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Abstract

Constrained Clustering and Cognitive Decline Detection

Zhengdong Lu

Supervising Professor: Todd K. Leen

My thesis consists of two independents parts: (1) constrained clustering and (2) cognitive

decline.

Constrained Clustering: While clustering is usually executed completely unsu-

pervised, there are circumstances in which we have prior belief (with varying degrees of

certainty) that pairs of samples should (or should not) be assigned to the same cluster.

These pairwise constraints are less informative than direct labeling of the samples, but are

often considerably easier to obtain. We proposed two probabilistic clustering algorithms to

make use of this kind of pairwise constraints. Our first algorithm, called Penalized Proba-

bilistic Clustering (PPC), is based on Gaussian mixture models (GMMs), where our belief

on the pairwise constraints are expressed as a prior probability on the assignments of data

points to clusters. Unlike previous effort in this direction, this clustering model naturally

accommodates both hard constraints and soft preferences in a framework. Although PPC

and its follow-up models are successful in many applications, they also suffer from their

limited modeling capability and inefficiency on using the pairwise constraints. Our second

clustering algorithm is specifically designed to address these two limitations. Instead of

adapting a traditional clustering model, we started from the Gaussian process classifiers

xii



(GPCs), a type of discriminative models carefully chosen for our specific constrained clus-

tering requirement, and treated the pairwise relations as a special form of observation.

The prior probability of the latent process is controlled with a kernel designed using the

graph Laplacian of all the available data, thus we can make use of the samples that are

not involved in pairwise relations.

Cognitive Decline Detection: We studied the approaches to the detection of decline

in people’s cognitive ability based on the longitudinal clinical observations. The ultimate

goal is to evaluate a subject’s risk of becoming cognitively impaired at different age, given

his or her past clinical observations including motor ability and neuro-psychological test

score. Our work consists of two strongly related parts. In the first part, we studied model-

ing a population of similar time series with mixed-effect models. This mixed-effect model

does not only capture the group characteristic of different population, but also provides

a means to learn an effective prior for individual time series modeling. The second part

of our project is a cross-sectional study, where we try to predict whether a cognitively

healthy subject will later develop into cognitive impairment. Towards this end, we first

constructed a probabilistic classifier based on mixed-effect models trained separately on

healthy and impaired populations, and demonstrated the gain of discriminative power

by modeling the individual-specific random effects. To circumvent the shortcomings of

the generative model-based classifier, we also considered discriminative approaches. We

adopted the support vector machine (SVM) with kernels specially developed for longitu-

dinal time series. We extended the design of Fisher kernel to take mixed-effect models

as the generative model based on its hierarchical structure. In addition, we proposed a

non-parametric distance measure for time series based on Gaussian processes (GPs) and

reproducing kernel Hilbert space (RKHS). A Gaussian kernel based on this distance mea-

sure were also used in SVM. Experiments show that the discriminative approaches yield

improved classification accuracy over generative models on four motor ability observations,

while on neuro-psychological test scores the two schools of methods have comparably good

classification performances.
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Part I

Clustering with Pairwise Constraints



Chapter 1

Introduction to Constrained Clustering

Clustering is an unsupervised learning problem, which tries to group a set of points into

clusters such that points in the same cluster are more similar to each other than points in

different clusters, under a particular clustering distortion or distance measure [43]. Here,

the learning algorithm just observes a set of points without observing any corresponding

class/category labels. Clustering problems can also be categorized as generative or dis-

criminative. In the generative clustering model, a parametric form of data generation is

assumed, and the goal in the maximum likelihood formulation is to find the parameters

that maximize the probability (likelihood) of generation of the data given the model. In

the discriminative clustering setting (e.g., graph-theoretic clustering), the clustering algo-

rithm tries to cluster the data so as to maximize within-cluster similarity and minimize

between-cluster similarity, based on a similarity matrix defined over the input data set,

it is not necessary to consider an underlying parametric data generation model. In both

the generative and discriminative models, clustering algorithms are generally posed as

optimization problems and solved by iterative methods like EM [24] or its approximation

variants algorithms [44].

While clustering is usually executed completely unsupervised, there are circumstances

in which we have prior belief (with varying degrees of certainty) that pairs of samples

should (or should not) be assigned to the same cluster. More specifically, we define the

following pairwise relations1:

1They are almost equivalent to the more popular “must-link” and “cannot-link” coined by Wagstaff et
al. We deliberately choose a softer name for them since allowing the violation of the pairwise relations and
thus incorporating the certainty information associated with them are a very important part of our work.

2
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link: two sample should be assigned into one cluster

do-not-link: two samples should be assigned into different clusters,

with a pictorial demonstration in Figure 1.1. These pairwise relations are less informative

than direct labeling of the samples, but are often considerably easier to obtain. Indeed,

there are many occasions where the pairwise relations can be naturally derived from expert

knowledge or common sense.

Figure 1.1: Example of clustering with pairwise relations. The panel left to the arrow
shows the 2-dimensional data points, denoted as gray dots. The solid line is the a link
constraint between the two samples connected by it and the dashed line is the do-not-
link. The panel right to the arrow shows the data grouped into two classes after the two
constraints are incorporated, with the group membership denoted by the color.

Our interest in such problems was kindled when we tried to manually segment a satellite

image by grouping small image clips from the image. One finds that it is often hard to

assign the image clips to different “groups” since we do not know clearly the characteristic

of each group, or even how many classes we should have. In contrast, it is much easier

to compare two image clips and to decide how much they look alike and thus how likely

they should be in one cluster. Another interesting example is word sense disambiguation.

Ambiguous words like ‘plant’, tend to exhibit only one meaning in one discourse [87]. In

other words, two ‘plant’s in the same discourse probably should be assigned to the same

class of sense. This fact is very useful in training unsupervised word sense disambiguation

models. The third example is in information retrieval. Cohn et al. [19] suggested that

in creating a document taxonomy, the expert critique is often in the form “these two

documents shouldn’t be in the same cluster”. The last example is continuity, which

suggests that neighboring pairs of samples in a time series or in an image are likely to

belong to the same class of object, is also a source of clustering preferences [76, 2]. We
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would like these preferences to be incorporated into the cluster structure so that the

assignment of out-of-sample data to clusters captures the concept(s) that give rise to the

preferences expressed in the training data.

The effort of integrating pairwise relation information into the clustering algorithm fall

into three general categories: the constraint-based, distance-based, and discrimination-

based methods.

• The constraint-based methods, starting from the seminal work by Wagstaff et al.

[82], typically adapt an existed clustering methods,such as K-means, to satisfy the

constraints posed by the pairwise constraints. Based on the adapted clustering meth-

ods, there are constrained Kmeans [82, 81, 6, 4], constrained agglomerative clustering

[46], and constrained Gaussian mixture model [70, 53, 89, 54, 51]. Depending on the

way the constraints are incorporated, there are algorithms based on hard constraints

[82, 6, 70], where the constraints must be satisfied by the clustering result, or the

soft constraints [54, 51]. Among them, our work [53, 54] provides a flexible frame-

work that can encompass many of the constrained clustering methods, including

constrained Kmeans and Gaussian mixture model, with soft and hard constraints,

as special cases.

• In distance-based approaches, an existing clustering algorithm that uses a particular

distance to measure clustering distortion is employed; however, the distance mea-

sure is trained to satisfy the labels or constraints in the supervised data. Several

adaptive distance measures have been used for semi-supervised clustering, includ-

ing string-edit distance trained using Expectation Maximization (EM) [10], KL di-

vergence trained using gradient descent [19], Mahalanobis distances trained using

convex optimization [85, 22] or more efficient LDA-based techniques [8], etc. Many

of the distance-based semi-supervised clustering formulations are based on a parti-

tional clustering algorithm, e.g., K-Means, except some that study semi-supervised

hierarchical clustering [46, 21] or spectral clustering [45].

• Quite recently, two discriminative model-based methods have been proposed. The

general idea is to treat the pairwise relation as some kind of observation, and thus
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incorporate them as empirical error in the cost function for the discriminative model.

Among them, Yan et al. [86] use support vector machine as the discriminative

method and solve the whole problem with a convex optimization. Independently we

[55] use Gaussian process classifiers and thus give a probabilistic model that can also

handle the pairwise relations with significant uncertainty.

1.1 Roadmap

In this thesis, we give a detailed exposition of the two approaches we proposed for clustering

with pairwise constraints. The first one, which we named as Penalized Probabilistic Clus-

tering (PPC), is a constraint-based model adapted from Gaussian mixture model (GMM).

The PPC model will be discussed in Chapter 2 and its connection to other constraint-

based clustering models will be given in Chapter 3. Our second approach [55], named

Semi-supervised Pairwise Gaussian Process classifier (SPGP), is specifically designed to

address the limitations of the PPC model. Instead of adapting a traditional clustering

model, we start from the Gaussian process classifiers (GPCs), a type of discriminative

models carefully chosen for our specific constrained clustering requirement, and treat the

pairwise relations as a special form of observation. This approach will be discussed in

Chapter 4.

Notation

Following are some notation convention we will adopt through this part of thesis.

• We use P (A) to denote the probability of discrete event A, and p(x) as the continuous

probability density at x.

• We use P (A; Θ) (or p(x; Θ)) to denote the probability of A (density of x) with

model parameter Θ. We use P (A|B; Θ) (or p(x|B; Θ)) to denote the probability of

A (density of x) conditioned on event B with model parameter Θ.



Chapter 2

Penalized Probabilistic Clustering

In this chapter we will describe our work on adapting the Gaussian mixture model (GMM)

to integrate pairwise constraints [53, 54]. This model, named Penalized Probabilistic Clus-

tering (PPC), can handle both hard and soft constraints in a unified model, and provides

a fairly flexible framework that can encompass several other constrained clustering model

as its particular cases.

2.1 Clustering with Gaussian Mixture Model

A Gaussian mixture model (GMM) with M components consists of the set of parameters

Θ = {π1, · · · , πM , θ1, · · · , θM}. Here πm gives the prior probability (mixing proportion)

for the M Gaussian component, with

πm ≥ 0,
M∑

m=1

πm = 1 (2.1)

and θi = {µi,Σi} is the parameters for the mth Gaussian component. The generative

process of any sample x from a Gaussian mixture model is the following: we first pick up

a Gaussian component θm with prior probability πm; then we draw x from the distribution

N (µi, Σi). Given Θ, the probability of x is

p(x; Θ) =
M∑

m=1

πm p(x; θm). (2.2)

Assuming the data set X = {x1,x2, · · · ,xN} is independently drawn from Θ-parameterized

Gaussian mixture model, the distribution of X can be written as

L(Θ) ≡ p(X; Θ) =
N∏

i=1

p(xi; Θ) =
N∏

i=1

(
M∑

m=1

πm p(xi; θm)). (2.3)

6
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Here we introduce the latent variable Z = {z1, z2, · · · , zN}, with zi indexing the Gaussian

component xi is generated from. We have the complete data likelihood

p(X,Z; Θ) = p(X |Z; Θ)P (Z; Θ) (2.4)

=
N∏

i=1

p(xi; θzi)
N∏

i=1

πzi (2.5)

where P (Z; Θ) =
∏N

i=1 πzi is the prior probability of latent variable Z. The data likeli-

hood, as expressed in Equation (2.2), can also be obtained through the following marginal-

ization

p(X; Θ) =
∑

Z

p(X, Z; Θ), (2.6)

where the summation is over all possible combination of Z.

We can fit a Gaussian mixture model to the data X by maximizing the data likelihood

Θ∗ = arg max
Θ
L(Θ) (2.7)

This fitting process can be done with the expectation-maximization (EM) algorithm [24],

which iterates between following two steps

E-step: Q(Θ, Θ(t−1)) = EZ|X(log p(X, Z; Θ)|X; Θ(t−1))

M-step: Θ(t) = arg max
Θ

Q(Θ, Θ(t−1)).

until convergence. We can get a clustering out of a fit Gaussian mixture model by treating

each Gaussian component as a cluster, and using the posterior probability

P (zi = m |xi; Θ) =
p(xi, zi = m |xi; Θ)

p(xi; Θ)
, (2.8)

as the soft membership of sample xi to mth cluster.

2.2 Penalized Data Likelihood

We start describing our model by revisiting the generative process of data set X, as in

Section 2.1. Instead of sequentially choosing the generating component for each xi, we

pick up a Z with probability

P (Z; Θ) =
N∏

i=1

πzi ,
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and set the generative Gaussian components for all the samples in X. We notice that

each Z gives a unique realization of the cluster assignments for all samples. Base on this

view, we can alter the generative process to make it closer to our prior belief the cluster

assignments. We choose to do so by multiplying it with a weighting factor g(Z), which is

large when Z conforms all (or most of ) pairwise constraints and small otherwise. After Z

is chosen, the generative process is the same with the standard Gaussian mixture model.

In our work, we choose to let g(Z) take the following form

g(Z) =
∏

i6=j

eWij δ(zi,zj), (2.9)

where δ(·, ·) is the Kronecker delta-function and Wij is the weight associated with sample

pair (xi,xj). This weight satisfies

Wij ∈ [−∞,∞], Wij = Wji.

The weight Wij reflects our preference for assigning xi and xj into one cluster.

We use positive Wij when we prefer to assign xi and xj into one cluster (link), and

negative Wij when we prefer to assign them into different clusters (do-not-link). The

absolute value |Wij | reflects the strength of the preference. The prior probability with

the pairwise relations is

P (Z; Θ,W) =
1
Ω

∏

i

πzi

∏

i6=j

eWij δ(zi,zj), (2.10)

where Omega is the normalization constant:

Ω =
∑

Z

{
∏

i

πzi

∏

i 6=j

eWij δ(zi,zj)}. (2.11)

It appears that the g(Z) in Equation (2.9) changes asymmetrically with the violation of

link and do-not-link: When a link is conformed, g(Z) increases; when a do-not-link is

violated, g(Z) decreases. Nevertheless, the prior probability given by Equation (2.10)

decreases under both types of violations. We assume that the likelihood of the data, given

a specific cluster assignment Z, is independent of the cluster assignment preferences:

p(X|Z; Θ,W) = p(X|Z; Θ). (2.12)
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The complete likelihood can be defined as

p(X, Z; Θ,W) = P (Z; Θ,W)p(X|Z; Θ) (2.13)

and the data likelihood follows from

p(X; Θ,W) =
∑

Z

p(X, Z; Θ,W). (2.14)

The PPC model is clearly connected to the standard GMM and the constrained clus-

tering model proposed by Shental et al [69]. We shall show that both models can be

viewed as special cases of PPC with particular W. The connection between PPC and

other semi-supervised clustering models is less straightforward, and will be discussed in

Chapter 3. If Wij = 0, we have no prior knowledge on the assignment relevancy of xi and

xj . When Wij = 0 for all pairs (i, j), we have g(Z) = 1, hence the complete likelihood

reduces to the standard one:

p(X,Z; Θ,W) =
1
Ω

p(X,Z; Θ)g(Z) = p(X, Z; Θ). (2.15)

In the other extreme with |Wij | → ∞, assignments Z that violate the pairwise relations

between xi and xj have zero prior probability, since for those assignments

P (Z; Θ, G) =

∏
k πzk

∏
i6=j eWij δ(zi,zj)

∑
Z

∏
l πzl

∏
m6=n eWp

mn δ(zm,zn)
→ 0.

Then the relations become hard constraints, while the relations with |Wij | < ∞ are called

soft preferences. When all the specified pairwise relations are hard constraints, the data

likelihood becomes

p(X,Z; Θ, G) =
1
Ω

∏

ij∈L
δ(zi, zj)

∏

ij∈N
(1− δ(zi, zj))

N∏

i=1

πzip(xi| θzi), (2.16)

where L is the set of linked sample pairs, and N is the set of do-not-link sample pairs. It

is straightforward to verify that Equation (2.16) is essentially the same with the complete

data likelihood given by [69]. Therefore the model proposed by Shental et al. [69] is

equivalent to PPC with hard constraints. In Chapter 3, we give a detailed derivation

of Equation (2.16) and the equivalence of two models. When only hard constraints are
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available, we simply implement PPC based on Equation (2.16). In the remainder of this

chapter as well as throughout Chapter 3, we will use W to denote the prior knowledge on

pairwise relations, that is

p(X,Z; Θ, G) ≡ p(X,Z; Θ,W) =
1
Ω

p(X, Z; Θ)
∏

i 6=j

eWij δ(zi,zj) (2.17)

2.3 Model Fitting

We use the EM algorithm [24] to fit the model parameters Θ:

Θ∗ = arg max
Θ

L(X; Θ,W)

The expectation step (E-step) and maximization step (M-step) are

E-step: Q(Θ, Θ(t−1)) = EZ|X(log p(X,Z; Θ,W)|X; Θ(t−1),W)

M-step: Θ(t) = arg max
Θ

Q(Θ, Θ(t−1)).

In the M-step, the optimal mean and covariance matrix of each component is:

µk =

∑N
j=1 xjP (k|xj ; Θ(t−1),W)

∑N
j=1 P (k|xj ; Θ(t−1),W)

(2.18)

Σk =

∑N
j=1 P (k|xj ; Θ(t−1),W)(xj − µk)(xj − µk)T

∑N
j=1 P (k|xj ; Θ(t−1),W)

. (2.19)

The update of the prior probability of each component is more difficult due to the

normalizing constant Ω in the data likelihood

Ω =
∑

Z

{
N∏

k=1

πzk

∏

i6=j

eWij δ(zi,zj)}. (2.20)

We need to find

π ≡ {π1, . . . , πm} = arg max
π

M∑

l=1

N∑

i=1

log πlP (l|xi; Θ(t−1),W)− log Ω(π), (2.21)

which, unfortunately, does not have a closed-form solution in general 1. In this chapter,

we use a rather crude approximation of the optimal π instead. First, we estimate the

1Shental et al. [69] pointed out that with a different sampling assumption, a closed-form solution for
Equation (2.21) exists when only hard links are available. See Chapter 3.
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values of log Ω(π) on a grid H = {π̂n} on the simplex defined by

M∑

k=1

πk = 1, πk ≥ 0.

Then in each M-step, we calculate the value of
∑M

l=1

∑N
i=1 log π̂n

l P (l|xi; Θ(t−1),W) for

each node π̂n ∈ H and find the node π̂∗ that maximizes the function defined in Equation

(2.21):

π̂∗ = arg max
π̂n∈H

M∑

l=1

N∑

i=1

log π̂n
l P (l|xi; Θ(t−1),W)− log Ω(π̂n). (2.22)

We use π̂∗ as the approximative solution of Equation (2.21). In this chapter, the resolution

of the grid is set to be 0.01. Although it works very well for all experiments in this chapter,

we notice that the search over grid will be fairly slow for M > 5. Shental et al. [69]

proposed to find optimal π using gradient descent and approximate Ω(π) by pretending

all specified relations are non-overlapping (see Section 2.6). Although this method is

originally designed for hard constraints, it can be easily adapted for PPC.

It is critically important to note that with a non-trivial W, the assignment indepen-

dence is broken:

P (zi, zj |xi,xj ; Θ,W) 6= P (zi|xi; Θ,W)P (zj |xj ; Θ,W),

which means that the posterior estimation of each sample can not be done separately.

This fact brings extra computational problem and will be discussed later in Section 2.6.

2.4 Penalized Probabilistic Clustering

Like for the standard Gaussian mixture model, we can get a clustering by using the

posterior probability of samples

P (zi = m |xi; Θ,W) =
p(xi, zi = m; Θ,W)

p(xi; Θ,W)
, (2.23)

as the soft membership to each cluster. Note that if xi is linked or do-not-linked to any

other sample, the posterior probability P (zi = m |xi; Θ,W) will be decided by both the

weight matrix W and the Gaussian mixture model parameters Θ. The calculation of
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P (zi = m |xi; Θ,W) can be quite expensive, as will be elucidated in Section 2.6. For any

unconstrained sample xi, or equivalently Wij = 0,∀j, we have

P (zi = m |xi; Θ,W) = P (zi = m |xi; Θ) (2.24)

=
p(xi, zi = m |xi; Θ)

p(xi; Θ)
(2.25)

which is essentially a inference with Gaussian mixture model and is solely decided by

the Gaussian parameter Θ. To achieve a good clustering result on the unconstrained

samples as well, we need the information from the pairwise constraints to be expressed in

the Gaussian mixture model parameters. In PPC, this is done through the model fitting

Equation (2.18), (2.19), and (2.21). As we will show in Section 2.5 and Section 2.7, PPC

can successfully integrate the pairwise constraints information into the Gaussian mixture

model parameters. The algorithm of PPC can be summarized as follows:

Penalized Probabilistic Clustering

Input: data set X = {x1,x2, · · · ,xN} where xi ∈ Rd, (i = 1, 2, · · · , N), the pairwise

constraints W (∈ RN×N ), and the number of cluster M .

step 1 Initialize the Gaussian mixture model parameters Θ = {π1, µ1, Σ1, · · · , πM , µM , ΣM},
where πk, µk and Σk are respectively the prior, mean and covariance of the kth

Gaussian component.

step 2 Let Θg = Θ and calculate the Q(Θ,Θg) = EZ|X(log p(X, Z; Θ,W)|X; Θg,W).

step 3 Find Θ = arg maxΘ Q(Θ, Θg). The optimization of µk and Σk can be given in

closed form

µk =

∑N
j=1 xjP (k|xj ; Θ(t−1),W)

∑N
j=1 P (k|xj ; Θ(t−1),W)

Σk =

∑N
j=1 P (k|xj ; Θ(t−1),W)(xj − µk)(xj − µk)T

∑N
j=1 P (k|xj ; Θ(t−1),W)

.

For π, find the node π̂∗ in the grid H = {π̂n} on the simplex:
∑M

k=1 πk = 1, πk ≥ 0,

so that

π̂∗ = arg max
π̂n∈H

M∑

l=1

N∑

i=1

log π̂n
l P (l|xi; Θ(t−1),W)− log Ω(π̂n).

where Ω =
∑

Z{
∏N

k=1 πzk

∏
i6=j eWij δ(zi,zj)}. Let π = π̂∗.
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step 4 Go back to step 2 until convergence.

step 5 For i = 1, 2, · · · , N , estimate the posterior probability of label

P (zi = m |xi; Θ,W) =
p(xi, zi = m; Θ,W)

p(xi; Θ,W)
,

and assign the sample to the most probable cluster.

2.5 Setting the Weight for Pairwise Constraints

The weight matrix W is crucial to the performance of the PPC. As we have elucidated

in Section 2.2, we can move from standard unsupervised Gaussian mixture model to

hard-constrained PPC only by changing the weight matrix. In this section we will fist

demonstrate the transformation from Gaussian mixture model to PPC when we gradually

increase the weight on constraints. Then in the rest of this section, we will discuss a

heuristic of deriving the weight from prior knowledge.

2.5.1 Example: How the Weight W Affects Clustering

Here we give an example demonstrating how the weight of pairwise relations affects the

clustering process. Figure 2.1 (a) shows the 2-dimensional data from two classes, as

indicated by the symbols. Besides the data set, we also have 20 pairs correctly labeled

as links and do-not-links, as shown in Figure 2.1 (b). We try to fit the data set with a

two-component GMM. Figure 2.1 (c) and (d) give the density contour of the two possible

models on the data. Without any pairwise relations specified, we have essentially equal

chance to get each. After incorporating pairwise relations, the EM optimization process

is biased to the correct one. The weights of pairwise relations are given as follows

Wij =





w if (xi,xj)is linked

−w if(xi,xj)is do-not-linked

0 otherwise,
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where w ≥ 0 measures the certainty of all specified pairwise relations. In Figure 2.2,

we give three runs with same initial model parameters but different weight given to the

specified pairwise relations.

For each run, we give snapshots of the model after 1, 3, 5 and 20 EM iterations. The

first row is the run with w = 0 (standard GMM). The search ends up with a model that

violates our prior knowledge of class membership. The middle row is the run with w set to

1.3, with the same poor initial condition, the model fitting process still goes to the wrong

one again, although at a slower pace. In the bottom row, we increase w to 3, this time

the model converges to the one we intend.

(a) (b)

(c) (d)

Figure 2.1: The influence of constraint weight on model fitting. (a) artificial data set.
(b) links (solid lines) and do-not-links (dotted line). (c) and (d): the probability density
contour of two possible fitted models.

2.5.2 Choosing Weight W Based on Prior Knowledge

There are some occasions where we can translate our prior belief on the relations into

the weight W. Here we assume that the pairwise relations are labeled by an oracle but
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Figure 2.2: The contour of probability density fit on data with different weight given to
pairwise relations. Top row: w = 0; Middle row: w=1.3; Bottom row: w = 3.

contaminated by flipping noise before they are delivered to us. For each labeled pair

(xi,xj), there is thus a certainty value 0.5 ≤ γij ≤ 1 equal to the probability that pairwise

relation is not flipped, i.e. that label is correct 2. Our prior knowledge would include

those specified pairwise relations and their certainty values Γ = {γij}.
This prior knowledge can be approximately encoded into the weight W by letting

Wij =





1
2 log( γij

1−γij
) (xi,xj) is specified as linked

−1
2 log( γij

1−γij
) (xi,xj) is specified as do-not-linked

0 otherwise.

(2.26)

The details of the derivation are in Appendix A1. It is obvious from Equation (2.26) that

for a specified pairwise relation (xi,xj), the greater the certainty value γij , the greater

2We only consider the certainty value > 0.5, because a pairwise relation with certainty γij < 0.5 can
be equivalently treated as its opposite relation with certainty 1 − γij .
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the absolute value of weight Wij .

Note that the weight designed this way is not necessarily optimal in terms of classi-

fication accuracy, as will be demonstrated by experiment in Section 2.7.1. The reason

is twofold. First, Equation (2.26) is derived based on a (possibly crude) approximation.

Second, Gaussian mixture models, as classifiers, are often considerably biased from true

class distribution of data. As a result, even if the PPC prior P (Z; Θ,W) faithfully reflects

the truth, it does not necessarily lead to the best classification accuracy. Nevertheless,

Equation (2.26) gives a good initial guidance for choosing the weight. Our experiments

in Section 2.7.1 show that this design often yields superior classification accuracy than

simply using the hard constraints or ignoring the pairwise relations (standard GMM).

One use for this scheme of weight is when pairwise relations are labeled by domain

experts and the certainty values are given at the same time. We might also estimate the

flipping noise parameters from historical data or from available statistics. For example, we

can derive soft pairwise relations based on spatial or temporal continuity among samples.

That is, we add soft links to all adjacent pair of samples, assuming the flipping noise

explaining all the adjacent pairs that are actually not in one class. We further assume

that the flipping noise each pair follows the same distribution. Accordingly we assign

uniform weight w > 0 to all adjacent pairs. Let q denote the probability that the label

on a adjacent pair is flipped. We might be able to estimate q from labeled instances of a

similar problem, for example, segmented images or time series. The maximum likelihood

(ML) estimation of q is given by simple statistics:

q̃ =
the number of adjacent pairs that are not in the same class

the number of all adjacent pairs
.

We give an application of this idea in Section 2.7.2.

2.6 Computational Issue

The M-step requires the cluster membership posterior. Computing this posterior is sim-

ple for the standard GMM since each data point xi can be assigned to a cluster in-

dependent of the other data points and we have the familiar cluster origin posterior

P (zi = k|xi; Θ). The pairwise constraints bring extra relevancy in assignment among
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samples involved. For example, from Equation (2.17), if Wij 6= 0, P (zi, zj |xi,xj ; Θ,W) 6=
P (zi|xi; Θ,W)P (zj |xj ; Θ,W). Consequently, the posterior probability of xi and xj can-

not be estimated separately. To model the relevancy caused indirectly by the pairwise

constraints, we define the following relation:

Definition If Wij 6= 0, we say there is direct assignment relevancy between xi and

xj , denoted by xiRdxj . If P (zi, zj |xi,xj ; Θ,W) 6= P (zi|xi; Θ,W)P (zj |xj ; Θ,W), we say

there is assignment relevancy between xi and xj , denoted by xiRaxj .

