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Abstract 

Range Resolved Optical Remote Sensing 

Using a Continuous Wave, Pseudo-Random Modulated, 

C02 Heterodyne Lidar Backscattered from Aerosols 

Badih John Rask 

Supervising Professor: J. Fred Holmes 

Optical remote sensing has been a useful technique used to measure the atmo- 

spheric wind velocity. In the late 1960's and early 1970's, researchers were using 

double-ended laser systems to study the effects of the turbulent atmosphere on laser 

beam propagation, and to determine the crosswinds. While the double-ended systems 

were useful in verifying theory, their applications were limited to those in which both 

ends of the propagation path were accessible. Toward the latter part of the 19709s, 

however, the push for single-ended laser systems became more desirable to locate the 

laser transmitter and receiver at the same end of the propagation path. The early sin- 

gle-ended systems used a hard target to backscatter the laser radiation to estimate the 

path averaged crosswind speed between the transmitter/receiver and the hard target. 

Since the end of the 1980's, interest has shifted to obtaining range resolved wind esti- 

mates, where the desired wind measurements can be limited to remote regions, called 

range bins, instead of an average wind estimate over the entire laser propagation path. 

Instead of using a metallic hard target as the laser scatterer, air particles, or aerosols, 

act as a distributed target to backscatter the laser radiation. Since the aerosols move 

xviii 



with the wind, the laser signal will be Doppler shifted by the component of the vector 

wind along the line of sight from the laser to the scattering volume. Therefore, if the 

frequency drift from a known modulation frequency due to the Doppler effect can be 

measured, the wind along the line of sight from laser to aerosols can be determined. 

This gives the possibility to measure the 3-D wind velocity, where the crosswinds are 

estimated through the techniques adapted from the path-averaged hard target scenario, 

and the line-of-sight winds are obtained by detecting the Doppler shift. 

Although the range resolved 3-D wind speed laser systems have more flexibil- 

ity than the path averaged systems, the absence of a hard target introduces several 

new problems. The first difficulty is that the signal-to-noise ratio (SNR) is very poor 

(about -20 to -30 dB) because aerosols backscatter much less laser radiation than a 

hard target. To combat this problem, a processing scheme was developed to detect 

the amplitude and frequency of a cosine buried in noise specific with the sampling 

rate and maximum coherent sampling time. Another problem arose because the laser 

operates cw (continuous wave) rather than pulsed. In the pulsed systems, the receiver 

can be range gated to look at different parts of the path. But a cw system needs a 

scheme to discriminate the scattering returns from different parts of the propagation 

path. This was solved by pseudo-random-code (PRC) modulating the outgoing laser 

beam phase. The backscattered laser signal can be demodulated with a time delayed 

version of the PRC to produce an intensity versus range profile. 

The theoretical analysis of the time delayed statistics of the received intensity 

was completed for the case of a cw laser backscattered from aerosols. Additional 

analysis was devoted to the effect that a finite aperture has on the time delayed statis- 

tics. Finally, the system was constructed to be able to propagate over horizontal and 

vertical paths to study such atmospheric properties as the backscattering coefficient 

and strength of turbulence in addition to the range resolved wind velocity. 
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Chapter 1 

Introduction 

Laser systems, called lidars, are useful tools that can be used to probe informa- 

tion about the atmosphere. By utilizing the effects of the turbulent atmosphere on 

laser beam propagation, scientists are able to monitor pollution flow near cities and 

evaluate the hazards of toxic pesticides sprayed over fields. In coal mines, lasers are 

employed to detect traces of harmful gases to warn workers of otherwise undetectable 

hazards. In addition, lasers are directed into the atmosphere to determine the strength 

of backscattering of aerosols. Such information is useful because of the potential to 

improve weather forecasting. Improving airline safety against the pitfalls of wind 

shear is another application where the laser can be used to monitor sudden changes in 

wind speed and direction to give pilots advance warning. Furthermore, for the past 20 

years, scientists have been trying to put lidars on satellites to gain better information 

about global warming. In fact, a recent Shuttle Discovery mission used lidar to study 

clouds, pollution, and climate changes.' In each application, the laser has been used 

as a remote sensor to gather information about the atmosphere. 

Installing lidars on satellites and airplanes requires laser systems to be light, 

compact, and reliable. In addition, the system must be single-ended, where the laser 

transmitter and receiver are located at the same end of the propagation path. More 

than likely, aerosols are used to backscatter the laser radiation. These requirements 

are not easy to meet. Many different types of lidars offer certain advantages. For 

example, pulsed laser systems can detect radiation backscattered from the longest 



ranges because these systems put out a high peak power pulse. By range gating the 

receiver, the system can "look" at different parts of the path. However, these advan- 

tages come with some significant drawbacks. The range gating of the receiver neces- 

sitates some complicated electronics which makes the processing difficult. In addition, 

the pulsed nature of the laser causes some laser instability as compared to lasers oper- 

ating continuous wave (cw). The pulsed requirement of the laser also makes these 

systems more expensive, larger, and less reliable than cw systems. 

Laser diodes offer the potential for a very compact and reliable lidar. The 

small size coupled with the high lasing efficiency make the diode laser a very promis- 

ing candidate for remote sensing. The setbacks with using diode lasers as transmitters 

are related to their low output power. This limitation makes it difficult to backscatter 

off of aerosols due to the small backscattered radiation. The low SNR prevents oper- 

ation during the day because the background noise swamps the return signal from 

aerosols (for direct detection). These problems can be overcome by using a diode 

laser with a narrow line-width (long coherence time) so that a heterodyne diode laser 

system becomes feasible. To get the range information, the outgoing laser beam can 

be modulated with a pseudo-random code (PRC). By multiplying the return signal by 

a delayed version of the PRC, it is possible to discriminate the backscattering from 

different ranges. Since the laser output can be easily modulated by the diode laser 

drive current, the PRC can be implemented easily by turning the laser on and off with 

the PRC. The problem is that diode lasers with linewidths narrow enough for hetero- 

dyne lidars are not commercially available. Therefore, most lidars using diode lasers 

as a source are limited to incoherent, direct detection systems, where detection of line- 

of-sight winds is not possible. 

The most desirable laser system to measure the 3-D winds using aerosols as 

the backscatterer would be one which adopted the range resolution ability of the 



pulsed and modulated diode laser systems, while retaining the simplicity of the cw 

systems. The lidar developed over the past 3 years from 1991 to 1994 at the Oregon 

Graduate Institute used in this thesis project is a pseudo-random code, cw, coherent 

optical heterodyne system operating at h = 10.6pm. Because the laser operates cw, 

the laser is simpler, more reliable, and less expensive than a pulsed laser. What sepa- 

rates this cw lidar system from others is the novel implementation of a pseudo-random 

code on the outgoing laser beam to discriminate between ranges. In fact, the use of a 

pseudo random code for range resolution has been achieved for the first time using a 

cw, optical heterodyne system. Optical heterodyne detection is used to increase the 

sensitivity of the lidar to detect weak backscattered signals on the order of 10-15 

Watts. The 3-D winds can be detected with this lidar using Doppler techniques to 

measure the line-of-sight winds, and speckle-turbulence interaction for the crosswinds. 

The only drawback with this system is that the maximum range detectable is less than 

that obtainable with the pulsed systems. With only 3 Watts of transmitted power, the 

backscattered radiation from aerosols is limited to less than 1 km with this system. 

The remainder of this thesis is divided into six chapters. Chapter 2 contains 

background on speckle-turbulence theory. Section 2.1 discusses wave propagation 

through the turbulent atmosphere, reviewing the important concepts necessary to 

describe wave propagation. Section 2.2 introduces the Huygens-Fresnel formula and 

illustrates how to apply it to the propagation of laser beams through the atmosphere. 

Section 2.3 reviews the important breakthroughs that allowed for single-ended systems 

using a hard target as backscatterer. 

In chapter 3, the concepts of using aerosols to backscatter laser radiation are 

developed. Section 3.1 introduces the properties of aerosols, including their distribu- 

tion, size, and concentration in the lower atmosphere (lower 4 km). Section 3.2 shows 

how the scale size of aerosols relative to the wavelength of the laser effects the scat- 



tering profile. In section 3.3 the modifications to the extended Huygens-Fresnel inte- 

gral are demonstrated along with an example of a typical application. Finally, in 

section 3.4, phase considerations are mentioned with emphasis on the decorrelation 

effect of aerosols on the statistics of laser beam propagation. 

Chapter 4 contains the bulk of the theory for deriving the time-delayed statis- 

tics of a C02 laser beam backscattered from aerosols. Section 4.1 derives the time- 

delayed statistics between two point detectors in the receiving plane. Section 4.2 

introduces a time-filter to remove the high frequency speckle part of the time-delayed 

statistics. 

The pseudo-random code, cw, CO, heterodyne lidar is introduced in chapter 5. 

Section 5.1 gives a complete description of the lidar, and how the pseudo random 

modulation is employed. Section 5.2 discusses the system signal to noise ratio (SNR). 

Finally, Section 5.3 introduces the processing schemes to get the 3-dimensional wind 

speed. 

Chapter 6 presents the experimental results. Section 6.1 presents the data for 

the lidar operated as a Doppler wind sensor and range finder. Section 6.2 shows the 

data for the lidar operated to detect crosswinds. 

Finally, chapter 7 summarizes the work of the preceding chapters and gives 

suggestions for future work in this field. 

The electronics of the PRC generator and of the amplifiers for both channels 

are sketched in Appendix A. The data acquisition and storage programs are listed in 

Appendix B, while the processing programs are listed in Appendix C .  The programs 

used to compute the time-delayed crosscovariance, the slope at zero time delay cross- 

wind detection scheme, and the aperture averaging effects are listed in Appendix D. 

Appendix E shows how to simplify the low-pass filtered crosscovariance of intensities 

to be used in a crosswind detection scheme. 



Chapter 2 

Wave Propagation Through the Atmosphere 

Before developing the time delayed statistics for a laser beam backscattered 

from aerosols propagating through turbulence, it is useful to review some of the 

important theoretical developments needed to describe the process. As early as the 

fifteenth century, scientists were making a transition to studying problems of optical 

frequencies. One intriguing phenomena which could not be explained with the exist- 

ing theories of light propagation was diffraction, the appearance of light and dark 

bands near the boundaries of objects when exposed by light rays. The first reference 

to diffraction phenomena appears in the work of Leonardo Da Vinci. Later, Christian 

Huygens, the first proponent of the wave theory of light, introduced what was called 

the Huygens' construction. Huygens asserted that every point on a wave front was a 

point source for a spherical wave. The wave front at any later instant may be 

regarded as the envelope of these spherical waves, called wavelets. In 1818, August- 

ine-Jean Fresnel showed that diffraction could be explained by applying Huygens' 

construction along with the principle of interference. Fresnel postulated that the sec- 

ondary wavelets interfered with each other, giving rise to diffraction. In 1882, Kir- 

choff developed an integral representation for light wave propagation based on 

Fresnel's analysis. The Huygens-Fresnel principle combined Huygens' construction of 

an envelope of spherical wavelets with the idea that these wavelets mutually inter- 

fere.2 

The Huygens-Fresnel principle was used to describe the propagation of light 



waves to solve a variety of problems in free space. For example, A. Sornrnerfeld 

studied the diffraction of a plane wave by a semi-infinite plane screen. In addition, 

Fresnel was interested in describing the diffraction of an electric field by a finite aper- 

ture. While wave propagation through a homogenous medium covered a vast number 

of interesting problems, attention turned to more general situations such as the approx- 

imate solution to the wave equation in an inhomogeneous medium. While there were 

many instances where the inhomogeniety was deterministic (not random), most real 

world problems involved random media, such as light waves propagating through the 

atmosphere. For example, astronomers have long noticed the twinkling, or scintilla- 

tion of the stars viewed through telescopes. In fact, by the 1950's scientists were 

studying the random effect of the earth's atmosphere on star light to aid in the design 

of telescopes. Any exact description of the atmosphere was hopeless since the effect 

of the atmosphere on wave propagation was a random process. But in the early 

1960's several important advances in describing the turbulent atmosphere in a statisti- 

cal sense were recognized by Russian scientists. A. N. Kolmogorov was able to find 

a universal form for one statistical quantity, the mean square velocity difference 

between two points in the atmosphere.3 Within the so-called inertial subrange of tur- 

bulence, Kolmogorov showed that the mean square velocity difference has a universal 

form under the assumptions of local homogeneity and isotropy 

where C: is related to the total amount of energy in the turbulence and x is the sepa- 

ration between velocity detectors. Since the variations in the refractive index cause 

random perturbations on light wave propagation, a link was needed between the veloc- 

ity turbulence model and the refractive index which is a function of temperature and 



pressure. This important step was provided by V. I. Tatarskii and his concept of a 

conservative passive add i t i~e .~  Tatarskii realized that it is difficult to develop the sta- 

tistics for temperature because it is not a conservative quantity. As a parcel of air 

changes in height, its temperature changes in order to equalize its pressure. Instead of 

studying the fluctuations in temperature, Tatarskii studied the fluctuations in potential 

temperature, the difference between the absolute temperature and the temperature 

change due to height. This concept lead to a two-thirds power structure function for 

potential temperature similar to the one for velocity fluctuations. In turn, since the 

refractive index is a function of temperature, a two-thirds power law followed for the 

refractive index fluctuations. This step was critical because the wave equation 

depends on the refractive index. Using an approximation method introduced by S. M. 

Rytov, Tatarskii developed a perturbative solution to the wave equation to the first 

order in the fluctuating part of the refractive index. Throughout the 1960's research- 

ers in the Soviet Union and the United States used the Rytov approximation along 

with the refractive index statistics from Tatarskii and Kolmogorov to describe wave 

propagation through turbulence. 

By the end of the 1960's researchers had most of the tools necessary to 

describe wave propagation in random media. The integral representation of the Huy- 

gens-Fresnel principle was a well established technique to describe wave propagation 

through free space, the statistics of the turbulent atmosphere were defined and experi- 

mentally verified, and the Rytov approximation provided initial insight to the statistics 

of wave propagation through turbulence. In 1971, a critical, creative method to 

describe wave propagation through the atmosphere was introduced by R. F. Lutornirski 

and H. T. ~ u r a . ~  They extended the integral form of the Huygens-Fresnel principle to 

a medium having a random variation in the refractive index. Their integral form 

properly described a light wave traveling through turbulence taking into account the 
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statistics of the fluctuations in the refractive index developed by Kolmogorov and

Tatarskii. Although the solution was based on the same approximations as Rytov, this

approach became popular because it was easily adaptable to laser beam propagation.

Since 1971 there has been an explosion of analytical and experimental research con-

cerning laser beam propagation through turbulence based upon the extended Huygens-

Fresnel principle. It should be noted that several Russian researchers had extended the

Huygens-Fresnel integral to the turbulent atmosphere prior to 1971 but these works

were not translated untillater.6,7,8

Not all researchers accepted the extended Huygens-Fresnel approach to describ-

ing wave propagation through turbulence because of the approximations used in the

extension to random media. Another approach, the Path Integral Method, was devel-

oped in an attempt to eliminate these approximations.9,10 However, the only way to

provide actual numbers for the statistics of light wave propagation was to use approx-

imations which reduced the result to the extended Huygens-Fresnel integral.

Early work with lasers was done horizontally with a laser at one end and a

receiver at the other. These so called double-ended systems were instrumental in

studying turbulence and its effect on laser beams.ll,12 In addition to studying the

effect of turbulence on laser beam propagation, researchers used the double-ended sys-

terns to measure the average crosswind, the wind perpendicular to the outgoing laser

beam. By the mid 1970's, there was a push for single-ended systems where the laser

and the detector were put at the same end and a metallic hard target at the other end

was used to backscatter the laser radiation. The original analysis and design of single-

ended systems was carried out by the research team of Richard Kerr, J. Fred Holmes,

and Myung Hun Lee, and coworkers, at the Oregon Graduate Center.13 Their

approach was to incorporate the effect of a diffuse scattering metallic hard target on a

coherent laser source as it propagated back to the detector. The main idea was to



treat the propagation problem in two steps. The first step was to characterize the 

coherent laser beam as it traveled through turbulence to a diffuse hard target which 

totally randomized the scattered beam into a speckle pattern. Then the second step 

was to characterize the propagation of the speckle pattern as it travelled back through 

the turbulence to the detector. This idea lead to a number of publications14-20 as well 

as several experimental laser systems which measured the average crosswind between 

the laser and the hard target. Throughout the 1980's these single-ended hard target 

systems were refined as research work continued using the interaction of speckle and 

turbulence to measure the average crosswind speed between the laserlreceiver and hard 

target. 

The research work carried out in this thesis project takes the problem to the 

next level. Instead of using a hard target as the diffuse scatterer, the particles in the 

air called aerosols are used to backscatter the laser beam. The remaining sections of 

Chapter 2 give a more complete description of turbulence and speckle and the 

extended Huygens-Fresnel integral equation. 



2.1 Wave Propagation Through Turbulence 

The effects of turbulence can be noticed on sunny days. As the sun heats the 

ground, the hood of a car, or a roof top, heat is radiated back to the atmosphere. The 

appearance of these "heat waves" causes a flickering or wavering of the light visible 

by the naked eye. It is even possible to notice the wind direction because the heat 

waves move with the wind. These heat waves are created by the temperature differ- 

ences between the atmosphere and the objects radiated by the sun. Consequently, the 

temperature deviations cause random fluctuations in the index of refraction. 

The index of refraction can be modeled as 

where n, (2) is the fluctuating part of the index of refraction due to small temperature 

differences throughout the atmosphere. These deviations result because of the natu- 

rally occurring random fluctuations in wind velocity called t~rbulence.~' As a laser 

beam passes through the atmosphere, it encounters regions of different indexes of 

refraction called eddies. As shown in figure 2.la, these turbulent blobs have different 

scale sizes and move randomly about the atmosphere due to the fluctuations in wind 

velocity. Although the fluctuations in n, (?) are small, to an observer at the end of a 

path length of several hundred meters, the intensity of a laser beam can fluctuate 

greatly due to the cumulative effect over the entire path. Because each eddy has a 

slightly different refractive index, different parts of the wavelets on the originally 

coherent wavefront are sped up or slowed down depending on the scale size of each 

eddy. From figure 2.lb, a large scale eddy only changes the direction of propagation 

because each wavelet sees basically the same index of refraction. Depending on how 
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Figure 2.1. Effect of turbulent eddies on laser beam propagation. 
Large scale eddies change direction while 
small scale eddies cause diffraction. 



the eddy is oriented relative to the wavefront, the beam is slightly steered from its 

original direction. This is called beam wander. The beam wander angle is always 

small for one large scale eddy. But as the beam encounters more large scale eddies 

there is more wander. In section 2.3 it is shown that beam wander actually benefits 

the analysis of the statistics of laser beam propagation through turbulence. 

Another way turbulence can effect a laser beam is the effect of small scale 

eddies in figure 2.lb. A small scale eddy only acts on a part of the wavefront. Each 

part of the wavefront is randomly sped up or slowed down. The result is that as the 

beam continues to travel, the wavefront starts to interfere with itself. This is why the 

observer sees random variations in the laser beam intensity. Over a reasonably long 

path length (several hundred meters), the cumulative effects can be quite obvious. 

There are several additional concepts to mention. The first is that the atmo- 

sphere is not really a discrete system of blobs of constant but different indices of 

refraction. Rather, the index continuously varies in a random arrangement throughout 

the atmosphere. Another point is that for isotropic turbulence, the scale size of an 

eddy lies within the inertial subrange 1, to Lo. For the lower atmosphere, the inner 

scale 1, - millimeters and Lo - meters.21 Finally, the fluctuations in the refractive 

index nl (i) are assumed to be a 0 mean Gaussian random process. 

The structure function is given by Kolmogorov 

where C: is related to the strength of turbulence. There is no dependence on the 

absolute location in the atmosphere, only the distance between two points. The cova- 

riance of the index fluctuations can be derived from D, (%) and from using Fourier 

analysis. Let B, ( 2 )  be the covariance of n, ( 2 )  , 



Then the Fourier transform of the covariance is 

where is the wave number. Under the assumption of isotropy and using Kolmogor- 

OV'S structure function?' 

which is called the Kolmogorov spectrum of the index of refraction. This is a very 

important result and is used in the extended Huygens-Fresnel integral in the next sec- 

tion. 



2.2 The Extended Huygens-Fresnel Principle 

Throughout the 1960's, the Rytov approximation was the most commonly used 

method for developing the statistics of laser propagation through turbulence. But in 

1971, Lutomirski and Yura proposed a more convenient way to analyze laser beam 

propagation. In order to gain insight into the extended Huygens-Fresnel method, the 

basic steps of the Huygens-Fresnel integral are presented. The scalar wave equation 

in an atmosphere of isotropic random refractive index isZ2 

where U' (6, z) is the electric field, k is the wave number of a monochromatic wave, 

and n (6, z) is the index of refraction 

Consider a laser beam propagating in the +z-direction as shown in figure 2.2. 

Figure 2.2. Geometry for the coordinate systems for a laser beam propagating in 
the +z-direction. 



For a monochromatic wave propagating in the +z-direction, U' (6, z) can be repre- 

sented as 

lumping any index effects into U (6, z) . At this point, U (6, z) is a slowly varying 

function of z. Substituting equation (2.8) into the original wave equation produces 

2 [U (6, z) eikZ] + a 2  [U (6, z) eikZ] + k2 [ l  + n,] 2~ (6, z) e ikz - - O. 
az2 

a The next step is to evaluate , [U (6, z) eikZ] : 
az 

Using the paraxial approximation,23 

which means that the variations of U (6, z) in the z-direction are negligible over a 

propagation path of a few wavelengths. Inserting equation (2.10) back into equation 

(2.9) results in the paraxial wave equation 

a2  a2  where n, = n, ( 6 , ~ )  and where 8: = - +- . The next step is to expand the 
ax2 ay2 

electric field into a series of terms of order n, 



where each term Ui is on the order of nli). The term U, is the free space solution 

and U, is the first order term, and so on. Substituting the series for U into the parax- 

ial wave equation gives 

V: [u, + u,] + 2ik - + - + k2 [2n,] [U, + U,] = 0 [;yo ;yll 
where only the oth and 1'' order terms are kept. Regrouping by the order of n:" 

Equation (2.16) says that the first order term satisfies a paraxial wave equation with 

the source term on the right hand side. Using the Rytov approximation, equation 

(2.16) is solved by convolving the source term with the Green's function for the 

paraxial wave equation. Its solution is 

Ul (6, z) = ld2 idz '  GFS (6, i ,  Z, z') [2k2nl (6, z) U, (6, z)]  . (2.17) 
v 

where GFs (6, $, z, z') is the free space Green's function for the paraxial wave equa- 

tion. This integral is defined over the volume enclosing the electric field sources. 

Throughout the 1960's equation (2.17) was used to derive the higher order sta- 

tistics for a wave propagating through turbulence. While it did give initial insight into 

the effect of turbulence, the extended Huygens-Fresnel method became popular for 



several reasons. One reason was that the integral solution for U, (6, z) could be 

reduced to a surface integral over the aperture of the original wave using Green's the- 

orem, instead of working with the three dimensional volume integral of equation 

(2.17). Another advantage occurred when the Huygens-Fresnel integral was applied to 

laser beam propagation because the geometry allowed for some additional approxima- 

tions which further simplified the solution. Finally, Lutomirski and Yura showed that 

the extended Huygens-Fresnel method easily separated the properties of the random 

medium from the geometry of the aperture and propagation distance which made it 

more straight forward to calculate the higher order statistics. 

The regular Huygens-Fresnel principle is presented first before applying the 

extension to a random medium. From Born and wolf2, the regular Huygens-Fresnel 

integral for free space is 

In this integral equation for homogeneous media, GFs (6, ?, z, z') is the free space 

Green's function and U (?, z') is the original electric field distribution. U (6, z) is 

the resultant electric field. The surface S is the surface that surrounds the original 

volume, V, from equation (2.17). Already the solution is a two dimensional integral 

over the exit aperture instead of a three dimensional volume integral. This equation is 

useful to describe electric field propagation because the only variables that need to be 

specified are the original electric field, the aperture size from which it originates, and 

the free space Green's function. The Huygens-Fresnel integral is applied to a laser 

beam traveling in the +z direction without turbulence shown in Figure 2.3a. Specifi- 

cally, equation (2.18) is devoted to the case where the aperture is oriented normal to 

the z-direction and the initial electric field is propagating along the z-axis. Under 



a a these conditions, - + - and equation (2.18) can be approximated to be 
an a z 

In deriving equation (2.19)' the approximation was used that the wavefront over aper- 

ture i. is slowly varying compared to a wavelength. The free space Green's function 

for the paraxial wave equation is 

The physical interpretation of this integral solution is that U (6, z) is the result of 

super-imposing a spherical wave traveling through space integrated over the original 

exit aperture given an initial electric field distribution. 

Figure 2.3b shows the geometry when the laser beam travels through turbu- 

lence. The main idea of the extended Huygens-Fresnel principle is that the free space 

Green's function given by equation (2.20) is modified to include the effect of the tur- 

bulence on a spherical wave propagating through turbulence. Using Lutomirski's and 

Yura's notation, the Green's function for the turbulent atmosphere can be written as 

where vf includes the random effect of turbulence on the forward path from aperture 

i. to the field point 6 .  Turbulence effects both the amplitude and phase. Therefore, 

vf can be written as yf = 2 + i$ where x is called the log-amplitude effect and i$ is 

called the phase effect of the turbulence. The original analytical derivation for vf 
was obtained using the Rytov approximation. Consequently, the extended Huygens- 
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Figure 2.3. Geometry for the Huygens-Fresnel integral solution.
lence (b) With turbulence.

(a) No turbu-

Fresnel principle is a modification of the free space Huygens-Fresnel principle to

include the turbulence effect adapted from the Rytov approximation.

The connection between \jI and the random index of refraction will provide

more insight into why the Green's function for turbulence is valid. Following Tatar-

skii, the electric field can be written as a combination of an amplitude and phase term

U = Aeis (2.22)

So, as in equation (2.13) where the electric field is expanded into a series of terms of
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order nl' U = Uo + U I keeping the first two terms. Using the notation of equation

(2.22),

U A iso
0 = oe

U A iSl
I = Ie .

ISO iSI
U = Aoe + Ale.

The function \jf is a measure of the amplitude and phase fluctuations relative to the

free space values. So \jf is defined as

[
U

] [
Ai (s - So)

] [
A

]
.

\jf = In V 0 = In Ao e = In Ao + 1(s - so)
(2.23)

[
A

] [
AI

]
Al

It can be approximated that In Ao = In 1 + Ao "" Ao since AI« Ao.
Also,

s - So = SI. Therefore,

AI. .
\jf = A + IS1 = X+ I<\>0

[
VI

]
.

[
VI

]= Re Vo +IIm Vo
(2.24)

V
By assuming \jf = ~ and substituting this into the wave equation (2.16), an expres-

Uo

sion for \jf can be achieved. The solution for \jf using Green's theorem is

\jf = Uo (~, z) fnl (p, z) Vo (r, z') GFs (p, r, z, z') d2rdz'v
(2.25)

where, again, the volume integral, V, encloses any electric field sources. Since nl is a



zero-mean Gaussian random variable, w is a zero-mean Gaussian random variable 

because w - n,dV. The next step is to let U, (6, z) be the electric field due to a I 
point source & equation (2.25). The statistics can now be developed, keeping in mind 

that the extended Huygens-Fresnel integral contains a factor ey which is a log normal 

random variable. Yura outlines the procedure in developing < ey> and < e' + '* > , 

factors that occur commonly in laser beam propagation through turbulence, in refer- 

ence [5 ] .  To get the basic idea, Yura shows that 

where 6, and C2 are two different points in the scattering plane, i1 and ?, are two 

different points in the transmitting aperture, and, from equation (2.25), 

and @, (c) is the spectrum of the index of refraction fluctuations introduced in equa- 

tion (2.5). Yura only derived the statistics through the second order. Later, Lee, 

Holmes, and Kerr derived the generalized nth order spherical wave mutual coherence 

function, using the statistics of log normal random variables.24 

An example illustrates the technique. The mutual intensity function is com- 

puted between two points in the 6 plane in Figure 2.3b 

Using the extended Huygens-Fresnel integral the electric field in the 3 plane is 



where U, ( i ,  z ') is the transmitted electric field of a laser beam in the i aperture S 

and yf (6, i ,  z, z') includes the effect of turbulence on a spherical wave on the for- 

ward path from the i plane to the $ plane. The idea is to form the product 

U (c,, z) U* (fi,, z) and then take the ensemble average 

I- b2, z, z') = k2 d2i2 uT ( i l ,  z') U: ( i2,  z') 
( 2 ~ )  2z2 

The ensemble average only applies to the random effect of the turbulence since all 

other terms are deterministic. The term in angle brackets is the second order spherical 

wave mutual coherence function. The remaining steps are to substitute for the mutual 

coherence function and for the electric field in the i. plane and to perform the integra- 

tions. 

Through the early 1970's use of the extended Huygens-Fresnel integral gradu- 

ally increased. However, it was only used to analyze double-ended laser systems. 

The next section shows how to use the interaction between turbulence and speckle 

created by the scattering of a laser beam from a diffuse surface to allow for single- 

ended systems. 



2.3 Single-Ended Lidars Using Speckle-Turbulence Interaction 

Double-ended systems were useful to study the effect of the atmosphere on 

laser beam propagation and to estimate the crosswind speed. The setback, however, 

was that the laser was at one end and the detector was at the other. A more practical 

setup would put the laser and detector at the same location, as shown in figure 2.4. 

This problem was attacked by Lee, Holmes, and Kerr in the mid 1970's. Their 

approach was to use a diffuse scattering hard target to transform the laser signal into a 

speckle pattern which propagated back to the receiver. This allowed the entire laser 

system to be located at the same place but it also required some new analysis on how 

to characterize a speckle pattern as it propagated through the turbulent atmosphere 

back to the receiver. 

Speckle results when a source of coherent light is backscattered from a rough 

surface. The general idea is shown in figure 2.5. From figure 2.5a, a source of 

coherent light which reflects from a mirror results in no change to the coherent wave- 

front. The reason the wavefront does not change is because the angle of incidence 

and reflection are the same for every wavelet and thus they do not interfere. 

Laser 

I 

Receiver 
Hard 

Target 

Figure 2.4 Schematic of a single-ended laser system. 
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Figure 2.5 Generation of a speckle pattern. (a) a mirror only reflects wavefront 
because angle of incidence equals angle of reflection. (b) a diffuse tar- 
get scatterers the incident wavefront in all directions. The scattered 
wavelets mutually interfere creating a speckle pattern. 

