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Abstract 

Tools to automatically summarize gene information from the literature have the potential 

to help genomics researchers better interpret gene expression data and investigate 

biological pathways. Even though several useful human-curated databases of information 

about genes already exist, these have significant limitations. First, their construction 

requires intensive human labor. Second, curation of genes lags behind the rapid 

publication rate of new research and discoveries. Finally, most of the curated knowledge 

is limited to information on single genes. As such, most original and up-to-date 

knowledge on genes can only be found in the immense amount of unstructured, free text 

biomedical literature.  Genomic researchers frequently encounter the task of finding 

information on sets of differentially expressed genes from the results of common high-

throughput technologies like microarray experiments. However, finding information on a 

set of genes by manually searching and scanning the literature is a time-consuming and 

daunting task for scientists. For example, PubMed, the first choice of literature research 

for biologists, usually returns hundreds of references for a search on a single gene in 

reverse chronological order. Therefore, a tool to summarize the available textual 

information on genes could be a valuable tool for scientists. In this study, we adapted 

automatic summarization technologies to the biomedical domain to build a query-based, 

task-specific automatic summarizer of information on mouse genes studied in microarray 

experiments - mouse Gene Information Clustering and Summarization System (GICSS). 

GICSS first clusters a set of differentially expressed genes by Medical Subject Heading 

(MeSH), Gene Ontology (GO), and free text features into functionally similar groups; 
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next it presents summaries for each gene as ranked sentences extracted from MEDLINE 

abstracts, with the ranking emphasizing the relation between genes, similarity to the 

function cluster it belongs to, and recency. GICSS is available as a web application with 

links to the PubMed (www.pubmed.gov) website for each extracted sentence. It 

integrates two related steps, functional gene clustering and gene information gathering, of 

the microarray data analysis process. The information from the clustering step was used 

to construct the context for summarization. The evaluation of the system was conducted 

with scientists who were analyzing their real microarray datasets. The evaluation results 

showed that GICSS can provide meaningful clusters for real users in the genomic 

research area. In addition, the results also indicated that presenting sentences in the 

abstract can provide more important information to the user than just showing the title in 

the default PubMed format. Both domain-specific and non-domain-specific terminologies 

contributed in the informative sentences selection. Summarization may serve as a useful 

tool to help scientists to access information at the time of microarray data analysis. 

Further research includes setting up the automatic update of MEDLINE records; 

extending and fine-tuning of the feature parameters for sentence scoring using the 

available evaluation data; and expanding GICSS to incorporate textual information from 

other species. Finally, dissemination and integration of GICSS into the current workflow 

of the microarray analysis process will help to make GICSS a truly useful tool for the 

targeted users, biomedical genomics researchers. 
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Chapter 1. Introduction 

With the increasing volume of published on-line full-text scientific articles, even the most 

robust Information Retrieval (IR) system returns more documents and abstracts than 

biomedical scientists are able to manually review. The problem is aggravated by the 

information-intensive nature of “high-throughput” technologies (e.g., microarray 

experiments) that can study expression in a given biologic context at a genome-wide 

scale. In fact, these advanced technologies and the increasing number of publications 

discussing genomic findings impair our ability to fully comprehend the meaning of the 

information that is embedded in the vast body of free text biomedical literature. As such, 

the ability to use the literature to interpret the results of the experiments at hand is limited 

[1]. Hence, tools that are able to survey the large quantity of literature can be helpful to 

the scientists interpreting and planning these large scale genome-wide microarray 

experiments. 

 

1.1 Introduction to microarray technology 

Microarrays or gene chips are microscopic arrays of DNA spots (each usually 

representing one gene) spatially arranged and attached to a solid surface, such as glass, 

plastic or silicon chip. When the chip is hybridized with fluorescence-labeled cDNA 

made from mRNA extracted from cells, the abundance of different mRNA molecules in 

the cells can be measured by detecting the fluorescence levels of each spot on the chip. 

Microarray technology [2] is often used for gene expression profiling in many areas of 

biomedical research to measure the abundance of messenger ribonucleic acid (mRNA) 
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transcripts in genome wide scale. While the first microarrays available contained 6000 

genes of the yeast genome in 1997, Affymetrix
1
 now has commercial microarray chips 

that represent the entire human genome, more than 30,000 genes. A microarray is 

typically a glass slide with tens of thousands of spots that each contains identical DNA 

oligonucleotides that are fragments from a known gene sequence. Currently the 

sequences on the arrays come from genome sequencing project. The technology can be 

used to investigate the differential expression levels of genes in the whole genome under 

different conditions, e.g. control vs. diseased, young vs. aged, or different cell types etc.  

For instance, experiments can be performed to conduct comparison of gene expression 

between normal and breast cancer tissues. The mRNAs from the normal and cancerous 

tissues differentially bind to the complementary nucleic acid sequences on the array and 

abundance of mRNA in both tissues is revealed. Since these experiments can measure the 

expression level of tens and thousands of genes simultaneously, the analysis of the results 

produced is nontrivial because of the large data size. Even the differentially expressed 

gene list is usually comprised of hundreds of genes. 

 

 

1.2 Motivating example 
 

The following is a motivating example that illustrates the information overload problem 

scientists face when they are searching information on genes during the analysis phrase 

of a microarray experiment.  It also demonstrates a possible use of the GICSS system 

                                                 
1
 http://www.affymetrix.com/index.affx 
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implemented in this project. “Dr. Smith” is a senior behavioral neuroscientist at OHSU. 

He studies genes that are associated with the alcohol addiction trait in mice. In one 

microarray experiment, he compared the level of thousands of mRNAs in normal and 

alcoholic mice. The experiment returned hundreds of genes that show differentiated 

levels of expression between these two types of mice. He then assembled an Excel 

spreadsheet with annotations (in Gene Ontology terminology) for each gene from the 

chip maker, Affymetrix. Currently, he would use online resources, such as PubMed, the 

Mouse Genome Informatics (MGI) database, and his knowledge in this area to construct 

the relationships between the expression patterns and the functional groups of genes in 

his results. The problems with this approach are:  

1. The access to the literature is generic. The conventional method for doing this is 

to search the literature one gene or one gene group at a time. This method may 

work well at a small scale, but for hundreds of genes, it is a labor-intensive task to 

simultaneously analyze their roles in the cell process and the interrelations among 

them.  

2. The search engine returns thousands of citations in reverse chronological order.  

3. The structured databases have curated information for each single gene. But there 

is no explicit information linked to this particular set of genes obtained from this 

experiment. For example, there is no information on how these set of genes are 

related functionally and how likely they involve in similar cellular process. 

4. Scientists are on their own to assemble the big picture from a large collection of 

information sources including the pattern of gene expression profile, functional 
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annotation for each gene, and vast amount of literatures discussing the subsets of 

differentially expressed genes.  

 

GICSS, the two-step summarization system built in this project, aims to help at this stage 

in Dr. Smith’s analysis. With GICSS, Dr. Smith is able to enter his list of up-regulated 

and down-regulated gene lists, and get back clusters of genes according to their 

functional similarity. He can see that, for example, a cluster of genes involved in 

dopamine metabolism are up-regulated (as highlighted in red in the display) in the 

alcoholic mice versus wild types. He believes this is interesting and decides to pursue 

further by exploring the literature. GICSS simplifies the task of searching and scanning 

the literature by providing summaries on the genes by sentence extraction. He can click 

on one of the genes in a cluster of interest and the GICSS system shows him ranked 

sentences that relate to that gene and its function within the context of the cluster. He 

then can scan the sentences and follow links to PubMed article abstracts describing how 

the gene is related to the dopamine receptor. He now has functionally structured gene 

clusters instead of a flat list, and access to literature filtered for sentences related to 

functional relationships among genes. Therefore, he can spend less time scanning 

returned abstracts (which on average have 10-15 sentences) from PubMed. In addition, 

the time spent reviewing abstracts is more fruitful because it is highly tailored to his 

specific information needs. The time saved can be of more constructive use, such as 

designing further experiments. 
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Sections 1.3 and 1.4 below provide an overview of prior research work on tools that 

process the literature for information (even though most of them have not been used 

routinely by biologists), in addition to available knowledge resources that are available 

for scientists to  use in analyzing their results. 

 

1.3 Curated databases 

Much effort has been put into creating resources for structuring information on genes and 

pathways. Most of these resources are created by manually extracting information from 

publications of scientific research. They require intensive human labor and for that 

reason, usually it takes a while for the up-to-date information from the literature to be 

curated and entered into the databases. Some of the notable resources that scientists 

working with microarray data frequently used are informatics databases for specific 

species, e.g., Mouse Genome Informatics
2
 for mice, and FlyBase (A Database of 

Drosophila Genes & Genomes)
3
 for Drosophila. They provide information on genes for 

that particular species, such as sequence, functional annotation, genome maps, and 

phenotypic information. Another curated information source is the bioinformatics suite 

from the National Center for Biotechnology Information (NCBI)
4
, including GenBank, 

Entrez Gene (a searchable database of gene information) and Gene Expression Omnibus 

(a gene expression/molecular abundance repository with expression data browsing, query 

                                                 
2
 http://www.informatics.jax.org/ 

3
 http://flybase.bio.indiana.edu/ 

4
 http://www.ncbi.nlm.nih.gov/ 
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and retrieval). The Source database from Stanford
5
 collects and compiles data from many 

publicly available data sources to provide consolidated information for genes in 

GeneReports.  

Moving up from the individual gene functional annotation resources to gene group, 

pathway and process level, there are also repositories of information on how each 

individual gene participates in molecular interaction pathways and cell processes. One of 

these resources is Pathway Database in Kyoto Encyclopedia of Genes and Genomes 

(KEGG)
6
. It has manually drawn maps and annotations of interaction and reaction 

networks for the well-studied areas of system biology, such as, metabolism, genetic 

information processing, and disease processes. 

These resources are very valuable in providing information on a particular gene and well-

known pathways. On the other hand, the building and maintenance of these databases 

require much human labor. As such, the information provided sometimes lags behind the 

rapidly evolving scientific knowledge, and biologists still have the need to go to free-text 

publication for original, up-to-date information and evidence.  

 

1.4 Information from the literature 

In addition to curated databases, biologists search related literature for original and up-to-

date information. The first choice of search is National Library of Medicine (NLM)’s 

                                                 
5
 http://source.stanford.edu 

6
 http://www.genome.jp/kegg 
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PubMed literature database - NLM’s usage statistics data showed that the rate of increase 

in searches to PubMed has been between 11% - 35% over the last five years and in the 

year 2006 PubMed recieved an average of over two million searches per day. On the 

other hand, with the advent of both the biological technologies and the efficiency of on-

line publishing, the number of potentially relevant articles continues to increase rapidly. 

MEDLINE added over 623,000 citations in 2006 and had 15,940,559 total records as of 

July 2, 2007 (data from NLM’s MEDLINE/PubMed resources guide
7
). As a result, even 

the most robust IR engine returns more documents and abstracts than biomedical 

scientists are able to manually review. A simple PubMed search on a gene symbol will 

return thousands of hits. For example, a query ‘NR1’ (N-methyl-D-aspartate (NMDA) 

receptor subunit 1) submitted on July 9, 2007 to PubMed retrieved a total of 1,719 

matches. 

To facilitate this information searching process, many efforts have been put into building 

text-processing tools to uncover the knowledge buried in the literature, with varying 

success. In general, adapting text-processing technologies in the biomedical domain has 

been slowed by major challenges [1], such as non-standard nomenclatures for genes, 

proteins and other biological entities; domain specific languages; the highly complex 

interrelation within biological systems; and the lack of standard ontology in the domain. 

Despite these difficulties, some efforts have achieved some amount of success and 

several of them start to receive real-world use. These approaches usually involve using 

                                                 
7
 http://www.nlm.nih.gov/bsd/revup/revup_pub.html#med_update 
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combinations of NLP and text-mining techniques and examples of these approaches 

include: document clustering, text classification, information extraction, question 

answering and summarization.  

Document clustering techniques attempt to group a text collection into clusters of articles 

that relate to a similar topic. A example of using document clustering in biomedical 

research is a system called PubClust [3] that groups the result of any PubMed search 

using words in the returned abstracts as features so that users can pick the topics of 

interest for their purpose.  

While document clustering uses unsupervised learning techniques, text classification 

employs supervised learning techniques to label natural language texts with thematic tags 

from a set of predefined categories. In TREC 2005, one of the sub-tracks in genomic 

track was to triage biological texts into four categories [4]. 

Information extraction (IE) methods discover structured information from free text using 

NLP techniques, lexical resources and semantic constraints. In the biomedical domain, IE 

is used mostly to extract relations and specific facts about biological entities[5,6]. IE 

often involves hand-crafted templates and rules based on expert knowledge and intensive 

NLP processing with high computational complexity. 

Question answering is another technology to help user to get to the relevant information 

quickly and has been getting more attention recently. The idea is to let users ask a 

structured question, such as ‘What is the role of prion in mad cow disease?’ and have the 

system process the document collection to extract the corresponding information from a 

text source to provide an answer. This is similar to IE but is real-time and gives the user 
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more control over the information extracted as well as more context with which to verify 

and apply the generated answers. The TREC Genomics Track has recently focused on 

this task [7]. 

Another potentially useful, but less-studied approach is to automatically produce 

customized summaries for information related to a specific user information need. For 

this project in particular, the potential users are scientists who are analyzing the result of 

a given microarray experiment, so information on genes that are differentially expressed 

under the different experimental conditions and their relations are of importance. 

Summarization is defined by Sparck Jones [8] as “a reductive transformation of source 

text to summary text through content reduction selection and/or generalization on what is 

important in the source”. Automatic summarization systems have been studied since the 

late 1950s [9,10] and applied in different domains such as news, with some notable 

success [11]. However, adopting the technology in the biomedical domain is not 

straightforward. There are fewer resources available in biomedicine, such as test corpora 

and knowledge bases, which makes training and evaluation more difficult. Summaries for 

biomedical literature probably require a different focus. The information that most 

interests scientists may reside in sentences describing some specific biological processes 

(use of domain specific language e.g. phosphorylation, activation, co-expression) while in 

the news domain, the who, when, what, and where elements are generally applicable and 

often the most important [12].  These specific information requirements can be exploited 

in the biomedical domain by emphasizing domain-specific keywords to extract important 

information and to construct summaries.  
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1.5 General automatic summarization 

This section provides a basic introduction to the field of automatic summarization. First, 

major concepts and definitions in the field of automatic summarization are introduced. 

Then, a brief history of automatic summarization with discussion of different approaches 

to construct summaries is described. The approach used in GICSS was discussed in the 

context of automatic summarization in general. 

 

1.5.1 What is automatic summarization? 

As the amount of published and on-line information increase, generation of condensed 

text that summarizes the vast amount of documents for human consumption is one way to 

help us digest the information and find the obscured task-relevant information. A 

summary as defined by Sparck-Jones [8] can be generated by a human or computer 

system. In the latter case, the computerized system is called an automatic summarizer and 

the process is called automatic summarization.  

There are many types of summary as categorized on different axis. Categorized by 

purpose, indicative summaries provide a general idea of the original text subject matter 

but without specific content; while informative summaries cover the salient information 

in the source to some level. In addition, critical summaries evaluate the source text and 

express the abstractors’ view. 

Categorized by form of content, summaries generated by extraction consist entirely of 

material (words, sentences and/or paragraphs) copied from the source. Extraction serves 

to identify the more important and distinct portions of the source material. On the other 
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hand, summaries by abstraction contain novel material that is generated from the source 

texts. Abstraction involves inference from the source text and uses references to 

background information. Abstraction can produce summaries with a higher degree of 

compression, i.e. shorter summaries. On the other hand, because abstraction requires 

deeper analysis, usually at the semantic level, and a wealth of knowledge to draw upon, 

computational tractability is an issue for real-time systems. Furthermore, since 

abstraction generates novel materials, it also carries the risk of mis-inference and falsely 

‘inventing’ information that is not in the source text. 

Categorized by dimensions, summaries can be generated from a single document or 

multiple documents. Usually multi-document summarization has additional challenges in 

addition to all of those presented in single document summarization. These include co-

reference resolution across documents, higher compression rate, redundancy reduction 

and confliction identification.  

Categorized by context, a summary can be based on source texts retrieved by a query the 

user entered or query-independent. By genre, a system can be a generic summarizer, 

which can generate summaries for source texts of any field; or it can be a specific domain 

summarizer, which takes advantage of the available knowledge and special format and 

structure of texts of a specific domain to achieve better summaries.  

 

1.5.2 Brief history of automatic summarization and major approaches 

Summarization processes typically involve the following three steps [13]: 

1. Analysis: analyze and build a content representation of the source texts 
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2. Transformation: map the content representation into summary representation 

3. Synthesis: generate and output summary from the above representation 

The following section presents some of the key work in the field and the current state of 

the art. Even though their approaches may be different in many areas, most of them 

follow the above three-step paradigm. 

Most of the early systems of automatic summarization from the late 1950s to the 1970s 

were single document summarizers by sentence extraction. They used shallow features 

including word frequency, position, cue phrases, and theme terms to determine the 

importance of the extraction unit (mostly sentences, and some used paragraphs). A score 

was calculated for each feature and the scores were normalized and summed. The text 

units with the highest summed scores were presented as summary. This type of 

summarizers included Luhn [9] and Edmundson [10]’s work in sentence extraction 

summarization. In Edmundson’s paradigm, the weight of each sentence was calculated as 

a linear combination of four features: 

Weight(s) =  a* CuePhrase(s) + b * AddTerm(s) +  c * ThematicTerm(s) + d * 

Location(s)   where 

• CuePhrase(s): Lexical or phrasal with summary cues: positive weights for bonus 

words (“significant”, “confirms”, etc.), negative weights for stigma words 

(“hardly”, “impossible”, etc.) 

