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The learning in neural systems is the formation of memory by changing the 

connections and their strengths in the circuits of the brain. Memory in the brain is 

fundamentally associative in that a new piece of information can be recalled if it is 

associated with previously acquired knowledge. The more associations that exist, the 

more meaningful the new information is, and the more efficiently the information can be 

stored and utilized later. Forming associative memory is one of the basic functions 

implemented by the brain, creating extensive mappings of the world throughout the brain.  

In addition to associative processing, there is growing evidence that neural systems 

represent probabilistic data and then performing inference over this data in a Bayesian 

manner. 

The Palm network is one of the simple associative memories that is easy to 

implement, has reasonable behavior, is shown here to approximate Bayesian inference, 

and has some biological inspiration. This thesis discusses a computational model of 

associative memory based on the Palm network. The goal of the research is to investigate 

the computational characteristics of the model as a biologically plausible building block 

for a cognitive system with the specific goal of implementing Bayesian inference in a 

distributed manner. 



      x 

We explore some of the computational capabilities that are provided by biological 

associative memory. We will first study the performance of the associative model in very 

large networks, and explore its performance with respect to stability, fault tolerance, and 

parallel processing of the network. We propose a theoretical interpretation of the basic 

operation of the model, where the Palm network is functionally equivalent to a Voronoi 

classification. During dynamic learning, where training vectors have different prior 

probabilities, weighted Voronoi regions are formed. We then show the capability of such 

networks to learn complex non-linear functions in the context of the reinforcement 

learning, where, through the interactive reaction with the outside world, the adaptive 

mappings of the outside world to the inside neuron activities are formed. As relatively 

large network is plausible for such a model, a spiking neuron representation of the 

network will be discussed to investigate the temporal learning of the network. Based on 

the Voronoi classification analysis, we propose a Bayesian Memory model which 

provides a maximum entropy data reduction from an input representation to an output 

representation. With a network of hierarchically connected Bayesian Memories, the 

scalability is significantly enhanced, and the resulting bidirectional information flow 

allows high level information to be incorporated in the decision process. 

With all the characteristics discussed above, it is possible to build hierarchically 

connected associative memories that mimic a cognitive system. Although associative 

memory and Bayesian inference are not new concepts, to incorporate these ideas as the 

general basis for modular, scalable associative memory is not mentioned in the current 

literature. The main contribution of the thesis then is that we define the theoretical basis 

of Palm network as a reasonably applicable associative memory, and, based on the simple 

Vector Quantization concept, we propose the Bayesian Memory that incorporates all the 

necessary features of an associative memory, and, as a building block, provides a solution 

to build large associative networks that are in the scale of a cognitive system. 



 

 1 

Chapter 1  

Introduction 

1.1 Biological Implication 

Since the first electronic computer was invented in the late 1940s, computer size 

and speed have changed dramatically while the structure has changed little. The computer 

still uses the von Neumann stored-program methodology, and is entirely controlled by 

programmers. Computers can perform many rule-based tasks well, and can even defeat a 

human opponent at chess, but cognitive tasks that come easy to human beings such as 

recognizing a face, following a conversation, driving a car, or planning a series of 

motions, are beyond the capabilities of current machines, in spite of the phenomenal 

increases in computer speed and memory size. Computers still cannot automatically infer, 

predict or draw conclusions based on fuzzy, chaotic data. Obviously, it is not calculating 

speed alone that plays the key role in cognitive procedures. The underlying processing 

structures or mechanisms of actual cognition in human are far different from the 

computer system. Although a computer can be trained to learn thousands of millions of 

examples, it can not automatically generalize from past experiences in order to learn 

complex tasks such as driving a car. 

Many scientists believe that association is one of the most basic functions 

underlying cognition. Recognition involves the retrieval of a stored abstract concept. A 

concept in the brain is not stored in the neurons themselves, rather, it consists of huge 

numbers of connections, or associations, among the neurons throughout the brain. Given 

some inputs, the responses in some cells may trigger responses in others which, in turn, 

may trigger more in others until these responses eventually lead to the recognition of the 

input stimuli. The recognition is formed via past experiences and learning. The learning 
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process establishes those connections between the given stimuli and the subsequent 

outcomes, so that later, when similar input is given, the corresponding outputs can be 

invoked by those established associations. 

Neural association involves highly parallel interconnect among different regions 

in the brain. There are complex electrical and chemical processes involved in this process, 

and many of the mechanisms are still not understood. It is currently impossible to 

incorporate all the details into one model, and generally a detailed model is not necessary 

for implementing real applications. It is believed that associative memory fits the cortical 

network most admirably (Braitenberg and Schuz 1998; Johansson 2004). Associative 

memory is a computational model for the mechanisms in real neural circuits of 

associative neural processing. The study of these computational models provides a way to 

understand the brain by simulating nervous systems, and it also provides insight into 

designing a new generation of computing tools that are more powerful and intelligent. 

The goal of the thesis is to formalize the computational characteristics of generic 

associative memory as a basic cognitive function and apply such structures to 

applications.  Generic associative memory is important in its own right, but also it is a 

useful model of the large, complex association areas found throughout the brain.  

 

1.2 Associative Memory 

Associative memory (AM) is a system that stores mappings from input 

representations to output representations, so that when the input is given, the output can 

be reliably retrieved. More importantly, when the input is incomplete or noisy, the AM is 

still able to return the output corresponding to the original input, which is a “best match” 

procedure, where the memory selects the input vector with the closest match, assuming 

some metric, to the given input, then returns the output vector for this closest matched 

input vector. The “exact match” association, as in the traditional content addressable 

memory (CAM), returns the stored value that corresponding to the exactly matched input.  

There are two kinds of association operations: auto-association and hetero-

association. In auto-association, the input and output spaces are identical and an input 

vector is associated with itself. Normally in auto-association the output is fed back to the 
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input until the memory converges, like an energy minimization model converges to some 

stable state. In hetero-association, an input vector is associated with a completely 

different output vector. Many cognitive procedures implement hetero-associative 

mapping, where one region of neurons can activate several groups of neurons in different 

cortical regions, and each of those regions may have different cognitive functions. 

Best match associative memory is different from traditional content-addressable 

memory (CAM). A CAM holds a list of vectors which are distinguished by their 

addresses, when a particular vector is needed, the exact address of the vector must be 

provided. In best-match associative memory, vector retrieval is done by matching the 

contents of each location to a key. This key could represent a subset or a corrupted 

version of the desired vector.  The memory then returns the vector that is “closest” to the 

key. Here, “closest” is based on some metric, such as Euclidian distance. Likewise, the 

metric can be conditioned so that some vectors are more likely than others, leading to 

Bayesian-like inference.  

In the best match associative memory described in this thesis, the vectors are 

distributed represented and are stored in a distributed manner, so when more vectors are 

added, no extra memory is required (up to a point). In traditional memory, vectors are 

stored explicitly, with each set of bits occupying a unique location. In a distributed data 

representation, the attribute of a vector is represented by a few active neurons across all 

the neurons, and every active neuron corresponds to a few different vectors. Distributed 

representations have the advantage of fault tolerance (Field 1999) required by best match 

association, and make it possible of huge representation capacity. 

 

1.3 Brief Review of Associative Memory 

The investigation of associative memory began in the 1960s when the first 

associative memory model called Die Lernmatrix was introduced by Steinbuch 

(Steinbuch and Piske 1963). In Die Lernmatrix, both the inputs and outputs are binary 

vectors, the weights are adjusted via Hebbian learning, and binary values are formed. The 

performance of Die Lernmatrix was later studied by Willshaw (Willshaw, Buneman et al. 

1969) and Palm (Palm 1980). The learning rule used in Lernmatrix is now called 
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“clipped” Hebbian learning rule, where the weight modification can simply implemented 

by the outer product of input and output vectors. 

The Associative Net was developed by Willshaw’s group (Willshaw, Buneman et 

al. 1969; Buckingham and Willshaw 1992; Graham and Willshaw 1994) is later referred 

to in this thesis as the Willshaw model. It basically is the same as Die Lernmatrix. 

Willshaw proves that high information storage capacity can be achieved in an Associative 

Net when sparsely encoded binary vectors are used. In a later study, they showed that the 

incompletely connected Associative Net is functionally analogous to some cortical ability 

in that it is tolerant of connection failures and it demonstrates short-term memory 

(Henson and Willshaw 1995; Graham and Willshaw 1997b). Based on the original 

Associative Net, different threshold control techniques are proposed (Buckingham and 

Willshaw 1993; Graham and Willshaw 1995; Graham and Willshaw 1997a; Graham and 

Willshaw 1999) to improve the retrieval performance and maintain efficient usage of 

information in the network synapses. 

The same asymptotic information storage capacity of the Willshaw model was 

later proved in a different way by Palm (Palm 1980), who models the associative memory 

as a communication channel. In the Palm model, the information stored in the network is 

defined as the knowledge gain obtained from the retrieved results of the network.  In the 

Palm model, real-valued weights and iterative structure are also used (Palm, Schwenker 

et al. 1997), and it has been shown that the iterative retrieval strategy can improve 

retrieval performance (Schwenker, Sommer et al. 1996; Sommer and Palm 1998). In their 

later research, Palm and his group developed a parallel processing chip called Bacchus 

(Palm, Schwenker et al. 1997), and later a biologically plausible spiking model is used in 

simulations of the primary visual cortex (Knoblauch and Palm 2001a; Knoblauch and 

Palm 2001b). For the binary model where no iteration is used, the Palm model is the 

same as the original Willshaw model. 

Another non-linear binary associative memory model is brain-state-in-a-box 

(BSB) proposed by Anderson et al. (Anderson, Silverstein et al. 1977; Anderson 1993). 

Positive feedback is used in BSB so that the attractors are saturated at the corners of the 

binary hypercube that spans the network’s state space. Based on BSB, a more complex 

model has been developed where several parallel networks compose a “network of 
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networks” structure (Anderson and Sutton 1995). In the more recent “Ersatz Brain 

Project”(Anderson, Allopenna et al. 2007), the “network of networks” techniques are 

used in building parallel, brain like computers in both hardware and software. 

The Hopfield network invented by John Hopfield in the 1980s has been a popular 

study of research (Hopfield 1982). In this network, an energy function is proposed in the 

computation of the recurrent networks with symmetric synaptic connections. Although 

the information capacity is relatively low, and there are spurious attractors, the Hopfield 

network built a bridge between neural networks and physics, and it provided a theoretical 

derivation for the stability in a dynamical network. 

There is another well-known associative memory model called the self-organizing 

map (SOM) proposed by Kohonon (Kohonen 1982; Kohonen 1989). SOM creates a one- 

or higher- dimensional lattice that captures the topographic structures of the input space. 

SOM has some biological plausibility, for example, different sensory inputs are mapped 

onto different areas of the cerebral cortex in a topologically ordered manner.    

The statistical characteristics of dynamical associative memory (DAM) are further 

discussed by Amari (Amari and Maginu 1988; Amari 1989). Amari claims that, in a 

dynamic or iterative associative memory, a strange attractor basin shape is formed where 

some input vectors are not attractors.  

Recently, there have been renewed associative memory models. The bidirectional 

associative memories (BAM) (Kosko 1988) and sparsely distributed memory (SDM) 

(Kanerva 1988) are two other models. A good reference for those associative neural 

models is the edited book by Hassoun (Hassoun 1993). In this book, a general criterion 

for high-performance associative memory is introduced, and the dynamic associative 

neural memory (DAM) is defined as a network structure where the network output is fed 

back to the input. 

Another important model is Bayesian Confidence Propagating Neural Network 

(BCPNN) (Lansner and Ekeberg 1989; Sandberg, Lansner et al. 1999; Sandberg, Lansner 

et al. 2000; Sandberg, Lansner et al. 2002). BCPNN has a Bayesian inference property, 

can avoid catastrophic forgetting, and can implement a “second match” capability. A 

hyper-column BCPNN (Sandberg, Lansner et al. 2000; Johansson, Sandberg et al. 2002; 

Sandberg, Lansner et al. 2002) resembles the hyper-column structure in cerebral cortex, 
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but it requires high-precision weight values. Based on their hyper-column structure, a 

patchy connected attractor network can result in a higher storage capacity (Johansson, 

Rehn et al. 2006). 

Though a number of associative memory models have been defined, practical 

applications of these models are far less common. One successful application of an 

associative memory model is implemented by Cortronic networks (Hecht-Nielsen 1999; 

Hecht-Nielsen 2003b; Hecht-Nielsen 2003a). Cortronic networks have been used in 

English text recognition. The underlying model of the Cortronic network is explained by 

the thalamocortex theory proposed by Robert Hecht-Nielsen, which also incorporates 

aspects of the Palm model and Bayesian networks. 

Another application of the ideas of cortical operation is done at Numenta 

(Hawkins and Blakeslee 2004; Hawkins and George 2006; George and Jaros 2007). 

Based on neuroscience principles, Jeff Hawkins proposes that cortex operates auto-

associatively, learns sequences of patterns, captures invariants and organized 

hierarchically. The information flow within the hierarchical structure is based on 

Bayesian principles. Our hierarchical network is based on some of Numenta ideas. 

 

1.4 Thesis Organization 

The research goal of this thesis is to investigate the characteristics of associative 

memory as one of the building blocks for more complex cognitive machine learning 

systems. There are several associative models available for approximation of cognitive 

association. Palm model is one of them. We use the Palm model as a starting point in our 

research. It is simple, can be easily implemented, and is relatively straightforward to 

analyze. It has some biological plausibility in sparse encoding, fault tolerance and high 

memory storage capacity. Despite these characteristics, direct application of the model in 

real applications faces many practical difficulties, such as the need to use sparse 

representations and the high connection density. In particular, the possibility of the 

extending the Palm model to a large network in the scale of cortex is rarely discussed in 

previous literatures, in contrast, the huge number of neurons in cortex is one of the key 

elements in cognition. 
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In this thesis, we investigate several characteristics of associative memory that are 

essential for a building block in a complex cognitive system. A real cognitive system 

should have large storage capacity, be able to use the temporal information, have online 

learning capability, and most importantly, have the potential to scale up to large and 

hierarchical structure.  

In the Palm model, the sparse representation implies that the network size could 

be large. However, as the network size grows, scaling issues have a significant impact on 

both the performance and the hardware implementation. In Chapter 2, we will investigate 

the network performance of very large networks. We have implemented and simulated 

large Palm networks on both serial and parallel processing platforms, since we believe 

that large networks are essential when modeling cognition and when using association 

networks in real applications.  

In depth discussions on the Palm network capacity and performance improvement 

can be found in a number of research papers. However, how such a model is utilized in 

real world applications is less clear, and the theoretical interpretation of the behavior of 

the model is not specifically addressed in previous literatures. In Chapter 3, we 

investigate the functional capabilities of the Palm network, and propose a simple and 

useful theoretical model of the operation of the network, based on the fact that the 

computational characteristics of Palm network are similar to that of Vector Quantization, 

where, for each training vector, Voronoi regions are formed under certain conditions, and 

the Palm network can retrieve an output vector that has approximately the maximum 

posterior probability. 

Cognitive ability is acquired by constantly learning. Therefore, the ability to 

perform online learning is very important to the ultimate usefulness of these models. 

Chapter 4 will investigate the reinforcement learning based associative memory that has 

the ability to learn complex non-linear data spaces.  

Chapter 5 will discuss a spiking version of the Palm network. Temporal 

information is critical in cognition. Many researchers believe that the inter pulse interval 

encodes information in cortical neurons. Although not many differences exist in the 

shape of the post-synaptic potential in different neurons, the relative firing times may 

make big a difference in adjusting the efficacies between two neurons. The spiking 
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representation allows us to factor temporal information into network operation. Also, 

spiking representations can often lead to very simple implementations. 

To solve the scaling issue of the large networks, Chapter 6 proposes a solution of 

building a hierarchical network of Bayesian Memories, where the maximum entropy 

codebook-like mappings are formed. With hierarchically connected Bayesian Memories, 

feedback information from high level network provides additional information for the 

low level networks so that they can converge to a stable state more easily. 

And Chapter 7 summarizes the results of the thesis, and discusses some future 

research directions. 
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Chapter 2  

Large Network Simulations  

2.1 Aims 

The objective of the large network simulation is to investigate the performance 

and stability of the model as the network size increases. Most studies of associative 

networks present simulation results with relatively small networks, and it is often 

implicitly assumed that these networks will scale to large sizes with similar results. Yet 

few models have been tested on very large networks. This is partially due to the 

limitation of computer resources when the work was performed. In this chapter, we will 

investigate the plausibility of large network simulations and parallel implementation. As 

a part of this exploration, we are concerned about several issues including performance, 

stability, computer resource utilization, and computational complexity.  

 

2.2 Palm Network 

Our simulations are based on the basic model due to Palm. The algorithm in the 

Palm model is basically the same with Willshaw model, except that the recurrent non-

binary associative memory structure is also proposed in the Palm model. Palm (Palm 

1980) derived the information storage capacity from an information theoretic prospective, 

and his result is consistent with the asymptotic results derived by Willshaw (Willshaw, 

Buneman et al. 1969).  

The asymptotic capacity defined in the Willshaw model is ln 2 bits/synapse 

(Willshaw, Buneman et al. 1969). This capacity is an efficiency measure of the storage 

capacity, and it is defined as the ratio of the total information in the output vectors to the 
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number of synapses in the network. If the associative memory is regarded as a 

communication channel, this capacity coincides with the information storage capacity 

(Palm 1980; Palm, Schwenker et al. 1997) as the bound of the information channel. 

In the Palm model, the set of input vector to output vector mappings to be stored 

in the network are ( ){ }, , 1, 2, ,x y Mµ µ µ = � . There are in total of M mappings, and both 

xµ  and yµ are binary vectors with size of m and n respectively. xµ  and yµ  are sparsely 

encoded, with 
1

m

i
i

x l
=

=� ( ml << ) and 
1

n

j
j

y k
=

=� ( nk << ). l  and k  are the numbers of 

active (non-zero) nodes in the input and output vectors respectively. 

For a binary network, in the training procedure each pair of the mapping ( , )x yµ µ  

is presented to the network: the address vector xµ  at the input, and the corresponding 

content vector yµ  at the output. The “clipped” Hebbian learning rule is applied to store 

all the mappings in the network, and this binary weight matrix W  can efficiently be 

implemented by:  

  

 � �
�

� �
�

�� � �� �

��
� � �  (2.1) 

where ∨  is the OR operation, and ⋅  is outer product between two vectors.  

In the recall procedure, for a given key or address x� , which may be the noisy 

version of pattern x , is applied to the input of the network. The output pattern retrieved 

by this network W is  

 ( )y f W x θ= ⋅ −� �  (2.2) 

Where ⋅  represents inner production between a matrix and a vector, θ  is a 

global threshold, and ()f  is the Heavyside function, where an output node will be 1 

(active) if its dendritic sum 
1

m

i ij j
j

x w x
=

=� �  is greater than the threshold, otherwise it is 0.  

To set the threshold θ , the “k winners take all (k-WTA) rule” is used, where k is 

the number of active nodes in an output vector. Therefore, the threshold θ  is set so that 

only those nodes that have the k maximum dendritic sums are set to “1”, the remaining 

nodes are set to “0”. The k-WTA rule adds competitive (inhibitory) interaction among the 
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output neurons. The k-WTA threshold is very close to the minimum error threshold 

(Buckingham and Willshaw 1993). With binary vectors and weights, the dendritic sums 

are integers, and due to many numbers taking the same value, it is possible that the 

system cannot find exactly k maximum sums.  In this case we use the next value of 

threshold that gives the maximum number of active nodes more than k.  

