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Decomposition of Fundamental Frequency Contours in the General

Superpositional Intonation Model

Taniya Mishra, B.A.

Doctor of Philosophy,
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The Department of Science & Engineering

and the Oregon Health & Science University

School of Medicine

September 2008

Thesis Advisor: Jan van Santen

The general superpositional approach to intonation posits that the fundamental frequency

contour can be quasi-additively decomposed into component curves such as phrase curves,

accent curves, and segmental perturbation curves. Currently, these component curves can

only be estimated if one assumes a specific superpositional intonation model, such as the

Fujisaki model (Fujisaki 1983). The central objective of the presented research therefore

is to develop an algorithm for decomposing any arbitrary fundamental frequency contour

into its component curves using only the most general assumptions of the superpositional

approach. The decomposition algorithm is applied in two ways in this work: (1) to

examine the assumptions about the relationship between the shape of the F0 contour

and the perception of prominence in the superpositional context, and (2) to enable the

xii



implementation of the recombinant synthesis method (van Santen et al. 2004:i, van Santen

et al. 2005).

Recombinant synthesis, also called multi-level unit sequence synthesis, involves search-

ing one corpus for acoustic units while searching another corpus for components of the F0

contour, namely, phrase curves, accent curves, and segmental perturbation curves, that

are then additively recombined according to the general superpositional approach, and

imposed on the acoustic unit sequences using standard pitch modification methods. In

this synthesis method, the components of the F0 contour are obtained from natural F0

contours, and extracting them requires a decomposition algorithm.

Besides the two specific applications that are demonstrated in this thesis, the stated

objective also has a wider significance. If one can estimate component curves of the F0

contours using only the most general assumptions of the superpositional approach, then

this would enable accurate determination of (i) the effects of linguistic control factors on

the component curves, (ii) their time courses, and (iii) interactions between curve classes.

Barring the discovery of fatal flaws in the superpositional concept along the way, the

ultimate result of this research would be the development of a - potentially complex -

superpositional intonation model that contains a richer collection of curve classes than

current models allow, specifies a clear and phonologically well-justified mapping between

each curve class and the F0 contour, and generalizes well to fit across a wide range of

speech materials.
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Chapter 1

Introduction

1.1 Background

Text-to-speech synthesis, the technology of artificially creating (synthesizing) speech from

text, is being used with increasing success in common user applications as well as in assis-

tive technology applications for the visually and vocally impaired (Jans 2000). Researchers

predict growth of this technology and greater societal impact (Sproat et al. 1999). Despite

its promise, speech synthesis is still not a solved problem (Schroeter et al. 2002, Sproat

et al. 1999). Most users are unhappy with the quality of synthesized speech, while some

outright reject it. Also, many commercial application developers deliberately avoid the use

of speech synthesis in their products (Sproat et al. 1999). In all cases, the main complaint

is that synthesized speech sounds “unnatural”, i.e., it does not sound like human speech.

Incorrect or inexpressive intonation, poor voice quality, and lack of variability in speech

have been cited as the main causes for the unnaturalness of synthetic speech (Murray and

Arnott 1996, Keller and Zellner Keller 2000). The presented research aims to address the

problems stemming from incorrect or inexpressive intonation.

Although it has many definitions1, in this work we define intonation as Jones (2002:237)

did: “In popular language ... [intonation is] the way the voice goes up and down in speak-

ing. In scientific language ... [intonation is] the variations in the pitch of the musical note

produced by the vibrations of the vocal cords.” Pitch is the primary perceptual correlate

of intonation. It is “that auditory property [of a sound] that enables a listener to place it

1See Rossi 2004, p.32–34, for a comprehensive summarize of the many definitions of intonation.

1
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on a scale going from low to high, without considering its acoustic properties” (Ladefoged

1993:186). This means that the term “pitch” only relates to the human perception of

intonation. When discussing the acoustic properties of intonation, it is more appropriate

to talk about fundamental frequency (also referred to as F0). Fundamental frequency is

the primary acoustic correlate of intonation. It is the frequency of the vibrations of the

vocal cords. Because of this strong correlation between intonation on the one hand and

pitch and fundamental frequency on the other, the latter two terms are sometimes used

to refer to intonation. Prosody is another term that is often used interchangeably with

intonation. However, prosody encompasses more than intonation; it also includes speech

duration, loudness, and voice quality2.

Intonation is crucial to human communication. Some of the important functions of

intonation in communication, outlined in Crystal (1987), are as follows. (1) Emotional :

Expressing speaker emotion (such as anger, fear, joy, or happiness) and attitude (such

as excitement, boredom, surprise, friendliness, or reserve). (2) Grammatical : Segmenting

utterances into clauses and sentences, and indicating utterance modality (such as declar-

ative, exclamative, injunctive, or interrogative); for example, the use of rising intonation

for “Mary called?” versus falling intonation for “Mary called.”. (3) Information structure:

Marking the distinction between given and new information. (4) Textual : Shaping the

structure of large sections of the discourse; for example, in news-reader style speech, dif-

ferent paragraphs corresponding to different news items are marked by different melodic

shapes. (5) Psychological : Organizing discourse into units that can be easily perceived and

memorized, such as the distinctive intonational pattern used to mark lists in utterances.

(6) Indexical : Indicating personal identity and group memberships of the speakers; for

example, members of certain professions have distinctive speaking styles, such as news-

readers, sportscasters, preachers, etc.

2Voice quality is the perception of the laryngeal settings (e.g., creaky voice versus breathy voice, each
dictated by the pattern of the vocal fold vibrations), supralaryngeal settings (e.g., palatalized voice in which
the tongue is positioned higher and further forward than is commonly positioned, versus pharyngealized
voice in which the pharynx is constricted more than usual) and overall muscular tension settings (e.g.,
tense voice versus lax voice) used by a speaker during articulation (Laver 1980, 1994).
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Given its important functions in human communication, generating correct and ex-

pressive intonation is extremely important for speech synthesis systems. However, it is

also considered to be one of the fundamental challenges of speech synthesis (van Santen et

al. 2005). The onus of meeting this challenge falls to the intonation model that underlies

a speech synthesis system. A model is a representation of an observable phenomenon in

terms of abstract theoretical entities; it is based on well-known assumptions about the phe-

nomenon that it is representing (van Santen et al. 2000). There are two main categories

of intonation models, symbolic intonation models and quantitative intonation models. A

symbolic intonation model (e.g., ToBI (Silverman et al. 1992)) represents intonation using

an alphabet of symbols and reduces intonation to a set of discrete categories. However,

a symbolic model is not adequate for generating intonation in speech synthesis systems

because it does not provide the required quantitative information about intonation and

its temporal relationship to the underlying speech stream (Mixdorff and Fujisaki 2000). A

more suitable model is a quantitative intonation model. A quantitative intonation model

represents intonation numerically. More particularly, it represents intonation as a sequence

of (time, F0) pairs; this sequence is called the fundamental frequency contour (also called

the F0 contour).

Figure 1.1: Example of a natural F0 contour.

Quantitative intonation models can be further categorized into those based on the se-

quential approach and those based on the superpositional approach. These two approaches
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to intonation modeling differ in terms of F0 contour characterizations as shown in Fig-

ure 1.2. The sequential approach characterizes the F0 contour as a sequence of distinct

F0 movements or targets that are generated left to right. Some examples of intonation

models based on the sequential approach are the IPO model (’t Hart et al. 1990), the

Pierrehumbert model (Pierrehumbert 1980), the Tilt model (Taylor 2000), and the RNN

model (Traber 1992). The superpositional approach characterizes the F0 contour as an

overlay (or superposition) of several simpler component contours. Some examples of in-

tonation models based on the superpositional approach are the Fujisaki model (Fujisaki

1983), the Linear Alignment model (van Santen 1997), and the SFC model (Bailly and

Holm 2005).

Figure 1.2: Sequential versus superpositional approach.

The two approaches also differ in terms of the assumptions they make in order to

develop a mapping between linguistic (and non-linguistic) factors and the F0 contour. In

the superpositional approach, the F0 contour is assumed to be determined by local factors

(e.g., word emphasis, syllable stress) as well as global factors (e.g., sentence modality,

overall phrasing structure), whereas in the sequential approach, it is assumed that the F0

contour is completely determined by local factors while remaining generally unaffected by

non-local factors (Pierrehumbert 1980). However, there is sizable empirical evidence that
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shows that the F0 contour is affected by both local and non-local factors, as is discussed

in Chapter 3. Consequently, this research is based on the superpositional approach to

intonation modeling.

1.2 Statement of the problem

In spite of the potential of the superpositional approach to quantitative intonation mod-

eling, existing intonation models based on the superpositional approach (e.g., the Fujisaki

model, the SFC model, and the Linear Alignment Model) fail to meet the challenge of

generating a meaningful and expressive F0 contour for any arbitrary utterance. This fail-

ure can be attributed to the specific assumptions about F0 contour production and/or

perception made by particular superpositional models. So far, however, no truly critical

test of these assumptions has been performed (van Santen et al. 2004:ii) owing to the

challenging problem of decomposing a natural F0 contour into its component curves (van

Santen et al. 2005, Mixdorff 2004).

Decomposing a natural F0 contour into its component curves is challenging for the

following reasons: (1) There is no unique solution to the decomposition of a given F0

contour. Any number of component contour shapes can add up to form a single F0

contour. (2) The F0 contour is often not smooth; it is interrupted by gaps (as shown

in Figure 1.1) that represent either unvoiced sounds — when the vocal cords are not

vibrating — or pauses in the utterance. (3) Few constraints governing the shape of the

phrase curve underlying the F0 contour have been established. Phrase curves are a class

of F0 component curves that are associated with intonational phrases (defined in Chapter

3) and represents the global shape of the F0 contours. (4) Successive accent curves in

a F0 contour may overlap in time. Accent curves are a class of F0 component curves

that represent the local peaks and valleys in the F0 contour, and serve to intonationally

highlight certain syllables and words. (5) Segmental perturbations cause local maxima and

minima to occur in the F0 contour that may obscure the shapes of the phrase curves and

accent curves. Segmental perturbations are the sudden changes in the F0 contour caused

by post-obstruent vowels, nasality effects, intrinsic pitch, etc. The class of F0 component
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curves that represents segmental perturbations are called segmental perturbation curves.

Some attempts have been made to solve the decomposition problem, but they are

incomplete solutions. In solutions proposed by Fujisaki and colleagues (Mixdorff 2000,

Narusawa et al. 2002), decomposing an extended range of F0 contours is only possible by

imposing overly-strict assumptions on the shapes of the component curves. It has been

observed, however, that because of these too strong shape constraints, this decomposition

technique lacks the generality to fit certain observable F0 contours (Taylor 1992, 2000);

consequently, the linguistic meaningfulness of the F0 components extracted from such F0

contours by this decomposition technique is questionable (Ladd 1996, p. 30, Aguero et al.

2004). In a different solution (Bailly and Holm 2005, Bailly and Gorisch 2006), no shape-

related assumptions are made; rather, the prototypical shapes of the component curves

are learned from different instances of the same class in the corpus using neural networks.

However, the results of this decomposition technique are unsatisfactory when sufficient

training data is lacking (Raidt et al. 2004). A third solution (Sakai 2004) also makes no

assumptions about the shapes of the component curves, and thus only returns the average

shape of the component curves, which the decomposition algorithm has “learned” from

the training corpus (van Santen et al. 2005).

A complete solution to the decomposition problem is needed, not only for its indirect

effect on speech synthesis through the examination of assumptions made by particular

superpositional models, but also to impact speech synthesis more directly via the imple-

mentation of the recombinant synthesis method. The recombinant synthesis method, also

called the multi-level unit sequence synthesis method (van Santen et al. 2004:i, van Santen

et al. 2005), is a superpositionally-motivated approach to speech synthesis. It involves

searching one corpus for acoustic units, while searching another corpus for components of

the F0 contour, namely, phrase curves, accent curves, and segmental perturbation curves,

that are then additively recombined according to the general superpositional approach

and imposed on the acoustic unit sequences using standard pitch modification methods.

A key concept of the recombinant synthesis method is that the entire corpus of F0 com-

ponent curves is obtained by the decomposition of natural F0 contours, which means

that the existence (and usage) of a robust decomposition algorithm is imperative for the
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implementation of this synthesis method.

1.3 Goals of the thesis

The central goal of this research is to develop an algorithm for decomposing

any arbitrary natural F0 contour into its component curves using only the

most general assumptions of the superpositional approach, in order to enable

the testing of assumptions made by intonation models based on the superposi-

tional approach and to enable the implementation of the recombinant synthesis

method.

Using only the general assumptions of the superpositional approach (van Santen and

Möbius 1999) is a key difference between the decomposition algorithm presented in this

work and the standard F0 analysis techniques based on the Fujisaki model (Mixdorff 2000,

Narusawa et al. 2002). The general assumptions of the superpositional approach include

few, if any, assumptions regarding the shapes of the F0 component contours. Consequently,

in contrast to the Fujisaki model-based standard F0 analysis techniques, the presented

decomposition algorithm prescribes very few constraints governing the shapes of the pitch

component curves, thus enabling truly reliable tests of the model-specific assumptions.

Another important way in which our decomposition algorithm differs from the Fujisaki

model-based standard F0 analysis techniques, as well as other decomposition techniques

(such as those presented in Sakai 2004, and Bailly and Holm 2005), is the explicit mod-

eling of segmental perturbations. The reason why modeling segmental perturbations is

important is because they are not random Gaussian noise; rather, they represent highly

systematic effects of certain segmental classes on the F0 contour. Here are some exam-

ples: segmental perturbations related to post-obstruent vowels cause the F0 contour to

be shifted upward in vowel regions during the first 50-100 msecs after the offset of an

obstruent (van Santen and Hirschberg 1994); segmental perturbations due to the presence

of nasals cause 5-10 Hz depressions in the F0 contours that are perfectly aligned with the

start and end of the nasal regions (van Santen et al. 1998); and segmental perturbations

related to intrinsic pitch cause variations in F0 contour that are positively correlated with
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vowel height, i.e., other things being equal, a high vowel generally has a higher F0 than a

low vowel (Beckman 1986:129).

A key assumption of the general superpositional approach is that different phonological

entities are tied to different curve classes. Expanding on this assumption, our decompo-

sition algorithm explicitly models not just component curves tied to phrases and accent

groups but also those tied to phone segments. In comparison, other decomposition tech-

niques either only explicitly model curves tied to accent groups and phrases (as in Sakai

2004, Mixdorff 2000, and Narusawa et al. 2002), or use an admittedly simplistic model of

segmental perturbations (as in Bailly and Holm 2005). Since the shape of the F0 contour

is influenced by segmental perturbations, modeling these curves adds to the robustness of

our decomposition algorithm.

We have divided the central goal into the following three subgoals, each intended to

address one key aspect of the central goal.

1.3.1 Subgoal 1: decomposition algorithm development

The first subgoal is to develop a decomposition algorithm for extracting the component

curves of natural F0 contours using only the general assumptions of the superpositional

approach. Specifically, this algorithm has the following key features:

• It assumes that the natural F0 contours it encounters are labeled and segmented,

which is a valid assumption in the area of speech synthesis.

• It makes very general assumptions about the shapes of the component curves.

• It explicitly models segmental perturbations.

• It addresses the issue of successive accent curves overlapping in time.

• It appropriately deals with the gaps that occur in natural F0 contours due to unvoiced

phones or silences.

• It decomposes complicated utterances of three common intonation types, namely,

declarative, continuation rise, and interrogative; it provides the theoretical frame-

work and extensible implementation to address other intonation types in the future.
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• It avoids extracting average shapes of component curves (unlike (Sakai 2004)); in-

stead, it extracts individual natural shapes of component curves on a per utterance

basis.

1.3.2 Subgoal 2: use of decomposition algorithm in speech synthesis

The second subgoal is to implement a proof-of-concept (POC) of the recombinant synthesis

method in order to demonstrate the essential role of the decomposition algorithm in this

synthesis method. The proof-of-concept implementation of the recombinant synthesis

method involves

• extracting component contours of natural F0 contours,

• creating a corpus of the extracted pitch components labeled with information about

their relationship to phonological entities (i.e., phone segments, syllables, left-headed

feet3, and phrases) such as their size in terms of number of left-headed feet or

number of syllables, their relative position in the phrase or utterance, and the broad

phonemic classes that they contain (vowel or diphthong, sonorant consonant, and

other),

• selecting F0 component curves from the corpus that match the target contour in

terms of the aforementioned labels,

• and, additively recombining them to generate a target F0 contour.

This implementation does not include creating an acoustic unit corpus or searching it for

appropriate acoustic units; rather, the target F0 contours are imposed on pre-recorded

natural speech so that the strengths and weaknesses of this intonation generation method

are observed unconfounded by the effects of acoustic unit search and concatenation.

3A left-headed foot is defined as a sequence consisting of an accented syllable followed by all unaccented
syllables that precede the next accented syllable or phrase boundary. The sequence of syllables preceding
the first accented syllable in a phrase is called the anacrusis. (Klabbers et al. 2002, Klabbers and van
Santen 2003)



10

1.3.3 Subgoal 3: use of decomposition algorithm in testing assumptions

The third subgoal is to test assumptions regarding the perception of prominence and the

shapes of F0 contour components in order to show the decomposition algorithm’s utility

in testing assumptions about intonation in the superpositional framework. Prominence is

what we hear when a word (or group of syllables) “stands out” from those around it in an

utterance. The perception of prominence is often assumed to be related to height, position,

or even slopes of the fundamental frequency peaks (Gussenhoven et al. 1997); thus, in

the context of the superpositional approach, it can be related to the height, position, and

slopes of the underlying F0 component curves. These assumptions are tested by a series

of perceptual experiments. Specifically, we explore the following questions:

• What is the combined and individual influence of accent height, accent peak location,

phrase onset, and phrase slope on perceived prominence?

• Is there a line of reference that listeners use to determine the prominence of peaks

in the F0 contour? If so, is the reference line abstract or observable?

• Does contrastive accent influence perceived prominence differently than normal ac-

cent?

1.4 Organization of the thesis

Chapter 2 presents a review of quantitative intonation models that have been used for

text-to-speech synthesis and their relative advantages and disadvantages. The following

three chapters represent the technical part of this thesis, each chapter providing a solution

corresponding to one of the three subgoals outlined in Section 1.3. Chapter 3 presents

(1) the motivation for a superpositional approach to the decomposition problem, (2) a

description of the general superpositional model of intonation, which will be the basis of

the decomposition algorithm, and (3) a description of the decomposition algorithm that

decomposes natural F0 contours into their component curves. Chapter 4 describes the

proof-of-concept implementation of recombinant synthesis, and discusses its comparative

performance against other synthesis methods. Chapter 5 describes a series of perceptual

tests performed to test assumptions regarding perceived prominence and the shapes of F0
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contour component curves. Chapter 6, the last chapter of this thesis, describes a summary

of the main findings of this work, its overall significance, and the future directions of this

area of research.

Please note that significant portions of the material presented in many of these chapters

have been previously published by the author as conference papers, book chapters, and

journal articles.



Chapter 2

Intonation Models in Speech Synthesis:

A Literature Review

Several quantitative intonation models — based on either the superpositional approach or

the sequential approach — have been used in existing text-to-speech synthesis systems.

Here we review ten such intonation models, five using the sequential approach, three using

the superpositional approach, and two that are neither sequential nor superpositional but

contain certain features that may be considered sequential or superpositional. For each

model, the implicit assumptions underlying the model, the explicit representation of F0

chosen by the model, and the way in which the model can be used to compute intonation

in a text-to-speech system are outlined.

2.1 Intonation models in the sequential approach

Models based on the sequential approach to intonation modeling consider the F0 contour

to be a sequence of distinct F0 movements or targets that are generated left to right. The

five sequential models that are reviewed here are Pierrehumbert’s theory of intonation,

ToBI-based approaches, the recurrent neural network (RNN) model, the tilt model, and

the IPO approach.

2.1.1 Pierrehumbert’s Theory of Intonation

The Pierrehumbert theory of intonation (Pierrehumbert 1980), developed by Pierrehum-

bert as part of her doctoral dissertation, is a phonological model of intonation. It is based

12
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on autosegmental-metrical (AM) phonology (Ladd 1996, Goldsmith 1990). In keeping

with the AM theory, the Pierrehumbert model considers intonation to be a sequence of

high(H) and low(L) tones. The H and L tones are in phonological opposition, i.e., the

difference in sound between them serves to distinguish intonational meaning. The two

types of tones never interact with each other; rather, they follow each other sequentially

in an utterance.

The H and L tones are the building blocks of three larger tone units: pitch accents,

phrase accents, and boundary tones. Pitch accents mark prominence. They are either

single tones (H*, L*), or pairs of tones (L+H*, L*+H, H+L*, H*+L); the * denotes the

association of the tone with a stressed syllable. One or more pitch accents comprise an

intermediate phrase. One or more intermediate phrases comprise an intonational phrase,

the largest prosodic unit posited by this theory. The edges of the intonational phrase are

marked by boundary tones. The boundary tones are single tones (%H, %L, H%, L%);

the % denotes the association of the boundary tone with the pitch onset or offset of the

intonational phrase. Pitch movement between a pitch accent and a boundary tone is

indicated by a phrase accent (H-, L-), denoted by the diacritic, -.

To ensure that the model renders well-formed intonational representations, Pierrehum-

bert defined a finite state grammar that specifies the combinations in which pitch accents,

phrase accents, and boundary tones can occur. She also devised a set of phonetic realiza-

tion rules (Pierrehumbert 1981) to produce F0 contours from the phonological model of

intonation described above.

Generating the F0 contour of a target utterance in a TTS system using the Pierre-

humbert theory of intonation involves three main steps. First, determine the tonal repre-

sentation of the utterance using the finite state grammar. Second, specify the target F0

values of the high and low tones depending on the metrical prominence of the associated

syllables, and the F0 values of the preceding tones using the phonetic realization rules.

Third, using the rules again, connect the target F0 values to generate a F0 contour: If two

neighboring targets are far apart, connect them with a sagging contour implemented via

a quadratic function. Otherwise, connect them via monotonic curves.
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2.1.2 ToBI-based approaches

ToBI (Silverman et al. 1992) stands for tones and break indices. Based on Pierrehumbert’s

theory of intonation, it was developed in four research meetings between 1991 and 1994

as a standard for describing American English intonation. It has since been extended to

transcribe other languages and dialects (Mayo et al. 1997, Reyelt et al. 1996, Campbell

and Venditti 1995).

ToBI consists of three parallel labeling tiers. The first tier is the tone tier. The

tones specified by Pierrehumbert’s theory are labeled in the tone tier. The second tier

is the break index tier. In the break index tier, break indices, ranging from 0 to 4, are

marked. Break indices mark the boundary strength between adjacent words; 0 indicates

no boundary, 3 indicates an intermediate phrase boundary (- in Pierrehumbert’s model),

and 4 indicates a intonational phrase boundary (% in Pierrehumbert’s model). The third

tier is a miscellaneous tier, where hesitations, disfluencies, laughter, non-speech sounds,

etc., are labeled.

It is important to note that ToBI is a labeling system. It does not specify the means

to produce quantitative intonation from the labels. However, there are both rule-based

and statistically trained approaches that can be applied to the ToBI labels to generate F0

contours. An example of the rule-based approach is Jilka’s hand-crafted rule system for

specifying the F0 contour of American English from ToBI labels (Jilka et al. 1999). Jilka’s

approach is similar to Pierrehumbert’s phonetic realization rules. These rules specify the

target F0 values associated with ToBI labels, depending on pitch range and the voiced

part of the syllable. The target F0 values are calculated from left to right, taking into

account only preceding ToBI labels, not subsequent ones. The F0 contour is produced by

linear interpolation between target points.

An example of the statistically trained approach is Black and Hunt’s linear regression

based approach for generating F0 contours from ToBI labels (Black and Hunt 1996). This

approach simply involves predicting three target F0 values for every syllable — one at the

start of the syllable, one at mid-vowel position, and one at the end of the syllable — by

means of linear regression. The prediction formula is defined by Black and Hunt (1996)
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as follows:

F0 value = I + w1f1 + w2f2 + w3f3 + ...+ wnfn (2.1)

The fi variables indicate the features that contribute to the F0 value of a syllable, such

as the ToBI label associated with the syllable, syllable position in the phrase, and syllable

stress. I and wi are parameters that are estimated by linear regression.

2.1.3 The RNN Intonation Model

The recurrent neural network (RNN) intonation model, developed by Traber (1992), uses

neural networks to predict the F0 contour. Simply put by Traber (1993), a neural network

can be considered to be a non-linear statistical model with many parameters. These

parameters are estimated in the training phase so that they can return an optimal set of

outputs from the corresponding input. The neural-network-based approach was motivated

by the goal of using minimal human effort to obtain high quality intonation, that is, while

humans would specify which phonological units were relevant for the phonetic realization

of intonation, clever machine learning techniques would figure out how the phonological

units map to the F0 contour.

In the implementation of this intonation model in the SVOX TTS system (Traber

1995), the F0 contour was generated per syllable. Per syllable, the accent value of the

syllable and segmental properties relating to its position in the phrase and the sentence,

as well as the accent values of the neighboring syllables, are given as input to the neural

network. The network outputs the F0 region related to the syllable, represented by eight

samples of the F0 contour. The resultant F0 regions are concatenated together to produce

the complete F0 contour.

2.1.4 The Tilt Intonation Model

The tilt intonation model, developed by Taylor and Black (Taylor 2000) at the Center for

Speech Technology Research of the University of Edinburgh, considers intonation to be

sequence of intonational events, which are parameterized by tilt parameters. The model

posits four basic types of intonational events: pitch accents, boundary tones, connections
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(regions in the F0 contour between two pitch accents, two boundary tones, or a pitch

accent and a boundary tone), and silence.

Pitch accents and boundary tones are each modeled by piecewise combinations of

quadratic functions; these quadratic functions may be rising or falling functions. Con-

nections are modeled by straight-line interpolations. The amplitude and duration of the

rising and falling quadratic functions, the position of the associated intonational event in

the time-F0 plane, together with a tilt value associated with each event constitutes the set

of tilt parameters associated with the intonational events. The tilt parameter represents

the amount of rise and fall of each accent. The tilt value is the difference in the amplitudes

of the rise and fall functions, divided by their sum (Dusterhoff and Black 1997), as shown

in the equation below.

tilt =
|Amprise| − |Ampfall|

|Amprise| + |Ampfall|

The tilt value ranges from -1 to 1, where -1 indicates a pure fall, 1 indicates pure rise

and 0 indicates a rise followed by a fall of equal magnitude. Thus, the tilt model uses

continuous parameters rather than imposing categorical classification on the intonational

events.

Dusterhoff and Black (1997) have shown that the tilt model can be successfully used

to predict F0 contours in a text-to-speech system. The tilt-based F0 generation process

has two stages: a training stage and a testing stage. The training stage requires a training

database. The database is labeled with tilt events, either automatically or by hand.

For each syllable in the database marked with a tilt event, a set of linguistic-prosodic

features are extracted. The features are grouped into separate training sets depending on

event type. A CART (Classification and Regression Tree; Breiman et al. 1997) training

algorithm is applied to each of the training sets to develop a decision tree for every tilt

parameter. The decision trees thus describe the tilt parameters in terms of an optimal

subset of the extracted features.

The training stage described above is performed offline. The tilt parameter descriptions

obtained in the training stage are used in the testing stage for F0 contour generation of

given text. The given text is labeled with tilt events, and the same set of linguistic-

prosodic features (as in the training set) are extracted. The related tilt parameters are
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calculated from the extracted features using the descriptions obtained from training. The

tilt parameters are then plugged into predetermined quadratic or linear functions to model

the pitch accents and boundary tones or connections, respectively.

2.1.5 The IPO Approach

The IPO approach (’t Hart et al. 1990, Cohen and ’t Hart 1967) was developed at the

Institute of Perception Research (IPO) at Eindhoven, Netherlands in the 1960s. It was

originally used to model Dutch intonation. The IPO model is often classified as a perceptual

intonation model because of the assumptions underlying the model: Not all changes in

F0 are perceived by the human ear; only F0 changes that are perceived by the human ear

need to be modeled; and finally, the human ear perceives tone variations (rise vs. fall)

and not tone intensities (high vs. low).

Given these assumptions, the IPO approach models the raw F0 contour as a piece-wise

linear approximation of the original contour, known as a close copy contour. It is called

a close copy contour because upon resynthesis, it is perceptually indistinguishable from

the original F0 contour. Generating the close copy contour also includes specifying the

declination line (a line that represents the overall trend of the F0 contour).

Close copy contours are classified into discrete, phonetically defined types of F0 rises

and falls. The classification parameters describe the deviation of the close copy from the

declination line and include descriptive factors such as its height and slope relative to the

declination line, its span relative to the span of the declination line, its timing in relation

to associated syllable(s) duration, and its rate of change. The particular parameters used

for classification differ from language to language.

Once an inventory of F0 rises and falls covering the entire combinatorial space of

the classification parameters has been collected, a grammar specifying the possible and

permissible combinations of the F0 rises and falls is written in terms of the parameters.

When the IPO intonation model is used in speech synthesis systems, this grammar is used

for F0 contour generation. F0 contours predicted by this grammar must be perceptually

equivalent to and as acceptable as natural F0 contours (Sproat 1997). IPO has been

implemented in speech synthesis systems for Dutch (Terken 1993), English (Willems et al.
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1988), and German (van Hemert et al. 1987).

