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ABSTRAC T

The asymptotic behavior of the pair correlation functions of a

one-dimensional binary mixture of simple model fluids is investigated.

The method of investigation is an extension of a technique developed by

Fisher and Widom I for simple one -component systems. The technique

consists of examining the poles of the Laplace transform of the pair

correlation function to determine the pole of least negative real part.

The present investigation has been restricted to systems interacting

through either hard-sphere or square -well intermolecular pair potentials.

In all cases the pair potentials are short ranged and strictly nearest-

neighbor.

The actual extraction of the poles of the Laplace transform of the

pair correlation functions is carried out numerically. One specific case

of a hard-sphere system has been solved analytically. In the case of hard

sphere s, a locus is generated in the density, concentration plane acros s

which, the pair correlation function abruptly changes its spatial frequency.

Both linear continum and lattice gas models are investigated for the

hard-sphere systems and the results are found to be in qualitative agree-

ment with each other.

The square-well systems exhibit loci which divide the density

temperature plane into several regions. Each region is characterized

by the value of the spatial frequency as sociated with the damped sinusodial
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decay of the pair correlation function. The zero frequency region

corresponds to monotonic exponential decay.
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INTRODUCTION

Much ofphysics deals with systems of enormously many degrees

of freedom. The investigation of such systems is greatly facilitated

if attention can be restricted to quantities of direct physical significance.

While there is little difficulty in selecting a few physical parameters

which encompass all information which can reasonably be required, it

is far more difficult to formulate a theory, even an approximate one,

which relates these few physically significant quantities to the almost

infinite number of degrees of freedom of the system. For a classical

fluid in thermal equilibrium, the pair correlation function provides the

necessary link between the interparticle forces and the bulk of single-

time observations which can be made.

The mean local density p (r) at a distance r from any given particle

in the system differs from the overall average density po. The radial

distribution function g(r) is defined as the ratio of these two densities,

and the pair correlation G(r) as g(r)-l. Hence

G(r) = (p (r)/po) I (A)

With this definition the pair correlation function is then a measure of

the degree of correlation, or structure, that exists around the chosen

particle.
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The pair correlation function is related to the thermodynamic

properties of the system through various relations. For example, the

fluctuation compressibility theorem

kT ~
op T = kT P kT = 1 pI G(r)dr

(B)

where p is the number density, p is the pressure, T is the absolute

temperature, kT is the isothermal compressibility, and k is Boltzmann's

constant. (Occasionally Boltzmann's constant will be repres ented by kB).

Since we are interested in the long range properties of the

correlation function, we want to know how G(r) behaves for large values

of r. We already know that G(r} -+ 0, as r -+ 00 since, as stated before,

ther e is no gros s overall structur e to our liquid models. However, we

wish to know how this approach to zero takes place. To this end we

shall follow the methods of Fisher and Widom 1 and examine the Laplace

transform of the pair correlation function. The poles of the transform

will give us information concerning the asymptotic behavior of G(r).

Previous work 1,2,3 has shown that if the correlation at long

range reflects primarily the correlating effects of the intermolecular

repulsions, then the decay of the correlation function is expected to be

oscillatory, whereas if it reflects the correlating effects of the attractive

component of the intermolecular potential, then G(r) will be asymptotically

positive and its decay monotonic.
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Thus in a system with an intermolecular potential that contains

both attractive and repulsive components one might expect regions in

the thermodynamic state space of the sy stem where the asymptotic decay

of G(r) is either oscillatory or monotonic depending upon the particular

thermodynamic state of the system. Indeed, such regions have been

found for several types of intermolecular pair potentials. 1,3

For the present study we shall be interested in binary mixtures

of simple model fluids. All our systems will be described by an inter-

molecular pair potential 0.. (r) which is bounded below, has an infinite
lJ

repulsion as r -+ 0, and is strictly nearest neighbor, i. e. particle i

interacts only with particles i-I and i + 1. For thes e binary mixtures

the mixed interaction parameters of the pair potential will be given by

the Lorentz -Berthelot4 combining rules

(C)

(D)

where bi is the hard-core diameter of an i type particle and Ei is the

well depth. Equation (C) is, of course, exact for a mixture of hard

spheres. Our two mixing parameters are N, the ratio of the hard-core

diameter of the larger speci es to the hard-core diameter of the smaller

species, and H, the ratio of the well-depth of the larger species to the

well-depth of the smaller species. Thus

3

bIZ
=

(bl + bZ)/Z

12and
ElZ

=
(ElEZ)



(E)

(F)

where the subscript (11) refers to the smaller species. The values

chosen for N were somewhat larger than what one would find for real

systems. This was done to emphasize the effect of the hard-core repul-

sions. The values of H were clos e to thos e found in real systems. 5

One additional parameter R, the ratio of the well-depth to the hard-core

diameter for a single species, was included. In the present work R was

always set equal to one for both species.

When we examine the asymptotic behavior of G(r) we find that it

can have various forms depending upon the thermodynamic state of the

system. Thus we generate loci in the (p,T), (p,T), and (T, xl) planes

across which the asymptotic decay of the pair correlation function abruptly

changes. Here xl is the concentration of the smaller species. The

transition loci divide the state space of the system into several regions.

Each region is characterized by the value of the spatial frequency

associated with the damped sinusoidal decay of G(r). The zero frequency

region corresponds to monotonic exponential decay.

The first part of the thesis is concerned with deriving the equa-

tions for the pole of least negative real part of the Laplace transform of

the pair correlation function. Once these equations and the equation of

4

N =
b22/bll

and H =
E 22/E 11



state are derived they are applied to hard-sphere and square-well linear

continuum systems. The next section carries out the calculation for a

hard-sphere lattice gas. The final section is devoted to evaluation of

the results obtained from the calculations.

We note here that these abrupt changes in the asymptotic form

of the pair correlation function in no way imply a phase transition in our

our -dimensional systems. Indeed, the systems treated are completely

without any phase transition.
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DERIV A TION OF BASIC EQUATION

Consider a one-dimensional system of N 1 particles of type 1

and N2 particles of type 2, where Nl + N2 = M. Let the particles interact

on a line of length L through a strictly nearest-neighbor pair potential

0..(r). We shall be interested in the thermodynamic limit of this system,
IJ

Le. L- 00, M- 00, M/L- p and Nl/M- xl.

Following Lebowitz and Zomick6 we define the conditional

probability P.. (n) (r) such that
IJ

(n)
P.. (r)

IJ
= conditional probability density that

the nth neighbor of a given particle
of species i is a particle of species
j located a distance r away.

(1.1)

Then

(n)
P.. (r)

IJ
= (1.2)

The radial distribution function g. .(r) is then given by
IJ

P
J
.g..(r)

IJ
=

00

L
n=l

(n)
P.. (r)

IJ
(1.3)

Hence, defining the symmetric Laplace transforms

(1.4)

(1.5)

6

00 -<Tr 1'2
G..(<T)

= Jo
e (p.p.) g..(r) drIJ 1 J IJ

and
00

P..(<T)
- J -<Tr (1)
- e (p./p.)P.. (r) dr

IJ 1 J IJ0



we have, in matrix notation

9. (<T)

-1
= P (<T)G. - P (<T)) (1.6)

where I is the unit matrix.

Equation (1. 6) will be the basic equation for our analysis. The

pole of G (<T)at <T= 0 will contribute a constant to g..
( )

. Hence, the-- 1J r

asymptotic form of G. .(r) will then be determined by the nature of the
1J

singularity (possibly more complex than a pole) of next largest real part. 1

Thus

(1. 7)

where 'VI is the residue at the pole of least negative real part <Tlo If <Tl

is real, G(r) will decay monotonically from positive values ° If <Tl is

complex, G(r) will decay as a damped sinusoid. Let the inverse range of

correlation k be given by K = -Re(<Tl) and the spatial frequency w by

G(r) (1.8)

and I -Kr
G(r) "" 2 'Vl~e. cos(wr+ arg (VI))' <Tl complex (1. 9)

Now let

Then

(1. 10)

(1.11)

with (1.12)

.! -!:J <T) = !?.(<T)

G (<T)
-1

= !:.(<T) D (<T)

-1 D!. (<T)

(D (<T)).. =
- 1J I (<T) I

= D.. (<T)
J1

ID(<T) I

7



where D. ,(IT) is the cofactor of the (ij)th element of D (IT)and ID(IT) I is
~ - -

the determinant of .!? (IT). Writing out equation (1.11) in component form

Thus the asymptotic form of G. .(r) will be determined from
1)

= o (1. 14)

or
(1.15)

We now wish to derive expressions for the P..(IT)'s. First we
1)

note the following theorem from probability theory. 7 Let

Using a method due to Kikuchi, 8 we define a two-point probability density

function£.. ('Y., 'Y.') such that
1) 1 )

£'.('Yi, 'Y)
.')

1)
= probability density that the first neighbor

of a particle of species i located at 'Yi is

a particle of species j located at 'Yj' .

8

2 1
G..(IT) = L P.k(IT)(!?- (IT))k' (1.13)

1) k=l 1 )

2
= L P.k(IT) D.k(IT)/ D (IT)

k=l 1 ) -

P(A) = probability of A

P (AB) = probability of A and B

and
P A (B)

= probability of B given A

then

P A(B)
= P(AB)/P(A) . (1.16)



Then substituting (1.1) and (1.17) into equation (1.16) we have

(1) y ,P.. (r) = (L/x.)£.. (Y., -.)
IJ 1 IJ 1 J

(1.18)

where L -1 x i is the probability o£ i at \' and r = Y + k - Y.