It is clear that Ra is reflexive, symmetric and transitive. Hence, Ra is an equivalence

relation. It can be shown that Ra is the transitive closure of Rd. In other words, two

samples have assignment relevancy relation Ra if they can be connected by a path consist-

ing of Ra relations, as illustrated in Figure 2.3. We call each equivalence class associated

with Ra a clique. It is clear that cliques are the smallest sets of samples whose posterior

probabilities can be calculated independently. When calculating posterior probabilities,

all samples within a clique need to be considered together. In a clique T with size |T |, the

posterior probability of a given sample xi ∈ T is calculated by marginalizing the posterior

over the entire clique

P (zi = k|X; Θ,W) =
∑

ZT |zi=k

P (ZT |XT ; Θ,W),

with the posterior on the clique given by

P (ZT |XT ; Θ,W) =
p(ZT , XT ; Θ,W)

p(XT ; Θ,W)
=

p(ZT , XT ; Θ,W)∑
Z′T

p(Z ′T , XT ; Θ,W)
.

Exact calculation of the posterior probability of a sample in clique T requires time

complexity O(M |T |), where M is the number of components in the mixture model. This

calculation can get prohibitively expensive if |T | is very big (e.g., 50) for any model size

M ≥ 2. Hence small size cliques are required to make the marginalization computationally

reasonable.

2.6.1 Two Special Cases with Easy Inference

Apparently the inference is easy when we limit ourselves to small cliques. Specifically,

when |T | ≤ 2, the pairwise relations are non-overlapping, as illustrated in Figure 2.4 (a)
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 (a)  (c)

 
  (b)

Figure 2.3: The example of assignment relevancy. (a) Links (solid line) and do-not-links
(dotted line) among six samples; (b) Direct assignment relevancy Rd (solid line) translated
from links in (a); (c) Equivalence classes defined by assignment relevancy Ra, denoted by
color.

and (b). With non-overlapping constraints, the posterior probability for the whole data

set can be given in closed-form with O(N) time complexity. Moreover, the evaluation of

the normalization factor Ω(π) is simple:

Ω(π) = (1−
M∑

k=1

π2
k)

NL(
M∑

k=1

π2
k)

NN ,

where NL and NN are respectively the number of links and do-not-links. The optimization

of π in M-step can thus be achieved with little cost. Sometimes non-overlapping relations

are a natural choice: they can be generated by picking up sample pairs from sample set

and labeling the relations without replacement. More generally, we can avoid the expensive

computation in posterior inference by breaking large clique into small ones. To do this,

we need to deliberately ignore some links or do-not-links. In Section 2.7.2, Experiment 3

is an application of this idea.

The second simplifying situation is we have only hard links (Wij = +∞ or 0), as

illustrated in Figure 2.4 (c). In this case, the posterior probability for each sample must

be exactly the same with the others in the same clique, so a clique can be treated as a
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single sample. That is, assume xi is in clique T , we then have

P (zi = k|xi; Θ,W) = P (ZT = k|XT ; Θ,W)

=
p(XT , ZT = k; Θ,W)∑′
k p(XT , ZT = k′; Θ,W)

=
p(XT , ZT = k; Θ)∑′
k p(XT , ZT = k′; Θ)

=

∏
j∈T πkp(xj ; θk)∑

k′(
∏

j∈T πk′p(xj ; θk′))
.

Similar ideas have been proposed independently by several authors [82, 69, 9]. This case

is useful when we are sure that a group of samples are from one source [69].

For more general cases, where the exact inference is computationally prohibitive, we

propose to use Gibbs sampling [62] and the mean field approximation [38] to estimate the

posterior probability. This will be discussed in Section 2.6.2 and 2.6.3.

(a)  (c)
 
 (b)

Figure 2.4: Examples of overlapping relations and non-overlapping relations.(a) Overlap-
ping pairwise relations, with links (solid line) and do-not-links (dotted line); (b) Non-
overlapping pairwise relations; (c) Only hard links

2.6.2 Estimation with Gibbs Sampling

For fixed Θ, finding P (Z; Θ,W) is a typical inference problem for graphical models. Tech-

niques for approximate inference developed for graphical models can also be used here.

In this section, we use Gibbs sampling to estimate the posterior probability in each EM

iteration.

In Gibbs sampling, we estimate P (zi|X; Θ,W) as a sample mean

P (zi = k|X; Θ,W) = E(δ(zi, k)|X; Θ,W) ≈ 1
S

S∑

t=1

δ(z(t)
i , k),
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where the sum is over a sequence of S samples from P (Z|X; Θ, G) generated by the

Gibbs MCMC. The tth sample in the sequence is generated by the usual Gibbs sampling

technique:

• Pick z
(t)
1 from distribution P (z1|z(t−1)

2 , z
(t−1)
3 , ..., z

(t−1)
N , X;W, Θ)

• Pick z
(t)
2 from distribution P (z2|z(t)

1 , z
(t−1)
3 , ..., z

(t−1)
N , X;W, Θ)

· · ·

• Pick z
(t)
N from distribution P (zN |z(t)

1 , z
(t)
2 , ..., z

(t)
N−1, X;W,Θ)

For pairwise relations it is helpful to introduce some notation. Let Z−i denote an as-

signment of data points to clusters that leaves out the assignment of xi. Let U(i) be

the indices of the set of samples that participate in a pairwise relation with sample xi,

U(i) = {j : Wij 6= 0}. Then we have

P (zi|Z−i, X; Θ,W) ∝ p(xi, zi; Θ)
∏

j∈U(i)

e2Wij δ(zi,zj). (2.27)

The time complexity of each Gibbs sampling pass is O(NnM), where n is the maximum

number of pairwise relations a sample can be involved in. When W is sparse, the size of

U(i) is small, thus calculating P (zi|Z−i, X; Θ,W) is fairly cheap and Gibbs sampling can

effectively estimate the posterior probability.

2.6.3 Estimation with Mean Field Approximation

Another approach to posterior estimation is to use mean field theory [38, 50]. Instead of

directly evaluating the intractable P (Z|X; Θ,W), we try to find a tractable mean field

approximation Q(Z). To find a Q(Z) close to the true posterior probability P (Z|X; Θ,W),

we minimize the Kullback-Leibler divergence between them, i.e.

min
Q

KL(Q(Z)|P (Z|X; Θ,W)), (2.28)

which can be recasted into:

max
Q

[H(Q) + EQ{log P (Z|X; Θ,W)}], (2.29)
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where EQ{·} denotes the expectation with respect to Q. The simplest family of variational

distribution is one where all the latent variables {zi} are independent of each other:

Q(Z) =
N∏

i=1

Qi(zi). (2.30)

With this Q(Z), the optimization problem in Equation (2.29) does not have a closed-form

solution, nor is it a convex problem. Instead, a locally optimal Q can be found iteratively

with the following update equations

Qi(zi) ← 1
Ωi

eEQ{log P (Z|X;Θ,W)|zi} (2.31)

for all i and zi ∈ {1, 2, · · · , M}. Here Ωi =
∑

zi
eEQ{log P (Z|X,Θ,W)|zi} is the local normal-

ization constant. For the PPC model, we have

eEQ{log P (Z|X;Θ,W)|zi} = P (zi|xi; Θ)e
∑

j 6=i WijQj(zi).

Equation (2.31), collectively for all i, are the mean field equations. Evaluation of mean field

equations requires at most O(NnM) time complexity, which is same as the time complexity

of one Gibbs sampling pass. Successive updates of Equation (2.31) will converge to a local

optimum of Equation (2.29). In our experiments, the convergence usually occurs after

about 20 iterations, which is much less than the number of passes required for Gibbs

sampling.

2.7 Experiments

The experiments section consists of two parts. In Section 2.7.1, we examine the way the

number of constraints affects the clustering results. For each clustering task in this section,

we generate artificial pairwise relations based on class labels. In Section 2.7.2, we address

real-world problems, where the constraints are derived from our prior knowledge. Also

in this section, we demonstrate the approaches to reduce computational complexity, as

described in Section 2.6.

Following are some abbreviations we will use throughout this section: soft-PPC is

PPC with soft constraints, hard-PPC is PPC with hard constraints (implemented based
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on Equation (2.16)), soft-CKmeans is the K-means with soft constraints [6] and hard-

CKmeans is the K-means with hard constraints [82]. The Gaussian mixture model with

hard constraints [69, 70] will be referred to as constrained-EM.

2.7.1 Artificial Constraints

In this section, we discuss the influence of pairwise relations on PPC’s clustering, and

compare the result to other semi-supervised clustering models. This section includes two

experiments. In Experiment 1, we consider only correct pairwise relations, as an example

of authentic knowledge. Accordingly, we use hard constraints in clustering. In Experiment

2, we discuss the situation where pairwise relations contain significant error. We evaluate

the performance of soft-PPC and test the weight design strategy described in Section 2.5.

The result is compared to hard-PPC and other semi-supervised clustering models.

Constraint Selection: To avoid the computational burden, we will limit our discus-

sion to the non-overlapping pairwise relations in Experiment 1 and 2. As discussed in

Section 2.6, the non-overlapping pairwise relations, hard or soft, allows fast solution in

the maximization step in each EM iteration. The pairwise relations are generated as fol-

lows: we randomly pick two samples from the training set without replacement. If the

two have the same class label, we then add a link constraint between them; otherwise, we

add a do-not-link constraint. Note that the application of PPC is not limited to the non-

overlapping cases. In Section 2.7.2, we will discuss more complicated real-world problems

where overlapping constraints are necessary, and we also will present approaches to solve

the computational problems.

Performance Evaluation: We try PPC (with the number of components equal to the

number of classes) with various numbers of pairwise relations. For each clustering result,

a confusion matrix is built to compare it to true labeling. The classification accuracy is

calculated as the ratio of the sum of diagonal elements to the number of all samples.
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Experiment 1: Artificial Hard Constraints

This experiment is designed to answer two questions: How do the number of pairwise

relations affect the clustering result, and whether has the information in the relations

been successfully encoded into the trained model. To answer the second question, we

examine the out-of-sample classification of the Gaussian mixture model fit with the aid

of the pairwise relations. Towards this end, we divide each data set into training set

(90% of data) and a held-out test set (10% of data). Pairwise relations are generated

among samples in the training set. After the density model is fit on the training set and

the pairwise relations, it will be applied to the test set. Since the classification on test

set is merely decided by the fit Gaussian mixture model, it will reflect the influence of

pairwise relations on the trained model. For comparison, we also give results of two other

constrained clustering methods: (1) the hard-CKmeans [82], for which the accuracy on test

set is given by the nearest-neighbor classification with the cluster centers fit on training

set, and (2) constrained-EM [70]. As we will show in Chapter 3 that constrained-EM

can come with two different sampling assumptions, and when using sampling Assumption

2 constrained-EM is equivalent to hard-PPC. Therefore we only need to consider the

constrained-EM with sampling Assumption 1. The reported classification accuracy is

averaged over 100 different realizations of pairwise relations.

The three two-dimensional artificial data sets shown in Figure 2.5 are designed to

highlight PPC’s superior modeling flexibility over constrained K-means3. In each example,

there are 200 samples in each class. It is clear from Figure 2.5 that for all three problems,

data in each class are non-Gaussian. So not surprisingly, standard K-means and GMM

do not return satisfactory clustering results. Figure 2.6 compares the clustering result of

hard-PPC and hard-CKmeans with various number of pairwise relations. As shown in

Figure 2.6, the accuracy of hard-PPC improves significantly when pairwise relations are

incorporated. After enough number of pairwise relations are added in, we can finally reach

close to 100% accuracy on the training data. On the test set, although no pairwise relation

is available, we observe significantly improved accuracy as well. For the hard-CKmeans,

3Basu et al. [9] combined standard or constrained K-means with metric learning based on pairwise
relations, and reported improvement on classification accuracy. This will not be discussed in this thesis.
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we do not observe any substantial accuracy improvement on both training set and test set.

The classification task of data set 1 is relatively easy for Gaussian mixture and difficult

for K-means. The classification accuracy of hard-PPC climbs from 60% to close 100%

(on both training and test set) after 70 pairwise relations, whereas the accuracy of hard-

CKmeans remains less than 60% even with 100 relations. On data set 2, the hard-PPC

accuracy is improved from 75% to close 95% on training set and stops at around 90% on

test set. This divergence happens because the two classes in data set 2 are overlapped,

and thus defies a perfect GMM classifier. Data set 3 is the most difficult since it is highly

non-Gaussian. It takes over 100 pairs for the hard-PPC to reach 95% accuracy, whereas

hard-CKmeans never reaches 55%.

(a) data set 1 (b) data set 2 (c) data set 3

Figure 2.5: The artificial data sets. Classes are denoted by symbols.
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(a) On data set 1
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(b) On data set 2
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(c) On data set 3

Figure 2.6: The performance of hard-PPC and hard-CKmeans with various number of
relations. trn ppc: accuracy on training set with hard-PPC; tst ppc: accuracy on
test set from the GMM trained by hard-PPC; trn cop: accuracy on training set with
hard-CKmeans; tst cop: accuracy of K-means on test set;
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The comparison of PPC and constrained-EM is presented in a way to highlight the

difference between the classification accuracy of the two methods. Basically, we record

the classification from PPC and constrained-EM with same pairwise relations and initial

condition, and then calculate

∆Accuracy = classification accuracy by PPC− classification accuracy by CEM

on both training and test set. In Figure 2.7, we report the mean and standard deviation

of ∆Accuracy estimated over 100 different realizations of pairwise relations. From Figure

2.7, the difference between PPC and constrained-EM is indistinguishable when the number

of relations is small, while PPC is slightly but consistently better than constrained-EM

when the relations are abundant.
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(b) data set 2
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Figure 2.7: Comparison of PPC and constrained EM on artificial data. With each number
of pairwise relations, we show the mean of ∆Accuracy ± standard deviation estimated
over 100 random realization of pairwise relations.

We perform the same experiments on three UCI data sets: the Iris data set has 150

samples and three classes, 50 samples in each class; the Waveform data set has 5000 samples

and three classes, around 1700 samples in each class; the Pendigits data set includes four

classes (digits 0, 6, 8, 9), each with 750 samples. The results are summarized in Figure

2.8 and Figure 2.9. As indicated by Figure 2.8, hard-PPC can consistently improve its

clustering accuracy on the training set when more pairwise constraints are added; also,

the effect brought by constraints generalizes to the test set. In contrast, as in the artificial

data set case, the increase of accuracy from hard-CKmeans is much less salient than that
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of hard-PPC. Figure 2.9 shows that hard-PPC is slightly better than constrained-EM,

especially when the number of constraints is large.
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(b) Waveform data
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(c) Pendigits data

Figure 2.8: The performance of PPC on UCI data sets with various number of relations.
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Figure 2.9: Comparison of PPC and constrained EM on UCI data sets. With each number
of pairwise relations, we show the mean of ∆Accuracy ± standard deviation estimated
over 100 random realization of pairwise relations.

Experiment 2: Artificial Soft Constraints

In this experiment, we evaluate the performance of soft-PPC when the specified pairwise

relations contain substantial error. The results are compared to hard-PPC, soft-CKmeans,

and hard-CKmeans.

The artificial constraints are generated the same way as in the previous experiment.

The flipping noise is realized by randomly flipping each pairwise relation with a certain

probability q ≤ 0.5. For the soft-PPC model, the weight Wij to each specified pairwise
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relation is given as follows:

Wij =





1
2 log(1−q

q ) (zi, zj) specified as link

−1
2 log(1−q

q ) (zi, zj) specified as do-not-link.

(2.32)

We use w to denote the absolute value of the weight for non-trivial pairs. For soft-PPC,

we have w = 1
2 log(1−q

q ). For soft-CKmeans, we give equal weights to all the specified

constraints. Because there is no guiding rule in literature on how to choose weight for soft-

CKmeans model, we simply use the weight that yields the highest classification accuracy.

We present the results on the three artificial data sets and three UCI data sets used

in the Experiment 1. Unlike Experiment 1, we use all the available in clustering. On each

data set, we randomly generate a number of non-overlapping pairwise relations to have

50% of the data involved. In this experiment, we try two different noise levels with q set

to 0.15 and 0.3. Figure 2.10 compares the classification accuracies given by the maximum

likelihood (ML) solutions4 of different models. The accuracy for each model is averaged

over 20 random realizations of pairwise relations. On all data sets except artificial data

set 3, soft-PPC with the designed weight gives higher accuracy than hard-PPC (w = ∞)

and standard GMM (w = 0) on both noise levels. On artificial data set 3 , when q = 0.3

hard-PPC gives the best classification accuracy 5. Soft-PPC apparently gives superior

classification accuracy to the K-means models on all six data sets, even though the weight

of soft-CKmeans is optimized. Figure 2.10 also shows that it can be harmful to use

hard constraints when pairwise relations are noisy, especially when the noise is significant.

Indeed, as shown by Figure 2.10 (d) and (f), hard-PPC can yield accuracy even worse

than standard GMM.

2.7.2 Real World Problems

In this section, we present two examples where pairwise constraints are from domain

experts or common sense. Both examples are about image segmentation based on Gaussian

4We choose the one with the highest data likelihood among 100 runs with different random initialization.
For K-means models, including soft-CKmeans and hard-CKmeans, we use the solutions with the smallest
value of cost function.

5Further experiment shows that on this data, soft-PPC with the optimal w (> the one suggested by
Equation (2.32)) is still slightly better than hard-PPC.
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(a) On data set 1 (b) On data set 2 (c) On data set 3

(d) On Iris data (e) On Waveform data (f) On Pendigits data

Figure 2.10: Classification accuracy with noisy pairwise relations. We use all the data in
clustering. In each panel, A: standard GMM; B: soft-PPC; C: hard-PPC; D: standard
K-means; E: soft-CKmeans with optimal weight; F: hard-CKmeans.

mixture models. In the first problem ( Experiment 3), hard pairwise relations are derived

from image labeling done by a domain expert. In the second problem, soft pairwise

relations are generated based on spatial continuity.

Experiment 3: Hard Do-not-links from Partial Class Information

The experiment in this subsection shows the application of pairwise constraints on partial

class information. For example, consider a problem with six classes A,B, ..., F . The classes

are grouped into several class-sets C1 = {A, B,C}, C2 = {D, E}, C3 = {F}. The samples

are partially labeled in the sense that we are told which class-set a sample is from, but not

which specific class it is from. We can logically derive a do-not-link constraint between

any pair of samples known to belong to different class-sets, while no link constraint can

be derived if each class-set has more than one class in it.

Figure 2.11 (a) is a 120 × 400 (pixels) region from Greenland ice sheet from NASA
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Langley DAAC 6 [74]. Each pixel has intensities from seven spectrum bands. This region

is labeled into snow area and non-snow area, as indicated in Figure 2.11 (b). The snow

area may contain samples from several classes of interest: ice, melting snow and dry snow,

while the non-snow area can be bare land, water or cloud. The labeling from expert

contains incomplete but useful information for further segmentation of the image. To

segment the image, we first divide it into 5x5x7 blocks (175 dim vectors). We use the first

50 principal components as feature vectors. Our goal is then to segment the image into

(typically > 2) areas by clustering those feature vectors. With PPC, we can encode the

partial class information into do-not-links.

For hard-PPC, we use half of the data samples for training, and the rest for test. Hard

do-not-link constraints (only on training set) are generated as follows: for each block in

the non-snow area, we randomly choose (without replacement) six blocks from the snow

area to build do-not-link constraints. By doing this, we achieve cliques with size seven (1

non-snow block + 6 snow blocks). As in Section 2.7.1, we apply the model fit with hard-

PPC to the test set and combine the clustering results on both data sets into a complete

picture. Clearly, the clustering task is non-trivial for any M > 2. A typical clustering

result of 3-component standard GMM and 3-component PPC are shown as Figure 2.11

(c) and (d) respectively. Standard GMM gives a clustering that is clearly in disagreement

with the human labeling in Figure 2.11 (b). The hard-PPC segmentation makes far fewer

mis-assignments of snow areas (tagged white and gray) to non-snow (black) than does the

GMM. The hard-PPC segmentation properly labels almost all of the non-snow regions

as non-snow. Furthermore, the segmentation of the snow areas into the two classes (not

labeled) tagged white and gray in Figure 2.11 (d) reflects subtle differences in the snow

regions captured by the gray-scale image from spectral channel 1, as shown in Figure 2.11

(a).

6We use the first seven MoDerate Resolution Imaging Spectroradiometer (MODIS)
Channels with bandwidths as follows (in nm): Channel 1: 620-670, Channel 2: 841-876,
Channel 3: 459-479, Channel 4: 545-565, Channel 5: 1230-1250, Channel 6: 1628-1652,
Channel 7:2105-2155
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Figure 2.11: Clustering with hard do-not-links derived from partial labeling. (a) Gray-
scale image from the first spectral channel 1. (b) Partial label given by expert, black pixels
denote non-snow area and white pixels denote snow area. Clustering result of standard
GMM (c) and PPC (d). (c) and (d) are colored according to image blocks’ assignment.

Experiment 4: Soft Links from Continuity

In this subsection, we will present an example where soft constraints come from continuity.

As in the previous experiment, we try to do image segmentation based on clustering. The

image is divided into blocks and rearranged into feature vectors. We use a GMM to model

those feature vectors, with each Gaussian component representing one texture. However,

standard GMM often fails to give good segmentations because it cannot make use of the

spatial continuity of image, which is essential in many image segmentation models, such

as random field [13]. In our algorithm, the spatial continuity is incorporated as the soft

link preferences with uniform weight between each block and its neighbors. As described

in Section 2.5, the weight w of the soft link can be given as

w =
1
2

log(
1− q

q
), (2.33)



31

where q is the ratio of softly-linked adjacent pairs that are not in the same class. Usually

q is given by an expert or estimated from segmentation result of similar images. In this

experiment, we assume we already know the ratio q, which is calculated from the label of

the image.

The complete data likelihood is

p(X,Z; Θ,W) =
1
Ω

p(X, Z; Θ)
∏

i

∏

j∈U(i)

ew δ(zi,zj), (2.34)

where U(i) means the neighbors of the ith block. The EM algorithm can be roughly in-

terpreted as iterating on two steps: (1) estimating the texture description (parameters

of mixture model) based on segmentation, and (2) segmenting the image based on the

texture description given by step 1. Since exact calculation of the posterior probability is

intractable due to the large clique containing all samples, we have to resort to approxi-

mation methods. In this experiment, both the Gibbs sampling (see Section 2.6.2) and the

mean field approximation (see Section 2.6.3) are used for posterior estimation. For Gibbs

sampling, Equation (2.27) is reduced to

P (zi|Z−i, X; Θ,W) ∝ p(xi, zi; Θ)
∏

j∈U(i)

e2w δ(zi,zj).

The mean field Equation (2.31) is reduced to

Qi(zi) ← 1
Ωi

p(xi, zi; Θ)
∏

j∈U(i)

e2w Qj(zi).

The image shown in Figure 2.12 (a) is built from four Brodatz textures 7 . This image

is divided into 7x7 blocks and then rearranged to 49-dim vectors. We use those vectors’

first five principal components as the associated feature vectors. A typical clustering result

of 4-component standard GMM is shown in Figure 2.12 (b). For soft-PPC, the soft links

with weight w calculated from Equation (2.33) are added between each block and its four

neighbors. Figure 2.12 (c) and (d) are the clustering result of 4-component soft-PPC

with respectively Gibbs sampling and mean field approximation. One run with Gibbs

sampling takes around 160 minutes on a PC with Pentium 4, 2.0 GHZ processor whereas

7Downloaded from http://sipi.usc.edu/services/database/Database.html, April, 2004.
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the algorithm using the mean field approximation takes only 3.1 minutes. Although mean

field approximation is about 50 times faster than Gibbs sampling, the clustering result are

comparable according to Figure 2.12. Comparing to the result given by standard GMM,

soft-PPC with both approximation methods achieves significantly better segmentation

after incorporating spatial continuity.

Figure 2.12: Clustering of texture data with soft links derived from the spatial continuity.
(a) Texture combination. (b) Clustering result of standard GMM. (c) Clustering result
of soft-PPC with Gibbs sampling. (d) Clustering result of soft-PPC with mean field
approximation. (b)-(d) are shaded according to the blocks assignments to clusters.

2.8 Discussion

We have proposed a probabilistic clustering model that incorporates prior knowledge in

the form of pairwise relations between samples. Unlike previous work in semi-supervised

clustering, our model formulates clustering preferences as a Bayesian prior over the assign-

ment of data points to clusters, and so naturally accommodates both hard constraints and

soft preferences. Unlike many semi-supervised learning methods [75, 90, 92] addressing

labeled subset, PPC returns a fitted parametric density model and thus can deal with

unseen data. Experiments on different data sets have shown that pairwise relations can

consistently improve the performance of the clustering process.

Despite its success, PPC has its own limitations. First, PPC often needs a substantial

proportion of samples involved in pairwise relations to give good results. Indeed, if we

have the number of relations fixed and keep adding samples without any new relations,

the algorithm will finally degenerate into unsupervised learning (clustering). To overcome
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this, one can instead build semi-supervised model based on discriminative models such as

neural network or Gaussian process classifier, and use the pairwise relations in the form

of hint [71] or observation [92]. Second, since PPC is based on the Gaussian mixture

model, it works well in the situation where the data in each class can be approximated

by a Gaussian distribution. When this condition is not satisfied, PPC could lead to poor

results. One way to alleviate this situation is to use multiple clusters to model one class,

an interesting direction for future exploration. Third, in choosing the weight matrix W,

although our design works well on some data sets, it is not clear how to set the weight for

a more general situation.

In the work discussed in this thesis, we implement hard constraints using Equation

(2.16). Alternatively, we can approximate hard constraints by using large |Wij | for every

constrained pair (xi,xj). Indeed, from Equation (2.10), when a constraint with large

weight is violated in assignments Z, the prior probability P (Z; Θ,W) will be close to zero.

The value of P (Z; Θ,W) with such a Z can be made arbitrarily small by increasing the

corresponding weight. This is convenient when we want to model soft and hard relations

at the same time. This situation is not covered here, but remains an interesting direction

for future exploration.

To address the computational difficulty caused by large cliques, we propose two ap-

proximation methods: Gibbs sampling and mean field approximation. We also observe

Gibbs sampling can be fairly slow for large cliques. One way to address this problem is to

use fewer sampling rounds ( and thus a cruder approximate inference ) in the early phase

of EM training, and gradually increase the number of sampling rounds (and a finer ap-

proximation) when EM is close to convergence. By doing this, we may be able to achieve a

much faster algorithm without sacrificing too much precision. For the mean field approx-

imation, the bias brought by the independence assumption among Qi(·) could be severe

for some problems. We can ameliorate this, as suggested by Jaakkola [38], by retaining

more sub-structure of the original graphical model (for PPC, it is expressed in W), while

still keeping the computation tractable.



Chapter 3

From PPC to Other Constrained

Clustering Models

Prior to our work on penalized probabilistic clustering, different authors have proposed

several constrained clustering models based on K-means, including the seminal work by

Wagstaff and colleagues [82, 81], and its successor [5, 6, 9]. These models generally fall

into two classes. The first class of algorithms [82, 5] keep the original K-means cost func-

tion (reconstruction error) while confining the cluster assignments to be consistent with

the specified pairwise relations. The problem can be cast into the following constrained

optimization problem

min
Z,µ

N∑

i=1

||xi − µzi ||2

subject to zi = zj , if (xi,xj) ∈ L

zi 6= zj , if (xi,xj) ∈ N ,

where µ = {µ1, · · · , µM} is the cluster centers. In the second class of algorithms, cluster

assignments that violate the pairwise relations are allowed, but will be penalized. They

employ a modified cost function [6]:

J(µ,Z) =
1
2

N∑

i=1

||xi − µzi ||2 +
∑

(i,j)∈L
aij(zi 6= zj) +

∑

(i,j)∈N
bij(zi = zj), (3.1)

where aij is the penalty for violating the link between (xi,xj) and bij is the penalty

when the violated pairwise relation is a do-not-link. It can be shown that both classes

of algorithms are encompassed by PPC as special cases. The particular PPC model we

34
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consider has spherical Gaussian components with radius shrunk to zero and the weight

matrix W expands properly. The detail are in Section 3.2 and Section 3.3.