The Palm model is an attractor model in that its state space creates an energy 

surface with minima (“attractor basins”) occurring when the state is equal to a training 

vector. Both Palm (Palm 1980) and Willshaw (Willshaw, Buneman et al. 1969) have 

shown that when k is O(log n), the asymptotic pattern capacity of ln2 bits per synapse can 

be obtained. When the highest pattern capacity is achieved, one half of the synapses in 

the weight matrix are 1s and the other half are 0s. It is possible to store M>>n patterns 

with very small retrieval error probability. Though the pattern capacity is a measure of 

the maximum information stored in a matrix, it is not guaranteed that all that information 

is accessible by retrieval. Iterative retrieval can improve the retrieval performance 

(Wennekers, Sommer et al. 1995; Schwenker, Sommer et al. 1996; Sommer and Palm 

1998), and, in most cases, only a few iterations are needed for convergence. Other 

techniques using adjustable threshold can also improve the retrieval performance 

(Buckingham and Willshaw 1993; Graham and Willshaw 1995).   

Sometimes it is confusing that different measures of capacity are used in different 

papers: some use the maximum number of patterns being stored as capacity, some use the 

maximum number of patterns per neuron as capacity, and some use the maximum 

information stored per synapse as capacity. One unifying measure called information 

efficiency can be used to compare the capacity in different models. Information efficiency 

is defined as ratio of the information capacity per synapse divided by the minimum 

number of bits required for each synapse (Sommer and Dayan 1998). Here, the 

information capacity is a measure of the channel capacity per synapse, and is defined as 

the information gain achievable by recall. It has been shown (Palm 1988; Palm and 

Sommer 1992) that the Palm model stores information efficiently in terms of storage 

capacity per physical bit. However, for maximum information efficiency, the network is 

ideally half full. In this case, the fault tolerance is diminished, reliable retrieval is not 

guaranteed, and the connectivity is O(nm). 
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Palm and Sommer (Palm and Sommer 1992) prove that, for both the clipped 

Hebbian rule and the additive Hebbian rule, the upper bound of pattern capacity or 

storage capacity (in patterns per neuron) is twice as much as the upper bound of 

information capacity (in bits per neuron). For one-step auto-associative retrieval, the 

asymptotic information capacity is (ln 2) / 2  for the clipped Hebbian rule, and 1/(4 ln 2)  

for the additive Hebbian rule. However, both values can not be achieved with iterative 

retrieval starting from an incomplete or noisy version of the training vector. With 

incomplete or noisy input, the information capacity for practical iterative retrieval 

procedures will be lower, since many intermediate states map to the stored vector. It has 

also been shown that the binary Palm model has the highest information efficiency 

(ln 2) / 4 =0.17 among the variations of Palm model and Hopfield model, with dense 

coding, linear/clipped learning, or a general nonlinear function for weight saturation 

(Sommer and Dayan 1998).  

 

2.3 Simulation Tool - Csim 

For some of the work described, we developed the Csim simulator, which 

performs complex simulations and also allows execution on a parallel machine. It is 

programmed in C++. The basic structure of Csim is the Pathway object, which is a 

template for all other derived objects, and operates as a communication region with 

internal data storage. Pathway objects contain one or more vector arrays. The entire 

simulation is vector oriented. 

The various objects required in a simulation are derived from the Pathway. These 

derived objects are either communication objects that perform scatter and gather for 

parallel processor implementation, or operators that operate over the vector inputs, such 

as an inner product or k-WTA on data obtained from the input pathways to the object. A 

simulator is created by instantiating these derived types and connecting them together.  

This collection of objects is under the control of the Timing and Control (TC) module, 

which initiates the parameters, sets connections between the different Pathways, runs the 

simulation, and deletes the objects after simulation. Csim has an interactive interface, 

which is mainly used for debugging, but is normally executed in batch mode. Data output 
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can be generated for analysis and graphical representation using Matlab. Csim is batch 

oriented and compiles and executes on Windows (Visual C++), Linux (g++), and SGI 

Unix. 

Csim can execute on a single processor or on an arbitrary number of multiple 

processors. A special set of pathway objects are available which use MPI (Snir, Otto et al. 

1996) to subdivide the problem and enable inter-processor communication. MPI, the 

Message Passing Interface, is a standard for message communication among multiple 

processors. In multiple-processor mode, the pathways are partitioned automatically by the 

simulator. For more complex simulation, we could also partition the system among the 

pathways. 

For the experiments performed for this work, the Csim simulator was configured 

to operate in three main phases: 1) training, 2) testing and 3) computing statistics. In the 

experiments discussed here, artificial training and test vectors are used.  However, Csim 

can also take data from real-world applications. 

In the training phase, a set of training vectors is generated, and the weight matrix 

is formed after feeding all the training vectors. If the multi-process version is used, the 

training vector is generated in the root process, then the root process broadcasts the 

vector to all other processes. In Csim, each processor has one process, which is the 

common configuration in most MPI run-time environments.  

The test vectors are noisy versions of the training vectors, and are generated by 

randomly flipping some bits in the training vector, with 1 becoming 0 and vice versa. For 

simplicity and in keeping with the basic Palm model, the number of 1s in the test vector 

is kept constant k. The number of bits that are flipped in the test vector is calculated 

according to the given noise probability (bit-flip probability). In multi-processor mode, 

the root process creates each test vector and broadcasts it to the other processes, which 

calculate an inner product of the test vector with the weight sub-matrix for the nodes on 

that process. The k-WTA (for the global k) is executed in parallel on all processes to 

reduce the data amount communicated between each process (at most k * number of 

processes).  The root process receives each process’s k-element vector and does another 

k-WTA to get the final k global winners.  A number of approximations are possible such 

that each process can reduce the number of elements in its k-WTA, but by using k we 
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guarantee that the parallel version and the sequential version generate the exact same 

results which may not be necessary in a real application. 

Statistics for each memory output (and the corresponding test input) are collected 

to evaluate the performance of the network. The Euclidian distance between the training 

vectors and the output vectors, and the distance between the training vectors and the test 

vectors are used to determine the information “gain” of the network in terms of reduced 

noise at the output, that is, train_out train_testGain = 1- D D , where Dtrain_out and Dtrain_test are 

Euclidian distances. 

 

2.4 Simulation Results 

2.4.1 On PC and Beowulf Cluster 

For most of our experiments we used a Linux based Beowulf cluster that consists 

eight 1GHz Pentium III processors, each with 512MB memory. The processors 

communication via a 100BaseT based router.  This router is on a separate subnet, so that 

the only real traffic on the router is from the cluster.  The parallel version of Csim can be 

executed on this cluster.  Both C and C++ calls for MPI are available in the cluster.  

A network of 64K neurons was trained on 100K training vectors, with each vector 

having 200 active nodes. When 100 test vectors, with 10% bit-flip probability, are given 

as the input, the corresponding training vectors are recalled perfectly. In such a 

simulation, the cluster required 6 minutes 20 seconds (11.2% is used for inter-processor 

communication) for training, and 53 seconds (1.3% for inter-processor communication) 

for retrieval. For the same 64K node network, the performance corresponding to different 

numbers of training vectors is shown in Figure 2.1. The number of active nodes in the 

training vectors is always 200, and 100 test vectors with 10% bit-flip probability are used. 

The performance (or Information Gain) of these networks, which is a measure of 

information gain due to recall, is defined as: 

Performance = 1- Dtrain_out /Dtrain_test 

where Dtrain_out represents the average distance between the training vectors and the output 

vectors, and Dtrain_test represents the average distance between the training vectors and the 
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test vectors. When the Performance is 1, all the training vectors are retrieved perfectly; 

when it is negative, the network does not provide any information gain, and in fact, loses 

information. 
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Figure 2.1 Retrieval performance versus the number of training vectors being stored 
 

 

In Figure 2.1, for 250K training vectors, even though not all the outputs are 

perfectly recalled, the information gain is positive. When more training vectors are stored, 

the network becomes overloaded, eventually there is too much interference and the 

performance drops rapidly. For 45K training vectors, when the bit-flip error rate 

approaches 50% (not shown in Figure 2.1), the retrieval is still perfect. 

The same 64K node network with 45K training vectors was tested by 100 test 

vectors with 10% error probability. Here the active number of nodes in the training 

vectors is varied, and the performance is shown in Figure 2.2. When there are 500 active 

nodes in each training vector, the retrieved vectors are not perfect, but, on average, there 

is still positive information gain. When the number of active nodes is extended to be 

larger than 575, the network is too dense to effectively recall the output. 
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Figure 2.2 Retrieval performance versus the number of active nodes in the training vectors 
 

The simulation results in Figure 2.1 and Figure 2.2 show that, the network density 

is an important parameter in determining the network performance. There is a more 

detailed discussion on how the density influences performance in Chapter 3.      

To determine the efficiency of the MPI system, both the time spent in MPI 

routines and the total simulation time were collected. Most of the MPI time is spent on 

waiting for information to be communicated. In the simulation, the number of training 

vectors is set fixed as 45K, and each has 200 active nodes, but the vector size of training 

vectors for each network varies. The number of test vectors is fixed at 100. With the same 

amount of active nodes in each vector, the larger the vector size is, the sparser the 

network. However, for different sized networks the total amount of data that are 

communicated among processes is roughly the same. As the network size gets larger, for 

roughly the same amount of data is communicated, and although the MPI waiting time 

increases, the time spent computing increases more quickly, so the percentage of the total 

MPI time actually decreases. Figure 2.3 shows that the larger the network, the less 

percentage of time is spent on inter-processor communication. This implies that the 

parallel computation can speed up the computation speed, and can improve the 

computation efficiency in large network. 
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Figure 2.3 The relationship between the MPI percentage and the vector size 

 

The largest network simulated on the Beowulf cluster had 128K neurons (the 

vector length) and 100K training vectors, each with 200 active nodes. The training 

procedure required 6 minutes, of which 11.2% is spent in MPI intercommunication. To 

retrieve 100 test vectors with 10% error probability, 1 minute and 55 seconds were 

required, only 0.5% of the time was in MPI intercommunication.  

The simulations run on the cluster indicate that: the larger the network and the 

sparser the vector, the more vectors can be stored and the better retrieval performance 

will be, though as we shall now see as networks get larger than this, performance actually 

degrades.  This also leads to more efficient parallel processing. 

 

2.4.2 On NASA Supercomputers 

Initial simulations were done on the Beowulf clusters, and larger simulations were 

done on NASA’s SGI 2000 Origin Supercomputers at the Ames Research Center. The 

two we used were, Steger, with 256 processors and 64GB memory in total, and Lomax 

with 512 processors and 192GB memory. Both machines are based on the 250 MHz 

MIPS 12K processor connected via high-speed inter-processor communication 

(1.2GB/node).  The Origin 2000 is a shared-memory “NUMA” (Non-Uniform Memory 
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Access) architecture.  Due to long access queues, most simulations were of 256K neurons, 

however, we did occasional simulations of 512K nodes.                                                                                        

As expected, the behavior of the larger simulations could be extrapolated from the 

smaller. For example, for a network of 256K nodes and 180K training vectors with 40 

active nodes, when presented with test vectors with 20% probability of error, all training 

vectors were recovered perfectly. The execution time (64 processors) is 4 min 7 secs, and 

13% of that time was spent in MPI calls – a large number considering the interconnect 

bandwidth of the Origin 2000.  

Interestingly the largest simulations (with the network size of 512K) were not as 

robust as we thought they would be. They were more sensitive to the number of active 

nodes and the total number of training vectors. Part of the reason could be quantization 

effects that occur during the global k-WTA operation. Using limited precision and binary 

inputs and weights, many nodes will have the same value after the inner product 

operation. In this case it is impossible to use the adaptive threshold deterministically to 

get exactly K winners. Winners can be chosen randomly, but that does not increase 

information gain. 

2.4.3 Discussion  

The simulation results from both the cluster and the super computers demonstrate 

that the larger the network size and the sparser the network, the better the retrieval 

performance is. However, this is not to say that, for any noise level of a test vector, the 

network can always return a best matched input, even for a large network size. The 

maximum noise level allowed in a network to guarantee a convergent recall is 

represented by attractor basin surrounding the training vector. Theoretical analysis of 

attractor basins will be presented in Chapter 3, where the relationships among the 

network size, the number of vectors, the noise level and the retrieval performance are 

investigated.     

Larger networks have the potential to store more vectors, but it is possible for the 

network become too large, where implementation becomes more difficult and expensive 

and results start to deteriorate. Even with parallel processing, as the number of vectors 

being stored gets larger, more time is spent on waiting for communication. Scaling does 
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not necessarily set a hard limit on performance if a parallel model is used, but, for 

implementation and computation efficiency, large network size will obviously limit the 

use of the model in a real application. In addition, as shown in (O'Kane and Treves 

1992b), the traditional association models are inadequate as models of cortex, the number 

of patterns that could be stored and retrieved would not scale with the size of network. In 

Chapter 6, a modular association model will be proposed to address the scaling issue. 

The Palm model is a fully connected network. In cortical systems, according to 

Braitenberg (Braitenberg and Schuz 1998), there are two kinds of connections: metric 

and ametric. The metric connections are very dense connections to a node’s local 

neighborhood. The ametric connections are much sparser, random, point-to-point 

connections to densely connected groups. Though the exact neural circuitry is still not 

known, a hierarchically connected network is potentially a more powerful model for 

complex applications, and evidentially, it is a preferable structure in many biological 

systems. A hierarchical network structure will be discussed in Chapter 6. It is 

hypothesized that large groups of modules may have different learning and connectivity 

patterns, where each module specializes on certain types of functionality, creating a 

larger, more complex system. 

2.5 Computational Complexity 

With appropriate parameter settings, the Palm-Willshaw model is robust to noise 

and can return an output that is the best match to the given input. This mapping function 

is very useful and can be used in a number of applications.  For example, it is similar to 

the nearest neighbor rule, where the given input is always mapped to the closest training 

vector. Here we can compare the computational complexity of the Palm model with the 

brute force approach. The brute force method of matching is essentially a lookup-table 

searching approach, and the memory formed is referred to as the Hamming associative 

memory (Hassoun and Watta 1996). 

The Palm network settings are: the vector size is set as n, and there are k 1s in 

each vector, with k in the order of log n. The total number of vectors to be stored is m.  

In the Palm model, to compute the best match for a given input, only k columns in 

the weight matrix are needed, with each in size of n. Therefore, to get the dendritic sum 
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vector, O(kn) operations are needed. To implement a k-WTA, a sort of O(nlogn) 

operations is required. For the 1-WTA used in the hypercolumn structure of BCPNN, O(n) 

operation is needed, which is computationally more efficient in this sense. The total 

operation needed to retrieve a best match vector is O(kn)+O(nlogn), that is, O(nlogn). 

In Hamming associative memory, to do an exhaustive search of a lookup table, 

the given input vector has to compare its Hamming distances to all the stored vectors. 

The Hamming distance calculation is similar to inner-product operation, and is in O(n). 

There are m vectors, so the total calculations for Hamming distance is in O(mn). After all 

the distances are available, a maximum operation is needed to choose the vector with the 

minimum Hamming distance, or the maximum inner production. This maximization 

needs O(m) operations. Therefore, the total number of operations in the brute force 

method is O(mn)+O(m), that is, O(mn). 

Comparing the brute forced method with the Palm model, we can see that when 

m>logn, the operation in Palm network is more efficient than brute force. When m is 

small, a look-up table is an easier way to implement a search, and the storage required 

(O(mn)) is less than that of the Palm network (O(n2)). In the applications where the 

number of vectors to be stored is much larger than the network size (m>n), building a 

Palm network is computationally more efficient in both storage and retrieval via the 

distributed storage technique. Moreover, fault tolerance can be expected in Palm model if 

distribution of representation is used in the vectors, and if we build a system that uses 

distributed representations, retaining the distributed representation throughout the system 

requires that we use computational methods such as Palm’s that can operate on such 

representations. Fault tolerance allows input noise in the sense that many input patterns 

which are “close” to the training vector in some metric (here Hamming distance) can be 

mapped to the content vector belonging to that address. In addition, it has been shown 

that the Palm network has fault tolerance to errors in internal storage, such as connection 

failure, which will be discussed in Chapter 3. It also has been shown in (Graham and 

Willshaw 1997a) that, when a small number of connections in the network are missing, 

network performance experiences only minor degradation, still doing a reasonably 

efficient retrieval operation. Such tolerance is especially beneficial to hardware 

implementation.
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Chapter 3  

Voronoi Classification in Associative Memory 

3.1 Application Issues 

The simulation results in Chapter 2 demonstrate the large storage capacity and 

fault tolerance of the Palm model. It has been shown (Palm 1988; Palm and Sommer 

1992) that the Palm model has the highest information efficiency among several models. 

However, for maximum information efficiency, the network is ideally half full. In this 

case, the fault tolerance is diminished, and reliable retrieval is not guaranteed. The high 

information capacity has little use if there is significant cross-talk among training vectors. 

Many techniques have been proposed to improve the performance of the original 

Willshaw associative net, and to relax the requirement of sparse coding in the training 

vectors. The threshold-control technique developed by Willshaw’s group (Buckingham 

and Willshaw 1993; Graham and Willshaw 1995) can improve the retrieval performance 

when the input vector has a relatively high error rate. Based on different threshold control 

techniques, a partially connected network is also feasible. Both analytical results 

(Buckingham and Willshaw 1993) and numerical calculations (Graham and Willshaw 

1997a; Bosch and Kurfess 1998) show that a partially connected network has reasonably 

good information capacity and information efficiency. Iterative retrieval techniques 

(Gibson and Robinson 1992; Schwenker, Sommer et al. 1996; Sommer and Palm 1998), 

based on attractor or energy minimization dynamics, can also improve the network 

performance. Bayesian inference theory (Sommer and Dayan 1998) provides a theoretical 

foundation for most of the above techniques in performance improvement and resistance 
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to connection failures, though the paper does not specifically address the issue of 

convergence of these vectors. 

Although a number of associative memory models have been proposed over the 

years, most of these discussions have focused on network capacity, information storage 

and retrieval improvement. The theoretical interpretation of associative memory behavior 

of these associative models, when applied to real world applications, is not generally 

addressed. It is important to know how such networks behave in real applications based 

on massive quantities of noisy data. How much information can be stored is less 

important than how robust the model is in performing the expected function in a specific 

application. For example, in our Enhanced Vision System (EVS) for aircraft landing 

guidance (Luk, Gao et al. 2004), the training vectors are not random and are actually 

grouped close to each other in one region of the state space, which reduces the memory 

capacity and the retrieval accuracy. Given some number and distribution of vectors, how 

well can the network retrieve those vectors from noisy inputs? And how many defects in 

the implementation can the network tolerate and still be useful?  Previous work on 

associative memories have not really addressed these issues nor provided any quantitative 

measure of how much noise the model can tolerate and still provide acceptable retrieval 

results.  Also in real applications the definition of “good enough” retrieval often changes 

dynamically.  All of these issues can be summarized as, what is the relationship between 

the number of vectors stored and the maximum allowed error rate? Even though iterative 

retrieval can provide better retrieval performance, the quantitative measure is still not 

discussed in the literature. A typical question is: when a network is operating with 

sufficient information efficiency, will the network demonstrate good performance on any 

noisy input? 

In this chapter, we try to answer those questions. We define a Bayesian model of 

the operation of the Palm associative memory. We will discuss the computational 

characteristics of the Palm network, especially the general functional analogy of the Palm 

model with Voronoi classification. And we will provide a theoretical interpretation of the 

behavior of the operation of the Palm associative memory.  
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3.2 Communication Channel Analogy 

A communication channel, see Figure 3.1, is a useful model of pattern 

classification.  Basic association can then be modeled as a simple channel decoder shown 

in Figure 3.2.  Under certain assumptions, it is possible to use both information theory 

and Bayesian decision theory to model the association process (MacKay 1991; MacKay 

2003), where a pattern to be recognized is a noisy version of a learned pattern, just as a 

received message is a noisy version of the original message. 

