

Automatic Summarization of Mouse Gene Information for Microarray

Analysis by Functional Gene Clustering and Ranking of Sentences in

MEDLINE Abstracts

By

Jianji Yang, MS

A Dissertation

Presented to the Department of

Medical Informatics and Clinical Epidemiology

and Oregon Health & Science University

School of Medicine

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

In

Biomedical Informatics

June, 2007

The dissertation “Automatic Summarization of Mouse Gene Information for

Microarray Analysis by Functional Gene Clustering and Ranking of Sentences in

MEDLINE Abstracts” by Jianji Yang has been examined and approved by the following

Examination Committee:

__

Dr. William Hersh, Dissertation Advisor

Professor, Oregon Health & Science University

__

Dr. John Belknap, Committee Member

Professor, Oregon Health & Science University

__

Dr. Aaron Cohen, Committee Member

Assistant Professor, Oregon Health and Science University

__

Dr. Shannon McWeeney, Committee Member

Assistant Professor, Oregon Health & Science University

__

Dr. Brian Roark, Committee Member

Assistant Professor, OGI School of Science & Engineering, Oregon Health & Science

University

i

TABLE OF CONTENTS

Acknowledgements.. vi

Abstract ... vii

Chapter 1. Introduction ... 1

1.1 Introduction to microarray technology... 1

1.2 Motivating example... 2

1.3 Curated databases .. 5

1.4 Information from the literature... 6

1.5 General automatic summarization.. 10

1.5.1 What is automatic summarization?... 10

1.5.2 Brief history of automatic summarization and major approaches 11

1.5.3 What type of summarization is used in this project? 15

Chapter 2. Related Work... 16

2.1 Gene clustering ... 16

2.2 Summarization in biomedical domain .. 18

2.3 Related Work Summary... 23

2.4 Research Statements ... 25

Chapter 3. Research Design and Methodology... 27

3.1 Building the GICSS gene information system... 27

3.1.1 System architecture... 27

3.1.2 Preprocessing: Extracting gene sentences .. 27

3.1.3 Processing of input gene list ... 30

3.1.4 Clustering of genes into functional related groups 31

3.1.5 Ranking of sentences for each gene.. 34

3.1.6 User interface .. 37

3.2 Evaluation ... 38

3.2.1 Definition of the terminology used in the evaluation process. 39

3.2.2 Evaluating the clustering algorithm. ... 40

3.2.3 Evaluating ranking of informative sentences.. 43

ii

3.2.4 Micro-evaluation of individual features... 45

3.2.5 Demonstration of generalizability.. 45

Chapter 4. Results ... 46

4.1 Descriptive statistics of sentence database... 46

4.2 Gene clustering ... 46

4.3 Sentence ranking... 51

4.4 Individual features’ contribution .. 61

4.5 Demonstration of generalizability .. 64

4.6 Post-hoc optimization of sentence selection scheme .. 64

4.6.1 CluSim feature improvement .. 65

4.6.2 Effect of length factor threshold ... 68

4.6.3 Optimization of the sentence scoring scheme... 70

Chapter 5. Discussion ... 72

5.1 Functional gene clustering ... 72

5.2 Sentence extraction summarization .. 75

Chapter 6. Limitation and Future Work.. 82

Chapter 7. Conclusions ... 89

References... 91

Appendixes ... 96

iii

List of Tables

Table 1. List of related works in gene clustering and summarization as compared to the

GICSS system. It shows that most previous work has focused on a single one of

these two areas and that most gene or protein information summarization systems

had predefined information categories.. 22

Table 2. Summary of the cluster evaluation. Yes means the pair of cluster features are

compared by participant. No means no comparison was made for the pair. Before

and after showing keywords means two comparisons were made by the participant;

once before showing the keywords for the clusters, once after. 42

Table 3. Descriptive information about the evaluation gene sets. The size of the gene list

covered a good range of numbers of differentially expressed genes scientists obtain

from microarray experiments. The experiments were performed on the Affymetrix

430A platform, which would ensure the comparability of the data. The criteria for

the gene selection were set by individual participants for their own dataset. The

number of clusters built by the algorithm for the five gene sets roughly follows the

trend of the gene set size. .. 48

Table 4. The number of sentences/titles judged by the participants for each of the genes.

In general, there were more sentences for each gene from the GICSS output than the

search results from PubMed. The number of shared abstracts by both ouputs varied

depending on the gene. The 100 sentences for cxcl12 may represent the default

maximum of sentences output per gene in GICSS. .. 53

Table 5 Coverage of the GICSS output. The number of abstracts represented in the full

GICSS output and top 10 sentences is shown. The top 10 sentences from the output

have covered a good percentage of the distinct abstracts represented by the full

output. ... 54

Table 6. Average precision scores for the three sentence presentation (GICSS output,

sentences list produced by ranking with recency and PubMed search output) for each

of the eight genes used in this part of evaluation. In general, GICSS output fared

better than PubMed search results. GICSS output was also consistently better than

ranked by recency presentation with only one exception (kcnj9)............................. 55

Table 7. Each individual feature’s contribution as shown in MAP scores for sentences

ordered by each feature alone. It appears that TPword was the most useful single

feature while CluSim was the least useful for sentence ranking. 62

Table 8. Each individual feature’s contribution as measured by leave-one-out MAP

scores. In the table, the MAP score difference between leave-one-feature-out

ranking and the original system (with all features) were displayed for each of the six

features. The experiment gave similar results as in Table 6. TPword appeared to be

the most useful feature – taking it out of the full system lowered the performance by

-.023 while CluSim was the least useful for sentence ranking - showing

improvement of performance if CluSim is left out. .. 63

Table 9. Overall system performance and individual features’ contribution to the final

MAP score when the cluster size parameter for CLUTO was set to four. In the table,

iv

the MAP score and the difference between leave-one-feature-out ranking and the

full system (with all features) were displayed for each of the six features. All

individual features contributed to the final MAP score, with recency and tpword

being the highest contributors and ngene and ctword the lowest. Decreasing the size

of the cluster seemed to generate better CluSim features for the summarization

process... 66

Table 10. Overall system performance and individual features’ contribution to the final

MAP score with the size of the descriptive features in the CluSim feature in the

sentence ranking scheme set to 10, 15 and 20. In the table, the MAP score and the

difference between leave-one-feature-out ranking and the full system (with all

features) were displayed for each of the six features. Increasing the size of the

CluSim feature seemed to improve its contribution for the summarization process

comparing to the original setting of size five.. 67

Table 11. Overall system performance and individual features’ contribution to the final

MAP score with the value of sentence length factor threshold set to 10 and 30. In the

table, the MAP score and the difference between leave-one-feature-out ranking and

the full system (with all features) were displayed for each of the six features.

Varying the value of the threshold seemed to have no effect on its contribution for

the summarization process.. 69

v

List of Figures

Figure 1. System architecture diagram. The GICSS system is composed of a sentence

database, three processing modules: gene modeler (gene modeling in language term

vector space), clustering processor (a wrapper around CLUTO), and sentence ranker

(calculation of sentence score and ranking).. 29

Figure 2. The comparison of the three features (Text, MeSH and GO) for their usefulness

for building meaningful clusters. Normalized preference at zero indicates no

preference versus random grouping, while one indicates absolutely better than

random. Clusters generated with MeSH and GO terms were significantly better than

random grouping while clusters from Text were not. In addition, the over-lapping

95% confidence interval for the three features suggested there was no significant

difference for preference among clusters generated by Text, MeSH or GO terms. . 49

Figure 3. Side by side comparison of preference for cluster before and after showing the

keywords for the clusters to the participants. Preference score=5 indicates

participants prefer the left side of the pair (i.e. MeSH in ‘MeSH vs. GO’ label in the

figure), while score=1 indicates participants prefer the right side of the pair (i.e.

‘GO’) and score=1 means no preference. The data showed that the change of

preference after showing the keywords were not significant, suggesting the

preference of the participants was not influenced by the keywords. 50

Figure 4. Comparison of the three rankings (GICSS system output, sentence presentation

ranked by recency and PubMed search results). It shows that GICSS system

achieved a much higher MAP score than PubMed search output (close to 10-fold),

while the difference between GICSS system output and sentence presentation ranked

by recency was smaller at 3.3%.. 57

Figure 5. Comparison of mean precision at 5 and precision at 10 scores for the three

sentence presentations. The results for P@5 and P@10 were consistent with MAP,

with GICSS system output performed significantly better than the PubMed search

results while the difference between GICSS system and ranked-by-recency

presentation did not reach statistically significance in both of the measurements. .. 59

Figure 6. Box plot graph of the distributions of relevant and not-relevant sentences over

date of publication (DP). The median for DP for the relevant sentences is in April

2002, while DP for non-relevant sentences is July 2000. ... 60

vi

Acknowledgements

My sincere thanks to my committee members that made this dissertation possible: to Dr.

Bill Hersh, my advisor, for his guidance, inspiration, and unwavering support; to Dr.

Aaron Cohen, for his encouragement and generous help; to Drs. John Belknap, Shannon

McWeeney and Brian Roark for sharing their expertise in biology, biostatistics and

language processing. I always felt that I was so lucky to have such a great team for my

dissertation committee.

Next, I owe thanks to National Library of Medicine’s fellowship program (NLM Training

Grant 1T15 LM009461.), which gave me the financial support for these productive four

years.

I would also like to thank the OHSU genetics researchers who spent their precious time

to help me evaluate the system. Their insight and suggestions were invaluable to the

project.

Furthermore, I would like to express my gratitude to my friends in the OHSU Biomedical

Informatics program, whose friendships were invaluable and kept me going through the

whole project.

Finally, special thanks to my family, Yizhi, Bill, and Kevin Wang, for their support

during these four years of graduate study.

vii

Abstract

Tools to automatically summarize gene information from the literature have the potential

to help genomics researchers better interpret gene expression data and investigate

biological pathways. Even though several useful human-curated databases of information

about genes already exist, these have significant limitations. First, their construction

requires intensive human labor. Second, curation of genes lags behind the rapid

publication rate of new research and discoveries. Finally, most of the curated knowledge

is limited to information on single genes. As such, most original and up-to-date

knowledge on genes can only be found in the immense amount of unstructured, free text

biomedical literature. Genomic researchers frequently encounter the task of finding

information on sets of differentially expressed genes from the results of common high-

throughput technologies like microarray experiments. However, finding information on a

set of genes by manually searching and scanning the literature is a time-consuming and

daunting task for scientists. For example, PubMed, the first choice of literature research

for biologists, usually returns hundreds of references for a search on a single gene in

reverse chronological order. Therefore, a tool to summarize the available textual

information on genes could be a valuable tool for scientists. In this study, we adapted

automatic summarization technologies to the biomedical domain to build a query-based,

task-specific automatic summarizer of information on mouse genes studied in microarray

experiments - mouse Gene Information Clustering and Summarization System (GICSS).

GICSS first clusters a set of differentially expressed genes by Medical Subject Heading

(MeSH), Gene Ontology (GO), and free text features into functionally similar groups;

viii

next it presents summaries for each gene as ranked sentences extracted from MEDLINE

abstracts, with the ranking emphasizing the relation between genes, similarity to the

function cluster it belongs to, and recency. GICSS is available as a web application with

links to the PubMed (www.pubmed.gov) website for each extracted sentence. It

integrates two related steps, functional gene clustering and gene information gathering, of

the microarray data analysis process. The information from the clustering step was used

to construct the context for summarization. The evaluation of the system was conducted

with scientists who were analyzing their real microarray datasets. The evaluation results

showed that GICSS can provide meaningful clusters for real users in the genomic

research area. In addition, the results also indicated that presenting sentences in the

abstract can provide more important information to the user than just showing the title in

the default PubMed format. Both domain-specific and non-domain-specific terminologies

contributed in the informative sentences selection. Summarization may serve as a useful

tool to help scientists to access information at the time of microarray data analysis.

Further research includes setting up the automatic update of MEDLINE records;

extending and fine-tuning of the feature parameters for sentence scoring using the

available evaluation data; and expanding GICSS to incorporate textual information from

other species. Finally, dissemination and integration of GICSS into the current workflow

of the microarray analysis process will help to make GICSS a truly useful tool for the

targeted users, biomedical genomics researchers.

1

Chapter 1. Introduction

With the increasing volume of published on-line full-text scientific articles, even the most

robust Information Retrieval (IR) system returns more documents and abstracts than

biomedical scientists are able to manually review. The problem is aggravated by the

information-intensive nature of “high-throughput” technologies (e.g., microarray

experiments) that can study expression in a given biologic context at a genome-wide

scale. In fact, these advanced technologies and the increasing number of publications

discussing genomic findings impair our ability to fully comprehend the meaning of the

information that is embedded in the vast body of free text biomedical literature. As such,

the ability to use the literature to interpret the results of the experiments at hand is limited

[1]. Hence, tools that are able to survey the large quantity of literature can be helpful to

the scientists interpreting and planning these large scale genome-wide microarray

experiments.

1.1 Introduction to microarray technology

Microarrays or gene chips are microscopic arrays of DNA spots (each usually

representing one gene) spatially arranged and attached to a solid surface, such as glass,

plastic or silicon chip. When the chip is hybridized with fluorescence-labeled cDNA

made from mRNA extracted from cells, the abundance of different mRNA molecules in

the cells can be measured by detecting the fluorescence levels of each spot on the chip.

Microarray technology [2] is often used for gene expression profiling in many areas of

biomedical research to measure the abundance of messenger ribonucleic acid (mRNA)

2

transcripts in genome wide scale. While the first microarrays available contained 6000

genes of the yeast genome in 1997, Affymetrix
1
 now has commercial microarray chips

that represent the entire human genome, more than 30,000 genes. A microarray is

typically a glass slide with tens of thousands of spots that each contains identical DNA

oligonucleotides that are fragments from a known gene sequence. Currently the

sequences on the arrays come from genome sequencing project. The technology can be

used to investigate the differential expression levels of genes in the whole genome under

different conditions, e.g. control vs. diseased, young vs. aged, or different cell types etc.

For instance, experiments can be performed to conduct comparison of gene expression

between normal and breast cancer tissues. The mRNAs from the normal and cancerous

tissues differentially bind to the complementary nucleic acid sequences on the array and

abundance of mRNA in both tissues is revealed. Since these experiments can measure the

expression level of tens and thousands of genes simultaneously, the analysis of the results

produced is nontrivial because of the large data size. Even the differentially expressed

gene list is usually comprised of hundreds of genes.

1.2 Motivating example

The following is a motivating example that illustrates the information overload problem

scientists face when they are searching information on genes during the analysis phrase

of a microarray experiment. It also demonstrates a possible use of the GICSS system

1
 http://www.affymetrix.com/index.affx

3

implemented in this project. “Dr. Smith” is a senior behavioral neuroscientist at OHSU.

He studies genes that are associated with the alcohol addiction trait in mice. In one

microarray experiment, he compared the level of thousands of mRNAs in normal and

alcoholic mice. The experiment returned hundreds of genes that show differentiated

levels of expression between these two types of mice. He then assembled an Excel

spreadsheet with annotations (in Gene Ontology terminology) for each gene from the

chip maker, Affymetrix. Currently, he would use online resources, such as PubMed, the

Mouse Genome Informatics (MGI) database, and his knowledge in this area to construct

the relationships between the expression patterns and the functional groups of genes in

his results. The problems with this approach are:

1. The access to the literature is generic. The conventional method for doing this is

to search the literature one gene or one gene group at a time. This method may

work well at a small scale, but for hundreds of genes, it is a labor-intensive task to

simultaneously analyze their roles in the cell process and the interrelations among

them.

2. The search engine returns thousands of citations in reverse chronological order.

3. The structured databases have curated information for each single gene. But there

is no explicit information linked to this particular set of genes obtained from this

experiment. For example, there is no information on how these set of genes are

related functionally and how likely they involve in similar cellular process.

4. Scientists are on their own to assemble the big picture from a large collection of

information sources including the pattern of gene expression profile, functional

4

annotation for each gene, and vast amount of literatures discussing the subsets of

differentially expressed genes.

GICSS, the two-step summarization system built in this project, aims to help at this stage

in Dr. Smith’s analysis. With GICSS, Dr. Smith is able to enter his list of up-regulated

and down-regulated gene lists, and get back clusters of genes according to their

functional similarity. He can see that, for example, a cluster of genes involved in

dopamine metabolism are up-regulated (as highlighted in red in the display) in the

alcoholic mice versus wild types. He believes this is interesting and decides to pursue

further by exploring the literature. GICSS simplifies the task of searching and scanning

the literature by providing summaries on the genes by sentence extraction. He can click

on one of the genes in a cluster of interest and the GICSS system shows him ranked

sentences that relate to that gene and its function within the context of the cluster. He

then can scan the sentences and follow links to PubMed article abstracts describing how

the gene is related to the dopamine receptor. He now has functionally structured gene

clusters instead of a flat list, and access to literature filtered for sentences related to

functional relationships among genes. Therefore, he can spend less time scanning

returned abstracts (which on average have 10-15 sentences) from PubMed. In addition,

the time spent reviewing abstracts is more fruitful because it is highly tailored to his

specific information needs. The time saved can be of more constructive use, such as

designing further experiments.

5

Sections 1.3 and 1.4 below provide an overview of prior research work on tools that

process the literature for information (even though most of them have not been used

routinely by biologists), in addition to available knowledge resources that are available

for scientists to use in analyzing their results.

1.3 Curated databases

Much effort has been put into creating resources for structuring information on genes and

pathways. Most of these resources are created by manually extracting information from

publications of scientific research. They require intensive human labor and for that

reason, usually it takes a while for the up-to-date information from the literature to be

curated and entered into the databases. Some of the notable resources that scientists

working with microarray data frequently used are informatics databases for specific

species, e.g., Mouse Genome Informatics
2
 for mice, and FlyBase (A Database of

Drosophila Genes & Genomes)
3
 for Drosophila. They provide information on genes for

that particular species, such as sequence, functional annotation, genome maps, and

phenotypic information. Another curated information source is the bioinformatics suite

from the National Center for Biotechnology Information (NCBI)
4
, including GenBank,

Entrez Gene (a searchable database of gene information) and Gene Expression Omnibus

(a gene expression/molecular abundance repository with expression data browsing, query

2
 http://www.informatics.jax.org/

3
 http://flybase.bio.indiana.edu/

4
 http://www.ncbi.nlm.nih.gov/

6

and retrieval). The Source database from Stanford
5
 collects and compiles data from many

publicly available data sources to provide consolidated information for genes in

GeneReports.

Moving up from the individual gene functional annotation resources to gene group,

pathway and process level, there are also repositories of information on how each

individual gene participates in molecular interaction pathways and cell processes. One of

these resources is Pathway Database in Kyoto Encyclopedia of Genes and Genomes

(KEGG)
6
. It has manually drawn maps and annotations of interaction and reaction

networks for the well-studied areas of system biology, such as, metabolism, genetic

information processing, and disease processes.