However, a rough surface scatters the incident laser beam in all directions causing the 

wavelets to mutually interfere as shown in figure 2.5b. The electric fields at points A 

and B are the summations of wavelets that have traveled different path lengths. If the 

surface heights of the individual scatterers differ by at least a wavelength, then each 

contribution has a different phase. The result is that the scattered intensity consists of 

a multitude of bright spots, where the interference is highly constructive, dark spots, 

where the interference is highly destructive, and intensity levels in between these lim- 

its. Such an arrangement of random light and dark spots is called a speckle pattern.25 

The resultant speckle field at points A and B can be written as the sum of the 

contributions from the rough surface 



In this equation, N is the number of contributors and qi is the phase of each contrib- 

utor. The surface heights of the individual scatterers are random and uncorrelated 

with each other. This fact leads to several assumptions that provides the statistics of 

the resultant speckle field. The first is that the amplitudes and phases of the speckle 

field immediately after scattering are statistically independent for any two points on 

the speckle field wave front. The phase of each Ui is produced only by its path 

length while the amplitude is determined by the strength of scattering of each section 

of the rough surface. In addition, for a fully developed speckle pattern, the phases are 

uniformly distributed between -n and n because the surface heights are at least as 

rough as one wavelength. Therefore, the path length differences result in all possible 

phase shifts between -n: and n. Using these two assumptions, the ensemble average 

of the speckle field can be written as 

because < cos ($,) > and < sin (@,) > = 0. Therefore, the resultant speckle field is a 

zero-mean random process. Because the surface heights of the individual scatterers 

are random and uncorrelated, the electric fields at points A and B are statistically 

independent close to the surface. The analytical way to express statistical indepen- 

dence is that the electric fields at points A and B are 6-function correlated 

As the number of contributors increases, the central limit theorem takes over, 



and the real and imaginary parts of the speckle field become zero-mean Gaussian ran- 

dom variables.26 D. Draper, Holmes, and I. in their study of the laser 

speckle phase found that the number of independent scatterers for a typical diffuse 

hard target is on the order of lo5. This high number for N certainly indicates that the 

speckle field is Gaussian. 

The schematic of the speckle-turbulence propagation problem for a single- 

ended system using a diffuse hard target is shown in figure 2.6. The transmitted laser 

beam at position I travels through turbulence to position 11 just before scattering as 

shown in figure 2.6a. The turbulence modulates the amplitude and phase of the laser 

beam as it propagates on the forward path to the target. The system would be double- 

ended if a detector were placed at the end of the path instead of the hard target. The 

diffuse hard target randomizes the beam into a speckle pattern just after scattering at 

position 111 as shown in figure 2.6b. The wave front of the speckle field is shown by 

random light and dark spots which represent the areas of coherent and incoherent 

interference. These areas can be thought of as wavelets of the speckle field. These 

wavelets are zero-mean, Gaussian, and 6-function correlated. The speckle field propa- 

gates back to the detector at position IV in figure 2 . 6 ~  after being modulated again by 

the turbulence on the return path. Because the turbulence causes additional interfer- 

ence and mixing of the speckle wavelets on the return path, different points on the 

wave front at the receiver are no longer Gaussian and independent. 

The statistics for the electric fields can now be derived for single-ended sys- 

tems using the extended Huygens-Fresnel principle and speckle-turbulence interac- 

tion. The first step is to use the extended Huygens-Fresnel integral to describe the 

electric field after propagating through turbulence just before scattering given the ini- 

tial transmitted beam. The method for doing this was discussed in section 2.2 and 

resulted in equation (2.29). The next step is to express the field immediately after 

scattering as a function of the field just before the target multiplied by the target 
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Figure 2.6 Characterization of the electric fields in a single-ended laser system 
using a diffuse hard target as scatterer. (a) Transmitted beam at I trav- 
els through turbulence to 11 just before scattering. (b) Scattered beam at 
I11 results in a speckle field. (c) Speckle field travels back through the 
turbulence to the detector. 



Figure 2.7 Geometry for the coordinate systems for the single-ended laser system. 

scattering factor. This factor takes into account the effects of the diffuse target on the 

incident fields. Finally, the fields at the receiver are formulated by reapplying the 

extended Huygens-Fresnel principle for the return path given the scattered fields. 

To illustrate the method, the mutual intensity function is derived for the electric 

fields at the detector. The geometry for the problem is shown in figure 2.7. Using 

the extended Huygens-Fresnel integral, the field just before scattering is represented by 

where U, (i, z') is the transmitted laser field and v, describes the effect of the turbu- 

lence on the laser beam propagating on the forward path from the transmitter to the 

diffuse target. The field immediately after scattering can be written as 



where T (6) is the target scattering factor which includes the effect of the diffuse tar- 

get on the incident field. The field at the receiver can be obtained by reapplying the 

extended Huygens-Fresnel principle 

where \lib describes the effect of the turbulence on the backward path from the target 

to the receiver. The mutual intensity function at the receiver is 

Since the target scattering function and the turbulence are independent, the term in 

angle brackets can be rewritten as 

The first term in angle brackets is the mean value product of the target scattering fac- 

tor which implies that the averaging must be performed over an ensemble of diffuse 
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targets. But there is only one target. This is where the beam wander phenomenon

benefits the analysis. Since the large scale eddies cause the beam to be slightly but

perpetually altered from its original direction, the beam constantly sees a different sec-

tion of the diffuse target. As the beam continues to meander over the surface, a dif-

ferent speckle field is generated, called an evolving speckle pattern. The beam wander

causes the same effect as if there were an ensemble of different targets. Not only are

two different wavelets of the speckle field uncorrelated, but each wavelet for one

instant in time is also independent from the speckle wavelet at the same location but

for a different instant in time because the speckle field is evolving.

The fields after scattering are also o-function correlated. Therefore, the mean

value product of the target scattering factor can be written as

<T(Plrr* (pz» = T~O(PI-PZ) (2.39)

where To is related to the strength of backscattering of the target. One of the benefits

of a diffuse scattering surface becomes apparent since the o-function reduces the num-

ber of integrations. Applying the o-function, the mutual intensity function becomes

z z . .
-'" -'" k To

f
z-'"

[
Ik -'" -'" 2 lk -'" -'" 2

Jr (PI>pz) = Z z d PI exp 2z (PI - PI) - 2z (pz - PI)(21t) z

x <U (p l' z) u* (PI' z) exp ['Vb (PI> PI' Z, z') + 'Vb* (pz, PI' Z, z')] >. (2.40)

Substituting the expression for the field before scattering, the mutual intensity function

can be written as



The term in angle brackets is the fourth order mutual coherence function. The 

remaining steps are to substitute the expression for the fourth order mutual coherence 

function and to perform the integrations. Setting p, = p2 in equation (2.41) reduces 

the mutual intensity function to the expression for the average intensity at one point in 

the receiver aperture. 

So far the only type of single-ended system discussed has been the type with a 

diffuse hard target as a scatterer. In Chapter 3, aerosols replace hard targets as the 

backscatterer. 

This chapter reviewed some of the important theoretical developments to statis- 

tically describe laser propagation through turbulence. Speckle was introduced into the 

process when a metallic rough surface was used to backscatter the laser beam in order 

to locate the laser and receiver at the same end of the propagation path. The time 

delayed mutual coherence function was computed between two points in the receiver 

plane to illustrate the method of applying the extended Huygens-Fresnel principle to 

laser beam propagation through turbulence. 



Chapter 3

The Effect of Aerosols on Single-Ended Lidars

Since the advent of the laser in the 1960's, researchers have noticed the poten-

tial to monitor the environment. An understanding of the properties of aerosols

became important because of the environmental push to measure and control pollutants

in the atmosphere. For example, lasers have been used to evaluate the hazards of cer-

tain toxic substances, such as pesticides sprayed over fields. Lasers have also been

utilized to determine the mean flow of pollution created from car exhaust near cities.

In coal mines, lasers have been employed to detect traces of harmful gases to warn

workers of otherwise undetectable hazards. In addition, lasers have been directed into

the atmosphere to determine the strength of backscattering of aerosols. Such informa-

tion has been useful because of the potential to improve weather forecasting. In each

application, the laser has been used as a remote sensor to gather information about the

properties, behavior, and physical principles of aerosols.

In this thesis project, aerosols are used to backscatter a laser beam to estimate

the atmospheric wind speed and to study the effect of aerosols on laser beam propaga-

tion. The use of aerosols to backscatter laser beams creates some extra problems not

present with the hard target systems. Aerosols backscatter much less laser radiation

than hard targets making the detection process difficult. This leads to a poor signal-

to-noise ratio at the detector necessitating some additional signal processing. In con-

trast to diffuse metallic surfaces, aerosols are moving targets which must be included

in the analysis of the statistics of laser beam propagation.
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Section 3.1 introduces the properties of aerosols, including their distribution,

size, and concentration in the lower atmosphere (lower 4 km). Section 3.2 shows how

the scale size of aerosols relative to the wavelength of the laser effects the scattering

profile. This presentation leads to the volume backscattering coefficient. In section

3.3 the modifications to the extended Huygens-Fresnel integral are demonstrated along

with an example of a typical application. Finally, in section 3.4, phase considerations

are mentioned with emphasis on the decorrelation effect of aerosols on the statistics of

laser beam propagation.
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3.1 Properties of Aerosols

When Mt. St. Helens erupted in May, 1980 (figure 3.1) the entire Pacific

Northwest was covered by a giant volcanic dust cloud. Millions of tons of ash were

spouted into the air, scattering eastward as far as several hundred kilometers. The fall-

out blanketed the streets of Northwest cities such as Portland, Oregon. Cars passing

along residential streets kicked up ash plumes causing people to wear breathing masks.

This natural source of pollution is one example of aerosols, clouds of dispersed matter

in the atmosphere. Aerosols, then, are defined as particles suspended in a gaseous

medium, in this case, air.28 Particles that are too large succumb to the forces of grav-

ity and fall to the earth, while particles that are too small rapidly attach to the larger

Figure 3.1 Mt. St. Helens was a giant source of aerosols, erupting millions of tons
of volcanic dust into the atmosphere in May, 1980. [From Hidy29]



aerosol particles. Therefore, most aerosols fall within a certain range of scale sizes, 

from about 0.01 pm to 20pm, a range of over 3 orders of magnitude. 

Volcanic dust is one example of aerosol particles. Other types are Aitken or 

condensation nuclei, smog and haze, car exhaust, pollens, dust, dirt particles, smokes, 

and sea salt nuclei. Figure 3.2 shows a chart of different particles along with their 

typical scale sizes. Rain, drizzle, snow, and hail are not examples of aerosols because 

they do not stay suspended in air, but are included in figure 3.2 for reference. The 

smallest sized particles are called Aitken particles. These particles have scale sizes 

less than O.1pm. The next range of particles occur in the range between 0.1 pm and 

l p m .  These are called large aerosols. Particles which have scale sizes greater than 

l p m  are classified in the giant category. 

Some electron micrographs of actual aerosol particles are shown in figure 3.3. 

Figure 3.3a shows a typical concentration of large continental aerosols in Central 

Europe collected by ~ u n ~ e . ~ ~  Other pictures of aerosols appear in figures 3.3b and c, 

showing the difference in concentration between rural and urban locations. Since cit- 

ies have more pollution than the countryside, the aerosol concentration is greater in 

cities. From these figures, it can be seen that some aerosols have near spherical 

sha~es. but most are irrerrular 
Aitken nuclei ............. ______) hail stones ............ fly ash +-. 

condensation 4 b snow crystals ............. 
nuclei 

b 4 

atmospheric dust ice crystals ............ b c----.) 

oil smokes pollens drizzle - - 
sea salt nuclei water clouds & fogs - rain drops 

smog and haze mist c--) 
.............. b C--) 

I I I I I I I 
0.01 p 0.1 p 1.op 10P loop lmm 1 cm 

Figure 3.2 Scale sizes of some common aerosol particles. [from ~easures~']  
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Figure 3.3
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Electron micrographs of ty~ical aerosols. (a) Continental aerosols in
Central Europe [from Junge 8]. (b) aerosols at a rural site. (c) aerosols
at an urban site [b and c from Twomey31].



Therefore, irregularly shaped aerosols are given an equivalent radius of spherical parti- 

cles with the same properties. This technique is used in the next section to study the 

effect of particle size on backscattering. 

There are at least two processes which effect the number concentration of aero- 

sols in the lower atmosphere as shown in figure 3.4. The first factor is due to thermal 

updrafts as shown in figure 3.4a. As the sun heats the ground, heat radiates back to 

the sky. This rising current of air helps to keep more aerosols suspended. Another 

factor which effects the concentration of aerosols is the washout due to rainfall as 

shown in figure 3.4b. Rain has a cleansing effect. As drops fall to the ground, they 

collide with the aerosols and bring them down, cleaning the air. This process is of 

great interest to scientists studying acid rain. Although the air is cleansed, the rain 

brings the pollution from factories back to the earth, effecting fish habitats and 

(a) (b) 

- 0  

aerosols 

dbd ddd dbd 
ddd d d d  ddd 

rising current 
of warm air 11 Yl( - 

Figure 3.4 Factors effecting aerosol number concentration. (a) the sun warms the 
ground creating a thermal updraft which keeps aerosols suspended in 
the air. (b) rain washes out the aerosols and cleanses the air. 



drinking water. Sometimes weather fronts can carry polluted aeroticulates for several 

hundred kilometers. This phenomena is common on the East Coast of the United 

States as exhaust from factories in the Midwest falls as acid rain. After the rain stops, 

Aerosols can begin to "build up" their number concentration again with each non- 

rainy day. 

The number and size distributions of aerosols vary for each part of the world 

and change from day to day. It is generally impossible to give an exact mathematical 

model for the distributions, although scientists have tried to fit proposed curves to 

measured data. The best way to determine the distributions is to rely on measured 

data. In the field of laser remote sensing, it is important to know something about the 

number and size distributions because the backscattering coefficient depends on these 

quantities. The backscattering coefficient gives the fraction of power of the original 

laser beam which is backscattered by a volume of aerosol particles with a certain size 

and number distribution. Fortunately, most of the empirical data measured at sea level 

at different locations around the world show many similarities. The only real way to 

know the exact particle distribution is to measure it each time data is taken. 

A review of the number and size distributions of many researchers is found in 

~ u n ~ e . ~ ~  The general shape of most continental distributions is presented by figure 

3.5. From figure 3.5, the scale size of aerosols covers about 4 orders of magnitude. 

Most of the aerosols over continents lie within the large range, O.1ym to l y m .  

Other researchers have reported size distributions showing most of the scale sizes are 

located around O.1pm or slightly below. At higher humidity levels, there are more 

aerosols in the large range.28 

The dynamics of aerosol motion can be described by the random walk, or 

Brownian motion.29 Aerosol particles experience an agitation from colliding with mol- 



radius of aerosol (urn) 

Figure 3.5 Size distribution for continental aerosols, summary adapted from 
~ u n ~ e . ~ ~  

ecules creating a thermal motion analogous to that of the surrounding gas molecules. 

Introduced by the work of Robert Brown in the early nineteenth century, Brownian 

motion of aerosols creates a situation where the aerosols are moving in relative, ran- 

dom motion due to thermal energy, even if there is no wind present. When the wind 

blows, the aerosols are assumed to move with the wind with an average speed equal 

to the wind speed with fluctuations about the mean due to the fluctuations in the wind 

speed as well as Brownian motion. Section 4 of this chapter examines more closely 

the statistics of aerosol motion. 

The next section shows how the particle size distribution relative to the wave- 

length effects the scattering profile of a laser beam. This development leads to the 

volume backscattering coefficient. 



3.2 Effect of Aerosol Size on Backscattering 

The aerosol scale size is the most important parameter for characterizing the 

behavior of aerosols.32 In fact, some properties depend very strongly on the scale 

size. This section shows how the scattering profile of a laser beam is determined by 

the particle size relative to the wavelength of the laser. This discussion leads to the 

volume backscattering coefficient. 

There are several different types of scattering that concern laser beam propaga- 

tion. Molecular, or Rayleigh scattering is the scattering of an incident electric field by 

atoms or molecules. The particle scale size is much less than the wavelength of the 

electric field. Rayleigh scattering is perfectly elastic so that there is no change of fre- 

quency of the scattered field. Another type of scattering is called Raman scattering. 

In this case, laser radiation is inelastically scattered causing a frequency shift of the 

scattered field. The most significant type of scattering is due to the type studied by G.  

Mie in the early 1900's. Mie scattering is concerned with the situations when the 

scale size of the aerosols is comparable to the wavelength of the electric field. Mie 

scattering is perfectly elastic resulting in no change in frequency to the scattered field. 

Figure 3.6 shows the relevance of each type of scattering to laser remote sensing. 

From this chart it can be seen that Mie scattering is the most dominant scattering 

mechanism effecting laser beam propagation. All other types of scattering are on the 

order of 7 to 23 orders of magnitude less than Mie scattering. Therefore, the other 

types of scattering are ignored in the analysis of laser remote sensing. 

In 1908 Mie published the first analytical treatment of the scattering of an elec- 

tric field by dielectric spheres, or aerosols. Reviews of Mie's work are found in Born 

and wolf2 and Van De ~ ~ 1 s t . ~ ~  The diagram of the scattering problem is shown in 

figure 3.7. The initial electric field U, considered in the analysis is a plane wave 



Figure 3.6 Different types of scattering and their relevance to laser remote sensing 
(from ~easures~') .  
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Figure 3.7 Geometry for an electric field propagating in the +z direction scattered
by a perfectly spherical aerosol particle.

with electric field propagating in the +z direction, linearly polarized in the +x direc-

tion. A laser beam is usually Gaussian distributed, but to a tiny aerosol, a plane wave

is an adequate approximation. The particle is assumed to be perfectly spherical with

an index of refraction nl different from that of the surrounding medium (air) no.

The aerosol particle has a radius equal to a. The expression for the scattered electric

field Us is obtained by solving Maxwell's equations subject to certain boundary con-

ditions across the air-aerosol interface. The expression for Us is complicated, being

an infinite series solution of Legendre polynomials, spherical Bessel functions, and

Hankel functions. Some useful insight into the effect of particle size on Us is

obtained by looking at the far-field scattered expressions for the scattered intensity.

The far-field expressions are obtained by substituting the asymptotic expressions for

the special functions. A computer program was written to plot the far-field intensity

distribution for studying the effect of aerosol radius on the scattering profile.



Figure 3.8a-e shows the scattering diagrams of an incident laser beam scattered from 

aerosol particles of different scale sizes. Each figure shows the cross section of the 

scattering profile sliced along the plane of the initial polarization direction of the elec- 

tric field. When the aerosol scale size is very small compared to the wavelength, as 

shown in figure 3.8a, the scattering profile is perfectly symmetric. Half of the inci- 

dent radiation is scattered into both the forward and backward directions. This result 

is identical to the case discovered by Lord Rayleigh in the study of scattering by mol- 

ecules. As the aerosol scale size increases, the scattering profile exhibits the forward 

dominant scattering behavior, as shown in figure 3.8b. In this figure, the aerosol scale 

size is about 10% of the wavelength, yet the tendency to scatter more radiation in the 

forward direction is already noticeable. Figure 3 . 8 ~  shows the scattering profile when 

the aerosol scale size is 25% of the wavelength. Even more of the incident laser 

beam is forward scattered. Figure 3.8d shows the "whale" scattering profile when the 

aerosol scale size is half of the wavelength. A scale size beyond half of the wave- 

length is exhibited in figure 3.8e. The scattering profile becomes complicated with 

many angular side lobes, yet the tendency to forward-scatter the laser radiation domi- 

nates. 

Scattering of a laser beam in the atmosphere is more complex than figures 

3.8a-e indicate. Atmospheric scattering involves aerosols that vary in composition, 

size, and shape. The subsequent scattering properties, therefore, are extremely com- 

plex. Instead of studying the individual properties of each aerosol, general informa- 

tion about the atmosphere can be obtained by analyzing the volume backscattering 

coefficient. The backscattering coefficient can be expressed as 

a2 
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Figure 3.8a Cross section of the scattering profile of a laser beam propagating in
the +z direction. Aerosol radius a«A (Rayleigh limit).
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Figure 3.Sb Cross section of the scattering profile of a laser beam propagating in
the +z direction. Aerosol radius a = 0.1"A.
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Figure 3.Se Cross section of the scattering profile of a laser beam propagating in
the +z direction. Aerosol radius a = O.25A.
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Figure 3.8d Cross section of the scattering profile of a laser beam propagating in
the +z direction. Aerosols radius a = 0.5A.
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Figure 3.Se Cross section of the scattering profile of a laser beam propagating in
the +z direction. Aerosols radius a = A.



Figure 3.9 Aerosol volume backscattering coefficient as a function of wavelength 
in the lower atmosphere. (From Wright, et. a1.35) 

where i() is the scattered intensity, n is the index of refraction of the particle, h is the 

wavelength of the laser, a is the aerosol scale size, and N (a  ) is the number distribu- 

tion of the aerosols, with N,,,,, = 1000cm-~ in the lower atmosphere. The units of 

-1 -1 are m sr . This equation predicts a 3rd power inverse dependence on wavelength. 

There have been extensive measurements of P over the last 20 years at many 

wavelengths. Figure 3.9 shows the aerosol volume backscattering coefficient as a 

function of wavelength measured by Wright, et. a1.35 This figure shows the depen- 

dency of the backscattering coefficient on the laser wavelength. The backscattering 



coefficient decreases several orders of magnitude as the wavelength increases from 

O.lpm to 10pm. Since the rate of reduction is less than h-', some researchers have 

proposed that P is inversely proportional to h to some power between 2 and 3. 

Relevant to this thesis project are the measurements of P at C02 wavelengths 

( h  = 10.6pm). Figures 3.10a and b present representations of the volume backscat- 

tering coefficient taken in California and Colorado at h = 10.6pm. In each figure, P 
is plotted as a function of height. Figure 3.10a shows the lidar return above Pasadena, 

California, from Tratt and ~ e n z i e s ~ ~  while figure 3.10b contains the model profiles 

for p used by Wave Propagation Laboratories taken in Boulder, Colorado from Post, 

et. al. 37 The lower atmospheric measurements place P somewhere around 

l~-~m- 'sr- ' .  Figure 3.10b shows that P depends on the season as well, indicating 

that measurements made in spring and summer can be 1 or 2 orders of magnitude 

greater than those made in the winter and fall. This is due to the factors effecting the 

number concentration discussed in figure 3.4. In the winter, P can drop at least an 

order of magnitude. In chapter 5 it is shown that the Signal-to-Noise ratio (SNR) is 

proportional to P. Therefore, the higher the P, the better the SNR. Figure 3.10b sug- 

gests that the highest SNR for aerosol scattering occurs in the summer months. 



Geometric Mean P [m-'sr-'1 

Figure 3.10 Representations of the volume backscattering coefficient. (a) Measured 
over Pasadena, California (from Tratt and ~ e n z i e s ~ ~ )  (b) Model Pro- 
files used b Wave Propagation Laboratories Boulder, Colorado (from 

37 Post, et. al. ) 
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3.3 Modifying the Extended Huygens-Fresnel Integral to Include Aerosols 

There are two main differences between backscattering from aerosols and a 

metallic hard target. The first is that aerosols backscatter up to 5 orders of magnitude 

less radiation, decreasing the SNR considerably. The second is that aerosols form a 

moving target which must be included in the analysis of the statistics. The schematic 

of the aerosol problem is shown in figure 3.11 below. A laser beam is aimed into the 

atmosphere and is backscattered off of aerosol particles moving with the wind. The 

backscattered laser signal is collected by a detector at the same location as the trans- 

mitter, forming a single ended system introduced in Chapter 2. Figure 3.12a shows 

the geometry of the coordinate systems. Because the aerosols move with the wind, it 

is necessary to include time in the analysis. Including time in the analysis introduces 

the Doppler shift to the laser frequency, as shown in figure 3.12b. As the vector wind 

blows the aerosol particles around the atmosphere, a Doppler shift results due to the 

component of the wind along the z axis. A Taylor expansion of the position of the 

Laser 

I I l * m  . 
Receiver moving 

aerosol 
target 

Figure 3.11 Schematic of the single-ended laser system backscattered from aerosols. 
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Figure 3.12 (a) Coordinate system of the aerosol backscattering target single ended 
lidar system. (b) Aerosol moves with the wind. A Taylor expansion of 
the position of the particle in the z direction results in the Doppler shift 
of the laser signal. 



aerosol along the z axis leads to a representation of how the z coordinate is changing 

in time 

In equation (3.2) the acceleration has been dropped because it is negligible over typi- 

cal sampling times. The minus sign indicates that the z distance is decreasing. A 

similar equation can be written for the transverse velocity of the aerosol particle 

j3 (t) - 6, - flt 

where f l  is the transverse component of the velocity of the aerosol. These equations 

can be used in the analysis of the electric field of a laser beam propagating through 

turbulence, backscattered from aerosol particles. The use of aerosols as a backscat- 

terer allows for the detection of the z-directed wind speed as well as the crosswinds. 

The detection of the z-directed wind speed is not possible using a hard target, since a 

hard target does not move with the wind. 

The problem can be separated into two steps. The first step is concerned with 

the z-directed winds, and the second step is concentrated on the crosswinds. The elec- 

tric field at the transmitter in figure 12a can be represented as 

u, ( i ,  t) = UT ( i )  cos (2n;f0t) 

where the monochromatic part of the beam is represented by the cosine. In equation 

(3.4), U, (t) is the initial electric field distribution in the transmitter plane, fo = C / h  



is the frequency of the laser beam, and C is the speed of light. The electric field just 

after scattering off of 1 aerosol particle can be written as 

A 

us (P, t) = Us (6, t) cos (3.5) 

Because of turbulence, the electric field amplitude us is also a function of time. The 

field at the receiver becomes 

u, ($, t) = U, (6, t) cos 2nf0 t - - [ [ 2z:t')]. 

Inserting equation (3.2), the Taylor expansion for the position of the aerosol, into 

equation (3.6) produces 

[ ( o  ;, ) 4n;z0] u, ($, t) = U, (6, t) cos 2nt f + -fo - - . 

Again, time is included in U, because turbulence causes the amplitude to fluctuate in 

time. The Doppler shift is recognized to be 

Solving for v, gives the z-directed wind speed for a single aerosol particle 

For a CO, laser, the wavelength is 10.6pm. Therefore, for a 1 MHz Doppler shift, 

the velocity of the aerosol is 5.3 m/s according to equation (3.9). Estimating the z- 

directed wind speed is as simple as determining the Doppler shift and using equation 



(3.9). 

In order to estimate the crosswinds, the extended Huygens-Fresnel integral 

must be modified to include the effect of the aerosols. The analytical expression for 

the crosswinds is derived in chapter 4. The best way to examine the modifications is 

to illustrate them with a slight change to the example in chapter 2.3. The time 

delayed mutual intensity function is now derived for the case of aerosol scattering. 

The geometry is the coordinate systems shown in figure 3.12a. The analysis with 

aerosols is based on two references, Churnside and yura3* and ~ u r t ~ . ~ ~  The basic 

theoretical formulations were developed by Churnside and Yura but only for speckle 

and no turbulence. Murty included the effect of turbulence and developed an expres- 

sion for the time-delayed mutual intensity function, but used several approximations to 

derive a closed form solution. 

The electric field just before scattering is 

k e i k ~  2 
U (6, z) = -Jd2iuT ( i ,  z') exp (6  - i) + yf (6, i ,  z, z') 

2mz 

where U, ( i ,  z') is the transmitted laser field, z is the path length coordinate, and v, 
describes the effect of the turbulence on a spherical wave propagating on the forward 

path from the transmitter to the aerosols. The field immediately after scattering due to 

a single aerosol can be written as 

where S (6) is called the amplitude scattering factor of an aerosol particle. This field 

propagates back to the detector through turbulence. At the receiver, the electric field 

due to single particle scattering is 



s (6) ikz ik 2 
u d h )  = -u tb , z ) e  z exp[%($-6) +y,($, f i ,z ,z1)]  

where q ~ ,  describes the effect of the turbulence on the backward path from the target 

to the receiver. There is no integration over the target area because equation (3.12) is 

the electric field at the receiver due to the backscattering of only one particle. The 

time delayed representations for the electric fields can be obtained by replacing 6 with 

6 - Glz and z by z - v,z in equations (3.10) and (3.12). This means that the aerosol 

has moved from 6 to 6 - i;lz and from z to z - vzz in time delay z.  Equations 

(3.10) and (3.12) become 

k exp [ik (z - v,z) ] 
U(6,z)  = 27ciz 

2 
d2i  UT (e) exp (6 - fLz  - i )  + yf (6 - $17, e, T)] (3.13) 

and 

s (6) 
u, ($, 7) = -U ( 6 , ~ )  exp [ik (z - v,z) ] z 

In these equations, z - v,z = z is approximated outside of exponentials. Inside the 

exponentials, z -vzz is kept because of phase considerations. In addition, 

6 - z = 6 in S (6) . Equation (3.14) is still due to single particle scattering. 

To obtain the total electric field U, (6, z) at the receiver, equation (3.14) must 

be integrated over the entire volume of aerosols. In addition, the velocities $, and v, 

are random variables which must be accounted for in the ensemble average over the 

scattering volume. In order to simplify the integrations, the particle velocities are 



assumed to be Gaussian distributed. This assumption in not quite true. In fact, Kol- 

mogorov3 found that the mean square velocity difference depends on the distance 

between velocity probes to the 513 power within some inertial subrange of distances. 

However, Dutton and ~ o j s t r u ~ ~ ~  show that the observed statistical structure of the 

velocity turbulence is nearly Gaussian. The Gaussian assumption is only used to 

describe the velocity distributions of the aerosols, but is not used in the spherical 

wave mutual coherence function. The approximate Gaussian aerosol velocity proba- 

bility distributions are 

1 - (v, - < vz> ) 
pdf(vz) = e x  Jz;;oz '1 

20, 

1 - (GL - <GL>) 
pdf (GL) = - - ~ e x p  

2n;crL 

where <vz> and 02 are the mean and variance of the z-directed velocity, and <$,> 

and o: are the corresponding quantities for the transverse velocity. Typically, oz,, is 

about 10% of the mean wind speed.38 There is also a probability distribution for the 

position of each aerosol. Under the conditions of local homogeneity and isotropy, 

which implies that the aerosols are uniformly distributed throughout the volume, Vol. 