In this discussion, a test vector contains some genuine active bits that are the same 

as the original training vector, and some spurious active bits that are caused by noise. For 

simplicity, the total number of active bits in a test vector is set to be the same as that in a 

training vector. 

 

 
 

 

 

 

 

 
 
Figure 3.1 The Decoder Model of Pattern Classification 

 

 

Figure 3.2 The Association Memory as a Channel Decoder 
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In the communication channel analogy, messages are generated with probability 

P(y), ignoring higher order probabilities between messages, that is, the probabilities of 

successive messages are independent. Generated messages are encoded into a message x 

(a bitstream) that is transmitted over a noisy channel, a received message (another bit 

stream, the transmitted message with errors) x’ is received and input to the decoder. The 

decoder has, via many examples, obtained an estimate of the probabilities P(y) and 

P(x’|y). It then uses these estimates to determine the most likely y, given that it received 

x’: 

 
( '| ) ( )

( | ')
( '| ) ( )

x

P x y P y
P y x

P x x P x
⋅=

⋅�
 (3.1) 

Using this communication channel concept, we will describe the Bayesian 

inference characteristics of a Voronoi tessellation of the state space. In a Voronoi 

tessellation, the feature space is partitioned into regions consisting of all vectors closer, 

according to some metric defined over the space, to a given training vector than to other 

training vectors, and all vectors in such a region are labeled by the category of that 

training vector (Duda, Hart et al. 2001). In this chapter, a recursive auto-associative 

network is assumed, and we will show the functional analogy of the Palm network and 

Voronoi tessellation, and subsequently the Bayesian classification characteristics. 

As presented in previous chapter, the Palm model uses a sparse data 

representation, and has large information capacity and fault tolerance (Graham and 

Willshaw 1994; Sommer, Wennekers et al. 1998; Knoblauch and Palm 2001a; Hecht-

Nielsen 2003b). In this chapter, we analyze the operation characteristics of Palm network, 

and consider the Palm association model as a stand-alone module, though in real systems 

it will most likely be a single building block of a larger system such as cortical areas, 

where a Palm memory represents a cortical column with dense local connectivity, and the 

columns are, in turn, loosely connected with each other. Hierarchical laterally connected 

columns form even more complex and higher-order information processing units, which 

will be discussed in Chapter 6. 
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3.3  Dendritic Sum Distribution in Palm Network 

The retrieval characteristics of the Palm network have been well studied earlier in 

this dissertation and in the literatures (Willshaw, Buneman et al. 1969; Willshaw and 

Dayan 1990; Buckingham and Willshaw 1992; Graham and Willshaw 1995; Palm and 

Sommer 1995; Sommer and Dayan 1998). The theoretical results match well with the 

simulation results (Buckingham and Willshaw 1992). Based on theoretical analysis, 

several retrieval techniques have been proposed to improve the retrieval performance, 

information capacity and efficiency (Buckingham and Willshaw 1993; Graham and 

Willshaw 1995; Graham and Willshaw 1997a; Sommer and Palm 1998). Detailed 

network analysis can be found in (Willshaw, Buneman et al. 1969; Palm 1980; 

Buckingham and Willshaw 1992). To facilitate the further discussion of Bayesian 

characteristics in the following sections, here we summarize the analysis.  

Suppose a binary auto-associative Palm network has a size (vector dimension) of 

n, there are M vectors being stored, and for each vector, k nodes are active. The denditic 

sum di of an output node is 
1

n

i ij j
j

d w x
=

= ⋅� , xj is the input activity. The distribution of the 

di is determined by k and the number of connections in the network. The output node can 

be either active (1) or silent (0) depending on the threshold. Via the k-WTA rule, the 

threshold is dynamic and will be different for different input vectors. 

If a node in the training vector is 0, then the corresponding node in the output 

vector is supposed to be 0 (has low potential), and its dendritic sum is mainly contributed 

by the connections that other training vectors create. The silent node’s dendritic sum dl 

results from noise in the test vector. Assuming k active nodes in a test vector, the dl 

approximate a binomial distribution: 

 ( ) (1 )x k x
l l l

k
P d x

x
ρ ρ −� �

= = ⋅ ⋅ −� �
� �

 (3.2) 

with  

  21 (1 )M
lρ α= − −  (3.3) 
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where /k nα = . lρ  is the probability that a connection in a network is 1 in at least one 

training vector. lρ  can also be regarded as the network density, representing the 

sparseness or the memory load of a network. 

If an output node is supposed to be active (1), or, have high potential, the 

contributions to its dendritic sum, dh, not only come from the true connections for that 

training vector, but also from other connections that other training vectors create. This 

sum also approximates a binomial distribution: 

 ( ) (1 )x k x
h h h

k
P d x

x
ρ ρ −� �

= = ⋅ ⋅ −� �
� �

 (3.4) 

with  

 1h i i le eρ ρ= − + ⋅  (3.5) 

where ie  is the error rate in the active nodes of a test vector. So the input error rate in the 

whole vector base is � ��� . With Equations (3.2) and (3.4), the distribution of the real 

dendritic sum of an output node is: 

 ( ) (1 ) ( ) ( )l hP d x P d x P d xα α= = − ⋅ = + ⋅ =  (3.6) 

Both Equation (3.2) and (3.4) can each be approximated by a Gaussian distribution, 

therefore, Equation (3.6) can be approximated by: 

 
2 2

2 22 2

( ) ( )1
( ) exp[ ] exp[ ]

2 22 2
l h

l hl h

x m x m
P d x

α α
σ σπσ πσ

− − − −−= = +  (3.7) 

with means and variances as: 

l lm k ρ= ⋅ ,  2 (1 )l l lkσ ρ ρ= ⋅ ⋅ −  (3.8) 

h hm k ρ= ⋅  2 (1 )h h hkσ ρ ρ= ⋅ ⋅ −  (3.9) 

From Equations (3.7)-(3.9), it can be seen that the distribution of the dendritic 

sums is determined by: the density lρ , the input error rate ie , and the number of active 

nodes k . Accordingly, the network retrieval performance relies on these three parameters. 

Threshold setting techniques that utilize these parameters to improve the retrieval 

performance are discussed in (Buckingham and Willshaw 1993; Graham and Willshaw 

1995). 
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3.4 Bayesian Inference from a Voronoi Tessellation 

Returning to the communication channel concept in Equation (3.1), if all the 

original vectors are equally likely, i.e., the prior probabilities are equal, then given a 

received vector x’, the original vector y that has the largest conditional probability 

( '| )P x y  is the most likely vector that was sent in a Bayesian sense. It is assumed that, in 

the sparse encodings used for the transmitted messages, the bits are independent of each 

other. If Hamming distance is used as the distance metric, and the bit-flip (error) 

probability in a binary symmetric channel is strictly less than 0.5, then the conditional 

probability ( '| )P x y  is a monotonically decreasing function of the Hamming distance 

between x’ and y. Therefore, the training vector y that has the minimum Hamming 

distance to x’ has the largest conditional probability ( '| )P x y , and is the most likely vector 

that was sent. 

The vectors that constitute the transmitted messages create a Voronoi tessellation 

over the vector space. All the vectors in one Voronoi region have the smallest Hamming 

distance to that transmitted vector’s region. For binary vectors with iid error per bit, given 

a received vector x’, the transmitted vector x that forms the Voronoi region where x’ lie, 

is the most likely vector that was sent in a Bayesian sense. It is then a simple mapping 

from x back to the original message y. Therefore, a Voronoi tessellation of the input 

vector space can be used to perform Bayesian inference with equal priors. 

Here we assume that the transmitted messages were all equally likely.  We can 

also define weighted Voronoi regions which address the situation where the prior 

probabilities are unequal. 

Definition: let S denote a set of attractor vectors such that each vector vi is 

assigned a positive and finite influence w(i). In this case, the distance of an arbitrary 

vector vx from vi is given by ( , ) / ( )x iD v v w i , where D denotes a distance measure. The 

weighted Voronoi region for S is a subdivision of the input space such that each vector vi 

in S is associated with a region consisting of all vectors vx in the region for which vi is the 

nearest vector using a weighted distance metric. � 

In a weighted Voronoi region, all the vectors have the smallest weighted distance 

to the training vector that is in the same region. Via Equation (3.1), if the influence factor 
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w in the above definition is monotonic to the prior probability P(y), and the distance 

'( , )x yD v v  is proportional to the inverse of ( ' )P x y , then the weighted distance '( , ) /x yD v v w  

is a measure of posterior probability of y given x’. The smaller the weighted distance, the 

more likely y is. Therefore, the weighted Voronoi region gives the most likely vector in 

MAP (maximum a posteriori) sense. 

If one considers the set of messages that can be transmitted over the channel as 

the training vectors for a Palm network, and the received messages as the test vectors, we 

will show in the following sections that the binary Palm network approximately partitions 

the input space into Voronoi regions and the dynamically learned Palm model 

approximates a weighted Voronoi tessellation. 

 

3.5 Conditioned Bayesian Classifier in Binary Palm Network 

3.5.1 Output Error Characteristics 

If an input vector is “closer” (has smaller Hamming distance) to one training 

vector than to the other training vectors, then the Palm network will always output a 

vector that is “closer” to that training vector than to other training vectors.  

Proof:  Suppose an input vector v  can be regarded as the noisy version of training 

vectors 1v  or 2v  with error rates 1e  and 2e , where 1e  and 2e  are the error rates in the 

active nodes of v  corresponding to 1v  and 2v  respectively. Let 1 2e e< .  Given the 

threshold θ and Equation (3.6), the number of active nodes k  in the output vector 

consists of two parts: the number of genuine (correct) active nodes gk  and the number of 

spurious (error) active nodes sk : 

 ( ) ( ) ( )
k k

s g l hk k k n k P d x dx k P d x dx
θ θ

= + = − = + =� �  (3.10) 

Via Equation (3.7), sk can be approximated by: 
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+∞ − −= − =�  (3.11) 
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Assume the number of active nodes in the output vector is equal to the number of 

active nodes in the training vector, then the number of spurious 0s equals the number of 

spurious 1s. For explanatory purposes, we only discuss the spurious 1s here, but the 

derivation is similar. The total error bits in a whole vector would be twice the number of 

spurious active nodes.  

Corresponding to 1v  and 2v , the components of k  are denoted by 1sk , 1gk , 2sk , 

and 2gk . Since the actual number of active nodes k  in an output vector is determined by 

the network, k  is fixed no matter whether the input is from 1v  or 2v  . The network 

density is determined by training vectors, and we have 1 2l lρ ρ= . Therefore, according to 

Equation (3.5), we get 1 2h hρ ρ> . Given Equation (3.9), we get 1 2h hm m>  and 1 2h hσ σ< . 

According to (Buckingham and Willshaw 1993), if the minimum-error threshold is 

applied, then the relationship between the two thresholds is: 1 2θ θ> . By Equation (3.11), 

we get 1 2s sk k< . So the output vector has fewer spurious active nodes corresponding to 

1v  than to 2v , thus the output vector is closer to 1v  than 2v  in Hamming distance. � 

We see then that the Palm network effectively partitions the input vector space 

into Voronoi regions, with each centered at the training vector. A Voronoi region of a 

vector iV  is the union of all vectors xV  to which it is the closest one, 

{ }: ,i x x i x jV V V V V V i j= − < − ≠ , where ⋅  is a distance measure. A Voronoi 

tessellation can be created based on several different metrics, for the research discussed 

here, we use Euclidean distance for real valued vectors and Hamming distance for binary 

valued vectors. The Voronoi regions that binary Palm network creates are approximate in 

the sense that some training vectors may not appropriately represent the vector space 

such that there may be some spurious regions. If an input vector is in one Voronoi region, 

the retrieved output vector is within the same region as the input. Although the output 

vector may contain more noise than the input, it is still closer to the training vector in that 

region than to other training vectors.  

The retrieved output vector is within the same Voronoi region as the input vector. 

However, not all the output vectors that are within a Voronoi region can be mapped to the 

original training vector, only those vectors that are within the attractor basin of the 
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training vector will converge to it. The attractor basins do not line up exactly with the 

Voronoi regions. Voronoi region distinguishes the nearest training vector, but can not 

ensure the convergence to it. Attractor basin is a region that ensures the convergence for 

any test vector within it. Some vectors that are beyond the attractor basin can still be 

mapped in the same Voronoi region, but since they can not converge to the original 

training vector, they can be mapped to a vector that has more noise, or, in other words, 

they can be mapped even further away the training vector than the test vector. This is 

very common when the minimum-error threshold can not distinguish exactly k active 

nodes in the retrieved output vector, then the output vector may have more noise than the 

test vector. Detailed analysis of the attractor basin is discussed in the next section. 

Based on these considerations, we can see that, although the output vector is 

closer to the original training vector than to other training vectors, it may not necessarily 

be closer to the original training vector than the input vector, that is, it may contain 

enough noise to put it further away from the training vector, though a true Bayesian 

classifier would classify it incorrectly.  The output error is an increasing function of input 

error, which will be discussed in the following section. 

 

3.5.2 The Attractor Basin 

Although the Palm network will return an output vector that is closer to one 

training vector than to other training vectors, it is not necessarily true that the output is 

convergent, that is, where successive operations of the network, feeding the network 

output back to the input results in output vectors that are not closer to the desired training 

vector. The Voronoi regions that a Palm network forms may not be the convergent region 

(an attractor basin with a single local minimum) where successive operations of the 

network (using output fed back to the input) result in vectors ever closer to the center of 

the region. For certain noisy input vectors, it is possible for the network to generate an 

output vector that has more noise than the input, that is, the output vector is even further 

away from the original training vector than the input vector. 

For convergence to work, the vectors should be within the attractor basin of the 

training vector.  The best match property of Palm is conditioned on this attractor basin 
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constraint. The attractor basin is defined as the maximum allowed input error rate emax 

that can ensure a convergent network output. If an input vector is outside the basin, the 

retrieved vector can not be guaranteed to be the original vector. We next discuss how to 

find the attractor basins of a Palm network. In our formulation of this model, we assume 

that every test input vector is a noisy version of one of the training vectors.  A condition 

for convergent performance is that the input vector be within the attractor basin of its 

source training vector.  

The Hamming distance between the retrieved vector and the nearest training 

vector is the sum of the number of the false (spurious) active nodes and the number of the 

false silent nodes. The output error rate oe  then is: 

 (1 ) ( ) [1 ( )]o l he P d P dα θ α θ= − ⋅ ≥ + − ≥  (3.12) 

Given Equation (3.7), 0e  can also be approximated by: 

 (1 ) ( ) [1 ( )]l h
o

l h

m m
e Q Q

θ θα α
σ σ
− −= − ⋅ + −  (3.13) 

where ( )Q ⋅  is the error integral function of the standard Gaussian distribution.  

According to Buckingham and Willshaw (Buckingham and Willshaw 1993), the 

k-WTA threshold is very close to the minimum-error threshold when ei is small (less than 

0.5). The threshold that gives the minimum expected error is the one that satisfies: 

 (1 ) (1 ) (1 )k k
l l h h

k kθ θ θ θα ρ ρ α ρ ρ
θ θ

− −� � � �
− ⋅ ⋅ ⋅ − = ⋅ ⋅ ⋅ −� � � �

� � � �
 (3.14) 

Since the k-WTA threshold is close to the minimum error threshold, we use the minimum 

error threshold to represent the k-WTA threshold. Solving Equation (3.14), we have the 

threshold: 

 
log [log(1 ) log(1 )]

log[ (1 )] log[ (1 )]

h l

l h h l

k
k

n k
ρ ρ

θ
ρ ρ ρ ρ

+ − − −
−=

− − −
 (3.15) 

Consequently, once the network parameters are known, equations (3.13) and (3.15) can 

be used to compute the error rate eo for the entire output vector. Since eo is the error rate 

in the whole vector, while ei is the error rate for the active nodes of an input vector, the 

normalized value of /(2 )oe α  is used to make it comparable with ei. To ensure convergent 

performance of the network, /(2 )oe α  is generally required to be less than ei, that is,  
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 /(2 )o ie eα <  (3.16) 

Accordingly, the attractor basin emax for any particular Palm memory should 

satisfy the equal condition in equation (3.16), and can be computed via equations (3.13), 

(3.15) and (3.16).  For any test vector within the attractor basin, iterative retrieval will 

result eventually in the original training vector that is the center of the basin.   

To obtain an analytic expression for emax by solving equations (3.13), (3.15) and 

(3.16) is complicated, but it can be illustrated graphically. The relationship between the 

input error rate ei and output error rate eo obtained from the equations is illustrated in 

Figure 3.3, where, n=100K and k=17. As shown in Figure 3.3, the output error rate is an 

increasing function of the input error rate. The intersection of the dotted line and the 

colored curves specifies the maximum allowed input error rates (the values of the 

attractor basins) corresponding to different network densities lρ . If the output error rate 

lies below the dotted line in Figure 3.3, the corresponding input vector is in that vector’s 

attractor basin, and the output error rate of a recurrent network approaches zero – which 

ensures convergent behavior. 

As shown in Equation(3.15), the threshold θ  is determined by the network 

parameters (n, k and M) and the input error rate ie . Since the network density lρ  varies 

with different combinations of network parameters (n, k and M), lρ  can be regarded as a 

basic indicator of the network configuration. Therefore, the threshold depends on the 

density lρ  and input error rate ie .  
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Figure 3.3 The relationship between the output error rate /(2 )oe α  and input bit-flip rate ei 

 

3.5.3 Bayesian Interpretation 

Summer and Dayan (Sommer and Dayan 1998) show the Bayesian retrieval 

characteristics of the Palm associative memory. However, that paper does not specify the 

conditions under which the network can actually retrieve the original training vector. In 

addition, asynchronous update of the state of the nodes in the network is assumed to 

ensure an appropriate Lyapunov function, which, in some applications of the Palm 

network, may not be satisfied. Although the Lyapunov approximation method explains 

the MAP inference from the posterior probability, the convergence issue is not 

specifically discussed there. 

Here we provide a simpler interpretation based on the Voronoi model. As shown 

in the last section, under the convergence conditions, the Palm network will generate the 

original training vector that has the minimum Hamming distance to the input vector.  In 

this way, the Palm network approximates a nearest neighbor classifier by dividing the 

space according to a Voronoi tessellation. Therefore, the Palm network can be regarded 

as a minimum Hamming distance classifier. 
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Returning to the communication channel paradigm, if one assumes a simple 

binary symmetric channel with independent, identically distributed errors, and all input 

vectors are of fixed length and with equal prior probabilities, then the minimum 

Hamming distance decoder is the maximum-likelihood decoder (Haykin 2001). Therefore, 

the training vector with the minimum Hamming distance from the input vector is the 

most-likely vector to have been transmitted over the channel in a Bayesian sense. Since 

the Palm network approximates a minimum Hamming distance classifier, the Palm 

associative memory will approximate a Bayesian decoder of the vectors received over the 

channel. Under the condition that all the output vectors can converge to the original 

training vectors, the Palm network works as a Bayesian classifier. 

 

3.5.4 Simulation Results 

Once the network parameters are given, attractor basin size maxe  can be easily 

computed numerically by solving equations (3.13), (3.15) and (3.16). In simulations, the 

maximum input error rate that ensures the average output error rate equal to the input 

error rate is used as the attractor basin size. Figure 3.4 shows one example of maxe  

derived by both the theoretical computation and the simulation. In this example, vector 

size 1000n = , number of active nodes 10k = , and the number of test vectors is 100. As 

shown in Figure 3.4, the attractor basin shrinks as the number of vectors stored increases. 

The curves are not smooth, this is most likely due to the fact that the basin is not sensitive 

to minor changes on the number of vectors being stored. 
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Figure 3.4  Attractor basin size emax vs. number of stored training vectors M. 
In this network, n=1000, k=10. The blue curve is the theoretical values for attractor basin size, 
and the red curve is obtained by simulation. 
 