2.2 Intonation models in the superpositional approach

Models based on the superpositional approach to intonation modeling consider the F0

contour to be a superposition (or overlay) of simpler components. The three superposi-

tional models reviewed here are the Fujisaki model, the linear alignment model, and the

superposition of function contours (SFC) model.

2.2.1 The Fujisaki Intonation Model

The Fujisaki intonation model, developed by Fujisaki (Fujisaki 1983, Fujisaki and Hirose

1982) is the best known intonation model based on the superpositional approach. In the

Fujisaki model, the F0 contour is considered to be an addition (in the log domain) of two

components: the phrase command and the accent command.

The phrase command characterizes the overall trend of the intonation of an utterance,

represented by the global movement of the associated F0 contour. The accent command on

the other hand, characterizes particularly extreme excursions of intonation used to stress

certain syllables or words in the utterance, represented by the local peaks and valleys in

the F0 contour. The phrase command is modeled by pulses, while the accent command is

modeled by step functions. The discontinuities in the two commands are then smoothed

using separate filters to output phrase and accent components that appear continuous.

The phrase and accent components are then added in the log domain to produce an

additive F0 contour — the defining characteristic of the Fujisaki model.

To use the Fujisaki model for F0 prediction in text-to-speech synthesis, the pulses are

placed at intonational phrase boundaries, while the step functions are associated with other

key phonological units such as accent groups. Linguistic and other properties of the text

determine the amplitude of each of the commands and the width of the accent commands.

This model has been successfully used for intonation modeling of many languages (Fujisaki

2002, Mixdorff 2004).
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2.2.2 The Linear Alignment Model

The linear alignment model was developed by van Santen and Möbius (1999) at Bell

Laboratories. The distinguishing characteristic of this model is that it pays particular

attention to the alignment between the pitch contour and the segmental stream underlying

it.

Its concern with alignment is most effectively expressed in its modeling of the accent

curve component. The accent component represents the same aspects of the F0 contour as

the accent component in the Fujisaki model, though it is modeled differently in this model.

The accent curve is modeled by parameterized time warps of an accent curve template.

The template can be defined as a sequence of anchor values Tp =< P1, P2, ...Pn > that

describe the archetypical shape of the associated accent curve type P. Also associated with

P is an alignment parameter matrix, an ensemble of regression weights that describe the

alignment of P to the segmental region underlying it. All accent curves of type P have

the same template and the same alignment parameter matrix; they differ from each other

only in terms of their duration.

Besides the accent curve, two other components of the additive F0 contour are specified

by the linear alignment model: the phrase curve and the segmental perturbation curve. As

in the Fujisaki model, the phrase curve illustrates the long-term shape of the F0 contour.

The phrase curve is modeled by a piecewise quasi-linear function spanning three time

points. The segmental perturbation curve describes the segmental influences on the pitch

contour such as pitch increase in vowels following voiceless plosives and pitch lowering in

nasals and glides. The segmental perturbation curves are modeled by exponential decay

functions.

The linear alignment model has been used for generating intonation in the Bell Labs

multilingual text-to-speech system (van Santen et al. 1998). To synthesize speech from

text, each of the three components of F0 specified by the linear alignment model have to be

related to linguistic entities. The phrase curve is anchored at three points: the start of the

utterance, the start of the syllable that carries the nuclear pitch accent, and the end of the

utterance. The accent curve is tied to a left-headed foot, which is defined as a sequence
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consisting of an accented syllable followed by all unaccented syllables that precede the

next accented syllable or a phrase boundary. The degree of emphasis at a particular foot

is obtained by multiplying the accent curve by a height factor. Segmental perturbation

curves are anchored at vowel onset. The amplitude of this function is determined by the

broad class of the onset consonant; it has a maximal value for voiceless consonants, a

smaller value for voiced obstruents, and a zero value for sonorants.

2.2.3 The SFC Model

The superposition of functional contours (SFC) model of intonation was developed at the

Institute for Speech Communication. It was proposed by Aubergé (1993) and implemented

by Holm and Bailly (2000). Like other superpositional models, the principal assumption

of the SFC model is that the pitch contour is obtained by a superposition of simpler

contours. In case of the SFC model, the simpler contours are multiparametric contours

called functional contours (FCs).

Functional contours form the core of the distinguishing assumption of this model. They

are assumed to directly encode specific metalinguistic functions tied to various discourse

units, without any intermediate representation (Bailly and Holm 2005). Metalinguistic

functions refer to intonation functions that delimit phonological units and convey propo-

sitional and interactional information about these units within the discourse. Examples

of metalinguistic functions are hierarchy, segmentation, emphasis, and speaker attitude.

Every functional contour has the following three properties:

1) It is function-specific, i.e. tied to a particular metalinguistic function.

2) It spans the extent of the unit(s) tied to the function it encodes; this extent is called

the scope or domain of the FC.

3) The FC shape is a function of the metalinguistic function it encodes and its scope.

However, it is important to note that the FC shape is not specified a priori in this model;

rather it emerges in the training phase of the model’s implementation.

The SFC model has been implemented for pitch prediction in TTS systems for German,

French, and Mandarin Chinese. The metalinguistic functions encoded by the functional

contours are defined. One contour generator per function is implemented as a neural
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network. Each contour generator generates a family of functional contours that encode

the same metalinguistic function and hence have the same shape, differing only in terms

of their time domains. The input to each contour generator is information relating to the

scope of the associated function and the position of each syllable within the scope. The

output is four output parameters per syllable (three F0 values and a lengthening factor).

Training the contour generators to generate a particular pattern of functional contour

is not a straight-forward process because recovering the unique contributions of the contour

generators to their sum (i.e. the F0 contour) is an ill-posed problem. To determine the

individual contributions of each contour generator and the particular pattern of the FC,

an analysis-by-synthesis loop (Holm and Bailly 2000) is used.

2.3 Other intonation models

There are some intonation models that are based neither on the sequential nor on the

superpositional approach, though they contain some features that may be considered

superpositional or sequential. Here we review two such models: the Kiel model, which

is referred to as a prosodic model, and the STEM-ML model, which is referred to as a

physiological model.

2.3.1 The Kiel Intonation Model (KIM)

The Kiel intonation model was developed by Kohler and his colleagues (Kohler 1991,

Kohler 1997) to model intonation patterns in German. In KIM, the F0 contour is mod-

eled as a sequence of global intonational units, each unit linked to one emphasized word.

The global intonational units are considered to be produced and perceived holistically,

and cannot be split. These global units are either peaks or valleys or peak-valley com-

binations, and differ from each other in term of their pragmatic, semantic, and syntactic

functions. They were determined in KIM by means of function-oriented phonetic exper-

iments. KIM postulates that there is a prototypical intonational unit associated with

a particular pragmatic-semantic-syntactic function combination. However, KIM does not

ignore the microprosodic phenomena (e.g., F0 shifts at the obstruent-vowel boundaries and
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F0 changes in nasals and glides; effects of intrinsic pitch are also included in this category)

observed in the F0 contour; microprosodic phenomena is also a part of the model.

Since KIM was developed with a focus on TTS synthesis, the F0 prediction rules

are well specified. KIM applies two sets of rules, namely, symbolic feature rules and

parametric rules, for pitch prediction in TTS systems. The symbolic feature rules are

applied to phonological units which have been annotated with syntactic, pragmatic, and

semantic markers. The phonological units are either segmental (vowels and consonants) or

non-segmental (morphological and phrase boundaries). The symbolic feature rules output

the global intonational units associated with the phonological units, encoded as binary

features (such as +/-terminal, +/-valley, +/-quest, +/-early, +/-late). These feature

values are then used by the parametric rules to generate the F0 contour of the target

utterance. The parametric rules include rules for aligning the global intonational units

with the segmental structure of the target utterance, downstepping of accent peaks, speech

rate, prosodic boundaries and, finally, articulation-induced microprosody (Kohler 1995).

2.3.2 The STEM-ML Intonation Model

STEM-ML (Soft TEMplate Markup Language) is a physiological model of intonation. It

was developed by Kochanski and Shih (2000) to investigate the deviation of Mandarin

Chinese tones from their expected canonical shape when occurring in natural sentences.

However, this model has been designed to be language-independent, and thus, can be

applied to non-tone languages like English.

The STEM-ML intonation model is founded on three key assumptions:

1. Human speech is pre-planned several syllables in advance.

2. Humans produce speech that optimally balances the physiological effort required to

speak against unambiguity of the spoken message. The speaker expends maximal

effort to produce correct prosody at prosodically crucial events because the cost of

ambiguity is high at these points. However, he minimizes effort between such events

because the cost of ambiguity is low.

3. Speech prosody is continuous and smooth over small time periods.
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STEM-ML includes a tagging system (see Kochanski and Shih (2003) for a complete

description of the tagset) for intonation mark-up and specification and a quantitative

model to generate the F0 contour. Two important building blocks of the STEM-ML

model are parameters and soft templates. The parameters are associated with the tags in

the tagging system. The soft templates are a part of the quantitative intonation generation

model. The parameters and the soft templates together generate the F0 contour.

In this model, the F0 contour is considered a concatenation of the local accents. The

local accents are represented by the soft templates. The soft templates are “soft” in

the sense that the accent templates allow substantial distortion caused by neighboring

accents. The concept of soft templates arises from the previously stated pre-planning

assumption. An accent template is affected by past as well as future templates. The

degree of distortion is controlled by a parameter called strength. The strength parameter

reflects the cost of ambiguity in the previously stated assumption regarding optimally

balanced speech. Therefore, if strength (hence cost of ambiguity) is large, the template

shape remains unchanged to reflect maximal articulatory effort, whereas if it is low, the

accent shape is compromised to reflect minimal articulatory effort.

Besides local tags that control local accent shapes, there are global tags that control

speaker-specific information. Thus, a STEM-ML model is built on a particular speech

corpus. The implementation of the STEM-ML model involves two phases: the learning

phase and the generation phase. In the learning phase, the values of the parameters

are determined iteratively by minimizing the difference between the actual F0 of every

STEM-ML tagged utterance in the corpus and the F0 predicted by the model. In the

generation phase, when faced with the task of generating a target utterance, the model

first tags the text underlying the utterance, then uses the pre-determined values of the

parameters associated with the tags to modify the soft templates, and finally, concatenates

the modified accent templates to produce the F0 contour. STEM-ML has been used to

model Mandarin (Kochanski and Shih 2001), Cantonese (Lee et. al 2002), and English

(Shih and Kochanski 2003) speech.
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2.4 Advantages and disadvantages

As shown in the preceding descriptions, the different intonation models are implemented

in TTS systems using different computational mechanisms: linguistic-prosodic rules, tem-

plates, neural networks, decision trees, and linear regression. Each of these computational

mechanisms has its advantages and disadvantages. The advantages of the rule-based

approaches are that they are easy to implement and that they produce consistent into-

national contours. The disadvantage of the rule-based approaches is that intonational

contours lack the richness and variability of natural intonation contours. The machine

learning approaches (i.e., those using decision trees, neural networks, and linear regres-

sion), on the other hand, have the advantage of being able to produce natural-sounding

intonational contours, because they learn the mapping between annotated text and cor-

responding natural pitch contours in the training phase. However, the machine learning

approaches have the disadvantage of requiring large amounts of training data to cover the

combinatorial space of phoneme sequences and prosodic contexts. Since it is not feasi-

ble to cover this entire combinatorial space, machine learning approaches are often beset

with data sparsity problems. The reason for capturing the contours related to the same

phoneme sequence in different prosodic contexts is that the shape of the contour changes

depending on context. One of the main advantages of the template-based approach is

its ability to handle the changing shape of an intonation contour depending on context.

The template-based approach posits a reasonable number of templates (or prototypical

shapes) related to different prosodic events that can be distorted by means of parameters.

However, one of the drawbacks of this approach is that the template and the parameters

may fit the data in a way that is phonologically absurd.



Chapter 3

PRISM: Procedure for Representing

Intonation in the Superpositional Model

Given an F0 contour, the outcome of our decomposition algorithm is a set of component

curves that constitute the F0 contour in accordance with the general assumptions of the

superpositional model. Our decomposition algorithm is therefore called PRISM, which

stands for “procedure for representing intonation in the superpositional model”. Besides

being an acronym, the name PRISM also symbolizes the key idea of decomposition.

PRISM is described in full detail in Section 3.3 of this chapter. We lead up to the

description of PRISM with a discussion of our motivation for using a superpositional ap-

proach to intonation modeling (Section 3.1) and the limitations of existing decomposition

algorithms based on the superpositional approach (Section 3.2).

3.1 Motivation for a superpositional approach

The superpositional approach and the sequential approach to intonation modeling differ

in the assumptions they make in order to develop a mapping between the linguistic factors

and the F0 contour. In the superpositional approach, the F0 contour is assumed to be

determined by local factors (such as word emphasis and syllable stress) as well as global

factors (such as utterance modality and overall phrasing structure). In the sequential

approach, it is assumed that the F0 contour is completely determined by local factors

while remaining generally unaffected by global factors (Pierrehumbert 1980).

There is, however, sizable empirical evidence showing that the F0 contour is affected

25



26

not just by local factors but also by non-local factors. A well-known example is the out-

come of Liberman and Pierrehumbert’s “list experiment” (Liberman and Pierrehumbert

1984). The results of this experiment showed that the F0 contours of list-type utterances

downstepped at each list item in relation to the item prior to it. Since then, the con-

strained nature of the F0 contours of lists has also been observed by Selting (2007). Kutik

et al. (1983) showed that an F0 contour interrupted by a parenthetic remark resumes

right afterwards such that the contour is similar to the contour in the equivalent utter-

ance without the parenthetic remark. This shows that the speaker pre-plans the global

shape of the utterance, depending on the utterance type (e.g., lists versus parenthetical

remarks). A third example can be found in Klabbers’ work (2004). She found that peaks

in a monosyllabic foot generally occur later when the foot is phrase-medial compared to

when it is phrase-final or utterance-final. This shows that the shape of the F0 contour at

a particular time point is affected by the phrasing structure of the entire utterance. Other

examples are cited in Möbius (1995). In light of such examples that clearly show the effect

of global factors on the F0 contour, assuming that the F0 contour is determined entirely at

a local level is unreasonable. Thus, in the presented research, we take the superpositional

approach to intonation modeling.

We are further persuaded in favor of the superpositional approach due to the capability

of superpositional models to determine the individual effects of various factors on the F0

contour. Every component contour in the superpositional model is in principle orthogonal

to, or independent of, all other contours; thus it can elegantly capture the effect of the

factor with which it is associated (Möbius 1995). In contrast, it is unlikely that a sequential

model will capture the individual effects of the various factors, given its disregard for the

effect of global factors on the F0 contour. Determining the effect of any local factors in

the sequential approach will probably be confounded by the actual effect of one or more

global factors that were ignored.
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3.2 Limitations of existing decomposition algorithms based

on the superpositional approach

Existing decomposition algorithms based on the superpositional approach have certain

limitations. We discuss these limitations in terms of two key issues: balancing constraint

with coverage in a decomposition algorithm, and the relevance of microprosodic modeling.

3.2.1 Balancing constraint with coverage in a decomposition algorithm

The main difficulty of F0 contour decomposition in the superpositional framework is that

there is no unique solution to the decomposition of a single F0 contour into multiple

components. There are an infinite number of component contour shapes that can add up to

form the given F0 contour. The problem is essentially under-determined because there are

more unknowns than data. An important issue therefore is to regularize the decomposition

problem by making theoretical assumptions about the shapes of the component curves that

are realistic from a physiological, linguistic, or paralinguistic point of view.

To be physiologically founded, the assumptions must stem from what is physiologically

possible (e.g., the velum can only block the nasal cavity at one end); to be linguistically

founded, the assumptions must be rooted in what is allowed in a language; and to be

paralinguistically-based, the assumptions must be conditioned by those aspects of speech

“that do not belong to the arbitrary conventional code of language, but which nevertheless

are meaningful and important in speech communication” (Schotz 2003), such as speaker

emotions and attitudes. The relative importance of the different classes of assumptions in

shaping the surface manifestations of the F0 contour is without consensus. For example,

in the Fujisaki model, the assumptions about the shapes of the component curves are

primarily based on the physiological and physical mechanisms of the larynx (Fujisaki 1983).

In contrast, the SFC model (Bailly and Holm 2005) has no physiological motivations.

Rather, the assumptions regarding component shapes are entirely motivated by higher-

order (para) linguistic constraints (Raidt et al. 2004).

The importance of different classes of assumptions aside, the main goal of these the-

oretical assumptions about the shapes of the component contours is to constrain the
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decomposition problem. However, this goal is not easily achieved because constraint con-

flicts with coverage, the other goal of decomposition. A robust decomposition algorithm

should have wide coverage, i.e., it should describe as many perceptually and generatively

distinct intonational events as possible (Taylor 2000).

Overly strict assumptions imply limited coverage, whereas unrestrained coverage pred-

icates limited assumptions. None of the existing superpositionally-based decomposition

algorithms are able to adequately balance the two due to the unsuitability of the under-

lying assumptions. We present three examples to illustrate this point. The first example

involves the Fujisaki model (Fujisaki 1983). As mentioned earlier, this model makes as-

sumptions about the shapes of the component curves on the basis of the physiological

and physical mechanisms of the larynx. The assumptions are quantitatively described in

the model as mathematical equations that specify the particular shapes of the F0 contour

components. However, standard intonation analysis methods based on the Fujisaki model

assume overly strict equation-specified shapes of component curves and thus lack the gen-

erality to fit all observed F0 contours (Taylor 1992, 2000). When the fit is accurate (such

as for algorithms described in Mixdorff 2000 and Narusawa et al. 2002), the linguistic

meaningfulness of the parameters is questionable (Aguero et al. 2004).

A second example illustrating the constraint versus coverage problem encountered in

component curve extraction involves the SFC model (Bailly and Holm 2005). In marked

contrast to the Fujisaki model, the SFC model specifies no low-level shape assumptions,

relying instead only on high-level (para)linguistic assumptions (Raidt et al. 2004). The

shapes of the component curves are determined by contour generators implemented as

neural networks; each generator generates one prototypical shape (Bailly and Gorisch

2006) that describes a family (or a class) of component curves. However, the results of

intonation analysis based on this model indicate that the complete lack of shape constraints

may not be the ideal solution either. In an objective evaluation (Raidt et al. 2004), it was

found that prosody generated by the SFC model had certain shortcomings when there was

not enough statistical information available, i.e. there was a lack in pertinent training

data. This dependency of performance on training data is a classic problem encountered by

data-driven systems that may be alleviated by specifying some well-founded assumptions
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about the shapes of the component curves.

The need for shape-related assumptions is further illustrated by another evaluation

performed by Bailly and Gorisch (2006). It was found that the concept of using a single

prototypical shape per component class in the SFC model is unable to satisfactorily model

the F0 deviations in German. The authors conjecture that either a finer classification of

the component classes or a better understanding of whether the deviations are contextual

or arbitrary may solve the problem. We, however, speculate that problems arise from the

lack of any low-level assumptions about the component contour shapes. As a result, the

neural networks learned a sort of “averaged” prototypical shape per curve class, with little

consideration of the relative importance of different aspects of the particular shape. Also,

given the admittedly simplistic method of separating microprosodic phenomena from the

prosodic phenomena (Bailly and Holm 2005), it is possible that segmental perturbations

may be skewing the “averaged” shape away from the “true” shape of the component

curves.

The aforementioned examples illustrate the shortcomings of intonation models (and

the associated decomposition strategies) that specify overly strict or overly lenient as-

sumptions about the component contour shapes. A promising compromise between the

two is provided by van Santen and Möbius’s Linear Alignment Model (van Santen and

Möbius 1999) that delineates fewer shape-related assumptions than the Fujisaki model,

though more than the SFC model. In the Linear Alignment Model, component curves in

the same phonological or perceptual class are generated from a common template using

non-linear time-warp functions. Components differ either by having different templates or

different time-warp functions (van Santen and Möbius 1997). A significant claim of this

model is that the shape of the phrase curve in this model is essentially unconstrained,

except for the assumption that it remains smooth over long stretches of time (van Santen

2002), in order to facilitate considerable and meaningful variability in the phrase curve.

This is certainly a very desirable feature of the intonation model and has the potential to

remedy the lack of generality encountered by intonation analysis algorithms based on the

Fujisaki model.

However, this property of the phrase curve model was not exploited for decomposing
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natural F0 contours. Rather, the phrase curve was obtained by drawing a line from

the start of a pitch accent to the end of the phrase (van Santen 2002). Crucially, this

method of decomposing F0 contours has been shown to be successful only in decomposing

F0 contours of very simple declarative carrier phrases in which one or two words were

systematically varied (van Santen and Möbius 1997). But the success of this decomposition

strategy hinges on the fact that for these simple utterances, each containing a single

accent curve, it is safe to assume that the observed local minima correspond to the phrase

curve. In the case of more complex utterances, this assumption will not hold true, either

due to segmental perturbations or overlapping accent curves. Within the context of the

superpositional approach, accent curves are considered to be overlayed on the phrase

curve to form the F0 contour. It is conjectured that sometimes neighboring accent curves

overlap in time. When accent curves overlap, the observed minima correspond to the point

of overlap between the accent curves and not to the phrase curve; thus the decomposition

strategy built on the assumption that observed local minima correspond to the phrase

curve will fail. This decomposition strategy also appears to overlook the occurrence of

gaps in the F0 contour due to unvoiced phones. These gaps may obscure the true phrase

curve and thus thwart the decomposition strategy.

Studying the issue of constraint versus coverage for different existing decomposition

algorithms reveals that a decomposition algorithm that can balance the two conflicting

goals properly (1) must not be based on overly strict assumptions about the shapes of the

component curves, yet must not be without any shape-related assumptions; (2) must be

independent of training data; and (3) must address important considerations regarding

the F0 contour such as overlapping accent curves, gaps in the F0 contour, and effects of

microprosody (i.e., segmental perturbations) in order to be able to handle both simple

and complex utterances. We have handled all three of these features in our decomposi-

tion algorithm PRISM (as outlined in Section 1.3.1) in an attempt to properly balance

constraints with coverage in the decomposition of natural F0 contours.
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3.2.2 The relevance of microprosodic modeling

In the previous section, microprosody was briefly mentioned. Microprosody, which is

another term used to refer to segmental perturbations, includes vowel intrinsic pitch effects,

perturbations of post-obstruent vowels, presence of voiceless regions, and nasality effects

on the F0 contour (van Santen and Möbius 1999). So far, most existing superpositional

intonation models and decomposition strategies pay scant attention to microprosody. The

Fujisaki model completely ignores microprosody, and because of that, intonation analysis

algorithms based on the Fujisaki model smooth out microprosodic variations in the F0

contour as a preprocessing step to the actual analysis (Mixdorff 2000, Aguero et al. 2004).

The SFC model and the related intonation analysis use a microprosodic model that is

admittedly “too simple” and needs improvement (Bailly and Holm 2005). The same

neglect of microprosodic modeling marks the sequential models as well.

However, modeling microprosody should not be neglected in intonation modeling for

the following three reasons. First, microprosodic variations of the F0 contour are not ran-

dom Gaussian noise; rather, they represent highly systematic effects of certain segmental

classes on the F0 contour; for example, the F0 contour is shifted upward in vowel regions

during the first 50-100 ms after the offset of an obstruent (van Santen and Hirschberg

1994). Combined together, several microprosodic variations may produce spurious local

maxima and minima on the F0 contour, or perturb what otherwise might have been a

linear contour, or artificially create a linear contour (van Santen and Möbius 1999). Mi-

croprosodic variations, thus, can obscure the “true” shapes of the phrase curves and accent

curves, the two components of the F0 contour that are of greater interest in intonation

modeling. Therefore, a decomposition algorithm must include explicit models of micro-

prosody so that during decomposition, microprosodic variations can be factored out from

the F0 contour to uncover the “true” shapes of the phrase curves and accent curves.

The idea of factoring out microprosodic variations from the F0 contour follows easily

from human auditory perception. In Silverman (1987), a group of British English listeners

were asked to judge the prominence of two accented words that differed only in terms of

the vowel; one word contained a high vowel such as /i/ while the other, a low vowel such
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as /a/. The listeners judged the word containing the high vowel to be less prominent even

though the F0 peak in each of the two words was at the same height. This occurred due

to the vowel intrinsic pitch effect. Vowels, even in unaccented syllables, are associated

with variations in the fundamental frequency contour; this is called the intrinsic F0 of

vowels. Intrinsic F0 is positively correlated with vowel height; other things being equal, a

higher vowel has a higher intrinsic F0 than a lower vowel. The reason that listeners in the

Silverman study assessed the same F0 peak as less prominent when produced with the high

vowel than when produced with the low vowel was because they perceptually factored out

the intrinsic F0 of each vowel. This perceptual phenomenon is called the vowel intrinsic

pitch effect. Factoring out microprosodic variations from the F0 contour during F0 curve

decomposition thus simulates the vowel intrinsic pitch effect in perception.

The second reason for modeling microprosody is that microprosodic variations pose a

challenge for prosodic signal modification methods (van Santen et al. 2000). For example,

creaking causes pitch halving. Simple smoothing and interpolation (two techniques often

used to deal with microprosodic effects) would still leave behind an uncharacteristic bulge

in the F0 contour, which would require such severe prosodic modification during synthesis

that degradation in the quality of the resultant speech would be inevitable. Van Santen

suggests microprosodic modeling as a solution to the problem of speech quality degradation

due to prosodic modification (van Santen et al. 2000). He suggests developing an explicit

model of microprosody to separate the natural F0 contour into a “residuals” contour

containing the microprosodic variations and an underlying smooth contour that contains

no unusual artifacts. During synthesis, the target contour would replace the smooth

natural contour, and the same time-warping operations could be applied to the spectral

representation and the residuals contour. Thus, prosodic signal modification is minimized,

and degradation in the quality of synthesized speech is minimized as an ultimate result.

The third reason for modeling microprosody is that it has been found that micro-

prosodic effects serve as important cues to segmental identity (Kohler 1990, Silverman

1987, Silverman 1990) and contribute to the perception of “naturalness” of intonation

(Silverman 1987). The lack of microprosodic modeling is perhaps more easily perceived

in the presence of constant improvement in the quality in present day synthesizers, even
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if it could be ignored in the early days of single-pulse LPC synthesis.

Given the aforementioned three reasons for microprosodic modeling, it seems likely that

proper modeling of microprosodic variations can improve intonation analysis and synthe-

sis. To drive towards this goal, an important type of microprosodic variation, namely,

segmental perturbations associated with post-obstruent vowels, is explicitly modeled in

our decomposition algorithm. (The other types of microprosodic variations are not in-

significant but it is beyond the scope of this thesis to model all of them.) The additivity

assumption of the general superpositional approach underlying our decomposition algo-

rithm can easily accommodate an explicit model of segmental perturbations. This is a

key point of departure of our decomposition algorithm from the decomposition algorithm

presented in Sakai (2004). Sakai’s algorithm is also based on the more general princi-

ples of the superpositional approach, but it does not exploit the potential of the general

superpositional assumptions to model segmental perturbations.

3.3 Decomposition of F0 contours using PRISM

To overcome the aforementioned limitations of existing decomposition algorithms, we have

developed a new algorithm called PRISM (Procedure for Representing Intonation in the

Superpositional Model) to decompose given F0 contours into component curves using the

superpositional approach. A detailed description of the PRISM algorithm, including the

assumptions underlying the algorithm, the implementation of the algorithm, and the tests

used to evaluate the performance of the algorithm, is presented in this section.

3.3.1 Assumptions underlying the decomposition algorithm

PRISM is based on four assumptions. The first two are the core assumptions of the

general superpositional approach. The next two are judiciously developed problem-specific

assumptions that help regularize the ill-posed problem of F0 contour decomposition.

1. Additive decomposition of the F0 contour: Additive decomposition is the cen-

tral assumption of the general superpositional approach (van Santen and Möbius
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1999, van Santen et al. 2004:ii) and, consequently, of the PRISM algorithm. Ac-

cording to this assumption, an observed F0 contour is obtained by “generalized

addition” of various component curves of different classes, as shown in Equation 3.1.

F0(t) =
⊕

c∈C

⊕

k∈c

fc,k(t) (3.1)

where C is a set of curve classes (e.g., {phrase, accent, perturbation}), c is a par-

ticular curve class, and k is a particular curve from a particular class. The opera-

tor
⊕

represents an addition-like or multiplication-like function, in that it satisfies

the properties of monotonicity (if a ≥ b then a
⊕

x ≥ b
⊕

x) and commutativity

(a
⊕

b = b
⊕

a). The reason the operator
⊕

is used in Equation 3.1 instead of an

addition operator like
∑

is because decomposition can be performed either in the

log domain or the linear domain. In our decomposition algorithm, C = {phrase,

accent, perturbation} and
⊕

is addition in the linear domain.