The time delayed mutual intensity is now calculated, first for single particle 

scattering. The time delayed mutual intensity function due to single particle scattering 

is given by 



Inserting the expression for U (6 ,, 0) and U* (c2, T) into equation (3.19) leads to the 

following result 

k2exp [2ik (z, - z2) + 2ikvz T] 
2 2 ik 

2 2 2 $ 1  - 6 - - [$2 - (62 -+12r) I 
(2x1 Z l Z 2  222 'I 

Since the aerosol amplitude scattering factor and the turbulence are statistically inde- 

pendent, the term in angle brackets in equation (3.19) can be rewritten as 



The aerosols are located randomly throughout the scattering volume with a separation 

of more than a wavelength of the laser. Therefore, the scattered electric field just after 

scattering is Gaussian distributed and 6-function correlated. The aerosols form a per- 

fectly diffuse scattering medium just like the rough hard target introduced in chapter 

2. Using these facts, the ensemble average of the aerosol amplitude scattering factors 

can be written as 

where N is the number of particles in the volume. The second factor in angle brack- 
A A A  

ets in equation (3.17) is H (GI, G2, e l ,  G2, r l ,  r 2  vL2, 7) , the fourth dimensional spheri- 

cal wave mutual coherence function.24 

The total time delayed mutual intensity function is obtained by integrating 

equation (3.16) over the scattering volume and velocity statistics of the aerosols 

Using the 6-functions of equation (3.18) causes six of the integrations in equation 

(3.19) to be trivial. For example, 

I jd2c2dz2  = Vol 

and 

2 

I d  fL2pdf ( f  L2) = I dv,,pdf (v,,) = 1 



Using these simplifications, equation (3.19) reduces to 

Recognizing that the backscattering coefficient, P = S'N/VO~, equation (3.20) 

becomes 

2 i k A  2 (6, - r,) -- (p, - vl1r - *2) ]H ($1, $2, 6,, $1, ?2, GL~, 
221 

The remaining steps are to substitute the expressions for the transmitted electric fields, 

the spherical wave mutual coherence function, and the pdf's of the aerosol velocities 

and to perform the integrations. Setting r = 0 and p, = p, gives the expression for 

the average received power for a point detector. 



3.4 Phase Considerations, Decorrelation Effect 

This section discusses the decorrelation effects of aerosols on the backscattered 

laser signals. The use of aerosols as the backscatterer creates some additional con- 

cerns not present with the hard target systems. One of those concerns is the decorre- 

lation time of the backscattered laser signal due to speckle. In contrast to hard targets, 

aerosols move randomly about the atmosphere blown by the wind. The approximate 

Gaussian statistics of their motion predict that the aerosols move with a mean wind 

speed, but have fluctuations about the mean value. These fluctuations indicate that 

aerosols move relative to one another. It is speculated that this relative movement 

causes a decorrelation effect that reduces the coherence time. If the amplitude and 

intensity of the returned laser signals are obtained from the peak frequency of a FFT 

of the heterodyne signal, then the decorrelation effect reduces the length of time which 

can be used to compute the FFT. However, this section demonstrates that the decorre- 

lation time applies only to the intensity, and the only factor which limits the length of 

time used to calculate a FFT is the coherence time of the laser used in this thesis 

project. 

To demonstrate the decorrelation of the intensity, the integral over v the 
z1 ' 

axial aerosol velocity, in equation (3.21) of the previous section is performed: 

jdvzlpdf (vZl) exp [2ikvz I T] = 

From Fourier transform theory, this integral is equal to4' 



exp [irkr<v,>] exp [-20; (kr)  2] 

Rewriting equation (3.2 l), 

z) = exp [izkzcv,>] exp [-202 ( k ~ )  2] F (6, i ,  ?l ,  $, 7) . (3.26) 

where 

The second exponential factor in equation (3.26) describes the intensity decorrela- 

tion. The e-, point occurs when 

5 -1 For a CO, laser, k = 5.93 x 10 m and for a 21111s wind speed, o: = 0.04. The 

decorrelation time from equation (3.23) is z = 8ps. This rapid decorrelation of the 

intensity is due to the relative, random z-directed motion of aerosols along the propa- 

gation path. 

Intensity decorrelation times in the microsecond range have been experimen- 

tally measured by several researchers. For example, Hardesty et. al.P2 using a cw 

C 0 2  laser focussed at 30, 100, and 500 meters, measured a decorrelation time of 2ps. 

Vaugn et. al.P3 using a cw CO, laser found the decorrelation time to be around 



lops .  Schotland et. al." reported a value on the order of tens of microseconds. 

Ancellet and ~ e n z i e s ? ~  using a pulsed TEA CO, laser, measured a decorrelation 

time between 1.5 and 5 microseconds. The common misconception, however, was 

that the decorrelation time of the intensity determined the maximum temporal window 

in which to compute a FFT of the return signal. 

It is shown in this section that the maximum FFT window is determined by the 

decorrelation time of the specific laser used in this thesis project, and is not limited by 

the aerosol decorrelation or the effects of turbulence. If the coherence time of the 

laser were longer, eventually the effects of turbulence would start to limit the decorre- 

lation time. The electric field at the detector backscattered from 1 aerosol particle is 

derived in the previous section, equation (3.7), 

where fD represents the Doppler shift imparted by the z component of the aerosol 

velocity. Equation (3.24) would be correct if the laser had an infinite coherence time 

and there were no turbulence. Since all lasers cannot lase on one single frequency 

line but have a finite bandwidth, the different frequencies present in a laser beam can 

eventually get out of phase with each other. The time required for two different fre- 

quencies to get out of phase by a full cycle is called the coherence time. The corre- 

sponding distance travelled is the coherence length46 The coherence time due to the 

finite bandwidth of the laser can be represented by a phase angle, $, (t) , within the 

cosine in equation (3.29). An additional term within the phase of the cosine can be 

introduced which represents the effects of turbulence. In chapter 2 the effects of tur- 

bulence on the intensity are discussed. However, there is an additional effect on the 

phase. As the laser propagates through turbulence, the turbulent eddies cause the laser 



wavefront to interfere with itself. This diffraction not only causes random variations 

in the laser beam intensity, but also disrupts the laser phase as well. Therefore, a term 

representing the turbulence effects on the phase, @, (t) , must also be included within 

the cosine. Introducing the laser and turbulence phase functions, and rewriting the 

terms of equation (3.24) results in 

[ ( zo) 4n;zo uR (6, t) = UR (6, t) cos 2 7 ~  (fO + fD) t - - +- +,, 0 )  +qT (t)] - (3.30) 

This equation is the expression for the returned signal backscattered from 1 aerosol. 

The total electric field is the sum of the contributions from N aerosols within the scat- 

tering volume 

The first term in the argument of the cosine considers the round trip delay time, and 

the Doppler shift imparted by each aerosol. Since the z-directed velocities are approx- 

imately Gaussian with a standard deviation of about 10% of the mean velocity, the 

Doppler frequencies fD, are Gaussian distributed with a 10% standard deviation. The 
1 

second term in the argument of the cosine gives a random phase shift to each contri- 

bution due to the random distribution of aerosols throughout the atmosphere. This 

term creates the speckle field which propagates back to the receiver through turbu- 

lence because the scatterers are separated by more than a wavelength of the laser 

beam. Representing the speckle effect by $, (t) , equation (3.26) can be rewritten as 



If the aerosols do not move, the speckle field generated by aerosol scattering would be 

identical to the hard target case. However, since the aerosols are in constant random 

motion, and move relative to one another, the speckle field decorrelates. But equation 

(3.22) already takes into account the relative motion of the aerosols which leads to the 

decorrelation of the intensity. In order to determine the maximum FFT time, or tem- 

poral coherence, the decorrelation of the phase must be examined. 

The only way the temporal coherence will be reduced is if one of the $ terms 

in equation (3.27) has a large variance and fluctuates rapidly. If, for example, one 41 

term has a large variance, but is slowly varying, the phase will be nearly constant for 

a long time, allowing for a long FFT window. On the other hand, if the @ term is 

rapidly varying but has a small variance, the effect on the phase is negligible because 

the phase is approximately constant, with very small fluctuations. 

The statistics of the laser phase has been studied by several researchers. Good- 

man26 was the first to analytically study the statistics of the intensity and phase of a 

laser speckle pattern. Later, Uozumi and ~ s a k u r a ~ ~  generalized Goodman's results of 

the first order probability density function of the laser speckle phase. Later, Draper, 

Holmes, and derived the phase distribution model for both speckle and tur- 

bulence for the unwrapped phase, the phase values beyond the principle values of 0 to 

2 7 ~ .  Their work was done for a diffuse metallic scattering surface, but can be adapted 

to aerosols. As introduced in chapter 2, turbulence causes the beam to wander over a 

diffuse hard target or a volume of aerosol scatterers. Therefore, the laser beam con- 

stantly sees a different portion of the scattering surface. This meandering of the beam 

creates a constantly changing (evolving) speckle pattern, each with its own phase. 

Since the speckle patterns produced are uncorrelated with each other, the phases are 



uncorrelated as well. Consequently, the FFT window might be limited to the length of 

time it takes to generate a new speckle pattern. Examining the statistics and the spec- 

trum of the phase fluctuations of the backscattered laser signal reveals why the FFT 

window is limited only by the coherence time of the laser used in this project. 

Draper, et. al., shows that the probability density function of the phase is Gaus- 

sian, and the phase perturbations due to speckle and turbulence are additive and Gaus- 

sian. Therefore, the phase variance due to speckle and turbulence can be studied 

separately. The equivalent optical phase variance due to speckle per aerosol, o:, can 

be defined in terms of the wavelength of the laser and the z-directed movement of 

each aerosol49 

This equation means that an aerosol particle which moves a distance v,z creates an 

optical phase variance for that one particle given by equation (3.28). A new expres- 

sion for o: can be derived by using the value of z which causes the intensity to deco- 

rrelate to the e-2 point specified by equation (3.23). Substituting this expression for z 

into equation (3.28) gives 

Equation (3.29) gives the optical phase variance from speckle due to one aerosol parti- 



cle. The speckle variance due to N particles located within the scattering volume is 

given by 

As the number of contributors increases, the variance of the phase due to speckle 

decreases. Inserting equation (3.34) into (3.35) gives the speckle phase variance due 

to aerosol scattering 

rn 

indicating a result independent of wavelength. 

Under certain atmospheric conditions, the optical phase variance due to turbu- 

lence reduces to48 

where L is the path length, C: is the strength of turbulence, and Lo is the outer scale 

of turbulence described in Chapter 2. For equation (3.37) to be valid, Lo must be 

many orders of magnitude larger than lo, the inner scale of turbulence, and Lh  needs 

to be small compared to L:. For a CO, laser, a path length on the order of 1 krn, and 

typical inner and outer turbulence scale sizes of 1 m and 1 mm, respectively, the 

requirements are met and equation (3.32) can be used to determine the optical phase 

9 -3 3 variance due to turbulence. For typical numbers (oZ = 0.1 vZ, N = 10 m x 1 m scat- 

tering volume, L = 500 meters, h = 10.6pm, and C: = lo-"), 



and 

indicating that turbulence dominates the phase variance. The temporal power spec- 

trum of the phase fluctuations due to turbulence is reviewed by Lawrence and Stroh- 

b e h ~ ~ , ~ '  who report the spectrum of phase fluctuations to be around 15 Hz. Although 

the phase variance due to turbulence is much higher than that due to speckle, turbu- 

lence does not cause the phase to change very rapidly. 

Not only do each of the $ terms in equation (3.27) have their own variance, 

they also fluctuate with their own frequency spectrum. The frequency spectrum of the 

laser has already been discussed, having a coherence time of about 50 ps .  Even if 

the variance of the optical phase due to the laser decorrelation is large, since $, (t) 

remains nearly constant over a time slice of 50 microseconds, a 50-microsecond FFT 

time can be used. Therefore, the only way that one of the $ terms can limit the FFT 

time is to have a large variance and fluctuate rapidly. The phase variance due to 

speckle fluctuates rapidly, changing value in about 10 microseconds, but its variance is 

so small, the effect on the total optical phase is negligible. The phase variance due to 

turbulence has a much higher variance, but fluctuates so slowly, the effect on the total 

optical phase is again negligible. Consequently, the only $ term limiting the FFT 

time is the decorrelation term of the laser used in this project. 

Some insight into the way each random phase term effects the processing can 

be obtained by writing a computer program which computes the signal to noise ratio 

of a sine wave 



SNR vs. FFT Time Slice 

simulated data 

FFT Time Slice (microseconds) 

Curve A: A cos [2nf t] + n ( t)  

Curve B: Acos [2nft + $, (t) ] + n (t) 

Curve C: ACOS [2nft + $T (t) ] + n (t) 

Curve D: Acos [2nft + QL (t) ] + n (t) 

Curve E: Acos [2nft + $, (t) + QT (t) + $L (t) ] + n (t) 

Figure 3.13. Processed, simulated data to investigate the effect of each random phase 
term on the SNR. 



buried in white Gaussian noise, n(t), for different FFT time slices. The speckle and 

turbulence phase terms are modeled by Gaussian random processes with the respective 

variances computed above. The speckle phase term changes every ten microseconds 

(rapidly varying) while the turbulence phase term changes every 500 microseconds 

(slowly varying). The phase term due to the laser decorrelation is modeled by a 

Gaussian random process with a variance of 3 (fairly large) and changes every 50 

microseconds to match the current decorrelation time of the C02 laser used in this 

experiment. 

Figure 3.13 shows the result of the processing. The same number of data 

points (100K) were used for each FFT time slice for accurate comparison. The effec- 

tive sampling rate is 20 MHz and f, is 6 MHz. Therefore, a 1024-point FFT repre- 

sents 51.2 microseconds of time and each consecutive data point occurs every 0.05 

microseconds. These parameters are chosen to match the actual experimental values. 

Curve A in the graph confirms that the SNR increases linearly with an increasing FFT 

time slice when there are no random phase terms in the argument of the cosine. 

Curve B shows the SNR vs. time slice when only the speckle phase term, 9, (t) , is 

present. Although the curve starts to deviate from curve A, the SNR still increases 

with each time slice. Curve C is generated by processing data with only the turbu- 

lence phase term, @, (t) , in the argument of the cosine, implying that the turbulence 

phase term has no detrimental effect on the processing. Curve D is processed with 

only the laser phase term, @, (t) , included within the argument of the cosine, indicat- 

ing that the laser decorrelation phase term has the most detrimental effect on the pro- 

cessed SNR. In fact, curve E, which includes all three random phase terms, is no 

different than curve D, showing that the temporal coherence is limited only by the 

laser decorrelation time. Because the laser decorrelation phase term changes every 50 

microseconds and has a high variance, this term dominates the effect on the SNR. 



The turbulence phase term also has a high variance, but it varies so slowly, it has no 

effect. Meanwhile, the speckle phase term is rapidly varying, but because there are so 

many aerosols contributing to the backscattered signal, the variance is too small to 

effect the SNR. In chapter 5, the SNR vs. FFT time slice is presented of actual data 

(see figure 5.18) which resembles curve E, indicating that the only random phase 

term that effects the processing is the decorrelation time of the laser. 

That the decorrelaton of our laser is the primary cause for the reduction in 

temporal coherence has major implications on the way data can be processed. Since 

the laser is the primary source for limiting the maximum FIT time, using a laser with 

a longer coherence time could greatly enhance the SNR, and consequently, improve 

the ability to remotely sense information about the atmosphere. 

This chapter gave a description of aerosols in terms of factors that influence 

number concentration, and typical size distribution in the lower atmosphere (lower 

4km). The effect of aerosol size was studied with relation to the volume backscatter- 

ing coefficient. The modifications to the extended Huygens-Fresnel principle for a 

laser beam backscattering off of aerosols were introduced which showed how a z- 

directed wind speed produced a Doppler shift in the laser frequency. A distribution in 

the z-directed velocity of the aerosols leads to a rapid (-10 microsecond) decorrelation 

of the backscattered intensity at the receiver. The phase considerations were examined 

that predicted that the effect of aerosol speckle should not limit the coherence time as 

compared to the phase effects due to turbulence and that due to the finite coherence 

time of the C02 laser used in this project. 



Chapter 4 

Time-Delayed Statistics 

of a Coherent, cw, C02  Heterodyne Laser Beam 

Backscattered from Aerosols 

The background for deriving the time-delayed statistics of a C02 laser beam 

backscattered from aerosols has been discussed in chapters 2 and 3. Section 4.1 

extends the application of the theory presented in the two previous chapters to the der- 

ivation of the time-delayed (or time-lagged) crosscovariance of the intensities between 

two points in the receiving plane for a CO, laser beam backscattered from aerosols. 

Although the lidar used in this project is a coherent, heterodyne system, applying a 

low-pass type of filter introduced in section 4.2 can successfully remove the high fre- 

quency aerosol speckle part of the time-delayed crosscovariance, leaving only the tur- 

bulence contribution. Since the aerosol speckle can be removed, the solutions for the 

statistics look as if the laser source were incoherent with direct detection. The expres- 

sions for the time delayed statistics become simpler, making it easier to develop a 

crosswind detection scheme. 



4.1 Time-Delayed Statistics for Two Point Detectors 

Some of the effects of backscattering from aerosols have already been dis- 

cussed in chapters 2 and 3. In chapter 2, the combination of speckle and turbulence 

was discussed for single ended lidar systems using a diffuse metallic hard target to 

backscatter laser radiation. In chapter 3, atmospheric aerosols replaced hard targets as 

the backscatter. The mutual intensity functions were derived to illustrate the technique 

of applying the extended Huygens-Fresnel integral. From the derivation in chapter 3 

it was shown that aerosols cause the intensity to decorrelate rapidly but have negligi- 

ble effect on the phase. Additional insight into the way the atmosphere effects laser 

beam propagation can be obtained by deriving the time-delayed crosscovariance of the 

intensities between two points in the receiver plane for a laser beam backscattered 

from aerosols. 

Figure 4.1 Coordinate systems for the single-ended lidar system backscattered from 
aerosols. 



The geometry for a laser beam backscattered from aerosols propagating 

through turbulence is presented in figure 4.1. The transmitter coordinate is i., the 

coordinate of the aerosols is 6 ,  and the detector coordinate is 6. The distance 

between transrnitterlreceiver and the aerosol particle is z (t) . In section 3.3 the modi- 

fications to the Huygens-Fresnel integral were introduced and the method of applying 

the integral was demonstrated for the example of computing the time-delayed mutual 

intensity function, T (GI, $,, 7) , equation (3.20), between two points in the detector 

plane. The derivation of the time-delayed (or time-lagged) crosscovariance of the 

intensities between two points in the detector plane will be accomplished in three 

steps. First, the time-lagged crosscorrelation of the intensities, b ($,, g,, z) , for the 
I1,2 

single aerosol scattering case will be formulated. Second, the total time-lagged cross- 

correlation of the intensities, B, (&, fi2, z) , will be obtained by integrating the sin- 
1,2 

gle scattering solution over the aerosol scattering volume for the total crosscorrelation. 

Finally, the total time-lagged crosscovariance will be derived from the relation 

The derivation of equation (4.1) follows Churnside and ~ u r a : ~  who derived expres- 

sions for the time-delayed mutual intensity and correlation functions for speckle fluctu- 

ations, but did not include turbulence in the analysis. ~ u r t ~ ~ ~  extended the work to 

include turbulence and derived an expression for the time-delayed mutual intensity 

function, but used a quadratic form for the wave structure function instead of the five- 

thirds law (which is correct), negligible transverse velocity, and considered points only 

along the beam axis. 

The time-lagged crosscorrelation function of two intensities in the detector 



plane for single aerosol scattering is given by 

Using the extended Huygens-Fresnel integral modified for aerosols, the received elec- 

tric fields can be expressed as 

S* (b2) * ik 2 * 
u * R ( 6 1 , O )  = u (/t2, 01 exp -ikz2-& (61 - 13,) + vb ($1.  6 2 .  011 

z2 

and 

In these equations, S (6) is the single aerosol amplitude scattering factor, lyb includes 

the effect of turbulence on the backscattered laser electric field from aerosol to detec- 

tor plane, and U (6, T) is the electric field in the aerosol plane just before scattering. 

Inserting the expressions for the electric fields back into equation (4.2) gives the 

expression for the correlation function for single aerosol scattering 



1 
b11,2 (619 6 2 .  7) = exp [ikz, - ikz, + ik (z3 - vZ3.r) - ik (z, - v,~)  ] 

z1z2z3z4 

This expression for the correlation function is complete, because all of the random 

terms are included within the ensemble average. Since the electric fields just before 

scattering contain terms which include the effect of turbulence on the electric fields on 

the forward path from transmitter to aerosols, the random part of equation (4.4) would 

become an eighth order spherical wave mutual coherence function. The evaluation of 

the eighth order mutual coherence function generates 40 terms, which makes the cor- 

relation function too complicated to manage. Keeping the forward and backward tur- 

bulence terms within one ensemble average is equivalent to the dependent paths case, 

because the forward and backward turbulence terms are treated as dependent, and 

therefore not separated into two ensemble averages. The simplification is to use the 

independent paths assumption to treat the forward and backward propagation paths as 

independent in order to create two, more simple, fourth order turbulence coherence 

functions. This assumption is more valid for bistatic lidars, where the transmitted and 

backscattered laser fields are biaxial. However, the lidar used in this project is coax- 

ial; the outgoing and backscattered laser radiation share the same path. Consequently, 

both fields observe the same turbulence. Therefore, the independent paths assumption 



is not strictly valid for the case of a coaxial lidar, but is used to make the derivation 

of the time-lagged cross covariance more manageable. The independent paths 

assumption is the only approximation used in the derivation of the time-delayed cross- 

covariance. 

Using the independent paths assumption, the term within the ensemble average 

in equation (4.4) can be separated into two ensemble averages 

The second ensemble average is the fourth order spherical wave mutual coherence 

function, H (dl. G2, fil, 6,. c3, fi4, GL3, tL4, r )  , describing the effects of turbulence on 

the backscattered laser beam over the backward path from the aerosols to the detector. 

The first ensemble average in equation (4.5) can be rewritten using the principles 

reviewed in chapters 2 and 3. Specifically, since the fields just after scattering and the 

amplitude scattering factors are Gaussian and independent, 



The ensemble average for the cross product between two scattering factors was 

derived in chapter 3 and resulted in equation (3.18). Using this result in equation 

(4.6) yields 

where S is the single aerosol amplitude scattering factor and N is the number of parti- 

cles in the volume. The correlation function for single aerosol scattering results in the 

summation of two terms 

The first term in the summation corresponds to substituting the first term on the right 

hand side of equation (4.7) back into equation (4.4). Concentrating on this term, 



1 
b~ ($1, $2, 7) = exp [ikz, - ikz, + ik (z, - v 7) - ik (z4 

z1z2z3z4 z3 
- vz47) I 

The fact that the fields immediately after scattering are Gaussian and independent 

reduces the fourth order mean value product to the product of two, second order, 

mutual intensity functions. The total correlation function for the first term is obtained 

by integrating equation (4.9) over the scattering volume and statistics of the velocity 

distributions and aerosol position. After applying the delta functions, the total correla- 

tion function for term 1 of equation (4.8) becomes, 

S,N 
In this equation, the backscattering coefficient, P, has replaced - 

Vol ' 
The first and 

second terms in ensemble brackets are mutual intensity functions which can be evalu- 



ated by inserting the expression for the electric field just before scattering, equation 

(3.13) with U, ( i )  = U defined for the transmitted electric 

field in the exit aperture sent to the atmosphere, 

kUToexp [ik (z - v,s) ] 
U ( 6 , Q  = i2nz pi e x p [ - ( 4  2ao + $)r2] 

i k 2 
x exp[- (6  - t,s - i )  ]exp [y, ( i ,  6 - +,s, s )  ] 

2 2 

into the ensemble averages in equation (4.10). In equation (4.11), F and a, are the 

focus distance and the exp(-2) intensity radius of the outgoing laser beam, respec- 

tively. The coordinate r represents the transmitter plane, yr, describes the effect of the 

turbulent atmosphere on a spherical wave propagating from the transmitter to the aero- 

sol particle, and U, is the amplitude of the outgoing Gaussian laser beam. 
0 

The first mutual intensity function in equation (4.10) is 

The term in ensemble brackets in equation (4.12) can be evaluated to be24 

2.9 1 
= exP z l ~ 2 ~ W ~ ~  ( a )  1 w (6, - i2 )  1 

0 
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where k is the wave number and C~ (00) is the strength of turbulence. The integra-

tion variable, 00, is the normalized path length from transmitter to aerosol particle.

With this definition, equation (4.12) becomes

k2U2
.>. *.>. To

ff
2.>. 2..

[

1 2 2

]
<U (Pi' 0) U (Pi' 0) > = 2 d rl d r2exp --z (rl + r2)

(21tZI) 2ao

[
ik 2 2

] [
ik .>. .>. 2 ik .>. .>. 2

JX exp - 2F (rl - r2) exp 2Z1(PI - rd - 2z1 (PI - r2)

xexP[-~D<p(rl-i\,O,O)J . (4.13)

The r integrations can be more easily evaluated by making the change of variables

rl - r2 = r rl + r2 = 2R

2 2 2 1 2

rl+r2=2R+2r

.. ~ 1.>.
rl = R+-r 2

.. ~ 1.>.

r2=R-2r.

and

2 2 -->.>.
rl-r2=2R.r

With this change of variables, equation (4.12) becomes

k2U2
.>. * -" To

ff
2.>. 2-->

[

1

(
2 1 2

)]<U (Pi' 0) U (Pi' 0) > = 2 d rd R exp -~ 2R + Tr
(21tzl) 2ao

[
ik -->.>.

] [
ik -".. R-->.>.

J
x exp -- (2R . r) exp - (-2p . r + 2 . r)

2F 2z1 I

xexP[-~D<p(r,O,o)J . (4.14)

The R terms of equation (4.14) can be grouped and integrated51

[

2

]

2~ 2--> R ~ .>. 1 1

fdR = fdRexp -2a~ eXP[ikR.r(ZI-p)J
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= Zn

= fRdR exp [ - 2~Z] J de eXP[ikRrcos(eR,)(:1 -}-)]000

Z

]

kZa~ 1 1 Z

~ 1t"~exp[-4 (ZI - F ) r .

With this integration, equation (4.14) simplifies to

Z
k

z
U

z

[

Z Z Z

]

* nao T Z k a 1 1-" -" ° Z.> r 0 Z
<u (Pi' 0) U (Pi' 0) > = Zfd r exp

[
-~

] exp -~ (- - F )
r

(2nzI) 4ao ZI

[
ik --' .>

] [
1 .>

]x exp - ZIPI . r exp -2DcI>(r, 0, 0) .
(4.15)

This equation is taken as far as it can go without approximations. Following the same

steps as the first mutual intensity function, the second mutual intensity function

reduces to

Z
k

Z
U

Z

[

Z Z Z

]

* nao T Z k all
<U (pz, 't) U (pz, 't) > = zofdZr exp

[
-~

]
exp T (- - F )

rZ

(2nzz) 4ao ZI

[
ik --' .> ik.> -'

] [
1 .>

]x exp -~Pz' r + z/. vz't exp -2DcI>(r, 0, 0)
(4.16)

which is as far as it can be taken without approximations.

The last random term in equation (4.10) is the fourth order spherical wave

mutual coherence function, H (Ph PZ,Pi' PZ'V1.4' 't) , which evaluates to24

H <Ph PZ, Pi' PZ' V1. , 't) = exp [4Cx (PI - pz+ V1. 't, PI - PZ,-'t)]4 2 (4.17)

where Cx (p, P, 't) is the log amplitude covariance given by
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Cx (j), p, 't) = O.1321[2k2C~zfdrofdu u-813 sin2 [ ro(1 ~:) U2Z]

x J 0 [u I rop + (1 - ro)p - < Y1->'tl] . (4.18)

Finally, the fd2y 1-1' fdVZI' and fdvZ2 integrals of equation (4.10) are trivial:

fd2y.L pdf (Y1-) = 11 1

fdvz pdf(vz) = 11 1

fdVz pdf(vz) = 1.2 2

Substituting both mutual intensity functions and the fourth order spherical wave

mutual coherence function back into equation (4.10) gives the expression for the cor-

relation function for the first term in the summation of the total correlation function

2
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xexp - (
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r2 eXP[--Plorl--P2or2+-r2.V1- 't
J2 z2 F ZI Z2 Z2 2

[
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)]xexp -2:D<j>(r\>O,O) -2:D<j>(r2'O,O) exp[4 X(PI-P2+V.L2't,PI-P2>-'t .

(4.19)

The P integrations can be more easily accomplished with another transformation of



variables similar to the one on p. 82 

making the first term in the summation of the total correlation function 

(4.20) 

The fi integration can be performed51 

and with this delta function, the i2 integration is easy52, reducing equation (4.20) to 

x exp [4Cx (6 + ~I* .T,  $1  - $2. -7) 1 . (4.21) 



This equation is as far as the first term in the total correlation function of equation 

(4.10) can be taken without any further approximations. 

The second term in the expression for the total correlation function can be 

derived by substituting the second term in the summation of equation (4.7) into equa- 

tion (4.4), applying the delta functions, and integrating over the scattering volume and 

velocity statistics 

where 

(4.23) 

As with the first term in the total correlation function, the second term has three ran- 

dom terms consisting of two mutual intensity functions and one fourth order spherical 

wave mutual coherence function. The main difference between the first and second 

terms in the correlation function is that the second term depends on the z directed 

velocity, v,. As was demonstrated in chapter 3, the z-directed wind speed causes a 



rapid decorrelation of the intensity. Similarly, the second term of the correlation func- 

tion will be shown to decorrelate rapidly in time because of the dependence on the z- 

directed wind. In section 4.2, it will be shown that the second term can be filtered 

and removed using the fact the second term decorrelates more rapidly in time com- 

pared with the first term. 

The evaluation of B, begins by evaluating each of the mutual intensity func- 

tions. The first mutual intensity function is, using equation (4.11), 

k 2 ~ ~ o e x p  [ikv, 
<U(C,, O N *  ($,,TI> = 

(2x1 'z; 

By the change of variables 

A rl - r2 = t t, + i2 = 2 6  

the 6 integration can be performed in closed formS1 

With this integration, equation (4.24) becomes 

2 a,k ~ : ~ e x p  [ikv, r] 
< U  tf i2 ,o)u* (fi2,7)> = Jd2t exp[-$] 

x (2%) 



[ i i ':~)3 [ i k  
x e x p  - - --- +- 2 2 exp - (- 2e2 . (i. - OL T) + i . .  CL2z - vqz ) ]  

F 2 2  222 2 

x exp -- D (i ,  CL22, -T) ] [ ? t  @ 

which is as far as it can be taken without approximations. 

Using similar steps to derive the first mutual intensity function, the second 

mutual intensity function can be reduced to 

[ 1 ik x e x p  - - +- exp -- 
F 21 

( -26 , -  ( i -QLlz)  + i - O L  z -vL  z ) 
22, 1 1 I 

The second term in the summation of the total correlation function becomes 

pdf pdf (1%) pdf pdf (vz2) 
x f jd2i ,d2?2 exp [2ikv, z - 2ikv, z] 

(z1z2) 2 1 

[ ] [it2 2 ik 2 ik x exp -7 (r, + r2) exp - ($1 - C2) - - (61 - 6,) + - ($2 - 61 + G L ~ ~ )  
4a0 221 221 'I 



There are still two integrals which can be done in closed form, the integrals over the 

z-directed velocity components. Using the following definition for the probability dis- 

tribution function of the z-directed velocity 

the dv, and dv integrations are4' S 1 I 2 2  

exp [-2ikv, z] 
1 - (vzl - <vzl>)  

exp [ '1 = exp [-2ik.v. >z] exp -2 (0 kz) 
2az1 

1 

1 
[ 

exp [2ikv, z] 
2 

= exp [2ik< vz2> s] exp [-2 (o, kz) 2] 
2 

,2 

Since <v, > = < v  > and a = a the second term of the total correlation func- 
1 =2 z1 ,2' 

tion becomes 



The presence of the term exp [-4 (ozkr)'] causes the second term in the total corre- 

lation function to approach zero rapidly as T increases. Consequently, the second 

term decorrelates much more rapidly in time than the first term in the total correlation 

function. 