In the binary Palm model, we have shown that the network performance is 

determined by the density lρ , the input error rate ei, and the number of active nodes k. The 

size of the attractor basin is the maximum input error rate that ensures convergent 

performance, so the sizes of the attractor basins depend on the density lρ  and the number 

of active nodes k.  The attractor basins shrink as the network density increases, which is 

an expected result as is shown in Figure 3.5 and Figure 3.6.  

Figure 3.5 demonstrates the relationship between the size of the attractor basin 

and the network parameters: the number of vectors stored, M, and the number of active 

nodes, k. In Figure 3.5, the network size n = 1000. As can see, the attractor basin shrinks 

as network density increases. When the network size is unchanged, the network density is 

determined by the number of active nodes in each vector, and the total number of vectors 

being stored.  

As can be seen in Figure 3.5, the curves fluctuate.  This variation is due to the 

quantization effect of the k-WTA operation on the output vector. The depth and width of 

each fluctuation vary with the number of active nodes, k.  The smaller the number of 
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active nodes, the more sensitive the attractor basins are to the number of vectors stored, 

and the deeper the fluctuation. Larger k results in smaller attractor basins. 
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Figure 3.5 The attractor basin size emax varies with the number of vectors stored M and the 
number of active nodes k, with network size n=1000.  
 

However, if k is too large, even when only a small number of vectors are stored, 

the attractor basins still end up being very small and the interference among the training 

vectors becomes significant. With large k, the vectors get closer to each other so that the 

Voronoi regions shrink and the size of each attractor basin approaches zero.  

Both the number of vectors stored, M, and the number of active nodes, k, 

determine the network density, lρ , which, as we saw above, determines the network 

performance. Various combinations of M and k can have the same lρ , so it is useful to 

see how the single parameter lρ  influences the attractor basin emax. 
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Figure 3.6 The attractor basin emax varies with the network density lρ for different network size n. 

 

Figure 3.6 illustrates the relationship between the attractor basin emax and the 

network density lρ . It is interesting to note that the attractor basin does not vary much 

with the network size n. In the simulations, k is a number that is greater or equal to log n. 

When logk n= , we get the maximum values of emax. As shown in Figure 3.6, the 

achievable maximum lρ  that can ensure a convergent performance is 0.35, which is 

consistent with the theoretical asymptotic storage capacity of ln2/2 for an auto-

associative network (Palm, Schwenker et al. 1997). 

Figure 3.7 illustrates the characteristics of the Voronoi regions. In the simulations, 

the network size n=1000, the number of vectors stored M=100, each with k=10 active 

nodes. With such network settings, the network density is small, and the attractor basin 

can reach to the Voronoi boundary. To see this, we choose a test vector that is formed by 

the components of two training vectors (V1 and V2). We randomly swap the active nodes 

of two vectors, and still keep the number of active nodes the same in the test vector. With 

k=10, the Hamming distance between the two training vectors is 20. By swapping the 

active nodes of the two training vectors, the test vectors lie on a line between the two 

training vectors, with the sum of each test vector’s Hamming distance to V1 and the 
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Hamming distance to V2 equals 20. Interestingly, any test vectors that are closer (have 

less Hamming distance) to V1 will converge to V1, and any test vectors that are closer to 

V2 will converge to V2. When the test vector is equal distance to V1 and V2, the network 

will not converge to either.   
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Figure 3.7 Illustration of convergence between two vectors 

 

In binary learning, if all the training vectors are equally likely, the Voronoi 

boundaries are equal distant to each vector. However, the attractor basin of each vector 

may not necessarily cover the Voronoi region defined by that vector. Therefore, when an 

input vector does not belong to any attractor basin, the retrieved output vector might be 

an arbitrary vector, and convergent retrieval is not guaranteed. 

 

3.5.5 Fault Tolerance Experiments 

In Chapter 2, we showed the capacity of Palm model for large networks, and we 

simulated the retrieval performance for noisy inputs. The simulations demonstrated that 

the network is able to remove noise from the input vector, which partially demonstrates 

our Bayesian Classifier theory. In this section, we describe several simulations that tested 
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the fault tolerance of Palm network, which demonstrates the Voronoi characteristics 

regarding network fault tolerance.  

We test three different fault models in the weight matrix: Static, Dynamic, and a 

hybrid of Static and Dynamic. For the Static Fault the weight matrix is modified once and 

then used for all the test vectors. For the Dynamic Fault, each time the matrix is used, a 

different set of faults are added to the original matrix, but the faults are not accumulated 

over time. For each configuration of fault, three different methods can be used to modify 

the weight matrix: 1) randomly add/delete connections; 2) multiply the connections by a 

random fractional number; and 3) a hybrid combination of the two methods. 

We do several experiments on the combinations of different configurations and 

methods. All simulations are based on the original batch-training model. The parameters 

used here are: vector_size n = 1000, number of active nodes k = 10, number of training 

vectors M = 250, number of testing vectors = 250, error rate (bit-flip probability) in the 

test vector = 10%. The network performance is still defined as:  

Performance = 1- D(trn, out) / D(trn,tst),  

where D(trn, out) is the average Euclidean distance between training vectors and output 

vectors, and D(trn,tst) is the average Euclidean distance between training vectors and test 

vectors.  

Experiment 1: Randomly add and delete connections in the binary weight matrix 

by the probability of P_add_delete. In this configuration, some binary connections are 

disabled and some connections are reestablished, and the total percentage of disabled or 

reestablished connection is P_add_delete. The performance of this experiment is shown 

in Figure 3.8. As shown in the figure, the binary Palm model is tolerant of a modest 

degree of connection failure and random reconnection, and the network can still achieve a 

fairly good performance. This random addition and deletion of connections is different 

from the patchy connectivity (Johansson, Rehn et al. 2006) network where a random 

patchy (block) masking matrix is applied to the original binary weight matrix. In the 

patchy connectivity network, all connections that are not within the random block are 

disabled, but no new random connections are reestablished. While in our experiment here, 

both random addition and deletion of connections are applied, and the addition and 

deletion are at neuron level instead of block of neurons level. The effect of Static and the 
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Dynamic faults to the retrieval performance are reasonably comparable in this 

configuration.  
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Figure 3.8 Network performance for random addition and deletion of connections in weight 
matrix 
 

Experiment 2: Some weights are multiplied by random fractional values. In this 

configuration, all the 1s in the Palm network are multiplied by a random value. No 

addition or deletion of connections is considered here. The performance of this 

experiment is shown in Figure 3.9, where the performance in both the Static and the 

Dynamic configurations are close to the original Palm, which has a Performance of 1. 

There are not much difference in the performance for the Static and the Dynamic faults. 
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Figure 3.9 Network performance for random fractional values in weight matrix 
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Experiment 3: Combine the configurations for Experiment 1 and 2 together, and 

the performance is shown in Figure 3.10. In this configuration, the dynamically changed 

weight matrix results in better performance than the statically changed weight matrix in 

the network.  
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Figure 3.10 Network performance for random addition and deletion of connections, and each 
connection in the weight matrix is multiplied by a fractional value. 

 

For better comparison, the performance of the network with Static faults via three 

different connection modifications is compared with that of the original Palm network, as 

shown in Figure 3.11. The performance of the network with Dynamic faults via three 

different connection modifications is also compared with that of the original Palm 

network, as shown in Figure 3.12. For both Static and Dynamic faults, multiplying each 

connection by a random factional value will not lose much performance compared to the 

original Palm model. Randomly adding and deleting some connections in the weight 

matrix causes the performance to deteriorate, especially when the probability of addition 

and deletion is relatively large. A combination of the two methods produces the worst 

performance even with a very small probability of addition and deletion. In cortex, for 

example, gradual changes in synaptic connection are common, since the chemical 

concentration around a synapse may not always be constant, but random addition or 

deletion of a synaptic connection is probably much less common.  
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Figure 3.11  Performance comparison of a fault free Palm and the same network with Static faults. 
Three different kinds of Static faults are generated: random addition and deletion of connections, 
connection multiplication by random fractional values. 
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Figure 3.12 Performance comparison of a fault free Palm and the same network with Dynamic 
faults. Three different kinds of Dynamic faults are generated: random addition and deletion of 
connections, connection multiplication by random fractional values. 
 

 

Our experiments show that the Palm network is fault tolerant to several different 

types of faults. For relatively small faults in the weight matrix, the network continues to 

perform Bayesian classification, by retrieving the best training vector that is closest to the 

given input. 
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3.6 Dynamic Learning in Palm Network 

In the binary Palm model, training and retrieval are separate processes. If too 

many training vectors are stored, or if they are too close to one another, the attractor basin 

for each training vector becomes so small that correct retrieval becomes difficult. To 

overcome the problems, a dynamic learning model is proposed. 

 

3.6.1 MAP Retrieval in Dynamic Learning 

The most common usage of association memory, as we have assumed in the 

previous chapters, is that a set of coefficients, the weight matrix, is generated once from a 

set of training vectors.  In addition the training vectors are assumed to be equally likely, 

that is, their prior probabilities are all equal.  In many real world applications this is 

generally not the case, but, nevertheless, the use of such a “naïve” prior is common.  

Likewise, in situations where the associative network is used as a module in a larger self-

organizing system, it may be impossible to provide the “training” vectors ahead of time. 

In addition to being able to handle non-uniform priors, in some cases we would 

like the associative memory to be able to learn incrementally during operation, since it 

may not always be possible to obtain all the relevant vectors in advance.  Also if the 

fundamental probabilities are non-stationary, though changing slowly, dynamic learning 

allows the memory to adapt to these changes. 

Dynamic learning implies that new vectors should start with small attractor basins 

that increase gradually over time.  Likewise, old vectors may fall out of disuse and their 

attractor basins should decrease, possibly eventually disappear.  In the binary Palm 

network, if too many training vectors are stored, they can be too close to each other such 

that the attractor basin for each training vector becomes too constrained for correct 

retrieval.  Dynamic learning also allows us to deal with this situation more flexibly. 

Dynamic learning implies that the retrieval procedure can take place before learning is 

complete. Learning and operation are concurrent. The weight matrix elements are 

adjusted incrementally. In this mode, the Voronoi regions are affected by the learned 

mappings, and boundaries are reshaped via the learning of new training vectors. 
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In the situation where two training vectors are close to each other but have 

different prior probabilities, dynamic learning would allow the vector with larger prior to 

have a larger Voronoi region, absorbing part of the attractor basin of a neighboring vector 

with a smaller prior. Therefore, the prior probability of each training vector affects the 

size of the Voronoi region in that a weighted Voronoi region is formed, which will be 

discussed in the next section. 

In the dynamic learning model of auto-associative memory, each training vector is 

associated with an influence coefficient c that directly depends on the prior probability, 

P(y), of that vector. Generally the influence coefficient c should be a monotonic function 

of P(x) to approximate the prior probability of x. The amount of space each vector takes 

is relative to its neighbors, since the total Voronoi space is fixed, and training vector 

tessellations divide that space into a number of regions.  This is reasonable since the prior 

probabilities divide up the real line between 0 and 1. 

The Voronoi tessellation implemented in an associative memory is similar to 

Vector Quantization (VQ) (Gersho and Gray 1992). In VQ, there are a fixed number of 

codebook vectors that are moved around to best represent a given set of input vectors. 

The lengths of the codebook vectors can change, and a dynamic learning algorithm is 

needed to find the set of codebook vectors avoiding one vector occupying all the space. 

In an associative memory, all the training vectors have the same length, each associated 

with different coefficient. As the training proceeds, the size of Voronoi region where 

each training vector occupies also changes. Once the training is done, weighted Voronoi 

regions are formed. Associative memory is a reasonably efficient approximation to VQ 

by mapping the input space into Voronoi tessellation. 

During training, the weight matrix W can be formed such that 

( 1) [ ( ) ]TW t F W t x x+ = + ⋅ , where F( � ) is normally a non-linear “compressing” function such 

as the sigmoid function. For the simplicity of analysis, assume F( � ) is a linear function, 

then the weight adaptation for each training vector xm is approximated by 
ij

m m m m
i jw c x x∆ ∝ ⋅ ⋅ , 

so the weight computation is  

 
ij

m
ij

m

w w∝ ∆�  (3.17) 
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The non-linear function, F( � ), is generally monotonic, it is still reasonable to 

approximate the weight computation with a linear combination of weight adaptation for 

each training vector. Our objective here is to show that the Palm network can perform 

incremental learning and that unequal vector weights create a weighted Voronoi region.  

Though not shown here, it is possible to have far more complex weight computations. 

One example is to use time-varying averages similar to a Kalman filter as is used in the 

BCPNN algorithm (Sandberg, Lansner et al. 2000). 

When a test vector x� , which is a noisy version of one of the training vectors, is 

presented to the network, an ideal associative memory should return a training vector x 

that has the maximum posterior probability ( , )P x W x� . Under the condition that the 

network W is independent of x�  given x, the posterior probability ( , )P x W x�  can be written 

as: 

 
( ) ( ) ( )( , , )

( , )
( , ) ( , )

P W x P x x P xP x W x
P x W x

P W x P W x
= =

��
�

� �
 (3.18) 

Taking the logarithm on both sides, we get 

 log ( , ) log ( ) log ( ) log ( )P x W x P W x P x x P x∝ + +� �  (3.19) 

During retrieval, we want the vector x that maximizes log ( , )P x W x� .  We can 

enforce the neuronal activity update in the gradient ascending direction of log ( , )P x W x� , 

 log ( , ) log ( ) log ( ) log ( )
d d d d

P x W x P W x P x x P x
dx dx dx dx

= + +� �  (3.20) 

Letting ( )m mP x c∝ , and assuming that ( )P x x� depends only on the input error rate, 

that is, ( )m
iP x x e∝�  for all the m, then log ( )

d
P W x

dx
 becomes the central quantity in 

Equation (3.20). If we further assume that the elements in the weight matrix W are 

conditionally independent of each other, then ( )P W x  can be written as: 

 
,

( ) ( , )ij i j
i j

P W x P w x x= ∏  (3.21) 

Using equation (3.17) and the central limit theorem, ( )ijP w can be approximated by 

a Gaussian distribution: 

 ( ) ( ; , )ij ij w wP w G w µ σ�  (3.22) 
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with �
�� ��  and � ��� ��� � ��� , where �  is the percentage of the active 

nodes in a training vector. Therefore, the probability of W, given x is: 

 ( , ) ( ; , )ij i j ij w i j wP w x x G w cx xµ σ+�  (3.23) 

Taking the derivative of both sides of equation (3.21), we have: 

 log ( ) log ( , )ij ji
ji i

P W x P w x x
x x
∂ ∂=

∂ ∂�  (3.24) 

From equation (3.23), we get: 

 2

2
log ( , ) [ ( ) ]ij j ij w j i ji

i w

P w x x c w x c x x
x

µ
σ

∂ = ⋅ − − ⋅ ⋅
∂

 (3.25) 

As derived by Lengyel and Dayan (Lengyel and Dayan 2004), the optimum 

neuronal activity updating function ���� 	
��  is: 

 ��� � �� 	 �	 � 	
�� � � ��� � � �  (3.26) 

���� 	
��  is approximately optimal when retrieving the information stored in the weight 

matrix W. Then the central quantity of the gradient ascent in equation (3.20) becomes: 

 2

2
log ( ) [ ( , ) ]i j

ji w

P W x A x x
x

ε
σ

∂ = −
∂ �  (3.27) 

where �  is a constant.  

Equations (3.26) and (3.27) show that the weighted sum of inputs leads to 

gradient ascent of the posterior probability ( , )P x W x� , and that the retrieval update defined 

by ���� 	
��  is a procedure for finding the logarithm of the maximum posterior 

probability, log ( , )P x W x� . Therefore, the output vector retrieved by a dynamically learned 

associative memory approximates the most likely training vector in MAP sense. 

 

3.6.2 Weighted Voronoi Regions in Dynamic Learning 

Since the weight matrix elements are adjusted incrementally, dynamic learning 

implies that the retrieval procedure can take place during learning. In this mode of 

operation, the Voronoi regions are affected by the learned mappings, with the boundaries 

being reshaped by the learning of new training vectors. 

The retrieval procedure returns a vector that has approximately the maximum 

posterior probability ( , )P x W x� . In equation (3.18), where P(x) is proportional to c, ( )P x c∝ .  
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For ( )P x x� , the smaller the input error rate ei, the more likely that x�  is generated by x. 

P(W|x) is a monotonic increasing function of the coefficient c. So the posterior 

probability ( , )P x W x�  is influenced by its coefficient c. We now show that dynamic 

learning will generate weighted Voronoi regions in the input space. 

In equation (3.18), ( )P x x�  is a measure of the distance ( , )d x x�  between x and x� . 

The smaller the input error rate ei, that is, the smaller the distance ( , )d x x� , then the larger 

the likelihood ( )P x x� . Suppose two training vectors x1 and x2 have different coefficients 

c1 and c2 respectively, with c1 > c2. Let 1 2( , ) ( , )d x x d x x=� � , thus 21
( ) ( )P x x P x x=� � , that is, x�  is 

equally likely to have been sent as x1 or x2. ( , ) /[ ( ) ( )]d x x P W x P x�  can be regarded as the 

weighted distance of x�  from x. Since c1 > c2, we then have: 

 1 1 1 2 2 2( , ) [ ( ) ( )] ( , ) [ ( ) ( )]d x x P W x P x d x x P W x P x≤� � ,  

or equivalently: 

 1 1 2 21 2
( ) ( ) ( ) ( ) ( ) ( )P W x P x x P x P W x P x x P x≥� � . 

Therefore, the weighted distance of x�  from x1 is smaller than that from x2, so x� is 

within x1’s weighted Voronoi region. By equation (3.18), we can 

infer 1 2( , ) ( , )P x W x P x W x≥� � . Consequently, the network will output the training vector that 

has the minimum weighted distance. As a result, a dynamic-learning Palm network 

approximately partitions the input space into weighted Voronoi regions, with each 

influenced by the corresponding influence coefficient. Since the coefficient can varies 

along learning, the value of the coefficient for each training vector can be a complicated 

function of time. The convergence characteristics and the attractor basin of the weighted 

Voronoi regions are not discussed here, which could be a direction for future research. 

The influence coefficient is a value that represents how dominant a training vector is in 

the network, so that the vector that has a relatively high influence coefficient has better 

error tolerance and is less likely to be forgotten; while another vector having a low 

influence coefficient will be more easily forgotten. 
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3.6.3 The Retrieval Performance in Dynamic Network 

In dynamic learning, when a vector is presented to the network more frequently, 

its influence coefficient, c, will increase, thus its corresponding Voronoi region will grow, 

which is what one would expected from a Bayesian perspective. The retrieval 

performance is thus affected by c, as is the relative size of the Voronoi regions. If infinite 

learning time and stationary priors are assumed, the influence coefficients are also 

stationary, and the sizes of the Voronoi regions are uniquely determined by the influence 

coefficients, with larger c corresponding to larger Voronoi regions and relatively better 

error resistance.   

 Figure 3.13 illustrates the relationship between the retrieval performance and the 

coefficient c. The retrieval performance is defined as the ratio of the number of 

accurately retrieved test vectors to the total number of test vectors. Due to the non-

linearity of the network, the retrieval performance is non-linear with respect to the 

influence coefficient. 
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Figure 3.13 The relationship between the retrieval performance and the influence coefficient of 
each training vector. In this network, n=1000, k=10, M=700, and ei=0.3. For each training vector, 
300 testing vectors are used, and all the 300 test vectors have the same c (c=i/1000, i is the index 
of the training vector). 
 