These resources are very valuable in providing information on a particular gene and well-

known pathways. On the other hand, the building and maintenance of these databases

require much human labor. As such, the information provided sometimes lags behind the

rapidly evolving scientific knowledge, and biologists still have the need to go to free-text

publication for original, up-to-date information and evidence.

1.4 Information from the literature

In addition to curated databases, biologists search related literature for original and up-to-

date information. The first choice of search is National Library of Medicine (NLM)’s

5
 http://source.stanford.edu

6
 http://www.genome.jp/kegg

7

PubMed literature database - NLM’s usage statistics data showed that the rate of increase

in searches to PubMed has been between 11% - 35% over the last five years and in the

year 2006 PubMed recieved an average of over two million searches per day. On the

other hand, with the advent of both the biological technologies and the efficiency of on-

line publishing, the number of potentially relevant articles continues to increase rapidly.

MEDLINE added over 623,000 citations in 2006 and had 15,940,559 total records as of

July 2, 2007 (data from NLM’s MEDLINE/PubMed resources guide
7
). As a result, even

the most robust IR engine returns more documents and abstracts than biomedical

scientists are able to manually review. A simple PubMed search on a gene symbol will

return thousands of hits. For example, a query ‘NR1’ (N-methyl-D-aspartate (NMDA)

receptor subunit 1) submitted on July 9, 2007 to PubMed retrieved a total of 1,719

matches.

To facilitate this information searching process, many efforts have been put into building

text-processing tools to uncover the knowledge buried in the literature, with varying

success. In general, adapting text-processing technologies in the biomedical domain has

been slowed by major challenges [1], such as non-standard nomenclatures for genes,

proteins and other biological entities; domain specific languages; the highly complex

interrelation within biological systems; and the lack of standard ontology in the domain.

Despite these difficulties, some efforts have achieved some amount of success and

several of them start to receive real-world use. These approaches usually involve using

7
 http://www.nlm.nih.gov/bsd/revup/revup_pub.html#med_update

8

combinations of NLP and text-mining techniques and examples of these approaches

include: document clustering, text classification, information extraction, question

answering and summarization.

Document clustering techniques attempt to group a text collection into clusters of articles

that relate to a similar topic. A example of using document clustering in biomedical

research is a system called PubClust [3] that groups the result of any PubMed search

using words in the returned abstracts as features so that users can pick the topics of

interest for their purpose.

While document clustering uses unsupervised learning techniques, text classification

employs supervised learning techniques to label natural language texts with thematic tags

from a set of predefined categories. In TREC 2005, one of the sub-tracks in genomic

track was to triage biological texts into four categories [4].

Information extraction (IE) methods discover structured information from free text using

NLP techniques, lexical resources and semantic constraints. In the biomedical domain, IE

is used mostly to extract relations and specific facts about biological entities[5,6]. IE

often involves hand-crafted templates and rules based on expert knowledge and intensive

NLP processing with high computational complexity.

Question answering is another technology to help user to get to the relevant information

quickly and has been getting more attention recently. The idea is to let users ask a

structured question, such as ‘What is the role of prion in mad cow disease?’ and have the

system process the document collection to extract the corresponding information from a

text source to provide an answer. This is similar to IE but is real-time and gives the user

9

more control over the information extracted as well as more context with which to verify

and apply the generated answers. The TREC Genomics Track has recently focused on

this task [7].

Another potentially useful, but less-studied approach is to automatically produce

customized summaries for information related to a specific user information need. For

this project in particular, the potential users are scientists who are analyzing the result of

a given microarray experiment, so information on genes that are differentially expressed

under the different experimental conditions and their relations are of importance.

Summarization is defined by Sparck Jones [8] as “a reductive transformation of source

text to summary text through content reduction selection and/or generalization on what is

important in the source”. Automatic summarization systems have been studied since the

late 1950s [9,10] and applied in different domains such as news, with some notable

success [11]. However, adopting the technology in the biomedical domain is not

straightforward. There are fewer resources available in biomedicine, such as test corpora

and knowledge bases, which makes training and evaluation more difficult. Summaries for

biomedical literature probably require a different focus. The information that most

interests scientists may reside in sentences describing some specific biological processes

(use of domain specific language e.g. phosphorylation, activation, co-expression) while in

the news domain, the who, when, what, and where elements are generally applicable and

often the most important [12]. These specific information requirements can be exploited

in the biomedical domain by emphasizing domain-specific keywords to extract important

information and to construct summaries.

10

1.5 General automatic summarization

This section provides a basic introduction to the field of automatic summarization. First,

major concepts and definitions in the field of automatic summarization are introduced.

Then, a brief history of automatic summarization with discussion of different approaches

to construct summaries is described. The approach used in GICSS was discussed in the

context of automatic summarization in general.

1.5.1 What is automatic summarization?

As the amount of published and on-line information increase, generation of condensed

text that summarizes the vast amount of documents for human consumption is one way to

help us digest the information and find the obscured task-relevant information. A

summary as defined by Sparck-Jones [8] can be generated by a human or computer

system. In the latter case, the computerized system is called an automatic summarizer and

the process is called automatic summarization.

There are many types of summary as categorized on different axis. Categorized by

purpose, indicative summaries provide a general idea of the original text subject matter

but without specific content; while informative summaries cover the salient information

in the source to some level. In addition, critical summaries evaluate the source text and

express the abstractors’ view.

Categorized by form of content, summaries generated by extraction consist entirely of

material (words, sentences and/or paragraphs) copied from the source. Extraction serves

to identify the more important and distinct portions of the source material. On the other

11

hand, summaries by abstraction contain novel material that is generated from the source

texts. Abstraction involves inference from the source text and uses references to

background information. Abstraction can produce summaries with a higher degree of

compression, i.e. shorter summaries. On the other hand, because abstraction requires

deeper analysis, usually at the semantic level, and a wealth of knowledge to draw upon,

computational tractability is an issue for real-time systems. Furthermore, since

abstraction generates novel materials, it also carries the risk of mis-inference and falsely

‘inventing’ information that is not in the source text.

Categorized by dimensions, summaries can be generated from a single document or

multiple documents. Usually multi-document summarization has additional challenges in

addition to all of those presented in single document summarization. These include co-

reference resolution across documents, higher compression rate, redundancy reduction

and confliction identification.

Categorized by context, a summary can be based on source texts retrieved by a query the

user entered or query-independent. By genre, a system can be a generic summarizer,

which can generate summaries for source texts of any field; or it can be a specific domain

summarizer, which takes advantage of the available knowledge and special format and

structure of texts of a specific domain to achieve better summaries.

1.5.2 Brief history of automatic summarization and major approaches

Summarization processes typically involve the following three steps [13]:

1. Analysis: analyze and build a content representation of the source texts

12

2. Transformation: map the content representation into summary representation

3. Synthesis: generate and output summary from the above representation

The following section presents some of the key work in the field and the current state of

the art. Even though their approaches may be different in many areas, most of them

follow the above three-step paradigm.

Most of the early systems of automatic summarization from the late 1950s to the 1970s

were single document summarizers by sentence extraction. They used shallow features

including word frequency, position, cue phrases, and theme terms to determine the

importance of the extraction unit (mostly sentences, and some used paragraphs). A score

was calculated for each feature and the scores were normalized and summed. The text

units with the highest summed scores were presented as summary. This type of

summarizers included Luhn [9] and Edmundson [10]’s work in sentence extraction

summarization. In Edmundson’s paradigm, the weight of each sentence was calculated as

a linear combination of four features:

Weight(s) = a* CuePhrase(s) + b * AddTerm(s) + c * ThematicTerm(s) + d *

Location(s) where

• CuePhrase(s): Lexical or phrasal with summary cues: positive weights for bonus

words (“significant”, “confirms”, etc.), negative weights for stigma words

(“hardly”, “impossible”, etc.)

• AddTerm: Weight assigned to a sentence for terms in it that are also present in

the title, headline, initial paragraph, or the user’s profile or query

13

• ThematicTerm: The presence of statistically salient terms (e.g., tf.idf terms) in a

sentence, based on Thematic Term Assumption [9] that high frequency content

words are positively relevant.

• Location: Sentence’s location within the document - beginning, middle or end of

a paragraph or the entire document, or whether it occurs in prominent sections

such as the document’s introduction or conclusion

Many measurements these early work introduced, such as key terms and cue words, are

still used to date.

Kupiec et at. [14] extended the paradigm by Edmundson and introduced machine

learning approaches for extraction with a naïve Bayes classifier. Further utilization of

machine learning techniques included clustering text to achieve diversity by Nomoto [15]

and using Hidden Markov Models for text selection by Conroy [16].

In addition to the above statistical approaches to identify the salient part of the source

texts, various methods focused on constructing summaries by exploiting the discourse

structure of the text. Marcu [17,18] studied the nucleus and satellite relations of the text

structure based on the rhetorical structure theory by Mann [19]. Another notable

approach is lexical chain, a sequence of related words in the text that represents a

cohesive structure and specific topic of the text. Barzilay [20] introduced a way to

calculate the score of lexical chains using the length and homogeneity index based on

WordNet
8
 as a means to identify salient part of the source text.

8
 http://wordnet.princeton.edu/

14

The above methods are extraction type summarization. Parallel efforts have been working

on summarization through abstraction. Early approaches mainly focused on template-

filling type abstraction, using templates as the knowledge and semantic base required for

abstraction. The creation of these templates usually required extensive human labor and

the templates were often restricted to very specific topics and domains. Examples of this

type of systems include the FRUMP news summarizer by DeJong [21], and SCISOR [22]

summarization of corporate mergers and acquisitions news. Current advances in

digitalized domain-specific knowledge base enabled more sophisticated abstraction

involving generalization, inference and exploiting semantic relations between concepts.

Fiszman et al. took advantage of the UMLS
9
 Specialist Lexicon and Semantic Network to

construct summaries of the A.D.A.M. ©
10

 online encyclopedia [23].

Summarization on multiple documents has additional technical challenges such as

requiring higher compression rates, redundancy elimination, contradiction identification

and co-reference resolution across documents. Maximal marginal relevance (MMR) was

used by Carbonell and Goldstein [24] to emphasize novelty of selected information, a

way to handle redundancy. Radev et al. used a centroid-based clustering technique to

improve diversity of the sentences selected for summary [11].

9
 http://www.nlm.nih.gov/research/umls/about_umls.html

10
 http://www.adam.com/

15

1.5.3 What type of summarization is used in this project?

The GICSS system built in this project is in the category of multi-document

summarization by sentence extraction. It is query-based and takes in a set of genes from

the result of a microarray experiment. It is a summarizer that operates on a given question

within a specific domain, i.e. genomic research in biomedicine. We used a statistical

approach based strongly on Edmundson’s paradigm with modifications exploiting the

domain-specific terminologies and entities appropriate to the problem space.

16

Chapter 2. Related Work

This chapter describes the previous work specifically related to this project. They are

grouped into two categories: functional gene clustering by features other than expression

profile, and summarization on gene-related information.

2.1 Gene clustering

Results of a microarray experiment have the expression levels of each gene/transcript

under the different biological conditions as studied in the experiment. Assuming that

genes with similar functions or within the same biological pathways will have similar

expression patterns, cluster analysis of gene expression profile is one of the essential

components of exploratory analysis of all microarray datasets. While gene clustering by

expression profile is of great value to investigators, in this project the focus is on gene

clustering from a different perspective, i.e., how the genes that are found to be

differentially expressed in the experiment cluster according to previous-known

knowledge as represented in the literature or in the curated database. In other words, we

are to find gene clusters using features such as Medical Subject Heading (MeSH)
11

headings, Gene Ontology (GO)
12

 annotations, and free text in scientific literature.

A number of approaches to find functional gene groups by analysis of literature profile

have been proposed. Masys et al. [25] identified gene groups based on co-occurrence of

11

 http://www.nlm.nih.gov/mesh/

12
 http://www.geneontology.org/

17

MeSH terms in MEDLINE citations. PubGene described by Jenssen et al. [26] used gene

name co-occurrence in MEDLINE abstracts to identify related gene neighbors and build

gene relation networks. Chaussabel and Sher [27] clustered genes by analyzing the

occurrence of a filtered list of terms in MELINE abstracts, generating literature gene

‘heat map’ similar to the one generated by analysis of expression profiles. Glenisson

[28,29] explored the use of ‘bag of word’ vector space representation of literature profile

for functional gene clustering. The text sources used in their TXTgate application [29] are

from selected annotation fields and linked MEDLINE abstracts in the curated repositories

LocusLink and the Saccharomyces Genome Database (SGD).

There are also works focusing on comparing the effectiveness of different algorithms in

gene clustering. Homayouni et al [30,31] found that Latent Semantic Indexing(LSI) can

be a robust method to discover gene relationships. Liu [31] tested an approach called the

Bond Energy Algorithm (BEA), originally used in clustering questions in psychological

research instruments. The results suggested BEA compared favorably to other popular

clustering algorithms, such as hierarchical, k-means and Self Organizing Maps (SOM).

There are also works on combining the information in literature with the gene expression

profile to generate gene clusters. Raychaudhuri et al [32,33] used information in the

literature to fine-tune the boundary of clusters found in expression profile analyses. An

algorithm developed by Kuffner et al [34] combined both microarray expression data and

MeSH terms and words in MEDLINE abstracts to identify gene clusters with

corresponding literature topics. Huang et al [35] modified the expression-based gene

distance metric by shrinking the distance to zero if genes share functional keywords.

18

This literature-informed metric was used to generate the final clusters with improved

results over standard method.

All of the above approaches focused only on the clustering process and clusters generated

from the process were their final results, while GICSS system attempts to utilize the

result of the clustering process in the next step—summarization of gene information. The

evaluation of the clustering algorithms usually involved using distinct gene groups from

certain cell cycles or GO term branches as test gene sets. The effectiveness of the

algorithms was judged by the ability to correctly put the genes in the right groups and use

hard statistics like internal similarity, mutual information and entropy as measurement

[31,36,37]. This approach was straightforward and gave quantitative results, but there

were some shortcomings too. Distinct gene groups are much easier to cluster than real

gene sets from microarray experiment because distinct gene groups usually have longer

distance between the groups. In addition, how do the quantitative values correlate with

the meaningfulness of the cluster in the analysis process is still an under-studied question.

2.2 Summarization in biomedical domain

Discovering functional related gene clusters is only one of the initial steps of the

microarray analysis process. After identifying some interesting clusters, scientists will

then focus on the genes in the clusters and try to elucidate how these related gene groups

contribute to the conditions and contexts studied in the experiment. It is very common

that scientists will encounter many unfamiliar genes when they study the clusters. (This

assumption was confirmed during the system evaluation study as discussed later.) Hence,

19

the scientists will engage in searching for gene information in the context of the shared

functions discovered in the clustering process. Therefore, the functional gene clustering

and information searching are closely related parts of microarray data analysis. As

mentioned in the last chapter, automatic summarization can be used as a potential tool to

facilitate the access information in the rapidly increasing amount of free text literature.

Work in biomedical information summarization has been mostly of the extraction type.

One approach is keyword summary. Domain standard terminologies, such as MeSH

headings, Gene Ontology terms, are usually the choice of terms for keywords. MedMeSH

[38] can take in a gene cluster discovered in cluster analysis of the expression profile and

retrieve citations for each gene from the MEDLINE database. MeSH terms for the article

are extracted from the citation and then the statistical distribution patterns are analyzed

and compared. Important MeSH terms are then assigned to describe the gene set, i.e.,

using MeSH terms as keywords to capture the biological significance of the set of genes.

This approach can only provide summaries for a cluster of genes, with no further

information presented for each gene.

The other approach is sentence extraction. Most of them have expert-defined categories.

The computation usually involves machine learning algorithms to classify sentences into

these predefined buckets or rely heavily on advanced NLP techniques to match sentence

templates. MedMiner [39] is one of the engines that can search the literature and extract

sentences about gene-gene interactions. It is limited to discovering relations between two

genes only and requires many iterations if used with microarray data which mostly have a

list of over a hundred genes. It returns all of the extracted sentences from the articles that

20

demonstrated the relation, without providing more summarization, such as re-ranking to

present more relevant sentences first. In this sense, this system can be viewed more as an

information retrieval and extraction engine. The GICSS system is customized for the

input of the large gene set (usually in the hundreds) from microarray experiment and

processes them as a whole instead of pairs of genes.

Another sentence extraction application, BioIE [40], is a rule-based system to extract

sentences pertinent to protein information in five predefined classes: structure, function,

disease & therapeutic compounds, localization, and familial relationships. METIS [41]

uses information in Swiss-Prot
13

 to generate protein reports and extracts informative

sentences from literature using both machine learning and rule-based algorithms. METIS

uses the same five predefined categories as BioIE in the learning and sentence extraction

process. These two systems use hand-crafted rules, have predefined classes, and the latter

also requires training data. These two systems are geared for protein information and the

predefined categories reflected this priority so that they are not very useful for getting

information for gene lists. In addition, hand-crafted rules required much human effort and

they are also hard to update. Furthermore, the predefined categories also limit the

information the systems can present and sentences do not fall into these categories will be

ignored.

An application by Ling [7] extracts top-ranked sentences about genes from MEDLINE

abstracts in the six predefined areas of interest using cosine similarity scoring against the

13

 Swiss-Prot website: http://www.ebi.ac.uk/swissprot/

21

six classes: gene products; expression location; sequence information; wild-type function

and phenotypic information; mutant phenotype; and genetical interaction. Even though

this approach can provide the basic information for the gene in the above categories,

other useful information outside these six categories will be missed out, just like BioIE

and METIS. The information is generic about the genes and not specific to the

microarray results, i.e. each gene summary is independent to others. GICSS system takes

in input from the clustering algorithm, therefore includes some context information from

the closely related genes. Further more, all three systems required some level of training

and while training data was hard to get, retraining is another issue that can affect future

performance.

The list of selected related work in functional gene clustering and information

summarization described in this section is presented in Table 1, with feature comparison

to each other and to the GICSS system.

22

Table 1. List of related works in gene clustering and summarization as compared to the GICSS system. It shows that

most previous work has focused on a single one of these two areas and that most gene or protein information

summarization systems had predefined information categories.