Based on the argument that the perception of frequency is logarithmically-based

(Silverman 1987, ’t Hart and Cohen 1973), it might be objected that decomposi-

tion in the logarithmic domain would be more appropriate. However, we can find

little consensus in literature regarding the most appropriate domain for represent-

ing intonation. In fact, several studies have shown that frequencies below 1 kHz

— which we are mainly concerned with since the average F0 is 125 Hz for males

and 200 Hz for females, and the maximum F0 would not go much above 700 Hz —

are perceived linearly. The shape of the Mel scale (Stevens and Volkmann 1940), a

psychoacoustic scale developed to measure the perception of pitch, is approximately

linear below 1 kHz and logarithmic above. Since the Mel scale, other psychoacoustic

scales such as the Bark scale (Zwicker 1961) and the ERB scale (Hermes and van

Gestel 1991) have also been proposed. Both these scales suggest that for frequencies

below 500 Hz a linear scale is more appropriate. Also, in an experiment set up to

find out whether prominence-lending pitch movements should be expressed in Hz or

semitones, Rietveld and Gussenhoven (1985) concluded that prominence judgements

were in better agreement with a Hz scale than with a scale of semitones. However,
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regardless of whether the ideal scale for representing intonation is logarithmic, lin-

ear or otherwise; transforming from a linear to another numerical domain is not

essential to the idea of superposition and therefore, in practice, not required for our

decomposition algorithm to work.

2. Different temporal scopes of the component curves: Another key assumption

of the general superpositional approach is that each of the component curves is tied

to a distinct phonological entity and follows a distinct time course (van Santen 2002).

Based on this assumption, in the PRISM algorithm, it is assumed that (1) the phrase

curve is tied to the intonational phrase1 and spans the phrase length, (2) the accent

curve is tied to a distinct left-headed foot and is left-aligned with the start of the

foot (based on van Santen (2002) which showed that pitch accents are associated

with feet and not accented syllables), and (3) the segmental perturbation curves are

associated with initial parts of vowels following a transition from an obstruent (as

shown by van Santen and Hirschberg (1994)).

3. Smooth unconstrained phrase curve: The shape of the phrase curve is assumed

to be essentially unconstrained except for the broad assumption that it should be

smooth over long stretches of time. Arguments in favor of this constraint can be

based on quasi-physical concepts similar to those that have been mentioned in sup-

port of the Fujisaki model (Fujisaki 1983) and the Stem-ML model (Kochanski and

Shih 2003). This assumption about the shape of the phrase curve is a departure

from standard assumptions about the shape of the phrase curve such as the oft-used

linear declination line, or the log-timescale exponential decay of the Fujisaki model.

This assumption allows the possibility of phrase curves displaying considerable and

meaningful variability (van Santen 2002). For example, one may be able to account

for a plateau-like F0 contour (“hat pattern”) that spans two feet by positing a phrase

curve that bulges upward and downward somewhat more strongly than allowed in

the Fujisaki model, and positioning two accent curves that overlap in time at the

1An intonational phrase consists of one or more phonological phrases, where a phonological phrase is
any syntactically determined phrase structure, e.g., a noun, verb or prepositional phrase. Phonological
phrases mark the “locations of optional or obligatory intonation breaks” (Kiparsky 1975)
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rise and fall locations of the phrase curve.

4. Component curves from common templates: Shapes of component curves are

unspecified in the general superpositional approach. However, a corollary of Assump-

tion 2 is that component curves can be classified in terms of the phonological entities

they span and their time courses. Based on this idea of curve classes, van Santen and

Möbius conceptualized the generation of accent curves from class-specific templates

(e.g., declarative template, continuation rise template, interrogative template) via

parameterized time-warp functions (van Santen 2002). This template-based genera-

tion of component curves is a promising alternative to overly strict or overly lenient

shape constraints described in Section 3.2.1. Thus, in the PRISM algorithm, it is

assumed that for every estimated accent curve Ai, there exists a template curve Ei

(shared with similarly-shaped accent curves) of norm 1, such that Ai equals a scaled

(by a height factor, hi) and time-warped Ei (Equation 3.2).

Ai(t) = hi × time warped(Ei(t)), |Ei(t)| = 1 (3.2)

Based on van Santen and Möbius (1997), the accent curve template correspond-

ing to a declarative utterance is assumed to be a single-peaked curve that rises from

0 to a peak value and again descends to 0 (implemented by a Gaussian curve2); the

template corresponding to a continuation rise consists of a dual motion in which an

early peak is followed by a valley and a final rise (implemented by the summation

of a Gaussian curve and a rising exponential curve); and, the template for the inter-

rogative contour is a curve that rises steeply in the nucleus of the accented syllable

(implemented by a rising exponential curve). To address the idea of overlapping

accent curves, it is also assumed that an accent curve starts at the beginning of

the associated left-headed foot and finishes at or beyond the end of the foot but,

conservatively, no later than the point where the next accent curve reaches its peak.

2Note: Exactly which particular function is chosen to implement a class-specific template is not very
important. What is important is that the function used to implement a class-specific template adheres to
the general shape constraints of the template. For example, instead of a Gaussian curve, a cosine curve
can be used just as well to implement the declarative accent curve template. Regardless of the curve used,
the time-warping procedure renders templates with similar shape constraints equivalent.



37

Similar to accent curves, segmental perturbation curves are also assumed to be

generated from class-specific templates. The template corresponding to segmental

perturbations associated with post-obstruent vowels — the specific type of segmental

perturbation that is modeled in this work — is assumed to be a decay function, which

is implemented by a negative exponential curve. This assumption is guided by the

research presented in van Santen and Möbius (1997).

The template-based generation of the phrase curve is more complicated. Notice

that in Assumption 3, we specified a smooth unconstrained phrase curve. Hence,

we cannot directly specify a class-specific template of the phrase curve. Thus, in

the two-phase implementation of PRISM (described in Sections 3.3.2 and 3.3.4), we

first obtain an initial estimate of the phrase curve, Phrinit est, using the wavelet

decomposition phase, and then use Phrinit est as the phrase curve template in the

template decomposition phase.

3.3.2 Implementation of PRISM: Wavelet Decomposition

We have implemented PRISM as a two-phase decomposition algorithm. The first phase of

the algorithm is the wavelet decomposition phase. In this phase, a partial decomposition

of the F0 contour into a phrase curve and a combined accent and segmental perturbation

curve, as shown in Equation 3.3, is performed. P (t) denotes phrase curve, A(t) denotes

accent curve, S(t) denotes segmental perturbation curve, R(t) denotes the summation of

the accent and segmental perturbation curves, and the superscripts m and n denote that

there can be several accent curves and segmental perturbation curves.

F0(t) = P (t) +R(t), where R(t) = Σm
i Ai(t) + Σn

i Si(t) (3.3)

An obvious method for recovering the phrase curve would be to determine local min-

ima and draw a smooth curve through these points (as in van Santen 2002). However,

this fails when accent curves overlap in time, because overlapping accent curves cause

all points between successive pitch accents to be above, and not on, the phrase curve.

Another equally obvious solution is the filtering method that consists of computing the

Fourier transform, removing the higher frequency components that presumably correspond
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to the accent curves (and possibly the segmental perturbation curves), and computing the

inverse transform to generate an estimate of the phrase curve. The linearity of this method

would seem to be particularly appropriate given the quasi-linearity of the superpositional

approach. And indeed, this method is used as an important component in a Fujisaki

parameter estimation system developed by Mixdorff (2002) and was proposed earlier by

Sakurai and Hirose (1996). Our experiments showed, however, that this method provided

undesirable results. Depending on the frequency cutoff, the result was either a smooth but

poorly fitting phrase contour, or a “wobbly” phrase contour containing the negative lobes

of the frequency components that carried the accent curves. In fact, this observation was

also made by Sakurai and Hirose (1996), though their work on phrase boundary detection

was not hampered by this less than optimal phrase curve shape. As an aside, applying

Mixdorff’s Fujisaki parameter estimation system to curves generated by a simplified ver-

sion of the Linear Alignment Model yielded inaccurate estimates of the phrase curves (van

Santen et al. 2004:ii).

Thus, as an alternative to the filtering method and the local minima based method

of obtaining the phrase curve, we developed a wavelet-based decomposition method.

Wavelets share with filtering the features of linearity and frequency specificity. The key

difference is the temporal “locality” of the wavelet transform. That is, like the Fourier

transform, the wavelet transform of an input signal (here, the F0 curve) represents the

signal as a weighted sum of basis functions. However, these basis functions consist of

dilations (time scaling) and translations (moving along the time axis) of the wavelet func-

tion. Thus, unlike the Fourier transform, the behavior of same-sized (or, equivalently,

same-frequency) basis functions at different locations is independent. This basic feature

might be critical in addressing the “wobbly” phrase contour problem encountered with

simple filtering.

Description of the wavelet decomposition algorithm

We have implemented an algorithm for the partial decomposition of the F0 contour into

a phrase curve and a combined accent and perturbation curve. Assumptions 1, 2, and 3

outlined in Section 3.3.1 are used by this algorithm. The algorithm comprises five steps
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(shown in Figure 3.1) that are described below:

Phrase curve

Smoothed f0

Thresholded
c o e f f i c i e n t s  d ' ( i )

Adjusted
phrase curve

Kernel
wavelet

L e v e l s  o f
decomposition

Smoothing
Operat ion

Wavelet
Decomposition

Leve l
Dependant
Thresholding

DC
Adjustment

W a v e l e t  c o e f f i c i e n t s
a ( n ) ,  d ( i )  i  =  [ 1 , n ]

Wavelet
Reconstruct ion

f 0  c o n t o u r

Figure 3.1: Wavelet decomposition algorithm to extract the phrase curve.

1. Smoothing the F0 contour: Remove high frequency values, while preserving the

global shape of the F0 contour. Based on this requirement, the Savitzky-Golay

(Savitzky and Golay 1964) filter of order 3 and length 5 is used for smoothing the

F0 contour. The Savitzky-Golay filter determines the smoothed value of each data

point by performing a local polynomial regression. This filter has been found to be

good in preserving pertinent high-frequency information (Orfanidis 1996), such as

peak height and width, which are often washed out by other standard smoothing

filters such as an n-sample average or an order-n Butterworth low-pass filter.

2. Wavelet decomposition: Discrete wavelet transform (DWT) is used to decompose

the smoothed F0 contour. DWT requires the choice of a kernel wavelet ψ(t) and

level of decomposition n. Which kernel wavelet should be chosen for a given analysis

task is a perplexing question. The most appropriate kernel is one that minimizes



40

reconstructed error variance and maximizes the signal to noise ratio (SNR). Keeping

this objective in mind, we systematically experimented with several different kernels

and obtained a set of kernel wavelets that gave minimal reconstructed error and

maximized SNR. This set of possible kernels contained both short and long support

wavelets. Support refers to the length of the kernel wavelet. Longer support wavelets

detect slow long term changes well, but they may smooth over local anomalies,

whereas short support wavelets are highly sensitive to local variations but may be

unable to encode the higher-order polynomial behavior of a highly smooth phrase

curve. For the decomposition algorithm, two wavelets were selected: Daubechies

db3, a short support wavelet, for detecting phrase curves with sharp inflections, and

db10, a long support wavelet, for detecting higher-order smooth phrase curves that

changed slowly over time. Admittedly, other wavelets could have been considered,

such as wavelets specifically designed to optimally filter accent curves of a certain

shape; however, it was felt that this would reduce the generality of the method.

The level of decomposition chosen for the DWT usually depends on the signal

being analyzed and the outcome desired. For our purposes, the total number of

levels best suited for the purpose of extracting the phrase curve from the F0 contour

was empirically established to be log2(n) + 1, where n is the length of the signal in

10-millisecond units.

Every kernel wavelet ψ(t) is associated with a dilation function φ(t) that is

orthogonal to it. The relationship between ψ(t) and φ(t) is shown by the following

equations:

φ(t) =
∑

k

c(k)φ(2t − k) (3.4)

ψ(t) =
∑

k

(−1)kc(1 − k)φ(2t − k) (3.5)

Essentially, Equation 3.4 represents a low-pass filter that defines the low frequency

information called the approximation coefficients a and Equation 3.5 represents a

high-pass filter that defines the high frequency information called the detail coeffi-

cients d (Mallat 1989). This is the basic cell for one-level wavelet decomposition as
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shown in Figure 3.2.
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Figure 3.2: Two-scale filtering operation of the DWT (Mallat 1989).

For multi-level decomposition, the basic cell is iterated over the downsampled

output of the low-pass filtering operation. In our case, the basic cell is iterated n

times, where n is the maximum number of levels of decomposition, to obtain one

set of approximation coefficients a(n) and n sets of detail coefficients d(i), where

i = [1, n] levels. The reason why there is only one set of approximation coefficients

is that at the m-th iteration of the basic cell, the a(m − 1) set of approximation

coefficients is decomposed (see Figure 3.2).

3. Level-dependent thresholding: Extracting the phrase curve from the F0 con-

tour implies removing the combined accent and perturbation curves to unveil the

underlying phrase curve. Given that earlier results indicated that simply removing

higher-frequency components (as in low-pass filtering) does not work well, a dif-

ferent technique for modifying the wavelet transform was explored. Specifically, a

technique called level-dependent thresholding (Hall et al. 1997, Härdle et al. 1998)

was used. This technique involves discarding certain detail coefficients that fall be-

low a threshold t(m) at each level of decomposition m. The threshold t(m) is not a

global threshold; rather, it is computed at each level of decomposition.

A form of the aforementioned technique that is represented by the following rules

was used. Given level m,

• if mean(abs(idwt(a, d(m), db3)) < mean(F0 contour), set all detail coefficients
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d(m) = 0, where a is the approximation coefficient, ‘db3’ is the kernel wavelet

and idwt is the inverse discrete wavelet transform (more on this in ‘Wavelet

reconstruction’).

• if mean(abs(idwt(a, d(m), db3)) ≥ mean(F0 contour), set only certain details

coefficients d̂(m) = 0, where abs(d̂(m)) < median(abs(d(m)).

There are two principles implicit in these rules:

(a) Zero out all coefficients that might contain information about accent curves or

segmental perturbations, thus ensuring that we capture the right phrase curve

in spite of aliased local minima resulting from overlapping accent curves.

(b) Of the remaining detail coefficients, truncate all coefficients that have magni-

tudes smaller than the median magnitude, thus retaining information about

any sharp inflections in the phrase curve.

Obviously, these rules are a mixture of theory and experimentation. The rule

regarding which level of detail is set to zero was discovered empirically, while the

rule to remove detail coefficients whose magnitude is less than zero has been found

in well-established wavelet theory (Donoho and Johnstone 1994).

4. Wavelet reconstruction: Once the detail coefficients have been manipulated to

obtain a new set of detail coefficients d′(i) where i = [1, n] levels, the inverse discrete

wavelet transform (IDWT) is used to reconstruct the signal. IDWT involves the use

of reconstruction filters that are the inverse of the decomposition filters shown in

Figure 3.2. The reconstruction yields the phrase curve from the F0 contour.

5. DC adjustment: The estimated phrase curve obtained is often found to have a

5-10 Hz shift along the y-axis. In order to fit it appropriately to the F0 contour, the

phrase curve is adjusted by a value DC, such that DC = mean(x1 and x2), where

x1 is the difference in the means of the estimated phrase curve and the original F0

contour, and x2 is the difference in the values of the end-points of the estimated

phrase curve and the original F0 contour. This method of DC adjustment is only

applicable for simple declarative utterances that end in voiced phonemes and needs
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to be revised in case of more complex utterances such as those that either contain

continuation rises or interrogatives, or end in unvoiced phonemes.

We observed that the vertical shift in the phrase curve occurred more often in

higher-order smooth phrase curves that were generated using the Fujisaki model.

From this we conjecture that the vertical shift occurred when some of the detail

coefficients related to the vertical height of the phrase curves were (unintentionally)

discarded in the thresholding step in order to estimate the smooth phrase curves.

This step, admittedly, is somewhat ad hoc. However, this step is eliminated

from the wavelet decomposition phase in the linked PRISM algorithm (described

in Section 3.3.6) because there the output of the wavelet decomposition phase is

used as an initial estimate (or template) of the phrase curve, Phrinit est, that is

fed to the template decomposition phase of the linked PRISM algorithm. Since it

is a template, Phrinit est has to match the underlying “true” phrase curve only in

terms of the general shape; consequently, the vertical shift is unimportant and no

DC adjustment is required.

3.3.3 Objective evaluation of the wavelet decomposition algorithm

To test the performance of the wavelet decomposition algorithm, a set of 56 declarative

F0 contours was synthesized and the wavelet decomposition algorithm was used to extract

the phrase curve from each of the contours. Two examples of phrase curves extracted by

the algorithm can be seen in Figure 3.4. Of the 56 F0 contours, 28 were based on the

Fujisaki intonation model and 28 were loosely based on the Bell Labs intonation model.

(The qualifier loosely based is used because we have avoided using the Bell Labs patented

accent peak placement mechanism. Also, the use of perturbation curve templates has been

ignored for the purposes of this experiment. Nevertheless, the superpositional quality of

the intonation model remains intact.)

These F0 contours had one phrase component and 1-3 accent components. The accent

components were systematically varied in height and placement (as shown in Table 3.3)

to create F0 curves with one, two, and three accents. The single phrase component was
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also varied in its slope, while keeping its mean magnitude roughly the same.

Other than the accent parameters, the other Fujisaki parameters (Fujisaki 1983) that

were used in constructing the F0 contours were defined as follows: α = 2, β = 20 and

γ = 0.9. The minimum frequency Fb was set at 70 Hz. Two different values for the phrase

command magnitude Ap were used, namely, 0.3 and 0.5, to get two different slopes.

For the Bell Labs-inspired model, besides the variation in the accent parameters, the

only other variation was in the magnitude and slope of the phrase curve. The phrase curve

was anchored at three points: the beginning of the phrase tstart, the end of the phrase

tend, and the beginning of the last set of consecutively occurring accented syllables tnucleus

(for more information see van Santen and Hirschberg 1994). In order to keep the mean

magnitude more or less constant but vary the slope of the phrase curve, the height of the

phrase curve at tstart, tnucleus, and tend was varied by two sets of values, namely (110 Hz,

90 Hz, 70 Hz) and (110 Hz, 90 Hz, 50 Hz).

2x x 1.5x

X X X

X X

X X

X

X X

X

X

Figure 3.3: Accent
height and placement
table. x = 10, 20 for
the Bell Labs inspired
model; x = 0.225, 0.45
for the Fujisaki model.
Check marks indicate
accent curves present.

10 20 30 40 50 60 70 80 90 100

80

90

100

110

120

130

Estimated phrase curve has RMS error = 1.4592 Hz

0 20 40 60 80 100 120
50

100

150

Estimated phrase curve has RMS error = 1.4836 Hz 

Synthesized Fujisaki pitch contour

Synthesized Bell Labs inspired pitch contour 

Estimated phrase curve 

Synthesized phrase curve  

Estimated phrase curve 

Synthesized phrase curve 

Figure 3.4: Phrase curves estimated by wavelet decomposition.
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Results of phrase curve extraction using wavelet decomposition

To measure the performance of the algorithm, the Root Mean Squared Error (RMSE) be-

tween the estimated phrase curve and the known synthesized phrase curve was measured.

The results are shown in Table 3.1.

Bell Labs inspired model Fujisaki model

Mean RMSE (Hz) 3.1536 2.2688
Standard Deviation (Hz) 1.7614 1.0334

Table 3.1: Performance of the wavelet decomposition algorithm.

To test the limits of this wavelet decomposition algorithm, we also compiled the results

obtained by making the optimal DC adjustment. The optimal DC adjustment is the

difference between the mean of the estimated phrase curve and the mean of the synthesized

phrase curve. The results are shown in Table 3.2.

Bell Labs inspired model Fujisaki model

Mean RMSE (Hz) 2.3723 1.9789
Standard Deviation (Hz) 1.2034 0.9734

Table 3.2: Performance of the wavelet decomposition algorithm with optimal DC adjust-
ment.

Discussion of results

The results of this objective test are encouraging, especially in light of the simplicity of the

method. However, the curves analyzed were exceedingly simple smooth synthetic curves,

representing single-phrase utterances with up to three pitch accents. It is unlikely that this

algorithm all by itself will be able to reliably extract the phrase curves of more complicated

natural F0 contours containing (1) gaps due to the presence of stops and fricatives, or (2)

yes/no-question rises or (3) continuation rises. Nevertheless, this wavelet-based partial

decomposition algorithm is certainly a useful first step of the multi-step decomposition

algorithm that is PRISM. In PRISM, decomposition of more complex F0 contours con-

taining gaps, yes/no-question rises, continuation rises, or segmental perturbations requires

template decomposition.
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3.3.4 Implementation of PRISM: Template decomposition

Template decomposition is the second phase of the PRISM implementation. The core

concept of template decomposition is that the component curves contained in any F0

contour can be estimated by applying parameterized time-warp functions to class-specific

templates (van Santen 2002).

In our implementation of this algorithm, accent curves are generated by parameterized

time-warp functions applied to three different templates: the template corresponding to

a declarative utterance is assumed to be a single-peaked curve that rises from 0 to a

peak value and again descends to 0 (implemented by a Gaussian curve); the template

corresponding to a continuation rise consists of a dual motion in which an early peak

is followed by a valley and a final rise (implemented by the summation of a Gaussian

curve and a rising exponential curve); and the template for the interrogative contour is a

curve that rises steeply in the nucleus of the accented syllable (implemented by a rising

exponential curve).

Segmental perturbations associated with post-obstruent vowels are the specific class of

segmental perturbations that we are considering in this thesis. The template corresponding

to a segmental perturbation curve of this type is a fast decaying function that spans the

length of a post-obstruent vowel; it is implemented by a negative exponential function in

our algorithm.

The template for a phrase curve is the initial estimate of the phrase curve that was

obtained by the wavelet decomposition phase of PRISM. However, to observe the per-

formance of the template decomposition phase confounded by the wavelet decomposition

phase, we have modified Assumption 3, the assumption about the unconstrained smooth

phrase, so that the phrase curve is assumed to be piecewise linear. Under the modified

assumption, the phrase curve can be approximated by n line segments pi, where n is the

number of feet in the phrase (Equation 3.6). Each pi spans the length of a foot. The

points at which the phrase curve changes direction are called inflection points.

pi(t) = βi(t) + γi, P = concatenate(pi) (3.6)

This assumption is amended once the correctness of the template decomposition phase of



47

the PRISM implementation has been established.

Description of the template decomposition algorithm

We have implemented a template decomposition algorithm to decompose given F0 contours

into phrase curves, accent curves, and segmental perturbation curves. Assumptions 1,

2, and 4 outlined in Section 3.3.1, and the modification of Assumption 3 (defined by

Equation 3.6) underlie this algorithm. Another assumption that is held within the context

of this algorithm is that the locations of the left-headed feet are known3. The algorithm

consists of the following three steps (shown in Figure 3.5).

Figure 3.5: Template decomposition algorithm to extract component curves.

1. Peak detection: The first step is the detection of the peak associated with each

accent curve in a given F0 contour. Intuitively, it may seem like a straightforward

3Assuming the availability of labeled data is a prerogative of speech synthesis, where a fully labeled
and segmented speech corpora is easily available. Automatic labeling of large corpora remains a problem
due to inaccurate prediction of pitch accents. However, it is beyond the scope of this thesis to address this
problem.
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process to find where the maximum (or minimum) of an accent curve occurs. How-

ever, the presence of segmental perturbations and continuation rises makes the data

noisy and automatic detection of peaks or valleys based on this intuitive concept

error-prone. Standard smoothing algorithms do not produce the desired result ei-

ther, because accent curves smoothed by such methods still contain uncharacteristic

bulges where the segmental perturbations were located, and the continuation rises

remain unchanged.

Exploiting the idea that each accent curve has exactly one true peak (or valley)

in it, we use unimodal smoothing (Härdle 1990) to solve the peak detection problem.

Within the context of peak detection, unimodal smoothing is defined as follows.

Given an accent curve Ai ∈ R
n and a weight vector w ∈ R

n (the product of the

ESPS get f0 (Talkin 1993) voicing flag and energy), the goal is to find a smoothed

version of the accent curve, Âi ∈ R
n, that minimizes E =

∑

wi(Âi −Ai)
2 subject

to two constraints. Given that Âi has a mode at i = p, where p is the location of

the true peak of the accent curve Ai, then

∀(i, j). i < j < p ⇒ Âi ≤ Âj ≤ Âp (3.7)

∀(k, l). p < k < l ⇒ Âp ≥ Âk ≥ Âl (3.8)

The function f : Ai 7→ Âi is greatly dependent on the location of segmental

perturbations, continuation rises, and gaps in the F0 contour, and it differs greatly

from one accent curve to another. Thus, function f cannot be prespecified, and

parametric unimodal smoothing approaches cannot be used. Consequently, a non-

parametric approach called isotonic regression (Robertson et al. 1988, Barlow et

al. 1972, Wegman 1980) was used to predict Âi. Isotonic regression is regression in

which the only assumption about the function relating the predictor variable (Ai)

and response variable (Âi) is that it is isotonic, i.e., either always non-decreasing or

always non-increasing.

However, the unimodality constraints defined above are not isotonic because
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some of the constraints are non-decreasing (inequality 3.7) while others are non-

increasing (inequality 3.8). But because unimodal constraints can easily be trans-

formed into isotonic ones, isotonic regression can be used to perform unimodal

smoothing. Consider the constraints specified by inequality 3.8. From this inequal-

ity, it follows that

∀(k, l). p < k < l ⇒ −Âp ≤ −Âk ≤ −Âl (3.9)

⇒ 2(Âp) − Âp ≤ 2(Âp) − Âk ≤ 2(Âp) − Âl (3.10)

⇒ Âp ≤ 2(Âp) − Âk ≤ 2(Âp) − Âl (3.11)

The inequalities 3.7 and 3.11 together represent a set of isotonic constraints on

Pf(Âi), where Pf(xi) is defined as:

Pf(xi) =







2xp − xi if i ≥ p

xi if i < p

Pf(xi) is a simple linear transformation of xi that reflects the observations beyond

the peak location p about the horizontal line passing through p. Pf(xi) has an

inverse, Pf−1(xi).

Thus, peak detection by unimodal smoothing via isotonic regression involves the

following five steps:

(a) A peak location p is posited.

(b) All points on the accent curve beyond the peak location p are reflected about

the horizontal line passing through p to obtain Pf(Ai).

(c) The monotone smooth Pf(Âi) that minimizes
∑

wi(Pf(Âi) − Pf(Ai))
2 sub-

ject to monotonicity constraints is predicted by isotonic regression.4

(d) Âi is obtained by applying the Pf−1(xi) to Pf(Âi). The root weighted mean

4The isotonic regression was implemented using the pool adjacent violators algorithm (PAVA) (Barlow
et al. 1972). PAVA is a simple iterative algorithm that checks a given sequence of values for monotonicity.
If consecutive values that violate monotonicity constraints are found, the values are ‘pooled’ together, i.e.,
replaced by their weighted average. The process continues until no violators are left.
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square error between Âi and Ai, RWMSE(Ai, Âi), is calculated, where

RWMSE(Xi, Yi) =

√

∑

wi.(Xi − Yi)2
∑

wi

(3.12)

(e) The previous four steps are repeated for p = {1, 2, ..., n}, where n is the length

of the accent curve in frames. The p value that yields the least RWMSE(Ai, Âi)

is considered to be the true peak location and Âp, the true peak value.

In case the accent curve contains a valley rather than a peak, the same five-step

process is used to find it, except that the transformation function used is −Pf(Âi).

If it is not known ahead of time, whether the accent curve contains a peak or a

valley, the five-step process is repeated for each condition, and the condition that

yields the lowest RWMSE reveals the true shape of the accent curve.

2. Parametrization of component curves: Parameterizing the component curves

(i.e., describing the component curves in terms of certain parameters) is the second

step of the algorithm. Accent curves are parameterized in two steps. First, for any

accent curve Ai, the template Ei, (from which Ai is assumed to be generated) is

characterized by n values sampled at equal time points. Then, the accent curve is

characterized by a piecewise linear time-warp function consisting of n time points

that correspond to the n time points in the template, and a height parameter hi.

An example of the accent curve parametrization is shown in Figure 3.6. If Ai

is a declarative accent curve, the template Ei is characterized by m pitch values

that approximate a Gaussian sampled at equal time intervals with the first and last

values rounded down to 0, as shown in Figure 3.6a. The piecewise linear time-warp

characterizing the shape of Ai is akin to the one shown in Figure 3.6b. Multiply-

ing the height parameter hi by the time-warped Ei (shown in Figure 3.6c) fully

characterizes the estimated accent curve Ai (shown in Figure 3.6d).

Segmental perturbations curves are parameterized in a manner similar to accent

curves. First, for any segmental perturbation curve SPi, the template Fi, (from

which SPi is assumed to be generated) is characterized by k values sampled at equal

time points. Then, the segmental perturbation curve is characterized by a piecewise
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Figure 3.6: Accent curve parametrization.

linear time-warp function consisting of k time points that correspond to the k time

points in the template, and a height parameter gi.

The phrase curve is characterized by m interconnected line segments. Each

segment begins at the start of a distinct foot and spans the length of the foot.

Because the phase curve is continuous and because the location of the feet are known,

m+1 parameters are needed to describe the interconnected line segments making up

the phrase curve. However, depending on the utterance type (e.g., declarative versus

interrogative) and the phones used in the utterance, some other assumptions about

the phrase curve can be made, which can reduce the number of parameters needed

to describe the phrase curve. For example, if an utterance starts with a sonorant

phone, it can be assumed that the value of the first point on the related phrase curve
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equals the value of the first point on the raw F0 contour of the utterance5, and only

m parameters are needed to characterize the phrase curve. The same reduction in

the number of parameters also applies if the utterance is a declarative utterance that

ends with a sonorant phone, because in this case, the value of the last point on the

phrase curve can be assumed to be equal to the value of the last point on the raw

F0 contour (see footnote 5). So, if the utterance is declarative, and it starts and

ends with a sonorant phone, then only m− 1 parameters are needed to describe the

phrase curve.