• AddTerm: Weight assigned to a sentence for terms in it that are also present in 

the title, headline, initial paragraph, or the user’s profile or query 
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• ThematicTerm: The presence of statistically salient terms (e.g., tf.idf terms) in a 

sentence, based on Thematic Term Assumption [9] that high frequency content 

words are positively relevant. 

• Location: Sentence’s location within the document - beginning, middle or end of 

a paragraph or the entire document, or whether it occurs in prominent sections 

such as the document’s introduction or conclusion 

Many measurements these early work introduced, such as key terms and cue words, are 

still used to date. 

Kupiec et at. [14] extended the paradigm by Edmundson and introduced machine 

learning approaches for extraction with a naïve Bayes classifier. Further utilization of 

machine learning techniques included clustering text to achieve diversity by Nomoto [15] 

and using Hidden Markov Models for text selection by Conroy [16]. 

In addition to the above statistical approaches to identify the salient part of the source 

texts, various methods focused on constructing summaries by exploiting the discourse 

structure of the text. Marcu [17,18] studied the nucleus and satellite relations of the text 

structure based on the rhetorical structure theory by Mann [19]. Another notable 

approach is lexical chain, a sequence of related words in the text that represents a 

cohesive structure and specific topic of the text. Barzilay [20] introduced a way to 

calculate the score of lexical chains using the length and homogeneity index based on 

WordNet
8
 as a means to identify salient part of the source text. 

                                                 
8
 http://wordnet.princeton.edu/ 
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The above methods are extraction type summarization. Parallel efforts have been working 

on summarization through abstraction. Early approaches mainly focused on template-

filling type abstraction, using templates as the knowledge and semantic base required for 

abstraction. The creation of these templates usually required extensive human labor and 

the templates were often restricted to very specific topics and domains. Examples of this 

type of systems include the FRUMP news summarizer by DeJong [21], and SCISOR [22] 

summarization of corporate mergers and acquisitions news. Current advances in 

digitalized domain-specific knowledge base enabled more sophisticated abstraction 

involving generalization, inference and exploiting semantic relations between concepts. 

Fiszman et al. took advantage of the UMLS
9
 Specialist Lexicon and Semantic Network to 

construct summaries of the A.D.A.M. © 
10

 online encyclopedia [23]. 

Summarization on multiple documents has additional technical challenges such as 

requiring higher compression rates, redundancy elimination, contradiction identification 

and co-reference resolution across documents. Maximal marginal relevance (MMR) was 

used by Carbonell and Goldstein [24] to emphasize novelty of selected information, a 

way to handle redundancy. Radev et al. used a centroid-based clustering technique to 

improve diversity of the sentences selected for summary [11]. 

 

                                                 
9
 http://www.nlm.nih.gov/research/umls/about_umls.html 

10
 http://www.adam.com/ 
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1.5.3 What type of summarization is used in this project? 

The GICSS system built in this project is in the category of multi-document 

summarization by sentence extraction. It is query-based and takes in a set of genes from 

the result of a microarray experiment. It is a summarizer that operates on a given question 

within a specific domain, i.e. genomic research in biomedicine. We used a statistical 

approach based strongly on Edmundson’s paradigm with modifications exploiting the 

domain-specific terminologies and entities appropriate to the problem space. 
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Chapter 2. Related Work 

This chapter describes the previous work specifically related to this project. They are 

grouped into two categories: functional gene clustering by features other than expression 

profile, and summarization on gene-related information. 

 

2.1 Gene clustering 

Results of a microarray experiment have the expression levels of each gene/transcript 

under the different biological conditions as studied in the experiment. Assuming that 

genes with similar functions or within the same biological pathways will have similar 

expression patterns, cluster analysis of gene expression profile is one of the essential 

components of exploratory analysis of all microarray datasets. While gene clustering by 

expression profile is of great value to investigators, in this project the focus is on gene 

clustering from a different perspective, i.e., how the genes that are found to be 

differentially expressed in the experiment cluster according to previous-known 

knowledge as represented in the literature or in the curated database. In other words, we 

are to find gene clusters using features such as Medical Subject Heading (MeSH)
11

 

headings, Gene Ontology (GO)
12

 annotations, and free text in scientific literature.  

A number of approaches to find functional gene groups by analysis of literature profile 

have been proposed. Masys et al. [25] identified gene groups based on co-occurrence of 

                                                 
11

 http://www.nlm.nih.gov/mesh/ 

12
 http://www.geneontology.org/ 
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MeSH terms in MEDLINE citations. PubGene described by Jenssen et al. [26] used gene 

name co-occurrence in MEDLINE abstracts to identify related gene neighbors and build 

gene relation networks. Chaussabel and Sher [27] clustered genes by analyzing the 

occurrence of a filtered list of terms in MELINE abstracts, generating literature gene 

‘heat map’ similar to  the one generated by analysis of expression profiles. Glenisson 

[28,29] explored the use of ‘bag of word’ vector space representation of literature profile 

for functional gene clustering. The text sources used in their TXTgate application [29] are 

from selected annotation fields and linked MEDLINE abstracts in the curated repositories 

LocusLink and the Saccharomyces Genome Database (SGD).  

There are also works focusing on comparing the effectiveness of different algorithms in 

gene clustering. Homayouni et al [30,31] found that Latent Semantic Indexing(LSI) can 

be a robust method to discover gene relationships. Liu [31] tested an approach called  the 

Bond Energy Algorithm (BEA), originally used in clustering questions in psychological 

research instruments. The results suggested BEA compared favorably to other popular 

clustering algorithms, such as hierarchical, k-means and Self Organizing Maps (SOM).  

There are also works on combining the information in literature with the gene expression 

profile to generate gene clusters. Raychaudhuri et al [32,33] used information in the 

literature to fine-tune the boundary of clusters found in expression profile analyses. An 

algorithm developed by Kuffner et al [34] combined both microarray expression data and 

MeSH terms and words in MEDLINE abstracts to identify gene clusters with 

corresponding literature topics. Huang et al [35] modified the expression-based gene 

distance metric  by shrinking the distance to zero if genes share functional keywords. 
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This literature-informed metric was used to generate the final clusters with improved 

results over standard method. 

All of the above approaches focused only on the clustering process and clusters generated 

from the process were their final results, while GICSS system attempts to utilize the 

result of the clustering process in the next step—summarization of gene information. The 

evaluation of the clustering algorithms usually involved using distinct gene groups from 

certain cell cycles or GO term branches as test gene sets. The effectiveness of the 

algorithms was judged by the ability to correctly put the genes in the right groups and use 

hard statistics like internal similarity, mutual information and entropy as measurement 

[31,36,37]. This approach was straightforward and gave quantitative results, but there 

were some shortcomings too. Distinct gene groups are much easier to cluster than real 

gene sets from microarray experiment because distinct gene groups usually have longer 

distance between the groups. In addition, how do the quantitative values correlate with 

the meaningfulness of the cluster in the analysis process is still an under-studied question. 

 

2.2 Summarization in biomedical domain 

Discovering functional related gene clusters is only one of the initial steps of the 

microarray analysis process. After identifying some interesting clusters, scientists will 

then focus on the genes in the clusters and try to elucidate how these related gene groups 

contribute to the conditions and contexts studied in the experiment. It is very common 

that scientists will encounter many unfamiliar genes when they study the clusters. (This 

assumption was confirmed during the system evaluation study as discussed later.) Hence, 
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the scientists will engage in searching for gene information in the context of the shared 

functions discovered in the clustering process. Therefore, the functional gene clustering 

and information searching are closely related parts of microarray data analysis. As 

mentioned in the last chapter, automatic summarization can be used as a potential tool to 

facilitate the access information in the rapidly increasing amount of free text literature. 

Work in biomedical information summarization has been mostly of the extraction type. 

One approach is keyword summary. Domain standard terminologies, such as MeSH 

headings, Gene Ontology terms, are usually the choice of terms for keywords. MedMeSH 

[38] can take in a gene cluster discovered in cluster analysis of the expression profile and 

retrieve citations for each gene from the MEDLINE database. MeSH terms for the article 

are extracted from the citation and then the statistical distribution patterns are analyzed 

and compared. Important MeSH terms are then assigned to describe the gene set, i.e., 

using MeSH terms as keywords to capture the biological significance of the set of genes. 

This approach can only provide summaries for a cluster of genes, with no further 

information presented for each gene. 

The other approach is sentence extraction. Most of them have expert-defined categories. 

The computation usually involves machine learning algorithms to classify sentences into 

these predefined buckets or rely heavily on advanced NLP techniques to match sentence 

templates. MedMiner [39] is one of the engines that can search the literature and extract 

sentences about gene-gene interactions. It is limited to discovering relations between two 

genes only and requires many iterations if used with microarray data which mostly have a 

list of over a hundred genes.  It returns all of the extracted sentences from the articles that 
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demonstrated the relation, without providing more summarization, such as re-ranking to 

present more relevant sentences first. In this sense, this system can be viewed more as an 

information retrieval and extraction engine. The GICSS system is customized for the 

input of the large gene set (usually in the hundreds) from microarray experiment and 

processes them as a whole instead of pairs of genes. 

Another sentence extraction application, BioIE [40], is a rule-based system to extract 

sentences pertinent to protein information in five predefined classes: structure, function, 

disease & therapeutic compounds, localization, and familial relationships. METIS [41] 

uses information in Swiss-Prot
13

 to generate protein reports and extracts informative 

sentences from literature using both machine learning and rule-based algorithms. METIS 

uses the same five predefined categories as BioIE in the learning and sentence extraction 

process. These two systems use hand-crafted rules, have predefined classes, and the latter 

also requires training data. These two systems are geared for protein information and the 

predefined categories reflected this priority so that they are not very useful for getting 

information for gene lists. In addition, hand-crafted rules required much human effort and 

they are also hard to update. Furthermore, the predefined categories also limit the 

information the systems can present and sentences do not fall into these categories will be 

ignored.  

An application by Ling [7] extracts top-ranked sentences about genes from MEDLINE 

abstracts in the six predefined areas of interest using cosine similarity scoring against the 

                                                 
13

 Swiss-Prot website: http://www.ebi.ac.uk/swissprot/ 
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six classes: gene products; expression location; sequence information; wild-type function 

and phenotypic information; mutant phenotype; and genetical interaction. Even though 

this approach can provide the basic information for the gene in the above categories, 

other useful information outside these six categories will be missed out, just like BioIE 

and METIS. The information is generic about the genes and not specific to the 

microarray results, i.e. each gene summary is independent to others. GICSS system takes 

in input from the clustering algorithm, therefore includes some context information from 

the closely related genes. Further more, all three systems required some level of training 

and while training data was hard to get, retraining is another issue that can affect future 

performance. 

The list of selected related work in functional gene clustering and information 

summarization described in this section is presented in Table 1, with feature comparison 

to each other and to the GICSS system. 
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Table 1. List of related works in gene clustering and summarization as compared to the GICSS system. It shows that 

most previous work has focused on a single one of these two areas and that most gene or protein information 

summarization systems had predefined information categories. 

Systems Algorithm highlight Input Features used Categories of 

information 

Level of 

summarization 

Masys et al 

[25] 

gene clustering Any gene set MeSH co-occurrence No Unspecified  

PubGene [26] gene clustering Any gene set Gene name co-

occurrence 

No Unspecified 

Chaussabel and 

Sher [27] 

gene clustering Any gene set Filtered terms from 

MEDLINE abstracts 

No Unspecified 

Kuffner [34] gene clustering Full gene chip MeSH, text words, 

expression data 

No keyword 

PubClust [3] search result clustering PubMed result text words No keyword 

MedMeSH 

[38] 

gene cluster summary Gene cluster MeSH terms No keyword 

Ling [42] gene summary by 

extraction 

one gene name text words, training 

data 

Yes sentence 

BioIE [40] protein summary by 

extraction 

protein name text words, hand-

crafted templates 

Yes sentence 

METIS [41] protein summary by 

extraction 

protein name text words, templates 

and training data 

Yes sentence 

MedMiner [39] gene relation 

information extraction 

two genes text words No sentence 

GICSS system  gene clustering and 

summary 

gene set with 

fold change 

MeSH, GO terms, 

text words 

yes keyword and 

sentence 
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2.3 Related Work Summary  

As described in the previous section, the work in gene clustering and summarization are 

two different approaches even though the work flow for the experiment analysis is 

integrated and closely related. Work in the area of gene clustering focus on perfecting the 

algorithm, feature selection and the summarization effort limited to keyword summary 

for the generated clusters. On the other hand, work in the area of gene information 

summarization focus on extraction of certain types of information for a single gene. The 

information gathered from the clustering result (keywords and closed related genes) is 

has not been previously used in the summarization process. The summaries are usually 

generic and independently generated without considering the relation to other genes, 

which is of interest in microarray analysis. In addition, most of the related work either 

depend heavily on hand-crafted templates and NLP patterns or require extensive training 

data. Furthermore, most work on summarization have several predefined information 

categories, but may miss information outside these categories. Finally, there was no 

experimental evaluation of the systems with scientists using real data from microarray 

experiments they are analyzing. For example, clustering genes taken from several 

independent known pathways will be very different from clustering genes from the raw 

list of microarray output.  

Thereform this study extends and is distinct from prior work in several ways:  

1. The GICSS system focuses on helping scientists search for supporting evidence when 

they are analyzing a microarray expression profile. It integrates the two closely 

related steps in the analysis process, clustering and literature summarization. Genes 
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are first clustered into functionally related groups, which are important especially 

when the size of the gene set is large. The information gathered from this step is used 

to inform the second step, gene information summarization. 

2. There are no predefined categories. Using MeSH terms associated with the 

publications on the genes, GO terms assigned to the genes and free text from 

abstracts, the clustering step tries to capture the naturally occurring clusters presented 

in the literature.  

3. There are no labor-intensive handcrafted rules or training data.  

4. The summary for each gene is presented in a ranked sentence format. The ranking 

algorithm emphasizes gene relations, length, similarity to its cluster theme, recency, 

existence of domain-specific terms and non-domain specific language features. 

Sentence was chosen as the information unit based on the assumption that the 

sentence is more informatively intact and richer than keywords, and short enough for 

a research scientist to quickly go through and decide if reading the full abstract or 

article is warranted. Furthermore, a study on the effect of information extraction units 

(abstract, sentence, and phrase) [43] indicated that using sentence granularity 

achieved the highest effectiveness.  

5. The GICSS system was evaluated in experimental setting with scientists working on 

their own, current microarray experimental data. 
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6. The generalizability of the approach was demonstrated by expanding it to human 

genes by substituting a human gene and protein name entity recognition system 

(NER) in place of the mouse NER system used for the main evaluation. 

 

2.4 Research Statements 

Main research questions 

The goal of this study is to design, build and evaluate an automatic summarization system 

for information on genes differentially expressed during microarray experiments. The 

intended end-users include genomic researchers, along with their students and research 

assistants, who have sets of differentially expressed genes as a result of microarray 

experiments and need to search for gene information from the literature in the process of 

analysis. 

The two questions this study tries to answer are:  

1.  After a researcher has obtained the expression pattern of a list of differentially 

expressed genes, the GICSS system clusters this set of genes into functional groups 

by drawing from the available literatures. Can the cluster and summary words provide 

useful information in the context of this particular experiment to help the researcher 

in analyzing the expression pattern? Sub-questions are: 

1. Are the gene clusters meaningful? 

2. Is there preference for the features (MeSH, GO, and text words) used in 

the clustering process? 
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2. In order to facilitate access to the literature, a summary for each gene is constructed 

by extraction and re-ranking the sentences by importance. By combining the 

conventional extraction summarization paradigms [44] and special requirements and 

knowledge of biological domain, can our sentence ranking algorithm facilitate access 

and exploration of the large amount of original literature by presenting the 

informative sentences as summaries to the researcher? Sub-questions are: 

1) By presenting sentences in the abstract with reference to genes, can we provide 

more information than PubMed’s standard title presentation, which is the status 

quo when doing literature search currently?  

2) Furthermore, can our sentence extraction and ranking perform better than just 

reversed chronological ranking of the same set of sentences with reference to 

genes? 

3) Finally, how does each feature in the ranking algorithm contribute to the 

usefulness of the final ranking? 
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Chapter 3. Research Design and Methodology 

3.1 Building the GICSS gene information system 
 

3.1.1 System architecture 

 

The GICSS system was implemented in Python and CGI, and is accessible via the Web. 

Currently, it is hosted at http://ir.ohsu.edu/jianji/gene_info. The web interface was 

developed based on the Karrigell web framework
14

. The system architecture is depicted 

in Figure 1. The system’s core components consists of a MeSH term, GO term and word 

processor, a wrapper around CLUTO
15

 (a preexisting application that performs 

clustering), and a sentence ranker. These three components are explained in detail below. 

 

3.1.2 Preprocessing: Extracting gene sentences 

The 10-year Medline corpus (from 1994 to 2003) used in TREC 2004 and 2005 

Genomics Track was filtered using MeSH Heading “Mice,” resulting in a mice subset. In 

order to achieve higher accuracy in gene name recognition and specific applicability to 

the mouse researcher user, we decided to focus on mouse genes at this stage. Using a 

gene and protein name entity recognition and normalization system for mice [45], this 

subset was processed and gene and protein names were tagged and identified by Mouse 

Genome Informatics 
16

 identifiers (MGI-ID). Sentences in abstract and title (treated as a 

                                                 
14

 http://karrigell.sourceforge.net/ 

15
 http://www-users.cs.umn.edu/~karypis/cluto/index.html 

16
 http://www.informatics.jax.org/ 
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sentence) were stored in a database together with other MEDLINE entries, MeSH 

headings, publication date, journal names. These sentences comprise the text collection 

used in this study. Sentences containing at least one reference to gene/protein were 

further indexed by the gene_MGI_ID to facilitate retrieval. 