Systems Algorithm highlight Input Features used Categories of

information

Level of

summarization

Masys et al

[25]

gene clustering Any gene set MeSH co-occurrence No Unspecified

PubGene [26] gene clustering Any gene set Gene name co-

occurrence

No Unspecified

Chaussabel and

Sher [27]

gene clustering Any gene set Filtered terms from

MEDLINE abstracts

No Unspecified

Kuffner [34] gene clustering Full gene chip MeSH, text words,

expression data

No keyword

PubClust [3] search result clustering PubMed result text words No keyword

MedMeSH

[38]

gene cluster summary Gene cluster MeSH terms No keyword

Ling [42] gene summary by

extraction

one gene name text words, training

data

Yes sentence

BioIE [40] protein summary by

extraction

protein name text words, hand-

crafted templates

Yes sentence

METIS [41] protein summary by

extraction

protein name text words, templates

and training data

Yes sentence

MedMiner [39] gene relation

information extraction

two genes text words No sentence

GICSS system gene clustering and

summary

gene set with

fold change

MeSH, GO terms,

text words

yes keyword and

sentence

23

2.3 Related Work Summary

As described in the previous section, the work in gene clustering and summarization are

two different approaches even though the work flow for the experiment analysis is

integrated and closely related. Work in the area of gene clustering focus on perfecting the

algorithm, feature selection and the summarization effort limited to keyword summary

for the generated clusters. On the other hand, work in the area of gene information

summarization focus on extraction of certain types of information for a single gene. The

information gathered from the clustering result (keywords and closed related genes) is

has not been previously used in the summarization process. The summaries are usually

generic and independently generated without considering the relation to other genes,

which is of interest in microarray analysis. In addition, most of the related work either

depend heavily on hand-crafted templates and NLP patterns or require extensive training

data. Furthermore, most work on summarization have several predefined information

categories, but may miss information outside these categories. Finally, there was no

experimental evaluation of the systems with scientists using real data from microarray

experiments they are analyzing. For example, clustering genes taken from several

independent known pathways will be very different from clustering genes from the raw

list of microarray output.

Thereform this study extends and is distinct from prior work in several ways:

1. The GICSS system focuses on helping scientists search for supporting evidence when

they are analyzing a microarray expression profile. It integrates the two closely

related steps in the analysis process, clustering and literature summarization. Genes

24

are first clustered into functionally related groups, which are important especially

when the size of the gene set is large. The information gathered from this step is used

to inform the second step, gene information summarization.

2. There are no predefined categories. Using MeSH terms associated with the

publications on the genes, GO terms assigned to the genes and free text from

abstracts, the clustering step tries to capture the naturally occurring clusters presented

in the literature.

3. There are no labor-intensive handcrafted rules or training data.

4. The summary for each gene is presented in a ranked sentence format. The ranking

algorithm emphasizes gene relations, length, similarity to its cluster theme, recency,

existence of domain-specific terms and non-domain specific language features.

Sentence was chosen as the information unit based on the assumption that the

sentence is more informatively intact and richer than keywords, and short enough for

a research scientist to quickly go through and decide if reading the full abstract or

article is warranted. Furthermore, a study on the effect of information extraction units

(abstract, sentence, and phrase) [43] indicated that using sentence granularity

achieved the highest effectiveness.

5. The GICSS system was evaluated in experimental setting with scientists working on

their own, current microarray experimental data.

25

6. The generalizability of the approach was demonstrated by expanding it to human

genes by substituting a human gene and protein name entity recognition system

(NER) in place of the mouse NER system used for the main evaluation.

2.4 Research Statements

Main research questions

The goal of this study is to design, build and evaluate an automatic summarization system

for information on genes differentially expressed during microarray experiments. The

intended end-users include genomic researchers, along with their students and research

assistants, who have sets of differentially expressed genes as a result of microarray

experiments and need to search for gene information from the literature in the process of

analysis.

The two questions this study tries to answer are:

1. After a researcher has obtained the expression pattern of a list of differentially

expressed genes, the GICSS system clusters this set of genes into functional groups

by drawing from the available literatures. Can the cluster and summary words provide

useful information in the context of this particular experiment to help the researcher

in analyzing the expression pattern? Sub-questions are:

1. Are the gene clusters meaningful?

2. Is there preference for the features (MeSH, GO, and text words) used in

the clustering process?

26

2. In order to facilitate access to the literature, a summary for each gene is constructed

by extraction and re-ranking the sentences by importance. By combining the

conventional extraction summarization paradigms [44] and special requirements and

knowledge of biological domain, can our sentence ranking algorithm facilitate access

and exploration of the large amount of original literature by presenting the

informative sentences as summaries to the researcher? Sub-questions are:

1) By presenting sentences in the abstract with reference to genes, can we provide

more information than PubMed’s standard title presentation, which is the status

quo when doing literature search currently?

2) Furthermore, can our sentence extraction and ranking perform better than just

reversed chronological ranking of the same set of sentences with reference to

genes?

3) Finally, how does each feature in the ranking algorithm contribute to the

usefulness of the final ranking?

27

Chapter 3. Research Design and Methodology

3.1 Building the GICSS gene information system

3.1.1 System architecture

The GICSS system was implemented in Python and CGI, and is accessible via the Web.

Currently, it is hosted at http://ir.ohsu.edu/jianji/gene_info. The web interface was

developed based on the Karrigell web framework
14

. The system architecture is depicted

in Figure 1. The system’s core components consists of a MeSH term, GO term and word

processor, a wrapper around CLUTO
15

 (a preexisting application that performs

clustering), and a sentence ranker. These three components are explained in detail below.

3.1.2 Preprocessing: Extracting gene sentences

The 10-year Medline corpus (from 1994 to 2003) used in TREC 2004 and 2005

Genomics Track was filtered using MeSH Heading “Mice,” resulting in a mice subset. In

order to achieve higher accuracy in gene name recognition and specific applicability to

the mouse researcher user, we decided to focus on mouse genes at this stage. Using a

gene and protein name entity recognition and normalization system for mice [45], this

subset was processed and gene and protein names were tagged and identified by Mouse

Genome Informatics
16

 identifiers (MGI-ID). Sentences in abstract and title (treated as a

14

 http://karrigell.sourceforge.net/

15
 http://www-users.cs.umn.edu/~karypis/cluto/index.html

16
 http://www.informatics.jax.org/

28

sentence) were stored in a database together with other MEDLINE entries, MeSH

headings, publication date, journal names. These sentences comprise the text collection

used in this study. Sentences containing at least one reference to gene/protein were

further indexed by the gene_MGI_ID to facilitate retrieval.

The sentence database has the following three tables:

1. PMID_DateOfPublication_MeSH (document level information table)

 PMID -- PMID of MEDLINE records (primary key)

 Dp – date of publication of MEDLINE records

 Mesh – mesh terms of MEDLINE records

2. MGI_gene_PMID_SentID (gene ID and sentence ID information table)

MGI_gene – MGI_ID for mouse genes

PMID – PMID of the MEDLINE record that has reference to the mouse gene

(foreign key)

SentID – position of the sentence in the abstract that has reference to the mouse

gene

Primary key: MGI_gene, PMID, SentID

3. PMID_SentID_Sentence (sentence content table)

PMID -- PMID of MEDLINE records (foreign key)

SentID – position of the sentence in the abstract (foreign key)

Sentence – sentence text of PMID_SentID

Primary key: PMID_SentID

29

Figure 1. System architecture diagram. The GICSS system is composed of a

sentence database, three processing modules: gene modeler (gene modeling in

language term vector space), clustering processor (a wrapper around CLUTO), and

sentence ranker (calculation of sentence score and ranking).

GO Terms

Sentence DB

Feature Score
Calculation

30

3.1.3 Processing of input gene list

After set of gene names and their expression levels (in the form of fold change) are

collected from the user, they are first checked for duplications. The advent of microarray

technology allows detection of expression level at transcript level, i.e. spots on the array

representing different mRNA sequences transcribed from the same gene (DNA region).

There is a chance that a user may input the same gene names more than once with

different expression levels, i.e. different transcripts from the same gene having different

expression levels in the array. Since currently the system does not have the capacity to

process transcript level information, it highlights the duplicates and reminds user of the

transcript to gene name mapping issue. More about this topic is discussed in the

Limitations and Future Work section. Secondly, the gene names are expanded with

synonyms from the dictionary in our gene and protein name entity recognition system

[45]. Finally, each gene and its synonyms are mapped to their corresponding MGI-IDs. A

summary of this step is then presented to the user before further processing. The

information presented includes duplicated genes in the list, gene names that cannot map

to any MGI_IDs and for the gene names that can be mapped to MGI_IDs, all the

MGI_IDs with links to MGI website.

If the input gene list contains five or less genes, the clustering step described in the next

section is skipped. After gene duplication highlight, gene synonym expansion, and

MGI_ID mapping, the system goes directly to sentence extraction summarization step.

31

3.1.4 Clustering of genes into functional related groups

The genes are represented by a vector space model with three categories of features.

1. MeSH Headings associated with the publications in which the genes are

referenced. The users also have the option to select the MeSH subtrees that are

deemed useful to represent gene information to be used. After consultation

with a biologist, the default subtrees in the GICSS system used were A-

Anatomy, C-Diseases, Chemicals and Drugs, F-Psychiatry and Psychology,

G-Biological Sciences, and H-Physical Sciences. Furthermore, terms close to

the root are usually very general, for example, the terms: ‘GENE’ and

‘PROTEIN’. Only terms deeper than the second layer are used. For more

information on MeSH tree structure, see the MeSH information page at NLM

web site
17

.

2. GO terms associated with the genes as annotated by MGI obtained from the

MGI web site. Terms that indicate any unknown conditions are filtered out,

such as ‘molecular function unknown’.

3. Free text words in the sentences with at least one reference to the genes and

sentences immediately in before and after them, with stop-words removal (see

Appendix) and stemming by Porter stemming algorithm.

Specifically, each gene is modeled as vector of combinations of the above three

categories of features. The selection of the categories can be done in the Options web

17 MeSH http://www.nlm.nih.gov/mesh/

32

page (Appendix 2). Let M be the number of distinct terms in our collection of N genes,

gene i is represented as vector:

Gi = <wi1, wi2,…,wiM>, wi,j is the frequency of jth term that is associated with the ith gene

in the sentence collection for this set of N genes.

The clustering algorithm suite implemented in CLUTO is used for functional gene

clustering. The default clustering method is direct k-means. Current specifics of the

vector features are listed below:

• If the number of genes is less than six, the clustering step is skipped and the

process goes directly to sentence extraction.

• Similarity measure: similarity between genes feature vectors is calculated as the

cosine of the angle between the two gene vectors:

Cos(gi, gj)=gi ● gj/|gi| |gj|

• Number of clusters: this is a parameter CLUTO requires as input. It is determined

in run-time by trying different numbers of clusters. Let ε be the ratio of

improvement of internal similarity of all cluster by increasing the number of

cluster by 1:

 ε = [I2(n+1)- I2(n)]/I2(n) where I2 is the measure of internal similarity for all

clusters, and n is the number of clusters. When ε is lower than a certain level, the

increase of the number of clusters does not give much increase in the internal

similarity for all the clusters, the iteration stops.

33

ε was set empirically by testing different values. Currently for gene sets with

around 100 genes, it is set to 0.035. In other words, n is chosen when the

improvement of internal similarity is less than 3.5% by increasing the number of

clusters by one. As suggested in post-hoc optimization, the parameter setting may

to some extent affect the sentence ranking efficiency due to the contribution of the

feature of cluster keywords used in the ranking algorithm. But to study how the

parameter setting affects the usefulness of the clusters will require substantial

human judgment and was not studied in this project due to limited resource.

• Tfidf is used for scaling the terms. The term frequency is , where ni

is the number of occurrences of the considered term, and the denominator is the

number of occurrences of all terms. The inverse document frequency is

, with |D| : total number of sentences in the corpus

and : number of sentences where the term ti appears (that is

). This setting is the default in the CLUTO algorithm using cosine

similarity as distance measure and was recommended in its manual.

• The top five descriptive terms for each cluster is used to highlight the cluster and

used further along in processing to inform sentence selection.

34

3.1.5 Ranking of sentences for each gene

The number of sentences for each gene identified in the 10-year literature corpus ranges

from one to 29,203. Users have the option to choose the number of most recent sentences

for each gene to be included for processing. The current setting is 100. Sentences are

modeled as word vectors after parsing, stop word removal and stemming. Each sentence

is assigned a score by linear combination of the following features. This approach follows

the framework of Edmundson [10] with modifications customized to the biomedical

domain. Sentence score S is calculated as:

S= w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword

+ w5 TPword + w6 L + w7 Recency

where CluSim, QuFreq, NGene, CTword, TPword , L and Recency are features defined

below and w1-7 are weight parameters between 0 and 1 for each feature.

• Cluster representation (CluSim). By default, CLUTO gives five descriptive terms

to summarize a cluster. It is a good starting point to represent the cluster. Further

testing of different size of cluster representation was presented in post-hoc

optimization. The top five descriptive features (a set of MeSH, GO terms and/or

words) for each gene cluster from the previous step are used as this ranking

measure. CluSim is calculated as the normalized (against the highest number in

the sentence set) number of feature terms the sentence has (for GO and text

terms) or assigned to the abstract where the sentence is extracted (for MeSH

terms).

35

• User-enter query terms (QuFreq). QuFreq is calculated as the normalized

(against the highest number in the sentence set) frequency of the query terms (in

stemmed form) entered by user.

• Gene relations (NGene). Sentences referenced to more than one gene/protein

names score higher, otherwise, 0. This is a four-level variable:

1. if the sentence refers to additional gene/protein name (other than the gene

being studied) and at least one of the additional genes is from the same cluster

as the gene being studied, NGene=1.00;

2. if the sentence refers to additional gene/protein names (other than the gene

being studied) and even no additional genes is from the same cluster as the

gene being studied, but at least one additional gene is from the input gene set,

NGene=0.75;

3. if the sentence refers to additional gene/protein name (other than the gene

being studied) and none of the additional genes is from the input gene set,

NGene=0.50;

4. if the sentence refers to only the gene being studied, NGene=0.00.

According to OHSU biologists consulted during system implementation, they

expressed their interest in sentences that have co-occurring genes from the same

cluster and from the input gene set. The scale of this feature is to reflect this

preference. Emphasis on relations is also reflected in later features, such as

relation words in TPWord.

36

• Cue phrases (CTword). This is identical to the Edmundson’s Cue feature [10]

based on the assumption that the importance of a sentence is represented on the

presence of certain cue terms. This is a non-domain specific language feature.

For example, the term ‘conclusion’ may indicate importance. The list of Cue

phrases is in Appendix 5.

• Domain specific keywords (TPword). Biologically relevant keywords were

extracted from the Textpresso [46] ontology’s several relation-descriptive

sections, i.e. Action, Consort, Effect, Pathway, Purpose, Physical Association,

Regulation. TPword is calculated as count of keywords in the sentence

normalized to between zero and one, with the sentence having the maximum

count scoring one.

• Length (L). Usually the longer the sentence, the more information it contains. L is

calculated as a two-level variable: sentences with twenty or more words get the

score 1; and sentences with less than twenty words get the score of the fraction

|sentence|/20. Note that the average sentence length of the dataset is 23 (see

Section 4.1). ‘20’ is chosen as a length factor threshold to discount sentences that

are shorter than average.

• Recency is calculated as a linear scale for the sentences from one to zero, with the

most recent sentence getting the score one, and the oldest sentence score zero.

There are many ways to combine these features by adjusting the weight for each measure.

In the development phrase, an even weighting scheme was adopted as default. Then in

the evaluation phrase, part of the sentence evaluation data was used to adjust the

37

parameters of the scoring scheme. After evaluation, all the evaluation data can be used to

get a better tuning of the feature weights.

3.1.6 User interface

The user interface consists of six major web pages. The sample screen shots are in

Appendix 3 and they are described in detail below:

1. Input page. The user inputs the gene list for processing here. There are two

ways for gene list input. One is to type-in, or copy and paste the gene names and

corresponding fold changes to a text field. Down the road, the different fold

changes are represented by color-coded presentation of the gene names (up-

regulated as red and down-regulated as green.) The other is to upload a tab-

delimited text file containing the gene names and fold changes. The advanced

options button on this screen takes the user to the option page.

2. Advanced option page. The options allow users to have more control over the

features used in the clustering process and sentence ranking. The options are

cluster features selection (GO, MeSH and text), MeSH subtree selection,

stemming (Y/N), number of sentences included in process.

3. Gene set information page. This is the page next in the process after entering the

gene list. This page presents the information of the input list of the genes after

the initial processing. This includes the duplicated gene names and fold changes

reminding the users of the degenerating nature of the gene name mapping in the

system. Next, the gene names that do not map to any MGI_ID are listed and

38

with links to PubMed for direct search. Finally, all the gene names that map to

MGI_Ids are listed with the MGI_Ids and links to the MGI website.

4. The cluster results page. This page provides the clusters and the top five

descriptive keywords to the user. The top five terms associated with each gene

are also presented. The hyperlink to each gene name leads the user to

information for that gene from MGI website. The user can also enter query

terms for each gene for the next step: sentence ranking.

5. Summary sentence page. This page presents the sentences as the summary of a

gene in a descending ordered form, according to the scores calculated as

described in the previous session.

6. Re-arranged sentences page. For the convenience of the user, the sentences are

further arranged so that sentences from the same abstract are presented together.

The sentence groups are ordered descending by the highest sentence score in the

group.

3.2 Evaluation

The evaluation methods for summarization can be classified in two categories: intrinsic

and extrinsic evaluations [47]. Intrinsic evaluation is evaluating the system itself, usually

involving calculation of some kind of measurement as compared to a gold standard of

correct answers. Extrinsic evaluation is to measure how the system helps users in the

completion of certain task. In this project, the evaluation used was intrinsic evaluation

using expert opinion as gold standard. The experts judged how well the clustering and

39

sentence ranking algorithms work in a task-like situation with the microarray experiment

data they were analyzing at the time of evaluation. But since the final result of the task –

successfully analysis of the array data completed with the help of the system - was not

objectively measured, this is still considered an intrinsic evaluation.

This evaluation study using human subjects was approved by the Institutional Review

Board of Oregon Health & Science University, IRB #00003090.

3.2.1 Definition of the terminology used in the evaluation process.

The following definitions were given to the evaluation participants to guide their

judgment.

Gene set – a set of gene names obtained from a microarray experiment. They represent

the ‘hot list’ – genes that are differentially expressed. The size of a gene set ranges from

50 to 100. For evaluation purpose, the participant labeled up to five genes where they had

expert knowledge. For example, they may have labeled genes that they are studying or

have studied, or have done literature research on.

Summary terms/descriptive terms – for each cluster, the clustering algorithm outputs the

most common words (default is five words) to describe the cluster. These words were

shown to the judges to test if they influenced the subject’s judgment of the quality of

the clusters.

Informative term – if a summary/descriptive term describes certain aspects of the gene, it

is an informative term for this gene.

40

Meaningful cluster – if the genes in the cluster are functionally similar or related, the

cluster is a meaningful cluster.

