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Abstract

Exact Ensemble Dynamics for Spike-Timing-Dependent Plasticity

Frank Alan Adrian

Master of Science

Division of Biomedical Computer Science within

The Department of Science & Engineering

and the Oregon Health & Science University

School of Medicine

October 2008

Thesis Advisor: Dr. Todd K. Leen

Under the influence of input stimuli, synaptic strength changes based on the

relative timing of pre- and postsynaptic events. This mechanism is called Spike-

Timing-Dependent Plasticity (STDP) and is recognized as a basis of neural plas-

ticity in biological systems. Changes in synaptic strength (or weight) are de-

scribed mathematically using a stochastic learning rule that generates a Markov

process over the weights. This process determines a master equation whose so-

lution provides the time evolution of the probability density function for the

weights. The master equation has an expansion in a perturbation-like series (the

Kramers-Moyal expansion), which when truncated after the second term gives a

Fokker-Planck equation. Solving this equation provides an approximation to the

probability density.

Van Rossum et al. [1] use this approach to analytically predict the equi-

librium distribution of synaptic weights governed by anti-symmetric spike-timing-

dependent learning rules of the type observed by Bi and Poo [2]. However, the

use of the Fokker-Planck equation is ill-advised and does not always lead to an

accurate approximation, as was shown by Heskes and Kappen [3, 4] in the context

of machine learning.

We show that if for all k ≤ K, the kth jump moment is a polynomial of

order less than or equal to k in the weights, the Kramers-Moyal expansion pro-

vii



duces a recurrence in the first K moments that can be solved in closed form. The

model of van Rossum et al. [1] has this property and we find an exact solution for

the the equilibrium moments of the probability density. Our simulations validate

this result across a broad range of model parameters for the antisymmetric STDP

model described in [1].

viii



Chapter 1

Introduction

As a synapse receives stimuli in the form of presynaptic spikes and postsynap-

tic spikes occur, the strength of the synapse changes. The mechanism behind

this strength change depends on the relative timing of the pre- and postsynap-

tic spikes, and not simply on the rates of input and output spikes as initially

thought [5, 6, 7, etc.]. This mechanism, called Spike-Timing-Dependent Plastic-

ity (STDP) [8], is currently accepted as a basis of synaptic plasticity in biological

systems.

The change in the synaptic strengths for neurons can be described math-

ematically via a learning rule that relates the change in synaptic strength to the

current synaptic strength and the inputs to the synapse. These changes are

stochastic due to natural variations that occur even with specific inputs and due

to the randomness of the inputs. Algorithms for machine learning systems use

similar learning rules, except that the variations in the changes result only from

randomness in the inputs presented to the system. The general forms of the

learning rules are the same for both neurons and on-line learning algorithms and

generate identical Markov processes over an ensemble of synaptic strengths (or

weights). The learning rule determines a single time-step transition probability

which, in turn, determines a master equation for the probability density func-

tion over the weights. This density carries all information about the learning

dynamics of the system.

Unfortunately, for fixed learning rates (as is assumed for biological sys-
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tems), the master equation is intractable and one must use approximation to

find a solution. One approach starts by expanding the master equation in a

power series giving the Kramers-Moyal expansion, an infinite order partial dif-

ferential equation which describes changes in the probability density with time.

When truncated after the second term, the expansion becomes a Fokker-Planck

equation (FPE) which can be solved to approximate the probability density at

equilibrium.

Van Rossum et al. [1] use this approach to analytically predict the equi-

librium distribution of synaptic weights governed by temporally anti-symmetric

spike-timing learning rules of the type observed by Bi and Poo [2]. They find a

strongly skewed distribution that agrees well with Monte Carlo simulations.

Prior to its use in describing STDP, many authors used the FPE to

describe the dynamics of machine learning algorithms. However, the use of the

FPE to provide an approximation for the probability density is ill-advised, as

shown by Heskes and Kappen [3, 4] who demonstrated that this approximation

could be relied on only in limiting cases as the learning rule parameters approach

zero, and retains validity only in the lowest order, linear effects.

Heskes’ and Kappen’s papers effectively halted the use of the FPE within

the machine learning community, but their suggestion for an alternative method –

that one should base the analysis of these systems on the fluctuation expansion

of Van Kampen [9] – is incomplete. Heskes examines only the lowest order terms

of the expansion, leading only to Gaussian equlibria. Van Kampen’s text does

not give a complete development for higher order approximations, applicable to

skewed distributions generated by non-linear effects, precisely the kind of distri-

butions found in experimental studies of STDP [10].

For Markov models where for all k ≤ K, the kth jump moment is a poly-

nomial of order k or less in the weights, the Kramers-Moyal expansion produces

a recurrence in the moments of the distribution that can be solved in closed form.

Because these results are based on the complete Kramers-Moyal expansion, they

are exact. Our main contribution is in showing that van Rossum’s model, un-

der reasonable assumptions, has this form and determining the exact values for

the moments of the weight distribution for this model. We show that the mo-

ments solved for in this manner more closely match simulations over a broader

2



range of learning rule parameters than do those derived from the Fokker-Planck

approximation.

Chapter 2 introduces STDP and the learning rule that governs the be-

havior of both neural ensembles and on-line learning algorithms. In Chapter 3

we use the learning rule to find the transition probability for a Markov process.

Using this transition probability, we derive the master equation that describes

the time evolution of the probability distribution arising from this process. We

then introduce both the Kramers-Moyal expansion for the master equation and

the Fokker-Planck equation used to find an approximate solution for the proba-

bility distribution. We finish by reviewing previous work using the Fokker-Planck

equation in machine learning and biological systems.

Chapter 4 reviews the findings of van Rossum et al. [1] and summarizes

the derivation of his mathematical STDP model based on the Fokker-Planck

equation. In Chapter 5 we recap van Rossum’s original solution based on the

Fokker-Planck equation. In this model, van Rossum made a set of simplifying

assumptions that were valid for the biophysical parameters studied, but which

limit the validity of the model to a small segment of the parameter space. We give

our own solution for the FPE that does not use all of van Rossum’s assumptions,

allowing its use over a wider range of model parameters. Even though this model

is more accurate at both smaller and larger parameter values than those used

by van Rossum, it still shows considerable error at larger values of the learning

rule parameters. In Chapter 6 we review Heskes and Kappen’s [3, 4] findings that

explain why the solution of the FPE might not provide an accurate approximation

to the actual distribution generated by the master equation or its Kramers-Moyal

expansion.

Chapter 7 shows how the full Kramers-Moyal expansion can provide an

exact solution for the moments of a master equation and characterize the family

of models for which this solution is possible. As an example, we provide an exact

solution for the moments of the weight density for the model of van Rossum et

al. and examine limits on moment validity based on the forms of these moments.

In Chapter 8, we analyze the Kramers-Moyal expansion truncated at the second

term, giving exact moment equations for the Fokker-Planck approximation to this

model. In Chapter 9, we validate our solution against Monte Carlo Markov Chain

3



simulations. We confirm that the Fokker-Planck approximation overestimates

moment values (sometimes grossly) and examine the relative error between the

two approaches. Chapter 10 concludes the paper with a discussion of the results

and alternative methods based on the full Kramers-Moyal expansion that might

be used to solve models that do not have exact solutions for the moments.
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Chapter 2

Spike-Timing-Dependent

Plasticity

2.1 Neural Plasticity

In biological neural systems, synapses change their strength dynamically in re-

sponse to input stimuli. This process is called synaptic plasticity. In 1949,

Hebb [5] proposed a model for these weight changes which is now known as Heb-

bian learning:

“Let us assume that the persistence or repetition of a reverberatory

activity (or ’trace’) tends to induce lasting cellular changes that add

to its stability. . .When an axon of cell A is near enough to excite

a cell B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cells firing B, is increased.”

In the years following Hebb’s proposal, many biophysical mechanisms

for synaptic strength change were explored. Early studies focused only on the

frequency of input and output spike trains [5, 6, 7, for example]. In particu-

lar, it was shown that repetitive electrical activity was able to cause persistent

increases or decreases in synaptic strength, commonly termed long-term poten-

tiation (LTP) and long-term depression (LTD), respectively. However, starting
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in the early 1980s, researchers also started studying how the interval between

individual presynaptic and postsynaptic spikes influenced changes in synaptic

strength. In 1983, Levy and Steward [11] looked at the effects of relative tim-

ing in pre- and postsynaptic action potentials, finding that the order of neu-

ronal activation was critical for synaptic strength change. Markram [12] in 1997

demonstrated that synaptic strength increased when a presynaptic neuron was

activated 10 msec before the postsynaptic neuron was activated and that synap-

tic strength decreased when a postsynaptic neuron was activated 10 mS prior to

the presynaptic neuron. In 1987, Bell [13] showed that proper timing of pre- and

post-synaptic spikes was necessary for anti-Hebbian learning in the Purkinje-like

cells of the mormyrid electric fish, and that for this type of cell, the learning

window for LTD was 60 msec. Markram [12] in 1997 demonstrated that synaptic

strength increased when a presynaptic neuron was activated 10 msec before the

postsynaptic neuron was activated and that synaptic strength decreased when

a postsynaptic neuron was activated 10 mS prior to the presynaptic neuron. In

1998, Bi and Poo [2] explored potentiation and depression of neural strength in

cultured rat hippocampal cells and found that the window for synaptic strength

change was 5-40 msec and that, if the neural activations occurred outside this time

window, synaptic strength was essentially unchanged. This model of systematic

potentiation and depression of neural strength based on the relative timing of pre-

and postsynaptic spikes, is called Spike-timing Dependent Plasticity (STDP).

In recent years further studies have shown that plasticity dependent on

relative timing of pre- and postsynaptic spikes occurs in a variety of neuron types

across many different biological organisms, but that the particulars of the changes

vary widely. For example, variations occur in the time window within which the

correlated pre- and postsynaptic spikes must happen to cause changes in synap-

tic strength. Likewise, whether the presynaptic spike preceding the postsynaptic

spike will cause LTP or LTD (Hebbian vs. anti-Hebbian learning) also varies,

as does the dependence of the magnitude of LTP and LTD on initial synaptic

strength. All of these variations in the synaptic strength change can be mathe-

matically described using a learning rule that describes how the synaptic strength

changes based on the current synaptic strength and the relative timing of pre-

and postsynaptic spikes. Roberts and Bell [8] provide a fine overview of STDP

and survey the various kinds of learning rules that have been found so far.
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2.2 Stochastic Modeling of Neural Plasticity

Because synaptic plasticity is biologically based, there are variations in changes

in synaptic strength even when all inputs are the same. Additionally, one cannot

usually predict the time interval between pre- and postsynaptic activations at

any particular synapse, placing another impediment to our ability to predict

what will happen at a particular synapse. Due to these factors, the variation in

strength changes is best captured via a stochastic learning rule and it is often

more interesting to study an ensemble of neurons and concern ourselves primarily

with the probability distribution of the synaptic strengths over the ensemble.