For our binary mixture we define four f..' s
IJ

We also define one-point probability density functions f.(Y.) such that1 1

L-kt Yi L-k+Yi
f.(Y.) =J dy.'f..(Y., Y.') +{ dY.'£..(Yi' Y.')

1 1 -k+Y. 1 11 1 1 -k+Y. J IJ J
1 1

(1. ZZ)

subject to the normalization

x.=1 (1. Z3 )

and symmetry

f.(Y.) = f.(-"i)1 1 1
( 1. Z4)

In equation (1.ZZ) j 1= 1, and k = L/M = lip .

The configurational entropy and internal energy are then given by 8

9

, ,
£11(Y1'Y1) = £11(-Y1'-Y1) , (1.19)

, ,
£Zz<YZ'YZ)= £zi-Yz'-YZ) , (1. ZO)

and , ,
(1.Z1)£lZ(Y1'YZ)= £Zl (-YZ' -Y1)

.



=

2

[

L/2

~ f d\fi ('I'i) In fi (\)
1= 1 -L/2

L/2

j
L_k+Yi

J1 dY. dY.f..(Y 1.,Y.')lnf..(Y 1.,Y 1.')1 1 11 1 11

-L/2 -ktYi

L/2 L-k+ 'II
-2J d 'IIf d 'Ii f12 ('11 ' '12') In f 12 ("Vl' '12')

-L/2 -k+Yl

and ElM =
2

~

L/2 L-k+Yi

L d'l. dy.'
i= J-LIZ J _k+Yi1

(1. 26 )

We can now construct the free energy F = E-TS and minimize F with

respect to fi(\) and fij(\, Yj') under the restrictions of equations (1.19-

1.24). Using the method of Lagrange undetermined multipliers (see

Appendix A for the details of the calculation) we arrive at Kikuchi's result8

(1. 27)

L I'I-l-2x
-f (r) - 1 [ A

x2 22 - r + 1 exp 1-'!J.22- I3pr - 13~22(r) ]
(1. 28)

(1.29)

and (1.30

10



where

= (3p = P /kT

and ~. . (r) = 0.. ( 'I, 'I') .
1J 1J

-(3fJ... CD

Now define e 1J -f e -gr -(30..(r ) dr.
= e 1J

o

Taking Laplace transforms and using eqs. (1.18) and (1.33) we have

(1.31)

(1.32)

(1. 33)

(1. 34)

(1.35)

(1. 36)

(1. 37)

where now J(x) is the Laplace transform of the Boltzmann factor given by

00

J. .(x) = J
-xt -(30.. (t )

1J e e 1J dto

11

(1.38)

r - 1+lx 1 J (£ + (J)11
p 11 ((J) = r+ 1

J 11 ()

lXl J 12 (g + (J)
p 12((J) = r+ 1

J 12 ((: )

2x1 J 21 ( + (J)
P21((J) = r+ 1

J 21 (s)

r + 1-2x1 J (i:+ (J)22 ..

and
P22((J) = r+ 1 J 22 (£)



Substituting (1.34-1.37) into equation (1.15) gives

1 - CllJll (;+IT)/Jll(~) - C22J22 (~+IT)/J2Z<~)
I

+ cllc21ll (~+IT)J22(~+IT)/Jll(O J22(~)

(1.39

We shall now proceed to solve equation (1.39) for various types of

intermolecular pair potentials.

12

with

Cll
=

(r -1+ 2x 1) / (r+ 1) , (1. 40)

C22 = (r+ 1_2xl) /(r+ 1) , (1.41)

C2l
=

2 xl / (r+ 1) , (1. 42)

and
C12

=
2 x 2 / (r+ 1) . (1. 43)



EQUATION OF STATE

Before proceeding further to solve equation (1.39) we first

derive the equation of state for our model mixtures. 8

From appendix A equation (1.<1"9)we have

S is determined from the condition that F of equation (1.29) is made a

minimum with respect to S, keeping k and T constant. Then one obtains

the equation of state:

-1
P

a

= as

(2.1)

Or, using equation (1.33) we have

(2.2)

where (2.3)

and where the prime denotes differentiation of the function with respect

to its argument.

Equation (2.2) is in agreement with the work of Lebowitz and

Zomick6 and C. C. Carter 9 for the case of an hard-sphere interaction.

In the simple fluid limit equation (2.2) agrees with the work of Katsura and

13



Tage 10 for a system with a square-well interaction. (see appendix C

for details of the comparison.)

14



HARD-SPHERE CALCULA TrONS

Let 0. .(r) be a hard-spherepotential given by
1J

0..(r) = 00 r< b..
1J 1J

(3. l)

= 0 r~ b
ij

where

and
b12 = b2l = (N+l)b/2

First we need the value of r given by

where

and

00

-13p...(~)=
J

-~r-e 1J e

o

Thus (3.2)

The Boltzmann factors are given by
ex) b ex)

J 11 (~) =J e -~r -13<1>11(r) dr=l e -~ r e - ex)dr + J e -~r e -0 dr
o 0 b

= -f e -~r I:
-~be -= (3.3)

15



00 Nb

J22 (s,) =1 e-sr e-(3<P22(r)dr= J e-sre-OOdro 0

=

-NbE:
e .,

;

and

00

- 00

J
-; r -0e dr+ e e dr

N+l-b2

=

Thus =

Thus P11P22 cancel and equation (1.39) reduces to

16

00

J -t r -0
e . e dr

Nb

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

2
(r is defined as + (r2))Therefore r = 1 and r = 1.

We then have,

p 11(0-)
-o-b= xlte /(;+0-)

o-b

P 12(0-)
= x2 Se -y (N+1)/ (;+ 0-)

o-b +
P21(0-)

= xl;e -7 (N 1) /(;+ 0-)

and P 2i 0-)
-o-Nb= X Se / (+ 0-)

2



where A.= bo- and u= b~

Equation (3.10) is in exact agreement with the work of C.C. Carter9 on

the hard-sphere limit of a van der Waal's mixture.

Now let

and H(A.) = u + X-= f(A.)

and look at a graph of f (X-) vs. A.. f(A.)

-u A.

Since the only crossing is at A.= 0, there are no non-zero real roots of

equation (3.10). The decay of G(r) will then be determined by the complex

root of least negative real part. The pair correlation function will decay

as a damped sinusoid with the real part of the root determining the damp-

ing and the imaginary part determining the frequency of the spatial

os cilIa tion .
17



We shall now proceed to solve equation (3.10) both analytically,

using a technique developed by Fisher and Widoml, and numerically

using the Muller's method11 technique. First the analytical solution.

Let N = 1 in equation (3.10) and we generate the equation for a simple fluid

-A.
ue = A. + u (3. 11)

Now rewrite equation (3.11) as

-u _A. -u
e e = (e /u) (A.+ u)

and define I; = A. + u and A.0

-u
= e /u. This gives

-I; - A. y
e - o'='

(3.12)

Now let I;= x + iy with x and y real. Then

-x
(

"

)e COsY-lslny = A. (x
o iy)

(3. 13)

(3.14)

Now multiply equation (3.14) by coty. This gives

-x
e cosy = A. x = A. coty

o 0 (3. 15)

We now note that equation (3.15) has extraneous roots when x = 0 while

cosy = ycoty = O. Also, the second of equations (3.15) is spurious when

y = O. We also note the special case x = 0, cosy = 0, while

18

-x
A. xe cosy =
0

-x .
-A. Ye smy =

0



-1
A = ((2n+ 3/2 TI') . From the second and third members of (3.15) weo

have

x = -ycoty, (3.16)

while the first and third parts give

-x
e cosy = A ycotyo

cosy
x

= A ycotyeo (3. 17)

Or, us ing equation (3. 16) in equation (3. 17), then give s

cosy. _A ycotye -ycotyo (3.18)

We shall call equation (3.18) the indicia!. The indicial is shown if

Figure (1) for the case A = .368. (This value corresponds to u = 1.)o

Independently of (3.18) cosy is a certain many valued function of ycoty.

Each branch of this function may be labeled by an index v such that

1TV< Y «v+l)1T on the branch. The first several branches of this function

are also shown in Figure (1). The roots of equation (3.18) are then given

by the intersections of the indicial with one of the infinitely many branches

of cosy = f(ycoty!. From (3. 16) one can see that the smaller ycoty will

correspond to the larger x. The intersections at the origin are the

extraneous roots mentioned earlier. The branches of cosy = f(ycoty) pass

through the origin with slope m = (-1) v / ( v + t)1T on the branch of index v ,

while the indicial pas ses through the origin with slope m = _A . Thus theo

intersection occurring at the smallest value of ycoty will always be the
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intersection of the indicial with the v = 1 branch of cosy = f(ycoty). Thus

equation (3.11) has a unique complex root of least negative real part.

From Figure (1) we can read the values of A.1, A.2, and A.3 and we have

Numerical solution of equation (3.11) gives

and

Now let N = 2 in equation (3.10)

_A. - 2A.
(u(x1e + (l-x 1) e ) = u+ A.

-A. _A.
e ((1-x 1)e + x! = (u + A.)I U

-T -A. _A. -T
e e (( 1-x 1)e I x 1 + 1) = (1 Ixl u) e (u + A.).