Relevant sentence – If the sentence provides helpful information for the gene and the

gene cluster in the context of this microarray experiment, or the expert believes that

after reading the sentence, he/she would like to explore more on the topic and would

go to the abstract where the sentence came from, this sentence is a relevant sentence.

3.2.2 Evaluating the clustering algorithm.

Five gene sets from the result of five different microarray experiments were tested on the

GICSS system by OHSU-based mouse genomic researchers. Each person rated the gene

set generated by his or her own lab. For each gene set, the participants labeled the genes

they were familiar with. Each of the participants compared cluster pairs, which had at

least one of the familiar labeled genes. This setup had the scientists work on the genes

they picked to ensure that each person had the expertise for the particular gene to judge

the result. First, participants judged the usefulness or meaningfulness of two clusters for

each gene set by comparing clusters with random grouping, both including the familiar

gene. Then, the effects of different clustering features (MeSH, GO, text) were evaluated

by comparing clusters generated by each feature side by side. Finally, the top five

summary/descriptive terms for each cluster were shown to the participants and they were

asked to change their judgment if needed after seeing the summary terms. For each

cluster pair, participants chose the more useful cluster of genes from the pair using a 5-

point Likert scale:

41

1. cluster on right is absolutely better,

2. cluster on right is better,

3. they are the same,

4. cluster on left is better, and

5. cluster on left is absolutely better.

An option was also offered to allow the participants to indicate that he/she was not able to

decide the quality of the cluster pair (0. I don’t have enough information to decide.) The

left/right order of the clusters was randomized in run-time during the evaluation. Table 2

summarizes the cluster pairs evaluated by the participants.

42

Table 2. Summary of the cluster evaluation. Yes means the pair of cluster features

are compared by participant. No means no comparison was made for the pair.

Before and after showing keywords means two comparisons were made by the

participant; once before showing the keywords for the clusters, once after.

 Cluster

Features

Random Go terms MeSH headings Text words

GO terms Yes No Yes (before and

after showing

keywords)

Yes(before and

after showing

keywords)

MeSH

headings

Yes Yes (before

and after

showing

keywords)

 No Yes(before and

after showing

keywords)

Text words Yes Yes(before

and after

showing

keywords)

Yes(before and

after showing

keywords)

 No

The results of the comparison were ordinal data ranged from 1 to 5 with 3 being no

preference versus random and zero was treated as missing. They were first normalized to

the range of -1 to 1 for each participant, with zero being no preference from random.

The transformation was performed as following:

NewScore= (oldScore-3)/Max(|oldScorei-3|) i=1 to 6 within the six judgment scores

(three judgment for each of the two genes) by the same participant.

This transformation was used to adjust for the different ranges participants may in for

their judgments. The transformed results were analyzed using a general linear model and

two-way ANOVA to assess the effects of both the participants and the clustering features.

43

The results for comparison of rankings before and after showing the cluster keywords

were analyzed by two related sample Wilcoxon signed rank test.

3.2.3 Evaluating ranking of informative sentences.

Sentences for ten genes (genes from each of the clusters evaluated in the previous step)

were used in this step. Sentences from the output of the system and PubMed searches

were pooled together and judged by the same scientists who studied the gene set. The

searches on PubMed were done by e-search provided by Entrez Programming Utilities.

The queries were the name of the gene and synonym expansion using the synonym

dictionary from [45]. Once the results were returned, they were filtered on Date of

Publication (DP) to limit to the time period of 1994-2003 and on MeSH term (MH)

‘Mice’. These filtering criteria are the same as the text collection, making the comparison

between PubMed search results and system output possible. The list of queries for the

PubMed searches was in Appendix 6.

For the pooled sentences, the raters assigned an R (relevant) or NR (not relevant) label to

each sentence by judging if it had relevant information for understanding the specific

gene studied in the microarray experiment they were analyzing. Results from two genes

were used to hand-tune the ranking parameters and the other eight were analyzed and

used to study the system. Three sentence presentations were compared by average

precision (AveP) using the relevance judgments as a gold standard:

1. GICSS system output: Sentences with reference to the gene extracted from the

abstracts ranked by the scoring algorithm.

44

2. Same sentence set as in 1 but in reversed chronological order, same as PubMed’s

ranking.

3. Output from PubMed search (title of abstract in reversed chronological order).

In IR, precision is calculated as

and average precision is . Mean average

precision (MAP) is the mean value of the average precisions computed for each of the

queries separately. To evaluate the effectiveness of the three sentence presentations, the

AveP and MAP measures were adopted from IR with sentence as the unit of retrieval,

instead of document. For each sentence presentation, the AveP scores were calculated for

each of the genes and the scores were analyzed using repeated measure with post-hoc

comparison with the Sidak adjustment.

Even though AveP score combines both recall (defined in IR as

) and

precision, its emphasis is recall more. Note that instead of sentences from the abstract, the

PubMed output only includes the titles of the abstracts. Because of this, it would likely

fare worse by measures that focus on recall. In order to make the comparison more

meaningful, precision at 5 (P@5) and precision at 10 (P@10) were also calculated for

each sentence presentation set for each gene. Both measures were also analyzed using

45

repeated measure with post-hoc comparison with Sidak adjustment for multiple

comparisons.

3.2.4 Micro-evaluation of individual features.

Using the relevance judgments ‘gold standard’ from the previous evaluation step, MAP

for sentence ranking using each of the single ranking features were calculated to study

the contribution of each feature. This data was also used to perform further tuning of the

ranking feature parameters in post-hoc optimization.

3.2.5 Demonstration of generalizability.

To demonstrate the generalizability of the system, a human gene information

summarization system was implemented by substituting a gene/protein entity recognition

and normalization system for human genes [45]. The goal of this step was to demonstrate

the simplicity of adapting the system for different species by simply replacing the NER

for different species. The time spent in the implementation was used as measurement for

generalizability.

46

Chapter 4. Results

4.1 Descriptive statistics of sentence database

In the mice subset of the 1994-2003 MEDLINE records, there are 284,900 abstracts

(PMIDs) covering 11,311 mouse genes. The number of sentences in the abstracts ranges

from one to 102, with the mean value at 8.36. The length of the sentences in the database

ranges from one to 236 words with a mean at 23.39.

There are 583,388 total sentences with reference to at least one mouse gene in the

database. The number of sentences for each gene ranges from one to 29,203 (tumor

necrosis factor, MGI:104798). The mean number of sentences per gene is 99.52.

4.2 Gene clustering

The number of clusters for each gene set depended on the number of genes in the list and

the natural diversity of the gene set. Datasets obtained from similar microarray

experiment platforms were chosen for evaluation. The size of the gene sets used in the

evaluation process ranged from 53 to 275, which we believed represented the numbers of

differential expressed genes scientists produced in their real world microarray

experiments. However, the criteria to choose these sets of differentially expressed genes

were set individually by each scientist for their own data, without any intervention from

the author. Therefore, the fold change cutoff values varied. The numbers of clusters

generated by the clustering algorithm for each gene set roughly follow the size of the

47

gene set, i.e. the larger the gene set the higher the number of clusters (Table 3). The

number of genes in the 10 clusters evaluated by the scientists ranged from four to 12.

General linear two-way (with feature type as the fixed factor and judges as the random

factor) ANOVA model analysis indicated no significant difference among the three

features (MeSH, GO and text) and judges. Marginal means for each feature showed that

both GO and MeSH were significantly better than zero (equivalent to random grouping)

with 95% confidence intervals of [0.252, 1.081] and [0.141, 0.970] respectively, while

text was not significantly better than zero with its 95% confidence interval range [-0.081,

0.748] (Figure 2). Furthermore, the observed power calculated by the analysis was only

16%, which indicated the analysis may have been somewhat underpowered to detect

some potential differences of this magnitude.

48

Table 3. Descriptive information about the evaluation gene sets. The size of the gene

list covered a good range of numbers of differentially expressed genes scientists

obtain from microarray experiments. The experiments were performed on the

Affymetrix 430A platform, which would ensure the comparability of the data. The

criteria for the gene selection were set by individual participants for their own

dataset. The number of clusters built by the algorithm for the five gene sets roughly

follows the trend of the gene set size.

Gene set Microarray

experiment

platform

Number

of genes

Gene set selection

criteria

Number of

clusters

Bagby.txt Affymetrix 430A

array

74 >5 fold decrease or >

4 fold increase over

wild type

13

Nikki_rma.txt Affymetrix 430A

array

275 q<0.3 (p<0.002) 27

Dec24hr.txt Affymetrix

Mouse genome

430 2.0 array

77 >1.8 fold decrease vs.

control

12

Inc24hr.txt Affymetrix

Mouse genome

430 2.0 array

78 >1.8 fold increase vs.

control

12

Inc3hr.txt Affymetrix

Mouse genome

430 2.0 array

53 >1.8 fold increase vs.

control

14

49

Figure 2. The comparison of the three features (Text, MeSH and GO) for their

usefulness for building meaningful clusters. Normalized preference at zero indicates

no preference versus random grouping, while one indicates absolutely better than

random. Clusters generated with MeSH and GO terms were significantly better

than random grouping while clusters from Text were not. In addition, the over-

lapping 95% confidence interval for the three features suggested there was no

significant difference for preference among clusters generated by Text, MeSH or

GO terms.

50

Figure 3. Side by side comparison of preference for cluster before and after showing

the keywords for the clusters to the participants. Preference score=5 indicates

participants prefer the left side of the pair (i.e. MeSH in ‘MeSH vs. GO’ label in the

figure), while score=1 indicates participants prefer the right side of the pair (i.e.

‘GO’) and score=1 means no preference. The data showed that the change of

preference after showing the keywords were not significant, suggesting the

preference of the participants was not influenced by the keywords.

Comparison of Features

1

1.5

2

2.5

3

3.5

4

4.5

MeSH vs.GO MeSH vs. Text GO vs. Text

P
re

fe
re

n
c

e

Before keywords

After keywords

51

To study whether showing the keywords for the clusters influenced the judgment of

meaningful clusters, Wilcoxon’s signed ranks test was performed on the before-and-after-

keyword paired tests. The results indicated that presentation of keywords did not

significantly influence the preference of cluster choices for all of the three features.

Figure 3 depicts side-by-side the change of preference after showing the keywords for the

clusters. While the difference was not significant, the preference scores for GO clusters

and MeSH clusters increased over text clusters after showing the keywords.

4.3 Sentence ranking

Recall that the sentence score was calculated as:

S = w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword

+ w5 TPword + w6 L + w7 Recency

where CluSim, QuFreq, NGene, CTword, TPword , L and Recency were features defined

below and w1-7 are weight parameters between 0 and 1 for each feature. Sentences were

ranked by decreasing score.

The parameters for the each of the features were hand-tuned using the results of the first

two genes. w2 was set at zero because the use of QuFreq was not evaluated in this

evaluation step, but is presented here for model completeness. The rest of the parameters

were: w1 =0.1, w3 =0.1, w4=0.2, w5 =0.2, w6 =0.2, and w7 =0.2.

The number of sentences/titles for each gene studied in the evaluation process ranged

from only four to 100 (Table 4). There were more than 100 sentences referencing the

52

gene cxcl12 in the database and only the most recent 100 were retrieved due to the default

value for maximum sentences per gene in the GICSS system. The number of shared

abstracts from GICSS and PubMed searches varied depending on the gene. For example,

in the case of usp18, both GICSS and PubMed searches gave results from the same seven

abstracts. One the other hand, results for irak3, cxcl12 and kcnj9 came from two different

sets of abstracts. In general, there were more sentences from GICSS than titles from

PubMed. There were also common that more than one sentence from each abstract were

returned in GICSS as indicated by the number of abstracts represented in the GICSS

output. The number of abstracts represented in the top 10 sentences from the GICSS

output ranged from three to eight (Table 5).

The AveP scores for the three sentence presentations for each gene showed that there was

some variation in AveP. In addition, AveP scores for PubMed search results were

consistently much lower than GICSS output. Furthermore, GICSS output was also

consistently better than ranked by recency sentence presentation with only one exception

in gene kcnj9 (Table 6).

53

Table 4. The number of sentences/titles judged by the participants for each of the

genes. In general, there were more sentences for each gene from the GICSS output

than the search results from PubMed. The number of shared abstracts by both

ouputs varied depending on the gene. The 100 sentences for cxcl12 may represent

the default maximum of sentences output per gene in GICSS.

Gene name GICSS

output

Number of

abstracts

represented in the

GICSS output

PubMed Number of shared

abstracts in GICSS

and PubMed

searches outputs

adamts1 66 18 17 12

usp18 38 7 7 7

irak3 14 4 16 0

cxcl12 100 22 16 0

kcnj9 46 17 60 0

pglyrp1 71 16 18 16

ptx3 90 18 50 13

clca1 68 29 37 22

cyp2j5 13 3 4 3

frk 72 15 11 4

54

Table 5 Coverage of the GICSS output. The number of abstracts represented in the

full GICSS output and top 10 sentences is shown. The top 10 sentences from the

output have covered a good percentage of the distinct abstracts represented by the

full output.

Gene

name

GICSS

output

Number of

abstracts

represented in

the full GICSS

output

Number of

abstracts

represented in the

top 10 sentences of

the GICSS output

Percentage of

abstracts

represented in top

10 sentences

adamts1 66 18 3 17%

usp18 38 7 5 71%

irak3 14 4 4 100%

cxcl12 100 22 7 32%

kcnj9 46 17 7 41%

pglyrp1 71 16 6 38%

ptx3 90 18 8 44%

clca1 68 29 7 24%

cyp2j5 13 3 3 100%

frk 72 15 6 40%

55

Table 6. Average precision scores for the three sentence presentation (GICSS

output, sentences list produced by ranking with recency and PubMed search

output) for each of the eight genes used in this part of evaluation. In general, GICSS

output fared better than PubMed search results. GICSS output was also

consistently better than ranked by recency presentation with only one exception

(kcnj9).

Gene name GICSS output Recency PubMed

adamts1 0.580264 0.534627 0.039064

usp18 0.921985 0.900525 0.103968

irak3 0.654296 0.615089 0.033333

cxcl12 0.854571 0.843545 0

kcnj9 0.647421 0.666607 0.05862

pglyrp1 0.780637 0.717311 0.117634

ptx3 0.79435 0.783601 0.047008

clca1 0.683284 0.667058 0.205523

Mean Average Precision 0.739601 0.716046 0.075644

56

A graphical comparison of MAP for the three sentence presentations showed that

sentences from the abstract did much better than just titles from PubMed output. The

ranking algorithm (as judged by MAP) gave a 3.3% increase over reverse chronological

order of sentences and close to ten-fold increase above PubMed titles (Figure 4).

Repeated measure ANOVA analysis of average precision scores for the eight genes

suggested that overall there was significant difference among the three sentence

presentations (p < 0.001). Post-hoc comparison with Sidak adjustment for multiple

comparisons indicated that the GICSS system output was significantly better than

PubMed (p < 0.001). However, the difference between the GICSS system output and

sentence presentation produced by ranking with recency was not significant at the 0.05

level (p=0.08).

57

Figure 4. Comparison of the three rankings (GICSS system output, sentence

presentation ranked by recency and PubMed search results). It shows that GICSS

system achieved a much higher MAP score than PubMed search output (close to 10-

fold), while the difference between GICSS system output and sentence presentation

ranked by recency was smaller at 3.3%.

MAP score comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

system out recency pubmed

M
A

P

58

In addition to average precision scores, measurements emphasizing precision were also

computed and compared for the three sentence presentations. GICSS output gave 13.8%

and 10% increase over ranked-by-recency presentation on P@5 and P@10 respectively.

GICSS also outperformed PubMed search output in both P@5 and P@10 (Figure 5).

Repeated measure ANOVA analysis of P@5 and P@10 scores for the eight genes

suggested that overall there was significant difference among the three sentence

presentations (p < 0.001). Post-hoc comparison indicated that the difference between

GICSS system output and PubMed was significant (p = 0.007 for P@5 and p = 0.001 for

P@10), but the difference between GICSS system and ranked-by-recency presentation

was not significant at 0.05 level for either of the P@5 (p = 0.17) and P@10 (p = 0.11)

measures.

The relation between recency and the probability of being judged as a relevant sentence

was further investigated. Judged sentences for all eight genes were pooled and separated

into either relevant or not-relevant groups. There were a total of 578 sentences with 357

judged relevant and 221 judged not-relevant. The distribution of both groups over date of

publication (DP) was studied. The box plot of the two distributions indicated that the

median difference between date of publication (DP) for relevant and not-relevant

sentences is close to two years. This indicated that the more recent the sentence, the more

likely it is judged as relevant by the participants in this evaluation study. (Figure 6)

59

Figure 5. Comparison of mean precision at 5 and precision at 10 scores for the three

sentence presentations. The results for P@5 and P@10 were consistent with MAP,

with GICSS system output performed significantly better than the PubMed search

results while the difference between GICSS system and ranked-by-recency

presentation did not reach statistically significance in both of the measurements.

Precision at 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

system out recency pubmed

P
@

1
0

Precision at 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

system out recency pubmed

P
@

5

60

Figure 6. Box plot graph of the distributions of relevant and not-relevant sentences

over date of publication (DP). The median for DP for the relevant sentences is in

April 2002, while DP for non-relevant sentences is July 2000.

Relevant Not-relevant

01/01/1993

01/01/1994

01/01/1995

01/01/1996

01/01/1997

01/01/1998

01/01/1999

01/01/2000

01/01/2001

01/01/2002

01/01/2003

01/01/2004

d
p

61

4.4 Individual features’ contribution

MAP scores were also calculated with sentences ordered by each feature individually.

The results suggested that domain-specific terminology as represented by the Textpresso

protein function ontology TPword was the most useful feature and using it alone

performed better than the default combination of different features. The feature that

represented that context of the cluster, CluSim was the least useful features used by itself

for sentence ranking and it performed, in the evaluation, worse than random ordering of

the sentences (Table 7).

In further experiments we used equal feature weighting in the sentence ranking algorithm

and leave-one-out performance (MAP score calculated with the rest of the features when

one individual feature is left out) as measure for individual feature performance and

obtained similar results (Table 8). Note that in post-hoc studies, by increasing the number

of CluSim terms, this conclusion was revised.

Since the equal feature weighting scheme performed a little better than the scheme used

in evaluation, in post-hoc studies, the equal feature weighting scheme was used as a

standard of comparison.

62

Table 7. Each individual feature’s contribution as shown in MAP scores for

sentences ordered by each feature alone. It appears that TPword was the most useful

single feature while CluSim was the least useful for sentence ranking.