One weakness shared by the semi-supervised K-means algorithms is the limited capa-

bility of K-means to model complex data distribution. If data in one class is far from being

spherical, it may take a great number of pairwise relations to achieve reasonable classifi-

cation accuracy [81]. Another serious problem lies in the optimization strategy employed

by those algorithms to find the optimal assignment within each EM iteration. Due to

the extra dependency brought by the pairwise relations, finding the optimal assignment of

samples to clusters is not trivial. Evaluating every potential assignments requires O(M |T |)

time complexity where |T | denotes the size of the biggest clique, which is prohibitively

expensive when |T | is big. The greedy search used by these algorithms can only return

local optima [5, 6], and the sequential assignment strategy employed by Wagstaff et al.

[82] may lead to the situation where one cannot assign a sample to any cluster because of

the conflict with some assigned samples.

To remedy the limited capability of constrained K-means, several authors proposed

probabilistic models based on Gaussian mixture models. The models proposed by Shental

et al. [69, 70] address the situation where pairwise relations are hard constraints. The

authors partition the whole data set into a number of (maximal) “chunklets” consisting of

samples that are (hard) linked to each other1. Shental et al. [69, 70] discuss two sampling

assumptions:

• Assumption 1: chunklet Xi is generated i.i.d from component k with prior πk [70],

and the complete data likelihood is

p(X, Y ; Θ, EΩ) =
1
Ω

∏

i6=j∈N
(1− δ(zi, zj)) ·

L∏

l=1

{πzl

∏

xi∈Xl

p(xi|θzl
)}, (3.2)

where EΩ denotes the specified constraints.

• Assumption 2: chunklet Xi generated from component k with prior ∝ π
|Xi|
k , where

1If a sample is not linked to any other samples, it comprises a chunklet by itself.
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|Xi| is the number of samples in Xi [70]. The complete data likelihood is:

p(X, Y ; Θ, EΩ) =
1
Ω

∏

ij∈N
(1− δ(zi, zj)) ·

L∏

l=1

{π|Xl|
zl

∏

xi∈Xl

p(xi|θzl
)} (3.3)

=
1
Ω

∏

ij∈L
δ(zi, zj)

∏

ij∈N
(1− δ(zi, zj))

N∏

i=1

πzip(xi| θzi). (3.4)

In Section 3.1 we show that when using Assumption 2, this model (as expressed in Equation

(3.3)-(3.4)) is equivalent to the PPC with only hard constraints (as expressed in Equation

(2.16)). It is suggested [70] that Assumption 1 might be appropriate, for example, when

chunklets are generated from temporal continuity. When pairwise relations are generated

by labeling sample pairs picked from data set, Assumption 2 might be more reasonable.

Assumption 1 allows a closed-form solution in the M-step (including solution for π) in

each EM iteration [70]. The empirical comparison of the two sampling assumptions is

discussed in Section 2.7.1.

To incorporate the uncertainty associated with pairwise relations, Law et al. [51, 52]

proposed to use soft group constraints. To model a link between any sample pair (xi,xj),

they create a group l and express the strength of the link as the membership of xi and

xj to group l. This strategy works well for some simple situations, for example, when

the pairwise relations are non-overlapping (as defined in Section 2.6.1). However, it is

awkward if samples are shared by multiple groups, which is unavoidable when samples

are commonly involved in multiple relations. Another serious drawback of the group

constraints model is its inability to model do-not-links.

3.1 From PPC to Constrained GMM

In this section, we prove that when |Wij | → ∞ for each specified pair (xi,xj), the complete

likelihood of PPC can written as in Equation (2.16), and thus equivalent to the model

proposed by Shental et al. [69].
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In the model proposed by Shental et al. [69], the complete likelihood is written as :

p(X, Z; Θ, EΩ) =
1
Ω

∏
ci

δyci

∏

a1
i 6=a2

i

(1− δ(ya1
i
, ya2

i
))

N∏

i=1

P (zi; Θ)p(xi|zi; Θ)

=
1
Ω

∏
ci

δyci

∏

a1
i 6=a2

i

(1− δ(ya1
i
, ya2

i
))p(X, Z; Θ)

where EΩ stands for the pairwise constraints, δyci
is 1 iff all the points in the chunklet

(the clique of samples connected with only hard links) ci have the same label, (a1
i , a

2
i ) is

the index of the sample pair with hard do-not-link between them. This is equivalent to

p(X,Z; Θ, EΩ) =





1
Ωp(X,Z; Θ) Z satisfies all the constraints;

0 otherwise.
(3.5)

In the corresponding PPC model with hard constraints, we have

Wij =





+∞ i and j is linked

−∞ i and j is do-not-linked

0 no relation

(3.6)

According to Equation (2.12) and (3.5), to prove

p(X,Z; Θ, EΩ) = p(X,Z; Θ,W)

we only need to prove

P (Z; Θ,W) = 0,

for all the Z that violate the constraints, that is

P (Z; Θ,W) =

∏
k πzk

∏
i6=j eWij δ(zi,zj)

∑
Z

∏
l πzl

∏
m6=n eW p

mn δ(zm,zn)
= 0.

First let us assume Z violates one link between pair (α, β) (Wαβ = +∞), we have

zα 6= zβ ⇒ δ(zα, zβ) = 0 ⇒ eW p
αβ δ(zα,zβ) = 1.

We assume the constraints are consistent. In other words, there is at least one Z that

satisfies all the constraints. We can denote one such Z by Z∗. We also assume each

component has a positive prior probability. It is straightforward to show that

P (Z∗; Θ,W) > 0.
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Then it is easy to show

P (Z; Θ,W) =

∏
k πzk

∏
i6=j eWij δ(zi,zj)

∑
Z

∏
l πzl

∏
m6=n eWmn δ(zm,zn)

≤
∏

k πzk

∏
i6=j eWij δ(zi,zj)

∏
k πz∗k

∏
i 6=j eWmn δ(z∗i ,z∗j )

= (
∏

k

πzk

πz∗k

∏

(i,j)6=(α,β)

eWij δ(zi,zj)

eWij δ(z∗i ,z∗j )
)
e2Wαβ δ(zα,zβ)

e2Wαβ δ(z∗α,z∗β)

= (
∏

k

πzk

πz∗k

∏

(i,j)6=(α,β)

eWij δ(zi,zj)

eWij δ(z∗i ,z∗j )
)

1

e2Wαβ δ(z∗α,z∗β)

Since Z∗ satisfies all the constraints, we must have

∏

(i,j)6=(α,β)

eWij δ(zi,zj)

eWij δ(z∗i ,z∗j )
≤ 1.

So we have

P (Z; Θ,W) ≤ (
∏

k

πzk

πz∗k
)

1

e2Wαβ δ(z∗α,z∗β)
.

When

Wαβ → +∞,

we have
1

e2Wαβ δ(z∗α,z∗β)
→ 0

and then

P (Z; Θ,W) ≤ (
∏

k

πzk

πz∗k
)

1

e2Wαβ δ(z∗α,z∗β)
→ 0. (3.7)

The do-not-link case can be prove in similar way. ¥

3.2 From PPC to K-means with soft constraints

The adopted cost function for K-means with soft constraints is:

J(µ,Z) =
1
2

N∑

i=1

||xi − µzi ||2 +
∑

(i,j)∈L
aij(zi 6= zj) +

∑

(i,j)∈N
bij(zi = zj) (3.8)
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where µk is the center of the kth cluster. Equation (3.1) can be rewritten as

J(µ,Z) =
1
2

N∑

i=1

||xi − µzi ||2 −
∑

ij

Wijδ(zi, zj) + C, (3.9)

with C = −∑
(i,j)∈L aij is a constant and

Wij =





aij (i, j) ∈ L

−bij (i, j) ∈ N

0 otherwise.

(3.10)

The clustering process includes minimizing the cost function J(µ,Z) over both the model

parameters µ = {µ1, µ2, ..., µM} and cluster assignment Z = {z1, z2, ..., zN}. The op-

timization is usually done iteratively with modified Linde-Buzo-Gray (LBG) algorithm.

Assume we have the PPC model with the matrix W same as in Equation (3.9). We

further constrain each Gaussian component to be spherical with radius σ. The complete

data likelihood for PPC model is

p(X, Z; Θ,W) =
1
Ω

N∏

i=1

{πzie
−∑N

i=1

||xi−µzi ||
2

2σ2 }
∏
mn

eWmnδ(zm,zn), (3.11)

where Ω is the normalizing constant and µk is the mean of the kth Gaussian component.

To build its connection to the cost function in Equation (3.9), we consider the following

scaling:

σ → ασ, Wij → Wij/α2. (3.12)

The complete data likelihood with the scaling parameters α is

p(X, Z; Θ,W, α) =
1

Ω(α)

N∏

i=1

{πzie
−∑N

i=1

||xi−µzi ||
2

2α2σ2 }
∏
mn

e
Wmn

α2 δ(zm,zn). (3.13)

It can be shown that when α → 0, the maximum data likelihood will dominate the

data likelihood

lim
α→0

maxZ p(X, Z; Θ,W, α)∑
Z p(X,Z; Θ,W, α)

= 1. (3.14)

To prove Equation (3.14), we first show that when α is small enough, we have

arg max
Z

p(X, Z; Θ,W, α) = Z∗ ≡ arg min
Z
{

N∑

i=1

||xi − µz∗i ||2
2

−
∑
mn

Wmnδ(z∗m, z∗n)}. (3.15)
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Proof of Equation (3.15): Assume Z ′ is any cluster assignment different than Z∗. We

only need to show that when α is small enough,

p(X,Z∗; Θ,W, α) > p(X,Z ′; Θ,W, α). (3.16)

To prove Equation (3.16), we notice that

log p(X, Z∗; Θ,W, α)− log p(X,Z ′; Θ,W, α)

=
N∑

i=1

(log πz∗i − log πz′i) +
1
α2
{

N∑

i=1

(
||xi − µz′i ||2

2
− ||xi − µz∗i ||2

2
)−

∑
mn

Wmn(δ(z′m, z′n)− δ(z∗m, z∗n))}. (3.17)

Since Z∗ = arg minZ{
∑N

i=1

||xi−µz∗
i
||2

2 −∑
mn Wmnδ(z∗m, z∗n)}, we have

N∑

i=1

(
||xi − µz′i ||2

2
− ||xi − µz∗i ||2

2
)−

∑
mn

Wmn(δ(z′m, z′n)− δ(z∗m, z∗n)) > 0. (3.18)

Let ε =
∑N

i=1(
||xi−µz′

i
||2

2 − ||xi−µz∗
i
||2

2 )−∑
mn Wmn(δ(z′m, z′n)− δ(z∗m, z∗n)), we can see that

when α is small enough

log p(X, Z∗; Θ,W, α)− log p(X,Z ′; Θ,W, α) =
N∑

i=1

(log πz∗i − log πz′i) +
ε

α2
> 0. (3.19)

¥

It is obvious from Equation (3.19) that for any Z ′ different than Z∗

lim
α→0

log p(X,Z∗; Θ,W, α)− log p(X, Z ′; Θ,W, α)

= lim
α→0

N∑

i=1

(log πz∗i − log πz′i) +
ε

α2

= +∞,

or equivalently

lim
α→0

p(X,Z ′; Θ,W, α)
p(X, Z∗; Θ,W, α)

= 0, (3.20)

which proves Equation (3.14). As the result of Equation (3.14), when optimizing the

model parameters we can equivalently maximize maxZ p(X, Z; Θ,W, α) over Θ. It is then
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a joint optimization problem

max
Θ,Z

p(X, Z; Θ,W, α).

Following the same thought, we find the soft posterior probability of each sample (as in

conventional mixture model) becomes hard membership (as in K-means). This fact can

be simply proved as follows. The posterior probability of sample xi to component k is

P (zi = k|X; Θ,W, α) =

∑
Z|zi=k p(X, Z; Θ,W, α)∑

Z p(X,Z; Θ,W, α)
.

From Equation (3.14)), it is easy to see

lim
α→0

P (zi = k|X; Θ,W, α) =





1 z∗i = k

0 otherwise.
(3.21)

The negative logarithm of the complete likelihood p(X,Z; Θ,W, α) is then:

Jα(Θ, Z) = − log p(X, Z; Θ,W, α)

= −
N∑

i=1

log πzi +
N∑

i=1

||xi − µzi ||2
2α2

−
∑
mn

Wmn

α2
δ(zm, zn) + log(Ω(α))

= −
N∑

i=1

log πzi +
1
α2

(
N∑

i=1

||xi − µzi ||2
2

−
∑
mn

Wmnδ(zm, zn)) + C,

where C = log Ω(α) is a constant. It is obvious that when α → 0, we can neglect the

term −∑N
i=1 log πzi . Hence the only model parameters left for adjusting are the Gaussian

means µ. We only have to consider the new cost function

J̃α(µ,Z) =
1
α2

(
N∑

i=1

||xi − µzi ||2
2

−
∑
mn

Wmnδ(zm, zn)), (3.22)

the optimization of which is obviously equivalent to Equation (3.8). So we can conclude

that when α → 0 in Equation (3.12), the PPC model shown in Equation (3.11) becomes

a K-means model with soft constraints.
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3.3 From PPC to K-means with hard constraints (COPK-

means)

COPK-means is a hard clustering algorithm with hard constraints. The goal is to find a

set of cluster centers µ and clustering result Z that minimizes the cost function
N∑

i=1

||xi − µzi ||2, (3.23)

while subject to the constraints

zi = zj , if (xi,xj) ∈ L (3.24)

zi 6= zj , if (xi,xj) ∈ N . (3.25)

Assume we have the PPC model with soft relations represented with the matrix W such

that:

Wij =





w (xi,xj) ∈ L

−w (xi,xj) ∈ N

0 otherwise

(3.26)

where w > 0. We further constrain each Gaussian component to be spherical with radius

σ. The complete data likelihood for PPC model is

P (X, Z; Θ,W) =
1
Ω

N∏

i=1

{πzie
−∑N

i=1

||xi−µzi ||
2

2σ2 }
∏

(m,n)∈L
ewδ(zm,zn)

∏

(m′,n′)∈N
exp(−wδ(zm′ , zn′)), (3.27)

where µk is the mean of the kth Gaussian component. There are infinite ways to get

Equation (3.23)-(3.25) from Equation (3.27), but we consider the following scaling with

factor β:

σ → βσ, Wij → Wij/β3. (3.28)

The complete data likelihood with the scaled parameters is

p(X, Z; Θ,W, β) =
1

Ω(β)

N∏

i=1

{πzie
−∑N

i=1

||xi−µzi ||
2

2β2σ2 }
∏

(m,n)∈L
e

w
β3 δ(zm,zn) ∏

(m′,n′)∈N
e
− w

β3 δ(zm′ ,zn′ ), (3.29)
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As established in previous section, when β → 0, the maximum data likelihood will domi-

nate the data likelihood

lim
β→0

maxZ p(X,Z; Θ,W, β)∑
Z p(X,Z; Θ,W, β)

= 1.

As a result, when optimizing the model parameters Θ we can equivalently maximize

maxZ p(X,Z; Θ,W, β). Also, the soft posterior probability (as in conventional mixture

model) become hard membership (as in K-means).

The negative logarithm of the complete likelihood p(X, Z; Θ,W, β) is then:

Jβ(Θ, Z) = −
N∑

i=1

log πzi + C+

1
β2

(
N∑

i=1

||xi − µzi ||2
2

+
1
β

(
∑

(m′,n′)∈N
wδ(zm′ , zn′)−

∑

(m,n)∈L
wδ(zm, zn))), (3.30)

where C = log Ω(β) is a constant. It is obvious that when β → 0, we can neglect the term

−∑N
i=1 log πzi . Hence we only have to consider the new cost function

J̃β(µ,Z) =
1
β2

(
N∑

i=1

||xi − µzi ||2
2

+
1
β

(
∑

(m′,n′)∈N
wδ(zm′ , zn′)−

∑

(m,n)∈L
wδ(zj , zk))), (3.31)

the minimization of which is obviously equivalent to the following equation since we can

neglect the constant factor 1
β2 :

˜̃Jβ(µ,Z) =
N∑

i=1

||xi − µzi ||2
2

+
w

β
Jc(Z). (3.32)

where Jc(Z) =
∑

(m′,n′)∈N δ(zm′ , zn′)−
∑

(m,n)∈L δ(zm, zn) is the cost function term from

pairwise constraints.

Let SZ = {Z|zi = zj if Wij > 0; zi 6= zj if Wij < 0; }. We assume the pairwise

relations are consistent, that is, SZ 6= ∅. Obviously, all Z in SZ achieve the same minimum

value of the term Jc(Z). That is

∀Z ∈ SZ , Z ′ ∈ SZ Jc(Z) = Jc(Z ′)

∀Z ∈ SZ , Z ′′ ∈/ SZ Jc(Z) < Jc(Z ′′).
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It is obvious that when β → 0, any Z that minimizes ˜̃Jβ(µ,Z) must be in SZ . So the

minimization of Equation (3.29) can be finally casted into the following form:

min
Z,µ

N∑

i=1

||xi − µzi ||2

subject to Z ∈ SZ ,

which is apparently equivalent to Equation (3.23)-(3.25). So we can conclude that β → 0

in Equation (3.28), the PPC model shown in Equation (3.27) becomes a K-means model

with hard constraints.



Chapter 4

Constrained Clustering with Gaussian

Process Classifiers

In §1 − §3 we have discussed constrained clustering adapted from existing clustering al-

gorithms and their limitations. In this chapter we will try to solve the same problem

from a new perspective. To avoid the limitations inherited from generative models, we

based our algorithm on discriminative models, more specifically, Gaussian process classi-

fiers. The major difficulty in marrying pairwise constraints and discriminative models is

finding a principled way to inject the pairwise constraints into the Bayes formulation for

probabilistic classifiers

p(parameters|observation) =
p(observation|parameters)p(parameters)

p(observation)

or the cost function for the non-probabilistic classifiers

C = empirical error + regularization term.

In the discriminative models, both empirical error and the likelihood p(observation) mea-

sures the difference between observations and model prediction, and that is where the

pairwise constraints should enter. Using a generalized observation form that pairwise con-

straints as special case, we are able to cast the constrained clustering task into a form

similar to the conventional semi-supervised learning, where a subset of samples are la-

beled. As an advantage of this, we are able to use the technique newly developed for

semi-supervised learning, such as graphical kernels.

45
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4.1 Gaussian Process Classifiers

4.1.1 Supervised Learning with Gaussian Process Classifiers

In this section, we will briefly introduce the Gaussian process classifiers (GPCs). Suppose

we have data set X = {x1,x2, · · · ,xN} and its labels Y = {y1, y2, · · · , yN}. For simplicity,

we only consider the binary classification problem, that is, yi ∈ {−1,+1}. The Gaussian

process classifiers assume a latent Gaussian process f with zero mean and covariance

function K, and at each point x, we observe label y with the probability

P (y|f(x)) =
ef(x)δ(y,+1)

1 + ef(x)
=





ef(x)

1+ef(x) y = +1,

1
1+ef(x) y = −1

(4.1)

where δ(·, ·) is the Kronecker delta-function. Let f be the values of f at X

f = [f(x1), f(x2), ..., f(xN )]T ,

which follows a N -dimensional Gaussian distribution:

p(f) = (2π)−
N
2 |K|− 1

2 e−
1
2
fT K−1f (4.2)

where K ∈ RN×N is the covariance matrix (kernel) with Kij = K(xi,xj).

We assume the correlation between samples are fully modeled by the latent variable f

and assume that the observation made at any point x, given the latent field value f(x),

is independent of observations made at any other point. It then follows that probability

of observing Y factorizes

P (Y |f) =
N∏

i=1

P (yi|f(xi)) =
N∏

i=1

ef(xi)δ(yi,+1)

1 + ef(xi)
. (4.3)

In supervised learning, both X and Y are given as the training data, and the probability

of observing label y at any novel sample x is

P (y|x, X, Y ) =
∫

P (y|f(x))p(f(x)|f)p(f |Y )df (4.4)

where p(f(x)|f) is simply a conditional Gaussian given by p(f(x)|f) = p(f , f(x))/p(f),

and p(f |Y ) can be calculated from Bayes’ rule:

p(f |Y ) =
p(f , Y )
P (Y )

∝ P (Y |f)p(f).
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If we also parameterize the covariance function with θ and assume a prior probability for

it, we need to further marginalize out the θ as follows

P (y|x, X, Y ) =
∫

θ

∫

f
P (y|f(x))p(f(x)|f , θ)p(f , θ|Y )dfdθ, (4.5)

where p(f , θ|Y ) ∝ p(θ)p(f |θ)P (Y |f). Due to the nonlinearity introduced in the softmax

observation function, the integral in Equation (4.4) and (4.5) generally cannot be given

in closed form. We typically need to resort to approximate inference, such as variational

approximation or sampling.

4.1.2 Semi-supervised Learning with Gaussian Process Classifiers

In semi-supervised learning, we only have label for a subset of training samples. With-

out loss of generality, we assume the first l samples (denoted Xl) are labeled as Yl =

{y1, y2, · · · , yl}, and rest samples denoted as Xu with unknown label Yu. We further

extend this notation convention to the latent field and let

fl = [f(x1), f(x2, ) · · · , f(xl)]T

fu = [f(xl+1), f(xl+2) · · · , f(xN )]T .

The goal in semi-supervised learning is twofold. First, we need to predict the label for all

the unlabeled data in the training set. Second, we may also want to extend this prediction

to samples outside of training set. Here, we only consider the fist goal and the research

on the second goal can be found at [72]1. We need to rewrite Equation (4.4) as follows

P (Y |X, Yl) =
∫

P (Yu|fu) p(fu|fl) p(fl|Yl)df(Xu) (4.6)

Clearly, the label information in Yl propagates to the unlabeled samples Xu through the

conditional probability p(fu|fl), which is fully specified by the covariance matrix K for the

joint variable [fl; fu]T . For any K that is derived from a covariance function K(·, ·)

Kij = K(xi,xj),

1Of course, one obvious choice is we extend our training set to include all the new samples, and perform
semi-supervised learning again.
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Equation (4.6) factorizes as follows

P (Yu|X, Yl) =
N∏

i=l+1

∫
P (yi|f(xi)) p(f(xi)|fl) p(fl|Yl)df(xi) (4.7)

where
∫

P (yi|f(xi)) p(f(xi)|fl) p(fl|Yl)df(xi) is exactly the classification as expressed in

Equation (4.4). To prevent the semi-supervised learning reducing to N − l independent

supervised learning tasks, we need to weave the information from the unlabeled data set

into the covariance matrix K, and consequently p(f(xi)|fl) and p(fl|Yl), and thus achieve

a input-dependent regularization [68]. The covariance matrix designed with unlabeled

information is usually called semi-supervised kernel.

4.1.3 Towards Constrained Clustering

Our effort to incorporate the pairwise relations into clustering consist of two parts. First,

in Section 4.2, we introduce the generalized observation form for pairwise relations, and

the corresponding likelihood of f can be given through manipulating Equation (4.2) and

(4.3). Second, in Section 4.5, we discuss the prior form of f that can exploit the samples

not involved in any pairwise relations. This design of prior is realized by using so-called

semi-supervised kernels as the K in Equation (4.2). In Section 4.6, we propose the Semi-

supervised Pairwise Gaussian Process Classifier (SPGP) by combining our work on the

prior (Section 4.5) and on the likelihood (Section 4.2) .

4.2 Pairwise Constraints as Observation

In a semi-supervised scenario, we have incomplete knowledge about the class label of

samples: it can be a labeled subset [16, 75, 90, 92, 7] (called partial labeling) or some

pairwise relations. Consequently, instead of one, we have a set of class assignments Y

consistent with our knowledge. Taking each Y as an atomic event, our knowledge can

be equivalently expressed as a union of all feasible events Y , denoted as Ω. For pairwise

relations, we have

Ω = {Y |(yi = yj , ∀ (i, j) ∈M) ∧ (yi 6= yj , ∀ (i, j) ∈ C}, (4.8)
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where M and C are respectively the set of links and do-not-links. Since

P (Y, Y ′) = 0, Y 6= Y ′

the probability of Ω can then written as the sum of probability of all the component Y s:

P (Ω) =
∑

Y ∈Ω

P (Y ). (4.9)

Also it is straightforward to see that

P (Ω|Y ) =





1 Y ∈ Ω

0 otherwise
, (4.10)

which should be interpreted as Ω happens if any of component Y happens. Given the

latent field f , the likelihood of Ω is:

P (Ω|f) =
∑

Y

P (Ω, Y |f) =
∑

Y

P (Ω|Y, f)P (Y |f) =
∑

Y

{P (Ω|Y )
N∏

i=1

ef(xi)δ(yi,+1)

1 + ef(xi)
}, (4.11)

which makes use of Equation (4.3) and the fact P (Ω|Y, f) = P (Ω|Y ). Note Equation

(4.11) is a natural generalization of full labeling (supervised learning) and partial labeling

(semi-supervised learning): For a full labeling

Ω = {the given Y }, (4.12)

and Equation (4.11) becomes

P (Ω|f) =
∑

Y

P (Ω, Y |f) =
∑

Y

P (Ω|Y, f)P (Y |f) = P (Y |f); (4.13)

For a partial labeling described in Section (4.1.2) we have

Ω = {Y ′|y′1 = y1, y
′
2 = y2, · · · , y′l = yl}, (4.14)

and Equation (4.11) becomes

P (Ω|f) =
∑

Y

P (Ω|Y, f)P (Y |f) =
l∏

i=1

ef(xi)δ(yi,+1)

1 + ef(xi)
}, (4.15)

which is equivalent to the likelihood formula given in [92].
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In reality, pairwise relations often come with significant uncertainty, so it is desired for

P (Ω|Y ) to be a soft membership that reflects our confidence. We start with modeling the

conditional probability P (Y |Ω) via the following Gibbs distribution:

P (Y |Ω) =
1
Z1

e
∑

i<j Wijδ(yi,yj) =
1
Z1

∏

i<j

eWijδ(yi,yj), (4.16)

where Wij is the weight for pair (xi,xj) and Z1 is the partition function. Like in PPC

(see Chapter 2), we use Wij to express both the type of pairwise relation between (xi,xj)

and its confidence value γij (> 0.5) through

eWij

1 + eWij
= γ

Lij

ij (1− γij)1−Lij , (4.17)

where Lij = 1 if (xi,xj) is specified to be linked, and Lij = 0 for a do-not-link. It follows

from Equation (4.17) that Wij > 0 for a link between (xi,xj), and Wij < 0 for a do-not-

link. We set Wij = 0 if no prior knowledge is available on pair (xi,xj). Clearly, |Wij |
reflects our confidence since

e|Wij |

1 + e|Wij | = γij .

Using the Bayes’ rule, we can get P (Ω|Y ) as follows

P (Ω|Y ) =
P (Y |Ω)P (Ω)

P (Y )
=

1
Z2

∏

i<j

eWijδ(yi,yj). (4.18)

Here we assume a uniform P (Y) = 2−N , which is the prior probability before any infor-

mation on X or Ω is known 2. As will be shown in Section 4.4, Z2 does not affect the

final clustering result. From Equation (4.18), P (Ω|Y ) is larger if Y satisfies the specified

pairwise relations and vice versa. When |Wij | → ∞, we have P (Ω|Y ) = 0 if (yi, yj)

violates the specified relation. This fact can be briefly proven as follows.