3. Optimization: Finally, the parameters are estimated using the Nelder-Mead (also

known as the down-hill simplex) method (Lagarias et al. 1998) as implemented in the

routine fminsearch in MATLAB (Matlab 2002). The root weighted mean squared

error (RWMSE) between the predicted and the observed F0 contours is used as the

objective function that has to be minimized. The weights are given by the product

of the voicing flag and energy. This choice of weights ensures a good fit between the

predicted and the observed F0 contours in the F0 contour regions with reliable F0

values, such as regions corresponding to vowels and sonorants.

The Nelder-Mead method does not require any derivative information. This

makes it useful for finding parameters of discontinuous functions, such as an F0

contour. However, a problem encountered by this optimization method is that it

occasionally gets stuck in a rut and the parameters produced are not optimal. Thus,

to encourage the optimizer to converge to an optimal solution, judiciously chosen

initial values of the parameters are provided. We generate initial guesses for accent

curve parametrization in this way: the first time-warp parameter is set equal to the

foot start time since it is assumed that accent curves start at the beginning of the

foot; the central time-warp parameter is set equal to the location of the peak (or

valley) in the accent curve; the last time-warp parameter is set equal to the peak

location of the accent curve next to the one under consideration since it is assumed

5This is based on the assumption that accent curves have a starting value of zero. If the accent curve
is declarative, it also ends at zero.
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that an accent curve may finish beyond the end of the foot but, conservatively, no

later than the point where the next accent curve reaches its peak. The remaining

time-warp parameters are evenly spaced between the first, central, and last parame-

ters. The height parameters are initialized to the height of the peak (or valley) found

in the corresponding accent curves. The initial guesses for segmental perturbation

curve parametrization are generated similarly to accent curve parametrization. The

phrase curve parameters are initialized with F0 values corresponding to the start

times of the left-headed feet in the utterance.

3.3.5 Objective evaluations of template-based decomposition algorithm

To evaluate the performance of the template decomposition algorithm, we conducted four

objective tests: (1) to test the accuracy with which the algorithm can estimate declarative

accent curves that overlap in time; (2) to test the accuracy with which the algorithm can

estimate continuation rise accent curves; (3) to test the accuracy with which the algorithm

can estimate interrogative accent curves; and (4) to test the accuracy with which the accent

curves can estimate segmental perturbation curves. Each of these objective tests and their

results are described in the following sections.

Objective Test 1: Estimating overlapping declarative accent curves

In this test, a set of 75 declarative F0 contours with single-peaked pitch accents was

synthesized, and the template decomposition algorithm was used to extract the phrase

curve and the accent curves. The F0 contours were generated using a simplified version

of the Linear Alignment model (van Santen and Möbius 1999), henceforth referred to as

SLAM. In this model, the F0 contour is a summation of a phrase curve and n accent

curves. The phrase curve is created by linear interpolation over three points: start of the

phrase, start of the last foot, and end of the phrase. An accent curve is created by cosine

interpolation over the start of the associated foot, the location of the peak in the foot,

and the end of the foot. Peak location is a function of foot duration and the number of

syllables in the foot.

A set consisting of 32 F0 contours with two accent curves and 43 F0 contours with
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three accent curves was created. For every contour, the accent curves were asymmetric

in shape, and the non-phrase-final accent curves overlapped with the next accent curve.

The other specifications of these F0 contours were as follows:
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Figure 3.7: Example of a two-accent synthetic F0 contour used to test the template
decomposition algorithm.

1. Two-accent case: Accent curve heights were set at 50 Hz and 75 Hz; the slope of

the pre-nuclear segment of the phrase curve was set at ±50 Hz/s; the slope of the

nuclear segment of the phrase curve was set at ±70 Hz/s; the initial boundary tone

was always 110 Hz; and successive accent curve overlap was set at 10% and 20%.

An example is shown in Figure 3.7.

2. Three-accent case: Similar to the two-accent case, except that accent curve heights

were set at 50 Hz, 75 Hz, and 95 Hz; the slopes of the two pre-nuclear segments

of the phrase curve were set at ±50 Hz/s and ±70 Hz/s; and the slope of the

nuclear segment of the phrase curve was set at ±70 Hz/s. From the 432 possible

combinations of such curves, only a random subset (43 out of 432) was used for

testing the algorithm. An example is shown in Figure 3.8.

Overlapping accent curves illustrate a key strength of the template decomposition
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Figure 3.8: Example of a three-accent synthetic F0 contour used to test the template
decomposition algorithm.

algorithm over other decomposition approaches. In the filtering method (Sakurai and

Hirose 1996, Mixdorff 2002), overlapping accent curves can only be retrieved by assuming

that the phrase curve is completely smooth with no possible inflection points, whereas

in the wavelet decomposition algorithm described in section 3.3.2, the decomposition is

only partial: it returns the phrase curve and a summation of the accent and segmental

perturbation curves.

Results of objective test 1

The accuracy with which the template decomposition algorithm estimates component

curves was measured by the RMSE between the estimated and the known component

curves for the 75 instances. The results are shown in Table 3.3.

Objective Test 2: Estimating continuation rise accent curves

In this test, a set of 32 F0 contours was synthesized using SLAM, and the template

decomposition algorithm was used to extract the phrase curve and the accent curves.

Each of the F0 contours consisted of two accent curves. The single-peaked accent curves
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Mean RMSE (Hz) for Mean RMSE (Hz) for
2-accent contours 3-accent contours

Phrase 4.16 9.11

Accent-1 3.99 4.58

Accent-2 2.21 6.76

Accent-3 N/A 3.20

Table 3.3: Performance of the template decomposition algorithm. Accent-i is the i-th
accent curve in the contour.
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Figure 3.9: Example of a synthetic F0 curve containing a continuation rise curve used to
test the template decomposition algorithm.

were asymmetric in shape, and the non-phrase-final accent curves overlapped with the next

accent curve. The first accent curve was a declarative accent curve generated by cosine

interpolation over the start of the associated foot, the location of the peak in the foot,

and the end of the foot. The second accent curve was an accent curve that corresponded

to a continuation rise; it was created by cosine interpolation over four time points: the

start of the associated foot, the location of the peak in the foot, a time point 75% into

the foot, and the end of the foot. An example of such a curve is shown in Figure 3.9. The

shape-related parameters of the phrase curve and the accent curves were set to the same

values as in the two-accent case of objective test 1.
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Results of objective test 2

The accuracy with which the template decomposition algorithm estimates component

curves was measured by the RMSE between the estimated and the known component

curves for the 32 instances. The results are shown in Table 3.4.

Mean RMSE (Hz) Standard Deviation (Hz)

Phrase 4.61 1.72

Accent-1 3.25 1.50

Accent-2 3.52 0.84

Table 3.4: Performance of the template decomposition algorithm. Accent-i is the i-th
accent curve in the contour.

Objective Test 3: Estimating interrogative accent curves

In this test, a set of 32 F0 contours was synthesized using SLAM, and the template

decomposition algorithm was used to extract the phrase curve and the accent curves.

Each of the F0 contours consisted of two accent curves. The first accent curve was a

declarative accent curve generated by cosine interpolation over the start of the associated

foot, the location of the peak in the foot, and the end of the foot. The second accent curve

was an accent curve that corresponded to an interrogative. It was generated by cosine

interpolation over three points: the start of the foot, a time point 80% into the foot, and

the end of the foot. An example of such a curve is shown in Figure 3.10. The shape-related

parameters of the phrase curve and the accent curves were set to the same values as in

the two-accent case of objective test 1, though in this case, there was no overlap between

the accent curves.

Results of objective test 3

The accuracy with which the template decomposition algorithm estimates component

curves was measured by the RMSE between the estimated and the known component

curves for the 32 instances. The results are shown in Table 3.5.
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Figure 3.10: Example of a synthetic F0 curve containing an interrogative curve used to
test the template decomposition algorithm.

Mean RMSE (Hz) Standard Deviation (Hz)

Phrase 1.68 1.09

Accent-1 1.41 0.60

Accent-2 1.17 1.01

Table 3.5: Performance of the template decomposition algorithm. Accent-i is the i-th
accent curve in the contour.

Objective Test 4: Estimating segmental perturbation curves

In this test, a set of 32 F0 contours was synthesized using SLAM, and the template de-

composition algorithm was used to extract the phrase curve, the accent curves, and the

segmental perturbation curves. Each of the F0 contours consisted of two accent curves.

The single-peaked accent curves were declarative accent curves generated by cosine inter-

polation over the start of the associated foot, the location of the peak in the foot, and the

end of the foot. The accent curves were asymmetric in shape, and the non-phrase-final

accent curves overlapped with the next accent curve. The shape-related parameters of the

phrase curve and the accent curves were set to the same values as in the two-accent case

of objective test 1. Each of the F0 contours also contained a segmental perturbation curve

that was generated by a negative exponential function. The height, width, and location
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of the segmental perturbation curve were assigned randomly. An example of such a curve

is shown in Figure 3.11.
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Figure 3.11: Example of a synthetic F0 contour containing a segmental perturbation curve
used to test the template decomposition algorithm.

Results of objective test 4

The accuracy with which the template decomposition algorithm estimates component

curves was measured by the RMSE between the estimated and the known component

curves for the 32 instances. The results are shown in Table 3.6.

Mean RMSE (Hz) Standard Deviation (Hz)

Phrase 3.99 2.3

Accent-1 4.16 1.58

Accent-2 3.47 1.24

Perturbation 3.29 0.33

Table 3.6: Performance of the template decomposition algorithm. Accent-i is the i-th
accent curve in the contour.
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Discussion of results

The mean RMSE between the known component curves and the estimated component

curves obtained from the four aforementioned objective tests ranges from 1 Hz to 9 Hz

approximately (a histogram is shown in Figure 3.12). This range of mean RMSE values is

well under the frequency difference required for just noticeable difference (JND) in pitch

for connected speech (illustrated in Figure 3.12).

A study by ’t Hart (1981) showed that for connected speech containing complex F0

contours, people require a frequency difference of at least 1.5-2 semitones (which is a

difference of ≈10-12 Hz at 100 Hz) to be able to reliably detect a noticeable difference in

pitch. For some people, the frequency difference needed for reliable detection may be as

great as 4 semitones (which is a difference of ≈25 Hz at 100 Hz). The experiment by ’t

Hart was performed using pairs of stimuli with synthesized rising or falling pitch accents

that corresponded to four-syllable Dutch number names. Given this stimuli, listeners

were asked to judge which of the two accents in each stimulus pair had a larger pitch

movement, i.e., F0 excursion from the declining baseline (which loosely corresponds to a

phrase curve). To make it unambiguous that subjects were judging the excursion from the

baseline and not peak height, members of each stimulus pair were frequently in different

“registers” (i.e., of different overall pitch); further, subjects were warned about a certain

type of stimulus pair in which one accent had a higher peak while the other had a larger

pitch movement. Subject responses to this experiment varied widely; either (1) they

were not able to discriminate differences of less than 4 semitones (these were the non-

discriminators), or (2) they were able to discriminate differences of about 1.5-2 semitones

(these were the discriminators), or (3) they wrongly tried to discriminate between a given

stimulus pair in terms of the final pitch value (these were the final pitch discriminators).

From this, ’t Hart concluded that only differences of more than 3 semitones (which is a

difference of ≈20 Hz at 100 Hz) play a part in speech communication. While these JND

values for the connected speech are not as well established as for sustained pure tones,

these values, however, have clear implications for the accuracy criteria that should be

aimed for during the intonation analysis of connected speech.
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Figure 3.12: Histogram showing the distribution of mean RMSE values obtained from the
objective evaluations of the template decomposition algorithm.

The favorable comparison between the range of mean RMSE values obtained from

the objective tests and the JND values for connected speech shows that the template de-

composition algorithm can recover the underlying component curves with sufficiently high

accuracy. Evidence for robustness is provided by the fact that the synthetic accent curves

(asymmetric curves cobbled together via cosine interpolation) were different in shape from

the templates (Gaussian curves and rising exponential curves). Therefore, extrapolating

from these results, we can reason that this algorithm can be used to decompose natural

F0 contours into component curves.

3.3.6 PRISM Implementation: Linking the two phases

Having ascertained by individual objective evaluations that both wavelet decomposition

and template decomposition performed the specified partial decomposition subtasks quite

well, we linked the two phases together. The link was established as follows: Given an

F0 contour, the wavelet decomposition phase is used to obtain an initial estimate of the

smooth, unconstrained phrase curve, Phrinit est. Just as there are templates for the accent

curves and segmental perturbation curves, we can assume that Phrinit est is a template

for the phrase curve associated with the given F0 contour. Thus, Phrinit est is given as an

input to the template decomposition phase. Because it was observed that the phrase curve
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Figure 3.13: Illustrating the concept of linking the wavelet-based algorithm to the
template-based algorithm to enable the full decomposition of F0 contours.

estimate obtained from the wavelet decomposition phase was linearly shifted away from

the “true” phrase curve (Section 3.3.2), in the template decomposition phase, a transfor-

mation function is applied to the phrase curve estimate in order to remove the linear shift.

Hypothesizing that different segments of the phrase curve spanning different feet may have

different linear shifts, a piecewise linear transformation is applied to Phrinit est to obtain

the final smooth estimated phrase curve, as illustrated in Figure 3.13. The parameters of

the piecewise linear transformation function are obtained along with the time-warp pa-

rameters needed for describing the accent curves and segmental perturbation curves using

the optimization method described in Section 3.3.4.

3.3.7 Objective evaluation of the linked PRISM algorithm

To test the performance of the linked PRISM algorithm, we applied it to the same set of

synthetic F0 contours that were used in objective test 2 of the template decomposition

phase of PRISM in Section 3.3.5. Each F0 contour belonging to this set contained a

declarative accent curve and a continuation rise accent curve. While the set did not
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explicitly contain interrogative accent curves, the shape of a continuation rise accent curve

may be considered to be a declarative accent curve overlayed with an interrogative accent

curve. Thus, by using this set to test the performance of the linked PRISM algorithm, we

get a fairly good idea of its performance on F0 contours containing any of the three types

of accent curves (declaratives, continuations rises, and interrogatives).

Results of component curve extraction using linked PRISM

The accuracy with which the linked PRISM algorithm estimates component curves was

measured by the RMSE between the estimated and the known component curves for the

32 instances. The results are shown in Table 3.7.

Mean RMSE (Hz) Standard Deviation (Hz)

Phrase 4.88 1.82

Accent-1 3.37 1.47

Accent-2 3.78 1.29

Table 3.7: Performance of the linked PRISM algorithm. Accent-i is the i-th accent curve
in the contour.

Discussion of results

The mean RMSE values obtained by estimating component curves with the linked PRISM

algorithm is within the range of mean RMSE values obtained by estimating component

curves with either wavelet decomposition or template decomposition. This shows that the

linked PRISM algorithm has a similar performance accuracy as the two individual phases

of PRISM and that no significant noise was introduced in the process of linking the two

phases of PRISM together.

Comparing the results of this objective test with the results of the objective test 2 in

Section 3.3.5, we observe that the mean RMSE values obtained by estimating component

curves using the linked PRISM algorithm are not significantly different from the mean

RMSE values obtained by estimating component curves from the same set of synthetic

F0 contours using template decomposition alone. This is most likely because the phrase

curve underlying each of these synthetic F0 contours was a piecewise linear function and
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not a smooth higher-order function. Hence, the template decomposition algorithm was

able to extract it just as well as the wavelet decomposition algorithm. No additional

benefit was gained in this case from the initial estimate of the phrase curve, Phrinit est. If

the phrase curve is a smooth higher-order function, the template decomposition algorithm

individually will not be able to estimate the phrase curve as well. The linked PRISM

algorithm is likely to estimate the phrase curve more accurately because it has a smooth

function Phrinit est (obtained from the wavelet decomposition phase) as the phrase curve

template.

3.4 Application of PRISM to natural F0 curves: Demon-

strating the importance of modeling segmental pertur-

bations

An important distinction between the PRISM decomposition algorithm and many other

existing decomposition algorithms is that PRISM explicitly models segmental perturba-

tions while others do not. Our main reason for modeling segmental perturbations is based

on the hypothesis that segmental perturbations distort the surface realization of F0 con-

tours and thus obscure the “true” shapes of the underlying phrase curves and accent

curves. To estimate these accent and phrase curves, segmental perturbations must be

modeled and removed.

Other important reasons for modeling segmental perturbations are that (1) segmen-

tal perturbations are not random but highly predictable, (2) smoothing cannot remove

perturbations because they are locally systematic (as opposed to random frame-to-frame

Gaussian noise) and positively biased (i.e., their integral over an appropriate time interval

is positive), (3) segmental perturbations have been shown to be perceptually important

(Silverman 1987), and (4) modeling segmental perturbations minimizes signal modification

related to pitch modification in speech synthesis6(van Santen et al. 2004:i).

6During speech synthesis, if we impose a smooth perturbation-less target F0 contour on, say, an
obstruent-vowel region, then the initial part of the vowel has to be modified by quite a bit. However,
if the target F0 contour also contains an appropriate segmental perturbation curve, then the pitch modi-
fication is considerably less.
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We explored the validity of the hypothesis that segmental perturbations distort the

surface realization of F0 contours by analyzing the difference in F0 contour shape between

minimal pairs of utterances that differed only in terms of one consonant. This analysis

involved the use of PRISM to decompose the F0 contours of the minimal pair utterances.

A possible objection against the previous analyses shown in this chapter may be that

the analyzed curves were synthetic, which may have made the problem too easy for our

decomposition algorithm PRISM. A problem with natural curves, however, is that the

ground truth is unknown; we partially get around this problem by the aforementioned

minimal pairs analysis using PRISM. This particular application of PRISM is one instance

of a more general class of applications in which PRISM is used to analyze natural F0

contours. To this end, PRISM is an analysis tool that is useful for critically testing

theories and assumptions regarding intonation.

A description of the corpus from which the minimal pairs were obtained, the analysis

used to compare the minimal pairs in terms of their F0 contours, and the results of the

analysis are given in the following sections.

3.4.1 Description of the corpus

The corpus from which we extracted the minimal pairs consisted of 108 utterances. The

utterances were recorded by a female native speaker of American English. Each utterance

contained one target word embedded in a carrier phrase. Each target word is a three-

phoneme sequence: consonant-vowel-consonant. The consonants choices were /k/, /b/,

and /l/, and the vowel choices were /i:/, /u/, and /@/. All possible combinations of these

phonemes yielded 27 target words.

Each target word was embedded in two carrier phrases: “Please say the word BILL

again.” and “Please DON’T say the word bill again.” The word “bill” is an example

target word. The capitalized word in each of the two carrier phrases indicates the word

emphasized in the phrase. The carrier phrases were so structured to elicit the target word

from the speaker once in the emphasized form and once in the unemphasized form. This

yielded 27 × 2 = 54 utterances. Each of the 54 utterances were recorded at two speaking

rates: normal but slow and normal but fast. Thus, a total of 108 utterances were recorded.
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3.4.2 Minimal pair analysis

From the aforementioned corpus, we obtained the set of 54 utterances that were recorded at

the normal but slow speaking rate. The F0 contours of these 54 utterances were extracted

(at 10 ms intervals) using Praat (Boersma and Weenink 2008). For each of the utterances,

the F0 contour corresponding to the target word was excised.

The F0 contours of the target words were divided into two sets of 27 F0 contours each.

One set contained the F0 contours related to the emphasized version of the target words

and the other set contained the F0 contours related to the unemphasized version of the

target words.

/k i: l/ vs. /b i: l/ /k i: l/ vs. /l i: l/ /k u l/ vs. /b u l/
/k u l/ vs. /l u l/ /k @ l/ vs. /b @ l/ /k @ l/ vs. /l @ l/

/k i: b/ vs. /b i: b/ /k i: b/ vs. /l i: b/ /k u b/ vs. /b u b/
/k u b/ vs. /l u b/ /k @ b/ vs. /b @ b/ /k @ b/ vs. /l @ b/
/k i: k/ vs. /b i: k/ /k i: k/ vs. /l i: k/ /k u k/ vs. /b u k/
/k u k/ vs. /l u k/ /k @ k/ vs. /b @ k/ /k @ k/ vs. /l @ k/
/b i: k/ vs. /l i: k/ /b u k/ vs. /l u k/ /b @ k/ vs. /l @ k/
/b i: l/ vs. /l i: l/ /b u l/ vs. /l u l/ /b @ l/ vs. /l @ l/
/b i: b/ vs. /l i: b/ /b u b/ vs. /l u b/ /b @ b/ vs. /l @ b/

Table 3.8: Minimal pairs of target words.

From each set, we obtained 27 pairs of F0 contours corresponding to the minimal pairs

of target words that differed only in terms of the first consonant (shown in Table 3.8). One

can assume that since both words in each minimal pair were recorded in the same prosodic

context (i.e., same phrase boundaries, same emphasis condition, same or close to the same

speaking rate and vowel duration, and embedded in the same carrier phrase), they have

very similar F0 contours. However, we conjecture that this assumption will not be borne

out by simply comparing the raw F0 contours (or even the smoothed F0 contours) of the

minimal pairs. This conjecture follows from the hypothesis that segmental perturbations

caused by vowel-initial obstruents distort the surface realization of F0 contours and thus

obscure the “true” shapes of the underlying phrase curves and accent curves. Phrase curves

and accent curves are the components of the F0 contour that map to prosodic features

(phrase curve to phrase level prosody and accent curve to foot or word level prosody);
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thus, the similarity within each pair of F0 contours corresponding to each minimal pair

is really in terms of these component curves. However, if the shapes of these component

curves are obscured by the presence of segmental perturbations, comparisons between

each F0 contour pair corresponding to each minimal pair will yield large differences. For

instance, if one of the two words in the minimal pair contains a vowel-initial obstruent

while the other does not, (e.g., /b u b/ vs. /l u b/), the shape of the raw F0 contour of

the former will be far different from the shape of the raw F0 contour of the latter (see

panels a and b of Figure 3.14 for an example). If the two words in the minimal pair

contain different vowel-initial obstruents (e.g., /b u b/ vs. /k u b/), their corresponding

F0 contours may still differ from each other because the segmental perturbations caused

by different obstruents may have different amplitudes and spans even though their general

shape is roughly the same.

We propose that the similarity within each F0 contour pair corresponding to each

minimal pair can be established if we remove the segmental perturbations from the F0

contours using PRISM. First, PRISM is used to decompose each F0 contour into a phrase

curve, an accent curve, and a segmental perturbation curve; then, only the phrase curve

and the accent curve are recombined using the superpositional approach to obtain the

“clean” F0 contour, i.e., a contour containing no segmental perturbations. Since the

shape of each clean F0 contour will correspond more closely to the shapes of the underlying

phrase curve and accent curve, we expect that each minimal pair will show a high degree

of similarity when compared in terms of the corresponding pair of clean F0 contours.

To test whether the assumption that minimal pairs produced in the same prosodic

context have similar F0 contours is valid, and also to test whether this similarity is hidden

due to the presence of segmental perturbations, we compared each pair of F0 contours

corresponding to each minimal pair in the following five ways:

C1: In terms of their raw F0 contours: The raw F0 contours are normalized so that

their lengths and norms are equal, and their peak locations are the same. Then, the

RMSE between the pair of raw F0 contours is calculated. (See Panels a and b in

Figure 3.14 for an example.)
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C2: In terms of their smoothed F0 contours: The gaps in the normalized raw F0 contours

are removed using linear interpolation, and the resulting contours are smoothed

using moving averages. Then, the RMSE between the pair of smooth F0 contours is

calculated. (See Panels c and d in Figure 3.14 for an example.)

C3: In terms of their accent curves: Accent curves are obtained by PRISM decomposition

from the normalized F0 contours. Then, the RMSE between the pair of accent curves

is calculated. (See Panels e and f in Figure 3.14 for an example.)

C4: In terms of their phrase curves: Phrase curves are obtained by PRISM decomposition

from the normalized F0 contours. Then, the RMSE between the pair of phrase curves

is calculated. (See Panels g and h in Figure 3.14 for an example.)

C5: In terms of their clean F0 contours: The phrase curve and accent curve obtained

by PRISM decomposition from each normalized F0 contour are combined using the

superpositional approach to obtain clean F0 contours. Then, the RMSE between

the pair of clean F0 contours is calculated. (See Panels i and j in Figure 3.14 for

an example. In each of these two panels, the corresponding raw F0 contours are

shown by the dashed lines. Notice that the PRISM analysis not only removed the

segmental perturbations caused by the vowel-initial obstruents but also removed the

voicing irregularities at the end of the F0 contour.)

3.4.3 Results of minimal pair analysis

The mean of the RMSE differences within each pair of F0 contours (raw, smooth, or clean)

or components of the F0 contours (phrase curves or accent curves) are computed across

each set (emphasized and unemphasized). They are shown in Table 3.9. The column

labels C1 through C5 correspond to the five different types of comparisons enumerated in

the preceding section.

3.4.4 Discussion of results

From the mean RMSE values obtained from each of the five types of comparisons, we

see that the difference within each pair of the raw F0 contours (C1) is the greatest. The

difference within each pair of smooth F0 contours (C2) is considerably less. And the
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C1 C2 C3 C4 C5
(Raw) (Smoothed) (Accent) (Phrase) (Clean)

Emphasized Pairs 101.7095 53.4332 11.3227 6.7147 13.2538

Unemphasized Pairs 78.6524 19.2642 3.7104 5.6680 6.3729

Table 3.9: Mean RMSE (in Hz) obtained by comparing the F0 contours of each minimal
pair in five different ways.

difference within each pair of clean F0 contours (C5) is the least of the three. We also see

that part of the within-pair difference in clean F0 contours is due to the corresponding

within-pair difference in accent curves (C3) and part is due to the corresponding within-

pair difference in phrase curves (C4). This was expected since a clean F0 contour is a

summation of a non-negative phrase curve and a non-negative accent curve.

The results trend similarly for both the emphasized and the unemphasized set of target

words. However, the paired differences in the case of the unemphasized set of target words

is considerably less than that of the emphasized set. This is due to the fact that when

words are unemphasized, the related pitch excursions are smaller.

These results indicate that (a) gaps and segmental perturbations in the F0 contour

caused by the presence of obstruents preceding vowels in the associated speech stream

do distort the shape of the F0 contour; (b) smoothing the F0 contour does not undo the

distortion completely because smoothing may still leave behind uncharacteristic bulges

in the F0 contour (shown in Panel c of Figure 3.14); and (c) removing the segmental

perturbations from the F0 contour using PRISM is very effective at producing the clean

shape of the F0 contour, in which the “true” shapes of the underlying phrase curve and

accent curve are unobscured.

Conclusively proving that the phrase curve and the accent curve that make up each

clean F0 contour are indeed the “true” component curves is not possible. However, given

the sufficiently high accuracy with which PRISM estimated component curves in the previ-

ously described objective evaluations, we can accept that these curves closely approximate

the “true” curves. This position is further bolstered by the results that show that each

minimal pair of prosodically equivalent target words is very similar in terms of the cor-

responding pair of phrase curves, accent curves, and clean F0 contours (as shown by the
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low mean RMSE difference produced by comparisons C4, C3, and C5, respectively).

The within-pair similarity of phrase curves, accent curves, and clean F0 contours cor-

responding to each minimal pair also supports the assumption that utterances that are

recorded in the same prosodic context have very similar F0 contours. These results have

positive implications for intonation generation via recombinant synthesis. In recombinant

synthesis, we generate a target F0 contour by superpositionally combining phrase curves

and accent curves that match the target in terms of prosodic context. Thus, validation of

the assumption that utterances produced in the same prosodic context have very similar

F0 contours implies that our idea of using prosodic context as a search criterion to produce

target F0 contours is reasonable.

Overall, this analysis provides strong empirical evidence in favor of the hypothesis that

segmental perturbations distort the surface realization of F0 contours and thus obscure the

“true” phrase curves and accent curves. In addition, this analysis supports the thesis that

PRISM can be used to analyze natural F0 contours so that critical tests of theories and

assumptions regarding intonation can be performed. Another such application of PRISM is

demonstrated in Chapter 5. In that chapter, PRISM is used to test assumptions regarding

perceived prominence and the shapes of F0 contour component curves.

3.5 Conclusions

In this chapter, we presented a detailed description of our decomposition algorithm PRISM

that can be used to decompose any given F0 contour into phrase curves, accent curves,

and segmental perturbation curves. Using several sets of synthetic F0 contours whose

component curves were known, we objectively evaluated the accuracy with which PRISM

can estimate component curves. In these evaluations, the RMSE between the known and

estimated component curves were under the frequency difference required for just notice-

able difference in pitch for connected speech. This indicates that PRISM can decompose

F0 contours with sufficiently high accuracy.

We also showed an application of PRISM to natural F0 contours through the partic-

ular problem of analyzing the difference in F0 contour shape between minimal pairs of
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utterances that differed only in terms of one consonant. The performance of PRISM on

natural F0 contours cannot be objectively evaluated because the ground truth is unknown;

however, the strong within-pair similarity of estimated phrase curves and accent curves

corresponding to each minimal pair does suggest that the component curves estimated by

PRISM are close approximations of the “true” component curves.