A larger influence coefficient corresponds to better retrieval performance. A 

vector that has a large influence coefficient is less likely to be forgotten than low 
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coefficient vectors. It is interesting to look at forgetting and unlearning. The less a stored 

vector is used, the more likely it will be forgotten. On the other hand, a stored vector that 

is used frequently will be reinforced. To unlearn a frequently used habit thus requires 

significant effort to reverse or disable the structural changes. The dynamic learning 

model suggests a common idea: repetition is essential for most types of learning. 

In cortex, short-term memory may involve an increase in the efficiency of 

synapses for only a short period of time. If the influence coefficient can be modeled by 

some neurotransmitter modules to affect the synaptic efficacies, the dynamic learning 

associative network can be modeled as a short-term memory. Short-term memory can be 

transferred to long-term memory by repeating the information. For example, sleep is 

considered a necessary factor for establishing well-organized long-term memories. 

Probably during sleep, the important knowledge and events are rehearsed (Hecht-Nielsen 

2003b), therefore the high-influence coefficient, corresponding to the importance of an 

event, may also be modeled to simulate long-term memory.  

There are many types of memory in the human brain, and different neural 

activities associate with different functional phenomena. Dynamic learning associative 

memory is a simple model, and this single model by itself cannot simulate all the various 

kinds of memory. Still, the general learning characteristics of the model provides helpful 

material in modeling a more complex system and makes it more useful in a wider ranged 

of application. 

In the next chapter, we implemented reinforcement learning in a Palm network 

(Zhu and Hammerstrom 2003), where the state-action mappings are learned 

incrementally. Reinforcement was a demonstration of the use of dynamic learning in a 

Palm network. Our results show that when a particular state mapping is fed to the 

network more frequently, its effect on the input space increases. However, an even more 

important result is that the complex mappings of fairly arbitrary state-action pairs can be 

learned via dynamic learning defined over a simple associative memory model, and that 

the weighted Vornoi regions are formed accordingly. 

In conclusion, we’ve discussed the functional analogy of a simple associative 

memory network to Voronoi classification, and subsequently to Bayesian inference.  It 

was shown that when the input vector is within the attractor basin of a training vector, the 
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associative network can return the most likely training vector in a Bayesian sense. 

Furthermore we introduced the concept of weighted Voronoi regions and then defined a 

dynamic learning version of the network that approximates weighted Voronoi 

classification.  In addition, this dynamic learning capability approximates the influence 

coefficient of each training vector and allows the representation of prior probabilities in 

the Bayesian inference process.  

The Bayesian inference approximation provides a straightforward and useful 

theoretical foundation for the operation of simple associative memory, such as the Palm 

model, and provides an analytical basis for the application of Palm network to real world 

problems. Based on these results, a Palm memory was used in an Enhanced Vision 

System (EVS) (Luk, Gao et al. 2004) used for pilot landing guidance. In this system the 

Palm model retrieved the original runway image from a database using small amounts of 

input data from a range of visual sensors, where association is done in feature vector 

space. The Palm model is an efficient way to do “most likely” Bayesian inference over 

our vector space. 

We believe that distributed representations used by neural-like models provide a 

way to significantly reduce, or more precisely spread, the inference calculation over a 

large number of simple processors. And they may be an important component of cortical 

computation. 

However, associative memory models such as Palm’s have significant limitations 

as potential models of cerebral cortex, one of the most serious is the model’s high 

connectivity.  Consequently more complex structures are required.  Research is already 

proceeding in this direction (Hecht-Nielsen 2003b; Johansson 2004; George and Hawkins 

2005).  One promising approach is to construct hierarchically connected associative 

networks that distribute the inference calculation to maximize inference efficiency, and 

capture higher order information from the application space. With the foundation 

presented developed in this chapter, the Chapter 6 will discuss the hierarchically 

connected network that is capable of utilizing high-order feedback from the above 

network and scaling to a large network size.   
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Chapter 4  

Reinforcement Learning in Associative Memory 

4.1 Introduction 

So far we have shown a number of useful characteristics of a simple associative 

model.  It is robust when the network is not overloaded, and it scales reasonably well.  In 

dynamic learning, each training vector has different influence on the retrieval 

performance and generalization ability. For a biologically inspired system, incremental 

learning via interaction with a larger environment is very important. Reinforcement 

Learning (RL) is a type of learning that fundamentally requires the ability to learn 

incrementally during network operation. It has been used by many systems that learn via 

direct interaction with their external environment. One reason for its wide-spread use, as 

a useful model of biological learning, is that it operates via trial-and-error, there is no 

supervisory feedback provided to the system, only a single success or fail reward signal is 

available. In many real environments the only feedback available is binary, pass/fail, 

good/bad, success/failure, etc. 

In this chapter, we show a Palm model applied to RL, demonstrating that a simple 

associative network is capable of dynamically learning complex, non-linear functions 

with good retrieval performance and generalization. Then using these results we discuss 

its potential as a model of specific areas of the brain such as the lateral intra-parietal (LIP) 

area. 

RL is often modeled with a separate “actor” and “critic.”  The critic learns to 

predict the value of certain actions under certain conditions (system and world state), and 

the actor learns to perform certain actions based on the predicted values.  It has been 
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recently proposed by neuroeconomics (Glimcher 2003), that the decisions animals make 

are also based on some kind of “critic” map formed in our nervous system that connects 

the sensation and the action. In this chapter, we investigate the “critic” and “actor” 

relationship in a dynamically learning associative memory. We propose a reinforcement 

learning based Associative Memory (RLAM) system, give its application in a simple 

grid-world simulation, and discuss the computational power of this model.  

 

4.2  Mappings in Brain 

Neural anatomy shows that sensory information is almost always topographically 

represented in the brain. For example, visual information perceived by the retina is 

mapped topographically (retinotopically) to primary visual cortex, as is somatosensory 

input. It is also believed that motor control results from a topographic-mapping of the 

motor areas in cortex to the muscles that control the movement (Glimcher, Dorris et al. 

2005). The connection between sensation and action is formed through a decision-making 

procedure where topographic parallel sensory information is transformed to the 

corresponding movement information. 

Recently, researchers have begun to model certain decision processes by using 

theories from economic game theory.  This area, called neuroeconomics (Glimcher 2003), 

leverages research on neuroscience, economics and psychology, and studies how neural 

circuits make decisions, categorizing risks and rewards, and the interaction with other 

animals. 

A map-like topographic structure in the brain transforms parallel sensory 

information into a relative magnitude map of expected reward, which, in turn, is mapped 

to the corresponding action. These various mappings are performed by associative 

memory like processing, consequently, associative memory appears to be one of the most 

important functions in many cognitive processes, and in various forms it appears to be a 

fundamental computational capability for a wide variety of neural computation. In a 

visual saccade, for example, the sensory information obtained by the eye is transformed 

into movement information, which controls the eyeball to perform the saccade. There are 

many complex circuitries involved in this operation, some of them can be approximated 
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by associative mappings. These mappings are learned incrementally by previous 

experiences, and it is believed that LIP participates in the decision making process. It is 

shown (Glimcher 2003) that the neurons in LIP carry information about the probability 

that a movement would yield a reward, and they also encode the value of each movement. 

In the sensorimotor process or the decision making process, the nervous system is trying 

to maximize the reward or fitness of the organism. 

The posterior parietal cortex is believed to participate in sensorimotor signal 

generation (Goldberg, Colby et al. 1990; Buneo, Jarvis et al. 2002). In reaching for an 

object, or doing a saccade to a visual target, the brain must transform the sensory 

coordinates of the stimulus into motor coordinates. Early motion planning appears to be 

made in the posterior parietal cortex. Based on different assumptions on how the 

sensorimotor transformation is performed, people build different models to simulate the 

functions in the parietal cortex. The model by Zipser and Andersen (Zipser and Andersen 

1988; Braitenberg and Schuz 1998) and the later studies by their group (Goodman and 

Andersen 1990; Mazzoni, Andersen et al. 1991; Andersen 1995) decompose the 

sensorimoter transformation into a series of sub-transformations, where the visual signal 

is mapped into several intermediate references, such as head-centered and body-centered 

coordinates. Pouget and Sejnowski (Pouget and Sejnowski 1997) propose another 

sensorimotor transformation model in which the sensory inputs are encoded in a 

representation suitable for generating motor commands. The representation is created 

from a set of basis functions that can be used to generate receptive fields in either 

retinotopic or head-centered coordinates via linear transformations. Their simulations 

show that the spatial representation model of parietal cortex can explain the hemi-neglect 

syndrome that the patient fails to respond to stimuli presented to the side opposite to a 

brain lesion. 

The Basal Ganglia are sets of cortical nuclei that are involved in movement 

decisions and control. Cell death in the basal ganglia causes a variety movement 

disorders, such as Parkinson’s disease and Huntington’s disease. The Basal Ganglia play 

important roles in the contextual analysis of the environment and the use of that 

information for movement (Houk 1995). Some of its functions include: sensory-motor 

associative learning, reinforcement learning, procedural learning, planning, etc. The basal 
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ganglia play a major role in selecting different sensory-motor pathways according to 

different contexts. A modular neural-network model by Baldassarre (Baldassarre 2002) is 

proposed to simulate the role that the basal ganglia play in learning and motor selection 

with different goals. The methods that this model uses are reinforcement learning based 

actor-critic methods, and are similar to the methods that our RLAM system uses, except 

that there are multiple goals in their system. 

 

4.3 Reinforcement Learning (RL) 

RL is an online learning rule that interacts dynamically with an environment. 

Many biological neural systems perform some kind of reinforcement like learning. There 

are two components in an RL system: the agent and the environment. The learning takes 

place via a series of steps.  At each step, the agent performs an action, if the action is 

successful, the agent gets a reward, otherwise no reward is given. The agent’s goal is to 

maximize reward. After each step, the agent updates its selection policy according to the 

reward, and so incrementally improves task performance. After sufficient exploration of 

the state space, the agent generally finds a policy for that task that returns a maximum 

reward. 

Q learning is one of the most important methods in RL. In Q learning, there are 

two basic elements: the actor and the critic. The critic estimates the value of the current 

action-state pair, and the actor selects the action based on input from the critic. The 

system is generally provided with a reward signal that is normally binary.  From this 

signal the critic learns to estimate the value of action-state pairs.  The goal of Q-learning 

is to develop a policy that generates certain actions in certain states that maximizes the 

reward. In Q-learning, ( , )Q s a , the value for the state s  and action a  pair, represents the 

agent’s current knowledge about expected long term reward for taking action a  in state 

S .  For each state, there may be several Q-values corresponding to each action, the agent 

will generally take the action that has the maximum Q-value (“exploitation”). The goal of 

learning is to reach a long-term maximum reward from the environment. The Q-value 

update rule is: 

 1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t ta
Q s a Q s a r Q s a Q s aα γ+ +← + + −  (4.1) 
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Q-learning is one of the most popular forms of RL. However, it converge very 

slowly to a good policy. Q-learning essentially creates up a look-up table that, for any 

state, the possible actions and their relative values are listed by the table.  Since it is 

difficult to explore all possible actions from all possible states (even once, let alone 

several times), we would like to implement the critic in a way that leverages reasonable 

generalization of the values of known states and actions to unknown state and/or actions, 

which a table cannot do. Generalization allows for the efficient storage of learned 

information and broad utilization of the knowledge between “similar” states to actions. 

In the RL algorithm an optimal policy can be learned eventually and a “good” 

policy learned quickly, where a policy is the mapping from states to the best possible 

action for each state. The knowledge of past experiences actually exists as reward values 

for each state. The learning procedure essentially establishes the mappings from the states 

to the optimal values for those states. 

It is possible to build “localized” association models that are very similar to a 

look-up table.  However, for the task that has a very large state space or action space, 

traversing every state and action is not possible. A more general structure is needed and 

preferably one that allows reasonable generalization so that the agent can make efficient 

use of its experiences. The RLAM system generalizes very well and will be discussed 

later in this chapter. 

One of the important strengths of neural models is their ability to generalize, 

which is due, in part, to the use of distributed representations.  The nodes in the network 

can be trained to respond to a certain set of states, and the networks can be trained to 

store a variety of mappings, including: state → policy, state → value functions, 

state+action → reward, etc. We will use the Q-learning technique in our dynamic learning 

Palm network, which implements the two mappings: S a→  and S Q→ . Both networks are 

one-layer association networks with no hidden layers, and k-WTA is used in S a→ . We 

will see later that the k-WTA step enables a one-layer RLAM system to quickly learn 

complex mappings. 
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4.4 The RLAM System 

4.4.1 The Model 

We chose the grid-world goal finding example to compare the RLAM with the 

table driven Q-learning system. A grid-world of 15 15×  is used. Each grid corresponds to a 

state, and in each state, 4 different actions are possible: moving one step north, south, east 

or west. Each action traverses only one square. 

A robot (the agent) starts at a random position in the grid, and the task for the 

agent is to find the goal point that is located at the center of the grid. This task can be 

extended to a more general task in which the agent starts at a random grid and the goal is 

also located at a random grid. Another variation is to add barriers which must be 

traversed, such as maze learning.  We have experimented on the general grid-world task, 

and moving the smaller space to a larger space is fairly straightforward, so to simplify the 

discussion, we only discuss the grid-world task where the goal is always set at the center 

of the grid.  But RLAM is very effective even in the presence of complex barriers. 

In the grid task, when the robot finds the goal, a new training epoch begins and 

the agent is started at a new random state. The reward is either 1 or 0, corresponding to 

finding or missing the goal respectively. The states are represented by a 15 15×  two-

dimensional array of neurons.  For each state that is not at the edge of the grid, the 9 

neurons in a 3 3×  field surrounding the neuron are activated. For some states that are at 

the edge or the corner of the grid, at least 4 neurons are activated.  

We constructed two networks, one is the “actor” and one the “critic:” actW  and 

criticW .  actW  implements the mappings from the state S  to the action a , and criticW  

implements the mappings from the state S  to the value function Q . Both networks take 

the state of the robot as input.  The output of the network actW  is the robot action vector, 

which has only 4 elements, corresponding to the 4 directions an action may take. The 

action vector can have only 1 active element. The output mapped from the network criticW  

is the Q-value represented by the state’s value.  
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actW  is initialized to random values, and all the elements in criticW  are initialized 

with the small positive value of 0.1 to set up connections between all the states and the 

output value neuron. The action vector is calculated by Equation  (4.2), which is the same 

rule used in the Palm retrieval process. In the action vector, there is always only one 

neuron that is active, though other kinds of encodings are possible. If, by Equation (4.2), 

there is more than one active neuron, the agent randomly chooses one action from all the 

possible options for that state.  This means that more than one action is possible for that 

state.  This technique also injects a certain degree of randomness into the action selection 

which is necessary for the network to adequately explore its environment (“exploration”).  

The algorithm for RLAM is described by Equations (4.2)-(4.9). The weight 

adaptation for actW and criticW  is shown in Equation (4.8) and Equation (4.9) respectively. 

In the equations, ⋅  represents the inner product: 

 ( )t act ta f W S θ= ⋅ −  (4.2) 

 1( , )t t tS a S +→  (4.3) 

 t critic tQ W S= ⋅  (4.4) 

 1 1t critic tQ W S+ += ⋅  (4.5) 

 *
1t tQ r Qγ += +  (4.6) 

 *
t tQ Qε = −  (4.7)  

 actW Sε∆ =  (4.8) 

 
,

( , )critic critic critic
i j

W S W W i jαε∆ = ⋅ �  (4.9) 

In the above algorithm, at time t , the agent is in state tS . The action vector ta  is 

computed from actW , then the agent takes the corresponding action, entering a new state 

1tS + . The values for states tS  and 1tS +  are obtained from equations (4.4) and (4.5) 

respectively. The error is calculated by equation (4.7), which in turn controls the 

adaptation of weight matrices actW  and criticW . 

After learning, both actW  and criticW  are normalized incrementally by the use of the 

Sigmoid function, so the weight values are constrained to be between 0 and 1. This forces 

a slight inhibitory effect on the weight values and prevents them from growing to 
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arbitrarily large values.  The weights then require multiple bits to represent. We have not 

yet explored the minimum precision required for effective incremental learning. Limited 

precision also eliminates one problem with Hebbian where the weights can increase 

without bound. Since we are assuming a system with stationary probabilistic behavior, 

which is manifest by the goal and subsequently the reward signal being fixed in time, no 

additional subtractive or decay mechanism is required.  The weight values can also be 

thought of as representing the confidence or probability of the strength between the input 

and output neurons. 

 

4.4.2 Implementation – Grid-world Mapping 

We compared the results from the RL based associative memory with results from 

the traditional Q-learning system. Using the RL based Associative Memory (RLAM) 

structure, the learning process converged more rapidly than the Q-learning Look-up 

Table (QLT) system, and RLAM’s ability to generalize was much better than QLT. In the 

terminology discussed below, each action is one step, and an epoch is the series of steps 

that the agent takes to accomplish the task. 

Figure 4.1 shows that, for a simple grid-world example, after 3000 training steps 

RLAM achieves a successful retrieval rate of 98%, which means that for 98% of all the 

grid positions, the agent can successfully accomplish the task. While in the QLT system, 

after 3000 steps, the system attains 11% successful retrieval rate, only after 40K training 

steps, can the agent achieve 97% successful retrieval rate.  The data in Figure 4.1 are 

from one run of simulation, many independent runs of simulation are tested and show the 

similar results. The data discussed in this section are from the same sun of simulation as 

Figure 4.1. 
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Figure 4.1 Retrieval performance versus total number of training steps 

 

The RLAM learns the grid-world much faster than QLT in that RLAM can 

extrapolate each learnt position to a region of positions that are similar to the learnt one. 

This generalization ability allows RLAM to learn only a limited number of examples and 

can reasonably predict the unseen ones fairly quickly.  

Even after 3000 training steps in RLAM, the agent has not traversed every grid 

point. As shown in Table I, to achieve a successful retrieval rate of 98% in RLAM, the 

agent has been trained by 137 epochs. For each new epoch, the agent starts at a new 

random grid point. There are a total of 225 grid points, so not all the grid points were 

visited by the agent. However, the agent has learned enough to be able to generalize 

successfully to the unvisited states.  In the QLT system, the agent was trained for 2145 

epochs, which means that each grid point was visited on average of 9 times (2145 ÷ (15 x 

15)).  Since the look-up table does not generalize well, the agent has to traverse every 

state several times, until it acquires enough experience about the environment to operate 

successfully. 
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TABLE I 
 

 Number of 
Steps 

Number of 
Epochs 

Successful 
Retrieval Rate 

RLAM 3K 137 98% 
QLT 40K 2145 97% 

 

 

In the RLAM system, after training, the network actW  has self organized 

corresponding to the grid-world. The weight values can be illustrated as gray-level 

images with 0 representing black and 1 representing white. Figure 4.2 shows two 

examples of grid-world problems: A(1) is the simple grid-world with the goal at the 

center.  B(1) adds some barriers to the grid-world used by A(1). After training, each 

output neuron associates with different groups of states, and the associated states vary 

with different road maps.  

 

 

                            
   A(1)        A(2)         A(3)                   A(4)                  A(5) 

 

                                
    B(1)                   B(2)                   B(3)                   B(4)                   B(5) 

Figure 4.2  Different road maps in grid-world associate with different actions.  A(1) is the 
simplest grid-world, and the goal (the red point) is at the center. A(2)-A(5) are pseudo gray-level 
images of weights corresponding to four output neurons, with 1 representing white and 0 
representing black. A(2)-(5) illustrate the weight values that associate the states with the 
corresponding actions of going north, south, east and west respectively. B(1) is a grid-world that 
has barriers colored in green. B(2)-(5) correspond to the weights that associate the states with the 
actions of going north, south, east and west respectively. 
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Before training, the state-to-action mappings are random, and the weights are 

random. After several training iterations have taken place, the network will gradually 

self-organize. If more than two action neurons are prominent in any state, the agent can 

randomly choose one direction. For the final goal, there is not much difference between 

choosing which action to take, and in real world problem, there is usually more than one 

option of comparable value. 