Outputs MAP

System 0.739601

Random 0.68166

CluSim 0.675697

Ngene 0.705838

Ctword 0.718035

Tpword 0.75364

Length 0.726827

Recency 0.716046

63

Table 8. Each individual feature’s contribution as measured by leave-one-out MAP

scores. In the table, the MAP score difference between leave-one-feature-out

ranking and the original system (with all features) were displayed for each of the six

features. The experiment gave similar results as in Table 6. TPword appeared to be

the most useful feature – taking it out of the full system lowered the performance by

-.023 while CluSim was the least useful for sentence ranking - showing improvement

of performance if CluSim is left out.

Left out feature MAP score with one

feature left out

MAP score difference

between leave-one-

feature-out ranking and

original system output

All features, equal

weight

0.742643 0

CluSim 0.744556 + 0.001910

Ngene 0.740432 - 0.002210

Ctword 0.737308 - 0.005334

Tpword 0.719519 - 0.023124

Length 0.733589 - 0.009054

Recency 0.720938 - 0.021705

64

4.5 Demonstration of generalizability

The human gene information summarization system was built by substituting a human

gene and protein name entity recognition and normalization system [45]. The system was

implemented and became functional after one person/one day’s coding and testing. It is

currently hosted at http://ir.ohsu.edu/jianji/human_gene. Further analysis of the quality

and effectiveness of the human system was not the focus and was not performed for this

dissertation.

4.6 Post-hoc optimization of sentence selection scheme

The sentence ranking evaluation results indicated that the CluSim feature was not as

useful as the other features. With the sentence relevance judgment ‘gold standard’

obtained from the evaluation process, the sentence ranking scheme was optimized by

testing the influence of clustering algorithm on the usefulness of the CluSim feature in

sentence ranking. Recall that the sentence score was calculated as:

S= w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword

+ w5 TPword + w6 L + w7 Recency

where w1-7 are weight parameters between 0 and 1 for each feature.

65

4.6.1 CluSim feature improvement

By varying the clustering parameter, the following experiments tried to improve the

usefulness of the CluSim feature contribution and the overall sentence ranking efficiency.

The test results suggested that lowering the cluster size (and increasing the number of

clusters), i.e., the genes in the clusters became more homogenous, could improve the

usefulness of the CluSim parameter and improve the overall MAP score. In an experiment

where the size of clusters was set to four (note that in original setting the average size of

the clusters generated was seven.) CluSim’s contribution was higher than ctword and

ngene whereas it was not so effective with the original clustering algorithm settings

(Table 9). Note that when the number of cluster parameter was set to a fixed number,

CLUTO will attempt to generate clusters of defined size but final size may vary from

cluster to cluster, i.e. there may be a cluster of size two, three, four, five or six, depending

on the natural property of the gene sets.

Another experiment tested the influence of the size of the CluSim features to its

contribution in the overall MAP score of the sentence ranking scheme. With all other

clustering parameters remained the same as the original setting (cluster number was

decided at run-time as explained in section 3.1.4), the size of the descriptive features

from each CLUTO cluster was changed from five to ten, fifteen and twenty. The results

suggested increasing the feature size improved the CluSim feature from not useful (Table

8) to a useful effect (Table 10).

66

Table 9. Overall system performance and individual features’ contribution to the

final MAP score when the cluster size parameter for CLUTO was set to four. In the

table, the MAP score and the difference between leave-one-feature-out ranking and

the full system (with all features) were displayed for each of the six features. All

individual features contributed to the final MAP score, with recency and tpword

being the highest contributors and ngene and ctword the lowest. Decreasing the size

of the cluster seemed to generate better CluSim features for the summarization

process.

Left-out

feature

MAP score with

one feature left

out with original

settings

MAP score

difference from

the full system

with original

settings

 MAP Difference

from the full

system

All features,

equal weight

0.742643 0 0.756748 0

CluSim 0.744556 + 0.001910 0.744556 -0.012192

Ngene 0.740432 - 0.002210 0.752581 -0.004167

Ctword 0.737308 - 0.005334 0.750881 -0.005867

Tpword 0.719519 - 0.023124 0.736845 -0.019903

Length 0.733589 - 0.009054 0.745768 -0.010980

Recency 0.720938 - 0.021705 0.736575 -0.020173

67

Table 10. Overall system performance and individual features’ contribution to the final MAP score with the size of the

descriptive features in the CluSim feature in the sentence ranking scheme set to 10, 15 and 20. In the table, the MAP

score and the difference between leave-one-feature-out ranking and the full system (with all features) were displayed

for each of the six features. Increasing the size of the CluSim feature seemed to improve its contribution for the

summarization process comparing to the original setting of size five.

Size of the CluSim

feature =5

Size of the CluSim

feature =10

Size of the CluSim

feature =15

Size of the CluSim feature

=20

Outputs

MAP Difference

from the

full system

MAP Difference

from the

full system

MAP Differenc

e from

the full

system

MAP Difference

from the

full system

System 0.74264 0 0.75490 0 0.75212 0 0.75517 0

CluSim 0.74456 + 0.00191 0.74451 -0.01039 0.74464 -0.00749 0.74464 -0.01053

Ngene 0.74043 - 0.00221 0.75557 -0.00067 0.75066 -0.00147 0.75375 -0.00141

Ctword 0.73731 - 0.00533 0.75108 -0.00381 0.74622 -0.00591 0.74874 -0.00643

Tpword 0.71952 - 0.02312 0.72786 -0.02704 0.72202 -0.03010 0.72723 -0.02793

Length 0.73359 - 0.00905 0.74956 -0.00533 0.74393 -0.00819 0.74711 -0.00805

Recency 0.72094 - 0.02171 0.73872 -0.01618 0.73600 -0.01612 0.73800 -0.01717

68

4.6.2 Effect of length factor threshold

The effect of length factor threshold (originally set to 20) to discount longer sentences

was also tested by varying the value to 10 and 30. The clustering parameters were kept in

the original setting, i.e., real-time generation of clusters, CluSim feature size set to five.

The result indicated that length factor threshold did not seem to affect the usefulness of

the length feature, since for the values of 10, 20 and 30, the contribution of length in the

sentence ranking algorithm were about the same at 0.009 (Tables 8 and 11).

69

Table 11. Overall system performance and individual features’ contribution to the final MAP score with the value of

sentence length factor threshold set to 10 and 30. In the table, the MAP score and the difference between leave-one-

feature-out ranking and the full system (with all features) were displayed for each of the six features. Varying the value

of the threshold seemed to have no effect on its contribution for the summarization process.

Length factor threshold =10 Length factor threshold =20 Length factor threshold =30 Outputs

MAP Difference from

the full system

MAP Difference

from the full

system

MAP Difference

from the full

system

System 0.74327 0 0.74264 0 0.74246 0

CluSim 0.74835 +0.00508 0.74456 + 0.00191 0.74316 +0.00071

Ngene 0.74225 -0.00101 0.74043 - 0.00221 0.73919 -0.00326

Ctword 0.74450 +0.00123 0.73731 - 0.00533 0.73967 -0.00279

Tpword 0.72130 -0.02197 0.71952 - 0.02312 0.71722 -0.02523

Length 0.73359 -0.00968 0.73359 - 0.00905 0.73359 -0.00887

Recency 0.72748 -0.01579 0.72094 - 0.02171 0.72043 -0.02203

70

4.6.3 Optimization of the sentence scoring scheme

Final full post-hoc optimization of MAP was done using the Constrained Optimization

By Linear Approximation (Cobyla) interface module in scipy
18

. All the system settings

remain the same as in the original evaluation except that the size of CluSim features =10

because this level gave the best result.

Again, the sentence score was calculated as:

S= w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword

+ w5 TPword + w6 L + w7 Recency

where w1-7 are weight parameters between 0 and 1 for each feature.

W2 is set to zero again since this feature was not used and it is presented in the formula

only for model completeness. The optimization was performed on the other six

parameters. Eight constraints were passed to the algorithm:

wi >=0, i=1, 3, 4, 5, 6, 7

S wi -1 >=0, i=1, 3, 4, 5, 6, 7, and

1- S wi >=0, i=1, 3, 4, 5, 6, 7

There were several local optimal points depending on the initial starting point. With the

initial guess for the sentence ranking parameter vector set at equal weight for each

feature, i.e. [wi, i=1, 3, 4, 5, 6, 7] = [0.166, 0.166, 0.166, 0.166, 0.166, 0.166], and after

81 iterations, the optimization process converged to MAP = 0.7654 with feature weight

18

 http://www.scipy.org/doc/api_docs/scipy.optimize.cobyla.html

71

vector [wi, i=1, 3, 4, 5, 6, 7] = [0.223, 0.089, 0.004, 0.484, 0.004, 0.195]. In this

optimized setting, the order of feature importance is tpword, CluSim, recency, ngene,

ctword and length. Using the rounded-up feature weight scheme, [wi, i=1, 3, 4, 5, 6, 7] =

[0.2, 0.1, 0.0, 0.5, 0.0, 0.2], the system performance was at MAP = 0.7651. This MAP

score is only a little higher than before optimization with equal feature weighting scheme.

72

Chapter 5. Discussion

5.1 Functional gene clustering

In general, the clustering algorithm gave better gene groups than random as supported by

the fact that clusters generated by both MeSH and GO terms were considered

significantly better than random grouping of genes. The comparison between the feature

types showed insignificant differences; even though the confidence interval ranges and

trend suggested that MeSH and GO may be better than text as features for clustering. The

observed power of the test indicated that the sample size of 10 genes may be too small to

give enough power to distinguish between the different features. Future work should

include more biologists for testing, preferably during their real use of the system because

the experimental setting of test had some limitations which are discussed next. In

addition, the system allowed for any combination of features to be used for clustering, but

how different clustering feature combinations fare against the single feature types used in

this study was not studied here and remains for future work.

The result of the paired testing of before and after showing keywords of the clusters

indicated that the preference of the participants was not influenced by the keywords

significantly. It appeared that the perception of a good cluster did not depend on the

scientist knowing the clusters descriptive terms significantly. Once the participants found

the meaningful cluster, they were likely to stick with it even after seeing the keywords.

While the difference was small, the participants had a slight preference in GO or MeSH

clusters over text clusters after they saw the keywords. This was consistent with the

findings in the first part of the evaluation. It suggests that controlled vocabularies fare

73

better than text words for generating clusters. Controlled vocabularies usually have more

domain-specific content, which may be able to give more information to users.

The clustering algorithm, direct k-means, used in this project was from the CLUTO

clustering suite. The number of clusters (N) is one parameter that needed to be specified

for the algorithm. The selection of N is difficult because it highly influences the number

of genes in each cluster and the quality of the cluster. Since the number of input gene list

genes covers a fairly wide range, the selection of N using the relative change of internal

similarity seemed a better choice than presetting a defined number. But this selection

scheme was probably not optimal. The post-hoc experiment setting the cluster size to a

defined value seemed to improve the CluSim feature’s contribution, to the extent that a

poor CluSim feature became a helpful one for sentence ranking. Even though this may

not necessary be interpreted as improvement of cluster quality, it is an indication that the

cluster keywords represent the genes in the cluster better, and were more useful in

selecting good quality sentences. The proper way to determine N given the size of the

gene list and the quality of the clusters is another area of further work. The determination

of N can also be done by other algorithms that specialized in finding number of classes in

a large dataset such as AUTOCLASS as used in [31]. Other clustering algorithms such as

ANT [48] that do not require the input of N are another area to investigate.

During the cluster-quality-judging experiment, we found that judging cluster pairs was

not an easy task for the scientists. Even though each cluster had at least one of the genes

they chose as familiar, it was very common that some genes in the cluster (with average

size of 8 genes) were not familiar to them. In order to judge the quality of the cluster,

74

they need to follow links in the evaluation screen for information on other genes in the

cluster. This created a larger than expected work load for the evaluators and by the end of

the session, they make their best judgments without going through the information for

not-so-familiar genes, possibly due to fatigue. This was also the reason each participant

was asked to judge clusters on only two genes, which already amounted to 12 cluster

pairs in our experimental design. The fatigue factor may also have influenced the quality

of the judgment. In order to overcome the difficulty of getting experiment participants

and ensure the quality of the judgment, it will be better to conduct future evaluation

experiments in a real-world use setting, similar to extrinsic evaluation, instead of system

evaluation such as we have done here. For example, when the researchers are using the

system to help them do research on a microarray result gene set during the normal course

of their workflows, the system could log the clicking and timing of the participants in

addition to the defined questions presented to the participants.

How to best measure the quality of clusters is still in general an issue, especially in this

case, where we define quality as how meaningful the clusters were for a specific

microarray experiment. Some analytical measures, such as internal and external

similarities, entropy and mutual information, may not correlate closely. These measures

are commonly used to quantify the quality of the clusters in many comparative

experiments [36]. No work so far has been done on how the purity of the cluster as

defined by these statistical measures correlates with the biological meaning of the clusters

for a user. Furthermore, in this study, the raw gene list from the experiment was

clustered. By nature, the gene list contains genes that were differentially expressed and

75

most likely from many different pathways and groups especially considering many genes

may perform multiple functions. We expect the list to be harder to cluster than choosing

several distinct known gene groups, such as GO and cell cycle groups and try to cluster

them to the right class, which is the most common evaluation method used [31,36,37].

The GICSS system takes in differentially expressed gene name lists input by scientists

with no pre-defined criteria for ‘differentiated expressed’ such as a certain FDR cutoff

level. As indicated in the evaluation gene sets, the criteria for the selection of the gene set

varied (Table 3). If the input gene set was selected by a loose criterion, it is likely the

some genes from pathways other than those that are modified by the testing biological

conditions would be included. The resulting clusters generated by the algorithm with

these ‘contaminated genes’ will more likely to be less favorable.

5.2 Sentence extraction summarization

Providing sentences in the abstract gave much more relevant information than titles. All

three measures (average precision, P@5 and P@10) showed significant differences

between the system output and the PubMed search output. These results suggested it may

be useful for the PubMed result list to include highlighted keywords from the sentences

in the abstracts to provide more information to the searchers. In the current title-only list,

some relevant articles may be missed because the titles do not provide enough

information to warrant further exploration of the abstract, especially when the returned

list is long.

76

The GICSS system output using the scoring algorithm in point estimate consistently gave

higher MAP, mean P@5 and P@10 scores than presentation of the same sentence set by

reverse chronological order, even though the difference is not significant at 0.05 level in

post-hoc analysis with multiple comparison adjustment. Further analysis of the relation

between recency and relevance indicated that the more recent the date of publication, the

more likely the sentence be judged as relevant. This is a little surprising because the

intention to include recency in the scoring algorithm was mainly to provide the most

recent information first and relevance was not the initial consideration. This relation may

be explained by the fact that the experts doing the relevance judgment were to a certain

extent aware of the knowledge accumulation timeline of the specific genes. It seems that

this is a good assumption because the experts were instructed to select two genes they

were familiar with to perform the evaluation. Because of their pre-existing knowledge of

the genes, they were likely to pick the newly discovered information as more relevant

than the well-known facts on the genes.

Domain specific ontology terms as in Textpresso ontology improved results consistently

as indicated by this being the highest single feature MAP and highest contributor in all

different setting schemes we have tried. In addition, it ranked the first in the final

optimization process with a optimal weight at 0.5. It suggested that the domain specific

terms can be very useful to identify important sentences. In addition, it may be used in

the clustering process as a domain specific term database to filter text terms to improve

on the effectiveness of clustering with free text features. With the domain specific term

77

filter, the free text terms can be better representing the biology content of the abstracts

discussing the gene. More on this issue is discussed in the Future Work section.

While the domain-specific terminology provides a good indication of sentence

importance, the non-domain specific features such as cue words and length of the

sentences might also be helpful in selection of relevant sentences. Even though the final

optimization indicated the contribution of these two features were minimal, the other

experimental results suggested that they did contribute to a certain degree. Also note that

the optimization presented was one of the local maximums while other maximums

specified higher weights for cue term and sentence length. The fact that slightly different

weighting scheme gave similar local maximums suggested that the features used in the

sentence scoring algorithm were providing redundant information and may be correlated.

Even though it was inconclusive that the non-domain specific features were helpful in

this study in the biomedical domain, including cue terms/phrases and length to help the

construction of summaries has been used widely in automatic summarization works of

the news and other domain articles[10,49]. This has not been used much in the

summarization of biomedical domain, such as [42,50]. Due to the limitation of time and

resources of this dissertation, the cue word list was assembled by the author (who has a

biological background) after reading the top one hundred PubMed abstracts returned with

the search term ‘gene’. Further expansion of the list by other domain experts would be

very valuable. It is also interesting to study if the cue words in biomedical domain differ

from other domain. To the author’s knowledge there have not been any studies on the

topic.

78

In the original implementation, the size of keywords for the cluster (CluSim) was set to

five and the results of the evaluation seemed to indicate that it did not seem to help much.

In the original implementation, inclusion of this feature lowered the MAP score of the

system output comparing to scheme that left this feature out. CluSim is the feature we

would like to use to include the context for the sentence selection. It usually represents

the overall information for the whole cluster instead of specific information in that

particular gene. Therefore, one possible reason that CluSim was not so useful in the

original implementation may be that the users prefer specific information represented by

the ontology terms rather than the general knowledge about the gene group functions. In

order to test if different cluster parameters and more descriptive keywords may be able to

better capture the cluster information, we varied the cluster size and the number of

keywords used in the CluSim feature in the post-hoc experiments to test the effect of their

influence to the sentence ranking scheme. The results seemed to suggest that feature

terms from more homogenous clusters as well as larger feature sets could improve the

contribution of the CluSim feature in the sentence ranking scheme. In fact this change

made it a positive feature, and the COBLYA optimization showed it to be the second best

feature. One explanation can be that the CluSim terms (descriptive terms for clusters) are

mostly domain specific terms as in GO and MeSH. Therefore, increasing the number of

the CluSim words increases the domain specific feature weighting, i.e., similar to the

TPword feature. On the other hand, this assumption did not explain why decreasing the

cluster size (more homogenous cluster) can improve the contribution of CluSim feature.

Furthermore, it did not explain the fact that using a smaller size feature set rendered the

79

feature to negative contributor. Therefore, a more likely explanation is that the quality of

the clusters and the richness of the descriptive features for each cluster are important for

the usefulness of the CluSim feature.

The GICSS system supports the use of query term in selecting the important sentences. In

this way, it gives the users more leverage in getting the information of interest. For

example, they can enter a disease’s name in order to retrieve sentences referring to the

gene and the disease. Hopefully, this feature can provide customized sentences

presentation to fit different needs of the users. Due to the limited resources and increased

need for user initiative this feature was not evaluated in the study.

In the post-hoc optimization, the final optimized MAP score was only a little higher than

MAP achieved by equal weighting scheme before optimization. This may indicated that

the features used in scoring were unable to distinguish relevant sentences. Testing more

features that could be as useful as the TPword is part of future work.