Proof: (sketch)

Let’s assume that there exists Y ∗ = {y∗1, · · · , y∗N} that satisfies all the pairwise relations

with infinity weight (otherwise the there must be some contradiction in our prior knowl-

edge). It is easy to see that for any Y = {y1, · · · , yN}

P (Ω|Y ) =
1
Z2

∏

i<j

eWijδ(yi,yj) ≤
∏

i<j eWijδ(yi,yj)

∏
i<j eWijδ(y∗i ,y∗j )

.

2Do not confuse this assumption with the situation when covariance matrix for f is known. In that
case, P (Y) is generally not uniform from Equation (4.2) and (4.3).
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Suppose |Wi′j′ | → ∞ and (yi′ , yj′) violates the specified relation. We first notice that

∏
i<j−(i′,j′) eWijδ(yi,yj)

∏
i<j−(i′,j′) eWijδ(y∗i ,y∗j )

is upper bounded by a constant C > 0, where
∏

i<j−(i′,j′) stands for the product for all

the index pair (i, j) with i < j except (i′, j′). Then it is easy to see

∏
i<j eWijδ(yi,yj)

∏
i<j eWijδ(y∗i ,y∗j )

=
eWi′j′δ(yi′ ,yj′ )

e
Wi′j′δ(y∗i′ ,y

∗
j′ )

∏
i<fj−(i′,j′) eWijδ(yi,yj)

∏
i<j−(i′,j′) eWijδ(y∗i ,y∗j )

≤ C
eWi′j′δ(yi′ ,yj′ )

e
Wi′j′δ(y∗i′ ,y

∗
j′ )

= C
1

e
Wi′j′δ(y∗i′ ,y

∗
j′ )
→ 0

which leads to ∏
i<j eWijδ(yi,yj)

∏
i<j eWijδ(y∗i ,y∗j )

→ 0,

which completes the proof. ¥

When |Wij |, we have hard constraints between (xi,xj); otherwise, the relation is soft.

When all specified pairwise relations are hard, P (Ω|Y ) degenerates to the extreme case

described in Equation (4.8). Based on Equation (4.18), the likelihood of f defined in

Equation (4.11) can be written as:

P (Ω|f) =
1
Z2

∑

Y

{
∏

i<j

eWij δ(yi,yj) ·
N∏

k=1

eδ(yk,+1)f(xk)

ef(xk) + 1
}. (4.19)

4.2.1 Illustrative Example

We give here one example to illustrate the design of hard constraints. For simplicity,

we consider the situation where there is only a constraint between sample x1 and x2, or

equivalently, for any i 6= 1 or j 6= 2, we have Wij = 0. As the result, P (Ω|f) can be

simplified as P (Ω|f(x1), f(x2)). The experiment shown in Figure 4.1 is designed to study

the interaction between the values of the weight W12 and (f(x1), f(x2)) in deciding the

likelihood P (Ω|f(x1), f(x2)). Our observation can be summarized as follows:

• When W12 > 0 (link), P (Ω|f(x1), f(x2)) is large when f(x1) and f(x2) are both

positive or both negative, and P (Ω|f(x1), f(x2)) is small when f(x1) and f(x2) have
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different sign. This effect becomes more salient when W12 increases. Actually when

W12 → +∞, we can see that

P (Ω|5,−5) = P (Ω| − 5, 5) ¿ P (Ω|5, 5) = P (Ω| − 5,−5),

which indicates, as is consistent with our intuition, that the weight of pairwise

constraints decides how one set of latent variables are favored over the other. The

case of do-not-link (Wij < 0) can be analyzed similarly.

• The P (Ω|f(x1), f(x2)) always favors f(x1) and f(x2) with large absolute values

when the sign of them are consistent with the pairwise constraints. This is again

understandable since when |f(x)| increases, we will get a classification y with more

confidence based on the equation

P (y) =
ef(x)δ(y,+1)

1 + ef(x)
,

and thus a high likelihood of Ω if y is consistent with it. On the other hand we

need to consider the smoothness of f 3, which favors a f with less difference among

the component values and directly opposes to set values in f to be too large or too

small.

4.3 Approximation of Likelihood

One major difficulty of our method would be effectively estimating P (Ω|f), since direct

calculation is generally intractable due to the summarization over all Y . We first notice

that

P (Ω|f) =
1
Z2

EY {
∏

i<j

eWijδ(yi,yj)}, (4.20)

3Here, the smoothness requirement may depends on the distribution of data, as will be clear in Section
4.5
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(a) W12 = 0.1 (b) W12 = 1 (c) W12 = +∞

(d) W12 = −0.1 (e) W12 = −1 (f) W12 = −∞

Figure 4.1: The probability of Ω with different W.

here EY {·} stands for the expectation under distribution P (Y |f). We get a approximation

of P (Ω|f), denoted as J(f , Ω), by exchanging the order of
∏

and EY in Equation (4.20):

J(f ,Ω) =
1
Z2

∏

i<j

EY {eWijδ(yi,yj)} (4.21)

=
1
Z2

∏

i<j

Wij6=0

eWij{ef(xi)+f(xj)+1}+ ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
. (4.22)

It is easy to verify that J(f , Ω) = P (Ω|f) when pairwise relations are disjoint: each sample

is involved in at most one pairwise relation. (probably some more details here)

In practice, J(f , Ω) yields a good approximation when pairwise relations are scarce. For

comparison, we also consider another approximation of log P (Ω|f) given by the Jensen’s

inequality

log EY {
∏

i<j

eWijδ(yi,yj)} ≥ EY {log
∏

i<j

eWijδ(yi,yj)}.

In this case we get a lower bound of log P (Ω|f):

log P (Ω|f) ≥ − log Z2 +
∑

i<j

Wij
ef(xi)+f(xj) + 1

(ef(xi) + 1)(ef(xj) + 1)
. (4.23)

Figure 4.2 compares log J(f , Ω) with the lower bound given in Equation (4.23) on a toy
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(a) Pairwise Relations
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Figure 4.2: Comparison between two approximations of log P (Ω|f). In the toy problem,
we randomly assign 10 pairwise relations (with weight ∼ N(0, 100) ) among 12 samples.
The field value f ∈ R12 is randomly chosen from N(0, 25I12). (a): A typical example
of pairwise relations that will be used in (b) and (c); (b): Scatter plot of log P (Ω|f) vs.
log J(f , Ω) with 1000 random f ; (c): Scatter plot of log P (Ω|f) vs. lower bound given in
Equation (4.23) with 1000 random f .

problem. It is clear from Figure 4.2 (b) and (c) that log J(f ,Ω) gives more accurate

approximation.

4.4 Why Use Maximum a Posteriori (MAP) GPC

The principle Bayesian solution used for standard (supervised) GPC [83] marginalizes out

the latent functions f . However, this solution does not work for GPC when only pairwise

relations are available, as elucidated by the following proposition.

Proposition 1. With Ω defined in Equation (4.16), for i = 1, 2, · · · , N ,

P (yi = +1|Ω) =
∫

RN

P (yi = +1|f , Ω)p(f |Ω)df = 0.5.
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Proof : From Equation (4.2) and (4.19), we have

p(f |Ω) = p(−f |Ω).

From symmetry, we have

P (yi = +1|Ω) =
1
2
{
∫

RN

P (yi = +1|f ,Ω)p(f |Ω)df +
∫

RN

P (yi = +1| − f , Ω)p(−f |Ω)df}

=
1
2
{
∫

RN

P (yi = +1|f ,Ω)p(f |Ω)df +
∫

RN

P (yi = +1| − f , Ω)p(f |Ω)df}

=
1
2

∫

RN

(P (yi = +1|f , Ω) + P (yi = +1| − f , Ω))P (f |Ω)df

=
1
2

∫

RN

p(f |Ω)df =
1
2

The proof makes use of the fact that P (yi = +1|f , Ω) + P (yi = +1| − f , Ω) = 1, which is

easy to verify. ¥

There are two ways to stay in the standard GPC framework. For a two-class problem4,

we can break the symmetry by assigning an arbitrary sample to class +1 (or −1), but this

strategy does not work for a multi-class situation. Another choice is to calculate the prob-

ability P (yi = yj |X, Ω) for all pair (xi,xj), and lately use this as new measure of similarity.

However, this requires O(N2) inferences with GPC, and is therefore computationally un-

desirable. Moreover, one has to use another similarity-based clustering algorithm to get

the cluster assignments for samples. Instead, we find the maximum a posteriori (MAP)

solution of f 5, or equivalently the solution that minimizes L(f)= − log p(f |Ω). In practice

we use J(f , Ω) in place of P (Ω|f), and optimize the following objective function:

f̂ = arg min
f
{− log J(f , Ω) + 1/2 fTK−1f}. (4.24)

We know from the form of J(f , Ω) that Z2 only appears in a constant term log Z2 in

this objective function, and therefore will not affect the optimal solution f̂ . In Section

4.5, we shall show that the optimization in Equation (4.24) can be simplified. Once f̂ is

determined, the classification of X is carried out with Equation (4.1).

4Although the model we proposed is also binary classification problem, it can be readily extended to
multi-class cases.

5Clearly MAP solution appears in pairs, since P (f |Ω) = P (−f |Ω)
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4.5 Design of Kernel

4.5.1 The Role of the Unconstrained Samples

We divide the data set X into the constrained set Xc = {xi| ∃j Wij 6= 0} and uncon-

strained set Xu = {xi|∀j Wij = 0}. We want the unconstrained set to effectively influence

the resulted classifier, much the same role played by the unlabeled set in the more famil-

iar partial labeling scenario. Not surprisingly, this intention can not be realized with a

conventional covariance matrix, as elucidated by the proposition we will give presently.

Without loss of generality, we assume Xc = {x1, · · · , xL}. Accordingly, we can decompose

the field f as follows:

f =


fc

fu


 , (4.25)

with fc corresponding to the field values Xc and fu on Xu. The covariance matrix K can

also be decomposed accordingly into four sub-matrices

K =


 Kc KT

uc

Kuc Ku


 .

It can be shown both P (Ω|f) and J(f ,Ω) depend only on fc. The following proposition

can be easily verified using the conditional property of Gaussian variables.

Proposition 2: The solution of the problem

f̂ = arg min
f
{R(fc) +

1
2
fTK−1f}

for any function R bounded from below can be written as f̂ =


 f̂c

f̂u


, where

f̂c = arg min
fc
{R(fc) +

1
2
fT
c K−1

c fc} (4.26)

f̂u = KucK−1
c f̂c. (4.27)

Proof: Let

f̂ = arg min
f
{R(fc) +

1
2
fTK−1f} (4.28)
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and let f̂ ′c and f̂ ′y be the set of components corresponding to Xc and Xu. It is easy to see

that

f̂ ′u = arg min
fu
{R(f ′c) +


 f̂ ′c

f̂u




T

K−1


 f̂ ′c

f̂u


} (4.29)

= arg min
fu


 f̂ ′c

f̂u




T

K−1


 f̂ ′c

f̂u


 (4.30)

= KucK−1
c f̂ ′c (4.31)

We can simplify the optimization in Equation (4.28) by substituting fu with KucK−1
c fc

f̂ = arg min
fc
{R(fc) +

1
2


 fc

KucK−1
c fc




T

K−1


 fc

KucK−1
c fc


} (4.32)

= arg min
fc
{R(fc) +

1
2
fT
c K−1

c fc}, (4.33)

which completes the proof. ¥

For a “local” kernel K [92], e.g. RBF kernel, the entry Kij only depends on xi and

xj and not any other samples. Proposition 2 tells us that with such a local kernel K, the

unconstrained set Xu is useless for the classification based on Equation (4.24). Indeed, Xu

does not affect the optimization in Equation (4.26) (with R(fc) set to be − log J(f ,Ω)),

while in Equation (4.27), f̂u is simply interpolated from f̂c. To overcome this problem,

we need a K with information of Xu encoded in the entries of Kc. Such kernels will be

referred to as semi-supervised kernels since they are typically designed to use samples

bearing no label information.

4.5.2 Semi-supervised Kernels

Our kernel design strategy largely follows previous work on graph kernel [92, 73]. The key

difference is that we fit the kernel to the pairwise relations, instead of some labeled samples

as in [91]. Let S be the affinity matrix of X with Sij = e−||xi−xj ||2/s2
. The normalized

graph Laplacian is defined as ∆ = I − D− 1
2 SD− 1

2 , where D is a diagonal matrix with
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entry Dii =
∑

j Sij . Suppose the eigen-decomposition of ∆ is:

∆ =
N∑

i=1

µiφiφ
T
i .

We know from [7] that the eigenvectors {φi} provide the harmonic basis with frequency

indicated by the eigenvalues {µi}. Roughly speaking, the higher frequency component

has bigger eigenvalue, and vice versa. We build a semi-supervised kernel K based on a

transform of {µi}:

K =
N∑

i=1

g(µi)φiφ
T
i , g(µi) ≥ 0.

The regularizer fTK−1f =
∑N

i=1
<f ,φi>

2

g(µi)
should restrain the high frequency part and en-

courage low frequency part, which leads to g(µi) ≥ g(µj) for µi ≤ µj . Different parametric

forms of g give different kernels. We study the following three types of kernels that have

been proposed in literature [16, 91, 90]:

• Step function kernel 6:





λ µi ≤ µcut

0 otherwise;

• Heat Diffusion kernel: g(µi) = λe−tµi , t > 0;

• Lazy-Random-Walk kernel:7, g(µi) = λ(µi + σ2)−1.

For each chosen kernel, there are three parameters to be decided: (1) the radius s in the

affinity matrix S; (2) the µcut, t or σ as parameter in g(·); and (3) the scaling factor λ.

The first two parameters, denoted as Θ, can be fit to the pairwise relations Ω with a

modified kernel-target alignment. In the original kernel-target alignment [20], we find K

(or equivalently Θ) that maximizes the alignment score:

A(K,T) =
〈K,T〉F√〈K,K〉F 〈T,T〉F

, (4.34)

where T ∈ RN×N is the target matrix with entry Tij = 1 if yi = yj , and −1 otherwise. For

binary class labels {+1,−1}, we have Tij = yiyj . Unlike class labels, pairwise relations

6In practice we use K + εI as the kernel to make it positive definite, here ε = 0.001λ.
7It is also known as Gaussian field kernel [92].
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generally do not contain enough information for deciding T. Instead, we try to maximize

the expectation of A(K,T) with respect to Y : Ā(K,Ω) .=
∑

Y P (Y |Ω)A(K,T). It is

straightforward to verify that

Ā(K, Ω) =
1
N

〈
K, T̄

〉
F
〈K,K〉−1/2

F ,

where T̄ is a N × N matrix with T̄ij =
∑

yi,yj
yiyjP (yi, yj |Ω). Direct evaluation of T̄ij

can be expensive due to the marginalization in calculating P (yi, yj |Ω). To circumvent, we

use a simple approximation for T̄ij by ignoring the pairwise relations that do not involve

xi or xj :

T̄ij ≈
∑
yi,yj

yiyj{eWijδ(yiyj)

1 + eWij

∏

k : Wik 6= 0

Wjk 6= 0

∑
yk

eWikδ(yi,yk)+Wjkδ(yj ,yk)

(1 + eWik)(1 + eWjk)
}. (4.35)

From Equation (4.35), the approximation of T̄ij is non-zero only if Wij 6= 0 or both xi

and xj connected to some sample xk. Performing the approximation for entire T̄ requires

O(n2) time, where n is the number of specified pairwise relations. This approximation is

cheap since we are particularly interested in the situation where n is small. The scaling

factor λ can not be fit this way since it does not affect kernel-target alignment score. In

our experiment, we use an empirical λ. More systemic methods, like cross validation, are

expected to yield better results.

4.6 Semi-supervised Pairwise Gaussian Process Classifier

We can now combine the likelihood (and its approximation) formulated in Equation (4.15)

and (4.22), and a Gaussian prior based on the semi-supervised kernel. As mentioned in

Section 4.4, the classification is given by the MAP solution of f . According to Proposition

2, the optimization in Equation (4.24) can be divided into the following two steps:

step 1: f̂c = arg min
fc
{1
2
fT
c K−1

c fc −
∑

Wij6=0

log
eWij{ef(xi)+f(xj)+1}+ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
} (4.36)

step 2: f̂u = KucK−1
c f̂c. (4.37)

Here K is one of the graph kernels, and both K and f are decomposed as in section 4.1.

The decomposition (step 1-step 2) effectively reduces the optimization over f to a subset
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fc, which is substantially cheaper when only a small portion of samples are constrained.

The objective function in step 1 consists of two terms: the empirical error

−
∑

Wij6=0

log
eWij{ef(xi)+f(xj)+1}+ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
,

and regularizer 1
2 f

T
c K−1

c fc. A closer look at the two terms reveals that the empirical error

term favors those f that are consistent with the pairwise relations. Indeed, if Wij > 0

(link), we tend to have bigger J(f ,Ω) if f(xi) and f(xj) are both big (positive) or both

small (negative); if Wij < 0 (do-not-link), J(f , Ω) is bigger when one of f(xi) and f(xj) is

small (negative) and the other is big (positive). The regularizer term enforces a smooth f .

Since K is non-local, Xu enters into Kc and therefore affects the optimal f̂ . We solve the

optimization in step 1 with the quasi-Newton method (Matlab function fminunc). To find

a good local optimum, we usually try multiple runs with different initial fc. We name the

algorithm Semi-supervised Pairwise Gaussian Process classifier (SPGP). The step-by-step

algorithm of SPGP is given as follows:

Semi-supervised Pairwise Gaussian Process Classifier

Input: data set X = {x1,x2, · · · ,xN} (xi ∈ Rd )and pairwise constraints W (∈ RN×N ).

step 1 Construct the affinity matrix S with Sij = e−||xi−xj ||2/s2
, and calculate the nor-

malized graph Laplacian ∆

∆ = I−D− 1
2 SD− 1

2 ,

with D being a diagonal matrix with entry Dii =
∑

j Sij .

step 2 Design a semi-supervised kernel K based on ∆ and W through

K∗ = arg max
K

〈K,T〉F√〈K,K〉F 〈T,T〉F
,

where T is the target matrix approximated from the pairwise relations W

T̄ij =
∑
yi,yj

yiyj{eWijδ(yiyj)

1 + eWij

∏

k : Wik 6= 0

Wjk 6= 0

∑
yk

eWikδ(yi,yk)+Wjkδ(yj ,yk)

(1 + eWik)(1 + eWjk)
}.
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step 3 Initialize fc.

step 4 Perform the optimization in

f̂c = arg min
fc
{1
2
fT
c K−1

c fc −
∑

Wij6=0

log
eWij{ef(xi)+f(xj)+1}+ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
}

with a conjugated gradient optimization, and find a local optima of fc.

step 5 Go back to step 3 until satisfied and denote the obtained local optimum of fc as

f̂c.

step 6 Propagate the value of fc to fu with

f̂u = KucK−1
c f̂c,

and obtain f̂ =


 f̂c

f̂u


.

step 7 For i = 1, 2, · · · , N , estimate the probability of label

P (y|f̂(xi)) =





ef̂(xi)

1+ef̂(xi)
y = +1,

1

1+ef̂(xi)
y = −1

and assign the sample to the most probable cluster.

A visualization of PGSP solution on 2D toy problem can be found in Figure 4.3.

In this toy problem shown in panel (a), there exist two almost equally good partitions

of data into two groups(upper two components + lower two components Vs. left two

components + right two components). The specified pairwise relations (one link + two

do-not-links) biases towards the latter solution. With properly designed kernel, PGSP

forces the smoothness of f where samples are dense, thus the sign of f can only change in

the area where samples are sparse, as shown in panel (b). The result given by the MAP

solution of f leads to the second partition, as shown in panel (c).

Although in this research we limited our discussion to two-class cases, SPGP can be

readily generalized to M -class (M > 2) situations by using M latent processes.

Unlike constrained clustering algorithms [82, 53, 4], SPGP requires at least one do-

not-link to work: with only links, SPGP assigns all samples into one class. This weakness
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(a) data in x-y plane
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(c) clustering result given by the MAP f

Figure 4.3: SPGP on a two-dimensional toy problem. (a) Two do-not-links (dashed line)
and one link (solid line) are specified on the data set. (b) A MAP solution of f as function
of coordinates (x, y). Note that discrete values of f (the black dots on the surface) have
been interpolated to the x-y plane for visualization purpose. We used heat diffusion kernel
for this example. (c) The clustering results given by the MAP f . (see context in Section
4.6)

can be alleviated by adding into the objective function an extra term that penalizes the

unbalanced distribution of samples among different classes. This extension will not be

discussed in this thesis.

4.7 Experiments

We test SPGP on both artificial data and real-world data, and compare the results with

two recently proposed methods: (1) COP-Kmeans [82], a hard-clustering method based on

K-means, and (2) Penalized Probabilistic Clustering (PPC) 8(Chapter 2). The pairwise

relations are randomly generated. We use a confusion matrix between each clustering

result and the label to calculate the classification accuracy. We report the classification

accuracy averaged over 30 different realizations of relations.

4.7.1 Artificial Data (Hard Constraints)

The four 2-dimensional artificial data sets (Figure 4.4, classes denoted by symbols) are

designed to highlight the problems that cannot be effectively solved by centroid-based

8As shown in Chapter 3, the method in [69] is equivalent to PPC with hard constraints, so the result
of it is not included.
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clustering algorithms. Each data set consists of two classes with 200 data in each class.

We consider the pairwise relations highly reliable knowledge and set them to be hard

constraints. Intuitively, the classification problems presented in the first two data sets

(Four-Gaussians and Noisy-Xor ) can be solved with a constrained clustering, like COP-

Kmeans or PPC. However, it requires many pairwise relations to fight with the uncon-

strained data, which clearly suggest a poor maximum-likelihood solution. The other two

data sets (Doughnut and Two-Spirals) are tasks that are not achievable with a centroid-

based clustering algorithm. Figure 4.5 shows classification results for the four data sets

with a varying number of pairwise relations. SPGP with all three kernels returns satisfy-

ing results with a small number of pairwise relations, whereas PPC and COP-Kmeans do

not respond to them at all.

-
(a) Four-Gaussians (b) Xor (c) Doughnut (d) Two-Spirals

Figure 4.4: Artificial data sets. Classes are denoted by symbols.
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(b) Noisy-Xor
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(c) Doughnut
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(d) Two-Spirals

Figure 4.5: Classification accuracy Vs. number of relations on artificial data set result.
In the legend, HDK: heat diffusion kernel, RWK: lazy-random-walk kernel, SFK: step
function kernel, PPC: Penalized Probabilistic Clustering, COP: COP-Kmeans.

4.7.2 Real-World Data (Hard Constraints)

We also present results on six well-known real-world data sets with different characteristics.

Balance-Scale: we use only class L and R, 576 samples, 5 dimensions; Crab(species):
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200 samples, 5 dimensions; Pima: 768 samples, 8 dimensions; 1-2 and Small-Big are

handwritten digits recognition tasks with 64 dimension and around 370 samples for each

digit. The 1-2 contains digits “1” and “2” in 739 samples. The Small-Big is an artificial

task with two classes (digits ‘1, 2, 3’ Vs. ‘7, 8, 9’) and 2307 samples. For these two tasks,

we use the first 20 principal components as the feature vector for PPC. Mac-Windows is

a text classification task from the 20-newsgroup data set consisting of 7511-dim TFIDF

vectors and 1956 samples. Among these data sets, Crab and 1-2 are relatively easy for

centroid-based clustering algorithms. Balance and Small-Big are examples of highly non-

Gaussian distribution of samples within each class. Pima is difficult even for sophisticated

supervised learning methods [83]. Mac-Windows has very high-dimensional and sparse

feature vectors, which makes PPC and COP-Kmeans inapplicable. Therefore on this data

we only present SPGP results. Figure 4.6 summaries the classification results of the three

methods. On all data except Crab, SPGP outperforms PPC and COP-Kmeans. On Crab,

SPGP is still the best when pairwise relations are scarce (< 20) whereas PPC gives the

highest classification accuracy after 20 relations. We also notice that no single kernel is

consistently better than the others.
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(b) Crab (species)
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Figure 4.6: Classification accuracy Vs. number of relations for real-world data.
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4.7.3 Real-World Data (Soft Relations)

We also consider the situation where our pairwise relations come with significant uncer-

tainty. Here we simulate this uncertainty by randomly flipping the specified relations with

probability q. We assess the performance of SPGP with soft relations (soft-SPGP) on

those noisy relations, and compare it with SPGP with hard constraints (hard-SPGP),

PPC with soft relations (soft-PPC) and hard constraints (hard-PPC), and COP-Kmeans.

We try two different noise levels: q = 0.1 and q = 0.2, and set the weight of specified

relations for soft-SPGP and hard-PPC using Equation (4.17) with γij = q. Table 1 sum-

marizes the performance of the five algorithms with noisy relations on the six real-world

data sets used in Section 4.7.2. For SPGP, we use heat-diffusion kernel. In most occasions,

soft-SPGP gives best results among all five methods. In other occasions, hard-SPGP gives

slightly better or comparable results.

dataset Soft-SPGP Hard-SPGP Soft-PPC Hard-PPC COP-Kmeans
Balance q = 0.1 0.9568 0.9477 0.6406 0.6997 0.7870
(60) q = 0.2 0.9417 0.6427 0.6406 0.6846 0.7766
Crab q = 0.1 0.9030 0.9010 0.8045 0.8933 0.5933
(40) q = 0.2 0.8448 0.8520 0.6577 0.7800 0.5902
Pima q = 0.1 0.7317 0.6936 0.6510 0.6510 0.6510
(200) q = 0.2 0.7197 0.6863 0.6510 0.6510 0.6510
1-2 q = 0.1 0.9955 0.9922 0.9698 0.9684 0.9753
(30) q = 0.2 0.9902 0.9902 0.9697 0.9662 0.9740
Small-Big q = 0.1 0.9357 0.9332 0.6092 0.7201 0.6542
(40) q = 0.2 0.9176 0.6433 0.5928 0.7076 0.6487
Mac-Win q = 0.1 0.8150 0.7533 N/A N/A N/A
(40) q = 0.2 0.7799 0.5580 N/A N/A N/A

Table 4.1: Classification accuracy with noisy pairwise relations. Each row contains results
for one data set with two different q, and the number of relations is in the parenthesis.
The bold face number is the best result among all five methods.

4.8 Discussion and Conclusion

In this Chapter, we discussed a semi-supervised clustering model, called Semi-supervised

Pairwise Gaussian process classifiers (SPGP). Experiments on a variety of data sets show
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that SPGP is much more efficient on using the pairwise constraints, than constraint-based

algorithms such as COP-Kmeans and PPC. Moreover, SPGP inherits the modeling flexility

of the Gaussian process classifiers, and thus is more suitable for clustering problems in

which data from each class is far from a Gaussian.

Despite its efficiency and flexibility, SPGP suffers from the following two limitations:

• The central optimization is not convex and thus prone to local optima. One way

to alleviate the problem is to use deterministic annealing. Initializing fc with other

clustering algorithm, such as PPC, may also help.

• When we have M(> 2) classes, we have to use M Gaussian processes instead of one,

which, intuitively, will further increase the complexity of the cost landscape for f ,

and therefore will increase the chance of getting trapped in poor local optima.



Chapter 5

Constrained Clustering: Contribution

and Future Research

5.1 Contribution

In Chapter 2 and 3, we introduced Penalized Probabilistic Clustering (PPC), a constrained

clustering model adapted from the Gaussian mixture model we first proposed in NIPS 2004

[53] and later gave a more detailed exposition [54].

In PPC, our belief on the pairwise relations are expressed as a prior probability on

the assignments of data points to clusters. Unlike previous effort in this direction, this

clustering model naturally accommodates both hard constraints and soft preferences in

a framework. We lately extend PPC’s modeling flexibility by showing in [54] that PPC

provides a rich framework that can encompass many constraint-based models as special

cases. The PPC model has been discussed in Chapter 2 and its connection to other

constraint-based clustering models has been given in Chapter 3.