Chapter 4

Intonation Generation in Recombinant

Synthesis

4.1 Background

Two different approaches to speech synthesis are currently prevalent: traditional concate-

native synthesis and unit selection synthesis. Traditional concatenative synthesis (e.g.,

diphone synthesis) involves generating target intonation contours using statistical, lin-

guistic, and heuristic rules, which are then imposed on stored speech units using signal

modification methods. In contrast, unit selection synthesis uses neither synthetic con-

tours nor any signal modification. It involves simply searching a large tagged corpus for

units that match the target in terms of phonemic sequence and prosodic context, and

concatenating the units together.

Each of the two approaches has its strengths and weaknesses. Unit selection synthesis

preserves the richness of natural speech but it struggles to cover the large combinatorial

space of possible phoneme sequences and prosodic contexts that a given phone sequence

can occur in. In fact, van Santen et al. (2005) claim that the probability is near-certain

that a given input text will require phoneme sequence and prosodic context combinations

that the speech corpus does not have. This sparsity problem is less than apparent in unit

selection synthesis because unit selection synthesis often uses corpora that are optimized

to capitalize on the extremely uneven frequency distribution of phone sequence-prosodic

context combinations, and because not all prosodic variations are audibly perceptible.

73
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However, these band-aid solutions do not address the fundamental challenge of unit selec-

tion synthesis. Speech quality improvement, demanded by current interest in emotional

speech, concept-to-speech, and human-machine dialogue applications, is possible only by

building bigger corpora, which in turn increases the combinatorial complexity — since

each acoustic unit has to be recorded in many different prosodic contexts — and amplifies

the sparsity problem of unit selection synthesis.

The combinatorial problem is not encountered by traditional concatenative synthesis

because it relies on statistical, linguistic, and heuristic rules to generate target contours

that are imposed on selected acoustic unit sequences. However, this method is limited

by two factors: the lack of “naturalness” of the generated F0 contours and the speech

quality degradation resulting from signal modifications (van Santen et al. 2004:i). The

reason for both is that the mapping between the linguistic control factors (e.g., word stress,

proximity to phrase boundaries) and the multiple acoustic dimensions such as intonation,

duration, spectral balance, and spectral dynamics is poorly understood. Thus, both the

task of generating F0 contours and imposing them on phone sequences is difficult.

An alternative to these two approaches, called recombinant synthesis (also called multi-

level unit sequence synthesis), has recently been proposed by van Santen et al. (2005).

The recombinant synthesis method involves searching one corpus for acoustic units, while

searching another corpus for components of the F0 contour that have been extracted

from natural speech. The component curves are added together according to the general

superpositional approach to construct the target F0 contour, which is imposed on the

acoustic unit sequences using standard signal modification methods. The two key concepts

of this approach are (1) decoupling the prosodic and the phonemic requirements of the

target units, and (2) generating quasi-natural target F0 contours using F0 components

that were extracted from natural speech.

These two concepts help combine the strengths of unit selection synthesis and tradi-

tional concatenative synthesis, while minimizing their weaknesses. Decoupling the prosodic

and the phonemic requirements of the target units reduces the combinatorial problem from

a quadratic to a linear problem because unlike unit selection synthesis, a single unit in
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the corpus does not have to simultaneously satisfy both the phonemic and prosodic re-

quirements. The target contour generation method addresses the naturalness problem.

Based on the superpositional framework, the target contour is generated by the super-

position of appropriate phrase curves, accent curves, and segmental perturbation curves

that were extracted from natural speech. Thus, the naturalness of the target contour is

enabled at multiple time scales, and it sounds far more natural than a synthetic target

contour that is generated by rule in traditional concatenative synthesis. Also unlike unit

selection synthesis, in which larger pitch excursions may cause audible discontinuities at

the concatenation points of the target contour, the target contour generated in the re-

combinant synthesis method is smooth and continuous. Finally, speech degradation due

to signal modification problems is also handled by the recombinant approach. First, since

the F0 curve is generated such that the synchrony between the segmental perturbations

of the target contour and the segmental frames of the target unit are preserved, signal

processing artifacts that arise from modifying the target contour to the original contour of

the acoustic unit can be predicted and minimized (as shown in Klabbers and van Santen

2003). Secondly, the modification artifacts that develop when the F0 difference between

the target and the source is large is also minimized by generating the target F0 contour

from component curves that match the source closely. Thus, the three main problems af-

fecting the quality of speech synthesis — namely, data sparsity, the lack of naturalness of

target contours, and output speech degradation due to signal modification — are handled

by the recombinant synthesis method.

But a major problem that needs to be solved before this synthesis method can be

implemented is the automatic decomposition of natural F0 curves into component curves.

This problem is challenging because (1) few assumptions about the shapes of the com-

ponent curves can be made, (2) segmental perturbations may produce spurious peaks

and valleys in the F0 contours, (3) successive accent curves may overlap in time, and

(4) natural F0 contours may have gaps due to silences or unvoiced sounds. None of the

existing decomposition algorithms are able to address all of these concerns (van Santen

et al. 2005). For example, the algorithms based on the Fujisaki model (e.g., Mixdorff
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2000, Narusawa et al. 2002) make strong assumptions about the shapes of the compo-

nent curves, while the decomposition algorithm outlined in Sakai (2004) does not model

segmental perturbations. PRISM aims to meet all these concerns and more (as outlined

in Section 1.3.1), and thus it should enable the successful generation of intonation in

the recombinant synthesis method. To test whether PRISM is indeed able to do so, we

developed a proof-of-concept (POC) implementation of recombinant synthesis that can

generate meaningful and expressive intonation of fairly long and complicated sentences

(described in Section 1.3.2).

4.2 Proof-of-concept implementation of recombinant syn-

thesis

As outlined in Section 1.3.2, the POC implementation involves extracting component

curves of natural F0 contours using PRISM, creating a corpus of the component curves, se-

lecting appropriate component curves from the corpus according to phonological/prosodic

rules, and additively recombining the extracted curves to generate target F0 contours.

This implementation does not include creating an acoustic unit corpus or searching it for

appropriate acoustic units; rather, the target F0 contours are imposed on pre-recorded

natural speech so that the strengths and weaknesses of this intonation generation method

can be observed, unconfounded by the effects of acoustic unit search and concatenation.

An incremental approach has been used in the development of the POC implementa-

tion, beginning with intonation generation for simple utterances and then moving to more

complex utterances. For the purposes of this implementation, the complexity of utterances

is considered along two dimensions: types of phonemes used (sonorant and non-sonorant)

and phrase modality (declarative and continuation rise). Phonemic categorization into

sonorant versus non-sonorant is important in this context. Sonorant phonemes produce

reliable F0 values whereas non-sonorants either cause gaps in the F0 contour (due to

unvoiced phones) or produce unreliable F0 values. The latter situation increases the com-

plexity of the decomposition algorithm and consequently, of recombinant synthesis. The

two different phrase modalities are considered for similar reasons: the shapes of accent
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curves corresponding to continuation rises are more complicated than that of accent curves

corresponding to declaratives.

Adhering to the idea of incremental development, the POC implementation of recom-

binant synthesis is divided into two stages of increasing complexity: (1) generating intona-

tion of fully sonorant declarative utterances; and (2) generating intonation of phonemically

unrestricted declarative utterances containing continuation rises. A detailed description

of each stage of implementation and of the perceptual tests used to evaluate each stage is

presented in the following sections.

4.2.1 POC implementation of recombinant synthesis to generate into-

nation of fully sonorant declarative utterances

In this stage of the proof-of-concept implementation, we have developed a corpus of F0

component curves and generated the intonation of 13 pre-determined simple declarative

sentences using recombinant synthesis. The corpus was created by the decomposition

of natural F0 contours using the template decomposition stage of the PRISM algorithm

described in Section 3.3.4.

The first step in developing the corpus was to record the natural utterances from which

the component curves needed to generate the intonation of the 13 target utterances would

be extracted. The recordings were elicited from one native male speaker of American

English. Each utterance set had the following format, where x denotes utterance set

number and x = 1, 2, ..., 13:

ax: Leenaa Roya.

bx: Leenab Wellerb and Annb Royb.

cx: Leenac Wellerc and Annc Royc.

The speaker was instructed to put a relatively higher emphasis on the highlighted

words and to pronounce utterances of type bx and cx in a “list-like” manner, in order

to elicit variability in pitch range more typical of natural speech used in unit selection

synthesis than of the stilted speech in diphone synthesis. A total of 39 utterances were
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recorded. In each of the 13 utterance sets described above, utterance ax was considered

the target utterance. It was not used for building the intonation corpus. The corpus was

built by decomposing utterances of type bx and cx.

Every utterance was manually segmented into left-headed feet using Wavesurfer (Sjölander

and Beskow 2000). F0 contours were extracted (at 10 ms interval) using the ESPS get f0

utility (Talkin 1993); based on Orfanidis (1996), high-frequency noise was removed using

the Savitzky-Golay filter of order 3 and length 5.

A Gaussian curve was used as an accent curve template. It is important to note that

the exact shape of the template is not critical as long as it is single-peaked and has initial

and final values of 0, because the time warping procedure renders different templates with

these features equivalent. Given these inputs, the template decomposition stage of PRISM

was used to decompose every natural F0 contour into an estimated phrase curve and a

number of estimated accent curves. An example of the natural F0 contour decomposition

is given in Figure 4.1. The average warping function obtained by the decomposition of

the utterance set bx is shown in Figure 4.2. Note that for the first three accent curves, the

average warping function goes beyond 100% of the associated foot duration, indicating

that each of the first three accent curves overlapped with the following accent curve.

Once the corpus was prepared, two versions of the target F0 contours (i.e. of type

ax: Leenaa Roya) were generated using methods DECOM1 and DECOM2, respectively.

Both methods generated target contours by selecting appropriate component curves from

the corpus and adding them together according to the general superpositional approach.

However, the methods differed in terms of the criteria used to select accent curves, as

outlined below:

• “Semi-natural” F0 with accent curves from the right prosodic context (DECOM1):

For every utterance set, the accent curves associated with the first and the last

units of bx (e.g., Leenab and Royb from “Leenab Wellerb and Annb Royb”) were

obtained. The obtained accent curves were scaled by a suitable height factor and

added to a synthetic phrase curve to generate the target F0 curve. The phrase

curve was generated to approximately mimic the average phrase curve obtained by

decomposition of ax.
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Figure 4.1: Decomposition of a natural F0 contour of type bx. The dashed arrows indicate
the peaks detected by the peak detection algorithm. The x-axis is time in 10 ms intervals,
and the y-axis is frequency in Hz.

• “Semi-natural” F0 with accent curves from the wrong prosodic context (DECOM2):

In the previously described method of F0 generation, the accent curves selected

from the corpus appear in the same prosodic context as the target accent curves.

However, one may not be able to find accent curves in the corpus that match the

target accent curves completely in terms of prosodic context. Method DECOM2

presupposes such a prosodic mismatch between the candidate accent curves and

the target accent curves. Accordingly, for every utterance set, the accent curves

associated with the first and last units of cx (e.g., Leenac and Royc from “Leenac

Wellerc and Annc Royc”) were selected to produce the target contour. The relative

emphasis on Leenac and Royc were the reverse of the relative emphasis on Leenaa

and Roya, respectively. However, the position in phrase and the number of syllables

for the matched pairs, (Leenaa, Leenac) and (Roya, Royc), were identical. Given

the matching position in phrase and the identical number of syllables, we conjectured

that the difference in emphasis between the matched pairs of accent curves translated
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Figure 4.2: Average warping function related to the decomposition of utterance set bx.

to only a difference in the height factor of the accent curve1. Based on this conjecture,

the accent curves were appropriately scaled and added to a synthetic phrase curve to

generate the target contour. The phrase curve was synthesized in the same manner

as in method DECOM1.

Each of the two versions of the target contours were imposed on the original utterance

of type ax using STRAIGHT (Kawahara et al. 2001). Duration mapping between the

generated F0 and the original F0 was done at the foot level. It is important to note

that in the described implementation, the phrase component used for the target contour

generation was not natural; rather, it was a synthetic curve that mimicked the target.

This limitation was rectified in the next stage of the POC implementation (Section 4.2.4).

1This conjecture is generally supported by our finding, presented in Chapter 5, that accent curve height
is the strongest correlate of perceived prominence (or emphasis).
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4.2.2 Perceptual test to compare intonation generation in recombinant

synthesis to other methods

In van Santen et al. (2004:i, 2005), it is claimed that intonation generated by the recombi-

nant synthesis method will produce more natural-sounding intonation than that produced

either by synthetic target F0 contours (as in traditional concatenative synthesis) or by

concatenation of raw F0 contour fragments (as in unit selection synthesis). Verification of

this claim is not only needed to demonstrate the purported superiority of the recombinant

synthesis concept but also to confirm the effectiveness of the PRISM decomposition algo-

rithm in extracting “true” component curves; if the extracted component curves are not

at least close approximations of the “true” curves, then the target contours constructed

from them will not sound natural. Thus, a comparative perceptual test was conducted to

test this claim.

For the purpose of the comparative perceptual test, the same 13 utterances were gen-

erated using three other methods described below:

• Raw F0 concatenated (CONCAT): For each utterance set, the raw F0 curve was

extracted from the first and the last units of utterance bx (because Leenaa and

Leenab were in the same prosodic context, as are Roya and Royb) and concatenated

to generate the target F0 contour. We initially tried to match the peaks of the

concatenated F0 to the peaks of the natural F0 of the target utterance by multiplying

each of the units by a height factor. However, doing so sometimes resulted in more

drastic jumps at the unit boundaries, as shown in Figure 4.3; therefore, we decided

not to perform the peak-matching.

• SLAM F0 (BY-RULE): The target F0 contours were generated according to the

intonation model called SLAM (Simplified Linear Alignment Model, described in

Section 3.3.5), implemented by the OGI version of the Festival Speech Synthesis

system (Black and Taylor 1997). The phrase curve parameters were set to approxi-

mate the speaker’s phrase curve characteristics (such as average phrase start, phrase

end, and phrase height) and the accent curve parameters were set to produce peaks

at approximately the same heights as the peaks in the natural utterances.
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Figure 4.3: Peak-matching concatenated F0 contours can make the pitch mismatches at
unit boundaries more drastic.

• Resynthesized F0 (ORIG): To compare the target intonation contours generated by

DECOM1, DECOM2, CONCAT, and BY-RULE to a gold standard, the original F0

curve of utterance type ax was extracted using ESPS and reimposed on the same

utterance, thus creating a version called ORIG.

Just like DECOM1 and DECOM2, these target contours were imposed on the utterance

of type ax using STRAIGHT, and duration mapping between the generated F0 and the

original F0 was performed at the foot level.

Thus, 13 utterance sets, each comprising 5 target F0 contours applied to the same

utterance, were created to conduct the comparative perceptual test. In the perceptual test,

the ordering of the 13 sets was randomized, and within each set, the order of presentation

of the 5 target utterances was randomized as well. The perceptual test was presented to six

listeners using a CGI-based script, WWStim (Veenker 2001). The five target utterances of

each randomized set were presented on the same page, with each set on a different page.

The test was performed on one computer with a M-Audio Duo USB audio interface and

a high quality AKG headset. The listeners were asked to listen to each of the 65 target

utterances, one at a time, and to rate the naturalness of the intonation on a five-point

scale. Of the six listeners, four were students from our university and two were staff
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members. All listeners were fluent in American English, and four are involved in speech

research. The results formed a 65 stimuli × 6 listeners score matrix S.

Results of the perceptual test comparing intonation generation in recombinant

synthesis to other methods

Repeated measures ANOVA: The first step was to find out if the six listeners could

indeed differentiate between the five methods of intonation generation in terms of natural-

ness. We employed repeated measures ANOVA to establish the difference between the five

methods. Since all six subjects were measured under all five intonation generation meth-

ods, exposed to exactly the same stimuli, it was expected that the scores obtained from

each subject would be correlated. Correlated data violates the independence assumption

of simple one-way ANOVA, and thus the latter could not be used to test differences among

the five intonation generation methods. Instead, repeated measures ANOVA was used.

In the repeated measures framework, this perceptual test has one factor — Intonation

Methods — which has five levels: ORIG, CONCAT, BY-RULE, DECOM1, and DECOM2.

Thus, we have a one-way repeated measures design with 5 levels and 6 subjects. Under

the repeated measures design, the following assumptions are made about the data. First,

we assume normality of the distribution of the dependent variable at each level of the

factor. Second, we assume constancy in the dependent variable’s variance across levels of

the factor. Third, we assume sphericity, i.e. the correlation between all possible pairs of

repeated measures (e.g., BY-RULE vs. DECOM1, DECOM1 vs. DECOM2) is identical.

Before performing the repeated measures ANOVA, the null hypothesis H0 and the α

value were set as follows:

• H0 = there is no difference between the different types of intonation methods.

• α = 0.05.

The one-way repeated measures analysis was performed using the statistical package R.

The score matrix S was reshaped as shown in Table 4.1.

Because Intonation Methods was crossed with the random factor Subject in this re-

peated measures design, an error term for Intonation Methods was also specified. A

summary of the results obtained by the repeated measures ANOVA is shown in Table 4.2.
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Observations Subject Intonation Methods Scores
1 S1 RESYNTH 3
2 S1 RESYNTH 4
... ... ... ...
64 S1 DECOM2 3
65 S1 DECOM2 1
.... ... ... ...
158 S3 BY-RULE 2
159 S3 BY-RULE 3
... ... ... ...
389 S6 DECOM2 2
390 S6 DECOM2 3

Table 4.1: Data for repeated measures ANOVA.

Source Sum of Squares degrees of freedom Mean square F p-value
Model 42.990 4 10.747

11.252 6.018e-05
Error 19.103 20 0.955

Table 4.2: Summary of results of one-way repeated measures ANOVA.

The results of the repeated measures ANOVA, presented in Table 4.2, show that there

is a significant difference (p-value = 6.018e-05) in naturalness among the five methods of

intonation generation.

Figure 4.4: Boxplot depicting the difference in the perceived naturalness of the five into-
nation generation methods.
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A boxplot visually depicting the difference between the five methods is shown in Fig-

ure 4.4. Two points are apparent from the boxplot. First, the interquartile range of

DECOM1 is extremely small, meaning that most of the subjects scored DECOM1 sim-

ilarly. Second, the median value of DECOM1 is equal to the median value of ORIG,

meaning that the naturalness of DECOM1 approaches the naturalness of re-synthesized

natural speech, encoded as ORIG in this experiment. Together, these two points hint at

the notion that most of the subjects considered speech produced by method DECOM1 to

be as natural as re-synthesized natural speech. However, to firmly establish this notion

further tests were performed.

Planned t-tests: The second step was a more direct attempt to establish our claim

that the recombinant intonation generation method produces more natural-sounding into-

nation than that produced either by synthetic target F0 contours (as in diphone synthesis)

or by concatenation of raw F0 contour fragments (as in unit selection synthesis). Three

planned t-tests were performed to test three key predictions, according to which we ex-

pected DECOM1 to be better than CONCAT, BY-RULE, and DECOM2. Since we had

a directional sense about this analysis, a one-tailed t-test was performed. All t-tests were

performed using MATLAB. For each t-test, the null hypothesis H0 and the alternative

hypothesis HA were set as follows:

• H0: mean naturalness of DECOM1 = mean naturalness of the other method.

• HA: mean naturalness of DECOM1 > mean naturalness of the other method.

Since only a few planned t-tests were performed rather than the 10 possible t-tests, a

particular variation of t-tests called the Bonferroni t-test was used. In keeping with the

Bonferroni t-test, a stricter criterion for rejecting the null hypothesis was used. Using a

family-wise α of 0.05, the criterion to reject the null hypothesis was 0.05/3 = 0.0167.

The results of the planned t-tests are shown in Table 4.3. Each of the t-tests has 5

degrees of freedom. Since the p-values for all three t-tests are less than 0.0167, we can

reject the null hypothesis and conclude that DECOM1 produces more natural-sounding

speech than CONCAT, BY-RULE, and DECOM2. This establishes the claim that recom-

binant synthesis produces more natural-sounding speech than other synthesis methods

quite convincingly.
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t-test p-value Significant?
DECOM1 - CONCAT 4.70 0.0027 Yes
DECOM1 - BY-RULE 4.61 0.0029 Yes
DECOM1 - DECOM2 3.58 0.008 Yes

Table 4.3: Planned t-tests showing that the subjects judged intonation generated by
DECOM1 to be significantly more natural-sounding than intonation generated by other
methods.

One way between subjects ANOVA: Though we established through the previous

two tests that the five methods were significantly different, the means of the five methods

(ORIG = 2.846, CONCAT = 2.397, BY-RULE = 1.987, DECOM1 = 2.897, and DECOM2

= 2.462) do not reveal that information very well. This led us to explore whether the dif-

ferent subjects used different range of ratings to score the perceptual test. Using Subjects

as a factor, we performed a one-way between-subjects ANOVA using MATLAB.

Three assumptions underlie the one-way between-subjects ANOVA: First, each sub-

ject’s scores are normally distributed. Second, the variance (of scores) between subjects

is constant. Third, there is no correlation between subjects. The null hypothesis is that

there is no difference between the subjects’ rating range and the α value is 0.05. The

ANOVA results are shown in Table 4.4. The F-score equals 8.64 and the p-value equals

Source Sum of Squares degrees of freedom Mean square F p-value
Between subjects 36.359 5 7.27179

8.64 8.88389e-8
Error 323.015 384 0.84119

Table 4.4: Summary of results of one-way ANOVA on subjects.

8.88e-8. Since the F-score is greater than 1 and p-value < 0.05, the null hypothesis is

rejected, and we conclude that there is a difference between the subject ratings. A box-

plot showing the rating range of the different subjects is shown in Figure 4.5. Note that

subject 5 uses a very different range of ratings than all the other subjects, while subject

2 uses a wider range than other subjects.

Principal component analysis: Finally, to obtain a picture of the combined scores

corrected for some subjects’ using a different range of ratings or not being in line with

the majority of subjects, we performed a principal components analysis (PCA) on the

score matrix S, after its columns were transformed into z-scores. This analysis produces a
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Figure 4.5: Boxplot showing the difference in subject ratings of naturalness.

weighted combination of the ratings, assigning larger weights to mainstream listeners and

eliminating any differences in individual usage of the rating scales by the z-transformation.

PCA was performed using MATLAB. The resulting averages are shown in Figure 4.6. It

illustrates DECOM1’s superior performance over BY-RULE, CONCAT, and DECOM2 in

terms of naturalness. It also illustrates that speech produced by DECOM1 is as natural

as re-synthesized natural speech.
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Figure 4.6: Means and standard deviations of different methods of F0 generation. The
bar graph shows the means, and the line above each bar indicates the standard deviation.
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4.2.3 Discussion of results

From these four statistical tests, we can conclude that method DECOM1 produces more

natural-sounding F0 compared to methods BY-RULE, CONCAT, and DECOM2. We

hypothesize that the superior performance of DECOM1 over the other methods can be

attributed to the following key differences.

DECOM1 vs. BY-RULE: The key difference between DECOM1 and BY-RULE

is that DECOM1 generates F0 contours containing details of the natural pitch, whereas

BY-RULE does not. An example illustrating this difference is shown in Figure 4.7 (set a).

This difference arises from the fact that DECOM1 uses component accent curves extracted

from natural F0 contours to generate target F0 curves, whereas BY-RULE generates target

F0 curves using statistically-based rules.

DECOM1 vs. CONCAT: The main difference between DECOM1 and CONCAT

is that DECOM1 always generates continuous F0 curves whereas CONCAT sometimes

generates F0 curves that have audible pitch discontinuities, as shown in Figure 4.7 (set

b). In the illustrated example, the discontinuity between the two parts of the F0 curve

predicted by CONCAT occurred in spite of the fact that each of the two F0 curve frag-

ments were chosen from appropriate prosodic contexts. Though chosen from appropriate

contexts, the two F0 curve fragments were chosen from a list-type utterance. List-type

utterances are often produced with a lively intonation and hence have extreme variations

in pitch. Thus, even two F0 curve fragments excised from the same list utterance and

concatenated together can result in a large pitch jump at the boundary between the units.

One might argue that this discontinuity can be smoothed; however, most smoothing tech-

niques will cause the natural details inherent in each of the F0 curve fragments to be lost

in the smoothed F0 contour. Since a desired goal of intonation generation is to preserve

the details of natural pitch, we have refrained from performing such smoothing. Another

intuitive argument may be that the F0 curve fragments should be extracted from less

expressive speech. Doing so will perhaps result in no (or small) pitch discontinuities;

however, the resultant F0 contour will also be less expressive.

DECOM1 and DECOM2: Finally, the main difference between DECOM1 and
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DECOM2 is this: while in DECOM2 the component accent curves are extracted from

sub-optimal prosodic contexts, in DECOM1 the component accent curves are extracted

from the optimal prosodic contexts. Consequently, the F0 contour generated by DECOM2

might not match the target F0 contour as well as the F0 contour generated by DECOM1.

This key difference is illustrated in Figure 4.7 (set c).
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Figure 4.7: Main differences in F0 prediction between DECOM1 and each of BY-RULE,
CONCAT, and DECOM2.
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4.2.4 POC implementation of recombinant synthesis to generate intona-

tion of phonemically unrestricted declarative utterances contain-

ing continuation rises

In this stage of the proof-of-concept implementation, we have developed a corpus of F0

component curves and generated the intonation of six pre-determined complicated sen-

tences using recombinant synthesis. The target sentences were hand selected from Grimm’s

fairy tales. All the sentences were of the list-type. They were unrestricted in terms of the

phonemes that occurred in them, i.e., they contained sonorants as well as non-sonorants.

They contained both declaratives and continuation rises. They differed from each other in

terms of the number of phrases in each sentence (between 3 and 5) and the number of feet

in each phrase (between 1 and 4). The target sentences were thus selected to demonstrate

that the decomposition algorithm PRISM can properly decompose F0 contours obtained

from utterances containing non-sonorants and continuation rises.

The six target utterances were the following:

1. He put two bushels in his right pocket, two in his left, four in a wallet, half on his

back, and half on his breast.

2. He gave to the first a cock, to the second a scythe, and to the third a cat.

3. Hans arrived before the king with money and jewels, gold and silver, and cows,

sheep, and goats.

4. The kings, princes, and councillors ridiculed and mocked him.

5. The man took out the bread, wine, fruit, and meat.

6. They shot hares, wild deer, birds and pigeons, and whatsoever there was to eat.

Working backwards from the target sentences, a minimal corpus of F0 component

curves needed to generate the intonation of the target utterances was designed. Unlike

the implementation described in Section 4.2.1, in this stage, both the accent curves and

the phrase curves were selected from the corpus. For any target utterance, x, the phrase

curves needed were extracted from an utterance in the corpus, y, according to two rules:

P1: The number of phrases in x is equal to the number of phrases in y.
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P2: The i-th phrase in x, phr(x)i, and the i-th phrase in y, phr(y)i, must belong to the

same equivalence class, EPn, where n indicates the number of feet in the phrase,

and n = 1, 2, and ≥ 3.

These rules were met by the set of six utterances listed in Section A.1 of Appendix A.

Rules for selecting the accent curves from the corpus were different from the rules for

selecting the phrase curve. Unlike the selection of the phrase curve, all accent curves in

a target utterance need not be obtained from the same utterance in the corpus. So, an

accent curve in the target utterance, acc(x)i, was obtained from an accent curve in the

corpus, acc(y)i, according to the following four rules:

A1: acc(x)i and acc(y)i must belong to the same equivalence class, EAn, where n indi-

cates the number of syllables in the foot spanned by the accent curve, and n = 1, 2, 3,

and > 3.

A2: The number of phonemes in the first syllable of acc(x)i must be equal to the number

of phonemes in the first syllable of acc(y)i.

A3: The j-th phoneme in the first syllable of acc(x)i and the j-th phoneme in the first

syllable of acc(y)i must belong to the same broad phonemic class, defined as vowel,

sonorant consonant, or obstruent. The term j ranges from 1 to n, where n is the

number of phonemes in the first syllable.

A4: The relative position of the accent curve acc(x)i in the phrase (i.e., phrase-initial,

phrase-medial, and phrase-final) must be the same as the relative position of the

accent curve acc(y)i in the phrase.

Governed by these rules, the accent curves for the target utterances were obtained from

the set of 13 utterances listed in Section A.2 of Appendix A.

Just like the six target sentences, the sentences used for creating the component curve

corpus were hand selected from Grimm’s fairy tales. A female native speaker of American

English rendered the target utterances as well as the corpus utterances. She was instructed

to read them in the expressive manner of reading stories. The corpus-related utterances

were decomposed using the template decomposition stage of the PRISM algorithm de-

scribed in Section 3.3.4. As in Section 4.2.1, a Gaussian curve was used as a template for
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the declarative type of accent curves, and a summation of a Gaussian curve and a rising

exponential curve was used as a template for the continuation rise. The piecewise lin-

ear phrase curve obtained by the template decomposition algorithm was smoothed using

penalized least squares (Green and Silverman 1994).