We mathematically model the effect of STDP on an ensemble of neurons

using the equation

w(n + 1) = w(n) + η(n) L(w(n), x(n), v(n)) . (2.1)

In this equation, w(n) represents the vector of synaptic strengths at the nth

pairing of pre- and postsynaptic spikes and x(n) is the inter-arrival time between

the pre- and postsynaptic spikes at this pairing. The variation in the strength

change even when all other inputs are equal is represented by the stochastic

variable v(n), and η(n) is a parameter that controls the learning rate. L(w, x, v)

is the learning rule that describes the change in synaptic strength at a particular

time having the current strength and spike timing. If we combine all sources

of uncertainty in the system (i.e., the effect of v(n) and the variation in spike

inter-arrival times), we obtain a stochastic model for the changes that occur in

the ensemble of synaptic strengths

w(n + 1) = w(n) + η(n) L(w(n), ξ(n)) . (2.2)

This model generates a Markov process over the space of synaptic strengths.

2.3 Stochastic Models of Machine Learning

Machine learning systems using on-line and stochastic approximation algorithms

have similar models. These systems re-estimate model parameters (or, in the

7



case of artificial neural networks, change the synaptic weights), based on one (or

perhaps a small number) example datum ξ(n) at each iteration during the train-

ing period [14]. The weight changes at each trial are described mathematically

using a learning rule having the same form as (2.2), but now L(w, ξ) specifies the

change in system parameters when the example ξ(n) is presented as a training

input. When the samples are chosen at random (with replacement) from a set

of exemplars or from a parent distribution, ξ is a random variable. This gen-

eral form for the learning rule (2.2) is the same for both biological and synthetic

systems and generates the same Markov process in both.

The Markov process drives the time evolution of the probability distribu-

tion of the weights P (w, n) which, in turn, completely determines the learning dy-

namics of these systems. If we assume that the learning rate η(n) is held constant

(as is normal for both biological and on-line computational systems), convergence

results are limited in principle to convergence of the distribution [15, 16, 17]. The

asymptotic distributions are highly dependent on the form of the function L(w, ξ)

and finding a closed-form solution for P is usually impossible.

8



Chapter 3

The Master Equation and Its

Solution

A master equation is a differential (or difference) equation that describes the time

evolution of a probability distribution over a set of states. The Markov process

generated by (2.2) can be used to determine a master equation for the probability

distribution P (w, t). This probability distribution contains all the information

about the changes in the weights w – the model parameters in machine learning

or the strength of synapses in brains.

A random walk equation gives the probability for the system to be in a

particular state pn(w) after n iterations of the learning rule (i.e., n spike pairings

on a synapse or n training iterations in machine learning)

pn+1(w) =

∫

dw′ W ( w′ → w | ξ; n) pn(w′) . (3.1)

Here, W ( w′ → w | ξ; n) represents the single-time-step transition probability for

the weight to change from an old weight w′ to a new weight w conditioned on ξ

at iteration n.

By fixing a particular value of ξ, we can define the transition probability

as

W ( w′ → w | ξ; n) = δ (w − [w′ + η(n) L(w′, ξ)] ) . (3.2)

The variable ξ is stochastic, and so to obtain a single-time-step transition proba-

9



bility without condition on ξ we average with respect to the density p(ξ)1 giving

W ( w′ → w ; n) =

∫

δ (w − [w′ + η(n) L(w, ξ)] ) p(ξ) dξ . (3.3)

The probability that the ensemble will have value w after n iterations of the

learning rule P (w, n) follows from (3.1) as

P (w, n + 1) − P (w, n) =

∫

W (w′ → w; n) P (w′, n) dw′

−

∫

W (w → w′; n) P (w′, n) dw′ . (3.4)

In this equation, the first integral term corresponds to changes that enter state

w and the second integral term corresponds to changes that leave state w.

In order to transition from a discrete time difference equation to a con-

tinuous time differential equation, we arbitrarily choose the time of the iteration

steps n and define

tn+1 ≡ tn + ∆t .

If we choose time intervals ∆t from the distribution

℘(∆t) = δ(∆t − τ)

where δ(·) denotes the Dirac delta function, the probability P (w, t) that the

ensemble is in the state w at time t is given by

P (w, t + τ) − P (w, t) =

∫

W (w′ → w, t) P (w′, t) dw′

−

∫

W (w → w′, t) P (w′, t) dw′ (3.5)

which is the equation (3.4) recast in terms of discrete time rather than iterations.

Bedeaux et al. [18] describes the relationship between the the discrete time ran-

dom walk (3.5) and the continuous time master equation (3.6) and shows that, at

long times t, their solutions approach each other. Choosing a Poisson distribution

1The density on ξ can depend on w and on n. For notational convenience, we will not
explicitly show this dependency.
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for ∆t, he shows that the the distribution for the time intervals is

℘(∆t) = τ exp

[

−∆t

τ

]

and the random-walk equation (3.1) transforms into the continuous time master

equation

τ ∂tP (w, t) =

∫

W (w′ → w, t) P (w′, t) dw′

−

∫

W (w → w′, t) P (w, t) dw . (3.6)

If we know the initial density P (w, 0), the master equation (3.6) together

with the specific transition probability for the learning rule under study (3.3) al-

lows us to determine the probability density P (w, t) for all time. These equations

are exact for all time t and learning rates η.

3.1 Solutions and Approximations

For biological and on-line systems, the learning rate η(n) is assumed to be a

constant, and finding an exact solution for the full master equation is usually

impossible. As such, one must use approximative methods. One pathway to an

approximate solution begins by expanding the transition probability (3.3) in a

power series in the learning rate η. This provides a perturbation-like expansion

of the master equation (3.6) called the Kramers-Moyal (KM) expansion [19]

∂P (w, t)

∂t
=

∞
∑

j=1

(−1)j

j!
ηj ∂

∂wj
( αj(w) P (w, t) ) (3.7)

where αj(w) denotes the jump moments

αj(w) =

∫

Lj(w, ξ) p(ξ) dξ ≡ Eξ

[

Lj(w, ξ)
]

. (3.8)

The time evolution of the probability density defined by both (3.7) and (3.8) is

exact.
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Assuming a small learning rate, we should be able to truncate the infinite

series to provide approximations to the full KM series. If we retain the first two

terms, the result is a Fokker-Planck equation (FPE)

∂P (w, t)

∂t
= −η

∂

∂ w
(α1(w) P (w, t) ) +

η2

2

∂2

∂ w2
( α2(w) P (w, t) ) . (3.9)

This approximation retains stochastic effects caused by the drift and diffusion

coefficients α1(w) and α2(w). When α1(w) is constant or linear and α2(w) is

constant, this equation leads to an equilibrium distribution that is Gaussian.

When α1(w) is non-linear or α2(w) is non-constant, a broadening and skewing of

the equilibrium distribution results. This approximation is normally used with

the understanding that it is supposed to hold only at small learning rates η, letting

one ignore terms of order O(η3) and higher in the Kramers-Moyal expansion (3.7).

In biological systems, it is often not possible to determine a value for

η independent of the changes determined by the learning rule L(·). In these

cases, the effect of the constant learning rate is assumed to be included in L(·)

and, by Taylor-expanding the master equation about (w − ∆w), one obtains a

Kramers-Moyal expansion equivalent to (3.7), but without the factors ηj

∂P (w, t)

∂t
=

∞
∑

j=1

(−1)j

j!

∂

∂wj
(αj(w) P (w, t) ) . (3.10)

This equation can also be truncated after the second term to produce a Fokker-

Planck equation that does not mention η:

∂P (w, t)

∂t
= −

∂

∂ w
(α1(w) P (w, t) ) +

1

2

∂2

∂ w2
( α2(w) P (w, t) ) . (3.11)

When using this form of the Fokker-Planck approximation, the under-

standing that η must be small no longer holds. However, it is replaced by a more

stringent requirement – that the magnitudes of the terms ommitted in from the

Kramers-Moyal expansion be negligible. Whether or not this constraint holds

in any particular case is heavily dependent on the functional form of both the

jump moments and the probability distribution and can be difficult to deter-

mine. However, for biological systems, there is sometime no choice but to use

this formulation.
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Retaining more terms from the Kramers-Moyal expansion to increase

accuracy of the approximation would seem to be a good idea. However, the

Pawula theorem [20] requires either that the KM expansion be truncated after

the first or second term or that it must retain all of the terms to obtain physically

realistic solutions P (w, t) that have non-negative density. As such, one has no

more useful approximation than the FPE based on truncating the KM expansion.

3.2 The Fokker-Planck Equation in Machine Learn-

ing

In the early 1990s, researchers used the Fokker-Planck equation to describe the

dynamics of machine learning algorithms. Radons [21, 22] used the FPE to de-

scribe learning in backpropagation. Orr and Leen [23] and Hansen [24] did the

same. These studies successfully predicted the distribution of the time required

to hop between basins of attraction. Basin hopping depends greatly on the non-

parabolic character of the cost function which arise from non-linearities in the

drift coefficient α1. All of these studies make apparently successful use of the

FPE.

Der [25] described the dynamics of Kohonen’s self-organizing feature map

(also discussed by Orr [23, 26]) using a FPE. Leen and Moody [27] used a FPE to

find equilibrium densities for the LMS algorithm. However, their results agreed

with Monte Carlo simulations only for extremely small learning rates where the

equilibrium distribution became approximately Gaussian.

3.3 The Fokker-Planck Equation in Biological

Learning

More recently, many theoretical neuroscientists have also used the Fokker-Planck

equation to describe learning dynamics in systems modeled using spike-timing-

dependent plasticity. Cateau and Fukai [28] studied learning rules similar to those

observed in rat hippocampus CA1 neurons, and in medium ganglion cells in
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mormyrid electro-sensory lateral line lobe. They numerically integrated a FPE,

determining the equilibrium distribution of synaptic strengths for these neurons.