The learning speed and efficiency in RLAM is better than the QLT, and RLAM is 

more biological in that the system adapts incrementally via its interaction with the 

environment. Also, the memory of RLAM converges more quickly and generalizes better 

than QLT. As the training set derives from the various positions the agent is in when it 

explores the environment, to learn enough about the environment to have an adequate 

representation of the environment, the agent needs to explore the environment 

sufficiently to generate those training vectors. Therefore, for more complex mapping 

problems as shown in Figure 4.2 B, special training vectors around the barriers are 

needed. After training, every training vector owns its weighted region: if the training 

vectors around barriers are not trained, the normal training vectors would have large 

influence on the barriers and the barriers would not be represented by the normal training 

vectors; when the training vectors around barriers are trained, those special training 

vectors will gradually form their own regions to override the dominance of the normal 

training vectors so that the barrier details can be represented. As we discuss below, with 

sufficient exploration time, RLAM can learn arbitrarily complex landscapes in terms of 

arbitrarily placed barriers – as long as a path exists to the goal. 

 

4.5 Complex Mappings 

The grid problem shown in last section is relatively simple. The next step is to 

investigate the computational capabilities of RLAM in a real application and to assess its 

ability to create the necessary representations under these conditions.  

It’s been shown that Q-learning always converges to the optimal values with 

probability one as long as all actions are repeatedly sampled in all states and the action 

values are represented discretely (Watkins and Dayan 1992). This implies that, as long as 
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there is enough memory to store all the temporary estimation of the values for each 

possible state-action pair, i.e. in a look-up table, the optimal value function can be found. 

In real-life problems with large state spaces, especially when it is impossible to 

visit all states, and there are many possible actions in each state, generalization is 

absolutely necessary. The use of the associative memory’s function approximation 

capability with RL works very well. An associative memory implementation does not 

need nearly as much storage as the look-up table, as shown in Chapter 2, it thus speeds up 

the learning process.  And, unlike gradient descent algorithms such as back propagation, 

it trains very rapidly. Generally, associative memory learning is one-shot learning, which 

learns very fast. Here we add incremental modification to the weight matrix, in most part, 

it still belongs to one-shot learning.  

The Palm associative network has the ability to do basic generalization for noisy 

and incomplete input. In dynamic learning, the associative network partitions the input 

space into arbitrarily sized weighted regions, with each influenced by a corresponding 

influence coefficient. The influence coefficient is a value that represents how dominant a 

training vector is in the whole network, thus the weighted area of a region illustrates the 

generalization ability of that particular training vector. In the RLAM system, the 

influence coefficient of a particular grid position is represented by the number of times 

the agent visits that position. In the grid-world problems discussed here, at the beginning 

of training all grid points are almost equally visited by the agent, thus the influence of 

each grid point is almost equal. As training continues, the grids near the goal are visited 

more often, their dominance become stronger and they are gradually extended further 

into more peripheral areas. In the situation where there are barriers in the grid, as the 

grids near the barriers are visited more often, the influence of those grids may eventually 

override the dominance of the regular grids, so that the special actions corresponding to 

the barriers can be learned and reinforced over the regular actions corresponding to the 

normal grids. 

The question then is whether RLAM can implement arbitrarily complex grid-

world maps. Can the weighted regions represent arbitrary mappings? Although multi-

layered perceptrons are good function approximators (Hecht-Nielsen 1987; Hornik, 

Stinchcombe et al. 1989), associative memory is normally not considered to be a function 
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approximator. A thorough study of this aspect of associative memories requires a much 

more rigorous treatment and is beyond the scope of this dissertation. However, Maass  

has shown that “any Boolean function f: {0,1}m � {0,1} can be computed by a single k-

winner-take-all gate applied to positive weighted sums of the input bits”, and “circuits 

consisting of a single soft winner-take-all gate applied to positive weighted sums of the 

input variables are universal approximators for arbitrary continuous functions from Rm 

into [0,1]” (Maass 1999; Maass 2000). 

Therefore, any mapping from states to actions can be implemented by a one-layer 

positively valued network using k-WTA as the only nonlinear operation. For a complex 

mapping problem, as long as the training vectors that describe the specifics of the input 

space are trained properly (with appropriate influence coefficients), such mappings can 

be represented by the RLAM system. Although the network parameters, such as the 

network size, the number of training vectors, and the exact value of influence coefficient 

for each training vector, etc., are not specifically determined and can vary with the 

problem, in theory, any complex mapping can be represented by a RLAM-like 

associative memory structure. We demonstrated in the previous section that associative 

memory models do well in this role and that for many real world applications they will be 

sufficiently robust. In our Enhanced Vision System (EVS) for aircraft landing guidance 

(Luk, Gao et al. 2004), an auto-associative memory is used to efficiently retrieve a clean 

best-matched image from the noisy input sensor image. 

Although associative memory can be regarded as a function approximator, can the 

combination of function approximator with RL guarantee an optimal policy for arbitrary 

function approximation? There are limitations on how well a function approximator, 

when used with RL learning, can approximate arbitrary complex mappings. This 

limitation is due to the noise generated by the function approximator. According to Thrun 

and Schwartz (Thrun and Schwartz 1993), if the generalization error is independent and 

uniformly distributed, Q-learning may fail to provide the optimal policy. The failure is 

caused by overestimation of the value function by the critic. In Q-learning, the actor will 

always choose the action corresponding to the maximum estimated value of a state-action 

pair. Due to the approximation error, some values may get larger, and the max operation 
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makes it more likely that it will overestimate for the corresponding actions. Thus, the 

mean number of errors may become a positive number instead of zero. 

The RLAM, as implemented here, uses two networks: one that maps the input 

states to value functions (the critic); and another that maps the states to actions (the actor). 

With the associative memory k-WTA, the network has the ability to handle non-linear 

maps. The ultimate policy that RLAM actually learns is a mapping between the state and 

the corresponding action. Although there are limitations on arbitrary approximation due 

to the combination of associative memory and RL, RLAM can learn complex functions if 

enough training patterns are sampled in a reasonably large network. In the early stage of 

training when insufficient training patterns have yet been sampled, there are a few large 

regions that are crude approximation to the final mapping, with ever more experience, a 

more complex structure that represents the final solution then evolves. 

This incremental learning characteristic is one of the major strengths of RLAM, 

where some minor weight adjustment is applied at each epoch. In the dynamic learning of 

neural-like model, there are two different approaches to learn. One is the incremental 

method where the weights are adjusted according to some cost function. Back-

propagation and restricted Boltzmann machine fall in this category. The other method is 

one shot learning where weights are constructed by a batch of training vectors. Palm 

network and Granger’s model (Coultrip, Granger et al. 1992; Coultrip and Granger 1994) 

belong to this category. So far the incremental learning has built the most useful networks, 

the one shot learning, however, requires much larger and more complex networks. One 

shot learning is more biologically realistic in that it learns very quickly, can leverage 

custom hardware more effectively, requires much lower precision and has more efficient 

weight update. The RLAM system we built here is based on Palm network, for the most 

part, it belongs to one shot learning, though some incremental modification on weights is 

applied.  
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Chapter 5  

Spiking Palm Model 

5.1 Background 

In previous chapters, we have seen certain nice properties of the Palm model: 

sparse representation, large capacity, fault tolerance to input and internal errors, and ease 

of implementation. However, it is still a very abstract model. Perhaps the biggest 

simplification is that no temporal information is used, or, as in some models, is 

represented spatially. Real neurons compute via complicated electrical and chemical 

processes that operate through time. And most cognitive tasks require a temporal 

dimension, and relative timing is crucial in learning (Hopfield 1995; Maass 1997; Abbott 

and Nelson 2000). 

It has always been difficult to add temporal information to neural network models. 

Although there is no agreement on how inter-neuron information is encoded, many 

neuroscientists agree that the relative firing time or inter-spike interval of a neuron is 

important in encoding information in many real neurons and that the varying lengths of 

dendritic trees contributes delay sensitivity to neuronal information processing. This 

realization has led to the development of a range of mathematical spiking models (Maass 

and Bishop 1999; Hopfield and Brody 2000; Hopfield and Brody 2001; Gerstner and 

Kistler 2002). 

The spiking model proposed by Knoblauch and Palm (Knoblauch and Palm 2001a; 

Knoblauch and Palm 2001b) is used as a model of primary visual cortex. This model is 

based on the basic binary Palm model, and a biologically plausible retrieval algorithm is 

introduced, where threshold control is performed by a number of inhibitory neurons. 

Though the membrane conductance of a neuron is dynamically adapted to the incoming 
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spikes, the temporal learning between the pre- and post- synapses is not a part of this 

network, and the connections are inherited from binary model. 

There are other spiking models based on various associative networks. Ruf (Ruf 

and Schmitt 1997) applies the temporal coding in the self-organizing map. In Maass’s 

spiking model, detailed compartmental neuron models are simulated in a Hopfield 

network architecture. Maass claims that any Hopfield network can be emulated by 

spiking neurons in temporal coding (Maass and Natschlager 1997; Maass and Natchlager 

1998). In Gerstner’s spiking associative memory (Gerstner 1990; Gerstner and Hemmen 

1992), some biological characteristics of spiking neurons are incorporated in the network, 

and the static network performance is similar to the results obtained by a spike rate 

encoded network. The spiking model proposed by Sommer and Wennekers (Sommer and 

Wennekers 2001) incorporates the compartmental spiking neuron developed by Pinsky 

and Rinzel (Pinsky and Rinzel 1994), and simple clipped Hebbian learning is used.  

Hopfield and Brody (Hopfield and Brody 2000; Hopfield and Brody 2001) 

propose a network of integrate and fire neurons that can implement spatiotemporal 

integration. In their network, the activity (spiking rate) decay rate is different for different 

spiking neurons, and the convergence or synchronization to a common activity level for 

different neurons represent the recognition of an event. This recognition is robust to 

temporal delay and invariant to the difference of source generation. 

Another integrate-and-fire neuronal networks that can implement Bayesian 

inference for graphical models is discussed by Rao (Rao 2005). In these recurrent 

networks, the membrane potential dynamics of neurons is used to implement belief 

propagation in the log domain, and the spiking probability of a neuron is shown to 

approximate the posterior probability of the preferred state encoded by the neuron, given 

past inputs. In the experiments, a single-level network is able to generate inference of 

motion direction, and a two-level network is able to do hierarchical inference of object 

identity at an attended visual location. 

All the models mentioned above incorporate a number of biological aspects of a 

neuron, such as postsynaptic potential, Poisson distributed inter-spike intervals, the 

absolute refractory period, decaying activity, etc. However, learning in the temporal 

domain is not fully discussed in those models. Learning in the temporal domain is a 
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complicated process, and it is not completely understood. In this chapter, we investigate 

and propose a way that temporal learning can be added to the Palm model, and then 

investigate the network operation in the temporal domain. 

 

5.2 Description of Spiking Neuron Model 

The state ( )iu t  of neuron i  (1 i n≤ ≤ ), which is analogous to its somatic potential, 

is determined by two processes: the input from pre-synaptic neurons and its threshold: 
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where 
ijw  is the efficacy of the connection between neuron i  and j ; ( )f

ij jt tε −  is the 

postsynaptic potential of neuron j  contributing to neuron i ; ( )i it tη − , the threshold, 

describes the refractory effect of the output neuron i  that fires at 
it . 

In our simulation, to implement the neuron model in equation (5.1), we use )(tη  as  
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where refτ  is the absolute refractory period. In the simulation, after each neuron fires, we 

set the state to 0 in the refractory period. 

The postsynaptic potential function )(tε  we used is  
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d

s s

t T t T
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τ τ
− −= − −  (5.3) 

where )(tH  is Heaviside function, and 
dT  is the time delay. 

Hebbian learning is used during the training procedure, and can be implemented 

by the timing window 
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where f
j is t t= − . Also, ( )ijw t  is constrained to lie within the interval 0 ( )ij lw t W≤ ≤ . 
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5.3 Implementation 

5.3.1 Hebbian Learning 

Using Equation (5.4), the Hebbian learning between the pre- and post- synapses is 

illustrated in Figure 5.1, where only one synapse is shown. There are two strings of 

spikes: the upper one is pre-synaptic spikes, and the lower one is the post-synaptic spikes. 

The blue line shows the strength of the connectivity (weight) of the synapse. In the 

classical Palm model, there are no explicit inhibitory neurons, the value of the weight is 

unchanged if no further adjustment is made. So no weight decay is considered in the 

simulations. The weight adjustment depends on the relative timing of pre- and post- 

pulses, one example of STDP (Spike Timing Dependent Potentiation) learning. The 

timing window of (-3,3) is used in Figure 5.1. At time step 50, both pre- and post- 

synapses fire exactly at the same time, the weight has the largest positive adjustment. 
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Figure 5.1 The Hebbian learning between pre- and post-synapse.  
 

When a larger timing window of (-30,50) was used, the weight modification is as 

shown in Figure 5.2.  The blue curve indicates the weight associated with the synapse. 

The upper string of spikes is the pre-synaptic neuron activity, and the lower string of 

spikes is the post-synaptic neuron activity. For 0 < t < 200, both the pre- and post-
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neurons fire at the same time; for 200 < t < 400, the two are uncorrelated, both fire 

randomly; for 400 < t < 600, they are anti-correlated; for 600 < t < 800, the post-neuron 

fires 5 time steps earlier than the corresponding pre-neuron; and for 800 < t < 1000, the 

post-neuron fires 5 time steps later than the pre-neuron.   

There are minor adjustments of the weight during 200 < t < 400 when both 

synapses fire randomly. This is due to the occasional coincident firing of the pre- and 

post-synaptic neurons. 

The learning method used here is biologically plausible. Experimental results 

show similar STDP in cortex and the hippocampal neurons of rat barrel and cerebellum-

like structure of electric fish (Abbott and Nelson 2000). However, it is unlikely that a 

single pair of pre- and post- synaptic activities would incur the learning mechanism used 

here. How many pre- and post- synaptic spikes are needed for learning is still not known. 

The length of the timing window used here is just an empirical value. Still, Hebbian 

learning is clear.    
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Figure 5.2 Hebbian learning between input and output strings of spikes. 
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5.3.2 Network Retrieval Rrobustness 

To train a spike based associative network, the training spikes are clamped 

(forced) at both the input and output. The output neurons will fire later than the input 

neurons. After training, the weights that result from clamping are very similar to the 

weights obtained from clipped Hebbian learning. Consequently, for simplicity, we can 

just use the weights that are established by clipped Hebbian learning, which means that 

the values of those connections are either 1 or 0. 

In our simulation (Zhu and Hammerstrom 2002), there is not much performance 

difference between linear and non-linear function approximation of post-synaptic 

potential. Therefore, piece-wise linear functions are used to approximate the post-

synaptic potential. The linear function is very easy to implement in digital simulation and 

FPGA like hardware. We also assumed that there is no time delay involved in 

transmitting the action potential from the dendrite to the soma. The simplest post-

synaptic potential is illustrated in Figure 5.3, where the pre-synaptic neuron fires at time 

step 1, and the post-synaptic potential is shaped like a triangle. The charging period from 

time step 1 to 10 is referred as the rising range of the neuron.  
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Figure 5.3 Piece-wise linear post-synaptic potential 

 

Suppose there are n pre-synapses contributing to an output neuron, and the firing 

times of the n synapses can be denoted as is  (i=1,2,…,n). Also, suppose all the firing 

times are within the rising range T  of the first input synapse firing at 1s , that is 
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1 1js s s T≤ ≤ +  (j=2,3,…,n). For simplicity, if the discharging5 phase has the same slope 

as the charging phase, then the accumulated peak potential P at the output neuron is: 

 P k n T= ⋅ ⋅  (5.5) 

where k is the slope of charging phase, and is constant. 

In the binary model, the k-WTA rule is used to determine the threshold. In the 

spiking model, a population of inhibitory neurons can be included in the network such 

that the threshold is determined adaptively (Knoblauch and Palm 2001b). To be 

consistent with the binary model, for the experiments performed here, a modified k-WTA 

rule was used: the threshold of the spiking neuron is set to allow only those neurons that 

have the k largest peak potential to fire.  It can be easily seen that, as long as all the firing 

times are within the rising range of the first spike synapse, the spiking network will have 

exactly the same retrieval performance as in the binary (synchronous) network. In 

addition, the network performance does not depend on the specific firing times of the pre-

synaptic neurons, and the network is robust to jitter within the intervalT . 

When there is false (incorrect) firing and false silence (no firing), let the number 

of true (correct) firing neurons be Tn , and the number of false firing neurons be Fn . 

Suppose the true firing neurons all fire within T, while the false firing times are 

uniformly distributed. The peak potential of neuron output can be written as 

 TH k n T δ= ⋅ ⋅ +  (5.6) 

where δ  is the noise caused by Fn  false firing neurons. 

If there is a connection between the false firing neuron and the output neuron, for 

the binary network, the false firing neurons will always contribute to the output potential, 

so the noise 'δ  in the binary model satisfies the relationship ' Fk n Tδ = ⋅ ⋅ . In the spiking 

model, only those false firing neurons that fire within 1 1 2s t s T< < +  can contribute to δ , 

so the number of false firing neurons is less than or equal to Fn , thus Fk n Tδ ≤ ⋅ ⋅ , and 

'δ δ≤ . Therefore, the spiking network can always have equal or even better performance 

than the binary network, and is more robust to random temporal noise. Figure 5.4 

illustrates the activity of a simple spiking model. 

In the spiking network, for a binary input vector, a “1” will be represented by a 

spike that stochastically fires within a certain time interval, that is, the vector becomes a 
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set of pulses that occur near each other in time, but they need not occur at exactly the 

same time.  In the simulation, for the testing on an input pattern, the firing times of the 

true firing neurons are normally distributed, the mean firing time is 5 and the variance is 

2; and the false firing neurons are allowed to fire uniformly between 1 and 10. 

 

0 10 20 30

5

10

15

20

25

30

35

40

45

50

training pattern
N

eu
ro

n 
In

de
x

0 10 20 30

5

10

15

20

25

30

35

40

45

50

Time

testing pattern

0 10 20 30

5

10

15

20

25

30

35

40

45

50

output pattern

 
Figure 5.4 Pulses representation of training, testing and output patterns. 
 
 

In the simulation shown in Figure 5.4, 50 neurons were used, and 15 training 

vectors are stored in the 50×50 network.  The bit-flip error rate in the test vectors is 0.1. 

The output error rate in the binary network is 0.0465, and the output error rate in the 

spiking network is 0.0067. In the testing pattern shown in Figure 5.4, neuron 34 is not 

firing though it is supposed to fire in the training pattern, and neuron 28 is incorrectly 

firing in the testing pattern, since it does not fire in the training pattern. The output 

pattern recalled is exactly the same as the training pattern, except for a little jitter. As can 

seen, the spiking model is more robust to temporal jitter, and outperforms the binary 

model. 
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The simulation results shown above demonstrate the robustness of the spiking 

model to temporal noise (jitter). Since there is no temporal correlation between different 

nodes, association through time is not shown here. In sequential association, several time 

varying inputs corresponding to the same input pattern should be mapped to the same 

output pattern. With the current model, to show sequential association, time varying 

weights, rather than 0 or 1, would need to be assigned to the nodes, and the weighted 

temporal integration of the inputs should be unique to a particular input pattern. In this 

case, small temporal error tolerance would still be possible. 