Following decomposition of the F0 contours corresponding to the utterances in the

corpus, the intonation for the target utterances was generated using five steps:

1. Phrase curves and accent curves were selected according to the aforementioned rules.

2. The heights of the accent curves spanning over a target phrase xi were obtained

from the heights of the accent curves spanning over the matching corpus phrase yi.

Rule P2 allowed the possibility that the number of accent curves in xi and yi were

not the same; in such a case, as many accent curves as possible were matched up;

if there were accent curves in xi that did not have a match in yi, their height was

obtained by interpolating over the heights of accent curves that had found matches

in yi.

3. Duration mapping of the accent curves and the phrase curves was performed at the

foot and phrase level, respectively.

4. Location of the peaks in the accent curves was decided according to the peak place-

ment rules developed by Klabbers and van Santen (2004).

5. The accent curves were overlayed on the phrase curve according to the general su-

perpositional approach to produce quasi-natural target F0 contours. An example of

such an F0 contour is shown in Figure 4.8.

The aforementioned steps together make up the intonation generation method in recom-

binant synthesis. We refer to this method as RECOM in the following sections. The six

quasi-natural target F0 contours obtained by RECOM were imposed on the correspond-

ing natural target utterances using Praat (Boersma and Weenink 2008)2. These target F0

contours are called “quasi-natural” because each of these contours is composed of phrase

curves and accent curves that were obtained from natural F0 curves.

2We used Praat instead of STRAIGHT because during resynthesis, STRAIGHT caused severe dis-
tortions to the speech obtained from our female speaker even though it worked perfectly on the speech
obtained from our male speaker in the previous stage of the POC implementation.
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Figure 4.8: Intonation generated for the target sentence, “The man took out the bread,
wine, fruit, and meat.” using recombinant synthesis.

4.2.5 Perceptual test to compare intonation generation in recombinant

synthesis to other methods

In the first stage of the POC implementation, we conducted a comparative perceptual test

to evaluate how the intonation generated by recombinant synthesis compared to other in-

tonation generation methods in terms of naturalness. However, in addition to naturalness,

we are also concerned about the expressiveness of intonation in speech synthesis — the

ideal output of a speech synthesis system is as natural and as expressive as natural speech.

With this in mind, in this stage of the POC implementation of recombinant synthesis, we

conducted a perceptual test to evaluate how the intonation produced by recombinant syn-

thesis compared to natural speech and to other intonation generation methods in terms

of expressiveness.

For the purpose of the comparative perceptual test, intonation of the 6 target utter-

ances were generated using four other methods, which are described below:

• Raw F0 concatenated (CONCAT1): The F0 contour of each target utterance was

generated by concatenating raw F0 curve fragments. The raw F0 curve fragments
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were concatenated at the foot level, i.e., each raw F0 curve fragment spanned a foot.

Correspondingly, each raw F0 curve fragment was selected using rules A1 through A4

that were used to select accent curves in recombinant synthesis. Since these raw F0

curve fragments were obtained from phonemically unrestricted utterances, a raw F0

curve fragment may have contained gaps in it. If such a gap occurred at the edge of

the raw F0 curve fragment, its concatenation with another raw F0 curve fragment,

even with post-concatenation smoothing, would have produced weird artifacts in

the target F0 contour. To prevent the occurrence of such artifacts, we removed

gaps in each raw F0 curve fragment using “sagging transitions” implemented via

quadratic spline functions. The concept of sagging transitions was established by

Pierrehumbert (1981). We obtained the particular rules for when to use sagging

versus sustained transitions from Jilka et al. (1999).

• Raw F0 concatenated and peak-matched to recombinant synthesis (CONCAT2):

The target F0 contours were produced in a manner similar to CONCAT1. However,

in this method, each raw F0 curve fragment was also vertically shifted so that the

height of the peak in the fragment matched the peak height of the corresponding

fragment in the target contour produced by recombinant synthesis. The vertical

shift was done by multiplying each of the raw F0 curve fragments by an appropriate

height factor. Vertical shifting, however, sometimes resulted in drastic jumps at the

fragment boundaries, as previously shown in Figure 4.3. To produce smooth target

F0 contours, we smoothed over these drastic jumps by spline interpolation. (See

footnote 3 for our reason for performing peak-matching).

• SLAM F0 (BY-RULE): The target F0 contours were generated according to the

previously discussed intonation model SLAM, implemented by the OGI version of

the Festival Speech Synthesis system. The component curve parameters were set to

3When we published the results of the perceptual test discussed in Section 4.2.2, not peak-matching
the target contours produced by raw pitch concatenation to those produced by recombinant synthesis
was considered “unfair” by some readers. It was conjectured that if peak-matched, the target contours
produced by raw pitch concatenation may sound as good as those produced by recombinant synthesis.
To test this conjecture and to address the concern about unfairness, we performed peak-matching in this
perceptual test.
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mimic the general characteristics of the speaker’s intonation.

• Resynthesized F0 (ORIG): To compare the target intonation contours generated by

RECOM, CONCAT1, CONCAT2, and BY-RULE to a gold standard, the original

F0 curve of each target utterance was extracted using ESPS and reimposed on the

same utterance, thus creating a version called ORIG.

Each of these target contours was imposed on the corresponding natural target utterances

using Praat; duration mapping was performed at the foot level; location of the peaks in the

accent curves was decided according to the peak placement rules developed by Klabbers

and van Santen (2004), as in the case of the target F0 contours produced by recombinant

synthesis (RECOM).

Thus, 6 utterance sets, each comprising 5 target F0 contours applied to the same

utterance, were created to conduct the comparative perceptual test. In the perceptual test,

the ordering of the 6 sets was randomized, and within each set, the order of presentation

of the 5 target utterances was randomized as well. The perceptual test was presented

to 10 listeners using WWStim. The five target utterances of each randomized set were

presented on the same page, with each set on a different page. The test was performed on

one computer with a M-Audio Duo USB audio interface and a high quality AKG headset.

The listeners were asked to listen to each of the 30 target utterances, one at a time, and

to rate the intonation of each target utterance using the following seven-point scale: (a)

very unnatural, (b) unnatural, (c) natural but barely expressive, (d) natural and slightly

expressive, (e) natural and moderately expressive, (f) natural and very expressive, and (g)

natural and extremely expressive. Our reasoning behind using such a scale is based on the

idea that an utterance cannot be both unnatural and expressive. The term “expressive” in

the context of synthesized speech means expressing as a rational human would naturally;

consequently, an utterance cannot be unnatural and expressive at the same time.

Of the 10 listeners included in this perceptual test, 4 were individuals from our univer-

sity and 6 were individuals from outside the university. All listeners were native speakers

of American English. All ten were naive subjects. The results formed a 30 stimuli ×

10 listeners score matrix T .
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Results of the perceptual test comparing intonation generation in recombinant

synthesis to other methods

Natural
Very unnatural/ Barely/Slightly Moderately Very/Extremely

Unnatural expressive expressive expressive
ORIG 0 0 26.7 73.3

RECOM 8.3 8.3 60.0 23.3
CONCAT1 45.0 8.3 38.3 8.3
CONCAT2 23.3 6.7 55.0 15.0
BY-RULE 6.7 28.3 51.7 13.3

Table 4.5: Percentages calculated from subject score matrix.

In the score matrix T , each intonation generation method has 60 (6 × 10) scores

associated with it. A summary of these scores is presented in Table 4.5. Each entry in the

table represents a percentage of the 60 scores associated with each intonation generation

method.

From this table we see that the subjects perceived the intonation of resynthesized

natural speech (ORIG) to be either moderately expressive or very/extremely expressive.

Intonation generated by RECOM was perceived as moderately expressive a majority of

the time (60%). It was also perceived as very/extremely expressive a substantial percent of

the time (23.3%). Compared to CONCAT1, CONCAT2, and BY-RULE, intonation gen-

erated by RECOM is closest to ORIG. Intonation generated by CONCAT1 was considered

unnatural significantly more often than intonation generated by other methods. Intona-

tion generated by CONCAT2 was perceived as less unnatural than CONCAT1 (23.3%

for CONCAT2 versus 45% for CONCAT1). Intonation generated by CONCAT2 was also

perceived as moderately expressive more than 50% of the time. This shows the positive

effect of peak-matching CONCAT2 to RECOM, and thus indirectly affirms the method

of specifying peak height in RECOM. Intonation generated by BY-RULE was perceived

as unnatural least often compared to RECOM, CONCAT1, and CONCAT2. This speaks

to the reliability of rule-based intonation generation. However, intonation generated via

BY-RULE was perceived as moderately or very/extremely expressive less often than in-

tonation generated by either RECOM or CONCAT2. This shows that the reliability of

rule-based intonation generation comes at the price of expressiveness.
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Source Sum of Squares degrees of freedom Mean square F p-value
Model 234.553 4 58.638

7.087 0.0003
Error 297.847 36 8.274

Table 4.6: Summary of results of one-way repeated measures ANOVA.

Further analyses of these subject scores using the same four statistical tests that were

used to analyze the subject scores obtained from the perceptual test comparing different

intonation generation methods in terms of naturalness (Section 4.2.2) is presented below.

Since both perceptual tests were structurally equivalent, the suitability of the statistical

tests in terms of their assumptions and implications (discussed in depth in Section 4.2.2)

holds for this perceptual test as well.

Repeated measures ANOVA: In the repeated measures framework, this perceptual

test has one factor — Intonation Methods — which has five levels: ORIG, RECOM,

CONCAT1, CONCAT2, and BY-RULE. Thus, we have a one-way repeated measures

design with 5 levels and 10 subjects. Under the repeated measures design, we make

the same assumptions about this dataset as were made for the dataset obtained by the

perceptual test discussed in Section 4.2.2.

Before performing the repeated measures ANOVA, the null hypothesis H0 and the α

value were set as follows:

• H0: there is no difference between the different types of intonation methods.

• α = 0.05.

The one-way repeated measures analysis was performed using the statistical package R.

The score matrix T was reshaped in the same way the score matrix S was reshaped in

Table 4.1.

Since Intonation Methods was crossed with the random factor Subject in this repeated

measures design, an error term for Intonation Methods was also specified. A summary of

the results obtained by the repeated measures ANOVA is shown in Table 4.6. These results

show that there is a significant difference (p-value = 0.0003) in expressiveness among the

five methods of intonation generation.

A boxplot visually depicting the difference between the five methods is shown in Fig-

ure 4.9. Two points stand out from this boxplot: (1) the interquartile range of RECOM
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is distinctly narrower than that of of CONCAT1, CONCAT2, and BY-RULE; and (2) the

median value of RECOM is higher than that of CONCAT1, CONCAT2, and BY-RULE,

though less than the median value of ORIG (re-synthesized natural speech). These two

points together indicate that most of the subjects considered the intonation produced by

recombinant synthesis to be more expressive than intonation produced by synthetic target

F0 contours (as in diphone synthesis) and intonation produced by concatenation of raw

F0 curves (as in unit selection synthesis). However, intonation produced by recombinant

synthesis was perceived as less expressive than the intonation of natural speech.

ORIG RECOM CONCAT1 CONCAT2 BY−RULE

Very unnatural: 0

Unnatural: 1

Natural but barely expressive: 2

Natural & slightly expressive: 3

Natural & moderately expressive: 4

Natural & very expressive: 5

Natural & extremely expressive: 6

Figure 4.9: Boxplot depicting the difference in the perceived expressiveness of the five
intonation generation methods.

Planned t-tests: As in the previous perceptual test, we performed three planned

t-tests to test three key predictions, according to which we expected RECOM to be better

than CONCAT1, CONCAT2, and BY-RULE. Since we had a directional sense about this

analysis, one-tailed t-tests were performed. All t-tests were performed using MATLAB.

For each t-test, the null hypothesis H0 and the alternative hypothesis HA were set as

follows:

• H0: mean expressiveness of RECOM = mean expressiveness of the other method.

• HA: mean expressiveness of RECOM > mean expressiveness of the other method.
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Again, as before, we used the Bonferroni t-test. Thus, using a family-wise alpha of 0.05,

the criterion to reject the null hypothesis was 0.05/3 = 0.0167. The results of the planned t-

tests are shown in Table 4.7. All three t-tests have 9 degrees of freedom. Since the p-values

for all three t-tests are less than 0.0167, we can reject the null hypothesis and conclude

that the subjects judged the intonation generated by RECOM to be significantly more

expressive than the intonation generated by CONCAT1, CONCAT2, and BY-RULE. This

analysis thus strongly supports our expectation that recombinant synthesis will produce

more expressive speech than other synthesis methods.

t-test p-value Significant?
RECOM - CONCAT1 5.5739 0.0002 Yes
RECOM - CONCAT2 3.8739 0.0019 Yes
RECOM - BY-RULE 2.8567 0.0094 Yes

Table 4.7: Planned t-tests showing that the subjects judged intonation generated by
RECOM to be significantly more expressive than intonation generated by other methods.

One way between subjects ANOVA: Though the previous tests revealed that

subjects perceived a significant difference among the five intonation generation methods,

this information is not very well highlighted by a simple comparison of the mean ratings

corresponding to the different methods (ORIG = 4.9333, RECOM = 3.6667, CONCAT1 =

2.2667, CONCAT2 = 3.0500, and BY-RULE = 3.1167). This is perhaps because different

subjects used different range of ratings to score the perceptual test. To examine this idea,

we performed a one-way between subjects ANOVA using MATLAB. The null hypothesis

is that there is no difference between the subjects’ rating range and the α value is 0.05.

The ANOVA results are shown in Table 4.8. The F-score equals 12.35 and the p-value

equals 1.11e-16. Since the F-score is greater than 1 and p-value < 0.05, we can reject the

null hypothesis and conclude that there indeed is a difference between the subject ratings.

A boxplot showing the rating range of different subjects is shown in Figure 4.10.

Source Sum of squares Degrees of freedom Mean square F p-value
Between subjects 203.9867 9 22.6652

12.3458 1.1102e-016
Error 532.4 290 1.8359

Table 4.8: Summary of results of one-way ANOVA on subjects.
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Figure 4.10: Boxplot showing the difference in subject ratings.

Principal component analysis: To obtain a picture of the combined scores corrected

for some subjects using a different range of ratings or not being in line with the majority

of subjects, we performed a principal components analysis (PCA) on the score matrix

T , after its columns were transformed into z-scores. MATLAB was used to conduct this

analysis. The resulting averages are shown in Figure 4.11. It shows that intonation

generated by RECOM was considered to be more expressive than intonation generated by

BY-RULE, CONCAT1, and CONCAT2. However, it also shows that the subjects did not

consider intonation generated by RECOM to be as expressive as re-synthesized natural

speech (ORIG).

4.2.6 Discussion of results

Based on the analyses in the previous section, we can conclude that our intonation gen-

eration method RECOM produces more expressive intonation than methods BY-RULE,

CONCAT1, and CONCAT2. The better performance of RECOM over the other methods

can be attributed to the key differences outlined in the following paragraphs.

RECOM vs. BY-RULE: A key difference between an F0 contour generated by
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Figure 4.11: Means and standard deviations of different methods of F0 generation. The
bar graph shows the means, and the line above each bar indicates the standard deviation.

RECOM and a corresponding F0 contour generated via BY-RULE is that in the former,

accent curves of the same utterance type (i.e., declarative, continuation rise, or interrog-

ative) may vary in terms of their detailed shape, while in the latter, accent curves of the

same utterance type have exactly the same shape. The term “detailed shape” refers to

shape particulars such as slopes of the rise and fall of an accent curve, width of the accent

curve, and presence (or absence) of a plateau in the peak, and not the general shape of

the accent curve. An example of this difference is seen in Figure 4.7 (set a). Both accent

curves in the F0 contour generated by SLAM (which is a BY-RULE method) have the

same shape though the second accent curve is smaller in size. The two accent curves in

the F0 contour generated by recombinant synthesis (in the figure denoted DECOM1) do

not have the same shape — the first accent curve has saddle-like shape at the peak but

the second accent curve does not; rather, the second accent curve is so flat that its shape

is almost obscured by the first accent curve overlapping with it.

The reason for this key difference is that accent curves in BY-RULE are generated

by statistically-based rules, whereas accent curves in RECOM (and in DECOM1 and
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DECOM2) are obtained from natural F0 contours using PRISM. The additional variability

in the detailed shape of the accent curves helps F0 contours generated by RECOM to

approximate natural F0 contours more closely. Consequently, compared to BY-RULE

generated F0 contours, RECOM generated F0 contours approximate the expressiveness

of natural F0 contours better (as indicated by Figure 4.11). However, this additional

variability needs to be handled carefully. If the candidate accent curve selected from the

accent curve corpus has a variability that is inappropriate for the target, it can cause the

F0 contour to sound unnatural. See Table 4.5; notice that though intonation produced by

RECOM was rated moderately expressive and very/extremely expressive more often than

intonation produced via BY-RULE, it was also rated as unnatural slightly more often than

intonation produced by BY-RULE (8.3% for RECOM versus 6.9% for BY-RULE). Thus,

the expressiveness of recombinant synthesis comes with some risk of unnaturalness.

RECOM vs. CONCAT1: The key difference between an F0 contour generated by

RECOM and an F0 contour generated by CONCAT1 is that the former is a superposition

of accent curves and phrase curves — extracted from natural F0 curves using PRISM

— while the latter is a concatenation of raw F0 curve fragments. In CONCAT1, we do

not have any explicit control over the phrase curves and the accent curves. As a result,

concatenation of the raw F0 curve fragments may produce F0 contours whose phrase curves

and accent curves may be inappropriate for the target. Consider Figure 4.12. The F0

contours shown in this figure correspond to the phrase “and whatsoever there was to eat.”

in the utterance “They shot hares, wild deer, birds and pigeons, and whatsoever there was

to eat.” The F0 contour produced by CONCAT1 has a gently rising phrase curve while

the F0 contour produced by RECOM has a falling phrase curve. Given that it has been

shown that utterance-final phrase curves in natural F0 contours have a declining slope with

the declination becoming steeper in the last foot of the phrase (Klabbers and van Santen

2004), the RECOM generated F0 contour is a more appropriate target contour than the

CONCAT1 generated F0 contour. The latter contour may be perceived as unnatural.

RECOM vs. CONCAT2: F0 contours were generated by CONCAT2 using the

same process as CONCAT1, except that the F0 contours produced by CONCAT2 were

peak-matched to the F0 contours produced by RECOM. In the process of peak-matching,
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Figure 4.12: Comparison of F0 contours produced by RECOM and CONCAT1.

we may have indirectly caused the phrase curves and accent curves underlying each CON-

CAT2 generated F0 contour to be more like the phrase curves and accent curves underlying

each corresponding RECOM generated F0 contour. Consequently, the problem of inap-

propriate component curves found in the case of F0 contours generated by CONCAT1

may have been ameliorated. However, in CONCAT2, there is still no way to control the

accent curve separately from the phrase curve. Thus, during peak-matching, we have to

vertically shift each F0 curve fragment in its entirety. As a result, pitch excursions in

F0 contours produced by CONCAT2 may be different — generally smaller — than pitch

excursions in F0 contours produced by RECOM. This is a key difference between the F0

contours generated by RECOM and the F0 contours generated by CONCAT2. As an

example, consider Figure 4.13. The F0 contours shown in this figure correspond to the

phrase “and whatsoever there was to eat.” in the utterance “They shot hares, wild deer,

birds and pigeons, and whatsoever there was to eat.” Notice that both F0 contours have

a falling phrase curve. However, the accent curves underlying the F0 contour generated

by CONCAT2 have smaller amplitudes compared to the corresponding accent curves un-

derlying the F0 contour generated by RECOM. As a result, even though both F0 contours

may sound natural, the F0 contour generated by CONCAT2 sounds less expressive than

the F0 contour generated by RECOM. The other concern with CONCAT2 is that the dif-

ference in mean height of two peak-matched F0 curve fragments may still negatively affect
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perception of naturalness, in spite of our attempt to connect the two fragments seamlessly

via interpolation and smoothing.
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Figure 4.13: Comparison of F0 contours produced by RECOM and CONCAT2.

4.3 Conclusion

In this chapter, we demonstrated intonation generation in recombinant synthesis via a

proof-of-concept implementation. We conducted two perceptual tests to compare this

intonation generation method to other intonation generation methods. The perceptual

tests showed that the intonation generated by recombinant synthesis is more natural-

sounding and more expressive than intonation generated by concatenation of raw F0 curves

(as in unit selection synthesis) and intonation generated by statistical, linguistic, and

heuristic rules (as in traditional concatenative synthesis). Thus, our intonation generation

method is a promising alternative to the latter two methods. Comparing recombinant

intonation generation with raw pitch concatenation, we can conclude that the continuity

of the target F0 contours provided by the recombinant intonation generation method

clearly outweighed any pitch modification distortion.



Chapter 5

Intonational Correlates of Perceived

Prominence From A Superpositional

Perspective

5.1 Background

Intonation serves several communicational functions. One of the primary functions of

intonation is to aid perceived prominence, “a psycholinguistic measure of the degree of

perceived salience of a syllable and consequently of the word or larger unit in which

that syllable is the most prominent” (Monaghan 2002, p.99). The effect of intonation on

perceived prominence has been the subject of much research. Several researchers (Gussen-

hoven et al. 1997, Rietveld and Gussenhoven 1985, Terken 1991, and Pierrehumbert 1979)

found that the position and height of peaks in the F0 contour influence the perception of

prominence. One of their most crucial findings is the effect of declination according to

which a peak occurring later in an F0 contour must have a lower height than a peak that

occurs earlier in the contour in order to be perceived as equally prominent.

The effect of intonation on the perception of prominence has also been demonstrated

— though slightly less directly than the aforementioned studies — by research on focus

perception. The focus of an utterance, semantically its most salient part, is generally

the most prominent part of the utterance; thus, the effect of intonation on perception of

focus can be extrapolated to its effect on perception of prominence. A study by Rump

and Collier (1996) showed that in utterances containing two F0 peaks, perception of focal

condition (i.e., neutral focus, early or late single contrastive focus, and double contrastive

106
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focus) was signalled by relative peak heights, all other things being equal. Parts of an

utterance that are marked by neutral focus convey new information. Parts of an utterance

that are marked by contrastive focus convey information that is in contrast to other

information presented either in the same utterance (double contrastive focus) or in a

preceding utterance (single contrastive focus). In the single contrastive focus condition,

early or late indicate the position of the focussed part of the utterance relative to the rest

of the utterance. In the Rump and Collier study, it was observed that a high first peak

and a much lower (or absent) second peak was perceived as early single contrastive focus,

whereas a high second peak and a lower first peak was perceived as late single contrastive

focus. Neutral focus and double contrastive focus were each signalled by relatively equal

peaks — though in some cases, the second peak was slightly lower. Neutral focus and

double contrastive focus were distinguished from each other by the height of the first

peak; it was higher in the case of double focus than in the case of neutral focus.

Similar studies of the relation between focus conditions and intonation were also con-

ducted by Cooper et al. (1985), Eady and Cooper (1986), and Welby (2003). Eady,

Cooper, and their colleagues observed that different focal conditions were related to dif-

ferent F0 patterns. Welby found that listeners were most attentive to the presence or

absence of pitch accents in determining focal structure, though phrase boundaries were

perhaps also important. These studies thus demonstrated the influence of intonation on

the perception of focus, and by extrapolation, on the perception of prominence.

Besides intonation, other aspects of speech that are considered to influence the per-

ception of prominence are loudness and duration. Early studies of prominence (Fry 1955,

1958) asserted that the prominent syllable was marked, in decreasing order of importance,

by duration, F0, and loudness. However, these studies were performed only on minimal

pairs of single, isolated, synthesized English words that were distinguished by a difference

in stress placement rather than focus, so the results need to be interpreted accordingly.

More recent studies (Beckman 1986, Silipo and Greenberg 1999, Silipo and Greenberg

2000, Turk and Sawusch 1996, and Kochanski et al. 2005) also found duration and loud-

ness to be good detectors of prominence. Thus, it is clear that F0 is not the only acoustic

correlate of perceived prominence.
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Nevertheless, most studies have found perceived prominence to be primarily a func-

tion of F0; see Terken and Hermes (2000) for a comprehensive review of the literature

on prominence. Most of the prominence studies, however, have been conducted either

in a sequential framework of intonation or in a quasi-superpositional framework (as in

Gussenhoven et al. 1997); only a few studies have been performed in the superpositional

framework (such as Mixdorff and Widera 2001 and Vainio et al. 2003). The studies in

the sequential framework have considered - and found to be significant - the influence of

several intonational parameters, such as pitch peak height (absolute or relative), pitch

accent shape, rate of baseline declination, and pitch onset height. However, studies in

the superpositional framework (almost all of which were based on the well-known Fujisaki

model) have so far investigated the influence of only one intonational parameter, namely,

the height of the accent component of the F0 contour.

Broadly speaking, accent component height in the superpositional framework corre-

sponds to pitch peak height relative to the baseline in the sequential framework. The

other intonational parameters that have been examined in the sequential framework also

have corresponding parameters in the superpositional framework, but they have not been

studied yet.

We aim to fill this gap by investigating how perceived prominence is influenced by

the following four parameters of intonation obtained in the superpositional framework:

(1) accent component height, (2) accent component shape (corresponding to pitch accent

shape1), (3) phrase component onset height (corresponding to pitch onset height1), and (4)

phrase component slope (corresponding to rate of baseline declination1). The importance

of studying these parameters together is that it will help us to determine (a) the individual

effects of these parameters, (b) their combined effect, and (c) their relative importance to

perceived prominence. Our investigation is conducted through a perception experiment

described in Section 5.3. A formal description of the aforementioned four parameters that

are varied in the perception experiment is given in Section 5.2.

1Pitch accent shape, pitch onset height, and rate of baseline declination are three intonational param-
eters in the sequential framework.
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5.2 Parameter definitions

For the purposes of this investigation, we consider the F0 contour to be a summation of

a phrase curve component P (t) and one or more accent curve components Ai(t) (Equa-

tion 5.1).

F0(t) = P (t) +
∑

i

Ai(t) (5.1)

P (t) = concatenate(pi), pi(t) = βi(t) + γ (5.2)

Ai(t) = hi × time warped(Ei(t)), |Ei(t)| = 1 (5.3)

Here the phrase curve P (t) is represented by a smoothed piecewise linear curve (Equa-

tion 5.2). The slope of P (t) (β in the simplest case) is called the phrase curve slope. The

value of P(0) (γ in the simplest case) is called the phrase curve onset height.

Each accent curve Ai(t) is represented by a parameterized time-warp of a class-specific

(e.g., declarative versus continuation rise) template curve Ei(t) that has been multiplied

by a height parameter hi (Equation 5.3). We call this height parameter the accent curve

height. Accent curve shape is characterized by both the time-warp function and the tem-

plate curve Ei. It is a non-controversial fact that accent curves that differ in terms of

their underlying templates differ perceptually; e.g., the difference between a declarative

accent curve and an interrogative accent curve is easily perceived. However, whether

accent curves that differ in terms of their time-warp functions are also perceptually differ-

entiable is still an open question. In the current study, we examine the difference between

two such accents: normal (default) accents versus contrastive accents. In terms of accent

curve shape, these two accents can be distinguished in terms of the location of the peak

in the accent curve. Thus, accent curve shape will be represented by the location of the

peak in the accent curve within the context of this investigation.

5.3 Perception experiment

A stimulus set of 144 utterances was generated for the perception experiment using the

following three steps:

1. Recording the base set of natural utterances: Three pairs of utterances Ua,b were
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Figure 5.1: F0 contours (and associated phrase curves and accent curves) of the 6 utter-
ances in the base set. Each utterance is labeled Ua,b, where a indicates pair number (a =
1, 2, 3), and b indicates accent type (b = normal, contrastive). The dashed lines represent
the phrase curves, the continuous lines represent the accent curves, and the dotted lines
represent the natural F0 curves.

recorded from one adult female native speaker of American English, where a indicates pair

number (a = 1, 2, 3), and b indicates accent type (b = normal, contrastive). The text

of each pair of utterances was “Now MOLLY Mel is here.” and “No, now MOLLY Mel

is here.” The speaker was instructed (i) to emphasize the capitalized word “MOLLY”,

(ii) to keep the degree of emphasis in both utterances of the same pair approximately the

same, and (iii) to increase the degree of emphasis from one pair to the next.

The word “No” in the second utterance of each utterance pair was meant to put the

speaker in a corrective/contrastive mindset so that she produced a contrastive utterance.

However, after recording, the part of the waveform corresponding to “No” was removed,
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so that all six utterances had exactly the same textual content. Thus, a base set of six

natural utterances was created, such that within-pair, the utterances varied in terms of

accent type (normal versus contrastive) while between-pair, the utterances varied in terms

of accent curve height. The stimulus set was generated by manipulating the F0 contours

of the utterances in the base set. The F0 contours of the utterances in the base set are

shown in Figure 5.1.

To create natural sounding intonation, F0 contour manipulation must be accompa-

nied by duration manipulation. However, in the context of this investigation, duration

manipulation will introduce additional factors that may confound the observed effects

of intonational parameters on perceived prominence. So, to observe the effects of into-

national parameters on perceived prominence unconfounded by the effects of duration

manipulation, we created the base set described above. During stimulus set generation,

each natural F0 contour from the base set was only manipulated so far as to not require

any corresponding duration manipulation. However, because the three pairs of utterances

in the base set varied substantially in the degree of emphasis, we were able to obtain a

sufficiently large number of stimuli F0 contours.