The sentence database has the following three tables: 

1. PMID_DateOfPublication_MeSH (document level information table) 

 PMID  -- PMID of MEDLINE records (primary key) 

 Dp – date of publication of MEDLINE records 

 Mesh – mesh terms of MEDLINE records 

 

2. MGI_gene_PMID_SentID (gene ID and sentence ID information table) 

MGI_gene – MGI_ID for mouse genes  

PMID – PMID of the MEDLINE record that has reference to the mouse gene 

(foreign key) 

SentID – position of the sentence in the abstract that has reference to the mouse 

gene 

Primary key: MGI_gene, PMID, SentID 

3. PMID_SentID_Sentence ( sentence content table) 

PMID  -- PMID of MEDLINE records (foreign key) 

SentID – position of the sentence in the abstract (foreign key) 

Sentence – sentence text of PMID_SentID 

Primary key: PMID_SentID  
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Figure 1. System architecture diagram. The GICSS system is composed of a 

sentence database, three processing modules: gene modeler (gene modeling in 

language term vector space), clustering processor (a wrapper around CLUTO), and 

sentence ranker (calculation of sentence score and ranking).  
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3.1.3  Processing of input gene list 

 

After set of gene names and their expression levels (in the form of fold change) are 

collected from the user, they are first checked for duplications. The advent of microarray 

technology allows detection of expression level at transcript level, i.e. spots on the array 

representing different mRNA sequences transcribed from the same gene (DNA region). 

There is a chance that a user may input the same gene names more than once with 

different expression levels, i.e. different transcripts from the same gene having different 

expression levels in the array. Since currently the system does not have the capacity to 

process transcript level information, it highlights the duplicates and reminds user of the 

transcript to gene name mapping issue. More about this topic is discussed in the 

Limitations and Future Work section. Secondly, the gene names are expanded with 

synonyms from the dictionary in our gene and protein name entity recognition system 

[45]. Finally, each gene and its synonyms are mapped to their corresponding MGI-IDs. A 

summary of this step is then presented to the user before further processing. The 

information presented includes duplicated genes in the list, gene names that cannot map 

to any MGI_IDs and for the gene names that can be mapped to MGI_IDs, all the 

MGI_IDs with links to MGI website. 

If the input gene list contains five or less genes, the clustering step described in the next 

section is skipped. After gene duplication highlight, gene synonym expansion, and 

MGI_ID mapping, the system goes directly to sentence extraction summarization step. 
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3.1.4 Clustering of genes into functional related groups 

 

The genes are represented by a vector space model with three categories of features.  

1. MeSH Headings associated with the publications in which the genes are 

referenced. The users also have the option to select the MeSH subtrees that are 

deemed useful to represent gene information to be used. After consultation 

with a biologist, the default subtrees in the GICSS system used were A-

Anatomy, C-Diseases, Chemicals and Drugs, F-Psychiatry and Psychology, 

G-Biological Sciences, and H-Physical Sciences. Furthermore, terms close to 

the root are usually very general, for example, the terms: ‘GENE’ and 

‘PROTEIN’. Only terms deeper than the second layer are used. For more 

information on MeSH tree structure, see the MeSH information page at NLM 

web site
17

. 

2. GO terms associated with the genes as annotated by MGI obtained from the 

MGI web site. Terms that indicate any unknown conditions are filtered out, 

such as ‘molecular function unknown’.  

3. Free text words in the sentences with at least one reference to the genes and 

sentences immediately in before and after them, with stop-words removal (see 

Appendix) and stemming by Porter stemming algorithm. 

Specifically, each gene is modeled as vector of combinations of the above three 

categories of features. The selection of the categories can be done in the Options web 

                                                 
17 MeSH http://www.nlm.nih.gov/mesh/ 
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page (Appendix 2). Let M be the number of distinct terms in our collection of N genes, 

gene i is represented as vector: 

Gi = <wi1, wi2,…,wiM>, wi,j is the frequency of jth term that is associated with the ith gene 

in the sentence collection for this set of N genes.  

The clustering algorithm suite implemented in CLUTO is used for functional gene 

clustering. The default clustering method is direct k-means. Current specifics of the 

vector features are listed below: 

• If the number of genes is less than six, the clustering step is skipped and the 

process goes directly to sentence extraction. 

• Similarity measure: similarity between genes feature vectors is calculated as the 

cosine of the angle between the two gene vectors: 

Cos(gi, gj)=gi ● gj/|gi| |gj| 

• Number of clusters: this is a parameter CLUTO requires as input. It is determined 

in run-time by trying different numbers of clusters. Let ε be the ratio of 

improvement of internal similarity of all cluster by increasing the number of 

cluster by 1: 

 ε = [I2(n+1)- I2(n)]/I2(n)  where I2 is the measure of internal similarity for all 

clusters, and n is the number of clusters. When ε is lower than a certain level, the 

increase of the number of clusters does not give much increase in the internal 

similarity for all the clusters, the iteration stops. 
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ε was set empirically by testing different values. Currently for gene sets with 

around 100 genes, it is set to 0.035. In other words, n is chosen when the 

improvement of internal similarity is less than 3.5% by increasing the number of 

clusters by one. As suggested in post-hoc optimization, the parameter setting may 

to some extent affect the sentence ranking efficiency due to the contribution of the 

feature of cluster keywords used in the ranking algorithm. But to study how the 

parameter setting affects the usefulness of the clusters will require substantial 

human judgment and was not studied in this project due to limited resource. 

• Tfidf is used for scaling the terms. The term frequency is , where ni 

is the number of occurrences of the considered term, and the denominator is the 

number of occurrences of all terms. The inverse document frequency is 

, with |D| : total number of sentences in the corpus 

and  : number of sentences where the term ti appears (that is 

). This setting is the default in the CLUTO algorithm using cosine 

similarity as distance measure and was recommended in its manual. 

• The top five descriptive terms for each cluster is used to highlight the cluster and 

used further along in processing to inform sentence selection. 
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3.1.5  Ranking of sentences for each gene 

 

The number of sentences for each gene identified in the 10-year literature corpus ranges 

from one to 29,203. Users have the option to choose the number of most recent sentences 

for each gene to be included for processing. The current setting is 100. Sentences are 

modeled as word vectors after parsing, stop word removal and stemming. Each sentence 

is assigned a score by linear combination of the following features. This approach follows 

the framework of Edmundson [10] with modifications customized to the biomedical 

domain. Sentence score S is calculated as: 

S=  w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword  

+ w5 TPword + w6 L + w7 Recency 

where CluSim, QuFreq, NGene, CTword, TPword , L and Recency are features defined 

below and w1-7 are weight parameters between 0 and 1 for each feature.  

• Cluster representation (CluSim). By default, CLUTO gives five descriptive terms 

to summarize a cluster. It is a good starting point to represent the cluster. Further 

testing of different size of cluster representation was presented in post-hoc 

optimization. The top five descriptive features (a set of MeSH, GO terms and/or 

words) for each gene cluster from the previous step are used as this ranking 

measure. CluSim is calculated as the normalized (against the highest number in 

the sentence set) number of feature terms the sentence has (for GO and text 

terms) or assigned to the abstract where the sentence is extracted (for MeSH 

terms).  
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• User-enter query terms (QuFreq). QuFreq is calculated as the normalized 

(against the highest number in the sentence set) frequency of the query terms (in 

stemmed form) entered by user. 

• Gene relations (NGene). Sentences referenced to more than one gene/protein 

names score higher, otherwise, 0. This is a four-level variable:  

1. if the sentence refers to additional gene/protein name (other than the gene 

being studied) and at least one of the additional genes is from the same cluster 

as the gene being studied, NGene=1.00;  

2. if the sentence refers to additional gene/protein names (other than the gene 

being studied) and even no additional genes is from the same cluster as the 

gene being studied, but at least one additional gene is from the input gene set, 

NGene=0.75; 

3. if the sentence refers to additional gene/protein name (other than the gene 

being studied)  and none of the additional genes is from the input gene set, 

NGene=0.50; 

4. if the sentence refers to only the gene being studied, NGene=0.00. 

According to OHSU biologists consulted during system implementation, they 

expressed their interest in sentences that have co-occurring genes from the same 

cluster and from the input gene set. The scale of this feature is to reflect this 

preference. Emphasis on relations is also reflected in later features, such as 

relation words in TPWord.   
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• Cue phrases (CTword). This is identical to the Edmundson’s Cue feature [10] 

based on the assumption that the importance of a sentence is represented on the 

presence of certain cue terms. This is a non-domain specific language feature. 

For example, the term ‘conclusion’ may indicate importance. The list of Cue 

phrases is in Appendix 5. 

• Domain specific keywords (TPword). Biologically relevant keywords were 

extracted from the Textpresso [46] ontology’s several relation-descriptive 

sections, i.e. Action, Consort, Effect, Pathway, Purpose, Physical Association, 

Regulation. TPword is calculated as count of keywords in the sentence 

normalized to between zero and one, with the sentence having the maximum 

count scoring one. 

• Length (L). Usually the longer the sentence, the more information it contains. L is 

calculated as a two-level variable: sentences with twenty or more words get the 

score 1; and sentences with less than twenty words get the score of the fraction 

|sentence|/20. Note that the average sentence length of the dataset is 23 (see 

Section 4.1). ‘20’ is chosen as a length factor threshold to discount sentences that 

are shorter than average. 

• Recency is calculated as a linear scale for the sentences from one to zero, with the 

most recent sentence getting the score one, and the oldest sentence score zero.  

There are many ways to combine these features by adjusting the weight for each measure. 

In the development phrase, an even weighting scheme was adopted as default. Then in 

the evaluation phrase, part of the sentence evaluation data was used to adjust the 
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parameters of the scoring scheme. After evaluation, all the evaluation data can be used to 

get a better tuning of the feature weights.  

 

3.1.6 User interface 

 

The user interface consists of six major web pages. The sample screen shots are in 

Appendix 3 and they are described in detail below: 

1. Input page. The user inputs the gene list for processing here. There are two 

ways for gene list input. One is to type-in, or copy and paste the gene names and 

corresponding fold changes to a text field. Down the road, the different fold 

changes are represented by color-coded presentation of the gene names (up-

regulated as red and down-regulated as green.) The other is to upload a tab-

delimited text file containing the gene names and fold changes. The advanced 

options button on this screen takes the user to the option page. 

2. Advanced option page. The options allow users to have more control over the 

features used in the clustering process and sentence ranking. The options are 

cluster features selection (GO, MeSH and text), MeSH subtree selection, 

stemming (Y/N), number of sentences included in process. 

3. Gene set information page. This is the page next in the process after entering the 

gene list. This page presents the information of the input list of the genes after 

the initial processing. This includes the duplicated gene names and fold changes 

reminding the users of the degenerating nature of the gene name mapping in the 

system. Next, the gene names that do not map to any MGI_ID are listed and 
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with links to PubMed for direct search. Finally, all the gene names that map to 

MGI_Ids are listed with the MGI_Ids and links to the MGI website. 

4. The cluster results page. This page provides the clusters and the top five 

descriptive keywords to the user. The top five terms associated with each gene 

are also presented. The hyperlink to each gene name leads the user to 

information for that gene from MGI website. The user can also enter query 

terms for each gene for the next step: sentence ranking.  

5. Summary sentence page. This page presents the sentences as the summary of a 

gene in a descending ordered form, according to the scores calculated as 

described in the previous session.  

6. Re-arranged sentences page. For the convenience of the user, the sentences are 

further arranged so that sentences from the same abstract are presented together. 

The sentence groups are ordered descending by the highest sentence score in the 

group. 

 

 

3.2 Evaluation 
 

The evaluation methods for summarization can be classified in two categories: intrinsic 

and extrinsic evaluations [47]. Intrinsic evaluation is evaluating the system itself, usually 

involving calculation of some kind of measurement as compared to a gold standard of 

correct answers. Extrinsic evaluation is to measure how the system helps users in the 

completion of certain task. In this project, the evaluation used was intrinsic evaluation 

using expert opinion as gold standard. The experts judged how well the clustering and 
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sentence ranking algorithms work in a task-like situation with the microarray experiment 

data they were analyzing at the time of evaluation. But since the final result of the task – 

successfully analysis of the array data completed with the help of the system - was not 

objectively measured, this is still considered an intrinsic evaluation. 

This evaluation study using human subjects was approved by the Institutional Review 

Board of Oregon Health & Science University, IRB #00003090. 

 

3.2.1  Definition of the terminology used in the evaluation process. 

The following definitions were given to the evaluation participants to guide their 

judgment.  

Gene set – a set of gene names obtained from a microarray experiment. They represent 

the ‘hot list’ – genes that are differentially expressed. The size of a gene set ranges from 

50 to 100. For evaluation purpose, the participant labeled up to five genes where they had 

expert knowledge. For example, they may have labeled genes that they are studying or 

have studied, or have done literature research on. 

Summary terms/descriptive terms – for each cluster, the clustering algorithm outputs the 

most common words (default is five words) to describe the cluster. These words were 

shown to the judges to test if they influenced the subject’s judgment of the quality of 

the clusters.  

Informative term – if a summary/descriptive term describes certain aspects of the gene, it 

is an informative term for this gene. 
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Meaningful cluster – if the genes in the cluster are functionally similar or related, the 

cluster is a meaningful cluster. 

Relevant sentence – If the sentence provides helpful information for the gene and the 

gene cluster in the context of this microarray experiment, or the expert believes that 

after reading the sentence, he/she would like to explore more on the topic and would 

go to the abstract where the sentence came from, this sentence is a relevant sentence. 

 

3.2.2  Evaluating the clustering algorithm. 

Five gene sets from the result of five different microarray experiments were tested on the 

GICSS system by OHSU-based mouse genomic researchers. Each person rated the gene 

set generated by his or her own lab. For each gene set, the participants labeled the genes 

they were familiar with. Each of the participants compared cluster pairs, which had at 

least one of the familiar labeled genes. This setup had the scientists work on the genes 

they picked to ensure that each person had the expertise for the particular gene to judge 

the result. First, participants judged the usefulness or meaningfulness of two clusters for 

each gene set by comparing clusters with random grouping, both including the familiar 

gene. Then, the effects of different clustering features (MeSH, GO, text) were evaluated 

by comparing clusters generated by each feature side by side. Finally, the top five 

summary/descriptive terms for each cluster were shown to the participants and they were 

asked to change their judgment if needed after seeing the summary terms. For each 

cluster pair, participants chose the more useful cluster of genes from the pair using a 5-

point Likert scale:  
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1. cluster on right is absolutely better,  

2. cluster on right is better, 

3. they are the same,  

4. cluster on left is better, and  

5. cluster on left is absolutely better. 

An option was also offered to allow the participants to indicate that he/she was not able to 

decide the quality of the cluster pair (0. I don’t have enough information to decide.) The 

left/right order of the clusters was randomized in run-time during the evaluation. Table 2 

summarizes the cluster pairs evaluated by the participants. 
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Table 2. Summary of the cluster evaluation. Yes means the pair of cluster features 

are compared by participant. No means no comparison was made for the pair. 

Before and after showing keywords means two comparisons were made by the 

participant; once before showing the keywords for the clusters, once after. 

 Cluster 

Features 

Random Go terms MeSH headings Text words 

GO terms  Yes  No Yes (before and 

after showing 

keywords) 

Yes(before and 

after showing 

keywords) 

MeSH 

headings 

Yes Yes (before 

and after 

showing 

keywords) 

 No Yes(before and 

after showing 

keywords) 

Text words Yes Yes(before 

and after 

showing 

keywords) 

Yes(before and 

after showing 

keywords) 

 No 

 

 

The results of the comparison were ordinal data ranged from 1 to 5 with 3 being no 

preference versus random and zero was treated as missing. They were first normalized to 

the range of   -1 to 1 for each participant, with zero being no preference from random. 

The transformation was performed as following: 

NewScore= (oldScore-3)/Max(|oldScorei-3|)  i=1 to 6  within the six judgment scores 

(three judgment for each of the two genes) by the same participant. 

This transformation was used to adjust for the different ranges participants may in for 

their judgments. The transformed results were analyzed using a general linear model and 

two-way ANOVA to assess the effects of both the participants and the clustering features. 
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The results for comparison of rankings before and after showing the cluster keywords 

were analyzed by two related sample Wilcoxon signed rank test.  

 

3.2.3  Evaluating ranking of informative sentences.  

Sentences for ten genes (genes from each of the clusters evaluated in the previous step) 

were used in this step. Sentences from the output of the system and PubMed searches 

were pooled together and judged by the same scientists who studied the gene set. The 

searches on PubMed were done by e-search provided by Entrez Programming Utilities. 

The queries were the name of the gene and synonym expansion using the synonym 

dictionary from [45]. Once the results were returned, they were filtered on Date of 

Publication (DP) to limit to the time period of 1994-2003 and on MeSH term (MH) 

‘Mice’. These filtering criteria are the same as the text collection, making the comparison 

between PubMed search results and system output possible. The list of queries for the 

PubMed searches was in Appendix 6.  

For the pooled sentences, the raters assigned an R (relevant) or NR (not relevant) label to 

each sentence by judging if it had relevant information for understanding the specific 

gene studied in the microarray experiment they were analyzing. Results from two genes 

were used to hand-tune the ranking parameters and the other eight were analyzed and 

used to study the system. Three sentence presentations were compared by average 

precision (AveP) using the relevance judgments as a gold standard: 

1. GICSS system output: Sentences with reference to the gene extracted from the 

abstracts ranked by the scoring algorithm. 
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2. Same sentence set as in 1 but in reversed chronological order, same as PubMed’s 

ranking.  