The next step in developing the time-delayed crosscovariance of the intensities 

is to form 

c, $ 1  $ 2  = ($1,  $2, 7 )  - < I  ( $ 1 )  ><I ($2, 7) > 
1.2 1,2 

where B, ( G I ,  G2, T) = B,  fi2, T)  + B2 ( G I ,  $2, T) and <I> is the average inten- 
1,2 

sity at one point in the receiver plane. Without going through the derivation of 

< I  (6,) ><I (G2, T) > in detail, it can be shown that this mean value product is exactly 

B1 (hl, G2, T) , equation ( 4 . 2 1 ) ,  but without the exp [4C, (6  + OL27. - $2, -T) I 

term. Therefore, the total time-delayed crosscovariance of two intensities in the 

receiver aperture for the case of aerosol backscattering is, under the assumption of 

independent paths, 



Equation (4.29) is a very complicated expression for the time-delayed covariance func- 

tion between two points in the receiver aperture. Each term cannot be reduced to 

closed form expressions because the integration variables appear in the turbulence 

terms, making the integrations impossible to complete in closed form. 

However, the first term in equation (4.29) can be simplified by using an 

approach16 to expand the r-dependent terms in a Fourier-Bessel series given by 



where P, are the zeroes of J,, b, are the coefficients given by 

b, = i p m  rf (r) Jo (-r) dr 
A2J1 (P,) , A 

where 

xexp  [ - (7 - jr:(t-; I($ j] 

and A is a suitable upper bound where f (r) has decayed to a negligible value. The 

expansion can be done because f (r) decays rapidly as r increases so that only a few 

terms in the series need to be kept. In addition, no other integration variables appear 

in the expansion. To illustrate the method of using the expansion, the first term in the 

total crosscovariance C, (GI, G2, z) = CIl (GI, h2, T) + C12 (GI, h2, z) becomes 
1,2 

x f (r) exp --r, - (6  + t q r ) ]  [exp [4C, ($  + t42, GI  - G2, -r) ] - 1 ] (4.32) [ :A 



Substituting equation (4.30) for f (r) , the r-dependent terms become 

The 8 integration can be performed to yield 

IxdxJ, (ax)  Jo (px) = 2 w - p )  
a+P 

equation (4.34) becomes 

Substituting equation (4.35) back into equation (4.32), 

[exp [4C, (6-+,2.r, $1 - 62, I - 1 ] (4.36) 
m 

where z has been replaced by -7. Another change of variables 



transforms equation (4.36) to 

2. 

1 P - = - k 
dz, dz, 

where has replaced G I  - B2. The d2G integrations can be performed51 to reduce 

equation (4.38) to 
I 

The fi integration can be performed with the aid of the delta function to yield 



where -7 has replaced z. This equation is as far as the first term can be reduced 

without using additional approximations. 

There are two interesting results concerning C, . The first is that if there were 
1 

no turbulence, i.e. C: = 0,  C, would be 0. This is demonstrated by setting C: = 0 
1 

into the expression for Cx, equation (4.18), 

(pmzl Cx xi- , case,, $, - $2, -% 1 ,  = O  c,=o 

and, consequently, 

C,, (p, 7) - exp [4Cxl - 1 

- exp [O] - 1 

- 1 - 1  = o  

The second interesting result is that there are no speckle terms in equation (4.39) 

which cause the first term in the total time-delayed crosscovariance function to decay. 

This implies that all of the speckle terms are contained in C12, the second term in the 

summation of the total time-delayed crosscovariance function. It has already been 

shown in chapter 3 that aerosol scattering causes the speckle fluctuations to be rapidly 



varying compared to the more slowly varying turbulence effects. Consequently, C12 

contains all of the high frequency speckle. 

The second term in the total crosscovariance can be reduced further by realiz- 

ing that the aerosol speckle term 

causes a rapid decay with respect to z. This term is the only speckle or turbulence 

term that decays on the order of microseconds. One way to reduce the complexity of 

C, is to realize that the z terms within the turbulence and other speckle terms are 
2 

constant over the practical range of z compared to the aerosol speckle term, and can 

be simplified by setting z = 0 in all other z terms except for the terms which contain 

phase information. This approximation is valid because the relative rate of decay of 

the aerosol speckle term is several orders of magnitude greater than that of the other 

speckle and turbulence terms with respect to z. Using this approximation, 



The outline in completing the integrations follows the same procedure as to complete 

those of C, . By making use of a Fourier-Bessel expansion on the terms containing 
1 

r, and r,, most of the integrations can be carried out in closed form. The result is 

where 

2 

f ( r )  = exp [-&I [- p) ( - $1~~1 [-lD$ (r2)] . 

Summing equations (4.41) and (4.39) gives the total time-delayed crosscovariance of 

intensities between two points in the receiver aperture 



P2k 
CIlT2 (6.7) = (uTOaO)  deR dzldz2 

z1 
3 D m  'I JI (z,z2) m 

x [ exp ( 4C - , c0seR, I, -7) 1 - I] 
+ 

P2 ((auTo) 

8 
exp [-4 (0,k.r) 2] 

Unfortunately, equation (4.42) is dominated by the aerosol speckle term 

exp [-4 (ozkr)'] making it difficult to extract an expression for the crosswind veloc- 

ity. However, the next section introduces a low-pass filtering process which removes 

C, , making it easier to develop a crosswind detection scheme. 
2 



4.2 Low-Pass Filtered, Time-Delayed Statistics 

Figure 4.3 illustrates the differences between the two terms in the time-delayed 

crosscovariance. Each term is plotted to show how each term decorrelates with time. 

Both terms are normalized by the average intensities to produce a comparison on the 

same relative scale. The radial wind speed, cv,> is chosen to be 2m/s, the crosswind 

speed, cv,>, is chosen to be 2m/s, the turbulence strength C: is 10-14, and the dis- 

tance to the center of the range bin is 500 meters. The first term, c,, , contains only 

effects from turbulence and decorrelates on the scale of milliseconds. The second 

term, however, decorrelates rapidly within a few microseconds. Another difference is 

that the peak of the first term is shifted from the origin depending on the crosswind 

speed but the second term is not shifted because the speckle term 

exp [-4 (ko,r) 2] 

decorrelates so rapidly that the shift is never seen. 

Since the two terms in the time-delayed crosscovariance occupy such different 

spectra, perhaps the application of some kind of time filter would remove the high fre- 

quency speckle term, C, from equation (4.37) and simplify the time-delayed crossco- 
2 '  

variance. The filter must be chosen carefully so that the high frequency speckle is 

removed but the lower frequency turbulence is left intact. In other words, the cutoff 

frequency should be higher than the turbulence fluctuations but lower than the aerosol 

speckle fluctuations. The choice is easy since the spectra do not overlap. In the 



Time (seconds) 

Figure 4.2 Theoretical plots of the two terms in the time-delayed crosscovariance 
of intensities. The first term, which contains only turbulence terms, 
decorrelates on the order of milliseconds. The second term, which con- 
tains a combination of turbulence and high frequency speckle, decorre- 
lates on the order of microseconds. 



actual processing scheme of the experimental data, the filtering will be performed on 

the intensities before computing the crosscovariance. Because the filtering process is 

linear, linear theory can be used to relate the filtering process to the crosscovariance 

itself. If I (z) represents the intensity, h (z) the filter response, and C, (7) the cross- 

covariance, 54 

The filter response function is a low pass type of filter. 

h (7) 



The choice of To defines the cutoff frequency. Applying the filter to the time-delayed 

crosscovariance, 

Concentrating on C, , 
1 

The integration time, To, is less than the decorrelation time of C, . Therefore, C, is 
1 1 

a constant over the integration range and can be taken out of the integral at y = 0. 

The integrals become 

which implies that the first term passes through the filter unaffected because its spec- 

trum lies below the cutoff frequency of the filter. 

The filter cannot be applied to the second term in the form of equation (4.41) 

because 7 must be kept in the turbulence terms before time filtering. However, the 

integrals in the complete expression for C, equation (4.29). are impossible to com- 
2' 

plete. Since the goal is to show that the second term becomes negligible as compared 

to first term after time filtering, the filter will be applied to the second term with 

C: = 0. With no turbulence, only the speckle terms remain which serves as an upper 



bound to C, . In other words, showing that the time filter causes C to be negligible 
2 12 

with C: = 0 is more strict than if turbulence were included because turbulence only 

causes C ,  to decay faster. Setting C: = 0 in the second term of equation (4.29) 
2 

yields 

which contains all of the speckle terms but no turbulence. The i, 6, and fl integrals 

can be completed to give 



222 [ k - + - - ) < t L 2 > z  e x  - - ( i + < t 1 2 > z )  . x e x p  -- - 
F F I] [ :- I 

Applying the filter to C, ,  all factors containing z are nearly constant over the inte- 
2' 

gration range except the aerosol speckle term. Therefore, 

where f (2) represents the factors of C ,  that are constant or slowly varying functions 
2 

of 2. The remaining integral is trivial 



1 The effect of the low pass filtering is to introduce the scale factor - on the second 
koz 

term of the crosscovariance. For typical z-directed wind speeds of around 2m/s, this 

scale factor causes the second term to be negligible compared to the first term. There- 

fore, applying the proper low-pass filter can successfully remove the high frequency 

aerosol speckle, simplifying the expression for the time-delayed crosscovariance of the 

intensities between two point detectors to 

x 1 exp ( 4C x(>;19cose,,)9-r) - 1-11 

where the subscript lpf stands for "low pass filtered." The only remaining integrals 

are those concerning B,, and z, and 2,. Pulsed lidars confine the range to a certain 

region by range gating the receiver to confine the backscattered radiation to a certain 

region. In this project, the outgoing cw laser beam is pseudo-random code modulated 

so that the backscattered laser intensity is limited to a certain region. The details of 

recovering the backscattered laser intensity only from one region and rejecting other 

regions are discussed in chapter 5. Because of the range discrimination of the lidar, 

the limits of integration on z are z, to z,, where z, - z,, is the z-dimension of the 

scattering volume. The distance z, - z, is called a range bin. Figure 4.3 shows sev- 

eral plots of equation (4.45) for several different path lengths. The time-filtered, time- 

delayed crosscovariance of intensities backscattered from aerosols only depends on the 

log amplitude turbulence term. No phase perturbation turbulence terms exist in the 

time-filtered result, nor are there any speckle terms. This implies that the major effect 

of time-filtering the statistics of a coherent laser source is that the laser source acts as 



z, = 1000 meters 
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Time shift (milliseconds) 

Figure 4.3 Low-pass filtered, time-delayed crosscovariance of intensities backscat- 
tered from aerosols. The time shift depends on the crosswind speed 
and the detector spacing. The width of the crosscovariance widens as 
the distance to the center of the aerosol backscatterers increases. 



if it were incoherent. In fact, equation (4.39) is similar to the solution to the time- 

delayed crosscovariance of intensities for an incoherent laser source and direct detec- 

tion.55956957 This result is only achievable using the appropriate processing scheme, 

one which successfully removes the high frequency speckle term but leaves the lower 

frequency turbulence term intact. 

This chapter developed the time-delayed crosscovariance of the intensities of a 

coherent, CO, heterodyne lidar backscattered from aerosols which becomes the sum 

of two terms with drastically different decorrelation times. The first term is a function 

of turbulence induced fluctuations dominated by the log-amplitude covariance function 

with a decorrelation time on the order of milliseconds. The seconds term is domi- 

nated by a high-frequency aerosol speckle term which causes the second term to deco- 

rrelate on the order of microseconds. The total time-delayed crosscovariance, 

therefore, is a complicated function of fluctuations induced by speckle and turbulence. 

However, the application of a low-pass type of filter can remove the second high-fre- 

quency term from the analysis, reducing the crosscovariance to a result which only 

depends on turbulence. In fact, the low-pass filtered crosscovariance for a coherent, 

cw, CO, heterodyne lidar backscattered from aerosols resembles the one for an inco- 

herent lidar with direct detection, simplifying the analysis. 



Chapter 5 

The Experimental Lidar System 

The most common lidars used to probe information about the atmosphere at 

h = 10.6pm are pulsed laser systems. A high powered pulse is transmitted for a 

very short time (on the scale of micro seconds) to the atmosphere and the pulse back- 

scatters off of aerosol particles and travels back to the receiver. To control the dis- 

tance to the desired scattering region, the receiver is range gated. The width of the 

scattering region, or range bin, is determined by the amount of time the receiver gate 

is open. Although the laser pulse is on for a short time, the peak power is so high 

that the maximum range detectable is longer than that detected by continuous wave 

(cw) systems. For example, the Royal Signals and Radar Establishment (RSRE) lidar, 

a 1.5 Watt, cw, 10.6 micron system used to measure backscattering coefficient profiles 

(p) in the early 1980's, had a range of 100 meters to the focus. However, the Wave 

Propagation Laboratory (WPL) lidar, a 2-microsecond duration, . l  Joule, pulsed, 10.6 

micron system used to compare p values with the RSRE system, had a maximum 

range of over 10 krn.58 Because the receiver is range gated, no crosstalk from other 

range bins can enter the receiver as opposed to cw systems. However, these advan- 

tages over cw lidars are not without significant drawbacks. The range gating of the 

receiver necessitates some complicated electronics which makes the processing diffi- 

cult. In addition, the pulsed nature of the laser causes some laser instability as com- 

pared to the cw laser systems. The pulsed requirement of the laser also makes these 

systems more expensive, larger, and less reliable than cw systems. The most desirable 



lidar system would be one which adopted the range resolution ability of the pulsed 

systems while retaining the simplicity of the cw systems. 

The lidar developed over the past 3 years from 1991 to 1994 at the Oregon 

Graduate Institute used in this thesis project is a pseudo-random code, cw, coherent 

optical heterodyne system operating at h = 10.6pm. Because the laser operates cw, 

the laser is simpler, more reliable, and less expensive than a pulsed laser. What sepa- 

rates this cw lidar system apart from others is the novel implementation of a pseudo- 

random code on the outgoing laser beam to discriminate between ranges. In fact, the 

use of a pseudo random code for range resolution has been achieved for the first time 

using a cw, optical heterodyne system. Optical heterodyne detection is used to 

increase the sensitivity of the lidar to detect weak backscattered signals on the order 

of lo-'' Watts. The maximum output power transmitted to the atmosphere is only 

about 3 Watts. Section 5.1 gives a complete description of the lidar, and how the 

pseudo random modulation is employed. Section 5.2 discusses the system signal to 

noise ratio (SNR). Finally, Section 5.3 introduces the processing schemes to get the 

3-dimensional wind speed. 



5.1 Pseudo-Random Code, CW, C 0 2  Lidar 

Three representations of the CO, heterodyne system are presented in figures 

5.1a7 5.lb, and 5 . 1 ~ .  The first figure, figure 5.la, is a general schematic which shows 

the basic functionality of the system. Figure 5.lb illustrates a more detailed top view 

of the layout of the system, introducing each optical component and its relative posi- 

tion on the optical table. Each element is labeled and briefly described in table 5.1. 

The system has been designed so that the laser beam has a height of 2" above the 

optical table. However, the use of an Odyssey 8" diameter, 36" focal length telescope 

as the transmitting mirror places part of the laser beam 8" above the optical table. 

Figure 5.lc is a 3-D representation of this critical part of the system. 

The lidar has been designed, constructed, and tested over a period of three 

years from 1991 to 1994. The main idea has been to modify the existing heterodyne 

systern,18 designed to measure the path averaged crosswind speed between the laser1 

receiver and a hard target, to measure the path resolved 3-D wind speed using aerosols 

as the backscatterer. The first design change was to construct a coaxial system. The 

old laser system, a biaxial lidar which aligned the receiving mirrors at one fixed dis- 

tance to the hard target, was not designed to detect backscattering from different parts 

of the path. Since backscattering from aerosols could occur anywhere, a coaxial sys- 

tem was better suited for aerosol backscattering. Another design change was to 

diphase modulate the outgoing laser beam with a pseudo-random code. Without this 

step, range resolution was impossible. Because aerosols backscatter much less laser 

radiation than hard targets, the old 5 Watt CO, laser was replaced with a 10 Watt 

updated model to provide twice the radiation to the atmosphere as the old system. 

Since theoretical as well as experimental evidence suggested that the majority of the 

backscattering occurred near the range where the laser was focussed, the transmitter 







Table 5.1: Description of the Optical Components of the C02 Heterodyne Lidar 

Optical Element 
r 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 

P 

Q 
R 

S 

T 

U 

V 

Description/Purpose 

Synrad 48-1-28V C02 Laser, Pout = 10 Watts, fo = c/10.6e-06 

Beam Splitter, -80% to Atmosphere, -20% to LO 

AOM 1 => fo + fl  (fl = 37.5 MHz) 

Mirror 

Quarter Wave Plate 

Mirror (Horizontal to 6" Vertical) 

Mirror (6" Vertical to Horizontal) 

1.5" focal length lens F/3 

Odyssey 8" diameter, 36" focal length telescope 

Mirror 

AOM 2 => fo + f2 (f2 = 43.5 MHz) 

Mirror 

1" focal length lens F11 

5" focal length lens F/5 

Beam Splitter, -50% deflected -50% passed through 

Beam Splitter, -5% deflected -95% passed through 

Fermionics #PV-K100 detector, 200x200 micron square surface 

NERC #MPVll-.2-B50 detector, 200x200 micron square 

2 Flat Receiving Mirrors - 3" major x 2" minor eliptical mirror 
on axis with telescope and 3" square mirror underneath 

3" diameter, 15" focal length lens F/5 

-3" focal lenght lens F/-3 

Horizontally-split Lower-half Silvered Mirror (Half Moon) 





optics were completely redesigned to extend the maximum focus distance by a factor 

of 4 over the old system. The next design change in detecting weak backscattering 

from aerosols was to increase the receiving mirror size to maximize the system 

SNR. The effective receiving area needed to be chosen carefully because a hetero- 

dyne system detects the electric field of the backscattered laser beam, not the intensity. 

Therefore, a receiving area which was too large would have caused aperture averag- 

ing, reducing the SNR. Finally, the amplifierlreceiver part of the system was com- 

pletely redesigned and constructed from the amplifiers to the signal processing and 

storage equipment. 

The schematic of the CO, heterodyne system, figure 5.la, illustrates the basic 

characteristics of the lidar. The heart of the lidar is the Synrad CO, laser which has a 

beam radius of 1.85rnm at the exit aperture and a cw output power of 10 Watts. Most 

of the power from the laser is directed to the transmitted path by an 80% germanium 

beam splitter. The beam passes through the first acoustooptic modulator, AOM1, 

which performs two functions. Not only does AOMl upshift the frequency of the 

laser by 37.5 MHz, it also diphase modulates the beam as it continues along the trans- 

mitter path. The beam passes through a h/4  phase retarder which circularly polarizes 

the outgoing beam. This step is necessary because irregularly shaped aerosols (not 

perfectly spherical) induce a polarization change to a linearly polarized beam33, caus- 

ing fluctuations in intensity and phase. However, irregularly shaped aerosols do not 

cause a polarization change for a circularly polarized beam in the backscattered direc- 

tion. 34 

The beam is then directed to an Odyssey 8" diameter, 36" focal length tele- 

scope which expands the beam radius to 71.7mrn (2.82 inches). The existence of the 

internal turning mirror shown in figures 5, lb and 5.lc blocks part of the outgoing 

beam. A computer program was written to investigate whether the internal turning 

mirror (or spider) blocks too much transmitted power. Figure 5.2 shows the ratio of 
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Figure 5.2 Ratio of power transmitted with internal turning mirror to the power 
transmitted without turning mirror for different beam radii. For a beam 
radius of 2.82 inches, about 75% passes through. 



transmitted power with the spider blocking the center of the telescope to the power 

transmitted without the spider for a Gaussian laser beam with different beam radii. 

For a beam radius of 2.82 inches used in the actual system, about 75% of the power 

is transmitted. Therefore, enough power is transmitted without too much sacrifice. 

Part of the beam that is not directed to the transmitter part of the optics is 

reserved for the local oscillator (LO). The LO beam is directed through the second 

acoustooptic modulator, AOM2, and is upshifted by a frequency of 43.5 MHz. The 

purpose of the second modulator is to provide better optical isolation between the 

transmitter and LO and to create a difference frequency between the transrnit- 

ter beam and the LO beam of 6 MHz. After the second AOM, the LO beam is 

directed through another h/4  circular polarizer to match that of the backscattered 

beam. The local oscillator beam is then expanded by a 5X beam expander for two 

reasons. The first is to prevent the beam from rapidly diverging, and the second is to 

overfill the 1 inch diameter lenses to match the wavefront of the backscattered beam. 

After propagating several hundred meters from the scattering location, the backscat- 

tered beam is nearly a plane wave. Therefore, the LO beam radius is expanded to 

match the incoming beam wavefront as closely as possible. Although the LO beam 

intensity distribution is Gaussian, overfilling the 1 inch lenses makes the beam shape 

more plane. 

The backscattered laser beam is collected by a 2 inch diameter mirror mounted 

at the center of the transmitting telescope making the lidar coaxial. Because only one 

receiving mirror is used, some method of splitting the incoming beam into two sepa- 

rate fields is essential to be able to compute the transverse spatial and temporal statis- 

tics. Figure 5.3 shows how the beam is separated into two equal fields by a split 

mirror. The equivalent aperture area for each detector becomes a half moon, with a 

radius of 112 the diameter of the receiving mirror, or 1". After the split mirror, each 





backscattered field is combined with the local oscillator electric field by a 5% beam 

splitter and the resultant field is focussed onto a .2mm X .2mm square HgDcTe detec- 

tor by a 1" focal length lens. The detectors output a diode current proportional to the 

applied optical power on the detector surface area. The detectors represent the last 

stage of the optical part of the lidar. 

The signal detection, recording and storage equipment are shown schematically 

in figure 5.4. After the current is generated by the photodiodes, the diode current is 

collected by a transimpedance amplifier that converts the current to a voltage. The 

voltage signal is then amplified further to match the full scale digitization range of the 

A/D board. Each channel is digitized at a sampling rate of 20MHz by a CS220 two- 

channel digitizing board which is fully software controlled. The CS220 resides in two 

of the expansion slots of a Gateway 2000 4DX 486 personal computer. The CS220 

can store up to 4 Megabytes of continuous data samples in its own memory before 

samples are overwritten. The data is transferred to the hard drive of the 486 PC 

before being stored permanently on the Exabyte 8500 tape drive. The Exabyte 8500 

uses 8mrn cam-corder magnetic tapes that can store up to 5 Gigabytes of data. The 

data can be transferred from the CS220 to the PC's hard drive at 1 Mbyte per second, 

but the transfer rate from hard drive to Exabyte tape drive is only 250 Kbytes per sec- 

ond. The data acquisition and storage programs are listed in Appendix B. 

5.1.1 Review of Pseudo-Random Codes 

To understand how the pseudo-random code modulation can be used to deter- 

mine the range at which the backscattering occurs, and therefore the intensity vs. 

range, a review of the most important properties of pseudo-random sequences is help- 

ful. A more complete listing of the properties of pseudo-random sequences and arrays 
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Figure 5.4 Component layout diagram of the signal amplification, detection and 
storage equipment. 
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is given by MacWilliams and Sloane.60 Pseudo-random sequences are periodic binary

sequences of length M = 2" - I, where n is any positive integer. The most important

property of such a sequence is its periodic autocorrelation function. Figure 5.5 shows

a PRC of length 7 (n=3) and its autocorrelation function. The PRC takes on the val-

ues of 1 or -1 according to the characteristic polynomial for the specific sequence.

Therefore, the PRC can be generated by feedback shift registers for any M = 2"- 1

provided the polynomial is known. Reference [60] contains a complete list of polyno-

mials for degrees n up to 40. The properties of the PRC sequences can be demon-

strated by converting the sequence to a time function shown in figure 5.5. With a

rrummum pulse width of To, called the gate width, the autocorrelation function

becomes

I'Ll

RpRc ('L) = 1- To
(5.1)

1
for I'Ll::;To and M elsewhere. A longer length code may be used to reduce the con-

tribution to the autocorrelation function away from I'Ll= To.

5.1.2 PRC Modulation of Direct Detection Systems

The easiest way to incorporate the PRC with a lidar system is to use an on/off

modulation scheme for a direct detection system.61,62,63 For direct detection systems,

the laser is simply turned on and off according to the PRC sequence. To demonstrate

the method of using a PRC sequence with a direct detection cw lidar backscattered

from aerosols, the outgoing laser intensity is

I (t) = IoPRC (t) (5.2)



7-state PRC: 0 

Characteristic polynomial: h (x) = x3 + x + 1 

Feedback shift register 
for M = 7: exclusive or 

x3 

7-State PRC converted to time function: 

Figure 5.5 Properties of the PRC for M = 7. 



where I, is the average cw output power. The laser backscatters off of aerosols 

located at any range within the field of view of the receiving optics. The returned 

intensity from the backscattering at some range L becomes 

where c is the speed of light. The received signal is pseudo-random code modulated, 

turned on and off with the PRC, delayed by the round trip time to the aerosol particle. 

For range processing, the received signal is multiplied by a delayed version of the 

original PRC sequence 

where D is the delay distance for the desired range bin. Taking the ensemble average 

of equation (5.4), the processed signal becomes 

2L 2D 
I, = IBs<PRC (t - -) PRC (t - -) > 

C C 

Figure 5.6 Path weight function for L = 500 meters for a direct detection lidar 
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Because of the autocorrelation property of the PRC, the main contribution to the pro- 

cessed signal occurs when 

If To, the gate width of the PRC, is 1 microsecond, and D is chosen to be 500 meters, 

the only contributions occur for L = 350 to 650 meters (300 meters full-width, or 150 

meters full-width, half-maximum) with the greatest contribution at 500 meters. Figure 

5.6 shows the path weight function for L = 500 meters. The autocorrelation property 

of the PRC is the key to obtaining the intensity vs. range profiles. By iterating the 

value of D and therefore the time delay of the PRC which multiplies the returned sig- 

nal, the intensity vs. range profile can be generated. It is important to remember that 

for each range, the contribution to the profile is most dominant at the center of the 

cT0 range bin L=D but includes contributions up to - on both sides, as shown in figure 2 
5.6. Outside of the range bin, the contribution is not 0 but is 11M. Therefore, 1 h 4  

represents the level of crosstalk between range bins for a direct detection system. 

5.1.3 Implementing PRC Modulation to CW, Heterodyne Lidar 

Because the direct detection systems must use on-off PRC modulation, half of 

the signal is lost. The only way to recover the other half of the signal is to use a 

coherent, heterodyne system. Instead of using on-off PRC modulation, the outgoing 

laser beam can be diphase (+I,-1 PRC) modulated because the amplitude and phase of 



the backscattered signal are detected. Therefore, the laser is always on implying a 

potential 3dB improvement in the signal to noise ratio. So far, the major stumbling 

block has been how to implement the diphase modulation on the outgoing laser beam 

of a coherent, heterodyne system. 

The lidar developed in this project is the first PRC diphase modulated, hetero- 

dyne system. The key to implementing the diphase modulation lies in understanding 

how an acoustooptic modulator works. Acoustooptic modulators (AOMs) use the 

interaction between an acoustic (sound) wave and a light wave to create a frequency 

change in the light wave based on the conservation of energy principle. Figure 5.7a 

shows a schematic of how AOMs work. An electrical sine wave is sent to a trans- 

ducer which converts the electric signal to a sound wave at the same frequency. The 

transducer is located at one end of the AOM and an acoustic absorber is placed at the 

other end to prevent reflections. The transducer sends a traveling sound wave across 

the AOM to the absorber. When a laser beam is oriented to the Bragg angle, 8, from 

the normal to the propagation direction of the acoustic wave, a deflected beam is cre- 

ated with a frequency that is upshifted by an amount equal to the frequency of the 

sound wave. Figure 5.7b explains the reason for the change in frequency and direc- 

tion based on the conservation of energy principle. In order to conserve energy and 

momentum, the incident laser beam's direction is changed (Bragg reflection) and its 

frequency is upshifted. This is called the acoustooptic effect. 

AOMs have been used in heterodyne lidars mainly as frequency shifters to cre- 

ate a frequency difference between the transmitted and local oscillator beams that lies 

within the pass band of the detector. AOMs have also been used as on-off modulators 

by simply turning the electrical drive signal to the transducer on and off according to 

a pseudo-random sequence. But again, in the on-off scheme, half of the signal is lost. 

Instead of turning the drive signal on and off, it is possible to diphase modu- 



Figure 5.7 Schematic of AOM explaining the change in direction and fre- 
quency. (a) Acoustic waves travel across AOM deflecting laser beam 
and upshifting its frequency. (b) Change in direction and frequency 
occurs in order to conserve energy. 
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late a CO, laser beam with an AOM. This type of operation with an AOM is not 

suggested by the manufacturer. In fact, diphase modulating the laser with an AOM 

has not previously been documented. Figure 5.8 presents the basic idea. The electri- 

cal drive signal is a diphase modulated sine wave 

PRC (t) cos (2nfmt) 

where PRC (t) is a pseudo-random signal taking on the values of 1 and -1. Equation 

(5.6) can be rewritten as 

PRC (t) cos (2nfmt) = cos [2nfmt + PRC' (t) n] 

where PRC' (t) is a pseudo-random sequence taking on the values of +1 and 0. 

When PRC' (t) equals 0, equation (5.7) becomes cos [2nfmt] . But when PRC' (t) 

equals 1, equation (5.7) becomes cos [2xfmt + x ]  = -cos [2xfmt]. Therefore, the 

sine wave is diphase modulated by the PRC. 

In order to achieve diphase modulation of the cw laser source, the diphase 

modulated electrical signal is sent to the AOM transducer as shown in figure 5.8a. 

The transducer converts the electrical diphase signal to a sound wave which travels 

across the AOM crystal. The sound wave traveling across the AOM crystal in figure 

5.8a is shown at one of the transitions from one phase to the other. The solid lines of 

the acoustic wave represent the diphase. The dotted lines are drawn as a reference if 

there were no diphase. The shortest distance between a dotted line and a solid line 

depict a phase delay of 180 degrees. Figure 5.8b shows the expected waveforms. 

The deflected beam will have some finite transition time to change from one phase to 
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Figure 5.8 Schematic of AOM used to diphase modulate the laser beam. (a) 
The diphase drive signal is converted to acoustic waves. Dotted lines 
are a reference if there were no diphase. (b) When the acoustic wave 
changes phase, a finite transition time results because the phase 
change must propagate across the entire diameter of the laser beam. 
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another because the phase change in the acoustic wave takes time to propagate across 

the diameter of the laser beam. 