(3.19)

Substituting equations (3.20-3.23) into equation (3.19) we have

A. (s + a)o (3 . 24)

21

A. = -1.50+ i 4.65
1

A.2 = - 2. 35 + i 10 .8 5

and A. - -2.87+ i 17.153 -

A. = -1. 53 + i 4.601

A.2 = -2.40 + i 10.80

A.3 =-2.85 + i 17.17

Now define

-T
(1-x1) Ix 1 (3.20)e =

-T
(3.21)A. =

(l IX1 u)e0

a = u - T (3.22)

and S = A.+T . (3.23 )



Now let S= x + iy, x and y real and equation (3.24) becomes the pair

-2x -x
e cos2y+ e cosy =A (x+a)o

-2x -x
e sin2y +e siny = -A Yo

or, after some trigonometry, we have

-2x 2 -x
e (2cos y-l)+e cosy= A (x fa)o

(3.25 )

and
-2x -x

e (2sinycosy)t e siny= _A y.o (3.26 )

Multiply equation (3.26) by coty giving

_~ 2 ~ -~
2e cos y + e cosy = e + A (x fa) = _A ycotyo 0 (3.27)

Again we have introduced extraneous roots. This time when x satisfies

-2x \
e + 11 (xt a) = 0, while cosy = ycoty = o. Also the last equality ino

equation (3.27) is spurious when y = O. From the second and third

members of equation (3.27) we have

Equation (3.28) can be written as

~x ~
A e = h(-ycoty -a+1nA )o 0 (3. 28)

where h is defined to be the smallest real solution of

-2
(h(t)) + In(h(t)) = t (3.29)

22

-2x
e +AX= -A ycoty - A a0 o 0

-1 -2x
or A e + x = -ycoty - a0

x -2 x
(3.28 )or (A e) + In A e = -ycoty - a + In A .

o 0 0



-1
Now let q = h

2 ~
q -lnq = -s - a + In Ao

2 ~
lnq = q + s + a -In A 2o

2 1/
q = eq + s + a -In A /2o

2
q = eq + A (3.30)

where A = s + a -In Al'2. Equation (3.30) is plotted in Figure (2) aso

q = f(q) = eq2+ A. For a real solution to equation (3.30) to exist f(q) = q

q2+A
and f(q) = e must cross. To find the value of A which makes the

curves just tangent we differentiate and set the slopes equal to each other.

Thus we have

df (q) _
dq

d (q) = 1
dq

and thus

d 2

dq f (q) = ~q (e q +A) =

2

1 = sqe q + A

Now solving
2

1 = 2qe q + A

and

simultaneously, one obtains

q=..J2/2

and A = -0.855
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Thus for a real solution to equation (3.30) to exist A must be < -.855.

hI is then the smallest real root. Also we have

)/2A = s+a -lnA < -.855
o

or ycoty < -(0.855+ a-In A 1'1o (3.31 )

From the firstand third members of equation (3.27) we have

or

- 2x 2 -x
2e cos y + e cosy= -A ycoty,o

2 x 2x
(4cosy) + 2e (4cosy)+ 8 A s e = 0o

12 x4cosy = (-1 + (1-8 A s) )e- 0

and using equation (3.28')

(3.32)

Again we shall call equation (3.32) an indicial, and as before the

intersections of the indicial with the various branches of cosy = f(ycoty)

will yield the solutions of equation (3.19). Figure (3) shows a plot of

the indicial for the case xl = 0.5, u = 1.0. Also shown in the figure are

the firstfew branches of cosy = f(ycoty).

25

For all values of A < -.855

q -+ 00 as A -+ -00
1

and q -+0 as A -+ -00
2

or h -+ 0 as A -+ -00
1

and h -+00 as A -+ -00
2
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We now wish to see if equation (3.32) reduces properly in the

simple fluid limit. Equation (3.32) came from solving the first and third

members of equation (3.27) for 4cosy. If we use the definitions (3.21)

and (3.23) and set >--= >--1+ i >--2; >--1and >--2 real, we have, after multiplying

-7
through by e and setting xl = 1,

Setting>-- = >--1 + i >--2 ; >--1and >--2 real, in equation (3.12) and using equation

(3.16), equation (3.18) gives

It must be noted that because equation (3.19) was multiplied through by

e -7 , and this quantity goes to zero in the simple fluid limit, we must

remove this factor before the limit can be taken. As we increase Xl' the

mixture curves approach the simple fluid curve. However, since the

mixture curves are dependent upon the logarithm of the concentration xl

must be very near 1 before the curves will be similar. Figure (3 -1)

shows the curves for the simple fluid and for a mixture with xl equal to

0.5, 0.95, and 0.999. As xl increases the lower intersection (with v = 0

branch) moves out to -00, and the upper intersection (with v .. 1 branch)

moves toward the simple fluid intersection.

From equation (3.28') and equation (3.29), it follows that the

largest x will be as sociated with the largest ycoty.
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For the case shown in Figure (3) the two largest values of ycoty at an

intersection are the ones associated with the v = 0 and v = 1 branches.

This will always be the case since the branches of cosy = f(ycoty) pass

through the origin with slope m = (-1) v /(v+ ~)1T' and the slope of the

indicials will always be greater than this, i.e. near the origin the indicials

are more nearly vertical and above the cosy = f(ycoty) curves. (For values

of ycoty near -0 the value of the indicial is always greater than the value

of any of the cosy = f(ycoty) curves).

At the uppe r inter section

% %
4 x. K

l(ycoty) = (-1+(1-8 x. s) )h,
o 0

where
cosy= K1 (ycoty); v = 1 branch

At the lower intersection

Y<
( -1 - (1-8 X. s) lho

where
cosy = KZ(ycoty) ; v = 0 branch

Now let

and

Kl = K1 (ycoty)

KZ = KZ (ycoty)

then inverting equations (3.34) and (3.36) we have

with and-1 < K < 0
Z

Z9

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



Now when the real parts of the two complex roots are equal we have,

from equations (3.33) and (3.35),

K-1 (-J +(1-8 A s)Yz)h = K 2-1(-1-(1-8 A s)Yz)h
100

(1-8 AOS)Yz= (K2-K1)/(K2 + K1)

2
AO = K1K2/(2s(K2 + K1) )

but

so

(3.38)

From equation (3.29) we have

-2 Yzh + 1nh= -s -a+1n A
o

or -2 Yza =-h -lnh-s + In A
o

However, h = 4 A %K (-1 + (1-8 A s)Yz)-l010

Yz -1
= 4 AO K1(-1+(K2-K1) /(K2 +K1))

h = -2 AOYz(K2 +K1) (3.39)or

Then

or

(3.40 )

30



Equations(3.38) and (3.40) together with equation (3.37) are

parametric equations for the transition locus in the (A. , a) plane. Thiso

locus is shown in Figure (4). From Figure (3) we may read the values of

A.l and A.2 and we get

A.l = -1.04 + i 2.45

A.2 = -1. 12 + i 5.38

Numerical solution of equation (3.19) gives

A.l = -0.97+ i 2..52

A.2 = -1. 08 + i 5.38

Here A.l is the intersection with the v = 0 branch and A.2 is the intersection

with the v = 1 branch.
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MULLER'S METHOD HARD SPHERES

Recall equation (3.10)

This equation may be solved numerically using the Muller's method

technique. Muller's method utilizes the following algorithm:

Zl' zz' and z3 are the initial guesses to the root. Now let

and

Fl = f(zl)

FZ= f(zZ)

F3 = f(z3)

then the new guess is given by

where

ZNew= z3 + (z3 -zZ)( -ZF3 )/ (Dt..W)

D = Fl >.. Z -FZ :5Z + F3 (>..+ 0 )

Z
W = (D -4F3 o>"(Fl>" -FZo + F3))

0= 1+>"

and the bottom sign is positive if D + W > D- W .
Convergence is then tested by

Z
3

-z < C
New 1

where for our study C 1 = 10 -6. If the convergence criterion is not met let

33



z = z
1 2

z2 = z3

z3 = zNew

and try again.

When this method was applied to equation (3.10) using a UNIVAC

1108 computer the following results were obtained: Figure (5) shows

a plot of the real parts of the two complex roots of largest real part.

The dotted line is the locus of the complex root of least negative real

part. Thus we see that the complex root of least negative real part changes

abruptly as a function of u at constant xl. Plots similar to Figure (5) can

be made for various values of xl and we generate a locus in the (u,xl)

plane across which the asymptotic decay of the pair correlation function

abruptly changes its spatial frequency. This locus is shown in Figure (6)

for the case N = 2. The equation of state of our model mixture is given

by equation (2.2)

-1 ac
-p = x/ll' (;)/Jll(;) + x2J22'(;)/J22(;) + a~

For the hard sphere pair potential case we have for the Boltzmann factors

(4.1)

and J _Nt:b
22 = e '=> /; J I (

-N~b
22 = -e . / ~)(Nb + 1/ ~) (4.2)

Since r = 1, C is a constant and :~ = O.

Substituting these Boltzmann factors into equation (2.2) gives
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bp = u/u(1+x2(N-l))+ 1) (4.3)

where as usual u = b; = pb/kT .

Figure (7) shows the transition locus in the (p ,xl) plane for

various values of the hard-core diameter ratio N.

Figure (8) shows the trans ition loci in the (p, N) plane for the

cases xl = .125 ,.5, and. 75. The dashed line is the limit of bp as

Xl -+-0 , u -+-00.

lim bp = lim 1/(1+x2(N-l)+1/u) -+- l/N (4.4)

X -+-0
1

X -+-1
2

U -+- 00 U -+- 00

which merely renormalizes the density, i.e. pip = Nbp = 1 whenmax.

pb /kT -+-00.

