3000 continue
2001 format('Which data channel do you want to process? (1,2 or 3) '$)

write(*,2001)
read(*,*,err-3000) dcnum
if «dcnua.ne.l).and.(dcnum.ne.2).and.dcnum.ne.3) go to 3000

if (ifreQ.ne.2) go to 4000
printe,'Input filenaae for writing « 16 char.)'
r.ad(.,lO)filenaae .
print*,' Copying froa tape to: ',filenaae
open (9,file-filenaae,status-'unknown')
print*,'Input V/kHz sensitivity of frequency detector'
read*, factor
print*, 'Enter the nuaber of data points to skip'
print*, '1n frequency data file. Type 1 if none skipped.'
read (5,*) iskip

rewind 9
write(9,*) filename,wind,sig8a

4000 continue
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200

400
1000

pr int *, , factor-', factor
factor-SOOO/factor/2048

print*, 'factor-', factor
npts-mr/nr
,-0
t-dt
.-0
1-0
60 100 j-l,mr,nr
..h(j+dcnu.-l)+D
continue
ave-a/npts
do 200 k-l,mr,nr
1-1+1
,-h(k+dcnuID-l)-ave+s
x(1)-s*samtim*2*pi*factor/lOOO
continue

if (ifreq.ne.2) go to 1000
do 400 i-1,npts,iskip
write(9,60) t,x(i)
t-t-+,amtim*iskip
continue

continue

return
end

c ...**...*********.**************************..****.*.*****

...***************** end of program ***********************

162
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Computer Processing Codes

Fortran 77

2. Program for filtering the phase or frequency
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c * *--* *."".
program filter

real y(2S00)
double pre:isi~n z(2~DO),Sl2S~~\,z(2S0~\
real t,pi,hz,hz2
integer n,i,j,k,npts,pnps,pnpsd2
real dfreq,highfactor,lowfactor,polenum
integer i,j,k
integer ifail
parameter(pi-3.l41S927)

open(3,file-'filtered.data',status-'new' )

sampling time (ms)
samtim-12
npU-2500

****** taax- 30 sec
Pnps-npts
Pnpsd2 - Pnps/2

dfreq - 1/(samtim*1.Oe-3*Pnps)

--.-.-

******************** read data file ******************************

do 25 i-1,npts
read (1,*,end-26) t,y(i)

25 continue
26 continue

******************** phase filtering ******************************

......
high pass cut-off frequency

hz-O.S
low pass cut-off frequency

hz2-5.0
.....-

******************** n pole fltr. ..............................

polenum-5.0
n-polenum

highfactor-sqrt(2-2**(1/polenum) )
hz-hz/highfactor

lowfactor-sqrt(2**(1/polenum)-1)
hz2-hz2/1owfactor

"".""""""getting FFT *****

35

do 35 i-l,npts
x ( i )-y ( i )

continue

ifail -0
vrite(2,*) 'ifail-',ifai1

call c06faf(x,k,s,ifai1)
print*, 'ifail-',ifai1

******* n pole filterinq *****

do 7500 I-I,n



high p.IS filtering .....
.-hz
.-2.pi..

x(l)-O
z(l)-O
do 1503 j-2, Pnpsd2

d.no 2+(2.pi.(j-1).dfreq)..2
z(j).(2.pi.(j-1).dfreq)..2/denom

1503 continue
do 2001 j-Pnps,Pnpld2+1,-1

deno 2+(2.pi.(Pnps-j+1).dfreq)..2
z(jl-(2.pi.(Pnps-j+l)*dfreq)*a/denom

2001 continue

do 1504 j.2, Pnpsd2
x(j).x(j).z(j)-x(Pnps+2-j).z(pnps+2-j)

1504 continue
do 2002 j-Pnps,Pnpld2+1,-1

x(j)-x(j).z(Pnps+2-j)+x(Pnps+2-j).z(j)
2002 continue

******* low pass filtering *****

1507

.-hz2
.-2*pi..

do 1507 j-2, Pnpsd2
denom 2+(2.pi*(j-l).dfreq)..2
z (j ) 2/denom

continue

do 2004 j-Pnps,Pnpsd2+1,-1
denom 2+(2.pi.(Pnps-j+l).dfreq)..2
z(j)-(-2.pi.(Pnps-j+1).dfreq).a/denom

continue20D4

1508

do 1508 j.2, Pnpsd2
x(j)-x(j).z(j)-x(Pnps+2-j).z(pnps+2-j)

continue
do 2006 j-Pnps,Pnpsd2+1,-1

x(j).x(j).z(Pnps+2-j)+x(Pnps+2-j).z(j)
continue20D£

7500 continue

..n.. getting inverle rFT .....

if.il -0
call c06gbf(x,k,ifail)

write(.,.) 'if.il-',ifai1
call c06fbf(x,k,s,ifail)

write(.,.) 'if.il-',ifai1

do 35 i-l,npts
write(3,.) s.mtim.i,x(i)

35 continue

close (3)

.nd
end of pro9ram .......................

165
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APPENDIX D

Schematics of Phase Detectors
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'*
4>1,4>2 from divider c ircuH output
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Uoltage Regulators
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APPENDIX E

Schematic of Frequency Detectors
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