This chapter shows a simple example of how the Hebbian learning can be 

implemented and lead to good performance in a spiking version of the Palm network. We 

have also discussed a simple implementation of spiking model which utilizes the 

temporal information in training. How the inter pulse interval can be utilized to represent 

information is not discussed here. The temporal information captured in this spiking 

neuron model is the correlation between input and output neurons. In real world 

application, the temporal information between the input sequences of patterns is 

important too (George and Hawkins 2004; George and Hawkins 2005; Hawkins and 

George 2006; George and Jaros 2007). In Chapter 4, we have discussed a reinforcement 

learning based RLAM that enables an interactive reaction of the system to the outside 

world. The interaction actually learns correlation between inputs, which shows an 

example of learning sequences of inputs.  
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Chapter 6  

Hierarchical Associative Networks 

6.1 Scaling Problem 

In the Palm network, even though the information capacity is relatively large, as 

more information is added to the network, the weight matrix can become quite full; for an 

auto-associative network, the maximum storage capacity is about 35%. As Palm shows 

(Palm 1980), the maximum capacity of the associative memory occurs when there are 

roughly an equal number of 1s and 0s in the weight matrix. Palm networks can scale to 

reasonably large sizes, but ultimately they still become limited by the connectivity.  For 

example, if we have a one million node associative memory with 50% connectivity, each 

node will take 500K inputs. Assuming a reasonably random distribution of 1s and 0s, 

here the law of large numbers causes the sums computed by each node to asymptotically 

equal, which makes the network incapable to distinguish between nodes. 

Biological neural systems have huge storage capacities and yet very sparse 

connectivity.  For example, in human neocortex there are about 1010 neurons with each 

node (neuron) having around 10-20K inputs, for a connectivity of about one 10,000th of 

1%.  If we ran a Palm network of about that size and connectivity, it is unlikely to work 

at all. Clearly we are still missing some piece to this puzzle. And it is an important piece, 

since to be able to use associative memories in many real applications, we may need to 

scale to very large structures. 

Since the numbers of connections would increase exponentially, 50% connectivity 

is simply not possible. As mentioned, real networks are extremely sparse.  So how do we 

create versions of our basic association algorithm that operate with such sparse 

connectivities.  According to Braitenberg (Braitenberg and Schuz 1998), there are two 
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kinds of connections in cortex: metric and ametric. The metric connections are very dense 

connections which are localized to a node’s local neighborhood. The ametric connections 

are much sparser, random, and are point-to-point connections with seeming arbitrary 

random connectivity to a wide variety broadly dispersed groups.  Consequently, the fully 

connected network is not biologically plausible. Furthermore, it is hypothesized that large 

groups of modules may have different learning and connectivity patterns, which allows 

them to specialize on certain types of functionality, creating a larger and more complex 

system. 

In this chapter, we will discuss the scaling of associative memory and, in 

particular, that of a hierarchically connected network structure that is scalable. We 

present a modular associative model based on a structure we call a Bayesian Memory 

(BM). We propose that neocortex can be hierarchically organized from a large number of 

Bayesian Memories. In the hierarchy, for example, some lower level networks may store 

different aspects of phenomenal information of an event, such as color, shape, length, etc., 

while other, higher level networks can store more abstract information of an event, such 

as concept, language, thinking, etc. These higher level networks can have longer range 

connections across the lower level networks, and they can compose even higher level 

networks. Information is propagated both downward and upward.  

 

6.2 Implementation Cost 

Given the same total number of neurons, there are different ways to build a large 

network. We can build a group of smaller networks, hierarchically connected, or, we can 

build a plain large network. In this section, we compare the computational cost of 

constructing a huge network with that of building groups of smaller networks. We use the 

binary Palm network as the basis for our comparisons. 

In Chapter 3, we showed that network performance is mainly determined by the 

network density, since the number of active nodes k  does not vary significantly with the 

network size n . If logk n= , then the density lρ  of a network that determines the 

network performance is: 
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l

k
n

ρ = − −   (6.1) 

where M is the number vectors being stored. Equation (6.1) can be simplified as: 

 
2

21 exp(1 )l

M k
n

ρ ⋅= − −  (6.2) 

Now suppose we need to store l M⋅  vectors, we have two strategies to fulfill the 

task: one by constructing a larger network with network size of 'n  to keep the same 

retrieval performance; and the other by using l  smaller networks, with each being size of 

n  and storing M  vectors.  

According to the neuroanatomy model of Braitenberg (Braitenberg 2001), the 

relationship between the volume V  of the brain and the number of neurons N  satisfies:  

 3 2V N=  (6.3) 

Then the averaged length d of the connection between any two neurons in volume V  is: 

 1 3 1 2( ) ( )d O V O N= =  (6.4) 

Therefore, for a fully connected network, the total length, L, of connections for all the 

neurons in volume V  is: 

 2 5 2( )L N d O N= ⋅ =             (6.5) 

The implementation cost is directly related to the total length of connections. Now to 

compare the implementation costs for the two strategies: 

Strategy 1: Build a larger network, with size 'n   

To keep the same retrieval performance, the density of the larger network should 

still be kept the same as lρ . Since, the number of active nodes need not change much, we 

assume the number of active nodes in the larger network is still k . By equation (6.2), the 

network size 'n  of the larger network should be 'n l n= ⋅ . 

By Equation (6.5), the total length of all connections is: 
 5 2 5 4 5 2

1 [( ) ] ( )L O n l l O n= =  (6.6) 

Strategy 2: Building a group of smaller networks without inter-connections 

There are a total of l networks, each with size of n. Then the total length of 

connections in l networks is: 

 5 2
2 ( )L l O n= ⋅  (6.7) 
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Comparing Equations (6.6) and (6.7), it can be seen that having a group of small 

networks can potentially be less costly than building a larger network, without sacrificing 

basic network performance. Also, these small networks can operate in parallel (including 

inhibitory k-WTA like operation), which is more computationally efficient than the larger 

network. Another potential benefit of building a series of small networks is that small 

networks can represent lower-level information via interconnections among these smaller 

networks, higher level of networks can be formed to implement more complex mappings 

and can represent more high level information or abstractions. Hierarchical structure is 

common in biological system. 

In brain, the volume of cortical gray matter G correlates with the volume of white 

matter W by a power law across nearly the full range of mammalian brain sizes: 

 ����
� �

�
�  (6.8) 

Where c is a dimensionless constant and T is the cortical thickness of the gray matter 

(Zhang and Sejnowski 2000). The gray matter contains cell bodies, dendrites and axons 

for local information processing, and white matter contains long axons between distant 

cortical areas. This suggests that the long connection volume increases more quickly than 

the surface area. Theoretical analysis (Zhang and Sejnowski 2000) shows this regularity 

might arise as a consequence of the compact wiring of neuronal interconnections. 

 

6.3 Brief Review of Some Hierarchical Memory Models 

In the nervous system, it is impossible for each neuron connects to all the other 

neurons considering the conduction time and volume expansion of the brain (Ringo, Doty 

et al. 1994; Anderson 1999). Also, the longer the communication channel, the more 

energy is needed for communication and the longer it would take to transmit signals.  

Prey and predators both have reasons to keep reaction times as short as possible.  Neural 

circuits are capable of massive computation, and are very energy efficient and fault 

tolerant (Laughlin and Sejnowski 2003). Anatomy shows that the long range connections 

are much sparser than more local connections. 

As already mentioned, Braitenberg and Schuz (Braitenberg and Schuz 1998) 

divided intra-cortical connectivity into two classes, metric and ametric connectivity for 
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the short and long range connections respectively. The metric connections are local and 

depend on the distance in that the probability of a connection is inversely related to the 

distance between the cells, while the ametric connections have no such simple 

dependence on the distance and appear much more random. It is not clear how the long 

range connections are established by either relay or transponder neurons in cortex or by 

the white matter (of myelinated connections). Braitenberg proposes an architecture for 

this connectivity, where the N neurons in the brain are subdivided into 1 2n N=  

compartments, with each containing 1 2n N=  neurons; the neurons in a compartment can 

each send one fiber to one of the other compartments (Braitenberg 1978). 

There is a certain amount of randomness in neural connectivity, among other 

things there simply not sufficient genetic material to specify the destination of every axon. 

However, the number of connections and the specific areas connected seems are non-

random. One interesting example concerns the work of Hasson et al. (Hasson, Nir et al. 

2004), where they showed that human beings watching the same video clip (with no other 

constraints placed on the task) tended to activate the same basic areas all over visual 

cortex, even in the higher order visual areas. The individual connections between neurons 

seem to connect randomly within the target area. 

There has been very little work on the scalability of artificial neural network 

models and in particular of associative memory models, which, though still limited, have 

been shown to scale to reasonably large sizes, as was discussed earlier in this thesis.  

O’Kane and Treves (O'Kane and Treves 1992a; O'Kane and Treves 1992b) proposed a 

similar neural model similar to Braitenberg’s. In their model, there are also short-range 

and long-range connections, and both connections are formed by Hebbian learning. They 

assumed that the short-range connections are densely connected, while the long-range 

connections are random and uniformly distributed. Their analysis shows that this 

structure is not an appropriate model for the associative memory structure in the brain. 

Their simple model does not explain either the high information storage capacity or the 

stability of information retrieval in very sparsely connected associative networks.  It is 

important not to extrapolate too much from their work, since there are a number of short-

comings in the biological plausibility of their model. For example, their assumption that 
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the long-range connections are random and uniformly distributed does not fit what we 

know about neocortex. 

Two other attempts to come to scalable associative memories are the network of 

networks structure proposed by Anderson and Sutton (Anderson and Sutton 1995), and 

Cortronics developed by Hecht-Nielsen (Hecht-Nielsen 1998; Hecht-Nielsen 1999; 

Hecht-Nielsen 2003b; Hecht-Nielsen 2003a). In Cortronics, neocortex is divided into 

regions (approximately 150K of them), each region is tightly connected with a partner 

region in the thalamus creating a BAM (Bidirectional Associative Memory). These 

regions are roughly comparable to cortical hypercolumns and act as separate independent 

networks on the order of about 10K nodes each.  During the training period (gestation 

and early childhood) each region forms a “lexicon” of specific patterns. These regions are 

then connected to each other in higher level structures that allow for complex 

relationships among the regions, such as “antecedent support networks” as well as 

hierarchies.  

The antecedent support networks use a method similar to that of BCPNN, where 

the conditional information between two nodes is learned incrementally. It should be 

noted that BCPNN also uses hypercolumn like regions that do winner-take-all processing. 

Among hypercolumns, a patchy connective mechanism is used to improve the retrieval 

performance and storage capacity. The patchy connection is similar to the ametric 

connection that Braitenberg defines, but is more or less random. 

Jeff Hawkins’s Hierarchical Temporal Memory (HTM) (George and Hawkins 

2004; George and Hawkins 2005; Hawkins and George 2006; George and Jaros 2007) is 

organized as a hierarchy of nodes, where each node implements learning and memory 

function. Each node on HTM is similar to the node in a Bayesian Networks and uses 

belief propagation as the fundamental computation. In addition, the nodes can learn 

temporal correlation via a transition matrix. 

Human neocortex implements complex information abstraction mechanisms.  

During recognition, the basic input provided by visual and auditory senses is passed from 

the low level reception area to high level cortex, gradually while the data pass through 

several layers more abstract representations or concepts are formed. These more abstract 

representations are invariant to many specifics of local input information. For example, 



  80 

       

visually different (color, size, variety) apples can be mapped to one common concept in 

mind that can represent the whole class of apples, even the word “apple” is mapped to the 

same concept in the mind, as can object position in visual field and scale.  This common 

concept is abstract, and can be recalled by sensory inputs or even inner brain activities.  

The information flow, as one sees in Bayesian Belief Propagation (BBP) (Pearl 

1988), between low and high levels is bidirectional. A group of low level networks 

contribute to the high level network. Once a high level concept is formed, it can in turn 

feed back the high level concept to its lower level networks. To represent abstract 

concepts, the node or nodes in the higher level network must be more complex and 

represent the common information embedded in the low-level networks that individually 

represent a specific aspect of information. Therefore, if some low level network has noisy 

ambiguous input, the information fedback from the high level can leverage this 

information by “forcing” the network to a stable state. 

One possible model for such a structure is build an associative network where 

each node represents a multi-dimensional vector. Every input to the node and the output 

of the node are vectors, with every component in the vector representing the state of the 

combination of some lower-level networks. With this structure, it is possible that the 

network can be scaled to very large sizes, and this structure provides a possible way to 

represent the high order information.  

In this thesis, we propose a Bayesian Memory (BM) model that can represent 

either a low or high level associative network.  A BM is a specialized associative network 

that, in addition to the mapping features of associative network, performs a maximum 

entropy data reduction of its input to generate its outputs. A network of BMs can then be 

integrated to form a hierarchical structure.  

There is a wide range of implementation possibilities for basic BM functionality.  

Here we will assume that internally a BM has very densely connected neurons. Between 

BMs, there are sparser long range connections. We can still assume some kind of 

Hebbian learning exists between the low and high level BMs. The proposed BM based 

hierarchical network provides one explanation on how the information is communicated 

and represented in the neural circuitry.  



  81 

       

6.4 Bayesian Memory Based Hierarchical Network 

We propose that hierarchical associative networks can be constructed using 

Bayesian Memories (BMs).  A BM works like a communication channel that can convey 

the most efficient information transportation without minimal data loss. It can also be 

viewed as a decoder that can retrieve the original message that is “closest” to the noisy 

input, as discussed in Chapter 3.  

6.4.1 Bayesian Memory  

A BM can be modeled as an associative memory, however, in addition to the 

“best match” for a given input, BM partitions the input and output spaces into regions 

that are centered around its input and output vectors. For our work, we assume that both 

the input and output vector spaces are discrete.  Also, temporal information is ignored for 

the time being.  

The BM internally represents the probability distribution of its input vector space.  

To be a maximum entropy device, the output vectors, each of which maps to some range 

of input vectors, should be equally likely. Ideally the output vectors should be a sparse, 

distributed code, and should form some metric over the output space. 

In the simplest case, where there is only one direction of information flow, data is 

input from the lower level network, with BM output up to the next higher level network. 

In most cases, information flow is bidirectional, since there is also feedback coming from 

a higher level network and also being sent to the lower level network. To be specific, the 

information propagated contains the conditional probability information as the updated 

belief that is defined in Bayesian networks (Pearl 1988). Another hierarchical model that 

is built on Bayesian belief propagation algorithm is Numenta’s HTM learning model 

(George and Hawkins 2004; George and Hawkins 2005; Hawkins and George 2006; 

George and Jaros 2007). In the HTM, the nodes are hierarchically connected as shown in 

Figure 6.1(A). The message λ sent to its parent is proportional to )|( gcP j , the 

conditional probability of seeing coincidence cj given that we have seen the group g. 

Inside each node, messages from below nodes are collected and computed first in the 

Spatial Pooler, where the bottom-up probability y is generated as a vector that is 



  82 

       

proportional to the probability of evidence from below given the coincidences in below 

nodes. Spatial Pooler contains the learned quantization centers which are the basic 

component patterns in inputs. The Spatial Pooler output y is then passed to the Temporal 

Pooler as shown in Figure 6.1(B).  The Temporal Pooler groups the quantization centers 

according to their temporal proximity. A time-adjacency matrix is created while training 

the Temporal Pooler. The feedback information π  in Node k provides top-down 

probability z to Node m1 and m2, where iiigcPz λπ /)|( ⋅=�  (George and Hawkins 

2005; George 2008). The belief of a node in its coincidence is the product of the top-

down and bottom-up probabilities over coincidences: zyBel ×= . 

 

iy λα ∏=
1mλ 2mλ
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1λ
2λ
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λ π

1π 2π

 
Figure 6.1 (A) HTM structure, (B) Belief propagation computations within a node. 

 

 

Bayesian Belief Propagation (BBP) networks (Pearl 1988) provides the 

fundamental theory for HTM. Our BM model is also built on BBP, and borrows from 

HTM. The interface of a BM is shown in  

Figure 6.2, where a BM can have two inputs: one from below VLin and the other 

from the above VHin, and two outputs: one goes to below VLout and the other goes to above 

VHout. The input dimension is Lsize for VLin and VLout , and the output dimension is Hsize for 

VHin and VHout. For information redundancy reduction, generally the lower level has larger 

dimension than the upper level, with Hsize � Lsize. 
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Figure 6.2 Bayesian Memory External Connections. VLin is the input vector from the lower level 
network, VHout is the output vector feeding to the higher level network, VHin is the feedback vector 
coming from the higher network, and VLout is the output vector feeding down to the lower level 
network. 
 

 

The lower level input vector VLin can be a given noisy input or the output of a 

lower level BM. The upper level input vector VHin is the feedback vector coming from the 

upper network. In case there is no higher level feedback, VHin should be NULL. However, 

for an auto-associative BM, VHin can equal to VHout. If VHin is NULL, then the VLout should 

be NULL too, and there is no feedback in the BM. When an output vector VHout is 

produced, the BM output is propagated upward to the higher level. 

Inside a BM there is a set of input and output vector pairs that map the input 

vector space to the output vector space. The vectors provide approximate representation 

of their spaces. The input and output vector pairs can be thought of as creating a 

“codebook” within the BM, as one sees in Vector Quantization (VQ). As shown in Figure 

6.3, each input codebook vector is an “index” of the index vector I and a weight of the 

weight vector W. Each codebook entry maps to an output vector. When evidence for 

input vectors is presented at the input, the winning index is chosen for the vector that is 

the most likely based on the distance weighted by W, where the distance is measured via 

some metric, the metric is arbitrary, though VQ tends to use Euclidean. A BM draws 

inference on the evidence, and this “belief” is the BM output. The codebook vector’s 

weight allows incremental learning when the BM is in dynamic environment by varying 

the influence that a vector has relative to its neighbors. 
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Figure 6.3 A BM codebook. 
 

As mentioned, an ideal BM, as we have defined here, is really a kind of Vector 

Quantization (VQ). In VQ, there is a code book of vectors that divide up the input vector 

space. Each vector creates a Voronoi region where all the vectors inside the region are 

assumed to be noisy versions of the codebook vector. Each vector then has an associated 

output vector. When an input vector is presented to a VQ, the closest codebook vector in 

some weighted distance is selected and its corresponding output vector is used as output. 

Even during non-learning, there is a threshold for the weighted distance. If the distance is 

too far away from the winning vector, a NULL vector is generated at the output instead. 

A NULL vector is useful in that it can prevent the memory been distracted too far away 

from the original one. 

In the BM shown in Figure 6.3, data flows in one direction only (upward). If a 

BM is part of a large hierarchy, the capability of the hierarchy can be significantly 

improved if, in addition to the winner output vector, each BM node passes likelihood 

information up the tree.  In fact the best results happen when a likelihood vector, of all 

the possible outputs, is passed forward.  Likewise, the upper nodes can pass its beliefs 

back down to its children.  If the tree is non-cyclic (a “poly-tree”), a technique called 

Winning Output 
Vector 

Evidence for 
Input Vectors 
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Bayesian Belief Propagation (BBP) (Pearl 1988) can be used to pass optimal information 

up and down the hierarchy.  This “belief propagation” we defined here is similar to the 

message passing that Pearl defines (Pearl 1988). If there is a NULL vector from below, 

but a valid vector from above, then an upper and lower level output may still result if the 

vector from above is likely enough. If there are non-NULL vectors from both above and 

below, they both contribute to the winning vector, and the contribution of each vector is 

proportion to the likelihood of each vector. The computation of the most likely output 

codebook vector is the influence of “belief” propagated both from above and from below, 

where a Bayesian decision rule deciding who wins.  

Summarizing, the BM has the following components: 

• A VQ like codebook that is a compact representation of the probability 

density function (PDF) of the input vector space 

• An output vector table, which has the same number of entries as the VQ table 

• A “winner” table entry selection mechanism, which incorporates evidence 

from below and from above 

• A feed forward path for the output vector of the winning codebook entry 

• A feed back path which outputs the winning VQ input entry 

Learning in a BM is essentially building the code book and the likelihoods (region 

size) of the codebook entries. Both the input and output vectors are learned so that 

theoretically, they are equal likely distributed in their spaces. This is very similar to that 

of configuring a Vector Quantizer or cluster center. Techniques developed for training 

Vector Quantizers can be used (Gersho and Gray 1992). Kohonen’s LVQ and LVQ2 

algorithms are also possibilities. Another approach is to store every training vector and 

estimate the PDF by smoothing this space like Parzen Windows (Specht 1990).  