The schematic of the optical set-up to test the first di-phase operation of a cw 

laser source is shown in figure 5.9, while figure 5.10 presents the results of the first 

experiment to test the diphase operation of the AOM, built by Isomet, model #1207B- 

3. The bottom curve in figure 5.10 represents data from the first diphase operation of 

the AOM. For comparison, the top curve is without diphase. Before the phase 

change, both curves are in phase, with the valleys of each sine wave aligned and 

labeled in the plot. During the phase change, there is a transition time of about 300 

nanoseconds when the phase is not defined. After the transition period, both curves 

are out of phase by 180 degrees, with the peak of the top curve aligned with the val- 

ley of the bottom curve. Therefore, the CO, laser beam is diphase modulated by the 

AOM. Because the phase is not defined during the transition period, there could be a 

drop in received signal power as compared to the power received without diphase 

operation. For that reason, the reduction in received power during diphase operation 

was measured and compared to the received power without diphase operation. It was 

found that the received power during diphase operation with To = l p s  was 91% of 

that without the diphase. Therefore, although the transition time is 300ns, there is 

only a 9% reduction in received optical power due to the diphase modulation of the 

laser beam. 

5.0.1 Range Resolution of PRC Modulation CW Heterodyne Lidar 

Computing the Intensity vs. Range profiles for the PRC heterodyne systems is 

a slightly different process than for direct detection systems because heterodyne sys- 

tems detect the amplitude and phase of the backscattered laser beam rather than just 

the intensity. Figure 5.11 shows how the photomixing of the LO and backscattered 
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Figure 5.9 Schematic of the experimental lidar to test di-phase operation of AOM. 
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Figure 5.10 First experiment to measure diphase modulation of a CO, laser beam. 
Bottom curve is diphase. Top curve is no diphase for reference. 
Before phase change, both curves are in phase. After phase change, 
curves are out of phase by 180 degrees after a transition time of about 
300 ns. 



beam 

Figure 5.11 The backscattered electric field, e,,, and the local oscillator electric 
field, EL,, are combined and focussed onto the photo diode. 

electric field occurs. Both electric field components are combined by a 5% beam 

splitter and focussed onto the photodiode surface by a 1" focal length lens. The elec- 

tric field incident on the photodiode surface can be written as 

where 
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and

-" 2L
EBs = ABS (t) PRC (t - c) cos [2n (fT + fD)t + <1>total(t) ] (5.10)

In these equations, fLO is the frequency of the LO beam, fT+ fD is the frequency of

the backscattered beam which includes the Doppler shift, fD, and <1>total(t) represents

the phase decorrelation due to turbulence, aerosol speckle, and laser decorrelation dis-

cussed in detail at the end of chapter 3. The detector puts out a current proportional

to the intensity

1

--' --'

1

2

id(t) "'" EBS+ELO . (5.11)

The pass band of the detectors is DC to about 20 MHz. Therefore, not all of the

terms generated by equation (5.11) are seen at the output. The only terms that survive

are

2 2
. ALO + ABs (t)
IDC - 2 DC term, generates shot noise

i (t ) - ALOABs (t) PRC (t - 2L) cos [2n (fhet+ fD) t + <1>total(t)]het ,., C

heterodyne signal current

where fhet = fLO- fT = 6MHz. The DC term is responsible for generating the signal

shot noise important for the SNR calculations in the next section. The heterodyne

term is the term used to calculate the intensity vs. range, and the time delayed statis-

tics. Since ALO is a constant, the heterodyne signal current, ihet(t) , is proportional to



the backscattered amplitude, diphase modulated by the PRC delayed to the scattering 

location, L, and centered at a frequency of 6MHz + the Doppler shifted frequency. 

Since the heterodyne signal current is diphase modulated, the average received signal 

is roughly twice that of the on-off scheme. 

The next step in recovering the intensity vs. range is to multiply ihet (t) by 

2D 
PRC (t - -) 

C 

where D is the distance to the center of the desired range bin 

Averaging the recovered signal as with the direct detection processing scheme is not 

possible since a time average of a sine wave is 0. However, the intensity may be 

found by taking the FIT of the recovered signal and finding the peak amplitude from 

the spectrum. The level of crosstalk in the direct detection systems is IN, the code 

length. But the level of crosstalk for a heterodyne system is different because the 

intensity is taken from the peak of a FFT. The crosstalk for a heterodyne lidar is the 

ratio of the peak intensity of the FFT when the backscattered signal is recovered 

exactly (when D = L) to the peak intensity when the backscattered signal is recovered 

at the next range bin (when D is greater than L+cTo/2 or less than L-cTo/2). Fig- 

ure 5.13 shows the spectra of two simulated data sets backscattered from the same 

range, but recovered by the PRC delayed to two different ranges. When D = L, the 
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Figure 5.12 FFT of simulated data, recovered at two different ranges. (a) D=L
(b) L=500m, D=650m. Since information is taken from FFf,

crosstalk is the ratio of peak when D=L to peak when D is outside
range bin where scattering occurs.
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FFT of equation (5,12) is just that of a pure cosine as shown in figure 5.12a. But

when D is greater than L+cTo/2 or less than L-cTo/2, the FFT of equation (5.12) is

that of a cosine multiplied by

2L 2D
PRC(t--)PRC(t--)c c

which is just another pseudo-random sequence of l's and -1's. Therefore, the FFT of

the unrecovered simulated data is the spread spectrum shown in figure 5.12b. For a

63-state PRC used III this project, the crosstalk of the intensity IS

(0.5)2/ (0.07)2 = 50 and the path weight function is shown in figure 5.13 below.

From the FFT comes all of the information about the backscattered signal. The peak

value gives an estimate of the backscattered intensity, and the frequency where the

maximum intensity occurs provides the Doppler shift.

Processed Intensity

I, .." ", ", "".."",..."",..""..."............

1/50

L- cTa
2

L
cT

L+ ~ range (meters)2
..

D

Figure 5.13 Theoretical path weight function for a heterodyne system, 63-state
PRe.



Figure 5.14 presents the processed experimental intensity vs. range for the lidar 

backscattered from a hard target located at 830 meters. The profile has the triangle 

shape as it should. The crosstalk is about 1/50, which matches the predicted level. 

The peak is about 300 meters wide corresponding to the width of the range bin, cT,. 

Figure 5.14 Processed intensity vs. range for a hard target located at 830 meters. 
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5.2 Signal to Noise Ratio (SNR) 

The ability of any optical heterodyne lidar to remotely sense information about 

the atmosphere depends on the Signal to Noise Ratio (SNR) of the system. Each opti- 

cal adjustment, alignment, or design decision is performed to try to operate the system 

at the optimum SNR. After transmitting as much power as possible to the atmosphere 

and optimally matching the optical LO electric field wavefront to the backscattered 

electric field wavefront, the other aspects in maximizing the SNR are concerned with 

the detector and its amplification electronics, and selecting the appropriate size of the 

receiver aperture area so that aperture averaging is not a significant problem. Of all 

the tasks necessary to optimize the SNR, the most difficult task is operating the detec- 

tor properly so that the SNR is maximum. 

5.2.1 SNR Using Photodiodes for Coherent Heterodyne Detection 

The main part of the receiving apparatus of an optical heterodyne lidar is the 

detector, which may be a photoconductive type of detector or a photodiode, operated 

in either the photoconductive (reverse biased) or photovoltaic mode. The lidar devel- 

oped in this project uses photodiodes operated in the reverse bias mode in order to 

minimize the device capacitance and increase the frequency response. A photodiode 

may be modeled as a current generator in parallel with a diode resistance and capaci- 

tance as shown in figure 5.15. When the LO and backscattered electric fields are 

focussed onto the photodiode surface, a diode current, id, is generated proportional to 

the applied optical power. Optimum operation occurs when the input impedance of 

the electronics is much less than the detector resistance to allow virtually all the diode 

current to be collected by the electronics. Using a transimpedance amplifier with a 
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Figure 5.15 Photodiode equivalent circuit connected to amplifier. 

low input resistance is one way to collect virtually all of the diode current. Since the 

transimpedance amplifiers used in the project have an input resistance of about 75 

Ohms and the equivalent diode resistance is on the order of lo3 Ohms, this require- 

ment is satisfied. 

For ideal photodiodes, the current generated is linearly proportional to the 

applied optical power for any power level. Therefore, the shot noise generated by the 

quantum fluctuations in the LO electric field dominate over the amplifier Johnson 

noise, dark current, and background radiation noise. This is called LO, shot-noise 

limited operation. For ideal photodiodes it is always possible to operate in the signal 

shot-noise limit. For real photodiodes, however, the detector responsivity becomes 

nonlinear due to saturation effects, and as more LO power is applied, the SNR peaks 

at a finite LO power level. Therefore, the LO power level that maximizes the SNR 

may not be enough to cause optimal signal shot-noise limited operation. 

Equation (5.13) gives the current output by the detectors proportional to the 

intensity. Two terms result: the DC term, which is responsible for the shot noise gen- 



erated by the LO electric field, and the heterodyne signal term, which is the processed 

signal. After multiplying by the delayed PRC, the photodiode current can be written 

where p, is the responsivity of the detector measured in A N .  Equation (5.13) can be 

rewritten as 

where PLo and PBs are the LO and backscattered signal powers incident on the detec- 

tor. The first two terms of equation (5.14) comprise the DC term 

since PLo >> P,,, and the last term is the heterodyne signal term 

If the detectors do not saturate as more LO optical power is applied, then p, is a con- 

stant. The SNR will now be formulated with reference to figure 5.15 for the ideal 

case, assuming that the amplifier following the detector limits the bandwidth to B 

Hertz, and the Johnson noise from the parallel combination of r, and R, is repre- 

sented by an equivalent resistance Re at some fictitious temperature T, (noise temper- 

ature of amplifier). The signal power from the heterodyne term, equation (5.16), is 



given by 

The noise power can be calculated by ignoring the contributions from the background 

radiation and dark current. The remaining sources of noise are the Johnson noise 

from the equivalent resistance Re and the signal shot-noise due to the LO. The noise 

power becomes 30 

where K is Boltzman's constant, and e is the electronic charge of an electron. The 

SNR for the ideal case is formed from equations (5.18) and (5.17) 

The most optimum operation is to increase the LO power so that the first term in the 

denominator of equation (5.19) dominates over the Johnson noise. This type of oper- 

ation is always possible for ideal photodiodes. Under these conditions the heterodyne 

system is limited only by the shot-noise from the LO, simplifying the SNR to 

Unfortunately, the responsivity of actual photodiodes decreases as more P,, is 



applied. The SNR becomes a function of P,, which has a maximum at a finite P,, 

level. Therefore, the P,, level that maximizes the SNR curve may not be enough to 

operate under LO shot-noise limited conditions. 

To investigate the photodiode saturation effect, the responsivity for each of the 

four photodiodes summarized in table 5.2 was measured and plotted in figure 5.15. 

As more optical power is applied, the photodiode current starts to saturate for each 

photodiode. Consequently, the responsivity decreases as more power is applied to the 

photodiode surface. The least squares fit to the diode current vs. the applied power in 

figure 5.15 is a quadratic of the form 

2 
id (Pin) = popin - poapin (5.21) 

where Pin = P,, + Phet, and po and a are found by making a least squares fit to the 

id vs. Pin data in figure 5.16. For example, for the least-squares curve of photodiode 

A in figure 5.16, p, = 6.206 A/W and a = 198.OfW. 

Table 5.2 Properties of the photodiodes presented in figure 5.15 

Photodiode 
Surface Area 

~ = 0 . 0 4 m m ~  

~ = 0 . 0 4 m m ~  

A=O. 1 6mm2 

A=0.04mm2 

Material 

Hg-Cd-Te 

Hg-Cd-Te 

Hg-Mn-Te 

Hg-Cd-Te 

and 
Serial # 

FM-PV-K100 
1 - 1238N2-2 

MPV- 11-.2-B50 
39 17-2 

MMT 10-3-.45 
9204-IR- 176 

FM-PV-K100 
1-1238N2-1 

Photo 
diode 

A 

B 

C 

D 

Dimensions 

[7 
d=0.2mm 

d=0.21nm 

0 
r=0.225mm 

d=0.2mm 

Manufacturer 

Ferrnionics 

NERC 

Brimrose 

Fermionics 
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Figure 5.16 Detector current vs. applied optical power, and least squares fit for the 
four photodiodes characterized in table 5.2. 



The effect on the SNR can be evaluated more easily by expanding equation (5.21) in 

a Taylor series about P,,. This has the effect of linearizing the nonlinear photodiode 

equation about a power level established by PLo. This approximation is valid because 

PLo dominates over the noise level and the heterodyne signal power. Expanding 

equation (5.2 1) about P,, , 

where 

and 

The heterodyne signal power becomes 

S = 2p: [ 1 - 2aPLo] 2 ~ L o ~ , s ~ :  

and the noise power converts to 

N = 2epoPLo ( 1 - aPLo) BR: + ~KT,BR. 



transforming the SNR to 

Figure 5.17 shows the SNR normalized by the constants in front of equation (5.27) for 

photodiode A. To plot equation (5.27), Te = 6 0 0 ' ~  (approximately a 5 dB noise fig- 

ure) and Re = 75 ohms. The SNR curve increases linearly for low PLo, but finally 

reaches a maximum for PLo = 0.44mWatts and decreases for PL0 beyond that value. 

Therefore, there is a finite value of PLo that optimizes the SNR due to photodiode sat- 

uration. 

Another way to view the degradation in photodiode performance due to satura- 

tion is to normalize equation (5.27) by equation (5.20) which assumes LO shot-noise 

limited operation and no diode saturation. The result is a SNR reduction factor of the 

form 

Figure 5.18 shows the plots of equation (5.28) due to the LO shot-noise limited 

assumption applied to all four photodiodes for the same values of T, and Re used to 

plot equation (5.27). From figure 5.18, photodiode A performs the best, but is still 

3.18 dB short of optimum signal shot-noise limited operation. The worst of the 

diodes is more than 12 dB below the limit. Based on the results of the SNR reduc- 
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Figure 5.17 Normalized SNR for Photodiode A with saturated responsivity. 
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Figure 5.18 SNR reduction factor due to LO shot-noise limited assumption. 



tion, photodiodes A and B were installed in the lidar system as these photodiodes had 

the best overall performance. 

Since the intensity and Doppler frequency are taken from the FFT of the digi- 

tized backscattered laser signal, it is important to verify that the SNR is above the 

threshold to estimate the intensity and Doppler frequency from discrete time observa- 

tions buried in white Gaussian noise. This subject has received much a t t e n t i ~ n . ~ ~ ? ~ ~ , ~ ~  

The best estimate of the Doppler frequency and intensity is obtained from the maxi- 

mum peak in the discrete Fourier transform of the digitized data. However, the ability 

to distinguish the peak diminishes as the SNR decreases. Finally, below some thresh- 

old of SNR it becomes impossible to identify the peak, and therefore, impossible to 

determine the Doppler shift. 

One immediate solution for enhancing the ability to recognize the Doppler fre- 

quency buried in Gaussian white noise is to take a longer data sample length for the 

FFT. Not only does the frequency resolution improve, but the noise level decreases as 

well. Since the noise is 0-mean and Gaussian, a longer sample length reduces the 

noise level. The sample length cannot become too large, however, because of the 

laser decorrelation time discussed in Chapter 3. The laser used in this project has a 

decorrelation time of about 50 microseconds. For a sampling rate of 20MHz, the 

closest sample length with a power of 2 is N = 1024 points (51.2 microseconds). 

Therefore, the Doppler shift and intensity are obtained from FFT's of length N = 1024 

points. Figure 5.19 shows a plot of the relative processed SNR vs. FFT time slice for 

digitized data of the CO, laser backscattered from aerosols. This curve was generated 

by taking the ratio of the peak in the FFT to the average noise floor level in the FFT 

spectrum. This ratio is called the processed SNR. This figure should be compared to 

figure 3.13 in Chapter 3. For FFT time slices greater than the laser coherence time, 

the processed SNR actually decreases. Figure 5.19 indicates that the FFT length 
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Figure 5.19 Processed relative SNR of signal backscattered from aerosols for dif- 
ferent FFT time slices (different sample lengths). For time slices 
greater than the laser coherence time, the SNR decreases. This figure 
should be compared to figure 3.13, Chapter 3. 



which maximizes the processed SNR is N = 1024 points. As demonstrated in Chap- 

ter 3, the only factor which limits the sample length is the laser decorrelation time, 

not the atmospheric decorrelation or turbulence effects on the phase. Therefore, a 

laser that has a longer coherence time could greatly improve the processed SNR. It 

should be noted that all other data sets used to process the SNR vs. time slice resem- 

bled figure 5.19, giving the best SNR for a time slice = 51.2 microseconds, providing 

strong proof that the most significant effect that reduces the processed SNR is the 

laser coherence time. 

The effect of improving the processed SNR by increasing the sample length is 

studied in detail by Rife and Boorstyn [64]. From their analysis comes figure 5.20, 

the probability of an outlier or an erroneous choice of the peak frequency vs. SNR for 

different sample sizes. From the figure, the threshold to choose the correct peak fre- 

quency for an N = 1024 point FFT is about SNR = -14dB. For SNR's below - 

14dB, the peak frequency becomes undetectable. It is therefore imperative that the 

SNR of the detected signal be greater than -14dB. 

Equation (5.27) can be used to estimate the SNR for the actual case of the 

photodiode under saturation to verify that the SNR is above threshold. First an esti- 

mate of P,,, the backscattered laser power must be calculated. A rough estimate of 

PBs is obtained from the lidar equation3' 

where A,,.. is the detector aperture area, AZ,, is the range bin width, U: is the trans- 

mitted power, z, is the distance to the center of the range bin, and p is the backscat- 

tering coefficient. The aperture area is a half moon with radius 1.05", the transmitted 
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Figure 5.20 Probability of an outlier (erroneous peak frequency) vs. SNR (from Rife 
and Boorstyn [64]). 



power is 3 Watts, and the range bin width is 300 meters, making the received power 

For a backscattering coefficient of 10-~m-' (typical for the lower atmosphere) and a 

path length z, of 400 meters, a rough estimate of the backscattered power is 

P,, = 5.7 x Watts 

Using this in equation (5.27) for photodiode A gives the estimate of the SNR to be 

SNR = 0.124 or -9dB. 

Therefore, the lidar operates above threshold. 



5.3 Processing Schemes to Estimate Wind Speed 

The expression for the time-filtered time-delayed crosscovariance of intensities 

between two point detectors is derived in chapter 4 and resulted in equation (4.45). 

Appendix E shows that equation (4.45) can be simplified further, reducing to 

after normalizing by the average intensities to eliminate the constants in equation 

(e.5). The subscript N,,, stand for a normalized, low pass filtered result. Since C, is 

small, the exponential can be expanded using ex = 1 + x to simplify equation (5.31) to 

where the log amplitude covariance is defined by equation (4.18), with p = 0 

The normalized time-delayed crosscovariance of intensities for two point detectors is 

plotted in figure 5.21 for two different values of the crosswind speed and distance to 

the center of the range bin. The detector spacing is 1.05 inches, the experimental 

value. As the crosswind speed gets stronger, the peak of the curve shifts toward the 

origin. By changing the average crosswind speed, the relationship between the detec- 

tor spacing, p, the average crosswind speed, <v,>, and the time delay to the peak, r,, 



Time Shift (seconds) 
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Figure 5.21 Normalized time-delayed crosscovariance of intensities. As the cross- 

wind speed increases, the time delay to the peak shifts toward the ori- 
gin. (a) crosswind speed = 0.5ds .  (b) crosswind speed = 2.0ds .  



is found to be 

One method of estimating the crosswind speed is by finding the time delay to the 

peak, and then using equation (5.34). The time delay to peak method (TDTP) is 

attractive because it does not require a knowledge of c:, or any other statistical quan- 

tities. The TDTP method also gives the wind direction depending on which side of 

the origin the peak is shifted. 

Another way to estimate the crosswind speed is by computing the slope of the 

crosscovariance curve at zero time delay (SZTD). The slope at zero time delay is 

derived by taking the slope of equation (5.32) with respect to z, then letting T be zero 

2 2  2 acN'pq = SZTD = (<?,> . c )  0.1327~ k CnzClda  a l d u  u 
. r = o  

The SZTD can be normalized by the covariance (crosscovariance at zero time delay, 

CNIpf (6,O) I T = o  = CZTD) to get rid of c:. Solving for the average crosswind speed 

gives 

1 SZTD INT 1 
<v,> = 

p CZTD INT2 

where 



and 

The SZTD method also gives the wind direction, depending on the sign of the slope. 

Both of these crosswind speed detection techniques, as well as several others, are 

evaluated by Wang, Ochs, and ~ a w r e n c e ~ '  From computer simulation, they find that 

both methods give the correct crosswind speed estimate when the crosswind speed and 

C: are constant along the whole path. But when the wind fluctuates along the path, 

the slope method is more accurate. Both methods will be used to estimate the cross- 

wind speed. 

5.3.1 Aperture Averaging 

Lidars that use optical heterodyne detection must be designed carefully to 

avoid aperture averaging. So far, the statistics for a CO, laser backscattered from 

aerosols have been derived for two point detectors. But the physical reality is that 

actual lidars have some finite receiving area to collect the backscattered radiation. 

Because heterodyne systems measure the amplitude and phase of the backscattered 

laser rather than the intensity, a receiving aperture that is too large could cause the 

heterodyne signal current to decrease because of averaging of different phases of the 

cosine. Figure 5.22 shows the size of the equivalent receiving aperture of the lidar 

used in this thesis project. Each detector gets one of the half moons with radius of 



Figure 5.22 The equivalent detector aperture area. Each detector gets one of the 
half moons with radius 1.05 inches. 

1.05 inches. The aperture averaging problem was initially investigated by D. L. Fried 

for a circular aperture.68 To perform the analysis correctly for the two half moons, 

the statistics need to be rederived to include the finite aperture. One way to illustrate 

the effect of aperture averaging is to examine the effect on the heterodyne signal 

power defined by 

where UL0 (6)  is the local oscillator electric field and T ($,, 6,) is the mutual inten- 

sity function defined by equation (3.21) with z = 0.  The geometry for the integra- 

tions is shown in figure 5.23. The detector variables 6, and 6, cover the entire half 

moon for one of the detectors. Setting z = 0 and completing the integrations left 

undone in equation (3.21) gives the mutual intensity function at 0 time delay 



Figure 5.23 Geometry for calculating the average heterodyne signal power to evalu- 
ate the effect of aperture averaging. 

where, 



and a, and FT are the transmitted beam radius and focal length, respectively. The 

local oscillator electric field is described by 

ULO (6) = exp -- - + 1- [ : (;; .:,)I 
where p, and F,, are the LO beam radius and focal length back propagated through 

the receiver optics, respectively. Inserting equations (5.40), (5.39) and (5.38) into 

equation (5.37), and changing the radius of the aperture produces the curves plotted in 

figure 5.24. The top curve is the signal power if there were no aperture averaging, 

included as reference for the other heterodyne signal power terms, and is equivalent to 

the received power for a direct detection system. The detector radius has been nor- 

malized by the Fresnel zone scale size, m, to make the result more general. For 

small values of the receiver radius, the heterodyne signal power increases at approxi- 

mately the same rate as the signal power with no aperture averaging. As the radius 

approaches the Fresnel zone scale size, however, the signal power deviates dramati- 

cally from the signal power with no aperture averaging. For detector radii beyond the 

Fresnel zone scale size, the heterodyne signal power actually decreases. Therefore, 

increasing the receiving aperture area beyond the Fresnel zone scale size gives no ben- 

efit for heterodyne detection systems. For a z, of 400 meters, the Fresnel zone scale 

size for h = 10.6p.m is 0.026m or 1.023 inches. The receiving aperture of 1.05 

inches for this lidar is ideal to maximize the heterodyne signal power, and therefore, 

the SNR. 

Setting the receiving aperture at 1.05 inches, the path weight function can be 

computed using equation (5.37) again, varying z, instead of the detector radius. Fig- 

ure 5.25 shows the path weight function or the theoretical Intensity vs. Range for a 
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Figure 5.24 Heterodyne signal power plotted as a function of detector radius normalized by thc 

Fresnel zone scale size FZS = ,,/zc/k. 



Path Weight Function for Heterodyne SNR 

I 1 

FT = 450 meters 

FLo = 100 meters 
betao = 13 mm = .5 inch 
alphao = 72mm = 2.83 inch 

\ 
\ lambda = 10.6e-06 meters 

- Includes aperture averaging 

------- - Point detector result 

I I I I 

200 400 600 800 I I 

Range (meters) 

Figure 5.25 Path weight function for a CO, heterodyne coaxial lidar backscattered 
from aerosols. Result considers actual finite receiving aperture. For 
reference, the point detector path weight function is included. 



CO, heterodyne coaxial lidar backscattered from aerosols. For reference, the theoreti- 

cal path weight function for a point detector is included. The difference in the curves 

is due to the aperture averaging over the detector area, and the fact that the local 

oscillator and backscattered wavefronts must match to produce a heterodyne signal 

current for a heterodyne lidar. 

The time-delayed crosscovariance of intensities for two point detectors is used 

as an approximation to develop the crosswind detection schemes. The equivalent 

detector spacing is the distance between the centers of the two half moons, or 

p = 1.05in. The computer programs used to compute the time-delayed crosscovari- 

ance and the aperture averaging effects, as well as the processing programs are listed 

in Appendix D. The electronics of the PRC generator and of the amplifiers for both 

channels are sketched in Appendix A. 

This chapter introduced a complete description of the experimental lidar used 

in this thesis project. The laser system is a cw, heterodyne system operating at 10.6 

microns. In order to obtain path resolved measurements, the outgoing laser has been 

pseudo-random code modulated through the use of an acousto-optic modulator to 

implement the phase changes. The Signal to Noise Ratio (SNR) was examined to 

include photo diode saturation effects which indicated that heterodyne lidars actually 

operate below the local oscillator signal shot noise limit, a common assumption when 

working with heterodyne lidars. Two processing schemes for obtaining crosswind 

estimates were also developed. Finally, the effects of aperture averaging were exam- 

ined by including the finite aperture size in the average intensity calculations. 



Chapter 6 

Experimental Results 

The CO, lidar described in chapter 5 was designed, constructed, and tested at 

the Oregon Graduate Institute of Science and Technology over a period of three years, 

from the summer of 1991 to the fall of 1994. The laser is discharged out of a win- 

dow at the west end of student trailer #1 and propagates over the terrain presented in 

the aerial photograph in figure 6.1. The ideal propagation path would be flat and fea- 

tureless, so that the atmospheric quantities such as C: and the backscattering coeffi- 

cient, p, would be constant over the path. As can be seen from figure 6.1, the beam 

travels over grass for about the first 300 meters, beyond which is a wheat field. The 

wheat field extends another 500 meters to a grassy pasture outlined by fir trees. The 

laser is angled up by about 5 degrees to avoid the trees when backscattering from 

aerosols. There are also three roads encountered along the course. Unfortunately, the 

terrain is not uniform but it is conveniently located close to the Institute. 

Because of the poor SNR at the receiver due to the small fraction of radiation 

backscattered from aerosols, most days in the Northern part of the Willamette valley 

of Oregon are not adequate for taking data. The frequent rain washes out the aerosols 

on most days, and persistent cloudy weather produces a low c:, causing an interaction 

between the atmosphere and the CO, laser beam that is too weak to detect cross- 

winds. A window of about 2 112 months exists from about the middle of July to the 

end of September with hot, sunny, and breezy weather ideal for aerosol backscattering 

and crosswind detection. There are some additional days in winter months if there are 
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Figure 6.1 Aerial photograph of the Oregon Graduate Institute showing the laser
propagation path.
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4-6 consecutive days without rain and it is sunny. In general, the best time to take

data is during the second half of the summer months. Oregon's clean environment,

coupled with the fact that the lidar is operated in a rural location, requires the entire

system to be optimized in order to detect enough backscattering and operate above

threshold.

The heterodyne signal is proportional to the amplitude of the backscattered

radiation, modulated by the PRC, centered at 6 MHz:!: the Doppler shift. The PRC

has a bandwidth of 4 MHz including the first two zeroes of its spectrum. Depending

on the Doppler shift, the 4 MHz wide heterodyne signal moves up and down the fre-

quency spectrum. The amplifiers were designed to detect Doppler shifts up to

:!:2MHz corresponding to a 10 mIs (22.4 mph) radial wind speed. The required band-

pass of the detectors for these specifications is 2 to 10 MHz. The maximum number

of data samples that can be recorded by the CS220 digitizer is 4 megabytes in single

channel mode, or 2 megabytes for dual channel mode. For a sampling rate of 20

MHz, the sampling time is 100 milliseconds. After the CS220 resident memory is

full, the data must be extracted and stored. The amount of time required to transfer

both channels of data from CS220 memory to PC hard drive is 10 seconds. There-

fore, 2 megabytes of data per channel can be recorded and stored on the PC's hard

drive every ten seconds.

The in situ data is taken by a Campbell Scientific CA-9 path averaging cross-

wind speed and C~ detector. The Campbell unit is part of a double-ended laser sys-

tern with a 5 mW HeNe laser at one end as the source and the Campbell unit as

receiver at the other. Detecting the radial winds from the Doppler shift is quite reli-

able and accurate. Therefore, there were no in situ instruments used to measure the

radial winds. The HeNe laser and Campbell unit were located about 2 meters above

the ground. Because the CO2 laser needed to be angled up above the tree line, its



path is slightly different than the one used by the Campbell unit. 

An example of the heterodyne signal current for the lidar backscattered from 

aerosols is shown in figure 6.2a. The total time represented in the graph is 40 rnicro- 

seconds, showing several speckle fluctuations centered at about 2, 11, 22, and 31 

microseconds. The time scale of the speckle fluctuations is on the order of 3-5 micro- 

seconds which coincides with the intensity decorrelation times predicted by the theory 

of chapter 3. The backscattering range profile for this data set is obtained by comput- 

ing the processed intensity vs. range, shown in figure 6.2b. Most of the backscattering 

occurs at about 280 meters. The path weight function is not a perfect triangle, as it 

would be for a hard target, but most of the return signal comes from a region around 

280 meters. The Doppler shift of this data is found by taking a FFT of the digitized 

data that is multiplied by the PRC delayed to 280 meters. Figure 6 . 2 ~  presents the 

FFT spectrum. The FFT length is 1024 points and there are 500 consecutive 1024- 

point FFT spectra averaged to produce figure 6 . 2 ~ .  Averaging consecutive spectra 

reduces the noise variance and enhances the peak frequency, making it easier to iden- 

tify the peak frequency and Doppler shift over the data run. The Doppler shift is 0.2 

MHz, indicating a radial wind speed of v, = 1.06mls. The humps at + 1MHz from 

the peak frequency represent the part of the return signal from different scattering 

locations other than 280 meters not recovered perfectly by the PRC delayed to 280 

meters. 