3. Output from PubMed search (title of abstract in reversed chronological order).  

In IR, precision is calculated as 

 

and average precision is  .  Mean average 

precision (MAP) is the mean value of the average precisions computed for each of the 

queries separately. To evaluate the effectiveness of the three sentence presentations, the 

AveP and MAP measures were adopted from IR with sentence as the unit of retrieval, 

instead of document. For each sentence presentation, the AveP scores were calculated for 

each of the genes and the scores were analyzed using repeated measure with post-hoc 

comparison with the Sidak adjustment.  

Even though AveP score combines both recall (defined in IR as 

) and 

precision, its emphasis is recall more. Note that instead of sentences from the abstract, the 

PubMed output only includes the titles of the abstracts. Because of this, it would likely 

fare worse by measures that focus on recall. In order to make the comparison more 

meaningful, precision at 5 (P@5) and precision at 10 (P@10) were also calculated for 

each sentence presentation set for each gene. Both measures were also analyzed using 
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repeated measure with post-hoc comparison with Sidak adjustment for multiple 

comparisons.  

 

3.2.4  Micro-evaluation of individual features.  

Using the relevance judgments ‘gold standard’ from the previous evaluation step, MAP 

for sentence ranking using each of the single ranking features  were calculated to study 

the contribution of each feature. This data was also used to perform further tuning of the 

ranking feature parameters in post-hoc optimization. 

 

3.2.5  Demonstration of generalizability.  

To demonstrate the generalizability of the system, a human gene information 

summarization system was implemented by substituting a gene/protein entity recognition 

and normalization system for human genes [45].  The goal of this step was to demonstrate 

the simplicity of adapting the system for different species by simply replacing the NER 

for different species. The time spent in the implementation was used as measurement for 

generalizability. 
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Chapter 4. Results 

4.1 Descriptive statistics of sentence database 

In the mice subset of the 1994-2003 MEDLINE records, there are 284,900 abstracts 

(PMIDs) covering 11,311 mouse genes. The number of sentences in the abstracts ranges 

from one to 102, with the mean value at 8.36. The length of the sentences in the database 

ranges from one to 236 words with a mean at 23.39.  

There are 583,388 total sentences with reference to at least one mouse gene in the 

database. The number of sentences for each gene ranges from one to 29,203 (tumor 

necrosis factor, MGI:104798). The mean number of sentences per gene is 99.52. 

 

4.2 Gene clustering 

The number of clusters for each gene set depended on the number of genes in the list and 

the natural diversity of the gene set. Datasets obtained from similar microarray 

experiment platforms were chosen for evaluation. The size of the gene sets used in the 

evaluation process ranged from 53 to 275, which we believed represented the numbers of 

differential expressed genes scientists produced in their real world microarray 

experiments. However, the criteria to choose these sets of differentially expressed genes 

were set individually by each scientist for their own data, without any intervention from 

the author. Therefore, the fold change cutoff values varied. The numbers of clusters 

generated by the clustering algorithm for each gene set roughly follow the size of the 
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gene set, i.e. the larger the gene set the higher the number of clusters (Table 3). The 

number of genes in the 10 clusters evaluated by the scientists ranged from four to 12.  

General linear two-way (with feature type as the fixed factor and judges as the random 

factor) ANOVA model analysis indicated no significant difference among the three 

features (MeSH, GO and text) and judges. Marginal means for each feature showed that 

both GO and MeSH were significantly better than zero (equivalent to random grouping) 

with 95% confidence intervals of [0.252, 1.081] and [0.141, 0.970] respectively, while 

text was not significantly better than zero with its 95% confidence interval range [-0.081, 

0.748] (Figure 2). Furthermore, the observed power calculated by the analysis was only 

16%, which indicated the analysis may have been somewhat underpowered to detect 

some potential differences of this magnitude. 
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Table 3. Descriptive information about the evaluation gene sets. The size of the gene 

list covered a good range of numbers of differentially expressed genes scientists 

obtain from microarray experiments. The experiments were performed on the 

Affymetrix 430A platform, which would ensure the comparability of the data.  The 

criteria for the gene selection were set by individual participants for their own 

dataset. The number of clusters built by the algorithm for the five gene sets roughly 

follows the trend of the gene set size.  

Gene set Microarray 

experiment 

platform 

Number 

of genes 

Gene set selection 

criteria 

Number of 

clusters 

Bagby.txt Affymetrix 430A 

array 

74 >5 fold decrease or > 

4 fold increase over 

wild type 

13 

Nikki_rma.txt Affymetrix 430A 

array 

275 q<0.3 (p<0.002) 27 

Dec24hr.txt Affymetrix 

Mouse genome 

430 2.0 array 

77 >1.8 fold decrease vs. 

control 

12 

Inc24hr.txt Affymetrix 

Mouse genome 

430 2.0 array 

78 >1.8 fold increase vs. 

control 

12 

Inc3hr.txt Affymetrix 

Mouse genome 

430 2.0 array 

53 >1.8 fold increase vs. 

control 

14 
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Figure 2. The comparison of the three features (Text, MeSH and GO) for their 

usefulness for building meaningful clusters. Normalized preference at zero indicates 

no preference versus random grouping, while one indicates absolutely better than 

random. Clusters generated with MeSH and GO terms were significantly better 

than random grouping while clusters from Text were not. In addition, the over-

lapping 95% confidence interval for the three features suggested there was no 

significant difference for preference among clusters generated by Text, MeSH or 

GO terms.  
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Figure 3. Side by side comparison of preference for cluster before and after showing 

the keywords for the clusters to the participants. Preference score=5 indicates 

participants prefer the left side of the pair (i.e. MeSH in ‘MeSH vs. GO’ label in the 

figure), while score=1 indicates participants prefer the right side of the pair (i.e. 

‘GO’) and score=1 means no preference. The data showed that the change of 

preference after showing the keywords were not significant, suggesting the 

preference of the participants was not influenced by the keywords. 
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To study whether showing the keywords for the clusters influenced the judgment of 

meaningful clusters, Wilcoxon’s signed ranks test was performed on the before-and-after-

keyword paired tests. The results indicated that presentation of keywords did not 

significantly influence the preference of cluster choices for all of the three features. 

Figure 3 depicts side-by-side the change of preference after showing the keywords for the 

clusters. While the difference was not significant, the preference scores for GO clusters 

and MeSH clusters increased over text clusters after showing the keywords. 

 

4.3 Sentence ranking  

Recall that the sentence score was calculated as: 

S =  w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword  

+ w5 TPword + w6 L + w7 Recency 

where CluSim, QuFreq, NGene, CTword, TPword , L and Recency were features defined 

below and w1-7 are weight parameters between 0 and 1 for each feature. Sentences were 

ranked by decreasing score. 

The parameters for the each of the features were hand-tuned using the results of the first 

two genes. w2 was set at zero because the use of QuFreq was not evaluated in this 

evaluation step, but is presented here for model completeness. The rest of the parameters 

were: w1 =0.1, w3  =0.1, w4=0.2,  w5  =0.2, w6 =0.2, and  w7 =0.2. 

The number of sentences/titles for each gene studied in the evaluation process ranged 

from only four to 100 (Table 4). There were more than 100 sentences referencing the 
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gene cxcl12 in the database and only the most recent 100 were retrieved due to the default 

value for maximum sentences per gene in the GICSS system. The number of shared 

abstracts from GICSS and PubMed searches varied depending on the gene. For example, 

in the case of usp18, both GICSS and PubMed searches gave results from the same seven 

abstracts. One the other hand, results for irak3, cxcl12 and kcnj9 came from two different 

sets of abstracts. In general, there were more sentences from GICSS than titles from 

PubMed. There were also common that more than one sentence from each abstract were 

returned in GICSS as indicated by the number of abstracts represented in the GICSS 

output. The number of abstracts represented in the top 10 sentences from the GICSS 

output ranged from three to eight (Table 5). 

The AveP scores for the three sentence presentations for each gene showed that there was 

some variation in AveP. In addition, AveP scores for PubMed search results were 

consistently much lower than GICSS output. Furthermore, GICSS output was also 

consistently better than ranked by recency sentence presentation with only one exception 

in gene kcnj9 (Table 6). 



 

53 

Table 4. The number of sentences/titles judged by the participants for each of the 

genes. In general, there were more sentences for each gene from the GICSS output 

than the search results from PubMed. The number of shared abstracts by both 

ouputs varied depending on the gene. The 100 sentences for cxcl12 may represent 

the default maximum of sentences output per gene in GICSS.  

Gene name GICSS 

output 

Number of 

abstracts 

represented in the 

GICSS output 

PubMed Number of shared 

abstracts in GICSS 

and PubMed 

searches outputs 

adamts1 66 18 17 12 

usp18 38 7 7 7 

irak3 14 4 16 0 

cxcl12 100 22 16 0 

kcnj9 46 17 60 0 

pglyrp1 71 16 18 16 

ptx3 90 18 50 13 

clca1 68 29 37 22 

cyp2j5 13 3 4 3 

frk 72 15 11 4 

 

 



 

54 

Table 5 Coverage of the GICSS output. The number of abstracts represented in the 

full GICSS output and top 10 sentences is shown. The top 10 sentences from the 

output have covered a good percentage of the distinct abstracts represented by the 

full output.  

Gene 

name 

GICSS 

output 

Number of 

abstracts 

represented in 

the full GICSS 

output 

Number of 

abstracts 

represented in the 

top 10 sentences of 

the GICSS output 

Percentage of 

abstracts 

represented in top 

10 sentences 

adamts1 66 18 3 17% 

usp18 38 7 5 71% 

irak3 14 4 4 100% 

cxcl12 100 22 7 32% 

kcnj9 46 17 7 41% 

pglyrp1 71 16 6 38% 

ptx3 90 18 8 44% 

clca1 68 29 7 24% 

cyp2j5 13 3 3 100% 

frk 72 15 6 40% 
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Table 6. Average precision scores for the three sentence presentation (GICSS 

output, sentences list produced by ranking with recency and PubMed search 

output) for each of the eight genes used in this part of evaluation. In general, GICSS 

output fared better than PubMed search results. GICSS output was also 

consistently better than ranked by recency presentation with only one exception 

(kcnj9). 

Gene name GICSS output Recency PubMed 

adamts1 0.580264 0.534627 0.039064 

usp18 0.921985 0.900525 0.103968 

irak3 0.654296 0.615089 0.033333 

cxcl12 0.854571 0.843545 0 

kcnj9 0.647421 0.666607 0.05862 

pglyrp1 0.780637 0.717311 0.117634 

ptx3 0.79435 0.783601 0.047008 

clca1 0.683284 0.667058 0.205523 

Mean Average Precision 0.739601 0.716046 0.075644 
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A graphical comparison of MAP for the three sentence presentations showed that 

sentences from the abstract did much better than just titles from PubMed output. The 

ranking algorithm (as judged by MAP) gave a 3.3% increase over reverse chronological 

order of sentences and close to ten-fold increase above PubMed titles (Figure 4).  

Repeated measure ANOVA analysis of average precision scores for the eight genes 

suggested that overall there was significant difference among the three sentence 

presentations (p < 0.001). Post-hoc comparison with Sidak adjustment for multiple 

comparisons indicated that the GICSS system output was significantly better than 

PubMed (p < 0.001). However, the difference between the GICSS system output and 

sentence presentation produced by ranking with recency was not significant at the 0.05 

level (p=0.08).  
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Figure 4. Comparison of the three rankings (GICSS system output, sentence 

presentation ranked by recency and PubMed search results). It shows that GICSS 

system achieved a much higher MAP score than PubMed search output (close to 10-

fold), while the difference between GICSS system output and sentence presentation 

ranked by recency was smaller at 3.3%.  
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In addition to average precision scores, measurements emphasizing precision were also 

computed and compared for the three sentence presentations. GICSS output gave 13.8% 

and 10% increase over ranked-by-recency presentation on P@5 and P@10 respectively. 

GICSS also outperformed PubMed search output in both P@5 and P@10 (Figure 5).   

Repeated measure ANOVA analysis of P@5 and P@10 scores for the eight genes 

suggested that overall there was significant difference among the three sentence 

presentations (p < 0.001). Post-hoc comparison indicated that the difference between 

GICSS system output and PubMed was significant ( p = 0.007 for P@5 and p = 0.001 for 

P@10), but the difference between GICSS system and ranked-by-recency presentation 

was not significant at 0.05 level for either of the P@5 ( p = 0.17) and P@10 ( p = 0.11) 

measures. 

The relation between recency and the probability of being judged as a relevant sentence 

was further investigated. Judged sentences for all eight genes were pooled and separated 

into either relevant or not-relevant groups. There were a total of 578 sentences with 357 

judged relevant and 221 judged not-relevant. The distribution of both groups over date of 

publication (DP) was studied. The box plot of the two distributions indicated that the 

median difference between date of publication (DP) for relevant and not-relevant 

sentences is close to two years. This indicated that the more recent the sentence, the more 

likely it is judged as relevant by the participants in this evaluation study. (Figure 6) 
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Figure 5. Comparison of mean precision at 5 and precision at 10 scores for the three 

sentence presentations. The results for P@5 and P@10 were consistent with MAP, 

with GICSS system output performed significantly better than the PubMed search 

results while the difference between GICSS system and ranked-by-recency 

presentation did not reach statistically significance in both of the measurements. 
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Figure 6. Box plot graph of the distributions of relevant and not-relevant sentences 

over date of publication (DP). The median for DP for the relevant sentences is in 

April 2002, while DP for non-relevant sentences is July 2000.  

Relevant Not-relevant

01/01/1993

01/01/1994

01/01/1995

01/01/1996

01/01/1997

01/01/1998

01/01/1999

01/01/2000

01/01/2001

01/01/2002

01/01/2003

01/01/2004

d
p

 

 

 

 



 

61 

4.4 Individual features’ contribution 

MAP scores were also calculated with sentences ordered by each feature individually. 

The results suggested that domain-specific terminology as represented by the Textpresso 

protein function ontology TPword was the most useful feature and using it alone 

performed better than the default combination of different features. The feature that 

represented that context of the cluster, CluSim was the least useful features used by itself 

for sentence ranking and it performed, in the evaluation, worse than random ordering of 

the sentences (Table 7).  

In further experiments we used equal feature weighting in the sentence ranking algorithm 

and leave-one-out performance (MAP score calculated with the rest of the features when 

one individual feature is left out) as measure for individual feature performance and 

obtained similar results (Table 8). Note that in post-hoc studies, by increasing the number 

of CluSim terms, this conclusion was revised.  

Since the equal feature weighting scheme performed a little better than the scheme used 

in evaluation, in post-hoc studies, the equal feature weighting scheme was used as a 

standard of comparison. 
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Table 7. Each individual feature’s contribution as shown in MAP scores for 

sentences ordered by each feature alone. It appears that TPword was the most useful 

single feature while CluSim was the least useful for sentence ranking. 

Outputs MAP 

System 0.739601 

Random 0.68166 

CluSim 0.675697 

Ngene 0.705838 

Ctword 0.718035 

Tpword 0.75364 

Length 0.726827 

Recency 0.716046 
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Table 8. Each individual feature’s contribution as measured by leave-one-out MAP 

scores. In the table, the MAP score difference between leave-one-feature-out 

ranking and the original system (with all features) were displayed for each of the six 

features. The experiment gave similar results as in Table 6. TPword appeared to be 

the most useful feature – taking it out of  the full system lowered the performance by 

-.023 while CluSim was the least useful for sentence ranking - showing improvement 

of performance if CluSim is left out. 

Left out feature MAP score with one 

feature left out 

MAP score  difference 

between leave-one-

feature-out ranking and 

original system output 

All features, equal 

weight 

0.742643 0 

CluSim 0.744556 + 0.001910 

Ngene 0.740432 - 0.002210 

Ctword 0.737308 - 0.005334 

Tpword 0.719519 - 0.023124 

Length 0.733589 - 0.009054 

Recency 0.720938 - 0.021705 
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4.5 Demonstration of generalizability 

The human gene information summarization system was built by substituting a human 

gene and protein name entity recognition and normalization system [45]. The system was 

implemented and became functional after one person/one day’s coding and testing. It is 

currently hosted at http://ir.ohsu.edu/jianji/human_gene. Further analysis of the quality 

and effectiveness of the human system was not the focus and was not performed for this 

dissertation.  

 

4.6 Post-hoc optimization of sentence selection scheme 

The sentence ranking evaluation results indicated that the CluSim feature was not as 

useful as the other features. With the sentence relevance judgment ‘gold standard’ 

obtained from the evaluation process, the sentence ranking scheme was optimized by 

testing the influence of clustering algorithm on the usefulness of the CluSim feature in 

sentence ranking. Recall that the sentence score was calculated as: 

S=  w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword  

+ w5 TPword + w6 L + w7 Recency 

where w1-7 are weight parameters between 0 and 1 for each feature.  
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4.6.1  CluSim feature improvement 

By varying the clustering parameter, the following experiments tried to improve the 

usefulness of the CluSim feature contribution and the overall sentence ranking efficiency. 

The test results suggested that lowering the cluster size (and increasing the number of 

clusters), i.e., the genes in the clusters became more homogenous, could improve the 

usefulness of the CluSim parameter and improve the overall MAP score. In an experiment 

where the size of clusters was set to four (note that in original setting the average size of 

the clusters generated was seven.)  CluSim’s contribution was higher than ctword and 

ngene whereas it was not so effective with the original clustering algorithm settings 

(Table 9). Note that when the number of cluster parameter was set to a fixed number, 

CLUTO will attempt to generate clusters of defined size but final size may vary from 

cluster to cluster, i.e. there may be a cluster of size two, three, four, five or six, depending 

on the natural property of the gene sets.  