Kepecs et al. [29] analytically calculated equilibrium distributions pro-

duced by learning rules based on STDP using a FPE, and confirmed that Monte

Carlo simulations had converged to equilibrium. The theoretical equilibrium

distributions obtained by Masuda and Aihara [30], who used the FPE to ana-

lyze synaptic competition and the formation of functional clusters. Their re-

sults match Monte Carlo simulations well. Burkitt et al. [31] predicted equilib-

rium synaptic distributions and compared their analytic results with histograms

from Monte Carlo simulations. As in the previously-discussed studies, the use

of the FPE produced good agreement between the simulations and analytically-

predicted distributions.

Another study was undertaken by van Rossum et al. [1]. They used

an FPE to analytically predict the equilibrium distribution of synaptic weights

governed by learning rules of the type observed by Bi and Poo [2]. Using an

anti-symmetric spike-timing model, their FPE-based calculations gave a strongly

skewed equilibrium distribution that agreed well with Monte Carlo simulations,

and qualitatively agreed with the experimental quantal amplitude distribution

observed in a pyramidal neuron [10]. We examine van Rossum’s model and relate

their findings as a prelude to our own.
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Chapter 4

The STDP Model of van Rossum

Van Rossum et al. [1] solve a non-linear Fokker-Planck equation to find the equi-

librium density for the antisymmetric STDP observed in hippocampal neurons.

The model is based on observations reported by Bi and Poo [2], Markram et

al. [12], and Zhang et al. [32]. The numerical values of model parameters for the

model are derived from Bi and Poo’s results [2].

In this Hebbian learning model, synapses are potentiated if the postsy-

naptic spike follows the synaptic transmission event, and depressed if the post-

synpatic spike precedes the synaptic event. The conductance change due to the

potentiation or depression drops off approximately exponentially with increasing

time between the synaptic event and the post-synaptic spike. Experimental evi-

dence [2, 33] also shows that the amount of potentiation decreases with increasing

initial synaptic strength, while the amount of depression is independent of the

initial synaptic strength. When examining Bi and Poo’s data, van Rossum, et

al. found that a multiplicative noise model best matched model variation in the

synaptic changes from single event pairings. Combining all these effects, under

potentiation synapses change by

w → w + wp(w, v, δt) = w + (cp + v w) e−δt/τ . (4.1)

Under depression synapses change by

w → w + wd(w, v, δt) = w + (−cd w + v w) eδt/τ . (4.2)
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In these equations, cp and cd are positive constants controlling potentiation and

depression respectively, v is a Gaussian random variable with mean zero and

variance σ2, δt is the time interval between the synaptic event and the post-

synaptic spike (positive for post-synaptic spike following the synaptic event),

and τ is a time-constant determining the window for synaptic plasticity.

The reader will notice that, in (4.1) and (4.2), the factor η(n) found

in (2.2) has disappeared. Van Rossum’s model is one where the effect of the

constant learning rate is included in the learning rule so, as van Rossum does,

we will use an analysis that omits the ηs. As such, we will use the form of the

Kramers-Moyal expansion given in (3.10) and the corresponding Fokker-Planck

approximation (3.11). For more general discussions about the FPE, the ηs will

reappear.

Considering a single neuron, we assume uncorrelated inputs with a Pois-

son distribution and at each increment of time dt, the neuron undergoes potenti-

ation or depression with probability pp(w) and pd(w) respectively. Together with

the expression for the synaptic changes under potentiation (4.1) and depression

(4.2), these probabilities determine the transition probability for the Markov

process that defines the weight dynamics for the model. The single-time-step

transition probability (conditioned on v) for the weight to change from w to w′

is

W (w → w′ | v, δt) = pp(w) δ(w′ − (w + wp(v, δt))) + (4.3)

pd(w) δ(w′ − (w + wd(v, δt))) +

(1 − pp(w) − pd(w)) δ(w′ − w)

where δ(·) is the Dirac delta function.

To model the time dependence of plasticity in equations (4.1) and (4.2)

van Rossum et al. ignore the exponential time dependency, instead using a rect-

angular windowing function set to unity for |δt| < tw and to zero for |δt| ≥ tw

where tw is the time window within which learning is active. If δt is within the
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time window, the potentiation and depression rules become

w → w + wp(v) = w + (cp + v w) (4.4)

w → w + wd(v) = w + (−cd w + v w) (4.5)

respectively, while if δt is outside the time window, no change in the weight

occurs. This approximation leads to a model that allows a closed-form solution

of the Fokker-Planck equation.

We combine the expressions for the potentiation (4.4) and depression

(4.5) with the conditional transition probability in equation (4.4) and integrate

over the distribution of the noise term v to obtain the unconditional transition

probability

W (w → w′) = pp(w)

∫

δ(w′ − (w + wp(w, v) ) p(v) dv +

pd(w)

∫

δ(w′ − (w + wd(w, v) ) p(v) dv

= pp(w) Ev[ δ(w
′ − (w + wp(w, v)) ]

+ pd(w) Ev[ δ(w
′ − (w + wd(w, v)) ] . (4.6)

where Ev[·] denotes the expectation with respect to the density on the noise v.

Note that unless the post-synaptic spike follows the synaptic event, the the prob-

ability of potentiation pp is zero. It is also zero when the time difference between

the events δt is larger than the active learning window width tw. Similarly, the

probability of depression pd is zero unless the post-synaptic spike precedes the

synaptic event, and is also zero when the time difference between the events is

larger than tw.

4.1 Jump Moments

The transition probability (4.6) determines the dynamics of the probability den-

sity P (w, t) for the weight ensemble in accordance with the master equation (3.6).

As seen in Chapter 2, the Kramers-Moyal expansion (3.7) provides an equivalent

description of P (w, t) in terms of the jump moments αj (3.8). We obtain the jump
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moments for this model by substituting the transition probability (4.6) into the

definition in Equation (3.8) and expanding the resulting binomial expressions

αn(w) =

∫

W (w → w′) (w′ − w)n dw′

= pp(w) Ev[ wp(w, v)n ] + pd(w) Ev[ wd(w, v)n ]

= pp(w) Ev [ (cp + v w)n ] + pd(w) Ev [ (v − cd)
n wn ]

=
n

∑

j=0

(

n

j

)

(

pp(w) cn−j
p wj + pd(w) (−cd)

n−j wn
)

Ev[ v
j ] . (4.7)

Since v is distributed as N(0, σ2), its odd moments vanish and its even moments

are

Ev[v
2 k] = 1 · 3 · 5 · · · (2 k − 1) σ2k = (2 k − 1)!! σ2 k .

From this, the jump moments are found to be

αn(w) =

⌊n/2⌋
∑

k=0

(

n

2 k

)

(

pp(w) cn−2k
p w2k + pd(w) (−cd)

n−2k wn
)

(2k − 1)!! σ2k

(4.8)

where ⌊n/2⌋ denotes the largest integer equal to, or smaller than n/2.

4.2 Potentiation and Depression Probabilities

The jump moments (4.8) depend on pp and pd. Van Rossum et al. [1] show that

under equilibrium conditions these values are approximately equal. To do this,

they consider the activity at a single synapse coincident to a neuron.

In the case of depression, the presynaptic event is neither influenced by

nor influences the postsynaptic spike.1 The neuron receives background input

from other synapses, modeled by a constant background current I0 which causes

the neuron to fire with an constant interspike interval tisi. Consequently, the

probability of depression depends on how likely it is that the synaptic event

1This assumes that the synapse is not part of a recurrent structure, driven by the neuron
to which it is coincident.
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occurs during the active learning window that follows the postsynaptic spike

pd = tw/tisi (4.9)

and, because tw and tisi are constant, pd is also constant.

The probability of potentiation pp is not constant, but increases with

the synaptic weight because the postsynaptic spike follows and is influenced by

the synaptic event. Van Rossum et al.model the synaptic current as a small

rectangular current pulse of width τsyn having amplitude wVsyn where w is the

synaptic weight and Vsyn a synaptic drive which is assumed constant. This pulse

causes the membrane voltage to jump by an amount δV = τsynwVsyn/C where

C is the membrane capacitance. If the jump does not cause an output spike, the

interspike interval is shortened to t′isi = tisi − δV C/I0. Letting Vthr denote the

threshold voltage of the neuron relative to the resting voltage, the time between

the synaptic event and the spike δt is distributed as

℘(δt) = 1
tisi

+ Vsyn

VthrC
w if δt < τsyn

= 1
tisi

if τsyn < δt < t′isi (4.10)

where the additive term in the first case of equation (4.10) shows that small

intervals between the synaptic event and a postsynaptic spike are more likely.

Integrating (4.10) over δt from δt = 0 to δt = tw and assuming that τsyn ≪ tw

gives the probability that the synapse is potentiated

pp(w) = pd (1 + w/Wtot) (4.11)

where Wtot = twI0/(Vsynτsyn). This is the average current to the neuron from all

other synaptic inputs expressed as an instantaneous conductance. If we assume

that all input to the neuron is excitatory, Wtot can also be expressed as

Wtot = twρinN〈w〉 (4.12)

where ρin is the (assumed constant) spike arrival rate, N is the number of coin-

cident synapses, and 〈w〉 is their average weight.

The value Wtot increases linearly in both the number of synapses co-
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incident to the neuron and their average weight; as these values increase, Wtot

increases and pp decreases. Balance of these influences occurs when pp ≈ pd. The

value of pp cannot exceed that of pd by much or the average synaptic weight starts

to climb, increasing Wtot and reducing pp; the larger the number of synapses and

the higher the average weight, the more marked is this effect. Because the num-

ber of synapses adjacent to most neurons is large, Wtot is usually large relative

to the weight w of the synapse under consideration2 and the term of pp linear in

w in equation (4.11) is negligible. As such, it is generally valid to make any of

the equivalent assumptions

w ≪ Wtot ,

Wtot → ∞ , (4.13)

or

pd(w) ≈ pp(w) = p ( p constant and independent of w ) . (4.14)

These assumptions will be crucial in what follows.