Although PPC and its follow-up models are successful in many applications, they

also suffer from their limited modeling capability and inefficiency on using the pairwise

constraints, as will be discussed in Chapter 2. Our second approach [55], named Semi-

supervised Pairwise Gaussian Process classifier (SPGP), is specifically designed to address

these two limitations. Instead of adapting a traditional clustering model, we start from

the Gaussian process classifiers (GPCs), a type of discriminative models carefully chosen

for our specific constrained clustering requirement, and treat the pairwise relations as a

special form of observation. The prior probability of the latent process is controlled with

67
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a kernel designed using the graph Laplacian of all the available data, thus making use

of the samples that are not involved in pairwise relations. Experiments on a variety of

data sets show that SPGP is much more efficient on using the pairwise constraints, than

constraint-based algorithms such as COP-Kmeans and PPC. Moreover, SPGP inherits

the modeling flexility of the Gaussian process classifiers, and thus is more suitable for

clustering problems in which data from each class is far from a Gaussian. This approach

has been discussed in Chapter 4.

Despite its efficiency and flexibility, SPGP suffers from the following two limitations.

First the central optimization is not convex and thus prone to local optima. One way to

alleviate the problem is to use deterministic annealing. Initializing fc with other clustering

algorithm, such as PPC, may also help.Second, when we have M(> 2) classes, we have

to use M Gaussian processes instead of one, which, intuitively, will further increase the

complexity of the cost landscape for f , and therefore will increase the chance of getting

trapped in poor local optima.

5.2 Future Research

It is certainly useful to have a constrained version of graph based method, such as nor-

malized cut, or its more heuristical variant, spectral clustering. One obvious choice is to

cast it into a constrained optimization problem while using the pairwise relations as the

constraints on graph partition, as in [28]. This method and all its variants to facilitate

the optimization, share the same weakness with generative model based clustering meth-

ods. That is, they are inefficient on using the constraints. Indeed, in a constrained graph

partition proposed in [28], the effect of constraints is almost limited to the constrained

samples, while those unconstrained samples are largely following a unsupervised graph

partition. Simple heuristic has been proposed to remedy this obvious limitation, such as

the constrained image segmentation algorithm , called “grouping with bias”, by Yu et al.

[88]. In their algorithm, a constrained pixel is enforced to be in the same cluster as its

neighbors in a vicinity specified by user. Therefore the pairwise constraints between two

pixels are “propagated” to their adjacent pixels in an ad hoc way. One interesting research
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direction for the future is a more principled way of this constraints propagation so that

(1) it can work on non-image data, and (2)no further human interference is needed.
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Part II

Cognitive Decline Detection



Chapter 6

Introduction to Cognitive Decline

Detection

6.1 Cognitive Decline Detection: Background

With increased life-span, there are more aged people suffering from impairment, for which

the loss of cognitive ability has become the most threatening cause. People with cognitive

impairment (particularly those at risk for dementia) require substantial assistance even

though they are healthy otherwise. It is thus critical to detect cognitive decline quickly and

reliably. Early detection of cognitive decline provides the opportunity for more effective

medical intervention, planning for compensation strategies, and assistance [12, 33, 66].

Research by our group and others show that motor changes, such as in walking and

finger tapping rates, can effectively predict cognitive decline several years before impair-

ment is manifest [15, 35, 79, 84]. The Bronx Aging Study [79] found that subjects with

syndromically rated neurologic gait abnormalities had increased risk of non-Alzheimer’s

dementia but not of Alzheimer’s disease (AD). Their Cox proportional regression shows

that individuals with any of the considered neurological gait abnormalities are 3.51 times

more likely to develop non-Alzheimer’s dementia. Other groups have investigated the

connection between motor performance and cognitive impairment. Wilson et al. [84] use

proportional hazards models to show that progression of parkinsonian signs, revealed by

a (modified) Unified Parkinson’s Disease Rating Scale (UPDRS), predicts increased risk

of developing AD. In a later study from the same group, Aggarwal et al. [1] report that
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among people with mild cognitive impairment (MCI)1,those with lower extremity motor

performance, Parkinsonian gait, and bradykinesia have a larger risk of developing AD

than individuals with good lower limb function.

A large body of literature indicates that there are clinical observations strongly predic-

tive of future cognitive decline years before the symptom becomes manifest. These stud-

ies require a longitudinal cohort design such that baseline or early measures of function

are then used to prospectively predict those that will develop mild cognitive impairment

(MCI) or dementia. This body of work shows that baseline cognitive function assessed up

to decades prior to developing dementia is highly predictive of dementia. In general, tests

assessing delayed recall 2 of information, as well as more generalized cognitive function,

“executive function”, or control processes [37, 18, 27] are all predictive. Similar to cogni-

tive function, motor function has also been identified as a complementary, but independent

predictor [58, 15, 79, 84] of future cognitive decline and dementia. This has been shown

both generally as overall slowing (bradykinesia) or loss of trunk and lower extremity au-

tomaticity measured by clinical signs on motor rating scales [84, 57] and more specifically

related to gait speed or timed walking [58, 15, 30, 1].

There is a consistent pattern of change in cognitive and motor domains that occurs

presymptomatically leading to MCI and dementia. Unfortunately, although these test

domains (cognitive and motor) predict group outcomes years later, they are difficult to be

applied to individual subjects to determine if they will decline with a degree of certainty

that is clinically helpful. This limitation comes from the analysis methodologies as well

as the data types employed in analysis to date.

The long-term goal of the research is a detection system that reliably predicts the

cognitive decline in the individual, using the motor and cognitive test data from both

clinical and in-home assessment technology. Ultimately this detection system should give

an estimate of the time horizon to a clinical diagnosis, or the time horizon to decline

to more severe impairment for a mildly impaired individual. In addition, each estimation

should come with a certainty value to facilitate the integration in a clinical decision system.

1See Section 6.3 for the clinical definition.
2See Section 6.3 for description.
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Our initial aim is to predict if an individual will become impaired, or if already mildly

impaired whether or not they will continue to decline.

6.2 Thesis Contribution and Roadmap

In this part of the thesis we will present our initial effort towards a sophisticated and reli-

able cognitive decline detection system. My contributions include an improved modeling

tool for longitudinal clinical data on both population and individual levels, and devel-

oping powerful discriminant machinery based on modern statistical learning theory and

population-informed models of individual subject time series.

Our work can be roughly divided into two related parts. In the first part, we studied

modeling a population of longitudinal time series with the mixed-effect models and propose

to apply the fit mixed-effect model (or a mixture of mixed-effect models) as a prior for

a new individual. This part of work is summarized in a manuscript in review [56], and

will be discussed in full detail in Chapter 7 and 8. The second part of our project is

a cross-sectional study partially based on the mixed-effect models. In this part of the

study, we attempted to build models predicting whether a cognitively healthy subject

will later develop into cognitive impairment based on his or her clinical records. This

static classification is useful as an aid for diagnosis, and it can also be viewed as the first

step towards a more sophisticated cognitive decline detection system that dynamically

estimates a subject’s risk of dementia at different age. In Chapter 9, we studied likelihood

ratio classifiers based on mixed-effect models. As a justification for modeling the individual

effects and the measurement noise seperately, we show that as a classifier the mixed-

effect model outperforms a baseline generative model assuming only observation noise.

To further improve the classification performance, we also examined the discriminative

models based on the state-of-the-art technology, as will be discussed in Chapter 10. We

extended the Fisher kernel, a generative model-based kernel design method, to deal with

time series with unequal lengths by exploiting the latent structure of mixed-effect models.

In addition we developed a new distance measure between time series based on Gaussian

processes, functional Bregman divergence, and the theory of reproducing kernel Hilbert
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space (RKHS).

6.3 Data Description

Our research focuses on using clinical motor behavior and psychometric data from the

Oregon Brain Aging Study (OBAS) [31]. The cohort consists of 216 subjects, with 91

males and 125 females. All subjects are healthy at entry, and when the data were drawn

78 of them had developed into mild cognitive impairment (MCI) or worse, while 138

remained cognitively healthy. In this study, we considered a subject as MCI or worse if he

or she had two consecutive Clinical Dementia Rating (CDR)3 score of 0.5 or greater. If

the CDR is over 0.5 at least once but never in two consecutive clinical visits, the subjects

are tagged questionable dementia. We divide all the subjects into the impaired group and

the normal group according to their state when the data were drawn from the database.

In our current study, we pool the questionable dementia subjects with the normal group.

Since we are mostly interested in the pre-diagnosis prediction, we retain only data

taken before a clinical diagnosis of MCI or dementia is made. Thus, when we speak of

’impaired’ subjects, we are referring to subjects who become impaired at a later date. Our

classification is predictive of future impairment. For a reliable prediction for individual

subjects, we only consider subjects with at least four motor measurements before the

cut-off date, which reduces the number of qualified subjects to less than 150, with 46 in

impaired group and less than 100 (varying with the types of measurements) in normal

group.

The measurements used include four motor behaviors (seconds, steps, tappingD, tap-

pingN) and two neuro-psychological tests (delayed-recall, logical memory II)[31]:

• seconds: The time in seconds the subject takes to walk 9 meters (∼ 30 feet). Usually,

the value of seconds increases as the subjects age or become impaired. We have 46

qualified subjects in impaired group and 97 in normal group.

• steps: The number of steps the subject takes to walk 9 meters (∼ 30 feet). Usually,

3The CDR value can only take values 0, 0.5,1,and 2, while 0 stands for the normal, and the other values
stand for increasing level of impairment.
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the value of steps increases increases as the subjects age or become impaired. We

have 46 qualified subjects in impaired group and 97 in normal group.

• tappingD: The number of the tappings the subject does in 10 seconds (averaged over

3 trials) with his or her dominant hand. Usually, the value of tappingD decreases

as the subjects age or become impaired. We have 46 qualified subjects in impaired

group and 97 in normal group.

• tappingN: The number of the tappings the subject does in 10 seconds (averaged over

3 trials) with his or her non-dominant hand. Usually, the value of tappingN decreases

as the subjects age or become impaired. We have 46 qualified subjects in impaired

group and 97 in normal group.

• delayed-recall: The number of words (out of 10) a subject can recall one minute after

the words are read to him or her. Usually, the value of delayed-recall decreases as the

subjects age or become impaired. We have 46 qualified subjects in impaired group

and 86 in normal group.

• logical memory II: The subject is asked to repeat a story that was told 15 ∼ 20 minutes

ago, and is graded according to the level of matching between the repeated story

and the original one. Usually, the value of logical memory II decreases as the subjects

age or become impaired, but it is observed that cognitively healthy people can often

learn to improve their score in the first 2 ∼ 3 years, and levels out afterwards. We

have 46 qualified subjects in impaired group and 82 in normal group.

Figure 6.1 shows a sample of the seconds data. In the left panel, we give eight mea-

surements of seconds test (across seven years) of one subject who later developed into

dementia, with each measurement plotted as a circle and consecutive measurement pairs

connected by a line. In the right panel we plot all the seconds measurements from all 46

subjects in the impaired group. Plot like this are referred to as spaghetti plots.

One of our initial aims is to predict whether an individual will become impaired. The

evaluation of the prediction model for this requires the ground-truth about individuals’

“final” cognitive state. In our study, we group the subjects based on whether they are
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Figure 6.1: Sample spaghetti plots of seconds from the impaired group. Left panel: one
example subject with eight measurements of seconds test (across seven years) who later
developed into impairment. Each measurement is plotted as a circle and any two consec-
utive measurements are connected by a line. Right panel: seconds measurements from all
46 subjects in the impaired group.

diagnosed as MCI or dementia when the data were drawn. This grouping is potentially

inaccurate due to the possibility that those mentally healthy subjects can later develop

into dementia given enough time, which is known as right censoring in the survival analysis

[47]. In the light of this, the classification approaches (and the way they are evaluated)

we will discuss in Chapter 9 and 10 should be considered as an approximation. We expect

that the future extension of our method will enable us to predict for each subject the

probability that he or she becomes impaired at any future age, which is then consistent

with the survivor function in the classic survival analysis.

Notation

Following are some notation conventions we will adopt through this part of thesis. (Note

that they might be different from the notation we used in Chapter 1- Chapter 4.)

• We use P (A) to denote the probability of discrete event A, and p(x) as the continuous

probability density at x.

• We use P (A; Θ) (or p(x; Θ)) to denote the probability of A (density of x) with
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model parameter Θ. We use P (A|B; Θ) (or p(x|B; Θ)) to denote the probability of

A (density of x) conditioned on event B with model parameter Θ.

• We use I to denote the identity matrix, and save the notation I for Fisher information

matrix (Chapter 10).

• We use a superscript for index of subjects and subscript for the index of time, for

example, we use yi
n for the nth observation of the ith subject taken at tin. Also, we

use yi to denote the set of observations of the ith subject, that is

yi = [yi
1 yi

2 · · · yi
Ni

]T

and ti is the corresponding age when the observations are made

ti = {ti1, ti2, · · · , tiNi
}

where Ni is the total number of observations available for the ith subject. We use

the same symbol without a superscript to denote the a sample in test set, often for

the out-of-sample testing of prediction or classification models. For example, we use

t and y to denote the time and clinic observations associated with a subject not

used for model training.

• We use Θ̃ to denote the parameters for the mixture models with the parameters and

prior (mixing proportion) of the mth component denoted as Θm and πm. That is

Θ̃ = {π1, Θ1, π2,Θ2, · · · , πM , ΘM}.

where M is the number of components in the mixture model.

• We use boldface letter for vectors and matrices. However when the matrix or vector

is a function evaluated on an ordered set of inputs, we still use regular font to denote

that function. For example, we use K(x, y) to denote a kernel function but K to

denote a kernel matrix.

• Suppose f(·) is a regular function with scalar output, we use f(x) with x = [x1, x2, · · · , xn]

to denote the vector [f(x1), f(x2), · · · , f(xn)]. Similarly, when f(x, y) is a scalar
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function of both x and y, we use f(x,y) to denote the following matrix




f(x1, y1) f(x1, y2) · · · f(x1, ym)

f(x2, y1) f(x2, y2) · · · f(x2, ym)
...

...
...

...

f(xn, y1) f(xn, y2) · · · f(x2, ym)




with x = [x1, x2, · · · , xn] and y = [y1, y2, · · · , ym].



Chapter 7

Mixed-effect Model for Longitudinal Data

Mixed-effect models provide a flexible and powerful tool for the analysis of a set of similar

data, which arises in diversified areas. Among their appealing properties, mixed-effect

models offer the flexibility to model the within-group correlation often present in a popu-

lation. Mixed-effect models have long been used for analyzing longitudinal data [48, 23],

and are a suitable modeling tool for the clinical data in our research. Most interestingly,

it provides a principled way to summarize a population and thus a means to compare the

characteristic of different populations. This property is of fundamental importance to us

since we need to discriminate the group of cognitively impaired people from the group

of healthy people. In this chapter, we will give a brief introduction to the mixed-effect

model, with a great emphasis on linear mixed-effect models. The mixed-effect models on

the longitudinal data in OBAS research will be given.

7.1 Regression Models

In this thesis, we confine attention to parametric regression1. Suppose there are k individ-

uals (indexed by i = 1, . . . , k) contributing data to the sample, and we have observations

{tin, yi
n}, n = 1, . . . , N i as a function of time t for individual i. Suppose that the data are

modeled as

yi
n = f(tin; γi) + εi

n (7.1)

where γi are the regression parameters and εi
n is zero-mean white Gaussian noise with

(unknown) variance σ2. The superscript on the model parameters γi indicates that the

1Nonparametric mixed-effect regression is discussed by Guo [32].

79
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generative model is different for each individual contributing to the population. Since the

model parameters vary across individuals, it is natural to consider them generated by the

sum of a fixed and a random piece

γi = α + βi (7.2)

where βi is assumed distributed N (0,D) with unknown covariance D. The expected

parameter vector α, called fixed effect or population model, determines the model for the

population as a whole. This intuition is most precise for the linear case

f(t; γ) = γT Φ(t) = αT Φ(t) + βT Φ(t) (7.3)

where Φ(t) = [φ1(t), φ2(t), ..., φd(t)]T denotes a vector of basis functions2. Using M =

{α,D, σ} to denote the mixed-effect model, the generative process of observations yi(=

[yi
1, y

i
2, · · · , yi

N i ]T ) at times ti(= [ti1, t
i
2, · · · , ti

N i ]T ), can be summarized with the graphical

model in Figure 7.1 with plate notation 3. Model fitting will use the entire collection

of data {ti,yi}, i = 1, . . . , k to determine the parameters M by maximum likelihood

considering the random effects {βi} as latent variables.

Figure 7.1: The graphical model of the mixed-effect model.

2More generally, the fixed and random effects can be associated with different basis functions.
3The plate notation simply groups together nodes that are duplicated–that is, have the same structure

inside the plate and are linked to nodes outside the plate in the same way. In this thesis we use plate
notation since all the individuals are generated the same way.



81

7.2 Maximum Likelihood Fitting

The likelihood of the data {ti,yi} given the mixed-effect model M = {α,D, σ} is

p(yi; ti,M) =
∫

p(yi|βi; ti, σ)p(βi|M)dβi

= (2π)−N i/2|Σi|−1/2 exp((yi − αT Φ(ti))T (Σi)−1(yi − αT Φi(ti)))

where

Σi =
N i∑

n=1

Φ(tin)DΦ(tin)T + σ2I

Φ(ti) = [Φ(ti1), Φ(ti2), · · · , Φ(tin)]T

The data likelihood for Y = {y1,y2, · · · ,yk} with T = {t1, t2, · · · , tk} is then

p(Y; T,M) =
k∏

i=1

p(yi| ti;M).

The maximum likelihood solution of {α,D, σ} can be found with the Expectation-Maximization

algorithm [24] with {β1, β2, · · · , βk} considered as the latent variable:

E-step: Q(M,Mg) = E{βi}[log p(Y, {βi};T,M)|Y;T,Mg] (7.4)

M-step: M = arg max
M

Q(M,Mg), (7.5)

where Mg stands for the estimation of the mixed-effect model obtained in previous step

and the expectation in the E-step is with respect to the posterior distribution of on {βi}
when Y is known and the model parameter is Mg. For the linear mixed-effect model in

Equation (7.3), the M-step has a closed form:

α = (
k∑

i=1

Φ(ti)T Φ(ti))−1
k∑

i=1

N i∑

n=1

(yi
n − E(βi|yi, ; ti,Mg)T Φ(ti)) (7.6)

D =
1
k

k∑

i=1

E(βi(βi)T |yi; ti,Mg) (7.7)

σ2 =
1∑k

i=1 N i

k∑

i=1

E(||εi||2 |yi; ti,Mg) (7.8)

The calculation of the expectations in Equation (7.6)-(7.8), performed in the E-step, are

straightforward since they are all expectation of linear or quadratic function of Gaussian
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variables. We first notice that

β̂i ≡ E(βi|yi, ; ti,Mg) = DgΦ(ti)TWi(yi − (αg)T Φ(ti)) (7.9)

ε̂i ≡ E(εi|yi, ; ti,Mg) = yi − (αg + E(βi|yi, ; ti,Mg))T Φ(ti), (7.10)

where Wi ≡ ((σg)2I + Φ(ti)DgΦ(ti)T )−1 with I standing for the identity matrix. It is

easy to see that Equation (7.6) and (7.9) give the closed-form update for α in the M-step.

After some algebra, we can rewrite Equation (7.7)-(7.8) as

D = Dg +
1
k
(

k∑

i=1

β̂i(β̂i)T −Dg
k∑

i=1

Φ(ti)TWiΦ(ti)) (7.11)

σ2 = (σg)2 +
1∑k

i=1 N i
(

k∑

i=1

||ε̂i||2 − (σg)4tr(
k∑

i=1

Wi)). (7.12)

The maximum likelihood fitting of mixed-effect model can be summarized as follows:

Fitting Mixed-effect Model

Input: Observations {ti,yi}k
i=1 (ti,yi ∈ RNi , i = 1, 2, · · · , k)from a population of subjects.

step 0 Select the basis functions Φ(t) = [φ1(t), φ2(t), ..., φd(t)]T .

step 1 Initialize the mixed-effect model parameters M = {α,D, σ}, where D has to be

positive definite.

step 2 Let Mg = M and calculate the Q(M,Mg) = E{βi}k
i=1|Y[log p(Y;T,M)|Y,Mg].

step 3 Find M = arg maxMQ(M,Mg) using

α = (
k∑

i=1

Φ(ti)T Φ(ti))−1
k∑

i=1

N i∑

n=1

(yi
n −DgΦ(ti)TWi(yi − (αg)T Φ(ti)))

D = Dg +
1
k
(

k∑

i=1

β̂i(β̂i)T −Dg
k∑

i=1

Φ(ti)TWiΦ(ti))

σ2 = (σg)2 +
1∑k

i=1 N i
(

k∑

i=1

||ε̂i||2 − (σg)4tr(
k∑

i=1

Wi)),

where Wi ≡ ((σg)2I+ Φ(ti)DgΦ(ti)T )−1.

step 4 Go back to step 2 until convergence. Return M.
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7.2.1 Restricted Maximum Likelihood Fitting

We may also consider the fixed effect α as a Gaussian variable ∼ N (ᾱ,A), which leads to

a mixed-effect model with parameters M = {ᾱ,A,D, σ}. The data likelihood is then

p(Y; M) =
k∏

i=1

∫
p(α|M)

∫
p(yi|α, βi; ti, σ)p(βi|M)dβidα,

which is called restricted maximum likelihood (REML) for mixed-effect models. Like the

maximum likelihood case, the REML fitting can also be done with EM algorithm (See

Appendix C for the details).

It is argued by Laird and Ware [48] that REML is more robust when the observations

are sparse. In our experiments, the ML fitting and REML fitting return very similar

models. That is, from REML fitting we get ᾱ close to α, a very small ||A||, and the

estimated random effect covariance D close to that from ML fitting.

7.3 Mixed-effect Models on OBAS Data

In this section we present the mixed-effect models trained to maximize the data likelihood.

We use the linear mixed-effect model with the polynomial basis function as Φ(t) = [1, t]T

(order 1) and Φ(t) = [1, t, t2]T (order 2). From Equation (7.3) the order-1 regression

is a linear function of t, and the order-2 regression model is a quadratic function4 of

t. We considered four motor observations (steps, seconds,tappingD, tappingN) and two

representative neuro-psychological test scores (delayed-recall, logical memory II). For the

four motor behavior measurements, we use the logarithm of measurement as the output

to achieve a better symmetry of the residual.

We show in Figure 7.3 the fit mixed-effect models for the four motor behaviors, in

Figure 7.4 the models for the two neuro-psychological test. The model parameter of the

fit mixed-effect models are given in Appendix B. The mixed-effect models are visualized

by plotting the fixed effect regression αT Φ(t) (red curve), and the expected standard

deviation of individual model from random effect (green curves) and measurement noise

4Do not confuse the linearity to the input variable t with the linearity with respect to the model
parameter γ.
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(dashed black curve, see caption). Clearly, for steps and seconds, the fixed effect for the

impaired group shows a faster pace of increase than the one for the normal group. For

tappingD and tappingN, the fixed effect model for the impaired group decreases faster

than the one for the normal group, while for tappingN the difference is less salient. Also

for tappingN and tappingD, the variance from the random effect in impaired group is

significantly larger than the one in normal group, while this effect is less obvious for

the other four measurements. For the two neuro-psychological test scores, the difference

between models of impaired group and normal group are significant with both order 1 and

order 2 regression models. Interestingly, for the logical memory II, we observe an increasing

performance in the fixed effect for the normal group, which is explained by the fact that

normal people can learn to do the test and improve their performance in the first 2 ∼ 3

years and their performance usually level out afterwards.

From Figure 7.3 and 7.4, it appears that the mixed-effect models based on quadratic

regression model fit the data better than the one based on linear model. However, our

later experiments show that the mixed-effect model based on quadratic regression model

does not bring a significant improvement for individual time series modeling, a result we

will discuss in Chapter 8. Moreover, for the discrimination between the two groups, as

we will discuss in Chapter 9, the quadratic model actually performs worse than the linear

models. There are two reasons, we speculate, for this: First, there are more parameters in

D to estimate for the quadratic model and we may not have enough samples for a reliable

estimation; Second, the distribution of the random effect parameter β may not be well

captured by a higher dimensional Gaussian. In the next three chapters, we will limit our

discussion to mixed-effect linear regression models.

7.4 Extensions of the Mixed-effect Model

7.4.1 Mixture of Mixed-effect Models

A population may consist of several sub-populations with different characteristics. Indeed,

as shown in Section 7.3, the motor ability of individuals destined to become cognitively

impaired declines more dramatically than in individuals that remain cognitively healthy



85

[15, 58]. It is sensible to describe the population with people from the two groups with a

mixture of two mixed-effect models5: one fit on the normal group (denoted M0) and one

fit on impaired group (denoted M1), with

Mm = {αm,Dm, σm}, m = 0, 1.

Here, we use M̃ = {π0,M0, π1,M1} to denote the parameters of this mixture, where π0

and π1 are the mixing proportions (prior) estimated from the individuals in the training

data. The overall generative process for any individual time series (ti,yi) can be sum-

marized as a graphical model shown in Figure 7.2. Here zi ∈ {0, 1} is the latent variable

indicating which mixed-effect model component is used in generating yi. The generative

process consists of the following three steps:

1. We randomly set the value of zi as in {0, 1} with probability π0 and π1. (That is

equivalent to choosing the generative component from the mixture.)

2. We randomly draw γi from the Gaussian distribution N (αzi ,Dzi), where αzi and

Dzi are respectively the fixed effect and the covariance of the random effect in model

Mzi .

3. Let yi
n = (γi)T Φ(tin) + εi

n, where εi
n is drawn from N (0, σ2

zi).

7.4.2 Mixed-effect Model with Multiple Output Variables

Different types of clinical measurements provide different but related information about

cognitive decline, and it is thus desirable to fuse these information sources. Not surpris-

ingly, this can be done with the mixed-effect model with multiple output variables, which

assumes for each output variable a different regression model, coupled through the cor-

relation between the regression model parameters. With a simple transformation, this

multiple output case can be described with the model same as the single output case.

Assuming that for each individual i, there are L types of measurements we want to model

jointly

{t(l),in , y(l),i
n }, l = 1, · · · , L, n = 1, . . . , N (l),i,

5It is straightforward to construct such a mixture with more than two components.
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Figure 7.2: The graphical model of the mixture of mixed-effect models.

which are individually modeled as

y(1),i
n = α(1)Φ(1)(t(1),i

n ) + β(1),iΦ(1)(t(1),i
n ) + ε(1),i

n , n = 1, · · · , N (1),i

· · · · · ·

y(L),i
n = α(L)Φ(L)(t(L),i

n ) + β(L),iΦ(L)(t(L),i
n ) + ε(L),i

n , n = 1, · · · , N (L),i

where α(1) and β(l),i are respectively the fixed and random effect (for individual i) for

measurement of type l, and Φ(l)(·) are the corresponding basis functions. Note it is not

required that different measurements are made the same time.

We first concatenate the output variables into a longer one

ȳi = {y(1),i
1 , · · · , y

(1),i

N(1),i , · · · , y
(L),i
1 , · · · , y

(L),i

N(L),i}

with observation times

t̄i = {t(1),i
1 , · · · , t

(1),i

N(1),i , · · · , t
(L),i
1 , · · · , t

(L),i

N(L),i}.
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For the mixed-effect model, we let

ᾱ = [α(1); · · · ; α(L)]

β̄i = [β(1),i; · · · ; β(L),i],

Φ̄i =




Φ(1)(t(1),i) 0 · · · 0

0 Φ(2)(t(2),i) · · · 0
...