Another experiment tested the influence of the size of the CluSim features to its 

contribution in the overall MAP score of the sentence ranking scheme. With all other 

clustering parameters remained the same as the original setting (cluster number was 

decided at run-time as explained in section 3.1.4), the size of the descriptive features 

from each CLUTO cluster was changed from five to ten, fifteen and twenty. The results 

suggested increasing the feature size improved the CluSim feature from not useful (Table 

8) to a useful effect (Table 10).  
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Table 9. Overall system performance and individual features’ contribution to the 

final MAP score when the cluster size parameter for CLUTO was set to four. In the 

table, the MAP score and the difference between leave-one-feature-out ranking and 

the full system (with all features) were displayed for each of the six features. All 

individual features contributed to the final MAP score, with recency and tpword 

being the highest contributors and ngene and ctword the lowest. Decreasing the size 

of the cluster seemed to generate better CluSim features for the summarization 

process. 

Left-out 

feature 

MAP score with 

one feature left 

out with original 

settings 

MAP score  

difference from 

the full system 

with original 

settings  

 MAP Difference 

from the full 

system 

All features, 

equal weight 

0.742643 0 0.756748 0 

CluSim 0.744556 + 0.001910 0.744556 -0.012192 

Ngene 0.740432 - 0.002210 0.752581 -0.004167 

Ctword 0.737308 - 0.005334 0.750881 -0.005867 

Tpword  0.719519 - 0.023124 0.736845 -0.019903 

Length 0.733589 - 0.009054 0.745768 -0.010980 

Recency 0.720938 - 0.021705 0.736575 -0.020173 
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Table 10. Overall system performance and individual features’ contribution to the final MAP score with the size of the 

descriptive features in the CluSim feature in the sentence ranking scheme set to 10, 15 and 20. In the table, the MAP 

score and the difference between leave-one-feature-out ranking and the full system (with all features) were displayed 

for each of the six features. Increasing the size of the CluSim feature seemed to improve its contribution for the 

summarization process comparing to the original setting of size five.  

Size of the CluSim 

feature =5 

Size of the CluSim 

feature =10 

Size of the CluSim 

feature =15 

Size of the CluSim feature 

=20 

Outputs 

MAP Difference 

from the 

full system 

MAP Difference 

from the 

full system 

MAP Differenc

e from 

the full 

system 

MAP Difference 

from the 

full system 

System 0.74264 0 0.75490 0 0.75212 0 0.75517 0 

CluSim 0.74456 + 0.00191 0.74451 -0.01039 0.74464 -0.00749 0.74464 -0.01053 

Ngene 0.74043 - 0.00221 0.75557 -0.00067 0.75066 -0.00147 0.75375 -0.00141 

Ctword 0.73731 - 0.00533 0.75108 -0.00381 0.74622 -0.00591 0.74874 -0.00643 

Tpword 0.71952 - 0.02312 0.72786 -0.02704 0.72202 -0.03010 0.72723 -0.02793 

Length 0.73359 - 0.00905 0.74956 -0.00533 0.74393 -0.00819 0.74711 -0.00805 

Recency 0.72094 - 0.02171 0.73872 -0.01618 0.73600 -0.01612 0.73800 -0.01717 
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4.6.2  Effect of length factor threshold 

The effect of length factor threshold (originally set to 20) to discount longer sentences 

was also tested by varying the value to 10 and 30. The clustering parameters were kept in 

the original setting, i.e., real-time generation of clusters, CluSim feature size set to five. 

The result indicated that length factor threshold did not seem to affect the usefulness of 

the length feature, since for the values of 10, 20 and 30, the contribution of length in the 

sentence ranking algorithm were about the same at 0.009 (Tables 8 and 11). 
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Table 11. Overall system performance and individual features’ contribution to the final MAP score with the value of 

sentence length factor threshold set to 10 and 30. In the table, the MAP score and the difference between leave-one-

feature-out ranking and the full system (with all features) were displayed for each of the six features. Varying the value 

of the threshold seemed to have no effect on its contribution for the summarization process.  

Length factor threshold =10 Length factor threshold =20 Length factor threshold =30 Outputs 

MAP Difference from 

the full system 

MAP Difference 

from the full 

system 

MAP Difference 

from the full 

system 

System 0.74327 0 0.74264 0 0.74246 0 

CluSim 0.74835 +0.00508 0.74456 + 0.00191 0.74316 +0.00071 

Ngene 0.74225 -0.00101 0.74043 - 0.00221 0.73919 -0.00326 

Ctword 0.74450 +0.00123 0.73731 - 0.00533 0.73967 -0.00279 

Tpword 0.72130 -0.02197 0.71952 - 0.02312 0.71722 -0.02523 

Length 0.73359 -0.00968 0.73359 - 0.00905 0.73359 -0.00887 

Recency 0.72748 -0.01579 0.72094 - 0.02171 0.72043 -0.02203 
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4.6.3  Optimization of the sentence scoring scheme 

Final full post-hoc optimization of MAP was done using the Constrained Optimization 

By Linear Approximation (Cobyla) interface module in scipy
18

. All the system settings 

remain the same as in the original evaluation except that the size of CluSim features =10 

because this level gave the best result.  

Again, the sentence score was calculated as: 

S=  w1 CluSim + w2 QuFreq + w3 NGene + w4 CTword  

+ w5 TPword + w6 L + w7 Recency 

where w1-7 are weight parameters between 0 and 1 for each feature.  

W2 is set to zero again since this feature was not used and it is presented in the formula 

only for model completeness. The optimization was performed on the other six 

parameters. Eight constraints were passed to the algorithm:   

wi >=0, i=1, 3, 4, 5, 6, 7 

S wi -1 >=0, i=1, 3, 4, 5, 6, 7, and  

1- S wi  >=0, i=1, 3, 4, 5, 6, 7 

There were several local optimal points depending on the initial starting point. With the 

initial guess for the sentence ranking parameter vector set at equal weight for each 

feature, i.e. [wi, i=1, 3, 4, 5, 6, 7] = [0.166, 0.166, 0.166, 0.166, 0.166, 0.166], and after 

81 iterations, the optimization process converged to MAP = 0.7654 with feature weight 

                                                 
18

 http://www.scipy.org/doc/api_docs/scipy.optimize.cobyla.html 
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vector [wi, i=1, 3, 4, 5, 6, 7] = [0.223, 0.089, 0.004, 0.484, 0.004, 0.195]. In this 

optimized setting, the order of feature importance is tpword, CluSim, recency, ngene, 

ctword and length. Using the rounded-up feature weight scheme, [wi, i=1, 3, 4, 5, 6, 7] = 

[0.2, 0.1, 0.0, 0.5, 0.0, 0.2], the system performance was at MAP = 0.7651. This MAP 

score is only a little higher than before optimization with equal feature weighting scheme.  
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Chapter 5. Discussion 

5.1 Functional gene clustering 

In general, the clustering algorithm gave better gene groups than random as supported by 

the fact that clusters generated by both MeSH and GO terms were considered 

significantly better than random grouping of genes. The comparison between the feature 

types showed insignificant differences; even though the confidence interval ranges and 

trend suggested that MeSH and GO may be better than text as features for clustering. The 

observed power of the test indicated that the sample size of 10 genes may be too small to 

give enough power to distinguish between the different features. Future work should 

include more biologists for testing, preferably during their real use of the system because 

the experimental setting of test had some limitations which are discussed next. In 

addition, the system allowed for any combination of features to be used for clustering, but 

how different clustering feature combinations fare against the single feature types used in 

this study was not studied here and remains for future work.  

The result of the paired testing of before and after showing keywords of the clusters 

indicated that the preference of the participants was not influenced by the keywords 

significantly. It appeared that the perception of a good cluster did not depend on the 

scientist knowing the clusters descriptive terms significantly. Once the participants found 

the meaningful cluster, they were likely to stick with it even after seeing the keywords. 

While the difference was small, the participants had a slight preference in GO or MeSH 

clusters over text clusters after they saw the keywords. This was consistent with the 

findings in the first part of the evaluation. It suggests that controlled vocabularies fare 
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better than text words for generating clusters. Controlled vocabularies usually have more 

domain-specific content, which may be able to give more information to users.  

The clustering algorithm, direct k-means, used in this project was from the CLUTO 

clustering suite. The number of clusters (N) is one parameter that needed to be specified 

for the algorithm. The selection of N is difficult because it highly influences the number 

of genes in each cluster and the quality of the cluster. Since the number of input gene list 

genes covers a fairly wide range, the selection of N using the relative change of internal 

similarity seemed a better choice than presetting a defined number. But this selection 

scheme was probably not optimal. The post-hoc experiment setting the cluster size to a 

defined value seemed to improve the CluSim feature’s contribution, to the extent that a 

poor CluSim feature became a helpful one for sentence ranking. Even though this may 

not necessary be interpreted as improvement of cluster quality, it is an indication that the 

cluster keywords represent the genes in the cluster better, and were more useful in 

selecting good quality sentences. The proper way to determine N given the size of the 

gene list and the quality of the clusters is another area of further work. The determination 

of N can also be done by other algorithms that specialized in finding number of classes in 

a large dataset such as AUTOCLASS as used in [31]. Other clustering algorithms such as 

ANT [48] that do not require the input of N are another area to investigate. 

During the cluster-quality-judging experiment, we found that judging cluster pairs was 

not an easy task for the scientists. Even though each cluster had at least one of the genes 

they chose as familiar, it was very common that some genes in the cluster (with average 

size of 8 genes) were not familiar to them. In order to judge the quality of the cluster, 
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they need to follow links in the evaluation screen for information on other genes in the 

cluster. This created a larger than expected work load for the evaluators and by the end of 

the session, they make their best judgments without going through the information for 

not-so-familiar genes, possibly due to fatigue. This was also the reason each participant 

was asked to judge clusters on only two genes, which already amounted to 12 cluster 

pairs in our experimental design. The fatigue factor may also have influenced the quality 

of the judgment. In order to overcome the difficulty of getting experiment participants 

and ensure the quality of the judgment, it will be better to conduct future evaluation 

experiments in a real-world use setting, similar to extrinsic evaluation, instead of system 

evaluation such as we have done here. For example, when the researchers are using the 

system to help them do research on a microarray result gene set during the normal course 

of their workflows, the system could log the clicking and timing of the participants in 

addition to the defined questions presented to the participants. 

How to best measure the quality of clusters is still in general an issue, especially in this 

case, where we define quality as how meaningful the clusters were for a specific 

microarray experiment. Some analytical measures, such as internal and external 

similarities, entropy and mutual information, may not correlate closely. These measures 

are commonly used to quantify the quality of the clusters in many comparative 

experiments [36]. No work so far has been done on how the purity of the cluster as 

defined by these statistical measures correlates with the biological meaning of the clusters 

for a user. Furthermore, in this study, the raw gene list from the experiment was 

clustered. By nature, the gene list contains genes that were differentially expressed and 
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most likely from many different pathways and groups especially considering many genes 

may perform multiple functions.  We expect the list to be harder to cluster than choosing 

several distinct known gene groups, such as GO and cell cycle groups and try to cluster 

them to the right class, which is the most common evaluation method used [31,36,37]. 

The GICSS system takes in differentially expressed gene name lists input by scientists 

with no pre-defined criteria for ‘differentiated expressed’ such as a certain FDR cutoff 

level. As indicated in the evaluation gene sets, the criteria for the selection of the gene set 

varied (Table 3). If the input gene set was selected by a loose criterion, it is likely the 

some genes from pathways other than those that are modified by the testing biological 

conditions would be included. The resulting clusters generated by the algorithm with 

these ‘contaminated genes’ will more likely to be less favorable. 

 

5.2 Sentence extraction summarization 

Providing sentences in the abstract gave much more relevant information than titles. All 

three measures (average precision, P@5 and P@10) showed significant differences 

between the system output and the PubMed search output. These results suggested it may 

be useful for the PubMed result list to include highlighted keywords from the sentences 

in the abstracts to provide more information to the searchers. In the current title-only list, 

some relevant articles may be missed because the titles do not provide enough 

information to warrant further exploration of the abstract, especially when the returned 

list is long.  
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The GICSS system output using the scoring algorithm in point estimate consistently gave 

higher MAP, mean P@5 and P@10 scores than presentation of the same sentence set by 

reverse chronological order, even though the difference is not significant at 0.05 level in 

post-hoc analysis with multiple comparison adjustment. Further analysis of the relation 

between recency and relevance indicated that the more recent the date of publication, the 

more likely the sentence be judged as relevant. This is a little surprising because the 

intention to include recency in the scoring algorithm was mainly to provide the most 

recent information first and relevance was not the initial consideration. This relation may 

be explained by the fact that the experts doing the relevance judgment were to a certain 

extent aware of the knowledge accumulation timeline of the specific genes. It seems that 

this is a good assumption because the experts were instructed to select two genes they 

were familiar with to perform the evaluation. Because of their pre-existing knowledge of 

the genes, they were likely to pick the newly discovered information as more relevant 

than the well-known facts on the genes.  

Domain specific ontology terms as in Textpresso ontology improved results consistently 

as indicated by this being the highest single feature MAP and highest contributor in all 

different setting schemes we have tried. In addition, it ranked the first in the final 

optimization process with a optimal weight at 0.5. It suggested that the domain specific 

terms can be very useful to identify important sentences. In addition, it may be used in 

the clustering process as a domain specific term database to filter text terms to improve 

on the effectiveness of clustering with free text features. With the domain specific term 
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filter, the free text terms can be better representing the biology content of the abstracts 

discussing the gene. More on this issue is discussed in the Future Work section. 

While the domain-specific terminology provides a good indication of sentence 

importance, the non-domain specific features such as cue words and length of the 

sentences might also be helpful in selection of relevant sentences. Even though the final 

optimization indicated the contribution of these two features were minimal, the other 

experimental results suggested that they did contribute to a certain degree. Also note that 

the optimization presented was one of the local maximums while other maximums 

specified higher weights for cue term and sentence length. The fact that slightly different 

weighting scheme gave similar local maximums suggested that the features used in the 

sentence scoring algorithm were providing redundant information and may be correlated. 

Even though it was inconclusive that the non-domain specific features were helpful in 

this study in the biomedical domain, including cue terms/phrases and length to help the 

construction of summaries has been used widely in automatic summarization works of 

the news and other domain articles[10,49]. This has not been used much in the 

summarization of biomedical domain, such as [42,50]. Due to the limitation of time and 

resources of this dissertation, the cue word list was assembled by the author (who has a 

biological background) after reading the top one hundred PubMed abstracts returned with 

the search term ‘gene’.  Further expansion of the list by other domain experts would be 

very valuable. It is also interesting to study if the cue words in biomedical domain differ 

from other domain. To the author’s knowledge there have not been any studies on the 

topic. 
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In the original implementation, the size of keywords for the cluster (CluSim) was set to 

five and the results of the evaluation seemed to indicate that it did not seem to help much. 

In the original implementation, inclusion of this feature lowered the MAP score of the 

system output comparing to scheme that left this feature out. CluSim is the feature we 

would like to use to include the context for the sentence selection. It usually represents 

the overall information for the whole cluster instead of specific information in that 

particular gene. Therefore, one possible reason that CluSim was not so useful in the 

original implementation may be that the users prefer specific information represented by 

the ontology terms rather than the general knowledge about the gene group functions. In 

order to test if different cluster parameters and more descriptive keywords may be able to 

better capture the cluster information, we varied the cluster size and the number of 

keywords used in the CluSim feature in the post-hoc experiments to test the effect of their 

influence to the sentence ranking scheme. The results seemed to suggest that feature 

terms from more homogenous clusters as well as larger feature sets could improve the 

contribution of the CluSim feature in the sentence ranking scheme. In fact this change 

made it a positive feature, and the COBLYA optimization showed it to be the second best 

feature. One explanation can be that the CluSim terms (descriptive terms for clusters) are 

mostly domain specific terms as in GO and MeSH. Therefore, increasing the number of 

the CluSim words increases the domain specific feature weighting, i.e., similar to the 

TPword feature. On the other hand, this assumption did not explain why decreasing the 

cluster size (more homogenous cluster) can improve the contribution of CluSim feature. 

Furthermore, it did not explain the fact that using a smaller size feature set rendered the 
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feature to negative contributor. Therefore, a more likely explanation is that the quality of 

the clusters and the richness of the descriptive features for each cluster are important for 

the usefulness of the CluSim feature.  

The GICSS system supports the use of query term in selecting the important sentences. In 

this way, it gives the users more leverage in getting the information of interest. For 

example, they can enter a disease’s name in order to retrieve sentences referring to the 

gene and the disease. Hopefully, this feature can provide customized sentences 

presentation to fit different needs of the users. Due to the limited resources and increased 

need for user initiative this feature was not evaluated in the study.  

In the post-hoc optimization, the final optimized MAP score was only a little higher than 

MAP achieved by equal weighting scheme before optimization. This may indicated that 

the features used in scoring were unable to distinguish relevant sentences. Testing more 

features that could be as useful as the TPword is part of future work. 

The evaluated version of GICSS was tuned by the two sets of sentences. Since there are 

six parameters and use only two examples for adjustment, there were obviously not 

enough data to fully tune the system. The results of post-hoc experiments suggested that 

the system could achieve better performance when tuned by all the data points collected 

in the evaluation. On the other hand, data from only ten genes may be still too little to 

fully tune the system. If data can be collected during the real use of the system, it will be 

very useful in choosing a better weighting scheme. Therefore, distributing of the system 

for the real users is of high importance once all the evaluation and testing is done.  
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The system is built on top of a gene name recognition system (NER), the accuracy of 

which influences the result of both clustering and sentence selection. Our NER achieves 

state-of-the-art accuracy at 70-80% [51], but the 20% error rate can cause some mistakes 

cascading down to sentence extraction. For example, two genes (20% of the tested genes) 

got low MAP scores. One of them was because the sentences were in fact about other 

genes with identical symbols. The other is because the gene symbol for the gene has a 

synonym identical to a DNA motif. A module to deal with this type of error can be added 

to the preprocessing step to disambiguate the gene/protein names in the sentences. This 

would help to avoid the problem of sentences that have information on totally different 

genes being mixed with sentences of the gene of interest and therefore achieving better 

performance. 