2Wtot is usually thousands of times higher than w.
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Chapter 5

Closed Form Solutions of the

Fokker-Planck Equation

Van Rossum et al. [1] truncate the Kramers-Moyal expansion (3.10) at the second

term to obtain a nonlinear Fokker-Planck equation (3.11). This makes use of only

the first two jump moments, the drift and the diffusion coefficients, which follow

from Equation (4.8) with

α1(w) = pp cp − pd cd w (5.1)

and

α2(w) = pp c2
p + pd c2

d w2 + (pp + pd) w2 σ2 . (5.2)

By replacing pp as in (4.11) and making the assumptions that c2
d ≪ σ2

and that w ≪ Wtot, they approximate the jump moments as

α′
1(w) = pd [ − cd w + (cp(1 + w/Wtot)] (5.3)

and

α′
2(w) = pd (2 w2 σ2 + c2

p) . (5.4)

Substituting (5.3) and (5.4) into (3.11) gives van Rossum’s formulation

of the FPE

21



∂P (w, t)

∂t
= −

∂

∂w
[pd ( − cd w + (cp(1 + w/Wtot)) P (w, t)]

+
1

2

∂2

∂w2
[pd (2 w2 σ2 + c2

p) P (w, t)] . (5.5)

Assuming equilibrium, ∂tP (w, t) = 0, and the FPE can be solved in closed form

as in [20], yielding van Rossum’s approximation for the equilibrium distribution

P (w) = N
e
√

2 arctan(
√

2σw/cp)/σ

(2σ2w2 + c2
p)

2σ2
− cp/Wtot + cd

2σ2

. (5.6)

In general, cp ≪ Wtot and neglecting the term cp/Wtot in the denominator

introduces little error into the solution.1 When this is done, Equation (5.6)

becomes

P (w) = N
e
√

2 arctan(
√

2σw/cp)/σ

(2σ2 + c2
p)

2σ2 + cd
2σ2

. (5.7)

However, the assumption that cd
2 ≪ σ2, while true in the specific case

of the pyramidal neurons studied by van Rossum, artificially limits the range of

parameters over which this model is valid, losing accuracy as σ2 approaches the

order of or becomes smaller than c2
d. We propose an alternate treatment of the

model that gives a more accurate approximation that is valid over a wider range

of parameters.

We start by making the assumption that Wtot → ∞. Note that this

implies, via Equation (4.14) that pd = pp = p. Using the original jump moments

(Equations (5.1) and (5.2)) and making this assumption gives our version of the

FPE:

∂P (w, t)

∂t
= −

∂

∂w
[p (cp − cd w) P (w, t)]

+
1

2

∂2

∂w2
[p (c2

p + c2
d w2 + 2 w2 σ2) P (w, t)] . (5.8)

Letting 2σ′2 = 2σ2 + c2
d and, once again solving the equation as in [20], we

1In their paper, van Rossum, et al. draw the same conclusion and verify it using simulation.
Note that neglecting this term is equivalent to the assumption (4.13).
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Figure 5.1: Comparison of histograms derived from simulations with distributions

calculated from Fokker-Planck equations (5.6) (dashed lines) and (5.9) (solid lines).

obtain our approximation to the equilibrium weight distribution

P (w) = N
e
√

2 arctan(
√

2σ′w/cp)/σ′

(2σ′2w2 + c2
p)

2σ′2 + cd
2σ′2

. (5.9)

Note that the solution given in (5.9) retains the same form (5.7). However, the

approximation that c2
d ≪ σ2 is not made.

Figures 5.1(a) through 5.1(c) show plots of weight distributions at par-

ticular parameter values. Dashed lines in the figures show the FPE solution of

van Rossum, et al. (5.6), using the assumptions that w → ∞ and c2
d ≪ σ2. Solid
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lines in the figures show our treatment of the FPE (5.9) that uses the assumption

w → ∞, but that does not use the assumption c2
d ≪ σ2. The normalized his-

tograms in the figures show results from Markov Chain Monte Carlo simulations

using methods described in chapter 9.

Figure 5.1(a) uses the same parameter values as in van Rossum’s study –

cp = 1, cd = 0.003, σ = 0.15. At this choice of parameter values, the distributions

calculated from both versions of the FPE closely match those derived from the

simulation. But when we make σ small with respect to cd as shown in figure

5.1(b) where cp = 1, cd = 0.003, and σ = 0.001, the distribution computed

from our treatment of the FPE (5.9) matches the simulated distribution much

more closely than the one computed using van Rossum’s approximations (5.6).

Similarly, when when we increase σ and cd, as shown in Figure 5.1(c) where

cp = 24, cd = 0.4, and σ = 0.15, the distribution computed from our version of

the FPE (5.9) again more closely matches that of the simulation than does the

distribution computed from (5.6).

The distributions derived from van Rossum’s treatment of the FPE are

valid at parameters derived from the neurons he was studying, but the assump-

tions he made for the model’s parameters based on these biological limits need not

apply to the model in general. These biologically-derived assumptions artificially

limit the range of parameters over which the model is valid. Our treatment of the

FPE has no such limitations and is applicable over a wider range of parameter

values.

Note that the equilibrium distributions produced by these solutions of

the Fokker-Planck equations are highly skewed at all but the smallest values of

the learning rate parameters cp, cd, and σ. When the drift coefficient α1(w) is

linear or constant and the diffusion coefficient α2(w) is constant, the FPE can

only produce a Gaussian distribution. This linear noise regime is often held to be

the only area where the FPE approximation is valid. As we decrease the values of

the model’s parameters, the terms of α2(w) quadratic in w become negligible and

the distribution approaches this regime, resulting in an equilibrium distribution

which is close to Gaussian.

As shown in Figure 5.1(a), the FPE sometimes makes apparently suc-
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cessful predictions far from this regime.2 However, the FPE does not always lead

to such a felicitous result – figure 5.1(c) shows the danger in relying on the Fokker-

Planck approximation. Although the distribution computed from our treatment

of the FPE (5.9) matches the simulated distribution more closely than that of

the distribution computed from van Rossum’s treatment(5.6), there still appears

to be considerable error between the simulation and the model’s prediction.

2The skew in the equilibrium distribution generated by the full master equation (3.6) also
depends on the third and higher jump moments α3, α4, and so forth.
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Chapter 6

The FPE is Not a Valid

Approximation

The FPE has seen successful use in the fields of machine learning and biological

systems. As discussed in Sections 3.2 and 3.3, the FPE has been used successfully,

even where nonlinearities are important; where the equilibrium distributions are

non-Gaussian and even strongly skewed. That these results hold is surprising,

especially as there is no sound mathematical reason for this to be true, as was

demonstrated to the machine learning community by Heskes and Kappen [3, 4].

Their work showed that the equilibrium density computed from the FPE cannot

be considered an approximate solution to the full Kramers-Moyal equation (3.7)

and that truncating the expansion at the second term can lead to significant

error. Their findings are rooted in the work of Van Kampen as summarized in

his text [9] on statistical physics and chemistry.

Given a one-dimensional FPE, the equilibrium distribution is

PFP (w) =
K

α2(w)
exp

(

2

η

∫

α1(w)

α2(w)
dw

)

. (6.1)

This equilibrium distribution has maxima near zeros of the drift α1(w0) = 0

where dα1(w0)/dw < 0. These are the points where dE[w]/dt = η α1(w) (the

mean weight dynamics) are asymptotically stable. As the learning rate becomes

small, this solution becomes sharply peaked around w0. Heskes Taylor expands

both α1 and α2 about w0, and retains the smallest non-trivial pieces. He assumes
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that α2(w0) > 0, giving the solution for the equilibrium distribution

PFP,η<<1(w) = K exp−

(

|α
′

1(w0)|

η α2(w0)
(w − w0)

2

)

.

This Gaussian distribution has mean w0 and variance (η α2(w0))/(2 |α
′

1(w0)| ).

This result is easy to understand – we expect the variance to increase when the

learning rate increases (since with an increased learning rate the weight changes

are larger at each step) and we also expect this increase when the magnitude

of the diffusion coefficient grows larger, because this causes the distribution to

spread. We also expect the variance to decrease when α
′

1 increases, because this

quantity measures the restoring force tending to draw the distribution towards

w0. For extremely small learning rates, approximately Gaussian distributions for

all learning rules are a corollary.

Now consider whether or not the equilibrium solution (6.1) obtained

from the FPE is a real approximation to the equilibrium computed from the full

Kramers-Moyal equation (3.7). If it were, we would expect that if we substitute

(6.1) into (3.7), we would obtain remainder terms that approach zero for small

learning rate η. However, Heskes and Kappen [3, 4] show that this substitution

results in higher order terms that are each of O(η0) – the Fokker-Planck equilib-

rium solution fails to satisfy the Kramers-Moyal expansion by an infinite sum of

terms each of which is order unity! The discarded terms do not approach zero as

η → 01 and discarding them can lead to substantial error.

If the FPE equilibrium were a valid approximation to the Kramers-Moyal

equilibrium, we should be able to construct a perturbation series of the form

P (w) = PFP + ηγ P (1)(w) + η2 γ P (2) + . . . (6.2)

for some positive constant γ. Were this series substituted into the Kramers-

Moyal expansion, we would expect equations from which we could compute the

corrections P (1), P (2), . . . order-by-order in the learning rate ηγ . Unfortunately,

this substitution does not lead to such equations and the Fokker-Planck equi-

librium cannot be considered the lowest order term in an actual perturbation

1This is, in part, a remnant of the fact that PFP is not independent of the learning rate η

as one expects for the zero-order term in a perturbation expansion.
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expansion of the master equation. This analysis shows that any success the FPE

has in predicting equilibrium distributions is accidental. This theoretical tool,

currently used in in the theoretical neuroscience literature and previously used

by the machine learning community, is irrevocably flawed.

In light of this analysis, the machine learning community stopped using

the Fokker-Planck equation to determine equilibrium distributions. Heskes and

Kapen suggested an alternative analysis based on the fluctuation expansion de-

veloped by Van Kampen [9]. This suggestion was problematic, not only because

the development of the fluctuation expansion in Van Kampen’s text is very in-

complete, but also because their suggestion left the community with only a very

weak analytical tool.

Heskes and Kappen discard the FPE, but do not suggest anything that

deals with nonlinear effects. Their papers, and most of Van Kampen’s work, use

only the lowest order portion of the fluctuation expansion. This approximation

yields a diffusion equation that cannot model non-Gaussian equilibrium distri-

butions. They claim [4] that “only the lowest order term has any validity”, and

quote van Kampen’s statement that “all features beyond that approximation are

spurious and cannot be taken seriously.” The implication is that the particulars

of skewed equilibrium distributions or transient phenomena that depend on a

nonlinear FPE are completely invalid. Heskes and Kappen and van Kampen’s

text strongly advise against using the FPE for anything but the lowest order,

linear effects, providing only an extremely weak analytical tool useful only in the

linear noise regime.