...
. . .

...

0 · · · 0 Φ(L)(t(L),i)




ε̄i = [ε(1),i
1 , ε

(1),i
2 , · · · , ε

(1),i

N(1),i , · · · , ε
(L),i
1 , ε

(L),i
2 , · · · , ε

(L),i

N(L),i ]
T

The concatenated vector ȳi is modeled as follows, with ȳi = [ȳi
1, ȳ

i
2, · · · , ȳi∑L

l=1 N(l),i
]T ,

ȳi
n =





α(1)Φ1(t(1),i
n ) + β(1),iΦ1(t(1),i

n ) + ε
(1),i
n 1 ≤ n ≤ N (1),i

· · · · · ·

α(L)Φ(L)(t(L),i

n−∑L−1
l=1 N(l),i

) + β(L),iΦ(L)(t(L),i

n−N(L),i)ε
(L),i

n−∑L−1
l=1 N(l),i

∑L−1
l=1 N (l),i + 1 ≤ n ≤ ∑L

l=1 N (l),i.

which is equivalent to

ȳi = (ᾱ)T Φ̄i + (β̄i)T Φ̄i + ε̄i. (7.13)

Clearly, Equation (7.13) is a single-variable regression model, and the set of measurements

{ȳi, t̄i} can thus be modeled with the single-variable mixed-effect model described above.

If we further assume β̄i and ε(l),i (l = 1, 2, · · · , L) are independent Gaussian variables with

variance D and (σ(l))2, we can optimize over the parameter M = {ᾱ,D, σ(1), · · · , σ(L)}
with the EM algorithm described above. Note that the different measurements are coupled

by the joint covariance matrix D 6. This joint mixed-model for multiple measurements

will be referred to as the multivariate mixed-effect model as opposed to the univariate

6When we ignore the correlation between random effects corresponding to different types of measure-
ments, we get a block-diagonal D. That is equivalent to assume all different type of measurements from
the same individual are independent

p(ȳi; t̄i,M) =

L∏

l=1

p(y(l),i; t(l),i,M(l)), (7.14)

where M(l) is the mixed-effect model for the lth type of measurement. The generative model in Equation
(7.14) is called a naive Bayesian model [59].
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mixed-effect model, as we described in Section 7.1 and 7.2, although the modeling and

training of which are not vastly different from that in a single type case.

In our experiments, we tried to combine two or more measurements out of the six mea-

surements, for example seconds and tappingD. We expect to gain some extra information

about one measurement from observing the other and thus achieve a better prediction,

with the help of the correlation between them modeled by the D in the joint mixed-effect

model. Unfortunately, our experiments show that this information gain is insignificant.

The reason, we speculate, is that the distribution of the joint random effect can not be

well captured by the higher dimensional Gaussian distribution N(ᾱ,,D) in the multivari-

ate mixed-effect model. Note that this situation is not caused by over-fitting (although it

might exist) since the information gain is measured on training data, and therefore cannot

be solved by putting prior on D. The classification results in Chapter 9 and Chapter 10

suggest the similar futility of combining multiple measurements with the current configu-

ration of mixed-effect model. In the rest of this thesis, we will limit ourselves to modeling

each type measurement separately.

7.5 Applications of Mixed-effect Model

In Chapter 8, 9 and 10, we will discuss the two applications of the mixed-effect models.

We know from this chapter that mixed-effect models can be used as the generative models

for the longitudinal time series. We can get an informative prior for the regression model

of the new time series by assuming it is generated from the same mixed-effect model. We

will explore this idea in Chapter 8 and show that the learnt prior significantly improve

the quality of regression. We have demonstrated the mixed-effect models as a means to

manifest the difference between the normal group and the impaired group on a population

level. We further show that the mixed-effect model can also be used in differing the two

group on an individual level. Indeed, in Chapter 9, we build a probabilistic classifier

of time series by directly exploiting the generative property of mixed-effect models. In

Chapter 10, we will discuss the potential advantages and drawbacks of classification based

on mixed-effect models, and in the same chapter, we show how to avoid those drawbacks
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by combining them with a discriminative model.



90
seconds

Normal: order 1 Impaired : order 1 Normal : order 2 Impaired : order 2

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

se
co

nd
s)

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

se
co

nd
s)

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

se
co

nd
s)

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

se
co

nd
s)

steps

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

st
ep

s)

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

st
ep

s)

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

st
ep

s)

70 80 90 100
1

1.5

2

2.5

3

3.5

4

Age

lo
g(

st
ep

s)

tappingD

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

tappingN

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

70 80 90 100
2

2.5

3

3.5

4

4.5

5

Age

lo
g(

# 
of

 ta
pp

in
gs

)

Figure 7.3: The fit mixed-effect models for the four motor behaviors. The linear mixed
model with basis function Φ(t) as order 1 (linear) and order 2 (quadratic) polynomials of
t. In each panel, the red line stands for the model given by the fixed effect αT Φ(t). The
two green lines stand for αT Φ(t)±

√
ΦT (t)DΦ(t), i.e., the population model ± the s.t.d.

of the deviation from the uncertainty of the β. The black dash line is the s.t.d of the
deviation when we consider the observation noise ε, that is αT Φ(t)±

√
ΦT (t)DΦ(t) + σ2
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Figure 7.4: The fit mixed-effect models for the two neuro-psychological tests. The linear
mixed model with basis function Φ(t) as order 1 (linear) and order 2 (quadratic) polyno-
mials of t. In each panel, the red line stands for the model given by the fixed effect αT Φ(t).
The two green lines stand for αT Φ(t) ±

√
ΦT (t)DΦ(t), i.e., the population model ± the

s.t.d. of the deviation from the uncertainty of the β. The black dash line is the s.t.d of the
deviation when we consider the observation noise ε, that is αT Φ(t)±

√
ΦT (t)DΦ(t) + σ2



Chapter 8

Good Priors from Population Maximum

Likelihood

It is clinically helpful to predict the future cognitive decline of a subject based on his or

her historical clinical observations. One way to do that is to build a parametric regression

model fit to the existing observations. However, regression models, even the simplest ones,

often suffer from overfitting, especially when the observations are sparse and noisy. As a

conventional way to circumvent overfitting, we often take the problem into the Bayesian

framework and put a prior on the model parameter, through which we convey our belief

that certain models are more likely than others. However the priors are usually not specific

to the problem considered, but rather chosen based on either convention (for example a

penalty on the average square of the second derivative to insure smoothness), or mathe-

matical and computational convenience (for example we may choose a conjugate prior for

analytical tractability, or a ridge regression because it is simple and works adequately).

In this chapter, we describe our work on learning an informative prior from a population

of similar tasks based on mixed-effect model.

8.1 Informative Priors

It is appealing to find a framework where more problem specific prior can be extracted. We

are interested in the situation in which a data sample is generated by a number of different

individuals. More specifically, in this chapter, the individuals and the data considered are

measurements over time of subjects in a clinical longitudinal study. The same ideas should

apply to other situations, for example, time series from a collection of stocks representing a

92
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market sector, or utterances from a set of speakers recruited to build a speech recognition

system. In each of these examples, there are models at two levels: the underlying model

for each individual, and the collective model that describes the entire population.

Within this framework, we are interested in building models for new individuals that

make efficient use of their data by incorporating priors derived from a population of similar

tasks. A simple heuristic approach might fit separate models to each individual, examine

the mean and variance of the individual models to extract a prior to use in generating

models for new individuals. A more rigorous approach would correct the asymmetry in

the heuristic by regularizing each of the individual models using priors derived from the

entire data sample. Although not generally viewed as such, this is precisely the maximum

likelihood fitting of mixed-effect models, as discussed in Chapter 7. In this Chapter, we

will show that this framework is a very effective way to derive informative priors for fitting

out-of-sample data.

8.2 Regression Models

We start by reviewing the notation for regression models that we used in Chapter 7.

Suppose there are k individuals (indexed by i = 1, . . . , k) contributing data to the sample,

and we have observations {tin, yi
n}, n = 1, . . . , N i as a function of time t for individual i.

Suppose that the data are modeled as

yi
n = f(tin; γi) + εn (8.1)

where ε is zero-mean Gaussian noise with (unknown) variance σ2. We use yi = {yi
1, y

i
2, · · · , yi

N i}
as the set of the observations for individual i collected at ti = {ti1, ti2, · · · , ti

N i}. As dis-

cussed in Chapter 7, we consider the model parameters generated by the sum of a fixed

and a random piece

γi = α + βi (8.2)

where β is assumed distributed N (0,D) with unknown covariance D. In this thesis, we

are mainly concerned with the linear case

f(t; γ) = γT Φ(t) = αT Φ(t) + bT Φ(t) (8.3)
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where Φ(t) = [φ1(t), φ2(t), ..., φd(t)]T denotes a vector of basis functions.

8.3 Estimation of Parameters

8.3.1 Mixed-effect Model as Prior

We use M = {α,D, σ} to denote the fit mixed-effect model. It is easy to see that M
defines a distribution of the model parameter γ:

p(γ|M) ∝ exp(
1
2
(γ − α)TD−1(γ − α)) (8.4)

Using this distribution as a prior, we can write the posterior probability of model parameter

γ for any novel individual after its observation (y, t) is known:

p(γ|y; t,M) ∝ p(γ|M)p(y |γ, t;M) (8.5)

∝ exp(
1
2
(γ − α)TD−1(γ − α)) exp(

1
2σ2

N∑

n=1

||yn − f(tn; γ)||2) (8.6)

= exp(
1

2σ2

N∑

n=1

||yn − f(tn; γ)||2 +
1
2
(γ − α)TD−1(γ − α)). (8.7)

When f(t, γ) is linear in γ, the posterior probability of γ is a Gaussian. Therefore the

maximum a posteriori (MAP) solution and the posterior mean of γ are the same [67]:

γ̂B = α + (
1
σ2

n∑

i=1

Φ(tn)Φ(tn)T + D−1)−1
n∑

i=1

ΦT (tn)(yn − αT Φ(tn)). (8.8)

Note that Equation (8.8) is essentially the same as finding E(βi|yi; ti,Mg) in the E-step

(Equation (7.4)) .

8.3.2 Relation to Ridge Regression

The common ridge regression assumes a simple spherical prior p(γ) ∝ exp(−λ
2 ||γ||2).

Finding the MAP solution is then equivalent to the following optimization

γ̂R = arg max
γ

[exp(
1

2σ2

N∑

n=1

||yn − f(tn; γ)||2 +
λ

2
||γ||2)]. (8.9)

which can be given in closed form

γ̂R = (
N∑

n=1

Φ(tn)Φ(tn)T + σ2λI)−1
N∑

n=1

ΦT (tn)yn. (8.10)
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Equation (8.10) can be viewed as a special case of Equation (8.8) with α = 0 and D = λ−1I.

Not surprisingly, if Equation (8.4) defines the true prior of parameters γ , the parameters

given by Equation (8.8) are generally better than those given by Equation (8.10).

This property can be more rigorously expressed through the generalization error [60].

The generalization error for any particular parameter estimator γ̂ is defined as the expec-

tation of test error

〈εtest〉ε,ε′,γ =

〈
n′∑

i=1

||y′n − f(t′n; γ̂)||2
〉

ε,ε′,γ

(8.11)

=
∫ ∫ ∫

p(γ|M)p(ε)p(ε′)
N ′∑

n=1

||y′n − f(t′n; γ̂)||2dε dε′ dγ (8.12)

where y′n = f(t′n; γ) + ε′n is the observation made at new times {t′1, t′2, · · · , t′n′} with

observation noise ε′ independent of the noise ε in training data. Actually, we can further

show that the regression given by

f(t; γ̂B) = (γ̂B)T Φ(t)

gives the least generalization error among all regression models of the form of Equation

(8.3), as proven as follows. Letting R =
∑N

n=1 Φ(tn)Φ(tn)T and R′ =
∑N ′

n=1 Φ(t′n)Φ(t′n)T ,

the expected generalization error is

〈εtest〉BLUP
ε,ε′ =

〈
N ′∑

n=1

(γT Φ(t′n) + ε′n − γ̂BΦ(t′n))2
〉

ε,ε′
(γ̂B is a function of ε)

= tr{R′(R + (
D
σ2

)−1)−2(
D
σ2

)−2(γ − α)(γ − α)T ) + σ2R′R(R + (
D
σ2

)−1)−2}+ n′σ2

If we integrate out γ based on its distribution N (α,D), we get

〈εtest〉BLUP
ε,ε′,γ =

∫
〈εtest〉BLUP

ε,ε′ p(γ)dγ = tr{R′(
R
σ2

+ D−1)−1}+ n′σ2.

〈εtest〉BLUP
ε,ε′,γ is the smallest among these achieved by all γ̂ in the form of a+bTy. One can

see that by calculating the derivatives of 〈εtest〉ε,ε′,γ to a and b and setting them to zero.

That is why Equation (8.8) is also known as the best linear unbiased prediction (BLUP)

[67].
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8.3.3 Mixture of Mixed-effect Models as Prior

When a sample time series is from a population consisting of several sub-populations

with different characteristics, it is suitable to use a mixture of mixed-effect model as the

generative model, as discussed in Section 7.4.1. We use M̃ = {π0,M0, π1,M1} to denote

the parameters of this mixture, with πm being the mixing proportion of the mth component

mixed-effect model and Mm = {αm,Dm, σm} being its parameters. For any novel subject

with measurement y, the joint probability of γ and y is

p(y, γ; t,M̃) =
1∑

m=0

πmp(γ;Mm)p(y| t; γ) . (8.13)

Using Bayes rule, the posterior of parameter γ is given by

p(γ|y, t,M̃) =
p(γ,y; t,M̃)

p(y; t,M̃)
=

∑1
z=0 p(z,y; t,M̃)

p(y; t,M̃)
(8.14)

=
1∑

m=0

P (z = m|y; t,M̃)p(γ|y; t,Mm). (8.15)

From Section 8.3.1, when f(t; γ) is linear in γ, p(γ|y, t,Mm) is Gaussian, and thus

p(γ|y; t,M̃) is a mixture of Gaussians1. Due to the linearity, the optimal estimator

of γ that minimizes the generalization error is the posterior mean of γ

γ̂M = arg min
γ

〈
N ′∑

n=1

||y′n − f(t′n; γ̂)||2
〉

ε,ε′,γ

= E(γ|y, t,M̃) (8.16)

=
M∑

m=1

P (z = m|y; t,M̃){αm + (
1

σ2
m

N∑

n=1

Φ(tn)Φ(tn)T + D−1
m )−1

N∑

n=1

ΦT (tn)(yn − αT
mΦ(tn))}(8.17)

In the remainder of the paper, we will refer to the regression model in Equation (8.17) as

MixPrior 2.

1Note the parameters of this Gaussian mixture is functions of y and t, and not constant.
2If f(t; γ) is not linear in γ, finding the solution that minimizes the generalization error is generally

difficult. Instead, we can find the MAP solution by maximizing the posterior probability of γ formulated
in Equation (8.15). When σm ≈ σ for any m ∈ {1, 2, · · · , M}, the right hand side of Equation (8.15) can
be approximated as

p(γ|y; t,M̃) ≈ p(y|γ; t, σ)

M∑
m=1

P (z = m|y; t,M̃)(γ|{αm,Dm}). (8.18)

Here the first factor on right hand side of Equation (8.18) tells us how well the model γ describes the data
y, and the second factor is about the prior distribution of γ.



97

8.4 Experimental Results

In this section we give the results of fitting individual curves using the population model

as the prior. We consider two motor behaviors steps and seconds, for which the reading

generally increases with age and cognitive decline. The population (with 143 individuals)

consists of the normal group (97 individuals) and impaired group (46 individuals), with

people in impaired group deteriorate faster than the normal group. As in Chapter 7, we

use the mixed-effect model with basis functions Φ(t) = [1, t]T and Φ(t) = [1, t, t2]T . The

corresponding mixed-effect models fit on the two data can be found in Figure 7.3.

As we discussed in Section 8.3, the ridge regression, BLUP, and MixPrior can all be

viewed as MAP estimation of parameters γ with different priors. In Figure 8.1, we give an

example on how the probability of γ changes after some observations are incorporated. The

particular individual in this example is from impaired group. It consists of 15 observations

and we used the first 5 for training and the remaining 10 for testing, as shown on the

bottom panel in Figure 8.1 (see caption). We show with the upper row (three panels)

in Figure 8.1 the prior probability density of γ given by the ridge regression, BLUP, and

MixPrior, and with the middle row (three panels) the corresponding posterior probability

densities of γ after the first five observations are incorporated. For BLUP, we used the

mixed-effect model fit on impaired group as the prior. For MixPrior the mixing proportion

are estimated based on the number of individual from each group. The bottom panel

shows the curve fitting result with different regression models. In this example, with only

5 observations, the BLUP and MixPrior reached a solution close to the one that minimize

total test error for all the 15 points for this individual.

The following two experiments are designed to show the modeling ability of our al-

gorithm under two different assumptions. In the first experiment (Figure 8.2 and 8.3),

we suppose the diagnosis for each individual is known. We can thus use BLUP with the

correct population prior as the modeling method. In the second experiment (Figure 8.4),

we suppose the diagnosis for each individual is unknown, and correspondingly, we use

MixPrior for individual modeling.

The experiments are carried out in a“leave-one-out” fashion to prevent the model
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are trained and evaluated on different sets of individuals. For example, when we try to

model individual i, the population model will be trained on individual {1, 2, · · · , i− 1, i +

1, · · · , k}. For each individual, we used the first several observations for curve fitting

and rest observations for testing. The thing of interest to us is the behavior of different

algorithms with a varying number of training points.

In Figure 8.2 and Figure 8.3, we compare the test error from BLUP with that from

LSQ and ridge regression. For ridge regression, the penalty coefficient λ is manually

chosen to minimize the total test error of all the test points. The reported test error for

each method is averaged over all the test points. It is clear from Figure 8.2 and 8.3 that

BLUP achieves a decent fitting with as few as 4 points for training, while with the same

number of training points, LSQ and ridge regression give considerably higher test error.

This observation indicates that when the information from the observations is limited,

the BLUP prior plays an important role in finding proper parameters. When the number

of training points increases, the difference between BLUP and ridge regression decreases,

although BLUP is still consistently better than ridge regression. Not surprisingly, both

regularized models achieves less test error than LSQ.

In Figure 8.4, we mix all the individuals from two groups and for each method, the test

error is averaged over all the test points in the two groups. This case corresponds to the

scenario that we do not know the correct membership of the individual we are studying,

and therefore we used the mixture of mixed-effect model as prior. For comparison, we also

list the BLUP result with the correct group prior. The result shows that MixPrior gives a

slightly higher test error than BLUP, but is still considerably better than ridge regression

and LSQ fitting. The meaning of this result is twofold. First, when the group membership

information is available, the prior used in BLUP is more accurate than MixPrior. Second,

when the correct group is unknown, the mixture of the mixed-effect models is still a

highly informative prior in helping find the proper model parameters, as compared to

ridge regression and LSQ.

It is also revealed from Figure 8.2 ∼ 8.4 that the BLUP regression with quadratic func-

tions does not yield significant improvement over that with linear function. Furthermore,

even though the quadratic and linear population models in Figure 7.3 are substantially
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Figure 8.1: The probability density of γ before and after the observations are incorporated.
The first row, the prior probability of γ given by ridge regression, BlUP, and mixture of
ME. The second row, the posterior probability of γ after {y1, y2, · · · , y5} is known. Note
the red dot is the location of parameters minimizing the

∑15
i=1(f(tn; γ) − yn)2 and the

black cross is the location of the MAP estimation. The bottom panel is the curve fitting
result from different models. Cyan dots: points used for training; Blue dots: dots for
testing; Green line: the BLUP solution; Green dashed line: MixPrior. Black line:
LSQ; Black dashed line: ridge regression.
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different, for most particular subjects the BLUP regression with linear and quadratic func-

tions are very similar. It appears that for most individual subjects the observations do not

span a long enough time range to distinguish between the linear and quadratic models.

8.5 Summary

In this chapter, we discussed improving the prediction of motor ability decline on individual

level by learning a prior from similar subjects. We examined regression in a hierarchical

model framework, where the hierarchy consists of models for each of several individuals

that contribute to the population sample, and an overall population model. In our work,

this hierarchical model can either be a mixed-effect model or a mixture of mixed-effect

models (when the population consists of several sub-populations). The distribution of

model parameters across the population then serves as a model prior for regression on

out-of-sample data. With the learnt prior, our regression model can produce accurate

predictions with small amounts of fitting data. We have demonstrated both theoretically

and empirically that this framework provides priors substantially superior to that used in

ridge regression.
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Figure 8.2: The test error with order-1 polynomial (linear) regression model. The test
error with order-1 model. The logarithm of mean square error from different models with
varying number of the training points. The red line the error by using the population
mean α as the model parameters.
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Figure 8.3: The test error with order-2 polynomial (quadratic) model. The logarithm of
mean square error from different models with varying number of the training points. The
red line the error by using the population mean α as the model parameters.
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Figure 8.4: The test error with mixture of mixed-effect models as prior. The logarithm
mean square error from different models with varying number of the training points. The
data is the union of normal and impaired group.



Chapter 9

Detection of Cognitive Decline Based on

Mixed-effect Models

In Chapter 8, we discussed the prediction of individual subject’s future motor ability based

on historical observations. Left unanswered, is how to identify those people with high risk

of developing into impairment based on their sparse historic clinical observations. We

considered several solutions to this classification problem. In this chapter, we will discuss

building a classifier based on the mixed-effect models from a generative model perspective.

Later in Chapter 10, we will discuss the classifiers based on discriminative models.

9.1 Likelihood Ratio Based on Mixed-effect Models

Again, let us consider the mixed effect model mixture M̃ consisting of two component

models, M0 or impaired group and M1 for normal group, with mixing proportion (prior)

π0 and π1. For any given observation (t,y), the posterior probability that this observation

is generated from M0 is given by

P (z = 0|y; t,M̃) =
π0p(y; t,M0)

p(y; t,M̃)
=

π0p(y; t,M0)
π0p(y; t,M0) + π1p(y; t,M1)

(9.1)

where to get p(y; t,Mm) we need to integrate out the random effect parameter β. That

is

p(y; t,Mm) =
∫

Rd

p(y; t, αm + β)p(β;Mm)dβ

= (2π)−n/2|Σm|−1/2 exp((y − αT
mΦ)T (Σm)−1(y − αT

mΦ))

104
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where

Σm =
N∑

n=1

Φ(tn)DmΦ(tn)T + σ2
mIn×n

Φ = [Φ(t1), Φ(t2), · · · , Φ(tn)]T .

The classification decision can be made based on the posterior probability

c =





0 P (z = 0|t,y;M̃) ≥ 0.5

1 otherwise
(9.2)

Equation (9.2) is the optimal Bayesian classifier that minimizes the expected the 0-1 loss

P (z = 0|t,y;M̃)I(c 6= 0) + P (z = 1|t,y;M̃)I(c 6= 1) (9.3)

where I(·) is a function with boolean input and binary output:

I(ω) =





1 ω is true

0 otherwise
.

If we considered unequal cost for misclassification cost to different classes, we instead

minimize the following cost function:

CHP (z = 0|t,y;M̃)I(c 6= 0) + CI P (z = 1|t,y;M̃)I(c 6= 1). (9.4)

The optimal classifier is given by

c =





0 p(yi;ti,M0)
p(yi;ti,M1)

≥ π1
π0

CI
CH

1 otherwise
(9.5)

where p(yi;ti,M0)
p(yi;ti,M1)

is referred to as likelihood ratio.

We define the detection rate probability that subjects who later become impaired

are correctly identified, and the false alarm rate as the probability that subjects who

remain healthy are incorrectly predicted to become impaired. We are interested in the

performance of the detection rate given a false alarm rate, which is given by the receiver

operating characteristic (ROC) curve [64].
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Classification Based on Multivariate Mixed-effect Model It is straightforward to

extend the generative model-based classifier to the multivariate (Section 7.4.2) as a way

to fuse several clinical measurements in classification decision. As we noted in Chapter

7, the multiple variate mixed-effect, the full covariance case or the naive Bayesian case,

is not a satisfying way to describe the joint probability of the measurements of different

types. This statement is further verified by our pilot research on using the multivariate

mixed-effect model on classification. Generally, the classification result given by the joint

model is not significantly better than the one given by the best univariate model, most

times worse.

9.2 Evaluation of Classifiers

We assess the performance of a classifier as the area under the ROC curve (AUC), which

can be empirically estimated

AUC =
1

kIkH

kI∑

i=1

kH∑

j=1

{I(Y i
H > Y j

I ) +
1
2
I(Y i

H = Y j
I )} (9.6)

where Y i
H is the classifier output for subject i in impaired group and the Y j

I is classifier

output for subject j in the normal group. To compare two classifiers A and B we calculate

the difference between the two corresponding AUCs

∆AUC = AUCA −AUCB.

The null-hypothesis AUCA = AUCB is tested by comparing the test statistic ∆AUC/
√

var {∆AUC}
with a standard Gaussian distribution (Z-test), where var {∆AUC} is the sample variabil-

ity. In the rest of this thesis, we will refer to the significance level of rejecting null-

hypothesis test value as the significance of the statement “Classifier A is different from

Classifier B”.

In our case, all classifiers are evaluated on the same subjects, and var {∆AUC} between

classifier A and B is estimated as
∑kI

i=1 ˆvar(ŜH,A(Y i
H,A)− ŜH,B(Y i

H,B))
kI

+

∑kH
j=1 ˆvar(ŜI,A(Y j

I,A)− ŜI,B(Y j
I,B))

kH

where (as defined in [64] page 69 and 108 )
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• Y i
H,A is the output from classifier A for the ith subject in the normal group

• Y i
I,A is the output from classifier A for the ith subject in the impaired group

• Y j
H,B is the output from classifier B for the jth subject in the normal group

• Y j
I,B is the output from classifier B for the jth subject in the impaired group

• ŜH,A is the empirical non-disease placement value for classifier A estimated as

ŜH,A(Y ) =
1

kH

kH∑

i=1

I(Y i
H,A ≤ Y )

• ŜI,A is the empirical disease placement value for classifier A estimated as

ŜH,A(Y ) =
1
kI

kI∑

j=1

I(Y j
I,A ≤ Y )

• ŜH,B is the empirical non-disease placement value for classifier B estimated as

ŜH,B(Y ) =
1

kH

kH∑

i=1

I(Y i
H,B ≤ Y )

• ŜI,B is the empirical non-disease placement value for classifier B estimated as

ŜI,B(Y ) =
1
kI

kI∑

i=1

I(Y j
I,B ≤ Y )

The sampling ˆvar is estimated using the jackknife sampling [26] as follows:

ˆvar(ŜH,A(Y i
H,A)− ŜH,B(Y i

H,B)) =
kH

kH − 1

kH∑

j=1

(Ŝ(j)
H,A(Y i

H,A)− Ŝ
(j)
H,B(Y i

H,B))2.

9.3 Comparing to A Baseline Generative Model

To demonstrate the discriminative power we gain from distinguishing random effect from

observation noise in the mixed-effect models, we compare it to a simpler generative model

that assumes no random effect and explains all the deviation from the population model as

(white) observation noise. The maximum-likelihood fitting of this model is actually a least
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square fitting to all the observations without distinguishing the individuals. Equivalently

this simplified model can be viewed as a mixed-effect model with constraint D = 0. Using

S0 and S1 to denote the simplified model fit on the normal group and impaired group, with

Sm = {µm, sm}, where µm is the fit regression model and sm is the observation noise.1

Once the models are fit, we can calculate the likelihood of any novel sample y is generated

by each Sm

p(y; t,Sm) = (2π)−n/2σ−n exp(
||y − µT

mΦ||2
2s2

m

),

with Φ = [Φ(t1),Φ(t2), · · · ,Φ(tn)]T , based on which we can build the likelihood ratio

classifier. We expect the classifiers based on mixed-effect models can outperform this

baseline classifier since we believe the random effects better describe the individual data

than merely the observation noise.