As xl approaches 1 the transition loci drop to zero because a

simple fluid, i. e. xl = 1, has only one spatial frequency associated with

the asymptotic decay of the pair correlation function.
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SQUARE-WELL POTENTIAL RESULTS

Let ~..(r) be a square -well potential given by
IJ

~oo (r)

IJ

boo

IJ

r

0.. (r)
IJ

= co r<b
ij

(6.0)

= -Eoob..<r<a..+b..
IJ IJ IJ IJ

= o r ~ b.. + a..
IJ IJ

where b.. = hard-core diameter, a..= well-width, and E..= well-depth.
IJ IJ IJ

Furthermor e let

40

a.. = Rb..
IJ IJ

bBB
=

NbAA

bAB
= (N+l) b = Cb

2 AA AA

EBB
=

HEAA

EAB
=

(H) E AA



Cas e 1 N = 2

AA

Case 2 N = 2

AA

b - b
AA -

EAA
= E

SQUARE- WELL CASES

R = 1 H = 1

AB

R = 1 H = 1. 5

AB

41

(6.0I)

BB

BB



We now wish to derive an equation for the pole of least negative

real part of the Laplace transform of the pair correlation function for a

system interacting through a square -well intermolecular pair potential.

First we need the value of r2 given by

(6.1)

where (6.2)

and the J. .'s are the Laplace transforms of the Boltzmann factors. Now
1J

with u= ~b, and v = f3E, we have

and

J = (bev-u/u)(l_e-Ru + e-Ru-v)11

J22 =(beHv-Nu/u)(l_e-RNu+ e-RNu-Hv)
~ ~

J12 =(beH v-Cu/u)(l_e-CRu+e-CRu-H v)

(6.3)

(6.4)

(6.5)

Now let

where All' A22' and A12 are defined from equations (6.3-6.5). Then

f3we =
v-u Hv-Nu

/((be )/u)( (be ) u)AllA22

( ( (beH/~V-CU)/U) A )212

(6.9)

42

v-u
(6.6)J 11 = (be /u)A 11 ,

Hv-Nv
(6. 7)

J 22 = (be /u)A22 ,

and
H v-Cu

(6.8)
J 12 = (be /u)A12 ,



with v = (H + 1 -2HYz )v (6.10)

Now we must solve equation (1.15)

(1.15)

The Boltzmann factors are given by

v-u

(t:+ )=be (
-A -A(R+l)-Ru + -A(R+l)-Ru-v

) (6 12)
J 11 "" s ., e -e e , .

Hv-Nu
J (t:+ ) = be ( -NA_ -N(R+l)A-RNu+ -N(R+l)A-RNu-Hv ) (6 13 )

22 "" s ., e e e , .
a~

H C lL
v- u /2

JI2(£+S)=be __ . , (e-CA_e-C(R+l)A-RCu+e-C(R+l)A-RCu-H v), (6.14)

with A = bs. Now define

and

(6. 15)

(6. 16)

(6.17)

(6.18)

Also let

and

(6. 19)

(6.20)

(6.21)

Then substituting (6.15-6.20) into equation (1.15) and simplifying we have

43

C 11 = (r...1 + 2x 1)!(r + 1)

C22 = (r+ 1 -2xl) / (r+ 1)

C12 = 2x2 /(r+ 1)

C21 = 2x1 /(r+ 1)

v-u
be

J11(£+s) = U+A B11

beHv-Nu
J22(£+s) = u +A B22

H/lv -Cu
be

J 12(£+s) = u + A B 12



u(C lIB 11 1A 11+ C22B 221 A22 - (C 11 C22B 11 B221 A 11A22)(ul (u+A.))

2 2
+ (C21C12B12/A12)(u/(u+A.))) = u+A.

(6.21)

Further simplifying we have

(6.22)

where

T =3
(6 . 23)

We shall now perform several checks on equation (6.22). First a

check to see if it reduces to the correct simple fluid form. Let N = 1,

R = 1, and H = 1, then

and

Equation (6.22) then reduces to

44

Tll = C11B11/All
. (6. 24)

T22 = C22B22/A22
. (6. 25)

A.
(6. 26)

Dll = e B11
.

NA.
(6.27)

D22 = e B22
,

C = (N + 1) 12 , (6.

and
CA.

(6.28)
D12 = e B12



but

and thus our equation reduces to

Now let xl = 1. Then r= 1, Cll = 1, C22 = 0, C12 = 0, and C2l = 1.

Thus equation (6.22) reduces to

Equation (6.29) is the correct simple fluid form. 1 Next we check the

_A.

high temper a tur e limit. Let T --+-00, then v--+-O and B 11 --+-e ,
-NA. -CA. -CA.

B22--+- e , B12--+- e , B2l--+- e , All--+- A22--+- A12--+- l,r--+- 1,

(6.29)

(6.29)

Cll --+-xl' C22 --+-x2' C12 --+-x2' and C2l --+-xl. Equation (6.22) then reduces

to

(6.29')

Equation (6.29') is the equation for a hard-sphere mixture. Next we check

to make sure that the trivial root at A. = 0 is present. Setting A.= 0 we

have
D..= A..= B..

1J 1J 1J

Substituting these into equation (6.22) we have

u(2r /(r+l)

or u (r + 1)/ (r + 1) = u.

45



Thus the trivial root checks.

Let us now examine equation (6.22) to determine the nature of

the non-trivial roots. First we rewrite the equation as

u (T 11 (u +A) + T 22 (u +A) + u T; ) = (u +A)2 (6.30)

where T; = «u +A)/U)T3 .

Equation (6.30) will now have an extraneous root when u+ A =0. Now set

and

I

G(A) = u(T11(u+A) + T22(u+A) + uT3

H(A) = (u +A)2

and look at a graph of G(A) = f(A) = H(A).

f(A)

46



Thus the roots of equation (6.22) are

A = 0 , the trivial rooto

A1 = -u , the extraneous root

A2 = AR, the relevant real root

and A
3 -A = A , the infinite set of complex roots.00 c

Thus our square-well mixture will have one relevant real root and an

infinite set of complex conjugate pairs of roots. Our task now is to

determine which of the roots of equation (6.22) is the root of least negative

real part.
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MULLER'S METHOD SQUARE-WELL

Equation (6.22) was programmed in FORTRAN V for a UNIVAC

1108 computer using the Muller I s method technique for extracting the

roots. The program proceeds as follows: Appropriate values of the

variables u = bp/kT and v = E /kT are read into arrays. The program then

picks up the values of the parameters R, N, and H. Next the first

Muller's method loop is executed with the restrictions that the extracted

root is both real and nega ti ve. When found the root is set equal to Z 1 .
The program then executes three more Muller's method loops with no

restrictions on the roots. However, each time a root is found, both it

and its complex conjugate are numerically divided out before the program

proceeds to the extraction of the next root. The program begins searching

for roots just off the x,y axis in the second quadrant of the complex plane,

and each time a root is found the program attempts to find another root

whose real part is greater, i. e. less negative.

Once four roots, one real and three complex (actually each complex

root is a complex conjugate pair), have been extracted for a given set of

u and v, the program picks the root of least negative real part and

compares it with the root of least negative real part from the previous

set of u and v. If the root is the same one, i. e. both real or both from

the same complex branch, the program proceeds on to the next set of u

and v. However, if the roots are different the program prints out both

48



setsof roots along with the corresponding values of u and v. The entire

program is then looped on various values of xl.

Once the roots have been found they are put on paper tape and run

into a BASIC program on a PDP -11 computer which does linear interpola-

tion between the sets of u and v and then prints out the corresponding

values of pressure, temperature, concentration, and density. Plots are

then constructed in the (p, T) and (p, T) planes. From the (p, T) plots a

cut at constant p is taken and a plot in the (T ,xl) plane is made. These

plots are shown in Figures (9) through (14).

Figures (9.1) through (9.4) show the transition locus in the (p, T)

plane for the cases N= 2, R= 1, H= 1, and xl = .1, .4, .5, and .8.

As the concentration of the smaller species increases the transition loci

become more complex. At a concentration of 0.8 the plane is divided

into four distinct regions. Each region is characterized by the spatial

frequency of the oscillation of the damped sinusoid characterizing G(r).

The zero frequency region corresponds to monotonic exponential decay

of the pair correlation function. We note that all all concentrations there

exists a. maximum pressure, above which, the decay is always oscillatory.

This is in agreement with the results for a cimple fluid square-well. 1,3

As the concentration of the smaller species increases the w= 0,

w'" 3, and w '" 4 regions increase, while the w '" 2 region decreases. Figures

(10.1) through (10.4) show the transition loci in the (p, T) plane at

constant xl. Once again there is an enhancement of the w= 0, w'" 3, and
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w '" 4 regions as xl increases and a decrease in the w '" 2 region.

Figures (9.I) through (IO.4) also show the transition locus for a simple

fluid square-well for comparison.

Figures (Il.I) and (11.2) show the transition loci for the case

N = 2, R= 1, H= 1.5, and xl = .5 in the (p,T) and (p,T) planes respec-

tively. From the figure we can see that increasing the ratio of the well

depths has increased the region of monotonic decay.

Figure (12) shows a plot of peak pressure reached by the transi-

tion loci versus concentration for the cases N = 2, R = 1, and H = 1 and

1.5. For all concentrations the peak pressure is increased as the well

depth ratio is increased. This effect, an increase in the region of mono-

tonic decay with an increase in the attractive part of the intermolecular

. . 1 h b d . . k I,3,13 h ff hpair potenha, as een note In preVIous wor on tee ectt at

the attractive part of the pair potential has on the asymptotic behavior of

the pair correIa 'lion function.