More troubling is the fact that the FPE doesn’t always work even in the

linear noise regime. As mentioned in section 3.2, the equilibrium distributions

found by Leen and Moody [27] for the LMS algorithm agree with Monte Carlo

simulations only for very small learning rates, where the distribution is essentially

Gaussian. Furthermore, the FPE’s success in predicting synaptic weight distri-

butions in biological systems may depend on fortuitously-occurring values of the

natural learning rate parameters. For example, the FPE model presented by van

Rossum et al. [1] agrees well with Monte Carlo simulations for the physiologically-

observed depression and potentiation parameters. However a fifty-fold increase

in those parameters takes us into a regime where the FPE grossly fails to predict
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Figure 6.1: Equilibrium distribution from Monte Carlo (histogram) and FPE (curve)

following the model in van Rossum et al. [1] but with substantially larger learning rate

parameters.

the equilibrium distribution, as in Figure 6.1. One might object that the FPE

is an approximation should not be expected to hold for such large increases in

the learning rule parameters. The overall point, however, remains valid – the

applicability of the FPE for modeling biological systems inherently depends on

the fact that the observed physiological learning parameters are small enough.

In cases where this does not hold, we have no computational tools with which to

work.

So, we are left with a thorny problem. The FPE has been successful

in calculating transient and equilibrium effects in both machine and biological

learning systems. There are many successes in regimes where nonlinearities are

important, such as predictions of strongly skewed distributions and for estimates

of basin-hopping. These are regimes in which the lowest order terms, the only

ones deemed reliable by Heskes and Kappen, are completely inadequate. On the

other hand, the application of the FPE can also give grossly incorrect results that

seem to disagree strongly with Monte Carlo simulations and demonstrate clearly

that the theoretical warnings about the use of the FPE to approximate the KM

series are frequently valid.

As difficult as it may seem, there is no solution to the inadequacies of the

FPE approximation. The theoretical analysis of its validity as an approximation

to a perturbation expansion is inescapable, as is its inability to provide reliable

results. The FPE is simply an invalid approximation.
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Acknowledging this fact requires us to explore alternate approaches. If

we start with the master equation, we cannot simply truncate the Kramers-

Moyal expansion and retain validity. Luckily, for some learning rules, such as

the one studied by van Rossum, we can glean information about the distribution

without making approximations to the Kramers-Moyal expansion. Because no

approximation to the KM expansion is made, this information is exact.
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Chapter 7

Moments From the

Kramers-Moyal Expansion

The master equation (3.6) usually cannot be solved directly to obtain an equi-

librium distribution. However, for some Markov models, the exact values of the

moments for the equilibrium distribution can be determined. In the case of van

Rossum’s model, under the assumption that w << Wtot, the kth jump moment is

a polynomial of order k in the weights. For all models where this property holds,

the Kramers-Moyal expansion leads to a set of moment equations that form a

recurrence which can be solved exactly.

To start, we multiply the KM expansion (3.10) by the kth power of the

weight and integrate to find the equation that gives the time evolution of the kth

moment of the distribution

∂tE[wk] =

∫

wk

∞
∑

j=1

(−1)j

j!
ηj ∂j

∂wj
[ αj(w) P (w, t )]dw . (7.1)

We exchange the integral and summation, integrate by parts, and simplify, yield-

ing

∂tE[wk] =

k
∑

j=1

(

k

j

)

ηj E[wk−j αj(w)], k = 1, 2, . . . (7.2)

which defines an equivalent form for the time derivative of the moments.

The key observation is that when all jump moments αj(w) are polyno-
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mials of order j or less in w, the differential equation for each kth moment can

be solved using only the solutions of order less than k. To see this, let Jj be

the highest power of the weight w in αj(w). Then the jth jump moment can be

defined as

αj(w) =

Jj
∑

i=0

αijw
i , (7.3)

where αij is the coefficient of the ith power of w in the polynomial defining the

jth jump moment.

Using this definition, we rewrite equation (7.2) as

∂tE[wk] =

k
∑

j=1

(

k

j

)

ηj E



wk−j

Jj
∑

i=0

αij wi



 =

k
∑

j=1

Jj
∑

i=0

(

k

j

)

ηj αij E
[

wk−j+i
]

.

(7.4)

and isolating E[wk] in this equation gives

∂tE[wk] =
k

∑

j=1

(

k

j

)

ηj αjj E[wk] +
k

∑

j=1

Jj
∑

i=0, i6=j

(

k

j

)

ηj αij E[wk−j+i] . (7.5)

If Jj ≤ j holds for all j ≤ k, the order of the moments in the sec-

ond term of the right hand side of equation (7.5) are all less than or equal

to k and the equation for E[wk] depends only on the lower order moments,

E[w], E[w2], . . . , E[wk−1] (i.e., the set of moment equations form a recurrence

which can be solved exactly). However, if Jj > j for one or more j ≤ k, the kth

moment will depend not only on moments of order less than or equal to k, but

also on moments of order greater than k. In this case, the moment hierarchy can-

not be solved exactly – specifically, any Jj > j will require that the k + Jj − jth

moment equation be solved simultaneously with the kth.

In the case of van Rossum’s model, the importance of neglecting the w-

dependence of pp(w) in (4.11) is now evident – retaining this dependency causes

each jth jump moment to contain a term having power j+1 in the weight. Thus,

the equation for each moment would depend on the next higher order moment,

preventing us from finding the exact solution for the moments.

To find the equilibrium moments for the distribution, we set ∂t E[wk] = 0
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in equation (7.5) and isolate terms containing E[wk] to give

E[wk] =
Nk

Dk
=

−
∑k

j=1

∑Jj

i=0, i6=j

(

k
j

)

ηj αij E[wk−j+i]
∑k

j=1

(

k
j

)

ηj αjj

(7.6)

where Nk is the numerator and Dk of this general expression for E[wk].

7.1 Equilibrium Moments for van Rossum’s Model

Using the Kramers-Moyal Expansion

In the case of van Rossum’s model, the equilibrium value for the kth moment is

E[wk] =
−

∑k
j=1

(

k
j

)
∑⌊j/2⌋

m=0, 2m6=j

(

j
2 m

)

(2m − 1)!! σ2m cj−2m
p E[wk−(j−2m)]

∑⌊k/2⌋
m=0

(

k
2 m

)

(2m − 1)!! σ2m (−cd)k−2m
.

(7.7)

Because the equations form a recurrence, we can set equation (7.2) equal to zero

and solve the moment equations iteratively from k = 1 to find all equilibrium

moments. For van Rossum’s model, we solve the first moment equation to find

the value of the mean

0 = E[ α1(w)]

= −p cd E[w] + p cp

which gives us

E[w] =
cp

cd
. (7.8)

Similarly, the equation for the second moment is

0 = E[ 2 w α1(w) + α2(w)]

= [2 p σ2 + p cd (cd − 2)] E[w2] + 2 p cp E[w] + p c2
p

and substituting (7.8) for E[w], we find its value

E[w2] =
c2
p (cd + 2)

c2
d [cd (2 − cd) − 2σ2]

. (7.9)
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Continuing in the same manner, we find expressions for the third and fourth

moments

E[w3] =
−c3

p (cd σ2 − c3
d − c2

d + cd + 6)

cd [2 σ2 + cd (cd − 2)][3 (cd − 2) σ2 + cd (c2
d − 3 cd + 3)]

(7.10)

E[w4] =
c4
p n

d
(7.11)

where

n = σ4 [12 (c2
d − 2)] +

σ2 [cd (c3
d − 20 cd + 42 cd + 76)] −

(c6
d + c5

d + 17 c4
d − 40 c3

d + c2
d + 72 cd + 24) (7.12)

and

d = cd[2 σ2 + cd (cd − 2)] ×

[3 (cd − 2) σ2 + cd (c2
d − 3cd + 3)] ×

[6 σ4 + 6 (c2
d − 2 cd + 2) σ2 + cd (c3

d − 4 c2
d + 6 cd − 4)] .(7.13)

7.2 Singularities in the Moments

For each moment, there exists parameter values where the denominator Dk = 0

and the value of the moment is undefined.1 For example, the denominator of

the second moment is D2 = c2
d [cd (2 − cd) − 2σ2]. Assuming that cd ≪ 2, the

denominator becomes zero at σ2 ≈ cd and the second moment is singular at this

combination of parameter values. In addition, since N2 > 0 for all values cd and

σ, the variance of the distribution is positive only when

σ2 / cd (7.14)

and the moment is valid only when this constraint holds.

A similar result holds for higher order moments. We start from the value

1The fact that there are points where the moment is undefined is not necessarily surprising –
there are many continuous probability distributions that have infinite moments.
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of Dk in equation (7.6) and make the assumption that cd ≪ 1 and σ < 1. We can

now neglect all but the last two terms of the sum and make the approximation

Dk ≈ (k − 1)!!σk−1(−cd) −

(

k

k − 2

)

(k − 3)!!σk−3cd (7.15)

Using this approximation, Dk ≈ 0 when σ2 ≈ cd/(k − 1) and at the point where

Dk becomes zero, the moment is undefined. As cd grows larger and the constraint

σ2 /
cd

(k − 1)
(7.16)

is violated, the kth moment becomes negative and is not valid.

7.3 The Moment Form

We use an induction argument to show that E[wk] is of the form

E[wk] = ck
p

N ′
k(cd, σ)

D′
k(cd, σ)

(7.17)

For k = 1, equation (7.8) gives us E[w] = cp/cd, and the statement is true

for the base case. Now assume that (7.17) holds for k = 1 . . . n − 1. For k =

n, the terms of the numerator in (7.6) are multiples of cj−2m
p E[wn−(j−2m)] =

cj−2m
p [c

n−(j−2m)
p N ′

n−(j−2m)(cd, σ)/D′
n−(j−2m)(cd, σ)]. Thus, each term is a multiple

of cn
p and a rational function depending only on cd and σ. When the terms are

summed and the fractions simplified, the moment has the form given in (7.17).