2. Decomposing the natural F0 contours: The F0 contours of the utterances in the

base set were decomposed into phrase curves and accent curves using PRISM. The phrase

curves and the accent curves produced by decomposing the F0 contours of the utterances

in the base set are shown in Figure 5.1. Notice that the estimated component curves look

utterly reasonable: each phrase curve has a declining slope and each accent curve is a

single-peaked function that rises from 0 to a peak value and again descends to 0, as is

expected of the phrase curve and the accent curve underlying a single-phrase declarative

utterance containing one emphasized word.

3. Generating the stimulus set of quasi-natural F0 contours: From the natural

F0 contour of each utterance in the base set, 24 quasi-natural F0 contours were gener-

ated as follows. First, a set of values called Equipeaksa,b was computed. Equipeaksa,b =

{OrigPeaka,b−25Hz, OrigPeaka,b, OrigPeaka,b+25Hz}, where OrigPeaka,b is the abso-

lute peak height in the natural F0 contour associated with the utterance Ua,b. OrigPeaka,b

is denoted by a star in Figure 5.1.
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Figure 5.2: The manipulation of the base set to obtain the stimulus set is illustrated
here. The star indicates the equipeak value. In the upper panel, each equipeak is attained
by four different combinations of accent curve height and phrase curve onset height. In
the lower panel, each equipeak is attained by four different combinations of accent curve
height and phrase curve slope.

The set Equipeaksa,b was so named because each element of this set, Equipeaksa,b(i),

represents the absolute peak height of eight different quasi-natural F0 contours, as shown

in Figure 5.2. Each of these eight contours was obtained by combining the curves P̂a,b

and Âa,b according to the superpositional approach outlined in Equations 5.1 through

5.3. The curve P̂a,b represents a modified version of the phrase curve Pa,b, which was

obtained by the decomposition of the natural F0 contour of the utterance Ua,b. Similarly,

Âa,b represents a modified version of the accent curve Aa,b, which was obtained by the

decomposition of the natural F0 contour of Ua,b.

Âa,b = Aa,b × (1 +
d

h
) (5.4)

P̂a,b = Pa,b + d (5.5)

P̂a,b = Pa,b + f(t) (5.6)

Aa,b was modified only in terms of height to produce Âa,b, as shown in Equation 5.4. In
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this equation, h denotes the height of Aa,b and d denotes the difference in height between

Âa,b and Aa,b. Four different d values were used (d = {−40,−25, 0, 25}) to produce four

different Âa,b curves. The peak location in Âa,b was the same as the peak location in Aa,b.

Thus, the shape of Âa,b was identical to the shape of Aa,b, because in this study accent

curve shape was parameterized by peak location.

For each Âa,b, two different types of corresponding P̂a,b curves were produced. (S1) P̂a,b

was produced by changing the onset height of Pa,b by d, as shown in Equation 5.5. There

was no modification in the original slope of Pa,b but its onset height was systematically

modified. (S2) P̂a,b was produced by adding a line f(t) to Pa,b, as shown in Equation 5.6.

The line f(t) was constrained so that f(t = T ) = 0 and f(t = pl) = d, where T denotes

the end time-point of the Pa,b and pl denotes the time-point corresponding to the peak

location in Aa,b. By adding the constrained line to Pa,b, we systematically modified the

original slope of Pa,b. However, as a consequence of this slope modification method, the

onset height of Pa,b was also modified, while its offset height remained unmodified. See the

lower panel of Figure 5.2; P̂a,b was produced by pivoting Pa,b about the offset. The reason

Pa,b was not pivoted about the onset (i.e., holding onset height constant while slope was

modified) was to avoid the inadvertent generation of a P̂a,b curve with a rising slope.

The two types of phrase modifications were so formulated to ensure that superposi-

tionally combining either type of P̂a,b curve with the Âa,b curve produced F0 contours of

the same absolute peak height Equipeaksa,b(i), even though different phrase-level intona-

tional parameters were modified for each type. The first type of P̂a,b curve was produced

by modifying the phrase curve onset height. Superpositionally combining this type of P̂a,b

curve with the Âa,b curve produced four F0 contours — corresponding to the four d values

— that differed from each other in terms of accent curve height and phrase curve onset

height, as shown in the upper panel of Figure 5.2. The second type of P̂a,b curve was

produced by modifying phrase curve slope. Superpositionally combining this type of P̂a,b

curve with the Âa,b curve produced four F0 contours — corresponding to the four d values

— that differed from each other in terms of accent curve height and phrase curve slope,

as shown in the lower panel of Figure 5.2. Thus, eight quasi-natural F0 contours with the

same absolute peak height Equipeaksa,b(i) were produced.
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Because per utterance Ua,b, we had specified three values of Equipeaksa,b (i.e., OrigPeaka,b−

25Hz, OrigPeaka,b, OrigPeaka,b+25Hz), a set of 24 ( = 8 × 3) quasi-natural F0 contours

per utterance was generated. Each of these 24 quasi-natural F0 contours was reimposed

on Ua,b using STRAIGHT to obtain 24 stimulus utterances. Since there are 6 natural

utterances in the base set, a total of 144 ( = 6 × 24) stimulus utterances were thus

obtained.

The 144 stimulus utterances can be subdivided into two subsets, S1 and S2. S1 consists

of the 72 stimulus utterances whose F0 contours are systematically varied in terms of

accent curve height and phrase curve onset height, while S2 consists of the 72 stimulus

utterances whose F0 contours are systematically varied in terms of accent curve height

and phrase curve slope. A third intonational parameter that is systematically varied in

both sets is accent curve shape. The variation in accent curve shape ensues from the fact

that though corresponding Âa,b and Aa,b have identical shapes, the Aa,b related to each

of the 6 utterances in the base set differs in shape from the others due to a difference in

peak location. (Observe from Fig. 5.1 that the peak location relative to the phones labels

/m/, /A/, and /l/ for each of the 6 utterances in the base set is different.)

This quasi-natural stimulus set differs from the completely synthetic (as in Gussen-

hoven et al. 1997 and Terken 1991) or completely natural (as in Mixdorff and Widera 2001)

stimulus sets that are commonly used in prominence studies. For example, the experi-

ments reported in Gussenhoven et al. (1997) were performed on a stimulus set consisting

of synthetic F0 contours, each of which comprised a baseline with one or two rise-and-fall

combinations superimposed on it. These rise-and-fall combinations were linear segments

that either joined together to form a sharp peak or were linked by a horizontal segment at

the peak to form a somewhat flat-hat contour. A criticism against such contours shapes is

that they do not occur in natural speech (van Santen et al. 2002). Although some earlier

studies reported that such stylized pitch contours cannot be distinguished from natural

pitch contours, van Santen et al. argue that many of these experiments were carried out

with low-quality TTS systems whose more glaring synthesis errors obscured the prosodic

differences between stylized pitch contours and natural pitch contours. Van Santen et al.

also suggest that performing the same experiments using current TTS technology would
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show different results.

On the other hand, using synthetic pitch contours also have an up-side. One can

systematically vary synthetic pitch contours in terms each of the parameters of interest;

this is something that is practically not possible for completely natural F0 contours because

even very skilled recording artists may not be able to vary one intonational parameter

while holding all others constant. This is an important argument against using completely

natural F0 contours.

The quasi-natural stimuli that we have generated for this study of perceived promi-

nence sidesteps each of the aforementioned issues related to the other two kinds of stimuli.

Each quasi-natural F0 contour is composed of phrase curves and accent curves that were

obtained from natural F0 contours; thus, visual comparison of these quasi-natural F0 con-

tours and natural F0 contours show a high degree of similarity. However, because the

phrase curves and the accent curves were parameterized according to Equations 5.1 to

5.3, we were able to systematically vary the intonational parameters — though the pa-

rameters for each base utterance were only varied to the extent that they did not require

any change in duration of the base utterance.

5.3.1 Listening protocol

To obtain the prominence judgements on the stimulus set of 144 utterances, a listening test

was administered to ten listeners using a CGI-based script, WWStim (Veenker 2001), that

automatically presents stimuli to the listeners and transfers their results to a database.

Each listener was presented with an unique randomized ordering of the stimulus set. Each

utterance in the randomized set was presented on a different page. The test was performed

on one computer with a high quality AKG headset. To prevent listener fatigue, the test

was performed in two 15 minute sessions, in which the listeners listened to 80 and 64

utterances, respectively.

The listeners were asked to listen to each utterance and rate the emphasis on the

word “Molly” on a five-point MOS (Mean Opinion Score) scale marked with the following

labels, indicating increasing levels of emphasis (or prominence): not emphasized, slightly
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X1 X2 X3 Y

X1 1.000 -0.389*** -0.180 0.899***
X2 1.000 -0.069 -0.591***
X3 1.000 0.114
Y 1.000

Table 5.1: Correlation matrix for S12.

X1 X2 X4 Y

X1 1.000 -0.389*** -0.243* 0.891***
X2 1.000 -0.088 -0.590***
X4 1.000 0.106
Y 1.000

Table 5.2: Correlation matrix for S22.

emphasized, moderately emphasized, very emphasized, and extremely emphasized. Be-

fore beginning the listening test, an example set of five utterances, each with a different

emphasis level, was played for the listener to make the listener aware of the range of em-

phasis that he/she expected to hear. The same example set was repeated after every 20

utterances to remind the listener of the emphasis range. Of the ten listeners, nine were

native speakers of American English and one was a non-native fluent speaker. Eight of

the ten listeners were “prosodically naive”, while two were involved with speech research.

5.4 Results

The results of the listening test formed a 144 stimuli × 10 listeners score matrix. From

this score matrix, we computed the mean prominence scores obtained from all subjects

for each of the 144 utterances.

5.4.1 Combined and individual influence of accent curve height, accent

curve peak location, and phrase curve onset height

A multiple linear regression model was fitted on the mean prominence scores obtained

from the 72 stimulus utterances belonging to the subset S1. Mean prominence score (Y)

was the response variable, while accent curve height (X1), accent curve peak location

(X2), and phrase curve onset height (X3) were the predictor variables. The zeroth-order

correlations between these variables are shown in Table 5.1. This table indicates that (1)

the accent curve height (X1) has a strong positive correlation with perceived prominence;

(2) accent curve peak location (X2) has a moderate negative correlation with perceived

2In the correlation matrix, *** indicates that correlation is significant at alpha ≤ 0.0001; ** shows
correlation is significant at alpha = 0.01; * shows correlation is significant at alpha = 0.05.
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prominence; and (3) phrase curve onset height (X3) has a slight, statistically insignificant

(p-value > 0.05) positive correlation with perceived prominence.

The linear function resulting from the multiple regression analysis is given by Equa-

tion 5.7.

Y = 0.0173 X1 − 0.0162 X2 + 0.0108 X3 (5.7)

Notice that phrase curve slope is not included in this regression model. The exclusion

of phrase curve slope from the regression model should come as no surprise because the

phrase curve slopes of the utterances in S1 were not varied from the original slopes of the

utterances in the base set, which in turn were not significantly different from each other.

Adjusted Std. Error
R-Squared R-Squared of Estimate F-Value p-value

0.9373 0.9336 0.0664 250.5201 < 0.0001

Table 5.3: Summary of results of multiple linear regression on subset S1.

How well the regression model denoted by Equation 5.7 fits the data is illustrated

by the model summary presented in Table 5.3. The R-squared and adjusted R-squared

values indicate that over 93% of the variance in mean prominence scores can be predicted

by accent curve height, accent curve peak location, and phrase curve onset height.

The beta weights (also known as normalized regression weights) corresponding to each

of the predictors are shown in Figure 5.3. Beta weights indicate how much influence each

of the independent variables exert on the dependent variable. There are two points of

note in this figure. First, the beta weight corresponding to phrase curve slope straddles

zero, thus illustrating its insignificant contribution to the regression model. Secondly,

and more importantly, the beta weight corresponding to phrase curve onset height (0.25)

is greater in magnitude than its zeroth-order correlation with mean prominence scores

(0.1140). This indicates that phrase curve onset height is in a suppression relationship

with another predictor variable in this regression model; that is, the inclusion of phrase

curve onset height in the regression equation increases the predictive validity of another

variable (or set of variables). Since phrase curve onset height is fairly independent of accent

curve peak location (correlation = 0.06), phrase curve onset height must be suppressing
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the error in accent curve height. This conclusion is further supported by the observation

that the beta weight of phrase curve onset height has the opposite sign of its zeroth-order

correlation with accent curve height. The conclusion that phrase curve onset height is

in a suppression relation with accent curve height in this regression model is useful in

interpreting the squared semi-partial correlations of the predictor variables with respect

to the response variable.

The squared semi-partial correlation coefficient of a predictor variable represents the

proportion of the total variance in the response variable that is uniquely explained by

the predictor variable. For example, accent curve height is correlated with both accent

curve peak location (-0.3893) and phrase curve onset height (-0.1803). Thus, the variance

common to accent curve height and accent curve peak location is −0.38932, and the

variance common to accent curve height and phrase curve onset height is −0.18032, while

the variance specific to accent curve height is (1 − (−0.38932) − (−0.18032) =) 0.8159.

The squared semi-partial correlation coefficient of accent curve height with respect to the

mean prominence scores represents how much of the total variance in mean prominence

scores is explained by the variance specific to accent curve height.

The squared semi-partial correlation coefficients of accent curve height, accent curve

peak location, and phrase curve onset height with respect to mean prominence scores are

shown in Figure 5.4. All coefficients are statistically significant (p < 0.0001). Here, 60.81%

of the variance in mean prominence scores is uniquely explained by accent curve height,

5.11% of the variance is uniquely explained by accent curve peak location, and 21.25% is

explained by the variance common to accent curve height and accent curve peak location,

while 6.2% of the variance is explained by phrase curve onset height in suppression with

accent curve height.

The contribution of phrase curve onset height is interesting. Observe from Table

5.1 that individually, phrase curve onset height only accounts for a non-significant 1.3%

(= 0.1142 × 100) of the variance in mean prominence scores; however, from its squared

semi-partial correlation coefficient, it appears that it explains 6.2% of the variance. This

apparent conflict can be interpreted easily if one takes the suppression relation between

accent curve height and phrase curve onset height into account. Phrase curve onset height
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Figure 5.3: Normalized regression coefficients (or beta-weights) of each of the four pre-
dictors: accent curve height, accent curve peak location, phrase curve onset height, and
phrase curve slope. The circle indicates the beta-weight and the bar represents the confi-
dence interval around it.

Figure 5.4: Illustration of the relationship between the independent variables and the
dependent variable. The independent variables are represented by a Venn diagram and
the dependent variable is represented by a bar.
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and accent curve height are negatively correlated with each other, while they each are

positively correlated with mean prominence scores. So, when the effect of accent curve

height is partialled out from the effect of phrase curve onset height, the correlation between

phrase curve onset height and mean prominence scores becomes stronger (i.e. from an

insignificant 1.3% to a significant 6.2%). Another way of thinking about this phenomena

is this. While individually phrase curve onset height barely explains any variance in mean

prominence scores, when it is put together with accent curve height in a regression model,

it correlates with the source of error (i.e. the variance that is irrelevant to mean prominence

scores) in accent curve height and thus increases the prediction by 6.2%. Excluding phrase

curve onset height from the regression model causes the explained variance to fall from

93.66% to 87.44%.

From the regression analysis on subset S1 described in the preceding paragraphs, we

can draw the following three conclusions:

1. Accent curve height, accent curve peak location, and phrase curve onset height to-

gether can predict perceived prominence with a high degree of accuracy, as indicated

by the high adjusted R-squared value.

2. Of the three predictor variables, accent curve height is the strongest intonational

correlate of perceived prominence, as indicated by its higher zeroth-order correla-

tion coefficient, higher beta weight, and higher semi-partial correlation coefficient.

The correlation between accent curve height and perceived prominence is strongly

positive; that is, an increase in accent curve height is perceived as an increase in

prominence.

3. Of the other two predictor variables, we would argue that accent curve peak location

is a stronger correlate of perceived prominence than phrase curve onset height. The

reason is that while the unique contribution of accent curve peak location is only

5.11% of the total variance in mean prominence scores, it explains another 21.25%

of the total variance together with accent curve height. In comparison, phrase curve

onset height explains 6.2% of the total variance but only when accent curve height

is present in the regression model. By itself, phrase curve onset height only accounts
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for a statistically non-significant 1.3% of the variance in mean prominence scores.

Accent curve peak location and perceived prominence are negatively correlated;

that is, the earlier the peak occurs in the accent curve and hence, closer to the

start of the vowel in the first syllable, the greater the perceived prominence of the

accented foot.

5.4.2 Combined and individual influence of accent curve height, accent

curve peak location, and phrase curve slope

So far, the influence of phrase curve slope has not been established. To investigate the

influence of phrase curve slope, a regression model was fitted on the mean prominence

scores obtained from the 72 stimulus utterances belonging to the subset S2. Mean promi-

nence score (Y) was the response variable, while accent curve height (X1), accent curve

peak location (X2), and phrase curve slope (X4) were the predictor variables; for phrase

curve slope, we only considered the magnitude, since all utterances had a falling phrase

curve, and hence, the same slope sign (i.e., negative). (Phrase curve onset height is not in-

cluded in this regression model because in the set S2 phrase curve onset height is collinear

with phrase curve slope (correlation = 0.96), as a consequence of slope modification.)

The zeroth-order correlations between the four variables are shown in Table 5.2. This

table indicates that (1) the accent curve height (X1) has a strong positive correlation

with perceived prominence; (2) accent curve peak location (X2) has a moderate nega-

tive correlation with perceived prominence; and (3) phrase curve slope (X4) has a slight,

statistically insignificant (p-value > 0.05) positive correlation with perceived prominence.

Equation 5.8 shows the linear function resulting from the multiple regression analysis.

Y = 0.0178 X1 − 0.0148 X2 + 1.6846 X4 + 1.1603 (5.8)

The fit of the regression model denoted by Equation 5.8 is illustrated by the model sum-

mary presented in Table 5.4. The R-squared and adjusted R-squared values indicate that

over 94% of the variance in mean prominence scores can be predicted by accent curve

height, accent curve peak location, and phrase curve slope.

The beta weights corresponding to each of the predictors are shown in Figure 5.5. Note
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Figure 5.5: Normalized regression coefficients (or beta-weights) of each of the three pre-
dictors: accent curve height, accent curve peak location, and phrase curve slope. The
circle indicates the beta-weight and the bar represents the confidence interval around it.

Figure 5.6: Illustration of the relationship between the independent variables and the
dependent variable. The independent variables are represented by a Venn diagram and
the dependent variable is represented by a bar.
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Adjusted Std. Error
R-Squared R-Squared of Estimate F-Value p-value

0.9444 0.9419 0.0581 384.8744 < 0.0001

Table 5.4: Summary of results of multiple linear regression on subset S2.

that the beta weight corresponding to phrase curve slope (0.30) is greater in magnitude

than its zeroth-order correlation with mean prominence scores (0.1060). By the same

reasoning as in the case of phrase curve onset height, we can conclude that phrase curve

slope is in a suppression relationship with accent curve height.

The squared semi-partial correlation coefficients of accent curve height, accent curve

peak location, and phrase curve slope with respect to mean prominence scores are shown

in Figure 5.6. All coefficients are statistically significant (p < 0.0001). Here, 61.92%

of the variance in mean prominence scores is uniquely explained by accent curve height,

4.19% of the variance is uniquely explained by accent curve peak location, and 19.61% is

explained by the variance common to accent curve height and accent curve peak location,

while 8.47% is explained by phrase curve slope in suppression with accent curve height.

The role of phrase curve slope in this regression model is similar to that of phrase curve

onset height in the regression model denoted by Equation 5.7. In this regression model,

individually phrase curve slope accounts for a non-significant 1.12% (= −0.1062 × 100) of

the variance in mean prominence scores; however, it explains 8.47% of the total variance

in mean prominence scores by correlating with the source of error in accent curve height.

From the regression analysis on subset S2 described in the preceding paragraphs, we

can draw the following three conclusions:

1. The three intonation parameters, accent curve height, accent curve peak location,

and phrase curve slope, together can predict perceived prominence with a high degree

of accuracy, as indicated by the high adjusted R-squared value.

2. Of the three predictor variables, accent curve height is the strongest intonational

correlate of perceived prominence, as indicated by its higher zeroth-order correlation

coefficient, higher beta weight, and higher semi-partial correlation coefficient. Accent

curve height and perceived prominence are strongly positively correlated.

3. Using the same argument as in the case of phrase curve onset height previously, we
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contend that accent curve peak location is a stronger correlate of perceived promi-

nence than phrase curve slope. As before, we find accent curve peak location and

perceived prominence to be negatively correlated.

5.4.3 Phrase curve serves as line of reference for evaluation of F0 peak

prominence

Besides determining if and how the four intonational parameters influence perceived promi-

nence, our experimental setup also allows us to investigate the following key questions. Is

there a line of reference that listeners use to determine the prominence of peaks in the F0

contour? If so, is the reference line abstract or observable?

We can infer that there indeed is a reference line that listeners use while making

prominence judgements from the following. When different accent curve heights were

used to attain the same absolute peak Equipeaksa,b(i) in the F0 contour (as in Figure 5.2),

prominence scores were systematically higher for the higher accent curve heights. This

observation is illustrated by Figure 5.7 and Figure 5.8. The connected lines in these

graphs are called equipeak lines. Each equipeak line is associated with an absolute peak

height Equipeaksa,b(i). The circles on the equipeak lines represent the change in mean

prominence scores with respect to the changes in accent curve height and phrase curve

onset height (or phrase curve slope in Figure 5.8) for the same absolute peak height. In

30 of the 36 equipeak lines, the slope is positively correlated with accent curve height.

A two-tailed sign test indicated that this result is significant at p < 0.0001. This result

implies that perceived prominence is not simply a correlate of absolute peak value; rather,

listeners are able to perceive a difference in prominence corresponding to the different

accent curve heights that are used to attain the same absolute peak value. This in turn

implies that the phrase curve serves as the reference line for the evaluation of prominence,

because by definition, accent curve height is the difference between absolute peak height

and its projection on the phrase curve.

The inference that the phrase curve is the reference line for the evaluation of promi-

nence is further strengthened by two analytical results. (1) In subset S1, where phrase

curve slope is unvaried among the utterances, adding phrase curve onset height to the
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Figure 5.7: Displaying the mean prominence scores with respect to phrase curve onset
height and accent curve height. Each line in the graph represents an equipeak that was
attained with different accent curve height and phrase curve onset height combinations.
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Figure 5.8: Displaying the mean prominence scores with respect to phrase curve slope and
accent curve height. Each line in the graph represents an equipeak that was attained with
different accent curve height and phrase curve slope combinations.
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regression model containing the accent curve parameters increases the explained variance

significantly from 87.44% to 93.66%. (2) In subset S2, where phrase curve slope is system-

atically varied among the stimuli utterances, adding phrase curve slope to the regression

model containing the accent curve parameters increases the explained variance signifi-

cantly from 85.72% to 94.19%. Since in the current experimental design, we are unable

to evaluate a regression model that includes both phrase curve onset height and phrase

curve slope, an argument can be made that it is not the phrase curve but some linear

transformation of it that is the reference line. While possible, this alternative theory is

unlikely, given the very low error rates in the two regression models (6.5% and 5.8%).

5.4.4 Contrastive versus normal accents

Last but not the least, these results can be used to answer another question: Do con-

trastive accents influence perceived prominence differently than normal accents? Our

results show that the influence of contrastive accents on perceived prominence can indeed

be differentiated from that of normal accents. Listeners perceive contrastive accents to be

more prominent than normal accents of comparable height. We came to this conclusion

for three reasons. First, while recording the base set our speaker consistently produced

contrastive accents with the accent curve peak located closer to the start of the vowel

in the stressed syllable than in the case of corresponding normal accents. Second, our

regression analysis established that accent curve peak position is significantly negatively

correlated with perceived prominence; that is, the closer the peak is to the start of the

vowel in the stressed syllable, the higher the perceived prominence. Third, when we paired

comparable utterances that differed only in terms of their accent curve shape (i.e., nor-

mal versus contrastive) and compared the mean prominence scores of the utterances in

each pair, we found that in 16 of the 18 such pairs, the prominence scores related to the

contrastive accents were significantly (indicated by a sign-test, p=0.002) higher than the

prominence scores related to the normal accents. The utterance pairs were comparable in

terms of phrase curve onset height (i.e., < 15 Hz absolute difference), phrase curve slope

(i.e., < 2 Hz/sec absolute difference), and accent curve height (i.e., the height of normal

accent ≥ the height of the corresponding contrastive accent).
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5.5 Discussion

Our finding that accent curve height and perceived prominence are strongly positively

correlated is well in line with most previous prominence studies. Our definition of accent

curve height matches the definition of accent component height in the studies reported

in Mixdorff and Widera (2001) and Vainio et al. (2003), both of which were prominence

studies performed in the superpositional context. Most other prominence studies were

not conducted in the superpositional framework but in either a sequential framework or

a quasi-superpositional framework (as in Gussenhoven et al. 1997). As a result, our

definition of accent curve height does not find an exact match there. Rather, in such

studies, our idea of accent curve height corresponds to the pitch peak height relative to

a linear baseline. In spite of the framework (and thus definitional) difference, our finding

regarding the strong correlation between accent curve height and perceived prominence

was borne out by these studies as well.

Our finding that contrastive accents are perceived as more prominent than normal

accents is supported by the experimental results reported in Krahmer and Swerts (2001)

but with a caveat. The results of this study on Dutch intonation indicate that contrastive

accents are perceived to be more prominent, but only when they are presented within

the utterance context. The caveat is that the prominence difference disappears when the

accents are presented in isolation to the subjects.

The Krahmer and Swerts (2001) study also substantiates our observation that con-

trastive accents are marked by early peaks. This study reports that contrastive accents

have a “nuclear” shape (i.e., with early peaks) while normal accents have a “prenuclear”

shape (i.e., with delayed peaks). This shape difference, however, was only found to be well-

pronounced for adjectives, which always occurred in a non-nuclear position in the phrase

(i.e., not the last pitch accent in a phrase); the shape of the normal and the contrastive

accents were essentially identical on the noun, which always occurred in the nuclear posi-

tion in the phrase (i.e., last pitch accent in a phrase). We conjecture that the difference

in shape was lost for the nouns because peak alignment of the accent curve ranging over

the noun was more strongly influenced by position in the phrase (i.e. nuclear) than by
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accent type (i.e., contrastive versus normal). Taken together, the reported difference in

shape and prominence of the contrastive accents versus the normal accents in Krahmer

and Swerts (2001) corroborates the results of our regression analysis that show that early

accent curve peak location corresponds to higher perceived prominence3.

A difference in shape between contrastive and normal accents is also reported by

Pierrehumbert and Hirschberg (1990); using the ToBI scheme, they report that contrastive

accents have an early rise L+H* shape while normal accents have a simple high H* shape.

Watson et al. (2004) report that though the interpretations of the L+H* and the H*

shape overlap, L+H* creates a strong bias towards contrastive information, whereas H*

is compatible with both new and contrastive information. Bartels and Kingston (1994)

and Ladd (1993) do not find differences in shape between normal and contrastive accents,

but they report that contrastive accents have a greater peak height than corresponding

normal accents.

Overall, accent curve height and accent curve peak location are two of the most impor-

tant correlates of perceived prominence. We draw this conclusion based on our analysis

results that show that accent curve height and accent curve peak location together can

explain over 85% (see Figure 5.4 and Figure 5.6) of the variance in the mean prominence

scores. However, phrase curve onset height and phrase curve slope also assist in the per-

ception of prominence; this finding is based on our analysis results that show that their

presence in the regression equation helps explain an additional 6-8% of the variance in the

mean prominence scores.

The idea that phrase curve onset height and phrase curve slope contribute to the

perception of prominence is in line with earlier findings. Gussenhoven et al. (1997) report

that both onset height and slope of the declining baseline affect perceived prominence. In

their study, three stretches of the declining baseline are treated piecemeal: one spanning

the beginning of the utterance to the beginning of the pitch accent, the second spanning

the pitch accent, and the third spanning the end of the pitch accent to the end of the

utterance. Given this, changing the onset height of the baseline only vertically shifts

3The authors do not draw this conclusion.
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the stretch from the beginning of the utterance to the beginning of the pitch accent.

In our study, on the other hand, the phrase curve cannot be partitioned into individual

pieces that are treated independently, and thus change in the phrase curve onset height

vertically shifts the entire contour. The slope of the baseline in Gussenhoven et al. (1997)

corresponds to the phrase curve slope in our study.

Gussenhoven et al. (1997) show that if the stretch spanning the beginning of the

utterance to the beginning of the pitch accent is greater than 400 ms, onset height is

negatively correlated with perceived prominence. However, the relationship is reversed if

the stretch spanning the beginning of the utterance to the beginning of the pitch accent

is less than 400 ms. The authors explain these results by reasoning that when the span

between the utterance beginning and the accent beginning is greater than 400 ms, the

listener has enough time to determine the reference line and thus use this information to

determine the prominence of the F0 peaks; for a given F0 peak, a high baseline corresponds

to a low pitch accent and hence, lower prominence, while a low baseline corresponds to a

high accent and hence, higher prominence. However, when the span is shorter than 400

ms, the listeners are uncertain about the reference line. In such a case — based on ’t Hart

et al.’s study of Dutch intonation (’t Hart et al. 1990) — the listeners interpret high onset

height as more lively and hence more prominent and low onset height as less lively and

less prominent.