A more interesting range profile is presented in figure 6.3a. The double 

humped intensity vs. range indicates scattering from two different parts of the propa- 

gation path. Figure 6.3b shows the processed Doppler shift vs. range provided as ref- 

erence to the range profile. The scattering around 100 meters has a Doppler shift of 

-0.07 MHz, while the scattering from around 320 meters has a Doppler shift of 0.48 

MHz. This is interesting because the lidar has detected the z-directed winds blowing 
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Figure 6.2a Digitized laser signal current backscattered from aerosols. Speckle fluc- 
tuations centered at 2, 11, 22, and 31 microseconds indicate the time 
scale of the speckle fluctuations is on the order of 3-5 microseconds. 
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Figure 6 . 2 ~  Average of 500 contiguous FFT spectra, N = 1024-point FFT's. Data 
represents an average over 25 milliseconds. Data has been processed 
with the PRC delayed to 280 meters, as suggested by figure 6.2b. 
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in opposite directions at different parts of the path. The noisy Doppler shift vs. range 

beyond 450 meters in figure 6.3b is due to the SNR being below threshold for ranges 

longer than 450 meters. 
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6.1 Lidar Used as Dopplermange Sensor 

If only the Doppler shift and intensity vs. range are desired, then only one 

detector can be used. Since the backscattered field is kept intact, instead of splitting 

into two beams, there is twice as much signal directed to a detector than the two 

receiver system. Less data can be taken than when trying to detect crosswinds 

because the z-directed wind speed is found from the Doppler shift of the FFT. It was 

found that running experiments to estimate the intensity vs. range and z-directed wind 

speed could be performed on most days of the year, including winter days after heavy 

rains, because the only quantity needed is the Doppler shift from one of the detectors. 

For these experiments, the split receiver was removed and the entire backscattered 

field was directed to detector #l .  Each data run consisted of 24 sets of 25.6 millisec- 

onds (512k points) of continuous data samples. 

An example of a data run to detect the intensity vs. range and Doppler shift is 

shown in figures 6.4a-g. The intensity vs. range profiles are plotted in figure 6.4a and 

6.4b. Each consecutive data set is separated in time by 6 seconds. Sets 1 through 7 

had some strong backscattering but the strength dies slightly from sets 8 to 17. The 

backscattering strength picks up again for sets 18 through 24. The total time repre- 

sented in figures 6.4a and b is 144 seconds (2.4 minutes). Over this time the center 

of strongest backscattering meanders between 250 and 420 meters. In sets 7 through 

19 there appears to be some backscattered radiation from very short ranges, near 0 to 

20 meters. This is not backscattering from aerosols but is actually feedback noise 

caused by reflections from the transmitter path AOM crystal surface passing through 

to the local oscillator and on to the detector. Sometimes this feedback noise was so 

detrimental that experiments needed to be halted until this noise level could be 

reduced by rotating the AOM slightly off the peak reflection angle. The feedback 
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Figure 6.4a Sets 1 through 12 of the intensity vs. range for data run 
DPA53926.20m. Each set represents an average of 25.6 msec (512K 
points). 
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Figure 6.4b Sets 13 through 24 of the same data run as figure 6.4a. Each set repre- 

sents an average of 25.6 msec (512K points). 



Figure 6 . 4 ~  The intensity vs. range averaged over 2.4 minutes for data run 
DPA53926.20m. The dotted line is the path weight function predicted 
from the theory at the end of Chapter 5. 
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Figure 6.4d FIT spectra of sets 1 through 12 for data run dpa53926.20m. Each set 
represents an average of 25.6 msec (512K points). 
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Figure 6.4e FFT spectra of sets 13 through 24 of data run DPA53926.20m. Each 
set represents an average of 25.6 msec (512K points). 
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Figure 6.4f The z-directed wind speed vs. time series extracted from the Doppler 
shifts of each data set from data run DPA53926.20m. Error bars indi- 
cate the resolution capability of Doppler processing scheme: wind 
speed error = 20MHz / 1024pt FFT * 5.3m/s/MHz = 0.103 m/s resulu- 
tion. 
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noise level of the data run of figures 6.4a and b is about as low as could be achieved. 

Figure 6 . 4 ~  presents the average Intensity vs. Range over the entire data run of 2.4 

minutes. For reference, the path weight function derived at the end of chapter 5 is 

plotted with the center of the range bin at the same location as the data. While the 

averaged IvsR plot has a width of about 400 meters, it appears more sharply peaked 

than the theoretical prediction. Several factors may be the cause that the measured 

IvsR rolls off too quickly. One factor may be that figure 6 . 4 ~  may not include enough 

averaging time to get a true description of the actual IvsR. Another reason could be 

that the backscattering coefficient is not uniform along the entire path. The theoretical 

curve was derived for uniform backscattering. But the actual propagation path has a 

terrain that is quite diverse which could contain plumes of aerosols that are more 

strongly concentrated near ranges 200 to 400 meters. Another reason could be that 

the theory was derived without the turning mirror blocking the center part of the out- 

going laser beam. An additional factor could be that the lidar transmitting and receiv- 

ing paths may not be perfectly coaxial, causing some off-axis effects. Since the 

receiving mirror is aligned near the focus, any off-axis effect will cause the system to 

have a more peaked path weight function. 

The processed FFT spectra for the same data run used to produce figures 6.4a- 

c are plotted in figures 6.4d and e. Sets 1 through 6 are sharply defined correspond- 

ing to the IvsR sets with better SNR in figure 6.4a. After set 6, however, the FFT 

spectra become less sharp, and broaden. This broadening is due to the contributions 

from ranges other than the one for which the PRC was delayed. Because of this 

added cross talk, a wider z-directed wind speed variance tends to broaden the peak. 

Even with the additional Doppler broadening, the central peaks are still definable. 

The z-directed wind speeds can be extracted from the spectral plots, and plotted vs. 

time in figure 6.4f. This plot shows an example when the z-directed wind speed 



changes direction over the data run. The z-directed wind speed blows away from the 

laserlreceiver when the value drops below zero. This is because the aerosols are mov- 

ing away from the laserlreceiver and create a Doppler shift that lowers the frequency. 

When the wind speed is above zero, the wind is moving toward the laserlreceiver. 

A 2.4-minute average of all the spectra is given in figure 6.4g. The average 

spectrum for the return off a hard target has been included for reference. This plot 

illustrates the effect of Doppler broadening. The hard target spectrum is narrow 

because the target does not move with the z-directed wind. Therefore, no Doppler 

shift results and the peak is narrow and unshifted. However, the spectrum from aero- 

sols shows the shift and broadening due to the variance in the radial winds. The 

width of the peak has widened to about 0.35 MHz at the full-width half-maximum. 

The z-directed wind speed of another data run that has a higher Doppler shift 

is presented in figures 6.5. Most of the 24 sets have Doppler shifts corresponding to 

z-directed wind speeds between 2 and 4 meters per second. Toward the end of the 

data run, however, the winds reached 4.5 mls from Doppler shifts of over 0.8 MHz. 

The total number of data points in each of the two data runs presented in fig- 

ures 6.4 and 6.5 is 12 megasamples per data run. This number can be reduced signif- 

icantly, however, depending on the SNR. During the experiments to detect Doppler 

winds, a high number of samples per subset were used to provide as much averaging 

as possible. However, the full 25.6 milliseconds (512k points) per subset are really 

not needed. A good estimate of the Doppler shift can be obtained from 1 FFT, pro- 

vided the SNR is above threshold. This fact is very important if radial wind detection 

is needed in real time. 
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Figure6.5 The z-directed wind speed vs. time series for data run 
DPA51916.20m. Error bars indicate resolution in Doppler shift detec- 
tion. Tolerance = 0.103 m/s (see figure 6.4f). 



6.2 Lidar Used to Detect Crosswinds 

The crosswinds are much more difficult to detect than the radial winds. Not 

only are the receiving optics more complicated, there is more signal processing 

involved than just detecting the Doppler shift of the return signal. To detect the cross- 

winds, the split mirror is installed to divide the backscattered field into two equal por- 

tions. Each portion is directed to its own detector, amplified, and sent to the CS220 

digitizer. Two channels of data are recorded and stored. If the frequency of the back- 

scattered signal were constant, as with backscattering from a hard target, then the het- 

erodyne signal could be mixed down to a low frequency and sampled at a much lower 

rate. Since turbulence causes the intensity to fluctuate at a maximum of 1-2 H z ,  the 

heterodyne signal could be mixed as low as 2 kHz and sampled at 4 KHz. At a sam- 

pling rate of 4 kHz, the CS220 could take data for as long as 500 seconds (2 

Megasamples per channel) before needing to dump to a hard disk. The use of aero- 

sols as a backscatterer makes the crosswind detection difficult. The unknown Doppler 

shift prevents any mixing to a lower frequency since the Doppler shift could be as 

large as 2 MHz on either side of the heterodyne frequency. For a heterodyne fre- 

quency of 6 MHz, and a sampling rate of 20MHz, the CS220 fills up in 0.1 seconds. 

This is a serious limitation for crosswind detection since it is desirable to process data 

streams on the order of seconds. Even if a digitizer were used with more memory, 1 

second of data sampled at 20 MHz is 20 Megasamples per channel. Such a huge 

amount of data makes it difficult for any system to operate in real time for the detec- 

tion of crosswinds. 

In chapter 4, the time-delayed crosscovariance of the intensities was time-fil- 

tered to make it easier to develop a crosswind detection scheme. The filter that is 

used comes from the FFT process. The peak value of the cosine from the FFT is the 



average value over the entire FFT length. Therefore, the peak value of the FFT is the 

magnitude of the cosine averaged over the set length. Extracting the intensities from 

contiguous FFI"s generates a series of intensities vs. time. An intensity estimate is 

made every 512 microseconds and there are 204 intensity estimates for both channels 

within 0.1 seconds of total sampling time. The key to estimating the crosswind speed 

for a particular set is generating the time-delayed crosscovariance of the IvsT of both 

channels. 

Unfortunately, it was never possible to produce a crosswind time series to com- 

pare with the in situ data taken by the Campbell unit for any of the data runs with the 

short sampling time of 0.1 seconds. A percentage of the time, however, a turbulence 

fluctuation did appear on both channels which allowed a crosswind speed estimate to 

be made. About 1 in 6 data sets produced an adequate crosscovariance curve from 

which the crosswind speed could be estimated. An example of the processed intensi- 

ties vs. time is shown in figure 6.6 with the corresponding time-delayed crosscovari- 

ance plotted in figure 6.7. The intensities vs. time series in figure 6.6 show the 

intensities with their smoothed versions to better visualize time-delayed turbulence 

fluctuations between the two channels. The intensity time series are noisy because the 

intensity estimate is taken from the average of only 10, 1024-point FIT'S which is 

only a 512-microsecond average. The crosscovariance in figure 6.7 has been normal- 

ized by the average intensities of both channels. This plot was the only one of 6 sets 

recorded which gave a crosscovariance curve that was adequate enough to extract the 

crosswind. Because of the low SNR, the crosscovariance needed -smoothing to iden- 

tify the curve and to bring it out of the noise. The peak was shifted correctly to the 

right of the origin according to the observed crosswind direction. For time shifts 

beyond the shift to the peak, the curve drops below 0, verifying the behavior of the 

theoretical curve. The low value of covariance at zero time delay may be due to the 



Data run: DPA45 12.2ch, set #4 
Range = 230 meters 
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Figure 6.6 Processed intensities vs. time for data run DPA4512.2ch used to com- 
pute time-delayed crosscovariance in figure 6.7. Intensities have been 
smoothed to better visualize time-delayed turbulence fluctuations 

- between the two channels. 
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Figure 6.7 Processed time-delayed crosscovariance of intensities normalized by the 
average intensities from both channels for data run DPA4512.2ch. 
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Figure 6.8 Processed time-delayed crosscovariance of intensities normalized by the 
average intensities from both channels for data run DPA31221.2ch. 



small interaction between the turbulence and the CO, laser beam. Aperture averaging 

also tends to reduce the covariance because the intensity fluctuations are averaged. 

The time delay to peak method gives a crosswind speed of 1.18m/s while the slope 

method estimates a crosswind speed of 0.54 mls. The smoothed covariance curves 

were used for both crosswind detection schemes. 

An example of another data run is shown in figure 6.8. Again, smoothing is 

necessary to outline the crosscovariance curve and bring it out of the noise. This 

curve also follows the shape predicted by the theory, dropping below 0 for time shifts 

beyond the peak value. The time delay to peak method indicates a crosswind speed 

of 1.25 m/s while the slope method gives a crosswind speed of 0.87 m/s. No in situ 

data was taken to compare with the data of figures 6.7 and 6.8. 

The crosscovariance curves of figures 6.9 and 6.10 were taken with the Camp- 

bell unit to provide in situ data. Both figures offer examples of data sets that contain 

turbulence fluctuations on both channels within the 0.1 seconds of sampling time. 

When a turbulence fluctuation appears on both channels, each crosscovariance curve 

gives a fairly accurate estimate of the crosswind compared to the in situ measurement. 

For example, the crosswind speed estimate of the data set presented in figure 6.9 is 

1.49 m/s using the time delay to peak method, and 1.31 m/s using the slope method. 

These values compare well with the in situ estimate of 1.25 m/s. The crosswind 

speed estimate of the data presented in figure 6.10 is 2.42 m/s using the time delay to 

peak method and 2.11 m/s using the slope method. The in situ value is 2.33 m/s 

which compares well with the experimental values. 

A better percentage of adequate time-delayed crosscovariance curves per data 

run are needed to give more validity to the experimental measurements. However, the 

fact that crosscovariance curves are computable with only 0.1 seconds of sampling 

time shows promise that a better percentage is possible if the sampling time could be 



Data run: DPA5 1823.2ch, set #10 
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Figure 6.9 Time-filtered, time-delayed crosscovariance of intensities for data run 
DPA5 1823.2ch. 
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Figure 6.10 Time-filtered, time-delayed crosscovariance of intensities for data run 
DPA22926.2ch. 



increased to the order of seconds per data run. Improving the SNR can only help as 

well since the crosscovariance curves need smoothing to outline their shape. 



6.3 Modified Data Acquisition Techniques 

After a large portion of the data had been processed and analyzed, it became 

clear that the data could be sampled differently to give better representations of the 

wind speed. Two new sampling routines resulted. The first was applied to the sens- 

ing of radial winds. Since the only desired quantity was the Doppler shift, less data 

could be taken per subset while extending the number of subsets to include more total 

sampling time. The Doppler wind sensing routine was changed to taking data samples 

every 2 seconds, taking 128K points per subset. The number of subsets per data run 

was extended to 600, covering 20 minutes of sampling time. 

An example of a data run which was taken using this new Doppler wind sens- 

ing data acquisition routine is presented in figures 6.11 a-g. Figures 6.1 la  and b show 

the processed IvsR averaged over 1 minute. Each curve is an average of 30 IvsR sub- 

sets consisting of 128K points. Over the 20-minute span, the center of strongest back- 

scattering meanders between about 180 and 280 meters. The 20-minute average of all 

the IvsR curves is presented in figure 6.11c, indicating that the center of strongest 

backscattering occurs near 200 meters. The IvsR predicted from the theory at the end 

of Chapter 5 is sketched with the measured IvsR for reference. Even with the longer 

averaging time of 20 minutes, the measured IvsR curve is too sharply peaked, and 

rolls off too quickly. The cause is probably not a lack of time in the average, since 

the 20-minute IvsR average in figure 6 . 1 1 ~  is not much different than the 2.4-minute 

IvsR average in figure 6 . 4 ~ .  The most likely factor is that the lidar is probably not 

perfectly coaxial. 

The processed FFT spectra for the same data run used to produce figures 

6.1 la-c are plotted in figures 6.11d and e. Most of the spectra indicate a significant 

Doppler shift on the order of 1 MHz. This is one reason why the peaks are much 



Figure 6.11a Sets 1 through 10 of 1-minute averages of the processed intensity vs. 
range for data run DPA11230.lch. Each curve is an average of 30 sub- 
sets of 128K points. 
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Figure 6.11b Sets 11 through 20 of 1-minute averages of the processed intensity vs. 
range for data run DPA11230.lch. Each curve is an average of 30 sub- 
sets of 128K points. 
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Figure 6 .11~ The intensity vs. range averaged over 20 minutes for data run 
DPA11230.lch. The dotted line is the path weight function predicted 
from the theory at the end of Chapter 5. 



Frequency (MHz) 

r 
C, 
.I 

V) 
s 
0)  
C, 

s 
I 

rC 
0 

t 
lL 

Figure 6.11d Sets 1 through 10 of 1-minute averages of the FFT spectra for data run 
DPA11230.lch. Each curve is an average of 30 subsets of 128K 
points. 
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Figure 6.11e Sets 11 through 20 of I-minute averages of the FFT spectra for data
run DPA11230.1ch. Each curve is an average of 30 subsets of 128K
points.
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Figure 6.11f 20-minute average of the FFT spectra of data run DPA12230.lch. 
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broader than the peaks of the data presented in figures 6.4d and e. Since the variance 

of the wind speed is proportional to the average wind speed, the peaks are broadened 

due to the wide distribution of z-directed winds. Each curve in figures 6.11d and e 

also represent a full 1 minute of averaging time which also contributes to the broaden- 

ing of the peaks. Some of the peaks are over 1 MHz wide at the full-width half-max- 

imum, indicating a large distribution of radial wind speeds. The 20-minute average of 

all the spectra for this data run is presented in figure 6.11f. The average Doppler shift 

is about 1 MHz and the peak is broadened to about 1 MHz at the full-width half-max- 

imum. 

The radial wind speed vs. time series is plotted in figure 6.11g. Each radial 

wind speed estimate is separated in time by 2 seconds and covers an average of 128K 

points. The smoothed wind speed time series is plotted to outline the general trends 

of the z-directed wind speed throughout the data run. A l-minute averaging time is 

used for the smoothing. Because the data was taken in the winter, there was a much 

lower concentration of aerosols, leading to a much lower SNR compared to the data 

run of figure 6.4. The low SNR also contributes to the noisy radial wind speed esti- 

mates. Smoothing helps to eliminate the noisy fluctuations in the radial winds due to 

the low SNR. This data run was taken during one of the windiest periods observed 

for the past 3 years. The strong pressure gradient in the weather pattern persisted for 

days during the latter part of December, 1994, creating some strong east winds. The 

radial wind speed time series contains winds approaching 10 m/s (over 22 mph), with 

a mean wind speed of about 5.3 m/s (11.8 mph). 



Doppler Shift and Radial Wind Speed vs. Time

Figure 6.11g The radial wind speed time series for data run DPA12230.1ch. Each wind speed
estimate consists of 128K points and occurs every 2 seconds, covering 20 min-
utes. The smoothed time series outlines the general trends of the radial winds
over the entire data run. N
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Chapter 7 

Conclusions 

The goal of this research project was to design, construct, and operate a cw, 

CO,, optical heterodyne lidar to measure the 3-D atmospheric wind speed using back- 

scattering from aerosols. The use of aerosols as a distributed, random, moving target 

also required new theoretical analysis of the time-delayed statistics of the received 

intensity. Since it was desired to operate the laser cw, instead of pulsed, some kind of 

pseudo-random modulation of the laser source was needed in order to confine the 

wind speed estimates to desired range bins while suppressing contributions from other 

ranges. The lidar constructed over the past three years from 1991 to 1994 demon- 

strated the first successful operation of a pseudo-random code, cw, optical heterodyne 

lidar at 10.6 microns. During this time, several major advancements were made which 

can be used in future systems. 

Using an acoustooptic modulator to implement the pseudo-random code onto 

the outgoing laser beam was the first achievement. In order to produce path resolved 

measurements with a cw system, some kind of pseudo-random modulation of the laser 

source was necessary. Instead of just turning the laser source on and off with the 

PRC which would have meant a 3dB reduction in signal-to-noise ratio, the outgoing 

laser beam was successfully diphase modulated using an AOM for the first time. It 

was shown that sending a diphase modulated electrical drive signal to the AOM was 

converted to a diphase acoustic wave by the transducer which correctly diphase modu- 

lated the C02 laser beam. Although there was some finite transition time during the 



202 

phase changes where the phase of the beam was not defined, there was only a 9 per- 

cent drop in received power during diphase operation as compared to the operation 

without diphase modulation. The measured transition time corresponded with the rise 

time of the AOM. The 300 ns transition time was adequately small enough for this 

lidar with a range resolution of 300 meters. The range resolution is proportional to 

the time of the PRC minimum gate width which was l p s  in this case. Consequently, 

an AOM with a faster rise time may be necessary if smaller range bins are desired. 

For example, for a 30-meter range bin, the minimum PRC gate width needs to be 100 

ns. Therefore, an AOM with a faster rise time would probably be necessary to facili- 

tate a range bin of 30 meters. 

Another advancement was the realization of an optimum local oscillator power 

level which maximized the SNR using photodiodes operated in the reverse biased 

mode as detectors for heterodyne systems. The diode responsivity was found to satu- 

rate and become nonlinear as more LO power was applied to the photodiode surface. 

Instead of treating the diode responsivity as a constant, the diode responsivity was 

modeled as a nonlinear function of the LO power which saturated as more LO power 

was applied. Four separate photodiodes were examined and each exhibited the satura- 

tion effects as more LO power was applied. A more correct SNR equation was 

derived which included the saturation effects of real photodiodes and showed that the 

SNR peaked at a finite LO power level. By comparing the more correct SNR to the 

SNR derived using LO shot noise limited operation (no saturation), an SNR reduction 

factor resulted for each photodiode showing how much under the signal shot noise 

limit the lidar actually operated. 

Deriving the time-delayed statistics of the backscattered laser beam intensity 

off of aerosols also provided some new insight into laser beam propagation. The 

received mutual intensity function, as well as the time-delayed crosscovariance of the 



intensities backscattered from aerosols became a function of speckle and turbulence 

with drastically different decorrelation times. Since aerosols move in a random man- 

ner relative to one another, the decorrelation time due to speckle was much more rapid 

than the decorrelation due to turbulence. This result was not new. However, the 

application of the proper time filter successfully removed the high frequency speckle 

from the analysis, leaving only the turbulence perturbation on the time delayed statis- 

tics. Under these circumstances, the coherent heterodyne lidar acted as if it were 

incoherent because the expression for the time-delayed crosscovariance resembled the 

one for an incoherent system. This result made it easier to develop a crosswind detec- 

tion scheme, and simplified the expressions of the time delayed statistics considerably. 

Since the laser beam intensity is taken from the peak value of a FFT, the intensity was 

filtered by the FFT process because the peak value was the average over the entire 

FFT length. The total time in the FFT determined the cutoff frequency to be about 20 

kHz (1024-pt FFTs at 20 MHz sampling rate). This cutoff frequency was nearly ideal 

to filter high frequency speckle fluctuations on the order of megahertz but leave the 

lower turbulence fluctuations on the order of several hundred hertz intact. 

Perhaps the most significant discovery was realized with respect to the decorre- 

lation time of the phase of the backscattered beam. The decorrelation time of the 

phase determined the maximum FFT window from which to compute estimates of the 

backscattered intensity and Doppler shift. Contrary to popular opinion, the only factor 

which determined the coherence time was that due to the laser. The rapid speckle 

decorrelation time only applied to the intensity, but had no effect on the phase. This 

result was both predicted from theory, as well as experimentally verified. By comput- 

ing the SNR vs. different FFT time slices (different FFT lengths) a maximum SNR 

was found for every processed data set at 50 microseconds which corresponded with 

the 50-microsecond coherence time of the laser. Previous theories had put the coher- 



ence time due to speckle as low as 0.5 microseconds. This advancement should have 

a significant impact on future design of coherent heterodyne lidar systems. 

The lidar was used to produce the first path resolved measurements of radial 

wind velocities by detecting the Doppler shift of the moving aerosol particles using a 

cw, pseudo-random modulated lidar. It was found that operating the system to detect 

radial winds could occur on most days of the year, even in winter months, because all 

of the backscattered radiation was directed to 1 detector, and the only desired quantity 

was the Doppler shift. A 20-minute profile of the radial winds was taken during an 

exceptionally blustery weather pattern which showed that the Doppler spread was 

much more significant for the higher wind speeds as compared to spectra of data taken 

in less windy weather. This observation corresponded with theory, which predicted 

that the standard deviation of the winds is proportional to the average wind speed. 

Therefore, there was more Doppler spread as the radial winds became stronger. The 

lidar was shown to operate out to a maximum range of about 600 meters. Most of 

the backscattered radiation occurred from ranges between 200 and 400 meters. The 

lidar could operate to a longer range by redesigning the transmitting optics to push the 

focal point out to a further range. 

In addition to the Doppler winds, the lidar was used to take the first path 

resolved measurements of crosswinds using speckle-turbulence interaction and a cw, 

pseudo-random modulated lidar. The key to obtaining crosswind estimates was to pro- 

duce the time-delayed crosscovariance of the intensities. Unfortunately, a crosswind 

time series like those for the Doppler winds was never achieved. However, several 

important advancements were made which showed that crosswind detection using this 

kind of a lidar was headed in the right direction. When the time-delayed crosscovari- 

ance was produced, the shape of the curve matched that from theory, having a maxi- 

mum value that was time shifted from the origin depending on the crosswind speed, 



and decorrelated for time shifts beyond the shift to the peak. The curves also dropped 

below 0 with increasing time shift which matched the theoretical curves. Only about 

1 in 5 or 6 data sets processed gave a time-delayed crosscovariance curve adequate to 

estimate the crosswind. Part of the lack of success was due to the short sampling 

time of 0.1 seconds used to produce the intensity vs. time series and the time-delayed 

crosscovariance. The other factors were due to the low SNR, and weak turbulence 

interaction at 10.6 microns. 

New cw, pseudo-random lidars could be designed to provide better representa- 

tions of the atmospheric winds. Using a wavelength around 1.06 microns could push 

the focus distance out a factor of 10 over the 10.6 micron system. In addition, the 

interaction with turbulence is much stronger at 1.06 microns which would benefit the 

crosswind detection. Using an array of detectors would also increase the crosscovari- 

ance between two different backscattered laser signals because aperture averaging 

would be less of a problem. Vertical winds would also be detectable if the array con- 

tained detectors arranged in a rectangular grid. 
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Appendix A 

Appendix A describes the electronics of the PRC generator and of the amplifi- 

ers for both channels. The clock of the PRC generator comes from the burst of pulses 

generator. The burst of pulses generator is part of the new data acquisition schemes 

for the crosswinds in order to spread out the intensity estimates in time. The PRC 

generator needs a 40 MHz clock which is provided by the burst generator. 
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Appendix B 

Appendix B contains a sampling of the data acquisition and storage programs. The 

four main data acquisition and storage programs are: "data2hd.c," "datadopp.~," "hdto- 

 tape.^," and "tapetohd.~." Program "data2hd.c" is the program to control the CS220 to 

take 2-channel data used to estimate the crosswinds and to control the CI08 board to take 

the in situ data. Program "datadopp.~" is the program used to take streams of Doppler 

data. Program "hdtotape.~" is the program to write data from the PC hard drive to the 

Exabyte 8500 tape drive. Program "tapetohd.~" retrieves the data from the Exabyte 8500 

to the hard drive. Included in this appendix are programs "data2hd.c" and "hdtotape.~" to 

give examples of the data acquisition and storage process. The remaining programs can 

be found on a floppy disk labeled "DATAQISTORE PROGRAMS" and are also listed as 

part of a hard copy of all of the programs used throughout this thesis project titled "C02 

LIDAR PROGRAMS." 



* Program : data2hd.c version 1 
* 
* LANGUAGE: C 
* 
* written by 
* Badih John Rask 
* 8-31-93 
* 
* ---revised 9-30-93 to add CI08 insitu AID board commands -- 
* 
* This program controls the cs220 compuscope to record the data 
* from a hardtarget or aerosols. Program has been written in the 
* C language; therefore, as many comment lines as possible have 
* been included. datatohd.~, "data to hard drive," transfers data to 
* c: hard drive. Each channel records two MEG points. The 2 MEG 
* points per channel are transfered as follows: First, 34 sets 
* of 60K points are transfered. The data is transfered from PC's RAM to 
* binary files on the c: hard drive in 60K chunks. Program also 
* stores data from the Campbell Scientific unit on Channel B. The 
* data from the Campbell unit is the wind speed. 
* 
* The PRC code generator supplies the sync and clock signals used t 

* by theCS22O. * 
...................................................................................... 

unalloc.h> 
<conio.h> 
<string.h> 
<stdlib.h> 
<process.h> 
<stdio.h> 
<graph.h> 
<dos.h> 
<memory.h> 
"cs220drv.h" I* This library has the cs220 drive commands 

Roat sumChA, sumChB: 
float Vpave, Cn2; 
unsigned char huge *data; 
inti; 
int numchan; 
int numsets; 
char *p; 
char samprate[3]; 
char RATE[7]; 

char line[100]; 
int sr; 
int nblcks; 
int ierr; 
unsigned int npointq: 

I* from CI08 board, averaged data 
I* data from CI08 board, in volts 
I* array that contains the data read from CS220 
I* counter 
I* number of channels user wants to record 
I* number of sets to record 
I* pointer used by strcat and strcpy 
I* sampling rate as a character string 
I* used by calling routine set-caphue-mode to 

set sampling rate 
I* input character strings 
I* RATE-XX as integer 
I* the number of blocks of blsize bytes 
I* error status used by tape drive commands 
I* number of points per data set 

int numsets; I* number of sets to record 
FILE *fp, *fi, *fopen 0; I* binary file on hard drive that holds data 

and ASCII file that holds insitu data 
char fileout[l4]; I* name of output binary file 
char fileinsitu[l4]; I* name of insitu data filename 

unsigned int j,k: 
int npoints-offset; 
unsigned char npoints4K; 

long count0; 

long count; 

long total-points-moved; 
long npoints-moved: 
int npoints-to-move; 

int count4K; 

int count-offset; 

int nblcks; 
word blocknumber; 
word block-offset; 

char *data_address; 
char *SIC-address; 

I* counter 
I* number of remaining points (see comments below) 
I* number of 4K-byte blocks to 

move from CS220 to array "data" 
I* count is starting address of 

data where trigger occurred. 
I* there will be 34 sets of 60K 

points moved. count is the 
starting place for each 60K chunk. 