We will use this result in the next chapter to show that the relative error between

the moments determined from the KM expansion and those determined using the

FPE are independent of cp.
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Chapter 8

Moments From the

Fokker-Planck Equation

If we set all jump moments beyond α2 in the Kramers-Moyal expansion (7.2)

equal to zero, we obtain the FPE (5.8) solved analytically in chapter 5. Because

for all k, the kth jump moment for this approximation is also a polynomial of

order less than or equal to k in the weight, the moments for the FPE can also be

found exactly.

The first two moments for the Fokker-Planck approximation are the same

as those derived from the full KM expansion. For moments of order greater than

two, we have

∂tEFP [wk] = k EFP [wk−1α1(w)] +
k (k − 1)

2
EFP [wk−2α2(w)] (8.1)

Using the definition of αij from equation (7.3), we expand and obtain

∂tEFP [wk] = k{[α11 + (k − 1) α22] E[wk] +

+ [α01 + (k − 1) α12]E[wk−1]

+ (k − 1)α02E[wk−2]} . (8.2)

To find the equilibrium moments, we set the partial derivative to 0 and
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solve giving

E[wk] =
−{[α01 + (k − 1) α12]E[wk−1] + (k − 1)α02E[wk−2]}

[α11 + (k − 1) α22]
. (8.3)

8.1 Equilibrium Moments for van Rossum’s Model

Using the FPE

For van Rossum’s model, we have

EFP [wk] =
−(cp EFP [wk−1] + (k − 1)c2

pEFP [wk−2])

−cd + (k − 1)(c2
d + 2σ2)

. (8.4)

Specifically, the third and fourth moments for the FPE solution are

EFP [w3] =
−c3

p (2σ2 + c2
d − 3cd − 2)

cd [2σ2 + cd(cd − 2)] [2σ2 + cd(cd − 1)]
(8.5)

and

EFP [w4] =
c4
p [2(3cd + 8)σ2 + 3c3

d + 5c2
d − 12cd − 4]

cd [2σ2 + cd(cd − 2)] [2σ2 + cd(cd − 1)][6σ2 + cd(3cd − 2)]
.

(8.6)

The first and second moments of the FPE solution for van Rossum’s

model are identical to those derived from the full Kramers-Moyal expansion,

given in (7.8) and (7.9) respectively. Thus, the constraint (7.14) must hold for

the second moment of the FPE to be valid. When we look at the third (8.5)

and fourth (8.6) moments we see that the constraint defined by (7.16) must be

satisfied for these moments to be valid, as well.

In the expression for the third moment(8.5), assuming that cd << 1,

the third factor in the denominator becomes 0 when cd ≈ σ2/2. A examination

of the equation shows that the expression switches signs at this point and that

beyond this point, the third moment becomes negative. A similar finding holds

for the fourth moment (8.6), where the fourth factor in the denominator becomes

0 when cd ≈ σ2/3 and becomes negative past this point.

Using an analysis similar to that performed in section 7.2, higher order
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moments must also obey the constraint given in (7.14). Where both EFP [w3] and

E[w3] are valid, EFP [w3] − E[w3] > 0, i.e., the FPE overestimates the value of

the third moment. This finding also holds for fourth and higher moments.

8.2 Moment Form and Relative Error

An induction argument similar to that in section 7.3 shows that EFP [wk] has a

form similar to that of E[wk]

EFP [wk] = ck
p

N ′
k, FP (cd, σ)

D′
k, FP (cd, σ)

(8.7)

We can now define the relative error of the kth moment as

ρk(σ, cd) =
EFP [wk] − E[wk]

E[wk]
. (8.8)

Since the quantities in the numerator and in the denominator are of the form

ck
p F (cd, σ), the relative error for all moments is independent of cp, and depends

only on cd and σ.
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Chapter 9

Experimental Results

We validate our results by comparing them to Monte-Carlo simulations of an en-

semble of neural weights undergoing the changes (4.4) and (4.5) specified by van

Rossum’s model at a variety of model parameter values. We collect statistical

measures for the distributions obtained from these simulations and compare them

with the values of the corresponding statistical measures obtained from the ana-

lytical solutions of the model moments (7.6) and (8.4) derived in sections 7 and 8

respectively. The MATLAB c©1 code for the simulation is found in Appendix A.

All simulations start with 20,000 weights in the simulated ensemble.

Letting Wt = [wj(t)] denote the vector of simulated weights at time step t, where

wj(t) denotes the jth weight at time t, the initial ensemble W0 is randomly drawn

from a Gaussian distribution with mean and variance derived from equations (7.8)

and (7.9). At every time step each weight in the ensemble is either decreased or

increased with probability p = pd = pp = 0.25 in accord with equation (4.14). If

the weight is decreased, the decrease is wj(t + 1) = wj(t) − wj(t)cd + vwj(t) as

specified in (4.5), where v is a random variable drawn from a normal distribution

with mean 0 and variance σ2. If the weight is increased, we use the increase

specified in (4.4): wj(t + 1) = wj(t) + cp + vwj(t). At each time step during the

data collection period, we collect the kth powers of the weights [wk
j (t)] for k = 1

to 4 and average them over the ensemble to give the ensemble means for the raw

moments of the weights W̄ k
t . The kth ensemble mean W̄ k

t approximates E[wk].

Simultaneously, we also collect the ensemble means of other statistical measures

1MATLAB is a registered trademark of The MathWorks, Inc.
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derived from the raw moments such as the variance, skew, kurtosis, and central

moments.

The simulations are burned in for a period of 10,000 time steps and then

run for a data collection period of 90,000 time-steps where statistical measures

are collected. The number of time steps for the burn-in and run periods were

determined by visually inspecting several runs. For all simulations, Gewecke’s

Z-diagnostic [34] was then applied to the collected moments from the first 10,000

and final 10,000 time steps of the data collection period to check that these values

had converged for the data collection period.

When viewed as a time series over the data collection period, the ensem-

ble mean for any statistical measure is itself a stochastic variable. To compute

a single representative value for the statistical measures to compare with our

analytical results, we average the ensemble means W̄ k
t over the time steps in

the data collection period to give Ŵ k, the time-averages of the ensemble means.

The time-averages for the variance, skew, kurtosis, and central moments are also

computed and collected.

The simulations were run using parameter values in the range 0.1 ≤ cp ≤

500, 0 < cd < 1 and 0 < σ < 1. We compared these time-averaged values with

the analytical values for these measures derived from equations (7.6) and (8.4).

Figure 9.1 plots the third central moment µ3 = E[w3] − E[w]3 derived

from the simulation (solid line), the Kramers-Moyal formula (circles), and the

Fokker-Planck formula (dots) at the parameter values [cp, cd, σ] = k [1, 0.003, 0.015].

The parameter values used in van Rossum’s study correspond to the point k = 1

and this value is marked with an ’X’. Note that for the small parameter values

used (including the value used in van Rossum’s study) all three values match

closely. Even so, at the larger end of this parameter set, the values derived using

the Fokker-Planck approximation are beginning to diverge.

Figure 9.2 shows the value of third central moments at the parame-

ter values [cp, cd, σ] = k [1, 0.015, 0.015]. As the parameter values grow larger,

the values for the Fokker-Planck approximation diverge more pronouncedly from

those of the simulation. The Kramers-Moyal solution continues to track the sim-

ulation with no error.
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Figure 9.1: Third central moment for the simulation, the Kramers-Moyal expansion,

and the Fokker-Planck approximation for values [cp, cd, σ] = k [1, 0.003, 0.015]. The

’X’ indicates the parameters values for the simulation used in van Rossum’s study.

Figure 9.3 shows the third central moment at the points [cp, cd, σ] =

k [25, 0.075, 0.015], respectively. Even when k > 2 and the parameters become

very large when compared with those in van Rossum’s study, the values of the

moments derived from the full Kramers-Moyal expansion track the simulations

exactly. The values derived from the Fokker-Planck approximation diverge to an

ever greater degree.

From these comparisons covering a broad range of parameter values, it

is clear that the full Kramers-Moyal expansion gives an exact solution for the

third central moment. Similar findings hold for the raw third moment, E[w3],

and skew µ3/µ
3/2
2 where µi denotes the ith central moment.

As discussed in section 8, the Fokker-Planck approximation overesti-

mates the values for the third central moment (and for the raw third moment,

as well). This finding holds across all values of the parameter space until the

constraint noted in (7.16) is violated.

Figure 9.4 plots discrepancies in the fourth central moments between the

Fokker-Planck approximation (dots) and the Kramers-Moyal expansion (circles),

and the simulation (solid line) at the parameter values [cp, cd, σ] = k [1, 0.015, 0.015]
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Figure 9.2: Third central moment for the simulation, the Kramers-Moyal expansion,

and the Fokker-Planck approximation for values [cp, cd, σ] = k [1, 0.015, 0.015].

(LEFT) and [cp, cd, σ] = k [25, 0.075, 0.015] (RIGHT). Again, each plot shows

considerable error in using the Fokker-Planck approximation, while the Kramers-

Moyal solution gives results that track the simulation exactly. In these cases, the

raw fourth moment is overestimated, though this fact is not necessarily evident

in the plot of the fourth central moment.2 As is the case with the third moment,

this overestimation continues until the constraint noted in (7.16) is violated.

Figure 9.5 shows a contour plot of ρ3 the relative error in the raw third

moments between the FPE and Kramers-Moyal expansion given by equation

(8.8). Since the relative error is independent of cp, it can be displayed as a contour

on the cd-σ plane. The relative error of the Fokker-Planck approximation is quite

low where σ and cd are small, but grows quickly as these parameters become

larger. One can see the contours of the relative error bunch together as the

parameters approach singular points in the parameter space, indicating rapid

increase in the relative error as model parameters approach these points. The

2The fourth central moment µ4 is defined in terms of the raw moments E[w] through E[w4]
as

µ4 = E[w4] − 8E[w3]E[w] + 6E[w2]2 + E[w]4 .

