
Porting the Chorus Supervisor and
Related Low-level Functions to the PA-RISC

Ravindranath Konuru, Marion Hakanson,
Jon Inouye and Jonathan Walpole

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CS/E 92-006

January 1992

Porting the Chorus Supervisor and
Related Low-level Functions to the PA-RISC

Ravindranath Konuru,
Marion Hakanson,

Jon Inouye,
Jonathan Walpole:

Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology

January 27, 1992

Abstract

This document is part of a series of reports describing the design decisions made in porting
the Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation.

The Supervisor is the name given by Chorus to a collection of low-level functions that are
machine dependent and have to be implemented when Chorus is ported from one machine to
another. The Supervisor is responsible for interrupt, trap and exception handling, managing
low-level thread initialization, context switch, kernel initialization, managing simple devices
(timer and console) and offering a low-level debugger [7]. This document describes the port of
the Supervisor and related low-level functions.

The information contained in this paper will be of interest to people who wish to understand:

The main characteristics of Chorus and PA-RISC architecture that are useful in under-
standing the port of the Chorus Supervisor .
The requirements and implementation of the Chorus Supervisor .
The requirements and implementation of Chorus page fault interface

The requirements and implementation Chorus System Call Interface

The requirements and implementation of mutex interface which is a part of the Chorus
system call interface for efficient thread synchronization.

Reasons for the modifications to the portable layers of Chorus kernel to implement the
above requirements. A summary of the modifications is also presented.

It is useful to read the port overview [17] before reading this document. It is also a good
idea to have the Precision Architecture and Instruction Set Reference Manual [lo] and Chorus
v3.3 implementation guide[7] on hand although it is not absolutely necessary.

*This research is supported by the Hewlett-Packard Company (HP), Chorus SystCmes, and Oregon Advanced
Computing Institute (OACIS).

Contents

1 Introduction 4
. 1.1 Supervisor Port Overview 4

. 1.2 Chorus Overview 5
. 1.3 PA-RISC 5

. 1.3.1 Control Registers 7
. 1.3.2 Interruptions 8

. 1.3.3 Memory Management Support 9

2 Supervisor 12
. 2.1 Supervisor requirements 13

. 2.1.1 Supervisor interface requirements 13
. 2.1.2 Supervisor Actor Interface 17

. 2.1.3 Event (Interrupt, Trap and Exception) Handling 18
. 2.1.4 Timer and Console Management 18

. 2.1.5 Low-level Debugging facility 18
. 2.1.6 Kernel initialization 19
. 2.2 Supervisor implementation 19

. 2.2.1 Thread Register Context 19
. 2.2.2 Machine Dependent Thread Descriptor 21

. 2.2.3 SupCtxInit() 21
. 2.2.4 SupCtxSwitch() 24
. 2.2.5 SupGetUserCtx() 25

. 2.2.6 SupCtxReset() 25
. 2.2.7 SupCtxIsUserMod() 25

. 2.2.8 The various connect and disconnect functions 26
. 2.2.9 Supervisor Actor Interface Implementation 29
. 2.2.10 Interrupt masking and monitoring functions 32

. 2.2.1 1 Event Handling 32
. 2.2.12 Timer and Console Management 37

. 2.2.13 Debugger 37
. 2.2.14 Kernel Initialization 38

3 Chorus Page Fault Interface 39
. 3.1 Requirements 39

. 3.2 Implementation 39

4 System Call Interface 4 1
. 4.1 Requirements 41

. 4.2 Implementation 42
. 4.2.1 System call interface for user actors 42

. 4.2.2 System call interface for supervisor actors 45

5 Mutex Interface 48
. 5.1 Requirements 46
. 5.2 Implementation 47

6 Modifications to the Chorus Portable Layers

7 Future Work

8 Acknowledgements

1 Introduction

This document is part of a series of reports describing the design decisions made in porting the
Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation.

Chorus is horizontally divided into a machine independent layer and a machine dependent layer.
The machine dependent layer exports a machine independent interface that is expected to remain
unchanged as the operating system is ported from one machine to another. The machine depen-
dent layer is divided vertically into two major partitions: the Supervisor and the mmu (memory
management unit). The mmu is responsible for the implementing the machine dependent memory
management functions [I]. This document deals with the implementation of the Supervisor and
other related low-level functions. The port of the mmu is discussed elsewhere [l l] .

An overview of the port of the Chorus Supervisor and related functions is given in section 1.1.
Brief reviews of some of the characteristics of Chorus and the PA-RISC architecture are given in
sections 1.2 and 1.3 respectively. The purpose of these reviews is to give sufficient background for
discussing the machine dependent layer. For detailed information about Chorus, refer to the Chorus
technical reports CS/TR-90-71 [7] and CS/TR-89-36.1 [2]. For inforination about PA-RISC, refer
to [15, lo].

The Supervisor requirements and implementation are presented in section 2. The Chorus page
fault interface is presented in section 3, the System call interface in section 4, and the mutex
interface in section 5.

The main reasons for the modifications to the portable layers of the Chorus kernel and a
summary of the modifications is given in section 6. Future work is presented in section 7.

1.1 Supervisor Port Overview

We started our ground work for the port in Sep 90. The operating system as well as the architecture
were completely new to us at that time. We spent about a month reading the documentation and
papers on PA-RISC architecture [lo, 15, 16, 131 and Chorus operating system [2, 1, 41. The
Tut books [8, 31 documenting the mach 2.0 port by HP to PA-RISC proved valuable sources of
information.

In Oct 90 we had a 1-week course on porting Chorus at Chorus Systdmes, France. Various
components were identified. As Chorus personnel were also not familiar with PA-RISC, the Cho-
rus port to Motorola 88000 was used as a case study to explain the various machine dependent
components and the porting process. This proved useful for the design of the Chorus Supervisor .

Assembly language programs were written to understand the PA-RISC architecture especially
with respect to nullification, delayed branches, procedure calling conventions and the usage of adb,
the assembly language debugger.

The following basic principles of design were applied as often as possible:

4 Use 32 bit addresses. Initially, we considered using 64-bit addresses. However, it would have
caused extensive changes in the portable layers of the kernel and is was not clear how to
design an interface with 64-bit address parameters. In any case, it would have increased the
time of the port. We left this for future work.

4 Keep the design as simple as possible. The aim was to get the first working port as quickly
as possible. This was one of the principles that was reiterated during our course at France.
We whole heartedly agreed with that.

Use the available Tut code for the machine dependent layer implementation. The goal again
was to get the port up as quickly as possible. For example the code for initialization would
have taken us a long time to figure out, write and debug if did not use the Tut code albeit
with modifications.

The design and implementation of the Supervisor did not prove very difficult once we had a
good grasp of the architecture and the Chorus machine dependent layer. The availability of Tut
code was also very beneficial.

Chorus provides a kernel test suite[9] for validating the kernel. This was the only method we
employed to validate our kernel port.

1.2 Chorus Overview

Chorus is a message based micro-kernel that supports the following abstractions1:

Actor

Thread

Message

Port

An Actor forms the unit of resource allocation and identifies a protected address space. An
address space is split into a user address space and system address space. On a given site2,
each actor's system address space is identical and its access is restricted to privileged levels of
execution. An actor in Chorus can be a Supervisor actor or User Actor. A supervisor actor lives in
the system address space along with the kernel. Supervisor actors have higher privilege than user
Actors.

A thread is the basic unit of execution and runs in the context of an Actor. A thread is a
sequential flow of control and is characterized by a thread context corresponding to the state of
the processor at any given point during the execution of thread. There can be multiple threads per
actor.

Threads communicate and synchro~lize by exchanging messages between their actors' ports.
Threads sharing the same address space can use share memory for communication and synchro-
nization. Semaphores and Mutexes provided by the Chorus interface are useful for this purpose.

A thread belonging to a user Actor is called a user thread. However during a system call, it
becomes a supervisor thread. A user thread has 2 stacks: a user stack for executing user code and
a system stack for executing system calls, traps, and storing the context of the thread when the
thread is blocked. A thread belonging to a supervisor actor is called a supervisor thread. Since a
supervisor thread lives entirely in the system address space, it has only a system stack and no user
stack.

1.3 PA-RISC

This section consists of extracts from the PA-RISC architecture reference manual useful for under-
st anding the machine dependent layer implementation. For more details see the cited references.

'Chorus is written in an object oriented language C++. These abstractions are implemented as C++ classes
'A site is a grouping of tightly-coupled resources controlled by a single Chorus Nucleus[6]

PA-RISC Architecture is the frame work for Hewlett-Packard's HP3000/900, HP9000/800, and
HP9000/700 series computer systems.

It is based on the principles of RISC and has 140 fixed length instructions. It employs a virtually
addressed cache and the 1 /0 sub-system is memory mapped. PA-RISC supports 48-bit, 56-bit or
64-bit virtual addresses and provides some hardware protection support. The global virtual memory
is organised as a set of linear spaces with each space being 4 gigabytes (232) long. Each space is
specified with a space identifier.

PA-RISC supports 4 privilage levels numbered 0-3. The highest privilege level is 0 and the
lowest privilege level is 3.

PA-RISC architecture has the following resources:

r 32 General Registers. GRO is tied permanently to zero. GR1 is the target of Addil instruc-
tions. GR31 is the link register for an inter-space branch and link external (Ble) instruction.
GR27 used as the base pointer for data accesses. This is specified by the procedure calling
conventions of the architecture.

r 25 Control Registers. CR1-CR7 do not exist. Control registers are discussed in more detail
in the section 1.3.1.

r 8 Space Registers. SRO is the instruction address space link Register for Ble instruction.
SRO-SR4 can be modified at any privilege level. SR.5-SR7 can be modified at privilege level
0. The usage of the space registers is left to the operating system. The space registers are
16-bit long on a level 1 PA-RISC, 24-bit long on a level 1.5 PA-RISC and 32-bit long on a
level 2 PA-RISC. On a level 0 PA-RISC, the space registers do not exist. A level 0 PA-RISC
supports absolute addressing only.

r Processor Status Word (PSW) The processor state is encoded in a 32-bit register PSW. PSW
does not appear as an operand in instructions. When an interruption occurs, the old value
of the PSW is saved in the IPSW register(CR22). Some of the bits in the PSW are reserved.
It is software's responsibility that these are zero when written. The PSW is set from IPSW
by a return from interruption instruction.

The PSW bits that are important for the discussion are:

- C bit (PSW-C) Code (instruction) address translation enable. When 1, instruction
addresses are translated and access rights checked.

- Q bit (PSW-Q) Interruption Collection Enable. When 1, interruption state is collected.
When an interruption occurs the details of the instruction being executed are recorded
in the control registers (see 1.3.1).

- P bit (PSW-P) Protection Identifier enable. When this bit and the C-bit are both 1,
instruction references check for valid protection identifiers(P1Ds). When this bit and
the D-bit are both 1, data references check for valid PIDs. When this bit is 1, probe
instructions check for valid PIDs.

- D bit (PSW-D) Data address translation enable. When 1, data addresses are translated
and access rights checked.

- I bit (PSW-I) External interrupt, power failure interrupt, and low-priority machine check
interrupt unmask. When 1, these interrupts are unmasked and can cause an interrupt.
when 0 the interrupts are held pending.

3An interruption is PA-RISC specific term. An interruption is a trap or an interrupt that can occur on PA-RISC.

Instruction Address queues.

The instruction Address queues hold the address of the currently executing instruction and
the address of the instruction that will be executed after the current instruction, termed the
following instruction. There are 2 queues: Instruction Address Space Queue (IASQ) and
the Instruction Address Offset Queue(1AOQ). Each queue is 2 elements deep. The elements
are referred to IAOQ-FRONT, IAOQ-BACK, IASQ-FRONT and IASQ-BACK. The 2-deep
queues are used to support the delayed branching capability.

1.3.1 Control Registers

This section defines the main registers used in the implementation:

Protection Identifier Registers: PID1, PID2, PID3, PID4, aliases for CRs 8, 9, 12, and 13.
These registers designate up to four groups of pages accessible to the currently executing
process. When translation is enabled, the four protection identifiers (PIDs) are compared
with a page access identifier to validate access. If access is not valid trap is raised.

Coprocessor Configuration Register (CR10 alias CCR) is an 8-bit register which records the
presence and usability of coprocesors. A bit is 1 implies the coprocessor corresponding to that
bit is present and operational. Else it is logically decoupled. In the current implementation
the entire CCR is set to 0.

interruption Vector Address Register (CR14 alias IVA) contains the absolute address of
the base of an array of service procedures assigned to the interruption classes. This address
must be a multiple of 1024.

External Interrupt Enable Mask (CR15 alias EIEM) is a 32-bit register containing a bit for
each of the 32 external interrupts. When 0, bits in the EIEM mask interrupts pending for
the external interrupts corresponding to those bit positions.

External Interrupt Request Register (CR23 alias EIRR) is a 32-bit register containing a bit
for each external interrupt. When 1, a bit designates that an interrupt is pending for the
corresponding external interrupt. Both the P S W l bit and the corresponding bit position in
the EIEM must be 1 for an interrupt to occur.

Interval Timer Register (CR16 alias ITMR) consists of 2 internal registers. One of the internal
registers is continually counting up by 1. Reading the ITMR gives the value of this internal
register. Writing to ITMR updates the other (comparison) register. When the two registers
have identical values, an external interrupt is raised and bit 0 of EIRR is set to 1.

interruption Instruction Address Space and Offset Queues (CR17 alias IIASQ, CR18 alias
IIAOQ): Two offset registers and two space registers are used to save the instruction address
and and privilege level information for use in processing interruptions. The registers are
arranged as two two-element deep queues. The queues generally contain the address(inc1uding
the privilege level field in the rightmost two bits of the offset part) of the two instructions in
the IA queues at the time of the interruption.

The IIA queues are continually updated whenever the PSW-Q bit is 1 and are frozen by
an interruption (PS W-Q) bit becomes 0. After such an interruption these registers contain
copies of the IA queues. These queue elements will also be referred to as PCOQH, PCOQT,
PCSQH and PCSQT in the context of the implementation.

Interruption parameter registers are the Interruption Instruction Register (CR19 alias IIR),
Interruption Space Register (CR20 alias ISR) and Interruption Offset Register (CR21 alias
IOR). As the names indicate, these registers contain interrupted instruction and the virtual
address the instruction was at tempting to access.

1.3.2 Interruptions

Table 1: PA-RISC Interruption

All interruptions (traps or interrupts) on PA-RISC are precise, i.e., the software sees a single
unpipelined processor executing one instruction at a time. PA-RISC supports 25 interruptions
divided into 4 priority groups, with group 1 having the highest priority and group 4 the lowest.
The interruptions are listed in table 1.