The NER system does not make any distinction on whether the entity mentioned is 

protein or gene. In fact, it is very difficult to distinguish between these two types of 

entities, since the use of gene name and its protein products is mostly interchangeable in 

the literature, and in many cases can only be inferred from the surrounding context. Is it 

important to separate the sentences on a gene and the sentences on its protein product? It 

might be important because the system is focusing on analysis of microarray experiment 

data and the scientists usually are more interested in information on genes instead of 

proteins. On the other hand, the information of both gene and the protein gene product 

may be of great interest because proteins are the entities that influence the physiological 

activity. The GICSS system currently cannot specify the sentences on genes only, but 

presents sentences for both gene and protein. At the present time it is unclear whether this 
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distinction is important for systems such as GICSS. Supporting this distinction will rely 

on the development of better NER systems. 
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Chapter 6. Limitation and Future Work 

There were limitations of this study but also avenues for future work. In order for the 

GICSS system to be of real use for the genomic research community, it is important to 

make the system available to researchers by integrating it into the current microarray 

analysis workflow. As far as improvements on the algorithmic aspects of the system, 

further directions include the following.    

First, the text collection for this study is a snapshot of the MEDLINE records. In this 

study, we use a static collection of MEDLINE records from 1994 to 2003. An obvious 

limitation to this approach is that it does not have the data of the rapid advent of the field 

in more recent years. This can be easily remedied by downloading MEDLINE records 

from the NLM website. After these development and evaluation processes, the dataset 

will be updated automatically each week to include the current data from MEDLINE. 

Second, it contains only abstracts, while more information is in the full text of the 

articles. Especially if we try to analyze at transcript level, the information is more likely 

in the full text instead of the abstract. Even though full text articles are still not easily 

accessible currently, we expected the increase in publicly available electronic texts. This 

assumption is supported by the open access movement resulting in not only Biomed 

Central and PubMed Central, but even for commercial publishers, the trend is that more 

journals are offering their subscribers and even the public the electronic version of their 

publications. Another direction for future research is to incorporate available full text in 

the system and compare with abstract only system. The full text can give us more 

information, hence providing more details that an abstract can never cover. On the other 
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hand, with full text, certainty of the meaning of the sentences may be an issue, since 

some sections of the full text such as discussion may include speculation and hypotheses. 

Further work can also be done to improve the effectiveness of the clustering algorithm. 

The CLUTO clustering suite has several different types of algorithms that can be plugged 

in to test the effectiveness of clustering. In addition, the GICSS system uses the cosine 

distance as a measure of similarity. This did not take into account the concept structure of 

the terms used as features for clustering. This semantic relation represented in the 

hierarchical structures of domain terminologies could be used to improve to quality of 

clustering. Future work should include testing on the use of semantic distance as 

similarity measurements, especially for GO and MeSH terms, which have hierarchical 

structures, possibly to achieve better performance [52]. 

The text feature for clustering did not perform as well as the other two features. Note that 

the text feature was processed only by stop-word removal, stemming and tfidf weighting. 

In order to make better use of the free text feature, further filtering and different 

weighting of the text content by its biological information density should be helpful. 

Some of the prior work in this area includes Andrade’s study on way to automatic 

extraction of keywords from text articles [53] and Liu’s study on comparison of two 

feature extraction and weighting schemes[36]. We can adapt their approaches of giving 

different weighs to different text terms to improve the text feature gene functional 

clustering results.  
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The GO terms used in the clustering process were pooled together disregarding the 

confidence of the assignment. Future work includes working on possible utilizing the 

evidence codes for each term to assign different weighs for the terms. 

Another area of future work is to test the use of NLP techniques. GICSS does not use 

much advanced Natural Language Processing (NLP) techniques, such as part of speech 

tagging, semantic parser, word sense disambiguation, co-reference and anaphora 

resolution. There were both advantages and disadvantages for not using NLP. The most 

notable advantage is speed. The system can process gene list containing up to 300 genes 

smoothly (around three minutes), while some of the system using NLP in real time were 

slow when processing less than 50 gene names [50,54] (personal experience with the 

website versions in December, 2006: [50] took over ten minutes and [54] never gave 

results.). NLP can be very useful in extracting predefined information in templates. But it 

is also limited by the predefined template. The GICSS system can extract useful 

information in general with no restriction to certain functional types and language 

templates. Finally, the updating of the templates in NLP is usually time-consuming and 

might also be influenced by different writing styles of the authors. On the other hand, the 

disadvantages of using word modeling instead of NLP include that it is not possible to 

deeply understand the meaning of the sentences. There is no detailed knowledge, such as 

the direction of the relation -- protein A activates the expression of gene B ; cause and 

effect relation – disease C is caused by the defects in gene D. The information presented 

by the system is more generic but not as detailed as processing by NLP may possibly 

provides. With NLP’s advantages and disadvantages discussed, it will be interesting to 
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study if adding these features will improve the performance and how to balance the 

improvement of performance if there is any, with the sacrifice of speed. 

The type of NLP used in GICSS is name entity recognition. Gene and protein name entity 

recognition, synonym detection and normalization are important first steps in the process, 

on which the system’s accuracy depends heavily. It has been noted that gene name 

ambiguity is low (5%) intra-species and high (85%) inter-species [45]. It makes sense to 

limit the study to mouse, since NER system for mouse achieves the highest accuracy of 

all the vertebrate species. But the decision to limit the system to one species also limits 

the potential application of the system. In addition, articles on the orthological gene in 

other species (especially close related species, e.g. human and mouse) will potentially 

provide significant information for the scientists. The GICSS system currently does not 

support searching of sentences regarding other species. One way to remedy is mapping to 

orthological genes from the different species and retrieves all available sentences. The 

drawback is that it will cause higher level of false positive hits due to the error in NER in 

other species and the added source of error in mapping. The effectiveness of this 

approach can be a direction in future work.  

In the dataset used in the project, the number of publication on genes varies greatly from 

gene to gene. As mentioned before, the number of sentences for the genes in the 10-year 

MEDLINE abstract on mouse is ranging from one to 29,203. In general, the highly 

different level of publication related to different genes reflects the fact that some genes 

are well-studied and some are barely worked on. For highly studied genes the feature sets 

are much richer than the genes that have very few abstracts/sentences published on them. 
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This fact may very likely influence the result of the clustering process, resulting in 

clusters skewed by the level of publication. The same problem exists for the combination 

of the three features (text, MeSH and GO) too. The number of GO terms assigned to each 

gene is usually much fewer than the text word from the sentences. When combining these 

features, how to compensate for the impact of richness of the feature is another future 

research direction.  

Furthermore, the genomic research technologies are advancing at a fast pace. This trend 

is reflected in the publication by the appearance of articles describing the results from the 

experiments using these technologies. The text processing and understanding community 

working in biomedical domain is always trying to catch up with the need of the 

experimental community, but still lagging behind. For example, microarray can now 

measure expression level at the granularity of transcripts. Since the same gene region can 

be transcribed into different splices (transcripts of mRNA) in different cell condition, or 

different time point in development, this finer granularity gives scientists more insight 

into the mechanisms of the gene functions. At present, not much literature mentions 

transcripts, at least not in the abstract. Hence, the language processing community has not 

yet been focusing at this level of granularity for name entity recognition, but as the 

literature on the different transcripts from the same gene accumulates in the future, NER 

for transcripts may be next area of research. Based on the currently available NER 

applications, the GICSS system is only able to work at the gene entity level but not as 

fine as transcript level. Thus, different transcripts from the same gene are forced to map 
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to the same gene name during the input step to the system. Since the GICSS system aims 

at helping microarray analysis, this limitation potentially has the following two scenarios:   

1. Different transcripts of the same gene have the same type of regulation pattern 

(up/down regulation) and show in the input list as duplication of gene names 

with different fold change.  

2. The different transcripts have opposite type of regulation pattern, i.e. one up 

and one down regulation, and show in the input list as contradiction, which 

also leads to the problem of how to color-code that gene and difficulties in 

interpretation. 

Even though we do not have the capacity to analyze our text collection at transcript level, 

in this version, the GICSS system implements the feature to highlight these duplication 

and contradiction for users and remind them the degenerative nature of mapping 

transcripts to gene name. In future work, incorporating the capacity to handle text at gene 

transcript level will be one of our directions. In order for text analysis to achieve at this 

finer level, large amount of publication describing experiment results in transcript level is 

required. Furthermore, NER systems that aim at recognizing transcript names will be 

essential too. We would work on identifying transcript names in free text and the 

mapping between gene names and available transcripts. Once the literature reaches the 

significant threshold, we will be ready to analyze and conduct further studies. 

Finally, in the user-interface aspect, there are areas that can be tested in order to give the 

users more options to adjust the system to their use. Since GICSS is aimed to help the 

microarray scientists explore their gene sets obtained from the experiments, it would be 
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to the advantage of the users that in addition to one predefined default setting, the system 

allows them to adjust some of the parameters, such as, the number of clusters, weigh of 

sentence scoring algorithm to return different clusters. This way, they can explore the 

difference of the settings and decide which setting is best for the gene set. This notion of 

allowing users to set some of the parameters is common in the statistic analysis software 

available for the gene expression profile analysis of the micro-array data. Some of the 

options, such as selection of features, stemming and number of sentences were available 

in the current system. This could be a valuable area for future work. 
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Chapter 7. Conclusions 

A gene information summarization system was built and evaluated for mouse genome 

researchers working with a large gene list micro-array experiment results. This system, 

GICSS, aimed to fit between the expression pattern analysis and finding supporting 

evidence from the literature.  

The results of the evaluation indicate that the functional gene clustering approach can 

generate meaningful gene clusters using both MeSH and GO term features. There is no 

significant difference between the use of the different features (MeSH, GO and TEXT) as 

identified by this evaluation, even though the evaluators seemed to prefer clusters built on 

GO and MeSH features over text features.   

By presenting the sentences from the abstract, the system can provide more relevant and 

important information to the users than standard methods such as PubMed search output 

with titles ranked by reverse chronological order. This result suggested that an 

uninformative title in the search result may have the user miss important information in 

the abstract. Both domain specific ontology terms and non domain specific general 

language features are useful in the selection of important sentences.  

The system used unsupervised learning that does not depend on predefined categories and 

requires no training data, which is usually hard to get and requires retraining over time. 

This may make the system more generalizable. The generalizability of the system to other 

species was also demonstrated by the implementation of human gene information system. 

In the evaluation, we tried to mimic the real life microarray data analysis situation to 
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measure the true usefulness of the clustering algorithm as judged by the participants 

working with their own data, as versus to other popular internal hard measures of cluster 

similarity or the effectiveness of classifying predefined distinct gene groups.  

Future work will include distributing the system to generate real use by the scientists in 

genomic research while working on improvements to the algorithm and automating 

database updates. 
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 Appendix 1. Screen shots 

 

 
 



 

98 

 



 

99 

 



 

100 

 
 



 

101 

 
 



 

102 

 
 



 

103 

Appendix 2. Excluded English stop words can be accessed at 

http://ir.ohsu.edu/~jianji/gene_info/static/english.stop 
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Appendix 3. Cue words can be accessed at 

http://ir.ohsu.edu/~jianji/gene_info/static/key_terms.txt 

.
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Appendix 4. Table of GO terms that are associated with MGI_ID form MGI. 

Can be accessed at http://ir.ohsu.edu/~jianji/gene_info/static/MGI_GO 
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Appendix 5. Queries for PubMed searches for the ten genes. 

 

Cyp2j5: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=cyp2j5+OR+cyp2j-5 

 

frk: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=frk+OR+c85044+OR+bsk/

iyk+OR+bsk+OR+rak+OR+c-85044+OR+gtk 

 

kcnj9: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=girk-

3+OR+girk3+OR+kcnj9+OR+kcnj-9+OR+mbgirk3+OR+mbgirk-3+OR+kir3.3 

 

pglyrp1: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=tag7+OR+tnfsf-

3l+OR+pgrp+OR+pgrps+OR+pglyrp-1+OR+tasg7+OR+tasg-7+OR+pgrp-

s+OR+pglyrp1+OR+pglyrp+OR+tnfsf3l+OR+tag-7 

 

adamts1: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=adamts1+OR+c3c5+OR+m

eth1+OR+adamts+OR+adamts5+OR+adamts11+OR+asmp2+OR+implantin+OR+ai4810

94 

 

clca1: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&term=clca1+OR+cacc 

 

cxcl12: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=sdf-1alpha+OR+sdf1-

b+OR+sdf1-a+OR+sdf-1b+OR+sdf-1a+OR+sdf-1-b+OR+sdf-1-

a+OR+pbsf/sdf1+OR+pbsf+OR+ai-

174028+OR+sdf1b+OR+sdf1a+OR+tpar1+OR+sdf1+OR+sdf1beta+OR+ai174028+OR+

scyb12+OR+sdf-1-alpha+OR+cxcl12+OR+sdf1-alpha+OR+sdf1-beta+OR+cxcl-

12+OR+tlsf+OR+sdf-1beta+OR+pbsf/sdf-1+OR+tlsf-b+OR+tlsf-a+OR+sdf-1+OR+tpar-

1+OR+tlsfa+OR+tlsfb+OR+scyb-12+OR+sdf1alpha+OR+sdf-1-beta 
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irak3: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=ai-563835+OR+irak-

m+OR+irak-3+OR+ai563835+OR+4833428c18rik+OR+irak3+OR+irakm 

 

ptx3: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&sort=pub+date&term=pitx-

3+OR+pitx3+OR+ptx-3+OR+ptx3 

 

usp18: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=Pubmed&retmax=1&usehisto

ry=y&mindate=1994&maxdate=2003&term=usp18+OR+1110058h21rik+OR+aw04765

3+OR+ubp43+OR+ubp15 
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Appendix 6 Sentence relevance judgment files can be access at: 

http://ir.ohsu.edu/~jianji/gene_info/eval/sentence 
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Appendix 7. Major codes 

 

##########  Index.py 

########## entry point: get input from user by uploading file 

 
import os,tempfile 

from mainhtml import * 

from localUtil import * 

from option_class import * 

from checkRec import * 

 

if not QUERY: 

  option=options(1,['A','C','D','F','G','H'],3,100,0,0,1,5) 

  Session().option=option 

  print mainhtml 

 

elif not _filename=='': 

 

    f = _filename.file # file-like object 

    dest_name = tempfile.mktemp(dir='.') 

    out = open(dest_name,'wb') 

    # copy file 

    import shutil 

    shutil.copyfileobj(f,out) 

    out.close() 

    infile=open(dest_name,'r') 

     

    duplicate=[] 

    genes={} 

    for line in infile.readlines(): 

      if line.strip(): 

        geneS,fold=line.strip().lower().split('\t') 

        gene=geneS.strip() 

        if genes.get(gene,0): 

          duplicate.append((gene,genes[gene])) 

          duplicate.append((gene,fold)) 

        else: 

          genes[gene]=fold 

     

    infile.close() 

    os.remove(dest_name) 

     

    for g in genes: 

      if float(genes[g])<0: 

        genes[g]=(genes[g],'green') 

      else: 

        genes[g]=(genes[g],'red') 

         

    gene_id, no_record=check_no_record(genes.keys()) 

     

    Session().gene_id=gene_id 

    Session().genes=genes 

    data = { 

    'duplicate': duplicate, 

    'gene_id': gene_id, 

    'no_record':no_record, 

    'count':len(gene_id), 
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    'genes':genes} 

     

    merge('second.html', data) 

     

else: 

    print errPage2 
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###### Index2.py 

###### entry point, get input from user by manual entering of genes 

 

import sys 

from mainhtml import * 

from localUtil import * 

from checkRec import * 

 

def error_exit(): 

    print errPage1 

 

def parse_input(): 

    genes={} 

    duplicate=[] 

    firstline=1 

    for item in list(_names[0].strip().split('\r\n')): 

      if firstline: 

        if ':' in item: 

          sep=':' 

          firstline=0 

        elif '\t' in item: 

          sep='\t' 

          firstline=0 

        else: 

          error_exit() 

          return 

           

      geneS,fold=item.strip().lower().split(sep) 

      gene=geneS.strip() 

      if genes.get(gene,0): 

        duplicate.append((gene,genes[gene])) 

        duplicate.append((gene,fold)) 

      else: 

        genes[gene]=fold 

    for g in genes.keys(): 

        if float(genes[g])<0: 

          genes[g]=(genes[g],'green') 

        else: 

          genes[g]=(genes[g],'red') 

           

    gene_id, no_record=check_no_record(genes.keys()) 

     

    Session().gene_id=gene_id 

    Session().genes=genes 

     

    data = { 

    'duplicate': duplicate, 

    'gene_id': gene_id, 

    'no_record':no_record, 

    'count':len(gene_id), 

    'genes':genes} 

     

    merge('second.html', data) 

if not _names[0]: 

    error_exit() 

       

else: 

    parse_input() 
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######  term_modeler.py 

###### build gene model using GO, mesh and text word 

 

import os, tempfile 

from localUtil import * 

from cluto import * 

from GOTerm import * 

from mesh_text import * 

 

gene_id=Session().gene_id 

maxAbs=Session().option.maxAbs 

meshSub=Session().option.meshSub 

stem=Session().option.stem 

minWordLen=Session().option.minWordLen 

   

    

      

delta=0.035 

inc=0.01 

gene_term={}   # dict with key gene name, value is dict of go term counts 

mesh_term={} 

no_record=[] 

 

if Session().option.GO: 

  gene_term.update(get_go_term(gene_id,Session().option.goFactor)) 

 

mesh_term, gene_pmid=get_mesh(gene_id,meshSub,maxAbs,minWordLen,stem) 

# need to separate the mesh subcategory selection from inside get_mesh in 

localUtil!!!!! 