Whether or not the fourth central moment is underestimated or overestimated (or neither)
depends on the relative magnitudes of the raw moments.
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Figure 9.3: Third central moment for the simulation, the Kramers-Moyal expansion,

and the Fokker-Planck approximation for values [cp, cd, σ] = k [25, 0.075, 0.015].

dotted lines on the graph indicate the traces in the cd-σ plane from which the

plots in figures 9.1, 9.2, and 9.3 were taken. Again, ’X’ indicates the parameter

values used in van Rossum’s simulation. Figure 9.6 plots a similar set of contours

for ρ4 the relative error in the raw fourth moment where the dotted lines denote

the traces in the cd-σ plane from which the plots in figure 9.4 were taken.
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Figure 9.4: Fourth central moments for the simulation, the Kramers-Moyal expansion,

and the Fokker-Planck approximation. LEFT: [cp, cd, σ] = k [1, 0.015, 0.015] RIGHT:

[cp, cd, σ] = k [25, 0.075, 0.015]
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Figure 9.5: Contour plot of relative error of the raw third moment of the Fokker-Planck

solution compared with the Kramers-Moyal solution.
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Figure 9.6: Contour plot of relative error of the raw fourth moment of the Fokker-

Planck solution compared with the Kramers-Moyal solution.
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Chapter 10

Discussion and Conclusion

The weight distribution P (w, t) holds all information about the learning dynam-

ics of a neural system. For the asymmetric spike-timing-dependent model de-

termined in van Rossum et al. [1], the FPE (5.6) accurately modeled the weight

distribution of cultured rat hippocampal neurons. Our study of this model shows

that the FPE closely matched the physical result only for the biophysically deter-

mined model parameters used in his study. Van Rossum’s assumptions about the

relative sizes of the parameters cd and σ2 lead to inaccuracies when σ approaches

or becomes less than cd. When cp, cd, or σ grow larger than the biophysically

determined constant, the error of the FPE approximation grows and the approx-

imate solution may not match the actual results produced by the model.

The inability of the FPE solution to accurately and reliably approximate

the equilibrium distribution seriously limits its use as an analytical tool. Heskes

and Kappen [3, 4] and Van Kampen [9] showed that the use of the FPE is justified

only in the linear noise regime where effects of a non-linear drift coefficient α1(w)

and non-constant diffusion coefficient α2(w) can be ignored and the distributions

are Gaussian. If the FPE consistently gave good results whenever this limitation

was observed and consistently failed when it was not, it might be salvaged for

general use. However, as discussed in Chapter 6, in both the machine learning

and biological arenas, there are examples where the FPE gives good predictions

even when the distribution is highly skewed and far from the linear-noise limit;

other examples exist where the FPE’s predictions fail, even when the distribu-

tion is close to Gaussian and the parameters are small. Because the FPE gives
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inconsistent results, it cannot be a reliable tool to analyze learning dynamics.

Conversely, solutions based on the full Kramers-Moyal expansion are

exact. In the case of van Rossum’s model, the Kramers-Moyal expansion can

be used to determine the exact moments of the equilibrium weight distribution.

Our comparison of these moments with simulations confirm that the analytical

results derived from the Kramers-Moyal expansion are indeed exact across a broad

range of parameter values, including those where the FPE fails. Comparison

against moments derived using the FPE shows that the moments derived from

the Kramers-Moyal expansion give more accurate predictions of moment values

than the FPE.

Specifically, if a learning rule produces a Markov process where for k =

1, 2, . . . , K, the kth jump moment is a polynomial of order k or less in the weight,

the Kramers-Moyal expansion gives a moment recurrence that can be solved

exactly for the Kth moment of the equilibrium distribution. The values for

the equilibrium moments obtained in this way, being exact, will always be more

accurate than the value of the moments derived from the FPE approximation.

As we have shown with van Rossum’s model, this provides a new tool that can

be used to analyze learning dynamics for systems governed by learning rules that

meet these criteria.

Finally, this study shows that methods based on the full Kramers-Moyal

expansion can be useful tools. One approach, unexamined here, starts with the

equation (4.12) giving the relationship pp(w) = pd(w)(1+Wtot). Using this equa-

tion, one can rewrite the jump moments (3.8) in terms of pd(w). Substituting this

form of the jump moments into the Kramers-Moyal expansion (3.7) leads to an

equation that can be cast in terms of w/Wtot. This quantity is small enough that

one should be able to accurately approximate the equilibrium distribution as a

proper perturbation series in w/Wtot. Solving this perturbation series should give

increasingly accurate approximations of P (w, t) as the number of retained terms

in the series increases. This approach should be explored for van Rossum’s model

and other models with learning rules having equal time windows for potentiation

and depression, where equation (4.12) holds.

Another method that bears additional investigation is suggested by Leen

in [35]. This work suggests starting with the fluctuation expansion of Van Kam-
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pen [9]. When this expansion is substituted into the Kramers-Moyal expansion, a

proper perturbation expansion results. Iterative solution of truncated versions of

this expansion should provide approximate distributions which increase in accu-

racy as more terms are added. This approach would provide computational tools

for analyzing learning dynamics where current tools are misleading, inaccurate,

or both. Further research is needed to validate this approach.
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Appendix A

Code for Monte Carlo Markov

Chain Simulation

We show here the MATLAB c© code for the simulations used to validate our

results. The general strategy is that simulation variables are globally held, with

parameters for the simulation set before the run and values extracted from the

globals after the run and saved. Simulation state and values are cached in files

and reloaded when necessary to obviate the need for re-running simulations to

plot different values or to extend the simulation time.

A.1 set simulation parameters.m

This function declares all global parameters used in the simulation and sets the

variables that control the simulation.

function set_simulation_parameters(ne, pr, cp, cd, s, nb, na)

% Cd, Cp, p, sigma as in van Rossum et al. NElements = # of

% simulated weights, NBurnin = burn in period, NAvg = data

% collection period.

global Cd Cp p NElements sigma NBurnin NAvg;

% w = weight vector, SMeans = Simulated means (for each time step),
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% SMom2s = Simulated raw second moment (for each time step), etc.

global w SMeans SMom2s SMom3s SMom4s;

% ASMean = Average Simulated Mean (averaged over NAvg time steps),

% ASVar = Average Variance (averaged over NAvg time steps), etc.

global ASMean ASMom2 ASMom3 ASMom4;

global ASVar ASMom3C ASSkew ASMom4C ASKurtosis;

% ThMean = Theoretical Mean (calculated from KM expansion),

% ThVar = Theoretical Variance (calculated from KM expansion), etc.

global ThMean ThMom2 ThMom3 ThMom4;

global ThVar ThMom3C ThSkew ThMom4C ThKurtosis;

% FPMom3 = Raw third moment (calculated from FPE),

% FPMom3C = Third central moment (calculated from FPE), etc.

global FPMom3 FPMom4;

global FPMom3C FPSkew FPMom4C FPKurtosis;

% Miscellaneous constants needed to normalize probability

% distribution

global LogFPEAScale LogNorm;

NElements = ne;

p = pr;

Cd = cd;

Cp = cp;

sigma = s;

NBurnin = nb;

NAvg = na;

% Set theoretical values - Mean, 2’nd moment and variance

ThMean = Cp/Cd;

ThMom2 = -(2*Cp*ThMean+Cp^2)/(2*sigma^2+Cd^2-2*Cd);

ThVar=ThMom2-ThMean*ThMean;
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% Set theoretical values for full KM model- 3’rd and 4’th

% moments, skew and kurtosis

ThMom3num = 3*Cp*(sigma^2+1)*ThMom2+3*Cp^2*ThMean+Cp^3;

ThMom3denom = 3*(Cd-2)*sigma^2+Cd^3-3*Cd^2+3*Cd;

ThMom3 = ThMom3num/ThMom3denom;

ThMom3C=ThMom3-ThMean*ThMean*ThMean;

ThSkew = ThMom3C/sqrt(ThVar*ThVar*ThVar);

ThMom4num = (12*cp*ThMom3+6*Cp*Cp*ThMom2)*sigma^2+...

4*Cp*ThMom3+6*Cp^2*ThMom2+4*Cp^3*ThMean+Cp^4;

ThMom4denom=6*sigma^4+6*(Cd^2-2*Cd+2)*sigma^2+...

Cd*(Cd^3-4*Cd^2+6*Cd-4);

ThMom4=-ThMom4num/ThMom4denom;

ThMom4C = ThMom4+ThMean^4-8*ThMean*ThMom3+6*ThMom2*ThMom2;

ThKurtosis = (ThMom4C/(ThVar*ThVar))-3;

% Set theoretical values for truncated model - 3’rd and 4’th

% moments, skew and kurtosis

FPMom3num = -(Cp*ThMom2+3*Cp^2*ThMean);

FPMom3denom = 2*sigma^2+Cd^2-Cd;

FPMom3 = FPMom3num/FPMom3denom;

FPMom3C=FPMom3-ThMean*ThMean*ThMean;

FPSkew=FPMom3C/sqrt(ThVar*ThVar*ThVar);

FPMom4num = Cp*(2*FPMom3+3*Cp*ThMom2);

FPMom4denom = 6*sigma^2+Cd*(3*Cd-2);

FPMom4=-FPMom4num/FPMom4denom;

FPMom4C = FPMom4+ThMean^4-8*ThMean*FPMom3+6*ThMom2*ThMom2;

FPKurtosis = (FPMom4C/(ThVar*ThVar))-3;
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end

A.2 make initial population.m

This function initializes the global vector w to random values with mean and

variance derived from equations (7.8) and (7.9).

function make_initial_population()

global NElements ThMean ThVar w;

% Initialize ensemble of synapses about asymptotic

% mean with asymptotic variance

w = ThMean * ones(NElements,1);

noise = sqrt(ThVar)*randn(NElements,1);

w = w+noise;

end

A.3 data exists.m

Because the MCMC simulations took so long to run, after each simulation we

saved the final vector of simulated weights and their averaged raw moments from

each time step. If the data at that set of parameter values was needed again (e.g.,

for generating plots), we reloaded the data rather than running a new simulation.

This function checks to see if a simulation for this parameter set already

exists.

function res = data_exists()

fDir = archive_directory_name();

res = isdir(fDir);

end
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A.4 archive directory name.m

This function maps the simulation parameters into a name for a directory where

the simulation data will be stored.

function fdir = archive_directory_name()

global Cd Cp p NElements sigma NBurnin NAvg;

fdir = sprintf(’data\\S%d-%08.4f-%08.4f-%08.4f’, ...