Our choice for the mixed interaction parameters of the pair poten-

tialdoes not favor any phase separation. Figure (13) shows a compari-

son of the transition locus with the van der Waal's spinodal for an equivalent

van der Wall's mixture. The lines do not cross, and only at very low

concentrations is the transition locus even close to the region of phase

separation.

Figure (I4) shows a plot of the transition loci in the (T,xI) plane

at constant p for the cases N = 2, R = 1, and H = 1 and 1.5. We note
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here that our plots are not a two dimensional projection from the four

dimensional variable space p, p, T, xl. Rather, only one variable is

held constant in each plot and the fourth is given by the equation of

s ta te .
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van der W AAL' s SPINODAL

The free energy of a binary van der Waa1's mixture is given by 12

f(x,T,v) = kT(x1nx+ (l-x)ln(l-x))-a(x)/v - kT1n(v-b(x))

+ xh1 (T) + (1-x)h2(T) . (6.31)

The equation for the spinodal is obtained from the solution of

2
f f -f = 0
xx vv xv (6.32)

where the subscripts refer to the various derivatives of the free energy.

The derivatives are given by

f
v

2
= a(x)/v - kT/(v-b(x)) (6.33)

f
vv

3 2
= -2a(x)/v + kT/(v-b(x)) (6.34)

f
x = kT(lnx-1n( I-x)) -a' (x) /V+k Tb' (x) / (v-b) (6.35)

f
xv

2 2
= a'(x)/v = kTb'(x)/(v-b(x)) (6.36)

and f = kT(l/x -l/(l-x))-a"(x)/v +xx

kTb" (x) / (v-b )+kT(b' (x)) 2 / (v-b(x)) 2 (6.37)

We now note that for a one-dimensional van der Wall's system a(x) and

b(x) are given by

a(x) (6.38)

and (6.39)
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If we now let (3 = l/kT and substitute equations (6.34) through (6.37)

into equation (6.3 Z) we have

Z Z Z
(v(v-b(x» -x(l-x)((v-b(x» (3a"(x) + v(b'(x» »*

Z 3 Z3 Z
(-Za(x)(3 (v-b(x» + v )/(x(l-x)v(v-b(x» v (v-b(x» )

Z Z Z 4 4
-((v-b(x» (3a'(x)-v b'(x» /(v (v-b(x» ) = 0

Multiplying out and collecting terms to the varioo. s orders in (3we have

the following: to order zero

4 Z
v (v-b)

the linear term

(6.40 )

(6.41)

Z Z Z Z
-Zv(v-b) (a(x)(v-b) +x(l-x)(a"(x)v /Z-a'(x)b'(x)va(x)b'(x) » , (6.4Z)

and the quadratic term

4 2
x(l-x)(v-b) (Za(x)a"(x)-(al(x» )

Now for the mixtures we are dealing with bZ = Nbl, aZ = Hal' and

alZ = H ~al. Using these relations in equations (6.41) through (6.43)

and letting N = Z, H = 1, one obtains

(6.43 )

(6.44)

where T s is in units of E /k, xl is the concentration of type 1 particles, and

P is the normalized number density.

Phase separation is favored if alZ « (al + aZ)/Z and

bIZ » (bl + bZ)/2. This is not the case for the model mixtures we are

dealing with since for our systems
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and

(6.45)

(6.46 )

Recall the general form for the equation of state of a one-dimensional

binary mixture equation (Z. Z)

(Z. Z)

For our square-well model mixtures the Boltzmann factors are given by

(7. 1)

(7.Z)

(7.3)

(7.4)

wher e
Al = A

11

AZ = Re -Ru -Re -Ru-v

(7. 5)

(7.6)

and

Bl = B
11

BZ = RNe -RNu -RNe -RNu-Hv

(7. 7)

(7.8)

If we now let

and

Cl = A
lZ

C Z = CRe -CRu -CRe -CRu-H~v

(7.9)

(7. 10)

we have for our equation of state

-1
(bp) = xl (BZ/B 1 -N -AZ/ AI) -B Z/Bl + (N + u) /u

+ D(xl/(r-l + Zxl) + xz/(r+ l-Zxl) - l/(r+ 1) (7.11)

54

v-u
J 11 (u) ::. be Al/u

Z v-u /
J II' (u) = b e (AZ-Al-Al/u) u

JZZ(u)
= beHv-NuBl/u

Z Hv-Nu
JZZ'(u) = b e (BZ-Nbl-Bl/u)/u



where

D =
2xIx2{e VAIB2/CI2 +e VBIA2/CI2 -2e VAIBIC2/CI3)

V 2 1/z
(I +4xIx2{e AIBI/CI - 1) )

(7.I2)
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LA TTICE GAS HARD SPHERES

In going from the linear continuum to the lattice gas we use the

following prescription:

00 00

( dr - a ~ (r - ka) .
)0 k=O

(5.1)

Thus

J..(s) = a
1J

00
~

k=O

-ska -(34).. (ka)
e e 1J

(5.2)

Let 4>..(r) be given by
1J

4>..(r) = 00, r< b..
1J 1J

= 0 , 4 ~ b..
1J

(5.3)

and furthermore let

bll = b

b22 = Nb

B12 = ((N+ 1)/2)b=Cb

and b = Ma

where a is the lattice constant and b is the hard sphere diameter of the

smaller species. Then

00
~

k=O

M-l 00

= a( ~ e-~kae-f3cPll(ka)+ ~ e-~ka-(34)ll(ka))
k=O k.M

68



-Mu -u
= ae / (l-e ) , U = ;a (5.4)

(5.5)

NM-l 00

= a( L: e -~ka-f3<1>22(ka)+ L e -~ka-f3<1>22(ka))
k=O k=NM

= a ( 0 + e -NMa~ / (l-e -a~) )

-MNu -u
= ae /(I-e) (5.6)

J22(~+s)= ae-MN(u+A)/(I_e-(u+A)) (5.7)

J (l: )
-MCu -u

12 ':> = ae / (1-e )

JI2(~+s) = ae-Mc(u+A)/(I_e-(u+A))

(5.8)

and (5.9)

Now for the moment let M = 2. Substituting equations (5.5-5.9) into

the expres sions for the P.. IS and remembering that r = 1 for hard-spheres,
1J

we have

and

Pll!;: X1(I_e-u)e-2A/(I_e-(u+A))

P22 = x2(I_e-u)e-2NA/(I_e-(u+A))

P 12 = x2(I-e -u)e -(N+ I)A /(I-e -(u+A))

P21 = x1(I_e-u)e-(N+l)A/(I_e-(u+A))

(5.10)

(5.11)

(5.12)

(5.13)
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From equation (5.1Z) and equation(5.13)we can see thatPllPZZ= P1ZPZ1'

so that our equation reduces to

-u -ZA _(u+A) -u _ZNA -(u+A)
xl(l-e )e /(l-e )+xZ(l-e)e /(l-e )= 1 ,

ZNA -u -A(l-ZN)
(1 3

-u
)
ZA(N-l)

e -e e - x - e
1

or

-u
-(l-x )(l-e ) = 01

(5.14)

We know that A = 0 is the trivial root and so we divide it out. We then

have

ZN-l ZN-Z ZN-3
z + Az + ABz + ... + AB = 0 , (5.15)

where

Therefore, when ZN is integral, the equation governing the asymptotic

behavior of the pair correlation function is a polynomial of degree ZN -1,

where N is the ratio of the hard sphere diameters. Since all the co-

efficients of equation (5.15) are positive, the roots will either be negative,

or complex conjugate pairs.

Let z = z' , where z' is a root of equation (5.15). Then if z' is
o 0 0

real and negative

A
e = z' = -z

o 0

x
e (cosy + isiny) = -z

o

x
e cosy = -z

o

70
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z = e

A = l-e
-u



x.
e sIny

x
e

y

x
e cos (k1T)

x

since x is real.

So, for z I real and negativeo

A = lnz + ik1T
o k = 1,3,5, ... (5.16)

and thus

A = In (x ) -In[cos (atn (y Ix )]+ i atn y Ix
o 0 0 0 0

(5.17)

Therefore for all allowable values of z, A is complex and thus the

asymptotic decay of G(r) will always be oscillatory. However, the form

of A changes depending upon whethe r z' is real and negative or complex.o

When the real root is equal to the real part of the complex root, then a

locus is generated in the (u,xl) plane across which the asymptotic form

71

= 0

= k1T , k= 0,1,2,3,...

= -z
0

= z
0

= lnz , k = 1,3,5,...
0

For z I complex we let z I = X + iy , then
o 0 0 0

eX(cosy + isiny) = x + iyo 0
x
e cosy = x

0
x.
e slny =

Yo

tany = y Ixo 0

y = atn(y Ix )o 0

x = In(xo Icosy)



of the pair correlation function abruptly changes its spatial frequency.

For any value of M equation (5.15) becomes

zMN-l + AzMN-2 + ABzMN-3 + ... + AB = 0 (5.18)

where again

and
B = 1-x 1

Let us now consider some specific cases.

Case 1.) N = 1, M = 2, simple fluid case -

z+A=O

A. -u
e = e -1

X
( + ..

)
-u

1e cosy ISlny = e -

Since x is real only odd k are acceptable and we have

-u .
A. = In (1- e ) + lk'IT ; k= 1,3,5,.... (5.19)

72

A.
z = e

A l-e
-u=

x -u
-1e cosy = e

x. 0e slny =

y = k'IT ; k= 0,1,2,3,4,....