Interruption 1 belongs to group 1. Interruptions 2-5 belong to group 2. Interruptions 6-22
belong to group 3 and the rest to group 4.

Interruption #
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

L

Description
High-priority machine check
Power failure interrupt
Recovery counter trap
External interrupt
Low-priority machine check
Instruction TLB miss fault
Instruction memory protection trap
Illegal instruction tra.p
Break instruction trap
Privileged operation trap
Privileged register trap
Overflow trap
Conditional trap
Assist exception trap
Data TLB miss fault
Non-access instruction TLB miss fault
Non-access data TLB miss fault
Data memory protection traplunaligned data reference trap
Data memory break trap
TLB dirty bit trap
Page reference trap
Assist emulation trap
Higher-privilege transfer trap
Lower-privilege transfer trap
Taken Branch trap

1.3.3 Memory Management Support

Like most microprocessor architectures, the PA-RISC contains some form of memory management
unit (MMU) .

This section describes the features of the PA-RISC that are used to support virtual memory
operations. These features include a translation look-aside buffer (TLB) for transforming virtual
addresses to physical addresses, bit traps for memory management support, and memory protection
mechanisms. The material presented in this section is covered in more detail in chapter 3 of the
Precision Architecture and Instruction Set Reference Manual [lo].

Page Tables and the TLB :

The PA-RISC (along with the MIPS R2000/R3000) is unusual in that it requires software to
handle TLB misses4. By allowing software to perform TLB loads, the PA-RISC architecture gives
the operating system lots of flexibility in the format of page tables. Normally, architectures specify
some page table format to follow so the hardware can perform TLB loads.

Rather than develop our own page table design for the initial port, we decide to use the Physical
Page Directory (PDIR) format suggested by the PA-RISC architecture manual [lo]. We made this
decision because it allowed us to reuse a great deal of Tut code for the low level TLB miss handlers.
Figure 1 shows the structure of a Physical Page Directory (PDIR) entry.

1 1 1 1 1 7 4 15 1

Figure 1: PDIR Entry (PDE)

Bit Flags :

o(4)

The TLB and PDIR contain a variety of bit flags which can be used to generate traps. The
following information describes the function of each of the 1-bit fields.

Next PDE Index (21) H

T Page Reference Trap. When 1, data references using this translation cause a page reference
trap interruption. The T-bit is most commonly used for progra,m debugging.

0 (6)

Space Id (32)

D Dirty. When 0, store and semaphore instructions cause a TLB dirty bit trap on systems with
software TLB miss handling. When 0, store and semaphore instructions cause the D-bit in

Page Frame (21)

'The PA-RISC Architecture and Instruction Set Manual mentions that hardware implementations can exist but
to our knowledge no such implementation exists at this time.

0 (11)

R 0 0 Access ID 0 T D B Access Rights

the DTLB entry and the PDIR to be set to 1 on systems with hardware TLB miss handling.
When 1, no trap or update occurs. The D-bit may be used by the operating system to
determine which pages have been modified.

B Break. When 1, instructions that could modify data using this translation cause a data
memory break trap interruption, if enabled. Store instructions, the PURGE DATA CACHE
instruction, and semaphore instructions are the only instructions that potentially modify
data. The B-bit is most commonly used for program debugging.

R is the reference bit (only present in the PDIR entry). If R = 1, the page has been accessed
(read, write, execute, or non-access) by a processor since the bit was last set t o 0. For systems
with software TLB miss handling, this bit is managed by the software and not directly set by
the h a r d ~ a r e . ~

Memory Protection :

The TLB is also responsible for enforcing memory protection. The PA-RISC protection mecha
nisms are disabled when physical addressing is used or when the PSW-P bit is disabled. The TLB
maintains protection information in two fields: the access rights and the access ID. The 7-bit access
right field encodes the allowed access types and privilege levels into three sub-fields: type, privilege
level 1 (PLI), and privilege level 2 (PLL) . The access ID is a 15-bit field that can be thought of
as a capability. This field must match one of the four protection ID'S in the PA-RISC's control
registers (CR8,9,12,13).

Logical Page Replacement :

The PA-RISC allows the software to operate on a logical page size of 2K, 4K, 8K, or 16K bytes.
When operating on a logical page size greater than 2K bytes, the TLB miss handling procedures
may insert all translations for that page group provided that the translation for the faulting page
is inserted last. This is probably because the software has no ability to know which TLB entry
is invalidated to make room for a new insertion. By inserting the faulting page entry last, the
software ensures that upon return, the TLB miss has been satisfied.

PA-RISC Memory Management Traps :

Out of the 25 interruptions that can occur on PA-RISC, 9 of the interruptions are traps to be
dealt by the memory management unit of the operating system. These memory management traps
are listed in table 2.

These traps can be partitioned into four groups: TLB miss faults, non-access TLB miss faults,
meory protection faults, and bit flag traps.

TLB Miss Faults (#6,#15) :

The PA-RISC architecture allows both software and hardware TLB miss handling. The HP
9000/834, the target processor for the port, does not have hardware TLB miss handling. It has
separate traps for instruction and data TLB misses with the hardware making no distinction be-
tween TLB misses and page faults. When a TLB miss fault occurs, the handler must determine

5The unused bit is used by some implementations. This A bit acts similarly to the R bit except non-access faults
will not set it.

Table 2: PA-RISC Memory Management Exceptions

~

I I , ,
6 1 Instruction TLB miss fault

whether or not the missing page is in memory. One disadvantage of an inverted page table(i.e,
PDIR) is that it is more expensive to determine whether a particular virtual page is in memory.
We use a hashing function and linked list search to determine whether a virtual page entry is
present in the PDIR. The handler hashes the faulting (virtual) address to obtain an offset into a
hash table. This hash table contains a reference to the PDIR list that represents the hash bin.
This bin is organized as a linked list of PDIR entries. The handler then sequentially searches this
list for the desired virtual page. A successful match results in the entry being placed in the TLB.
A failure in the matching process results in a page fault. Figure 2 presents a flow chart of the steps
for handling a TLB miss.

7
15
16
17
18
19
20
21

Non-access TLB miss faults (#16,#17) :

Instruction memory protection trap
Data TLB miss fault
Non-access instruction TLB miss fault
Non-access data TLB miss fault
Data memory protection trap/Unaligned data reference trap
Data memory break trap
TLB dirty bit trap
Page reference trap

The PA-RISC architecture also has the notion of non-access TLB faults which differ from other
TLB faults in that the faulting page need not be loaded into memory. Our platform requires both
instruction and data non-access TLB miss faults to be handled by software.

Non-access data TLB miss faults are caused by LOAD PHYSICAL ADDRESS (LPA), PROBE,
and PURGE/FLUSH DATA CACHE instructions. When the requested page entry is not present
in the PDIR, the action of the trap ha,ndler depends on the type of instruction causing the fault.
For LPA and PROBES, zero is returned if the desired page cannot be found in the PDIR. There is
a problem with the PROBE instruction that is covered in more detail in section 3.2.

In HP-UX and Tut , cache PURGE and FLUSH instructions that cause non-access TLB miss
faults are handled as if a TLB miss occurred, i.e. the page is loaded into physical memory and the
page descriptor is inserted into both the PDIR and TLB. Non-access instruction TLB miss faults
are caused by FLUSH INSTRUCTION CACHE (FIC) instructions. These are handled similar to
other cache non-access faults described above.

Memory Protection Traps (#7,# 18) :

The PA-RISC has two traps used to detect memory protection violations. The instruction
memory protection trap (7) is the result of invalid access rights or invalid protection IDS for an
instruction fetch6. The data memory protection trap (18) is the result of an invalid access right
or protection ID for any load, store, semaphore, and PURGE DATA CACHE instruction. This

'Protection ID checking is only done when the PSW P-bit is set.

TLB Miss =7
Hash address F-l

Insert

into TLB

Figure 2: TLB Miss Handling

trap is also caused by any load or store to addresses not aligned at the boundaries required by the
instructions. Detection of unaligned addresses is performed by examining the least significant bits
of the virtual address.

TLB Dirty, Page reference and Data memory break traps (#20,#21,#19) :

The HP 9000 Series 834 workstation does not have a hardware supported TLB, so the manip-
ulation of the D (dirty) and R (reference) bit flags is left to the operating system.

When the D bit is 0, stores and se~naphore operations will cause a TLB dirty bit trap (20). The
trap handler must then set the D bit in both the PDIR and TLB entry. Once the D bit has been
set, further modifications to that page are ignored. If the T bit is set, data reference using the
translation causes a page reference trap (21). The data menzory break trap (19) is triggered when
instructions that could possibly modify data require the translation a.nd the B bit in the Processor
Status Word (PSW) is 1. When software loads an entry into the TLB, it should set the R bit to
indicate that the page has been referenced.

2 Supervisor

The Supervisor is the component that directly interacts with the underlying hardware. It is respon-
sible for managing interrupts, traps a,nd exceptions and other machine dependent functions. The
Supervisor along with the mmu layer forms the machine dependent layer and is expected to offer
a machine independent interface to the portable layers of the Chorus kernel. The requirements to
be satisfied by the Supervisor layer axe detailed in section 2.1 and the implementation is detailed
in section 2.2.

SupThreadDesc

Figure 3: thread Class hierarchy

Tn t,erPrn-nn
. .

2.1 Supervisor requirements

Real-Time
Executive

Supervisor
>

The Chorus Supervisor is expected to export a specified machine independent interface, and is
responsible for interrupt, trap and exception handling, timer and console management, kernel
initialization, and offering a low-level debugger. The Supervisor interface is detailed in section
2.1.1. The sections on event handling, timer and console management and low-level debugger
regroup the functions in the interface according to their functionality and provide the requirements
for the function group as a whole.

In addition to the above functions, the Supervisor is responsible for defining two fundamen-
t a1 structure types : KnThreadCtx, and SupThreadDesc. KnThreadCtx defines the register con-
text frame that is used to save state during interrupts, traps, exceptions and context switches.
SupThreadDesc defines the machine dependent thread descriptor. As mentioned in section 1.2, a
thread in Chorus has a user stack and a system stack. The descriptor SupThreadDesc keeps track
of the stacks and other machine dependent thread attributes (if any) of the thread and is the base
class for the Thread class. The Thread class hierarchy is shown in fig 3. The dotted lines show
the levels of definition and management of base and derived classes. Variables and pointers of type
KnThreadCtx and SupThreadDesc get defined and passed in the portable layers of the kernel but
are treated as black boxes. Functions are defined in the Supervisor interface (see section 2.1.1)
that allow the portable layers to query and update the contents of the data structures in a machine
independent manner.

A portion of the Chorus Interface to supervisor actors allows handlers to be attached for inter-
rupts, traps, exceptions and time-outs. Invocation of some of these handlers is the responsibility
of the Supervisor . This requirement is detailed in section 2.1.2.

Virtual Mem
port able

Mmu Layer

2.1.1 Supervisor interface requirements

The following functions must be implemented by the Supervisor .
SupCtxInit(): Build the initial context frame on the system stack of the new thread and initialize

it's machine dependent thread descriptor SupThreadDesc. The initial values inserted into the
context frame on the system stack are used by SupCtxSwitch() when switching to the new
thread. SupCtxInit() should build the frame as if the thread is returning from an exception.
This function takes the following parameters:

The system stack bottom, unsigned char *stackbot.

Thread parameters descriptor, KnThreadDesc *threadparams. This descriptor has the
entry point of the thread, the thread privilege, priority, the user stack bottom, and the
initial execution status. The user stack bottom is used only when the thread is a user
thread. In the case of a supervisor thread, this field is ignored.

Pointer to the thread's machine dependent thread descriptor, SupThreadDesc *ptThreadDesc.

Pointer to the virtual address space descriptor of the actor in which the thread will be
created, context *ptContext. Note that context is a class used by the virtual memory
system and is not the same as the machine dependent thread context which is basically
a set of registers.

SupCtxSwitch(): Switch thread machine dependent context. This function takes the following
parameters:

Pointer to the old thread, SupThreadDesc* oldThread

Pointer to the new thread, SupThreadDesc* newThread

SupGetUserCtx(): Return a Pointer to a thread's saved context, KnThreadCtx* SupGetUserCtx(. . .).
This function takes the following parameter:

Pointer to the machine dependent thread context descriptor, SupThreadDesc* desc. I
SupCtxReset(): Reset thread's context frame on the stack by the values given in the machine

dependent thread context descriptor. This function takes the following parameters:

Pointer to thread machine dependent context, SupThreadDesc* desc

Pointer to exception context frame on the stack, KnThreadCtx* ctx

SupCtxIsUserMod(): Return true if thread execution is in User mode else false. This function
takes the following parameters:

Pointer to a context frame, KnThreadCtx* ctx. I
SupCallConnect(): Connect a vector of handlers to a trap. This function takes the following

parameters:

The trap number, unsigned trapNb

Pointer to the vector of handlers, KnCallEntry* hdlVect

Number of elements in the vector, unsigned NoHdl

The privilege level unsigned sup. Basically there are two privilege levels: Supervisor
and User. If sup is Supervisor in this call then this vector is executed for supervisor
actors causing a trap equal to trapNb. If a user Actor ca,uses a trap equal to trapNb,
this vector will not be executed unless another SupCallConnect has been explicitly called
with the same parameters and sup is set to User.

SupCallDisConnect(): Disconnect a Vector of trap handlers. This function takes the following
parameters:

The trap number, unsigned trapNb

The privilege level, unsigned sup

SupItConnect(): Connect a handler to an interrupt. This function takes the following param-
eters:

The interrupt number, unsigned intrNb

r The handler to be executed on the interrupt occurrence, KnHdl hdl.

The privilege level, unsigned sup

SupItDisconnect(): Disconnect a Interrupt handler. This function takes the following param-
eters:

The interrupt number, unsigned intrNb

The handler to be executed on the interrupt occurrence, KnHdl hdl.

The handler parameter is required since there can be a list of interrupt handlers connected
to the interrupt. The (intrNb, hdl) pair uniquely identifies the element to be removed from
the list.

S upIt Level(): Return the current interrupt nesting level. This function takes no parameters.

svMask(): Set the interrupt level. All interrupts equal or less than this level are masked. Returns
previous interrupt level. This function takes the following parameters:

Interrupt level mask, int intLvlMask.

svUnMask(): Reset the interrupt level. All interrupts equal or less than this level are unmasked.
Returns previous interrupt level. This function takes the following parameters:

Interrupt level unmask, int intLvlUnMask.

svMaskAll(): Mask dl interrupts. This function has no parameters.

svUnMaskAll(): Unmask all interrupts. This function has no parameters.

svCopyIn(): copy from User space into kernel space. This function takes the following parame-
ters:

Source address in user space, char* src

Destination address in kernel space, char* dst

r Size of transfer in bytes, unsigned int count.

svCopyOut(): copy from Kernel space to User space. This function takes exactly the same
parameters as svCopyIn(), only that the source and destination spaces are reversed.