 

Session().gene_pmid=gene_pmid 

 

# merging go and mesh terms 

 

if Session().option.mesh: 

    gene_term.update(mesh_term) 

 

# if using word features 

if Session().option.wordFeature: 

    word_term=get_geneWord(gene_pmid,minWordLen,stem) 

    gene_term.update(word_term) 

 

# find genes with no record ({} gene_terms) 

for gene in gene_id.keys(): 

    if not gene_term.has_key(gene): 

      no_record.append(gene) 

    elif not gene_term[gene]: 

      no_record.append(gene) 

      del gene_term[gene] 

 

# output cluto datafiles 

 

mat, clabel, genename, top_terms=outputMatrixFile(gene_term) 

Session().top_terms=top_terms 

 

if len(gene_term)<6: 

    os.chdir('cluto') 

    os.remove(mat) 

    os.remove(clabel) 
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    os.remove(genename) 

    os.chdir('..') 

    Session().option.GO=0 

    data={ 

      'top_terms':top_terms, 

      'id':Session().gene_id, 

      'genes':Session().genes, 

      'no_record':no_record} 

    merge('noclustering.html',data) 

else: 

# clustering 

  os.chdir('cluto') 

  out=tempfile.mktemp(dir='.') 

  cluster=tempfile.mktemp(dir='.') 

 

  cluto(delta, inc,len(gene_term),cluster,mat, out,clabel) 

 

  os.remove(mat) 

  os.remove(clabel) 

  os.chdir('..') 

# pass data to process cluto output 

 

  data = { 

    'out': out, 

    'genes':Session().genes, 

    'no_record':no_record, 

    'id':Session().gene_id, 

    'cluster':cluster, 

    'genename':genename} 

     

  merge('third.html', data) 
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####### cluster.py 

####### process cluto output 

 

from proc_cluster import * 

from localUtil import * 

 

os.chdir('cluto') 

cluster_gene, desc_word=proc_cluster(_genename,_cluster,_out) 

os.remove(_genename) 

os.remove(_cluster) 

os.remove(_out) 

os.chdir('..') 

# merge with html file 

sort_list=[int(c) for c in cluster_gene.keys()] 

sort_list.sort() 

sort_list=[str(c) for c in sort_list] 

 

# use " to subsitute ' in desc_word 

sub_desc={} 

for key in desc_word.keys(): 

  sub_desc[key]=[w.replace("'",'@') for w in desc_word[key]] 

   

     

data = { 

    'gene_pmid':Session().gene_pmid.keys(), 

    'genes':Session().genes, 

    'sort_list':sort_list, 

    'cluster_gene': cluster_gene, 

    'sub_desc': sub_desc, 

    'id':Session().gene_id, 

    'topTerms':Session().top_terms, 

    'desc_word':desc_word} 

     

merge('fourth.html', data) 

 



 

115 

##### proc_cluster.py 

##### functions for cluster processing 

import os 

 

def proc_cluster(genename,cluster,out): 

    g_file=open(genename,'r') 

    c_file=open(cluster,'r') 

    o_file=open(out,'r') 

 

    g_list=g_file.readlines() 

   # print g_list,'<br>' 

    c_list=c_file.readlines() 

   # print c_list,'<br>' 

    cluster_gene={} 

    for i in range(0,len(g_list)): 

      a=cluster_gene.get(c_list[i].strip(),[]) 

      a.append(g_list[i].strip()) 

      cluster_gene[c_list[i].strip()]=a 

#print cluster_gene 

 

    n=0 

    desc_word={} 

    desc_word['-1']=['Unable to cluster these genes'] 

    for line in o_file.readlines(): 

      if line[:7]=='Cluster': 

        cluster=line[7:11].strip() 

    #    print cluster 

        n=1 

         

        continue 

      if n: 

        words=line.strip().split(':')[1].split('%,') 

        words=[w[:-5].strip() for w in words] 

        desc_word[cluster]=words 

        n=0 

        continue     

         

    g_file.close() 

    c_file.close() 

    o_file.close() 

     

    return cluster_gene, desc_word 
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##### cluto.py 

##### CLUTO wrapper 

 

import os,tempfile 

def outputMatrixFile(gene_words): 

    os.chdir('cluto') 

    matrix = tempfile.mktemp(dir='.') 

    cl=tempfile.mktemp(dir='.') 

    gname=tempfile.mktemp(dir='.') 

     

    mfile = open(matrix,'w') 

    cfile=open(cl,'w') 

    gfile=open(gname,'w') 

     

    clabel=[] 

    count=0 

    mat=[] 

    top_terms={} 

    for g in gene_words.keys(): 

        sort_terms=sorted(gene_words[g].items(), lambda x, y: cmp(y[1], x[1])) 

        top_terms[g]=[t[0] for t in sort_terms[:5]] 

        clabel.extend(gene_words[g].keys()) 

        clabel=list(set(clabel)) 

    mat.append(str(len(gene_words))+'\t'+str(len(clabel))+'\t') 

    for g in gene_words.keys(): 

     #   print g 

        gfile.write(str(g)+'\n') 

        line='' 

        for i in range(0,len(clabel)): 

            if gene_words[g].get(clabel[i],0): 

                count+=1 

                line=line+str(i+1)+'\t'+str(gene_words[g][clabel[i]])+'\t' 

        line=line.strip()+'\n' 

        mat.append(line) 

#    print len(mat) 

    mat[0]=mat[0]+str(count)+'\n' 

    for c in clabel: 

        cfile.write(c+'\n') 

    for m in mat: 

        mfile.write(m) 

    cfile.close() 

    mfile.close() 

    gfile.close() 

    os.chdir('..') 

    return matrix, cl, gname, top_terms 

     

def find_best_n(delta, n,cluster,mat,out): 

    i1=1 

    for k in range(n/10+1,n/2,1): 

        os.system('"./vcluster" -rowmodel=maxtf -clmethod=direct -clustfile=%s 

%s %i > %s'%(cluster,mat,k,out)) 

        for line in open(out,'r').readlines(): 

            if '[' in line: 

                r=line.split('[')[1] 

                i2=float(r[3:-2]) 

               

                if (i2-i1)/i1 < delta: 

                    return k 

                else: 
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                    i1=i2 

                    break 

                     

def cluto(delta, inc, maxclu,cluster,mat,out, clabel): 

#test for cluster size 

  n_clu=0 

 

  while not n_clu: 

    n_clu=find_best_n(delta,maxclu,cluster,mat,out) 

    delta+=inc 

 

#truc clustering 

  os.system('"./vcluster" -colmodel=idf-rowmodel=maxtf -clabelfile=%s -

showfeatures -nfeatures=10 -clmethod=direct -clustfile=%s %s %i > 

%s'%(clabel,cluster,mat,n_clu,out)) 

 

def cluto_e(n,cluster,mat,out,clabel): 

 os.system('"./vcluster" -colmodel=idf -rowmodel=maxtf -clabelfile=%s -

showfeatures -clmethod=direct -clustfile=%s %s %i > 

%s'%(clabel,cluster,mat,n,out)) 
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###### sentence.py 

###### score sentences by ranking scheme 

 

from __future__ import division 

from sent_sup import * 

from localUtil import * 

 

 

desc_word=eval(_desc_word) 

desc_word=[w.replace('@',"'") for w in desc_word] 

porter=PorterStemmer() 

minWordLen=Session().option.minWordLen 

meshSub=Session().option.meshSub 

stem=1 

# S=a CluSim + b QuFreq + c NGene + d CTword + e TPword +f L + g Recent 

lengthFactor=20  # sentence more than 20 words will get L=1, else: scale to 0-1 

a=0.2 

b=0.1 

c=0.1 

d=0.0 

e=0.4 

f=0.0 

g=0.2 

 

if not Session().gene_pmid.has_key(_gene): 

  data = { 

    'id':Session().gene_id[_gene], 

    'gene': _gene} 

     

  merge('no_sent.html', data) 

   

else: 

  # calculate score 

  # first get sentence words and query terms 

  s_id= Session().gene_pmid[_gene] 

 

# calculate recency 

  recent={} 

  inc=1/(len(s_id)-1) 

  for i in range(0,len(s_id)): 

    recent[s_id[i]]=1-i*inc 

 

  sent_word, geneList, sentence=get_word(s_id,minWordLen,stem) 

  # process nGene 

  Gene=[] 

  gene_id_list=[Gene.append(i) for i in Session().gene_id.values()] 

  gene_id_dic=dict(zip(gene_id_list,[1]*len(gene_id_list))) 

  nGene={} 

  for s in geneList: 

    if intersect(geneList[s],gene_id_dic)>1: 

      nGene[s]=1 

    elif len(geneList[s])>1: 

      nGene[s]=.5 

    else: 

      nGene[s]=0 

  #  print sentence[s],nGene[s],'\n' 

  # process query terms 

  if _query: 

    query=_query.strip().split() 
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    query=[porter.stemWord(w) for w in query] 

       

  CT_dict=CTword() 

  TP_dict=TPword() 

  score={} 

  clusim={} 

  clusimMax=1 

  length={} 

  ctword={} 

  ctwordMax=1 

  tpword={} 

  tpwordMax=1 

  for s in s_id: 

    # clusim 

    mesh=mesh_proc(s[0],meshSub,minWordLen,stem) 

    m_clusim=intersect(desc_word,mesh) 

    # need to add GO term sim too!!!!!!!!!!!!!!!! 

    d_clusim=0 

    if Session().option.GO: 

      desc_ls=parse_desc(desc_word,minWordLen) 

      d_clusim=intersect(desc_ls,sent_word[s]) 

    clusim[s]=m_clusim+d_clusim 

    if clusimMax < clusim[s]: 

      clusimMax=clusim[s] 

    # quFreq 

    qufreq=0 

    if _query: 

      qufreq=intersect(query,sent_word[s]) 

     

    #length 

    sum=0 

    for w in sent_word[s]: 

      sum+=sent_word[s][w] 

    if sum/lengthFactor<1: 

      length[s]=sum/20 

    else: 

      length[s]=1 

    #CTwords 

     

    key=0 

    sent_stem=sent_word[s].keys() 

    for w in sent_stem: 

        if CT_dict.has_key(w): 

            key+=1 

    #        print w 

    ctword[s]=key 

    if ctwordMax < key: 

      ctwordMax=key 

    #TPwords 

     

    key=0 

    for w in sent_stem: 

      if TP_dict.has_key(w): 

    #      print w 

          key+=1 

    tpword[s]=key 

    if tpwordMax < key: 

      tpwordMax=key 
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  for s in s_id: 

    clusim[s]=clusim[s]/clusimMax 

    ctword[s]=ctword[s]/ctwordMax 

tpword[s]=tpword[s]/tpwordMax 

 

  #**************** output sentence list************ 

  

  for s in s_id: 

    score[s]=a*clusim[s] + b*qufreq + c*nGene[s] + d*ctword[s] + e*tpword[s] 

+f*length[s] + g*recent[s]    

     

  # sorting by score 

  sort_score=sorted(score.items(), lambda x, y: cmp(y[1], x[1])) 

 

  Session().sort_score=sort_score 

  Session().sentence=sentence 

   

 

   

  data = { 

    'gene':_gene, 

    'id':Session().gene_id[_gene], 

    'sort_score':sort_score, 

    'sentence':sentence} 

     

  merge('fifth.html', data) 
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#### sortByAbstract.py 

#### to arrange the sentence first by abstract then by score 

 

from localUtil import * 

sortAbs=[] 

sort_score=Session().sort_score 

while sort_score: 

  abs=[] 

  top=sort_score.pop(0) 

  abs.append(top) 

  for s in sort_score: 

    if s[0][0]==top[0][0]: 

      below=sort_score.pop(sort_score.index(s)) 

      abs.append(below) 

  sortAbs.append(abs) 

 

data = { 

    'gene':_gene, 

    'sortAbs':sortAbs, 

    'id':Session().gene_id[_gene], 

    'sentence':Session().sentence} 

     

merge('sixth.html', data) 
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###### sent_sup.py 

###### sentence process fuctions 

 

import os,re 

from text_proc import * 

conn=DB_conn('static/mice_gene')  

 

def intersect(list1,dic2): 

  count=0 

  for l in list1: 

    if dic2.has_key(l): 

      count+=1 

  return count 

 

def parse_desc(desc_word,minWordLen): 

  porter=PorterStemmer() 

  stop_word=open('static/english.stop','r').readlines() 

  stop_word=[s.strip() for s in stop_word] 

  stopword=dict(zip(stop_word,[1]*len(stop_word))) 

  desc_dic={} 

  for t in desc_word: 

    terms=t.split() 

    for word in terms: 

      if stopword.get(word,0) or len(word)<minWordLen or word.isdigit() or not 

word.isalnum(): 

        continue 

      else: 

        desc_dic[word]=1 

    terms=[porter.stemWord(w) for w in desc_dic.keys()] 

  return terms 

     

def mesh_proc(p,mesh_subtree,minWordLen,stem): 

    sql="""select mesh from pmid_dp where pmid='%s';""" 

    meshwords=conn.query(sql%(p))[0][0] 

    if meshwords: 

      proc=word_proc(minWordLen,stem) 

      return proc.mesh({},meshwords,mesh_subtree) 

    else: 

      return mesh_dic 

     

def get_word(sent_id,min_word_len,stem): 

    matchstr=re.compile(r'<GENE_PROTEIN id="MGI:(\d)+">') 

    matchstr2=re.compile(r'</GENE_PROTEIN>') 

    processor=word_proc(min_word_len,stem) 

    sql="""select sentence from pmid_sentence where pmid='%s' and 

sent_pos='%i';""" 

    sql2="""select MGI_gene from gene_pmid_pos where pmid='%s' and 

sent_pos='%s';""" 

     

    sent_word={} 

    ngene={} 

    sentence={} 

    for s in sent_id: 

      sent=conn.query(sql%(s[0],s[1]))[0][0] 

      sentForDisp=matchstr.sub(r'<B>',sent) 

      sentForDisp=matchstr2.sub(r'</B>',sentForDisp) 

      sentence[s]=sentForDisp 

      genes=conn.query(sql2%(s[0],s[1])) 

      genes=[g[0] for g in genes] 
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      ngene[s]=genes 

      sent_word[s]=processor.sentence_dist(sent) 

  #    rows=conn.query(sql2%(s[0],s[1])) 

  #    ngene[s]=rows[0][0] 

    return sent_word, ngene, sentence 

     

 

def CTword(): 

    key_word=open('static/key_terms.txt','r').readlines() 

    p=PorterStemmer() 

    key_word=[p.stemWord(s.strip()) for s in key_word] 

    return dict(zip(key_word,[1]*len(key_word))) 

     

def TPword(): 

    

files=['static/p_associte.txt','static/p_effect.txt','static/p_involvement.txt'

,'static/p_pathway.txt','static/p_purpose.txt','static/p_regulation.txt'] 

    tpword={} 

    for f in files: 

      key_word=open(f,'r').readlines() 

      key_word=[s.strip() for s in key_word] 

      tpword.update(dict(zip(key_word,[1]*len(key_word)))) 

    return tpword 
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###### text_proc.py 

###### general text processing database connection functions. 

 

from PorterStemmer import * 

     

class synonym: 

    def __init__(self,f_name,syn={}): 

        infile=open(f_name,'r') 

        self.syn_dict=syn 

        for line in infile.readlines(): 

            lst=line.strip().split('\t') 

            self.syn_dict[lst[0]]=lst[1] 

            infile.close() 

    def get_value(self,key): 

        return self.syn_dict.get(key,[]) 

 

class DB_conn: 

    def __init__(self,db_name): 

        from pysqlite2 import dbapi2 as sqlite 

        con=sqlite.connect(db_name) 

        self.cursor=con.cursor() 

    def query(self, sql): 

        self.cursor.execute(sql) 

        return self.cursor.fetchall() 

 

class input_gene_list: 

    def __init__(self): 

        self.gene_list=[] 

         

    def get_list(self, name_list): 

        for item in name_list: 

            item=item.strip().lower() 

            if item and item not in self.gene_list: 

                self.gene_list.append(item) 

        return self.gene_list 

 

class word_proc: 

    def __init__(self,m,stem): 

        self.min_word=m 

        self.mesh_tree={} 

 #       print 'loading stop words=======' 

        stop_word=open('static/english.stop','r').readlines() 

        stop_word=[s.strip() for s in stop_word] 

        self.stopword=dict(zip(stop_word,[1]*len(stop_word))) 

  #      print 'loading mesh tree=====' 

        lines=open('static/mtrees2005.bin','r').readlines() 

        for line in lines: 

            words=line.split(';') 

            self.mesh_tree[words[0]]=words[1].strip() 

        self.stem=stem 

    def words(self,sent): 

        sent=sent.lower() 

        from nltk_lite import tokenize 

        word_l=list(tokenize.regexp(sent,r'\w+|[^\w\s]+')) 

        if self.stem: 

            p=PorterStemmer() 

            word_l=[p.stemWord(w) for w in word_l] 

        return word_l 

    def sentence_dist(self,sent):  #get sentence word count 
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        import re 

#        matchstr=re.compile( 

#            r'<GENE_PROTEIN id="('+gname+r')">.*?(</GENE_PROTEIN>)') 

        matchstr=re.compile( 

            r'<GENE_PROTEIN id="MGI:(\d)+">.*?(</GENE_PROTEIN>)') 

        sent=matchstr.sub(r'',sent) 

        word_lst=self.words(sent) 

        sent_dic={} 

        for word in word_lst: 

            if self.stopword.get(word,0) or len(word)<self.min_word or 

word.isdigit() or not word.isalnum(): 

                continue 

            else: 

                sent_dic[word]=sent_dic.get(word,0)+1 

        return sent_dic 

    def gene_dist(self,g,s):  # add sentence word count s to g word count g 

        for k in s.keys(): 

            g[k]=g.get(k,0)+s[k] 

        return g 

    def mesh(self, sent_dic, meshterms,subtree):  #process mesh terms and add 

to sentence word dict. 