So x -u -1e cosk'IT = e

x -u
-1, k= 0,2,4,...e = e

x
l-e

-u
k= 1,3,5,...e = ;



Thus the form of A. remains the same over the entire range of u.

(Note: This is the expected simple fluid result.) Figure 15 shows a

comparison of the simple fluid case for the linear continuum and the lattice

gas.

Cas e 2.) N = 1.5, M = 2.

2
z + Az + AB = 0

z = -A I 2 .:t~(A 2-4AB)~

N ow let C = A 2 -4AB. The form of z will then change depending upon

whether C is greater than or les s than zero. For C > 0

or once again setting A.= x + iy

x
e cosy =

x.
e slny = o

y = k1T ; k 0, 1 , 2, 3, ...

and again because x is real and (-A/2 i:. C~ 12) must be negative, only

odd k are acceptable and thus

k=I,3,5,...

For C < 0

A.
e =

x
e cosy = -A/2

+ C%/2- 1
x.

e slny =
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~
y = atn fF C 1 / A)

~
x = In (-A/2cos(atn(+ Cl /A)))

or ~ ~
A = In(-A/(2cos(atn(+Cl/A))))+ iatn (+Cl /A).

(5. 20)

The change in A takes place when C = o. Thus u is given byc

2
A -4AB = 0

Therefore a locus is generated in the (u,xl) plane across which the

asymptotic decay of the pair correlation function abruptly changes its

spatial frequency.

Case 3.) N= 2, M= 2, -

3 2
z + Az + ABz + AB = 0 (5.21)

that c> 0 and thus the roots of equation (5.21) will be one real negative

root and one complex pair of roots. For the real part of the complex

75

A = 4B

l-e
-u

4 (1-x 1)
=

u =
-In(4xl -3)c

Let A (5.22)P = ,

q = AB , (5. 23)

r = AB . (5 .24)

2
a = (1/3)(3q-p ) , (5.25)

3
(5. 26)b = (1/27)(2p -9pq + 27r) ,

and C = a3/27+b2/4 . (5.27)

Substituting equations (5.22) through (5.26) into equation (5.27) we find



root to equal the real root b must be equal to zero. However, this

implies that 8lB2/4 - 54B > O. Since B < 1 this is impossible and thus

there is no split in spatial frequency.

Case 4.) N= 2, M= 1.5

2
x + Az + B = 0 (5. 28)

This case will have a split in spatial frequency when A = 4b, or

Uc = -In(4xl-3). In fact, due to the nature of the general equation, there

will always be a locus generated in the (p ,xl) plane whenever the product

MN is an odd integer. Figure (16) shows a plot of the locus in the

(p ,xl) plane for the case MN = 3. Also shown is the locus for the linear

continuum N = 2 cas e.

Figures (15-1) and (15-2) show plots of A versus xl for both

lattice gas (MN = 3) and linear continuum (N = 2) systems. The points

at xl = 0 and xl = 1 are the values for 'pureB' and 'pure A' systems

respectively. (See appendix D). The dashed lines in Figure (15-1) indi-

cate the abrupt changes in 1m (A). As one can see from the figure both

the lattice gas and linear continuum systems change from "low" to "high'!

spatial frequency as xl increases. Again this is the change from "B

type" to "A type" behavior.
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Recalling equation (2.2) and using equation (5.2) we have for

the equation of state of a one-dimensional binary lattice gas with a hard

sphere interaction potential

-x ae -Mu
1

-u
-e

1
-u

-e 1
-u

-e

-Mu -u
- M /(ae /(l-e))

-x ae -MNu2
-u

e -MNu -u
+ M /(ae /(l-e)),

1
-u

-e 1
-u

-e

-1
(ap)

ap
u u

= ( e - 1) / ( ( e - 1)(1 + x 2(N - 1)) + 1)
(5.29)
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We have investigated the asymptotic behavior of the pair

correIa tion function in a one -dimensional binary mixture interacting

through a strictly nearest neighbor pair potential. Several cases were

examined.

Case 1. -

Hard-sphere potential, linear continuum.

For this case the asymptotic form of G(r) is always a damped sinusoid.

However, there is a locus generated in the (p,xl) plane, across which,

the asymptotic form of G(r) abruptly changes its spatial frequency.

Case 2. -

Hard-sphere potential, latticegas.

In this case the asymptotic form of the pair correlation function is once

again a damped sinusoid. If we let M be the ratio of the lattice constant

to the hard-sphere diameter of the smaller species, and N be the ratio
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of the diameters, then when the product MN is an odd integer we generate

two separate regions in the (p,xl) plane. Each region is characterized

by the value of the spatial frequency of the damped sinusoid associated

with G(r). When MN is an even integer we have only a single frequency

associated with the asymptotic decay of the pair correlation function.

Case 3. -

Square -well potential, linear continuum.

For this case the (p,T) plane is divided into several regions.

Each region is once again characterized by the value of the spatial fre-

quency associated with the damped sinusoidal decay of G(r). The zero

frequency region corresponds to monotonic exponential decay.

The square -well results are all consistent with the idea that the

attractive part of the pair potential governs the monotonic region and

the repulsive part governs the oscillatory regions. This is the reason

for the increase in the monotonic region with an increase in the concen-

tration of the smaller species. As we increase xl we must go to higher

and higher densities in order to maintain oscillatory decay. This is

because the "effective distance" between two particles increases as we

add the smaller species and subtract the larger. Our chosen particle

thus "sees II fewer hard-core repulsions and thus finds itself in a more

attractive environment, resulting in an increase in the region of mono-

tonic decay.
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A simple fluid interacting through a square -well pair potential

with a well-width to hard-core diameter ratio R equal to one has an w

of approximately four associated with the damped sinusoidal decay of

G(r). For a ratio of one-half the associated frequency is approximately

2.4. Figures (10.1) through (10.4) show that, as the concentration of

the smaller species increases, the w 'V 2 region decreases while the w'V 4

region increases. This can be understood in terms of the simple fluid

results. Since we are concerned with the oscillatory regions the repul-

sive part of the pair potential will govern the behavior. At low xl the

smaller particles "see" the large repulsions of the larger species and thus

we are in a region of attractive to repulsive ratio les s than one. Just as

in the simple fluid case this generates a "low" w (low relative to 4, the

w for a pure fluid). However, as we increase xl we begin to appr oach

closer and closer to a simple pure fluid and the w 'V 4 region begins to

dominate.

Studies by Throop and Fisk2 have related the spatial frequency w

to the moments of the direct correlation function. For a one-dimensional

system of hard spheres the direct correlation function is given exactly by 14

C (r) =
2 2

-l/(l-bp) + pr/(l-b/) r < b

= o r> b (8. 1)

where b is the hard-sphere diameter and p is the number density. Follow-

ing Throop and Fisk the spatial frequency w is given by
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(8.2)

where

00 2'

= (p/(2j) )Jo r JC(r) dr
(8.3)

and explicitly
(8.4)

(8. 5)

(8.6)

(8.7)

Substituting equations (8.4) through (8.7) into equation (8.2) one obtains

wb = (3P-4)/(2A) + ((2A-P(P-2)/(2A)) ~
(5P-6)/(15A) (P(5P-6)/(180A)) ~

(8.9)

Figure (17) shows a plot of wb versus bp for w given by equation (8.9) and

wb given by direct solution of the simple fluid equation. (Equation (3.11)).

Also shown in the figure are the curves for -Kb versus pb from equation

(3.11) and from the moment expansion method which gives -K as

(8.10)

Equations (8.9) and (8.10) are based on truncation of the moment

expansion of C(k). The Fourier transform of C(r), at 0(k4). For purely

repulsive potentials such as hard spheres, this is the first acceptable

approximation since truncation at 0 (k2) gives a divergent compressibility.
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C = P (P -2) / (2A)0

C = (b 2p /2) (3P -4) / (12A)2

C = (b4p /24)(5P -6) / (30A)4

A = (l-P) 2

and P = bp
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All of the moments of (8.1) are negative and if higher approxi-

mations for wb only contain ratios of the moments like the k 4 case, then

the effect will be to increase the value of w for a given value of the density.

From Figure (17) one can see tha t this is precisely what is needed to

bring the moment expansion values in line with the direct solution values.

The position of the transition loci in the phase space of a real

three dimensional fluid can be predicted by examining the position of the

spinodal curve for a corresponding van der Waal' s mixture. From equa-

tion (6.44) we have

2
T2 = 2p (1-2p) + pXl (2-3p) ) (8. 11)

Equation (8.11) corresponds to our mixtures with N = 2, H = 1, and R = 1.

Thus for all but very low densities the spinodal curve lies well within the

region of monotonic decay. We may also examine the pseudocritical

.
b

9
gIven y

and

Tc = (8/27)a(xl)/b(xl)

Pc = (1 /27)a(xl) /b(xl)2

(8. 12)

(8. 13)

where

and

2 ~ 2
a(al) = xl E 2xl (l-xl)H E (I-xl) HE

b (x 1) = xl b (1-x 1)Nb (8.14)

Thus setting N = 2 and H = 1, one obtains
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and

k Tc/E ::: (0.296)/(2-xl)

2
b P c IE ::: (0. 037) I (2-x1)

(8. 15)

(8.16)

These pseudocritical points lie below the spinodal (the true critical point

lying on the spinodal) and thus are in the region of monotonic decay. One

would then expect that for real systems the region of os cillatory decay

will lie comparatively far away from the true (three dimensional)

.. 1
. 1

crItlca pOInt.