The functions sv*() are also part of the Chorus Supervisor actor interface.

SupTrapConnect(): Connect a handler to a trap. This function takes the following parameters:

r The trap number, unsigned trapNb

The handler to be executed on the trap occurrence, KnHdl hdl.

SupTrapDisConnect(): Disconnect a Trap handler. This function takes the following parame-
ters:

The trap number, unsigned trapNb

The handler to be executed on the trap occurrence, KnHdl hdl.

Suppanic(): Fatal abort. This function takes no parameters.

SupDebuggerO: Call the debugger. This function takes the following parameters:

The exception context frame pointer, KnThreadCtx* ctx

The trap or exception number, unsigned no

SupPreciseTime(): Return the current precise time. This function takes no parameters.

Supputchar(): Write a character on the console device. This is a synchronous operation, i.e.,
the write returns only after the output is completed. This function takes the following pa-
rameters:

the character to be written, int c

SupGetCharO: Returns a character from the input device. This is a synchronous operation.
This function takes no parameters.

SupPollChar(): Poll the input device. This function returns 0 if no input is waiting else it
returns the character. This function takes no parameters.

In addition to exporting the interface, the Supervisor is expected to make up-calls into the
kernel upper layers for various synchronous and asynchronous events. The calls are:

KnDebugEnterO: The Supervisor is expected to call this function to inform the portable layers
whenever it enters the debugger. This functions informs the portable layers not to perform
context switching when the debugger is entered. This function takes no parameters.

KnDebugLeaveO: The Supervisor is expected to call this function to inform the portable layers
whenever it leaves the debugger. This function takes no parameters.

KnLock(): Lock the kernel. This function takes no parameters.

KnUnLockO: Lock the kernel. This function takes no parameters.

KnHandlerO: Exception Handler of the kernel. This function should be called for all unrecov-
erable exceptions. This function executes the actor specific exception handler if present else
calls KnIpcHandlerO to abort the thread. This function takes the following parameters:

Pointer to the exception frame on the stack, KnThreadCtx* ctx

Exception number int excNb

KnItRet Sup() : Return from interrupt to supervisor thread. The supervisor after executing
the interrupt handlers connected by SupItConnect() prepares to return from the interrupt.
This function should be called by the Supervisor if the thread executing a t the time of the
interrupt was a supervisor thread. This function takes no parameters. A supervisor thread
can be preempted only if there is a supervisor thread of higher priority ready to run.

KnItRetUserO: Return from interrupt to supervisor thread. The supervisor after executing
the interrupt handlers connected by SupItConnect() prepares to return from the interrupt.
This function should be called by the Supervisor if the thread executing at the time of the
interrupt was a user thread. This function takes no parameters. This function can cause
preemption of the user thread.

KnAbor tHandlerO: Abort Handler. If the thread is found to be aborted while returning from
an interrupt, then Kn Abort Handler() is called. This function takes the following parameters:

The exception frame on the stack, KnThreadCtx* c t x as parameter.

KnTimeInO: Record a clock tick. This function should be called by the Supervisor every time
a clock interrupt occurs. This routine increments the Chorus software clock and executes any
routines that have reached their timeout period. This function takes the following parameters:

The execution mode at the time of the clock interrupt, i n t sup0rUsr.

The program counter at the time of the clock interrupt, i n t pc.

2.1.2 Supervisor Actor Interface

A portion of the Chorus interface is available only to supervisor actors and would be referred to as
the supervisor actor interface. Some of the functions of the supervisor actor interface get directly
mapped to corresponding functions of the supervisor interface and the rest of the functions are
handled in the portable layers of the Chorus kernel. Ideally, all the calls of the supervisor actor
interface except svCheckUserSpace(), svCopy [In/Out](), sv[Un]Mask[All]() are expected
to be implemented in the portable layers of the Chorus kernel by calling the appropriate functions
in the Supervisor interface. However, due to the way in which instructions are generated on the PA-
RISC by the compiler, additional work and portable layer modifications were required to implement
this functionality (See section 2.2.9 for details and functionality implementation).

Only those functions of the supervisor actor interface that needed additional implementation are
specified below. Note that svCopy[In/Out](), sv[Un]Mask[All]() have already been covered
under the Supervisor interface.

svAbortHandler() : Define an abort handler for the Actor. This function takes the following
parameters:

Actor Capability, KnCap *actcap.

Abort Handler, KnHdl rout ine.

This function is expected to be entirely implemented in the portable layers of the kernel.

svCallConnect(): Exactly the same function and parameters as SupCallConnect() (see sec-
tion 2.1.1). This function is expected to be entirely implemented in the portable layers of
the kernel.

svCheckUserSpace(): verify that an address is within the user address space. This function
takes the following parameters:

the address to be checked, char* addr.

This function is expected to be implemented during the port to the target architecture.

svExcHandler(): define an exception handler for the Actor. This function takes the following
parameters:

Actor Capability, KnCap *actcap.

Exception Handler, KnHdl rout ine.

This function is expected to be entirely implemented in the portable layers of the kernel.

svItConnect(): Exactly the same function and parameters as SupItConnect() (see section
2.1.1). This function is expected to be entirely implemented in the portable layers of the
kernel.

svTrapConnect(): Exactly the same function and parameters as SupTrapConnect() (see sec-
tion 2.1.1). This function is expected to be entirely implemented in the portable layers of
the kernel.

svTimeOut(): set a time out and call the given routine when the time-out occurs. This function
takes the following parameters:

a The routine to be called by kernel on time out, KnToHdl rout ine.

The parameter to be passed to rout ine, void param

TimeOut period in milliseconds, unsigned i n t delay.

This function is expected to be entirely implemented in the portable layers of the kernel.

2.1.3 Even t (In te r rupt , T r a p a n d Exception) Handling

The Supervisor is expected to save the register context on the stack, call the appropriate handlers
and restore register context when required. The functions in the Supervisor interface that fall
in this group are SupTrap[Dis]Connect(), SupI t [Dis]Connect(), SupCall[Dis] Connect(),
SupItLevel(), and sv[Un]Mask[AllJ(). The Supervisor implements the data structures and
code for these functions and calls the appropriate connected handlers. In the case of interrupts, the
Supervisor should execute the list of handlers in the decreasing order of priority and acknowledges
the interrupt to the external device raising the interrupt. In all cases, up-calls should be made at
the precise points in execution as identified by the supervisor interface. The general algorithms
to be used for interrupt, trap, and exception handling are detailed in the Chorus implementation
guide [7].

2.1.4 T i m e r a n d Console Management

The Supervisor manages the timer and console devices. It programs the timer device so that it gen-
erates clock ticks at a frequency defined by the K-CHZ constant defined in include/chorusConf.h.
Each time a timer interrupt is received, the supervisor calls the KnTimeIn() function (see section
2.1.1). The functions of the Supervisor interface that fall under this group are S u p P u t C h a r O ,
SupGe t Char() , SupPollChar() .

The Supervisor is responsible for connecting, at least, S u p p u t c h a r () and SupGe tCharO
behind a trap. This trap is used in the implementation of library functions P u t c h a r () and
G e t c h a r () .

2.1.5 Low-level Debugging facility

The Supervisor is responsible for implementing the kernel debugger. The function that implements
the debugger is SupDebuggerO (see section 2.1.1).

The Supervisor is responsible for connecting the debugger entry point to a trap number. This
trap number will be used by the implementation of the callDebug() library function. The callDe-
bug() function is part of the Chorus kernel interface exported to Chorus Actors.

The Supervisor should call KnDebugEnterO and KnDebugLeaveO when entering or leav-
ing the debugger. This avoids context switches when in the debugger.

2.1.6 Kerne l initialization

The Supervisor implements the function (usually called s tar t ()) that performs the kernel initial-
ization. This function performs all the machine dependent and machine independent initialization
necessary for calling the portable layers of the kernel. The function s t a r t () forms the entry point of
the Chorus kernel image. Transfer of control to this entry point is performed by the boot program
portion of the boot archive loaded by the resident boot monitor. For more details on the boot
archive and Chorus booting procedures see the PA-Chorus booting document[l2].

The kernel initialization function is responsible for:

Initialization of processor specific data like interrupt vector, setting the process status word
for appropriate execution mode, etc.

Static constructors' invocation. Chorus is written in C++, an object oriented language and
the static constructors for the various static objects of the kernel must be called.

Initialization of memory management, by calling VmInit() .

Initialization of various devices and connection of device handlers and trap handlers. This
function is embedded in the routine SupBoardIni t () .

Calling KnIni t () , a function that initializes the portable part of the kernel. This includes
scheduler data structure initialization, connection of system call handlers, and creation of the
first thread of the system. This first thread is the transformation of the kernel initialization
code being executed into a Chorus abstraction. KnIni t () returns the new stack pointer to
be used by the executing first thread.

Switching to the new stack pointer and call knMain() which is the main routine of the
kernel. knMain() never returns.

2.2 Supervisor I m p l e m e n t a t i o n

The fundamental data structures KnThreadCtx and SupThreadDesc manipulated by the Supe~.visor
code are defined first in sections 2.2.1 and 2.2.2 respectively. This will establish the background to
detail the implementation of the Supervisor in the rest of the sub-sections.

2.2.1 Thread Register Context

The thread register context is basically is the set of general registers and control registers of the
processor and any other information that is needed for monitoring, manipulating and resuming the
thread at a later stage. The thread register context is required to be typedefined as KnThreadCtx
and is declared for PA-RISC in include/PARISC/threadCtx.h. The following are the elements
of the KnThreadCtx structure:

stated lags, a software register used to track current status of the thread, ex: in-system-call,
in-trap, etc.

General registers g r l , . . ,gr31. PA-RISC has only 31 32-bit general registers. GrO is perma-
nently tied to 0.

Control registers crO, cr8, . . , cr31. Crl-cr7 do not exist.

Instruction space queue tail pcsqe(a1ias PCSQT), instruction offset queue tail pcoqe(a1ias
PCOQT). These fields contain the address (space and offset) of the next instruction to be
executed.

Kernel stack pointer ksp, this field is a software register. It is 0 when running on the kernel
stack and contains the stack pointer to the kernel stack when running on the user stack in
user mode.

Space registers srO. . s r7 .

0 Floating point registers f r O . . f r l 5 .

Special functional unit status registers, mdhi, mdlo, mdov, keep track of the status of the
special functional units, emulated or actual hardware.

The floating point registers and special functional unit fields are ignored in the current imple-
mentation. This implies that code having floating point instructions or special function instructions
will currently abort. The next version of the implementation will have floating point and special
function unit emulation.

Discussion :

The definition of the thread context follows from our design objective of reusing as much of the
T u t code as possible. The T u t project was done in two phases. First the HP-UX virtual memory
system was replaced by Mach virtual memory system. In the second phase, HP-UX was modified
to provide the mach thread abstraction and interface. In the case of the T u t kernel with threads,
there are 3 different structures used to store the thread context depending on the execution mode
of the thread and the purpose of accessing the context.

The purpose of each of the structures of the T u t kernel is given below:

s a v e s t a t e structure is used when the thread enters the kernel mode through system calls,
traps and interrupts.

PCB structure is used when the thread was executing in kernel mode.

hppa-thread-st a t e structure is the context visible to the user for interrogation and modifi-
cation.

In the case of Chorus, the machine independent layers recognize only one structure for the
thread context, i.e., KnThreadCtx. For the PA-Chorus port, we defined KnThreadCtx structure as
the union of the three structures. This enabled us to use the same structure uniformly through out
the kernel and allowed us to use the low-level T u t code for the system-call interface, interrupt and
trap handling as our starting point and make the Chorus specific modifications relatively easily.
Further, we saw no reason to have distinct structures as a single structure can be used to store
different levels and types of information.

typedef struct (
unsigned reserved; /* reserved for simple links */
long typeCtx; / * Supervisor or User Thread */
KnThreadCtx *currCtx; /* indirect pointer to saved context of

* thread */
KnThreadCtx *userCtx; /* indirect pointer to initial context

* of the thread */
3 SupThreadDesc;

Figure 4: Machine dependent thread descriptor: SupThreadDesc

2.2.2 Machine Dependent Thread Descriptor

The machine dependent thread descriptor is typedefined as SupThreadDesc. As described in section
2.1, this descriptor is used to keep track of the thread's system stack, user stack and the thread's
context. In the case of PA-RISC, SupThreadDesc is defined in include/PARISC/sv.h as in fig
4.

The fields of SupThreadDesc, except the link field, get initialized in SupCtxInit() (see section
2.2.3), and remain fixed during the life time of the thread.

This function is implemented in kern/PARISC/sv.cxx. The initialization of the new thread is
performed in the following manner:

1. If the thread is the first thread of the kernel then exit from the function. The first thread
of the kernel is nothing but the kernel initialization code being made part of the thread
abstraction and recognizable by the Chorus portable layers. This thread ultimately becomes
the idle thread of the system. Since this "thread" was already executing before it was created,
there is nothing to be done at this stage. The machine dependent initialization for the first
thread would have been already performed in s t a r t () in kern/PARISC/sv.cxx during
kernel initialization.

2. Force the allocation of the system stack of the thread. At the point of calling SupCtxInit(),
the system stack of the new thread is mapped, but physical memory is not allocated, by
the virtual memory layers. It is necessary for the system stack to be actually allocated in
physical memory before starting up the new thread since traps caused by the new thread
must be handled on its system stack and this would cause recursive traps if the system stack
is not physically allocated.

3. Allocate two frames of type KnThreadCtx*: userFrame and suitchFrame on the system stack
(see fig 5).

4. Initialize the userFrame as follows:

(a) If the thread is a user thread then initialize the stack pointer as follows:

userFrame-+sp = threadparams-tsp + FM-SIZE.

FMSIZE is the frame size needed to sa.tisfy the PA-RISC procedure calling conventions.

(b) If the thread is a supervisor thread then initialize the stack pointer as follows:

f r s i z e = sizeof(KnThreadCtx) + FMSIZE + FM-FIXEDARG-SIZE.
userFrame+sp = stackbot + 2 * f r - s ize .

The FM* operands above are needed to satisfy the PA-RISC procedure calling conven-
tions.

(c) Initialize the thread's Processor Status Word. As mentioned earlier, the thread frame
should be initialized as if the thread is returning from exception. So the required inter-
ruption parameter registers are updated as follow:

(d) Initialize the thread's protection identity registers as follows:

userFrame--tpidl = 0,
userFrametpid3 = 0,
userFrametpid4 = 0,
userFrametpid2 = Protection Id of the Actor's context.