The evaluated version of GICSS was tuned by the two sets of sentences. Since there are

six parameters and use only two examples for adjustment, there were obviously not

enough data to fully tune the system. The results of post-hoc experiments suggested that

the system could achieve better performance when tuned by all the data points collected

in the evaluation. On the other hand, data from only ten genes may be still too little to

fully tune the system. If data can be collected during the real use of the system, it will be

very useful in choosing a better weighting scheme. Therefore, distributing of the system

for the real users is of high importance once all the evaluation and testing is done.

80

The system is built on top of a gene name recognition system (NER), the accuracy of

which influences the result of both clustering and sentence selection. Our NER achieves

state-of-the-art accuracy at 70-80% [51], but the 20% error rate can cause some mistakes

cascading down to sentence extraction. For example, two genes (20% of the tested genes)

got low MAP scores. One of them was because the sentences were in fact about other

genes with identical symbols. The other is because the gene symbol for the gene has a

synonym identical to a DNA motif. A module to deal with this type of error can be added

to the preprocessing step to disambiguate the gene/protein names in the sentences. This

would help to avoid the problem of sentences that have information on totally different

genes being mixed with sentences of the gene of interest and therefore achieving better

performance.

The NER system does not make any distinction on whether the entity mentioned is

protein or gene. In fact, it is very difficult to distinguish between these two types of

entities, since the use of gene name and its protein products is mostly interchangeable in

the literature, and in many cases can only be inferred from the surrounding context. Is it

important to separate the sentences on a gene and the sentences on its protein product? It

might be important because the system is focusing on analysis of microarray experiment

data and the scientists usually are more interested in information on genes instead of

proteins. On the other hand, the information of both gene and the protein gene product

may be of great interest because proteins are the entities that influence the physiological

activity. The GICSS system currently cannot specify the sentences on genes only, but

presents sentences for both gene and protein. At the present time it is unclear whether this

81

distinction is important for systems such as GICSS. Supporting this distinction will rely

on the development of better NER systems.

82

Chapter 6. Limitation and Future Work

There were limitations of this study but also avenues for future work. In order for the

GICSS system to be of real use for the genomic research community, it is important to

make the system available to researchers by integrating it into the current microarray

analysis workflow. As far as improvements on the algorithmic aspects of the system,

further directions include the following.

First, the text collection for this study is a snapshot of the MEDLINE records. In this

study, we use a static collection of MEDLINE records from 1994 to 2003. An obvious

limitation to this approach is that it does not have the data of the rapid advent of the field

in more recent years. This can be easily remedied by downloading MEDLINE records

from the NLM website. After these development and evaluation processes, the dataset

will be updated automatically each week to include the current data from MEDLINE.

Second, it contains only abstracts, while more information is in the full text of the

articles. Especially if we try to analyze at transcript level, the information is more likely

in the full text instead of the abstract. Even though full text articles are still not easily

accessible currently, we expected the increase in publicly available electronic texts. This

assumption is supported by the open access movement resulting in not only Biomed

Central and PubMed Central, but even for commercial publishers, the trend is that more

journals are offering their subscribers and even the public the electronic version of their

publications. Another direction for future research is to incorporate available full text in

the system and compare with abstract only system. The full text can give us more

information, hence providing more details that an abstract can never cover. On the other

83

hand, with full text, certainty of the meaning of the sentences may be an issue, since

some sections of the full text such as discussion may include speculation and hypotheses.

Further work can also be done to improve the effectiveness of the clustering algorithm.

The CLUTO clustering suite has several different types of algorithms that can be plugged

in to test the effectiveness of clustering. In addition, the GICSS system uses the cosine

distance as a measure of similarity. This did not take into account the concept structure of

the terms used as features for clustering. This semantic relation represented in the

hierarchical structures of domain terminologies could be used to improve to quality of

clustering. Future work should include testing on the use of semantic distance as

similarity measurements, especially for GO and MeSH terms, which have hierarchical

structures, possibly to achieve better performance [52].

The text feature for clustering did not perform as well as the other two features. Note that

the text feature was processed only by stop-word removal, stemming and tfidf weighting.

In order to make better use of the free text feature, further filtering and different

weighting of the text content by its biological information density should be helpful.

Some of the prior work in this area includes Andrade’s study on way to automatic

extraction of keywords from text articles [53] and Liu’s study on comparison of two

feature extraction and weighting schemes[36]. We can adapt their approaches of giving

different weighs to different text terms to improve the text feature gene functional

clustering results.

84

The GO terms used in the clustering process were pooled together disregarding the

confidence of the assignment. Future work includes working on possible utilizing the

evidence codes for each term to assign different weighs for the terms.

Another area of future work is to test the use of NLP techniques. GICSS does not use

much advanced Natural Language Processing (NLP) techniques, such as part of speech

tagging, semantic parser, word sense disambiguation, co-reference and anaphora

resolution. There were both advantages and disadvantages for not using NLP. The most

notable advantage is speed. The system can process gene list containing up to 300 genes

smoothly (around three minutes), while some of the system using NLP in real time were

slow when processing less than 50 gene names [50,54] (personal experience with the

website versions in December, 2006: [50] took over ten minutes and [54] never gave

results.). NLP can be very useful in extracting predefined information in templates. But it

is also limited by the predefined template. The GICSS system can extract useful

information in general with no restriction to certain functional types and language

templates. Finally, the updating of the templates in NLP is usually time-consuming and

might also be influenced by different writing styles of the authors. On the other hand, the

disadvantages of using word modeling instead of NLP include that it is not possible to

deeply understand the meaning of the sentences. There is no detailed knowledge, such as

the direction of the relation -- protein A activates the expression of gene B ; cause and

effect relation – disease C is caused by the defects in gene D. The information presented

by the system is more generic but not as detailed as processing by NLP may possibly

provides. With NLP’s advantages and disadvantages discussed, it will be interesting to

85

study if adding these features will improve the performance and how to balance the

improvement of performance if there is any, with the sacrifice of speed.

The type of NLP used in GICSS is name entity recognition. Gene and protein name entity

recognition, synonym detection and normalization are important first steps in the process,

on which the system’s accuracy depends heavily. It has been noted that gene name

ambiguity is low (5%) intra-species and high (85%) inter-species [45]. It makes sense to

limit the study to mouse, since NER system for mouse achieves the highest accuracy of

all the vertebrate species. But the decision to limit the system to one species also limits

the potential application of the system. In addition, articles on the orthological gene in

other species (especially close related species, e.g. human and mouse) will potentially

provide significant information for the scientists. The GICSS system currently does not

support searching of sentences regarding other species. One way to remedy is mapping to

orthological genes from the different species and retrieves all available sentences. The

drawback is that it will cause higher level of false positive hits due to the error in NER in

other species and the added source of error in mapping. The effectiveness of this

approach can be a direction in future work.

In the dataset used in the project, the number of publication on genes varies greatly from

gene to gene. As mentioned before, the number of sentences for the genes in the 10-year

MEDLINE abstract on mouse is ranging from one to 29,203. In general, the highly

different level of publication related to different genes reflects the fact that some genes

are well-studied and some are barely worked on. For highly studied genes the feature sets

are much richer than the genes that have very few abstracts/sentences published on them.

86

This fact may very likely influence the result of the clustering process, resulting in

clusters skewed by the level of publication. The same problem exists for the combination

of the three features (text, MeSH and GO) too. The number of GO terms assigned to each

gene is usually much fewer than the text word from the sentences. When combining these

features, how to compensate for the impact of richness of the feature is another future

research direction.

Furthermore, the genomic research technologies are advancing at a fast pace. This trend

is reflected in the publication by the appearance of articles describing the results from the

experiments using these technologies. The text processing and understanding community

working in biomedical domain is always trying to catch up with the need of the

experimental community, but still lagging behind. For example, microarray can now

measure expression level at the granularity of transcripts. Since the same gene region can

be transcribed into different splices (transcripts of mRNA) in different cell condition, or

different time point in development, this finer granularity gives scientists more insight

into the mechanisms of the gene functions. At present, not much literature mentions

transcripts, at least not in the abstract. Hence, the language processing community has not

yet been focusing at this level of granularity for name entity recognition, but as the

literature on the different transcripts from the same gene accumulates in the future, NER

for transcripts may be next area of research. Based on the currently available NER

applications, the GICSS system is only able to work at the gene entity level but not as

fine as transcript level. Thus, different transcripts from the same gene are forced to map

87

to the same gene name during the input step to the system. Since the GICSS system aims

at helping microarray analysis, this limitation potentially has the following two scenarios:

1. Different transcripts of the same gene have the same type of regulation pattern

(up/down regulation) and show in the input list as duplication of gene names

with different fold change.

2. The different transcripts have opposite type of regulation pattern, i.e. one up

and one down regulation, and show in the input list as contradiction, which

also leads to the problem of how to color-code that gene and difficulties in

interpretation.

Even though we do not have the capacity to analyze our text collection at transcript level,

in this version, the GICSS system implements the feature to highlight these duplication

and contradiction for users and remind them the degenerative nature of mapping

transcripts to gene name. In future work, incorporating the capacity to handle text at gene

transcript level will be one of our directions. In order for text analysis to achieve at this

finer level, large amount of publication describing experiment results in transcript level is

required. Furthermore, NER systems that aim at recognizing transcript names will be

essential too. We would work on identifying transcript names in free text and the

mapping between gene names and available transcripts. Once the literature reaches the

significant threshold, we will be ready to analyze and conduct further studies.

Finally, in the user-interface aspect, there are areas that can be tested in order to give the

users more options to adjust the system to their use. Since GICSS is aimed to help the

microarray scientists explore their gene sets obtained from the experiments, it would be

88

to the advantage of the users that in addition to one predefined default setting, the system

allows them to adjust some of the parameters, such as, the number of clusters, weigh of

sentence scoring algorithm to return different clusters. This way, they can explore the

difference of the settings and decide which setting is best for the gene set. This notion of

allowing users to set some of the parameters is common in the statistic analysis software

available for the gene expression profile analysis of the micro-array data. Some of the

options, such as selection of features, stemming and number of sentences were available

in the current system. This could be a valuable area for future work.

89

Chapter 7. Conclusions

A gene information summarization system was built and evaluated for mouse genome

researchers working with a large gene list micro-array experiment results. This system,

GICSS, aimed to fit between the expression pattern analysis and finding supporting

evidence from the literature.

The results of the evaluation indicate that the functional gene clustering approach can

generate meaningful gene clusters using both MeSH and GO term features. There is no

significant difference between the use of the different features (MeSH, GO and TEXT) as

identified by this evaluation, even though the evaluators seemed to prefer clusters built on

GO and MeSH features over text features.

By presenting the sentences from the abstract, the system can provide more relevant and

important information to the users than standard methods such as PubMed search output

with titles ranked by reverse chronological order. This result suggested that an

uninformative title in the search result may have the user miss important information in

the abstract. Both domain specific ontology terms and non domain specific general

language features are useful in the selection of important sentences.

The system used unsupervised learning that does not depend on predefined categories and

requires no training data, which is usually hard to get and requires retraining over time.

This may make the system more generalizable. The generalizability of the system to other

species was also demonstrated by the implementation of human gene information system.

In the evaluation, we tried to mimic the real life microarray data analysis situation to

90

measure the true usefulness of the clustering algorithm as judged by the participants

working with their own data, as versus to other popular internal hard measures of cluster

similarity or the effectiveness of classifying predefined distinct gene groups.

Future work will include distributing the system to generate real use by the scientists in

genomic research while working on improvements to the algorithm and automating

database updates.

91

References

 1. Shatkay H, Feldman R. 2003; Mining the biomedical literature in the genomic era:

an overview. J Comput Biol 10(6):821-855.

 2. Lockhart Dea. 1996; Expression monitoring by hybridization to high-density

oligonucleotde arrays. Nat Biotechnol 14:1675-1680.

 3. Fattore M, Arrigo P. 2004; Topical clustering of biomedical abstract by self

organizing maps. In: Proceedings of 'The Fourth International Conference on

Bioinformatics of Genome Regulation and Structure'; Novosibirsk, Russia, July 25-

30, 2004.

 4. Hersh W, et al. 2005; TREC 2005 Genomics Track overview. The Fourteenth Text

Retrieval Conference, TREC 2005.

 5. Rzhetsky A, Iossifov I, Koike T, Krauthammer M, Kra P, Morris M et al. 2004;
GeneWays: a system for extracting, analyzing, visualizing, and integrating

molecular pathway data. Journal of Biomedical Informatics 37(1):43-53.

 6. Novichkova S, Egorov S, Daraselia N. 2003; MedScan, a natural language

processing engine for MEDLINE abstracts. Bioinformatics 19:1699-1706.

 7. Hersh W, et al. 2006; TREC 2006 Genomics Track overview. The Fifteenth Text

Retrieval Conference, TREC 2006.

 8. Sparch Jones K. Automatic summarizing: factors and directions. In: Mani I,

Maybury MT, editors. Advances in Automatic Text Summarization. London: MIT

Press, 1999.

 9. Luhn H. 1958; The Automatic Creation of Literature Abstracts. IBM Journal:159-

165.

 10. Edmundson H. 1969; New methods in automatic extracting. Journal of the ACM

16(2):264-285.

 11. Radev D, Jing H, Stys M, Tam D. 2004; Centroid-based summarization of multiple

documents. Information Processing and Management 40:919-938.

 12. Teufel S, Moens M. 2002; Summarizing Scientific Articles: Experiments with

Relevance and Rhetorical Status. Computational Linguistics 28(4):409-445.

 13. Mani I. Automatic summarization. Amsterdam, Philadelphia: J. Benjamins Pub.

Co., 2001.

92

 14. Kupiec J, Pedersen J, Chen F. 1995; A trainable document summarizer.
Proceedings of the 18th annual ACM SIGIR conference on Research and

development in information retrieval:68-73.

 15. Nomoto T, Matsumoto Y. 2001; A new approach to unsupervised text

summarization. Proceedings of the 24th annual ACM SIGIR conference on

Research and development in information retrieval:24-36.

 16. Conroy JM, O'Leary DP. 2001; Text summarization via hidden markov
models. Proceedings of the 24th annual ACM SIGIR conference on Research and

development in information retrieval:406-407.

 17. Marcu D. 1996; Building up rhetorical structure trees. American Association for

Artificial Intelligence 2:1096-1074.

 18. Marcu D. 1997; From discourse sturctures to text summaries. Proceedings of the

ACL/EACL'97 Workshop on Intelligent Scalable text Summarization:82-88.

 19. Mann WC, Thompson SA. 1988; Rhetorical structure theory: towards a functional

theory of text organization. Text 8(3):243-281.

 20. Barzilay R, Elhadad M. 1997; Using lexical chanins for text summarization.

Proceedings of the Intelligent Scalable Text Summarization Workshop

(ISTS'97):10-17.

 21. DeJong GG. An overview of the frump system. In: Lehnert W, Ringle M, editors.

Strategies for Natural Language Processing. Hillsdale, NJ: Lawrence Erlbaum,

1982.

 22. Jacobs PS, Rau LF. 1990; SCISOR: Extracting Information from On-Line News.

Commun ACM 33(11):88-97.

 23. Fiszman M., Rindflesch TC, Kilicoglu H. 2004; Summarization of an online

medical encyclopedia. Medinfo:506-510.

 24. Carbonell J, Goldstein J. 1998; The use of MMR, diversity-based reranking for

reordering documents and producing summaries. Proceedings of the 21st annual

international ACM SIGIR conference on Research and development in information

retrieval:335-336.

 25. Masys DR, Welsh JB, Lynn Fink J, Gribskov M, Klacansky I, Corbeil J. 2001; Use

of keyword hierarchies to interpret gene expression patterns. Bioinformatics

17:319-326.

93

 26. Jenssen TK, Laegreid A, Komorowski J, Hovig E. 2001; A literature network of

human genes for high-throughput analysis of gene expression. Nat Genet 28:21-28.

 27. Chaussabel D, Sher A. 2002; Mining microarray expression data by literature

profiling. Genome Biology 3(10):research0055.

 28. Glenisson P, Antal P, Mathys J, Moreau Y, De Moor B. 2003; Evaluation of the

vector space representation in text-based gene clustering. Pac Symp

Biocomput:391-402.

 29. Glenisson P, Coessens B, Van Vooren S, Mathys J, Moreau Y, De Moor B. 2004;
TXTGate: profiling gene groups with text-based information. Genome Biol

5(6):r43.

 30. Homayouni R, Heinrich K, Wei L, Berry MW. 2005; Gene clustering by Latent

Semantic Indexing of MEDLINE abstracts. Bioinformatics 21(1):104-115.

 31. Liu Y, Navathe SB. 2005; Text mining biomedical literature for discovering gene-

to-gene relationships: a comparative study of algorithms. IEEE/ACM Trans

Comput Biol Bioinform 2(1):62-74.

 32. Raychaudhuri S, Schutze H, Altman RB. 2002; Using Text Analysis to Identify

Functionally Coherent Gene Groups. Genome Res 12(10):1582-1590.

 33. Raychaudhuri S, Chang JT, Imam F, Altman RB. 2003; The computational

analysis of scientific literature to define and recognize gene expression clusters.

Nucl Acids Res 31(15):4553-4560.

 34. Kuffner R, Fundel K, Zimmer R. 2005; Expert knowledge without the expert:

integrated analysis of gene expression and literature to derive active functional

contexts. Bioinformatics 21(suppl_2):ii259-ii267.

 35. Huang D, Pan W. 2006; Incorporating biological knowledge into distance-based

clustering analysis of microarray gene expression data. Bioinformatics 22(10):1259-

1268.

 36. Liu Y, Ciliax BJ. 2004; Comparison of two schemes for automatic keyword

extraction from MEDLINE for functional gene clustering. Proc IEEE Comput Syst

Bioinform Conf:394-404.

 37. Glenisson P, Mathys J, Moreau Y, De Moor B. 2003; Scoring and summarizing

gene groups from text using the vector space model. Technical Report 03-97,

ESAT-SISTA.

94

 38. Kankar P, et al. 2002; MedMeSH Summarizer: Text Mining for Gene Clusters. In

the Proceedings of the Second SIAM International Conference on Data Mining.

 39. Tanabe L, Scherf U, Smith L, Lee J, Hunter L, weinstein J. 1999; MedMiner: an

Internet text-mining tool for biomedical information, with application to gene

expression profiling. Biotechniques 27(6):1210-1217.

 40. Divoli A, Attwood TK. 2005; BioIE: extracting informative sentences from the

biomedical literature. Bioinformatics 21(9):2138-2139.

 41. Mitchell AL, Divoli A, Kim JH, Hilario M, Selimas I, Attwood TK. 2005; METIS:

multiple extraction techniques for informative sentences. Bioinformatics

21(22):4196-4197.

 42. Ling X, et al. 2005; Automatically generating gene summaries for biomedical

literature. In: Proceedings of the Pacific Symposium on Bioinformatics.