The transition loci may be experimentally investigated by means

of x-ray or thermal neutron scattering studies. For a simple fluid of N

systems each of scattering power f(k) the intensity I(k) of radiation of

wavelength A scattered through angle A from the direction of a primary

beam of intensity I at a distance R from the scatter is, in the first Borno

. . . b 15,16,17
approximatlon, gIven y

00

(1+1'1 cos(kr)G(r)dr), (8.17)

where k::: 4iTA-1 sin (eI2) and r is the "clas sical electron radius II. Witho

G(r) given by equation (1.9), equation (8.17) becomes3

I:so ((I(k)-l)/Io(k) )/p = 21'Yl!(AK(K2+w2+k2) +

2 2 2 2 22 2 2
Bw (k -K - W ) ) I ( (K ~ W ) + k (k +

2 2
2(K - W ) ) ) (8.18)
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where here we have set

(8. 19)

and

A = cos(argf'/l) )

B = sin(arg(Y 1) )

(8. 20)

(8.21)

The w = 0 case is the well known form for monotonic decay of G(r)

(8.22)

For a binary mixture of systems of scattering powers fl(k) and f2(k)

the corresponding formula is 15

2 2 2f 2 2
]I(k) = IoNro ((1 +cos e)/2R ) (lfl (k) + (1-xl)f3(k)

CX) 22 22

+ PJ 0 [ xl fJ. (k) G 11 (r) + (1 -xl) f2 (k) G 2 2 (r )

+ Z xj(j-xj)fj (k) fZ(k) Gjz(r)] cos kr dr

(8. 23)

Unfortunately, because there are now two scattering powers, and three

pair correlation functions, formulas corresponding to equations (8.18) and

(8.22) cannot be obtained by substituting the asymptotic forms of the

correlation functions into equation (8.23).

Further study of the effect on the transition loci of changes in

the mixing parameters N, H, and R should help to clarify the meaning of

the various oscillatory regions. The detail shown by the loci give us a

valuable tool for investigating the parameters of the intermolecular pair

potential and their contribution to the properties of the entire system.
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APPENDIX A

(1.4)

The normalizations are

x =
1

and
(1. 5)

The entropy and the internal energy are then given by

89

Define
8

£11cy1' "11) = £11(- "I ' - "I )
. (1.1)

£2 2 (" 2' "2) = £2 2 ( -" 2' , -" 2)
. (1. 2)

£ 1 2 (" 1 ' " 2') = £ 21 ( -" 2' -"I )
. (1.3)

and £1("1)
=

£1(-"1) . (1.3)

£2("2)
=

£2(-"2)

then



LIZ L-k +"Y
-
J d"Yl J 1d"Y1 fll("Y1'"Y1) In fll("Y1'"Y1)

-L/2 -k +"Y1

LIZ L-k +"Y1-Z
J d"Y1 J d"Y 2 f 1 2 ("Y1 ' "Y 2) In f 1 Z ("Y1 ' "Y2)

_LIZ -k +"Y1

(1.6)

and
E- -
M

+ (1. 7)

The free energy F = E-TS is then made a minimum with respect to f1,

£2' fll' f1Z' and f22 under the additional conditions (1.1) and (1.3) to

(1.5). Using undetermined multipliers Al and A2 for equations (1.5),

ZA3 and ZA4 for eqs. (1.4), A 5("Y1) and A6(\'Z) for eqs. (1.3), and A7
,

("Y1,"Y1)and A8("YZ,"Y'2)for eqs. (1.1), we have

(1.8)
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(1. 9)

_A (-'I' ,-'1) = 07 1 1 (1. 10)

(1.11)

(LIZ)

and (1.13)

Combining equations (1. 3) and (1. 1) with eqs. (1. 8) through (1. 11), one

can eliminate AS' A6, A7, and A8, so that the £('I)'s and the £('1, 'I')'s are

expressed using only AI' AZ' A3, and A4.

After the elimination o£ A5 and A8 from equs. (1. 1), (1. 3), and

(1. 8) through (1. 11), one obtains

(1. 14)

(1.15)

Since £('1) L -1, it is plausible to choose A3 ('11) and A4 ('IZ) o£

equation (1.14) so that £1('11) and £Z('IZ) become constant. This reasoning

gives one
91



A3 cy 1) = S3"\ + c 3

A4 cy 2) = £4"2 + c 4

A3 and A4 not neces sarily being equal. Putting thes e into eqs. (1. 15)

and changing the primed coordinates into relative ones such that

r12 ="Z +k-"l etc., one obtains

(1.16)

(1. 17)

Of these three relations, fll and f22 are functions only of the rela-

tive coordinates. Therefore it is reasonable to conclude that f12 also

depends only on the relative coordinate r 12' to obtain

t - t -
s3 - -4 -

Combining equations (1.16) and (1.18), one obtains

A3("\) = s"l+ c3

A4("2) = ; "2 +c4

S, c3, and c4 being constants. Determining c3 and c4 from equation

(1 .5), one obtains
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and a1s 0

(1.21)

Inserting equations (1. 20) and (1. 21) into equations (1.4), one obtains

-;k 1
e = exp(-X-1-f3!,J.1) + exp(-t '2 (X-1+X-2)-131-.l12)

-;k 1
e = exp(t- '2(X-1+X-2)-131-112)+exp(-X-2-131-122)

(1. 22)

(1. 23 )

where
t

e =

and, where we have defined

(1. 25)

1-122(~) and 1-112(;) are defined when one rep1aces<tJ.1(r) in equation (1.25)

by <l>22(r) and <l>12(r), respectively. Solutions of equations (1. 22) and

(1.23) are

(1. 26

where

r2 = 1 + 4x x (e +l3w(;) -1 )- 1 2 (1. 27)
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and

Ins erting equation (1.26) into equation (1.13), one obtains

-F / Mk T = gk + In (r+ 1 ) -x 1 ((3 f! 11 + In (r -1 + 2x 1))

-x2 ((3f!2i In(r+ 1- 2x1)).

g is determined from the condition that F of equation (1.29) is made a

minimum with respect to S, keeping k and T constant. Combining equa-

tions (1.20) and (1.26), the final results for the f..'s are
IJ

-1 (r - 1+ 2x 1)
= xlL (r+l) exp(-(3f!II-~rll((3cj>l1(rll))

-1 (r+I-2x1)
= x2L (r+l) exp(-(3f!22-sr22-(3cj>22(r22))

and
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APPENDIX B

11
Muller's Method-

Start: zo,zl,zZ, are the initial estimates.

fo = P(zo), fl = P(zl), f2 = P(zZ)

AZ = (zZ-zl)'l(zl-zo)

Iterative algorithm:

h. = (A. + l)h.111

x. +1 = z. + h. 11 1 1 +

Comments: The method is based on quadratic interpolation of the last

three estimates. Its rate of convergence is 1.839. It is more efficient

than other methods for n;::: 85. Note: For the transcendental functions

under consideration n ->- CXJ .

95

b. = 1 + A.
1 1

Z Z
g . = f. - 2A. - f. 1b. + f. (A.+ &.) ,

1 1 1 1- 1 1 1 1

A. + 1 = -2£.b. /G.
1 1 1 1

G. =
Z

g. + (g. -4f. b.A.(f. ZA.-f. lb. + f.))1 1 - 1 1 1 1 1- 1 1- 1 1



APPENDIX B

FORTRAN V PROGRAM FOR MULLER'S METHOD

FLOW CHART

Define Complex Variables

Define Real Variables

Dimension Variables

!

C

D rJ 45 L = 1,10

u(L) = 0.0 + 0.10*L

45 C~ntinue

I

G
~ 46 K = 1, 5

V(k) = 0.0 + O.l*K

46 C~ntinue

l
D~ 47 K = 6, 10

r~~) = 0.0 1.0*(K-5)

C47 C~ntinue
I

Write (6,3)
3 F~rmat (IH ' ')

I
D~ 747 JJ = 1,9

I
THETA = 0.10*JJ

Write (6,21) THETA

I
B 1 (0) = 0

B 2 (0) = 0
Z 1 (0) = 0
Z 3 (0) = 0
Z 4 (0) = 0

I

96

u(O) = 0
V(O) = 0

j
D~ 100 L = 1, 10

l
J = 1
J = 1

,.
D~ 101 K= 1,10

l
103 FORMAT (lH02F 12.8)

21 FORMAT (2E20.8)
27 FORMA T (lH08E 16.8)

~
R = 1.0
N = 2.0

MM = 1. 0

j
A1=
A2=
A3 =
V4 =
A4 =
GAMMA =
C1=
C2=

I



Y
E
S

I
FIRST MUELLER'S METHOD

J
Xl = CMPLX (
X2 = CMPLX (
X3 = CMPLX (

I
M=l

J
202 CALL FCN (

FF3=
CALL FCN (
FF2::.
CALL FCN
FF3 =
LAM =
DEL=
D =
W -

f
IF (CABS (D-W).GT.CABS(DtW) G~T~ 96

J
X NEW =

I

y-IF (R~AL (XNEW).GT.O.O) G~T~ 49

E GOT0151~

L49 X~EW = -XNEW J

y-151 IF/ABS(AIMAG(XNEW)).GT.l,DE-6) G~T~
E GO TO 204

L614 XNEW = REAL(XNEW)
I

GO TO 204

)-

614
.