(e) Initialize the thread's space registers and the instruction address queues as follows:

userFrame-tsr4 = spaceId of thread's Actor,
userFramets r5 = spaceId of thread's Actor,
userFrametpcsqh = spaceId of thread's Actor,
userFrameipcsqt = spaceId of thread's Actor,
userFramets r6 = KernelSpaceID.
userFramets r7 = KernelSpaceID.
userFrame-+pcoqh = threadparamstpc,
user f rametpcoqt = userFrame+pcoqh + Instruction length (4 bytes).

(f) Initialization of the data pointer (dp) of the thread is performed as follows:

i. If the thread is a kernel thread then set dp as follows:

userframe-tdp = dat a-point e r (the kernel's data pointer).

ii. If the thread belongs to a user Actor then set dp as follows:
userFrame4dp = 0x40000000 (the absolute virtual address of a user Actor's
data pointer).

iii. If the thread is not the first thread of the supervisor actor then initialize the dp
from the datapointer value in the saved context of the first thread of the supervisor
actor. This value can be found by looking at the thread list attached to the thread's
actor.

iv. If none of the above cases is true, then do nothing to initialize the dp. This is
the case when the new thread is the first thread of the supervisor actor. Since this
thread is the main thread of the actor, the start up sequence will be similar to a unix
process, i.e., the execution starts at an entry point in a crt0.o equivalent and then
branches to main() after some initialization. The dp in this case would be set by the
code in crt0.o. The code for the crt0.o equivalent is in ktests/PARISC/kt_ass.s.

It is important for the dp to be set before any part of the main program gets executed
since instructions produced by the compiler are generated with respect to the dp.

5. The variable switchFrame points to the frame that is equivalent to a context frame saved
by the scheduler during a context switch operation. The fields are initialized such that on a
context switch to the new thread, control is transferred to the kernel procedure SupThread-
Start() which executes in privileged mode without preemption. SupThreadStartO is im-
plemented in kern/PARIS C/supctx.s. This routine loads the values from the userFrame
portion of the system stack and performs a return from exception sequence to transfer control
to the new thread's actual entry point. The return from exception sequence is described in
section 2.2.11. The frame pointed by switchFrame is initialized as follows:

(a) Initialize the Processor status word as follows:

suitchFrame+ipsw = Q + C $ D, Note that Interrupts are not enabled.

(b) Initialize the data pointer dp to the kernel's data pointer:

switchFrametdp = data-pointer

(c) Initialize the space registers:

s w i t chFramedsr4 = KernelSpaceId;
switchFrame-+sr5 = KernelSpaceId;
switchFrametsr6 = KernelSpaceId;
switchFrame+sr7 = KernelSpaceId;

(d) Initialize the instruction address queues:

switchFrame+pcsqh = KernelSpaceId;
switchFrametpcsqt = KernelSpaceId;
switchFrame-tpcoqh = SupThreadStart,
switchFrame+pcoqt = SupThreadStart + Instruction length (4 bytes).

6. Thread descriptor ptThreadDesc fields are initialized as follows:

(a) typeCtx = privilege value passed in threadparams.

(b) currCtx = stackbot + 2 * f r s i z e .

(c) userCtx = stackbot + fr -s ize .

Discussion :

Note that to change a value in the switchFrame, we have to subtract f r-size bytes from currCtx
and then use the resultant address as KnThreadCtx*. The same argument is true for the userFrame.
The pointers currCtx and userCtx are fixed for the life time of the thread. There is an inefficiency
in space usage and time of access to the context by this definition. First, 2*f r-size bytes are lost
in the system stack. To access a register in the current context, one has to first get the context
pointer from the context pointed to by currCtx and then access the register. This would not have
been necessary if currCtx was not fixed but pointed directly to the current context. The advantage
of the current approach is in debugging. Since the currCtx is always available at a fixed position
relative to the bottom of the system stack, it offers an easy way of looking up the current context
of the thread during memory dumps.

The initialization of the dp is complicated by the fact that the dp is not always available to the
kernel at the time of performing the machine dependent initialization.

This is a consequence of the fact that we did not have a data pointer field as part of the machine
dependent context mmucontext. Having a dp field in the class mmucontext works fine as long as

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - switchFrame
Frame for Proc Calling Convn.

- - - - - - - - - - - - - pcoqh = SupThreadStart () stack growth
t y p e c t x - - - - - - - - - - - - - pcsqh = Kernel Space Id towards
currCtx - - - - - - - - - - - - - - KnThreadCtx Structure : higher memory
userCtx - - . I Frame for Proc Calling Convn. I

SupThreadDesc I pcoqh = User Specified Entry p t I- userFrarne

I pcsqh = thread's Actor Space Id I
I KnThreadCtx Structure I

stackbot - -,,- -, 1 I

Thread's system stack

Figure 5: Machine dependent Thread Initialization

there is one executable image per virtual address space. In the case of Chorus all supervisor actors,
which are independent executable images, share the same context, i.e., Kernelcontext. In such
a case, it is no longer sufficient to have one dp field per mmucontext. One solution to simplifying
the initialization code for dp is to have a dp in the ac to r and have this field initialized during the
startup sequence of the main thread of the actor. Then for all the threads created then onwards in
this actor, this field can be used to initialize the dp in their startup thread context. Note that in
this case, a thread of actor A cannot create any other thread other than the main thread of actor B
unless the main thread of actor B has already executed its startup sequence and initialized it's actor
specific dp. The most elegant solution would be to do the dp initialization at the time of creating
an actor. But there is no clear way of initializing the data pointer of an actor in the portable layers.

SupCtxSwitch() , the thread machine dependent context switch function, is implemented in
kern/PARISC/supctx.s . This function performs the switch in the following manner7.

1. Allocate a f r - s i z e frame on the system stack of the old thread from the current stack pointer.
Save general registers including the current sp and thread specific control registers. The
return address of SupCtxSwitch() becomes the new point of resumption for the oldThread.
This implies that when a context switch loads back the old thread, it will be as though it has
returned from SupCtxSwitch(). To achieve this pcoqh and pcoqt are set to RP and RP+4

'Note that oldThread is really the running thread and the purpose of SupCtxSwitch() is t o save the register
context of the running thread and switch t o the new thread

respectively. Update the stack pointer value in the fixed switchFrame pointed to by currCtx
8

2. Find the position of the save context frame from the stack pointer field in the fixed context
frame pointed to by newThread-tcurrCtx. Restore general registers and some control regis-
ters. Perform a return from exception sequence (see step (3f) of trap handling) to set the
instruction queue registers and the process status word.

Discussion :

Doing a return from exception sequence is not necessary to implement the context switch. An
alternate way is to do a procedure call return into the context of the new thread (the thread to be
scheduled). This can be achieved by performing a branch to the value in the RP of the context of
the new thread. The reason the return from exception sequence was chosen is to have more control
over the PSW bits during debugging. The PSW bits can be changed in the saved context of the
blocked thread and thus enable any debug traps if required. The disadvantage is the inefficiency in
this method of implementation due to the greater number of operations that need to be performed.

2.2.5 SupGetUserCtx()

This function is implemented in kern/PARISC/sv.h.

2.2.6 SupCtxReset()

This function is implemented in kern/PARISC/sv.cxx. The function blindly overwrites the
context frame on the stack by the user context frame portion of the SupThreadDesc.

Discussion :

This function needs to be changed to perform some sanity and protection checks before modifying
the thread context.

This fucntion is implemented in kern/PARISC/sv.h. The function returns true if the sr4 of the
context is not the same as the kernel's space id. Other wise it returns false.

Discussion :

One of the experiments which we want to do is to take the supervisor actors from the same space
as the kernel and use the multiple privilege levels. One of the interesting aspects of the architecture
is the cheap mechanism for system calls and the multiple privilege levels. This function would
definitely break if such a separation is done.

*Actually currctx points to the top of the switchFrame. Therefore, fr-size bytes have to be subtracted from
currctx before accessing a field in the KnThreadCtx structure portion of the switchFrame

2.2.8 T h e various connect a n d disconnect functions

This section details the implementation of S upCall[Dis] Connect (), SupI t [Dis] Connect () and
SupTrap[Dis]Connect(). These three pairs of functions are implemented in svConnect.cxx in
the directory kern /PARISC.

These functions are provided by Chorus so that the portable layers of the Chorus kernel can
attach handlers to traps, interrupts, system calls in a machine independent manner. The chorus
kernel maps the Connect() system calls provided to supervisor actors to the corresponding Con-
nect() calls of the Supervisor interface. We found that we needed to have more information than
the specified parameters for the Connect () calls to satisfy the system call interface for supervisor
actors. This problem is discussed in detail in section 2.2.9. In this section, we will discuss the
different semantics that apply to some of the parameters to these *Connect() calls on PA-RISC
in contrast to what Chorus originally envisaged. The semantic differences are as follows:

The Chorus interface expects the first parameter to SupCallConnect() and SupTrapCon-
nect() to be a trap number. SupCallConnect() is used in the Chorus kernel to connect
a vector of handlers behind a trap. In the case of implementing UNIX as a collection of
actors (sub-system), a SupCallConnect() is made from the sub-system actor called the
PM to connect a vector of system call routines behind a specified trap number to handle
UNIX system calls. In the case of PA-RISC, it is not necessary to cause a trap to perform a
system call. There is an efficient gateway mechanism (see section 4) by which a controlled
transfer between privilege levels can be achieved. This method is the proper mechanism for
making system calls on this architecture (HP-UX and MPE use the same approach) and
has been used in the implementation of system calls for PA-Chorus. The consequence is
that calling the first parameter to SupCallConnect() as trapNb is not quite correct. Since
the purpose of having SupCallConnect() and SupTrapConnect() is to build sub-systems
(including Chorus as the base case), this number is distingushed in the Supervisor layer as
a real hardware trap number or a sub-system number to which a vector of handlers (Sup-
Cal lconnect()) or a single handler (SupTrapConnect()) should be connected. Hence an
appropriate name for the first parameter would be subSysOrTrapNb. Additional constants
were added in include/PARISC/syscall.h to map symbolic constants for sub-systems to
numbers. For examp1e:CHORUS-SUBSYS is defined to be 31. The range of hardware trap
numbers does not overlap with the range of sub-system numbers possible. This makes differ-
entiation between a sub-system number and a trap number simple.

The Chorus interface expects the first parameter to SupItConnect() to be a hardware in-
terrupt number. In the case of PA-RISC, all the external devices including the clock raise the
same interrupt #4 (External Interrupt). We found it more elegant to pass the number of the
external device as a parameter to SupItConnect() rather than the interrupt number. For ex-
amp1e:To connect clock and disk handlers, two calls SupItConnect(CLOCK, clockHdl, clock-
prio), SupItConnect(DISKO1, diskHdl, diskolprio) are required. The interface is not changed,
only the meaning of the first parameter is slightly different. However, it is possible to connect
all the device handlers to the external interrupt #4. Hence an appropriate name for the first
parameter would be DeviceOrIntrNb. An include file include/PARISC/extern-intr,h was
created to map symbolic constants for devices to mapped to integers. The numbers possible
for hardware interrupts do not overlap with that of the devices. This makes differentiation
between a device number and a interrupt number simple.

The basic data structures tha,t have been used for the implementa,tion are presented in figure 6.

typedef struct (
unsigned long f uncNb ; /* No of functions in the array being connected */
KnCallEntry* calls ; /* address of the array */

3 vector-desc;

typedef struct (
unsigned int connectlype; /* Array or function connected */
union (

vector-desc vector;
KnHdl hdl ;

3;
VmAddr datapointer; /* The $global$ of the Supervisor Actor */

3 supCallTb1;

/* MAX-SYS-NUM = 25 from include/PARISC/sysca11.h; the maximum number *
* of sub-systems that can simultaneously run on top of Chorus */

supCallTb1 userTrapVectCMAX-SYS-NUM]; / * For User Actor System Calls */
supCallTb1 kernTrapVect [MAX-SYS-NUM] ; /* For Sup Actor System Calls */

Figure 6: Data structures for System Call Handling

The structures userTrapVect and kernTrapVect are used by SupCallConnect(), Sup-
TrapConnect().SupCallHandler() finds and executes the routine attached by the Con-
nect() calls during system call execution.

vect, DeviceVect are updated by SupItConnect() and SupTrapConnect(). The rou-
tines attached to the various interrupts and traps by the Connect() calls are executed by
SupItHandler(),SupItSelector() or SupTrapHandlerO on the occurrence of the those
interruptions . The data structures for interruption handling are presented in figure 7.
In addition to the 25 PA-RISC interruptions, there are 3 psuedo-interruptions generated by
the low-level event handling layers. Therefore, we maintain an INTRMAX element array
(25+3 elements) and allow handlers to be attached to one single vector vect. Currently the
psuedo-interruptions are handled in the kernel itself.

PA-RISC has one external interrupt for all external devices including the ITMR. This implies
that all handlers for different external devices would have to be connected to the same position
in vect. To avoid this, DeviceVect is introduced to keep the interrupt handlers device-specific
rather than connecting all the device handlers to one position in the vect array.

The implementation of the various Connect() calls is now presented:

SupItConnect(itNum, hdl) : calls SupItConnectParisc() with kernel's $global$ as addi-
tional parameter. SupItConnectParisc() allocates a itLink structure from the itpool,
stores the parameters of the function in the structure and attaches it to vect or DeviceVect
depending on the actual interrupt number parameter (itNum) being a PA-RISC interrupt
number or a symbolic device name. Two or more handlers for the same interrupt or device
are linked in descending order of priority.

typedef struct (
itlink* Ink;
KnHdl routine ;
unsigned long priority;
VmAddr datapointer ;

) itlink;

typedef struct C
KnHdl routine;
VmAddr dat aPoint er ;

) KnHdlEntry;

typedef union C
itlink* Ink;
KnHdlEntry hdlEnt;

3 VectEntry;

VectEntry vect [INTRMAX] ;
VectEntry DeviceVect~NumOfExterna1Devices]

Figure 7: Data Structures for Interruption handling

The advantage of having a separate table for external devices is for efficiency of search during
interrupt handling.

SupTrapConnect(trapOrSubSysNum, hdl) : calls SupTrapConnectParisc() with the ker-
nel's $global$ as an additional parameter. SupItConnectParisc() does the following:

If trapOrSubSysNum is a PA-RISC trap, then store the datapointer and hdl a t
vect [trapOrSubSysNumI .

r If trapOrSubSysNum is sub-system number, then this implies a single routine interface
for system calls in contrast to a vector of handlers connected by SupCallConnect().
Update both userTrapVect and kernTrapVect by the same parameters and update
connectType to be FUNC-TYPE.

r If neither of the above condition holds, then return illegal value status.