I* no explanation needed 
I* number of points moved within the 60K chunk 
I* number of bytes to move used by 

memmove. 1 < npointsto-move < 4K 
I* number of multiples of 4K of 

count. example: 
count = 5000 
count4K = 500014K = 1 

I* number of remaining points (see 
comments below) 

I* used by XWRDMA 
I* used by set-block-nwnber 
I* If chan = CHAN-A, blockoffset=O 

If chan = CHAXB, block_offset=1024 
used to access correct channel 

I* address of data array 
I* address of source to transfer 

to data array, used by memmove *I 
unsigned int byteswritten; I* number of bytes written to file, return 

value from write command *I 
float Vpave; I* the crosswind speed from the Campbell 

unit. The insitu data. *I 
float scale; I* specifies digitization range *I 
I* -----------------------------------------------------------------------*-------------------------------------------------- *I 

data = (unsigned char huge *)halloc(61440, sizeof(unsigned char)); 
if (data == NULL) 

[ 
printf("hal1oc failedh"); 
exit (1); 

I 
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printf("CHECK that Vcross-ave is connected to ChO and Cn2 ish"); 
printf("c0nnected to ChlW); 
printf("\nW); 
printf("Press aetum> to activate DATA RECORD procedureW); 
getch0; I* wait for a keypress 

printf("\n\n\ntransfering 2 Meg set #:W); 

I*** start data capture for two channels 

for (i = 0 ; i < numsets ; i++ ) 

( 
I*** first the CS220 AID ***I 

needram ( FALSE ); I* Disconnects CS220 RAM from PC $1 

getsample(); I* Captures data to A and B registors 
at specified sampling rate *I 

do 
( 

I* printfm Wait for trigger event"); *I 
) while ( !check-if-trigger () ); 

do 

( 
I* printf("\r Check if done recording data"); *I 

) while ( !check-if-notbusy () ); 

needram (TRUE); I* reconnects cs220 to PC bus *I 

I*** now for the CIO8 AID board ***I 
I* the function "take-data" is the CIO8 routine that takes the in situ data *I  

for cj=O; j<lO; j++) 

1 
Vpave = 1.25*(take-data(1)-2048.)12048.0; 
sumChA = sumChA + Vpave: 
Cn2 = 1.25*(takedata(2)-2048.)/2048.; 
sumChB = sumChB + Cn2: 

1 
Vpave = sumChA110.; 
Cn2 = sumChBI10.: 

I*** store the systemdata ***I 

store-data-hd ( CHAN-A,data); I* subroutine to store data tape 
printf("\r%d, Ch. 2", i+l); 

storedata-hd ( CHAN_B,data): I* subroutine to store data to tape 

I*** now write the insitu data ***I 

fprintf(fi, "%d, %f, %fW, i, Vpave, Cn2); 

I*** End of data capture for two channels ***I 
1 I* end of i loop *I 

printf("\n"); 

printf("\n\n\n\n\t---End of program 'data2hd.c'---W); 

fclose(fi); 
fclose (fp); 

) I* end of main of datat0hd.c */ 

store-data-hd ( int channel, unsigned char huge *data) 
........................................................................ 

Subroutine that stores one channel's data to the PC hard drive. 
The CS220 stores data in its own RAM, however, it is memory mapped, 
and can be reassigned to a section of the PC's RAM. The 
PC can only access a 4K-byte window; to access another 4K bytes the 
window must be incremented."setsegment(address)" is used to specify the 
address of the first byte of the PC's RAM to which the CS220's RAM 
is reassigned. "setblocknumber" is used to move the CS220's 4K 
RAM window so that the PC can access a new 4K page of CS220 memory. 
With the Microsoft C command, "memmove," the 4K bytes are moved 
from the address specified by setsegment to the starting address of 
a character array.Finally, the character array is stored onto the 
PC hard drive with the "fwrite" command. This subroutine 
records 34 chunks of 60K points (which is the largest integer of 60K 
points which does not exceed 2 Meg points) for each channel. 

*I  

if (channel = CHAN-A) 
block-offset = 0; 

else 
block-offset = BANK-OFFSET-VALUE; 

printf("\r%d, Ch. 1". i+l); 



npoints = 61440; 

count4K = count014096; I* if count0 = 5000, 
count4K = 1. The 
number of 4K chunks 
in count0. 

count-offset = count0 - count4K*4096; I* This is the number 
between 4K boundaries 
of count0. If count = 
5000, ct-off = 904. 

blocknumber = count4K; I* data for fast transfer 
is moved in 4K blocks. 
blocknumber is the 
block that contains 
count0. If count0 = 
5000, blnum = 1 (this 
is the second block) 

I* this variable is the 
number of points 
moved and the 
array element address 
of the destination. 

npoints-tomove = (count4K+1)*4096 - count0; /*This is the number of 

npointsmoved = 0; 

total-points-moved = 0; 

for (j = 0; j < 34; j++) 

points to move for 
the first block move. 
If count = 5000, 
nps-to-mv = 8 192 - 
5000 

1 I* transfer 34 chunks of 60K points to array *I 

count = count0 + total-points-moved; I* count0 has the trigger 
address. count is the 
starting address of 
each 60K chunk *I 

count4K = count/4096; I* if count = 5000, 
count4K = 1. The 
number of 4K chunks 
in count. *I 

count-offset =count - count4K*4096; I* This is the number 
between 4K boundaries 
of count. If count = 
5000, ct-off = 904. *I 

blocknumber = count4K + block-offset; I* data for fast transfer 
is moved in 4K blocks. 
blocknumber is the 
block that contains 

npointsmoved = 0; 

count. If count = 
5000, blnum = 1 (this 
is the second block). 
block-offset gets 
channel A or B *I 

I* this variable is the 
number of points 
moved within the 
60K chunk and the 
array element address 
of the destination. *I 

src-address = (char *)( (unsigned long)(OxD000)*65536 
+ count-offset); I* The source address 

is the segment + 
count-offset only for 
the first chunk of 
data moved. *I 

npoints-to-move = (count4K+1)*4096 -count; I* This is the number of 
points to move for 
the first block move. 
If count = 5000, 
nps-to-mv = 8 192 - 
5000 

I* ........................... - ----------------------------------------------------*------------*-- *I 
I*---- move data from cs220 to array, data in 60K blocks ----*I 

do 

I 
if (blocknumber = 1024 && channel == CHAN_A) 

I 
blocknumber = 0; I* there are 500 blocks 4096 

bytes in 2 Meg points. When 
the blocknumber gets to 500, 
must wrap around to the 0th 
block. 

1 
if (blocknumber = 2048 && channel = CHAN-B) 

I 
blocknumber = 1024; I* same reasons as above 
1 

set-block-number(b1ocknumber); I* get this block of 4096 
bytes from CS220's RAM. 
If count = 5000, want 1st block 
If count = 24, want Oth, etc. 

dakaddress = &data[npoints-moved]; I* destination 

memmove(data-address, src-address, 
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reset: 
( 

rewind: 
( 

( 
for (I = 0; 1<1500; I++) I* This is a delay routine *I 

{ ;I 
1 

goto menu; 

star-block-number = 1; 
set-number = 1; 

if (ierr > 0 && ierr != 0x40) 
printf("error in resetting, ierr = %dW, ierr); 

goto menu; 

printf("\t = 0 no movement \n\n\nV); 
printf("----Block size is 1024 bytes-----bW); 
printf("1NPUT # of 2-Meg sets to move:\n"); 
printf("[must not exceed 16, or be less then -16]\n\n"); 
scanf("%d", &numsets); 
numblocks = numsets * 2040; 
start-block-number = start-block-number + numsets*2040; 
set-number = set-number + numsets; 

printf("\n\nSpacing the desired # of blocks ...W); 

XSPACE(&numblocks, &ierr); I* moves position on tape nblks blocks *I 

if (ierr > 0) 
printf("error with space blocks, ierr = %d", ierr): 

goto menu; 
I 

initialize-tape-end: 
( 

startbloclCnumber = startblock-number + nsets*2040; 
set-number = set-number + nsets; 

1 
1 I* end of initialize-tape subroutine *I 

XREWND(&ierr); I* Rewind the Tape 

start-block-number = 1; 
set-number = 1; 

if (ierr > 0 && ierr != 0x40) 
printf("\n\nerror with rewind, ierr = %d\n\n", ierr); 

goto menu; 
1 

move-to-last-data: 
I 

printf("\n\nMoving to end of last data recorded on tape ...W); 

XEOD(&ierr); I* Move to end of last data on tape *I 

if (ierr > 0) 
printf("\n\nerror with move to last data, ierr = %d", ierr); 

goto menu; 

position-tape: 

( 
-clearscreen( -GCLEARSCREEN ); 
printf("\n\n lNPUT:\n "); 
printf("\t # of blocks > 0 drive moves forward # of blocks\n"); 
printf("\t < 0 drive moves backward # of blocksW); 



Appendix C 

Appendix C contains a sampling of the data processing and analysis programs. The 

four main data processing programs are: "d0pp1er.f~" "cros~.f~'~ "cov. f ' and "Vcws1ope.f." 

Program "dopp1er.f' is written for use on the San Diego Supercomputer facilities and pro- 

cesses data taken to estimate the Doppler winds. Program "cross.f' is also used on the 

SDSC and processes data taken to estimate crosswinds. Program "cov.f' computes the 

time-delayed covariance from the intensity vs. time series for two channels provided by 

"cross.f." Program "Vcwslope.fy computes an estimate of the crosswind speed from the 

slope of the crosscovariance curve at 0 time delay. Included in this appendix are programs 

"doppler.fy and "Vcwslope.fy to give examples of the data processing programs. The 

remaining programs can be found on a floppy disk labeled "PROCESSING PRO- 

GRAMS" and are also listed as part of a hard copy of all of the programs used throughout 

this thesis project titled "C02 LIDAR PROGRAMS." 



c Program dopp1er.f * 
c BJ Rask 9-17-94 * 
c *** revised for SDSC 10-4-94 *** * 
C * 
c LANGUAGE: Fortran 77 * 
..................................................................................... 

C 

c *** Program to be used on San Diego Supercomputer *** 
C 

c Program that computes: 
c I) the Intensity vs. range for 1 channel for all subsets. 
c 2) the Doppler shift at best range for all subsets. 

integer N 
parameter (N=1024) 
real option 
real fftave(0:S 11) 
integer PRC(O:62) 
real fftwt(512) 
real fta(0:Sll) 
real work(2*(N-1)*128+4*128) 
real table(0:100+2*(N-1)) 
real datal(0: 1023,0:128) 
real Dkeep(13 1072) 
Complex Xkdata(0:512,0: 127) 
character*l diphase(0:1023) 
character* 14 binfile 
integer fnum 
integer lot 
integer isign 
integer isys(0:O) 
integer index 
real SPN(1210) 

real SPNave(l210) 
c-----------------------------------------*------------------------- 

COMMON lamaysl PRC 
Common /params/ nstart,nend,nstep 

c--- start program input section 
C 

C 

lot = 128 
scale = 1 .O/float(N) 
isys(0) = 0 
Idx = N 
Idy = N/2+1 
n lk=  128 

!fft of filter weights to filter averaged spectra 

!used as workspace by c90 FFT routine 
!holds the trig factors for FIT 
!huge array that contains the data for Chl 

!transform of data1 
!local array that holds temp data for chl 
!binary file that contains the diphase data 
!#of frequencies on each side of Fmid 
!# of simultaneous &ansfoms 
!+l for inverse trans, -1 for trans 
!needed by FIT routine 
!used as index for huge may, Ndata 
!array containing max signal + noise for 
!a particular set 
!average of SPN sets 

- -- - -- - - 

!number of simultaneous transforms 
!scale factor used by FFT routine 

!number of lk  chunks of data in 128K set 

................................................................. 

print*,'* Program dop128k.f *' 
................................................................ 

print* 
print* 
print*,'Program INPUT section:' 
print* 
print*,'lNPUT the binary FILENAME of diphase data' 
read(5, '(al4)' ) binfile 
print* 

print* 
print*,'INPUT the number of subsets in data file' 
print*,'Each subset = continuous run of chl and ch2 data' 
read*, nsubsets 

print* 
print*,'On which subset to start?' 
read*,nsubstart 

c print* 
c print*,'MPUT the starting range, ending range, and' 
c print*,'range step size' 
c read*,nstart,nend,nstep 

nstart = 100 
nend = 1000 
nstep = 20 

OPEN(12, file = 'code63.dat', status = 'old') 
OPEN(10, file = binfile, access = 'direct', w l =  1024, 

> form = 'unformatted') 
OPEN(14, file = 'fftwt.dat', status = 'unknown') 
OPEN(l5, file = 'fDopp.dat', status = 'unknown') 

C--- Read in the PRC code for 63-state PRC, and filter weights file 

do i = 1,512 
read(l4,') x, fftwt(i) 

end do 

c--- start to read in the data from binary data file, binfile 
c--- and PRC file. Put specified # of 10K sets in Ndata (extended mem). 
c--- Data is read from a binary file of 8-bit (I-byte) data. The 
c--- reading routine below reads 8-bit characters from binfile, 
c--- 10240 points at a time. Ndata stores all the data in char format. 
C 

C 

isign = 0 !first generate the trig factors needed by FIT h, 
W 
P 
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C 

C 

real Fmid 
C 

integer fnum 

fnum = 100 
Fmid = 6.0 
imid = Fmid * 1024.0120.0 
istart = imid - fnum 
iend = imid + fnum 

do 10 i = istart, iend 
if (SPNmax(ii).lt.fftave(i)) then 

SPNmax(ii) = fftave(i) 
endif 

10 continue 

of the processing technique, the max peak 
will have signal + DC offset due to the 
noise which must be subtracted. 
!frequency of max Signal+noise at particular 
range bin 
!number of frequencies to search on each 
side of Fmid 

C 

c--- SPNmax(ii) will be returned to the main program which is the maximum 
c--- value of the signal + noise for a particular range. 
C 

return 
end 

subroutine find-maxrange(SPN, maxrange) 
..................................................................... 
C 

c--- Subroutine that finds the range at which the maximum signal t 
c--- noise occurs. 
C 

real SPN(1210) 
Common lparamsl nstart,nend,nstep 

c--- Now find the range of maximum intensity 

SPNmax = -1 
do ii = 140,nend,nstep 

if (SPNmax .It. SPN(ii)) then 
SPNmax = SPN(ii) 
maxrange = ii 

endif 
end do 

print*,' max Intensity for Chl found at ',maxrange,'m' 

return 
end 

subroutine store-ivsr(SPNave. iii) 
..................................................................... 
C 

c--- Subroutine that writes the intensity vs. range for particular subset 
c--- to output files. 
C 

character* 12 file 
characteP3 siii 
real SPNave(l210) 
integer iii 
Common /params/ nstart,nend,nstep 

!variable iii as a character string 

c--- want to convert integer iii to a string 

c--- siii is now a string of numbers: 001,002, 003, ..., 100, 101.., 
c--- Want to remove the zeroes in front of the integers. 

m = 0 
3 m = m + l  

if (siii(m:m) .eq. '0') goto 3 
nnum = m 

c--- nnum is the starting place of the numbered string, siii 

file = 'ir'//siii(nnum:3)//'.dat' 

OPEN(Z0, file =file, stahls = 'unknown') 

c--- Store the IvsR to output files 
print*,' writing lvsR to file ',file 

do ii = nstart,nend,nstep 
write(20,*) ii, SPNave(ii) 

end do 
close(20) 

return 
end 

subroutine find-Dopp(fftave, fDopp) 
C*********************************************************************** 



c--- Subroutine that finds the Doppler shift for each subset. 
C 

real fftave(0:511), Imax, fDopp 

Imax = -1. 
do i = 320,400 

if (Imax .It. fftave(i-l)**2) then 
fDopp = i*20./1024.0 
Imax = fftave(i-l)**2 

endif 
end do 

reNrn 
end 

subroutine store-spec(ftafftwt,iii) 
........................................................................ 

C 

c--- Subroutine that stores the averaged spectra to output files. 
C 

real fta(0:511), fftwt(5 12) 
real iDopp, Imax 
character* 14 file 
character*3 siii 

c--- siii is now a string of numbers: 001,002,003, ..., 100, 101 ... 
c--- Want to remove the zeroes in front of the integers. 

m = O  
3 m = m + l  

if (siii(m:m) .eq. '0') got0 3 
nnum = m 

c--- nnum is the starting place of the numbered string, siii 

file = 's'//siii(nnum:3)//'.dat' 

OPEN(20, file =file, status = 'unknown') 
do i = 1,512 

write(20,*) i*20.11024.0, fftwt(i)*fta(i-l)**2 
end do 
close(20) 

return 
end 

Program Vcwslope.f 
12-5-93 BJ Rask 

c Program that calculates the average crosswind speed for the return 
c Intensity backscattered from aerosols. The solution was derived 
c without using the Joint Gaussian assumption for the electric fields 
c at the receiver. The crosswind detection scheme was derived using 
c the time-averaged form of the CrossCovariance of the Intensities. * 
c The slope of the CrossCovariance is proportional to the average * 
c wind speed. The slope of the CC is also dependent upon the * 
c the turbulence, Cn2. However, since the normalized Covariance is * 
c also proportional to Cn2, we can divide the slope of the CC by the * 
c normalized Cov. to yield a result only dependent upon the average * 
c cross wind speed, and the ratio of two integrals. The integrands of * 
c these integrals only depend upon system parameters and the propagation * 
c distance, so there are no unknowns. The average Crosswind speed is * 
c obtained by dividing the ratio of the slope at 0 time delay by the * 
c ratio of the two integrals. * 
C .................................................................................. 
c Definition of variables: 
=-------I= - -------- 

Cn2 = stringth of turbulence 
2c  =distance to center of range bin (meters) 
P = detector spacing 
k = wave number = 2 * pi / lambda 
Ichl =intensities vs. time for Channel 1 
lch2 =intensities vs. time for Channel 2 
Ncov = normalized covariance of intensities 
SNcov = slope of norm. cov. at 0 time delay 

c Program inputs: 

C 

c Programmer inputs the processed time delayed crosscovariance curve. 
C 

c Program outputs: 
c -======== 

c Program outputs 1 crosswind speed estimate per crosscovariance curve. 
C 

real k, Zc, P, SNcov, Ncov 
real INTI, INT2 
real Cov(2100) 
real lambda 
real pi 
Double Recision XX !Zc/(k*P*P) 
character* 14 filel, file2 



parameter (lambda = 10.6e-06) 

Common lparametersl k, P, Zc, pi, XX 

pi = 3.1415926 
k = 2  *pitlambda 
P = 1.05*2.541100. !detector spacing in meters 

c start program input section 
~ ~ - ------  

C 
........................................................ 

print*,'* Program Vcws1ope.f *' 
Drint*~'**************************:*:***************:**. 

print*,'* program that computes the cross-wind speed ** 
...................................................... 

print* 
print* 
print* ' ----------- program input section ------------' 
print* 
printa,'INPUT the distance to center of range bin (meters)' 
read*, Zc 
print* 
XX = Zc/(k*P*P) !needed for ratio of two integrals 

print*,'INPUT the Covariance curve' 
read*, filel 

OPEN(l0, file = filel, status = 'unknown') 
C 

c "* read in the covariance plot 
C 

icount = 0 
5 READ(lO,*,end = 99) x, Cnv(icount+l) 

if (x .eq. 0.0) then 
Ncov = Cnv(icount+l) 
nkeep = icount+l 

endif 
icount = icount + 1 
got0 5 

99 continue 
ntotal = icount 
Print*,'Ncov=',Ncov 

c end of program input section. Start to compute the covariance, the 
c slope at 0 time lag, and the Crosswind speed. 

C 

print*,'Computing the Crosswind speed ...' 

C 

c *** first compute the parameters and constants used by INTl 
c *** andINT2. 
C 

call initialize 
C 

c *** compute the slope at 0 time lag 
C 

call Slope(Cov, nkeep, SNcov, ntotal) 
C 

c *** compute the integrals 
C 

call Integrals(INT1, IN=) 
C 

c *** Back from all subroutines. Now calculate the wind speed. 
c *** Wind speed will be calculated by dividing the Slope at 
c *** 0 time delay by the Normalized Covariance and then multiplying 
c *** by the ratio of INT2 to INTI. 
C 

print*,'INTl,INT2,IllI2,=',INTI,INT2,INTl/INT2 
print*,'SNcovMcnv=',SNcov/Ncov 
print*,'P=',P 
Vpave = P * SNcov I Ncov * INT2 I INTl 

stop 
end 

subroutine Slope(Cov, nkeep, SNcov, ntotal) 
C*********************::*:***************************:*:****:::*****:*:**** 
C 

c subroutine that calculates the slope of the normalized covariance 
c of intensities at 0 time delay. The slope is calculated using the 
c NAG routine EO2ACF. 
C 

Double Precision x(10), ~(10) .  A(6). REF 
real Ncov, Cov(2100) 
real SNcov 

c *** Use the Covariance at 0 time delay to compute the slope 
c *** 0 time lag to two lags beyond 0 time lag. Each lag is 
c *** separated by 512 microseconds. 
C 

c *** Define the x and y values for the slope, and calculate 
c "* the slope using NAG routine E02ACF (polynomial fit). 
C 

y(1) = Cov(nkeep-1) 



Double Precision Resultl, Result2 
External Integrall, Integral2 

OPEN(l1, file = 'points.dat', status = 'unknown') 
d o i = 1 , 3  
write(ll,*) x(i), y(i) 

end do 
close(l I) 

N = 3 !three points used to fit line 
norder = 1 !fit a linear curve 
M1= norder + 1 

call E02ACF(x, y, N, A, MI, REF) !slope is A(2) 

SNcov = A(2) 

OPEN(l1,file = 'lin.dat', status = 'unknown') 
d o i = 1 , 3  
write(1 l,*) x(i), x(i)*A(2)+A(l) 

end do 
close(l1) 

return 
end 

subroutine Integrals(lNT1, INT2) 
C********************:********::*:*********************::********: 
C 

c subroutine that calculates the integrals in the time-averaged 
c time-lagged normalized covariance of Intensities. The Integrands 
c are a function of Confluent hyper-geometric functions. 
c The integration variable is w, the normalized path length from 
c laserlreceiver to scattering location. The integrals are 
c from w = 0 to w = 1. (See theory development for more details 
c and exact form of the integrals). The algorithm used to calculate 
c the integrals is found in the appendix of "Two-point joint-density 
c function for a laqer-generated speckle field after propagation 
c through the turbulent atmosphere," V.S. Rao Gudimetla, J. F. Homles, 
c and R. A. Elliot. The NAG routine WlBDF is used to numerically 
c approximate the integrals. 
C 

real INTI, INT2 
Double Precision A, B, epsabs, epsrel, abserr 

A = O.OdO !lower limit of integration 
B = 1.0d0 !upper limit of integration 
epsabs = O.OdO !used by DOlBDF 
epsrel = 1.0e-05 !used by DOlBDF 

call DOlBDF(Integral1, A, B, epsabs, epsrel, Resultl, abserr) 
call wlBDF(htegral2, A, B, epsabs, epsrel, Result2, abserr) 

INTI = Resultl 
lNT2 = Result2 

return 
end 

C******************::*****************************:*:*:::::::::*******:***** 
Double Precision function Integrall(w) 

C*****************:**+********************::***::*****::***:********:****::* 
C 

c Subfunction that calculates INTI, and puts the result in Resultl. 
c Used by NAG routine DOlBDE 
C 

c XX = Zc/(k*P*) 
C 

real k, P, Zc, pi 
Double Precision X, XX 
Double Precision Cfregl(O:50),Cfasl1(0:50),Cfas21(0:50) 
Double Precision gaml-3, gaml-6, gamll-6 
Double Precision gamal, gamb I, gambmal 
Double Precision a, b, SUM, w 
Double Precision f a d ,  factl, fact2, fact3, fact4, fact5, fact6 

Common /coefficientsl/ Cfregl, Cfasll. Cfas2l 
Common /parameters/ k, P, Zc, pi, XX 
Common /gamscommon/ gaml-3, gaml-6, gamll-6 
Common /constantsI/ gamal, gambl, gambmal 

fact0 = w 
factl = b**(-1./3.)/(4.*pi**(1./2.))*gam1-3**2*cos(pi/6)/gaml1-6 
fact2 = -gaml_6/(2**(1./6.)*a**(1./3.)*16.) 

C 

c *** If X > 4pi, must use the asymptotic approx. for the summations 



ELSE 
IF (X .gt. (4.*pi) ) then 

C 

c *** IF HERE, THEN COMPUTING THE ASYMPTOTIC SUMMATION 

c *** There are 4 summations to compute (two odd, and two even) 
C 

c *** compute the first odd summation (asymptotic): 
C 

ioe = 1 !odd summation 
ia = 1 !asymptotic summation 

call summation(Cfasl1, ioe, ia, X, SUM) 

alpha = (pi/12.)*(1.-6*1./6.) 
fact3 = 2.*gambllgambmal*X**(-1./6.)*sin(alpha)*SUM 

C 

c *** compute the second odd summation (asymptotic): 
C 

ioe = 1 !odd summation 
ia = 1 !asymptotic summation 

call summation(Cfas21, ioe, ia, X, SUM) 

beta = -X + pi/12.*(1.-6*(1./6.-2.)) 
fact4 = 2.*gambllgamal*X**(l./6.-2.)*sin(beta)*SUM 

C 

c *** compute the first even term in the summation (asymptotic): 
C 

ioe = 0 !even summation 
ia = l !asymptotic summation 

call summation(Cfasl1, ioe, ia, X, SUM) 

fact5 = 2.*gmbllgambmal*X**(-1./6.)*cos(alpha)*SUM 
C 

c *** compute the second even term in the summation (asymptotic): 
C 

ioe = 0 !even summation 
ia = 1 !asymptotic summation 

call summation(Cfas21, ioe, ia, X, SUM) 

fact6 = 2.*gambl/gamal*X**(l./6.-2.)*cos(alpba)*SUM 
C 

c *** compute the INTl (asymptotic): 
C 

Integral1 = factO*(factl + fact2*(fact3+fact4+factS+fact6)) 

C 

c *** IF HERE, THEN COMPUTING THE REGULAR SUMMATION (NOT ASYMPMTIC FORMS) 

c *** There are 2 summations to compute, 1 odd and 1 even 
C 

c *** compute the odd term in the summation. 
C 

ioe = 1 !odd summation 
ia = 0 !regular summation 

call summation(Cfreg1, ioe, ia, X, SUM) 

fact3 = 2.*sin(pi/l2.)*SUM 
C 

c *** compute the even term in the summation. 
C 

ioe = 0 !even summation 
ia = 0 !regular summation 

call summation(Cfreg1, ice, ia, X, SUM) 

fact4 = 2.*cos@i/l2.)*SUM 
C 

c *** compute INTl (regular): 
C 

Integral1 = factO*(factl + fact2*(fact3 + fact4)) 

return 
end 

Double Precision function Integral2(w) 
C*************:******:*******:::*****::******:*:**::**:*****:**:*:*:::*:::: 
C 

c Subfunction that calculates INT2, and puts the result in Result2. 
c Used by NAG routine DOlBDF. 
C 

real k, P, Zc, pi 
Double Precision X, XX 
Double Precision Cfreg2(0:SO),Cfasl2(0:50),Cfas22(0:50) 
Double Precision gml-3, gaml-6, gamll-6 
Double Precision gama2, gamb2, gambma2 
Double Precision a, b, SUM, w 
Double Precision factl, fact2, fact3, fact4 fact5, fact6 



Common /coefficients21 Cfreg2, Cfasl2, Cfas22 call summation(Cfasl2, ioe, ia, X, SUM) 

Common /panmeters/ k, P, Zc, pi, XX 
Common /gamscommon/ gaml-3, gaml-6, gam11-6 
Common /constants21 gama2, gamb2, gambma2 

factl = -.15*b**(5.13.)/pi**(1.12.) * gam1-3**2*cos(piI6.)1 
> gamll-6 
fact2 = .3*gam1-6*a**(5./3.)12.**(l1I6.) 

C 

c *** If X > 4pi, must use the asymptotic approx. for the summations 
C 

IF (X .gt. (4.*pi) ) then 

C 

c *** IF HERE, THEN COMPUTING THE ASYMPTOTIC SUMMATION 
c *** ====---I---- 

c *** There are 4 summations to compute (two odd, and two even) 
C 

c *** compute the first odd summation (asymptotic): 
C 

ioe = 1 !odd summation 
ia = 1 !asymptotic summation 

call summation(Cfasl2, ioe, ia, X, SUM) 

alpha = (pi/12.)*(5+6*(-5.16.)) 
fact3 = 2.*gamb2/gambma2*X**(5./6.)*sin(alpha)*SUM 

C 

c *** compute the second odd summation (asymptotic): 
C 

ioe = 1 !odd summation 
ia = 1 !asymptotic summation 

call summation(Cfas22, ioe, ia, X, SUM) 

beta = X + (pi/12.)*(5+6.*(-5.16.-1)) 
fact4 = 2.*gambUgama2*X**(-5./6.-l.)*sin@eta)*SUM 

C 

c *** compute the first even term in the summation (asymptotic): 
C 

ioe = 0 !even summation 
ia = 1 !asymptotic summation 

fact5 = 2.*gambUgambma2*X**(5.16.)*cos(alpha)*SUM 
C 

c *** compute the second even term in the summation (asymptotic): 
C 

ioe = 0 !even summation 
ia = 1 !asymptotic summation 

call summation(Cfas22, ioe, ia, X, SUM) 

C 

c *** compute INT2 (asymptotic): 
C 

Integral2= factl + fact2*(fact3+fact4+fact5+fact6) 

ELSE 

C 

c *** IF HERE, THEN COMPUTING THE REGULAR SUMMATION (NOT ASYMFlDTIC FORMS) 
*** ---- ---- -- 

c *** There are 2 summations to compute, 1 odd and 1 even 
C 

c *** compute the odd term in the summation. 
C 

ioe = 1 !odd summation 
ia = 0 !regular summation 

call summation(Cfreg2, ioe, ia, X, SUM) 

fact3 = 2.*cos(pi/l2.)*SUM 
C 

c *** compute the even term in the summation. 
C 

ioe = 0 !even summation 
ia = 0 !regular summation 

call summation(Cfreg2, ioe, ia, X, SUM) 

fact4 = 2.*sin(pi/l2.)*SUM 
C 

c *** compute INT2 (asymptotic): 
C 

Integral2 = factl + fact2*(fact3 + fact4) 
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Bfact(0) = 1.0 
Afact(1) = atemp 
Bfact(1) = btemp 

d o 2 0 i = 2 , N  
Afact(i) = Afact(i-l)*(atemp + i-1) 
Bfact(i) = Bfact(i-l)*(btemp + i-I) 

20 continue 

return 
end 

subroutine initialize 
C************************************************************************** 
C 

c subroutine that calculates the constants needed for INTI, INR.  
C 

C 

Double Precision atemp, btemp 
Double Precision Afact(O:50), Bfact(O:50) 
Double Precision Cfregl(O:SO),Cfasl l(O:50),Cfas21(0:50) 
Double Precision Cfreg2(0:50),Cfas12(0:50),Cfas22(0:50) 
Double Precision Nfact(O:50) 
Double Precision argl-3, argl-6, argll-6 
Double Precision gaml-3, gaml-6, gamll-6 
Double Precision arga, argb, argbma 
Double Precision gamal, gambl, gambmal 
Double Precision gama2, gamb2, gambma2 
Double Precision Sl4AAF 
Integer ifail 
External S14AAF !NAG routine to get the gamma fcn. 