..
96 XNEW=

.
y IF (REAL(XNEW).GT.O.O) G~T~ 48~

E GO TO 152~

S -48 XNE"1 = -XNEW ~
-152 IF(ABS(AIMAG(XNEW)).GT. 1.0E-b) G~T~ 615y

E GO TO 204 -
S~615 XNEW = REAL(XNEW)
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t
.204 C(1JNTINUE
.. J.

M=M+1,
IF (M GT. 30) 60 TO 101

IrIF (CABr (X3-XNEW).LT.1.0E-6)
IF (CABS (XNEW). GT .10) G(1J T(1J

J

Y Xl = 12
E X2 = X3

S X3 = ~NEW

J
G(1J T(1J 2(1J2

24 Xl (K) = XNEW
~

SECOND MULLER'S METHOD

J
Xl = Z 1(K) + 0.1

I
X2 = Z 1(K) + 0.12

J
X3 = Z 1 (K) + 0.16

l
M = 1

I
203 CALL FCN ( )--1f

J

FF3=
f

CALL FCN.(
f

FF2=
f

CALL FCN (
#

FF1=
J

LAM =
#

DEL=
I

D=
#

W=

YES

GO T(1J 24

10 1 YES

-
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I

,IF (CjBS (D-W).GT .CABS (D + W) G~ T~ 97

Y XNE"r
E GIJ TIJ 2

~
5

S
~97 X NEW =

205 CIJNTINbE

~
M=M+l

i
IF (M. G T .30) GIJ TIJ 101

I

(
IF (CABSI (V3-XNEW).LT.1E-6) GIJ TIJ 26
IF (CABS (XNEW). GT. 10) GO TO 101

J

Y X 1 = jX2
E X2 = X3

S X3 =1XNEW
~

GIJ TIJ 203

26 Z 2(K) = XNEW

J
THIRD MULLER'S METHOD

J
FOURTH MULLER'S METHOD

)

99
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YES



1

Bl(K) = AMINI (ABS(REAL(XI - 4(K))))

J

~ IF (ABS(Bl(K) .. ABS(REAL(Zl(K)))).LT.IE-4) G~
IF (ABS) . . . Z 2 ) G~

elF (ABS) ! . . Z3 ) G0

Y II IF (ABS) ! . . Z4 ) G0
~ I BlI(K) = CMP{X (BI(K). AlMAG (Zl(K»)

I
G~ T~ 3 1

Y
E

S""5 B 11 (K) =
l

31 IF (ABS (AIMAG (B 11 (K))). GT 1.) G~ T~ 30

J

T~ 1

T~ 2

T~ 4

T~ 5

Z2

Z3

IF (I.EQ.2) G~ T~ 33

J

WRITE (6,103) U(L), V(K-l)
I

WRITE (6,27)Zl(K-l), Z2(K-l), Z3(k-l), Z4(K-l)
~

WRITE (6,103) U(L), V(K)
I

WRITE (6,27) Z 1(K), Z 2(K), Z 3 (K), Z4(K)

~

YES

100

YES-

.

B11 (K) =
f

G T 31

B11(K) =
f

G T 31



J
1= 2

J
33 B1(K)= AMINI (ABS REAL (Z2-4(K))))

t
IF (ABS(B1(K) - ABS(REAL (Z2(K)))).LT.1E-4)

+

IF Z3

T~ 6

T~ 7

T~ 8

y
E Y
S E Y

S E.
S

t
IF ( . . . Z 4

J
B11(K) = CMPLX(B1(K), AIMAG(Z2(K)))

J
G~ T~ 30

7 B 11 (K) = Z3

~

G~ T~ 30

= Z4

.. 30 IF

I
Y

E
S
~

40 IF

J

(ABS(ABS(AIMAG(B11(K))) - 2.).GT.1.)

j
G~ T~ 102

G~ T~ 40

~

(J.EQ.2) G~ T~ 102

J

WRITE (6,103)U(L), V(K-1)
f

WRITE (6,27) Zl(K-1), Z2(K-1), Z3(K-1), Z4(K-1)
J

WRITE (6,103) U(L), V(K)
I

WRITE (6,27) Zl(K), Z2(K), Z3(K), Z4(K)

J

..

101



1

CALL FCN (Zl(K), R, N, U(L), V(K), C1, C2, FNEW1)
+

CALL FCN (Z 2(K) FNEW2)

~

CALL FCN(Z3(K) FNEW3)
~

CALL FCN(Z4 (K) FNEW4)

J
WRITE (6,27) FNEW1, FNEW2, FNEW3, FNEW4

J
J = 2

SUBROUTINE FCN(A, B, C, D, G, H, P, F)

RETURN
END

102

: 102 IF (I + J. EQ . 4) G T

100)
! y

101 CON TINUE
E

J S
100 CONTINUE

.

J
747 CONTINUE

J

STOP
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APPENDIX C

Comparison of equation (2.2) with other work.

Recall equation (2.2)

(2.2)

where (2.3)

Let <1>..(r) be a hard-sphere interaction and equation (2.2) reduces1J

to

bp = u/(u(1+ x2(N-l)) + 1) (C 1)

where u = b~

If we let N = 1, or xl = 1, equation (C-l) reduces to the correct simple

fluid form.

C. C. Carter 9 gives the equation of state for a van der Waal' s

mixture of hard-spheres as

where

and

Substituting (C -3) through (C -5) into equation (C -2), one obtains

~ = l/(l/p -(1-x2)b-x2Nb)

bp = -1(-1 + x (l-N)-l/€b)2 -

108

TT = 1/ (P. -0 (x)) , (C -2)

TT = P /k T = , (C -3)

.£ = 1/ P , (C-4)

o(x) = (1-x2)b + x2Nb . (C-5)



or, with u = b ~ ,

bp= u/(u(l+ xZ(N-l)) + 1) (C -6)

Lebowitz and Zomick6 use the following relation for the equation

of state of a one-dimensional hard-sphere system:

with

and

Using equations (C-8) through (C-lO) along with (C-7) one obtains

P = p/(l-b/(l-xZ + NxZ)

bP = bp/(l-b/(xZ(N-l) + 1))

or with u = bp/kT we have

bp = u/(u(x2(N -1) + 1) + L) (C-ll)

If we let <j>..(r) be a square-well interaction and take the simple
1J

fluid limit, equation (2.2) reduces to

-1 -u -v -u -v
(bp) == 1 + l/u -e (l-e )/(l-e (l-e )) (C -12)

Katsura and Tago 10 give the equation of state of a one-dimensional square-

well system as

-1
p

-1
/

t
= 1 +t - (f ((1 +f)e -f)) (C -13)

where I3E v
f=e -l=e -1, (C -14)
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P = (p 1 + PZ) / (1- ) , (C -7)

P = p /k T , (C-8)

p. = x.p , (C-9)
1 1

=
Plb-NbpZ

. (ClO)



and t = p/kT = u (here b = 1)

Substituting (C-14) and (C-15) into equation (C-13), one obtains

or
-1

(bp) =

v v u
1 + l/u - (e -1)/(e e +1)

-u -v -u -v
1 + l/u -e (l-e )/(I-e (l-e ))
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APPENDIX D

Consider the equation for a simple fluid of hard spheres with

hard-sphere diameter equal to b

-bcr
bP /kT(e ) =bP /kT + bcr (D -1 )

Now let u = bP /kT, and A = bcr. We then obtain,

_A
ue = u + A (D -2)

This equation is solved for complex A and Figure D-l shows a plot of

-Re(A) versus u. (Labeled 'Pure AI) As usual the A plotted is the one of

largest real part.

If we now look at a second hard sphere fluid with a hard-sphere

diameter equal to 2b, the equation is

2bP /kT(e -2bcr) = 2bP /kT + 2bcr . (D-3 )

If we now define

u = 2bP /k T

and A::: 2bcr

We again arrive at equation (D-2). However, if we wish to keep the

definitions of u and A the same so that we can plot the solutions on the

same graphs equation (D-e) becomes
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-ZA
Zue = Zu + Z A

or
-ZA

ue = u + A (D-4)

The A of largest real part that is a solution of equation (D-4) will not be

the same A that was as sociated with equation (D-Z). This is the curve

labeled 'Pure B' in Figure D-I. Thus, when scaled to the A fluid param-

eters, pure A and pure B are different. The curve labeled 'A+B' is for

a 50/50 mixture of A and B type fluids. Its equation, when scaled to the

A fluid parameters, is

(D -5)

(this is for a mixture with hard-sphere diameter ratio equal to Z). When

Xl --'>-I equation (D-5) reduces to the pure A form and when xl --'>- 0 it

reduces to the pure B form, exactly as it should since xl is the con-

centra tion of A.

Figure D-Z shows a plot of Im(A) versus N for systems scaled to

the N = I parameters.

The same type of considerations apply to the lattice gas systems.

For example, consider the case MN = 3.

Xl (l-e -;a)e -max

I _e -; a e -a s

+ xZ(1-e -;a)e -mNas

l-e -;a e -as
= 0 (D -6)

If we let xl --'>-I, then Xz --'>-0 and we obtain,
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(l-e -ga) e -max

1 e -£a -as = 0- e
(D- 7)

If we let xl -- 0, the Xz -- 1, and we obtain

(l-e -ga) e -mNas

1 -~a -as =-e e
o (D -8)

but this is scaled to the A system, i. e. a system with hard-sphere

diameter to lattice constant equal to M. If we scale everything to the B

system we obtain

(D -9)

since for this system the hard-sphere diameter is Nb.
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