As explained in the beginning of this section, it is not necessary to cause a trap to perform a
system call on this architecture. If a sub-system manager requires a single routine to handle
all the system calls instead of a vector of handlers, there are now two ways of doing it:

SupTrapConnect() with subsystem number instead of trap number as first parameter
and the handler as second parameter. This is the interface used by the UNIX sub-system
implementation to provide UNIX system call services to the actors of the sub-system.

r SupCallConnect() with size of the array equal to one. In this case the stub li-
brary should always have the system call number equal to 1, and the single handler
in vect orOf Handlers responsible for distingushing various system calls of the actors
running on that sub-system.

SupCallConnect(no, vectorOfHandlers, NoHdl, privilege) : calls SupCallConnectParisc()
with the kernel's $global$ as an additional parameter. SupCallConnectParisc() connects
the vectorOfHandlers to userTrapVect [no] if privilage is User or to kernTrapVect [no]
if privilage is Supervisor. The connectType is set to VECTOR-TYPE.

Disconnect functions : All the disconnect functions are straight forward and basically reset
the corresponding locations to NULL or deallocate the allocated structure as in the case of
interrupts.

2.2.9 Supervisor Ac to r Interface Implementat ion

In the case of PA-RISC, the compiler generates instructions that access data relative t o general
register 27 (DP or DataPointer). During the startup of a thread this register is set to $global$
(of the address space) before the actual code gets executed. The $global$ refers to the starting
address of the the $DATA$ section of a typical UNIX process. Chorus requires the kernel and
supervisor actor to live in the kernel address space. Chorus assumes that it is possible to make
a simple procedure call to a procedure in the the supervisor actor from the kernel as the actors
are in the same address space, i.e., the kernel address space, even though the two actors are
two separate executable images. During the port, this requirement that the supervisor actors
should live in the same context as the kernel has been satisfied by laying out the supervisor actors
including the kernel in distinct regions in the 30-bit virtual address space corresponding to the
same spaceId=KernelSpaceId. Because of this, the $global$ address is different for each of the
supervisor actors and the kernel. The consequence of this design decision is that it is no more a
simple procedure call from the kernel into the supervisor actors. If a procedure p, of a supervisor
actor s has to be called in the interrupt handling sequence, then the procedure p, can be called
only after the DP register has been updated to that of the supervisor actor. In addition the
kernel's dp should be restored when returning from p,. We considered the following implementation
approaches:

DP of the supervisor actor should be known by the kernel at the time of calling the interrupt
handler.

The routine should know that it should set the DP to its $global$ and restore the kernel's
$global$ at the end of the routine.

The routine should know that it should the set the DP to its $global$ and the kernel should
restore its own DP after returning from the call.

The second approach was rejected because, even if submerged, the setting and restoring of DP
using static variables in the system call stub at the time of the Connect(), it is not a robust
mechanism and can be broken by a misbehaving supervisor actor. Of course, as supervisor actors
are trusted, there are other ways in which a misbehaving supervisor can crash the kernel but we
did not want add more ways.

The third approach required modification in the kernel interface and the stubs. It was rejected
because using static variables in system ca,ll stubs did not appeaa to be elegant and it required
kernel modification.

We examined two alternatives of obtaining supervisor actor's DP at time of calling the handler:

Modify the Supervisor Actor interface and the Supervisor interface to pass the datapointer
as an additional parameter to all those functions that required a routine in the supervisor
actor to be called.

Pass the DP as a hidden parameter during the system call and keep the machine dependency
in the the machine dependent layers as much as possible.

The first approach was rejected because it would modify the machine independent interface of
the Chorus Kernel and would require modifications in the supervisor actors already written.

In the current implementation, the DP of the supervisor actor is passed as a hidden parame-
ter during the system call. For all the calls given in the section 2.1.2, the following scheme has
been adopted. If the system call name is scf then this would call a PA-RISC specific function
scfParisc which takes the DP of the actor as an additional argument. The stub will be gener-
ated for scfParisc rather than for scf. For example: svTimeOut(rout ine, param, delay) calls
svTimeOutParisc(routine, param, delay, get-dp()). get-dp() returns the DP of the actor.
The system call stub is generated for svTimeOutParisc() rather than for svTimeOut().

In the kernel, kern/scSystem.cxx is modified. All the kernel routines which now require the
knowledge of the DP of the requesting supervisor actor are replaced by functions that have the
same name with Par i sc suffix. For example: KnTimeOut() is replaced KnTimeOutPar i sc()
and the number of arguments field is incremented by 1.

The following is a list of the changes at the supervisor stub library level:

svAbortHandler(actcap, rout ine) calls svAbortHandlerParisc(actcap, routine, get-dp()).
A stub is generated for svAbortHandlerParisc() .

svExcHandler(actcap, routine) calls svExcHandlerParisc(actcap, routine, get-dp()).
A stub is generated for svExcHandlerParisc().

svCallConnect(t rapNo, hdlVect, NoHdl) calls svCallConnect(t rapNo, hdlVect,
NoHdl, get-dp()). A stub is generated for svCallConnectParisc().

svI tConnect (t rapNo, hdlVect, NoHdl) calls svI tConnect (t rapNo, hdlVect, NoHdl,
get-dp()). A stub is generated for svItConnectParisc().

svTrapConnect(t rapNo, hdlvec t , NoHdl) calls svTrapConnect(t rapNo, hdlVect,
NoHdl, get-dp()). A stub is generated for svTrapConnectParisc().

svTimeOut(rout ine, pa ram, delay) calls svTimeOutParisc(routine, param, delay,
get-dp()). A stub is generated for svTimeOutParisc() .

The following is a list of changes in kern/scSystem.cxx: All the modifications are done under
compilation flag PARISC.

Replace scSvAbortHandler() taking 2 parameters by scSvAbortHandler() that takes
an additional parameter DP.
The call workActor+setAbortHdl(f) is changed to workActor+setAbortHdl(f , dataPointer) .

Replace scSvExcHandler() taking 2 parameters by scSvExcHandler() that takes an ad-
ditional DP parameter.
The call workActor-+setExcHdl (f) is changed to workActor+setExcHdl(f , dataPointer) .

Replace SupCallConnect() taking 2 parameters by SupCallConnectParisc() that takes
an additional DP parameter.

r Replace SupI tConnect () taking 2 parameters by SupItConnectParisc() that takes an
additional DP parameter.

r Replace SupTrapConnect() taking 2 parameters by SupTrapConnectParisc() that takes
an additional DP parameter.

r Replace KnTimeOutO taking 2 parameters by KnTimeOutParisc() that takes an addi-
tional DP parameter.

The following is a list of changes in kern/knMk.hxx: All the modifications are done under
compilation flag PARISC.

r Add two fields acPariscExcDp, acPariscAboDp for recording the DPs of the supervisor actors
that have performed svExcHandler(), svAbortHandler() respectively.

r Extend the parameter list of s e tExcHdl0 , setAboHdl() to take DP as a parameter. Add
an additional assignment of the DP to acPariscExcDp and acPariscAboDp respectively.

Modify execExcHdl()/execAboHdl() to call SupTrapStub() with exception context,
exception number, exception/abort handler to be called and the DP of the exception/abort
handler routine as parameters.

The following is a list of changes in kern/knMk.cxx. All the modifications are done under
compilation flag PARISC.

r The timeOutItem structure has an additional field: DataPointer that gives the $global$
of the supervisor actor to which the routine belongs.

r KnTimeOut() calls KnTimeOutPar i sc() which has an additional parameter DP. The DP
is the $global$ of the kernel.

r KnTimeOutParisc() is exactly the same as KnTimeOut() but takes an additional pa-
rameter and performs the data pointer assignment into the timeOutItem structure.

r KnProcessTimeOuts() has been modified at the point of calling the timeout routine.
SupTrapStub() is called to take care of switching to the data pointer of the timeout routine
before executing the routine and then restoring the data pointer of the kernel when returning
to the kernel.

SupTrapStub() is implemented in kern/PARISC/SupTrapStub.s. It allows the kernel to
call the supervisor actor routines that have instructions generated with a different $global$. It
takes the following parameters:

r Pointer to the thread's context, KnThreadCtx* c tx

r Interruption number, i n t no

r Routine address, i n t (*fnPtr) 0;

r $global$ of the actor to which the routine belongs, VmAddr global.

Hardware . Software - - - - - - - - - . -
1ocore.s . asmrv .s . c h o r u s - t r a p . ~ ~ ~ . ~ ~ C o n n e c t .cxx, v m t r a p . ~ .

IVA R~~ : tivaaddr:
. eight instructions! ihandler(itypei interrupt(itype, ctx): SupItHandler(ctx, itype)

-1 : per interruption. .
25 interruptions. - : SupTrapHanlder(ctx, itype

: $restore-ss-trap : thandler(itype) trap(itype, ctx)

$restore-ss : VmHandler(ctx, itype)

- - - - - - - - - . - - - - - - - - - - - - - . -
Layer 1 Layer 2 Layer 3

Figure 8: Chorus Event Handling Sequence

2.2.10 Interrupt masking and monitoring functions

The section details the implementation of SupItLevel(), svMask[All]() and svUnMask[All](). SupItLevel()
is implemented in kern/PARISC/sv.h and the functions sv[Un]Mask[All]() are implemented in
lib/HP800/svMask.s The mask/unmasking functions are implemented by calling the appropriate
spl() routines of Tut code implemented in lib/PARISC/asm-ut1.s.

2.2.11 Event Handling

The event handling sequence has been implemented in 3 layers and is shown in fig 8.
The IVA control register is first initialized with the code addr $ivaaddr in kern/PARISC/locore.s

during the kernel Initialization phase. This address is page-aligned and is therefore 1024-byte
aligned as required by the PA-RISC interrupt architecture. This will be referred to as the inter-
rupt vector table in the following discussion.

PA-RISC interruptions are classified in the following manner:

PA-RISC Interruptions #1, #2, #4 and # 5 have been classified as interrupts.

The remaining PA-RISC Interruptions are handled as traps. Of these traps, #6, #7, and #15
to #21 pertain to memory management. HP 9000/834 (the target architecture) has software
TLB handling. So the interruptions #6, # 15, # 16, # 17 are actually TLB misses but may
result in page faults if the page is not in the PDIR (see section 1.3.3).

Recall that on an interruption, hardware branches to the code address given by the following
relation:

code address = IVA + 8*4*interruption number

Depending on the interruption, the interruption parameter registers are updated by hardware. The
processor is in physical mode. Interrupts are turned off. The PSW-Q bit in the PSW is disabled.

All the interrupt and trap handling code resides in the directory kern/PARISC. An overview
of the interrupt and trap handling is as follows:

r Hardware branches to the effective address in the in te r rupt vector table as detailed above.
At this level a few registers are saved in control registers to obtain some working registers.
A branch is performed to i hand le ro for handling interrupts or to t h a n d l e r o for handling
trapsg.

r i h a n d l e r o and t h a n d l e r o save the context of the executing thread. t h a n d l e r o always
stores the context on the system stack of the current thread and executes on the same. ihan-
dler() uses the system stack of the current thread for storing the context and for execution if
interrupt nesting level is zero. Otherwise, the function uses the interrupt control stack (ICS).
In the general case t h a n d l e r o calls t rap() and ihandler() calls interrupt() .

r in te r rupt () executes the interrupt routines attached by {Sup, sv)I tConnect() by calling
SupItHandler() . t rap() directs all the memory management traps to VmHand le rO and
non-memory management traps to SupTrapHandler().

r i hand le ro , after returning from the call to interrupt() , checks if rescheduling or aborting
the thread is necessary, and by default, restores the context of the current thread. Depending
on whether i hand le ro was running on the ICS or on the system stack of the current thread,
it has to perform a different restore sequence to return to normal execution. The reason for
the difference is that threads' system stacks are not equivalently mapped, whereas the ICS
is equivalently mapped, i.e., virtual and physical addresses are the same. $ r e s t o r e s s is the
final restore sequence used on the ICS and $restore-ss-trap is the final restore sequence
used on the system stack. $res toress - t rap and $restore-ss a.re text addresses in 1ocore.s.
A branch is taken to this code to cause a potential TLB refill and then the code gets executed.
This branch is necessary because code updating the interruption instruction queues and IPSW
should not cause TLB misses as the PSW-Q bit is turned off.

t h a n d l e r o after returning from the call to t r ap () restores the context not connected with
instruction queues and PSW etc, and performs the final restore sequence to restart executing
the code of the current thread by branching to res toress - t rap .

This completes the overview of the implementation of trap and interrupt handling.

A detailed description of the control flow of interrupt handling is now presented. The variable
i s t a c k p t r contains the pointer to the bottom of the ICS if the code is not executing on the ICS.
i s t a c k p t r is set to zero whenever the code is running on the ICS. The variable n b i t indicates
the current interrupt nesting level.

The detailed flow of control for interrupt handling is given below.

1. Hardware branches to one of the first level interrupt handlers in 1ocore.s. The processor is
in physical mode. Interrupts and the PSW-Q bit are disabled.

2. The first-level handler saves registers ARGO, SP, T1 which will be used as scratch and branches
to ihandler(itype) in asm-rv.s

3. ihandler() performs the following operations:

'PA-RISC interruptions #6, #IS, #16, #17 are are treated slightly differently. All TLB misses are first handled
in kern/PARISC/locore.s. If the page is found in the PDIR then the tlb is refilled and control is returned to
the executing thread. If the page is not found in the PDIR (see Inouye [Ill), then thandlero is called with the
appropriate page fault type (Instruction [non-access] page fault or Data [non-access] page fault) as the case may be.

(a) Increment n b i t . If n b i t equals two, then switch to the ICS.

(b) If n b i t is greater than two, continue using the current SP as we will be definitely on
the ICS.

(c) If n b i t equals one, then check for which one of the following cases is true and execute
the corresponding code:

i. Already on ICS. This case was possible as interrupts were turned on during booting.
This case can arise only if interrupts are enabled during booting. The interrupts are
not enabled during booting in the normal execution. In any case, if interrupts are
re-enabled during booting, the current SP is used.

ii. Check if we are running on the user stack or system stack of the thread. The state
has to be saved on the system stack in this case. This requires saving the interruption
parameter registers in the equivalently mapped tmp-saveatate structure, turning
on virtual memory and checking CurThread's ksp. If ksp equals zero, the thread
was executing on its system stack and so keep the SP unchanged. If ksp is not equal
to zero, the thread was executing on its user stack and ksp contains the pointer to
its system stack. Set SP equal to ksp and set ksp to 0.