        no_list=open('static/mesh.nolist','r').readlines() 

        no_list=[s.strip() for s in no_list] 

        no_list=dict(zip(no_list,[1]*len(no_list))) 

         

        terms=meshterms.split('|') 

        for t in terms: 

            meshhead=t.split('/')[0] 

             

            if '*' in meshhead: 

                meshhead=meshhead[1:] 

      #      if meshhead not in self.mesh_tree: print meshhead 

            meshcode=self.mesh_tree.get(meshhead,'Z') 

            if meshcode[0] in subtree and len(meshcode.split('.'))>3: 

                key1=str(meshhead.lower()) 

                if not no_list.has_key(key1):  

                  sent_dic[key1]=sent_dic.get(key1,0)+1 

                 

        return sent_dic 
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#####  GOTerm.py 

#####  get GO terms 

 

def build_MGI_GO_dict(): 

  mgi_go={} 

  for line in open('static/MGI_GO.txt','r').readlines(): 

    mgi,go=line.strip().split('\t') 

    terms=go.split('|') 

    terms=[t for t in terms if not 'unknown' in t] 

    mgi_go[mgi]=terms 

  return mgi_go   

 

def get_go_term(gene_id,factor): 

  mgi_go=build_MGI_GO_dict() 

  go_term={} 

  for g in gene_id.keys(): 

    terms={} 

    for id in gene_id[g]: 

      if mgi_go.has_key(id): 

        for go in mgi_go[id]: 

          terms[go]=terms.get(go,0)+factor 

    go_term[g]=terms 

  return go_term 
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###### mesh_text.py 

###### process mesh and text terms 

 

 

from text_proc import * 

import os,re 

conn=DB_conn('static/mice_gene')  

 

def get_mesh(gene_list,mesh_subtree,maxAbs,minWordLen,stem): 

      sql="""select distinct a.pmid, a.sent_pos from gene_pmid_pos a, pmid_dp b 

    where MGI_gene='%s' and a.pmid=b.pmid order by b.dp desc limit '%i';""" 

      sql2="""select mesh from pmid_dp where pmid='%s';""" 

      proc=word_proc(minWordLen,stem) 

      gene_pmid={} 

      gene_words={} 

      for g_name in gene_list.keys(): 

          for g_id in gene_list[g_name]: 

                rows=conn.query(sql%(g_id, maxAbs)) 

                if not rows: 

                  #  print 'no record for',g_name 

                    continue 

                pmid_list=[r[0] for r in rows] 

        # store pmid and sent # list for each gene 

                p_ls=gene_pmid.get(g_name,[]) 

                p_ls.extend(rows) 

                gene_pmid[g_name]=p_ls 

                for p in pmid_list: 

                    meshwords=conn.query(sql2%(p))[0][0] 

                    if meshwords: 

                        

gene_words[g_name]=proc.mesh(gene_words.get(g_name,{}),meshwords,mesh_subtree)                                      

      return gene_words, gene_pmid 

 

def get_geneWord(gene_pmid,minWordLen,stem): 

    processor=word_proc(minWordLen,stem) 

    sql="""select sentence from pmid_sentence where pmid='%s' and 

sent_pos='%i';""" 

    gene_word={} 

    for g_name in gene_pmid.keys(): 

      for s in gene_pmid[g_name]: 

        sent=conn.query(sql%(s[0],s[1]))[0][0] 

        sent_word=processor.sentence_dist(sent) 

        

gene_word[g_name]=processor.gene_dist(gene_word.get(g_name,{}),sent_word) 

    return gene_word    
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##### option_class.py 

##### options for the application 

 

class options: 

    def 

__init__(self,mesh,meshSubtree,min_word_len,max_abstract,stem,wordFeature,GO,go

Factor): 

      self.mesh=mesh 

      self.meshSub=meshSubtree 

      self.minWordLen=min_word_len 

      self.maxAbs=max_abstract 

      self.stem=stem 

      self.wordFeature=wordFeature 

      self.GO=GO 

      self.goFactor=goFactor 
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###### application home page 

###### mainhtml.py 

 

mainhtml=""" 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1> 

 

<p class=MsoNormal align=center style='text-align:center'><o:p>&nbsp;</o:p></p> 

 

<p class=MsoBodyText align=center style='margin-top:0in;margin-right:1.25in; 

margin-bottom:0in;margin-left:.5in;margin-bottom:.0001pt;text-

align:center'><span 

style='font-size:12.0pt;font-family:Arial'>This prototype system explores and 

selects 

informative sentences for genes from Medline abstracts of 1994 to 2003. After 

you enter the names of genes, the system will build 

functional clusters of the genes, and provide top informative sentences for 

review. <o:p></o:p></span></p> 

 

<br> 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="70%"> 

   <COL width="15%"> 

<tr> 

<td  align='left' valign='top'> 

<span style='font-size:18.0pt' style='color:#009900'>  

<B><A HREF="index.py"> Home Page </A></B></span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Set Information</span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Clusters</span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Sentences</span><br> 

</td> 

<td> 

</td> 

<td> 

<form action="index2.py" method=post 

enctype="application/x-www-form-urlencoded"> 

 

<p class=MsoNormal>&nbsp;&nbsp;<h3>Please enter gene names and 

their expression levels in fold change (separated by <b>colon ':'</b> or 

<b>tab</b>) one per line in the following box. 

Examples:</h3><br> 

&nbsp;&nbsp;NR1:-13<br> 

&nbsp;&nbsp;IL6:9</p> 

 

<p><span style='mso-spacerun:yes'></span><TEXTAREA ROWS="14" COLS="74" 

NAME="names[]"></TEXTAREA><span 

style='mso-spacerun:yes'></span><o:p></o:p></p> 
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<p><INPUT TYPE="submit"  VALUE="Send"  

><span 

style='mso-spacerun:yes'><INPUT TYPE="reset"><o:p></o:p></span></p> 

 

</form> 

 

<p><h3>Or you can upload a text file with gene names 

and their expression levels (<b>tab</b> delimited) one entry per 

line.</h3><o:p></o:p></p> 

 

<p> 

<FORM ENCTYPE="multipart/form-data" ACTION="index.py" METHOD=POST> 

<input name=filename type=file size=50> 

 

<span style='mso-spacerun:yes'> </span></span><span 

style='mso-spacerun:yes'></span><span style='mso-spacerun:yes'><INPUT 

TYPE="submit" VALUE="Submit file" 

></span> 

</FORM> 

<a href="../sampleData/nikki_RMA.txt" target=new>nikki_RMA.txt</a><br> 

<a href="../sampleData/nikki_PDNN.txt" target=new>nikki_PDNN.txt</a> 

 

</td> 

<td align='center' valign='bottom'> 

<FORM ENCTYPE="multipart/form-data" ACTION="option.py" target='new' 

METHOD=POST> 

<span style='color:navy'> 

<INPUT TYPE="submit" VALUE="Advanced Options" 

></span> 

</FORM> 

<a href="../sampleData/drd2.txt" target=new>Look at a sample file</a> 

</table> 

  """ 

   

 

errPage1=""" 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p> 

<p> 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td background='raindrop.jpg' align='center' valign='top'> 

<span style='font-size:18.0pt' style='color:#009900'>  

<B><A HREF="index.py"> Home Page </A></B></span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Set Information</span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Clusters</span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Sentences</span><br> 
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</td> 

<td></td> 

<td> 

<b> We detect an err. No gene name entered or incorrect separation of gene name 

and fold change.</b> 

   

      <FORM ENCTYPE="multipart/form-data" ACTION="index.py" METHOD=POST><p> 

<INPUT TYPE="submit" VALUE="Go Back to Re-enter." 

></span><span style='color:#333399'><o:p></o:p></span></p> 

</FORM> 

</td> 

</table> 

""" 

 

errPage2=""" 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p> 

<p> 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td background='raindrop.jpg' align='center' valign='top'> 

<span style='font-size:18.0pt' style='color:#009900'>  

<B><A HREF="index.py"> Home Page </A></B></span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Set Information</span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Clusters</span><br><p> 

<span style='font-size:18.0pt' style='color:#009900'>  

Gene Sentences</span><br> 

</td> 

<td> 

</td> 

<td> 

<b> We detect an err. No file name entered.</b> 

   

      <FORM ENCTYPE="multipart/form-data" ACTION="index.py" METHOD=POST><p> 

<INPUT TYPE="submit" VALUE="Go Back to Re-enter." 

></span><span style='color:#333399'><o:p></o:p></span></p> 

</FORM> 

</td> 

</table> 

""" 
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###### second.html 

 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p> 

<br> 

<p> 

 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td align='left' valign='top'> 

<span style='font-size:20.0pt' style='color:#009900'>  

<A HREF="index.py"> Home Page </A></span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

<b>Gene Set Information</span></b><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Clusters</span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Sentences</span><br> 

</td> 

<td> 

</td> 

<td> 

<h3>This system works at gene name level. If your data set has transcript level 

expression profile, it may result in one gene name representing different 

transcripts. </h3><br> 

<b>We have checked the input gene names for duplicates.<p> 

#if $duplicate: 

The following duplicates are found:<br> 

#for $i in $duplicate: 

    <b>$i</b> 

    <br> 

#end for 

#else: 

No duplicates are found. 

#end if 

 

<p> 

#if $no_record: 

<b>The following genes do not have MGI_IDs:</b><br> 

#for $i in $no_record: 

    <b><span style='color:$genes[$i][1]'>$i:$genes[$i][0]</span><br> 

#end for 

#end if 

 

<p> 

#if $count>1 

<table> 

<tr> 

<td> 
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<b>Press Continue to cluster these $count genes or use Evaluation Version to 

evaluate the tool:</b><p> 

</tr> 

<tr> 

<td> 

<FORM ENCTYPE="multipart/form-data" ACTION="term_modeler.py" METHOD=POST> 

<INPUT TYPE="submit" VALUE="Continue"> 

</FORM> 

 

</tr> 

</table> 

<p> 

<b>These are the MGI_IDs associated with these genes that are used to retrieve 

information:</b><br> 

<table> 

#for $i in $gene_id: 

  <tr> 

  <td> 

    <b><span style='color:$genes[$i][1]'>$i:$genes[$i][0]</span></td> 

  <td> 

    #for $j in $gene_id[$i]: 

      <A 

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id=$j" 

target='new'>$j</A> 

    #end for   

      </b> 

  </td> 

#end for 

</table> 

<p> 

<p> 

<b>Use the BACK button in your browser to go back and modify input 

list.</b><br> 

#else 

<b>Cannot find any information on genes in your dataset. Use the BACK button in 

your browser to go back and modify input list.</b><br> 

#end if 

</td> 

</table> 



 

134 

###### third.html 

 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p><br> 

 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td align='left' valign='top'> 

<span style='font-size:20.0pt' style='color:#009900'>  

<A HREF="index.py"> Home Page </A></span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

<b>Gene Set Information</span></b><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Clusters</span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Sentences</span><br> 

</td> 

<td> 

</td> 

<td> 

<h3>We have gathered GO terms, MeSH terms and MedLine abstracts information 

associated with the genes.</h3> 

<p> 

#if $no_record: 

<b>We can not find information in our database for the following genes:</b><br> 

#for $g in $no_record: 

    <b><span style='color:$genes[$g][1]'><A 

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id= 

#for $i in $id[$g]: 

  $i, 

#end for   

">$g:$genes[$g][0]</A><br> 

#end for 

#end if 

 

<p> 

<b>Press continue to view clustering results or use BACK in your browser to go 

back and modify input list.</b><br> 

<FORM ENCTYPE="multipart/form-data" ACTION="cluster.py" METHOD=POST> 

<input name=out type=hidden value="$out"> 

<input name=cluster type=hidden value="$cluster"> 

<input name=genename type=hidden value="$genename"> 

<span style='color:navy'></span><INPUT TYPE="submit" VALUE="Continue"> 

</FORM> 

 

</td> 

</table> 
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####### fourth.html 

 

 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p> 

<br> 

<p> 

 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td align='left' valign='top'> 

<span style='font-size:20.0pt' style='color:#009900'>  

<A HREF="index.py"> Home Page </A></span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Set Information</span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

<b>Gene Clusters</b></span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Sentences</span><br> 

</td> 

<td> 

</td> 

<td> 

<table border="1"> 

 

   <th bgcolor=#FFCC00>Cluster and Summary Keywords</th> 

   <th bgcolor=#FFCC00>Genes in the Cluster and Their Top Five Associated 

Terms</th> 

#for $c in $sort_list: 

  <tr> 

  <td> 

  <b>Cluster $c:</b> 

  <br> 

 

    #for $d in $desc_word[$c]: 

      #if $desc_word[$c].index($d)>4: 

     #break 

      #end if 

      $d #slurp 

      <br> 

    #end for 

 

  </td> 

  <td> 

  #for $g in $cluster_gene[$c]: 

     

    <b><span style='color:$genes[$g][1]'><A 

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id= 

#for $i in $id[$g]: 

  $i, 
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#end for   

">$g:$genes[$g][0]</A> 

    : 

    #for $term in $topTerms[$g]: 

      $term;  

    #end for 

    </span></b><br> 

    #if $g in $gene_pmid: 

    <FORM ENCTYPE="multipart/form-data" ACTION="sentence.py" METHOD=POST 

target='new'> 

    Enter query terms: <input name=query type=text> 

    <input name=desc_word type=hidden value="$sub_desc[$c]"> 

    <input name=gene type=hidden value="$g"> 

    <span style='mso-spacerun:yes'>     </span></span><span 

style='color:navy'><span 

    style='mso-spacerun:yes'>     </span><span style='mso-

spacerun:yes'> </span><INPUT TYPE="submit"    VALUE="Get 

Sentences"></span><span style='color:#333399'><o:p></o:p></span></p> 

    </FORM> 

    #else: 

    <FORM ENCTYPE="multipart/form-data" 

ACTION="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed&term

=$g" METHOD=POST target='new'> 

    No sentences in database. <INPUT TYPE="submit"    VALUE="Search 

PubMed"></form> 

    #end if 

  #end for 

  </td> 

  <p> 

#end for 

</td> 

</table> 
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##### fifth.html 

 

 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p> 

<br><p> 

 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td align='left' valign='top'> 

<span style='font-size:20.0pt' style='color:#009900'>  

<A HREF="index.py"> Home Page </A></span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Set Information</span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Clusters</b></span><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

<b>Gene Sentences<br></span><br> 

</td> 

<td> 

</td> 

<td> 

<h3>Here are the sentences for gene <A 

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id= 

#for $i in $id: 

  $i, 

#end for   

">$gene</A></h3> 

 

<table > 

<COLGROUP> 

   <COL width="75%"> 

   <COL width="25%"> 

<tr> 

<td> 

#for $s in $sort_score: 

Score= 

  $s[1]&nbsp;&nbsp;&nbsp; 

<A 

HREF="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list

_uids=$s[0][0]&dopt=Abstract" target='new'> 

  Go to Abstract</A> 

  <br> 

  $sentence[s[0]] 

  <br><p> 

#end for 

  </td> 

<td align='center' valign='top'> 

<FORM ENCTYPE="multipart/form-data" ACTION="sortByAbstract.py" METHOD=POST> 

<input name=gene type=hidden value="$gene"> 



 

138 

<span style='mso-spacerun:yes'> </span> 

<span style='mso-spacerun:yes'> </span> 

<span style='color:navy'>  

<INPUT TYPE="submit" VALUE="Arrange sentences by abstract" 

></span> 

</FORM> 

 

 

</td> 

<p> 

</tr> 

 

</table> 
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##### sixth.html 

 

 

<h1 align=center style='text-align:center'><i><span style='font-size:24.0pt; 

color:#FFCC00'>Mouse</span></i><i><span style='font-size:24.0pt'> <span 

style='color:#009900'>Gene</span> <span style='color:#3366FF'>Information 

</span><span 

style='color:lime'>Summary</span> from <span style='color:#CC33CC'>Medline 

</span><span 

style='color:#CC0000'>Abstracts</span></span><o:p></o:p></i></h1><p> 

<p><br> 

<p> 

 

<table> 

<COLGROUP> 

   <COL width="10%"> 

   <COL width="5%"> 

   <COL width="85%"> 

<tr> 

<td align='left' valign='top'> 

<span style='font-size:20.0pt' style='color:#009900'>  

<A HREF="index.py"> Home Page </A></span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Set Information</span><br><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

Gene Clusters</b></span><p> 

<span style='font-size:20.0pt' style='color:#009900'>  

<b>Gene Sentences<br></span><br> 

</td> 

<td> 

</td> 

<td> 

<h3>Here are the sentences for gene <A 

HREF="http://www.informatics.jax.org/searches/accession_report.cgi?id= 

#for $i in $id: 

  $i, 

#end for   

">$gene</A> arranged by abstract:</h3> 

 

<table > 

<COLGROUP> 

   <COL width="75%"> 

   <COL width="25%"> 

<tr> 

<td> 

#for $ab in $sortAbs: 

  #set flag=1 

  #for $st in $ab: 

    #if $flag: 

      Score=$st[1] &nbsp;&nbsp;&nbsp; 

      <A 

HREF="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list

_uids=$st[0][0]&dopt=Abstract" target='new'>Go to Abstract</A> 

      <br> 

      $sentence[$st[0]] 

      <UL> 

      #set flag=0 

    #else: 

      <LI><b>Score=</b> 
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      $st[1] 

      &nbsp;&nbsp;&nbsp; 

      <br> 

      $sentence[$st[0]] 

    #end if 

  #end for 

  </UL> 

  <p><p> 

 

#end for 

</td>   

<td> 

</td> 

</tr> 

</table> 

</td> 

</table> 

 

 