When learning is enabled, for any input vector that does not exactly match a 

codebook vector, the BM generates incremental changes in the codebook vector positions 

and weights. In this process, the winning vector are moved closer to the true codebook 

vector, and the losers are moved slightly farther away. If no winner is within a certain 

threshold, a new codebook vector is allocated and is generated from the input. There can 

be continual adaptation, and the dynamic learning will be required in a number of 

applications. The learning process basically filters noise from the input stream and 
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creates a maximum entropy encoding in the vector space, which means that the learning 

should attempt to make all codebook entries more or less equally likely.  The output 

codebook vectors should be allocated roughly equal distance from each other in a sparse, 

distributed encoding space. In addition, if there is some meaning to the “closeness” in 

input vector metric, then such a relationship should be retained as much as possible in the 

output vector space. 

Although most learning is unsupervised, a BM can incorporate top down 

information into the calculation by biasing the VHin for the top layer of the network. This 

increases the likelihood of certain outputs when these particular vectors occur in 

conjunction with corresponding input vectors. In this case, the supervision may 

contribute to the adjustment of codebook weight W.  It is also possible to put a simple 

classifier at the output layer, which is trained by supervision. 

Preliminary data indicate that systems with large numbers of small BMs rather 

than a few large BMs, more closely models biology and has certain structural advantages. 

We conjecture that systems with large numbers of small BMs are more tolerant of 

simplifications and approximations in BM implementation. In a hierarchical network of 

BMs, the BM needs to merge information from multiple lower level BMs. As shown in 

Figure 6.4, the BM receives two input vectors VLin1 and VLin2 from below. The two 

input vectors are concatenated to form a single input vector VLin, with the VQ being 

done on the combined vector. Likewise, the appropriate subparts are fed back accordingly. 

 

 
Figure 6.4 A BM receives two inputs from below 
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In the network of BMs, each BM receives “belief” from above and below BMs 

through forward and feedback paths. It draws inference on the input, and then converges 

to a stable state, where it finds the corresponding codebook vector and output its “belief”. 

The “belief” is then passes up to above and down to below BMs. The BM works similar 

to the standard “node” in a belief network, and the bidirectional information flow is 

similar to the “belief propagation” defined in (Pearl 1988). A hypothesis is that the most 

efficient way to implement a BM is via association as shown in the next section. This 

hypothesis will be the subject of future work. 

 

6.4.2 Bayesian Memory Implementation 

We now propose an implementation model of BM based on associative memories. 

To implement such a BM, some simplifications and approximations are made in our 

model. For example, we assume the codebook vectors are binary and have a fixed length 

and that the number of 1s is constant. All vectors have a separate “likelihood” field that is 

associated with the vector. The NULL vector has zero likelihood. Although the input and 

output vectors are binary, the internal vectors are not binary so that the best-match 

computation can be performed at a higher precision. 

We believe that one of the most important aspects of a BM is that output is in a 

distributed data representation. There is reasonable agreement that neural structures 

represent data in a “distributed” manner, but there is less agreement on the details of this 

representation. Different models and algorithms distribute their representations in 

different ways. An important kind of distributed representation is the sparse code (Field 

1999), k-WTA codes, incidentally, are usually sparse. 

In sparse distributed codes, all nodes have an equal response probability across all 

representations, but a low response probability for any single representation. The 

dimensionality of the space is spanned by the input vectors, but is not necessarily reduced 

in dimension. Sparse distributed coding represents data with a minimum number of active 

units. Although there are ways to convert data from a distributed representation back to a 

more traditional representation – the de-sparsification generally is generally complex. A 

distributed representation of higher dimensional elements can be represented by using 
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multiple units with some overlap of subspace dimensions. Also, for simplification, only 

binary sparse vector is considered here. 

For the given input vectors from below VLin, and from above VHin, a BM needs to 

find the most likely codebook vectors, that is, 	
��	 � ��� � ������ ��� ���
�

�� � � � . In our 

implementation, we assume that the input vectors VLin and VHin are independent. The 

likelihood of the input vector is factored into the computation, and the winning input-

output codebook entry is the one with the largest “combined” likelihood. 

BM provides maximum entropy decoding. In previous chapters, we have 

discussed that associative memory has the similar characteristics, and the Palm based 

associative memory approximates the Vector Quantizer, and provides Bayesian 

classification with equal priors. We use Palm based associative memory as an 

approximation of a BM. Although Palm network doesn’t implement the full belief 

propagation, and the network doesn’t directly represent the conditional probability, the 

network output itself provides the best representation given the input in MAP sense. 

The binary Palm model operates by partitioning the input space into Voronoi 

regions, with each region centered at a training vector. As discussed earlier, under certain 

convergent conditions, if all the training vectors are equally distributed, then the network 

implements Bayesian classification with naïve or “equal” priors. This result also holds for 

dynamic learning, where the training vectors have different prior probabilities. Arbitrary 

vector prior allows for weighted Voronoi regions. If a vector’s Voronoi region is roughly 

proportional to the prior probability, then the network retrieves an output vector that has 

approximately the maximum posterior probability. 

The BM is a special associative memory that requires the codebook vectors to 

have the maximum entropy reduction in the corresponding vector spaces. The Palm 

model can be regarded as one specific example of BM with only one direction of 

information flow. Inside a general BM, there is also a feedback path. Therefore, when 

using a Palm model to simulate a BM, two mappings are needed, with one simulating the 

forward path and the other simulating the feedback path.  
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6.4.3 Simulations and Results  

The interface of a BM is similar to that of a bidirectional associative memory 

(BAM) (Kosko 1988), which can accept input vector from below and feedback vector 

from above network. In this section we discuss a simple implementation of BM network 

consisting of 3 BMs as shown in Figure 6.5. In the 3-BM network, each BM is 

implemented by Palm networks. 

In Chapter 2, we have discussed the implementation of Palm network using our 

Csim tool. In the 3-BM network implementation, Csim has been modified so that each 

BM contains 2 Palm networks, with one mapping in each direction. 

To demonstrate the basic principles, the 3-BM network is connected in a basic 

tree structure. In the 3-BM network, BM1 and BM2 are at the low level of the network, 

and BM3 is at the high level of the network. The outputs of BM1 and BM2 are fed into 

BM3. Input vectors VLin1 and VLin2 have the same size (vector length) of LL, and the output 

vectors VHout1 and VHout2 have the same size of LH, with LH < LL. The input vector VLin3 for 

BM3 is a concatenation of the output vectors VHout1 and VHout2 with VLin3 = VHout1 || VHout2, 

where || signifies concatenation. Therefore, VLin3 has the vector size of 2*LH.  We assume 

VHin3 = VHout3, and BM3 works as an auto-associative memory. The BM3 output vector 

VLout3 consists of into two parts: one feeding back to BM1 as VLout1, and the other feeding 

back to BM2 as VLout2, and VLout3 = VHin1 || VHin2.  
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Figure 6.5 A three-BM network 
 
 

In the simulation presented here, all the vectors are random and sparsely 

distributed. For BM1 and BM2, we create a list of codebook-vector pairs that are one-to-

one mappings of input vector to output vector. For simplicity, all the input and output 

vectors are uniformly distributed, so the weights W associated with each vector are equal. 

For now, we do not simulate the weight influence that different vector has different 

weight W, as shown in Figure 6.3. With one codebook, two Palm networks are created to 

simulate the bidirectional path. The number of training vectors in BM1 is the same as in 

BM2. The training vector in BM1 is concatenated with the training vector in BM2 that 

has the same index, so they are each a part of one larger vector. The new concatenated 

vector becomes the training vector in BM3. More complicated concatenation of BM1 and 

BM2 training vectors is possible. However, as suggested in (Pearl 1988), “the elementary 

building blocks of human knowledge are not entries of a joint-distribution table. Rather, 

they are low-order marginal and conditional probabilities defined over small clusters of 

propositions”. We only simulate a small portion of the “joint-distribution table”, and the 

number of training vectors in BM3 is the same as that in BM1 or BM2. 

In our simulation, noisy inputs are feed to BM1 and BM2 as VLin1 and VLin2, and 

each generates an output vector consisting of VHout1 and VHout2, which are concatenated to 
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form VLin3 , which is the input to BM3. The output vector VHout3 of BM3 is then fed back 

to itself, and generating the output vector VLout3 that forms VHin1 and VHin2, which are then 

passed down to BM1 and BM2 respectively. In the simulation, VLout1 and VLout2 are not 

passed further down to lower BM. In a more than 2 layer BM network, VLout1 and VLout2 

are fed to the lower BMs providing the top-down information. With the BM3 feedback, 

BM1 and BM2 can return the codebook vectors that are “closest” to the given input, 

taking into consideration the larger set of information that BM3 has about its inputs. We 

did not simulate the situation where both inputs, one from below and one from above, are 

available at the same time. In this case, the weight for each codebook vector should be 

factored into calculation according to Bayes rule. This implementation is left for future 

research. 

The K-WTA method is still used, and a NULL vector may results from an 

absolute threshold. In deciding which codebook vector wins in a BM, if the number of 

active nodes in the output vector is more than k, BM will generate a NULL vector, 

avoiding the noise being passed further down the data path.   

Figure 6.6 shows an example of the simulation of our 3-BMs network. In the 

network, the input codebook vectors for BM1 and BM2 have the same size of LL = 80, 

and the number of active nodes in the vectors is 6. The output codebook vectors for BM1 

and BM2 have the same size of LH = 40, and the number of active nodes in the vectors is 

4. There are 10 codebook vector pairs in both BM1 and BM2, and these 10 codebook 

vectors are concatenated as the codebook vectors for BM3. All the codebook vectors in 

BM1 and BM2 are random vectors.  

When testing the network, the noisy vector is generated by randomly de-

activating some of the activate nodes in the codebook vector according to the bit-flip 

probability, and then randomly activating some of the non-active nodes in the same 

vector with the same bit-flip probability.  By doing this, the number of active nodes in a 

vector is the same as that in the codebook vector. The “Performance” is defined as the 

correlation between a vector and its corresponding codebook vector. When the 

Performance is 1, the vector is the same as the codebook vector. When a vector is NULL, 

no Performance is calculated. Each Performance value shown in Figure 6.6 is calculated 

by averaging 8 independent experiment results. 
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Figure 6.6 Performace of VLin, VHout, VHin and VLout for BM1 and BM2, and the performance of 
BM3 output 
 

Figure 6.6 shows the performance of all the interface vectors VLin, VHout, VHin and 

VLout of BM1 and BM2, and the performance of BM3 output. BM3 acts as a regular auto-

associative memory, its input is the concatenation of VHout1 and VHout2, and its output is the  

concatenation of VHin1 and VHin2. BM3 output performance is comparable to that of VHin1 

and VHin2, just that the vector length is different. BM3 performance represents the 

performance of the entire 3-BMs network. Vector VLin is the low level noisy input to 

BM1 and BM2. As shown in Figure 6.6, the BM1 and BM2 improve the accuracy of 

output vector VHout without any feedback from BM3. When BM3 is enabled, the feedback 

vector VHin partitioned from VLout3 in BM3 gets better performance than VHout, which 

implies that VHin gets closer to the output codebook vector than VHout. As the feedback 

vector VHin is passed down to BM1 and BM2, even more noise is removed, and VLout has 

the best performance, approaching 1 even when the bit-flip probability is 0.5. VLout is not 

fed further down to lower network in this simulation. Because of the top-down 

information passed by BM3, VLout  nearly approaches the original codebook vector. 

Although a small codebook vector size is simulated here, and only a very limited 

network scale is tested, our simulation result shows that a hierarchy of associative 

networks in a Bayesian Belief Propagation like implementation has significant 
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performance advantages.  We believe that based on this preliminary work, the use of such 

hierarchical structures will lead to large, scalable systems. 

In the simulation, when the bit-flip probability is 0.5, on average, we get one 

NULL at VLout for every 10 test inputs. For most bit-flip probabilities that are less than 0.5, 

no NULL vector is found at VLout, which indicates that, when the error rate is relatively 

low at VLin, the feedback vector VHin from BM3 provides additional information that is 

strong enough to “pull” the noisy input, VLin,, closer to its original codebook vector.  

In our simulations, we only tested one BM configuration. With the same number 

of mappings, a different network of BMs can be built, with different number of BMs and 

each with a different network size.  We did not search for preferred configurations, where 

the number and size of BMs fits best with a particular network size. The number of 

hierarchy levels and the number of vectors stored in each BM are also related. This 

correlation shall be an interesting topic in future research. 

In our BM model, temporal information is not simulated. A more general BM 

model should contain the temporal correlation.  This is another topic for future research, 

since most pattern recognition occurs in an environment that has both spatial and 

temporal data. Such a more general BM model would have far more complex 

computations. Some simplified versions are being explored, such as the HTM algorithm 

(George and Jaros 2007). 
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Chapter 7  

Summary and Conclusions 

Associative memory is one of the primary components in any cognitive system. 

This thesis investigates the implementation of some of the computational characteristics 

of an associative memory that are essential for just basic cognitive operations. We have 

chosen the Palm network as a foundation model, since it is straightforward to implement, 

and yet works well.  Based on our and other researchers’ studies of the Palm network, we 

propose a Bayesian Memory model that uses Palm as its computation and that can be 

considered as a building block in large neural based cognitive system. 

Palm’s network has sparse distributed data representations, large information 

capacity and fault tolerance to noise in the input data and the network connections. We 

investigated the feasibility of scaling this network. As a part of this study, we built large 

networks on both a PC cluster and parallel supercomputers.  These simulations 

demonstrated that the retrieval performance of Palm network is fairly stable for small 

network sizes. However, for very large networks, performance begins to degrade. Though 

we did find that executing this algorithm on multiple processors, where a large portion of 

processing is spent on communication among processors, the computation efficiency was 

still very good.  

To apply the Palm model in real applications, one needs to understand the basic 

functionality of the model and its limitations. We analyzed the retrieval performance of 

the Palm model, and proposed a functional analogy to Voronoi classification and 

subsequently to Bayesian classification. When the input vector is within the attractor 

basin of a training vector, the associative network can return the most likely training 

vector in a Bayesian sense. Furthermore, we introduce the concept of weighted Voronoi 

regions and then define a version that learned incrementally during operation. In such 
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dynamic learning the network approximates weighted Voronoi classification. In addition, 

dynamic learning approximates the influence coefficient of each training vector and 

allows the representation of prior probabilities in the Bayesian inference process. The 

Bayesian inference approximation provides a straightforward and useful theoretical 

foundation for the operation of the Palm model and provides an analytical basis for the 

application of associative networks to real world problems. 

Dynamic adaptation or learning during operation is also important. Reinforcement 

learning, as demonstrated here, enables a cognitive system to learn through its interaction 

with the outside world and forms an action mapping of the environment. We developed 

an associative network that learned by reinforcement, RLAM. We demonstrated that 

system learns complex mappings quickly. In RLAM, there are two networks: one maps 

the input states to values (the critic); and another that maps the states to actions (the 

actor). With k-WTA, the network has the ability to handle non-linear maps. Although 

there are limitations on arbitrary approximation, RLAM can learn complex functions if 

enough training patterns are presented to it. In the early stages of training when only a 

small subset of training patterns are sampled, there are a few large regions that are crude 

approximation to the final mapping, with increasing experience, a more complex 

structure that represents the final solution then evolves. 

The binary Palm model we used for our scaling experiments operated over spatial 

data only, ignoring the temporal domain. We built a spiking version of the Palm model to 

add temporal information and study the Hebbian learning between the spiking neurons. 

These simulations showed that the weight matrix formed by Hebbian learning in spiking 

neurons is very similar to the weight matrix calculated in binary model, and, even with a 

spiking representation, the model is quite tolerant to temporal noise (jitter) in the input.  

Since in most real applications, there is as much information in the temporal domain as in 

the spatial domain creating hierarchical networks that learn through time as well as space 

constitutes an important topic for follow on research. 

Based on Voronoi classification, we proposed a Bayesian Memory model based 

on the Palm network that has the potential to scale to very large sizes. The lack of scaling 

is a major limitation of most artificial neural network algorithms, and yet it is an absolute 

requirement for solving complex problems in Intelligent Computing. The Bayesian 
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Memory extracts the most important information from its vector spaces, provides 

maximum entropy reduction to the data, and then generates codebook vectors that map 

from input space to output space. The BM receives inputs from above and below through 

forward and feedback paths. It draws inference on the inputs, and then converges to a 

stable state, where it finds the corresponding codebook vectors. The BM then outputs its 

“belief”, and passes it up to above and down to below BMs. 

Under convergence conditions, the Voronoi classification characteristic of the 

basic Palm auto-associative memory mimics a single BM node. Using an auto-associative 

memory as an approximation to a Bayesian Memory node, we built a simple 3-BM 

network and simulated its behavior.  The simulation demonstrated that, with the higher 

level BM providing top-down information, the lower level BMs can improve their 

performance by converging to their stable states more easily.  We believe that based on 

these results, using an associative memory for each node in a hierarchical Bayesian 

Memory, has significant potential for creating large, scalable associative networks.  This 

then is a promising direction for future research. 

In the work presented here, we mostly used random data in our simulations. In 

real applications, there is significant information embedded in the structures of data. It 

will be interesting to study how the real data can be utilized and applied in a more general 

BM model.  Likewise we did not attempt to capture temporal information in our model.  

Obviously a more general BM model will need to use combined spatial and temporal 

information.  However, this does lead to more complex computation in BM. 

The convergence of BMs under dynamic inputs is a complicated process. There 

have been a number of research directions regarding the network convergence. 

Myllymaki (Myllymaki 1999) presents a method mapping a given Bayesian network to a 

Boltzmann machine model where a converged state can be mapped back to a maximum a 

posteriori probability state in the Bayesian network. Free energy approximation is another 

approach (Yedidia, Freeman et al. 2006) that can be used to construct the Bayesian 

Propagation (BP) algorithm such that the BP algorithm always correspond to the 

stationary points of the region graph approximating the free energy. One important 

research topic is to study the convergence conditions of BMs in dynamic inputs, the 
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relationship between network size and the number of BMs, as well as the number of 

hierarchy levels and the number of vectors stored in each BM. 

In addition to new results, one of the most important accomplishments of any 

doctoral research is the generation of new ideas for follow on work.  We believe that this 

work has resulted in important new results in the construction and operation of 

associative networks, it has also contributed significant numbers of new ideas and 

promising areas for follow on research. The hardware architecture and implementation of 

distributed associative networks and BM (Zaveri and Hammerstrom; Gao 2008) has been 

investigated in our research group. 

Bayesian inference has become an increasingly important area for research and 

application in the field of computational neuroscience. Animals learn from their 

surroundings and seem to do a kind of probabilistic inference from learned knowledge 

acquired through their interaction with the environment. Bayesian networks provide a 

general framework for the probabilistic inference, and the major contribution to this is the 

work of Judea Pearl (Pearl 1988). Bayesian Belief Propagation algorithm also provides 

the basic learning rule for Numenta’s HTM (George and Hawkins 2004; George and 

Hawkins 2005; Hawkins and George 2006; George and Jaros 2007). Our Bayesian 

Memory model is based on HTM like structure. The Bayesian inference theory in 

associative memory and the belief propagation provide the general communication 

method between BMs. Unlike the traditional Bayesian networks where the probability 

information is specifically stored, we hypothesize that the BM can use the associative 

mappings to do inference, and the probability information is intrinsically embedded in the 

vector representation. 
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