(d) Make sure there is enough space on the selected stacks. If executing on the system
stack and system stack overflow is detected, switch to ICS and change interrupt number
to kernel stack overflow pseudo-interrupt. If executing on the ICS and ICS overflow
is detected, change the protections of the overflow page available just after the ICS.
Change the interruption number to ICS overflow psuedo-interrupt. Both these events
are currently unrecoverable. in te r rupt () passes them to t r ap () which gives a panic
message and crashes.

(e) Allocate the context frame of size f r-size(see section 2.2.3) on the selected stack.

(f) save context on the stack, set DP to $global$ of the kernel and call in te r rupt () in
chorus-trap.cxx with arguments context pointer and interrupt number.

i. There are two ways in te r rupt () could be called: If a trap occurs on the ICS or a
genuine interrupt has occurred. In the first case, redirect the parameters to trap().
In the latter case, call SupItHandler() .

ii. SupI tHandlerO calls routines attached by the I t connec t () calls. The various
interrupts are handled as follows:

External Interrupt #4: the attached routine is SupItSelector(). This routine
is attached in SupBoardIni t () in svB0ard.c during kernel initialization. The
clock handlers connected in SupBoardIni t () get executed by SupItSelector()
every time interrupt #4 occurs and the EIRR 0 bit is set. These handlers are
part of the kernel and are necessary to satisfy the implementation specification.

a Power failure interrupt #2, Low-priority machine check #5: These interrupts
do not have a real handler in the current implementation.
High priority Machine check #1: This interrupt is handled at the first level itself
in 1ocore.s and is unchanged from the T u t implementation.

(g) Disable interrupts. Decrement n b i t . If n b i t equals one, then restore i s t a c k p t r to ICS
stack bottom. This is because the interrupt handling at nesting level 0 is performed on
the system stack of the current thread.

(h) If nbit equals zero then check for execution mode of the interrupted thread. if the thread
was executing supervisor mode then call KnRetSupO and go to step (3j. Otherwise
call KnRetUserO.

(i) If KnRetUserO returns non-zero, call KnAbortHandIerO.

(j) Restore saved context by loading all the context except those related with PC queues,
SP, PSW, and interruption parameter registers. If executing on the interrupt stack, then
branch to $restore-ss in 1ocore.s. Otherwise, branch to $restoress-trap in 1ocore.s.

4. In $restore-ss interruption instruction queues and parameter registers are going to be written
into and since the Q-bit will be disabled, there can not be any TLB misses. Disable interrupts.
Turn off VM and Q bit and Protection bits. Restore the remainder of the state from the
previous interrupt after calculating the new psw. Restore SP and perform rfi instruction.
The new psw is given by the following relation:

New psw = (GLOBAL-VAR-MASK && ipsw) (1 global-psw

The operations at $restore-ss-trap will be described in the trap handling description.

Once the restore sequence is done, the normal mode of execution is resumed. A detailed flow
of execution for trap handling is now presented:

1. Hardware branches to one of the first level trap handlers in 1ocore.s.

2. The first-level handler saves registers ARGO, SP, T1 which will be used as scratch registers
and branches to thandler(itype) in asm-rv.s

3. thandlero performs the following operations:

(a) If currently executing on the ICS, then allocate a context frame on the stack, store the
interruption parameter registers and branch to step (3f) in ihandlero. Increment n b i t
to ensure compatibility with interrupt handler code to execute correctly.

(b) If not executing on the ICS, then the context has to be saved on the system stack of
the thread. Find stack on which the thread was executing. This requires the VM to be
enabled. Before turning on VM, store the registers that might get trampled by turning
on VM due to tlb misses into the equivalently mapped tmp-save-state structure. If
current thread's ksp equals zero, the thread is executing on system stack. Otherwise,
ksp contains the system stack pointer of the thread. Obtain the stack pointer if ksp is
non-zero and set the SP register to ksp. Otherwise, do nothing.

(c) If sufficient space is unavailable on kernel stack, switch to the ICS and change interrup-
tion number to the psuedo interruption kernel-stack-overflow (I-KS-OVFL) and allow
the interruption number to float up to the next layer just as in ihandlero.

(d) Allocate space on the selected stack, store the context onto the stack. Set DP to
$global$ of kernel and call trap().

(e) trap() passes all the memory management traps to VmHandlerO. The traps Break,
High Pn'vilege Tmnsfer, Low Privilege Transfer, Taken Branch are passed to Sup-
TrapHandlerO. The traps Assist Enzulation and Assist Exception are not currently
supported. The default behavior for un-supported or irrecoverable errors is to panic
with a message.

SupTrapHandlerO calls the connected handler if a handler to the trap is connected.
Otherwise, it calls KnHandlerO. SupBrkHandlerO is connected to the Break trap.
This checks the parameter of the break instruction available in the context and calls the
Kernel debugger if the condition succeeds otherwise, it calls KnHandlerO.

VmHand le rO checks the type of trap and the space (user or system) in which the trap
has occurred. For some of combinations that are unrecoverable (for examp1e:Instruction
page fault in the system space), the function panics. For the various trap and space pairs
for which the portable layers can make a decision, VmHand le rO calls fault-handle()
which calls execPageFault(). The Chorus page fault interface requires execpage-
Faul t () to be implemented by the machine dependent layer (see section 3). The han-
dling of various memory management traps is outlined below:

TLB miss faults : Before performing any other action, the Chorus memory manage-
ment data structures need to be consulted. fault-handle() calls execPageFault()
to determine whether the page has been mapped in the portable structures but not
yet allocated by the machine-dependent layer.

Non-access TLB miss faults : For non-access TLB misses, PDIR search failure for
LPA and PROBE instructions does not result in a page being brought into memory.
Therefore, fault handling for these cases also ends in stage one. For LPA, we may
have to modify the base register (if specified in the faulting instruction). PROBE
and LPA handling ends by setting the N bit which nullifies the next instruction.

M e m o r y Protect ion Faul ts : Protection and alignment faults are handled exclu-
sively in stage three. Alignment faults result when a either a store or a load in-
struction access an address which is not aligned as per the requirements of the
specific instruction. Alignment faults are exclusively due to bad code and their han-
dling ends in stage three by sending an error message to the user process. Protection
faults may occur due to illegal accesses to pages or due to copy-on-write violations.
The latter necessitates a call to execPageFault().

(f) Begin the return from exception sequence. Restore most of the context from the context
frame except those pertaining to interruption address queues, psu and working registers.
Branch to res toress - t rap .

4. $restore-ss-trap is more complicated than r e s t o r e s s since we are dealing with non-equivalently
mapped system stacks. We need to first copy the context to be restored in to the equiva-
lently mapped tmp-save-state structure before we can turn off VM. Operations similar to
restore-ss are performed. In addition, if the thread is returning to user mode, the ksp of
the thread is updated. This check can be done by checking the nesting level of the traps on
the system stack.

Discussion :

We reused most of the first and second level handling code from the T u t project and this greatly
simplified the implementation. The first level of interruption handling in 1ocore.s is unchanged
from Tut. The second level of Trap handling code asm-rv.s remained basically the same except for
a few modifications related to the accessing the current thread and its descriptor. The offsets had
to be modified to access the appropriate fields in the KnThreadCtx structure. Interrupt handling
code required extensive changes. Chorus requires that on the first interrupt (nest level O), the
context of the current thread is saved on the system stack and not on the ICS as in the case of

Tut . This means all the problems of non-equivalently mapped stacks that arise in trap handling
also find their way into interrupt handling. Chorus requires the current interrupt nesting level to
be maintained by the machine dependent layers. This was one of the additions. The third level of
handling is more operating system specific and had to be written for Chorus, although some pieces
of Tut code were reused.

2.2.12 Timer and Console Management

Timer management is implemented in kern/PARISC/svBoard.c.
The function SupBoardInit() connects clock handler clock() and clock-ack() to the clock

interrupt in descending order of priority. clock() calls the portable kernel exported function Kn-
TimeIn() and returns. clock-ack() acknowledges the interrrupt by resetting the clock interrupt
bit in EIRR and reschedules the interrupt by writing (currentTime + rescheduling interval) into
the ITMR register.

SupPreciseTime() is trivially implemented in the same file by returning the value in the
ITMR register.

SupPut Char(), SupGet Char(), SupPollChar() are also implemented in
kern/PARISC/svBoard.c. For details on their implementation, see [14].

The Supervisor is responsible for connecting at least Supputchar() and SupGetCharO
behind a trap so that library functions can be implemented. In the case of PA-RISC, three system
calls Put Char(), Get Char(), Pollchar() are implemented using the system call interface and
can be called from user or supervisor actors.

2.2.13 Debugger

The debugger function SupDebuggerO is implemented in kern/PARISC/debug.c. Most of
the code to implement the debugger has been ported from Chorus 3.3 sources for the compaq386.
The debugger is minimal and can perform the following functions:

r Show what commands are available and syntax (help facility).

r Recover from a break instruction. The debugger does not have the capability of setting a
break point. Currently the debugging is done by having an explicit break instruction in the
source code.

Modify data

Hex dump of memory

Show interruption context if the debugger is called during the interruption handling phase.

r Change debug trace level

r Toggle the more option in during traces. Setting this option would cause traces to pause for
input after every 24 lines.

r Show the context switch history of whole system or that of a particular thread. The history
displays the following information about the switch:

- Is the switch voluntary or caused by preemption

- cause of preemption

- The thread descriptor of the thread which is the destination thread of the context switch.

The history is maintained in a circular buffer.

Show the history of the interrupts and traps. The histories of traps and interrupts are
maintained in separate circular buffers.

Visualize the scheduler, actor, thread, message and port data structures. This functionality
is provided by the portable layers of the kernel (kern/knPrint.cxx, kern/knMk.cxx) and
the appropriate functions were called from SupDebuggerO

The debugger has been connected behind the PA-RISC break Tmp (#9) . The instruction
break causes a break Trap. The break instruction takes two parameters that can be used in re-
solving the break instruction processing. The instruction break BI1-DEBUG,O causes the pro-
gram to enter the debugger. To achieve this, a generic break handler function SupBrkHan-
dler() is first connected to the Break trap using SupTrapConnect() . See SupBoardIni t ()
in kern/PARISC/svBoard.c . This handler is invoked by the event handling code(see section
2.2.11). SupBrkHandlerO calls SupDebugge ro if the first parameter of the break instruction
is BI1-DEBUG.

The library function callDebug() is implemented in l ib /PARIS C/utDbg.s and basically
contains the break instruction with BI1-DEBUG as it's first parameter.

2.2.14 Kerne l Initialization

The function s t a r t () is implemented in kern/PARISC/sv.cxx but is not the entry point of
the kernel image. In most other Chorus implementations, virtual memory initialization is done
entirely in the boot program portion of the boot archive and the kernel has to perform only its
own initialization. In the case of PA-RISC, because of the reuse of T u t code, it was easier having
the kernel do all the initialization in one, mostly unchanged, procedure than try to break up and
modularize the low-level code. For more details on booting, see [12].

Control is transferred to the kernel entry point rdb-bootstrap in kern/PARISC/locore.s
from the boot program part of the boot archive. At this point interrupts are disabled and the
processor is in physical mode. DP, EIRR, IVA, SP, space registers and some global variables are
initialized followed by a call to realmain() in kern/PARISC/vm-machdep.~. realmain()
maps the kernel and returns the next available physical page. Then virtual memory is turned on
in kern/PARISC/locore.s and control transfers to s tar t () .

s t a r t () performs all the functions specified in section 2.1.6 in addition to disabling the scheduler
and initializing the CurThread variable that points to the current executing thread. The initializa-
tion of CurThread is necessary so that trap and interrupt handling code that refer to CurThread see
a legal value even though the thread has not actually been created. s t a r t () calls KnIni t () which
makes the executing kernel initialization code the first thread of the operating system. KnIni t ()
returns the system stack pointer to be used by the first thread. At this point, the first thread's
descriptor gets manually built, in a manner similar to that by SupCtxIn i t () . This is necessary
because the thread is already running. It is like bootstrapping the thread abstraction. Then a
stack switch from the interrupt control stack (ICS) to the allocated system stack is done followed
by a branch to KnMain() . This function never returns.

I
1

Figure 9: Chorus Page Fault Interface

I

Page Fault Machine Dependent I Machine Independent
I

3 Chorus Page Fault Interface

I
I
I

execPageFault0 8
b

I
I
I

As there is little documentation on porting the Chorus virtual memory unit, most of this information
was gathered through word-of-mouth and assumptions made from reading Chorus source code.

VmFtHandlerO

3.1 Requirements

I

Figure 9 shows the procedural interface between the machine-dependent code and the machine-
independent code. The routine execPageFault() should be called by all the low-level trap handlers
requesting access to the portable layers. This procedure represents the machine specific end of the
bridge between the machine dependent (MMU) and the machine independent (VM) layers. The
routine VmFtHandlerO represents the VM end. The file kern/vm/pvm/pvm.hxx contains a
fault descriptor structure (gmiPullInArgs) (shown in Figure 10) that is used to pass information
between these two layers and is the only parameter passed to VmFtHandlerO. The descriptor is
created in execPageFault(). The machine-dependent layer is responsible for filling in the fields for
ftAddr, ftAccess, nonAccess and prContext. The field ftAddr contains the address which caused the
fault. The type of access i.e., read or write, is specified in the field ftAccess. A pointer to the faulting
context is inserted into prContext. Non-access page faults are indicated when the nonAccess flag
is non-zero. The nonAccess flag indicates that the portable layers are only being consulted about
page protections and that the faulting page should not be swapped back into memory.

If the page fault is resolved by the upper layers then VmFtHandlerO returns K-OK. The
prPage field should now contain a refererence to the mmuPage descriptor that represents the desired
page. The prProt field represents the protections that should be assigned to the page. It is then
the responsibility of the machine-dependent section to load the page into the proper context.

3.2 Implementation

The routine VmHandler(KnThreadCtx* ssp, int type) implements the memory manage-
ment trap handlers. All the handlers in stage three which need access to execPageFault0 call
fault-handle() , which performs additional checks on the space ID and performs certain recovery
actions as described below.

execPageFault () is implemented in kern/PARISC/mmu.cxx. This routine sets up the
fault descriptor and calls the portable layer.

The Chorus portable layer, specifically VmFtHandlerO, is called by execPageFault0 and
is passed a pointer to a fault descriptor. Should the page fail to be found, then the kernel exception

struct gmiFaultArgs {
gmi Addr f t Addr ; // Set in MMU layer
gmiFlags f tAccess ; / / Set in MMU layer
gmiOf f set ftoffset;
picache* ftCache;
gmiFlags ftFlags ;

3;

struct gmiPullInArgs
int
picontext*
vmPage*
gmiFlags
gmiOf f set
gmiSize
operationDesc*
picache*
int
gmiFlags
gmiOf f set
gmisize
gmicache*
gmiOf f set
gmiFlags

3;

gmiFaultArgs (
nonAccess; // Set in MMU layer
prcontext; // Set in MMU layer
prPage ; // Returned to MMU layer
prProt ; // Returned to MMU layer
pr0ffset;
prSize ;
proper ;
prCache ;
mapWas0ut ;
mpRequeredAccess;
mpAccess0ffset;
mpDataSize;
mpTransitSegment;
mpTransitOff set;
mpGrantedAccess;

Figure 10: Fault Descriptor

handler, KnHandlerO, must be called. In the M88K sources, this is not done in execpage-
Fault() but by either codefault() or dataFaul t () . This is probably done in this manner because
KnHand le rO locks the kernel, but execPageFault() runs with the kernel locked.