Common /coefficients 11 Cfregl, Cfas 11, Cfas2l 
Common /coefficients21 Cfreg2, Cfas 12, Cfas22 
Common lgamscommon/ gaml-3, gaml-6, gamll-6 
Common Iconstantsll gamal, gambl, gambmal 
Common IconstantsU gama2, gamb2, gambma2 

c *** define the arguments of the gamma functions, and compute them 
C 

argl-3 = 1.13. 
argll-6 = 11./6. 
argl-6 = 1.16. 
gaml-3 = S14AAF(argl-3, ifail) 
gamll-6 = S14AAF(argll-6, ifail) 
gaml-6 = S 14AAF(argl-6, ifail) 

C 

c *** define and compute the gamma functions used by each INTI and INT2 
C 

c lNT2: 
arga = -5.16. 
argb = 1.0 
argbma = argb - arga 
gama2 = S14AAF(arga, ifail) 
gamb2 = S14AAF(argb, ifail) 
gambma2 = S14AAF(argbma, ifail) 

C 

c INTI: 
arga = 1 .16. 
argb = 2.0 
argbma = argb - arga 
gamal = S14AAF(arga, ifail) 
gambl = S14AAF(argb, ifail) 
gambmal = S14AAF(argbma, ifail) 

C 

c *** compute the coefficients of the factorial function 
C 

call Nfactorial(Nfact) 
C 

c *** Compute the coefficients of the summations which contained 
c *** the bypergeometric function. These summations are real, 
c *** and oscillate in sign, but converge quickly. First compute 
c *** the coeeficients for the regular approximation to the summations, 
c *** then compute the coeffients for the asymptotic approx. to the 
c *** summations. We need to calculate the Coefficients for both 
c *** INTl and INT;?. 

C 

c *** the regular approximation for the Coefficients: 
c ***INTI: 
C 

a1 = 1\16. 
b l  = 2.0 
atemp = a1 
btemp = b l  
call ABcoeff(atemp, btemp, Afact, Bfact) 

Cfregl(0) = 1.0 
doi  = 1,29,2 
Cfregl(i) = (-l)**(iC?)*Afact(i)/(Nfact(i)*Bfact(i)) 

end do 

do i=2 ,30 ,2  
Cfregl(i) = (-l)**(i/2)*Afact(i)/(Nfact(i)*Bfact(i)) 

end do 

C 

c *** the regular approximation for the Coefficients: 
c *** INT2: 



C 

a1 = -5.16. 
bl = 1.0 
atemp = a1 
btemp = b 1 
call ABcoeff(atemp, btemp, Afact, Bfact) 

Cfreg2(0) = 1.0 
do i=1 ,29 ,2  
Cfreg2(i) = (-l)**((i+l)/2)*Afact(i)/Nfact(i)**2 

end do 

do i=2 ,30 ,2  
CfregZ(i) = (-l)**(iI2)*Afact(i)/Nfact(i)**Z 

end do 

C 

c *** the asymptotic approximation for the Coefficients: 
c *** asymptotic set #1, INTl 
C 

a1 = 1.16. 
b l = 2 .  
atemp = a1 
btemp = 1 .O+al-bl 
call ABcoeff(atemp, btemp, Afact, Bfact) 

Cfasll(0) = 1.0 
do i=2 ,30 ,2  
Cfasl l(i) = (-l)**(i/Z)*Afact(i)*Bfact(i)/Nfact(i) 

end do 

do i = 1,29,2 
Cfml l(i) = (- l)**(i/Z)*Afact(i)*Bfact(i)/Nfact(i) 

end do 

C 

c *** the asymptotic approximation for the Coefficients: 
c *** asymptotic set #1, INT2 
C 

a1 = -5.16. 
b l =  1.0 
atemp = a1 
btemp = l.O+al-bl 
call ABcoeff(atemp, btemp, Afact, Bfact) 

Cfasl2(i) = (-l)**((i+l)l2)*Afact(i)*Bfact(i)Mfact(i) 
end do 

C 

c *** the asymptotic approximation for the Coefficients: 
c *** asymptotic set #2, INTl 
C 

a1 = 1.16. 
b l = 2 .  
atemp = bl-a1 
btemp = 1-a1 
call ABcoeff(atemp, btemp, Afact, Bfact) 
CfasZl(0) = 1.0 

do i =2,30,2  
Cfas2l(i) = (-l)**(i/2)*Afact(i)*Bfact(i)/Nfact(i) 

end do 

do i = l ,29,2 
CfasZl(i) = (-l)**((i+l)l2)*Afact(i)*Bfact(i)Mfact(i) 

end do 
C 

c *** the asymptotic approximation for the Coefficients: 
c *** asymptotic set #2, INK! 
C 

a1 = -5.16. 
b l  = 1. 
atemp = bl-a1 
btemp = 1-a1 
call ABcoeff(atemp, btemp, Afact, Bfact) 

Cfas22(0) = 1.0 
do i =2 ,30 ,2  
Cfas22(i) = (-l)**(iR)*Afact(i)*Bfact(i)/Nfact(i) 

end do 

do i = 1, 29.2 
Cfas22(i) = (-l)**(iR)*Afact(i)*Bfact(i)/Nfact(i) 

end do 
C 

c *** done with initialization 
C 

return 
end 

Cfas l2(0) = 1.0 
doi=2,30,2  
CfaslZ(i) = (-l)**(i/2)*Afact(i)*Bfact(i)/Nfact(i) 

end do 



Appendix D 

Appendix D contains some of the analysis programs. The main analysis programs are 

"scatter3D.f," "CI12t.f," "PWF-apave.f," and "INT-apave.f." Program "scatter3D.f' cal- 

culates the 3-D scattering profile of the backscattered electric field off of l aerosols parti- 

cle. The data generated by "scatter3D.f' is used by Mathematica to plot the profiles. 

Program "CI12t.f' generates the time-delayed crosscovariance of intensities between two 

points in the receiver aperture. Program "PWF-apave.f' evaluates the effect of aperture 

averaging on the path weight function, while program "INT-apave.f' examines the aper- 

ture averaging effect on the heterodyne signal power. Included in this appendix are pro- 

grams "scatter3D.f' and "INT-apave.f' to give examples of analysis programs. The 

remaining programs can be found on a floppy disk labeled "ANALYSIS PROGRAMS" 

and are also listed as part of a hard copy of all of the programs used throughout this thesis 

project titled "C02 LIDAR PROGRAMS." 



.................................................................................... 

c program scatter3D.f version 1 * 
c 10-21-92 revised 3-20-94 * 
c BJ Rask t 

C * 
c Program that calculates the scattered intensities of an * 
c incident wave from a spherical aerosol particle. Solution * 
c of problem is outlined in Born and Wolf. Solution * 
c contains many special functions, and their derivatives, * 
c which will be calculated using the recurrence relations * 
c from Arken. Program outputs a three dimensional data t 

c set to be used by mathematics. * 
C*****************************t************t********* 

Double Precision lambda,q,theta,rindex,a,arg,kO 
Double Precision dcos,dsin,pi 
Double Precision P(O:20),P1(0:20),DP1(0:20) 
Double Precision PSIl(O:20),DPSIl(O:20) 
Double Precision PS12(0:20),DPSI2(0:20) 
Double Precision PS13(0:20),DPSI3(0:20) 
Double Precision j 1(0:20),Dj1(0:20) 
Double Precision j2(0:20),Dj2(0:20) 
Double Precision j3(0:20),Dj3(0:20) 
Double Complex ETA1(0:20),h1(0:20),Dh1(0:20),DETA1(0:20) 
Double Complex ETA2(0:20),h2(0:20),Dh2(0:20),DETA2(0:20) 
Double Complex ETA3(0:20),h3(0:20),Dh3(0:20),DETA3(0:20) 

Double Complex epe(l80), epa(l80). etot(l80) 
Double Complex Be(20),Brn(20),Nume,Numm,Denome,Denomm 
Double Complex Iperp,Ipar,Itotal 
Double Complex Numel,Nume2,Nume3,Nume4 
Double Complex Numml,Numm2,Numm3,Numm4 
Double Complex Denomel,Denome2,Denome3,Denome4 
Double Complex Denomml,DenommZ,Denomm3,Denom4 
Double Complex I 
Complex et,ep,epp,b 
real Itot 
data lambda1 10.6 1 
pi = 4.0dOtdatan(l .OdO) 

I = (0.0,l .O) 

OPEN (Il,file = 'Iperp.dat',status = 'unknown') 
c OPEN (12,file = 'Ipar.dat',status = 'unknown') 

OPEN (14,file = 'Ldat',status = 'unknown') 
OPEN (15,file = 'Itot.dat',status = 'unknown') 
OPEN (16,file = 'axes.dat',status = 'unknown') 

c start input section 
c--------------------------------------------------------------- 

print* 
print*,' A ' 
print*,' n, a' 
read*,rindex,a 

q = 2*pi*a/lambda 
kO = 2'piIlambda 

c 
print* 

print*,'INPUT bow many terms of the expansion you want' 
read*.N 

do6 k =  1,179,l 
epa(k) = 0.0 
epe(k) = 0.0 

6 continue 

c Fist compute the Coefficients of the expansion used to 
c calculate the intensities. 

c The subroutine, "subinitial," generates the first two terms 
c of each special function. There are two different arguments 
c in the solution, and since the recursion relationships depend 
c on past terms, two separate sets of special functions are 
c needed. 
C 

c s tar t for l=l  
C 

w = q  
call subinitialB(ETAl,DETAl,hl,Dhl J 1,Dj l ,PSIl, 

> DPSIl,arg,theta) 

arg = q'rindex 
call subinitialB(ETA2,DETA2,h2,Dh2j2,Dj2,PSI2, 

> DPSI2,arg.theta) 

Nume = rindextDPS11(1)*PS12(1) - PSIl(l)*DPSI2(1) 
Denome = rindex*DETAl(I)*PSI2(1) - ETAl(l)*DPSI2(1) 
Numm = rindextPS11(1)*DPS12(1) - DPSIl(l)*PSI2(1) 
Denomm = rindextETAl(1)*DPS12(1) - DETAI(l)*PSI2(1) 
Be(1) = I**(2) * (3.12.) * Nume/Denome 
Bm(1) = I**(2) * (3.12.) * Nurnm/Denomm 

C 

c Now for the rest of the Coefficients for 1 = 2 to N 
C 

do51=2 ,N  

first calculate the special functions with argument q => 
print*,'INPUT the refractive index of the aerosol,' 
print*,' and the radius of the particle (urn):' 



call rubPSI(l,arg,jl,PSIl) 
call subDPSI(1,argj 1,Dj 1,DPSIl) 
call subETA(l,arg,hl,ETAl) 
call subDETA(l,arg,h 1 ,Dh 1,DETA 1) 

Numel = DPSIl(1) 
Nume3 = PSIl(1) 
Numml = PSIl(1) 
Numm3 = DPSIl(1) 
Denomel = DETAl(1) 
Denome3 = ETAl(1) 
Denomml = ETAl(1) 
Denomm3 = DETAl(1) 

c Now for the special functions with argument q*rindex => 

call subPSI(l,arg,j2,PSI2) 
call subDPSI(l,arg j2,Dj2,DPSI2) 
call subETA(l,arg,h2,ETA2) 
call subDETA(l,arg,h2,Dh2,DETA2) 

theta = (k*pi/l80.) 

call subinifialP(theta,P,Pl,DPl) 

call subP(l,theta,P) 
call subPl(l,theta,P,Pl) 
call subDPl(l,theta,P,PI,DPl) 

C 

c Now for the intensities 
C 

10 continue 

20 continue 

C 

c-------------------------------------------------------------- 

c The intensities are a function of two angles, theta and phi. 
c The output file will be in cartesion coordinates, converted 
c from polar coordinates with a unit distance from the scatterer. 
c To convert from polar to cartesion, use: 
C 

c x = R sin(theta) cos(phi) 
c y = R sin(theta) sin(phi) 
c z = R cos(theta) 

print*,'INPUT scale factor' 
read*,sc 

5 continue 

c--------------------------------------------------------------- 

c Start to compute the intensities of the scattered field 
c parallel and perpendicular to polarization of incoming E field. 
c The scattered intensities will be calculated as a function 
c of theta, 0 to 360 degrees. Because of symmetry, theta 
c need only be varied from 0 to 180 degrees. 

do 30 j = 0,180,10 
do 30 j = 0,90,10 

phi = j*piIl80.0 
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C 

Double Precision P(O:lM)),theta 
Double Precision dcos 

return 
end 

subroutine subPl(l,theta,P,PI) 
C******************************************************************** 
C 

c Subroutine that calculates the associated Legendre Polynomial, 
c Pl'(cos(theta)) 
C 

Double Precision P(0:100),P1(0:100),theta 
Double Precision dcos.dsin 

return 
end 

subroutine subDPl(1, theta, P, PI, DPI) 
C********************************************************************** 
C 

c Subroutine that calculates the derivative of the Associated 
c Legendre Polynomial, 
C 

c (1)' 
c PI (cos(theta)) 
C 

Double Precision P(O:1M)),P1(0:100),DP1(0:100),theta 
Double Precision dcos,dsin 

return 
end 

C************************************L******************************* 

subroutine subPSI(l,arg,j,PSI) 
C*******************************ft******************************* 

C 

c Subroutine that calculates the Spherical Bessel function, jl(x) 
C 

Double Precision j(0:100),PSI(O:100),arg,x 

return 
end 

c************************************* 
subroutine subDPSI(l,arg,j,Dj,DPSI) 

..................................................................... 

C 

c Subroutine that calculates the derivative of Psi = x*jl(x) 
C 

Double Precision j(0:100),Dj(0: 100),DPSI(O: 100) 
Double Precision x,arg 

return 
end 

subroutine subETA(l,arg,h,ETA) 
...................................................................... 
C 

c Subroutine that calculates ETA I (x) = x* spherical hankel fcn. 
c (outward going sph. hankel) 
C 

Double complex h(O: 100),ETA(O: 100) 
Double Precision x,arg 

x = arg 
h(l) = (2*1-1)Ix * h(1-I) - h(l-2) 
ETA(1) = x * h(l) 

return 
end 

subroutine subDETA(l,arg,b,Dh,DETA) 
..................................................................... 

C 

c Subroutine that calculates the derivative of ETA 1 (x) 
C 

Double complex h(0: 100),Dh(0: 100),DETA(O: 100) 
Double Precision arg,x 



retum 
end 

Program INT-apave.f 
3-03-93 BJ Rask 

c Program that computes the effect of the aperture averaging on the il 

c Intensity, and therefore on the SNR. The aperture is the half circle. * 
c Tests effect on heterodyne, coherent system. Program computes the * 
c aperture averaged intensity vs. detector radius. * 
C*********************************************************************************** 

c Definition of variables: 
C 

c Cn2 = strength of turbulence 
c Zc = distance to center of range bin (meters) 
c rho =detector spacing, a variable over which the aperture is 
c averaged. P has been replaced by rho. 
c k = wave number = 2 * pi I lambda 
c FZS = Fresnel zone scale size 
C alpha = a/FZS 
c a = aperture radius of half circle 
c Ft = Transmitter focus I Zc 
c Flo = Receiver focus I Zc 
C 

character* 14 ans, filecov, filenorm 
integer istart, iend, istep 

real apert(0:2000), a0 
real ap1(0:2000), ap2(0:U)o) 

Common lparamsll aO, Zc, nterms 

c start program input section 

........................................................ 

c print*,'* Program INT-apave.f * +  

........................................................ 

........................................................ 

c print* 
c print* 
c print* 

c print*,'INPUT istart, iend, istep, dfact' 
c read*,istart, iend, istep, dfact 
c read(&*) istart, iend, istep, dfact 

nterms = 5 !number of terms of Gauss quaderature 
istart = 1 !starting radius 

iend = 20 !ending radius 
istep = 1 !step size 



dfact = 10. !scale factor to convert to: (meters/FresnelZoneScale) 

c print*,'INPUT covariance file name' 
c read(5,*) filecov 
c read@,*) filecov 
c print*,'INPUT normalized covariance filename' 
c read(5,*) filenorm 
c read@,*) filenorm 

filenorm = '1norm.dat' 
Zc = 450 

c OPEN(I0, file = filecov, status = 'unknown') 
OPEN(11, file = filenorm, status = 'unknown') 
OPEN(15,file = 'Iapave.dat',status = 'unknown') 

c end of program input section 
c start to compute the aperture averaging effect. 

C 

c print* 
c print*,'Computing the effect of the aperture averaging' 

call initialize !subroutine that computes constants needed 
!to calculate the Log amplitude covariance 

do 10 ii = istart, iend, istep 
a0 = ii * 1.0ldfact 
call aperture-ave(apert, ii) 
ap2(ii) = apert(ii) 

10 continue 

c print* 
c print* 
c print*,'------ End of INT-apave.f --------* 

stop 
end 

subroutine aperture-ave(apert, ii) 
C************************************************************************** 

c Subroutine that calculates the effect of aperture averaging 
c on the Intensity. The effect of the aperture averaging 
c is evaluated as a function of the Fresnel Zone Scale size. 
C 

a0 = a/FZS 
a = radius of detector aperture 
FZS = Fresnel Zone Scale Size = (Zc/k)**(112) 
Zc = Distance to center of range bin 
k = wave number = 2pflambda 
phi1 =first angular integration variable in the receiver aperture 
P1 =first detector radius coordinate 
phi2 = second angular integration variable in rec. apert. 
P2 = second detector radius coordinate 

Double Precision SUMcov,SUMint, A(7),B(7) 
Double Precision ab1(10),ab2(10),ab3(10),ab4(1O),ab5(10) 
Double Precision ab6(10),ab7(10) 
Double Precision w1(100),w2(10),w3(10),w4(10),w5(10) 
Double Precision w6(10),w7(10) 
Double Precision Pl ,R,z  
Double Precision phil,phi2 
Integer ifail, itrans, npts, mand 
external DOlBAZ,WlBBF 
real apert(0:2000),aO,pi,Is 

Common lparamsll aO, Zc, ntems 
Common /PSI P1.R 
Common lphisl phil,phi2 
Common Izsl z 

c *** Define the integration limits for the 5 integrations 

c *** calculate the gaussian weights and abscissae for each dimension 

call DOIBBF(WlBAZ,A(1),B(I),itype,nterms,wl,abl,if&l) 
call WlBBF(WlBAZ,A(2),B(2),itype,ntenns,w2,ab2,if&l) 
call WlBBF(WlBAZ,A(3),B(3),itype,nterms,w3,ab3,if&l) 
call WlBBF(WlBAZ,A(4),B(4),itype,nterms,w4,ab4,ifail) - - 
call WlBBF(WlBAZ,A(5),B(5),itype,nterms,w5,ab5,if~l) 

c *** Now build up the 5th order summation using Gaussian 



c *** quadrature for the other integrations. 

SUMint = 0.0 
do il  = 1, nterms 
do i2 = 1, nterms 
do i3 = 1, nterms 
do i4 = 1, nterms 
do i5 = 1, nterms 

phil = abl(i1) 
P1 = abZ(i2) 
phi2 = ab3(i3) 
P2 = ab4(i4) 
z = ab5(i5) 
call Integrand(1s) 
SUMint = SUMint + wI(il)*w2(i2)*~3(i3)*~4(i4)* 

> w5(i5)*Is 
end do 

end do 
end do 

end do 
end do 

write(1 I,*) aO, SUMintlaO**4 
write(l5,') aO, SUMint 
apert(ii) = SUMint 

call flush(l1) 
call flush(l5) 

return 
end 

subroutine Integrand(1s) 
C************************************************************************** 
C 

c Subroutine to calculate the integrand for the 5th order 
c integration for the average hetrodyne power. 
C 

c Definition of variables: 
C 

c Ulo = the local oscillator electuc field diseibution. 
c PI = first radial variable in detector #1 
c P2 = second radial variable in detector #I 
c phi1 = first angular variable in detector #1 
c phi2 = second angular variable in detector #I 
c Zc = distance to center of the range bin 
c k = wave number = 2pflambda 
c FZS = Fresnel Zone Scale Size = sqrt(Zc/k) 
c Ft = transmitter focal distance I Zc 
c Flo =receiver focal distance I Zc 

c alpha0 = transmitter beam radius I FZS 
c beta0 = receiver beam radius I FZS 
c H = fourth order mutual coherence function representing effect 
c of turbulence on the intensity. 
c NO joint-gaussian assumption at receiverand NO independent paths. 
c D =phase perturbation part of H 
c Cx = log-amplitude perturbation part of H 
C 

Double Precision Pl,P2,z 
Double Precision phil,phi2 
real Zc,kFZS,Ft,Flo,alphaO,H,pi,Is 
Double Precision P12sq 
Complex J,gl,g2,Uloil,UloiZ 

Common lparamsll aO, Zc, nterms 
Common ~ P s l  P1 ,P2 
Common lphisl phil.phi2 
Common hsl  z 

Cn2 = 1.e-10 
pi = 3.1415926 
J = (0.0,l.O) 

C 

c *** Define the focal distances. As it huns out, Csls2 can't quite 
c *** be expressed completely as a function only of FSZ. Unforturnaltely, 
c *** Zc, the distance to the center of the range bin, must be chosen. 
c *** Here, Zc is chosen to be 450 meters. The receiver has a maximum 
c *** focus distance of 100 meters, so Flo = 1001450. Ft can 
c *** be focussed out to about 450 meters. Choose Ft = 4501450 = 1.0. 
c "* Outgoing beam radius = 72 mm from "optics.f' program. So 
c *** alpha0 = 72mmIFZS. Radius of LO beam = 13.lmm. 
c *** So beta0 = 13.lmmiFZS. 
C 

Zc = 450 
k = 2*pil10.6e-06 
FZS = sqrt(Zc1k) 
Ft = 1.0 
Flo = 100.1450, 
alpha0 = 72.e-03lFZS 
beta0 = 13.le-03IFZS 

C 

c *** the following are the arguments of the phase and log amplitude 
c *** perturbation terms 
C 

P12sq =P1**2 + P2**2 - 2*Pl*P2*cos(phil-phi2) 
alsq = abs(P12sq) 
a2sq = abs(.25*P1**2+.25*P2**2 +Pl*P2*cos(phil-phi2)) 
d s q  = abs(.25*P1**2+9./4.*P2**2+2.5*P1*P2*cos(phil-phi2)) 
a4sq = abs(9./4.*P1**2+.25*P2**2-1.5*P1*P2*cos(phiI-pbi2)) 
d s q  = a2sq 



c *** The first three terms are complex, of the form: 
c *** exp(i*thetal)*exp(j*theta2)*exp(i*theta3) 
c *** Because only the even terms will survive the integration, 
c *** we want to only keep the even terms. From analysis, only the 
c *** REAL part of the above expression is even. Therefore, ignore 
c *** the odd, imaginary part. 

Uloil = cexp(-J*.5/Flo*float(P1)**2) 
Uloi2 = cexp(J*.S/Flo*float(P2)**2) 
g l  = cexp(J/(2.*float(z))*(float(Pl**2-P2**2))) 
Ulogl = REAL(Uloil*Uloi2*gl) 
Ulol = dexp(-0.5*(Pl/beta0)**2) 
Ulo2 = dexp(-0,5*(P2/beta0)**2) 

C 

c *** Now compute H, the 4th order mutual coherence function 
C 

D l  = 2.91*3./8.*Cn2*z/Zc*k**3*FZS'*(l1./3.)*P12sq**(5./6.) 
D2 = 2.91*3./8.*Cn2*z/Zc*k**3*FZS**(11./3.)*a2sq**(5./6.) 
D3 = 2.91*3.I8.*Cn2*zfi*k**3*FZS**(1l1/3.)*a3sq**(5./6.) 
D4 = 2.91*3.18.*Cn2*z/Zc*k**3*FZS**(I 1 ./3.)*a4sq**(5./6.) 
b = sqrt(a5sq) 
call Cx(COV, h) 
Cxl = .132*Cn2*pi*pi*z1Zc*FZS**(11./3.)*k**3*COV 
H = exp(-1./2.*(2*D1-2*D2+D3+D4))*exp(4*CxI) 

C 

c *** Now put it all together: 
C 

Is = exp(-P12sq*(alpha0/2.)**2*(1/z-l/Ft)**2)* 
> l./Z**3*Pl*P2* 
> exp(-(P12sq/(2.*alphaO)**2))~Ulogl*Ulol*Ulo2*H 

retum 
end 

subroutine Cx(COV, b) 
c***:*:*********************C*****:********:*:***:**:::*:*************:*:*** 

C 

c subroutine that calculates the log-amplitude 
c covariance of Intensity. The integral in the Log-Amplitude term 
c is calculated using the algorithm found in the appendix of 
c "Two-point joint-density function of the intensity for a laser- 
c generated speckle field after propagation through the turbulent 
c atmosphere", V.S. Rao Gudimetla, J. Fred Holmes, and R. A. Elliott. 
c Equation (A13) of the above reference will be used for the calculation. 
c The hypergeometric functions were expanded and it was noticed that 
c the imaginary terms all cancelled. The remaining form is purely 
c real, as it should be. The remaining form also follows a pattern 
c of terms which oscillate in sign. Howeverm, it was found that the 
c summation converges quickly (3 or 4 terms). H(a,b) will be calculated 
c using this expanded, real form (see theory development of BJ Rask, 
c notebook on theory). Then the integral over the normalized path 

c variable from 0 to 1 will be approximated using a Gauss quadrature 
c of 5 points. 
C 

real RR(5), ww(5), w 
real TLCOV, COV 
real a l ,  b l ,  b 
data RR 1.1 184634,.2393143,.2844444,.2393143,.1184634/ 
data ww 1.0469101,.2307653,.5,.7692347,.9530899/ 

sumcov = 0.0 
d o i = 1 , 5  

w = ww(i) 
a1 = w*(l-w)l2. 
b l  = b*w 
call LAcov(a1 ,bl,w,TLCOV) 
sumcov = sumcov + RR(i)*TLCOV 

end do 
COV = sumcov 

return 
end 

subroutine LAcov(al,bl,w,TLCOV) 
C************************::**:::*:*::*:*:*::*:*:**:::*:*::*****:*::::: 
C 

c this function subprogram, used by the NAG routine DOlBDF, computes 
c the integral in the log-amplitude turbulence term. The integrand, 
c H(a,b) has been expanded to yield only real terms (see theory, BJ 
c Rask, notebook on theory). The term in braces of equation (A13) 
c of reference "Two point joint density fcn. for laser-gen. speckle 
c field after prop. through turb. atmos." is an infinite sum of 
c factors which alternate in sign. However, it was found from other 
c numerical programs that the summation converges quickly (3 or 4 terms). 
C 

Double Precision SUM, X 
Double Precision factl, fact2 fact3, fact4, fact5, fact6 
Double Precision Coeffreg(O:50),Coeffas1(0:50),Coeffas2(0:50) 
Double Precision gaml-3, gaml-6, gamll-6 
Double Precision gama, gamb, gambma 
real pi, w, al,  h l ,  TLCOV 
Common /coefficients/ Coeffreg, Coeffasl, Coeffas2 
Common /constantslgaml-3, gaml-6, gamll-6, gama, gamb, gambma 

c------------------------------------------------------------------------ 

pi = 3.1415926 
X = bl*bl/(8.*al*al) 
factl = -.15*hl**(5./3.)/pi**(1./2.) * gam1_3**2*cos(pi/6.)/ 
> gamll-6 
fact2 = .3*gam1_6*al**(5./3,)12.**(1./6.) 

C 
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Common lcoefficientsl Coeffreg, Coeffasl, Coeffas2 
Common lconstantslgaml-3, gaml-6, gamll-6, gama, gamb, gambma 

C 

c *** define the arguments of the gamma functions, and compute them 

arga = -5.16. 
argb= 1.0 
argbma = argb - arga 
gama = S14AAF(arga, ifail) 
gamb = S14AAF(argb, ifail) 
gambma = S14AAF(argbma, ifail) 

C 

c *** compute the coefficients of the factorial function 
C 

call Nfactorial(Nfact) 
C 

c *** Compute the coefficients of the summations which contained 
c "* the hypergeometric function. These summations are real, 
c *** and oscillate in sign, but converge quickly. Fist  compute 
c *** the coeeficients for the regular approximation to the summations, 
c *** then compute the coeffients for the asymptotic approx. to the 
c *** summations. 

C 

c *** first the regular approximation for the Coefficients: 
C 

a1 = -5.16. 
bl = 1.0 
atemp = a1 
btemp = bl  
call ABcoeff(atemp, btemp, Afact, Bfact) 

Coeffreg(0) = 1.0 
doi=1,29,2  
Coeffreg(i) = (-l)**((i+l)l2)*Afact(i)/Nfact(i)**2 

end do 

do i=2 ,30 ,2  
Coeffreg(i) = (-l)**(iD)*Afact(i)/Nfact(i)**2 

end do 
C 

c *** now the asymptotic approximation for the Coefficients: 
c *** asymptotic set #I  
C 

atemp = a1 
btemp = I.O+al-bl 
call ABcoeff(atemp, btemp, Afact, Bfact) 

Coeffal(0) = 1.0 
do i = 2,30,2 
Coeffal(i) = (-l)**(in)*Afact(i)*Bfact(i)/Nfact(i) 

end do 

doi  = l , 29 ,2  
Coeffasl(i) = (-l)**((i+l)/2)*Afact(i)*Bfact(i)lNfact(i) 

end do 

C 

c *** now the asymptotic approximation for the Coefficients: 
c *** asymptotic set #2 
C 

atemp = bl-a1 
btemp = l-a1 
call ABcoeff(atemp, btemp, Afact, Bfact) 

CoeffasZ(0) = 1.0 
do i=2 ,30 ,2  
Coeffas2(i) = (-l)**(i/2)*Afact(i)*Bfact(i)Mfact(i) 

end do 

do i = l,29,2 
C*ffas2(i) = (-l)**(iD)*Afact(i)*Bfact(i)Mfact(i) 

end do 

C 

c *** done with initialization 
C 

return 
end 



Appendix E 

Appendix E shows how equation (4.43, the low-pass filtered crosscovariance 

of intensities is simplified to be used in the crosswind detection scheme of Chapter5, 

section 5.3. Equation (4.45) is 

x [ exp ( 4C ( - , , -7) ) - I] 
In this equation, the log-amplitude covariance function, C,, is 

Equation (e.1) difficult because it contains three integrals, and one summation. How- 

ever, the integrals can be approximated by realizing that the log-amplitude covariance 

function depends very weakly on the argument 



in the log-amplitude covariance function, allowing it to be dropped from equation 

(e.2). In addition, the argument cose, in C, is also a weak dependence. Taking 

these arguments out of equation (e.1) and using 

reduces equation (e.1) to 

The z integrals can be performed by realizing that the z in Cx can be approximated 

by setting z = z,, the distance to the center of the range bin, and performing the 

remaining z integrations with a 300 meter range bin width, 

P2k (z, + 150) ' - (z, - 150) 
CI,* (6.7) = -2- (UToaO) 

(z, + 1 5 0 ) ~  (z, - 1 5 0 ) ~  '1 

To demonstrate the validity of these approximations, equation (e.5) and equation (e.1) 

are plotted in figure e.1 for comparison. The difference between the two curves is so 

slight, that equation (e.5) can be used to approximate equation (e.1). 



Time-Delayed Crosscovariance of Intensities 

comparison of equations (e.1) and (e.5) 
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Figure e.1. Comparison of equations (e.1) and (e.5) showing the difference is so slight 
that equation (e.5) can be used to approximate equation (e. 1). 
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