 43. Ding J, Berleant D, Nettleton D, Wurtele E. 2002; Mining MEDLINE: abstracts,

sentences, or phrases? Pac Symp Biocomput:326-337.

 44. Edmundson H. 1969; New methods in automatic extracting. Journal of the ACM

16(2):264-285.

 45. Cohen A. 2005; Unsupervised gene/protein entity normalization using

automatically extracted dictionaries. In: Linking Biological Literature, Ontologies

and Databases: Mining Biological Semantics, Proceedings of the BioLINK2005

Workshop; Detroit, MI: Association for Computational Linguistics; 2005:17-24.

 46. Muller HM, Kenny EE, Sternberg PW. 2004; Textpresso: an ontology-based

information retrieval and extraction system for biological literature. PLoS Biol

2(11(e309)):1984-1998.

 47. Mani I. 2001; Summarization evaluation: an overview. In: Proceedings of the

NTCIR Workshop 2 Meeting on valuation of Chinese and Japanese Text Retrieval

and Text Summarization.

 48. Labroche N., Monmarché N, Venturini G. 2002; A new clustering algorithm based

on the chemical recognition system of ants. In: Proceedings of ECAI 2002:345-349.

 49. Teufel S, Moens M. 1997; Sentence Extraction as a Classification Task. Workshop

'Intelligent and scalable Text summarization', ACL/EACL 1997, July 1997.

 50. Chiang JH, Shin JW, Liu HH, Chin CL. 2006; GeneLibrarian: an effective gene-

information summarization and visualization system. BMC Bioinformatics

7(1):392.

95

 51. Hirschman L, Colosimo M, Morgan A, Yeh A. 2005; Overview of BioCreAtIvE

task 1B: normalized gene lists. BMC Bioinformatics 6(Suppl 1):S11.

 52. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. 2007; A New Method to Measure

the Semantic Similarity of GO Terms. Bioinformatics:btm087.

 53. Andrade MA, Valencia A. 1998; Automatic extraction of keywords from scientific

text: application to the knowledge domain of protein families. Bioinformatics

14(7):600-607.

 54. Chen H, Sharp B. 2004; Content-rich biological network constructed by mining

PubMed abstracts. BMC Bioinformatics 5(1):147.

96

Appendixes

1. Screen shots

2. Excluded English stop words

3. Cue words

4. GO terms associated with MGI_ID as provided by MGI

5. PubMed search queries for the ten genes

6. Sentence relevance judgment files

7. Major codes

97

 Appendix 1. Screen shots

98

99

100

101

102

103

Appendix 2. Excluded English stop words can be accessed at

http://ir.ohsu.edu/~jianji/gene_info/static/english.stop

104

Appendix 3. Cue words can be accessed at

http://ir.ohsu.edu/~jianji/gene_info/static/key_terms.txt

.

105

Appendix 4. Table of GO terms that are associated with MGI_ID form MGI.

Can be accessed at http://ir.ohsu.edu/~jianji/gene_info/static/MGI_GO

106

Appendix 5. Queries for PubMed searches for the ten genes.

Cyp2j5:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=cyp2j5+OR+cyp2j-5

frk:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=frk+OR+c85044+OR+bsk/

iyk+OR+bsk+OR+rak+OR+c-85044+OR+gtk

kcnj9:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=girk-

3+OR+girk3+OR+kcnj9+OR+kcnj-9+OR+mbgirk3+OR+mbgirk-3+OR+kir3.3

pglyrp1:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=tag7+OR+tnfsf-

3l+OR+pgrp+OR+pgrps+OR+pglyrp-1+OR+tasg7+OR+tasg-7+OR+pgrp-

s+OR+pglyrp1+OR+pglyrp+OR+tnfsf3l+OR+tag-7

adamts1:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=adamts1+OR+c3c5+OR+m

eth1+OR+adamts+OR+adamts5+OR+adamts11+OR+asmp2+OR+implantin+OR+ai4810

94

clca1:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&term=clca1+OR+cacc

cxcl12:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=sdf-1alpha+OR+sdf1-

b+OR+sdf1-a+OR+sdf-1b+OR+sdf-1a+OR+sdf-1-b+OR+sdf-1-

a+OR+pbsf/sdf1+OR+pbsf+OR+ai-

174028+OR+sdf1b+OR+sdf1a+OR+tpar1+OR+sdf1+OR+sdf1beta+OR+ai174028+OR+

scyb12+OR+sdf-1-alpha+OR+cxcl12+OR+sdf1-alpha+OR+sdf1-beta+OR+cxcl-

12+OR+tlsf+OR+sdf-1beta+OR+pbsf/sdf-1+OR+tlsf-b+OR+tlsf-a+OR+sdf-1+OR+tpar-

1+OR+tlsfa+OR+tlsfb+OR+scyb-12+OR+sdf1alpha+OR+sdf-1-beta

107

irak3:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=ai-563835+OR+irak-

m+OR+irak-3+OR+ai563835+OR+4833428c18rik+OR+irak3+OR+irakm

ptx3:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=pitx-

3+OR+pitx3+OR+ptx-3+OR+ptx3

usp18:

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&term=usp18+OR+1110058h21rik+OR+aw04765

3+OR+ubp43+OR+ubp15

108

Appendix 6 Sentence relevance judgment files can be access at:

http://ir.ohsu.edu/~jianji/gene_info/eval/sentence

109

Appendix 7. Major codes

########## Index.py

########## entry point: get input from user by uploading file

import os,tempfile

from mainhtml import *

from localUtil import *

from option_class import *

from checkRec import *

if not QUERY:

 option=options(1,['A','C','D','F','G','H'],3,100,0,0,1,5)

 Session().option=option

 print mainhtml

elif not _filename=='':

 f = _filename.file # file-like object

 dest_name = tempfile.mktemp(dir='.')

 out = open(dest_name,'wb')

 # copy file

 import shutil

 shutil.copyfileobj(f,out)

 out.close()

 infile=open(dest_name,'r')

 duplicate=[]

 genes={}

 for line in infile.readlines():

 if line.strip():

 geneS,fold=line.strip().lower().split('\t')

 gene=geneS.strip()

 if genes.get(gene,0):

 duplicate.append((gene,genes[gene]))

 duplicate.append((gene,fold))

 else:

 genes[gene]=fold

 infile.close()

 os.remove(dest_name)

 for g in genes:

 if float(genes[g])<0:

 genes[g]=(genes[g],'green')

 else:

 genes[g]=(genes[g],'red')

 gene_id, no_record=check_no_record(genes.keys())

 Session().gene_id=gene_id

 Session().genes=genes

 data = {

 'duplicate': duplicate,

 'gene_id': gene_id,

 'no_record':no_record,

 'count':len(gene_id),

110

 'genes':genes}

 merge('second.html', data)

else:

 print errPage2

111

Index2.py

entry point, get input from user by manual entering of genes

import sys

from mainhtml import *

from localUtil import *

from checkRec import *

def error_exit():

 print errPage1

def parse_input():

 genes={}

 duplicate=[]

 firstline=1

 for item in list(_names[0].strip().split('\r\n')):

 if firstline:

 if ':' in item:

 sep=':'

 firstline=0

 elif '\t' in item:

 sep='\t'

 firstline=0

 else:

 error_exit()

 return

 geneS,fold=item.strip().lower().split(sep)

 gene=geneS.strip()

 if genes.get(gene,0):

 duplicate.append((gene,genes[gene]))

 duplicate.append((gene,fold))

 else:

 genes[gene]=fold

 for g in genes.keys():

 if float(genes[g])<0:

 genes[g]=(genes[g],'green')

 else:

 genes[g]=(genes[g],'red')

 gene_id, no_record=check_no_record(genes.keys())

 Session().gene_id=gene_id

 Session().genes=genes

 data = {

 'duplicate': duplicate,

 'gene_id': gene_id,

 'no_record':no_record,

 'count':len(gene_id),

 'genes':genes}

 merge('second.html', data)

if not _names[0]:

 error_exit()

else:

 parse_input()

112

term_modeler.py

build gene model using GO, mesh and text word

import os, tempfile

from localUtil import *

from cluto import *

from GOTerm import *

from mesh_text import *

gene_id=Session().gene_id

maxAbs=Session().option.maxAbs

meshSub=Session().option.meshSub

stem=Session().option.stem

minWordLen=Session().option.minWordLen

delta=0.035

inc=0.01

gene_term={} # dict with key gene name, value is dict of go term counts

mesh_term={}

no_record=[]

if Session().option.GO:

 gene_term.update(get_go_term(gene_id,Session().option.goFactor))

mesh_term, gene_pmid=get_mesh(gene_id,meshSub,maxAbs,minWordLen,stem)

need to separate the mesh subcategory selection from inside get_mesh in

localUtil!!!!!

Session().gene_pmid=gene_pmid

merging go and mesh terms

if Session().option.mesh:

 gene_term.update(mesh_term)

if using word features

if Session().option.wordFeature:

 word_term=get_geneWord(gene_pmid,minWordLen,stem)

 gene_term.update(word_term)

find genes with no record ({} gene_terms)

for gene in gene_id.keys():

 if not gene_term.has_key(gene):

 no_record.append(gene)

 elif not gene_term[gene]:

 no_record.append(gene)

 del gene_term[gene]

output cluto datafiles

mat, clabel, genename, top_terms=outputMatrixFile(gene_term)

Session().top_terms=top_terms

if len(gene_term)<6:

 os.chdir('cluto')

 os.remove(mat)

 os.remove(clabel)

113

 os.remove(genename)

 os.chdir('..')

 Session().option.GO=0

 data={

 'top_terms':top_terms,

 'id':Session().gene_id,

 'genes':Session().genes,

 'no_record':no_record}

 merge('noclustering.html',data)

else:

clustering

 os.chdir('cluto')

 out=tempfile.mktemp(dir='.')

 cluster=tempfile.mktemp(dir='.')

 cluto(delta, inc,len(gene_term),cluster,mat, out,clabel)

 os.remove(mat)

 os.remove(clabel)

 os.chdir('..')

pass data to process cluto output

 data = {

 'out': out,

 'genes':Session().genes,

 'no_record':no_record,

 'id':Session().gene_id,

 'cluster':cluster,

 'genename':genename}

 merge('third.html', data)

114

####### cluster.py

####### process cluto output

from proc_cluster import *

from localUtil import *

os.chdir('cluto')

cluster_gene, desc_word=proc_cluster(_genename,_cluster,_out)

os.remove(_genename)

os.remove(_cluster)

os.remove(_out)

os.chdir('..')

merge with html file

sort_list=[int(c) for c in cluster_gene.keys()]

sort_list.sort()

sort_list=[str(c) for c in sort_list]

use " to subsitute ' in desc_word

sub_desc={}

for key in desc_word.keys():

 sub_desc[key]=[w.replace("'",'@') for w in desc_word[key]]

data = {

 'gene_pmid':Session().gene_pmid.keys(),

 'genes':Session().genes,

 'sort_list':sort_list,

 'cluster_gene': cluster_gene,

 'sub_desc': sub_desc,

 'id':Session().gene_id,

 'topTerms':Session().top_terms,

 'desc_word':desc_word}

merge('fourth.html', data)

115

proc_cluster.py

functions for cluster processing

import os

def proc_cluster(genename,cluster,out):

 g_file=open(genename,'r')

 c_file=open(cluster,'r')

 o_file=open(out,'r')

 g_list=g_file.readlines()

 # print g_list,'
'

 c_list=c_file.readlines()

 # print c_list,'
'

 cluster_gene={}

 for i in range(0,len(g_list)):

 a=cluster_gene.get(c_list[i].strip(),[])

 a.append(g_list[i].strip())

 cluster_gene[c_list[i].strip()]=a

#print cluster_gene

 n=0

 desc_word={}

 desc_word['-1']=['Unable to cluster these genes']

 for line in o_file.readlines():

 if line[:7]=='Cluster':

 cluster=line[7:11].strip()

 # print cluster

 n=1

 continue

 if n:

 words=line.strip().split(':')[1].split('%,')

 words=[w[:-5].strip() for w in words]

 desc_word[cluster]=words

 n=0

 continue

 g_file.close()

 c_file.close()

 o_file.close()

 return cluster_gene, desc_word

116

cluto.py

CLUTO wrapper

import os,tempfile

def outputMatrixFile(gene_words):

 os.chdir('cluto')

 matrix = tempfile.mktemp(dir='.')

 cl=tempfile.mktemp(dir='.')

 gname=tempfile.mktemp(dir='.')

 mfile = open(matrix,'w')

 cfile=open(cl,'w')

 gfile=open(gname,'w')

 clabel=[]

 count=0

 mat=[]

 top_terms={}

 for g in gene_words.keys():

 sort_terms=sorted(gene_words[g].items(), lambda x, y: cmp(y[1], x[1]))

 top_terms[g]=[t[0] for t in sort_terms[:5]]

 clabel.extend(gene_words[g].keys())

 clabel=list(set(clabel))

 mat.append(str(len(gene_words))+'\t'+str(len(clabel))+'\t')

 for g in gene_words.keys():

 # print g

 gfile.write(str(g)+'\n')

 line=''

 for i in range(0,len(clabel)):

 if gene_words[g].get(clabel[i],0):

 count+=1

 line=line+str(i+1)+'\t'+str(gene_words[g][clabel[i]])+'\t'

 line=line.strip()+'\n'

 mat.append(line)

print len(mat)

 mat[0]=mat[0]+str(count)+'\n'

 for c in clabel:

 cfile.write(c+'\n')

 for m in mat:

 mfile.write(m)

 cfile.close()

 mfile.close()

 gfile.close()

 os.chdir('..')

 return matrix, cl, gname, top_terms

def find_best_n(delta, n,cluster,mat,out):

 i1=1

 for k in range(n/10+1,n/2,1):

 os.system('"./vcluster" -rowmodel=maxtf -clmethod=direct -clustfile=%s

%s %i > %s'%(cluster,mat,k,out))

 for line in open(out,'r').readlines():

 if '[' in line:

 r=line.split('[')[1]

 i2=float(r[3:-2])

 if (i2-i1)/i1 < delta:

 return k

 else:

117

 i1=i2

 break

def cluto(delta, inc, maxclu,cluster,mat,out, clabel):

#test for cluster size

 n_clu=0

 while not n_clu:

 n_clu=find_best_n(delta,maxclu,cluster,mat,out)

 delta+=inc

#truc clustering

 os.system('"./vcluster" -colmodel=idf-rowmodel=maxtf -clabelfile=%s -

showfeatures -nfeatures=10 -clmethod=direct -clustfile=%s %s %i >

%s'%(clabel,cluster,mat,n_clu,out))

def cluto_e(n,cluster,mat,out,clabel):

 os.system('"./vcluster" -colmodel=idf -rowmodel=maxtf -clabelfile=%s -

showfeatures -clmethod=direct -clustfile=%s %s %i >

%s'%(clabel,cluster,mat,n,out))

118

sentence.py

score sentences by ranking scheme

from __future__ import division

from sent_sup import *

from localUtil import *

desc_word=eval(_desc_word)

desc_word=[w.replace('@',"'") for w in desc_word]

porter=PorterStemmer()

minWordLen=Session().option.minWordLen

meshSub=Session().option.meshSub

stem=1

S=a CluSim + b QuFreq + c NGene + d CTword + e TPword +f L + g Recent

lengthFactor=20 # sentence more than 20 words will get L=1, else: scale to 0-1

a=0.2

b=0.1

c=0.1

d=0.0

e=0.4

f=0.0

g=0.2

if not Session().gene_pmid.has_key(_gene):

 data = {

 'id':Session().gene_id[_gene],

 'gene': _gene}

 merge('no_sent.html', data)

else:

 # calculate score

 # first get sentence words and query terms

 s_id= Session().gene_pmid[_gene]

calculate recency

 recent={}

 inc=1/(len(s_id)-1)

 for i in range(0,len(s_id)):

 recent[s_id[i]]=1-i*inc

 sent_word, geneList, sentence=get_word(s_id,minWordLen,stem)

 # process nGene

 Gene=[]

 gene_id_list=[Gene.append(i) for i in Session().gene_id.values()]

 gene_id_dic=dict(zip(gene_id_list,[1]*len(gene_id_list)))

 nGene={}

 for s in geneList:

 if intersect(geneList[s],gene_id_dic)>1:

 nGene[s]=1

 elif len(geneList[s])>1:

 nGene[s]=.5

 else:

 nGene[s]=0

 # print sentence[s],nGene[s],'\n'

 # process query terms

 if _query:

 query=_query.strip().split()

119

 query=[porter.stemWord(w) for w in query]

 CT_dict=CTword()

 TP_dict=TPword()

 score={}

 clusim={}

 clusimMax=1

 length={}

 ctword={}

 ctwordMax=1

 tpword={}

 tpwordMax=1

 for s in s_id:

 # clusim

 mesh=mesh_proc(s[0],meshSub,minWordLen,stem)

 m_clusim=intersect(desc_word,mesh)

 # need to add GO term sim too!!!!!!!!!!!!!!!!

 d_clusim=0

 if Session().option.GO:

 desc_ls=parse_desc(desc_word,minWordLen)

 d_clusim=intersect(desc_ls,sent_word[s])

 clusim[s]=m_clusim+d_clusim

 if clusimMax < clusim[s]:

 clusimMax=clusim[s]

 # quFreq

 qufreq=0

 if _query:

 qufreq=intersect(query,sent_word[s])

 #length

 sum=0

 for w in sent_word[s]:

 sum+=sent_word[s][w]

 if sum/lengthFactor<1:

 length[s]=sum/20

 else:

 length[s]=1

 #CTwords

 key=0

 sent_stem=sent_word[s].keys()

 for w in sent_stem:

 if CT_dict.has_key(w):

 key+=1

 # print w

 ctword[s]=key

 if ctwordMax < key:

 ctwordMax=key

 #TPwords

 key=0

 for w in sent_stem:

 if TP_dict.has_key(w):

 # print w

 key+=1

 tpword[s]=key

 if tpwordMax < key:

 tpwordMax=key

120

 for s in s_id:

 clusim[s]=clusim[s]/clusimMax

 ctword[s]=ctword[s]/ctwordMax

tpword[s]=tpword[s]/tpwordMax

 #**************** output sentence list************

 for s in s_id:

 score[s]=a*clusim[s] + b*qufreq + c*nGene[s] + d*ctword[s] + e*tpword[s]

+f*length[s] + g*recent[s]

 # sorting by score

 sort_score=sorted(score.items(), lambda x, y: cmp(y[1], x[1]))

 Session().sort_score=sort_score

 Session().sentence=sentence

 data = {

 'gene':_gene,

 'id':Session().gene_id[_gene],

 'sort_score':sort_score,

 'sentence':sentence}

 merge('fifth.html', data)