The routine execPageFau l t0 is responsible for determining the faulting context, faulting
address, and the faulting page and loading this information in a fault descriptor.

The fault address is passed to this routine by the low-level trap handlers i.e., VmHandlerO.
The page address can be found by masking off the lower page offset bits from the faulting address.
The faulting context can be determined by examining the address space in which the fault occurred.
If the address space is SIDO, then the I(erne1Context is responsible for generating the fault.

Discussion :

There are loopholes that still need to be plugged.
One serious problem is the PROBE instruction. This instruction presents a problem in the

presence of copy-on-write pages. The non-access TLB miss routines can return the correct values if
they are called, but if a page is in memory and marked copy-on-write then the PROBE instruction

that checks for write access will fail. The way the Tut group solved this problem was to track
down all the occurences of PROBE instructions in the kernel and add another procedure call
when PROBE fails. This call would check with the Mach portable layers and is similar to our
execPageFault() routine when the nonAccess flag is set. Unfortunately, user programs which use
the PROBE instruction are on their own. This issue is not addressed in the current port. It might
be wise for future PA-RISC implementations to implement the PROBE instruction as a software
trap which would allow user programs to receive the correct treatment of the instruction.

The presence of non-access TLB miss faults requires that certain additions be made to the page
fault handler in the portable layers. Non-access TLB miss faults are not supposed to cause the
faulting page to be brought into memory. Since the portable layer is called to resolve access rights
in the case of non-access faults caused by PA-RISC probe instructions, it was necessary to make a
few changes to the interface so that the faulting page was not swapped back into memory.

Rather than change the number of arguments passed to each procedure in the fault handling
sequence, a field, nonAccess, was added to the fault descriptor, i.e.,the structure gmiPullInArgs.
This modification results in not having to change the format of any procedure call in the portable
layer. When the nonAccess field is non-zero, it indicates that the current fault should be handled
as a non-access fault and the swapper should not be called.

4 System Call Interface

The system call interface deals with the code and control flow that occurs during the execution of
a system call. The purpose of a system call is to gain higher privilege so that a user can execute
privileged operations in a controlled fashion.

The usual method of making a system call on many architectures is to execute a trap instruction.
Some amount of state gets stored, at which point the operating system recognizes the trap as a
request for a system call. Then the user parameters get copied into kernel space and the system
call routine is performed in privileged mode. The return values are then copied to user space and
registers are appropriately set. Finally, a return to user mode occurs as with an exception.

The Chorus system call interface requirements and system call stub generation environment is
detailed in section 4.1 and the implementation on PA-RISC is detailed in section 4.2.

4.1 Requirements

Chorus supports two types of actors: supervisor actors and user a.ctors. Supervisor actors are
privileged and live in the kernel spa.ce. Although Chorus can conceptually use the same system
call interface for user and supervisor actors, it is expected that different system call interface
is implemented for each type of actor. The rationale is that supervisor actors do not require
the protection checks and the copying that is needed for user actors and thus can have a more
streamlined interface. It is important to note that this is only an implementation decision and that
the same interface can be used for both user and supervisor actors if so desired. Our goal was to
implement both types of interfaces.

Chorus provides a general frame work for writing the stubs for supervisor and user system
calls. The stubs are expected to be generated by the utilities mk[s]lib(). The file 1ibImklib.c
is expected to produce the executable mkslib for generating supervisor system call stubs when
compiled with -DSUP-CALLS flag, or produce the executable mklib by default for generating user
system call stubs. The executables mklib and mkslib have the following command line syntax.

mk[s]lib system-call-name system-call-number

The standard output for mk[s]lib is s tdout .
All the compiled stubs for the supervisor actors are expected to be in lib/chorusSv.a and

those for user actors in lib/chorus.a.
The kernel attaches the system call routines for user and supervisor actors by executing scSys-

temIni t () and scUserInit() which, in turn, call SupCallConnect() with appropriate parame-
ters. It is the responsibility of the Supervisor and the system call interface implementation to call
the correct system call routine inside the kernel with the parameters for the system call given by
the user or supervisor thread.

4.2 Implementation

In the case of PA-RISC, there are two mechanisms that can be used for implementing a system call
interface for a user.

By causing a trap in the system call stub. This method is similar to that described in the
introduction of system call interface (section 4. An example for PA-RISC is to have a break
instruction with an appropriate parameter value as the last instruction in the stub.

By using the gateway mechanism. PA-RISC provides a GATE instruction [lo] to perform
a controlled transition from a lower privilege level to a higher privilege level. Pages can
be mapped with special access control information and are called gateway pages. A gate
instruction executed in these pages promotes the privilege level of the code that is executing.
The privilege level obtained depends on the access control information for that page.

The gateway mechanism was chosen in PA-RISC for implementing the system call interface for
user actors. The advantage of this mechanism over trap-based system calls is efficiency because no
saving and restoring of full user state is necessary (as for any trap or interrupt) before it is realized
that the trap is a deliberate mechanism to enter the kernel to perform privileged operations. T u t
code uses the same mechanism for implementing system calls. The stub interface for user actors is
detailed in section 4.2.1.

For most Chorus implementations, the supervisor actor system call stubs make a procedure call
to the required system routine in the kernel. The address of the system routine was calculated
from the starting address of the kernel's vector of system routines for supervisor actor system calls.
This address is made available in the Root structure for all the supervisor actors and is set by the
kernel during kernel initialization. We decided to adopt the same approach. The implementation
of this interface turned out to be more complicated than most chorus implementations on other
architectures and is detailed in section 4.2.2.

In our port, code executes at privilege level 0 (the highest privilege) or at privilege level 3
(lowest privilege). Levels 1 and 2 are not used. Code in supervisor actors and kernel executes at
privilege level 0 and that of user actors at privilege level 3.

4.2.1 System call interface for user ac tors

The system call interface for user actors is implemented in lib/mklib.c, kern/PARISC/locore.s,
kern/PARISC/asmscal l .s , and kern/PARISC/svConnect.cxx.

The gateway pages are mapped during the kernel initialization phase and are set up such that
promotion to privilege level 0 occurs at the target address of the gate instruction.

A new gateway page has been defined exclusively for chorus system calls that mimics the HP-UX
gateway page. It is physically contiguous with the HP-UX page but is mapped at virtual address

. ,,,,BB,, begining of stub ;;;;;;;;;;;;;

. code

.export threadCreate,code
threadcreate

ldil L%Oxc0006004,rl
ldi 31,r21 ; Sub System No
ble ~%Oxc0006004(sr7,rl)
ldi 30,r22 ; Call No for threadcreate
bv,n rO(rp)

noP ,,,,,,,, end of stub ;;;;;;;;;;;;;

Figure 11: User Actor System call stub example

CHORUS-SYSCALLGATE defined in include/PARISC/syscall.h. This virtual address is six
4K pages greater than SYSCALLGATE, the virtual address of the HP-UX gateway page. The
address assignment is based on the following constraints:

The new gateway page address should not clash or overlap with HP-UX gateway pages.

There should be sufficient room for growth in the virtual address space for more HP-UX
gateway pages.

The address should be in the fourth quadrant.

lib/mklib.c has been modified to produce the user and supervisor stubs for various system
calls. The assembly language stub for the system call threadcreate is shown in figure 11 as an
example.

The stubs for the user actor system calls are similar to the system call stubs for HP-UX except
that one more temporary register has a dedicated use. In HP-UX , the system call number is loaded
into gr22 (referred to as CN). In Chorus, HP-UX or unix-like operating systems are expected to
be implemented as sub-systems on top of the micro-kernel. Therefore, the system call stub should
specify the sub-system which should handle the system call. Hence, in PA-Chorus, the sub-system
number is also passed (in register gr21) to the kernel. The HP-UX gateway page has been retained
for the long term goal of maintaining HP-UX binary compatibility. The idea is that when a binary
image makes a system call using a standard HP-UX stub and branches to the HP-UX gateway page,
we just branch to the Chorus gateway page with the hpux subsystem number set. The system call
can then be handled in the same way for all system calls, whether from Chorus or from other
subsystems.

The control flow during a system call is as follows:

A user actor makes a system call by executing the corresponding labeled stub in lib/chorus.a.

The system call stub loads the sub-system number in gr21, the system call number in gr22, and
performs an inter-space branch and link (b le) to the virtual address CHORUS-SYSCALLGATE.
The user arguments to the system call are in grs 23-26 and/or on the user stack. The Chorus
gateway page is implemented in kern/PARISC/locore.s.

The code in the Chorus gateway page raises the privilege level to 0 and performs a vectored
branch to a potentially different label based on the sub-system number. In the current im-
plementation, a single label (chorussyscallinit) is used for system call handling for all sub-
system numbers. This is a hook in case system call handling needs to be performed differently
based on the sub-system number. chorussyscallinit is in kern/PARISC/asmscall .s.

At chorussyscallinit , the following operations are performed:

- Switch to the current thread's kernel stack to perform the system call. To achieve the
switch, the system stack pointer is read from the ksp field of the current thread's cur rc tx
structure.

- Allocate a context frame on the kernel stack by incrementing the system stack pointer
by f r s i ze . Mark that we are on the kernel stack by zeroing the ksp field in the context
frame. The begining of context frame would be referred to as ssp.

- Save thread specific registers SP, DP, GR31 (contains user stub return address), RP,
SR4, in the and mark that this is the first frame on the system stack.

- Mark that we are performing a system call:

s s p - t s t a t e f l ags = TCBINSYSCALL,

- Pass the system call number in the context by setting a temporary register in ssp:

ssp-tTCB-RET1 = CN

This system call number is used by SupCallHandler().

- Copy arg0-arg3 into the context frame. These arguments are passed to the system rou-
tine by SupCallHandler(). Call SupCallHandler() (kern/PARISC/svConnect.cxx)
with the pointer to saved context (ssp) and sub-system number.

SupCallHandler() performs the following operations:

- Get system call number from ssp:

SysCallNo = ssp-tTCB-RET1.

- Check the userTrapVect table. Check if a handler is present.

- If a handler is present then check if the number of arguments to the system call is greater
than four. If true, then copy the extra arguments from the user stack using svCopyIn().
Otherwise do nothing. Call the handler with all the parameters. The decision to copy
the extra user arguments into a temporary space before calling the handler is make
use of the compiler in creating the stack frame to call the handler routine. Copying of
parameters that are passed by reference from user space to kernel space is left to the
individual system calls.

- If a handler is not present, then call KnHandler() .

Check if system call needs to perform a complete restore sequence. This check was needed in
HP-UX to handling signals, It was retained since it could be a useful facility for sub-system
managers. This check is done by checking s t a t e f l a g s field of s sp for the TCBDORFI
bit. If the bit is set, then perform a full restore sequence that is very similar to return-
ing from an exception. Otherwise, the thread specific registers that have been stored at
chorussyscallinit are restored, the ksp field in the thread's cur rc tx is updated, and an
external branch is performed to the user a.ctor's return address, simultaneously lowering the
privilege level to 3.

This completes the outline of User actor system call interface.

Discussion :

This implementation is another instance where Tut code was reused. The main file of reuse is
asm-scal1.s. We started from this file and modified to suit Chorus calling conventions and thread
access.

4.2.2 System call interface for supervisor actors

In the case of system call interface for supervisor actors, the system call stub is similar to a
procedure call in most Chorus implementations. This was possible as the requirement of Chorus
that supervisor actors live in the kernel context was sufficient to perform this optimization.

In the case of PA-RISC, this was not quite the case. This is because of the same data pointer
($global$) problem mentioned in section 2.2.9. Since each image in the kernel space has its
own datapointer ($global$), calling a routine directly in another executable is not possible even
though all the supervisor actors share the same space id. To execute a procedure of the kernel
from a supervisor actor, the processor's DP register should be set to that of the kernel's $global$
before calling the kernel's procedure and restore the supervisor actor's $global$ on return from the
kernel procedure. This is exactly what the supervisor stub performs. An example of a supervisor
system call stub generated by liblmkslib is given in figure 12. The stub is for the system call
t hreadcreateo.

The stub performs the following actions:

Save the current DP and RP in the frame marker allocated by the calling conventions,

Initialize the DP register by the Kernel's DP available in the Root Structure [12] which is
mapped, privilege level 0 read-write, into quadrant 4.

Get the address of the Supervisor system call table from the Root Structure and calculate the
offset of the system call routine associated with the system call number.

invoke the system routine

Restore the supervisor actor's DP and RP from the frame marker and return to the supervisor
actor code.

By branching directly to the system routine, the parameters to the system call can be directly
reused by the system routine thus avoiding the copying of parameters on the system stack.

Discussion :

The system call table is an array of structures. The structure has 2 elements: a function
pointer and the number of arguments. TABL-ELMT-SIZE a.nd FUNC-OFFSET define the size of
the structure and offset to the function pointer respectively. These definitions are fragile and must
be automatically generated from the structure definitions.

. ,,,,,,,, begining of stub ;;;;;;;;;;;;;
. code

threadcreate
#define TABL-ELMT-SIZE 8
#define FUNC-OFFSET 4

stw dp,-32(sp) ; fm-edp posn in the frame
stw rp,-24(sp) ; fm-erp posn in the frame
ldil L%Oxd0000448,dp
ldw R%0xd0000448(dp) , dp
ldil L%Oxd0000024,r1
ldw R%Oxd0000024 (rl) ,r1
ldw 30 * TABL-ELMT-SIZE + FUNC-OFFSET(rl),rl
blr r0 ,rp
bv rO(r1)

noP
ldw -32(sp),dp ; fm-edp posn in the frame
ldw -24(sp),rp ; fm-erp posn in the frame
bv rO(rp)

noP
tundef TABL-ELMT-SIZE
#undef FUNC-OFFSET
. ,,,,,,,, end of stub ;;;;;;;;;;;;;

Figure 12: Supervisor Actor System call stub example

5 Mutex Interface

In Chorus, Semaphores and Mutexes are data structures that are defined by an actor in it's address
space. The kernel is invoked for all semaphore operations. For mutex operations, the kernel is
invoked only only when the threads have to be blocked behind a mutex or unblocked. In the
ideal case, where the threads never attempt to enter a critical region while another thread is in its
critical region, the kernel will never have to be invoked. Thus, mutexes provide an efficient means
of synchronization at the cost of fairness. Semaphores, in contrast, guarantee fairness at the cost
of efficiency.