NElements, Cp, Cd, sigma);

end

A.5 save data.m

This function saves the simulation data in case it is needed again.

function save_data()

global Cd Cp p NElements sigma NBurnin NAvg;

global w SMeans SMom2s SMom3s SMom4s;

global ASMean ASMom2 ASMom3 ASMom4;

global ASVar ASMom3C ASSkew ASMom4C ASKurtosis;

global ThMean ThMom2 ThMom3 ThMom4;

global ThVar ThMom3C ThSkew ThMom4C ThKurtosis;

global FPMom3 FPMom4;

global FPMom3C FPSkew FPMom4C FPKurtosis;

global AFPMean AFPMom2 AFPVar AFPMom3 AFPMom3C AFPSkew;

global AFPMom4 AFPMom4C AFPKurtosis;

global vrAFPMean vrAFPMom2 vrAFPVar vrAFPMom3 vrAFPMom3C;

global vrAFPSkew vrAFPMom4 vrAFPMom4C vrAFPKurtosis;

fDir = archive_directory_name();

if(~data_exists())

53



mkdir(fDir);

end

NTot = NBurnin+NAvg;

params = [NElements, Cp, Cd, sigma, NTot];

paramFile = strcat(fDir, ’\p’);

save(paramFile, ’params’, ’-ascii’);

weightFile = strcat(fDir, ’\w’);

save(weightFile, ’w’, ’-ascii’);

m1File = strcat(fDir, ’\m’);

save(m1File, ’SMeans’, ’-ascii’);

m2File = strcat(fDir, ’\m2’);

save(m2File, ’SMom2s’, ’-ascii’);

m3File = strcat(fDir, ’\m3’);

save(m3File, ’SMom3s’, ’-ascii’);

m4File = strcat(fDir, ’\m4’);

save(m4File, ’SMom4s’, ’-ascii’);

allStats = [params, NBurnin, NAvg, ASMean, ThMean, ASMom2, ...

ThMom2, ASVar, ThVar, ASMom3, ThMom3, FPMom3, ASMom3C, ...

ThMom3C, FPMom3C, ASSkew, ThSkew, FPSkew, ASMom4, ...

ThMom4, FPMom4, ASMom4C, ThMom4C, FPMom4C, ASKurtosis, ...

ThKurtosis, FPKurtosis, AFPMean, AFPMom2, AFPVar, ...

AFPMom3, AFPMom3C, AFPSkew, AFPMom4, AFPMom4C, ...

AFPKurtosis, vrAFPMean, vrAFPMom2, vrAFPVar, vrAFPMom3, ...

vrAFPMom3C, vrAFPSkew, vrAFPMom4, vrAFPMom4C, ...

vrAFPKurtosis ...

];

ssFile = strcat(fDir, ’\ss’);

54



save(ssFile, ’allStats’, ’-ascii’);

cumDataFileName=’data\\allRuns’;

cID = fopen(cumDataFileName, ’at+’);

for i=1:length(allStats)

fprintf(cID, ’%g ’, allStats(i));

end

fprintf(cID, ’\n’);

fclose(cID);

statsFile = strcat(fDir, ’\stats-print’);

fID = fopen(statsFile, ’wt+’);

fprintf(fID, ’NElements=%d\n’, NElements);

fprintf(fID, ’NTimesteps=%d\n’, NBurnin+NAvg);

fprintf(fID, ’NAvg=%d\n’, NAvg);

fprintf(fID, ’p=%g\n’, p);

fprintf(fID, ’Cp=%g\n’, Cp);

fprintf(fID, ’Cd=%g\n’, Cd);

fprintf(fID, ’sigma=%g\n\n’, sigma);

fprintf(fID, ’model\t\t\t\t\t\t\tMean\t\t2’’nd Moment’);

fprintf(fID, ’\t\tVariance\t\t3’’d Moment’);

fprintf(fID, ’\t\tCentral 3’’rd Moment\t\tSkew’);

fprintf(fID, ’\t\t4’’th Moment\t\tCentral 4’’th Moment’);

fprintf(fID, ’\t\tKurtosis\n’);

fprintf(fID, ’Simulation\t\t\t\t\t\t%g\t\t%g\t\t\t%g’, ...

ASMean, ASMom2, ASVar);

fprintf(fID, ’\t\t\t%g\t%g\t\t\t%g\t\t%g\t%g\t\t\t%g\n’, ...

ASMom3, ASMom3C, ASSkew, ASMom4, ASMom4C, ASKurtosis);

fprintf(fID, ’Full K-M\t\t\t\t\t\t%g\t\t%g\t\t\t%g’, ...

ThMean, ThMom2, ThVar);

fprintf(fID, ’\t\t\t%g\t%g\t\t\t\t%g\t\t%g\t%g\t\t\t\t%g\n’, ...

ThMom3, ThMom3C, ThSkew, ThMom4, ThMom4C, ThKurtosis);

fprintf(fID, ’FP (Truncated K-M)\t\t\t\t---\t\t\t---\t\t\t\t---’);
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fprintf(fID, ’\t\t\t\t%g\t%g\t\t\t\t%g\t\t%g\t%g\t\t\t%g\n’, ...

FPMom3, FPMom3C, FPSkew, FPMom4, FPMom4C, FPKurtosis);

fprintf(fID, ’FP (Integrated estimate)\t\t%g\t\t%g\t\t\t%g’, ...

AFPMean, AFPMom2, AFPVar);

fprintf(fID, ’\t\t\t%g\t%g\t\t\t\t%g\t\t%g\t\t%g\t\t\t%g\n’, ...

AFPMom3, AFPMom3C, AFPSkew, AFPMom4, AFPMom4C, AFPKurtosis);

fprintf(fID, ’FP (Integrated estimate - VR)\t%g\t\t%g\t\t\t%g’, ...

vrAFPMean, vrAFPMom2, vrAFPVar);

fprintf(fID, ’\t\t\t%g\t%g\t\t\t\t%g\t\t%g\t%g\t\t\t%g\n’,

vrAFPMom3, vrAFPMom3C, vrAFPSkew, vrAFPMom4, vrAFPMom4C, ...

vrAFPKurtosis);

fclose(fID);

end

A.6 load data.m

This function reloads simulation data for a particular set of simulation parame-

ters.

function params = load_data()

global w SMeans SMom2s SMom3s SMom4s;

global NBurnin NAvg;

fDir = archive_directory_name();

NTot = NBurnin+NAvg;

paramFile = strcat(fDir, ’\p’);

p = load(paramFile);

weightFile = strcat(fDir, ’\w’);

w = load(weightFile);

m1File = strcat(fDir, ’\m’);
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SMeans = load(m1File);

m2File = strcat(fDir, ’\m2’);

SMom2s = load(m2File);

m3File = strcat(fDir, ’\m3’);

SMom3s = load(m3File);

m4File = strcat(fDir, ’\m4’);

SMom4s = load(m4File);

params = p;

end

A.7 run simulation.m

This function checks to see if the simulated data exists. If it does, it loads the

data, otherwise, it initializes the vector of simulated weights using the function

make initial population. It then runs runs the simulation for any additional

time-steps and saves the data.

function run_simulation(tell_step)

global Cd Cp p NElements sigma NBurnin NAvg;

global w SMeans SMom2s SMom3s SMom4s;

Pd = p;

Pp = p;

% Check to see if we already have some simulation data to

% start from...

if (data_exists())

load_data();
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else

make_initial_population();

SMeans = [];

SMom2s = [];

SMom3s = [];

SMom4s = [];

end

NSteps=2000;

TSteps=length(SMeans);

while (check_vrsim_convergence(NBurnin+NAvg, ...

SMeans, SMom2s, SMom3s, SMom4s))

if tell_step

TSteps

end

% Do Nsteps steps of random walk

for step = 1:NSteps

toss = rand(NElements,1);

noise = sigma*randn(NElements,1);

noisew = noise.* w;

depress = (toss <= Pd);

potentiate = (toss>Pd)&(toss<(Pd+Pp));

wp = potentiate .* (Cp+noisew);

wd = depress .* (-Cd*w + noisew);

w = w + wp + wd;

TSteps = TSteps+1;

m=mean(w);

w2=w.*w;

m2=mean(w2);

w3=w2.*w;

m3=mean(w3);

w4=w3.*w;

m4=mean(w4);

SMeans = [SMeans; m];
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SMom2s = [SMom2s; m2];

SMom3s = [SMom3s; m3];

SMom4s = [SMom4s; m4];

end % for step

end % while

get_average_simulation_data();

% Now that we’ve simulated, save the data...

save_data();

end

A.8 get average simulation data.m

This function calculates the means of all of the statistical variables across all time

steps.

function get_average_simulation_data()

global NBurnin NAvg;

global w SMeans SMom2s SMom3s SMom4s;

global ASMean ASMom2 ASMom3 ASMom4;

global ASVar ASMom3C ASSkew ASMom4C ASKurtosis;

% Analysis: Average values of simulated quantities

ASMean = mean(SMeans((NBurnin+1):(NBurnin+NAvg)))

ASMom2 = mean(SMom2s((NBurnin+1):(NBurnin+NAvg)))

ASMom3 = mean(SMom3s((NBurnin+1):(NBurnin+NAvg)))

ASMom4 = mean(SMom4s((NBurnin+1):(NBurnin+NAvg)))

sm2 = SMeans.*SMeans;

var = SMom2s-sm2;

ASVar = mean(var((NBurnin+1):(NBurnin+NAvg)))

sm3 = sm2.*SMeans;

m3c = SMom3s-sm3;

ASMom3C = mean(m3c((NBurnin+1):(NBurnin+NAvg)))

59



skew =m3c./sqrt(var.*var.*var);

ASSkew = mean(skew((NBurnin+1):(NBurnin+NAvg)))

sm4 = sm3.*SMeans;

m4c =SMom4s+SMeans.^4-8*SMeans.*SMom3s+6*SMom2s.^2;

ASMom4C = mean(m4c((NBurnin+1):(NBurnin+NAvg)))

kurtosis = (m4c./(var.*var))-3;

ASKurtosis = mean(kurtosis((NBurnin+1):(NBurnin+NAvg)))

end

A.9 check vrsim convergence.m

This function was to have checked to see if the simulated data converged. The-

oretical convergence criteria were all too inexact to determine when to halt the

simulation, so a simple test against the number of time steps was substituted.

We determined the number of time-steps to simulate by visually inspecting sev-

eral runs and determining that the values of the moments and derived statistical

measures stabilized within these time periods. Elegant? No... Effective? Yes!

function cont = check_vrsim_convergence(StepMax, ...

means, mom2s, mom3s, mom4s)

s = length(means);

cont = (s < StepMax);

end
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