121

sortByAbstract.py

to arrange the sentence first by abstract then by score

from localUtil import *

sortAbs=[]

sort_score=Session().sort_score

while sort_score:

 abs=[]

 top=sort_score.pop(0)

 abs.append(top)

 for s in sort_score:

 if s[0][0]==top[0][0]:

 below=sort_score.pop(sort_score.index(s))

 abs.append(below)

 sortAbs.append(abs)

data = {

 'gene':_gene,

 'sortAbs':sortAbs,

 'id':Session().gene_id[_gene],

 'sentence':Session().sentence}

merge('sixth.html', data)

122

sent_sup.py

sentence process fuctions

import os,re

from text_proc import *

conn=DB_conn('static/mice_gene')

def intersect(list1,dic2):

 count=0

 for l in list1:

 if dic2.has_key(l):

 count+=1

 return count

def parse_desc(desc_word,minWordLen):

 porter=PorterStemmer()

 stop_word=open('static/english.stop','r').readlines()

 stop_word=[s.strip() for s in stop_word]

 stopword=dict(zip(stop_word,[1]*len(stop_word)))

 desc_dic={}

 for t in desc_word:

 terms=t.split()

 for word in terms:

 if stopword.get(word,0) or len(word)<minWordLen or word.isdigit() or not

word.isalnum():

 continue

 else:

 desc_dic[word]=1

 terms=[porter.stemWord(w) for w in desc_dic.keys()]

 return terms

def mesh_proc(p,mesh_subtree,minWordLen,stem):

 sql="""select mesh from pmid_dp where pmid='%s';"""

 meshwords=conn.query(sql%(p))[0][0]

 if meshwords:

 proc=word_proc(minWordLen,stem)

 return proc.mesh({},meshwords,mesh_subtree)

 else:

 return mesh_dic

def get_word(sent_id,min_word_len,stem):

 matchstr=re.compile(r'<GENE_PROTEIN id="MGI:(\d)+">')

 matchstr2=re.compile(r'</GENE_PROTEIN>')

 processor=word_proc(min_word_len,stem)

 sql="""select sentence from pmid_sentence where pmid='%s' and

sent_pos='%i';"""

 sql2="""select MGI_gene from gene_pmid_pos where pmid='%s' and

sent_pos='%s';"""

 sent_word={}

 ngene={}

 sentence={}

 for s in sent_id:

 sent=conn.query(sql%(s[0],s[1]))[0][0]

 sentForDisp=matchstr.sub(r'',sent)

 sentForDisp=matchstr2.sub(r'',sentForDisp)

 sentence[s]=sentForDisp

 genes=conn.query(sql2%(s[0],s[1]))

 genes=[g[0] for g in genes]

123

 ngene[s]=genes

 sent_word[s]=processor.sentence_dist(sent)

 # rows=conn.query(sql2%(s[0],s[1]))

 # ngene[s]=rows[0][0]

 return sent_word, ngene, sentence

def CTword():

 key_word=open('static/key_terms.txt','r').readlines()

 p=PorterStemmer()

 key_word=[p.stemWord(s.strip()) for s in key_word]

 return dict(zip(key_word,[1]*len(key_word)))

def TPword():

files=['static/p_associte.txt','static/p_effect.txt','static/p_involvement.txt'

,'static/p_pathway.txt','static/p_purpose.txt','static/p_regulation.txt']

 tpword={}

 for f in files:

 key_word=open(f,'r').readlines()

 key_word=[s.strip() for s in key_word]

 tpword.update(dict(zip(key_word,[1]*len(key_word))))

 return tpword

124

text_proc.py

general text processing database connection functions.

from PorterStemmer import *

class synonym:

 def __init__(self,f_name,syn={}):

 infile=open(f_name,'r')

 self.syn_dict=syn

 for line in infile.readlines():

 lst=line.strip().split('\t')

 self.syn_dict[lst[0]]=lst[1]

 infile.close()

 def get_value(self,key):

 return self.syn_dict.get(key,[])

class DB_conn:

 def __init__(self,db_name):

 from pysqlite2 import dbapi2 as sqlite

 con=sqlite.connect(db_name)

 self.cursor=con.cursor()

 def query(self, sql):

 self.cursor.execute(sql)

 return self.cursor.fetchall()

class input_gene_list:

 def __init__(self):

 self.gene_list=[]

 def get_list(self, name_list):

 for item in name_list:

 item=item.strip().lower()

 if item and item not in self.gene_list:

 self.gene_list.append(item)

 return self.gene_list

class word_proc:

 def __init__(self,m,stem):

 self.min_word=m

 self.mesh_tree={}

 # print 'loading stop words======='

 stop_word=open('static/english.stop','r').readlines()

 stop_word=[s.strip() for s in stop_word]

 self.stopword=dict(zip(stop_word,[1]*len(stop_word)))

 # print 'loading mesh tree====='

 lines=open('static/mtrees2005.bin','r').readlines()

 for line in lines:

 words=line.split(';')

 self.mesh_tree[words[0]]=words[1].strip()

 self.stem=stem

 def words(self,sent):

 sent=sent.lower()

 from nltk_lite import tokenize

 word_l=list(tokenize.regexp(sent,r'\w+|[^\w\s]+'))

 if self.stem:

 p=PorterStemmer()

 word_l=[p.stemWord(w) for w in word_l]

 return word_l

 def sentence_dist(self,sent): #get sentence word count

125

 import re

matchstr=re.compile(

r'<GENE_PROTEIN id="('+gname+r')">.*?(</GENE_PROTEIN>)')

 matchstr=re.compile(

 r'<GENE_PROTEIN id="MGI:(\d)+">.*?(</GENE_PROTEIN>)')

 sent=matchstr.sub(r'',sent)

 word_lst=self.words(sent)

 sent_dic={}

 for word in word_lst:

 if self.stopword.get(word,0) or len(word)<self.min_word or

word.isdigit() or not word.isalnum():

 continue

 else:

 sent_dic[word]=sent_dic.get(word,0)+1

 return sent_dic

 def gene_dist(self,g,s): # add sentence word count s to g word count g

 for k in s.keys():

 g[k]=g.get(k,0)+s[k]

 return g

 def mesh(self, sent_dic, meshterms,subtree): #process mesh terms and add

to sentence word dict.

 no_list=open('static/mesh.nolist','r').readlines()

 no_list=[s.strip() for s in no_list]

 no_list=dict(zip(no_list,[1]*len(no_list)))

 terms=meshterms.split('|')

 for t in terms:

 meshhead=t.split('/')[0]

 if '*' in meshhead:

 meshhead=meshhead[1:]

 # if meshhead not in self.mesh_tree: print meshhead

 meshcode=self.mesh_tree.get(meshhead,'Z')

 if meshcode[0] in subtree and len(meshcode.split('.'))>3:

 key1=str(meshhead.lower())

 if not no_list.has_key(key1):

 sent_dic[key1]=sent_dic.get(key1,0)+1

 return sent_dic

126

GOTerm.py

get GO terms

def build_MGI_GO_dict():

 mgi_go={}

 for line in open('static/MGI_GO.txt','r').readlines():

 mgi,go=line.strip().split('\t')

 terms=go.split('|')

 terms=[t for t in terms if not 'unknown' in t]

 mgi_go[mgi]=terms

 return mgi_go

def get_go_term(gene_id,factor):

 mgi_go=build_MGI_GO_dict()

 go_term={}

 for g in gene_id.keys():

 terms={}

 for id in gene_id[g]:

 if mgi_go.has_key(id):

 for go in mgi_go[id]:

 terms[go]=terms.get(go,0)+factor

 go_term[g]=terms

 return go_term

127

mesh_text.py

process mesh and text terms

from text_proc import *

import os,re

conn=DB_conn('static/mice_gene')

def get_mesh(gene_list,mesh_subtree,maxAbs,minWordLen,stem):

 sql="""select distinct a.pmid, a.sent_pos from gene_pmid_pos a, pmid_dp b

 where MGI_gene='%s' and a.pmid=b.pmid order by b.dp desc limit '%i';"""

 sql2="""select mesh from pmid_dp where pmid='%s';"""

 proc=word_proc(minWordLen,stem)

 gene_pmid={}

 gene_words={}

 for g_name in gene_list.keys():

 for g_id in gene_list[g_name]:

 rows=conn.query(sql%(g_id, maxAbs))

 if not rows:

 # print 'no record for',g_name

 continue

 pmid_list=[r[0] for r in rows]

 # store pmid and sent # list for each gene

 p_ls=gene_pmid.get(g_name,[])

 p_ls.extend(rows)

 gene_pmid[g_name]=p_ls

 for p in pmid_list:

 meshwords=conn.query(sql2%(p))[0][0]

 if meshwords:

gene_words[g_name]=proc.mesh(gene_words.get(g_name,{}),meshwords,mesh_subtree)

 return gene_words, gene_pmid

def get_geneWord(gene_pmid,minWordLen,stem):

 processor=word_proc(minWordLen,stem)

 sql="""select sentence from pmid_sentence where pmid='%s' and

sent_pos='%i';"""

 gene_word={}

 for g_name in gene_pmid.keys():

 for s in gene_pmid[g_name]:

 sent=conn.query(sql%(s[0],s[1]))[0][0]

 sent_word=processor.sentence_dist(sent)

gene_word[g_name]=processor.gene_dist(gene_word.get(g_name,{}),sent_word)

 return gene_word

128

option_class.py

options for the application

class options:

 def

__init__(self,mesh,meshSubtree,min_word_len,max_abstract,stem,wordFeature,GO,go

Factor):

 self.mesh=mesh

 self.meshSub=meshSubtree

 self.minWordLen=min_word_len

 self.maxAbs=max_abstract

 self.stem=stem

 self.wordFeature=wordFeature

 self.GO=GO

 self.goFactor=goFactor

129

application home page

mainhtml.py

mainhtml="""

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1>

<p class=MsoNormal align=center style='text-align:center'><o:p> </o:p></p>

<p class=MsoBodyText align=center style='margin-top:0in;margin-right:1.25in;

margin-bottom:0in;margin-left:.5in;margin-bottom:.0001pt;text-

align:center'><span

style='font-size:12.0pt;font-family:Arial'>This prototype system explores and

selects

informative sentences for genes from Medline abstracts of 1994 to 2003. After

you enter the names of genes, the system will build

functional clusters of the genes, and provide top informative sentences for

review. <o:p></o:p></p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="70%">

 <COL width="15%">

<tr>

<td align='left' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters
<p>

Gene Sentences

</td>

<td>

</td>

<td>

<form action="index2.py" method=post

enctype="application/x-www-form-urlencoded">

<p class=MsoNormal> <h3>Please enter gene names and

their expression levels in fold change (separated by colon ':' or

tab) one per line in the following box.

Examples:</h3>

 NR1:-13

 IL6:9</p>

<p><TEXTAREA ROWS="14" COLS="74"

NAME="names[]"></TEXTAREA><span

style='mso-spacerun:yes'><o:p></o:p></p>

130

<p><INPUT TYPE="submit" VALUE="Send"

><span

style='mso-spacerun:yes'><INPUT TYPE="reset"><o:p></o:p></p>

</form>

<p><h3>Or you can upload a text file with gene names

and their expression levels (tab delimited) one entry per

line.</h3><o:p></o:p></p>

<p>

<FORM ENCTYPE="multipart/form-data" ACTION="index.py" METHOD=POST>

<input name=filename type=file size=50>

 <span

style='mso-spacerun:yes'><INPUT

TYPE="submit" VALUE="Submit file"

>

</FORM>

nikki_RMA.txt

nikki_PDNN.txt

</td>

<td align='center' valign='bottom'>

<FORM ENCTYPE="multipart/form-data" ACTION="option.py" target='new'

METHOD=POST>

<INPUT TYPE="submit" VALUE="Advanced Options"

>

</FORM>

Look at a sample file

</table>

 """

errPage1="""

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td background='raindrop.jpg' align='center' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters
<p>

Gene Sentences

131

</td>

<td></td>

<td>

 We detect an err. No gene name entered or incorrect separation of gene name

and fold change.

 <FORM ENCTYPE="multipart/form-data" ACTION="index.py" METHOD=POST><p>

<INPUT TYPE="submit" VALUE="Go Back to Re-enter."

><o:p></o:p></p>

</FORM>

</td>

</table>

"""

errPage2="""

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td background='raindrop.jpg' align='center' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters
<p>

Gene Sentences

</td>

<td>

</td>

<td>

 We detect an err. No file name entered.

 <FORM ENCTYPE="multipart/form-data" ACTION="index.py" METHOD=POST><p>

<INPUT TYPE="submit" VALUE="Go Back to Re-enter."

><o:p></o:p></p>

</FORM>

</td>

</table>

"""

132

second.html

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td align='left' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters
<p>

Gene Sentences

</td>

<td>

</td>

<td>

<h3>This system works at gene name level. If your data set has transcript level

expression profile, it may result in one gene name representing different

transcripts. </h3>

We have checked the input gene names for duplicates.<p>

#if $duplicate:

The following duplicates are found:

#for $i in $duplicate:

 $i

#end for

#else:

No duplicates are found.

#end if

<p>

#if $no_record:

The following genes do not have MGI_IDs:

#for $i in $no_record:

 $i:$genes[$i][0]

#end for

#end if

<p>

#if $count>1

<table>

<tr>

<td>

133

Press Continue to cluster these $count genes or use Evaluation Version to

evaluate the tool:<p>

</tr>

<tr>

<td>

<FORM ENCTYPE="multipart/form-data" ACTION="term_modeler.py" METHOD=POST>

<INPUT TYPE="submit" VALUE="Continue">

</FORM>

</tr>

</table>

<p>

These are the MGI_IDs associated with these genes that are used to retrieve

information:

<table>

#for $i in $gene_id:

 <tr>

 <td>

 $i:$genes[$i][0]</td>

 <td>

 #for $j in $gene_id[$i]:

 <A

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id=$j"

target='new'>$j

 #end for

 </td>

#end for

</table>

<p>

<p>

Use the BACK button in your browser to go back and modify input

list.

#else

Cannot find any information on genes in your dataset. Use the BACK button in

your browser to go back and modify input list.

#end if

</td>

</table>

134

third.html

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td align='left' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters
<p>

Gene Sentences

</td>

<td>

</td>

<td>

<h3>We have gathered GO terms, MeSH terms and MedLine abstracts information

associated with the genes.</h3>

<p>

#if $no_record:

We can not find information in our database for the following genes:

#for $g in $no_record:

 <A

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id=

#for $i in $id[$g]:

 $i,

#end for

">$g:$genes[$g][0]

#end for

#end if

<p>

Press continue to view clustering results or use BACK in your browser to go

back and modify input list.

<FORM ENCTYPE="multipart/form-data" ACTION="cluster.py" METHOD=POST>

<input name=out type=hidden value="$out">

<input name=cluster type=hidden value="$cluster">

<input name=genename type=hidden value="$genename">

<INPUT TYPE="submit" VALUE="Continue">

</FORM>

</td>

</table>

135

####### fourth.html

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td align='left' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters
<p>

Gene Sentences

</td>

<td>

</td>

<td>

<table border="1">

 <th bgcolor=#FFCC00>Cluster and Summary Keywords</th>

 <th bgcolor=#FFCC00>Genes in the Cluster and Their Top Five Associated

Terms</th>

#for $c in $sort_list:

 <tr>

 <td>

 Cluster $c:

 #for $d in $desc_word[$c]:

 #if $desc_word[$c].index($d)>4:

 #break

 #end if

 $d #slurp

 #end for

 </td>

 <td>

 #for $g in $cluster_gene[$c]:

 <A

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id=

#for $i in $id[$g]:

 $i,

136

#end for

">$g:$genes[$g][0]

 :

 #for $term in $topTerms[$g]:

 $term;

 #end for

 #if $g in $gene_pmid:

 <FORM ENCTYPE="multipart/form-data" ACTION="sentence.py" METHOD=POST

target='new'>

 Enter query terms: <input name=query type=text>

 <input name=desc_word type=hidden value="$sub_desc[$c]">

 <input name=gene type=hidden value="$g">

 <span

style='color:navy'><span

 style='mso-spacerun:yes'> <span style='mso-

spacerun:yes'> <INPUT TYPE="submit" VALUE="Get

Sentences"><o:p></o:p></p>

 </FORM>

 #else:

 <FORM ENCTYPE="multipart/form-data"

ACTION="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed&term

=$g" METHOD=POST target='new'>

 No sentences in database. <INPUT TYPE="submit" VALUE="Search

PubMed"></form>

 #end if

 #end for

 </td>

 <p>

#end for

</td>

</table>

137

fifth.html

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td align='left' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters<p>

Gene Sentences

</td>

<td>

</td>

<td>

<h3>Here are the sentences for gene <A

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id=

#for $i in $id:

 $i,

#end for

">$gene</h3>

<table >

<COLGROUP>

 <COL width="75%">

 <COL width="25%">

<tr>

<td>

#for $s in $sort_score:

Score=

 $s[1]

<A

HREF="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list

_uids=$s[0][0]&dopt=Abstract" target='new'>

 Go to Abstract

 $sentence[s[0]]

<p>

#end for

 </td>

<td align='center' valign='top'>

<FORM ENCTYPE="multipart/form-data" ACTION="sortByAbstract.py" METHOD=POST>

<input name=gene type=hidden value="$gene">

138

<INPUT TYPE="submit" VALUE="Arrange sentences by abstract"

>

</FORM>

</td>

<p>

</tr>

</table>

139

sixth.html

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt;

color:#FFCC00'>Mouse</i><i> <span

style='color:#009900'>Gene Information

<span

style='color:lime'>Summary from Medline

<span

style='color:#CC0000'>Abstracts<o:p></o:p></i></h1><p>

<p>

<p>

<table>

<COLGROUP>

 <COL width="10%">

 <COL width="5%">

 <COL width="85%">

<tr>

<td align='left' valign='top'>

 Home Page
<p>

Gene Set Information
<p>

Gene Clusters<p>

Gene Sentences

</td>

<td>

</td>

<td>

<h3>Here are the sentences for gene <A

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id=

#for $i in $id:

 $i,

#end for

">$gene arranged by abstract:</h3>

<table >

<COLGROUP>

 <COL width="75%">

 <COL width="25%">

<tr>

<td>

#for $ab in $sortAbs:

 #set flag=1

 #for $st in $ab:

 #if $flag:

 Score=$st[1]

 <A

HREF="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list

_uids=$st[0][0]&dopt=Abstract" target='new'>Go to Abstract

 $sentence[$st[0]]

 #set flag=0

 #else:

 Score=

140

 $st[1]

 $sentence[$st[0]]

 #end if

 #end for

 <p><p>

#end for

</td>

<td>

</td>

</tr>

</table>

</td>

</table>