We compare the classification result of mixed-effect model and LSQ model in Figure

9.1. It is clear from Figure 9.1 that mixed-effect model is generally better than the

simplified model, but this superiority is not statistically significant except on the delayed-

recall.

1Generally µm 6= αm, although in our experiments they are fairly close.
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Figure 9.1: The ROC curves of the likelihood ratio classifiers. The number in the paren-
thesis is the p-value (Z-test) for the null-hypothesis “AUC of mixed-effect model is same
as the AUC of least square fitting”.



Chapter 10

Detection of Cognitive Decline:

Discriminative Approaches

In Chapter 9, we discussed cognitive detection with mixed-effect models as the generative

models. It is long known in machine learning community that generative model-based

classifiers are often inferior to discriminative methods in terms of classification accuracy.

One important reason, as discussed by many authors [25, 42], is the following. In a

generative model-based classifier, the model for each class is usually trained separately

based on maximum-likelihood (ML) or maximum a posteriori (MAP) criterion. Following

this training fashion comes the inefficiency as a classifier in using the model parameters.

That is, the generative models often spend most their parameters on modeling either the

“typical” data far away from class boundary (for example Gaussian mixture model), or

the generative properties that are common to all the classes (for example hidden Markov

Model in speech recognition). Discriminative models, on the other hand, concentrate their

modeling effort into defining the decision boundary and do not spend resource modeling the

data far from the decision boundary. Nevertheless generative models have their advantages

over discriminative models [63, 36]. For example, generative models are usually more

compatible with human prior knowledge, better at dealing with missing data, and less

prone to over-fitting. Moreover, generative models may contain useful information about

the class distribution hard to capture with simple discriminative models. As we showed in

Chapter 9, mixed-effect models trained on the normal group and impaired group manifest

the difference between the two populations, whereas there is no simple way to do so with

a discriminative model, mainly because the longitudinal observations can not be directly

110
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used as feature for discriminative models.

It is now a common practice to take advantage of the two schools of models by com-

bining generative and discriminative approaches. In Chapter 8 and Chapter 9, we have

demonstrated the mixed-effect model as a good modeling tool for the longitudinal data on

a population and individual level. We will show in this chapter that the mixed-effect model

can also be used in feature extraction for discriminative models, more specifically support

vector machine [78]. Also we will present the performance of discriminative models with

other feature extraction routines we developed for the longitudinal data.

10.1 Background: Support Vector Machine

Support vector machines (SVMs) are a set of related supervised learning methods used for

classification and regression. They belong to a family of generalized linear classifiers. A

special property of SVMs is that they simultaneously minimize the empirical classification

error and maximize the geometric margin; hence they are also known as maximum margin

classifiers.

Viewing the input data as two sets of vectors in an n-dimensional space, an SVM

will construct a separating hyperplane in that space, one which maximizes the “margin”

between the two data sets. To calculate the margin, we construct two parallel hyper-

planes, one on each side of the separating one, which are “pushed up against” the two

data sets. Intuitively, a good separation is achieved by the hyperplane that has the largest

distance to the neighboring data points of both classes. The hope is that, the larger the

margin or distance between these parallel hyperplanes, the better the generalization error

of the classifier will be. A good tutorial of SVM is given by Burges [14].

10.1.1 Formalization

We are given some training data, a set of points of the form

{(x1, c1), (x2, c2), . . . , (xn, cn)}

where the ci is either 1 or -1, indicating the class to which the point xi belongs. Each

xi is a p-dimensional real vector. We want to give the maximal-margin hyperplane which
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divides the points having ci = 1 from those having ci = −1. Any hyperplane can be

written as the set of points x satisfying Maximum-margin hyperplane and margins for a

SVM trained with samples from two classes. Samples on the margin are called the support

vectors.

w · x− b = 0.

The vector w is a normal vector: it is perpendicular to the hyperplane. The parameter b

determines the offset of the hyperplane from the origin along the normal vector w.

We want to choose the w and b to maximize the margin, or distance between the

parallel hyper-planes that are as far apart as possible while still separating the data.

These hyper-planes can be described by the equations

w · x− b = 1 (10.1)

w · x− b = −1. (10.2)

Note that if the training data are linearly separable, we can select the two hyper-planes

of the margin in a way that there are no points between them and then try to maximize

their distance. By using geometry, we find the distance between these two hyper-planes

is 2/|w|, so we want to minimize |w|. As we also have to prevent data points falling into

the margin, we add the following constraint: for each i either

w · xi − b ≥ 1 for xi for the first class

or

w · xi − b ≤ −1 for xi of the second.

This can be rewritten as:

ci(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n. (1)

We can put this together to get the optimization problem:

choose w, b to minimize |w|

subject to ci(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n
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Primal Form The optimization problem presented in the preceding section is hard to

optimize because it depends on the absolute value |w|. The reason is that, in mathematical

terms, it is a non-convex optimization problem which are known to be much more difficult

to solve. Fortunately it is possible to alter the equation by substituting |w| with 1
2 ||w||2

without changing the solution (the minimum of the original and the modified equation

have the same w and b). This is a quadratic programming (QP) optimization problem.

More clearly,

minimize
1
2
||w||2, subject to ci(w · xi − b) ≥ 1, 1 ≤ i ≤ n..

This problem can now be solved by standard quadratic programming techniques and

programs.

Dual Form Writing the classification rule in its unconstrained dual form reveals that

the maximum margin hyperplane and therefore the classification task is only a function

of the support vectors, the training data that lie on the margin. The dual of the SVM can

be shown to be:

max
n∑

i=1

αi − 1
2

∑

i,j

αiαjcicjxT
i xj subject to αi ≥ 0, and

n∑

i=1

αici = 0 (10.3)

where the α terms constitute a dual representation for the weight vector in terms of the

training set:

w =
∑

i

αicixi

Soft Margin Vapnik [78] suggested that a modified maximum margin idea that allows

for mislabeled examples. If there exists no hyperplane that can split the “positive” and

“negative” examples, the Soft Margin method will choose a hyperplane that splits the

examples as cleanly as possible, while still maximizing the distance to the nearest cleanly

split examples. This work popularized the expression Support Vector Machine or SVM.

The method introduces slack variables, ξi, which measure the degree of misclassification

of the datum xi

ci(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n (2). (10.4)
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The objective function is then increased by a function which penalizes non-zero ξi, and

the optimization becomes a trade off between a large margin, and a small error penalty.

If the penalty function is linear, the Equation (10.4) now transforms to

min
1
2
||w||2 + C

∑

i

ξi such that ci(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n. (10.5)

This constraint in Equation (10.5) along with the objective of minimizing |w| can be solved

using Lagrange multipliers. The key advantage of a linear penalty function is that the

slack variables vanish from the dual problem, with the constant C appearing only as an

additional constraint on the Lagrange multipliers. Non-linear penalty functions have been

used, particularly to reduce the effect of outliers on the classifier, but unless care is taken,

the problem becomes non-convex, and thus it is considerably more difficult to find a global

solution.

Non-linear classification It follows Equation (10.3) that we only need the dot products

of samples instead of the explicit vector values of xi. This property enables us to replace

every dot product with a non-linear kernel function, for example the popular Gaussian

RBF kernel

K(xi,xj) = exp(−||xi − xj ||2
2s2

).

This allows the algorithm to fit the maximum-margin hyperplane in the transformed

feature space. The transformation may be non-linear and the transformed space high

dimensional; thus though the classifier is a hyperplane in the high-dimensional feature

space it may be non-linear in the original input space. In the rest of this section, we

construct a kernel K from either mixed-effect model or other feature extraction routines.

10.2 The Optimization of ROC Curves

In Chapter 9 we can get an optimal ROC by thresholding the likelihood ratio with vary-

ing values. We get this modeling simplicity from the probabilistic interpretation of the

classifier. That is, if the classifier assumes the class distribution P (z = 0|t, y;M̃), the
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classification decision will be automatically given by the following likelihood ratio

c =





0 p(yi;ti,M0)
p(yi;ti,M1)

≥ π1
π0

CI
CH

1 otherwise

no matter how the mis-classification cost {CH , CI} are specified.

Unfortunately, things are more involved for discriminative methods such as SVM, with

which we model the decision boundary instead of the class distribution. The modeled

decision boundary (or more accurately, the parameters in the classifiers) is tuned for a

certain setting of mis-classification cost, and its shape may change as the mis-classification

cost varies, as illustrated in Figure 10.1. Suppose we are classifying through a parametric-

function f(x; θ, h) with parameters θ and threshold h. With a certain mis-classification

cost (CH , CI), we try to find the optimal parameters θ∗ and threshold h through the

following optimization1

(θ∗, h∗) = arg min
θ,h

{CI

kI∑

i=1

e(f(xi
I , θ, h), LI) + CH

kH∑

j=1

e(f(xj
H , θ, h), LH) + regulizer(θ)}

(10.6)

where e(f(xi
H , θ, h), LH) and e(f(xj

I , θ, h), LI) are respectively the empirical error asso-

ciated with the ith sample from the normal (labeled as LH) and the jth sample from

impaired group (labeled as LI). Suppose with parameter θ∗ and threshold h∗ we get a

false alarm rate R∗
F and detection rate R∗

D on held-out test set. In the extreme case when

the number of samples goes to infinity, the regularizer becomes immaterial and therefore

only the ratio rc = CI
CH

matters. We then have the following two nice properties:

Property 1: The training error is the same as the test error

Property 2: If empirical error is the 0-1 loss, R∗
D is the highest detection rate one can

get with false alarm rate R∗
F .

This extreme can serve as a simplified scenario for our analysis, in which we only have

to worry about the ratio rc = CI
CH

and the training error. Suppose we get (θ∗, h∗) from

1For simplicity we only give the general form here, and assume we can find the global optimal solution
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the optimization in Equation (10.6), with which we achieve a false alarm rate R∗
F and

a detection rate R∗
D. According to Property 2, R∗

D is the highest detection rate we can

achieve with a false alarm rate R∗
F . However this nice property no longer holds if we

change only the threshold h′ 6= h∗ to get a different classifier, which gives the false alarm

rate R′
F and the detection rate R′

D. That is, R′
D is generally not the optimal detection

rate for false alarm rate R′
F . When we move along the false alarm rate axis, we need

only to change rc in (0,+∞), retrain the classifier for every new rc with the optimization

in Equation (10.6), and collect all the (R∗
F , R∗

D) pairs. The optimal ROC can then be

obtained by putting all the points (R∗
F , R∗

D) together2.

Figure 10.1: An illustrative example of decision boundaries for different mis-classification
cost. We use gray dots for positive examples and white dots for negative examples. The
green curve stands for the decision boundary when CI = CH , and the red curve stands
for the boundary when CI À CH .

In our case, we use the support vector machine with soft margin as the classifier, which

adopts a empirical error as the sum of the distances of the support vectors to the bounder

of margins [14] instead of 0-1 loss. Moreover the training samples (< 200) are not abundant

enough to ignore the regularizer. Consequently, the aforementioned two properties do not

hold. However, we found that in all our experiments, the exact values of CI and CH (in a

reasonably big range) have only a small influence on the performance of the classification

2Bach et al. [3] suggests we have to run through a finite set of values for CI
CH

by taking advantage of

the theory of the optimization path [34]
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as long as the ratio CI
CH

is kept unchanged. Figure 10.2 gives an example of classification on

seconds with SVM (with details revealed later), in which we have ROC curves computed

two classifiers trained with different setting of mis-classification cost. The first classifier

is trained with CI = CH = 10, while for the second CI = 20 and CH = 10. For each

setting of CI and CH , we can obtain an optimal (θ∗, h∗), and thus a false alarm rate R∗
F

and detection rate R∗
F estimated on a held-out test set. Based on each θ∗, we can get

an ROC curve by letting the threshold h vary in a big enough range. On the resulted

ROC, the point (R∗
F , R∗

D) is called operating point (shown as crosses in Figure 10.2). We

then have two ROC curves corresponding to the two settings of (CH , CI), each with its

own operating point. For comparison, we also show for each (θ∗, h∗) the false alarm rate

R̃∗
F and detection rate R̃∗

D estimated on the training set (shown as circles). In left panel

of Figure 10.2, we show the ROC curves and the operating points for the two classifiers

(blue for Classifier 1, and red for Classifier 2). Apparently, for each classifier the operating

point (R∗
F , R∗

D) is different from the (R̃∗
F , R̃∗

D) estimated on training set (circle), thus the

Property 1 does no hold. Our another observation is that the operating point does not

always give the optimal detection rate for the false alarm rate R∗
F , as the operating point

(red cross) on the ROC for Classifier 2 (red curve) has been outperformed by Classifier

1 (blue curve) with the same false alarm rate. Nevertheless, it is still true that the ROC

curve obtained with a larger CI
CH

tends to do better with large false alarm rate. Although

we cannot build the optimal ROC simply by putting together all the operating points for

various value of (CH , CI), we can still get a reasonable approximation by concatenating

segments of ROCs from different classifiers, with ones trained with small CI
CH

in charge of

the region of small false alarm and ones trained with large CI
CH

in charge of the region of

large false alarm. This procedure consists of the following three steps:

1. Train classifiers with a number of pairs (CH , CI), and for each classifier obtain its

ROC curve by varying the threshold h. In the experiments, we only consider two

different settings: CH = 10, CI = 10, and CH = 10, CI = 20.

2. For each classifier, identify the regime of false alarm rate in which it performs the

best, and keep the segment of ROC curve above that regime. In this thesis, since
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there are only two different cost settings, we divide the false alarm as the higher half

and lower half with a proper bounder.

3. Concatenate the different segments of ROC curves gotten from step 2 into a complete

piece.

A simple example is given in right panel of Figure 10.2, in which we concatenate the ROCs

for two classifiers shown in the left panel.

Before the optimization After the optimization
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Figure 10.2: Optimization of the ROC curves based on the asymmetry of cost. In the left
panel, the blue curves stands for the ROC of the Classifier 1 with CI = CH = 10, and the
red curve stands for the ROC of Classifier 2 with CI = 20, CH = 10. For each ROC, the
cross stands for the operating point estimated on the test set while the circle stands for
the (false alarm rate, detection rate) estimated on training set.

10.3 Fisher Kernel and Its Extensions

10.3.1 Fisher Kernel

The Fisher kernel [40] provides a way to extract features from a generative model, and

those features will be used in discriminative classifiers. For any θ-parameterized model

p(·; θ), the Fisher kernel between xi and xj is defined as

K(xi, xj) = (∇θ log p(xi; θ))T I−1∇θ log p(xj ; θ), (10.7)
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where I is the Fisher information matrix with the (n,m) entry defined as

In,m =
∫

x

∂ log p(x; θ)
∂θn

∂ log p(x; θ)
∂θm

p(x|θ)dx. (10.8)

The Fisher kernel entry K(xi, xj) can be viewed as the inner product of the natural

gradient I−1∇θ log p(x; θ) at xi and xj with metric I, and is invariant to re-parametrization.

Furthermore [40] have shown that a linear classifier based on the Fisher kernel returns a

classification result at least as good as the generative model.

It is common in practice that p(xi; θ) is a different distribution for different i due to

some individual specific property, such as the length of the sequence in HMM modeling.

When this is the case, the Fisher information matrix in Equation (10.8) cannot be uni-

formly defined for all individuals. This difficulty is usually circumvented by simply using

a identity matrix in place of Fisher information matrix [39, 61, 25], that is,

K(xi, xj) = (∇θ log p(xi|θ))T∇θ log p(xj |θ). (10.9)

which, unfortunately, renders the kernel dependent on the particular parametrization

choice in θ. This is a significant issue: the particular coordinate system (parametriza-

tion) used to describe the distribution is immaterial. Under the setting of probabilistic

kernel regression [41] this problem becomes asymptotically immaterial when the number

of training samples goes to infinity. However, for other applications such as the widely

used support vector machine [78], this difference cannot be neglected.

In our project, for any time series {ti,yi}, the Fisher score is defined as φyi =

∇M̃ log p(yi; ti,M̃). Due to the individual specific observation time ti, p(yi; ti,M̃) are

actually different distribution, and therefore the Fisher information matrix cannot be de-

fined. Simply using identity matrix is particularly unsuitable here since in mixed-effect

models the parameters can have vastly different influence on the distribution, and thus

the gradient with respect to them. For the mixed-effect model with polynomials as the

basis function, the Fisher score entries associated with higher order term (such as slope) is

far larger than the entries associated with lower order term (such as intercept). Without

proper normalization provided by the Fisher information matrix, the defined kernel will

be dominated by higher order entries. Instead of re-weighting the Fisher score entries
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based on some other heuristic, we propose a principled extension to Fisher kernel which

allows the strict calculation of Fisher information.

Our design of kernel is based on the generative hierarchy of mixture of mixed-effect

models, as shown in Figure 10.3. We notice that the individual-specific information ti

enter into this generative process at the last step, and before that the “latent” variables

γi and zi are drawn from the same distribution for all individuals. It is thus possible to

build a standard Fisher kernel for the latent variables, and based on which, we can further

build the kernel between individuals by associating each individual with the corresponding

latent variable. We use vi to denote the latent variables for individual i and K(vi, vj) for

the Fisher kernel between vi and vj . The kernel for yi and yj is defined as the expectation

of K(vi, vj) given the observation yi and yj

K(yi,yj) = E[K(vi, vj)|yi,yj ; ti, tj ,M̃] (10.10)

=
∫ ∫

K(vi, vj)p(vi|yi; ti,M̃)p(vj |yj ; tj ,M̃)dvidvj (10.11)

Based on the choice of latent variable v and the kernel form for K(vi, vj), we have the

kernel design strategies in the next three subsections. This extension to the Fisher kernel

enables us to deal with time series with unequal length, and to our knowledge it has not

been reported in literature.

10.3.2 Design A

This kernel design takes the {γi} as the latent variables and chooses to marginalize out

the higher level latent variable {zi}. That is, we consider each individual regression model

parameters γ is drawn from the following mixture of Gaussian distributions

p(γ|M̃) = π0p(γ; α0,D0) + π1p(γ; α1,D1) ≡ p(γ; Θ̃)

where Θ̃ = {π0, α0,D0, π1, α1,D1} are the parameters of the corresponding Gaussian

mixture model, and p(γ; αm,Dm) (m = 0, 1) is simply a Gaussian distribution with mean

αm and covariance Dm. This generative process is illustrated in Figure 10.4, which is the

same graphical model in Figure 10.3 with latent variable zi integrated out3. The Fisher

3Strictly speaking, we cannot integrate out zi at this step since the group membership is used later in
generating the observation noise. However this is a reasonable approximation here since the observation
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Figure 10.3: The graphical model of the mixture of mixed-effect models, diagram for the
Fisher kernel extensions. Same as Figure 7.2.

kernel for γ is defined as

K(γi, γj) = (∇Θ̃ log p(γi|Θ̃))T (Iγ)−1∇Θ̃ log p(γi|Θ̃), (10.12)

where the Fisher score is defined

∇Θ̃ log p(γi; Θ̃) = [
∂ log p

∂π0
;
∂ log p

∂α0
;
∂ log p

∂D0
;
∂ log p

∂π1
;
∂ log p

∂α1
;
∂ log p

∂D1
]T .

and the Fisher information matrix Iγ is defined as

Iγ
n,m =

∫

x

∂ log p(γ; Θ̃)
∂Θ̃n

∂ log p(γ; Θ̃)
∂Θ̃m

p(γ|Θ̃)dγ. (10.13)

Once K(γi, γj) is defined, we can further define the kernel between yi and yj as the

expectation of K(γi, γj) given yi and yj :

K(yi,yj) = E[K(γi, γj)|yi,yj ; ti, tj ,M̃] (10.14)

=
∫ ∫

K(γi, γj)p(γi|yi; ti,M̃)p(γj |yj ; tj ,M̃)dγidγj (10.15)

= (
∫
∇Θ̃ log p(γi|Θ̃)p(γi|yi; ti,M̃)dγi)T (Iγ)−1

∫
∇Θ̃ log p(γj |Θ̃)p(γj |yj ; tjM̃)dγj .(10.16)

noise specified by M0 and M1 have almost the same variance, see Appendix B.
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Figure 10.4: The graphical model of the mixture of mixed-effect models for Design A,
where the latent variable zi is marginalized out.

The computational drawback of this design strategy is that the integral in evaluating Ir

and
∫ ∇Θ̃ log p(γj |Θ̃)p(γj |yj ; tjM̃)dγj generally does not have an analytical solution. In

our experiments, we estimated the integral by Monte-Carlo sampling [17].

10.3.3 Design B

This design strategy takes both γi and zi as joint latent variables and builds a Fisher

kernel for them. The probability model, as summarized in Figure 10.5 for the latent

variable would be

p(zi, γi; Θ̃) = πzip(γi; αzi ,Dzi)

where Θ̃ is defined the same as in Design A.

The Fisher score would be

∇Θ̃ log p(zi, γi; Θ̃) = [
∂ log p

∂π0
;
∂ log p

∂α0
;
∂ log p

∂D0
;
∂ log
∂π1

;
∂ log p

∂α1
;
∂ log p

∂D1
]T .

and the Fisher kernel for the joint variable (γi, zi) is defined as

K((zi, γi), (zj , γj)) = (∇Θ̃ log p(γi|Θ̃))T (Iz,γ)−1∇Θ̃ log p(γi|Θ̃), (10.17)

where Iz,γ is the Fisher information matrix. The kernel for yi and yj is defined in a similar



123

Figure 10.5: The graphical model of the mixture of mixed-effect models for Design B. The
variables in the dashed box are considered the joint latent variable.

way as in Design A:

K(yi,yj) = Ezi,γi,zj ,γj [K((zi, γi), (zj , γj))|yi,yj ; ti, tjM̃] (10.18)

=
∫ ∫ ∑

zi

∑

zj

K((zi, γi), (zj , γj))p(zi, γi|yi; ti,M̃)p(zj , γj |yj ; tj ,M̃)dγidγj(10.19)

The integration in Equation (10.19)and the calculation of Fisher information matrix can

be carried out analytically.

This kernel design is interestingly connected to the so-called marginalized kernel pro-

posed by Tsuda et al. [77]. The marginalized kernel also considers a distribution with

discrete latent variable h (indicating the generating component) and observable x, which

form a complete variable x = (h, x). The kernel for observable xi and xj is defined as

K(xi, xj) =
∑

hi

∑

hj

P (hi|xi)P (hj |xj)K(xi,xj)

where K(xi,xj) is the joint kernel for complete variables, which usually takes the form

K(xi,xj) = δ(hi, hj)Khi(xi, xj). (10.20)
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with Khi(xi, xj) is the kernel pre-defined for the hi component generative model. It is

clear from Equation (10.20) that K(xi,xj) is zero if xi and xj are generated from different

component models (hi 6= hj), otherwise it takes the value of kernel defined for the mth

component model assuming hi = hj = m.

As an alternative to the definition in Equation (10.17), we can define a joint kernel for

(zi, γi) in a way similar to the marginalized kernel as in

K̃((zi, γi), (zj , γj)) = Kzi(γi, γj)δ(zi, zj), (10.21)

where Km(γi, γj) is the Fisher kernel between γi and γj with the mth component in

mixture Θ̃ as the generative model

Km(γi, γj) = (∇Θm log p(γi;αm,Dm))T I−1
m ∇Θm log p(γi; αm,Dm). (10.22)

Clearly the kernel between (zi, γi) and (zj , γj) is non-zero only if they are drawn from the

same component mixed-effect model. Again we define the kernel between yi and yj as

K̃(yi,yj) = Ezi,γi,zj ,γj [K̃((zi, γi), (zj , γj))|yi,yj ; ti, tj ,M̃] (10.23)

Interestingly, the kernel K((zi, γi), (zj , γj)) from Equation (10.17) and K̃((zi, γi), (zj , γj))

in Equation (10.21) are related through the following equation

K((zi, γi), (zj , γj)) =
1

πzi

K̃((zi, γi), (zj , γj)) +
1

πzi

δ(zi, zj).

with full derivation in Appendix B.

10.3.4 Design C

We can also base the kernel design on one mixed-effect model component instead on the

mixture. Equivalently, we assume that the mixture model contains only one component

in Design A or Design B, as illustrated in Figure 10.6.

For the mixed-effect model for the group indexed m, the Fisher score for the ith

individual

∇Θm log p(γi; Θm)
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Figure 10.6: The graphical model for the mixed-effect models for Design C.

describes how the log probability p(γi; Θm) responds to the change of mixed-effect model

parameters Θm. This is a valid feature for classification since the likelihood of γi for

individuals from different groups are likely to have different responses to the change of

parameters Θm). The kernel between γi and γj is same as the one defined in Equation

(10.22) in Design B

Km(γi, γj) = (∇Θm log p(γi; αm,Dm))T I−1
m ∇Θm log p(γi; αm,Dm),m = 0, 1

And then the kernel for yi and yj :

K(yi,yj) = E[K(γi, γj)|yi,yj ; ti, tj ,Mm] (10.24)

=
∫ ∫

K(γi, γj)p(γi|yi; ti,Mm)p(γj |yj ; tj ,Mm)dγidγj (10.25)

= (
∫
∇Θ̃ log p(γi|Θ̃)p(γi|yi; ti,Mm)dγi)T I−1

m

∫
∇Θ̃ log p(γj |Θ̃)p(γj |yj ; tj ,Mm)dγj .(10.26)

The integration in Equation (10.26)and the calculation of Fisher information matrix can

be carried out analytically.

We can choose to use the mixed-effect model trained on the impaired group or the

normal group. Not surprisingly, mixed-effect model fit on different groups describe the

data in quite different ways, and therefore lead to different kernels. Indeed, our experi-

ments show that the kernel based on the impaired group is significantly better than others

(details omitted). Therefore this kernel is chosen as the representative of Design C. In
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this case, the designed kernel is essentially a special case of Design A or Design B when

π0 = 1 and π1 = 0.

10.3.5 Empirical Comparison: Three Designs

We tested the three Fisher kernel extensions on the four motor behaviors: steps, seconds,

tappingD, and tappingN, and the two neuro-psychological tests: delayed-recall and logical

memory II, with the mixed-effect models for each measurement trained separately. We

use the order-1 polynomials (linear)4 as the basis functions for the mixed-effect models.

For each measurement, the constructed kernels are used in support vector machines for

classification.

We compare the performance of two kernels by comparing the ROC curves generated

based on them (see Section 9.2). The reported ROC curves are estimated through a

leave-one-out cross-validation and the optimization procedure described in Section 10.2.

In each validation round, we use k − 1 subjects training a support vector machine, and

test the trained classifier on the left out subject. We report the average test classification

accuracy over all k validation rounds. The same training-test strategy will be used with

other kernel designs in the rest of this section.

We first compare Design A and Design B, two designs based on mixture of mixed-effect

models, in Figure 10.7. Clearly the two kernel has very much comparable performance

except on except on tappingD, on which ROC Design A is better than that from Design

B with p = 0.136. We then compare Design A and Design C in Figure 10.8, from which

we find that Design C yields slightly better ROC curves than Design A ((which in turn is

slightly better than Design B) on all four motor behaviors, and is comparable to Design

A (then Design B) on the two neuro-psychological tests.

4We did not report the result of order-2 polynomials (quadratic) since they yield significantly worse
result than order-1 polynomials.
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Figure 10.7: Design A Vs. Design B. The number in the parenthesis is the p-value (Z-test)
for the null-hypothesis “the AUC of Design A is the same as the AUC of Design B”.