In our study, phrase curve onset height is found to assist in the perception of promi-

nence. The direction of the relationship cannot be conclusively determined since the

zeroth-order correlation between phrase curve onset height and perceived prominence is

statistically insignificant (p > 0.05); however, if we go by the beta weights, the direction

of the relationship may be considered to be positive. This result may be interpreted using

Gussenhoven’s reasoning since for all stimuli, the span between the utterance beginning

and the accent beginning is less than 400 ms.

Gussenhoven et al. (1997) also report that the slope of the baseline line is positively

related to perceived prominence. In the current study, the slope of the phrase curve

(in conjunction with the accent curve parameters) is found to affect the perception of

prominence. Like phrase curve onset height, the direction of the relationship between
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phrase curve slope and perceived prominence cannot be conclusively determined since the

zeroth-order correlation between phrase curve slope and perceived prominence is statisti-

cally insignificant (p > 0.05). However, if we go by the beta weights, the direction of the

relationship may be considered to be positive. This result is similar to the one reported

in Gussenhoven et al. (1997).

Our determination that the phrase curve serves as a reference line that listeners use

to evaluate the prominence of F0 peaks is supported by Fujisaki and Hirose (1984) and

’t Hart et al. (1990). Terken (1991) also shows that the observed minima in the F0 contour

are indeed relevant for the perception of F0 peaks, but the results of the experiment argue

against a direct correlation between perceived prominence and the observed excursion

of the F0 peaks from a given baseline. Gussenhoven et al. (1997), on the other hand,

determine that the reference line is abstract — a widely-held position in the sequential

intonation framework.

The reasoning behind Gussenhoven et al.’s determination is as follows. In their study,

the stimuli consisted of synthetic F0 contours, each of which comprised a baseline and a

pitch accent superimposed on it. The accent was a rise-and-fall combination developed

from two linear segments that joined together at the top to form a sharp peak. As

mentioned earlier, Gussenhoven et al. treated the stretch of the baseline spanning the

beginning of the utterance to the beginning of the accent independently of the other

parts of the baseline. In two of their experiments, Gussenhoven et al. used sets of F0

contours in which the former span was kept completely horizontal and systematically

varied in terms of onset height, while the rest of the baseline was held constant. In both

these experiments, listeners were asked to evaluate the perceived prominence of each of

the stimuli F0 contours. Analysis of the experimental results indicated that the listeners

perceived a declining baseline. From this, the authors reasoned that since “the actual F0

in the stimuli ... did not decline”, this implies that the reference line is abstract rather

than being induced by the observable F0 declination.

We, however, do not agree with Gussenhoven et al.’s statement “the actual F0 in the

stimuli ... did not decline” because their description of the experimental stimuli shows

that though the stretch spanning the beginning of the utterance to the beginning of the
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accent was kept horizontal, the remainder of the baseline declined — albeit to the same

final F0 value. We further conjecture that since such an F0 contour with a completely

horizontal stretch leading up to the beginning of the accent is quite unlikely to occur in

natural speech, listeners used the remainder of the baseline — which was distinctly longer

than the horizontal stretch — to extrapolate a declining baseline. In addition, if such

an F0 contour was analyzed in the superpositional framework, it would be determined to

contain a declining phrase curve and an accent curve with a long rise.

5.6 Conclusions

From our investigation of the combined and individual influence of four intonational pa-

rameters obtained in the superpositional framework on perceived prominence, we can draw

the following six conclusions:

C1: Accent curve height, accent curve peak location, and phrase curve onset height (or

phrase curve slope) together can predict perceived prominence with a high degree

of accuracy.

C2: Accent curve height is the strongest intonational correlate of perceived prominence.

The correlation between accent curve height and perceived prominence is strongly

positive.

C3: The influence of the accent curve parameters on perceived prominence is much

greater than the influence of the phrase curve parameters. Although the latter

increase the predictive power of the accent curve parameters, they predict perceived

prominence non-significantly in isolation.

C4: Perceived prominence is not simply a correlate of absolute peak value; rather, lis-

teners are able to perceive a difference in prominence corresponding to the different

accent curve heights that are used to attain the same absolute peak value.

C5: The reference line that listeners use to make prominence judgements is observable,

and it corresponds to the phrase curve.

C6: Contrastive accents are perceived as more prominent than normal accents of equal

or even somewhat greater height.
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The significance of these conclusions is substantial. Conclusion C2 validates the basic

assumption of the superpositional approach that prominence is strongly tied to the accent

curve height. However, conclusions C1 and C3 show that this assumption, though neces-

sary, is not sufficient. Since accent curve height is not the only determiner of prominence,

superpositional models need to include additional constraints that relate prominence to

the other relevant intonational parameters. Conclusion C4 indicates that accent curve

height — and not absolute peak height — is the true correlate of prominence; any ob-

served relationship between absolute peak height and prominence is due to the strong

correlation between absolute peak height and accent curve height. Conclusion C5 contra-

dicts the position that the reference line that listeners use to evaluate the prominence of

F0 peaks is abstract. Conclusion C6 has important implications for speech synthesis: the

common strategy of using normal accents to intonationally highlight all crucial informa-

tion in an utterance is not sufficient; given the difference in prominence between normal

and contrastive accents, generation of contrastive accents is necessary to achieve the goal

of producing expressive speech.



Chapter 6

Conclusions and Future Directions

The central goal of our research is the development of an algorithm for decomposing any

arbitrary natural F0 contour into its component curves using only the general assumptions

of the superpositional approach, in order to enable the testing of assumptions made by

intonation models based on the superpositional approach and to enable the implementation

of the recombinant synthesis method. We divided this central goal into three subgoals:

1. Development of the decomposition algorithm for extracting the component curves

of natural F0 contours using only the general assumptions of the superpositional

approach.

2. Implementation of a proof-of-concept of the recombinant synthesis method in order

to demonstrate the essential role of the decomposition algorithm in this synthesis

method.

3. Testing of assumptions regarding the perception of prominence and the shapes of

F0 contour components in order to show the decomposition algorithm’s utility in

testing assumptions about intonation in the superpositional framework.

Chapters 3, 4, and 5 describe the ways in which we met sub-goals 1, 2, and 3, respec-

tively. Here we present a summary of each of these chapters, the overall significance of

this body of research, its limitations and constraints, and the directions that this research

can take in the future.
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6.1 Chapter summaries

6.1.1 Chapter 3

In chapter 3, we presented a detailed description of our decomposition algorithm PRISM

that can be used to decompose any given F0 contour into component curves, in accor-

dance with the superpositional approach. The general assumptions of the superpositional

approach that underlie PRISM are as follows: (1) an observed F0 contour is obtained

by the “generalized addition” of component curves of different classes, and (2) each of

the component curves is tied to a distinct phonological entity and follows a distinct time

course.

The three classes of component curves that are posited in the PRISM framework are

phrase curves, accent curves, and segmental perturbation curves. Each of these classes

of component curves is considered to be generated from a corresponding class-specific

template by parameterized time-warp functions. Adhering to the idea of using only the

general assumptions of the superpositional approach, no equations governing the shapes

of these templates are specified; instead some general shape constraints, based on obser-

vations in previous research, are outlined. In fact, exactly which particular function is

chosen to implement a class-specific template is not very important. What is important is

that the function used to implement a class-specific template adheres to the general shape

constraints of the template. For example, instead of a Gaussian curve, a cosine curve

can be used just as well to implement the declarative accent curve template. Regardless

of the function used, the time-warping procedure renders templates with similar shape

constraints equivalent.

The PRISM decomposition algorithm has two phases: (1) a wavelet decomposition

phase that partially decomposes a given F0 contour into a phrase curve and a combined

accent curve and segmental perturbation curve; and (2) a template decomposition phase

that completely decomposes the F0 contour into a phrase curve, one or more accent curves,

and one or more segmental perturbation curves. The reason for the two-phase PRISM

implementation is that in the PRISM framework, a smooth unconstrained phrase curve

is assumed and hence, a template of the phrase curve cannot be directly specified. Thus,
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first an initial estimate of the phrase curve, Phrinit est, using the wavelet decomposition

phase is obtained, and then Phrinit est is used as the phrase curve template in the template

decomposition phase.

Using several sets of synthetic F0 contours — corresponding to declaratives utterances,

interrogatives utterances, and utterances containing continuation rises — whose compo-

nent curves were known, we objectively evaluated the accuracy of PRISM in estimating

component curves. In these evaluations, the RMSE differences between the known and

estimated component curves were under the frequency difference required for just notice-

able difference in pitch for connected speech. From this, we conclude that PRISM can

decompose F0 contours of declaratives utterances, interrogatives utterances, and utter-

ances containing continuation rises with sufficiently high accuracy.

In this chapter, we also showed an application of PRISM to natural F0 contours through

the particular problem of analyzing the difference in F0 contour shape between minimal

pairs of utterances that differed only in terms of one consonant. The performance of

PRISM on natural F0 contours cannot be objectively evaluated because the ground truth

is unknown; however, the strong within-pair similarity of estimated phrase curves and

accent curves corresponding to each minimal pair does suggest that the component curves

estimated by PRISM are close approximations of the “true” component curves.

6.1.2 Chapter 4

Recombinant synthesis is a speech synthesis method that involves searching one corpus

for acoustic units, while searching another corpus for F0 component curves that have

been extracted from natural speech. The selected F0 component curves are additively

recombined according to the general superpositional approach to construct the quasi-

natural target F0 contour, which is imposed on the selected acoustic unit sequences using

standard signal modification methods.

The generation of quasi-natural target F0 contours using F0 component curves that

have been extracted from natural speech is a key concept of recombinant synthesis. How-

ever, to realize the benefits of this concept in practice, the existence (and usage) of a robust
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decomposition algorithm is essential. To demonstrate that PRISM can fulfil this essen-

tial role in the implementation of recombinant synthesis, we developed a proof-of-concept

(POC) implementation of the recombinant synthesis method. This POC implementation

is presented in Chapter 4 of this dissertation. This implementation was restricted to in-

tonation generation in the recombinant synthesis method. It did not include creating an

acoustic unit corpus or searching it for appropriate acoustic units; rather, the target F0

contours were imposed on pre-recorded natural speech so that the strengths and weak-

nesses of the intonation generation method could be observed unconfounded by the effects

of acoustic unit search and concatenation.

The POC implementation of recombinant synthesis was divided into two stages of

increasing complexity: (1) intonation generation of fully sonorant declarative utterances;

and (2) intonation generation of phonemically unrestricted declarative utterances contain-

ing continuation rises. In each stage of implementation, we conducted perceptual tests

to compare the recombinant intonation generation method to other intonation generation

methods. The results of the perceptual tests show that the intonation generated by recom-

binant synthesis is more natural-sounding and more expressive than intonation generated

by concatenation of raw F0 curves (as in unit selection synthesis) and intonation gener-

ated by statistical, linguistic, and heuristic rules (as in traditional concatenative synthesis).

Thus, the recombinant intonation generation method can be considered a promising alter-

native to the latter two methods. The results of the comparison between the recombinant

intonation generation method and the concatenation of raw F0 curves indicate that the

continuity of the target F0 contours provided by the recombinant intonation generation

method clearly outweighed any pitch modification distortion.

6.1.3 Chapter 5

In Chapter 5, we described our investigation of the intonational correlates of perceived

prominence from a superpositional perspective. This is a particular application of a more

general class of applications in which PRISM is used to analyze F0 contours so that theories

and assumptions regarding intonation can be critically tested. Specifically, we explore

three questions in this chapter. (1) What are the combined and individual influences of
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accent curve height, accent curve peak location, phrase curve onset height, and phrase

curve slope on perceived prominence? (2) Is there a line of reference that listeners use to

determine the prominence of peaks in the F0 contour? If so, is the reference line abstract

or observable? (3) Does contrastive accent influence perceived prominence differently from

normal accent?

To answer these questions, we conducted a perceptual test, in which 10 listeners were

asked to make prominence judgements on a controlled stimulus set of intonationally varied

quasi-natural F0 contours. Building this stimulus set involved (1) development of a base set

of natural utterances that were systematically varied in emphasis level and emphasis type

(i.e., normal versus contrastive emphasis); (2) PRISM analysis of the base set to extract

natural phrase curves and accent curves; and (3) generation of quasi-natural F0 contours by

first, systematically varying the parameters of interest in the natural component curves

and then, recombining them according to the general principles of the superpositional

approach.

The results of the perceptual test indicate the following:

C1: Accent curve height, accent curve peak location, and phrase curve onset height (or

phrase curve slope) together can predict perceived prominence with a high degree

of accuracy.

C2: Accent curve height is the strongest intonational correlate of perceived prominence.

The correlation between these two variables is strongly positive.

C3: The influence of the accent curve parameters on perceived prominence is much

greater than the influence of the phrase curve parameters. Although the latter

increase the predictive power of the accent curve parameters, they predict perceived

prominence non-significantly in isolation.

C4: Perceived prominence is not simply a correlate of absolute peak value; rather, lis-

teners are able to perceive a difference in prominence corresponding to the different

accent curve heights that are used to attain the same absolute peak value.

C5: The reference line that listeners use to make prominence judgements is observable,

and it corresponds to the phrase curve.

C6: Contrastive accents are perceived as more prominent than normal accents of equal
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or even somewhat greater height.

Most of these conclusions are in agreement with prior work; the only one that disagrees

with some previous studies is C5.

6.2 Overall significance

6.2.1 Addresses concerns regarding the superpositional approach

The superpositional approach to intonation modeling has been the subject of much con-

troversy. The most comprehensive critique on this subject has been presented in Ladd

(1996). One of the main issues brought up by Ladd is that estimating component curves

posited in the superpositional approach from observed F0 contours is not straightforward

and is often left unspecified, as in Thorson (1983) and G̊arding (1983).

We believe that Ladd’s critique is valid. One cannot claim to have a complete model

unless one can specify exactly what the components of the model are and how they can

be estimated; it is not enough to say that the components exist. Thus, an algorithm that

can estimate the component curves of observed F0 contours is needed to fill in the details

necessary to fully define a model of intonation in the superpositional approach.

We addressed this need in our research. We clearly outlined the algorithm (i.e.,

PRISM) needed to estimate phrase curves, accent curves, and segmental perturbation

curves from given F0 contours corresponding to declarative utterances, interrogative ut-

terances, and utterances containing continuation rises. By objective evaluations using

several sets of synthetic F0 contours whose component curves were known, we demon-

strated that the outlined PRISM algorithm estimates component curves from given F0

contours of the aforementioned types with sufficiently high accuracy. Since such objec-

tive evaluations are not possible for natural F0 contours — because the ground truth is

unknown — we evaluated how well PRISM can estimate component curves from natu-

ral F0 curves indirectly, based on the results of the minimal pair analysis described in

Section 3.4.2 and the perceptual tests described in Sections 4.2.2 and 4.2.5.

The high within-pair similarity of the phrase curves, accent curves, and clean F0 con-

tours of each minimal pair attests to the ability of PRISM in estimating component curves
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from natural F0 contours. The effectiveness of PRISM in estimating “true” component

curves is also indirectly confirmed by the results of the perceptual tests that showed that

the intonation generated by recombinant synthesis is more natural-sounding and more ex-

pressive than intonation generated by the other synthesis methods. In our implementation

of the recombinant synthesis method, the component curves that were used to construct

the target F0 contours were extracted using PRISM; if these component curves extracted

by PRISM were not at least close approximations of the “true” curves, then the target F0

contours constructed from them would not sound natural or expressive. Since our imple-

mentation of recombinant synthesis involved extracting component curves from several sets

of natural F0 contours that ranged in complexity from fairly simple (such as fully sonorant

declarative utterances) to somewhat complex (such as declarative utterances containing a

few obstruents) to very complex (such as very long, phonemically unrestricted utterances

containing declaratives and continuation rises), it indicates that PRISM can robustly es-

timate component curves from arbitrary natural F0 contours containing declaratives and

continuation rises — and perhaps even interrogatives.

Another criticism leveled by Ladd in the context of the Fujisaki model — the best

known superpositional model — is the model’s apparent inability to model certain contour

shapes observed in English. In their analysis of this criticism, van Santen and Möbius

(1999) attribute this inability to the very strong constraints on the shape of commands

and contours, especially on the shape of the phrase curve. Following their suggestion to

remain “open to the possibility that phrase curves exhibit considerable and meaningful

variability” (van Santen and Möbius 1999), we specified few constraints on the shape of

the phrase curve besides smoothness. The phrase curves estimated by PRISM can thus

be expected to capture certain important characteristics of F0 contours, such as phrase-

final lowering1, which could not be captured by the negative impulse used as a shape

constraint for the phrase curve in the Fujisaki model, as demonstrated by Liberman and

Pierrehumbert (1984). In this way, we attempted to address this important concern raised

by Ladd regarding the superpositional approach to intonation modeling.

1Phrase final lowering is a sentence-level phenomenon whereby the final peak of an utterance undergoes
a more drastic lowering in F0 than that of the previous F0 peaks.
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6.2.2 Demonstrates the importance of modeling microprosody

Besides attempting to address these previously raised concerns about the superpositional

approach, we also examined the importance of explicitly modeling microprosody in in-

tonation analysis. Microprosody includes perturbations in the F0 contour due to vowel

intrinsic pitch effects, post-obstruent vowels, nasality effects, and the presence of voiceless

regions. Most superpositionally-based intonation models and consequently, the intonation

analysis algorithms based on them, ignore microprosody. However, research has shown

that microprosodic modeling is important for several reasons. From the perspective of

estimating component curves, it is important because microprosodic variations may dis-

tort the surface realization of F0 contours and thus obscure the “true” shapes of the

underlying phrase curves and accent curves. Based on this hypothesis, we explicitly mod-

eled a particular type of microprosodic variation, namely, segmental perturbations due to

post-obstruent vowels, in the PRISM algorithm. The minimal pair analysis using PRISM

showed that the within-pair similarity of each minimal pair that differed in terms of a

single consonant was significantly higher in terms of “clean” F0 contours (i.e., without

segmental perturbations) than in terms of raw (or even smoothed) F0 contours. These

results are strong empirical evidence in support of the above-mentioned hypothesis, and

thus establish the importance of modeling segmental perturbations in intonation analysis.

6.2.3 Pushes recombinant synthesis ahead

Another important topic that this research has addressed is recombinant synthesis. The

recombinant synthesis concept and its relative strengths and weaknesses in relation to

other synthesis methods was presented earlier by van Santen et al. (2004:i and 2005);

however, lacking a robust decomposition algorithm that could be used to populate the

corpus of natural F0 component curves, this synthesis method had not been implemented.

As a result, actual evaluation of how this synthesis method compares to other synthesis

methods was not possible. Development of the PRISM decomposition algorithm in our

research made it possible for us to implement the first proof-of-concept of the recombinant

synthesis method, and thus it enabled us to evaluate the legitimacy of the expectation
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that intonation generated by recombinant synthesis will be more natural-sounding and

more expressive than intonation generated by concatenation of raw F0 curves (as in unit

selection synthesis) and intonation generated by rule (as in traditional concatenative syn-

thesis). Results of the comparative perceptual tests indicate that this expectation is well

warranted.

6.2.4 Enables testing of assumptions about intonation

Prominence marking is an important consideration in speech synthesis. In most superpo-

sitional intonation models, prominence is assumed to be only a function of accent curve

height. However, previous research — mostly in the sequential framework — has posited

that perception of prominence is also related to other intonational parameters. Thus, in

our research, we investigated how perceived prominence is influenced by four parameters of

intonation obtained in the superpositional framework, namely, accent curve height, accent

curve shape, phrase curve onset height, and phrase curve slope.

The results of our investigation show that perceived prominence is affected not only by

accent curve height — though its effect is the greatest — but also by the other intonational

parameters under consideration. This finding implies that the assumption that prominence

is a function of accent curve height, though necessary, is not sufficient. Superpositional

models therefore must include additional constraints that relate prominence to the other

relevant intonational parameters. The results of the investigation also indicate that the

reference line that listeners use to evaluate the prominence of F0 peaks is observable, and

it corresponds to the phrase curve. This finding contradicts the widely-held position in the

sequential intonation framework that the reference line is abstract. We conjecture that the

difference in their position about the reference line versus ours arises because within the

sequential framework, there is no way to relate the reference line to a particular component

of intonation, given the assumptions of this framework; however, in the superpositional

framework, we can easily relate the reference line to a component of intonation, namely,

the phrase curve. This finding that the phrase curve is important to the perception of

prominence also helps refute the idea that F0 minima have no importance in perception.

Finally, the results of our analysis also show that listeners can perceive a difference
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between normal and contrastive accents. This finding implies that the common strategy in

speech synthesis of using normal accents to intonationally highlight all crucial information

in an utterance is not sufficient. Given the difference in prominence between normal

and contrastive accents, generation of contrastive accents is necessary to achieve the goal

of producing expressive speech. Considering these findings and their implications, the

significance of this investigation of the intonational correlates of perceived prominence

can be regarded as fairly substantial.

The investigation of the intonational correlates of perceived prominence and the mini-

mal pair analysis used to examine the importance of modeling microprosody both required

the use of PRISM to extract the F0 component curves and parameters thereof. This

demonstrates PRISM’s significance as an analysis tool that is useful for critically testing

theories and assumptions regarding intonation in the superpositional framework.

6.2.5 Long-term significance

The long-term significance of the research presented in this dissertation is this. The

PRISM decomposition algorithm can be used to estimate component curves of natural F0

contours using only the general assumptions of the superpositional approach, and thus it

will enable the accurate determination of (i) the effects of linguistic control factors on the

component curves, (ii) their time courses, and (iii) the interactions between curve classes.

Barring the discovery of fatal flaws in the superpositional concept along the way, these

determinations may ultimately lead to the development of a — potentially complex —

superpositional intonation model that contains a richer collection of curve classes than

current models, specifies a clear and phonologically well-justified mapping between each

class and the F0 contour, and generalizes well to fit across a wide range of speech materials.

Such a model can help us achieve the elusive goal of generating synthetic speech that has

as meaningful and as expressive intonation as human speech.
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6.3 Constraints and limitations

In developing the PRISM algorithm, we have assumed that the natural F0 contours it

encounters are labeled and segmented. This is a valid assumption in the area of speech

synthesis where a fully labeled and segmented speech corpus is easily available. However,

labeling and segmentation are not fully automatic procedures; either the transcription

output (such as phone labels) from labeling and segmentation systems have to be manually

checked for accuracy by labeling experts, or the labels (such as foot and phrase labels) have

to be completely manually assigned because there are no reliable systems to automatically

assign such labels. This makes PRISM analysis of intonation a fairly time-consuming

process and prevents users from being able to PRISM analyze intonationally-interesting

utterances on-the-fly. Much work therefore remains to be done to automate the tedious

manual labeling process — especially the foot and phrase-level labeling — and thus speed

up the PRISM analysis procedure.

Another limitation of the current implementation of PRISM is that it only models

three common types of accent curves, namely, those corresponding to declaratives, inter-

rogatives, and continuation rises, and only one type of microprosodic variation, namely,

segmental perturbations due to post-obstruent vowels. Given the established presence of

other types of accent curves and microprosodic variations, we need to extend PRISM to be

able to estimate these additional component curves as well. We believe that this can easily

be accomplished in the future owing to the modular implementation of PRISM; the main

challenge, however, will be determining the general shape constraints of the templates

corresponding to these additional component curves.

Aside from the aforementioned limitations pertaining to the PRISM algorithm, our

research is limited in two other ways. One limitation is that the proof-of-concept imple-

mentation of recombinant synthesis presented in this dissertation is limited to intonation

generation only. To implement a full-fledged recombinant synthesis system, other impor-

tant issues such as accent prediction, duration generation, and acoustic unit selection need

to be considered. In limiting ourselves to intonation generation in recombinant synthesis,

we make the subtle assumption that intonation generation and acoustic unit selection are
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mutually independent; in practice, however, flaws in one component can limit the success

of the other.

Another limitation of our research is that in the experimental design set up to investi-

gate the effect of different intonational correlates on perceived prominence, phrase curve

onset height, and phrase curve slope were strongly correlated. As a result, we were unable

to evaluate a regression model that included both phrase curve onset height and phrase

curve slope. Consequently, an argument can be made that it is not the phrase curve but

some linear transformation of it that is the reference line that listeners use to evaluate

the prominence of F0 peaks. While this alternative theory is unlikely given the low error

rates of the regression models (6.5% and 5.8%), it cannot be completely discarded in the

current experimental design.

6.4 Future directions

The many analyses presented in this dissertation have empirically established the reliabil-

ity of PRISM as an intonation analysis tool that can be used to decompose arbitrary nat-

ural F0 contours into component curves posited in the superpositional framework. Given

this, in the future, we can use PRISM to investigate some larger questions in speech

synthesis including the following:

• What is the prosodic difference between newscaster-like speech — that is often used

in speech synthesizers — and spontaneous speech obtained from real people engaged

in real tasks, speaking for their own communicative purposes? Answers to this

question will improve the naturalness of synthesized speech.

• What are the intonational correlates of different emotions? Answers to this question

will help the synthesis of emotional speech.

• What are the prosodic differences among people depending on their ethnic back-

ground, socio-economic situation, emotional center, energy level, age, etc.? Answers

to this question will help generate voices that are person/character-specific rather

than generic male or female.
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• What are the prosodic characteristics of conversational speech events such as hesita-

tions and disfluencies (e.g., utterance restarts with words such as “well” and “yeah”,

fillers such as “um”, “uh”, and “ah”, and hedges such as “like”) and backchannel

responses (e.g., “yeah”, “un-huh”, and “mmm”)? Answers to this question will help

speech synthesizers generate more conversationally appropriate dialogue.

• What are the prosodic aspects of the synchrony between speech and gestures or task-

related performances? Answers to this question will help improve the coordination

between the speech and gestures of computer-generated animated characters.

Finding answers to these questions will require careful development of prosodic corpora,

extraction of component curves from natural F0 contours using PRISM, and an in-depth

analysis of the parameters of the component curves. It is quite likely that addressing these

questions will require us to extend PRISM so that it can estimate other types of component

curves besides the ones currently handled. We may also have to add to, remove, or modify

the current constraints on the component curves. Given these considerations, we believe

addressing these larger questions of speech synthesis will certainly be challenging, though

not nearly as challenging as without PRISM as a tool in our tool-kit.

Besides speech synthesis, the PRISM decomposition algorithm may be useful for speech

recognition. So far, most speech recognition systems make no use of the communicative

information contained in the intonation of speech, instead relying solely on the textual

information. This is due to the lack of an easy yet robust way to analyze intonation of

arbitrary utterances - a problem that may potentially be solved by appropriately incor-

porating the PRISM decomposition algorithm into speech recognition systems. Last but

not least, the PRISM decomposition algorithm may be beneficial for developing diagnostic

tools for detecting neurodevelopmental and neurodegenerative disorders whose symptoms

include compromised intonation.
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Appendix A

Intonation Corpus Generation

A.1 Utterances from which phrase curves were obtained for

the POC implementation of recombinant synthesis

1. One played the bass viol, the other the fiddle, and the third put the trumpet to his

lips, and blew out his cheeks as much as he possibly could.

2. The eldest determined to be a blacksmith, the second a barber, and the third a

fencing-master.

3. He bestowed on him much gold, and lands, and meadows, and herds, and made him

immensely rich.

4. Ivan killed the lamb, lit a fire, threw the meat into the kettle, and boiled it.

5. The princess arose, living, healthy, and beautiful.

6. They consume much, pay for nothing, play mischievous tricks, and steal his belong-

ings.

A.2 Utterances from which accent curves were obtained for

the POC implementation of recombinant synthesis

1. The first, a powerful king, the second, a prince, the third, a count, the fourth, a

knight, the fifth, a nobleman, the sixth, a merchant, and the seventh, a teacher.

2. Let me be your companion and play-fellow, and sit by you at your little table, and

eat off your little golden plate, and drink out of your little cup, and sleep in your

little bed.
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3. One hid himself beneath the hay, another under the roof, a third in the straw, the

fourth in the stove, the fifth in the cellar, the sixth under a tub, the seventh beneath

the wine-cask, the eighth under an old fur cloak, the ninth and tenth beneath the

cloth out of which she always made their clothes, and the eleventh and twelfth under

the leather out of which she cut their shoes.

4. Twenty miller’s men sat cutting, hick hack, hick hack, hick hack, and the mill went

klipp klapp, klipp klapp, klipp klapp.

5. Come to me not clothed, not naked, not riding, not walking, not in the road, and

not off the road, and if you can do that I will marry you.

6. I must have three dresses, one as golden as the sun, one as silvery as the moon, and

one as bright as the stars.

7. She took three different things from her treasures, a golden ring, a golden spinning-

wheel, and a golden reel.

8. No wind stirred, no brook murmured, no bird sang, and no sunbeam forced its way.

9. One put his stockings on for him, one tied his garters, one brought his shoes, one

washed him, and one dried his face with her tail.

10. There were four candles, four loaves of bread, and four bottles of wine on the table.

11. The flowers were made of green silk, the bed of ivory, the canopy of red velvet, and

the slippers of glass.

12. There the child fared well, ate sugar-cakes, and drank sweet milk, and her clothes

were of gold, and the little angels played with her.

13. My young nephew has a snug berth, a nice bit of money in hand, and plenty of bread

to break; besides, he has quite as many patches as I have.
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