In the case of supervisor actor, the semaphore or mutex data structure is directly accessed,
whereas in the case of user actor, the semaphore or mutex data structure is copied into the kernel
space (as in any user system call).

5.1 Requirements

The mutex interface consists of the following functions. All the functions take the address of
mutex (KnMutex *mutex) as parameter. The specification is taken from the Chorus Programmer's
manual[5].

mutexInit() : The mutex is initialized to free.

mutexTry() : Acquire a mutex. If mutex is free, then mutex is locked, returns value 1 and
execution proceeds normally. If mutex is locked, then the call returns 0.

mutexGe t () : Acquire a mutex. If mutex is free, then mutex is locked, returns value 1 and
execution proceeds normally. If mutex is locked, block the thread until the mutex becomes
free.

mutexRel() : Release a mutex. If threads are blocked on the mutex, one of them is awakened.

5.2 Implementat ion

The following atomic read-modify-write instructions are available on PA-RISC. These are basically
load and clear instructions:

ldcwx: Load and Clear Word Indexed

Idcws: Load and Clear Word Short; Short refers to using a short displacement parameter
rather than a short word.

Both instructions clear the location at the effective address and the previous contents of the memory
location are loaded into the destination register. For details on the instructions, see the PA-RISC
architecture manual[lO]. Any one of the instructions can be used for mutex implementation. The
ldcwx instruction was chosen for PA-Chorus.

The factors to be resolved in implementing mutexes were:

1. PA-RISC load and clear instructions require the effective address of the memory location to
be aligned on a 16-byte boundary.

2. Since mutexes are declared in an actor's address space, there is no kernel control over what
the alignment will be.

3. The mutex structure is a black box to the user or supervisor actor and all operations are
performed through kernel exported functions.

4. There should not be any change in the system call interface.

5. The portable layers of the kernel involved in implementing the kernel part of the mutex
operations assume that a value of 1 indicates locked and 0 indicates unlocked. In the case
of PA-RISC it is not possible to have a value 1 for locked as the instructions provided are
load and clear instructions.

The first alternative was to enter the kernel for every mutex system call. In the kernel, the system
call routine would disable interrupts, perform the read and write operations in separate steps, re-
enable interrupts and return. This alternative was rejected since it decreased the performance of
mutex operations greatly. It made them as costly as semaphore operations which defeated the
purpose of using mutexes.

The following alternative was adopted. The Mutex structure definition given in the chorus
public interface file include/chorus.h has been modified. The structure prior to modification is
given in figure 13.

The atomic operations for mutexes need to be performed on the lock field of the KnMu-
tex/KnSem structure. The other members come into play only when the mutex is not free or there
are threads to be released.

typedef s truct C
i n t lock ; I* used by the mutex operations only */
SemQueue* threads; /* pointer t o blocked thread queue */
i n t count ; I* Semaphore Count value */
unsigned key; /* Semaphore key * /

) KnSem;

typedef KnSem KnMutex ;

Figure 13: KnSem structure definition before modification

typedef s truct I
i n t lockC41; /* ARRAY used by the mutex operations only */
Semqueue* threads; /* pointer t o blocked thread queue */
i n t count ; /* Semaphore Count value */
unsigned key ; / * Semaphore key */

) KnSem;

typedef KnSem KnMutex;

Figure 14: KnSem structure definition after the modification

To guarantee a 16-byte aligned lock field, the KnMutex structure definition was modified as
shown in figure 14.

Since lock is now 4 words or 16 bytes long, there will be one word that is 16-byte aligned among
the 4 words allocated for lock.

The implementation of the various mutex functions is given below.

mutexInit() : The stub is generated by /lib/mk[s]lib. The corresponding system call routines
ScUsMutexInit() and ScMutexInit() in kern/scUser.cxx and kern/scSystem.cxx
have been modified to handle the changed data type of lock and the lock status values.

mutexTry() : This function is implemented in lib/PARISC/mutex.c. This function performs
the following operations:

Find the address of the aligned word in the lock array. This is done by the macro
alignlock.

Pass this address to the assembly routine low-mutexTry() in lib/PARISC/chorusSync.s
and return the return value.

This function is entirely an user level library function. No kernel invocation is needed.

mutexGet() : This function implemented in terms of mutexTry() in lib/PARISC/mutex.c.
If the mutex is available, then call returns immediately. Otherwise, kernel is invoked to block
the thread. The blocking call returns when the mutex becomes free and the procedure is
repeated again until the mutex becomes available. The call returns to the user only when the
mutex is obtained by the stub.

mutexRel() : This function is implemented in l ib/PARISC/mutex.c. This function writes
MUTEX-UNLOCKED into the 16-byte aligned word of the lock array. If threads are waiting
on this mutex, then the system call k-mutexRel() is invoked to release the threads. The
function then returns to user.

The stubs for kmutexGet and k-mutexRel are generated from lib/mk[s]lib. Modifications
were made to kern/scSystem.cxx and kern/scUser.cxx to deal with the change of lock from
an int to an int array and to address the 16-byte aligned word of the lock array. Note that
in the case of the kernel routines to handler user-actor system calls there is an added factor to
be considered. Since the user data structure is copied into a corresponding temporary kernel data
structure, finding the aligned word in the kernel copy of the mutex may not be the same as that of
the user mutex. Additional code was required to take care of the potential difference in alignment.

6 Modifications to the Chorus Portable Layers

Several small modifications were made to the "portable" layers of Chorus to carry out our port to
PA-RISC. This section summarizes these modifications and outlines the reasons for making them:

Calling the handlers attached by supervisor actors: Chorus requires the kernel and supervisor
actors to share the system address space. The initial design that all supervisor actors and the
kernel have the same space identity meant that each one of them had a separate $global$
. This complicated the calling of attached handlers as Chorus assumed in its portable layers
that these routines can be called directly ((*fn)(. . .)) as the supervisor actors are in the same
system space. This cannot be done on PA-RISC (see section 2.2.9). This accounted for most
of our modifications to the portable layers. See the Supervisor actor interface implementation
section for a full list of the modifications and additional functions implemented.

Of course, even if the kernel and supervisor actors were put in different spaces with different
space Ids but with the same value for $global$ (For example: all user actors on Chorus have
their $global$ equal to 0x40000000), we will have to deal with other problems of inter space
linkages similar to a system call. In either case it entails some modification in the kernel
and/or the Chorus interface.

Stack direction: The portable layers of Chorus assume that stacks grows towards lower ad-
dresses. For example, the system stack bottom is taken as the end of the stack area, whereas
on PA-RISC it is the begining of the stack area. This is actually a problem in the Chorus in-
terface definition for threadcreate which takes stack bottom as parameter. The stack bottom
would be different if the stack direction is different. A better definition would be to specify
two parameters:

- Address of the buffer allocated for the stack.

- Size of the buffer

On PA-RISC, the second parameter could be ignored. On architectures on which the stack
grows towards lower addresses the size parameter could be used to locate the bottom of the
stack.

Stack initialization: In addition to finding the stack bottom, a frame must be allocated on
the stack for PA-RISC in accordance with procedure calling conventions of the architecture.

For example, for user thread stack initialization, it is 48 bytes. There is one instance in
knMain.cxx where Chorus does not submerge this function in the machine dependent layers.

r Stack allocation: The system stack has to be physically allocated during the thread initial-
ization. There is one instance where the portable layers of Chorus assume that the size of
the system stack is one physical page. In our port it was 4 logical pages. This could have
been done in a portable manner by using the symbolic constants exported by the included
machine dependent header files.

r 16-byte alignment constraint on addresses for atomic load and clear instructions: This re-
quired a modification in the mutex data structure definition in the Chorus public interface
file. This was the only modification necessary to guarantee a 16-byte aligned address for
mutexes. The user treats the mutex structure as a black box and this feature aided in main-
taining exactly the same interface to the user, with very little degradation in space utilization
and performance.

Values for mutex unlocked and locked status: This is far more serious than the earlier
problem. The code in the kernel implementing the mutex operations assumes that lock
= 1 implies a locked mutex and lock=O implied an unlocked mutex. With load and clear
instructions, this assignment will not guarantee synchronization. A better approach would
have been to import a machine dependent mutex header file and use the values exported by
this header file in checking for mutex status. The list of modifications is specified in section
5.

Non-access TLB miss faults: These faults do not require a page to be brought into memory.
The portable layers need to know that they need not have to bring in the page. This resulted
in some modification. See section 3.

The modifications that involved stack direction, allocation and initialization are as follows. All
have been done under the compilation flag PARISC:

KnIni t () in kern/knMain.cxx. Corrected for stack direction and allocation.

r ActorIni t () in k e r n 1 k n M a i n . c ~ ~ . Corrected for stack initialization and direction.

r Member function init() of class mThread . Corrected for stack direction.

A qualitative evaluation of Chorus on HP PA-RISC is presented in[18].

7 Future Work

The first item that will receive the highest priority is the floating point and coprocessor emulation.
Right now, any thread performing those instructions is aborted. This has to be rectified.

The next step is to enable the floating point coprocessor and handle the various exceptions.
The Tut code should be useful in reaching these two short-term goals.

Some of the more interesting experiments we would like to do are:

r Faster context switches based on recognizing the thread's type and status. For example: A
system thread uses no floating point coprocessor. This characteristic can be used in making
a faster context switch. More generally, we would like to recognize the characteristics of
the thread that can be utilized to provide efficient context switches. Using the compiler
information about the thread is also an interesting possibility.

a Taking the supervisor actors out of the same space as the kernel and put them in separate
spaces. Multiple privilege levels and protection ids can be used to control the access of these
actors. Inter space calls are very cheap on PA-RISC. System call costs are marginally higher
but approximately 3 orders of magnitude better than using a trap t o implement system calls
on PA-RISC. PA-RISC seems to be suitable for decoupling of functions because of the global
virtual memory, multiple privilege levels, orthogonal protections, etc. It would be interesting
to get some experimental results with various configurations and interfaces.

a Evaluate the use of 64 bit addresses and to determine where the operating system inter-
faces need to be broadened in the interests of globally addressable memory, efficiency and
identification.

8 Acknowledgements

We thank Chorus for their sources and the valuable time spent in making us understand the machine
dependent layers of Chorus. We especially thank Jean-Ja.cqu6s Germond, FrGdCrick Hermann, and
Vadim Abrossimov for being very responsive and helpful.

Our sincere thanks to Bart Sears for providing us with the Tut sources and his visit which saved
us a considerable amount of time. We thank Ahmed Ezzat for answering the 'help!!' questions
at the time we didn't have the low-level documentation. We would also like to thank the other
members of the Tut project who provided us with such high quality information.

Srikanth Kambhatla of OGI modified the original Tut trap.c file so that it could compile in
our environment.

Finally, the project would not have reached this sta.ge without helpful discussion and input with
the other members of the PA-Chorus group.

References

[l] Vadim Abrossimov, Marc Rozier, and Michel Gien. Virtual Memory Management in Chorus.
In Proceedings of Progress in Distributed Operating Systems and Distributed Systems Manage-
ment. Springer Verlag, April 1989. Also published as technical report CS/TR-89-30.

[2] Fran~ois Armand, Michel Gien, FrCdCric Herrmann, and Marc Rozier. Revolution 89 or "Dis-
tributing UNIX Brings it Back to its Original Virtues". In Proceedings of the Workshop on
Experiences with Building Distributed and Multiprocessor Systems, October 5-6 1989. Also
published as technical report CS/TR-89-36.

[3] Chia Chao, Milon Mackey, and Bart Sears. Tut Threads Book. Technical Report HPL-DSD-
90-23, Hewlett-Packard Laboratories, 1990.

[4] CHORUS Kernel v3.2 Implementation Guide. Technical Report CS/TR-90-5, Chorus
Systiimes, 1990.

[5] CHORUS v3.3 Programmers Reference Manual. Technical Report CS/TR-90-59, Chorus
Systiimes, 1990.

[6] Overview of the CHORUS Distributed Operating System. Technical Report CS/TR-90-25,
Chorus Systhmes, 1990.

[7] CHORUS Kernel v3.3 Implementation Guide. Technical Report CS/TR-90-71, Chorus
Systkmes, 1991.

[8] Ahmed Ezzat, Chia Chao, Milon Mackey, and Bart Sears. Tut VM Book. Technical Report
HPL-DSD-89-32, Hewlett-Packard Laboratories, 1989.

[9] Jean- Jacques Germond. Specifications of the CHORUS/MiX Kernel v3.2 Test Suites. Technical
Report CS/TR-90-27, Chorus Systkmes, 1990.

[lo] Hewlett-Packard. Precision Architecture and Instruction Set Reference Manual, third edition,
April 1989.

[ll] Jon Inouye, Marion Hakanson, Ravindranath Konuru, and Jonathan Walpole. Porting Chorus
t o the PA-RISC: Virtual Memory Manager. Technical Report CSE-91-5, Oregon Graduate
Institute, January 1992.

[12] Jon Inouye, Marion Hakanson, Ravindranath Iionuru, and Jonathan Walpole. Porting Chorus
t o the PA-RISC: Booting. Technical Report CSE-91-4, Oregon Graduate Institute, 1992.

[13] David V. James, Stephen G. Burger, and Robert D. Odineal. Hewlett-Packard Precision
Architecture: The Input/Output System. Heudett-Packard Journal, 37(8):23-30, August 1986.

1141 Ravindranath Konuru, Marion Hakanson, Jon Inouye, and Jonathan Walpole. Porting Chorus
t o the PA-RISC: Building, Debugging, Testing and Validation. Technical Report CSE-92-7,
Oregon Graduate Institute, January 1992.

[15] Ruby B. Lee. Precision Architecture. IEEE Computer, 22(1):78-91, January 1989.

[16] Michael J. Mahon, Ruby Bei-Loh Lee, Terrence C. Miller, Jerome C. Huck, and William R.
Bryg. Hewlett-Packard Precision Architecture: The Processor. Hewlett-Packard Journal,
37(8):4-22, August 1986.

[17] Jonathan Walpole, Marion Hakanson, Jon Inouye, and Ravindranath Konuru. Porting Chorus
t o the PA-RISC: Project Overview. Technical Report CSE-92-3, Oregon Graduate Institute,
1992.

[18] Jonathan Walpole, Marion Hakanson, Jon Inouye, and Ravindranath Konuru. Porting Chorus
t o the PA-RISC: Overall Evaluatio11. Technical Report CSE-92-8, Oregon Graduate Institute,
January 1992.