10.4 Feature Extraction Routines Independent of Genera-

tive Models

We will discuss in this section two other feature extraction routines that are not based on

mixed-effect models or any other generative models. The first one models each subject

with an independent polynomial curve and uses the least-square fitting coefficients as the

feature vector; The second one takes a non-parametric approach fitting the observations

of each subject with a smooth curve, and uses it as the summarizing feature for the

classification afterwards.
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Figure 10.8: Design A Vs. Design C. The number in the parenthesis is the p-value (Z-test)
for the null-hypothesis “the AUC of Design A is the same as the AUC of Design C”.

10.4.1 Feature Extraction 1: Parametric

We can summarize each individual time series with the least-square fit coefficients for a

d-degree polynomial regression model. That is, for subject i, the d+1-dimensional feature

pi is

pi = arg min
p

N i∑

j=1

(
d∑

l=0

pl(tij)
l − yi

j)
2. (10.27)

where pi is the vector of coefficients for individual i. We consider only d = 1 since a

substantial proportion of subjects have no more than five observations, not enough for a

reliable fitting of polynomial with d ≥ 2. We normalize the entries in pi to the estimated
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standard deviation before we use them as input to a support vector machine

p̂i
l =

pi
l√

1
k−1

∑
j(p

j
l − pl)2

, l = 0, · · · , d, (10.28)

with pl = 1
k

∑k
i=1 pi

l. We use a RBF kernel based on the square Euclidean distance

Kij = exp(−||p̂
i − p̂j ||22
2s2

), (10.29)

where p̂i = [p̂i
0, · · · , p̂i

d]
T . In the remainder of the thesis, we will refer to the matrix K

defined in Equation (10.29) as the LSQ kernel, although the feature defined in Equation

(10.27) and (10.28) can be readily used in other classifiers such as mulit-layer perceptron

(MLP) [11].

10.4.2 Feature Extraction 2: Non-parametric

We can extend the feature extraction described in Section 10.4.1 to non-parametric form

as follows. Our model is based on Gaussian processes [65] and reproducing kernel Hilbert

space (RKHS). Basically, we assume the observation for each individual is generated from a

independent Gaussian process indexed by age. So for each individual i, its nth observation

is

yi
n = f i(tin) + εi

n, n = 1, 2, · · · , Ni

where εi
n is a white observation noise with standard deviation σ. Assuming the f i with

different i have the same covariance function, denoted as C, we can then summarize each

individual with the following smooth function of time:

f̂ i(t) = E[f(t)|yi; ti, C, σ] = C(t, ti)(C(ti, ti) + σ2I)−1yi

where yi is the vector of observations for individual i and C(ti, ti) is the matrix with its

entries (n, m) being C(tin, tim). The difference between two individuals can be measured

as the distance between two summarizing smooth curves in a Hilbert space

dij = ||f̂ i − f̂ j ||2H, (10.30)
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where || · ||H is a norm in Hilbert space H 5.

When H is the reproducing kernel Hilbert space (RKHS) induced by the covariance

function C, this distance measure is well-defined, and can be calculated as

dij = ||f̂ i − f̂ j ||H
= ||C(t, ti)(C(ti, ti) + σ2I)−1yi − C(t, tj)(C(tj , tj) + σ2I)−1yj ||H
= < C(t, ti)vi − C(t, tj)vj , C(t, ti)vi − C(t, tj)vj >H

where vi = (C(ti, ti) + σ2I)−1yi. Considering that

< C(tn, t), C(tm, t) >H= C(tn, tm),

the distance measurement can be simplified as

dij = (vi)T C(ti, ti)vi + (vj)T C(ti, ti)vj − 2(vi)T C(ti, tj)vj

The distance dij can also be interpreted as the Bregman divergence on f with ||f ||2H as

the seed functional [29].

Based on the proposed distance, we defined the following kernel

Kij = exp(− dij

2s2
). (10.31)

The matrix K defined in Equation (10.31) is Mercer kernel, simply because it can be

rewritten as RBF kernel after we embed the distance dij into a N -dimensional Euclidean

space with N =
∑Ni

i=1. In the remainder of the thesis, we will refer to this kernel as

Gaussian process kernel. To get such a kernel, we need specify the covariance function C

and s used in Equation (10.31). In this thesis, we use another RBF kernel for C.

10.4.3 Comparison of the Parametric and Non-parametric Feature Ex-

traction

We compare classifiers built on the parametric and non-parametric kernels in Figure 10.9.

For each design, we set the radius s to maximize the performance at the operating point.

5One might want to use E[||f i − f j ||2H|yi,yj ; ti, tj ] as the measure of distance. Unfortunately, this
expectation goes to infinity. One can understand this by imagining Gaussian process as a multivariate
Gaussian distribution with infinite (usually uncountable) dimensions.
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As Figure 10.9 shows, Gaussian process kernel generally yields larger AUC than the LSQ

kernel, while this superiority is significant (p < 0.05) only on tappingN, while on delayed-

recall and logical memory II, the performance of the two kernels are very much comparable.
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Figure 10.9: Gaussian process kernel (GPK) vs. least squares kernel (LSQK). The number
in the parenthesis is the p-value of the Z-test for the null-hypothesis “the AUC of Gaussian
process kernel is the same as the AUC of LSQ kernel”.

10.5 Comparing Generative and Discriminative Models

Finally, we compare the best performer in each of the three categories of methods

• For generative models (Chapter 9), we choose the one based on mixed-effect model,

since it is slightly better than the one based on the simplified model that assumes

no random effect.
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• For the discriminative models based on the extensions to the Fisher kernel (Section

10.3), we pick Design C. It is consistently better than Design A and B on all six

measurements, although the difference is not statistically significant.

• For the feature extraction models independent of the mixed-effect model (Section

10.4), we pick Gaussian process kernels since it is better than the LSQ kernel on all

six measurements, although the difference is not statistically significant except on

tappingN.

Figure 10.10 compares the three best performers in their own category. As it shows, both

discriminative models are better than the likelihood ratio classifier except on delayed-recall

and logical memory II, on which the two schools of models have similar performance. On the

four motor measurements the two discriminative models work better than likelihood ratio

classifiers. Among the discriminative models, the one based on Fisher kernel extension

(Design C) outperforms the likelihood ratio classifiers with p < 0.1, while the superiority

of the Gaussian process kernel over likelihood ratio classifiers is generally not statistically

significant.

It is also meaningful to group the classifiers we have discussed so far into parametric

ones (including mixed-effect model, the Fisher kernel extensions, and the LSQ kernel), and

non-parametric ones (Gaussian process kernel). All the three parametric classifiers adopt

polynomial regression models (in our experiments we use a linear model) for individual

subjects, while the non-parametric one uses Gaussian process as the individual regression

model. Intuitively, the performance of the three parametric classifiers depends to a great

extent on the suitability of polynomial as the regression model. As we can see from the

mixed-effect models fit on the medical data (Figure 7.3 and 7.4), for the seconds, steps,

tappingD, delayed recall, and logical memory II, there is a significance difference between the

linear regression models from the impaired group and the normal group, while on tappingN,

the difference is not as significant. This observation is further verified in Chapter 9 where

we showed that the performance of the mixed-effect model-based classifier on tappingN is

the worst among all six measurements. Not surprisingly, a direct comparison of results on

tappingD and tappingN shows, if either of other two parametric models is used, tappingD
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yields better result than tappingN. On the other hand, the non-parametric one (Gaussian

process kernel) seems to immune to this, since the results on tappingD and tappingN are

much comparable.
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Figure 10.10: The comparison between Fisher kernel extension (Design C), Gaussian
process kernel and likelihood ratio classifiers (mixed-effect model). For each measurement,
the first number in the parenthesis is the p-value (Z-test) for the null hypothesis “ the
AUC of Design C is same as the AUC of likelihood ratio classifier”, and the second number
is the p-value (Z-test) for the null hypothesis “the AUC of Gaussian process kernel is the
same as the AUC of likelihood ratio classifier”.



Chapter 11

Cognitive Decline Detection:

Contribution and Future Research

11.1 Contribution

In Chapter 9 and Chapter 10, we presented a number of models for predicting whether

a cognitively healthy subject will later develop into cognitive impairment based on his or

her clinical records. These binary classification algorithms should be viewed as an initial

step towards a more sophisticated cognitive decline detection system that can estimates

for each subject the risk of dementia at any given age.

We developed and compared two schools of methods: the generative models and dis-

criminative models. For generative models, we adopt the mixed-effect model, for its mod-

eling ability on both population and individual level. In Chapter 7 we have discussed

the mixed-effect models in detail and shown that the mixed-effect models can capture the

difference on a population level between normal group and impaired group. In Chapter

8, we have further demonstrated the mixed-effect model as a proper generative model, by

showing that the model fit on a proper population can serve as an informative prior for

the regression modeling of a unseen subject. In Chapter 9, we explored the discriminative

capability of a mixed-effect model on individual level, and built a likelihood ratio classifier

with the mixed-effect models for two groups as the generative model. This classifier yields

reasonable classification results on four motor behaviors, and has excellent performance

two neuro-psychological tests.

The discriminative models are proposed to improve the classification performance, for

134



135

which we proposed two categories of methods. The first category is a hybrid of discrimi-

native and generative models, which employs the widely used support vector machine as

the classifiers but rely on the mixed-effect models for feature extraction. We extended the

Fisher kernel, an conventional way of extracting feature from generative models, to deal

with our situation where different time series have unequal observation time, by exploiting

the latent structure of the mixed-effect model. The second category of methods consists

of two other feature extraction routines, parametric and non-parametric, that are inde-

pendent of the mixed-effect models. Among them, the non-parametric one actually gives

a new distance measure for a wide range of time series, which is potentially useful in a

variety of other applications. Our experiments show that the discriminative methods yield

significant better classification performance than generative models on motor behaviors,

and are comparable to mixed-effect models on neuro-psychological tests.

11.2 Future Research

11.2.1 Evaluating the Risk at Different Ages

Ultimately we want the detection system to give an estimate of the time horizon to a

clinical diagnosis, or the time horizon to decline to more severe impairment for a mildly

impaired individual. In addition, each estimation should come with a certainty value

to facilitate the integration in a clinical decision system. In Chapter 9 and Chapter 10,

we described approaches to predict if an individual will become impaired. This static

classification approach we adopted in this thesis does not provide the risk information

useful for the clinical decision making, and is potentially inaccurate due to the possibility

that people in the normal group could develop into impairment later. Both drawbacks can

be avoided in the standard survival analysis with the so called survival function. It is thus

desired to combine the kernel methods we developed in Chapter 10 with survival analysis

to achieve a kernelized survival analysis, which is, to our knowledge, a novel synthesis..
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11.2.2 Combining Kernels from Different Measurements

The kernel design method described in Section 10.3 can also be applied to the mixed-effect

model with multiple output variable, thus give a joint kernel for measurements of different

types. As a special case, when we use the naive Bayesian as the joint mixed-effect model,

the kernel (for Design A, B or C) for the joint variable ȳi (see Section 7.4.2 ) is

K(ȳi, ȳj) = K(1)(y(1),i,y(1),j) + K(2)(y(2),i,y(2),j) + · · ·+ K(L)(y(L),i,y(L),j),

where K(l) is the kernel for measurement of type l. As we have discussed in Chapter 7,

the multi-variate mixed-effect model does not provides a fruitful fusion of the measure-

ments of different types. Not surprisingly, the kernel based on this does not show an

improved discriminative power over the kernel based on mixed-effect model for individual

measurement types.

Besides fusing the different measurement on the level of generative model, we can also

do it in the later feature extraction phase for discriminative models. It is suggested by

Lanckriet et al. [49] that we may construct kernels from different sources separately, and

try to combine them through a proper convex combination of them in the following form,

K(ȳi, ȳj) = λ(1)K(1)(y(1),i,y(1),j) + λ(2)K(2)(y(2),i,y(2),j) + · · ·+ λ(L)K(L)(y(L),i,y(L),j), (11.1)

with
∑L

l=1 λ(l) = 1 to be decided. Intuitively we desire a kernel K that fits the class label

well. One criteria for such a fitness, as suggested by [49], is the kernel-target alignment,

which is also known to render the optimization over {λ(l)} convex. Another way to fuse

the kernel, known as kernel extrapolation [80], can be obtained by viewing the kernels as

the reproducing kernel for a RKHS, and working directly with the norm of vector in the

RKHS. The resulted kernel is of the following form:

K(ȳi, ȳj) = (λ(1)K(1)(y(1),i,y(1),j)−1 + λ(2)K(2)(y(2),i,y(2),j)−1 + · · ·+ λ(L)K(L)(y(L),i,y(L),j)−1)−1,

where again the weight {λ(1), λ(2), · · · , λ(L)} are to be decided.

11.2.3 Extension to Unobtrusive Home Assessment

It is useful to extend our method to unobtrusive home assessments, such as walking

speed estimated by home-installed motion sensors and finger tapping measured based
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on everyday computer use. These home assessments are cheap to obtain in a relatively

high frequency (e.g., on daily basis), but subject to various form of interfering factors. A

sensible use of home assessments needs to consider all these factors that can affect the

measurement, such as absence from home or having guests, which themselves could be hard

to identify based on the relatively sparse information collected by the installed sensors.

In addition, we need to tune the mixed-effect models and the discriminative approaches

to the characteristics of home assessment. All these problems remain to be solved.
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Appendix A

Deriving W from Prior Knowledge

In this appendix, we show how to derive weight W from the certainty value γij for each

pair (xi,xj). Let E denote those original (noise-free) labeled pairwise relations and Ẽ the

noisy version delivered to us. If we know the original pairwise relations E, we only have

to consider the cluster assignments that are consistent with E and neglect the others, that

is, the prior probability of Z is

P (Z|Θ, E) =





1
ΩE

P (Z|Θ) Z is consistent with E

0 otherwise,

where ΩE is the normalization constant for E: ΩE =
∑

Z: consistent with E P (Z|Θ). Since

we know Ẽ and the associated certainty values Γ = {γij}, we know

P (Z|Θ, Ẽ, Γ) =
∑

E

P (Z|Θ, E, Ẽ,Γ)P (E|Ẽ,Γ) (A.1)

=
∑

E

P (Z|Θ, E)P (E|Ẽ,Γ). (A.2)

Let E(Z) ≡ the unique E that is consistent with Z, from equation (A.2) we know

P (Z|Θ, Ẽ, Γ) = P (Z|Θ, E(Z))P (E(Z)|Ẽ, Γ)

=
1

ΩE
P (Z|Θ)P (E(Z)|Ẽ,Γ) =

1
ΩE

P (E(Z)|Ẽ, Γ)P (Z|Θ).

If we ignore the variation of ΩE over E, we can get an approximation of P (Z|Θ, Ẽ, Γ),

denoted as Pa(Z|Θ, Ẽ, Γ) :

Pa(Z|Θ, Ẽ,Γ) =
1

Ωa
P (Z|Θ)P (E(Z)|Ẽ,Γ)

=
1

Ωa
P (Z|Θ)

∏

i<j

γ
Hij(Ẽ,zi,zj)
ij (1− γij)1−Hij(Ẽ,zi,zj)
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where Ωa is the new normalization constant: Ωa =
∑

Z P (Z|Θ)P (E(Z)|Ẽ, Γ) and

Hij(Ẽ, zi, zj) =





1 (zi, zj) is consistent with Ẽ

0 otherwise
.

We argue that Pa(Z|Θ, Ẽ, Γ) is equal to a PPC prior probability P (Z|Θ,W) with

Wij =





1
2 log( γij

1−γij
) (zi, zj) is specified as must-linked in Ẽ

−1
2 log( γij

1−γij
) (zi, zj) is specified as cannot-linked in Ẽ

0 otherwise.

(A.3)

This can be easily proven by verifying

P (Z|Θ,W)
Pa(Z|Θ, Ẽ,Γ)

=
Ωa

Ωw

∏

i<j,Wij 6=0

γ
sign(Wij)−1
ij (1− γij)−sign(Wij) = constant.

Since both Pa(Z|Θ, Ẽ, Γ) and P (Z|Θ,W) are normalized, we know

Pa(Z|Θ, Ẽ, Γ) = P (Z|Θ,W).



Appendix B

Mixed-effect Models on OBAS Data

Seconds

Linear Regression Model (order = 1)

Normal Group

α =


0.7111

0.0202


 D =


 0.9714 −0.0122

−0.0122 0.0002


 σ = 0.1635

Impaired Group

α =


−1.0952

0.0406


 D =


 1.6234 −0.0182

−0.0182 0.0002


 σ = 0.1709

Quadratic Regression Model (order = 2)

Normal Group

α =




3.8942

−0.0570

0.0005


 D =




17.8055 −0.4408 0.0026

−0.4408 0.0111 −6.7× 10−5

0.0026 −6.7× 10−5 4.1× 10−7


 σ = 0.1603

Impaired Group

α =




7.4632

−0.1543

0.00115


 D =




26.7031 −0.6809 0.0042

−0.6809 0.0175 −1.0× 10−4

0.0042 −1.0× 10−4 6.8× 10−7


 σ = 0.1689
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Steps

Linear Regression Model (order = 1)

Normal Group

α =


1.2408

0.0203


 D =


 0.7019 −0.0083

−0.0083 0.0001


 σ = 0.1304

Impaired Group

α =


−0.1618

0.0358


 D =


 2.8816 −0.0326

−0.0326 3.7× 10−4


 σ = 0.1359

Quadratic Regression Model (order = 2)

Normal Group

α =




2.7642

−0.0152

0.0002


 D =




18.7414 −0.4767 0.0029

−0.4767 0.0122 −7.6× 10−5

0.0029 −7.6× 10−5 4.7× 10−7


 σ = 0.1274

Impaired Group

α =




7.5445

−0.1377

0.0010


 D =




50.9682 −1.2890 0.0080

−1.2890 0.0326 −0.0002

0.0080 −0.0002 1.3× 10−6


 σ = 0.1360
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TappingD

Linear Regression Model (order = 1)

Normal Group

α =


 4.2518

−0.0069


 D =


 0.1980 −0.0024

−0.0024 3.2× 10−5


 σ = 0.1284

Impaired Group

α =


 4.9858

−0.0158


 D =


 5.7261 −0.0672

−0.0672 0.0008


 σ = 0.1626

Quadratic Regression Model (order = 2)

Normal Group

α =




1.9844

0.0496

−0.0003


 D =




10.4208 −0.2607 0.0016

−0.2607 0.0065 −4.0× 10−5

0.0016 −4.0× 10−5 −2.5× 10−7


 σ = 0.1254

Impaired Group

α =




−1.8806

0.1446

−0.0009


 D =




306.3862 −7.5113 0.0458

−7.5113 0.1842 −0.0011

0.0458 −0.0011 0.0000


 σ = 0.1558
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TappingN

Linear Regression Model (order = 1)

Normal Group

α =


 4.1580

−0.0066


 D =


 0.2672 −0.0030

−0.0030 3.5× 10−5


 σ = 0.1012

Impaired Group

α =


 4.3362

−0.0092


 D =


 1.9736 −0.02291

−0.02291 2.7× 10−4


 σ = 0.1041

Quadratic Regression Model (order = 2)

Normal Group

α =




2.9223

0.0241

−0.0002


 D =




3.8314 −0.1005 0.0006

−0.1005 0.0027 −1.7× 10−5

0.0006 −1.7× 10−5 1.1× 10−7


 σ = 0.0997

Impaired Group

α =




7.5445

−0.1377

0.0010


 D =




26.2063 −0.6838 0.0043

−0.6838 0.0179 −0.0001

0.0043 −0.0001 7.0× 10−7


 σ = 0.1013
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Delayed Recall

Linear Regression Model (order = 1)

Normal Group

α =


 9.8435

−0.0395


 D =


24.3887 −0.2972

−0.2972 0.0039


 σ = 1.2240

Impaired Group

α =


28.8741

−0.2693


 D =


236.8424 −2.6264

−2.6264 0.0295


 σ = 1.3725

Quadratic Regression Model (order = 2)

Normal Group

α =




23.2888

−0.3616

0.0019


 D =




1189.7 −31.1731 0.1965

−31.1731 0.8196 −0.0052

0.1965 −0.0052 3.3× 10−5


 σ = 1.2151

Impaired Group

α =




−43.0368

1.3364

−0.0089


 D =




12119 −289.3461 1.6981

−289.3461 6.9383 −0.0409

1.6981 −0.0409 0.0002


 σ = 1.3200
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Logical Memory II

Linear Regression Model (order = 1)

Normal Group

α =


−1.6665

0.1838


 D =


399.3892 −4.7566

−4.7566 0.0587


 σ = 2.5274

Impaired Group

α =


30.8248

−0.2394


 D =


514.0913 −5.9009

−5.9009 0.0700


 σ = 2.7569

Quadratic Regression Model (order = 2)

Normal Group

α =




6.2120

0.0362

0.0006


 D =




2637.8 −72.8670 0.4700

−72.8670 2.0666 −0.0137

0.4700 −0.0137 0.0001


 σ = 2.5093

Impaired Group

α =




−130.2617

3.5094

−0.0218


 D =




5081.6 −137.6516 0.8867

−137.6516 3.7491 −0.0243

0.8867 −0.0243 0.0002


 σ = 2.6582



Appendix C

Restricted Maximum Likelihood (REML)

Fitting of Mixed-effect Models

The data likelihood is then

p(Y ; M) =
k∏

i=1

∫
p(α|M)

∫
p(yi|α, βi; ti, σ)p(βi|M)dβidα,

The maximum likelihood solution of {α,A,D, σ} can be found with the Expectation-

Maximization algorithm [24] with {β1, β2, · · · , βk} considered as the latent variable:

E-step: Q(M,Mg) = E{βi}(log p(Y, {βi};T,M)|Y;T,Mg) (C.1)

M-step: M = arg max
M

Q(M,Mg), (C.2)

where Mg stands for the estimation of the mixed-effect model obtained in previous step

and the expectation in the E-step is with respect to the posterior distribution of on {βi}
when Y is known and the model parameter is Mg. For the linear mixed-effect model in

Equation (7.3), the M-step has a closed form:

ᾱ = (
k∑

i=1

Φ(ti)T Φ(ti))−1
k∑

i=1

N i∑

n=1

(yi
n − E(βi|yi, ; ti,Mg)T Φ(ti)) (C.3)

A = (
k∑

i=1

Φ(ti)TWiΦ(ti))−1 (C.4)

D = Dg +
1
k
(

k∑

i=1

β̂i(β̂i)T −Dg
k∑

i=1

Φ(ti)TPiΦ(ti)) (C.5)

σ2 = (σg)2 +
1∑k

i=1 N i
(

k∑

i=1

||ε̂i||2 − (σg)4tr(
k∑

i=1

Pi)) (C.6)
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where Wi = ((σg)2I+ Φ(ti)DgΦ(ti)T )−1 (as defined in Chapter 6) and

Pi ≡ Wi(I− Φ(ti)(
k∑

i=1

Φ(ti)TWiΦ(ti))−1Φ(ti)TWi).



Appendix D

Two Kernels in Design B

The Fisher score is the gradient of the log likelihood

φ
Θ̃
(zi, γi) ≡ ∇

Θ̃
log p(zi, γi; Θ̃) = [

∂ log p

∂π0
;
∂ log p

∂α0
;
∂ log p

∂D0
;
∂ log
∂π1

;
∂ log p

∂α1
;
∂ log p

∂D1
]T .

and the Fisher kernel for the joint variable (γi, zi) is defined as

K((zi, γi), (zj , γj)) = (∇
Θ̃

log p(γi|Θ̃))T (Iz,γ)−1∇
Θ̃

log p(γi|Θ̃), (D.1)

where Iz,γ is the Fisher information matrix. In the equation (D.1), we have for m = 0, 1

∂ log p(zi, γi; Θ̃)
∂πm

= δ(zi,m)
1

πm

∂ log p(zi, γi; Θ̃)
∂αm

= δ(zi,m)D−1
m (αm − γi)

∂ log p(zi, γi; Θ̃)
∂Dm

= δ(zi,m){−1
2
D−1

m +
1
2
D−1

m (αm − γi)(αm − γi)TD−1
m }

Note that

∂ log p(zi, γi; Θ̃)
∂αm

= δ(zi,m)
∂ log p(γi; Θm)

∂αm
(D.2)

∂ log p(zi, γi; Θ̃)
∂Dm

= δ(zi,m)
∂ log p(γi; Θm)

∂Dm
. (D.3)

Denoting Θm = {αm,Dm} m = 0, 1, the equation (D.2) and equation (D.3) can be

summarized as

∂ log p(zi, γi; Θ̃)
∂Θm

= δ(zi,m)
∂ log p(γi; Θm)

∂Θm
. (D.4)
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The Fisher information matrix Iz,γ is defined as

Iz,γ = Ezi,γi(φT
Θ̃
(zi, γi)φ

Θ̃
(zi, γi)|Θ̃) (D.5)

=




E(∂ log p
∂π0

(∂ log p
∂π0

)T |Θ̃) E(∂ log p
∂π0

(∂ log p
∂Θ0

)T |Θ̃) E(∂ log p
∂π0

(∂ log p
∂π1

)T |Θ̃) E(∂ log p
∂π0

(∂ log p
∂Θ1

)T |Θ̃)

E(∂ log p
∂Θ0

(∂ log p
∂π0

)T |Θ̃) E(∂ log p
∂Θ0

(∂ log p
∂Θ0

)T |Θ̃) E(∂ log p
∂Θ0

(∂ log p
∂π1

)T |Θ̃) E(∂ log p
∂Θ0

(∂ log p
∂Θ1

)T |Θ̃)

E(∂ log p
∂π1

(∂ log p
∂π0

)T |Θ̃) E(∂ log p
∂π1

(∂ log p
∂Θ0

)T |Θ̃) E(∂ log p
∂π1

(∂ log p
∂π1

)T |Θ̃) E(∂ log p
∂π1

(∂ log p
∂Θ1

)T |Θ̃)

E(∂ log p
∂Θ1

(∂ log p
∂π0

)T |Θ̃) E(∂ log p
∂Θ1

(∂ log p
∂Θ0

)T |Θ̃) E(∂ log p
∂Θ1

(∂ log p
∂π1

)T |Θ̃) E(∂ log p
∂Θ1

(∂ log p
∂Θ1

)T |Θ̃).



(D.6)

It is straightforward to verify that for m = 0, 1

Ezi,γi(
∂ log p(zi, γi; Θ̃)

∂πm
(
∂ log p(zi, γi; Θ̃)

∂πm
)T |Θ̃) =

1
πm

Ezi,γi(
∂ log p(zi, γi; Θ̃)

∂πm
(
∂ log p(zi, γi; Θ̃)

∂Θm
)T |Θ̃) = 0

Ezi,γi(
∂ log p(zi, γi; Θ̃)

∂πm
(
∂ log p(zi, γi; Θ̃)

∂π1−m
)T |Θ̃) = 0

Ezi,γi(
∂ log p(zi, γi; Θ̃)

∂πm
(
∂ log p(zi, γi; Θ̃)

∂Θ1−m
)T |Θ̃) = 0

Ezi,γi(
∂ log p(zi, γi; Θ̃)

∂Θm
(
∂ log p(zi, γi; Θ̃)

∂Θm
)T |Θ̃) = πmEzi,γi(

∂ log p(γi; Θm)
∂Θm

(
∂ log p(γi; Θm)

∂Θm
)T |Θm)

from which equation (D.6) can be simplified as

Iz,γ =




1
π0

0 0 0

0 π0E(∂ log p
∂Θ0

(∂ log p
∂Θ0

)T |Θ0) 0 0

0 0 1
π1

0

0 0 0 π1E(∂ log p
∂Θ1

(∂ log p
∂Θ1

)T |Θ1)




. (D.7)

It is not hard to see from here that

K((zi, γi), (zj , γj)) = (∇
Θ̃

log p(γi|Θ̃))T (Iz,γ)−1∇
Θ̃

log p(γi|Θ̃)

=
1

πzi

δ(zi, zj)(1 + Kzi(γi, γj))

=
1

πzi

K̃((zi, γi), (zj , γj)) +
1

πzi

δ(zi, zj).
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